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Modelling batch systems using population 
balances – A thorough introduction and review. 

The present text introduces the use of population balances in the context of batch wet granulation 
and coating systems and it reviews the latest achievements and proposals in the scientific 
literature in this field. The nature and framework of population balance theory are highlighted and 
one-dimensional population balances are introduced from scratch. This may seems tedious at first 
but the derivation of even the simplest population balances is nevertheless not an easy task, and it 
is in fact difficult to find complete derivations elsewhere in literature. In addition to the 
introduction of the different terms in the population balances, a brief historical review of 
coalescence kernels for the one-dimensional balances is presented. Next, a brief introduction to 
multi-dimensional balances is given hereby presenting some of the recent suggestions of two- and 
four-dimensional balances. Further, population balance solution techniques are introduced in 
terms of two simple analytical solutions besides an introduction to the field of numerical solution 
techniques. A number of the latest advances in the various available numerical solution 
techniques are further presented.  

The text is aimed at undergraduate university or engineering-school students working in the field 
of mathematical or chemical and biochemical engineering. Newly graduated as well as 
experienced engineers may also find relevant new information as emphasis is put on the newest 
scientific discoveries and proposals presented in recent years of scientific publications. It is the 
hope that the present introductory text will be helpful to the reader – particularly in the first stages 
of the process of working with population balances. The comprehensive literature list may also 
hopefully be an inspiration for further reading.  

I alone am responsible for any misprints or errors and I will be grateful to receive any critics 
and/or suggestions for further improvements. 

Copenhagen, September 2006 

Peter Dybdahl Hede 

Modelling batch systems using population balances 
– A thorough introduction and review
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Modelling Batch Fluid Bed Granulation Processes Using Population Balances 

1 Modelling Batch Fluid Bed Granulation 
Processes Using Population Balances  

In many types of chemical processes, particles are vital parts of the system whether or not the 
particles are present naturally or engineered into the system. Such particle containing systems 
are often referred to as dispersed phase system (Ramkrishna, 2000). A granulating batch fluid 
bed system is a typical dispersed phase system in that the properties of the particles play a 
significant role in the behaviour of the entire system. This is due to the continually formation as 
well as breakage of agglomerates and the resulting influence on fluidisation and heat transfer 
characteristics. As two particles will not be exactly of the same size, the particle system must be 
characterised by a distribution of sizes and the particle size distribution is often considered as a 
parameter to characterise such systems in a simple uniform manner (Randolph & Larson, 1988).   

Any analysis of granulating systems seeks to synthesise the behaviour of the population of 
particles and its environment from the single particle behaviour in their local environment. The 
population is described by the density of a suitable extensive variable being usually the number 
of particles but sometimes by other variables such as mass or volume of the particles. A 
population balance equation is thereby an equation in the number density and may be regarded 
as representing a number balance on particles of a particular state. (Ramkrishna, 2000 and 
Iveson, 2002). In other words, the population balance keeps track of the particle size distribution 
at any time during the process and in addition (if being fully developed) describes all the 
changes in the particle size distribution due to the various possible mechanisms that particles 
can undergo during granulation. A description or modelling of granulating systems by means of 
population balances is thereby a description in terms of a model of how the particle size 
distribution changes with granulation time.  

1.1 The nature and framework of population balances 

The particles in population balances are characterised by internal as well as external coordinates. 
The internal coordinates of the particle provide quantitative characteristics of the particle 
properties such as size, shape and porosity etc. (Cameron et al., 2005). Commonly, internal 
coordinates are defined in terms of a vector x �� (x1, x2,…, xz) in which z represents z different 
physical quantities associated with the particle. Each physical quantity is thereby formally given 
its own dimension in the x vector. The external coordinates denote and specify the location of 
the particles in physical space. Hence the external coordinates denote the position vector inside 
the fluid bed in terms of Euclidian coordinates being rectangular, cylindrical or spherical 
coordinates. Traditionally, external coordinates are defined in terms of a vector r � (r1, r2, r3).
One or more of either the internal or external coordinates may in principle be discrete while the 
others may be continuous. In the case of batch fluid bed systems, all the external coordinates are 
continuousi.   
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The joint space of internal and external coordinates is commonly referred to as the particle state 
space. Fundamental to the formulation of population balances is the assumption that there exists 
a number density of particles at every point in the particle state space and that the number of 
particles in any region of the state space is obtained by integrating the number density over the 
region desired. In a discrete region, the integration amounts to simply summing over the 
discrete state in the specific region. The population balance equation is an equation in the 
number density and may be regarded as representing a number balance on particles of a 
particular state.  

The population balance equation can be coupled with conservation equations for entities in the 
particle environmental or continuous phase, as the usual well-known transport equations 
expressing conservation laws for material systems apply to the behaviour of single particles and 
their binary interactions (Ramkrishna, 2000). In the sense of batch fluid bed granulation, this 
could e.g. be the kinetic expressions for each mechanism responsible for changing the particle 
size (Cryer, 1999). Population balances are thereby in other words models describing how the 
number of individual particles in a population and their properties change with time and the 
conditions of growth and breakage (Hjortsø, 2006). The population balance equation basically 
accounts for the various ways in which particles of a specific state can either form or disappear 
from the system. A population balance follows the change in the particle size distribution as 
granules are formed, broken, grow and enter or leave the control volume (Cryer, 1999). In 
words, the full population balance for a batch fluid bed may be expressed as (Sheffield, 2005): 

The rate of change of numbers of particles in a size range =  

The rate at which particles grow into that size range by coating (layering)  

+ The rate at which particles are “born” in that size range by aggregation of smaller 
particles 

– The rate at which particles “die” in that size range by aggregating into large size 
ranges  

+ The rate at which particles are “born” from breakage of larger size ranges  

– The rate at which particles in that size range “die” from breakage into smaller size ranges. 

(1.1)

Inside the fluid bed, the particles may interact between themselves as well as with the 
continuous phase during processing. Such behaviour may vary from particle to particle 
depending on a number of properties that may be associated with the particle. The variables 
representing such properties may be either discrete or continuous. There are indeed many 
practical reasons for representing continuous variables in terms of discrete levels. E.g. is it often 
convenient to represent a continuous particle size distribution in terms of discrete mesh sizes. 
Later sections concerned with solutions of population balances will indeed make use of these 
principles but towards the derivation of the general population balance, the primary concern is 
on continuous variables, which nevertheless often are encountered in population balance 
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analysis. One example of a continuous variable is the temperature of a particle inside the fluid 
bed. Likewise is the granulation time regarded as a continuous variable.  

A fundamental assumption in the following analysis is that the rate of change of state of any 
particle is a function only of the state of the particle in question and the local continuous phase. 
This implies that the possibility of direct interaction between two particles is excluded meaning 
that two particles interact only via the continuous phase. In order to enable such a local 
characterisation of the continuous phase variables, it is necessary to assume that the particles are 
much smaller than the length scale in which the continuous phase quantities vary (Ramkrishna, 
2000). This is usually no problem in fluid bed granulation where the particle diameters are 
much smaller than the diameter of the fluidisation chamber in most practical situations. 
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The particle state is commonly represented by a finite particle state vectorii referred to as (x, r),
which accounts for both the internal and external coordinates. The components of the particle 
state vector is chosen depending on the variables needed to specify the situation of interest. That 
means that the dimensionality of the particle state vector is chosen by the modeller’s interest. It 
is common to let the domain of the internal coordinates be represented by �x and the domain of 
external coordinates be represented by �r, which thereby is the set of points in the particle state 
space in which the particles are present. These domains may be bounded or have infinite 
boundaries depending on the choice of components in the particle state vector. The particle 
population may be regarded as randomly distributed in the particle state space, which includes 
physical space as well as the space of internal coordinates. 

The continuous phase variables, which affect the behaviour of each particle, are commonly 
collated into a finite c-dimensional vector field and hence the continuous phase vector is defined 
as (Ramkrishna, 2000): 

� �),(),...,,(),,(),,(),( 321 tYtYtYtYt c rrrrrY � , r �� �r (1.2)

which thereby obviously is a function of the external coordinates r and time only. The evolution 
of this c-dimensional vector field is governed by the laws of transport phenomena as well as the 
interaction between particles. In some population balance problems, it is not necessary to 
account for any continuous phase balance and thereby it is not necessary to include the 
continuous phase variables, as the interaction between the population and the continuous phase 
may not bring about any change in the continuous phase. This is however not the case in batch 
fluid bed granulation where the change in e.g. particle size distribution will significantly 
influence the fluidisation flow pattern in the continuous phase. All of the phenomena and 
equations that actually govern the continuous phase vector will one way or the other involve the 
number density of particles in the particulate phase. The average number density function is 
defined on the particle state space as: 

� � ),,(),,( 1 tftnE rxrx � , x � �x , r � �r (1.3)

in which the left-hand side of equation 1.3 denotes the average of the actual number density 
n(x,r,t), while the right-hand side displays the average number density function f1(x,r,t).  

