Curse Code: MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Contents: Spectroscopic Terms and Selection Rules

Let us look at carbon (C) atom in the ground-state configuration $(1s^2 2s^2 2p^2)$. In this configuration, Is and 2s electrons make up the closed shell and the 2s subshell, respectively. Thus, the only electrons that can contribute to nonzero values of L, S and J are the two 2p electrons. Without considering the Pauli exclusion principle, we have 15 distinct possible states for a given p^2 configuration:

 $l_1 = l_2 = 1$, $s_1 = s_2 = \frac{1}{2}$. See "Atoms & Molecules," by M. Karplus and R.N. Porter (W.A. Benjamin, Inc., 1970), chapter 4.

Thus, a term symbol that characterizes the entire quantum state of a given atom had been proposed and is represented by the following symbol:

$$n^{2S+1}L_{J}$$
 (27)

(i) L represents the total orbital angular-momentum quantum number:

Curse Code: MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Spectroscopic Terms and Selection Rules

(ii) The superscript denotes the multiplicity of the state, which is the number of different possible orientations of L and S (thus, the number of different possible values of J vector). Recall J = L + S, L + S - 1,, |L - S| (26)

when S = 0, J = L only, the multiplicity = 1 (singlet state)

when S = 0, J = L only, the multiplicity = 1 (singlet state) when $S = \frac{1}{2}$, $J = L \pm \frac{1}{2}$, the multiplicity = 2 (doublet state) when S = I, J = L + I, L or L - I, the multiplicity = 3 (triplet state) \therefore Multiplicity $(\Omega) = 2S + I$

(iii) The total angular-momentum quantum number J is used as a subscript.

Curse Code: MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Example

(ex 1) the ground state of Na : 3 ²S_{1/2}

the first excited state of Na: 3 2P1/2

Find the possible quantum numbers, \mathbf{n} , l, j and m_i of the outer electron.

* for
$$3^{2}S_{1/2}$$
; $n = 3$, $l = 0$, $j = \frac{1}{2}$, $m_{j} = \pm \frac{1}{2}$

* for 3 ${}^{2}P_{1/2}$; l=1, Eq. (26) $\rightarrow j=\frac{3}{2}$ or $\frac{1}{2} \rightarrow \cdot \cdot$ two possible j values.

(i)
$$n = 3$$
, $l = 1$, $j = \frac{3}{2}$, $m_j = -\frac{3}{2}$, $-\frac{1}{2}$, $+\frac{1}{2}$, $+\frac{3}{2}$ (Eq.(17))

or (ii)
$$n = 3$$
, $l = 1$, $j = \frac{1}{2}$, $m_j = -\frac{1}{2}$, $+\frac{1}{2}$

(ex 2) Is it possible for a 2 ${}^{2}P_{5/2}$ state to exist ? $L=1 \rightarrow \therefore J=\frac{1}{2}, \frac{3}{2} \rightarrow \therefore J=\frac{5}{2}$ is impossible! * We use capital letters for L and J since this state would involve more than one state.

THE REAL PROPERTY.

(10) Hund Rules

It is known that there could be 5 distinct possible states for a given p^2 configuration of carbon atom ($1s^2 \ 2s^2 \ 2p^2$).

They are : ${}^{3}P_{2,1,0}$ ${}^{1}D_{2}$ ${}^{1}S_{0}$

Curse Code: MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Hund's Rule:

Then, it is necessary to find their relative energy in order to choose which term characterizes the ground state. This can be done by a set of simple rules, called **Hund's rules**.

- (a) The terms are ordered according to their S values, the term with maximum S being most stable and the stability decreasing with decreasing S. Thus, the ground state has maximum spin multiplicity.
- (b) For a given value of S, the state with maximum L is most stable.
- (c) For given S and L, the minimum J value is most stable if there is an open shell that is less than half-full and the maximum J is most stable if the subshell is more than half-full.

* Rules (a) and (b) arise from the electron-electron interaction, while rule (c) is a consequence of the spin-orbit (magnetic) interaction (See Page 14 of this chapter).

* In the above rules, S and L can be effectively replaced by their z component quantum numbers, M_S and M_L , respectively.

Name of the Faculty: Dr. ANIS AHMAD

Program Name: M.Sc. Physics

Curse Code: MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Various energy state of Corban

Name of the Faculty: Dr. ANIS AHMAD

Program Name: M.Sc. Physics

Curse Code: MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Example

```
M_L = m_{II} + m_{I2} + \cdots, M_S = m_{sI} + m_{s2} + \cdots, and J = L + S, L + S
where M_L and M_S are the quantum numbers for the z component of the total orbital
and spin angular momentum, respectively. We further have the relations:
* M_s = S, S-1, S-2, ..., -S (2S+1 values of M_s for a given S)
* M_I = L, L-1, L-2, \dots, -L \ (2L+1 \text{ values of } M_I \text{ for a given } L)
(( Example ))
Oxygen atom has 2s^22p^4 electronic configuration outside the filled 1s shell.
Find the term symbol for its ground-electronic state?
(i) According to the Rule (a), the maximum S or M_s (i.e., parallel spins) is preferred.
   M_s = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = 1. (See the bottom Table in the previous page.)
 S = 1. \rightarrow \Omega = 2S + I = 3
(ii) p-orbital \leftrightarrow l = 1 \rightarrow The possible value of m_l = 0, \pm 1
   According to the Rule (b), the maximum L or M_L is preferred.
```

 $M_L = (+1)+(0)+(-1)+(+1) = 1$. (See the bottom Table in the previous page.) $\therefore L = I \rightarrow \therefore P$ symbol

(iii) J = L + S, L + S - I, |L - S|. \therefore possible J=2, 1, 0 $2p^4$ configuration \leftrightarrow more than half-full. \rightarrow : maximum J is preferred (Rule (c)). J = 2. \rightarrow ³P,

Curse Code :MSCP 6002

Curse Name: ATOMIC AND MOLECULAR PHYSICS

References:

- 1. Raj Kumar, Atomic and Molecular Spectra: Laser, Kedear Nath Publication, Meerut, 2015
- 2. Arthur Beiser, Concepts of Modern Physics, 6th ed., McGraw Hill, New Delhi, 2008.
- 3. Harvey Elliott White, Introduction to Atomic Spectra, McGraw Hill, 1963.
- 4. G M Barrow, Introduction to molecular spectroscopy, Tata McGraw Hill, Japan, 1962.
- 5. Internet

Name of the Faculty: Dr. Anis Ahmad Program Name: M.Sc. Physics