


A MANUAL FOR 

B i O M A T E R i  ALS/ 
Sc A f fold FA b Ric ATi ON 

T E ~  h Noloqy 



FA
b485_FM.qxd  5/14/2007  6:50 PM  Page iii

This page intentionally left blankThis page intentionally left blank



Manuals in Biomedical Research – Vol. 4

Gilson Khang
Chonbuk National University, Korea

Korea Research Institute of Chemical
Technology, Korea

Korea Research Institute of Chemical
Technology, Korea

Moon Suk Kim

Hai Bang Lee

A Manual For
Biomaterials/

Scaffold Fabrication
Technology

World Scientific
NEW JERSEY . LONDON . SINGAPORE . BEIJING . SHANGHAI . HONG KONG . TAIPEI . CHENNAI



British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923, USA. In this case permission to photocopy is not required from the
publisher.

ISBN-13 978-981-270-595-2 (pbk)
ISBN-10 981-270-595-3 (pbk)

Typeset by Stallion Press
Email: enquiries@stallionpress.com

All rights reserved. This book, or parts thereof, may not be reproduced in any
form or by any means, electronic or mechanical, including photocopying,
recording or any information storage and retrieval system now known or to be
invented, without written permission from the Publisher.

Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

Manuals in Biomedical Research — Vol. 4
A MANUAL FOR BIOMATERIALS/SCAFFOLD FABRICATION
TECHNOLOGY

Wanda - A Manual for Biomaterials.pmd 8/29/2007, 3:39 PM1



FA

v

Preface

In the May 22, 2000 issue of the popular Time magazine, it was
predicted that tissue engineers would have the hottest job in the
new millennium, with drug designers coming in third. Indeed,
the 21st century has opened a new era for the production of arti-
ficial organs by means of tissue engineering and regenerative
medicine (TERM) to repair or replace damaged/diseased tissues
and organs. With an increase in the average age of the popula-
tion as well as in the incidence of age-related “wear-and-tear”
conditions and traumatic injuries/diseases, the shortage of healthy
donor organs has led to the emergence of TERM.

To reconstruct a new tissue by tissue engineering, triad
components are needed: (1) cells, (2) biomaterials, and (3)
bioactive molecules. Of these three components, scaffolds play
a critical role in the reorganisation of neotissues and neo-
organs. Scaffold matrices can be used to achieve cell delivery
with high loading and efficiency to specific sites. The manufac-
turing methods are very important for the specific organs
because the physicochemical properties of scaffold matrices —
such as porosity, pore diameter, and specific area — are deter-
mined by the manufacturing methods. This book focuses on 21
different types of manufacturing protocols for tissue-engineered
scaffolds that are adapted for the undergraduate and graduate
student level.
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We would like to especially thank Professors Jan-Thorsten
Schantz and Dietmar W. Hutmacher at the Tissue Engineering
Laboratory, National University of Singapore, for recommend-
ing us to edit this manual. Special thanks go to Kim-Wei Lee
and Wanda Tan for their help in editing this book. We hope
that this book will be very useful for students and scientists in
academia and industry in the TERM field.

G. Khang, M. S. Kim & H. B. Lee
December 2006
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Introduction
Gilson Khang,

Moon Suk Kim and
Hai Bang Lee
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It has been recognised that tissue engineering offers an alterna-
tive technique to tissue transplantation for diseased or malfunc-
tioned organs. Millions of patients suffer from end-stage organ
failure or tissue loss each year. In the United States alone, at
least eight million surgical operations are carried out annually,
requiring a total national healthcare cost exceeding US$400 bil-
lion per year [1, 2]. In the case of cardiovascular disease,
approximately 500 000 coronary artery bypass surgeries are
conducted each year in the United States [3]. Autologous and
allogenic natural tissues, i.e. saphenous vein or internal mam-
mary artery, are generally used for coronary artery replacement.
The results have been quite favourable for these procedures,
with patency rates generally ranging from 50% to 70%.

Failure in these procedures may be caused by intimal thick-
ening, due in large part to the adaptation of the vessel in
response to increased pressure and wall shear stress, compres-
sion, adequate graft diameter, and disjunction at the anasto-
mosis. Successful treatment may also be limited by the poor
performance of synthetic materials, such as polyethylene
terephthalate (PET, Dacron®) and expanded polytetrafluoroethy-
lene (ePTFE, Gore-Tex®), used for tissue replacement due to
plagueing problems [4]. Despite improved patient outcomes,
many of these materials possess serious problems including
unpredictable outcomes, fibrous capsule contraction, allergic
reactions, suboptimum mechanical properties, distortion,
migration, and long-term resorption. 

In order to avoid the shortage of donor organs and the
abovementioned problems caused by the poor biocompatibility
of biomaterials, a new hybridised method combining cells and
biomaterials has been introduced: tissue engineering [5]. To
reconstruct a new tissue by tissue engineering, triad components
are needed. These include (1) cells which are harvested and dis-
sociated from the donor tissue, including nerve, liver, pancreas,
cartilage, and bone as well as embryonic/adult stem or precur-
sor cell; (2) biomaterials as scaffold substrates in which cells are
attached and cultured, resulting in implantation at the desired
site of the functioning tissue; and (3) growth factors which pro-
mote and/or prevent cell adhesion, proliferation, migration, and
differentiation by upregulating or downregulating the synthesis
of protein, growth factors, and receptors (Fig. 1).
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Importance of Scaffold Matrices in Tissue
Engineering

Scaffolds play a critical role in tissue engineering. The function
of scaffolds is to direct the growth of cells either seeded within
the porous structure of the scaffold or migrating from sur-
rounding tissue. The majority of mammalian cell types are
anchorage-dependent, meaning they will die if an adhesion
substrate is not provided. Scaffold matrices can be used to
achieve cell delivery with high loading and efficiency to specific
sites. Therefore, the scaffold must provide a suitable substrate
for cell attachment, cell proliferation, differentiated function,
and cell migration. 

The prerequisite physicochemical properties of scaffolds are
many: to support and deliver cells; induce, differentiate, and
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Cells
(e.g chondrocytes,

osteoblasts, stem cells)

Scaffolds
(e.g collagen,

gelatin, PGA, PLA,
PLGA)

Signaling
Molecules
(e.g. growth

factors,
morphogens,

adhesins)

Time Appropriate
Environment

Regeneration of
tissues/organs

Tissue
Engineering

Fig. 1 Tissue engineering triad. Consisting of three key elements (i.e.
cells, biomaterials, and signalling molecules), it regenerates tissue-
engineered neo-organs.
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channel tissue growth; target cell-adhesion substrates; stimulate
cellular response; provide a wound-healing barrier; be biocom-
patible and biodegradeable; possess relatively easy processabil-
ity and malleability into desired shapes; be highly porous with
a large surface/volume ratio; possess mechanical strength and
dimensional stability; and have sterilisability, among others
[2, 6]. Generally, three-dimensional porous scaffolds can be fab-
ricated from natural and synthetic polymers, ceramics, metals,
composite biomaterials, and cytokine release materials.

Natural polymers for scaffolds

Many naturally occurring scaffolds can be used as biomaterials
for tissue engineering purposes. One example is the extracellu-
lar matrix (ECM), a very complex biomaterial controlling cell
function that designs natural and synthetic scaffolds to mimic
specific functions. Natural polymers include alginate, proteins,
collagens (gelatin), fibrins, albumin, gluten, elastin, fibroin,
hyarulonic acid, cellulose, starch, chitosan (chitin), scleroglu-
can, elsinan, pectin (pectinic acid), galactan, curdlan, gellan,
levan, emulsan, dextran, pullulan, heparin, silk, chondroitin
6-sulfate, polyhydroxyalkanoates, etc. Much of the interest
in these natural polymers comes from their biocompatibility,
relative abundance and commercial availability, and ease of
processing [8].

Synthetic polymers for scaffolds

Natural polymers are typically in short supply because they are
expensive, suffer from batch-to-batch variation, and are sus-
ceptible to cross-contamination from unknown viruses or
unwanted diseases. On the contrary, synthetic polymeric bio-
materials have easily controlled physicochemical properties
and quality, and have no immunogenicity. They can also be
processed with various techniques and consistently supplied in
large quantities. In order to adjust the physical and mechanical
properties of tissue-engineered scaffolds at a desired place in
the human body, the molecular structure and molecular weight
are easily adjusted during the synthetic process.

Synthetic polymers are largely divided into two categories:
biodegradeable and nonbiodegradeable. Some nonbiodegradeable

4 � Introduction
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polymers include polyvinylalcohol (PVA), polyhydroxyethy-
methacrylate (PHEMA), and poly(N-isopropylacrylamide)
(PNIPAAm). Some synthetic biodegradeable polymers are the
family of poly(α-hydroxy esters) such as polyglycolide (PGA),
polylactide (PLA) and its copolymer poly(lactide-co-glycolide)
(PLGA), polyphosphazene, polyanhydride, poly(propylene
fumarate), polycyanoacrylate, poly(ε-caprolactone) (PCL), poly-
dioxanone (PDO), and biodegradeable polyurethanes. 

Of these two types of synthetic polymers, synthetic biode-
gradeable polymers are preferred for the application of tissue-
engineered scaffolds because they minimise the chronic foreign
body reaction and lead to the formation of completely natural
tissue. That is to say, they can form a temporary scaffold for
mechanical and biochemical support. 

Bioceramics for scaffolds

Bioceramics are biomaterials that are produced by sintering or
melting inorganic raw materials to create an amorphous or
crystalline solid body, which can be used as an implant. Porous
final products are mainly used for scaffolds. The components of
ceramics are calcium, silica, phosphorus, magnesium, potas-
sium, and sodium.

Bioceramics used for tissue engineering may be classified as
nonresorbable (relatively inert), bioactive or surface active
(semi-inert), and biodegradeable or resorbable (noninert).
Alumina, zirconia, silicon nitride, and carbons are inert bio-
ceramics; certain glass ceramics, such as dense hydroxyapatites
[9CaO.Ca(OH)2

.3P2O5], are semi-inert (bioactive); and calcium
phosphates, aluminium calcium phosphates, coralline, trical-
cium phosphates (3CaO.P2O5), zinc calcium phosphorus oxides,
zinc sulfate calcium phosphates, ferric calcium phosphorus
oxides, and calcium aluminates are resorbable ceramics. Of these
bioceramics, synthetic apatite and calcium phosphate minerals,
coral-derived apatite, bioactive glass, and demineralised bone
particle (DBP) are widely used in hard tissue engineering. 

Cytokine release system for scaffolds

Growth factors, a type of cytokine, are polypeptides that transmit
signals to modulate cellular activities and tissue development

Importance of Scaffold Matrices in Tissue Engineering � 5
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such as cell patterning, motility, proliferation, aggregation, and
gene expression. As in the development of tissue-engineered
organs, the regeneration of functional tissue requires the main-
tenance of cell viability and differentiated function, encourage-
ment of cell proliferation, modulation of the direction and
speed of cell migration, and regulation of cellular adhesion. The
easiest method for the delivery of growth factors is via injection
near the site of cell differentiation and proliferation. However,
this direct injection method incurs a relatively short half-life, a
relatively high molecular weight and size, very low tissue pen-
etration, and potential toxicity at the systemic level [2, 9].

One promising way to improve the efficacy of this technique
is the locally controlled release of bioactive molecules for the
desired release period by the impregnation into a scaffold.
Through impregnation into a scaffold carrier, protein structure
and biological activity can be stabilised to a certain extent,
resulting in a prolonged release time at the local site. The dura-
tion of cytokine release from a scaffold is controlled by the
types of biomaterials used, the loading amount of cytokine, the
formulation factors, and the fabrication process. The cytokine
release system may be designed for a variety of geometries and
configurations, such as scaffold, tube, nose, microsphere,
injectable forms, and fibre [10].

Fabrication and Characterisation for Scaffolds

Fabrication methods of scaffolds

Engineered scaffolds may enhance the functionalities of cell and
tissue to support the adhesion and growth of a large number of
cells by providing a large surface area and pore structure within
a three-dimensional structure. Porosity provides adequate
space, permits cell suspension, and penetrates the three-dimen-
sional structure. These porous structures also promote ECM pro-
duction, transport nutrients from nutrient media, and excrete
waste products [6, 11]. Therefore, an adequate pore size as well
as a uniformly distributed and interconnected pore structure are
crucial to allow for easy distribution of cells throughout the scaf-
fold structure. Scaffold structure is directly related to fabrication
methods, many of which are listed in Table 1.
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This book introduces detailed protocols for 21 different
types of manufacturing methods for scaffolds in Chapters A–U.
The most common and commercialised one is the PGA nonwo-
ven sheet (Albany International Research Co., Mansfield, MA,
USA), which has a porosity of approximately 97% and a thick-
ness of 1–5 mm. In order to dimensionally stabilise and provide
the mechanical integrity, the fibre-bonding technology by heat
and by PLGA/PLA solution spray coating methods has been
developed [12] (Chapter P).

Porogen-leaching methods combine the polymerisation,
solvent casting, gas foaming, or compression moulding of nat-
ural and synthetic scaffold biomaterials with the leaching of

Fabrication and Characterisation for Scaffolds � 7
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Table 1. The fabrication methods of scaffolds for tissue engineering.

Mechanism Method Remark

Leaching Solvent-casting/salt-leaching method Chapter A
method Ice particle–leaching method Chapter B

Gas-foaming/salt-leaching method Chapter C
Gel-pressing method Chapter D

Microsphere Biodegradeable microsphere Chapter E
method Macroporous bead Chapter F

Particle-aggregated scaffold Chapter G

Phase Freeze-drying method Chapter H
separation Thermally induced phase separation Chapter I
method Centrifugation method Chapter J

Injectable gel Polyphosphazene gel Chapter K

Acellular Decellularisation process Chapter L
scaffold

Keratin scaffold Self-assembled process Chapter M

Fibre-spinning Nanofibre electrospinning process Chapter N
method Microfibre wet spinning process Chapter O

Nonwoven PGA fibre Chapter P

Printing and Inkjet printing process Chapter Q
prototyping Melt-based rapid prototyping Chapter R
method

Functional Growth factor release process Chapter S
scaffold

Ceramic Sponge replication method Chapter T
scaffold Simple calcium phosphate coating Chapter U

method
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pore-generating particles (e.g. sodium chloride crystal, sodium
tartrate, and sodium citrate) sieved using a molecular sieve
[2, 11]. PLGA, PLA, collagen, poly(ortho ester), or small intes-
tine submucosa (SIS)-impregnated PLGA scaffolds have suc-
cessfully fabricated a biodegradeable sponge structure by this
method with more than 93% porosity and a desired pore size
of 1000 µm. Using the solvent-casting/particulate-leaching
method, complex geometries such as tube, nose, and specific
organ types can be fabricated as nanocomposite hybrid scaf-
folds by means of conventional polymer processing techniques
like calendaring, extrusion, and injection. Complex geometries
can be fabricated from the porous film lamination [13]. The
advantage of this method is easy control of porosity and geom-
etry. However, the disadvantages are the loss of water-soluble
biomolecules or cytokines during porogen leaching, the possi-
bility of remaining porogen as salt that can harmfully affect cell
culture, and the different geometry surfaces and cross-sections
(Chapters A–D).

The gas-foaming method refers to the exposure of a solid
scaffold matrix to a sudden expansion of CO2 gas under high
pressure, resulting in the formation of a sponge structure due
to nucleation and expansion in the dissolved CO2 scaffold
matrix. PLGA scaffolds with more than 93% porosity and about
100 µm median pore size have been developed using this
method [14]. The significant advantage is no loss of bioactive
molecules in the scaffold matrix, given that there is no need for
the leaching process and no residual organic solvent; whereas
the disadvantage is the presence of skimming film layers on the
scaffold surface, resulting in the further removal process of this
skin layer (Chapter C).

The phase separation method is divided into freeze drying,
freeze thawing, freeze immersion precipitation, and emulsion
freeze drying [15]. Phase separation by freeze drying can be
induced by a polymer solution with an appropriate concentration
by rapid freezing. The used solvent is then removed by freeze
drying, resulting in porous structure as a portion of the solvent.
Collagen scaffolds with pores of 50–150 µm, collagen–gly-
cosaminoglycan blend scaffolds with an average pore size of
90–120 µm, and chitosan scaffolds with a pore size of 1–250 µm
have been developed; the sizes vary with the freezing condition.

8 � Introduction
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In addition, scaffold structures of synthetic polymers such as
PLA and PLGA have been successfully made using this method,
with over 90% porosity and 15–250 µm size. 

The freeze-thawing technique induces phase separation
between a solvent and a hydrophilic monomer upon freezing,
followed by the polymerisation of the hydrophilic monomer by
means of UV irradiation and removal of the solvent by thawing.
This leads to the formation of macroporous hydrogel. A similar
method is freeze immersion precipitation. The polymer solution
is first cooled before being immersed in a nonsolvent and then a
vapourised solvent, leading to porous scaffold structure. The
emulsion freeze drying method is also useful for the fabrication
of porous structure. In this case, a mixture of polymer solution
and nonsolvent are thoroughly sonicated, quickly frozen in liq-
uid nitrogen at –198°C, and then freeze-dried, resulting in sponge
structure. The advantage of these phase separation techniques is
the loading of hydrophilic or hydrophobic bioactive molecules,
but the disadvantages are a relatively small pore size and diffi-
culty in controlling the precise pore structure (Chapters H–J).

Injectable gel scaffolds have also been reported [11].
Injectable, gel-forming scaffolds provide several advantages:
they can fill any shape of defect due to flowable materials, load
various types of bioactive molecules and cells by simple mix-
ing, do not contain residual solvents that may be present in a
performed scaffold, and do not require surgical procedure for
placement. Typical examples are thermosensitive gels such as
Pluronics and polyethylene glycol (PEG)–PLGA–PEG triblock
copolymer; pH-sensitive gels such as chitosan and its deriva-
tives; ionically cross-linked gels such as alginate; fibrin gel;
hyaluronan gel; etc. In the near future, multifunctional and tis-
sue-specific gels, very fast sol–gel transition, and injectable
scaffold materials that are fully degradeable for the desired
period are expected to be available (Chapter K).

Nanoelectrospinning of PGA, PLA, PLGA, PCL copolymers,
collagen, elastin, etc. has been extensively developed. For
example, electrostatic processing can consistently produce PGA
fibre diameters at or below 1 µm. By controlling the pick-up
of these fibres, the orientation and mechanical properties can
be tailored to a specific need of the injured site. Collagen elec-
trospinning has also been performed, utilising type I collagen
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dissolved in HFP with 0.083 g/mL concentration. The optimally
electrospun type I collagen nonwoven fabric appeared with an
average diameter of 100 ± 40 nm, resulting in biomimicking of
fibrous scaffolds (Chapters N–P).

Moreover, newly hybridised fabrication techniques, such as
organic/inorganic and synthetic/natural at the nano-sized level,
are being continuously developed for the application of tissue-
engineered scaffolds. 

Physicochemical characterisation of scaffolds

For the successful achievement of three-dimensional scaffolds,
several characterisation criteria are required. They can be
divided into four categories: (1) morphology (e.g. porosity,
pore size, surface area); (2) mechanical properties (e.g. com-
pressive and tensile strength); (3) bulk properties (e.g. degra-
dation and its relevant mechanical properties); and (4) surface
properties (e.g. surface energy, chemistry, charge). 

Porosity is defined as the fraction (i.e. percentage) of the
total volume occupied by voids. The most widely used methods
for measuring porosity are mercury porosimetry, scanning elec-
tron microscopy, and confocal laser microscopy. 

Mechanical properties are extremely important when
designing tissue-engineered products. To determine the
mechanical properties of a porous structure, conventional test-
ing instruments may be used. Mechanical tests can be divided
into creep tests, stress–relaxation tests, stress–strain tests, and
dynamic mechanical tests. These test methods are similar to
those of conventional biomaterials. 

The rate of degradation of manufactured scaffolds is one of
the most important factors in designing tissue-engineered prod-
ucts. Ideally, the scaffold construct provides mechanical and
biochemical support until the entire tissue regenerates without
any change, and then it completely biodegrades at a rate con-
sistent with tissue generation. Immersion studies are com-
monly conducted to track the degradation of biodegradeable
matrices. So, the changes in weight loss and molecular weight
can be evaluated by the chemical balance, scanning electron
microscopy, and gel permeation chromatography. From these
results, the mechanism of biodegradation can be determined.

