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Topic- Functional Dependencies
Objective :
Functional Dependencies and their properties
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Consider Two table:- 1.

School of Computing Science and Engineering

DBMS

STATE table:
State Union State
Abbrev | StateName Order | StateBird Population
CT Connecticut 5 American robin 3,287,116
MI Michigan 26 robin 9,295,297
SD South Dakota 40 pheasant 696,004
TN Tennessee 16 mocking bird 4 877,185
X Texas 28 mocking bird 16,986,510
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Consider Two table:- 2.
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CITY table:

State City
Abbrev | CityName | Population
CT Hartford 139,739
CT Madison 14,031
CT Portland 8,418
MI Lansing 127,321
SD Madison 6,257
SD Pierre 12,906
TN Nashville |488,374
X Austin 465,622
X Portland 12,224
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Outline Notation

STATE(StateAbbrev, StateName, UnionOrder,
StateBird, StatePopulation)

CITY(StateAbbrev, CityName, CityPopulation)
StateAbbrev foreign key to STATE

* Underline all parts of each primary key
* Note foreign keys with “attribute foreign key to TABLE”
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CITY

* one-to-many relationships: to determine the direction,
always start with “one”

- “one city is in one state”
* “one state contajns many cities”

» the foreign key is always in “the many” — otherwise it
could not be atomic (it would have to be a list)
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Functional Dependency

- attribute B is functionally dependent on attribute A if
given a value of attribute A, there is only one possible
corresponding value of attribute B

- that is, any two rows with the same value of A must
have the same value for B

« attribute A is the determinant of attribute B if attribute B
is functionally dependent on attribute A

* in the STATE relation above, StateAbbrev is a
determinant of all other attributes

* in the STATE relation, the attribute StateName is also
a determinant of all other attributes

» so, StateAbbrev and StateName are both candidate
keys for STATE
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« in the CITY relation above, the attributes
(StateAbbrev, CityName) together are a determinant of
the attribute CityPopulation

 in the CITY relation, the attribute CityName is not a
determinant of the attribute CityPopulation because
multiple cities in the table may have the same name
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* Functional dependencies

Functional dependencies are a constraint on the set of legal rglatim;s.
Let, & R and B 2 R. The functional dependency o — P holds on R if in any legal relation
t(R). For all pairs of tuples t; and t; in r such that t;(ct) = toat) |

Functional dependencies provide a means for defining additional constraints on a relational
schema. In simple words, a tuple value in one attribute uniquely determines the tuple’s value in
another atiribute.

Example:
WURIIJ{ERJD uniquely determines NAME and WORKER-ID uniquely ~determines
SKILL-TYPE, therefore functional dependencies as

FD : WORKER-ID — NAME

FD : WORKER-ID — SKILL-TYPE

The notation “~" is read “functionally determines”.
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Thus, in these examples, WORKER-ID functionally determines NAME, WORKER-ID
functionally determines SKILL-TYPE.

The attribute on the left hand side of an FD is called a determinant because its value determines
the value of the attribute on right-hand side. A relation’s key is a determinant, since its value
uniquely determines the value of every attribute in a tuple.

(1) Functional dependency of two attributes :

Consider Branch relation .

Branch (Branch-name, branch—city, assets) on Branch-schema.,
Branch-name — branch-city

Branch-name = assets
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(2) Example for No functional dependencies
Consider Depositor-schema relation

Depositor (customer-name, Account-number)
Here, customer-name and Account-number together form primary key.

Customer-name and Account-number are foreign keys.
Therefore no functional dependencies
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* Functional dependencies

(3) Example of a relation that has a functional dependency in which the determinant has two or

more attributes. -
Consider STUDENT_COURSE_INFO relation

xSTUDENT COURSE_INFO (Name, Course, Grade, Phone-no., Major, Course-Dept)

Name — Phone
Course —Course~Dept
MName course — Grade

Name course is a candidate key

MName & Course are prime attributes.

Grade 1s fully functionally dependent on the candidate key,

Phone~no, Course-Dept and major are partiaﬂy‘dapendent on the candidate key.
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(4) Transitive and Trivial Functional dependencies :
Transitive Functional Dependencies :

It occurs when a non key attribute is functionally dependent on one or more other non key
attributes.

