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                          SYNOPSIS 
 

In this present work, we proved two theorems belonging to generalised 

W(Lr,ξ(t)) (r≥1)-class by (N,p,q)(E,s) product mean for Fourier and its 

Conjugate Fourier series. To prove these theorems, we used Lemmas 
and after proving this we are presenting application in form of 

corollaries. In the last we are giving application of our work in different 

field of mathematics as well as Engineering. 
In 2016 PRADHAN,T. et al.[11]worked on Approximation of signals 

belonging to generalised Lipschitz class using (�̅�,pn,qn)(E,s) – 

summability mean of Fourier series and In 2012 MISHRA,V.N. et al.[8] 
worked on Product Summability Transform of conjugate series of 

Fourier series. We advanced our work in new direction by using 

(N,p,q)(E,s) product mean for Fourier and its conjugate Fourier series. 
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                            1. INTRODUCTION 
 

In most historical accounts of the theory of divergent series 

considerable stress is laid on the dictum of Abel and Cauchy with 

regard to their use and its impact on the study of such series while 

not wishing to deny the importance of this influence, this has 

doubtless arisen from the fact that the excellent historical 

discussion given in Borel’s “Lecons Sur Les Series Divergentes” 

has generally been accepted as having broad scope than it actually 

possesses. 

 

 The extent to which the study of divergent series was continued, 

both in England and Germany, during the first sixty years of the 

19th century has been clearly pointed out by Burkhardt in his 

paper of 1911 in the Mathematische Annalen, Uber den 

Gebraruch divergenter Reihen in der Zeit von 1750-1860. There 

was a gradually development of notion of rigor during that same 

period, one may naturally inquire why the rigorous treatment of 

divergent series did not get an earlier start. 

 

I think that the reason is not far to seek. From the point of view of 

relative frequency and relative simplicity, convergent series bear 

somewhat the same relationship to series in general that analytic 

do to general functions. Just as it was not feasible for 

mathematicians to undertake the study of very general types of 

functions until they had a considerable understanding of the 

highly special but particularly important class of analytics 

functions, so it was exceedingly difficult to build a rigorous 

theory of divergent series before the theory of convergent series 

had reached some degree of completeness. 
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The study of the theory of trigonometric approximation is of great 

practical importance. Mainly speaking, signals are treated as 

function of one variable and images are represented by functions 

of two variables.  

 

The study of the concept is directly linked to the emerging area of 

information technology. Approximation by trigonometric 

polynomial is at the heart of approximation theory. The most 

important trigonometric polynomial used in the area 

approximation theory obtained by linear summation method of 

Fourier series of 2 – periodic function on real lines. 

 

In 1975 KHAN, H.H. [7] have worked on the degree of 

approximation to a function by triangular matrix of its Fourier 

series 1; In 1987 CHANDRA, P. [2] have worked on the degree of 

approximation of continuous functions. 

 In 1988 CHANDRA,P.[2]have worked on the degree of 

approximation of continuous functions; In 2012 MISHRA,V.N. 

et.al.[8] worked on product Summability Transform of conjugate  

series  of  Fourier  series; In 2013 MISHRA, V.N. etal.[9]have  

worked  on  Lr-Approximation  of signals (functions)  belonging  

to  weighted  W(Lr ,ξ(t))-class by C1.Np summability method of 

conjugate series of its Fourier series. In 2014 DEEPMALA et 

al.[4]have worked on Trigonometric Approximation of signals 

(functions)belonging to the W(Lr,ξ(t)) (r≥1)- class by (E,q)(q≥0)-

means of the conjugate series of its Fourier series. 

In 2014 SHARMA,K et al.[13] worked on degree of 

approximation of function belonging to  W(Lr,ξ(t)) (r≥1)- class 

product summability transform. In 2016 ACAR,T. and 
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MOHIUDDINE ,S.A.[1] have worked on Statistical (C,1)(E,1) 

summability and Korovkin’s theorem; In 2016 PRADHAN ,P. et 

al.[11] have worked on approximation of signals belonging to 

generalised Lipchitz class using (�̅�,pn,qn)(E,s) – summability 

mean of Fourier series. In 2017 SINGH,M.V et al.[12] have 

worked on approximation of functions in the generalized Zygmund 

class using Hausdorff means. 

In 2017 RAY, S. et al.[12] worked on some sequences spaces and 

matrix transformation with Vedic relations; In 2018 SONKER ,S. 

and MUNJAL,A. [14]have  worked  on  generalized  absolute  

Riese Summability factor of infinite series; In 2019 SONKER, S., 

MUNJAL, A.[13] worked on absolute |C,1|k summability factor of 

improper integrals . 

