School of Computing

SQ%G OTIAS Science and Engineering

VERSITY

Program: BCA
Course Code:BCAC2102
Course Name: Database Management System

Lecture-17

Topic- Normal Forms
Faculty:-Dr. Satyajee Srivastava

ajee Srivastava

School of Computing Science and Engineering
Kr 9?%&9{&@% Course Code :BCAC2102 Course Name: DBMS

_ecture-16(RECAP)

Topic- Functional Dependencies
Objective :
Functional Dependencies and their properties

GALGOTIAS
UNI

VERSITY Course Code :BCAC2102 Course Name:

Lecture-16

Consider Two table:- 1.

School of Computing Science and Engineering

DBMS

STATE table:
State Union State
Abbrev | StateName Order | StateBird Population
CT Connecticut 5 American robin 3,287,116
MI Michigan 26 robin 9,295,297
SD South Dakota 40 pheasant 696,004
TN Tennessee 16 mocking bird 4 877,185
X Texas 28 mocking bird 16,986,510

GALGOTIAS
UNI

Lecture-16

Consider Two table:- 2.

VERSITY Course Code :BCAC2102 Course Name:

CITY table:

State City
Abbrev | CityName | Population
CT Hartford 139,739
CT Madison 14,031
CT Portland 8,418
MI Lansing 127,321
SD Madison 6,257
SD Pierre 12,906
TN Nashville |488,374
X Austin 465,622
X Portland 12,224

School of Computing Science and Engineering

DBMS

~ School of Computing Science and Engineerin
GALGOTIAS [l puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-16

Outline Notation

STATE(StateAbbrev, StateName, UnionOrder,
StateBird, StatePopulation)

CITY(StateAbbrev, CityName, CityPopulation)
StateAbbrev foreign key to STATE

* Underline all parts of each primary key
* Note foreign keys with “attribute foreign key to TABLE”

l’a

School of Computing Science and Engineering
&r 9’3%&9{5%% Course Code :BCAC2102 Course Name: DBMS

Lecture-16

CITY

* one-to-many relationships: to determine the direction,
always start with “one”

- “one city is in one state”
* “one state contajns many cities”

» the foreign key is always in “the many” — otherwise it
could not be atomic (it would have to be a list)

School of Computing Science and Engineerin
GALGOTIAS [l puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-16

Functional Dependency

- attribute B is functionally dependent on attribute A if
given a value of attribute A, there is only one possible
corresponding value of attribute B

- that is, any two rows with the same value of A must
have the same value for B

« attribute A is the determinant of attribute B if attribute B
is functionally dependent on attribute A

* in the STATE relation above, StateAbbrev is a
determinant of all other attributes

* in the STATE relation, the attribute StateName is also
a determinant of all other attributes

» so, StateAbbrev and StateName are both candidate
keys for STATE

School of Computing Science and Engineerin
GALGOTIAS [l puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-16

« in the CITY relation above, the attributes
(StateAbbrev, CityName) together are a determinant of
the attribute CityPopulation

 in the CITY relation, the attribute CityName is not a
determinant of the attribute CityPopulation because
multiple cities in the table may have the same name

School of Computing Science and Engineerin
GALGOTIAS [l puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-16

« in the CITY relation above, the attributes
(StateAbbrev, CityName) together are a determinant of
the attribute CityPopulation

 in the CITY relation, the attribute CityName is not a
determinant of the attribute CityPopulation because
multiple cities in the table may have the same name

School of Computing Science and Engineerin
3 GALGOTIAS [puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-16

* Functional dependencies

Functional dependencies are a constraint on the set of legal rglatim;s.
Let, & R and B 2 R. The functional dependency o — P holds on R if in any legal relation
t(R). For all pairs of tuples t; and t; in r such that t;(ct) = toat) |

Functional dependencies provide a means for defining additional constraints on a relational
schema. In simple words, a tuple value in one attribute uniquely determines the tuple’s value in
another atiribute.