The definition in equation 1.3 implies that the average number of particles in the infinitesimal 
volume dVxdVr in the particle state space about the particle state (x,r) is f1(x,r,t)dVxdVr.
However to save some notation is has become common to loosely refer to particles in the 
volume of dVxdVr about the particle state (x,r) merely as particles of state (x,r), although this is 
not entirely correct. The average number density function f1(x,r,t) is assumed to be sufficiently 
smooth to allow differentiation with respect to any of its arguments as many times as it may 
become necessary. The average number density in equation 1.3 allows the calculation of the 
average number of particles in any region of the particle state space according to: 
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),,(1 tfdVdV rx
rx

rx �� �� (1.4)

Analogously, the average total number of particles per unit volume of physical space, N(r,t), 
may be found as: 

),,(),( 1 tfdVtN rxr
r

r� �
� (1.5)

Having introduced the framework and basic parameters of the population balance equation it 
now becomes possible to set up the balances, which is the subject for the coming sections. 

1.2 One-dimensional population balances for fluid bed batch 
systemsiii

Although the various definitions of vectors and functions in the previous section allows the 
derivation of a general multi-dimensional population balance, most work with population 
balances for fluid bed systems only considers one-dimensional balances in which only one 
internal parameter varies. In the following sections such one-dimensional balances will be 
derived. 

1.2.1 One-dimensional growth and aggregation balances 

In the derivation of the one-dimensional case, one considers a population of particles distributed 
according to their size x, which is often taken to be the mass (or volume) of the particle. The 
parameter x is allowed to vary between 0 and 	. It is further assumed that the particles are 
uniformly distributed in space so that the average number density function f1(x,r,t) is 
independent of external coordinates, and as there is only one internal coordinate, the average 
number density function in the one-dimensional case reduces toiv f1(x,t). The growth rate of 
particles due to coating (layering) of size x is represented by G(x,t) and for the time being, it is 
assumed that particles will only change in size due to growth by coating. The particles may then 
be viewed as distributed along the size coordinate x and embedded on a string deforming with 
velocity G(x,t). Next, an arbitrary size region [a,b] on the stationary size coordinate x is chosen 
with respect to which the string with the imbedded particles is deforming. What is interesting in 
this size interval is the rate of change of the number of particles. As the string deforms, particles 
commute through the interval [a,b] across the interval end-points a and b, thereby changing the 
number of particles in the interval. The rate of change in the number of particles in [a,b] caused 
by this transport at a and b is given by: 

t)(b,ft)G(b,t)(a,ft)G(a, 11 
�
 (1.6)

in which the first term represents the particle flux in at a and the second term represents the 
particle flux out at b. It may be assumed for the present that this is the only way in which the 
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number of particles in the interval [a,b] can change. That is birth and death of particles is no yet 
consideredv. With the above mentioned assumptions the number balance in the interval [a,b] 
may be stated according to: 

t)(b,ft)G(b,t)(a,ft)G(a,t)dx(x,f
dt
d

11

b

a
1 
�
�� (1.7)
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Which may be rewritten as: 

0dxt))(x,ft)G(x,(
t

t)(x,fb

a
1

1� ��

�

��
� 


�
�

�
�

�
x

(1.8)

As mentioned earlier, the average number density f1(x,r,t) is generally assumed to be 
sufficiently smooth to allow differentiation with respect to any of its arguments as many times 
as it may become necessary. That is assumed to hold for G(x,t) as well and as the interval [a,b] 
is chosen arbitrarily, the smoothness of the integrand implies that the integral vanishes 
altogether. Hence the one-dimensional population balance may be found as: 

0t))(x,ft)(G(x,
xt

t)(x,f

(layering)coating todueGrowth

1

densitynumberAverage

1 �

�
�

�
�

�

��� ���� ������� (1.9)

This derived population balance must be supplemented with initial as well as boundary 
conditions. If it is assumed that initially no particles of size x existed, the initial condition is 
obviously: 

IC: 0(x,0)f1 � (1.10)

For the boundary condition we let the nucleation rate be n0 particles per unit time and assume 
that the newly formed particles have size and mass zero. This rate should be the same as the 
particle flux in at the beginning of the string at x = 0. This means that the required boundary 
condition can be stated as: 

BC: 01 nt)(0,t)fG(0, �� (1.11)

If equation 1.9 is integrated over all of the different particle masses, one obtains the following 
equation: 

Total Balance: 011
0

1 nt),(ft),G(-t)(0,ft)G(0,dxt)(x,f
dt
d ��	
	
�
�

	

(1.12)

The equality on the extreme right results from the fact that particles can increase in number in 
this simplified case only by nucleation. Comparing equation 1.11 with equation 1.12 indicates 
that: 

Regularity condition: 0t),(t)f,G( 1 �		 (1.13)
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which might seem strange at first. Equation 1.13 does however not insist that the number 
density itself vanishes at infinite mass if the growth rate vanishes for large particles, but rather 
that the number density must vanish for arbitrary large sizes if the growth rate does not vanish 
for large particles. Equation 1.13 is sometimes referred to as the regularity condition
(Ramkrishna, 2000).  

In the derivation of the one-dimensional population balance, the influence of birth and death of 
particles as well as the influence of environment was neglected and the derived equation 1.9 
may only be applied for pure growth processes. As stated in previous chapters, population 
balances not accounting for these birth and death terms due to agglomeration may only have a 
little chance of successfully describing the particle size distribution during fluid bed granulation. 
So far, the net rate of generation of particles due to agglomeration in the size range of x to x+dx 
will be described by h(x,t)dx, where the identity h(x,t) depends on the models of agglomeration 
as it will be presented later. With the introduction of the net rate of generation, it becomes 
obvious that equation 1.8 must be extended according to: 

0dxt)h(x,-t))(x,ft)G(x,(
t

t)(x,fb

a
1

1� ��

�

��
� 


�
�

�
�

�
x

(1.14)

The resulting population balance thereby by analogous treatment to equation 1.8 becomes: 

�������� ���� �������
generationofrateNet(layering)coating todueGrowth

1

densitynumberAverage

1 t)h(x,t))(x,ft)(G(x,
xt

t)(x,f
�


�
�

�
�

�
(1.15)

As before, the preceding population balance equation must be supplemented with boundary 
conditions. Equation 1.11 may still serve as boundary condition whereas the regularity 
condition in equation 1.16 holds for the total balance analogously to equation 1.12 and equation 
1.13: 

Total Balance: ��
		

��

0

0
0

1 t)dxh(x,ndxt)(x,f
dt
d � (1.16)

The derived equation 1.15 will be the basis for further development of the one-dimensional 
population balance. So far the term h(x,t) has been introduced as the net rate of generation of 
particle with size x but the single h(x,t) term consists in fact of a birth term ha

+(x,t) as well as a 
death term ha

-(x,t). In the following, these two terms will be developed in terms of the 
previously introduced average number density function and a new term called the coalescence 
frequency or aggregation frequencyvi. The aggregation frequency represents the probability per 
unit time that a pair of particles of specified states will aggregate. Alternatively, it could be seen 
as representing the fraction of particles pairs of specified states aggregating per unit time. This 
interpretation must however to some extent be modified as it is a well-established assumption 
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that a particle population in a fluid bed is considered well-mixed implying that external 
coordinates do not appear explicitly in the population density.  

A further basic assumption in the following is that the continuous phase is sufficiently dilute to 
make only binary aggregation significantvii. It is obviously that this assumption will not be true 
for crowded systems in which it is conceivable that several adjacent particles could 
simultaneously aggregate. Most fluid beds are relatively loosely packed which implies that 
particles of type Geldart B and Geldart C in fact flow as single particles (Hoomans, 1999). 
Hence the binary aggregation assumption seems reasonable for fluid bed purposes although 
being indeed a rough assumption. 