In 2019SONKER, S., MUNJAL, A. [16] have worked on 

sufficient conditions for absolute Cesáro Summable factor. 

In 2020 JAUHARI, A.D.[5] have worked on a study on degree of 

approximation by product means of the Fourier series in a 

W(Lr,ξ(t)) class. 
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        2. DEFINITION AND NOTATIONS 

Let {pn} and {qn} be the sequences of constants, real or complex.  

Such that   

              Pn=p1+p2+……….+pn=∑ 𝑝𝑛
𝑟=0 r→ ∞,as n→ ∞     

              Qn=q1+q2+……….+qn=∑ 𝑞𝑛
𝑟=0 r→ ∞,as n→ ∞          

Rn=p0qn+p1qn-1+…….+pnq0=∑ 𝑝𝑟
𝑛
𝑟=0 qn-r → ∞,as n→ ∞      (2.1) 

Given two sequences {pn} and {qn} convolution (p*q) is defined as  

Rn=(pn=qn)= ∑ 𝑝𝑛−𝑟
𝑛
𝑟=0 qr                                                    (2.2) 

Definition 2.1: Let ∑ 𝑎∞
𝑛=0 n be an infinite series with the sequence of its 

nth partial sums {sn}. 

    We write, 

         TN
P,q=

1

𝑅𝑛
∑ 𝑝𝑛

𝑣=0 n-νqν                                                     (2.3) 

If Rn≠0, for all n, the generalized Nörlund transform of the sequence 

{sn} is the sequence {tN
p,q}. 

If tN
p,q→ 𝑆 ,as n→ ∞, then the series ∑ 𝑎∞

𝑛=0 n or sequence {sn} is 

summable to S by  

                       Sn→S (N, p, q)                                                (2.4) 

Definition 2. 2. The (E, s) transform is defined as the nth partial sum of 

(E, s) Summability is given by 

                        Es=(E,s)=
1

(1+𝑠)𝑛 ∑ (𝑛
𝑣)𝑠𝑛−𝑣

𝑛

𝑣=0
Sν as n→ ∞     (2.5) 
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Definition 2.3: The (E, s) transform of the (N, p, q) (E, s) product 

transform. 

                          TN
p,q,E=

1

𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqkEk
s 

                        =
1

𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣

)𝑠𝑛−𝑣
𝑘

𝑣=0
 Sν }        (2.6) 

Then the series Σan is said to be summable by 

(N,p,q)(E,q)means. 

The generalized weighted W(Lr,ξ(t)) ,(r≥1)- class is generalization of 

Lip𝛼, Lip (𝛼,r) and Lip (ξ(t),r) classes. Therefore, in the present paper, a 

theorem on degree of approximation of conjugate of signals belonging to 

the generalized weighted W(Lr,ξ(t)), (r≥1) class by (N,p,q)(E,s) product 

summability means of conjugate series of Fourier series. 

 Let f(x) be a 2𝜋- periodic function and integrable in the Lebesgue sense. 

The Fourier series of f(x) at any point x is given by 

      f(x)~
a0

2
 + ∑ (an

∞
n=1 cosnx + bnsinnx) 

                              ≡  ∑ An
∞
n=1 (x)                       (2.7) 

and the conjugate series of the Fourier series (2.7) is given by  

                   𝑓(𝑥)̅̅ ̅̅ ̅̅ ~ ∑ (bn
∞
n=1 cosnx-ansinnx)≡  ∑ Bn

∞
n=1 (x)      (2.8) 

The L∞ norm of a function f: R→ R is 

 

                       ∥ 𝑓 ∥∞= sup{|f(x)|;x∈ R} 

and the 𝐿𝛼 norm is defined by-                                                       

                        ∥ 𝑓 ∥𝛼= (∫ |𝑓(𝑥)|𝛼2𝜋

0
)

1

𝛼𝑑𝑥 , 𝛼 ≥ 1 (2.9)        
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 And fϵLip (α,r) ,for 0≤x≤2π, if  

                    [ʃ[0,2π]|f(x+t)-f(x)|rdx]1/r=O(|t|α) for 0<α≤1, t>0,r≥1. 

Again, fϵLip(ξ(t),r), if  

                  ∥f(x+t)-f(x)∥r= [ʃ[0,2π]|f(x+t)-f(x)|rdx]1/r=O(ξ(t)), r≥1 , t>0, 

  here ξ(t) is a positive increasing function. 

