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                                            ABSTRACT  

Three-phase-lag model of a homogenous thermally conducting orthotropic 

thermoelastic material subjected to mechanical and thermal source has been 

studied. For solving the present problem, we have applied finite element method. 

For that system of partial differential equations has been converted into weak form 

for single element. For system level, we have assembled these equations for n-

number of elements. The components of displacements, stresses and temperature 

distribution obtained in the physical domain are computed by gauss elimination 

technique, analytically. Comparative study is possible by different value of 

relaxation times for various theories of thermoelasticity. 
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1. Introduction 

Thermoelasticity contains the theory of heat conduction and the theory of strain and 

stresses due to the flow of heat, when coupling of temperature and deformation fields occurs. 

           The classical uncoupled theory of thermoelasticity predicts two phenomena not 

compatible with the physical observations. First, the equation of heat conduction of this theory 

does not contain any elastic terms; second, the heat equation is of a parabolic type, predicting 

infinite speeds of propagation for heat waves. The coupling between the strain and temperature 

fields was first postulated by Duhamel (1837) who derived equations for the distribution of 

strains in an elastic medium subjected to temperature gradients.  

          The coupling between thermal and strain fields gives rise to the coupled theory of 

thermoelasticity.  For static problems this coupling vanishes and the two fields become 

independent of each other.   

 Chadwick and Sneddon (1958) discussed in detail the influence of volume and thermal 

changes, coupled with each other in the form of plane harmonic waves. Ignaczak (1960) 

investigated a plane problem of dynamic thermal distortion in thermoelasticity. 

 Boley and Tolins (1962) investigated the transient coupled thermoelastic boundary-

value problems in the half-space. A list of Nowacki’s papers on the coupled theory of 

thermoelasticity can be found in his monumental books (1962, 1975). Hetnarski (1964) 

investigated the coupled thermoelastic problem for the half-space.  

          The equations of coupled thermoelasticity consist of two equations: the first, governing the 

displacement vector, is a wave type equation; the second, governing the temperature field, is a 

diffusion type equation. Due to the nature of the second equation, if the elastic medium 

extending to infinity is subjected to mechanical or thermal disturbance, the effect will be felt 

instantaneously at infinity; this implies that a part of disturbance has an infinite velocity of 

propagation which is physically impossible. This paradox in the existing coupled theory of 

thermoelasticity has also been discussed by Boley (1964). To overcome this drawback need was 

felt to develop the theories of generalized thermoelasticity.  

 The first is due to Lord and Shulman (1967), who introduced the theory of generalized 

thermoelasticity with one relaxation time by postulating a new law of heat conduction to replace 

the classical Fourier’s Law. This law contains the heat flux vector as well as its time derivative.  

It contains also a new constant that acts as a relaxation time. The heat equation of this theory is 

of the wave-type, it automatically ensuring finite speeds of propagation for heat and elastic 

waves.  The remaining governing equations for this theory, namely, the equations of motion and 

constitutive relations, remain the same as those for the coupled and uncoupled theories of 

thermoelasticity. 

Fox (1969) derived the constitutive equations of generalized thermoelasticity, which are 

valid for finite deformation and temperature variations, on the basis of modified Fourier’s law to 
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heat conduction. Grimado (1970) obtained thermal stress induced in a semi-infinite body as a 

result of a suddenly applied step heat input. 

 The second generalization to the coupled theory of thermoelasticity is what is known as 

the theory of thermoelasticity with two relaxation times or the theory of temperature-rate-

dependent thermoelasticity. lleruM  (1971) in a review of thermodynamics of thermoelastic 

solids has proposed an entropy production inequality, with the help of which, he considered 

restrictions on a class of constitution equations.  A generalization of this inequality was proposed 

by Green and Laws (1972). Green and Lindsay obtained an explicit version of the constitutive 

equations in (1972). These equations were also obtained independently by Suhubi (1975).  This 

theory contains two constants that act as relaxation times and modifies all the equations of the 

coupled theory not the heat equation only. 

The basic differences between the two theories of generalized thermoelasticity are as under: 

I. The Lord and Shulman (L-S) theory modifies only the energy equation of the coupled 

theory by taking into account the time needed for acceleration of heat flow, whereas the 

Green and Lindsay (G-L) theory modifies both constitutive equations and the energy 

equation, accordingly, the L-S theory involves only one relaxation time of the 

thermoelastic process and the G-L theory involves two relaxation times. 