10 � Introduction
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It is generally recognised that the adhesion and proliferation
of different types of cells on polymeric materials depend largely
on surface characteristics such as wettability (hydrophilicity/
hydrophobicity of surface free energy), chemistry, charge,
roughness, and rigidity. In particular, three-dimensional appli-
cations of tissue engineering are more important for cell migra-
tion, cell proliferation, DNA/RNA synthesis, and phenotype
presentation on the scaffold materials. Surface chemistry and
charge can be analysed by electron scanning chemical analysis
and streaming potential, respectively. The wettability of the
scaffold surface can be measured by the contact angle with
static and dynamic methods. 
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A.1 Concept

• In tissue engineering, absorbable polymer (PLLA, PLGA,
etc.) scaffolds are used to support cells until they are
replaced by the body’s own ECM. 

• An ideal scaffold should be biocompatible, biodegradeable,
and highly porous with interconnected pores. 

• Porous three-dimensional temporary scaffolds play an impor-
tant role in manipulating cell function in terms of the forma-
tion of the new organ or tissue. 

• To prepare three-dimensional biodegradeable porous scaf-
folds, a method that incorporates the use of salt particles as
the porogen material is described below.

• The porogen leaching method provides easy control of the
pore structure. The pore structure, porosity, and pore size
can be easily controlled by regulating the amount and size of
salt.

• This method involves casting a mixture of polymer solution
(polymer/chloroform or polymer/methylene chloride) and
porogen in a mould, and then leaching out the porogen
with water to generate the pores and freeze-drying the
mixture.

• Water-soluble particulates, such as salts and carbohydrates,
are used as the porogen materials.

A.2 Procedure

• Salt particulates are prepared by sieving. The sizes of the salt
particulates are controlled by the desireable sieving [Fig. A.1(a)].

• Polymer solutions are prepared by dissolving different amounts
and types of polymers in solvent (e.g. methylene chloride or
chloroform) [Fig. A.1(b)].

• Sieved salt particulates are added to the polymer solution,
and the dispersion is gently vortexed [Fig. A.1(c)].

• The solution is poured into the designed silicon mould
[Fig. A.1(d)].

• Subsequently, the mould with dispersion is pressed (60 kgf/cm2)
by pressure apparatus [Fig. A.1(e)].

14 � Protocol for Solvent-Casting/Salt-Leaching Method
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• The formed samples are taken out of the mould [Fig. A.1(f)].
• Samples are dissolved for a desireable time (48 h) in deionised

water [Fig. A.1(g)].
• Salt-removed samples are freeze-dried for a desireable time

(about 48 h) at low temperature (8 mTorr, −55°C) [Fig. A.1(h)].
• The scaffolds are dried in a vacuum oven at 25°C for 1 week

to remove the residual solvent. Scaffolds are kept under
vacuum until use [Fig. A.1(i)].

Procedure � 15
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(a) Salt sieving. (b) Preparing of polymer, solvent, salt.

(c) Mixing of polymer, solvent, salt. (d) Moulding. (e) Pressing.

(f) Removal from mould. (g) Dissolution of salt.

(h) Freezing and freeze-drying. (i) Removal of residual solvent and storage.

Fig. A.1 The preparation processing of scaffold by salt-leaching
method.
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A.3 Requirements

1. Polymer
2. Sieve
3. Solvent
4. Vortexer
5. Spatula
6. Deionised water
7. Mould
8. Freeze dryer

A.4 Characterisations

• Using the demanded sieve, the sizes of the salt particulates
are controlled. The shape of the salt is measured through
photomicrographs.

• The salt particulates are almost square-shaped (Fig. A.4).
• The salt-leaching method provides high porosity up to 97%,

and median pore diameters up to 140 µm are prepared. 
• The porosity and pore size can be independently controlled by

varying the amount and size of the salt particles, respectively.
• The porosity and pore size, according to the size of salt parti-

cles, are analysed by the mercury intrusion method (Table A.1).

16 � Protocol for Solvent-Casting/Salt-Leaching Method
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Fig. A.2 Schematic diagram of the salt particle-leaching method to
fabricate PLGA scaffold.
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• The theoretical porosity can be calculated from the weight
fraction of salt particulates to polymer and from the densities
of polymer and salt. 

• The pore structures, according to the mixing of desireable
materials (e.g. ipriflavone, DBP), are analysed by the mer-
cury intrusion method (Fig. A.5).

• The porosity and pore size are not heavily affected by mixed
material.

Characterisations � 17
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(a)

(b)

Fig. A.3 (a) The shape of completed scaffold, and (b) various images
of porous 3D scaffolds fabricated by salt-leaching method.

Fig. A.4 Image of sieved salt microparticle.
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Table A.1 Properties of fabricated porous PLGA scaffolds by means of
solvent casting/salt leaching.

Volume Median
Size of PLGA of PLGA pore

Type of NaCl concentration to NaCl Porosity diameter
polymer (µm) (w/v%) (w/w%) (%) (µm)

PLA 180∼250 20 90 94.1 92.1
PLA 250∼355 20 90 92.5 109.3
PLGA 180∼250 20 90 97.3 120.8
PLGA 250∼355 20 90 96.5 133.7
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Fig. A.5 Pore size distribution of scaffolds mixing desireable materials
by means of solvent casting/salt-leaching.
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Table A.2 Amount of residual NaCl with variation
of salt extraction in water.

Time (h) Residual NaCl

6 1.92 mg/mL
12 ND*
24 ND
48 ND

*ND: no detection.

• The residual salt amount in completed scaffold is not detected
after 12 h of salt leaching (Table A.2).

• The salt amount remaining in scaffold, according to the salt-
leaching time, is analysed using ion chromatography.

• The pore structures are observed by SEM. 
• The pore structures of the three-dimensional scaffolds can be

regulated by controlling the properties of the salt particulates.
• Salt-leached scaffolds show a typical square-shaped (not col-

lapsed) pore structure, with large pore sizes corresponding
to the sieved salt particle size and smaller interstitial pores
between the salt particles [Fig. A.6(a)].

• The cross-section of the PLGA scaffold seems to have an
interconnected network structure and comparably regular
pores [Fig. A.6(b)].

• The pore shapes are almost the same as those of the salt par-
ticulates (Fig. A.7).

a b

Fig. A.6 SEM pictures of PLGA scaffold fabricated by salt-particle
leaching method (×50). (a) Surface; (b) cross-section.
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(a)

(b)

90~180 µm 180~250 µm 250~300 µm

300~425 µm 425~ µm

300~425 µm 425~ µm

90~180 µm 180~250 µm 250~300 µm

Fig. A.7 (a) Various sizes of salt particles, and (b) surface of PLGA
scaffold fabricated by salt-particle leaching method according to pore
size (×50).

A.5 Cautions

• Scaffold-impregnated soluble protein cannot be manu-
factured using this method.

(Continued )
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• To form open and interconnected pores, the proper salt
size and amount must be selected.

• The salt-leaching period must be properly applied in the
manufacture process.

• Residual solvent must be removed in scaffolds.
• The surface of scaffold may be stopped due to high-pressure

solvent; therefore, the surface of scaffold must be truncated.
• Because complete removal of salt from the centre of the

scaffold is difficult, this method may not apply to thicker
scaffolds greater than 2 mm.

(Continued )
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B.1 Concept

• To prepare porous 3D scaffolds for tissue engineering, the
porogen-leaching method provides easy control of pore struc-
ture and has been widely utilised. 

• Recently, several different water-soluble particles, includ-
ing salts and carbohydrates, have been used as the porogen
material.

• Scaffold manufacturing usually involves (1) dissolving the
polymer in organic solvent, (2) incorporating porogens, and
(3) leaching porogens. 

• The pore structure, porosity, pore size, and pore morphology
can be easily manipulated by controlling the properties of the
porogen, and the process is reproducible. 

• The prepared porous 3D scaffolds may support cell growth
both in vitro and in vivo.

• Despite these advantages, the problem of residual porogen
used to prepare 3D scaffolds remains. 

• Therefore, the conventional method of porogen leaching
by washing with water is replaced by freeze-drying, facilitat-
ing the removal of the porogen and making removal more
complete.

• The method of porogen leaching by using ice particulates as
the porogen material can be employed to fabricate porous 3D
scaffolds for tissue engineering.

• Using ice particulates as the porogen material, scaffolds are
prepared by mixing a polymer solution in a solvent with ice
particulates, freezing the mixture in liquid nitrogen, and
freeze-drying.

• This method can be applied to polymers that are soluble in a
solvent such as chloroform or methylene chloride. 

• Biodegradeable polymers of PLLA and PLGA can be utilised
for this method. 

• Sieved ice particles are dispersed in a polymer/chloroform
solution that is used to fabricate porous 3D scaffolds. 

• The ice particles are eventually leached out by selective dis-
solution in water or by freeze-drying to produce a porous 3D
scaffold.

26 � Protocol for Ice Particle–Leaching Method
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B.2 Procedure

• Ice particulates are prepared by spraying deionised water
into liquid nitrogen [Fig. B.1(a)].

• The sizes of the ice particulates are controlled by the desire-
able sieving [Figs. B.1(b) and B.1(c)].

• Polymer solutions of various concentrations are prepared by dis-
solving different amounts of polymer in solvent (e.g. methylene
chloride or chloroform) and cooling the solution to −20°C.

• Ice particulates are added to the precooled polymer solution.
• The dispersion is gently vortexed [Fig. B.1(d)].
• It is then poured into a precooled designed mould [Fig. B.1(e)].
• Subsequently, the mould with dispersion is frozen by placing

in low temperature [Fig. B.1(f)].
• The mould with dispersion is freeze-dried for a desireable

time under low temperature [Fig. B.1(g)].
• (Often, further drying at elevated temperatures is required to

completely remove the solvent after freeze-drying.) 

Procedure � 27

FA

Fig. B.1 Schematic diagram of the preparation processing of scaffolds
by the ice particle–leaching method.
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B.3 Requirements

1. Polymer
2. Liquid nitrogen
3. Deionised water
4. Sieve
5. Solvent
6. Vortexer
7. Mould
8. Freeze dryer 

B.4 Characterisations

• The sizes of the ice particulates are controlled by the desire-
able sieve and measured from their photomicrographs.

• The ice particulates are almost spherical (Fig. B.2).
• Their diameters are measured from their photomicrographs

by hypothesising that all of their shapes are spherical. 
• Various scaffold forms can be easily manipulated by a

designed mould using the ice particle–leaching method
(Fig. B.3).

• The prepared scaffolds are physically stable and manageable.
• Highly porous 3D scaffolds with porosities up to 99% and

median pore diameters up to 400 µm have been prepared
using the ice-particle leaching method.

28 � Protocol for Ice Particle–Leaching Method
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Fig. B.2 Image of sieved ice microparticle.
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• Their pore structures are analysed by the mercury intrusion
method (Fig. B.4).

• The median pore size, porosity, and surface area of the scaf-
folds are determined by mercury intrusion porosimetry and
are summarized in Table B.1.

Characterisations � 29

FA

Fig. B.3 Image of porous 3D scaffolds fabricated by the ice particle–
leaching method.

Fig. B.4 Pore sizes of PLGA scaffolds fabricated by the ice particle–
leaching method with different ratios of polymer and ice.
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• The mean pore diameter is ∼50 µm. 
• The theoretical porosity can be calculated from the weight

fraction of ice particulates to polymer and the densities of
polymer and ice. 

• Their pore structures are observed by SEM (Fig. B.5).
• The pore structures of the 3D scaffolds can be manipulated

by controlling the properties of the ice particulates and the
polymer concentration.

• The cross-section of PLGA scaffold seems to have an inter-
connected network structure and comparably regular pores.

• The pore shapes are almost the same as those of the ice
particulates.

• The scaffolds become more interconnected as the weight
fraction of the ice particulates increases. 

30 � Protocol for Ice Particle–Leaching Method
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Table B.1 Preparation of PLGA scaffolds with different ratios of poly-
mer and ice.

Total pore Median pore
Sample Porosity (%) area (m2/g) diameter (µm)

PLGA:Ice = 0.5:9.5 93.6 1164.0 27.9
PLGA:Ice = 1.0:9.0 99.7 575.1 51.1
PLGA:Ice = 2.0:8.0 99.1 196.1 37.1
PLGA:Ice = 3.0:7.0 89.1 127.9 36.0

Fig. B.5 SEM pictures of PLGA scaffold fabricated by the ice particle–
leaching method. Magnification is (a) 100 and (b) 300, and the scale
bar represents (a) 500 µm and (b) 100 µm.
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B.5 Cautions

• This process must be conducted in a cold condition. 
• During the freezing in liquid nitrogen, phase separation

may have occurred in the polymer solution, resulting in
a deformed porous structure after freeze-drying. 

• The ice particulates reformed during freezing are influ-
enced by several processing variables such as the tem-
perature of freezing, thus making it difficult to precisely
control the pore structure, including the pore size distri-
bution and the surface area of the scaffold.

Cautions � 31
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C.1 Concept

• The particulate leaching technique has been widely utilised
to fabricate three-dimensional porous scaffolds for tissue
engineering. As a porogen particle, various salt and other
water-soluble particles have been utilised for this technique.

• However, the biodegradeable scaffolds prepared by the
particulate-leaching method often exhibit a dense surface
skin layer, which hampers in vitro cell seeding into the scaf-
folds and tissue ingrowth after in vivo implantation.

• Additionally, poor interconnectivities between macropores
lower cell viability and result in nonuniform distribution of
seeded cells throughout the matrix.

• Sodium bicarbonate salt or ammonium bicarbonate salt with
acidic excipients such as citric acid has been used for effer-
vescent gas-evolving oral tablets, due to its carbon dioxide–
evolving property upon contact in acidic aqueous solution.
Thus, various alkalinising analgesic oral tablets are commer-
cially available. 

• In particular, ammonium bicarbonate salt — upon contact in
an acidic aqueous solution and/or incubated at elevated tem-
perature — evolves gaseous ammonia and carbon dioxide by
itself.

• The gas-foaming/salt-leaching method is based on the idea
that sieved salt particles of ammonium bicarbonate dispersed
within a polymer–solvent mixture can generate ammonia
and carbon dioxide gases within solidifying matrices upon
contact with hot water or aqueous acidic solution, thereby
producing highly porous structures (Fig. C.1).

• These scaffolds show macropore structures over 200 µm with
no visible surface skin layers, thus permitting sufficient cell
seeding within the scaffolds.

• In addition, porosities can be controlled by the amount
of ammonium bicarbonate incorporated into the polymer
solution.

• It is possible to make various scaffolds with different geome-
tries and sizes by a hand-shaping or moulding process
because the polymer–salt mixture becomes a gel paste after
partial evaporation of the solvent.

36 � Protocol for Gas-Foaming/Salt-Leaching Method
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Fig. C.1 Schematic illustration of macroporous biodegradeable scaffolds fabricated by the gas-foaming/salt-leaching method.
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C.2 Materials

1. Ammonium bicarbonate salt particles

• Ammonium bicarbonate crystals are grinded into
smaller particles.

• These salt particles are separated with sieves into dif-
ferent size ranges (100–200 and 300–500 µm).

• Sieved salt particles should be sealed with parafilm in a
glass bottle to prevent moisture and particle aggregation.

2. Polymer solution

• PLLA weight-average molecular weight of 300000 g/mol
(Polysciences, Inc., Warrington, PA).

• PLGA Medisorb®, lactic/glycolic molar ratios of
75/25 (Mw 97 200), 65/35 (Mw 74 300), and 50/50
(Mw 54 200) (Alkermis, Cincinnati, OH).

• Filtered organic solvent (such as chloroform) and ster-
ilised glass scintillation vials are recommended to
make a clean polymer solution.

3. Teflon moulds

• Teflon plate having two different dimensions of
10 mm in diameter with 2-mm and 5-mm thickness.

• Mould is kept clean before use.

4. Citric acid aqueous solution

• Citric acid is dissolved in distilled deionised water to
make supersaturated solution.

• Citric acid aqueous solution is filtered with a 0.45-µm
filter.

C.3 Gas Foaming/Salt Leaching in Acidic
Aqueous Solution

• Completely dissolve 1 g of PLGA in 10 mL of chloroform to
make 10% polymer solution.

• Add excess volume of cold ethanol to the polymer solution.
• Mix homogeneously. A gel-like slurry precipitates immedi-

ately in the solvent/nonsolvent mixture [see Caution 1(a)].

38 � Protocol for Gas-Foaming/Salt-Leaching Method
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• Remove turbid solution and recover the gel slurry.
• Add 10 g of ammonium bicarbonate to the solution (see

Cautions 2, 3, and 4).
• Mix homogeneously [a small volume (∼2 mL) of chloroform

can be added to the slurry as a plasticiser] to make a homo-
geneous gel paste mixture of polymer/salt [Fig. C.2(a)].

• Cast the paste mixture into a disc–shaped Teflon mould
[Fig. C.2(b)] or manipulate to the desired shape (Fig. C.3; see
Caution 5).

• Dry the gel paste mixture by partial evaporation of ethanol
under atmospheric pressure for 1 h to obtain the semisolidi-
fied mixture. 

• Detach a polymer/salt complex from the mould.
• Wet the semisolidified polymer/salt complex with cold

ethanol.
• Immerse the matrix into supersaturated citric acid solution to

effervescence from embedded salt particles [Fig. C.2(c)].
• After complete effervescence, wash the scaffolds with dH2O

three times (see Caution 6).

Gas Foaming/Salt Leaching in Acidic Aqueous Solution � 39

FA

(a) (b) (c)

Fig. C.2 (a) Gel paste of polymer/salt (ammonium bicarbonate)/sol-
vent (nonsolvent) mixture. (b) Photograph of the casting procedure
using a disc-shaped Teflon mould. (c) Gas-foaming procedure using
supersaturated citric acid solution.

Fig. C.3 Photographs of nasal prosthesis and bone-shaped polymer
scaffolds prepared by bone-shaped silicon moulds.
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• Soak the scaffolds three times in 3dH2O for 2 h to remove
residual salt particles.

• Freeze-dry the scaffolds for 5 days.
• Store at −80°C with desiccant until use.

C.4 Gas Foaming/Salt Leaching in Hot Water

• Dissolve PLLA polymer in chloroform at a concentration of
8% (w/v). 

• Add ammonium bicarbonate salt particulates to the PLLA
solution.

• Mix thoroughly with a spatula to make a homogeneous gel
paste mixture of polymer/salt/solvent [see Caution 1(b)]. 

• Cast the paste mixture into a disc-shaped Teflon mould. 
• Dry the paste mixture to partially evaporate chloroform

under atmospheric pressure for 2 h.
• Wet the semisolidified mixture with cold ethanol. 
• Immerse the mixture in an excess amount of hot water (90°C)

until no gas bubbles are generated (∼5 min; see Caution 6).
• Soak the samples in cold water for 30 min to remove resid-

ual salt particles, and rinse off the scaffolds.
• Freeze-dry for 5 days, and store at −80°C with desiccant

until use.

C.5 Cautions

1(a) Amorphous PLGA dissolved in chloroform does not
become a gel paste even at high concentration. As an
alternative method, PLGA dissolved in chloroform is
precipitated in nonsolvent such as ethanol.

1(b) The gel formation of semicrystalline PLLA in chloroform
is caused by the physical cross-linking of crystalline
domains between PLLA chains under the condition of
highly concentrated PLLA polymer solution.

2. The weight ratio of NH4HCO3 to polymer can be
adjusted at 10:1 or 20:1.

40 � Protocol for Gas-Foaming/Salt-Leaching Method
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3. The salt particle size of ammonium bicarbonate salt can
be controlled to 100–200 µm or 300–500 µm by using
standard sieves.

4. The pore size and porosity can be controlled by the salt-
particle–to–polymer-weight ratio and by the particle size.

5. Disc-shaped Teflon moulds having two different dimen-
sions of 10 mm in diameter with 2 mm or 5 mm in thick-
ness are used (Fig. C.4).

6. The thermal property of polymers in the scaffolds
measured by DSC does not change significantly after
effervescence. 

Cautions � 41

FA

(a)

(c) (d)

(b)

Fig. C.4 SEM images of thick PLGA scaffolds (thickness 5 mm). (a, c)
Surface; (b, d) cross-section.

(Continued )
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D.1 Concept

• The main focus of tissue engineering is the synthesis of arti-
ficial constructs or tissues based on vital cells or cell matrix. 