In the development of the birth and death term, it is assumed further that a particle is described 
by the particle state vector (x, r) in a continuous phase of state Y implying that it can be 
described by the continuous phase vector Y(r, t). The probability that a particle of state (x, r)
and another particle of state (x´, r´) will aggregate in the time interval t to t+dt is defined as: 

dt t),;,;,(�dt 
Yr´x´rx (1.17)

The defined term may thereby be seen as the fraction of particle pairs of states (x, r) and (x´, r´)
aggregating per unit time. The aggregation frequency is thereby defined for an ordered pair of 
particles although from a physical viewpoint, the ordering of particle pairs should not alter the 
value of the frequency. That means that equation 1.17 satisfies the symmetry property being:  
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dt t),;,;,(�dt t),;,;,(� dtdt 
�
 Yrxr´x´Yr´x´rx (1.18)

It is nevertheless essential to consider only one of the above order for a given pair of particles. 
The explicit time dependence in equation 1.17 is not a desirable feature in models and is thereby 
eliminated in the remaining sections according to: 

 t),;,;,�(dt t),;,;,(�dt Yrxr´x´Yr´x´rx �
 (1.19)

The above definitions and assumptions are in fact generally valid but to follow the previous 
trend of the one-dimensional population balance, it is again assumed that the population of 
particles is distributed according to only one internal coordinate x (e.g. mass) and that 
environmental effects can be neglected. Likewise is the contribution to birth from particle 
nucleation only accounted for in the boundary conditions. This means that the aggregation 
frequency for particle pairs of mass x and x´ can be denoted �(x, x´), which again depends on 
the form of relative motion between the particles. Aggregation at t between particles of mass x 
and mass x´ is assumed to be proportional to the product of the number densities f1(x,t) and 
f1(x´,t). In the birth of particles with mass x, particles of mass x-x´ aggregates with particles of 
mass x´ to produce particles of mass x. This follows from the fact that mass is conserved in a 
collision. Clearly, as x´ varies between 0 and x so does x-x´ meaning that each pair in the set is 
considered twice. Hence the total birth of particles with mass x may be expressed as: 

 xmass with particleofBirth : t)dx´(x´,ft)x´,(xf x´)x´,-�(x
2
1t)(x,h 11

x

0
a 
�
� �� (1.20)

in which the factor ½ ensures that for a given x´, the collision between particles of mass x´ and 
mass x-x´ is not counted twice. The integral from 0 to x ensures that all aggregating particles 
resulting in agglomerates of mass x will be included in the ha

+(x,t) term. Similar to the birth of 
particle of mass x, the death of particle of mass x due to agglomeration is given by: 

 xmass with particleofDeath : t)dx´(x´,f x´)�(x,t)(x,ft)(x,h 1
0

1a �
	

� 
� (1.21)

in which the integral from 0 to infinite ensures that the possibility that particles of mass x 
aggregates with any particle other particle with mass ranging from 0 to infinity is accounted for. 

With the introduction of the birth and death functions, the net rate of generation of particles of 
size x, h(x,t), may be written as: 

t)(x,h-t)(x,ht)h(x, aa
��� (1.22)
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Equation 1.15 may hereby be extended resulting in the one-dimensional population balance 
according to: 

���� ����� ��������� �������� ��

��� ���� �������

naggregatio todueDeath

1
0

1

naggregatio todueBirth

11

x

0

(layering)coating todueGrowth

1

densitynumberAverage

1

t)dx´(x´,f x´)�(x,t)(x,f-t)dx´(x´,ft)x´,(xf x´)x´,-�(x
2
1

t))(x,ft)(G(x,
xt

t)(x,f



�


�

�
�

�
�

�

��
	 (1.23)

The resulting equation 1.23 thus appears as an integro-differential equation in the number 
density function f1(x,t). The model does account for growth as well as birth and death of new 
particles of mass or size class x due to agglomeration although phenomena such as breakage or 
environmental effects are completely neglected.  

Equation 1.23 is in principle the original population balance equation introduced by Hulburt & 
Katz (1964), which in some sense introduced population balances in the field of granulation. As 
it will become evident in later sections, a number of problems are associated with the use of 
equation 1.23 as it is to some extent a too simplified an approach for detailed granulation studies. 
Despite the obvious limitations of the balance, roughly more than 3/4 of the available literature 
in batch fluid bed granulation in fact uses the one-dimensional balance in equation 1.23. Some 
of the reasons for this will be presented in section 1.2.4, but in the following section, the one-
dimensional population balance will be expanded to include breakage phenomena. 

1.2.2 Modification of the one-dimensional PB – inclusion of breakage functions

Although the influence of breakage on the number density function has often been neglected in 
low agitative systems as fluid beds, a more precise version of equation 1.23 must include terms 
that account for birth and death rates due to breakage. Modifications to equation 1.23 have been 
presented by Ramkrishna (2000) and Cameron et al. (2005) in order to include the birth of new 
particles in size class x due to breakage of particles from higher size classes, hb

+, and the death 
of particle of size class x due to breakage into lower size classes, hb

-.

In the derivation of the breakage birth and death terms it is assumed that the break-up of 
particles occurs independently of each other. This assumption may seem reasonable at first, but 
quite a few articles regarding breakage of particles in fluid beds (e.g. Beekman, 2000) indicates 
clearly that the extent and type of particle breakage is highly affected by particle-particle 
interaction. Hence, any break-up equation should reasonably be highly dependent of how many 
other particles that are present nearby the particle in question and particularly on how large and 
with what speed these particles are impacting the particle. Including these unknowns will 
nevertheless expand the breakage terms resulting in equations impossible to solve. This 
independent particle breakage assumption will thereby be maintained in the following. 
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Additionally, it is assumed that breakage occurs instantaneous implying that it occurs on a small 
time scale compared with the time scale used for observing the changes in particle population. 

Further, b(x, r, Y, t) is introduced as the specific breakage rate of particles of state (x, r) at time 
t in a continuous phase of state Y. It represents the fraction of particles of state (x, r) breaking 
per unit time and may thereby also be seen as a breakage frequency. The introduction of the 
breakage frequency thereby gives the average number of particles of state (x, r) lost by breakage 
per unit time according to: 

t),,(ft),,,b(t),,,(h 1
-

b rxYrxYrx 
� (1.24)

In the derivation of the birth term due to breakage, two quantities are commonly introduced: 
�(x´, r´, Y, t) describes the average number of particles formed from the break-up of a single 
particle of state (x´, r´) in an environment of state Y at time t, whereas P(x, r�� x´, r´, Y, t) is the 
probability density function for particles that have state (x, r) resulting from the break-up of a 
particle of state (x´, r´) in an environment of state Y at time t. The probability density function 
is thereby a continuous distributed fraction over the particle state space.  

The average number of particles �(x´, r´, Y, t) depends obviously on the mechanical properties 
of the particles and is frequently known from separate breakage studies. It obviously has a 
minimum value of two but it is not restricted to be an integer as it is an average number. 
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The probability density function P(x, r�� x´, r´, Y, t) representing the distribution of particle 
states for the fragments resulting from breakage is also often determined quantitatively from 
experimental studies. The function inherits certain properties from conservation laws, which 
must constrain the breakage process. First of all the normalisation condition must be satisfied: 

1t)dV,´,,,P( �� � xYrx´rx
x

(1.25)

If m(x) represents the mass of a particle of internal state x, then the conservation law of mass 
would require that: 

0t),´,,,P( �Yrx´rx  , )m()m( x´x � (1.26)

Additionally, the following relation must be satisfied:  

xYrx´rxxYr´x´x´)
x

t)dV,´,,,P()m(t),,,(m( � �


�� (1.27)

in which the equality holds if there were no loss of mass during breakage. This last relation 
represents the obvious principle that the mass of all fragments within the system formed from 
breakage of a parent particle must be no more than the mass of the parent particle. 

Having defined the average number of particles �(x´, r´, Y, t) and the probability density 
function P(x, r� x´, r´, Y, t), the birth of particles of state (x, r) by breakage of particles of all 
particle states being internal and external may be expressed according to:  

t),,(ft),´,,,P(t),,,b(t),,,(dVdV

t),,,(h

1

b

r´x´Yrx´rxYr´x´Yr´x´

Yrx

xr
xr 





�

�� ��

�

�
(1.28)

The integrand on the right-hand side of equation 1.28 is obtained as follows: The number of 
particles of state (x´, r´) that break up per unit time is b(x´, r´, Y, t)
f1(x´, r´, t)
dVx
dVr thereby 
producing new particles numbering �(x´, r´, Y, t)
b(x´, r´, Y, t)
                     f1(x´, r´, t)
dVx
dVr

of which P(x, r� x´, r´, Y, t) represents the fraction of particles of state (x, r).

