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Preface

Biomechanics of the musculoskeletal system covers a
large range of research topics using experimental and
numerical approaches. In silico numerical models have
usually been developed to describe the mechanical behavior
of the musculoskeletal system under internal and external
loadings. Such models allow us to better understand the
mechanical behavior of the different components of the
musculoskeletal system (joints, organs, tissue, etc.) and their
interaction. Moreover, knowledge obtained from in silico
model analysis and simulation could be used to help
clinicians and/or engineers in their decision-making process
for diagnosis, treatments, follow-ups as well as technology
development for health care and bioengineering.

However, biomechanical data, used as input data of in
silico models, are subject to uncertainties due to subject
variability, technical protocol assessing experimental data
and subsequently numerical processing methods. As a result,
this book provides comprehensive and clear contents of the
modeling of data uncertainty and knowledge of the
biomechanics of the musculoskeletal system. This book is
especially aimed at engineers and medical students
interested in the biomedical field.
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This book is divided into five chapters. Chapter 1 provides
an overview of in silico rigid multi-bodies musculoskeletal
model. Chapter 2 introduces one of the main topics of this
book, the modeling of data uncertainty. Chapter 3 focuses on
the knowledge modeling of the musculoskeletal system.
Chapter 4 addresses some clinical applications of
biomechanical and knowledge-based models for orthopedic
disorders. Chapter 5 presents some practical software and
tools for knowledge modeling and reasoning purposes.

Tien Tuan DAO
Marie-Christine HO BA THO

February 2014



1

Biomechanics of the
Musculoskeletal System

The musculoskeletal system plays an essential role in the equilibrium and motion of the
human body. Biomechanics of the musculoskeletal system uses physical laws and
engineering methods to describe the mechanical behavior of the musculoskeletal
system during motion. In this chapter, first, the introduction of biomechanics and related
applications is presented. Second, the state of the art of knowledge in biomechanics of
the musculoskeletal system, in particular the development of in silico rigid multi-body
musculoskeletal models and their perspectives, is addressed.

1.1. Biomechanics and its applications

1.1.1. Introduction

Biomechanics is a research field which aims to solve
biomedical or biological problems by using mechanical
engineering methods, techniques and theories [HAT 74,
WIN 11]. Living systems such as human musculoskeletal
system or cardiovascular system are the main objects of
biomechanics research study. Engineering methods range
from experimental to numerical approaches. Experimental
studies [KEY 65, SHA 01] aim to observe qualitatively and
quantitatively the changes of biological tissues (e.g. bone,
muscle, cartilage and ligament) or structures (e.g. knee)
under normal and abnormal conditions. Experimental
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studies could be performed in vivo and ex vivo or in vitro
conditions. In vivo experimentation relates to the study of
whole living subject in natural environment. Ex vivo or in
vitro experimentations deal with the testing of tissues
isolated outside its biological surroundings of the living
organism. Such experimentations are commonly performed
in a culture environment. It is important to note that the
characteristics and behaviors of a biological tissue/structure
in vivo condition are completely different from those of the
same tissue/structure in vitro or ex vivo conditions.
Moreover, in silico numerical studies [REI 02, KIT 02,
VEN 06] aim to model and simulate living systems to
provide unobservable information of the tissue or structure
under investigation such as bone stress under body loading
or muscle force during motion. Moreover, numerical studies
could be used to test the impact of a clinical treatment
procedure (e.g. surgery or functional rehabilitation) or the
impact of an implanted device (e.g. prosthesis or orthotic) on
the living tissues or structures.

A biomechanics study is commonly performed in response
to a basic research question or to depict its potential
application for a specific case (e.g. clinical case and
industrial case) as illustrated in Figure 1.1. An example of a
basic research question could be how to determine the
pathophysiological processes of musculoskeletal disorders.
Such a basic research question allows us to better
understand the functional behavior of tissues and structure.
An example of an applied research study could be the
application of the finite element method to predict the
femoral bone stress when a femoral prosthesis is implanted
to optimize the design and fabrication of the investigated
prosthesis. In fact, such basic or applied research problems
could be solved by using mechanical engineering methods,
techniques and theories. Moreover, a biomechanics study
relates to single-scale object of study (i.e. cell and molecule,
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tissue and organ, system, or individual or population) or
multi-scale object of study.

Figure 1.1. Overview of biomechanics field of study

1.1.2. Applications in biomechanics

Biomechanics studies could lead to clinical, sportive and
industrial applications. A non-exhaustive list of potential
applications is provided below:

– Virtual muscle-tendon surgeries: computer-aided
modeling using in silico rigid multi-body dynamics could allow
optimal treatment procedures to be simulated, analyzed and
assessed [DEL 97]. An example of such an application is the
simulation of the effect of tendon transfer on the joint
behavior [RIE 97] or the muscle behavior [ASA 02].

– Optimal design of biomedical materials and devices:
computer modeling using medical imaging and finite element
method could be applied to perform the optimal design of
orthopedic, dental and cardiovascular biomaterials [SLO 98].
Moreover, the effect of implanted devices (e.g. braces and
prostheses) could also be assessed [PER 02]. Bioartificial
devices (e.g. a liver device and a kidney device) could be
designed and developed [CAR 09].
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– Assessment of gait abnormalities: musculoskeletal
disorders, such as children with cerebral palsy, have
abnormal locomotion functions (e.g. stiff knee flexion).
Musculoskeletal models have become customized tools to
assess these abnormal functions both qualitatively and
quantitatively, leading to the proposal of optimal treatment
planning [ARN 01, ARN 04, ARN 05].

– Computer-aided orbital and maxillofacial surgery: the
outcomes of facial surgery could be predicted using a patient-
specific finite element model [LUB 05]. Another example is
the simulation of the consequence of a surgical procedure
[BUC 07].

– Detection and prediction of preterm deliveries: uterine
electromyography (EMG) and the data mining method could
be used to detect and predict the preterm deliveries, leading to
a reduction in the risk of death and disabilities/impairment
for premature babies [DIA 09, HAS 10].

– Performance sportive analysis: using different
biomechanics techniques (e.g. three-dimensional (3D) motion
capture, force plates, and surface electromyography),
qualitative and quantitative assessments of sportive activities
or exercises could be performed in order to improve the
performance or prevent the risk of injury for non-professional
and professional athletes [CHA 97, SPE 05, BUR 06].