• Biomaterials provide a three-dimensional structure to shape
or guide tissue development.

• To successfully engineer functional tissues and organs, the
biodegradeable scaffolds have to be designed to facilitate cell
distribution and guide tissue regeneration in three dimensions. 

• Several methods have been developed to create highly porous
scaffolds, including the solvent-casting/particulate-leaching
process, phase separation, gas foaming, and nanostructure
scaffolds.

• The particulate-leaching process dissolves the polymer
(PLLA or PLGA) in chloroform, and then casts it onto a dish
filled with the porogen. After evaporation of the solvent, the
polymer/salt composite is leached in water to remove the
porogen. The process is easy to carry out. 

• The pore size can be controlled by the size of the salt crystals,
and the porosity by the salt/polymer ratio. However, certain
critical variables such as pore shape, limited membrane
thickness (3 mm), plastic operation, and interpore openings
are not controllable. 

• To overcome these shortcomings, a method to fabricate
porous, biodegradeable scaffolds using a combined gel-press-
ing method and salt-leaching technique has been developed. 

• This fabrication method can be successfully applied to a wide
variety of polymer and salt formulations.

D.2 Procedure

• A polymer/salt composite is firstly prepared by dissolution
process in a solvent [Fig. D.1(a)].

• The polymer is dissolved in a solvent and then mixed with
salts [Fig. D.1(b)].

• The solvent is evaporated under air condition to form gels
[Fig. D.1(c)].

• Polymer gels are pressed to fabricate a tubular or sheet-type
scaffold [Figs. D.1(d)–D.1(f)].

46 � Protocol for Gel-Pressing Method
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• After evaporation of the solvent, the salt particles in the construct
are leached out to make an open-pore structure [Fig. D.1(g)].

• The scaffolds are freeze-dried for a desired time under low
temperature [Fig. D.1(h)].

D.3 Requirements

1. Polymer
2. Solvent
3. Salt

Requirements � 47

FA

Polymer solution

Salt (NaCl)

(a) Mixing (b) Polymer solution (c) Evaporation

(d) Moulding (e) Gel pressing (f) Shaping

(g) Salt leaching (h) Freeze-drying (i) Scaffolds

Fig. D.1 Fabrication of scaffolds by gel-pressing method.

(Continued )
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4. Freeze-dryer
5. Press
6. Mould
7. Deionised water

D.4 Characterisations

• The porosity, pore size, and macroscopic dimension of scaf-
folds are the most important factors associated with cell
adhesion and proliferation. 

• For tissue engineering, it is necessary to obtain a maximal
supply of nutrition by diffusion from tissue culture media
in vitro or through newly formed blood vessels in vivo by
controlling the pore characteristics. 

• The pore morphology of scaffolds prepared by the gel-press-
ing method is defined mainly by the size and shape of the
salt crystals.

• The salt weight fraction is the most significant parameter
affecting the porosity of the scaffold. An increase in salt
weight fraction results in an increase in porosity.

• The pore size is affected by both the salt weight fraction and the
size of the salt particles, and can be controlled by the salt size.

• The scaffolds by gel-pressing method have highly porous
structures, high pore interconnectivities, no thickness limita-
tions, good mechanical strength, and plastic operation as
advantages.

D.5 Example

• We have developed a new technique for manufacturing
a very elastic tubular or sheet-type scaffold by a gel-
pressing method (Fig. D.1).

48 � Protocol for Gel-Pressing Method
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• To design a biodegradeable elastic scaffold (mechanical
force–responsive scaffold, mechanoactive scaffold), a
scaffold was fabricated with elastomeric PLCL (50:50).

• Ten grams of PLCL (a biodegradable polymer) was first
dissolved in 50 mL of chloroform, and salt particles
sieved to a certain size range (300–500 µm) were added
(50%–90% wt/wt).

• Chloroform was evaporated under air condition to form gels.
• PLCL gels were pressed in a tubular or sheet-forming mould.
• The residual chloroform was evaporated for 48 h at room

temperature and completely removed under vacuum for
24 h.

• The salts were leached out in distilled, deionised water
with shaking for 3 days.

• The resultant scaffolds had highly porous and open-pore
structures (Figs. D.2 and D.3).

• The mechanical properties of the PLCL scaffolds were
highly elastic and flexible, which are very important factors

Example � 49
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Fig. D.2 SEM images of PLCL tubular scaffolds by gel-pressing method.

(Continued )
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for the fields of mechanoactive tissue engineering such
as vascular graft tissue engineering or cartilage tissue
engineering. 

• The PLCL scaffolds had a very low tensile modulus and a
very high elongation at break (Fig. D.4), and maintained a
high recovery at applied strains of up to 500% (Fig. D.5).

50 � Protocol for Gel-Pressing Method
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Fig. D.3 SEM images of PLCL sheet-type scaffolds by gel-pressing method.

Fig. D.4 Mechanical properties of PLCL scaffolds by gel-pressing method.

(Continued )
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D.6 Cautions

1. The scaffolds prepared by the gel-pressing method have
proper physical characteristics including a pore size,
interconnected pore structure, no skin layer on the outer
surfaces, and mechanical strength, which are important
properties that affect tissue formation via nutritional dif-
fusion and cell migration. 

2. By using the described gel-pressing method, it is pos-
sible for the scaffolds to be prepared having optimum
mechanical properties and controlled microstructures
for several applications in mechanoactive tissue
engineering.

Cautions � 51
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Fig. D.5 Recovery of PLCL scaffolds by gel-pressing method.
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E.1 Concept

• PLGA-based microspheres are biodegradeable particulate
delivery systems providing both drug protection, encapsu-
lated inside a polymeric matrix, and its release at a slow and
continuous rate.

• Microsphere manufacturing usually involves (1) the control-
ling of a disintegrated polymer, (2) cell toxicity, and (3) a
suitable environment for cell culture.

• The size and degradeable profile can be easily managed by
controlling the molecular weight of the polymer and the
process of fabrication.

• PLGA microspheres are particularly attractive for tissue
regeneration approaches either as an injectable system or as
the integral part of a replacement clinical construct.

• The small, spherical nature of these polymers enables the
encapsulation of growth factors or other drugs, and their sub-
sequent delivery to a specific and designated area. Controlled
release of bioactive molecules, such as cytokines and growth
factors, has become an important aspect of tissue engineer-
ing because it allows modulation of cellular function and tis-
sue formation at the afflicted site.

• Cell cultures using microspheres have an advantage of pas-
sage abbreviation to improve cell activity.

• The PLGA microspheres manufactured using various meth-
ods regulate many aspects of cellular activity, including cell
proliferation, cell differentiation, and extracellular matrix
metabolism, in a time- and concentration-dependent fashion.

E.2 Procedure

• The polymer is dissolved in a solvent, and is ready to add to
a solution in surfactant [Fig. E.1(a)].

• The polymer solution is dropped into an aqueous solution in
surfactant by a pipette [Fig. E.1(b)].

• This solution is stirred at 400 rpm for 7 h using a mechanical
stirrer [Fig. E.1(c)].

56 � Protocol of PLGA Microspheres
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• The fabricated microspheres are collected from the bottom
by a centrifugal separator [Fig. E.1(d)].

• The hardened microspheres are centrifuged, washed three times
with deionised water, and then kept in a freezer [Figs. E.1(e)
and E.1(f )].

• The fabricated microspheres are freeze-dried under low tem-
perature and pressure [Fig. E.1(g)].

Procedure � 57
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Fig. E.1 Schematic diagram of the preparation processing of PLGA
microsphere scaffolds.
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E.3 Requirements

1. Polymer
2. Solvent
3. Deionised water
4. Vortex
5. Freeze-dryer
6. Surfactant
7. Stabiliser
8. Centrifugal separator
9. Mechanical stirrer 

10. Pipette

E.4 Characterisations

• The sizes of the microspheres are controlled by the concen-
tration of the polymer and the speed of the stirrer.

• The microspheres have a smooth surface and spherical shape
(Fig. E.2).

• A cell attached to the microsphere surface produces extracel-
lular matrix (Fig. E.3).

• Cell adhesion and expansion on the microsphere are investi-
gated by SEM. The viablility of attached cells is determined
with MTT assay. The expression of special genes with disc
cells is evalutated by RT-PCR.

58 � Protocol of PLGA Microspheres
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Fig. E.2 Surface and cross-section images of microsphere.
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• SEM images (Fig. E.3) demonstrate that after 3 days, cells
attached to the carriers and the flow intermittency enable
aggregation of a number of cell-seeded carriers. 

• The distribution of microsphere size ranges from 92 µm to
261 µm, and the average microsphere size is 150 µm (Fig. E.4).

E.5 Cautions

• The concentration of PLGA and the speed of mechanical
stirrer play important roles in the fabrication process.

Cautions � 59
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Fig. E.3 Attachment, expansion, and cell aggregation on PLGA micro-
spheres of cultured human disc cells: SEM at 3 days.

Fig. E.4 The size of microspheres.

(Continued )
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• Filtering of the supernatant after the centrifugal separator
must be carefully done because of possible loss of the
microspheres.

• The stirring time is controlled by the degree of solvent
evaporation.

60 � Protocol of PLGA Microspheres
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F.1 Concept

F.1.1 What is a macroporous bead?

• Macroporous beads are defined as the round-shaped matrices
containing uniformly distributed pores larger than 30 µm.

• The materials of macroporous bead for biomedical applica-
tion should be biocompatible materials such as PLGA, collagen,
gelatin, chitosan, hyaluronic acid, cellulose, etc. The macro-
porous bead has been reported to have advantages in high-
density cell culture, due to the extended surface area within
a limited space and the improved material exchange rate.

• Therefore, the macroporous bead has drawn attention in tis-
sue engineering fields that require extremely high-density
cell culture.

F.1.2 Kinds of macroporous beads

The development of macroporous beads for biomedical applica-
tion has been carried out in the commercial sector, and plenty
of macroporous beads are available in the market (Table F.1).

1. Chitosan is a deacetylated form of chitin that is quantita-
tively found in the shells of crustaceans (e.g. crabs and
shrimps) and insects, and in the cell walls of fungi, mush-
rooms, and bacteria.

2. It is a polymer consisting of N-acetyl-D-glucosamine repeating
units, which are linked to each other via a (1�4)-β-glycosidic
linkage. Chitosan is known to be superior in its ability for
attaching cells, its biocompatibility, its biodegradeability,
and its plasticity to synthetic polymers including PLGA,
PLLA, PEG, and PGA.

F.2 Required Equipment

1. Laboratory glassware
2. Magnetic stirrer

66 � Preparation and Usage of Macroporous Bead
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3. Syringe pump
4. Teflon-coated plate
5. Freeze-dryer

F.3 Required Reagents

1. Medical grade chitosan MW 70 000–150 000 g/mol
2. Acetic acid
3. Organic solvent (e.g. chloropentane, chloroform, hexane,

ethanol
4. NaOH
5. Dry ice

Required Reagents � 67
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Table F.1 Commercially available macroporous beads.

Diameter Pore size Porosity
Name Material (µm) (µm) (%)

Cultispher-G, S, GL Gelatin 170–500 ∼50 50
(Percell Biolytica)

Informatrix Collagen-glycose- 500 40 99
(Biomat Corp.) aminoglycan

Microsphere Collagen 500–600 20–40 75
(Cellex)

Siran (Schott Glass 300–5000 10–400 60
Glaswerke)

Microporous MC Polystyrol 250–3000 20–150 90
(Solo Hill Labs,
Inc.)

Cytopore 1, 2 Cellulose 180–210 30 95
(Amersham
Pharmacia
Biotech)

Chitopore (REGEN Chitosan 300–800 30–80 >90
Biotech, Korea)

InnoPol (REGEN PLGA 200–1000 200 >90
Biotech, Korea)

Cytoline 1, 2 Polyethylene 2000–2500 10–400 65
(Amersham
Pharmacia
Biotech)

ImmobaSil ASL Silicon rubber 1000 50–150 >40

(Continued )

b485_Ch-F.qxd  5/17/2007  8:19 PM  Page 67



F.4 Procedure

• Dissolve chitosan in 1% aqueous acetic acid solution at a
concentration of 1%–2% w/v.

• Dissolve chitosan completely by constantly stirring it over 6 h.
• Filter chitosan solution using 0.45-µm filter paper to remove

any undissolved chitosan.
• Prepare EtOH/dry ice bath, and set Teflon-coated plate with

organic solvent in the bath.

Note: The temperature of EtOH/dry ice bath can be con-
trolled by adjusting the amount of dry ice.

• Drop chitosan solution into cold (under −5oC) solvent using
a syringe pump (Fig. F.1).

Note:

• If a large quantity of macroporous beads is required, any
commercially available bead dropper could be used.

• The pore size of macroporous beads is determined by
the slope of temperature dropping while the solution is
freezing.
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Solvent

Chitosan solution 

EtOH/dry ice bath 

Fig. F.1 Schematic diagram of dropping chitosan solution into the sol-
vent chilled by EtOH/dry ice bath.
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• Let the dropped beads completely freeze.
• Transfer the beads to a freeze-dryer after removing the extra

solvent.

Note: Take extra care not to thaw the surface of the beads
during transfer. 

• Freeze-dry the beads for over 24 h.
• Neutralise the dried beads in 1N NaOH in 70% EtOH.
• Wash the neutralised beads five times with distilled water to

remove extra NaOH and EtOH.
• Freeze the beads at −70oC and then freeze-dry the beads

(Fig. F.2).

F.5 Preparation of Macroporous Beads to be
Used in Cell Culture

• Hydrate and swell the dry macroporous chitosan beads in
PBS (pH 7–7.5).

• Autoclave the macroporous chitosan beads at 121oC for
15 min.

Preparation of Macroporous Beads to be Used in Cell Culture � 69
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Fig. F.2 SEM of macroporous chitosan bead after neutralisation and
second freeze-drying.
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• After autoclaving, allow the sterilised macroporous chitosan
beads to settle, and remove the supernatant.

• Add fresh sterilised PBS and wash the beads twice with ster-
ilised PBS.

• Remove the supernatant, and then add a new culture
medium containing serum.

• Leave it overnight at 4oC.

F.6 Cell Adhesion and Culture into
Macroporous Beads

• Seed 500 000–1 000 000 cells per 100-mm culture plate.
• Incubate the cells in a 5% CO2, 37oC incubator until 70%–80%

of the plate is covered with cells.
• Wash the cell plate with warm PBS once.
• Add 1 mL of warm trypsin–EDTA solution and incubate for

1–3 min at 37oC until the cells become round-shaped.
• Add 3 mL of warm culture medium, and detach cells from

the plate by mild pipetting of the medium.
• Put the cell suspension into a 15-mL tube and centrifuge at

1500 rpm for 2 min.
• Aspirate the supernatant.
• Resuspend cells with appropriate culture medium at the

desired cell number per unit volume.
• Mix the cell suspension with macroporous beads that were

previously prepared to be ready for use. The concentration
of chitosan macroporous beads for a 35-mm bacteriological
petri dish is approximately 3–6 beads/mL, and the macro-
porous beads are usually inoculated with 1 × 107 cells/
3 mL.

• Rock the macroporous beads with cell suspension at 37oC
under the 5% CO2 incubator for 4–6 h during the initial cul-
ture period.

• Remove the supernatant with unattached cells.
• Add new medium and return the culture plate into the CO2

incubator with rocking.
• Analyse the cell state using classical techniques such as LDH

assay, SEM imaging, etc. (Fig. F.3).
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FA
b485_Ch-F.qxd  5/17/2007  8:19 PM  Page 70



Note: Culture conditions using macroporous beads should
be adjusted in line with the cell type and culture purpose.

F.7 Examples of Application of Macroporous
Beads for Cell Culture and Tissue
Engineering

F.7.1 Bioreactor

1. Macroporous beads can be used to scale up cultures of
adherent cells using various commercially available
bioreactors.

Examples of Application of Macroporous Beads � 71
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(a) (b)

(c) (d)

Fig. F.3 Morphology of various cells attached on macroporous chitosan
bead determined by SEM. (a) Rat primary hepatocyte × 1000; (b) CHO ×
1000; (c) NIH3T3 × 1000; and (d) PC12 × 500.

(Continued )
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2. When applying macroporous beads to a bioreactor, mix
ready-to-use macroporous beads with cell suspension in
as minimum a volume as possible.

3. Control the speed and time of stirring or agitating the
cell/bead mixture in order to acquire maximum cell
attachment to the surface of macroporous beads either
continuously or intermittently.

4. Adjust the volume of culture media and the speed of stir-
ring or agitation for optimum condition (30 rpm is usu-
ally suitable for widely used cell lines).

5. Figure F.4 shows the proliferation pattern of various cell
lines on chitosan macroporous beads using a spinner
flask.

F.7.2 Tissue engineering

1. The applications of macroporous bead as a scaffold for
tissue engineering were very limited until recently.
Injectable composite tissue-engineering scaffold systems
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Fig. F.4 The proliferation pattern of various cell lines on macroporous
beads determined by NucleoCounter (ChemoMetec, Allerod, Denmark).
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are now under development by way of incorporating
individual cell carriers within a gel delivery matrix.

2. Differences in physical qualities, namely buoyancy and
topography, are dependent on how the pores in macro-
porous beads are made, and should be customised to pro-
vide the optimum conditions for cell–bead interaction
and cell functioning in the bead. 

3. Any adherent cell type can be cultured and induced to
differentiate on the macroporous bead using the culture
conditions established for the conventional cell culture
system as follows:

(a) Select a suitable macroporous bead for the desired cell
type. Consider the biocompatibility and biodegrade-
ability of the material used for the macroporous bead.

(b) Attach cells on the surface of the macroporous bead.
(c) Increase cell numbers using an adequate bioreactor,

for example a spinner flask (Bellco, Vineland, NJ, USA),
wave reactor (Wave Biotech, Somerset, NJ, USA), or
BelloCell (CESCO Bioengineering, Hsin-Chu,
Taiwan).

(d) Induce differentiation by adding factors that could
give queue to differentiation.

(e) Take the cell/bead complex and apply it to in vivo
animal models either by surgery or injection.

(f ) Determine the efficacy for the reconstitution of the
desired tissue using conventional histological methods.

Examples of Application of Macroporous Beads � 73
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G.1 Concept

• The scaffolding design (requirements) is a key issue to
achieve a successful bone, cartilage, or osteochondral tissue
engineering approach. 

• A high porosity degree is generally required, but it compro-
mises the scaffolds’ mechanical properties. Several scaffold-
producing methods include the use of porogen or sacrifice
agents that may not assure a high degree of interconnectivity. 

• The particle aggregation method described herein allows one
to obtain scaffolds with high mechanical properties (thus
assuring scaffold stability) and full three-dimensional inter-
connectivity, which is assured in a 3D perspective by the
contact points between the particles. 

• The development and tailoring of chitosan-based scaffolds pro-
duced by particle aggregation (polymeric, composite, and
bilayered) will be presented together with different characteri-
sation techniques in order to achieve a successful model for
bone, cartilage, and osteochondral tissue engineering scaffolds.

• The described technique is based on the random packing of pre-
fabricated microspheres with further aggregation by physical or
thermal means to create a three-dimensional porous structure.

• The production of polymeric, composite, and bilayered scaf-
folds for cartilage, bone, and osteochondral applications will
be discussed using a simple methodology.

• The production of a biodegradeable template for tissue growth
resembling bone and cartilage for use in tissue engineering
applications will also be explained.

G.2 Advantages

1. A fully interconnected structure that acts as a scaffold for
different tissue engineering applications can be produced.

2. Due to the chitosan bioadhesive properties, the chitosan-
based scaffolds produced by particle aggregation present
very high mechanical stability.

78 � Protocol for Particle-Aggregated Scaffolds
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3. Mechanical stability is assured by particle adhesion and
the obtained interface between the particles.

4. Chitosan-based scaffolds with high mechanical proper-
ties can be produced.

5. Tailorable scaffolds can be produced. The pore size can
be manipulated by controlling the particle size. 

6. The methodology is simple.
7. The protocol for scaffold production by means of particle

aggregation is described herein with chitosan polymer, but
it can be applied with different polymer solutions optimis-
ing the particle prefabrication and aggregation principle.

G.3 Procedure

• The chitosan (at desired concentration) is dissolved in acetic
acid.

• For the production of composite particles, hydroxyapatite
(HA) is added at an adequate concentration to the solution
and dispersed homogeneously.