II. The energy equation of L-S theory depends on both, the strain velocity and strain 

acceleration whereas the corresponding equation of G-L theory depends only on the 

strain velocity. 

III. In the linearized case, according to the G-L theory, the heat can not propagate with a 

finite speed unless the stresses depend on the temperature velocity. According to L-S 

theory, heat can propagate with a finite speed even though the stresses are independent of 

temperature velocity 

Roberts (1972) studied the effects of stresses and displacements caused by delta type 

function of temperature or stress line pulse moving with a constant speed over the surface of a 

coupled thermoelastic half-space.  

Bahar and Hetnarski (1978) pointed out the disadvantages in using a potential function to 

solve the coupled one-dimensional boundary value problem of thermoelasticity.  They used the 

methods of matrix exponential, which constitutes the basis of the state space approach, to avoid 

the difficulties of the potential function formulation.  

Bahar and Hetnarski (1979) presented a connection between thermoelastic potential and 

state space approach of elasticity. Dhaliwal and Sherief (1980) derived the governing field 

equations of generalized thermoelasticity for anisotropic media and also developed a variational 

principle for these equations.  

Chandrasekharaiah (1981) investigated one dimensional dynamical disturbance in a 

thermoelastic half-space plane boundary due to the application of a step in strain or temperature 
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on the boundary, in the context of the linearized Green and Lindsay (1972) theory of 

thermoelasticity.Das, Das and Das (1983) employed the eigen value approach to discussed 

boundary value problems in one-dimensional coupled thermoelasticity.  

Hyer and Cooper (1986) investigated the stress and deformations in composites tubes due 

to circumferential temperature gradient.Sharma (1986) discussed the problem of instantaneous 

heat sources in temperature rate dependent thermoelasticity. Chandrasekhariah and Srikantiah 

(1987) discussed temperature rate dependent thermoelastic interactions in an infinite solid due to 

a point heat source.  

Dhaliwal and Rokne (1989) investigated the one dimensional thermal shock problem 

with two relaxation times. Kumar (1989) studied the coupled thermoelastic wave problem of an 

infinitely extended elastic plate of finite thickness subjected to an axially symmetric hydrostatic 

tension.Sharma and Chand (1990) studied the distribution of temperature and stresses in an 

elastic plate resulting from a suddenly punched hole. 

Li (1992) formulated a generalized theory of thermoelasticity for an anisotropic medium 

using a form of the heat transport equation, which includes the time needed for acceleration of 

the heat flow. The variation principle corresponding to basic equations of generalized 

thermoelasticity for an anisotropic medium has been derived. Green and Naghdi (1993) proposed 

a new theory of thermoelasticity without energy dissipation and presented the derivation of a 

complete set of governing equations of the linearized version of the theory for homogenous and 

isotropic materials in terms of displacement and temperature fields and proved the uniqueness of 

the solutions of the corresponding initial mixed boundary value problem. An important feature of 

this theory, which is not present in other theories, is that this theory does not accommodate 

dissipation of thermal energy. 

Sherief (1994) studied a thermomechanical shock problem for themoelasticity with two 

relaxation times. Ezzat (1995) determined the stress and temperature distributions with a 

continuous line source of heat in an infinite elastic body governed by the equations of 

generalized thermoelasticity with two relaxation times by using the Laplace and Hankel 

transform technique.            

Another generalization to the coupled theory is known as low-temperature 

thermoelasticity, introduce by Hetnarski and Ignaczak (1996) (called H-T model). This model is 

characterized by a system of non-linear equations. Das, Lahiri and Dutta (1996) obtained the 

thermal stresses in a transversely isotropic elastic medium due to instantaneous heat source. Li 

and Dhaliwal (1996) discussed the thermal shock problem in thermoelasticity without energy 

dissipation.   

 Chandrasekhariah and Srinath (1997a) studied the problem of thermoelastic plane wave 

without energy dissipation in a half space due to time dependent heating of the boundary.Hata 

(1997) investigated the problem of stress focusing effects due to an instantaneous concentrated 

heat source in a sphere. 
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Chandrasekharaiah (1998) and Tzou (1995) proposed another generalization to coupled 

theory is known as dual-phase-lag thermoelasticity, in which Fourier law is replaced by an 

approximation to a modification of the Fourier law with two different translations for the heat 

flux and temperature gradient 

Chandrasekharaiah and Srinath (1998a, 1998b) investigated the thermoelastic interactions 

without energy dissipation due to the (i) line heat source, and (ii) point heat source. Stefaniak 

(1998) presented the method of concentrated sources in solving thermal stress problems. 