– Electrical energy harvesting: a walking model was
developed to control a wearable, knee-mounted energy
harvester device to produce electrical energy with minimal
user effort [KUO 05, DON 08].

– Early diagnosis of degenerated intervertebral discs
(IVD): lower back pain is one of the most chronic
musculoskeletal disorders. Degenerated IVD is one of the
possible causes of this disease. Its early diagnosis could
make it possible for a better clinical outcome. Advanced
medical imaging (e.g. T2 mapping and diffusion-based
magnetic resonance imaging (MRI)) and image processing
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techniques could be used to analyze and depict the IVD
changes at the tissue level, leading to early detection of the
degeneration state [HAU 04, DAO 13].

1.2. Biomechanics of the musculoskeletal system:
current knowledge

1.2.1. Introduction

Biomechanics of the musculoskeletal system is a specific
branch of biomechanics, which focuses on the studies of the
behavior of isolated tissues and structures (e.g. bones and
segments, muscles and tendons, ligaments, cartilage, nerves
and joints) as well as on the interaction between these
tissues to create stability and motion functions. The objective
of such a study is to provide substantial insights into the
physiological and pathophysiological processes of the
musculoskeletal system in the normal and pathological
cases, respectively.

This section aims to describe the current knowledge
extracted from basic or applied research studies on the
interaction of tissues using mechanical engineering methods,
techniques and theories.

Musculoskeletal models are commonly used to study the
interaction of tissues. From a mechanical engineering point of
view, there are two approaches for developing a
musculoskeletal model as illustrated in Figure 1.2. The first
approach relates to the rigid multi-body dynamics using tissue
properties and Newton’s laws of motion to describe the
kinematic and dynamic behavior of the musculoskeletal
system. The second approach deals with deformable modeling
using tissue properties and finite element methods to study
the structure interaction with and without fluid consideration
under normal and abnormal loading conditions. In this
chapter, we focus only on the rigid multi-body modeling.
Current knowledge of this modeling approach is addressed in
the following section.
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Figure 1.2. Overview of musculoskeletal models and their interaction

1.2.2. Rigid multi-body musculoskeletal modeling

In the framework of rigid multi-body dynamics, a 3D
musculoskeletal model could be a generic parameterized
model or a patient-specific model. The generic parameterized
model uses an available model provided by musculoskeletal
modeling software to scale and calibrate all properties for a
specific subject. This approach reduces significantly the
development time and effort. The patient-specific model uses
common medical images to create individualized geometries
and properties of the subject/patient under investigation,
leading to more accurate simulation results. In fact, the
development of a 3D musculoskeletal model requires
advanced modeling knowledge and skills. Moreover, this
development process is very time-consuming. For these
reasons, the use of musculoskeletal modeling software is an
efficient solution, especially in the case of clinical application
where the decision-making needs to be performed quickly
and with minimum effort. The next section addresses
commonly used rigid multi-body musculoskeletal modeling
software in the scientific community.

1.2.2.1.Modeling software

There are many pieces of modeling pieces of software,
which could be used to develop generic parameterized or
patient-specific musculoskeletal models. The main
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characteristics of commercial musculoskeletal modeling
software are given in Table 1.1. There are three pieces of
commercial software (AnyBody, LifeMod and software for
interactive musculoskeletal modeling (SIMM)). All these
pieces of software allow 3D musculoskeletal models to be
developed and analyzed. The setup process of each model
could be done through specific scripting language (AnyScript)
or graphical user interfaces. Kinematics, kinetics and muscle
forces could be computed and analyzed. Only SIMM software
allows the real-time simulation to be performed using a
motion analysis system. User-specific routines could be
developed using automatic dynamic analysis of mechanical
systems (ADAMS) script for LifeMod software.

Characteristics AnyBody1 LifeMod2 SIMM3

Type Commercial Commercial Commercial
Society AnyBody

Technology
(Denmark)

BRG (USA) MusculoGraphics
(USA)

Analysis 3D 3D 3D
Model setup AnyScript Graphical user

interface
Graphical user
interface

Kinematics Inverse
kinematics
(skin-based
markers)

Inverse
kinematics (skin-
based markers)

Inverse kinematics
(skin-based
markers, joint
angles)

Kinetics Inverse
dynamics

Inverse dynamics Inverse dynamics

Muscle model Hill-based Closer loop
Hill-based

Hill-based

Muscle forces Static
optimization

Static
optimization

Static optimization

Real time Motion Analysis
Individualized
model

Bone geometries
(CT, MRI)

Bone geometries
(CT, MRI)

User routine ADAMS script

Table 1.1. Commercial musculoskeletal modeling software

1 http://www.anybodytech.com/.
2 http://www.lifemodeler.com/ – End of distribution from 2012.
3 http://www.musculographics.com/.
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The main characteristics of open-source musculoskeletal
modeling software are given in Table 1.2. These software
tools provide two-dimensional (2D) and 3D analysis of the
musculoskeletal system. One of the most widely used pieces
of open-source software is the OpenSIM. This piece of
software provides all programmable libraries and a graphical
user interface to develop, simulate and analyze
musculoskeletal models during motion. User-specific
extensible routines could be developed using C++ code. In
particular, OpenSIM allows subject- or patient-specific
models to be developed in a flexible development
environment. In the following section, the creation and
analysis workflow of a generic parameterized
musculoskeletal model is presented.

Characteristics BodyMech4 OpenSIM5

Type Open Source Open Source
Developer Jaap Harlaar

(VU University,
Netherlands)

Scott Delp (U. Stanford,
USA)

Analysis 2D 3D
Model setup Matlab Script C++ Code

XML script
Kinematics Inverse kinematics

(skin-based markers)
Inverse kinematics
(skin-based markers,
joint angles)

Kinetics Inverse dynamics Inverse dynamics
Muscle model Hill-based
Muscle forces Static optimization

Computed muscle
control

Individualized
model

Bone geometries
(CT, MRI)

User Routine Matlab script C++ script

Table 1.2. Open-source musculoskeletal modeling software

4 http://www.bodymech.nl/.
5 https://simtk.org/home/opensim.
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1.2.2.2.Modeling hypotheses

The modeling of the biological tissues and systems plays
an important role in the future personalized medicine. Using
in silico rigid multi-body musculoskeletal models, clinical
treatment outcome effects could be simulated and analyzed.
However, with the current knowledge and technologies, the
musculoskeletal model is only a simplified representation of
the real human biological system (as illustrated in
Figure 1.3). The biofidelity of a numerical model depends on
the modeling assumptions.