• The chitosan (or chitosan/HA) solution is left overnight to
assure complete dissolution [Fig. G.1(a)].

• The chitosan (or chitosan/HA) solution is filtered to elimi-
nate any residual particles.

• The chitosan (or chitosan/HA) solution is extruded through
a syringe in a dispenser (syringe pump) at a controlled and
constant rate in order to shape the particles into an NaOH
solution [Fig. G.1(b)].

• The particle size can be controlled by tailoring the polymer
solution concentration, needle diameter, and dispensing rate.

• The particles are then exhaustively washed to remove all exceed-
ing reagents, namely from the precipitation bath [Fig. G.1(c)].

• To produce composite particles, cross-linking can be used with
appropriate chitosan cross-linkers. The particles are immersed
in the cross-linking solution for a determined short period
and then washed again. The cross-linking degree is calcu-
lated and optimised in function of the free amine groups.

Procedure � 79
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• For the production of chitosan-based scaffolds, the appropriate
particles are press-fitted into a specific mould [Fig. G.1(d)]
and left in the oven for the necessary time for aggregation to
take place [Fig. G.1(e)].

• The chitosan-based scaffolds that have been aggregated are
kept until further use (Fig. G.2).

G.4 Requirements

1. Chitosan solution
2. Dispenser (syringe pump)

80 � Protocol for Particle-Aggregated Scaffolds
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(a) (b) (c)

(d) (e)

Fig. G.1 Schematic procedure for the preparation of chitosan-based par-
ticle-aggregated scaffolds. (a) Preparation of chitosan solution; (b) set-up
of the dispensing syringe system; (c) washing of the produced chitosan
particles; (d) production of the chitosan scaffolds in the adequate
moulds; and (e) drying of the chitosan particles for further aggregation.

(Continued )
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3. Precipitation/complexation bath
4. Mould
5. Oven

G.5 Characterisations

• Chitosan particles produced by precipitation are charac-
terised by a smooth surface and uniform spherical shape
with a mean diameter of 500–800 µm (Fig. G.3).

• Chitosan-based scaffolds can be obtained with a mean pore
diameter ranging from 100 to 400 µm, with a typical pore
morphology as shown in Fig. G.4.

• However, the overall random packing of the chitosan parti-
cles into 3D scaffold structures clearly influences the nature
of the pores.

• Furthermore, scaffold pore morphology and size can be tai-
lored by controlling the particle size.

• Cross-sections from the bulk of the scaffolds can be stained
with eosin and characterised using a stereolight microscope
(Fig. G.5).

• In this way, it is possible to further characterise the interface of
the particles, showing the chitosan particle bonding that leads

Characterisations � 81
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(a) (b) (c)

Fig. G.2 Photographs of chitosan-based scaffolds produced by means
of particle aggregation. (a) Polymeric scaffolds; (b) composite scaf-
folds; and (c) bilayered scaffolds.

(Continued )
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Fig. G.3 SEM microphotograph of prefabricated chitosan-based parti-
cles showing their uniformity.

(a) (b)

Fig. G.4 SEM microphotographs of chitosan-based scaffolds produced
by means of particle aggregation. (a) General morphology; and (b)
bonding between particles.

Fig. G.5 Stained cross-section from the bulk of chitosan-based scaf-
folds observed by stereolight microscopy.
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to a very stable interface between the particles and therefore
assures the mechanical integrity of the developed scaffolds.

• µ-CT is used to additionally characterise the scaffold mor-
phology and to calculate the porosity of the developed scaf-
folds through morphometric analysis.

• µ-CT provides an efficient and nondestructive tool to quanti-
tatively measure and qualitatively characterise morphologi-
cal and morphometric parameters throughout 3D scaffolds. 

• To access this characterisation, 2D morphometric analysis
can be performed and 3D virtual models can be created using
specific software. 

• µ-CT is able to accurately evaluate the material (polymeric or
ceramic) volume based on 3D spatial distribution.

• X-ray scans should be performed in high-resolution mode. Scan
parameters such as power, current, or rotation step should
be optimised and maintained constant for all of the scans.

• An adequate number of slices of the materials is chosen and
maintained constant in order to analyse the volume of inter-
est of the scaffolds. 

• Several types of software can be used as image processing
software for CT reconstruction to create and visualise the 3D
representation. Examples are NRecon, CT Analyser, CT Vol
Realistic 3D Visualisation from SkyScan (Belgium), and
Mimics from Materialise (Belgium). 

• Two-dimensional morphometric analysis of the scaffolds is
performed using an adequate and constant threshold to deter-
mine the porosity distribution along the scaffolds (Fig. G.6).

• Three-dimensional virtual models are created using specific
image processing software (Fig. G.7).

• One of the main claimed advantages of the described method
is the obtained scaffold interconnectivity.

• To assure this property, one may utilise µ-CT analysis.
• The negative of the scaffolds is obtained by using the inverse

threshold in order to access the porosity morphology.
• The porosity morphology (Fig. G.8) clearly demonstrates that

the described methodology generates scaffolds with a very
high degree of interconnectivity.

• In the particular case of bilayered scaffolds for osteochondral
tissue engineering, µ-CT is again a very useful morphological
and morphometric tool.

Characterisations � 83
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• With µ-CT, one can characterise the interface between both
bony and cartilage components. 

• Morphometric analysis is carried out in order to quantita-
tively characterise the porosity, the porosity distribution, as
well as the polymeric and ceramic quantification and distri-
bution along the bilayered scaffolds. 

• This analysis clearly allows additional characterisation of the
osteochondral scaffolds, as demonstrated in Fig. G.9.
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Fig. G.6 Porosity distribution along the polymeric chitosan-based scaf-
folds, including a binarised image of a single slice of the bulk of the
scaffolds.

Fig. G.7 3D virtual model of polymeric chitosan-based scaffolds pro-
duced by means of the particle-aggregation method.

b485_Ch-G.qxd  5/12/2007  10:49 AM  Page 84



• Mechanical behaviour and stability are assured by the high
adhesion between the particles creating a stable interface. 

• To access the mechanical behaviour, compression tests are
carried out.

• The mechanical properties of the developed scaffolds are
tested on a compressive solicitation mode in a mechanical
testing machine in a controlled environment with an ade-
quate cross-head speed.

• The scaffolds show very good mechanical behaviour com-
pared to the typical mechanical properties obtained for chi-
tosan-based porous materials (Fig. G.10).

• For the polymeric scaffolds, a high compressive modulus of
132 ± 7 MPa is obtained.

Characterisations � 85
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Fig. G.8 3D virtual model of the inverse of polymeric chitosan-based
scaffolds showing the porosity morphology.

Fig. G.9 3D virtual model of bilayered chitosan or chitosan/HA-based
scaffolds produced by the particle aggregation method.
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• Furthermore, it is important to keep in mind that the mechan-
ical properties may be tailored with scaffold cross-linking or
with the incorporation of ceramic fillers (Fig. G.10).
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Fig. G.10 Compression modulus of the different produced chitosan-
based scaffolds.
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H.1 Concept

• Scaffolds for tissue-engineered medical products have to
meet several requirements for successful tissue regeneration:
porosity, biodegradeability, and structural integrity.

• In addition, the scaffold has to be durable and flexible in
suturing procedure. Porosity can be acquired in the first step
of freeze-drying (lyophilising) the solution containing poly-
meric biomaterials, when the ice crystals of the solvents are
formed within the solution. 

• The ice crystals serve as a porogen whose size can be easily
controlled by adjusting the freezing temperature and the con-
centration of the solution.

• Structural integrity of the porous sponge-like structure
should also be maintained, even after wetting in the intersti-
tial fluid or culture medium. 

• If the scaffold is made from water-soluble materials without
cross-linkage or if only the 3D frame is maintained by the
ionic interaction, then the 3D sponge structure can be easily
resolved or turned into a gel-like structure in the aqueous
environment.

• This structural integrity in the aqueous environment is deter-
mined mainly by the degree of water accessibility within the
frames of the scaffold and the presence of degradation
enzymes, which is more importantly regulated by the ionic
status, water solubility, and innate property of the biomater-
ial itself. 

• Therefore, the concentration of solution, ionic status of bio-
materials, solvents, and freezing temperature are important
factors to be considered in the manufacturing of suitable tis-
sue engineering scaffolds.

H.2 Chitosan Scaffold

1. Preparation of chitosan solution [Fig. H.1(a)]

• Dissolve chitosan (Fluka, medium MW; ∼700 000) in 1%
acetic acid solution (v/v) to give 1.5% solution (w/v)
while stirring for 1 h at room temperature.

92 � Protocol for Freeze-Drying Method
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• Remove insoluble materials by filtration through sintered
glass filter.

• Store the solution overnight at room temperature to remove
entrapped air bubbles.

2. Neutralisation of the chitosan solution

• Prepare 1.5% (w/v) chitosan solution in 1% acetic acid, and
mix with reconstitution buffer [2.2 g of NaHCO3, 4.77 g of
HEPES (200 mM)/100 mL of 0.05N NaOH] and 10 × DMEM/
F12 medium without NaHCO3 (DMEM:F12 = 3:1; Gibco
BRL) at a ratio of 8:1:1 to obtain a neutralised chitosan
solution.

3. Freezing of the solution [Figs. H.1(b) and H.1(c)]

• Pour the chitosan solution into a Teflon-coated mould.
• Freeze the solution at –70°C or –196°C for 12 h.

Chitosan Scaffold � 93
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(a) Filtrating (b) Moulding

(c) Freezing (d) Freeze-drying

Fig. H.1 Preparation processing of scaffold using the freeze-drying
method.
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4. Lyophilisation [Fig. H.1(d)]

• Freeze-dry the frozen solution below 7 mTorr for 48 h.
• Make sure the temperature of the freeze-dryer chamber is

below −40°C before transferring the frozen solution to the
freeze-dryer.

• Minimise the exposure time while transferring the frozen
solution to the freeze-dryer in order to prevent the surface
from melting, which may cause closed pores on the sur-
face of the scaffold.

5. Washing (Fig. H.2)

• Remove excess acid within the scaffold by washing with
absolute ethanol for 1 h.

• Wash the scaffold serially with 90%, 80%, 70%, 60%, and
50% ethanol for 1 h per each wash.

• Wash the scaffold with water for 3 h.
• Record the residual acid in the final wash by HPLC.

6. Relyophilisation (Fig. H.3)

• Soak the scaffold in the solution containing growth factors
or matrix proteins.

• Freeze the scaffold at −70°C and lyophilise the scaffold in
order to maintain the original form of the scaffold.

7. Sterilisation

• Sterilise the scaffold either by γ-ray irradiation (5 kGy/5 h;
γ-ray source: 60Co) or by EOG.

94 � Protocol for Freeze-Drying Method
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Fig. H.2 Maintenance of the scaffold framework during the washing step.
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H.3 Collagen Scaffold or Collagen/
Chitosan-Mixed Scaffold

1. Neutralisation of collagen or collagen/chitosan-mixed solution

• Neutralise type I p collagen (3 mg/mL pH 3.0; atelomeric
porcine collagen) by mixing with reconstitution buffer
[2.2 g of NaHCO3, 4.77 g of HEPES (200 mM)/100 mL of
0.05N NaOH] and 10 × DMEM/F12 medium without
NaHCO3 at a ratio of 8:1:1, and then mix with neutralised
chitosan solution at a proper ratio.

• All of the procedures should be performed at 4°C to pre-
vent possible gel formation during the procedure.

2. The rest of the procedure can be followed as described above.

H.4 Characterisations (Figs. H.4 and H.5)

• The scaffolds are fractured by a surgical blade and fixed with
1% glutaraldehyde for 1 h at room temperature.

• The scaffolds are dehydrated by immersing them in a series
of aqueous solutions of increasing alcohol concentration every
15 min and then freeze-drying them under the same condition
as described earlier.

Characterisations � 95
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Fig. H.3 The scaffold after relyophilisation.
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• The samples are critical-point dried and coated with an ultra-
thin gold layer (100 Å). An SEM image is captured by a scan-
ning electron microscope.
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(a) (b)

Fig. H.4 SEM morphology of the chitosan scaffold. (a) Surface; and
(b) cross-section.

(a) (b)

Fig. H.5 SEM morphology of the collagen scaffold. (a) Surface; and
(b) cross-section.
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I.1 Concept

• Freeze-drying via TIPS has received much attention in indus-
trial applications for the production of isotropic, highly inter-
connected, and porosity-designed membranes.

• Figure I.1 represents a schematic temperature–composition
phase diagram for a binary polymer/solvent system.

• Above the binodal curve, a single polymer solution phase is
formed; and if cooling below the curve, polymer-rich and
polymer-poor phases are separated in a thermodynamic equi-
librium state. 

• The spinodal curve is defined as the line at which the second
derivative Gibbs free energy of mixing is equal to zero, and
it divides the two-phase region into unstable and metastable
regions.

• If the system is quenched into the metastable region, phase
separation occurs in a nucleation and growth mechanism,
leading to a bead-like isolated cellular structure.

102 � Protocol for Thermally Induced Phase Separation
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Fig. I.1 Schematic representation of a typical polymer-solvent-nonsolvent
ternary phase diagram.
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• On the other hand, if the system temperature is quenched
into the unstable region, phase separation takes place in a
spinodal decomposition mechanism (liquid–liquid phase sep-
aration), resulting in a microporous interconnected structure. 

• The phase separation and freeze-drying method appears as a
versatile technique to prepare highly porous three-dimensional
polymer scaffolds that fulfil all of the requirements for cell
transplantation.

• Porosity can be controlled in terms of pore size and morphol-
ogy by a suitable choice of processing conditions and by a strict
control of phase separation conditions such as quenching tem-
perature, quenching depth, ageing time, polymer concentra-
tion, molecular weight, solvent/nonsolvent composition, and
additives.

I.2 Phase Diagram

• The cloud-point curve of the PLLA ternary system is deter-
mined by visual turbidimetry (Table I.1).

• Weighted PLLA (1, 3, 4.5, 5.5, or 7 wt%) — with or without
PEG/PEG–PLLA diblock copolymers — is added into a 4-mL
vial tube with 1,4-dioxane/water mixture (87/13, w/w) as a
solvent.

• This is dissolved by heating at 65°C for 5 h with a magnetic
stirrer.

• The homogeneous PLLA solution is reheated to ca. 10°C above
the expected cloud-point temperature (55°C).

• In water bath, the solution is slowly cooled in steps of 1°C,
equilibrating the system for 10 min at each new temperature.

• The cloud point is reported as the temperature at which the
clear solution becomes turbid by visual sight (Fig. I.2).

Phase Diagram � 103
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Table I.1 PEG, PEG–PLLA diblock copolymers.

Copolymer Mn/g mol−1

MPEG5000 PEG114 5000
Diblock1 PEG114–PLLA6 5000–413
Diblock2 PEG114–PLLA40 5000–2845
Diblock3 PEG114–PLLA62 5000–432
Diblock4 PEG45–PLLA26 2000–1830
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I.3 Preparation of PLLA Scaffold

The pore size of scaffolds must be optimised according to cells
or tissue. In the PLLA-dioxane-water ternary system, the pore
size of PLLA scaffolds is increased as a function of the ageing
time at a quenching temperature of 30°C (Fig. I.3).

104 � Protocol for Thermally Induced Phase Separation
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Fig. I.2 Cloud-point curve on PLLA-dioxane-water system (PLLA,
Lacty 5000; Mw, 218 000 g/mol; PDI, 1.55).

Fig. I.3 Pore size distribution of PLLA scaffolds as a function of age-
ing time. • Pure PLLA; � added diblock1 0.5 wt%; » added diblock2
0.5 wt%; � added diblock3 0.5 wt%; º added diblock4 0.5 wt% at a
quenching temperature of 30°C; and � pure PLLA at a quenching tem-
perature of 20°C.
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I.4 TIPS and Freeze-Drying Method (Fig. I.4)

• PLLA (4.5 or 5.5 wt%) solution with a mixture of 1,4-dioxane
and water (87/13 w/w) as the solvent is prepared. 

• The sample is reheated to 15°C above the measured cloud-
point temperature, and then placed in a water bath preheated
to the quenching temperature.

• It is kept for 2, 10, 30, 60, or 120 min at the quenching
temperature.

• The annealed sample is directly immersed in liquid nitrogen
to be fast-frozen for 1 h, and then a small hole is cut in the
vial cap to release the solvent.

• Freeze-drying is performed in a freeze-dryer at −77°C and
7 mTorr for 3 days in order to remove the solvent and obtain
the macroporous scaffolds (Fig. I.5).

TIPS and Freeze-Drying Method � 105
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Fig. I.4 Fabrication of PLLA scaffold via TIPS method.

Temperature jumping

Fig. I.5 PLLA solution quenching.
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• The dry scaffolds are cut into cubes with a surgical blade
(7–8 mm, thickness 2 mm; 13–15 mg PLLA).

• Prior to cell seeding, 3D scaffolds are prewetted with 70%
ethanol for 3 h to sterilise them and enhance their water
uptake.

• The ethanol is removed by soaking with agitation for 1 h in
six changes of PBS, and then the scaffolds are left overnight
in the culture media.

• The characterisation of scaffolds is performed by SEM (Fig. I.6).

106 � Protocol for Thermally Induced Phase Separation
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Fig. I.6 Pore size of scaffolds prepared from a 4.5 wt% PLLA-dioxane-
water (87/13, w/w) solution as a function of ageing time at a quench-
ing temperature of (a) 25°C, (b) 30°C, and (c) 35°C.

b485_Ch-I.qxd  5/12/2007  10:50 AM  Page 106



I.5 Requirements

1. PLLA
2. 1,4-dioxane/water (87/13, w/w)
3. PEG, PEG–PLLA diblock copolymers
4. Liquid nitrogen
5. 70% ethanol
6. PBS
7. Culture media
8. 4-ml vial
9. Scales

10. Magnetic stirrer
11. Water bath and temperature controller
12. Timer

Requirements � 107
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J.1 Concept

• Recently, a centrifugation method has been introduced as an
effective method to fabricate scaffolds that have various shapes
with a uniform surface and inside pore structures (Fig. J.1).

• The centrifugation method is very effective for preparing
scaffolds with complicated shapes for tissue engineering
applications.

• The scaffolds can be fabricated in various shapes from many
different natural and synthetic polymers by the centrifugation
method (Fig. J.2).

112 � Protocol for Centrifugation Method
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Fig. J.1 Schematic diagram showing the fabrication of scaffolds by a
centrifugation method.

Sphere Tube HemisphereDisk & cylinder

FistNose Hand

Fig. J.2 Photographs of variously shaped scaffolds fabricated by the
centrifugation method.
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J.2 Chitosan Scaffold

• Prepare 2 wt% chitosan solution (in 0.1 M acetic acid) and
pour into a 10-mL syringe.

• Prepare 0.05 M NaOH aqueous solution in a 500-mL beaker.
• Slowly drop the chitosan solution into the NaOH solution

with vigorous agitation using a homogeniser.
• Obtain the fibril-like chitosan precipitate (suspended in NaOH

solution).
• Wash the fibril-like chitosan in excess phosphate buffered

saline solution (PBS, pH ∼7.4) and the following distilled water
to remove residual acetic acid and NaOH.

• Obtain neutralised fibril-like chitosan suspension [in distilled
water (pH ∼7.0)].

• Place the fibril-like chitosan-suspended solution in a cylin-
drical (or various-shaped) mould.

• Centrifuge at 3000 rpm for 5 min for the fibril-like chitosan
accumulation in the mould and the following fibril bonding.

• Discard supernatant from the mould.
• Freeze the fibril-like chitosan accumulation in the mould at

−70oC for 12 h and then lyophilise it.
• Obtain the cylindrical (or various-shaped) scaffold (Fig. J.3).

J.3 Alginate Scaffold

• Prepare 2 wt% sodium alginate aqueous solution and pour
into a 10-mL syringe.

• Prepare 2 wt% CaCl2 aqueous solution in a 500-mL beaker.

Alginate Scaffold � 113

FA

Surface Cross-section

500 µm

Fig. J.3 SEM photographs of a chitosan scaffold fabricated by the cen-
trifugation method (centrifugation speed, 3000 rpm; ×100).
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• Slowly drop the sodium alginate aqueous solution into the
CaCl2 solution with vigorous  agitation using a homogeniser.

• Obtain the fibril-like Ca–cross-linked alginate (suspended in
CaCl2 solution).