Following the trends from the previous section thereby neglecting any environmental effects as 
well as to assume that the population of particles is distributed according to only one internal 
coordinate x (e.g. mass) equation 1.24 and equation 1.28 obviously becomes: 

t)(x,ft)b(x,t)(x,h 1
-

b 
� (1.29)
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dx´t)(x´,f) x´P(xb(x´))�(x´t)(x,h 1b �
	

� 


�
x

(1.30)

The original term describing the net rate of generation of particles of size x, h(x,t), in equation 
3.22 may thereby be expanded in order to include any breakage phenomena in addition to 
agglomeration according to: 

t)(x,h-t)(x,ht)(x,h-t)(x,ht)h(x, bbaa
���� �� (1.31)

The resulting one-dimensional population balance accounting for aggregation, growth as well as 
breakage may thereby by analogous manipulation to the derivation of equation 1.23 be 
expressed according to: 

�� ��� �������� ������� ��

���� ����� ��������� �������� ��

��� ���� �������

brekage todueDeath

1

breakage todueBirth

1

naggregatio todueDeath

1
0

1

naggregatio todueBirth

11

x

0

(layering)coating todueGrowth

1

densitynumberAverage

1

t)(x,ft)b(x,t)dx´(x´,f) x´P(xb(x´))�(x´

t)dx´(x´,f x´)�(x,t)(x,f-t)dx´(x´,ft)x´,(xf x´)x´,-�(x
2
1

t))(x,ft)(G(x,
xt

t)(x,f


�


�



�


�

�
�

�
�

�

�

��

	

	

x

(1.32)

Even though equation 1.32 is the most advanced of the one-dimensional balances, and thereby 
ought to give the most accurate and versatile description of the change in particle size 
distribution during fluid bed granulation, it is nevertheless rarely used, as an adequate 
description of the probability density function P(x, r� x´, r´, Y, t) is difficult to obtain with real 
granulating fluid beds. 

1.2.3 Review of coalescence kernels for one-dimensional balances 

In the earlier development of the birth and death terms the parameter � was introduced 
expressing the probability that a particle of state (x, r) and another particle of state (x´, r´) will 
aggregate in the time interval t to t+dt according to: 

 t),;,;,�(dt t),;,;,(�dt Yrxr´x´Yr´x´rx �
 (1.33)

So far the aggregation frequency has been expressed in terms of the single parameter � but this 
parameter obviously depends on a number of physical and statistical properties associated with 
the collision. The parameter � is commonly referred to as the coalescence kernel as it is the 
mathematical term in the balances that links the physical and process parameters with the 
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statistical chance of successful permanent coalescence (Ding et al., 2006). In other words, the 
coalescence kernel governs the mathematical description of coalescence as the term 

 t),x,x´�( may be seen as a pseudo rate constant for the agglomeration process. The choice of 
kernel can dramatically affect the rate of coalescence and thereby the shape of the predicted 
granule size distribution (Cryer, 1999). Figure 1 indicates examples of the effect of the choice of 
coalescence kernel on the predicted shape of the final granule size distribution for three simple 
kernels.
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Figure 1: Effects of coalescence kernels. 
Effect of the choice of coalescence kernel on the shape of the predicted final granule size 
distribution (Based on Litster & Ennis, 2004 and Adetayo et al., 1995).

Although some of the modern kernels have a more theoretical foundation, all kernels are 
empirical or semi-empirical in nature and have been formulation largely upon experimental 
observations. Kernel expressions are typically a function of the granule size (through the x and 
x´ dependences) besides a number of fitted coefficients. These empirical coefficients are 
deduced from curve fitting from experimental data. Historically, much focus has been on the 
development of new kernels in order to be able to describe agglomeration processes across scale 
and bed material. One of the first suggestions by Kapur & Fuerstenau in 1969 suggested that �
should simply be a constant �0. Modern considerations by Cameron et al. (2005) and Liu & 
Litster (2002) indicate that the coalescence kernel is affected by two major factors being first of 
all the collision probability of the specified pair of particles, and secondly, the chance of 
successful permanent coalescence or rebound (Cameron et al., 2005). Whereas the first factor 
mainly depends on the particle sizes, the fluid bed process conditions affecting the particle flow 
pattern and general operating conditions, Liu et al. (2000) have found, in accordance with the 
theory of type I and type II coalescence presented in section 1.3.2.2, that the most important 
aspects affecting the success of coalescence are elastic-plastic properties of the particles, 
viscous fluid layer, head on collision forces and the energy balance of the system. This has lead 
to a renewal of the general approach to subdivide the kernel expression into two parts as 
suggested originally by Sastry in 1975 according to: 

x´)(x,��x´)�(x, *
0 
� (1.34)

where �0 is the rate constant depending on the operating conditions of the fluid bed. The term 
�*(x, x´) expresses the dependency of the kernel on the size of the coalescing granules. It 
determines the shape of the resultant granule size distribution (Liu and Litster, 2002). Due to the 
complexity and limited knowledge of the forces affecting the particles inside the fluid bed, the 
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form of the coalescence kernel based on physical properties of the particle materials is not yet 
fully established. However, many empirical and theoretical expressions for the term �*(x, x´) 
have been proposed in the literature, although these expressions generally have been sparsely 
validated. Table 1 gives a historical summary of the most cited coalescence kernels through the 
last forty years of population balance modelling of agglomeration. 

Kernel Reference 

0�� � Kapur and Fuerstanau 

(1969) 

b

a

xx
xx
´)(
´)(�� 0 


�
� Kapur (1972) 

 x´)(x,��� *
0 
�  Sastry (1975) 

�
�
�

�
�

�
switch1
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t t, x´)(x,�
t t,�

�

where �0 and �1 are constants and tswitch is the time required to reach the 
final equilibrium size distribution of the first non-inertial stage of 
granulation.
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and aAE, bAE, �0 are constants and w* the critical granule volume.

Adetayo & Ennis (1997) 
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where ),( tf � is the discrete probability density function.
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where cx and cx´ represent the volume percentage of binding agent in the 
agglomerate x and x´ respectively, and %M and &M are fitted parameters. 

Madec et al. (2003) 

33
2

0 ´
11 x´)(x,��
xx

�
� Tan et al. (2002 and 2004) 

Table 1: Historical summary of proposed coalescence kernels in literature. 

In recent years, many theoretical models have been developed to predict the coalescence 
probability from process conditions and physical properties of the granules and binder materials 

Download free eBooks at bookboon.com



Population Balances

 

21  

Modelling Batch Fluid Bed Granulation Processes Using Population Balances 

as it was also presented in the chapter two. The methods used in developing the models are 
either energy or force balances and most of the models are able to predict whether the granules 
will stick together and rebound upon collision. A constant kernel may then be applied to the 
granules, which successfully coalesce. Since the granule size, granule physical properties, 
binder properties as well as the collision velocities of the granules are included in these models, 
the coalescence kernels based on these theoretical models should be more fundamentally sound 
than the pure empirical kernels (Liu & Litster, 2002). An example of such models is the kernel 
suggested by Adetayo & Ennis (1997). They suggested a kernel based on the viscous Stokes 
theory according toviii:

��

�
�
�

�

�
�

*

*
0

w w,0

w w,�
x´)�(x, (1.35)

where w* is the critical average granule volume and w is defined as: 

AE

AE

b

a

x´)(x
x´)(xw

�



� (1.36)
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In this approach, collisions lead to successful coalescence only if w < w* (Rhodes, 1998). The 
parameters aAE and bAE are constants depending on the deformability of the colliding granulesix.
In the case of non-deformable granules aAE = bAE = 1 and assuming spherical granules, w* may 
be expressed as: 

3

*

0g

liq* St
u�
�16

6
�w

x´)(x
x´)(xw �

�
 

!
"
"
#

$








��
�



� (1.37)

For granule growth in the non-inertial regime where St << St*, this kernel reduces to the simple 
size independent kernel � = �0. According to the viscous Stokes theory, coalescence occurs only 
in the non-inertial regime and stops when St = St*, which by the Adetayo et al. (1997) analogy 
would be the case when w equals w*.

Although initial approaches by Adetayo & Ennis (1997) and Liu & Litster (2002), there is 
generally very limited work on applying the theoretical coalescence models to the population 
balance equations in the literature. According to Liu & Litster (2002), the reasons for limited 
work on applying theoretical coalescence models to the population balance modelling of granule 
size distributions can be attributed by two factors. Firstly, most models are based on the 
collision mechanisms of two granules. In a fluid bed in which many granules interact with each 
other the theoretical model based on binary collisions may not be applied with much chance of 
success. Secondly, there is still very limited knowledge of the granule collision velocity 
distribution and collision frequencies in fluid beds, meaning that the collision velocity u0 (or 
rather the distribution of collision velocities) is extremely difficult to estimate as previously 
emphasised. Therefore using a kernel or combination of kernels that provide the best fit to 
experimental data is still the most commonly used method (Liu & Litster, 2002). 