 Similarly, fϵW(Lr,ξ(t)), if  

                 ∥[f(x+t)-f(x)]sinβx∥r=[ʃ[0,2π]|[f(x+t)-f(x)]sinβx|rdx]1/r 

                                                =O(ξ(t)),   β≥0.      

Further as regards to the norm in L∞ and Lr spaces, we may recall that 

L∞ norm of a function f:R→R is defined by  

                      ∥f∥∞=sup {|f(x)|:xϵR}  

And Lr norm of a function f :R→R is defined by  

                      ∥f∥r=(ʃ[0,2π]|f(x)|rdx )1/r, r≥1. 

Next the degree of approximation of a function f: R→R by a 

trigonometric polynomial tn of order n under ∥ . ∥∞ is defined by  

                     ∥ 𝑡𝑛 − 𝑓(𝑥) ∥∞=sup {|tn(x)-f(x)|:xϵR} 

and the degree of approximation of En(f) of a function fϵLr 

is given by                    En(f)=min∥ tn-f∥r. 

 

                            𝜙(𝑡) = f(x+t)+f(x-t)-2f(x) 

                                 𝜑(t)=f(x+t)+f(x-t)-2f(x) 
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𝑄𝑛(𝑡) = 
1

2𝜋𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-k qk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣
)𝑠𝑘−𝑣

𝑘

𝑣=0

sin(𝑣+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

}. 

 

�̅�n(t)=
1

2𝜋𝑅𝑛
∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘 ∑ (𝑘
𝑣

)𝑠𝑘−𝑣
𝑘

𝑣=0

cos (𝑣+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

}. 
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                                                 3. THEOREMS 

Various Mathematician MUKHERJEE,S and KHAN ,A.J.[10], 

JUHARI, A.D.[5],MISHRA,V.N. et al.[8],SAXENA,K. and 

VERMA,S.[17] and PRADHAN, T.et al.[11] worked on different topic 

of Product summability.  

In 2016 PRADHAN, T.et al. [11] have worked on “Approximation of 

signals belonging to generalized Lipchitz class using (�̅�,pn,qn)(E,s) – 

summability mean of Fourier series.”In 2012 MISHRA, V.N. et.al. [8] 

worked on  “product Summability Transform of conjugate series o f   

Fourier  series.” 

Now we advance our study in new direction by taking product 

summability mean (N,p,q)(E,s) for Fourier and its conjugate series. 

We prove two theorems on Fourier and its conjugate series. 

THEOREM 3.1 Let ‘f’ be a 2π periodic function which is integrable in 

Lebesgue sense in [0,2π]. If fϵW(Lr,ξ(t)) class , then its degree of 

approximation is given by  

            ||TN
(E,s)-f||r=O(nξ(

1

𝑛+1
)(n+1)β+1/r)           (3.1.1)  

Where ,TN
E,s is the (N,p,q)(E,s) transform of sn provided ξ(t) satisfies the 

following conditions {
𝜉(𝑡)

𝑡
} be a decreasing sequence . 

         [∫
𝑡|𝜙(𝑡)|

𝜉(𝑡)

1

𝑛+1
  (

0
)rsinβrt dt]1/r=O(

1

𝑛+1
)                            (3.1.2) 

And 

           [∫ (𝑡−𝛿𝜋
1

𝑛+1

|𝜙(𝑡)|

𝜉(𝑡)
)r dt ]1/r=O(

𝑛

(𝑛+1)𝛿
)                           (3.1.3) 

THEOREM 3.2 if 𝑓(𝑥)̅̅ ̅̅ ̅̅  , conjugate to a 2π- periodic function f(x) , 

belongs to the generalized weighted W(Lr,ξ(t)) (r≥1) – class , then its  
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degree of approximation by (N,p,q)(E,s) product summability means of 

conjugate series of Fourier series is given by  

∥ 𝑁𝑝,𝑞̅̅ ̅̅ ̅̅ -𝑓̅ ∥r =O{ (n+1)v+1/rξ(
1

𝑛+1
) }                                 (3.2.1)  

    Here ξ(t) satisfies the following conditions: 

            (∫
(𝑡|𝜑(𝑡)|

𝜉(𝑡)

𝜋

(𝑛+1)

0
)rsinvr (

𝑡

2
) dt)1/r =O(

1

𝑛+1
)                     (3.2.2) 

            (∫ (
𝜋

𝜋

(𝑛+1)

𝑡−𝛿  |𝜑(𝑡)|

𝜉(𝑡)
)rdt )1/r =O(n+1)δ                           (3.2.3) 

            {
𝜉(𝑡)

𝑡
}is non increasing sequence in “t”    

  



 Page 16 
 

 

                     4. LEMMAS 

To prove our theorems we required following Lemmas: 

Lemma 4.1.|Qn (t)|=O(n), for 0≤t≤
1

𝑛+1
. 