• Wash the fibril-like alginate in excess distilled water to
remove residual CaCl2.

• Obtain the fibril-like alginate suspension [in distilled water
(pH ∼7.0)].

• Place the fibril-like alginate-suspended solution in a cylindri-
cal (or various-shaped) mould.

• Centrifuge at 3000 rpm for 5 min for the fibril-like alginate
accumulation in the mould.

• Discard supernatant from the mould.
• Freeze the fibril-like alginate accumulation in the mould at

−70oC for 12 h and then lyophilise it.
• Obtain the cylindrical (or various-shaped) prescaffold.
• Immerse the prescaffold in 1 wt% chitosan solution (in 0.1 M

acetic acid) for 30 min to prevent disentanglement of fibrils
in cell culture medium or physiological solution.

• Wash the prescaffold in excess distilled water to remove
residual acetic acid and chitosan. 

• Freeze the chitosan-coated alginate prescaffold at −70oC for
12 h and then lyophilise it.

• Obtain the cylindrical (or various-shaped) scaffold (Fig. J.4).

J.4 PCL Scaffold

• Fill a 100-mL beaker with PCL powder and Pluronic F127 pow-
der (1/1.5, w/w) (Pluronic F127 helps to reduce the viscosity

114 � Protocol for Centrifugation Method
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1000 rpm
(~250 µm*)

2000 rpm
(~190 µm*)

3000 rpm
(~130 µm*)

500 µm

Fig. J.4 SEM photographs of an alginate scaffold fabricated by the cen-
trifugation method (*, pore size; ×100).
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of melted PCL, and also provides the hydrophilicity in the
prepared PCL scaffold).

• Heat it to 120oC and mix it using a homogeniser until a
homogeneous molten state is reached.

• Slowly drop the viscous PCL/Pluronic F127 mixture into dis-
tilled water (at room temperature) with vigorous agitation
using a homogeniser.

• Obtain the fibril-like PCL precipitate (suspended in distilled
water).

• Wash the fibril-like PCL in excess distilled water to remove
residual Pluronic F127.

• Obtain the fibril-like PCL suspension [in distilled water
(pH ∼7.0)].

• Place the fibril-like PCL-suspended solution in a cylindrical
(or various-shaped) mould.

• Centrifuge at 3000 rpm for 5 min for the fibril-like PCL accu-
mulation in the mould.

• Discard supernatant from the mould.
• Freeze the fibril-like PCL accumulation in the mould at −70°C

for 12 h and then lyophilise it.
• Obtain the cylindrical (or various-shaped) prescaffold.
• Heat the prescaffold up to almost PCL melting temperature

for fibril bonding in the prescaffold.
• Obtain the cylindrical (or various-shaped) scaffold.

J.5 Requirements

1. PCL
2. Pluronic F127
3. Chitosan
4. Acetic acid
5. NaOH
6. Sodium alginate
7. CaCl2
8. High-speed homogeniser
9. Magnetic stirrer/heater

Requirements � 115
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(Continued )
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10. Beakers
11. Magnetic stirring bar
12. Spatula
13. Cylindrical (or variously shaped) mould
14. Centrifuge
15. Deep freezer
16. Freeze dryer
17. PBS
18. Distilled water

J.6 Characterisations

The pore size of the scaffold can be controlled by adjusting the
centrifugal force (i.e. increasing centrifugal force leads to the
fabrication of scaffolds with smaller pore size) (Fig. J.4).

116 � Protocol for Centrifugation Method
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K.1 Concept

K.1.1 Injectable polymeric systems

• One of the simplest and most convenient approaches in tis-
sue engineering applications is to inject the polymer–cell or
polymer–drug entity into the body.

• Injectable systems offer specific advantages over preformed
scaffolds, including easy application, site-specific delivery,
and improved compliance and comfort for patients. 

• Water-soluble, thermosensitive, or pH-sensitive polymers
exhibiting reversible sol–gel transition and photopolymeris-
able hydrogels have been tailor-made as injectables.

K.1.2 Thermosensitive hydrogels

• Thermosensitive hydrogels can be formed either by physical
gelation without covalent bonding (e.g. ionic interaction,
hydrophobic association, hydrogen bonding between poly-
mer chains in an aqueous solution) or by chemical gelation
caused by thermosensitive chemical cross-linkers. 

• The former may go through sol–gel phase transitions in
response to changes in temperature, but the latter may undergo
swelling/shrinking.

• Thermosensitive hydrogels made by physical cross-links
between polymer chains are very useful for injectable tissue
engineering because no toxic organic cross-linkers are usu-
ally employed.

K.1.3 Polyphosphazene

• Polyphosphazenes are a new class of inorganic backbone
polymers that are superior to many other organic systems in
terms of their molecular structural diversity and property
variations.

• These polymers can be used as a reactive macromolecular
intermediary by replacing chlorine atoms with organic side
groups to give various hydrolytically stable polymers.

122 � Injectable Thermosensitive Gel
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• Before the reaction, L-isoleucine ethyl ester (IleOEt), glycolic
or lactic acid ester, and α-amino-ω-methoxy-PEG (AMPEG)
are respectively dried for 1 day at 50°C in vacuum for mois-
ture removal.

• THF is dried by reflux over sodium/benzophenone under
nitrogen atmosphere.

• TEA and acetonitrile are distilled over BaO under nitrogen
atmosphere.

• L-isoleucine ethyl ester hydrochloride suspended in dry THF-
containing triethylamine is slowly added to poly(dichloro-
phosphazene) dissolved in dry THF.

• The reaction is performed for 4 h at 4°C, and then for 20 h at
room temperature.

• TEA and ethyl-2(O-glycol)lactate (GlyLacOEt) oxalic salt dis-
solved in acetonitrile are added to this mixture, and the reac-
tion mixture is stirred for 19 h at room temperature.

• After AMPEG dissolved in dry THF-containing TEA is added
to the polymer solution, the reaction mixture is stirred for 2
days at 40°C–50°C.

• The above reaction mixture is filtered. 
• After the filtrate is concentrated, it is poured into n-hexane to

obtain precipitate, which is reprecipitated twice in the same
solvent.

Procedure � 123
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K.2 Procedure
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• The reprecipitated polymer is concentrated.
• The polymer product is further purified by dialysis in methanol

for 4 days and then in distilled water for 4 days at 4°C.
• The final dialysed solution is freeze-dried to obtain the final

polymer.

K.3 Gelation Properties of Polymers (Fig. K.1)

• Most of the poly(organophosphazenes) synthesised in this
work show sol–gel transition properties in aqueous solution.

• The gelation properties of the polymers are dependent
on several factors, such as the composition and size of the
substituents, the amino acid esters used, and the polymer
conditions.

• The gelation of the polymers is imparted mainly by hydro-
phobic associations of hydrophobic groups of amino acid
esters.

124 � Injectable Thermosensitive Gel

FA

Fig. K.1 Photographs of the sol–gel transitions of poly(organophos-
phazenes) in this study in aqueous solution, observed with a gradual
temperature increase from (a) to (d).
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K.4 Isolation of Rabbit Chondrocyte

• Sacrifice a rabbit after general anaesthesia.
• Shave the hair around the knee.
• Dissect the knee under sterile condition [Fig. K.2(a)].
• Cut out cartilage pieces from the joint surface.
• Digest the small slices of cartilage at 37°C with 0.2% type II

collagenase for 1 h in DMEM [Fig. K.2(b)].
• After the completed digestion, filter the cell suspension

through a nylon mesh filter (pore size, 60 µm).
• Before seeding, wash the chondrocytes with PBS.
• Seed the chondrocytes onto polystyrene culture dishes

(10 cm in diameter), and grow in culture until a confluent
monolayer has formed with DMEM (10% FBS, 1% peni-
cillin/streptomycin) [Fig. K.2(c)].

• Perform cell culture under standardised conditions (37°C, 5%
CO2, saturated humidity) in an incubator.

• Change the culture medium every 2–3 days.

K.5 Preparation of Gel Mixture and
Subcutaneous Injection into Nude Mouse

• Dissolve poly(organophosphazene) in cold culture medium.
• Stir polymer solution at 4°C until the solution is homoge-

neous [Fig. K.2(d)].
• Sterilise the melted solution with UV for 2 h.
• Mix the sterilised polymer solution of 200 µL, prepared rab-

bit primary chondrocytes, and signalling molecule (TGF-β)
[Fig. K.2(e)].

• Inject the prepared polymer mixture subcutaneously into the
nude mouse [Fig. K.2(f)].

• After several weeks, analyse the injected chondrocytes.

K.6 Requirements

1. Hexachlorocyclotriphosphazene
2. Aluminium chloride

Requirements � 125
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3. Sublimator [Fig. K.3(a)]
4. Glove box [Fig. K.3(b)]
5. High-temperature oven
6. Glassware
7. Prepolymer
8. IleOEt
9. GlyLacOEt

10. AMPEG (Mw = 350, 550, 750)
11. Dried THF
12. Dried TEA
13. Dried acetonitrile
14. Hexane
15. Methyl alcohol
16. Distilled water
17. 250-mL flask
18. 500-mL flask

126 � Injectable Thermosensitive Gel

FA

(a) Dissection (b) Isolation (c) Culture of
chondrocytes

(d) Melted polymer
solution

(e) Mixing of cell and
polymer solution

(f) Subcutaneous
injection

Fig. K.2 Protocol for implantation of chondrocytes/polymer solution
mixture.

(Continued )

(Continued )
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19. 1000-mL flask
20. Schlenk line [Fig. K.3(c)]
21. Magnetic stirrer
22. Cannula
23. Heating mantle
24. Dialysis membrane tubes (Mw = 12 000–14 000)

[Fig. K.3(d)]
25. Poly(organophosphazenes)
26. 0.01M PBS aqueous solution pH 7.4
27. Viscometer
28. Syringe

Requirements � 127
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(a) Sublimator (b) Glove box

(c) Schlenk line (d) Dialysis

Fig. K.3 Experimental setting for polymerisation process of
poly(organophosphazene).

(Continued )

(Continued )
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29. PBS
30. Type II collagenase
31. DMEM (10% FBS, 1% penicillin/streptomycin)
32. CO2 incubator
33. Operating scissors and knife
34. Rabbit (2 weeks old)
35. Trypsin–EDTA
36. Trypan blue
37. Hemocytometer
38. TGF-β

128 � Injectable Thermosensitive Gel
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L.1 Concept

To engineer tissues successfully, the selection of scaffolds is
critical. Although various synthetic biodegradeable polymer
scaffolds have been developed and improved by mimicking
biological structures, acellular scaffolds may be a better option
for the following reasons:

• Acellular scaffolds retain their correct anatomical structure
even after the decellularisation process.

• Acellular scaffolds retain native ECM architecture and pos-
sess the cell adhesion ligands.

• The decellularisation process considerably reduces immu-
nological responses by completely removing cellular
components.

• The decellularisation process facilitates similar biomechani-
cal properties as those of native tissues that are critical for
the long-term functionality of the grafts.

• The decellularisation process facilitates good handling
characteristics.

L.2 Procedure

• Carefully excise tissues, and remove adherent fat and other
connective tissues.

• Immediately wash the isolated tissues in PBS solution.
• Immerse isolated tissues in distilled water at 4°C for 24 h

with continuous shaking at 200 rpm. Replace the distilled
water several times during this period (Fig. L.1).

• Treat the tissues with decellularising solution in a 500-mL
flask, and incubate at 4°C for 72 h for cell lysis with contin-
uous shaking at 200 rpm. Replace the decellularising solution
every 24 h.

• Wash the tissue thoroughly with distilled water several times
to remove residual detergents. Repeat the third step.

• Lyophilise the treated tissues for 24 h (Fig. L.2).
• Sterilise with cold EOG and store at room temperature.

134 � Preparation of an Acellular Scaffold
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L.3 Requirements

1. 500-mL flask
2. Orbital shaker
3. Lyophiliser
4. Ethylene oxide sterilisation unit
5. Triton X-100 (Sigma, St. Louis, MO)
6. Ammonium hydroxide
7. PBS
8. Distilled water
9. Decellularising solution [0.5% (v/v) Triton X-100 and

47.6 mM ammonium hydroxide in distilled water].

Requirements � 135
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Fig. L.1 Tissues immersed in the decellularising solution with contin-
uous shaking at 200 rpm using an orbital shaker.

Fig. L.2 Macroscopic images of decellularised porcine pulmonary valve.
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L.4 Characterisations

• The microstructure and ECM architecture of decellularised
scaffolds can be examined using SEM (Fig. L.3).

• Acellularity and the preservation of native ECM architecture
of the decellularised scaffolds can be confirmed with histo-
logical analyses (Fig. L.4).

• Acellularity of the decellularised scaffolds can be confirmed
with DNA quantification analysis (Fig. L.5).

136 � Preparation of an Acellular Scaffold
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(a) (b)

Fig. L.3 SEM image of (a) a native and (b) a decellularised porcine
pulmonary valve. The endothelial layer was removed during the decel-
lularisation process.

(a) (b)

Fig. L.4 Histological analyses of a decellularised porcine pulmonary
valve. Histological analyses of acellular scaffolds show complete
removal of the cells and preservation of the native ECM (collagen)
architecture. (a) Hematoxylin and eosin staining; (b) Masson’s trichrome
staining.
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L.5 Cautions

Leave the sterilised scaffolds for a sufficient period (>48 h)
before use for the release of EOG.

Cautions � 137
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Fig. L.5 DNA assay of acellular scaffolds confirms the nearly complete
removal of cellular components from the tissues. DNA quantification
shows a reduction of more than 97% in the DNA content of acellular
scaffolds as compared with normal tissues.
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M.1 Concept

• Keratins are an important biocompatible material for human
medical applications for two main reasons: (1) they can be
extracted as soluble proteins from readily available allogenous
tissue, namely end-cut hair fibre, so they are inexpensive to
obtain; and (2) keratins contain sites of molecular recognition
where integrin-mediated cell attachment can occur.

• Developing useful biomaterials from keratins is facilitated by
chemical methods that permit the extraction of soluble pro-
teins from human hair fibres.

• The two main chemistries for solubilising keratins are oxida-
tion and reduction. 

• Oxidative cleavage results in the formation of keratoses, and
reductive cleavage results in the formation of kerateine ana-
logues that contain cysteine residues.

• Keratins can be of low (so-called “gamma,” ca. 15 kDa) or
high (so-called “alpha,” ca. 85 kDa) molecular weight and
contain differing amounts of cysteine, depending on their
location in the follicle.

• Keratin biomaterials have been investigated in a plethora of
medical applications including drug delivery, wound healing,
soft tissue augmentation, synthetic skin, coatings for implants,
and scaffolds for tissue engineering. 

• The biocompatibility of these constructs has been tested and,
in many instances, has been found to exceed that of other nat-
urally derived materials. In fact, cell adhesion and growth on
keratin substrates, an important characteristic for tissue engi-
neering, is excellent.

• A recent publication suggests that the cellular recognition of
keratins is due in part to a molecular mechanism made pos-
sible by the numerous cell adhesion sequences found on ker-
atin proteins.

M.2 General Hair Preparation (Fig. M.1)

• Wash hair in warm water with a mild detergent and rinse
thoroughly with deionised (DI) water.

• After drying, mince hair manually using sharp scissors into
pieces not exceeding approximately 1 inch in length.

142 � Protocol for Self-Assembled Human Hair Keratins
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• Extract hair in hexane by placing in a closed plastic container
and shaking thoroughly. Repeat the hexane wash two more
times.

• Repeat the triplicate washes again with absolute ethanol.
• Air-dry the hair in a chemical fume hood overnight.

M.3 Isolation of Keratoses

• Extract the keratoses by a two-step process wherein the cys-
tine bonds are broken down by oxidation in the first step.

• Prepare an 8.0-w/v% solution of peracetic acid in DI water
(20-fold excess).

• Perform the oxidation in a plastic container with sufficient
volume to allow for vigorous mixing. Seal the container and
agitate at 4°C for 24 h (or at 37°C for 12 h).

• Allow the solution to equilibrate to room temperature.
• Remove hair from the liquid by passing the solution through

a sieve (425 µm).
• Remove free keratoses from the oxidised hair fibres by

repeated extraction with a strongly denaturing solution such
as NaOH, Tris base, or urea.

• Precipitate the α-keratose fraction by titrating the extraction
solution to a pH of 4.6 using HCl.

Isolation of Keratoses � 143
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Fig. M.1 Equipment used for keratin biomaterials processing.
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• Isolate the off-white α-keratose fraction by centrifugation.
• Retain the liquid fraction that contains the γ-keratose. The

solution should be concentrated 10-fold by distillation of
excess water using a rotary evaporator.

• Precipitate the γ-keratose by dropwise addition of the result-
ing solution into an eightfold excess of cold ethanol.

• Recover the off-white solid by centrifugation.
• Dissolve the α-keratose (white solid) in 20 mM Tris base

with 20 mM EDTA.
• Remove any undissolved material by filtration/centrifugation.
• Reprecipitate the α-keratose by reducing the pH with slow

addition of hydrochloric acid to a final pH of 4.6 (three pre-
cipitations in total).

• Neutralise the solution (pH 7.0) and remove any precipitate
that forms by centrifugation/filtration.

• Dialyse using tubing with an MWCO of ca. 14.2 kDa against
DI water.

• After dialysis, isolate the α-keratose again by precipitation at
pH 4.6, separate by centrifugation/filtration, and freeze-dry.

• Dissolve the γ-keratose in a minimum amount of 20 mM Tris
base with 20 mM EDTA. 

• Reduce the pH with slow addition of HCl to a final PH value
of 4.6.

• Remove any precipitate that forms by centrifugation/filtration.
• Precipitate the γ-keratose by dropwise addition to an eightfold

excess of cold ethanol. 
• Repeat the reprecipitation using a minimum amount of

20 mM Tris base with 20 mM EDTA (three precipitations in
total).

• Neutralise the solution (pH 7.0) and remove any precipitate
that forms by filtration/centrifugation. 

• Dialyse using tubing with an MWCO of ca. 3.5 kDa against
DI water (Fig. M.2).

• Isolate γ-keratose again by titrating to pH 4.6, removing any
solids that form by filtration and discarding, and precipi-
tating by dropwise addition to an eightfold excess of cold
ethanol.

• Separate the γ-keratose by filtration/centrifugation and
lyophilise.
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M.4 Isolation of Kerateines

• Extract kerateines by a reduction method.
• Prepare a 1M solution of TGA in DI water. 
• Adjust the pH of the solution to 10.2 by the addition of satu-

rated NaOH solution.
• Carry out the extraction in a plastic container of sufficient vol-

ume to permit vigorous mixing. Seal the container and shake at
4oC for 24 h (or 37°C for 12 h), followed by equilibration at RT.

• Precipitate the α-kerateine fraction by titrating the reduction
solution to a pH of 4.6 using concentrated HCl. 

• Isolate the off-white α-kerateine fraction by centrifugation/
filtration.

• Retain the liquid fraction that contains the γ-kerateine.
• Concentrate the γ-kerateine solution by 10-fold on a rotary

evaporator at a bath temperature of not more than 50°C.
• Precipitate the γ-kerateine by dropwise addition of the solu-

tion into an 8-fold excess of cold ethanol. 
• Isolate the off-white solid by centrifugation/filtration.
• Dissolve the α-kerateine (white solid) in 20 mM Tris base

with 20 mM EDTA. 
• Remove any undissolved material by centrifugation/filtration.
• Reprecipitate the α-kerateine by reducing the pH with slow

addition of HCl to a final pH of 4.6 (three precipitations in
total).

Isolation of Kerateines � 145
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Fig. M.2 Viscosity and osmolarity of α-keratose and γ-keratose solu-
tions with different concentrations at 37°C.
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• Neutralise the solution (pH 7.0) and remove any precipitate
that forms by centrifugation/filtration. 

• Dialyse using tubing with an MWCO of ca. 14.2 kDa against
DI water. 

• After dialysis, isolate the α-kerateine again by precipita-
tion at pH 4.6, separate by centrifugation/filtration, and
freeze-dry.

• Dissolve the γ-kerateine in a minimum amount of 20 mM Tris
base with 20 mM EDTA. 

• Reduce the pH with slow addition of HCl to a final PH value
of 4.6. Remove and discard any precipitate that forms by cen-
trifugation/filtration.

• Precipitate the γ-kerateine by dropwise addition of an eight-
fold excess of cold ethanol (three precipitations in total).