1.2.4 About one-dimensional balances 

By far, the largest amount of literature regarding population balance modelling of batch 
granulation systems has used the one-dimensional population balance model as derived in the 
previous sections. These one-dimensional models have traditionally assumed that granule “size” 
(usually mass or volume) is the only independent granule property that significantly affects the 
granule growth behaviour, and that the agglomeration process can be modelled with size as the 
only internal coordinate completely neglecting the influence of any external coordinates as well 
as environmental effects. However, several other independent granule properties have been 
identified and for some time known to strongly influence agglomeration (Iveson, 2002). These 
include internal coordinates as granule binder content, porosity and primary particle 
sizedistributions and composition.  

The implicit assumption that conditions are spacially uniform throughout the batch granulator 
does not hold true for many types of fluid beds as segregation has the potential to occur as well 
as a possible influence of the significant variations in relative humidity and temperature inside 
the fluid beds, as it has been proved by Maronga & Wnukowski (1997a, 1997b and 1998). This 
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will affect the frequency and velocity of collisions besides influence the chance of permanent 
coalescence. Hence, from a formal point of view, the one-dimensional balances are inadequate 
to completely model the situation during fluid bed granulation. Indeed the problems with 
coalescence kernel approximations may be seen as an indication of this inadequacy. A 
reasonable argument is that even with a good fit for the kernel expression there is no guarantee 
that it is the best fit or that it has any physical basis (Iveson, 2002). In addition, these fits cannot 
be used for predicting agglomeration behaviour outside the range of conditions in which they 
were fitted. It is worth noting that even with the most theoretically founded models, as the case 
with the presented model by Adetayo & Ennis (1997), some characteristic measure of the 
granule environment is needed being e.g. the granule collision velocity and granule contact time 
as well as the mechanical properties of the granules being e.g. the coefficients of restitution or 
plastic yield stress etc. This strongly calls for an expansion of the one-dimensional balances into 
three or four dimensions in order to include external as well as additional internal coordinates as 
granule porosity and binder contents in addition to size (Iveson, 2002).  

There are however, many reasons for continuing with the simple one-dimensional balances and 
still articles are being published including the previously derived one-dimensional models. As it 
will become clear from the following sections, the solution of even the simplest one-
dimensional models requires quite a lot of ingenuity and numerical solution techniques. At the 
present state it is still necessary with a lot of simplifications in order for the simplest models to 
be solved. Secondly, there is a general lack of systematic data material meaning that validation 
of the suggested expressions and models almost never happens extensively. New approaches 
often use older previously reported data to build new and better models and as it is somewhat 
academically easier to expand previous models than to set up and solve completely new, the 
trend in population balance modelling continues to apply one-dimensional models. Despite 
these facts, multi-dimensional models are nevertheless being suggested, as it will be briefly 
introduced in the following section. 

1.3 Multi-dimensional population balances 

The idea of extending the general one-dimensional population balances with additional 
dimensions to describe particulate processes in more detail is not new. In aerosol science, multi-
dimensional population balances have been both proposed and somewhat validated (Xiong & 
Pratsinis, 1993, Verkoeijen et al., 2002 and Wauters, 2001). Xiong & Pratsinis (1993) derived a 
two-dimensional model to describe the simultaneous coagulation and sintering that occur during 
a gas phase powder production process. Using particle volume and particle surface area as 
particle dimensions they were able to describe the change of the particle morphology as well as 
the average particle size and polydispersibility. Other examples of multi-dimensional population 
balances have been reviewed by Verkoeijen et al. (2002). In recent years a number of multi-
dimensional population balances for batch granulation have been proposed. Cameron et al. 
(2005) present a two-dimensional balance with two internal coordinates being particle total 
volume v and the liquid binder volume vL. As with the previous simple models, perfect mixing 
is assumed thereby not including any spatial external coordinate in the model. In addition, birth 
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and death due to breakage is neglected. The proposed 2-D population balance model for a batch 
granulation process being analogous to the previously derived equation 1.23 is:  
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(1.38)

in which the relationship between the bi-variant average number density function fbi and the 
previously used single-variant average number f1 is determined according to (Cameron et al., 
2005): 

��
v

0
LLbi1 t)dv,v(v,ft)(v,f (1.39)
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Under the assumption that at a given size, all granules have the same liquid content, the two-
dimensional population balance equation in equation 1.38 can be reduced to a set of two, one-
dimensional balances which makes the solutions somewhat easier. So far this technique has 
only been applied to high-shear mixing (Cameron et al., 2005, Hounslow et al., 2001 and Biggs 
et al., 2003). 

As a further expansion of the two-dimensional population balance models, Iveson (2002) 
suggested a four-dimensional population balance model for batch granulation of a binary 
mixture of solids a and bx. The four independent granule characteristics that were considered 
were m, the granule solid phase, w, the binder to solid mass ratio, ', the granule porosity and x,
the solid phase mass fraction of component a. Iveson (2002) chose granule mass rather than 
volume as an indicator of granule size as the volume of the granules vary as they consolidate, 
which nevertheless is a phenomenon often neglected in fluid bed modelling situations as 
emphasised in Hede (2005). For a batch granulation system in which layering as well as birth 
and death due to breakage is neglected, Iveson (2002) suggested the following four-dimensional 
balance according to: 
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(1.40)

The coalescence terms in equation 1.40 are calculated by considering all the possible 
coalescence events that can form a granule with properties: m, ', w, x. Given the first granule 
with properties m1, '1, w1, x1 the necessary mass, binder content and composition of the second 
granule can be calculated from conservation of mass equations according to: 

12 mmm �� (1.41)
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The porosity of the second granule '2 can be calculated by assuming that the total pore volume 
of the coalesced particles is conserved according to: 
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(1.44)

These four equations assume that the agglomerates instantly homogenise and become spherical 
after coalescence. In reality of course, the agglomerate dumbbell will take a finite time to 
spheronise. This is however a common assumption of negligible error (Iveson, 2002). Equation 
1.44 additionally assumes that the coalescence event does not cause any change in the total pore 
volume. However, if permanent plastic deformation occurs, then it is possible for the pore 
volume to either increase or decrease depending on whether there is a significant amount of 
dilation or compaction (Iveson, 2002). In the case of fluid bed granulation, compaction and 
consolidation is often neglected but for high-shear mixing, additional terms accounting for the 
consolidation can be added to equation 1.44. 

Besides the presented balances, a number of other multi-dimensional population balances 
equations have been presented e.g. by Wauters, 2001 and Immanuel & Doyle (2005). Likewise 
have Verkoeijen et al. (2002) extended the Iveson (2002) proposal in that they suggest the use 
of truly mutually independent particle properties as the internal coordinates. Thus, in a three-
dimensional formulation they propose the use of the volume of solid, volume of liquid and 
volume of gas as the internal coordinates rather than the particle total volume, binder content 
and porosity which are not mutually independent of each other. This approach results in a 
fortunate separation of the underlying meso-scopic processes of agglomeration, breakage, 
drying and coating etc. (Verkoeijen et al., 2002 and Cameron et al., 2005). A detailed review of 
the latest advances in multi-dimensional population balances may be found in Cameron et al. 
(2005).

Even though multi-dimensional population balances seems promising towards the precise 
mathematical description of the granulation process, currently no numerical methods for solving 
the multi-dimensional balances exist. Not only are the multi-dimensional integro differential 
equations tedious to solve but as the effects that is incorporated into the models are not yet fully 
understood, the modelling of such phenomena is clearly associated with a large degree of 
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uncertainty. Although daunting, these challenges cannot be ignored if population balances 
should be applied for prediction of the various complex phenomena that occurs during 
granulation, and it seems vital for the use of population balances in the process of scaling 
granulating systems. As long as the problems of solving multi-dimensional population balances 
exist it is very likely that people will continue to refine the one-dimensional balances. These 
simple balances does not to the same extent struggle will inadequate numerical solution 
techniques, and as it will be presented in the following sections, several approaches may be 
applied for the solution of one-dimensional population balances.  