Proof: |Qn(t)|=
1

2𝜋𝑅𝑛
|∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘 ∑ (𝑘
𝑣

)𝑠𝑘−𝑣
𝑘

𝑣=0

sin (𝑣+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

}| 

                        ≤
1

2𝜋𝑅𝑛
|∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
 (2ν+1)

𝑠𝑖𝑛
𝑡

2

𝑠𝑖𝑛
𝑡

2

}| 

                       ≤
1

2𝜋𝑅𝑛
∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘(2k+1)| ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
|}  

                      ≤
1

2𝜋𝑅𝑛
(∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘 (1+s)k}2k+1) 

                      ≤ 
(2𝑛+1)

2𝜋𝑅𝑛
(∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk ) 

                     ≤
(2𝑛+1)

2𝜋
 

                    ≤ 
1

𝜋
(n+

1

2
) 

                    =O(n) 

Lemma 4.2 |Qn (t)|=O (
1

𝑡
), for 

1

𝑛+1
<t≤π. 

Proof: |Qn(t)|=
1

2𝜋𝑅𝑛
|∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0

sin (𝑣+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

}| 

                       ≤
1

2𝜋𝑅𝑛
|∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘
∑ (𝑘

𝑣
)𝑠𝑘−𝑣

𝑘

𝑣=0

𝜋

𝑡
}| 
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                       ≤
1

2𝜋𝑅𝑛
∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘 | ∑ (𝑘
𝑣
)𝑠𝑘−𝑣

𝑘

𝑣=0
|
𝜋

𝑡
} 

                        ≤
1

2𝜋𝑅𝑛
∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 qk{

1

(1+𝑠)𝑘
(1+s)k}

𝜋

𝑡
 

                      ≤
1

2𝜋𝑅𝑛
 𝑂(

𝜋

𝑡
∑ 𝑝𝑛−𝑘

𝑛
𝑘=0  qk) 

                       =O (
1

𝑡
) 

Lemma 4.3: |�̅̅̅�n(t)|= O(
1

𝑡
) , for 0<t≤

𝜋

(𝑛+1)
. 

Proof. For 0<t≤
𝜋

(𝑛+1)
 , sin(

𝑡

2
)≥(

𝑡

𝜋
) and |cosnt|≤1. 

        |�̅̅̅�n(t)|=  
1

2𝜋𝑅𝑛
|∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0

cos(𝑣+
1

2
)𝑡

sin (
𝑡

2
)

}| 

                         ≤
1

2𝜋𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣|

𝑘

𝑣=0

cos(𝑣+
1

2
)𝑡

sin (
𝑡

2
)

|} 

                         ≤
1

2𝜋𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0

|cos (𝑣+
1

2
)𝑡|

|sin (
𝑡

2
)|

} 

                         ≤
1

2𝜋𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0

1
𝑡

𝜋

} 

                         =
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
} 

                            =
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘 (1 + 𝑠)𝑘} 

                         =
1

2𝑡𝑅𝑛
𝑂(∑ 𝑝𝑛

𝑘=0 n-kqk) 

                          =O(
1

𝑡
) 

Lemma 4.4: |�̅̅̅�n (t)|=O(
1

𝑡
), for 0<t≤𝜋. 
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 Proof. For 0<
𝜋

(𝑛+1)
≤t≤π,   sin(

𝑡

2
)≥

𝑡

𝜋
. 

           |�̅̅̅�n (t)| =
1

2𝜋𝑅𝑛
|∑ 𝑝𝑛

𝑘=0 n-kqk{
1

(1+𝑠)𝑘
∑ (𝑘

𝑣)𝑠𝑘−𝑣
𝑘

𝑣=0

cos(𝑣+
1

2
)𝑡

𝑠𝑖𝑛
𝑡

2

}| 

                         ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝑛

𝑘=0 n-kqk
1

(1+𝑠)𝑘
Re{∑ (𝑘

𝑣)𝑠𝑘−𝑣
𝑘

𝑣=0
𝑒

𝑖(𝑣+
1

2
)𝑡

}| 

                         ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝑛

𝑘=0 n-kqk
1

(1+𝑠)𝑘Re{∑ (𝑘
𝑣
)𝑠𝑘−𝑣

𝑘

𝑣=0
𝑒𝑖𝑣𝑡}| 

≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk
1

(1+𝑠)𝑘Re{∑ (𝑘
𝑣

)𝑆𝑘−𝑣
𝑘

𝑣=0
𝑒𝑖𝑣𝑡}|+

1

2𝑡𝑅𝑛
|∑ 𝑝𝑛

𝑘=𝛿 n-kqk
1

(1+𝑠)𝑘 Re{∑ (𝑘
𝑣

)𝑆𝑘−𝑣
𝑘

𝑣=0
𝑒𝑖𝑣𝑡}| 

                       =K1+K2                                                                 (4.4.1)                