• Neutralise the solution (pH 7.0) and remove any precipitate
that forms by centrifugation/filtration. 

• Dialyse using tubing with an MWCO of ca. 3.5 kDa against
DI water (Fig. M.3).

• Isolate the γ-kerateine by titrating to pH 4.6, removing any
solids that form by filtration/centrifugation and discarding,
and precipitating by dropwise addition of an eightfold excess
of cold ethanol.

• Separate the γ-kerateine by centrifugation/filtration and freeze-
dry (Fig. M.4).
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M.5 Fabrication of a Keratin Scaffold
Using Self-Assembly

• Keratin biomaterials are dissolved in DI water to make
0.5%–10% (w/v) solutions.

• The keratin solutions are poured into a plastic mould and are
subsequently frozen at −20°C or −80°C for 24 h.

• After freezing, the water is removed by lyophilisation over a
period of 2–3 days, depending on the conditions and sample
volume.

• The fabricated keratin scaffolds are stored in a vacuum con-
tainer until use (Fig. M.5).

Fabrication of a Keratin Scaffold Using Self-Assembly � 147
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Fig. M.4 Oxidation or reduction, followed by extraction in aqueous
base, removes essentially all of the cortical proteins from hair fibres.

Fig. M.5 Keratin biomaterial scaffolds are formed spontaneously by a
self-assembly mechanism. Keratin biomaterials can be used to build
up a variety of microstructures by controlling their composition and
processing.

b485_Ch-M.qxd  5/12/2007  11:29 AM  Page 147



M.6 Requirements

1. Human hair
2. Organic solvents
3. Chemical reagents
4. Deionised water
5. Shaker
6. Sieve
7. Filter system
8. pH meter
9. Centrifuge

10. Rotary evaporator
11. Dialysis system
12. Freezer
13. Lyophiliser

M.7 Cautions

• Both α-kerateine and γ-kerateine samples are prone to
recross-linking. 

• If dissolution in 20 mM Tris solution is unusually difficult,
then cross-linking of the cysteine residues has likely
occurred. 

• To avoid this, kerateine samples should be stored under
nitrogen at subfreezing temperature. 

• If cross-linking problems persist, chemical methods can
be employed to cap the sulfhydryl groups.
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N.1 Concept

• Nanofibres — fibres with a diameter of some nm to 1 µm —
are being widely studied in the field of fibre-related technology.

• Nonwoven fabrics made of nanofibres — which have soft
properties and a high surface area — can be used not only as
separation materials, but also as composite materials. They
have high miscibility with other materials due to high fibre
density (fibres/unit area) and large space between nanofibres.

• Nanofibres are very soft like skin, are thinner than paper,
easily evaporate water, and do not permit the invasion of for-
eign materials such as bacteria from outside.

• It is possible to make bioabsorbable bandages or artificial
skins made of artificial protein nanofibres that are similar to
natural proteins or tissues.

• General fibres are made by extruding raw materials through
a conduit with a diameter of 0.12–0.2 mm under high pres-
sure, while nanofibres are made by dissolution spinning or
electrospinning.

• Dissolution spinning, in which polymers are plasticised and
additives like drugs are decomposed, is inappropriate to pro-
duce medical products. However, electrospinning, which
obtains polymer jet by applying a high electric charge, can be
used to produce medical products.

• Electrospun nanofibres are structurally very similar to ECM,
so they can improve cell attachment and proliferation.

• The electrospinning principle, developed in the 1930s, is that
electrical repulsion between raw polymeric materials induces
molecular aggregation followed by division into nanosized
fibres, and an unstable ejection having a similar movement
as whip (narrow flow of solution and nanoparticles) through
air when the raw polymeric materials are placed in a high
electrical field by high voltage.

• Electrospinning is a method to obtain nonwoven fabrics as
nanosized polymeric fibres from the end of a syringe are col-
lected on a grounded collection drum charged oppositely to
the syringe.

• Nanofibres with a diameter of 10–1000 nm are ejected in the
whipping movement during the evaporation of solvent. Just
collecting these nanofibres makes nonwoven intertwined
fabrics without knitting.

154 � Protocol for Nanofibre Electrospinning Scaffold
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• A scientific basis of electrospinning developed by Raleigh in
1882 states that electric force could overcome surface tension
at liquid dropping, but electrospun fibre has a disadvantage
of low mechanical properties.

N.2 Procedure

• Dissolve collagen (bovine type I collagen, Bioland Ltd.,
Korea) into HFP (Fluka, Germany) at a concentration of 10%
[Fig. N.1(a)].

• Wrap aluminum foil on the grounded collection drum
[Fig. N.1(b)].

• Pour the solution into a syringe [Fig. N.1(c)].
• Connect a conducting wire to the syringe needle [Fig. N.1(d)].
• Switch on the main power [Fig. N.1(e)].
• Set the parameters: rotation velocity of drum, voltage, and

current (voltage: 14.1 kV; current: 0.01 mA) [Fig. N.1(f)].
• Switch on the output power [Fig. N.1(g)].

Procedure � 155
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(a) Dissolving  (b) Wrapping  (c) Pouring

(d) Connecting   (e) Main power on   (f) Setting

(g) Output power on

Fig. N.1 Schematic diagram for the preparation processing of scaffolds
by electrospinning.
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N.3 Requirements

1. Polymer
2. Solvent
3. Magnetic bar
4. Magnetic stirrer
5. Syringe
6. Foil
7. Electrospinning system

Figure N.2 shows an electrospinning system (left) and control
box (right).

156 � Protocol for Nanofibre Electrospinning Scaffold
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Fig. N.2 Photograph of electrospinning system.

Fig. N.3 After electrospinning.

Figure N.3 shows a fabric made by collecting electrospun
nanofibres, and Fig. N.4 shows nanofibres being electrospun
from the needle of a syringe.
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Fig. N.4 During electrospinning.

Figure N.5 shows a schematic diagram of an electrospinning
system.

Fig. N.5 Schematic diagram of electrospinning.
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N.4 Characterisations

• Figure N.6 shows correlation graphs between spinning
parameters and the diameter of nanofibre. As the concentra-
tion and viscosity of solution, ejection velocity, and relative
humidity increase, the diameter of nanofibre increases.

• As the current, distance between jet and drum, and salt con-
centration increase, the diameter of nanofibre decreases. The
correlation between spinning parameters and diameter is
investigated under the same conditions as those of the others.

158 � Protocol for Nanofibre Electrospinning Scaffold
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Fig. N.6 Effects of spinning parameters.
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• Figure N.7 shows electrospun collagen fabrics by 10% colla-
gen in HFP. The left image is an SEM of the fabrics’ surface,
and the right image is an SEM of their cross-section.

N.5 Cautions

• The type of solute and solvent as well as the concentra-
tion and viscosity of solutions affect the fluid dynamics.
Nanofibres can be made at the roving of solution under
high voltage. It is known that the available viscosity is
0.5–50 poises to make nanofibres.

• Increasing the diameter of the syringe needle reduces the
diameter of nanofibre to 50 nm. Decreasing the distance
between needle and drum inhibits fibre extension, so
thick fibres are obtained.

• The spinning voltage is generally 10–50 kV. As the electric
charge in solution increases, the diameter of nanofibre
decreases. The ionic quantity generated by salts affects the
force of charge at the jet. The addition of salts increases
charge density at the surface of the jet during electrospin-
ning. So, electric force is increased at the jet, bead forma-
tion is reduced, and more fine fibres are obtained.

Cautions � 159
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Fig. N.7 Electrospun collagen scaffold.
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O.1 Concept

• Fibre spinning may be broadly divided into three categories:
melt spinning method, wet solution spinning method, and
electrospinning method. 

• In melt spinning, the spray of molten polymer is cooled to
form solid threads. Electrospinning is an effective process for
forming nanofibres through a high electric field. Wet spin-
ning is based on the extrusion of concentrated polymer solu-
tions under pressure into precipitation solution. 

• In wet spinning, the polymer solution is extruded into a non-
solvent to precipitate the polymer in the form of a thread.
This technique avoids the large capital, space, and raw
material requirements of the conventional melt extrusion of
polymers.

• Furthermore, the fibre properties are controllable for specific
applications and are able to compose synthetic and natural
polymers, resulting in biocompatible fibres with good mechan-
ical properties.

• This technique may also have the potential to incorporate
heat-sensitive drugs into the fibre, as the entire process takes
place at room temperature. 

O.2 Procedure

There are two different wet spinning methods by grouping the
physical properties of polymers and extrusion condition. The
following is a description of the concrete wet spinning method
of both polyester and chitosan monofilaments on half of wet
spun fibres.

O.2.1 Polyester monofilament fibres

1. Dissolution

• PLGA, PLA, and PCL are dissolved in a variety of solvent
systems (including methylene chloride, DMF, chloroform,
acetone, HFP, and their mixture solutions) at various con-
centrations from 5 to 20 wt/v%. 

164 � Preparation of Microfibres and Fibrous Scaffolds
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Note: Solution spinning of the polymers normally requires
high solution viscosities to enable extrusion of a filament
prior to drawing. The wet spinning technique is dependent
on two key factors: the viscosity of the polymer solution, and
the choice of solvent/nonsolvent systems.

2. Extrusion

• The polymer solution is loaded into a glass syringe and
placed in a syringe pump, and then the syringe is con-
nected to a 21–25-gauge needle (Fig. O.1).

• Only blunt-tipped needles should be used because the
slope on sharp needles would cause problems during
extrusion. The extrusion flow rate is 0.05–0.20 mL/min. 

• The fibre production rate tends to increase at lower solu-
tion concentrations in line with the higher follow rate of
lower viscosity solutions through a spinneret.

3. Coagulation

• The needle tip is immersed in a small stainless container
full of coagulating bath fluid, which is a poor solvent for
the polymer and includes isopropyl alcohol, methanol,
and short alkanes.

Procedure � 165
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Fig. O.1 Extrusion system.
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• The coagulation solution is a poor solvent for the polymer,
yet highly miscible with the solvent of dissolving the polymer.

• The morphological characteristics of the filament, such as
the presence of macropores and noncircular cross-sectional
shapes, are greatly influenced by both temperature and
the solvent content in the coagulation bath.

4. Collection

• A scheme of wet spinning line used to produce regener-
ated polyester fibres is reported in Fig. O.2.

166 � Preparation of Microfibres and Fibrous Scaffolds
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Fig. O.2 (a) Scheme and (b) photograph of wet spinning line.
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• This spinning line is composed of an extrusion unit, coagu-
lation bath, take-up, and roller. 

• The collecting rate can be varied so that fibres are col-
lected with different drawn ratios. Collected fibres are
dried under vacuum for 48 h.

5. Bonding

• Fibrous matrices are shaped to have a pore size of
150–300 µm. The fibrous matrices are exposed to organic
solvent vapour for 3–12 h to bond the fibres.

O.2.2 Chitosan monofilament fibre

1. Dissolution

• The chitosan powder is dissolved in aq. 2%–5% (v/v)
acetic acid to produce 5%–15% chitosan dope solution,
and then the solution is filtered by cloth fabric to remove
insoluble particles and finally degassed in ultrasonic bath. 

2. Extrusion

• Multifilament spinning of the chitosan solution is carried
out with a small and simple wet spinning system, as shown
in Fig. O.3. The chitosan solution is introduced into the
cylinder.

• The polymer solution is extruded through a spinneret
(60 holes, 100-µm diameter) submersed in a coagulation

Procedure � 167
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Fig. O.3 Photograph of multifilament spinning system.
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bath containing alkali ethanol solution. A pressure of
0.2 MPa is applied.

3. Coagulation and collection

• The solution is injected into a coagulation bath containing
a mixture of 1M NaOH, 50% ethylene glycol, and 50%
distilled water.

• The concentration, composition, and temperature of the
coagulation solution are important process variables. In
the bath, the fibre bundle is drawn to get molecular chain
orientation and improve the mechanical properties (Figs.
O.4–O.6).

• The spools with fibres are washed in running water for 3 days,
and then dried by ethanol substitution at room temperature.
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Fig. O.4 Drawn fibre.

Fig. O.5 Wet spun chitosan fibre bundle.
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4. Fibrous matrix preparation 

• Three-dimensional scaffolds are developed by an acid-
treated fibre bonding technique (Fig. O.7). Chitosan disks
are fabricated by pressing dried chitosan fibres. 

• The chitosan disks are equilibrated in water for pore gen-
eration. The matrices are subjected to a pH 5.6 acetate
buffer for 15 s for partially solubilising chitosan fibres. 

• The matrices are quickly placed in a 1N NaOH solution for
inhibiting solubilising polymer fibres. Nonwoven chitosan
fibrous matrix is washed in distilled water and freeze-
dried (Fig. O.8).

Procedure � 169
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Fig. O.6 Dry chitosan fibres.

Fibre bonding
technique:
pH 5.6 acetate
buffer
treatment

Fig. O.7 Scheme of the chitosan fibrous matrix system using fibre
bonding technique by acid treatment.
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O.3 Characterisations

• The fibre mechanical, thermal, and rheological solution prop-
erties are characterised.

• The shear viscosity of the polymer solution is monitored
using a rheometric expansion system.

• The viscoelasticity of the polymer solution, depending on the
concentration and the polymer solvent interaction, is consid-
ered as one of the key factors of spinnability and physical
properties of monofilaments.

• DSC analysis is performed using a thermal analysis instrument.
• To investigate the crystalline structure and molecular orien-

tation of the regenerated polymer fibres, X-ray scattering is
measured.

• To evaluate the mechanical properties of filament, stress–strain
curves are obtained using Instron.

• The cross-section and surfaces of monofilaments are exam-
ined using SEM after gold coating.
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Fig. O.8 Photograph of chitosan fibrous matrix.
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P.1 Concept

• Melt-blown technology has been introduced to make micro-
fibrous nonwoven mats that are effective in regenerating
functional tissues or organs (ranging from bioartificial skin
to functional urinary bladder and blood vessels) using cell-
scaffold–based approaches.

• In this approach, a highly porous scaffold is needed to
accommodate cells and to guide their growth and tissue
regeneration in three dimensions. 

• The fibrillar structure is important for cell attachment, prolif-
eration, and differentiated function in tissue culturing.

• The most important function of the microstructure of a
porous scaffold matrix is to provide structural cues that
guide tissue development by organising cells into a specific
three-dimensional architecture, and by appropriately bal-
ancing the proliferation and differentiation of cells in the
3D space.

• The nonwoven fibres in the melt-blown process are held
together by a combination of entanglement and cohesive
sticking.

• The biodegradeable polyesters, PGA and PDO, are commonly
used for preparing scaffolds using this technique.

• Typical air temperatures range from 230°C to 360°C.

P.2 Procedure

• The polymer is dried over 24 h at a predetermined tem-
perature under vacuum to remove the water, as shown in
Fig. P.1.

• The predried polymer is fed into a melt-blown machine
through a hopper.

• The polymer is heated up to the point where the molten mate-
rial can be extruded through a spinning die (Fig. P.2).

• High-velocity heated air is injected near the die tip and atten-
uates the filaments to a finer diameter.

• The filaments are quenched with cool air, and then are
blown and collected on a moving collector screen.

176 � Fabrication of Nonwoven Fibre
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• The nonwoven fibre is usually wound on a cardboard core.
• The nonwoven fibre is subsequently thermally calendered

with a smooth or patterned finish, or is thermally laminated
with other substrates.

• Samples are dried by heating them at a predetermined tem-
perature under vacuum. This removes the moisture bound to
the surface of the samples.

Procedure � 177
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Fig. P.1 Drying of PGA.

Spinning head Laminating moulder

Hopper

Extruder

Air

Suction blower 
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Winder

Spinning head 
collector

Fig. P.2 Schematic diagram of the melt-blown process.
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P.3 Requirements

1. Biodegradeable polymer (PGA, PDO)
2. Melt-blown apparatus
3. Calender
4. Laminator
5. Vacuum oven

P.4 Characterisations

• The diameter and polymer morphology of the melt-blown non-
woven fibre are determined with the use of SEM (Fig. P.3).

• An image analyser is used to measure the distribution of the
diameter.

• The following are some of the main characteristics and prop-
erties of a melt-blown nonwoven fibre:

• The fibre orientation is random.
• Melt-blown nonwoven fibres derive their strength from

mechanical entanglement and frictional force.
• Most melt-blown nonwoven fibres have a layered struc-

ture, with the number of layers increasing as the basis
weight increases.

• The fibre diameter ranges from 2 to 7 µm.
• Microfibres provide a high surface area.
• The fibres show thermal branching, as shown in Fig. P.3.

178 � Fabrication of Nonwoven Fibre

FA
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Fig. P.3 SEM images of nonwoven fibre prepared from (a) PGA and
(b) PDO via melt-blown process.
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P.5 Cautions

• The polymer and air throughput rates decide the final
fibre diameter, the fibre entanglements, and the extent of
the zone of attenuation. Therefore, they should be changed
according to requirements during production.

• Bear in mind that the die and air temperatures affect the
appearance and tactile hand of the fabric as well as fab-
ric uniformity.

• The die-to-collector distance generally affects the open-
ness of the fabric and the fibre-to-fibre thermal bonding.

• The air angle controls the nature of air flow, thus affect-
ing the degree of fibre dispersion or turbulence.
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Q.1 Concept

• Inkjet printing technology has been developed as a tool to
configure scaffolds for tissue engineering applications.
Recently, efforts toward printing cells directly onto the sub-
strates have been demonstrated with single cell types. 

• To build complex tissues composed of multiple cell types and
tissue components, printing a three-dimensional structure con-
sisting of various cell types is necessary. 

• Three-dimensional printing is an approach to fabricate scaf-
folds, wherein a binder solution is deposited onto a biomate-
rial powder bed layer by layer using an inkjet printer. The
principle of the classic three-dimensional printing technique
is shown in Fig. Q.1.

• The loading bed consists of a biomedical grade material,
such as plastics and ceramics. Each layer in the build bed is
incrementally raised up by a Z-axial piston as the printing
progresses, depending on the type of material used and on
the surface finish and accuracy needed. 

• The nozzle through which the binder ejects is controlled by
a computer-driven X–Y positioning system. 

• The deposition of the binder in one complete layer defines
the form and structure for the printed layer, and the process
is repeated until all of the layers have been fabricated.

• The conventional printing technology uses toxic solvents,
which are not suitable for tissue engineering applications.
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Fig. Q.1 A schematic diagram of the classic three-dimensional printing
technology.
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To overcome this limitation, recent developments allow the
use of noncytotoxic cross-linkers and hydrogels to print
three-dimensional structures. 

• Noncytotoxic cross-linkers, such as CaCl2, are loaded into the
printer cartridges and replace the binders. 

• Subsequently, the cross-linkers are ejected into the uncross-
linked hydrogel, e.g. sodium alginate, which is loaded into
the loading bed of the printer. 

• When the cross-linkers are in contact with the uncross-linked
hydrogel, rapid polymerisation occurs, resulting in rigid gelation.

• A layer-by-layer printing of the hydrogels results in a three-
dimensional hydrogel scaffold with the formation of predeter-
mined structures. 

• More recently, the possibility of inkjet printing of living cells
has been demonstrated. As with the printing of biomaterials,
living cells can be loaded directly into the printer cartridges
and printed into appropriate substrates to form cell structures.

• When combined with the printing of hydrogel, cell printing
technology offers the possibility to fabricate complex 3D tis-
sue-like constructs.

Q.2 Procedure

The desktop printer (HP 550) and cartridges are modified to
permit the printing of cells and biomaterials. The paper-feeding
mechanism is disabled, and a customised Z stage and chamber
are installed. The printer cartridges are emptied and sterilised
to accommodate cells and biomaterials.

• Sodium alginate solutions (2%) and CaCl2 (0.25M) are pre-
pared and sterilised.

• Muscle cell pallets are prepared by trypsinisation and
centrifugation.

• The cells and CaCl2 are mixed and loaded into the printer
cartridges.

• The print designs are created using Microsoft PowerPoint

software (Fig. Q.2). 
• CaCl2 with cells are printed into the uncross-linked alginate

gel loaded onto the Z stage and chamber.
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• After every print action, an elevator platform is lowered to
refill uncross-linked alginate gel onto the Z stage for the next
layer printing.

• A layer-by-layer printing of alginate gels mixed with cells
results in a three-dimensional structure.