Figure 1.3. Simplification of a musculoskeletal model

To mathematically model and numerically simulate the
biological system, modeling assumptions need to be made.
Some modeling assumptions are presented below:

– Hypothesis 1: the central and peripheral nervous systems
are neglected. Thus, the neural control mechanism is replaced
by the optimization principle assuming that the human
motion behavior is controlled to minimize some physiological
criteria such as energy or muscle force and activation.

– Hypothesis 2: each body segment is a rigid body without
deformation under internal and external loadings. This
assumption could be neglected in the case of a deformable
musculoskeletal model.
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– Hypothesis 3: segmental mass concentrates on the
barycenter of the segment. In real conditions, the position of
center of mass is moved dynamically and based on the
motion.

– Hypothesis 4: the motion of soft tissues (e.g. skin, fat and
muscles) is neglected.

– Hypothesis 5: the sliding translation of one bone on the
other bone (e.g. the case of knee joint) is neglected.

– Hypothesis 6: there is no muscle coordination between
antagonist and agonist muscles.

1.2.2.3. Creation and analyze workflow of a generic multi-
rigid musculoskeletal model

The use of a generic parameterized musculoskeletal model
consists of the following steps: (1) model selection, (2)
geometrical and anthropometrical scaling, (3) rigid multi-
body dynamics and (4) partial validation. This workflow is
illustrated in Figure 1.4.

Figure 1.4. Creation and analyzed workflow of a
generic musculoskeletal model
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a)Model selection

This step relates to the selection of an available
musculoskeletal model from the model database of the
modeling software used. For example, SIMM software
provides a full-body model. OpenSIM software provides
different models (e.g. a lower limb model, upper limb model
and lumbar spine model). Examples of OpenSIM models are
illustrated in Figure 1.5.

Figure 1.5. Example of OpenSIM lower limb and arm models

b) Geometrical and anthropometrical scaling

This step aims to scale the selected generic model using
subject- or patient-specific data. Anthropometrical properties
(e.g. subject height, body mass and body segment inertial
parameters (BSIPs)) could be measured. Specific bone
deformation (e.g. femoral anteversion angle) could be
performed using SIMM software. Skin-based marker
position could be used to scale the shape of the model using
OpenSIM software.
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c) Rigid multi-body dynamics

This step aims to apply rigid multi-body dynamics
algorithms to perform simulation. LifeMod software uses
inverse dynamics, static optimization, and forward dynamics
to compute joint kinematics, joint kinetics and muscle forces.
SIMM, AnyBody and OpenSIM only use inverse dynamics
and static optimization. In particular, OpenSIM uses some
specific algorithms such as the residual reduction algorithm
and computed muscle control to minimize the model error and
to estimate age-related muscle forces. Inverse dynamics need
external motion data to compute the joint moment. We could
use available motion data provided by the software used.
Moreover, subject- or patient-specific experimental motion
data could be obtained using 3D motion capture systems such
as video converter (VICON) or motion analysis systems. Then
these data could be imported into the software to perform the
simulation. Kinetics data such as ground reaction forces could
be used as boundary conditions of the model. In this case,
available data or measured data using the force plate system
could be used. For the muscle force estimation, the Hill-type
muscle model is commonly used in most of the modeling
software.

d) Partial validation

This step aims to verify the model accuracy and the
simulation results. First, the simulation results have to be
checked to pick out abnormal behaviors (e.g. large or
unexpected joint moment or muscle forces). Second,
simulation results could be compared to experimental data to
validate the model. For example, experimental joint force
could be used in the case of an implanted joint device to
validate the joint loading patterns both qualitatively and
quantitatively. EMG signals could be used to validate
qualitatively the estimated muscle force patterns. However,
it is important to note that current models have been
partially validated. The full validation is still challenging.



Biomechanics of the Musculoskeletal System 13

Further investigations need to be performed to provide more
experimental data for such validation purposes [DAO 09].

From a research point of view, the use of a generic
parameterized musculoskeletal model is not sufficient due to
the constraints and limitations of the modeling software used.
Researchers always prefer to develop their own model to
answer a specific research question. Moreover, for a clinical
application, the musculoskeletal model needs to be subject- or
patient-specific. Thus, the development of a rigid multi-body
musculoskeletal model is an important task for biomechanical
engineers or researchers. In the next section, the development
workflow of a subject- or patient-specific rigid multi-body
musculoskeletal model is presented. The current knowledge of
each modeling step is also presented with examples.

1.2.2.4. Development workflow of a subject-specific rigid
multi-body musculoskeletal model

The development of a subject- or patient-specific rigid multi-
body musculoskeletal model consists of the following steps: (1)
data acquisition, (2) imaging processing, (3) computation of
geometrical and anthropometrical properties, (4) definition of
tissue constitutive laws, (5) rigid multi-body dynamics and (6)
partial validation. The development workflow of a subject-
specific model is illustrated in Figure 1.6. The difference
between the creation workflow and the development workflow
of a generic model is shown in Figure 1.6.

a) Data acquisition

Medical imaging techniques such as MRI and computed
tomography (CT) have become standard tools to obtain
subject- or patient-specific musculoskeletal geometries. Data
acquisition is generally performed in a medical center under
the supervision of medical technicians and radiology experts.
Specific imaging protocols need to be developed for each
tissue (e.g. bone, muscle and cartilage) to maximize the
tissue contrast and reduce the signal-to-noise ratio.
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Figure 1.6. Creation and development workflows of generic- or
subject-specific musculoskeletal models

CT is based on X-rays to produce tomographic anatomical
images of an area of interest of the body. The objective of a
CT protocol is to minimize the effective radiation dose with
the best image quality. The CT technique is a good choice for
hard tissue such as bone. The acquisition time of a CT
acquisition is very fast. With current technologies, the
acquisition time of CT acquisition for lower limb-structures
is around 30 s. An example of CT images of lower-limb
structures is shown in Figure 1.7.