      K1  ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk
1

(1+𝑠)𝑘Re{∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
𝑒𝑖𝑣𝑡}| 

           ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk
1

(1+𝑠)𝑘Re{∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
}||𝑒𝑖𝑣𝑡 | 

           ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk
1

(1+𝑠)𝑘
Re{∑ (𝑘

𝑣)𝑠𝑘−𝑣
𝑘

𝑣=0
}| 

           ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk
1

(1+𝑠)𝑘
(1+s)k | 

               ≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk|                                                        (4.4.2) 

     Using Abel’s lemma 

|K2|≤
1

2𝑡𝑅𝑛
|∑ 𝑝𝑛

𝑘=𝛿 n-kqk
1

(1+𝑠)𝑘Re{∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
𝑒𝑖𝑣𝑡}| 

         ≤
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=𝛿 n-kqk
1

(1+𝑠)𝑘max |∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
𝑒𝑖𝑣𝑡 | 

        ≤
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=𝛿 n-kqk
1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
max |𝑒𝑖𝑣𝑡 | 
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        ≤
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=𝛿 n-kqk
1

(1+𝑠)𝑘
(1+s)k  

      ≤
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=𝛿 n-kqk                                                            (4.4.3) 

     

using (4.4.2) and 4.4.3) in (4.4.1) 

|�̅̅̅�n (t)| ≤ 
1

2𝑡𝑅𝑛
|∑ 𝑝𝛿−1

𝑘=0 n-kqk| +
1

2𝑡𝑅𝑛
∑ 𝑝𝑛

𝑘=𝛿 n-kqk  

               ≤ 
1

2𝑡𝑅𝑛
𝑂(∑ 𝑝𝑛

𝑘=𝛿 n-kqk ) 

              =O(
1

𝑡
) 
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    5. PROOF OF THE THEOREMS 

 

 5.1 We shall prove the theorem 3.1 for Fourier series. 

 Proof: Sn(f)-f(x)=
1

2𝜋
∫ 𝜙(𝑡)

𝜋

0

sin (𝑛+
1

2
)

𝑠𝑖𝑛
𝑡

2

dt   

TN-f(x)= 
1

2𝜋𝑅𝑛
∑ 𝑝𝑛−𝑘

𝑛
𝑘=0 q∫

𝜙(𝑡)

𝑠𝑖𝑛
𝑡

2

𝜋

0
{

1

(1+𝑠)𝑘 ∑ (𝑘
𝑣)𝑠𝑘−𝑣

𝑘

𝑣=0
sin(ν+

1

2
)t dt} 

            =[∫ +
1

𝑛+1
0 ∫ ]𝜙

𝜋
1

𝑛+1

(t)Qn(t) dt  

            =I1+I2        (Say)           (5.1.1) 

Now |I1|≤∫ |𝜙(𝑡)|
1

𝑛+1
0

|Qn (t) |dt 

           =∫ |
1

𝑛+1
0

𝑡𝜙(𝑡)𝑠𝑖𝑛𝛽𝑡

𝜉(𝑡)

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡𝑠𝑖𝑛𝛽𝑡
|dt 

 

Apply Hölder’s inequality and Lemma 4.1 

 I1≤ [∫ |
1

𝑛+1
0

𝑡𝜙(𝑡)𝑠𝑖𝑛𝛽𝑡

𝜉(𝑡)
|r dt]1/r[lim

𝜖→0
∫ |

1

𝑛+1
𝜖

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡𝑠𝑖𝑛𝛽𝑡
|sdt ]1/s for some 0<ϵ<

1

𝑛+1
 

           =O (
1

𝑛+1
)[lim

𝜖→0
∫ |

1

𝑛+1
𝜖

𝜉(𝑡)𝑜(𝑛)

𝑡𝑠𝑖𝑛𝛽𝑡
|sdt ]1/s  {using Lemma 4.1} 

          =O(
𝑛

𝑛+1
) [lim

𝜖→0
∫ |

1

𝑛+1
𝜖

𝜉(𝑡)