Q.3 Characterisations

• To demonstrate that the printed cells retain their phe-
notypic and functional expressions, a series of assays is
performed.

• The viability of cell-printed three-dimensional constructs is
evaluated by a two-colour fluorescence live/dead assay using
calcein AM and ethidium homodimer (EthD-1). 

• The live/dead experiments show that more than 90% of cells
survive during the nozzle firing [Fig. Q.3(a)].

• The proliferative ability of cell-printed constructs is analysed
using the mitochondrial metabolic (MTT) activity assay.

• The MTT proliferation assay shows that smooth muscle cells
within the printed constructs gradually proliferate during a
7-day period [Fig. Q.3(b)].
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(a) (b)

Fig. Q.2 Fabrication of three-dimensional tubular structures. (a) Ring
patterns are designed with the Microsoft Powerpoint software. (b) The
tubular structures, consisting of muscle cells and alginate gels, are fab-
ricated by layer-by-layer printing.

b485_Ch-Q.qxd  5/12/2007  11:30 AM  Page 186



• The microarchitecture of the printed scaffolds is evaluated by
light microscopy and SEM. 

• The three-dimensional printed scaffolds exhibit a unique
microarchitecture, consisting of numerous microshells dis-
tributed in an orderly fashion within the matrix [Fig. Q.4(a)].
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Fig. Q.3 (a) Representative live/dead fluorescent image of smooth
muscle cells within the cell-printed 3D constructs (day 4). Living cells
after printing are stained in fluorescent green, and dead cells in fluo-
rescent red. (b) MTT cell proliferation assay of smooth muscle cells
within 3D cell-printed constructs.
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Fig. Q.4 (a) Light microscopy of the printed scaffolds. (b) Stress–
displacement profiles of the printed three-dimensional constructs.
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• The mechanical properties of the printed scaffolds are meas-
ured at room temperature by applying the tensile stress of the
sample at 5 mm/min.

• The resulting stress–strain curve is used to calculate the lin-
ear modulus and ultimate tensile stress [Fig. Q.4(b)].
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R.1 Concept

• Computer-aided tissue engineering (CATE) covers the inte-
gration of rapid prototyping (RP) with computer-aided design
(CAD) and medical imaging acquisition/processing method-
ologies for the production of anatomically adapted scaffolds
featuring a tailored internal architecture for tissue engineer-
ing (TE) applications. 

• In the TE research field, a great deal of attention has been given
to the development of scaffolds by melt-based extrusion-
based RP. 

• In techniques such as fused deposition modelling (FDM), a
filament of material is heated up and melted in an extrusion
nozzle and deposited layer by layer, according to a program-
meable path.

• Variations of the FDM process have been employed for the
development of TE scaffolds, such as precise extruding dep-
osition (PED) in which the plasticisation of the melt is made
by a rotating screw and 3D deposition process.

• In the so-called 3D deposition process (Fig. R.1), also
referred to as 3D bioplotting, the material in the powder or
granular form is heated and displaced inside a thermally con-
trolled barrel above the glass transition temperature (for
amorphous) or above the melting temperature (for semicrys-
talline) of the polymer.
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Fig. R.1 Bioplotter™ system (Envisiontec GmbH, Germany).
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• The standard Bioplotter™ equipment employed in this chap-
ter is modified with a pneumatic piston, which is used to dis-
place the molten material inside the barrel (Fig. R.2).

• The following protocol is meant to produce scaffolds based
on biodegradeable polymers or blends, like the blend of
starch with PCL (SPCL from Novamont SpA, Italy) employed
below.

• The following steps are performed using the Bioplotter™ rapid
prototyping equipment (Envisiontec GmbH, Germany) and
the software interface PrimCAM (PRIMUS DATA, Switzerland).

R.2 Procedure

1. Preparation of materials

The material to be processed should ideally be in powder
form. The powder form facilitates the melting of the polymer
during heating as compared to granules.

• Grind the polymer pellets using liquid nitrogen [Fig. R.3(a)].
Powder can be obtained from the polymer pellets by their
respective grinding in a rotor mill employing liquid nitrogen.
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Fig. R.2 Pneumatic piston used to displace the polymer inside the
barrel. (a) Schematic representation. (b) Adaptation to the Bioplotter™
equipment.
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A sufficient volume of liquid nitrogen should be used in
order to prevent any melting or degradation of the poly-
mer during grinding.

• Sieve the polymer powder. Use a laboratory test sieve with
a 500-µm opening. The average particle of the obtained
powder should be less than 500 µm.

2. Feeding of materials

• Feed the cylinder cavity with the polymer powder or with
precompacted polymer cartridges [Fig. R.3(b)]. Polymer
cartridges can be prepared by cold-pressing the polymer
powder into a cylindrical shape. These polymer cartridges
allow for a better filling of the cavity during feeding.

3. Device configuration [Fig. R.3(c)]

• Select a luer-lock needle with an adequate diameter for
the envisaged scaffold geometry. Always accurately check
the real needle diameter under an optical microscope.

• Define the needle length to be used. Take into account the
fact that the volume of dispensed material (V) depends on
the needle length (L) and radius (r), pressure drop (∆P), and
polymer viscosity (η), according to the Hagen–Poiseuille
equation:

V = π ∆P ⋅ ∆t ⋅ r4.
8 ⋅ η ⋅ L
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Fig. R.3 Preparation of materials.
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The flow rate (∂V/∂t) is inversely dependent on the nee-
dle length. For a constant flow rate, the pressure drop is
proportional to the needle length.

• Calibrate the needle length by manually positioning the
needle between the two laser barriers.

• Enter the respective X-, Y-, and Z-position values into the set
parameters at the PrimCAM software interface [Fig. R.3(d)].

• Define the work piece origin by manually positioning the
tip of the needle at the origin position.

• Enter the respective position values into the set parameters
at the PrimCAM software interface [Fig. R.3(e)]. The work
piece origin defines the Z start position of the dispensing
head for the dispensing process, and corresponds to the
origin point of the 3D data.

4. Design of scaffold architecture

• Import an appropriate data file for the scaffolds to be pro-
duced [Fig. R.4(a)]. The PrimCAM software supports the
following 3D data formats: stereolithography standard file
format (STL), drawing exchange format (DXF), and com-
mon layer interface (CLI). The example presented here
corresponds to a 20 × 20 × 20 mm3 cube (DXF format).

• Define the internal scaffold’s architecture using the
PrimCAM software interface [Fig. R.4(b)]. Scaffold build-
ing parameters include the type of pattern, strand dis-
tance, offset distance, and layer thickness.

• The schematic representation of two scaffold architectures
is given here as examples [Fig. R.4(c)]. (i) is an orientation
pattern between consecutive layers of 0°/90° and no off-
set fibre distance between consecutive layers (used here
as a reference); while (ii) is an orientation pattern between
consecutive layers of 0°/90° and an offset fibre distance
(strand distance/2) between consecutive layers.

• Preview the scaffold architecture using the Editor option
of PrimCAM [Fig. R.4(d)]. The 3D model is sliced into sev-
eral layers according to the defined layer thickness.

• Verify the dispensing path for each layer [Fig. R.4(e)]. Take
into account the origin position for the dispensing path.

• Generate a computer numeric control (CNC) code to be
transferred to the Bioplotter™ [Fig. R.4(f)].
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R.3 Characterisations

R.3.1 Processing conditions

• Define an adequate melting temperature [Fig. R.5(a)]. Select
an appropriate melting material for processing the poly-
mer. Always take into account the thermal stability of
the polymer and the average residence time during scaffold
fabrication.

• Adjust the pressure accordingly with the inherent viscosity of
the polymer [Fig. R.5(b)].

• Select an adequate surface for scaffold fabrication [Fig. R.5(c)].
Select a building surface that guarantees the adhesion of the
first deposited layer, taking into account the processed poly-
mer. For the SPCL blend employed here, good results are
found with cellulose filter paper substrates.

• Define the correct feeding speed [Fig. R.5(d)].
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Fig. R.4 Design of scaffold architecture.
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• Most of the scaffold architecture is defined according to the
parameters.

• Nevertheless, the feeding speed is still adjustable during
layer deposition. The selection of an adequate feeding speed
is important to assure constant dimension of the filaments
and adhesion between layers. Low feeding speeds (i) cause
the filament to be irregular due to dimensional instability of
the deposited polymer, while high feeding rates (iii) cause
stretching of the filament while depositing, thus compromis-
ing adhesion to the previous layer.

• Fine-tune the building parameters [Fig. R.5(e)].
• Some building parameters usually have to be optimised dur-

ing scaffold fabrication, such as the corner delay time. The
corner delay is the time given by the equipment to dispense
corners. No sharp corners are obtained with low corner
delays (i), while excess polymer is deposited at the corners
for high corner delays (iii). 

• These parameters are not adjustable during scaffold fabrication.
• Follow scaffold fabrication [Fig. R.5(f)].
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Fig. R.5 Processing condition.
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R.3.2 Obtained scaffolds

• Observe the obtained scaffolds using SEM (Fig. R.6).
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Fig. R.6 SEM of the SPCL melt-based rapid-prototyped scaffold.
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S.1 Concept

1. Growth factors — substances that promote the growth of cells
within the body — have been extensively investigated for
their regenerative potential in the tissue engineering field. 

2. There are various types of growth factors, and their abilities
for the control of cell-related functions are categorised by
their specific therapeutic applications such as angiogenesis,
bone regeneration, and wound healing, as shown below:

• Basic fibroblast growth factor (bFGF)
• Transforming growth factor (TGF)
• Vascular endothelial growth factor (VEGF)
• Platelet-derived growth factor (PDGF)
• Bone morphogenetic protein (BMP)
• Insulin-like growth factor (IGF)
• Nerve growth factor (NGF)
• Hepatocyte growth factor (HGF)
• Etc.

3. Typically, growth factors as a signalling protein are deliv-
ered in solution form, either systemically or via direct injec-
tion into the tissue site of interest. However, growth factors
have a short half-life in the body and are rapidly eliminated. 

4. They may also induce adverse effects. Consequently, many
researchers have studied the potential for protein delivery
systems to improve the bioavailability of growth factors for
an extended period.

5. There have been a number of attempts for the delivery of
various growth factors using polymeric biomaterials, and
these efforts have enabled an effective delivery of a specific
growth factor to target tissues. 

6. Growth factor–released scaffolds can be suitably designed,
considering the site and the period required for applications. 
The control of release kinetics at a predetermined time is
especially critical for the design of the delivery vehicle because
growth factors are dose-dependent on exposed tissues.

7. Depending on the scaffold’s geometry, porosity, volume,
hydrophilicity, biodegradation, and affinity to the growth fac-
tor and site of implantation, growth factor release can either
be (a) diffusion-controlled, (b) chemical and/or enzymatic

206 � Growth Factor–Released Scaffold
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reaction–controlled, (c) solvent-controlled, or (d) controlled
by a combination of these mechanisms. Materials commonly
used as a scaffold for growth factor delivery are classified as
natural polymers (collagen, gelatin, alginate, chitosan, fibrin)
or synthetic polymers (PLGA, PLA, PEG).

S.2 Procedure

S.2.1 Physical incorporation and adsorption 

Growth factors can be simply entrapped into various scaffold
types such as membranes, hydrogels, foams, and particles on
the fabrication process. In these steps, a whole understanding
of the processing is important and the distribution of a growth
factor incorporated into the matrix must be considered. Also,
growth factors may be physically adsorbed on the material
surface.

1. Preformed scaffold (sponge or membrane type)

• Immerse the preformed scaffold overnight in 70% (v/v)
ethanol for sterilisation, and wash with PBS solution.

• Impregnate bFGF by immersing the scaffold in 80 µg/mL
of PBS solution of bFGF for 24 h at 4°C.

2. Injectable scaffold

• Thermosensitive hydrogel: Thermosensitive gels (PLGA-
PEG-PLGA, PNIPAAm, etc.) have been widely used
for biomedical applications, and the aqueous solution
shows the sol–gel transition behaviour at body tempera-
ture. In this case, follow the directions as described
below:

(a) After completely dissolving 1 g of PLGA-PEG-PLGA
in 4 mL of distilled water, add 10 µg of a growth
factor.

(b) After complete mixing, just use it at 37°C.

• Microparticle: Microparticles of PLGA/PEG blends
containing 0%, 1%, or 5% PEG (w/w) are fabricated
using a double-emulsion, solvent-extraction technique
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[(water-in-oil)-in-water]. PEG is blended by modulating
drug release profiles.

(a) Dissolve PLGA and PEG in a total amount of 247.5 mg
in 1 mL of methylene chloride.

(b) Dissolve 1.5 µg of TGF-β1 in 125 mL of distilled water,
and inject it into a flint glass tube containing the poly-
mer solution.

(c) Emulsify the entire mixture on a vortexer for 1 min,
and then re-emulsify this solution in 100 mL of 0.3%
(w/v) PVA solution.

(d) Add the second emulsion to 100 mL of a 2% IPA solu-
tion, and maintain on a magnetic stirrer for 1 h.

(e) Collect the microparticles, centrifuge, and lyophilise.
(Microparticles may be embedded into 2D or 3D
scaffolds.)

S.2.2 Affinity-based incorporation

1. Heparin immobilisation (Fig. S.1)

• Equilibrate EDC and NHS at room temperature.
• Incubate amine group (−NH2)-containing polymers with

0.05M MES (2-morpholinoethane sulfonic acid) buffer
(pH 5.6) at room temperature.

• Add EDC and NHS to heparin in 10 mL of 0.05M MES buffer
at a molar ratio of EDC:NHS:heparin-COOH of 0.4:0.24:0.1.

• Activate for 10 min at room temperature, and then add it
(a molar excess of preactivated heparin) to the polymer
solution.

• React over 2 h at room temperature, and finally wash with
distilled water for several times (or use a dialysis membrane).
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Fig. S.1 Major and minor disaccharide repeating units in heparin (X = H
or SO3

−; Y = Ac, SO3
−, or H).
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• Incubate these samples with a heparin-binding growth
factor (bFGF, TGF-β1, PDGF, VEGF, etc.) solution for over
2 h at 37°C.

Note: This coupling reaction may be carried out in other
buffer conditions, not an MES buffer. However, in the
cross-linking step, the ester on the NHS-activated heparin
is more stable at pH 5 than at a higher pH. EDC reacts
with a carboxyl group and forms an amine-reactive inter-
mediate that is unstable in aqueous solutions. Failure
to react with an amine results in hydrolysis of the inter-
mediate, regeneration of the carboxyl, and release of an
N-substituted urea.

2. Gelatin microspheres

• Dissolve 5 g of gelatin in 45 mL of distilled water at 60°C,
and add dropwise to 250 mL of chilled olive oil while stir-
ring at 500 rpm. 

• Add 100 mL of chilled acetone (4°C) to the emulsion after
30 min. After an additional 60 min, collect the micro-
spheres by filtration and wash with acetone.

• Cross-link the obtained microspheres in 0.1 wt% Tween
80 solution with 10 mM glutaraldehyde (GA) while stir-
ring at 500 rpm at 15°C.

• After 15 h, collect the cross-linked microspheres by filtra-
tion, wash with water, and then agitate in a 25-mM
glycine solution for 1 h to inactivate any unreacted GA. 

• Collect the cross-linked microspheres by filtration, wash
with water, and then lyophilise overnight. Sterilise with
ethylene oxide for 16 h.

• Mix 100 mg of sterilised microspheres and 500 µL of an
aqueous TGF-β1 solution (1.2 ng TGF-β1/mL) at pH 7.4 [at
this pH, gelatin microspheres and TGF-β1 form a complex
due to the association of the negative charges of acidic
gelatin (IEP of 5.0) and the positive charges of TGF-β1 (IEP
of 9.5)].

• Vortex the mixture and incubate at 4°C for 15 h.
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S.3 Characterisations (Assay Procedure
of a Growth Factor)

To quantitatively analyse the loaded or released growth factor,
the assays of samples employ the quantitative sandwich enzyme
immunoassay technique (ELISA), which is based on Quantikine®
(R&D Systems, Inc., USA). The assay procedure for bFGF as a
model growth factor is described below. More information
related to other growth factors is available on the website of
R&D Systems (www.rndsystems.com).

• bFGF

Bring all reagents to room temperature before use. It is rec-
ommended that all samples and standards be assayed in
duplicate.

• Reagents

1. FGF basic microplate
2. FGF basic conjugate
3. FGF basic standard
4. Assay diluent RD1-43
5. Calibrator diluent RD5-14
6. Wash buffer concentrate
7. Colour reagent A
8. Colour reagent B
9. Stop solution

10. Plate covers

• Other supplies required

1. Microplate reader capable of measuring absorbance at
450 nm, with the correction wavelength set at 540 nm or
570 nm (Fig. S.2).

2. Pipettes and pipette tips
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3. 500-mL graduated cylinder
4. Deionised or distilled water
5. Multichannel pipette, squirt bottle, manifold dispenser,

or automated microplate washer

• Wash buffer

If crystals have formed in the concentrate, warm to room
temperature and mix gently until the crystals have com-
pletely dissolved. Dilute 20 mL of wash buffer concentrate
into deionised or distilled water to prepare 500 mL of wash
buffer.

• Substrate solution

Colour reagents A and B should be mixed together in equal
volumes within 15 min of use. Protect from light. About 200
µL of the resultant mixture is required per well.
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Fig. S.2 Microplate reader.
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• FGF basic standard

Reconstitute the FGF basic standard with 2 mL of calibrator
diluent RD5-14. This reconstitution produces a stock solu-
tion of 640 pg/mL. Allow the standard to sit for a minimum
of 15 min with gentle agitation prior to making dilutions.

Pipette 500 µL of calibrator diluent RD5-14 into each tube.
Use the stock solution to produce a dilution series (Fig. S.3).
Mix each tube thoroughly before the next transfer. The undi-
luted FGF basic standard serves as the high standard (640
pg/mL). Calibrator diluent RD5-14 serves as the zero standard
(0 pg/mL). Discard the FGF basic stock solution and dilutions
after 4 h. Use a fresh standard for each assay.

• Prepare all reagents and working standards as directed above.
• Remove excess microplate strips from the plate frame, return

them to the foil pouch containing the desiccant pack, and
reseal.

• Add 100 µL of assay diluent RD1-43 to each well. Assay dilu-
ent RD1-43 contains a precipitate. Mix well before and dur-
ing its use.

• Add 100 µL of the standard or sample per well. Cover with
the adhesive strip provided. Incubate for 2 h at room tem-
perature. Provide a plate layout to record the samples and
standards assayed.
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Fig. S.3 Dilution of calibrator diluent.
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• Aspirate each well and wash, repeating the process three
times for a total of four washes. Wash by filling each well
with wash buffer (400 µL) using a squirt bottle, multichannel
pipette, manifold dispenser, or autowasher. The complete
removal of liquid at each step is essential to good perform-
ance. After the last wash, remove any remaining wash buffer
by aspirating or decanting. Invert the plate and blot it against
clean paper towels.
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Fig. S.4 Typical calibration data.
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• Add 200 µL of FGF basic conjugate to each well. Cover
with the adhesive strip provided. Incubate for 2 h at room
temperature.

• Repeat the aspiration/wash step.
• Add 200 µL of substrate solution to each well. Incubate for

30 min at room temperature. Protect from light.
• Add 50 µL of stop solution to each well. If the colour change

does not appear uniform, gently tap the plate to ensure thor-
ough mixing.

• Determine the optical density of each well within 30 min, using
a microplate reader set to 450 nm. If the wavelength correc-
tion is available, subtract the reading at 540 nm or 570 nm of
the plate. Readings made directly at 450 nm without correc-
tion may be higher and less accurate (Fig. S.4).
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T.1 Concept

• The sponge replication method is designed to prepare porous
3D scaffolds for bone tissue engineering, and is a promising
method for interconnected porous blocks.

• Three-dimensional interconnected porous ceramic scaffolds can
be produced by the replication of porous polyurethane (PU)
sponge geometry after ceramic paste coating on it and firing.

• The pore size, geometry, and porosity of ceramic scaffolds
prepared by this method can be easily controlled by selecting
the desired pore size of the PU sponge, ranging from 200 to
1000 µm.

• The sponge replication process involves (1) the preparation
of a ceramic paste with additives, (2) the coating of the paste
on sponge, (3) the drying and firing at sintering temperature
with the removal of sponge, and (4) the second coating of the
ceramic slurry for enhanced mechanical strength of porous
ceramic scaffolds.