1.4 Solving one-dimensional population balances 

Even in the simple case with one-dimensional population balances, the resulting equation is a 
partial integro differential equation, which cannot be solved as simple as many of the well-
known trivial partial differential equations. Complete analytical solutions are available only for 
a limited number of special cases (Litster & Ennis, 2004). Fortunately for batch fluid beds, 
analytical solutions are available for situations in which only either only coating (layering) or 
agglomeration occurs. These two simple cases will be briefly presented in the following 
sections. 
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1.4.1 Analytical solution to the pure growth by coating (layering) situation 

In systems where only coating occurs, the derived equation 1.32 turns into the following 
equation: 

0t))(x,ft)G(x,(
t

t)(x,f
1

1 �

�
�

�
�

�
x

(1.45)

Assuming linear size independent growth meaning that G = constant ( G(x), the solution to 
equation 1.45 is a travelling wave function with the granule size shifting forward in time with 
the shape of the granule size distribution unaltered thereby expressing the average number 
density function as (Litster & Ennis, 2004): 


x)(xf(x)f initial1 �� (1.46)

in which finitial represents the initial size distribution and )x may be found according to: 

� 
�
t

0

dtG
x (1.47)

According to Litster & Ennis (2004), it is often reasonable to assume a linear growth 
independent of granule size. This implies that each granule has the same exposure to new 
coating droplets again implying that each granule has equal exposure time in the spraying zone. 
In that case, the growth rate G can be directly related to the rate of addition of new coating 
solution and the surface area of the granules in the granulator according to (Liu & Litster, 1993): 

2/3
2

v xk
�

�d
k´G(x) 
�
� (1.48)

in which k´ is a proportional constant, dv is the equivalent diameter of the particles, � is the 
particle sphericity and k is another proportionality constant. In typical coating situations the 
density of the coating material is slightly different from the core material and the average 
particle density will thereby slightly change as the processing time proceeds. An estimate of the 
proportionality constant k can be obtained at any time by following the mass balance, which 
states that the mass increase in the bed per unit time is equal to the dry coating material feed rate 
Sd minus the rate of elutriation Eelu (Liu & Litster, 1993): 
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The presented approach to apply population balances for pure growth by coating situations has 
proven useful in spouted fluid bed coating systems (Liu & Litster, 1993 and Litster & Ennis, 
2004) although the complete omission of agglomeration most likely will be an inadequate 
assumption for most industrial applications as agglomeration almost never can be avoided in 
common fluid bed coating systems.  

1.4.2 Analytical solution to the pure growth by agglomeration situation 

In the case where agglomeration is the only dominating growth mechanisms, equation 1.32 can 
be simplifying according to (Litster & Ennis, 2004): 
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It is assumed that the coalescence kernel can be expressed according to equation 1.35-1.37 as 
suggested by Adetayo & Ennis (1997). According to the viscous Stokes theory, on which this 
kernel is expressed, the primary agglomeration takes place in the non-inertial regime. Here w < 
w* for all particle collisions and �(x, x´) = �0 indicates a size independent kernel. For this case it 
is possible to calculate the moments solution to the population balance based on the total 
number of particles NT at time t. According to Adetayo et al. (1995) and Kapur & Fuerstenau 
(1969), the zeroth moment of the population balance is: 
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in which
0TN is the initial total number of particles. In addition, the mean granule size gr has

been observed to vary according to (Adetayo et al., 1995): 
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in which
0gr is the initial mean granule size prior to agglomeration. Even though analytical 

solutions seems convenient, such solutions are however only available for specific initial narrow 
and unimodal size distributions and only in the simplest case of non-inertial growth, as it has 
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been shown by (Litster & Ennis, 2004). For practical purposes, solution of population balances 
is done in terms of numerical methods solely. 
1.4.3 Numerical solutions to one-dimensional population balances 

The previously presented simplifications to the full population balance have been a convenient 
way to be able to solve the balances analytically. For practical purposes however these 
simplifications have proven inadequate and hence numerical solution techniques are necessary 
in order to solve the complete balance in equation 1.32. Numerical methods allow the shape of 
the granule size distribution to be easily tracked and all the simplifications required for 
analytical solutions are not needed. 

During the last twenty years, a number of different techniques have been suggested for the 
numerical solution of the one-dimensional population balances. Some of the first techniques 
involved the discretisation of the integro differential equation thereby breaking the particle size 
distribution into discrete intervals, and then solve the resulting series of ordinary differential 
equations as proposed by Batterham et al. (1981) and others (Litster & Ennis, 2004). At the 
moment, various numerical solution techniques are available and a brief introduction to the 
most versatile and commonly applied will be given in the following sections.  
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1.4.3.1 Hounslow’s discretisation method and the Litster expansion 

Hounslow et al. (1988) developed a relatively simple discretisation method by employing a M-I 
approachxi. They considered a population balance on the form of equation 1.23 using particle 
volume as the internal coordinate besides assuming only agglomeration and coating terms to be 
of importance. Because of the identified advantages of length-based models, Hounslow et al. 
(1988) performed the coordinate transformation to convert the volume-based model into a 
length-based model. The method is based on geometric discretisation with the following ratios 
between two successive size intervals: 

3

i

1i
H 2

L
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v
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i

1i �� (1.53)

in which L denotes the characteristic length of particles, v the volume of the particles and the 
subscripts i+1 and i denote the two successive size classes. By applying this technique, the 
population balance in equation 1.23 can be converted into a set of discretised population balance 
equations in various size intervals. The individual terms accounting for birth and death due to 
agglomeration and the term accounting for growth by coating may thereby be expressed as 
(Hounslow et al., 1988): 
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in which Ni represents the total number of particles of size class i and �i,j is the coalescence 
kernel for two different discretised volume intervals. Newer more advanced models expand the 
discretisation for the two agglomeration terms. E.g. have Litster et al. (1995) made an improved 
discretisation byxii:

��� q,2
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1i N (1.57)

This expands the original Hounslow model to (Litster et al., 1995): 
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where S(q) is a summation function defined as (Litster et al., 1995): 
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By the expansion by Litster et al. (1995), accuracy is increased by increasing the value of q at 
the expense of computational time. Given the uncertainty with any practical particle size 
measurements, Litster & Ennis (2004) suggest that q should be chosen in the range of one to 
four. An example of the increased accuracy with increasing value of q can be seen from figure 2: 

Figure 2: Numerical solution versus analytical.  
Comparison of numerical solution of the one-dimensional population balance with a known 
analytical solution by applying the discretisation refinement suggested by Litster et al. (1995) 
(based on Litster et al., 1995 and Litster & Ennis, 2004).

Although being fairly simple, the Hounslow/Litster discretisation technique has been widely 
cited and used for a number of population balance problems besides the ones encountered in 
granulation systems. Two major advantages associated with the Hounslow/Litster method are 
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first of all that it is easy to understand and simple to implement in programmes. Secondly, it 
allows a crude discretisation with a small number of size classes. This second advantage is 
particular important in order to apply the population balances in process optimisation (Wang et 
al., 2006). However, there are two significant limitations with this well accepted method. The 
method does first of all lead to significant errors in large size classes and secondly, the treatment 
for growth by coating as suggested in equation 1.56 has proven to be too simple in order to 
avoid numerical dispersion. Fortunately, the reliability of the simulation results does not 
deteriorate significantly because of this. This is because in the particular processes studied so far, 
the mass of over-sized particles only consists of small portions in the total mass, and compared 
with the coalescence growth, the growth by coating only plays a minor role. If however, the 
Hounslow/Litster method should be applied for primary coating studies these issues have to be 
taken into account and the Hounslow/Litster method should be replaced by more accurate 
numerical schemes (Wang et al., 2006). 

1.4.3.2 Other methods for numerical solution of population balances 

In addition to the Hounslow/Litster approach, a number of other solution techniques have been 
proposed within the last ten years. E.g. have Kumar and Ramkrishna (1996) developed a 
discretisation method using a grid with a more general and flexible pattern with fine or coarse 
discretisation in the different size ranges. This allows a much more refined discretisation in 
some specifically chosen size ranges while a broader discretisation may be chosen in other size 
classes of less relevance.  
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This discretisation technique may however preferably be applied with volume-based population 
balance models rather than length-based such as the Hounslow/Litster approach (Cameron et al., 
2005).

A recent method suggested by Liu & Cameron (2001) is the wavelet-based methods for solving 
population balance equations being somewhat similar to other collocation methods by 
normalising the coordinates between zero and one. Wavelet transformation involves 
representing general functions in terms of simple, fixed building blocks at different scales and 
positions. These building blocks, which are actually a family of wavelets, are generated from a 
single, fixed function called the mother wavelet by translation and dilation (scaling) operations. 
In contrast to the traditional trigonometric basis functions, which have infinite support, wavelets 
have compact support, thus being able to approximate a function not by cancellation, but 
through placement of the right wavelets at appropriate locations. The multi-resolution analysis 
properties of wavelets make them attractive candidates for representing functions in differential 
equations which are being solved numerically (Liu & Cameron, 2001). The wavelet technique is 
very general, powerful and overcomes the crucial problems of numerical diffusion and stability 
that often characterize some of the other available numerical solution techniques (Cameron et al., 
2005).