MRI uses the magnetization principle of atomic nuclei to
obtain anatomical images of the tissue of interest. MRI
images provide good contrast for the soft tissue (e.g. muscle,
skin and fat). The current MRI magnetic field strength used
in clinics is 1.5 Tesla or 3 Tesla. The acquisition time of an
MRI scan depends on each specific case. An example of an
MRI image of the lumbar spine is shown in Figure 1.8.
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Figure 1.7. CT images of the lower-limb structures

Figure 1.8.MRI images of the lumbar spine

b) Imaging processing

Based on the 2D anatomical images of each tissue of
interest, imaging processing techniques are commonly applied
to (1) segment the tissue of interest from surrounding tissues
and (2) reconstruct the tissue of interest in 3D.

Image segmentation aims to assign a label to a group of
pixels representing a tissue of interest from the raw images.
Segmentation could be done using manual, semi-automatic or
automatic methods. The threshold-based automatic method is
commonly used for the segmentation of bone tissue with CT
images. An example of automatic segmentation using the
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threshold principle and CT images is shown in Figure 1.9.
Manual or semi-automatic methods are used for the
segmentation of soft tissues with MRI images. There are
many commercial and open-source software tools available to
perform the image segmentation. A summary of the main
characteristics of some commercial and “home-made” tools is
given in Table 1.3. All tools could read digital imaging and
communications in medicine (DICOM) image format. For
open-source tool, we could use 3D Slicer6 to perform the
segmentation.

Based on the 2D segmented images, reconstruction
algorithms such as the marching cubes are commonly used to
develop a geometrical surface model of the tissue of interest.
Stereolithography (STL) format is commonly used to store the
geometrical model. An example of a 3D reconstructed lower-
limb model is shown in Figure 1.10.

ScanIP7 Amira8 Mimics9 SIP10

Input Dicom, raw
image, bmp,
jpg

Dicom, raw
image, bmp,
jpg

Dicom, raw
image, bmp,
jpg

Dicom, bmp

Segmentation Automatic,
semi-
automatic,
manual

Automatic,
semi-
automatic,
manual

Automatic,
semi-
automatic,
manual

Semi-
automatic

Main
advantages

Manual
segmentation
for MRI-
based
complex
biological
tissues

Structured
processing
flow chart

Fast
prototyping
for CT-based
implants,
prosthesis,
and orthosis

Flexible
processing
for FE
meshing

Table 1.3. Commercial and “home-made” image processing tools

6 http://www.slicer.org/.
7 Commercial software: http://www.simpleware.com/software/scanip/.
8 Commercial software: http://www.vsg3d.com/amira/amira.
9 Commercial software: http://biomedical.materialise.com/mimics.
10 “Home-made” software: M.C. Ho Ba Tho ©INSERM 1991.
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Figure 1.9. Automatic segmentation of the lower limb structures

Figure 1.10. 3D reconstructed lower limb model
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c) Computation of geometrical and anthropometrical
properties

Geometrical and anthropometrical properties of
musculoskeletal tissues and structures are used as input
data for the musculoskeletal model.

For the muscle tissue, common geometrical properties
(e.g. physiological cross-sectional area (pCSA), volume,
length and pennation angle) extracted from literature-based
studies are used in most of the current musculoskeletal
models. These values are measured using cadaveric
specimens. Consequently, their use for in vivo simulation
needs to be performed carefully. It is important to note that
there is no consensus about the measuring process of these
properties. For example, the muscle pCSA values could be
computed using different equations as follows:

3(cm )
( )

VpCSA
l cm

= [1.1]

3

( )( ) ( )
( )

CospCSA M g l cmg
cm

θ

ρ

°= × × [1.2]

3

sin ( )( )
( ) ( )

pCSA M g g t cm
cm

θ

ρ

°= ×
×

[1.3]

where V is the muscle volume, l is the muscle (fiber) length,
M is the muscle mass, θ is the pennation angle, ρ is the
muscle density and t is the distance between the tendons.

These muscle geometrical properties could now be
measured in vivo using medical imaging techniques such as
ultrasound and MRI. In this case, a specific image processing
procedure needs to be applied.
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For the BSIPs (i.e. anthropometrical properties), we could
use regression tables (e.g. Dempster’s [DEM 67] or
Zatsiorsky’s [ZAT 85] tables) to compute these values for a
specific subject. However, these regression tables were
established using cadaveric specimens. Subsequently, their
use for in vivo studies could be made with great care. In vivo
individualized BSIPs could be determined from medical
imaging and anatomical axes using the parallel axis
theorem. The ranges of values of BSIPs of a normal subject
(male, 29 years old, 168 cm in height and 65 kg in weight)
are given in Table 1.4.

Segment Body Mass
(%) Ixx (kg m²) Iyy (kg m²) Ixx (kg m²)

Right thigh 10.28 ± 0.27 0.06 ± 0.004 0.056 ± 0.004 0.021 ± 0.001

Left thigh 10.66 ± 0.3 0.063 ± 0.004 0.059 ± 0.004 0.023 ± 0.001

Right leg 4.5 ± 0.08 0.021 ± 0.001 0.021 ± 0.001 0.004 ± 0

Left leg 4.61 ± 0.09 0.022 ± 0.002 0.022 ± 0.001 0.004 ± 0

Right foot 1.1 ± 0.02 0.002 ± 0 0.001 ± 0 0.002 ± 0

Left foot 1.1 ± 0.03 0.002 ± 0 0 ± 0 0.002 ± 0

Table 1.4. BSIP values of a normal subject

d) Constitutive laws

Biological tissues and structures have complex behaviors.
Modeling of biological tissues and structures needs to
establish mathematical constitutive equations to describe
these complex behaviors. Rigid multi-body musculoskeletal
modeling requires constitutive laws for muscle, joint and
contact behaviors.
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For the muscle constitutive law, a Hill-type rheological
model [HIL 38] is commonly used to define the force – length
and force-velocity relationships [ZAJ 89]. A graphical
representation of a Hill-type muscle model is shown in
Figure 1.11. The Hill-based model has five input parameters:

0
MF which is the peak isometric muscle force derived from

the cross-sectional area of the muscle M; 0
Ml is the optimal

muscle-fiber length, the length at which the muscle develops
maximum force; 0α is the optimal fiber length; S

Tl is the
tendon slack length, the length at which tendons begin to
transmit force when stretched; and max

MV is the maximum
contraction velocity of the muscle. The Hill-based model has
three behavior curves: the tendon force-length curve, muscle
force-length curve and muscle force-velocity curve as shown
in Figure 1.12. MF is the muscle force. Tl is the tendon length.