𝑡𝑠𝑖𝑛𝛽𝑡
|sdt ]1/s  

By using second mean value theorem, we have  

|I1|=O(nξ (
1

𝑛+1
) {∫ (

1

𝑡1+𝛽

1

𝑛+1
𝜀

)sdt }1/s 
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       =O(n𝜉(
1

𝑛+1
)) {∫

𝑑𝑡

𝑡𝑠(1+𝛽)

1

𝑛+1
0

}1/s 

       =O(n𝜉(
1

𝑛+1
)) {∫ 𝑡−(1+𝛽)𝑠

1

𝑛+1
0

dt }1/s 

       =O(nξ (
1

𝑛+1
)) {[t-(1+β)s+1 1

−(1+𝛽)𝑠+1
 ]0

1/n+1}1/s 

       = O(nξ (
1

𝑛+1
)) {(

1

𝑛+1
)1-s-βs/(1-s-βs)} 1/s 

      =O(nξ (
1

𝑛+1
)) {(

1

𝑛+1
)1/s-1- β 1

1

(𝑠
−1−𝛽)

} 

      =O(nξ (
1

𝑛+1
))[

1

𝑛+1
]-1/r-β) 

|I1|=O (nξ (
1

𝑛+1
) (n+1)1/r+β).                                                  (5.1.2) 

 

Now, |I2|≤ [∫ |𝑡−𝛿𝜋
1

𝑛+1

|𝜙(𝑡)|

𝜉(𝑡)
sinβt 

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡−𝛿𝑠𝑖𝑛𝛽 𝑡
|dt 

 

  Using Hölder’s inequality and lemma 4.2. 

|I2|≤ [∫ |𝑡−𝛿𝜋
1

𝑛+1

|𝜙(𝑡)|

𝜉(𝑡)
sinβt)rdt ]1/r [∫ |

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡−𝛿𝑠𝑖𝑛𝛽 𝑡

𝜋
1

𝑛+1

 |sdt]1/s 

        =O(n (n+1)-δ)(∫ (𝜉(𝑡)
𝜋
1

𝑛+1

1

𝑡1−𝛿+𝛽
)sdt )1/s 

I2= {∫ (𝜉(
1

𝑦

𝑛+1
1

𝜋

)
1

𝑦𝛿−1−𝛽)s 1

𝑦2dy }1/s 

    Using second mean value theorem  

  =ξ (
1

𝑛+1
) {

1

𝑦(𝛿−𝛽)𝑆+𝑠dy }1/s 

   =O(n (n+1)-δ)ξ (
1

𝑛+1
) {

1

𝑦𝛿𝑆+𝑠−𝛽𝑆
dy }1/s 
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   =O(n (n+1)-δ)ξ (
1

𝑛+1
) {[𝑦−𝛿𝑠−𝑠+𝛽𝑠+1 1

𝛿𝑠+𝑠−𝛽𝑠+1
]1/π

n+1}1/s 

   =O(n (n+1)-δ)ξ (
1

𝑛+1
) [

1

𝛿𝑠+𝑠−𝛽𝑠+1
[(n+1)-δs-s+βs+1-(

1

𝜋
)-δs-s+βs+1]1/s 

   =O(n (n+1)-δ)ξ (
1

𝑛+1
) [

1

𝛿𝑠+𝑠−𝛽𝑠+1
[(n+1)-δ-1+β+1/s– (

1

𝜋
)-δ-1+β+1/s] 

   =O(n (n+1)-δ)ξ (
1

𝑛+1
) [

1

𝛿𝑠+𝑠−𝛽𝑠+1
(

1

(𝑛+1)𝛿−𝛽−1/𝑟)] 

   =O(nξ (
1

𝑛+1
)

1

(𝑛+1)
−

1
𝑟−𝛽

) 

|I2|=O(nξ(
1

𝑛+1
) (n+1)β+1/r).                                                   (5.1.3) 

 

Using (5.1.2) and (5.1.3) in (5.1.1) 

|TN-f(x)|=O(nξ (
1

𝑛+1
) (n+1)1/r+β 

||TN
(E,s)-f||=O(nξ(

1

𝑛+1
)(n+1)β+1/r). 
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5.2 We shall prove the theorem 3.2 for conjugate series. 