Besides the mentioned principles, several other conventional numerical solution techniques 
have been applied for population balances including method of weighted residuals, method of 
moments, orthogonal collocation, collocation on finite elements, as it has been reviewed by 
Ramkrishna (1985 & 2000). One of the newest reviews by Cameron et al. (2005) gives a more 
in-depth review of some of the newest approaches including advanced Monte Carlo methodsxiii

and finite-element discretisation. 

1.5 Inverse problems in population balances 

A generic issue in the development and application of population balance models is the 
identification of the model parameters employing appropriate experimental data (Cameron et al., 
2005). The population balance equation is based on a number balance that arises from the 
consideration of single particle or binary particle interaction behaviour. As the particle 
behaviour must be considered in the local population setting, it is often not an experimentally 
accessible quantity, as it requires observation on specific particles that can be readily obscured 
by the presence of the numerous neighbour particles in real systems. Consequently, an often 
applied approach has been one of assuming the validity of single particle behaviour obtained in 
isolation from its neighbours either from specified experiments or simple from theoretical 
considerations (Ramkrishna, 2000 and Iveson et al., 2001a). Obviously, in order to obtain better 
characterisations of single particle behaviour in a population, experimental observations must be 
made on the population and a method must be found to extract the behaviour of single particles 
from such measurements (Ramkrishna, 2000). Such approaches and techniques are commonly 
referred to as the Inverse Problem being inverse in the sense that models are deduced from 
experimental data primarily. It will only be briefly introduced in the present section, as it 
requires a previous introduction to self-similar behaviour and grey-box modelling strategies, 
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which are beyond the scope of this review. It should be noted however, that the solution of the 
inverse problem constitutes a crucial step in the use of population balances for many practical 
applications. An introductory review may be found in Cameron et al. (2005) and Ramkrishna & 
Mahoney (2002), and Ramkrishna (2000) provides a throughout introduction in the field of 
inverse problems.  

In an inverse problem approach by Mahoney et al. (2002), the population balance equation is 
solved under suitable assumptions by the method of characteristics, which associates the 
number density for any particle size at any time with a single point from the initial or boundary 
condition. The key in using this technique is the recognition that these characteristics 
correspond to the size history of individual particles and can be associated with constant 
cumulative number densities (quantiles) of the population. These quantiles are easily 
identifiable from experimental data. The variation of size and number density along these 
characteristics provides decoupled equations used to determine the growth rate. Validity of the 
determined growth law is checked by the collapse of the experimental data onto initial and 
boundary conditions. 

A general advantage of inverse problem models is that they are not committed to any specific 
form of the model under investigation. This means that when a model form turns out to be 
inappropriate, new parameter-fitting procedures can be readily included in order to build a more 
adequate model. It may seem advantageous at first to apply inverse problem models in an 
industrial context but there are however a number of disadvantages. Extracting information 
from experimental data requires in fact quite a lot of assumptions in order to be used in models. 
In the case of using experimental data in population balance modelling, it is desirable to 
consider situations in which only one of the different particle processes occurs so that the 
inversion can be accomplished without unduly risking loss of uniqueness. This is a difficult task 
with fluid beds as it is almost impossible to make sure that the particle sample extracted from 
the bulk has experienced only the one type of particle process (e.g. breakage) that the sample 
should be used to model. In general, inverse problem models struggles with the problem that 
even tiny errors in the input data produces large errors in the extracted information. This calls 
for some presmoothing of the input data for such models thereby substantially raising the 
required amount of data material (Ramkrishna, 2002). The use of inverse problem models is a 
fairly new alternative to the traditional population balance approach but the sparsely amount of 
people working in this field, and thereby the limited available experience in literature, means 
that the real advantages and possibilities with inverse problem modelling are yet to be seen. 
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Summary  

Basically, all models are wrong although some are useful and may be applied with sufficient 
accuracy. According to Iveson (2002), a useful model is one that correctly accounts for all the 
effects of first-order significance whilst ignoring unnecessary complications due to effects of 
secondary importance. Applying population balances in particle technology is a purely 
academic field, as it was introduced in the text. Since the introduction of the one-dimensional 
balances more than forty years ago, the one-dimensional balances have developed to include 
both growth by coating, birth and death by agglomeration and latest, birth and death by 
breakage.

As it is the case in many other mathematical modelling fields, the solution of the problems by 
far exceeds the work required to set up the equations. This is also the case for population 
balance modelling and much effort has been invested into numerical solution techniques for the 
one-dimensional balances. Still new article are being published in which new and advanced 
solution techniques are being suggested for the solution one-dimensional balances. Much of this 
development has been at the expense of proper model validation and along with the advanced 
“mathemisation” of the population balances, the field is to some extent moving further and 
further away from granulation physics and experimental data. This is an obvious disadvantage 
as results must be extensively validated at this present very early stage of quantitative wet 
granulation modelling. 

Summary
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With a number of critical articles in recent years it becomes even clearer that the one-
dimensional population balances are too simple to account for all of the important granulation 
phenomena and also that new kernel expressions cannot set these issues right. That does not 
mean that one-dimensional population balances may not at some point in the future be used as 
rough guidelines with adequate precision for industrial process control issues, but merely that 
one-dimensional balance are not and most likely will not be capable of, at any point, to describe 
the granulating system with a precision satisfactory for scientists. The multi-dimensional 
population balances seem to have the greatest potential for future modelling of fluid bed 
granulation processes but as long as no versatile solution techniques are available, it does not 
make much sense to set up the balances.  

At the moment the PB models are used more as a learning tool to understand processes and 
mechanisms rather than being a final unambiguous optimisation tool. Population balances 
models have to some extent been used successfully to provide insight into the separate 
mechanisms by which particles grow. However, since powder characteristics, essential 
hydrodynamic parameters regarding liquid-solid contacting, particles mixing and agglomeration 
are lumped into the kinetic rate constants, population balances cannot be applied for a-priori 
design and scale-up of fluid bed granulation processes (Goldschmidt et al., 2003).   

Whereas the general perspective of using population balances for granulation process control 
looks somewhat promising, the use of population balances for scale-up purposes or for the 
description of the breakage mechanisms associated with granulation has not been proven useful 
yet (Faure et al., 2001). Much work is still needed before population balance modelling will 
achieve any significant commercial interest, and as long as the pure academic modelling 
perspective keeps expanding at the expense of proper validation, industrial application of 
population balance theory does not seem within immediate reach. 
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Table of symbols 

Nomenclature Unit (SI-system)

a Internal coordinate - 

a´ Material constant Dimensionless  

ad Projected area of liquid binder droplets m2

aAE Fitting parameter Dimensionless 

an Projected area of a nucleus granule m2

A� Powder flux m2/s

A* Contact area between colliding granules m2

b Internal coordinate - 
bAE Fitting parameter Dimensionless 

c Cohesivity of dry particle mass N/m2

dair distrib pl. Air distribution plate diameter m 

db Gas bubble diameter m 
dbed Fluidised bed diameter m 
dd Liquid droplet diameter m  
dd,rel Relative liquid droplet diameter m  
dp Particle diameter m  
dorifices Pitch orifice diameter m 

dsp/sp Interaction parameter of two spheres m 

dv Equivalent diameter of particles m 

dvessel Fluid bed vessel diameter m 

e Particle coefficient of restitution Dimensionless 

E Young modulus N/m2

E* Granule Young modulus N/m2

Eelu Elutriation rate - 

f1(x, r, t) Average number density function - 
fbi Bi-variant average number density function - 
finitial Initial average number density function - 
ftetra Tetra-variant average number density function - 
Fpend.,bound. Pendular force in the “boundary” method N 
Fpend.,eq 

sph. 

Pendular force between two equally sized spheres N 

Fpend.,gorge. Pendular force in the “gorge” method N 
Fvis Viscous force N 

Fi Net force vector acting on particle i - 

Fi
H Drag force vector - 

Table of symbols
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Fi
E Force vector accounting for external fields - 

Fi
P Force vector accounting for particle-particle 

interactions 

-

g Gravity m/s2

G(x, r,

t)

Rate of growth by layering - 

Gs Mass flux of particles m2/s

h(x, r,

t)

Net generation rate of particles - 

h0 Binder layer thickness covering colliding granules m 

ha
+ Birth of particles due to aggregation - 

ha
- Death of particles due to aggregation - 

hasp Characteristic length scales of surface asperities m 

hb
+ Birth of particles due to breakage - 

hb
- Death of particles due to breakage - 

hbed Bed height m 

H Separation distance between two spheres m 

Table of symbols

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Develop the tools we need for Life Science
Masters Degree in Bioinformatics

Bioinformatics is the  
exciting field where biology, 
computer science, and  
mathematics meet.  