Ml is the muscle length. MV is the muscle contraction velocity.
It is important to note that mechanical properties of the
muscle (e.g. shear modulus) derived from magnetic
resonance elastography (MRE) have been recently used to
improve the behavior of the force – length relationship,
leading to provide more accurate estimated muscle forces
[BEN 13].

Figure 1.11. Graphical representation of a
Hill-type muscle model
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Figure 1.12.Muscle behavior curves: tendon force–length curve, muscle
force-length curve and muscle force–velocity curve

For joint modeling, there are many types of joints such as
ball-and-socket joints, hinge joints and spherical joints to
model a biological joint. OpenSIM software provides a large
range of joints (weld joint, pin joint, slider joint, ball-and-
socket joint, ellipsoid joint, free joint and custom joint). The
choice of the joint type depends on each specific biological
joint and available kinematic data. For example, the hip
joint is commonly modeled as a ball-and-socket joint. The
knee joint is commonly modeled as a hinge joint. It is
important to note that the current joint model includes only
3 degrees of freedom in rotation. Translations are always
neglected. A joint coordinate system is commonly defined
using the recommendation of the International Society of
Biomechanics (ISB) [WU 02, WU 05]. An example of a
viscoelastic joint law (Kelvin–Voigt model) is expressed
below:

M K Cθ θ= × + × � [1.4]

where M is the joint moment, K and C are the joint stiffness
and damping coefficients, respectively, and θ and θ� are the
joint rotation angle and its angular velocity, respectively.
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In addition to muscle and joint modeling, the interaction
of the musculoskeletal model with the environment could be
taken into consideration through contact modeling and
constraints. The geometrical penetration principle is
commonly used to model the contact between the model and
the external structures. The deformation of rigid multi-body
contact is generally computed using linear elastic theory
[HUN 75, HER 82, PER 08].

e) Rigid multi-body dynamics

The equations of motion describing the dynamics of a
musculoskeletal system are expressed as:

(q)q C(q,q) G(q) 0MTM T E+ + + + =�� � [1.5]

( )FMTMTT R q= [1.6]

where q is the joint angles set for n biological joints, M(q) is the
system mass (n × n) matrix, C(q,q)� is the centrifugal and
coriolis loading (n × 1) matrix, G(q) is the gravitational
loading (n × 1) matrix, MTT is the muscular joint torques
(n × 1) matrix, R(q) is the muscle moment arms (n × m)
matrix, FTM is the muscle force (m × 1) matrix and E is
external forces (e.g. ground reaction forces). The muscle
moment arms matrix could be calculated using the principle
of virtual work. Thus, the moment arm of muscle j with
respect to joint axis i is computed as follows:

( )
( ) j

ij
i

L q
R q

q
∂

= −
∂

[1.7]

where ( )jL q is the length of muscle j.

Inverse dynamics is a computing algorithm which aims to
estimate the torque of different biological joints. When the
joint kinematics data (q) and external forces (E) are
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available, we could compute the muscle joint torques during
motion by using the following inverse dynamics equation:

( ) ( , ) ( )MTT M q q C q q G q E= + + +�� � [1.8]

Joint kinematics data are generally obtained by using
motion capture systems such as VICON and motion analysis.
These systems use high-resolution infrared cameras to track
and obtain the trajectories of external skin-mounted markers
using the optical principle. The configuration of skin-
mounted markers depends on each specific application. For
example, Davis’s protocol [DAV 91] including 15 markers is
commonly used for clinical gait analysis (as illustrated in
Figure 1.13). Moreover, external forces such as foot–ground
reaction forces could also be obtained synchronously using a
force–plate system with kinematics data (as illustrated in
Figure 1.14).

Figure 1.13. Skin-mounted marker configuration
using Davis’s gait protocol
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Figure 1.14. Illustration of marker tracking and foot-ground
reaction force acquisition during human gait

Static optimization aims to estimate the muscle forces
using computed net joint torque from inverse dynamics.
From a mathematical point of view, the muscle force
estimation problem is redundant because the number of
unknown muscle forces is greater than the number of
equations for all joints (m > n). Thus, to solve this problem,
one of the widely used approaches is the inverse dynamics-
based static optimization. The constitutive equations are
expressed as follows:

Minimize objF [1.9]

Subject to ( )FMT MTR q T= [1.10]

00 FMT MF≤ ≤ [1.11]

where objF is a mono-objective or multi-objective function (e.g.

it minimizes the total muscle forces
1

m
MT

obj i
i

F F
=

=∑ ).

An example of normal and pathological gait simulations
using inverse dynamics and static optimization is shown in
Figures 1.15 and 1.16, respectively.
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Figure 1.15. Graphical representation of a normal gait simulation

Figure 1.16. Graphical representation of a pathological gait simulation

Forward dynamics aims to compute the movement patterns
using known muscle excitations or joint torques; the
constitutive equation is expressed as follows:

[ ]1( ) ( , ) ( ) MTq M q C q q G q T E−= + + +�� � [1.12]

f) Partial validation

The validation of the musculoskeletal model is a
challenging issue for the modeling community. Due to the
lack of experimental data for in vivo and non-invasive
studies, simulation results are commonly compared to those
reported in the literature. This approach is not completely
convincing because the subject and modeling method of each
study are different. Surface electromyography signals could
be used to validate the muscle activation patterns. However,
this technique also has limitations (e.g. position-dependent
signals or a higher signal-to-noise ratio) leading to
inaccurate signals. For the invasive studies, we could use the
experimental joint force measured by an implanted device to
validate the simulation results. In the same manner as the
generic model, the full validation of the subject- or patient-
specific model needs further investigation with new
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engineering approaches in order to provide more systematic
validation before its clinical use [DAO 09].

1.3. Challenges and perspectives of rigid multi-body
musculoskeletal models

The rigid multi-body dynamics principle allows human
motion to be described and analyzed in qualitative and
quantitative manners. By coupling the motion laws with
biological laws (e.g. the muscle rheological law), the
kinematics, kinetics and muscle force data could be derived
and analyzed. However, the understating of muscle force
generation capacity is still a challenging issue in research.
From a clinical point of view, such muscle force data is of
great importance to depict the etiology of a pathological gait
and to perform the objective diagnosis and evaluation of the
treatment outcome. To reach this clinic-oriented objective,
current musculoskeletal modeling needs to be improved in
the following areas:

– Biological joint: sliding translations need to be
integrated into current joint models. This improvement will
allow accurate joint behavior to be modeled and simulated,
especially in the case of patients with irregular geometries.
Moreover, there is no consensus about the choice of the joint
type for a specific biological joint. Consequently, a new
approach needs to be investigated to allow a biological joint
to be modeled in a subject- or patient-specific manner.