 Hetnarski and Ignaczak (1999) in their survey article examined five generalizations to the 

coupled thermoelasticity, namely Lord and Shulman(1967), Green and Lindsay(1972), Green 

and Naghdi(1993), Hetnarski and Ignaczak(1996), Chandrasekharaiah and Tzou(1998), and 

obtained a number of interesting results. Chandrasekhariah (1999) studied one-dimensional 

disturbance in a half-space due to a thermal impulse on the boundary based on the theories of 

generalized thermoelasticity (Lord and Shulman, Green and Lindsay). Sharma and Chauhan 

(1999) investigated the problems of body forces and heat sources in thermoelasticity without 

energy dissipation.  

Royer and Chenu (2000) studied an analytical model developed for the generation of 

surface acoustic waves in an isotropic solid by a thermoelastic laser line source. Lykotrafitis, 

Georgidias, and Brock (2001) studied the three-dimensional thermoelastic wave motions in a 

half-space under the action of a buried source. Das and Lahiri (2001) employed the eigen value 

approach to determine the thermal stress in an orthotropic elastic slab due to prescribed surface 

temperatures.  

Han and Hasebe (2002) studied the problem of Green’s functions of point heat source in 

various thermoelastic boundary value problems. Chao and Chen (2004) obtained the thermal 

stresses in an isotropic trimaterial interacted with a pair of point heat source and heat sink. 

Bakshi, Bera and Debnath (2004) employed the eigen value approach to study the effect of 

rotation and relaxation time in two dimensional problems of generalized thermoelasticity. Lin 

(2004) studied thermoelastic problems in anisotropic half-plane. Awrejcewicz and Pyryev (2005) 

proposed a thermo-mechanical model of frictional self-excited vibrations.  

Roy Choudhuri (2007) introduced three-phase-lag model in which heat conduction law 

has been replaced by an approximation to a modification of the Fourier law with the introduction 

of three different phase lags for the heat flux vector, the temperature gradient and the thermal 

gradient. 

Kumar and Rani (2007) considered a two-dimensional problem of thermoelasticity and 

discussed the effects of mechanical and thermal sources in generalized orthorhombic 

thermoelastic material.  

Wirth and Jens (2008) discussed the application of anisotropic thermoelasticity.Yi (2009) 

studied 2D Green’s function for semi-infinite orthotropic thermoelastic plane. Chirita and 

Ciarletta (2010) obtained the reciprocal and variational principles in linear thermoelasticity 

without energy dissipaton. Chirita (2011) studied the harmonic vibration in linear theory of 

thermoelasticity of type III. 
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         Quintanilla (2012) discussed on uniqueness and continuous dependence in type III 

thermoelasticity. Beom (2013) considered thermoelastic in-plane problems in linear anisotropic 

solid. Abbas (2014) discussed eigenvalue approach in three dimensional generalized 

thermoelastic interactions with temperature dependent material properties. 

          Sharma and Kaur (2015) investigated response of anisotropic thermoelastic miro beam 

resonators under dynamic loads. Ramp type heating in thermally conducting cubic crystal has 

been studied by Abbas, Kumar and Rani (2015).           Karamany and Ezzat (2016) discussed 

phase- lag- Green–Naghdi thermoelasticity theories. Bockstal and Marin (2017) studied recovery 

of a space dependent vector source in anisotropic thermoelastic system. 

            Hwu (2018) discussed analysis of 2D anisotropic thermoelasticity involving constant 

volume heat source by directly transformed boundary integral equation. Rani and Singh(2018) 

studied thermal disturbances in twinned orthotropic thermoelastic material. Rani and 

Shekhar(2020) discussed response of ramp-type heating in a monoclinic generalized 

thermoelastic material. Han (2020) investigated three-dimensional Green’s functions for 

transient heat conduction problems in anisotropic bimaterial.  
The exact solution for the time dependent problems for coupled and linear/nonlinear 

systems exists only for very special and simple initial and boundary conditions. Most of the 

deformation problems can be solved analytically with the help of Laplace and Fourier transform 

technique but finding the inversion of these methods is quite complicated. For avoiding these 

complications finite element method is preferable over Laplace/Fourier transform techniques as 

it can directly solve the problems in time-domain. Procedure for solving the deformation related 

problems by finite element method has been given in some of the books (1989,1993,2000,2005). 