A functional dependency X —Y in a relation scheme & is a transitive dependency if there is a set
of attributes Z that is neither a candidate key nor a subset if any key of R and both X —Z and

Z—Y hold.

Trivial Functional dependencies :

Let R be a relation on the relation schema R, then R satisfies the functional dependency X —Y if
a given set of values for each of the values of the attribute in X uniquely determines each of the
values of the attributes in Y. Y is said to be functionally dependent on X. The functional
dependency is denoted as X—Y, where X is the left hand side or the determinant of the R and Y
is the right hand side of the FD,

A functional dependency X —Y is said to be trivial if Yo X or Y& X, X =Y.
A functional dependency X —Y is said to be trivial functional dependency if Y < X,
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m A functional dependency is trivial if it is satisfied by all instances of a
relation

Example:
v 1D, name — ID
» name — name
In general, o — Gis trivial if /< o
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Closure of a Set of Functional

Dependencies

m Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

For example: If A— Band B — C, then we can infer that A —»
C

m The set of all functional dependencies logically implied by F is the
closure of F.

m We denote the closure of F by F*.
m F*is asuperset of F.
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The closure of F. denoted by F. 1s the set of all functional dependencies logically
implied by F.

The closure of F can be found by using a collection of rules called Armstrong
axioms.

Reflexivity rule: If A /s a set of attributes and B is subset or equal to A,
then A—B holds.

Augmentation rule: If A—B holds and C 1s a set of attributes, then CA—CB
holds

Transitivity rule: If A—B holds and B—C holds, then A—C holds.

Union rule: If A—B holds and A—C then A—BC holds

Decomposition rule: If A—BC holds. then A—B holds and A—C holds.

Pseudo transitivity rule: If A—B holds and BC—D holds. then AC—D holds.
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Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms
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Normalization

Normalization: is the process of “fixing” relational schemata so that they
avoid three closely related kinds of problems.

Storage redundancy: The same information is repeated many times.

Unnecessary information dependency: Information about some x cannot
be represented without having at least corresponding instance of y.

Update anomalies: The way in which data is represented complicates
the support of certain kinds of updates.
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llustration of Problems of an Unnormalized Schema

Firm

SSN | Name | Dept
000112222 | Alice | 3
000113333 [ Bruce | 3
000114444 | Carol | 3
000115555 | David | 5
000116666 | Alice | 4

SSN — {Name, Dept}
Dept — Bldg

oo
~J| —J| co| co| co| &=
g

o The FD Dept — Bldg does not define a key and leads to problems.
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Storage redundancy: The information about Department 3 is repeated three
times.

Update anomaly: If the building of Department 3 is to be changed, three
updates are necessary.
Unnecessary information dependency:

o Information about an employee who does not have a department
requires null values.

o Information about a department cannot be represented unless at
least one employee works in it.
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Approaches to Normalization

Approaches to normalization: There are two principle approaches to
normalization, and each will be considered in these slides.

Decomposition: Break larger relations into smaller ones.

Synthesis: Begin with a set of dependencies (usually FDs), and
construct a corresponding relational schema.

The changes forced by normalization: Generally speaking, by forcing FDs to
define (super)key dependencies, the problems identified above are
minimized or disappear completely... but the devil is in the details.
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Normal Forms

Normal forms: In early research on the relational model, a number of so
called normal forms were developed.

o The principal ones which are based upon FDs were developed in the
following order:

INF - 2NF — 3NF — BCNF

o There are some others which are based upon other types of dependencies:
4NF, 5NF, DKNF.
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o For pedagogical reasons, they will considered In the reverse order of
development:

BINF = 3NF —+ NF - INF

o The main focus will be upon BCNF and 3NF, as 2NF is largely of
historical Interest and INF 15 just a constraint on domains
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Design "Anomalies”

This Apply relation exhibits three types of anomalies:
1.Redundancy

2.Update Anomaly

3.Deletion Anomaly
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(Class-Assignment)

Explain Normalization with design issues.

Dr.Satyajee Srivastava 35
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