Example:
WURIIJ{ERJD uniquely determines NAME and WORKER-ID uniquely ~determines
SKILL-TYPE, therefore functional dependencies as

FD : WORKER-ID — NAME

FD : WORKER-ID — SKILL-TYPE

The notation “~" is read “functionally determines”.

GOTIAS School of Computing Science and Engineering
MTEIERd Course Code :BCAC2102 Course Name: DBMS

Lecture-16
* Functional dependencies

Thus, in these examples, WORKER-ID functionally determines NAME, WORKER-ID
functionally determines SKILL-TYPE.

The attribute on the left hand side of an FD is called a determinant because its value determines
the value of the attribute on right-hand side. A relation’s key is a determinant, since its value
uniquely determines the value of every attribute in a tuple.

(1) Functional dependency of two attributes :

Consider Branch relation .

Branch (Branch-name, branch—city, assets) on Branch-schema.,
Branch-name — branch-city

Branch-name = assets

GOTIAS School of Computing Science and Engineering
FTEIRed Course Code :BCAC2102 Course Name: DBMS

Lecture-16
* Functional dependencies

(2) Example for No functional dependencies
Consider Depositor-schema relation

Depositor (customer-name, Account-number)
Here, customer-name and Account-number together form primary key.

Customer-name and Account-number are foreign keys.
Therefore no functional dependencies

School of Computing Science and Engineering
*\r 9‘3%&9{5%% Course Code :BCAC2102 Course Name: DBMS

Lecture-16

* Functional dependencies

(3) Example of a relation that has a functional dependency in which the determinant has two or

more attributes. -
Consider STUDENT_COURSE_INFO relation

xSTUDENT COURSE_INFO (Name, Course, Grade, Phone-no., Major, Course-Dept)

Name — Phone
Course —Course~Dept
MName course — Grade

Name course is a candidate key

MName & Course are prime attributes.

Grade 1s fully functionally dependent on the candidate key,

Phone~no, Course-Dept and major are partiaﬂy‘dapendent on the candidate key.

School of Computing Science and Engineerin
GALGOTIAS [puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-16
* Functional dependencies

(4) Transitive and Trivial Functional dependencies :
Transitive Functional Dependencies :

It occurs when a non key attribute is functionally dependent on one or more other non key
attributes.

A functional dependency X —Y in a relation scheme & is a transitive dependency if there is a set
of attributes Z that is neither a candidate key nor a subset if any key of R and both X —Z and

Z—Y hold.

Trivial Functional dependencies :

Let R be a relation on the relation schema R, then R satisfies the functional dependency X —Y if
a given set of values for each of the values of the attribute in X uniquely determines each of the
values of the attributes in Y. Y is said to be functionally dependent on X. The functional
dependency is denoted as X—Y, where X is the left hand side or the determinant of the R and Y
is the right hand side of the FD,

A functional dependency X —Y is said to be trivial if Yo X or Y& X, X =Y.
A functional dependency X —Y is said to be trivial functional dependency if Y < X,

School of Computing Science and Engineering

f GALGOTIAS

UNIVERSITY Course Code :BCAC2102 Course Name: DBMS

Lecture-16
* Functional dependencies

m A functional dependency is trivial if it is satisfied by all instances of a
relation

Example:
v 1D, name — ID
» name — name
In general, o — Gis trivial if /< o

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-16 _
Closure of a Set of Functional

Dependencies

m Given a set F of functional dependencies, there are certain other
functional dependencies that are logically implied by F.

For example: If A— Band B — C, then we can infer that A —»
C

m The set of all functional dependencies logically implied by F is the
closure of F.

m We denote the closure of F by F*.
m F*is asuperset of F.

l’a

School of Computing Science and Engineering
&r 9’3%&9{5%% Course Code :BCAC2102 Course Name: DBMS

Lecture-16

The closure of F. denoted by F. 1s the set of all functional dependencies logically
implied by F.