Proof: 𝑠𝑛(𝑓)̅̅ ̅̅ ̅̅ ̅ –𝑓(𝑥)̅̅ ̅̅ ̅̅ =
1

2𝜋
∫ 𝜑(𝑡)

𝜋

0

cos (𝑛+
1

2
)

sin (
𝑡

2
)

 dt 

𝑁𝑝,𝑞̅̅ ̅̅ ̅̅ –𝑓(𝑥)̅̅ ̅̅ ̅̅ =
1

2𝜋𝑅𝑛
∑ 𝑝𝑛

𝑘=0 n-kqk∫
𝜑(𝑡)

sin
𝑡

2

𝜋

0
[

1

(1+𝑠)𝑘 ∑ (𝑘
𝑣
)𝑆𝑘−𝑣

𝑘

𝑣=0

cos (𝑛+
1

2
)

sin (
𝑡

2
)

dt] 

                  =[∫ +

𝜋

(𝑛+1)

0
∫ ]

𝜋
𝜋

(𝑛+1)

𝜑(t) Qn(t) dt 

                         =I1 +I2                                                   (5.2.1) 

|I1|≤∫ |𝜑

𝜋

(𝑛+1)

0
(t)||Qn(t)|dt 

       ≤∫ |
𝑡 𝜑(𝑡)sinv(

𝑡

2
) 

𝜉(𝑡)

𝜋

(𝑛+1)

0

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡sinv(
𝑡

2
)

| dt 

 

  Apply Hölder’s inequality  

       ≤[∫ (
𝑡 𝜑(𝑡)sinv(

𝑡

2
)

𝜉(𝑡)

𝜋

(𝑛+1)

0
)rdt]1/r [∫ (

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡sinv(
𝑡

2
)

𝜋

(𝑛+1)

0
)sdt]1/s 

     =O(
1

𝑛+1
) [∫ (

𝜉(𝑡)𝑄𝑛(𝑡)

𝑡sinv(
𝑡

2
)

𝜋

(𝑛+1)

0
)sdt]1/s              lemma (4.3) 

    =O(
1

𝑛+1
) [∫ (

1

𝑡2

𝜉(𝑡)

sinv(
𝑡

2
)

𝜋

(𝑛+1)

0
)sdt]1/s  

   =O(
1

𝑛+1
) [∫ (  

1

𝑡2

𝜉(𝑡)(
𝑡

2
)𝑣

sinv(
𝑡

2
)(

𝑡

2
)𝑣

𝜋

(𝑛+1)

0
)sdt]1/s 
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   =O(
1

𝑛+1
) [∫ (

𝜉(𝑡)

𝑡2+𝑣

𝜋

(𝑛+1)

0
)sdt]1/s 

Using mean value theorem 

=O((
1

𝑛+1
) 𝜉(

𝜋

𝑛+1
)) [∫ (

1

𝑡2+𝑣

𝜋

(𝑛+1)
𝜖

)sdt]1/s 

𝜉(
1

𝑛+1
) ≤𝜋𝜉(

1

𝑛+1
) 

=O((
1

𝑛+1
) 𝜋𝜉(

1

𝑛+1
) [∫ (

1

𝑡2𝑠+𝑣𝑠

𝜋

(𝑛+1)
𝜖

)dt]1/s ) 

=O((
1

𝑛+1
) 𝜉(

1

𝑛+1
) [(

𝜋

𝑛+1
)−2𝑠−𝑣𝑠+1 -(𝜖)−2𝑠−𝑣𝑠+1]1/s ) 

=O((
1

𝑛+1
) 𝜉(

1

𝑛+1
)[(𝑛 + 1)2+𝑣−1/𝑠) 

=O((n+1)δ[∫ (
𝜉(

1

𝑦  
 )

𝑦−𝛿+1+𝑣

𝜋
𝜋

(𝑛+1)

)s 1

𝑦2dy ]1/s) 

ξ(t) is a positive increasing so,
𝜉(

1

𝑦
)

1

𝑦

 is also a positive increasing function 

and using second mean value theorem 

=o((
1

𝑛+1
) 𝜉(

1

𝑛+1
) (n+1)2+v-1/s ) 

=O((
1

𝑛+1
) 𝜉(

1

𝑛+1
) (n+1)v+1+1/r ) 

I1=O(𝜉(
1

𝑛+1
) (n+1)v+1/r )                                                      (5.2.2) 

 

I2≤∫ |𝜑(𝑡)|
𝜋

𝜋

(𝑛+1)

|Qn(t)|dt 

  ≤ [∫ (
𝜋

𝜋

(𝑛+1)

t-δ
 𝜑(𝑡)sinv(

𝑡

2
)

𝜉(𝑡)
)rdt ]1/r [∫ (

1

𝑡−𝛿

𝜋
𝜋

(𝑛+1)

𝜉(𝑡)|𝑄𝑛(𝑡)|

sinv(
𝑡

2
)

)sdt]1/s 



 Page 25 
 

 =O((n+1)δ [∫ (
1

𝑡−𝛿

𝜋
𝜋

(𝑛+1)

𝜉(𝑡)|𝑄𝑛(𝑡)|

sinv(
𝑡

2
)

)sdt]1/s )    

 =O((n+1)δ [∫ (
1

𝑡−𝛿+1

𝜋
𝜋

(𝑛+1)

𝜉(𝑡)

sinv(
𝑡

2
)
)sdt]1/s )              lemma(4.4) 

 =O((n+1)δ[∫ (
𝜉(𝑡)

𝑡−𝛿+1+𝑣

𝜋
𝜋

(𝑛+1)

)sdt ]1/s ) 

Second mean value theorem. 