• Porous 3D ceramic scaffolds may support bone cell adhesion
on their struts and cell ingrowth as well as blood vessel
ingrowth into the pores and bone colonisation in vivo.

• The prepared ceramic paste has relatively high viscosity and
shows viscoelastic behaviour such as dilatent rheology,
where thixotropic property is essential through the coating.

• This method can be applied to any calcium phosphate ceram-
ics. However, a nonaqueous paste formulation system is
needed for degradeable calcium phosphates such as trical-
cium phosphate, biphasic calcium phosphate (a mixture
of hydroxyapatite and tricalcium phosphate), or calcium
sulfate.

• The maximum solid loading is around 30 vol% in net volume
of ceramic paste, and the desired volume of powder (which
is usually dependent on the particle size) is recommended
between 20 and 25 vol%.

• The formulation of liquid phase for the ceramics paste con-
tains (1) solvents (water or alcohol), dispersants, and binders
for wrapping the particles together (e.g. PVA) and giving
it proper green strength; (2) plasticisers for plasticity after
drying; and (3) thinners or thickeners, and drying control
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chemical additives for preventing cracks on drying due to
high shrinkage and fast drying.

• The ceramic powders should be nanosized by ball-milling or
an equivalent manner in advance before being mixed with
liquid solution.

T.2 Procedure

• The prepared PU sponges with desired shape are etched and
cleaned ultrasonically in 2% NaOH solution for 15 min, and
then washed in tap water and distilled water before being
dried in a drying oven at 60°C [Fig. T.1(a)].

• PVA as a binder is added and stirred in distilled water at
40°C–50°C of solution temperature until the PVA becomes
dissolved and fully hydrolysed without any transparent PVA
gel particles [Fig. T.1(b)].

• Dispersant, plasticiser, thinner or thickener, and other addi-
tives are successively added into the PVA-dissolved water
solution [Fig. T.1(c)].

• Ground ceramic powders are added to the prepared solution,
which becomes a paste state (slurry) [Fig. T.1(d)].

• The paste is kneaded homogeneously; otherwise, a proper
automatic kneader may be chosen for a large volume of paste
[Fig. T.1(e)].

• The prepared sponges are immersed into the paste, and then
squeezing operation is applied several times by compression
and release in the paste, where the struts of sponges are ade-
quately coated with the paste [Fig. T.1(f)].

• In order to remove excessive paste located in pores of sponges,
the sponges are taken away from the beaker and then gently
rolled with a bar or roller on a rigid plate or aluminium foil
[Fig. T.1(g)].

• The paste-coated sponges are slowly dried at 30°C–35°C in
air or at 60°C in a dryer oven if a drying control chemical
additive is added into the paste [Fig. T.1(h)].

• After the completion of drying, the dried samples are very
slowly heat-treated and sintered at each sintering temperature
according to an appropriate heating schedule [Fig. T.1(i)].
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T.3 Requirements

1. Ultrasonic cleaner
2. Heating stirrer
3. Pipette
4. Beaker
5. Plastic rod or roller
6. Dryer oven
7. Furnace

T.4 Characterisations

• Because the viscosity of a paste is very high, the spring-back
force of a sponge after compression is very important. The
etching conditions (time, concentration) in NaOH solution
affect the spring-back of the sponges.
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(a) Sponge etching (b) Binder hydrolysis (c) Additive addition

(d) Powder addition (e) Paste homogenisation (f) Compression coating

(g) Sponge rolling (h) Drying (i) Firing

Fig. T.1 Preparation processing of ceramic scaffolds by polymeric sponge
method.
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• After 2% NaOH treatment with different time, the spring-
back rate of a sponge should be measured in terms of dimen-
sion ratio just before and after compression of a sponge,
where more than 98% of spring back is allowed (Fig. T.2).

• The powder content and viscosity of the paste should be con-
trolled differently, according to the pore size of sponges. For
example, a 25/75 volume ratio between powder and solution
is recommended for a 45-ppi (pores per inch) sponge (pore
size distribution of 500–1000 µm), and a 20/80 ratio for a
60-ppi sponge (pore size distribution of 200–400 µm).

• The binder content can be selected based on solid loading
and paste viscosity. For example, 5 wt% binder of powder
weight is recommended for a 45-ppi sponge, and 3 wt% for
a 60-ppi sponge (Fig. T.3).

• Various scaffold forms with various shapes and pore sizes
can be easily prepared by designing the sponge shape and
selecting the proper pore size of a sponge (Fig. T.4).

• Three-dimensional scaffolds by the sponge replication
method show a variety of porosities up to around 95% and
pore sizes ranging from 200 to 1000 µm in diameter.

• The pore size distribution can be measured by the mercury
intrusion method (Table T.1), and the pore geometry and
structure of struts can be examined by SEM (Fig. T.5).
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Fig. T.2 Spring-back rate and appearance of PU sponges after etching in
2% and 5% NaOH solution.
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• Apparent porosity can be measured by dividing the weight of
a machined cubic scaffold over the apparent volume.

• The SEM pictures represent the microstructure replicated
from sponges with an interconnected pore system, and
the pore sizes of ceramic scaffolds depend on the type of
sponge.
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Fig. T.3 Viscosity of pastes with different PVA content as a binder and
powder–liquid ratio.

Fig. T.4 Porous ceramic scaffold by a sponge method with various pore
sizes.
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• The surface of struts is relatively homogeneous and dense,
and the network structure may support better geometry
for cell adhesion, blood vessel ingrowth, and body fluid
circulation.

• Scaffolds prepared by the sponge replication method can be
machined into the desired shape well, due to adaptable
mechanical strength.

• If the sponges are coated with degradeable materials, it is
thought that the scaffold may be degraded and substituted
for newly colonised bone with a balanced time schedule.
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Table T.1 Pore size distribution of ceramic scaffolds prepared by
sponge replication method.

Type of sponge Pore size of sponge Pore size after sintering

45 ppi 700–1300 µm 500–1000 µm
60 ppi 350–600 µm 200–400 µm
80 ppi 200–300 µm 100–200 µm

Fig. T.5 SEM pictures of (a) 60-ppi and (b) 45-ppi PU sponges, and
scaffolds after sintering prepared with (c) 60-ppi and (d) 45-ppi
sponges.
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T.5 Cautions

• Because this method is a pressureless process, the sinter-
ing property of calcium phosphates is not so excellent.
There may be a limitation to obtain a proper mechanical
strength.

• In order to improve the mechanical strength of as-sintered
calcium phosphate scaffold, a second coating on the first-
coated sintered scaffold is recommended.

• The powder content in the paste for the second coating
should be reduced compared to that of the paste for the
first coating. The desired powder content is recommended
as 15 vol% for 45-ppi scaffolds and 10 vol% for 60-ppi
scaffolds.

• Once the scaffold is immersed in the paste and taken
out, it may need to be centrifuged for the removal of
excessive slurry and homogeneous thin coating.

• The second drying and firing schedule is nearly the same
as that of the first coating.
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U.1 Concept

• Thin coating of calcium phosphate (CaP) can provide
biocompatibility or enhance the bioreactivity of biomateri-
als for implants or scaffolds for tissue engineering without
losing the physical properties inherent to the substrate
materials.

• CaP nuclei attach and grow directly on the solid surfaces,
including surfaces of low interfacial energy, by gradually
increasing the supersaturation of the solution.

• This method can form CaP coating on most biomaterials:
metals; glasses; inorganic ceramics; organic polymers includ-
ing hydrophobic organic polymers such as PLGA, PS, PP, sil-
icone, and PTFE; and organic biological tissue matrices like
decalcified membranes of crab (consisting of chitin), colla-
gens, fibres of silk, and hairs.

U.2 Procedure

• About 4.0 mM PBS, pH 7.4, is prepared by dissolving
monobasic and dibasic phosphate salts in demineralised
distilled water.

• Approximately 100 mL of the calcium phosphate ion solution
is prepared by slowly adding 1 mL of 400 mM calcium nitrate
into 99 mL of precooled phosphate buffer solution (4.0 mM
PO4, pH 7.4) at 0.0°C–3.0°C. A peristaltic pump can be used
for slow mixing if precipitation occurs. 

• Sterile ion solution can be prepared by filtering the prepared
ion solution using a 0.22-µm filter for direct use without
extrasterilisation processing later.

• The ion solution is poured into the vessels containing bio-
materials or scaffolds. Supersaturation of the CaP ion solu-
tion is gradually increased to provide a driving force for
nucleation by heating the ion solution without chemical dis-
turbance of the solution that might cause an abrupt homoge-
neous nucleation in the solution. The ion solution is
gradually heated and kept at the same temperature in an
oven set at 37°C.
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Note: The coating time is dependent on the surface energy
of substrates to be coated and on the volume of the ion solu-
tion. Generally, surfaces of low interfacial energy take a long
time to be coated with CaP thin film.

• The same procedure can be repeated to increase the thick-
ness of CaP coating from nanothickness to microdimension
using fresh CaP ion solution.

U.3 Characterisations

• The FTIR spectra of crystals can be obtained using a Fourier
transform spectrometer, after embedding the crystals removed
from the substrates in KBr pellets.

• CaP thin films formed on the surface can be observed using
SEM (Fig. U.1).

U.4 Sterilisation and Uses

Seeding of cells on the CaP coating or implantation can
be followed without surface extratreatment for biocompati-
bility after sterilisation of the substrate using 100% ethanol
overnight, or directly without sterilisation if the sterilised ion
solution is used.

U.5 Cautions

Rapid stirring of the ion solution is recommended so that
no precipitation is formed when the solution comprising
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calcium ion is added. If there is precipitation in the solu-
tion after mixing both solutions, the precipitation particles
should be removed by filtration using a 0.45–0.22-µm
filter.
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(a) (b)

(c) (d)

Fig. U.1 Calcium phosphate coating on (a) collagen microfibrils and
(b) PU; (c) and (d) are high-magnification views of CaP thin film formed
on the surface of the above viewing materials, respectively. The sur-
face of the substrate is totally covered with calcium phosphate crystals.

(Continued )
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V.1 Introduction

Sterility is defined as the absence of all living organisms or
absolute freedom from biological contamination. Living organ-
isms include microorganisms such as bacteria, yeasts, moulds,
and viruses. The presence of even one viable living organism
on a scaffold renders it nonsterile. Sterility should not be con-
fused with cleanliness. Sterilisation is the process to inactivate
and eliminate all viable living organisms and their spores.
Scaffolds introduced transiently or permanently into the body
of a human or an animal must be sterile to avoid subsequent
infection, which could lead to serious illness or death. If the
scaffolds are sterile, no living organism growth will occur; if it
is nonsterile, the scaffolds will become contaminated as a result
of living organism proliferation. An acute awareness of possi-
ble risks and a clear concept of sterilisation are essential to
prevent serious problems. The gas (ethylene oxide, EO) and
irradiation sterilisation methods are particularly noteworthy with
respect to sterilisation for scaffolds.

V.2 Concept

V.2.1 EOG sterilisation

• EO is a clear liquid below its boiling point of 11oC and a gas
at ambient temperature.

• EO is toxic and is considered a human carcinogen.
• The lethal effect of EO on microorganisms is mainly due to

the alkylation of amine groups on nucleic acids.
• In spite of its hazardousness, the use of EO for scaffold ster-

ilisation has many advantages, such as its efficacy even at
low temperatures, high penetration ability, and compatibility
with a wide range of materials.

• The EO sterilisation process consists of three components:
conditioning, sterilisation, and aeration.

• The EO sterilisation process typically ranges from 2 to 16 h in
duration, depending on the time required for aeration inside
the sterilisation chamber.
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V.2.2 Gamma radiation sterilisation

• This method of sterilisation utilises ionising radiation that
involves gamma rays from a 60Co (cobalt-60) isotope source.

• The gamma rays cause ionisation of key cellular com-
ponents, especially nucleic acids, resulting in the death of
microorganisms.

• Therefore, gamma radiation effectively kills microorganisms
throughout scaffolds and their packaging with little tempera-
ture effect.

• Gamma rays are highly deep-penetrating, and the typical
doses used for the sterilisation of scaffolds are readily deliv-
ered and measured.

• Gamma radiation sterilisation is by far the most popular and
widespread method for scaffolds.

V.2.3 Electron beam radiation

• Electron beam radiation is a form of ionising energy that per-
forms best when used on low-density, uniformly packaged
products.

• With this method, radioactive isotopes are not involved
because the electron beam is machine-generated using an
accelerator.

• The accelerator is located within a concrete room to contain
stray electrons; but when the accelerator is turned off, no
radiation or radioactive material is present and therefore a
water-filled pool is unnecessary.

• As with gamma rays, the lethality against microorganisms is
related to the ionisation of key cellular components.

V.3 Procedure

V.3.1 Ethylene oxide sterilisation

• For EO sterilisation, scaffolds contained within gas-perme-
able packaging are hermetically sealed, as shown in Fig. V.1.

• The packages are loaded into a sterilisation chamber (Fig. V.2).
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• The chamber is evacuated to remove air at a rate and to a
final pressure that is compatible with the product and pack-
aging, and then moisture is introduced to attain a relative
humidity generally between 60% and 80%.

• The presence of moisture is required for sterilisation efficacy
with EO gas. The EO gas is then injected to a final concen-
tration of ∼600–800 mg/L.

• The steriliser is maintained at the desired gas concentration
and temperature (typically 40°C–50oC) for a sufficient time.

• The chamber is re-evacuated to remove the EO, and air
flushes are performed to reduce the EO level to below accept-
able limits.

V.3.2 Gamma radiation sterilisation

• A schematic top view of a typical industrial 60Co irradiator is
shown in Fig. V.3.
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Fig. V.1 Package procedure of scaffold.

Fig. V.2 A schematic image of a typical EO steriliser with closed cham-
ber to maintain the desired temperature and EO concentration.
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• When the irradiator is not in use, the gamma-ray source rack
is lowered into a water-filled pool. When in use, the scaffolds
to be sterilised are loaded into aluminium carriers or totes
that are suspended from a conveyor system.

• The scaffolds are automatically conveyed into the irradiation
chamber (concrete room) around the radiation source.

• The radiation source is raised to the processing position.
• The desired dose is uniformly delivered by the raised radia-

tion source rack.
• Radiation measuring devices called dosimeters are placed

along with the scaffolds to be sterilised, and the minimum
and maximum doses are monitored.

• The scaffolds are brought to the unloading area in a sequen-
tial flow.

V.4 Cautions

V.4.1 EOG sterilisation

• Contact of liquid EO with the skin and eyes as well as
inhalation of the gas should be avoided.
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(a) (b)

Fig. V.3 (a) A schematic image and (b) a picture of a typical 60Co
irradiator.

(Continued )
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• Because of potential toxicity/carcinogenicity, residual
EO and its byproduct, ethylene chlorohydrin (EC), are of
concern in packaging scaffolds.

• The maximum allowable limits for EO and EC are no
longer expressed as a few hundred parts per million
(ppm) in scaffolds.

• The EO sterilisation process, if carried out for a long time at
high temperature, may induce deformation and/or degra-
dation of scaffolds prepared by polymers (Figs. V.4 and V.5).

244 � Method and Techniques for Scaffold Sterilisation

FA

(a) (b)

Fig. V.4 Photoimage (a) before and (b) after EO sterilisation of PLGA
scaffold prepared by salt-leaching method. The scaffold shape con-
tracts after EO sterilisation at 55oC for 4 h.

(a) (b)

Fig. V.5 SEM microimage in cross-section (a) before and (b) after EO
sterilisation of PLGA scaffold prepared by salt-leaching method (mag-
nification is 500). The scaffold changes from an open pore structure to
a closed one after EO sterilisation at 55oC for 4 h.

(Continued )

b485_Ch-V.qxd  5/14/2007  6:51 PM  Page 244



V.4.2 Gamma radiation sterilisation

• Some materials, e.g. PLGA, are degraded by gamma
irradiation due to molecular-chain scission (Figs. V.6
and V.7).

• The fluoropolymer PTFE is not compatible with this
sterilisation method because of its extreme radiation
sensitivity.
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Fig. V.6 Changes of PLGA molecular weight according to gamma irra-
diation dosage.

(a) (b) (c) (d)

Fig. V.7 SEM microimage in cross-section of PLGA scaffold after gamma
irradiation sterilisation. (a) 0 Mrad, (b) 1.5 Mrad, (c) 3 Mrad, and (d)
4.5 Mrad (magnification is 500).
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V.4.3 Electron beam radiation

• Because of the issue of penetration distance, the use of
electron beam radiation is much more limited. However,
the availability of higher-energy/higher-power machines
is lessening this limitation.

• Therefore, a unique application for this method is the
in-line sterilisation of thin products immediately following
primary packaging.

V.5 Sterility Test

• End medical products must pass sterility tests.
• The sterility assurance level (SAL) indicates the probabil-

ity that a given medical product will remain nonsterile
following exposure to a given sterilisation process.

• The generally accepted minimum SAL is 10−6, i.e. one
out of one million medical products will remain nonster-
ile after sterilisation.
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Abbreviations

AMPEG α-amino-ω-methoxy-PEG
BDNF brain-derived neurotrophic factor
bFGF basic fibroblast growth factor
BMP bone morphogenic protein
CAD computer-aided design
CATE computer-aided tissue engineering
60Co cobalt-60
DI deionised water
DMEM Dulbecco’s modified Eagle medium
DSC differential scanning calorimetry
EC ethylene chlorohydrin
ECM extracellular matrix
EDC 1-ethyl-3-(3-dimethylaminopropyl)-carbodimide

hydrochloride
EDTA ethylene diamine tetraacetic acid
EOG ethylene oxide gas
ePTFE expanded polytetrafluoroethylene, Gore-Tex®
EthD-1 ethidium homodimer
FBS fetal bovine serum
FDM fused deposition modelling
FTIR Fourier transform infrared spectroscopy
GA glutaraldehyde
GPC gel permeation chromatography
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HBGF heparin-binding growth factor
HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic

acid
HFP 1,1,1,3,3,3-hexafluoro-2-propanol
HGF hepatocyte growth factor
HPLC high performance liquid chromatography
IEP isoelectric point
IGF insulin-like growth factor
IleOEt L-isoleucine ethyl ester
IPA isopropyl alcohol
µ-CT micro-computerised tomography
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl

tetrazolium bromide
MWCO molecular weight cut-off
NGF nerve growth factor
NHS N-hydroxy succinimide
NMR nuclear magnetic resonance
PBS phosphate buffered saline
PBT polybutylene terephthalate
PCL poly(ε-caprolactone)
PDGF platelet-derived growth factor
PDMS polydimethylsiloxane
PDO polydioxanone
PE polyethylene
PED precise extruding deposition
PEG polyethylene glycol
PET polyethylene terephthalate, Dacron®
PGA polyglycolide
PHEMA polyhydroxyethylmethacrylate
PLA polylactide
PLCL poly(L-lactide-co-ε-caprolactone)
PLGA poly(lactide-co-glycolide)
PLLA poly(L-lactide)
PMMA polymethylmetacylate
PNIPAAm poly(N-isopropylacrylamide)
PP polypropylene
PPy polypyrrole
PS polystyrene
PU polyurethane
PVA polyvinylalcohol

252 � Abbreviations

FFAA
b485_Abbreviations.qxd  5/14/2007  6:52 PM  Page 252



PVDF polyvinylidenefluoride
RP rapid prototyping
RT-PCR reverse transcription polymerase chain reaction
SAL sterility assurance level
SEM scanning electron microscopy
SIS small intestine submucosa
SPCL blend of starch with poly(ε-caprolactone)
TE tissue engineering
TEA triethylamine
TGA thioglycolic acid
TGF-β transforming growth factor-β
TGF-β1 transforming growth factor-β1

THF tetrahydrofurane
TIPS thermally induced phase separation
VEGF vascular endothelial growth factor
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6-sulfate 4

acellular scaffold 133, 134,
136, 137

albumin 4
alginate 4, 9, 113–115, 185,

186, 207
ammonium bicarbonate salt

36, 38, 40, 41

basic fibroblast growth
factor (bFGF) 206, 207,
209, 210

biocompatibility 2, 4, 66, 73,
142, 232, 233

biodegradeable 4, 5, 7, 8, 10,
14, 26, 36, 37, 46, 49, 56, 78,
134, 176, 178, 195

biomaterials 2–7, 10, 11, 46,
92, 142, 143, 147, 185, 206,
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