The closure of F can be found by using a collection of rules called Armstrong
axioms.

Reflexivity rule: If A /s a set of attributes and B is subset or equal to A,
then A—B holds.

Augmentation rule: If A—B holds and C 1s a set of attributes, then CA—CB
holds

Transitivity rule: If A—B holds and B—C holds, then A—C holds.

Union rule: If A—B holds and A—C then A—BC holds

Decomposition rule: If A—BC holds. then A—B holds and A—C holds.

Pseudo transitivity rule: If A—B holds and BC—D holds. then AC—D holds.

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Topic- Normal Forms

Objective :
To acquire knowledge about Normal Forms

School of Computing Science and Engineering
Kr 9?%&9{&@% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Normalization

Normalization: is the process of “fixing” relational schemata so that they
avoid three closely related kinds of problems.

Storage redundancy: The same information is repeated many times.

Unnecessary information dependency: Information about some x cannot
be represented without having at least corresponding instance of y.

Update anomalies: The way in which data is represented complicates
the support of certain kinds of updates.

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

llustration of Problems of an Unnormalized Schema

Firm

SSN | Name | Dept
000112222 | Alice | 3
000113333 [Bruce | 3
000114444 | Carol | 3
000115555 | David | 5
000116666 | Alice | 4

SSN — {Name, Dept}
Dept — Bldg

oo
~J| —J| co| co| co| &=
g

o The FD Dept — Bldg does not define a key and leads to problems.

3

School of Computing Science and Engineerin
GALGOTIAS i puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-17

Storage redundancy: The information about Department 3 is repeated three
times.

Update anomaly: If the building of Department 3 is to be changed, three
updates are necessary.
Unnecessary information dependency:

o Information about an employee who does not have a department
requires null values.

o Information about a department cannot be represented unless at
least one employee works in it.

School of Computing Science and Engineering
Kr 9?%&9{&@% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Approaches to Normalization

Approaches to normalization: There are two principle approaches to
normalization, and each will be considered in these slides.

Decomposition: Break larger relations into smaller ones.

Synthesis: Begin with a set of dependencies (usually FDs), and
construct a corresponding relational schema.

The changes forced by normalization: Generally speaking, by forcing FDs to
define (super)key dependencies, the problems identified above are
minimized or disappear completely... but the devil is in the details.

School of Computing Science and Engineering
&r 93‘%99{{%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

Normal Forms

Normal forms: In early research on the relational model, a number of so
called normal forms were developed.

o The principal ones which are based upon FDs were developed in the
following order:

INF - 2NF — 3NF — BCNF

o There are some others which are based upon other types of dependencies:
4NF, 5NF, DKNF.

3

School of Computing Science and Engineerin
GALGOTIAS i puting g g
UNIVERSITY ourse Code :BCAC2102 Course Name: DBMS

Lecture-17

o For pedagogical reasons, they will considered In the reverse order of
development:

BINF = 3NF —+ NF - INF

o The main focus will be upon BCNF and 3NF, as 2NF is largely of
historical Interest and INF 15 just a constraint on domains

l’a

School of Computing Science and Engineering
&r 9’3%&9{5%% Course Code :BCAC2102 Course Name: DBMS

Lecture-17(Normal Forms)

Design "Anomalies”

This Apply relation exhibits three types of anomalies:
1.Redundancy

2.Update Anomaly

3.Deletion Anomaly

Normalization

Design "Anomalies”

This Apply relation exhibits three types of anomalies:
1.Redundancy

2.Update Anomaly

3.Deletion Anomaly

School of Computing Science and Engineering
Kr 9?%&9{&@% Course Code :BCAC2102 Course Name: DBMS

Lecture-17

(Class-Assignment)

Explain Normalization with design issues.

Dr.Satyajee Srivastava 35

—©—
Thank You

Dr.Satyajee Srivastava