– Biological skeletal muscle: geometrical representation of
the skeletal muscle needs to be improved. The line-of-action
representation and one-dimensional (1D) rheological model
(e.g. Hill-type model) are very limited in modeling the real
biological skeletal muscle. Medical imaging techniques such
as MRI could be used to create 3D geometries of the muscle
of interest. However, the time-consuming characteristic of
MRI data acquisition and processing needs to be overcome.
The Hill-type model is commonly used in the
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musculoskeletal models. This model integrates force–length
and force–velocity relationships to describe the muscle
contraction behaviors. Moreover, literature-based values are
commonly used leading to inaccurate muscle force
estimation. As a result, experimental imaging techniques
such as ultrasound and MRE [BEN 13] could be used to
compute the individualized values for muscle properties.
Furthermore, mechanical muscle properties need to be
integrated into muscle models to accurately simulate the
muscle behavior, especially in the case of patients with
muscle diseases. Moreover, individualized mono- or multi-
objective functions will avoid the dilemma of the right choice
of an appropriate function for a specific case. An EMG signal
could be integrated to develop an EMG-driven
musculoskeletal model in order to better describe muscle
activities and behaviors. Another challenging issue will be
the integration of 3D muscle constitutive laws [BLE 05, TAN
09] to better describe the muscle behavior. Furthermore, the
muscle–bone penetration problem (as illustrated in
Figure 1.17) needs to be improved.

Figure 1.17. Problem of muscle–bone contact penetration: muscle line
representation (top) and muscle wrapping representation (bottom)
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– Nervous system: the development of a
neuromusculoskeletal model will integrate neural control
command into a numerical model. In this case, innovative
methods and techniques need to be developed to acquire the
nervous signals and then use them to accurately simulate
the normal and pathological states of the human body.

– Validation: experimental validation of the simulation
results of the musculoskeletal model is a very challenging
issue. A multi-modal validation approach needs to be
investigated. The accuracy of the EMG signal needs to be
improved. Then, this signal could be used to validate the
muscle contraction patterns or to serve as input data into the
musculoskeletal model. Novel methods and techniques need to
be developed to provide new in vivo data for validation purpose.

– Clinical applications: the choice of the pertinent
parameters for clinical purpose is also a challenge. To make
the musculoskeletal model applicable to a real clinical
context, this choice is crucial. Collaboration among model
developers, clinicians and patients needs to be performed
closely to target the appropriate diagnosis model for a
specific clinical case. Then, the model could be used to
evaluate the outcome of clinical treatments.

– Biomechanical data uncertainty: the impact of
uncertainties of experimental data on the numerical output
responses has been challenged in the last decade [VAL 03,
DOW 06, RIE 08, DHA 10, DAO 12]. However, most of the
biomechanical research studies concentrated on the
quantification of such an impact by using a traditional
variation and perturbation approach [DAO 12, NAG 00, SCO
06]. The limitation of this approach deals with the not
obvious choice of the true range of values of a parameter of
interest for performing the sensitivity analysis. In addition,
the resolution algorithm for a large range of values is
computationally intensive or impractical in some cases.
Moreover, uncertainty sources and types cannot be identified
and modeled. Furthermore, dependence (e.g. statistical,
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physical or biological dependence) between parameters
cannot be taken into consideration. Chapter 2 will present
basic theoretical and practical concepts focusing on these
challenging topics.

This chapter provides an introduction of the biomechanics
field of study and its potential application range. Current
knowledge of biomechanics of the musculoskeletal system is
presented. The focus is on the development of a rigid
multi-body musculoskeletal model. Discussion of limitations
and possible improvements of this kind of biomechanics
modeling approach provides us with a clear insight into the
current models and how to make the model applicable in a
real clinical context.

1.4. Summary

– Biomechanics: study of living systems using mechanical
engineering methods, techniques and theories.

– Biomechanics applications: virtual muscle-tendon
surgery, optimal design of biomedical materials and devices,
assessment of gait abnormalities, computer-aided orbital and
maxillofacial surgery, detection and prediction of preterm
deliveries, sportive performance analysis, electrical energy
harvesting, early diagnosis of degenerated IVD, etc.

– Musculoskeletal model: numerical representation of the
interaction between bones, joints, muscles, ligaments and
their attachments to the bones.

– Generic musculoskeletal model: parameterized and
scaling process for a specific subject or patient.

– Subject– or patient–specific musculoskeletal model:
individualized model with subject– or patient–specific data
properties.
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– Modeling assumptions need to be defined due to limited
knowledge and/or difficult technical implementation.

– Modeling challenges: biological joints, 3D realistic
muscle models, neuromusculoskeletal model, model
validation, clinical application and biomechanical data
uncertainty consideration.
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2

Modeling of Biomechanical
Data Uncertainty

Experimental investigation combined with numerical simulations is commonly used for
solving multiphysical problems. In the field of biomechanics which aims to understand
the mechanics of living systems, the main difficulty is to provide the experimental data
reflecting the multiphysical behavior of the systems of interest. These experimental data
are used as input data for numerical simulations to quantify output responses through
physical and/or biological laws expressed by constitutive mathematical equations.
Moreover, uncertainties on the experimental available data exist as human variability,
measuring protocols and numerical processing. This chapter describes the fundamental
and conceptual aspects of the data uncertainty modeling in biomechanics. Different
biomechanics data types and related parameters such as physiological, morphological,
mechanical, and kinematics and kinetics properties and their uncertainty sources (e.g.
experimental and numerical) are identified and introduced. Modeling approaches based
on the types and representations of uncertainty are presented. Finally, an example of
the propagation of data uncertainty and decision-making through a numerical model are
presented and discussed.

2.1. Introduction of biomechanical data and their
uncertainties

2.1.1. Biomechanical data

Biomechanical data are essential for any experimental or
modeling studies. Biomechanical data are commonly used to
describe the anatomical, mechanical and functional
behaviors of biological tissues and systems. Most
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biomechanical data are classified into four groups (see
Figure 2.1): (1) physiological properties, (2) morphological
properties, (3) mechanical properties and (4) motion
properties including spatiotemporal, kinematic, kinetic and
EMG properties. Let us discuss them each briefly.