We solve problems from 
biology and medicine using 
methods and tools from  
computer science and  
mathematics.

Read more about this and our other international masters degree programmes at www.uu.se/master

http://www.uu.se/master


Population Balances

 

40  

i Summation parameter - 

Ii Moment of inertia - 

J Nucleation ratio Dimensionless 

k Proportionality constant - 

k´ Proportionality constant - 

kcn Coordination number Dimensionless 

Ka Nucleation area ratio Dimensionless 
L Characteristic length of particles m 

Lbed Fluid bed length from distributor plate to exhaust 

exit

m

Lslr Length scale ratio Dimensionless  

m Mass kg 

m(x) Mass of a particle of internal state x

maggl Agglomerate mass kg 

mbed Bed load kg 

mharm Harmonic mean granule mass kg 

airnozzlem� Spray rate from the nozzle kg/s 

spraym� Air flow rate through the nozzle kg/s 

Mi Net torque vector - 
nfi Flow index Dimensionless  

n(x, r,

t)

Actual number density - 

0n� Nucleation rate No. of particles/s 

N(r, t) Average total number of particles - 
NT Total number of particles - 

NT0 Initial total number of particles - 

p Summation number Dimensionless 
P Pressure Pa 

P(x,r��x

´,r´)

Probability density function - 

q Discretisation number Dimensionless 
r Radius m 

raggl Radius of an agglomerate m 

rdef
* Critical radius of an agglomerate after which def. 

occurs

m

rharm Harmonic mean granule radius m 

Table of symbols
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rneck Pendular bridge neck radius m 

gr Mean granule size m 

0gr Initial mean granule size m 

rneck Pendular bridge neck radius m 

r External coordinate vector - 
r´ External coordinate vector - 
R Radius m 
Rp Particle radius m 

smax Maximum pore liquid saturation Dimensionless 
S Distance m 

Sc Saturation at transition funicular/capillary state Dimensionless 

Sd Dry coating material feed rate - 

Sf Saturation at transition pendular/funicular state Dimensionless 

Ssat Amount of saturation Dimensionless 

Stdef Stokes deformation number Dimensionless  

Stdef
* Critical Stokes deformation number Dimensionless  

Stv Viscous Stokes number Dimensionless 

Stv
* Critical viscous Stokes number Dimensionless 

Sw Wetting saturation Dimensionless 

S(q) Summation function - 

SKolmogorov Kolmogorov entropy bits/s 
t Time s 

tcoat Coating time s 

u Granule velocity m/s 

u0 Initial granule collision velocity m/s 

U Fluidisation velocity m/s 

Ubr Bubble rise velocity for a fluid bed m/s 

Umf Minimum fluidisation velocity m/s 
Us Superficial gas velocity m/s 

vi Velocity vector - 

v Particle volume internal coordinate - 

v Average particle volume m3

vL Liquid binder volume internal coordinate - 

V� Volumetric spray rate m3/s

Vaggl Agglomerate volume m3

Vbridge Liquid bridge volume m3

Vr Volume of external coordinates - 

Table of symbols
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Vx Volume of internal coordinates - 

w Granule volume parameter in coal. kernel expression - 

w* Critical average granule volume - 

wmr Mass ratio of liquid to solid Dimensionless  

W Spray zone width m 

x Internal coordinate vector - 

x´ Internal coordinate vector - 

x Coordinate m 

y Coordinate along the width of the spray zone m 

Y(r,t) Continuous phase vector - 

Yd Plastic yield stress N/m2

z Counting number Dimensionless 

   

Greek   
   
� Coalescence kernel - 
�0 Rate constant - 
�dt Aggregation probability in time interval dt - 
�id Coefficient of interphase drag Dimensionless 

Table of symbols
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�* Coalescence kernel expression - 
& Dimensionless bubble spacing Dimensionless 

&pdef Extent of permanent plastic deformation Dimensionless 

�f Coefficient of internal friction Dimensionless  

�mean Mean in the Gaussian distribution m 

�f Macroscopic shear stress at failure Pa 
�n Macroscopic normal stress Pa 

�width Standard deviation m 

�t,f Funicular bridge static tensile strength N/m2

�t,p Pendular bridge static tensile strength N/m2

�t,c Capillary bridge static tensile strength N/m2

)
�(� Characteristic stress in an agglomerate N/m2

/y Yield stress/strength N/m2

0c Average particle circulation time s 
0d Droplet penetration time s 
1a Dimensionless spray flux Dimensionless 

1n(y) Dimensionless nuclei distribution function Dimensionless 

1n Dimensionless spray number Dimensionless 

� Particle shape factor (sphericity) Dimensionless 
� Dimensionless parameter in the dynamic strength eq. Dimensionless 
� Half filling radius 2

3 Contact angle 2

� Poisson ratio Dimensionless 

�(x´,r´,Y
,t)

Average number of particles formed from break up - 

' Particle voidage (void fraction) % 
'longitudinal Longitudinal extension strain Dimensionless 
'min Minimum porosity % 
'trans Transverse contraction strain Dimensionless 

g	 Mean granule porosity (void fraction) % 

4lv Interfacial surface tension between liquid and vapour N/m 


� Shear rate s-1

5 Density kg/m3

5b Binder liquid density kg/m3

5g Granule density kg/m3

5p Particle density kg/m3

	app Apparent viscosity kg s /m 
6liq Liquid (binder/coating) viscosity kg s /m 

�i Angular velocity vector - 

H Hounslow discretisation parameter - 

Table of symbols


r Domain of external coordinates Dimensionless  

x Domain of internal coordinates Dimensionless  
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7 i That is, continuous variables.  
7 ii The particle state vector does not necessarily have to be finite but can in some 

problems be an infinite dimensional state vector, which sometimes can be made finite 
using e.g. Fourier series expansion (Ramkrishna, 2000). 

7 iii In case nothing else is stated, the theory in section 1.2 is adapted from Ramkrishna 
(2000).

7 iv Note that as the vector x only contains one element, the symbol x is replaced by the 
scalar x. 

7 v As it will appear in the boundary conditions for the derived population balance, it may 
be assumed that the present granulation process involves initial nucleation resulting in 
rudimentary particles with size and mass equal to zero, which then subsequently grow 
according to G(x,t). The introduction of a nucleation rate for x = 0 does, however, not 
conflict with the assumption of neglecting birth and death of particles in interval [a,b].  

7 vi In this case aggregation should be understood as coalescence. Traditionally, articles 
concerning population balances prefer aggregation as this term covers a variety of 
processes ranging from coalescence to coagulation (Randolph & Larson, 1971 & 1988 
and Ramkrishna, 2000).  

7 vii More firmly it is assumed that the probability of more than two particles aggregating 
simultaneously to form a single particle is of the order of O(dt2) while that of two 
particles aggregating (binary aggregation) is of the order of O(dt) (Ramkrishna, 2000). 

7 viii Adetayo & Ennis (1997) stated that the cut-off size in their kernel was expected to 
vary with granule and binder properties. However, none of the material and binder 
properties was used in their population balance model. 

7 ix Adetayo & Ennis (1997) assumed the parameters aAE and bAE would vary with granule 
deformability and allowed them to vary to fit to granulation data. Note that to be 
dimensional consistent it is required that  

7 2bAE – aAE = 1 (Litster & Ennis, 2004). 
7 x Non-uniform component distribution during granulation is a common problem 

(Sudsakorn & Turton, 2000 and Iveson, 2002). In e.g. solid enzyme production the 
enzyme molecules are much smaller than the carrier particles. When mixtures of these 
“powders” are co-granulated it is frequently noted that a disproportionate amount of 
enzyme component is found in the fines fraction. Hence it is relevant in enzyme 
granulation as well as in most pharmaceutical applications to account for the differences 
in composition between granules. 

7 xi Also known as the mean value theorem on frequency (Wang et al., 2006). 
7 xii The original Hounslow model is hereby made a special case in which q=1 (Cryer, 

1999).
7 xiii For Monte Carlo analysis combined with population balances, Cryer & Scherer 

(2003), Wauters (2001) and Madec et al. (2003) should also be consulted. 
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