It is a powerful technique, developed for numerical solution of complex problems in structural 

mechanics. 

Shekhar and Parvez (2015) studied finite element analysis of the generalized magneto-

thermoelastic inhomogeneous orthotropic solid cylinder. Neuman and Casique (2008) discussed 

Laplace-transform finite element solution of nonlocal and localized stochastic moment equations 

of transport. Othman and Abbas(2011) studied effect of rotation on plane waves at the free 

surface of a fibre-reinforced thermoelastic half-space using the finite element method. Abbas and 

Youssef (2013) discussed Two-temperature generalized thermoelasticity  under Ramp-type 

heating by finite element method. Mukhopadhyay and Shivay (2019) studied a complete 

Galerkin’s type approach of finite element for the solution of a problem on modified Green-

Lindsay thermoelasticity for a functionally graded hollow disk.Mukhopadhyay and Shivay 

(2019) investigate on the solution of a problemof extended thermoelasticity theory by using a 

complete finite element approach. 
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2. Proposed Problem 

Elastodynamic response of time harmonic source in a three -phase -lag orthotropic thermoelastic 

material. 

3. Work Done  

Elastodynamic response of time harmonic source in a three- phase- lag- orthotropic thermoelastic 

material. 

3.1Introduction 

Padovan (1974) discussed about Thermoelasticity of an Anisotropic Half Space. Takeuti 

and Noda (1977) described a Plane Thermoelastic Problem in a Multiply Connected Orthotropic 

Body. Wu (1984) studied about the Plane anisotropic Thermoelastcity. Lin and Ovaert (2004) 

discuss about Thermoelastic Problems for the Anisotropic Elastic Half-Plane. Beom (2013) 

analyised about  the Thermoelastic in-plane fields in a linear anisotropic solid. Abbas, Kumar 

and Rani (2014) investgated about the Response of Thermal Source in Transversely Isotropic 

Thermoelastic materials without energy dissipation and with two temperatures. Ghosh and 

Lahiri (2018) emphasized   A Study on the Generalized thermoelastic Problem for an Anisotropic 

Medium .Biswas (2019) concerned with a Three-dimensional Thermoelastic Problem in 

Orthotropic Medium.  

 

In the present problem, we have considered three-phase-lag Orthotropic Thermoelastic 

Material. In which harmonic thermal shock has been considered. Elastodynamic equations have 

been written for four different relaxation times. Equations have been converted from time 

domain to the frequency domain. For solving these equations, we have used finite element 

technique, for that we formulate the weak form of these equations for single isoparametric 

quadrilateral element. These equations have been converting into the system of equations. For 

complete solution, we have made assembly of system of equations.  These equations can be 

solved by Gauss elimination method.  

 

3.2 Basic Equations 

The constitutive relations for orthotropic thermoelastic medium following Dhaliwal and Sherief 

(1980) and Green and Lindsay (1972) are given by  

klijklijiaijklijkl cT
t

ec  =











+−=            ,1t ,ij 1,2,3)lk,j,(i, =                          (1) 

 
Equation of motion for an orthotropic thermoelastic medium in the absence of body force is 

given by  
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)2(,, ijij ut =
 

 
The heat conduction equation following Green and Nadhdi (1993) and Choudhuri (2007) is 

  

      
  )T(111 ,o2

2
2

ij,

*

ij, jiijeqqvijTij uTc
tt

T
t

KT
t

K   +











+




+=












++












+

          (3)      
 

),,( wvuu =


- displacement vector, T(x,y,z,t) -temperature change, ijklc - isothermal elastic 

parameters,  t- time, ijt -stress tensor, ije -strain tensor,T0  -uniform temperature, -  density,

qaT and  ,, -thermal relaxation times, ij - thermal modulli, kl -linear thermal expansion 

tensor. 

4

11* cc
K e

ij = -the material characteristic constant of the theory. 