Figure 2.1. Overview of biomechanical data

Physiological properties relate to personal information at
the whole body level of a subject under investigation, such as
age, body height, body weight, body fat and body mass index
(BMI). Standard measuring devices and techniques such as
scales, height measuring devices or impedance meters are
commonly used to obtain these data. The BDI is calculated
using the body weight (W), body height (H) and the following
formula:

2

W(kg)
H(m)

BDI = [2.1]

Morphological properties deal with the geometrical (e.g.
shape or form) and structural (e.g. organization)
characteristics of biological tissues such as bone, muscle or
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segmental bodies (e.g. the thigh and leg). Medical imaging
techniques such as ultrasound, computed tomography, MRI
or radiography are commonly used to obtain these data.
Some examples of morphological properties are given in
Table 2.1.

Anatomy Properties

Bone

Length (femur, tibia and foot) (cm), volume
(femur, tibia and foot) (cm3), femoral
anteversion angle (°), tibial torsion angle (°),
migration index (MI)

Muscle
Muscle length (cm), fiber length (cm), volume
(cm3), fiber pennation angle (°), pCSAs (cm²)

Segmental body
(e.g. thigh)

Segmental mass (kg), positions of center of
mass, segmental moment of inertia (kg m²), leg
length (m), thigh length (m), ankle width (m)

Table 2.1. Examples of morphological properties

Mechanical properties describe the behavioral reaction of
complex biological materials such as bone or muscle under
an applied load. These properties depend mainly on the
multiscale compositions and structures of biological
materials. Some examples of mechanical properties are given
in Table 2.2.

Motion properties characterize the functional behaviors of
the biological systems during motions such as daily and
sports activities. Motion analysis properties include whole
body (e.g. spatiotemporal properties) or joint behavioral
properties (e.g. kinematics and kinetics) and muscle activity
through EMG properties. Most kinematic, kinetic and EMG
data are expressed by temporal waveforms. The knee joint
angle during walking is an example of a kinematic property.
Other examples are presented in Table 2.3.



40 Biomechanics of the Musculoskeletal System

Anatomy and
structure

Properties

Bone Young’s modulus (E) (kPa), Poisson ratio, shear
modulus (kPa), rupture (σ) (Mpa)

Muscle

Shear modulus (G) (kPa), attenuation coefficient

( 1m− ), velocity-dependent spasticity

( 1degVμ −× )

Joint Stiffness ( 1degNm −× ), slack angle (°)

Table 2.2. Examples of mechanical properties

Anatomy
and

structure
Subtype Properties

Whole
body Spatiotemporal

Step length (cm), step width (cm),
cadence (steps per minute), speed
(cm/s), stance time (%), swing time (%),
double-support time (%), single-
support time (%), energy consumption

Joint Kinematics

Angles (hip, knee, ankle) (°), velocity
(m/s), acceleration (m/s²), Gillette gait
index, gait deviation index, gait profile
score

Joint
Kinetics

Moments (hip, knee, ankle) (Nm),
reaction forces (hip, knee, ankle) (N),
ground reaction forces (N)

Muscle Muscle strain (mm) and muscle forces
(N)

Muscle EMG

Maximal and minimal myoelectrical
amplitudes (mV), EMG onset,
integrated EMG (mV), root mean
square (mV), mean frequency (Hz)

Table 2.3. Examples of kinematic, kinetic and EMG properties

2.1.2. Measuring chains of biomechanical data

The measuring process of biomechanical data is shown in
Figure 2.2. The acquisition of physiological data does not
need specific processing. These properties could be measured
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and obtained directly from measuring devices. There are two
main experimental techniques widely used for the
acquisition of morphological, mechanical and motion
analysis properties. The first technique is medical imaging
and the second technique is 3D motion capture. Thus, from a
raw image or temporal data, specific imaging and signal
processing needs to be performed to compute useful data.

Figure 2.2.Measuring chain of biomechanical data

Morphological properties are commonly calculated from
image-based data. Raw image data from medical imaging
systems are stored in DICOM format. To compute the 3D
morphological properties such as volume and the length of
the biological tissue of interest, imaging processing methods
such as image filtering, segmentation and 3D reconstruction
are commonly used. The image filtering aims to improve the
quality of the raw image by deleting some undesirable image
characteristics (e.g. intensity variation, illumination
variation and poor contrast). The segmentation aims to
assign pixels/voxels to a region of interest (e.g. biological
tissue). There are three common methods used for this:
manual, automatic and semi-automatic segmentations.
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Automatic segmentation is generally applied to CT images.
Manual segmentation is commonly used for MRI images.
Semi-automatic segmentation could be used for both CT and
MRI images. 3D reconstruction aims to create 3D
representation of the segmented region of interest. The
marching cube algorithm is a commonly used reconstruction
method. Reconstructed geometries are stored in STL for
further calculation of morphological properties.

Motion properties are computed using signal-processing
techniques from a raw signal stored in C3D format (i.e. the
common file format for storing 3D and analog information of
motion data obtained from motion capture systems). Motion
analysis data are commonly expressed by temporal
waveforms. These temporal data are of great importance in
the biomechanical analysis of human locomotion. This
describes the time-dependent events at regular time
intervals. Human gait data ranging from stance phase
(0–60%) to swing phase (60–100%) is a typical example of
time series data. To facilitate the implementation as well as
to reduce the time processing without loss of significant
information, a vector of useful extracted features is an
appropriate representation of the time series data.

Feature selection derived from kinematic data: kinematics
data include joint angle amplitudes at the hip, knee and
ankle over gait cycle. Maximal extension amplitude of the
hip joint (HmaxStExt) and its gait cycle percent (HtimeMaxStExt) in
the stance phase are considered as useful properties
(Figure 2.3). At the knee joint, maximal flexion amplitudes
(KmaxStFlex, KmaxSwFlex) and their respective gait cycle percents
(KtimeMaxStFlex, KtimeMaxSwFlex) in the stance phase and swing
phase, respectively, are selected as useful features
(Figure 2.3). Maximal extension amplitude of the knee joint
(KmaxStExt) and its gait cycle percent (KtimeStMaxExt) in the
stance phase were also selected (Figure 2.4). For the ankle
joint, maximal plantar flexion and dorsiflexion amplitudes
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(AmaxStPlFlex, AmaxStDsFlex) and their respective gait cycle
percents (AtimeMaxStPlFlex, AtimeMaxStDsFlex) in the stance phase
are selected (Figure 2.4). Maximal plantar flexion and
dorsiflexion amplitudes of the ankle joint (AmaxSwPlFlex,
AmaxStDsFlex) and their respective gait cycle percents
(AtimeMaxSwPlFle, AtimeMaxSwDsFlex) in the swing phase are also
selected (Figure 2.5).