=O((n+1)δ
𝜉(

𝜋

𝑛+1 
)

(
𝜋

𝑛+1
)

 [∫ (
𝑑𝑦

𝑦−𝑣𝑠+𝛿𝑠+2

𝑛+1

𝜋
𝑘

)1/s ) 

=O((n+1)δ (n+1) 𝜉 (
1

𝑛+1
) { [

𝑦−𝛿𝑠+𝑣𝑠−2+1

−𝛿𝑠+𝑣𝑠−2+1
]k

n+1/π}1/s ) 

=O((n+1)δ+1𝜉 (
1

𝑛+1
)[(n+1)-δ+v-1/s]) 

=O(𝜉 (
1

𝑛+1
)(n+1)δ+1-δ+v-1/s ) 

I2=O(𝜉 (
1

𝑛+1
)(n+1)v+1/r1

𝑟
+

1

𝑠
 = 1.                                        (5.2.3) 

 

Using (5.2.2) and (5.2.3) in (5.2.1) 

|𝑁𝑝,𝑞̅̅ ̅̅ ̅̅  -𝑓̅|=O{ (n+1)v+1/r ξ(
1

𝑛+1
)}                       

Now using the Lr –norm of a function, we get 

∥ 𝑁𝑝,𝑞̅̅ ̅̅ ̅̅ -𝑓̅ ∥r =O((n+1)v+1/rξ(
1

𝑛+1
) ). 
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                              6. APPLICATION 

We show the application in form of corollaries. 

COROLLARY 6.1 If we take q=1and s=1 our summability reduced to 

(N,p)(E,1) summability. 

  If following Hardy  

                En
1= 2-n∑ (𝑛

𝑘
)𝑆𝑘

𝑛

𝑘=0
 

 

tends to S, as n tends to infinite, then an infinite series ∑ 𝑢𝑛
∞
𝑛=0  with the 

partial sums Sn is said to be summable (E,1) to the definite number S. 
 

COROLLARY 6.2 The (C,1) transform of the (E,1) transform En
1 

defines the (C,1)(E,1) transform of the partial sum Sn of the series 
∑ 𝑢𝑛.thus if  

                   (CE)n
1=

1

𝑛+1
∑ 𝐸𝑛

𝑘=0 n
1 →S,     as n→ ∞ 

 

Where En
1denotes the (E,1) transform of Sn and S is a finite constant 

then the series ∑ 𝑢𝑛 is said to be summable by (C,1)(E,1) mean or 

simple (C,1)(E,1) to S. 
The (N,pn) transform of  the (E,1) transform En

1 defines  the (N,pn)(E,1) 

transform of  the partial sums Sn of  the series ∑ 𝑢𝑛. 
 

COROLLARY 6.3 If we put q=0 then our theorems 3.1 and 3.2 reduce 

for (N,p)(E,s) product mean belonging to generalised W(Lr,ξ(t))(r≥1)-
class. 

. 
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                  7. CONCLUSION 

Analysis and Approximation of signals are of great importance in 

science and engineering because a signal conveys the attribute of some 

physical phenomenon. Functions in Lp(p≥1) spaces are assumed to be 

most appropriate for practical purposes; for example L1,L2 and L∞ are of 

particular interest for engineers in digitization 

Fourier methods are commonly used for signal analysis and system 

design in modern telecommunications, radar and image processing 

systems. The theory of classical Fourier analysis can be extended to 

discrete time signals and leads to many effective algorithms that can be 

directly implemented on general computers or special purpose digital 

signal processing devices.  

Thus the study of error estimate of functions in various function spaces 

such as Lipschitz, Holder, Zygmund, Besov spaces etc using some 

summability means of trigonometric Fourier series also known as 

trigonometric Fourier approximation (TFA)in the literature has received 

a growing interest of investigators over the past few decades. The 

scientists and engineers use the properties of TFA in designing digital 

filters. 

The problem of determining the order of best approximation plays a very 

important role in approximation theory .In this paper we compute the 

product summability (N, p, q) (E, s) for Fourier and its conjugate series.  
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