 

The comma notation is used for spatial derivatives and dot notation represents time 

differentiation. 

ijklc  satisfies the (Green) symmetry conditions:  

.jiklijlkklijijkl cccc ===
 

 
3.3 Formulaion  and solution of the problem 

 
We consider a homogenous, orthotropic thermoelastic half-space in the undeformed state at 

uniform temperature 0T . The rectangular Cartesian co-ordinate system (x,y,z) having  origin on  

the plane surface z=0 with  z-axis  pointing vertically into medium is introduced. The boundary 

of the half-space is affected by mechanical and thermal loading, which depends on time t and 

spatial coordinate z (-  z ).   

For plane strain two-dimensional problem, we take displacement vector 

u


= (u,0,w)                                                                                                                (4) 

and T(x, z, t) as temperature change. 

Using the contracting subscript notations in equation (3) as 

1→11, 2→22, 3→33, 4→23, 5→13, 6→12 to relate  ijklc  t o ijc  

( i,j,k,l=1,2,3 and p,q=1,2…….,6). 

   

Equation of Motion and equation of heat conduction can be written as 
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Equations (5),(6),(7) can be written as: 
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We define the time harmonic behavior as: 
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Using equation defined by (11), Equation (8), (9), (10) can be written as: 
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The initial and regularity conditions are given by 
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Using the quantities defined by equation (15), the equations (12),(13) and (14) can be written as 
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Using (15) and (19), Equations (16),(17) and(18) can be written as: 
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Stress components can be written as: 
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 Using (11), (15) and (19), Equation (23), (24) and (25) can be written as 
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Using (7), (11) and (15), equation (25) can be written as: 
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3.4 Boundary conditions  

The boundary conditions at the plane surface are  
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Case 1: Instantaneous strip loading: 

The plane boundary z=0 is assumed to be traction free and is subjected to an instantaneous input 

in temperature,i.e. 

)(F=F(t) 0 t  
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where 0F  is a constant representing the magnitude of constant temperature applied on the 

boundary, )(t  is the Dirac delta function. 

Case 2: Continuous strip loading: 

The plane boundary z=0 is assumed to be traction free and is subjected to an Continuous input in 

temperature, i.e. 

)t(HF=F(t) 0  

 )t(Hwhere  is the Heaviside unit step function 

3.5 Finite element formulation 

To investigate the effect of the thermal shock, which applied on the surface at x=0. The 

analytical solution of the given problem is not possible or quite tough to obtain. So, we use finite 

element method to obtain the numerical solution of the problem. The weak formulations of the 

non-dimensional governing equations derived for dependent variables u, w and T for the given 

boundary conditions, respectively. We assume eight shape function N= [N1, N2, N3,……..N8] 

in two dimensions, respectively. The displacement components (u,w) and temperature (T) are 

related to the corresponding nodal values by 

1 1 1

, ,
n n n

k k k k k k

i i i

u N u w N w T N T
= = =

= = =    

 

where n denotes the number of nodes per element, and N represents the shape functions. For the 

present study, we use eight-noded isoparametric quadrilateral element.  
 

 
 

Fig. 1. Eight-noded isoparametric quadrilateral element 
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With the help of previous equation, weak form of equation of (16), (17) and (18) is written as:  
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Where xxxn  , zxzn  ,
zzzn   are the Cauchy surface traction boundary condition on  ; xn and 

zn  are 

the direction cosines between the normal and the x and z directions, respectively;  is the 

domain and     is the boundary of the physical domain. xq and 
zq  represents heat flux in x and z 

directions. 

 

Using (15) and (19), Equations (32), (33) and (34) can be written as: 
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Using (39), Equation (36) can be written as: 
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Using (41), Equation (37) can be written as: 
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 Using (43), equation (38) can be written as: 
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On combining Equations (40), (42) and (44) we get 
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This equation is written for single element. For finding the solution for complete domain, we 

have to make assembly up to n-elements. Final system of equations will be solved analytically by 

Gauss-elimination method and find the values of all variables u, v and T throughout the domain.  

4. Conclusion  

Deformation of time harmonic source in three-phase-lag orthotropic thermoelastic material has 

been studied and finite element method technique has been used to solve the problem. Due to 

unavailability of the MatLab software, we are not able to produce the numerical results. This 

study may give good information in the field of thermoelasticity. 
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