Figure 2.3. Feature selection from hip kinematics in the sagittal plane

.

Figure 2.4. Feature selection from knee kinematics in the sagittal plane
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Figure 2.5. Feature selection from ankle kinematics in the sagittal plane

Feature selection derived from kinetics data: kinetics data
include foot-ground reaction forces over the stance phase of
the gait cycle. The vector of feature from kinetics data
consists of the ground reaction forces (GRFto, GRFhs) and
their respective contact times (Tto, Ths) at the toe-off and heel
strike phases are selected (Figure 2.6).

Figure 2.6. Feature selection from kinetics data in the sagittal plane
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Feature selection derived from kinetics data: feature
selection derived from an EMG signal – EMG data reflect the
muscle myoelectrical activities over gait cycle. The vector of
features from rectified EMG data in temporal domain
consists of the maximal amplitude peak (EMGmaxPeak),
average rectified voltage (EMGarv) and EMG onset (i.e. % of
gait cycle) (EMGonset) (Figure 2.7).

Figure 2.7. Feature selection from rectified EMG signal: illustrations on
normal subject and children with cerebral palsy

Mechanical properties are computed data extracted from
medical imaging or motion capture systems. For example,
muscle shear modulus is characterized using MRE [BEN 06,
RIN 07]. Another example is joint stiffness, which is
computed from the joint kinematics [BAR 11].

2.1.3. Data uncertainty

Uncertainty is the lack of certainty. Data uncertainty is
the lack of certainty about the right value of data. Data
uncertainty is of two distinct types. The first type is the
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random uncertainty, which regards the variability of a
parameter of interest under its systematic (intrinsic)
functional and behavioral variations. The second type is the
epistemic uncertainty, which deals with the lack of
knowledge, the conflicting evidence, or the ignorance about a
parameter of interest and its measuring protocol. Note that
the random uncertainty is irreversible while the epistemic
uncertainty is reversible.

EXAMPLE 2.1.– A property having a range of values (mean ±
standard deviation) calculated from a number of repeated
experiments is an example of random uncertainty.

EXAMPLE 2.2.– A property value that could be measured
using different experimental techniques or computation
methods due to the lack of knowledge about the right
solution is an example of epistemic uncertainty.

2.1.4. Biomechanical data uncertainty types and
sources

Biomechanical data (e.g. physiological, morphological,
mechanical, kinematic, kinetic or EMG properties) are
subject to random uncertainty regarding the measured range
of values (i.e. intrinsic intrasubject variability and
intersubject variability) of a parameter of interest. The
intrinsic intrasubject variability concerns the repeatability
and the reproducibility errors while the intersubject
variability is due to the data obtained from different
protocols or population races/origins or experimental
techniques. Moreover, these biomechanical data are subject
to the epistemic uncertainty dealing with the accuracy level
of the measuring protocol including experimental and
numerical processes. Furthermore, these data arise from
multiple data sources (i.e. research studies) for one
parameter of interest. In addition, biomechanical parameters
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can be either dependent (e.g. statistical, physical or
biological dependence) or independent.

EXAMPLE 2.3.– An example of biomechanical random data
uncertainty is that the physiological cross-sectional area of
the rectus femoris muscle measured from 21 cadaveric
specimens is 13.5 ± 5 cm² [WAR 09].

EXAMPLE 2.4.– An example of biomechanical epistemic data
uncertainty is that the physiological cross-sectional area of
the skeletal muscle could be calculated using one of the three
formulas below:

3(cm )
( )

VpCSA
l cm

= [2.2]

3

( )( ) ( )
( )

CospCSA M g l cmg
cm

θ

ρ

°= × × [2.3]

3

sin ( )( )
( ) ( )

pCSA M g g t cm
cm

θ

ρ

°= ×
×

[2.4]

where V is the muscle volume, l is the muscle (fiber) length,
M is the muscle mass, θ is the pennation angle, ρ is the
muscle density and t is the distance between the tendons.

The sources of biomechanical data uncertainty could come
from different aspects such as experimental measuring
protocols and numerical processing. These sources could be
divided into three categories: sources from direct
measurements, sources from image-based measurements
and sources from motion-based measurements. All these
sources are given in Tables 2.4–2.6. Thus, physiological
properties have uncertainty sources from direct
measurements. Morphological properties have uncertainty
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sources from image-based measurements. Motion analysis
properties have uncertainty sources from motion-based
measurements. Mechanical properties have uncertainty
sources from either image-based or motion-based
measurements. This depends on the type of the properties
used for feature calculation process.

Sources Type Uncertainty impact

Subject
variability Random

Repeatability and reproducibility
(inter- and intraoperators, inter-

and intratrials)
Measuring
device error Random Reported range of errors for each

specific device
Limited quantity
of subjects/trials Epistemic Range of values

Table 2.4. Uncertainty sources from direct measurements

Sources Type Uncertainty impact

Subject variability Random
Repeatability and reproducibility
(inter- and intraoperators, inter-

and intratrials)
Measuring protocol
setup (parameters) Epistemic Range of values

Measuring device
error Random Reported range of errors for each

specific device
Data acquisition
(position setup,

movement artifact,
tissue complexity and

environmental
effects)

Random Range of values

Data processing
(filtering,

segmentation and
reconstruction)

Random Range of values

Limited quantity of
subjects/trials Epistemic Range of values

Table 2.5. Uncertainty sources from image-
based measurements



Modeling of Biomechanical Data Uncertainty 49

Sources Type Uncertainty impact

Subject variability Random
Repeatability and reproducibility
(inter- and intraoperators, inter-

and intratrials)
Measuring protocol
setup (parameters) Epistemic Range of values

Measuring device
error Random Reported range of errors for each

specific device
Data acquisition

(position setup, skin-
mounted marker
setup, movement
artifact, soft tissue

artifacts and
electronic noises)

Random Range of values

Data processing
(properties

extraction, filter
accuracy (smoothing
for missing data)

Random Range of values

Limited quantity of
subjects/trials Epistemic Range of values

Table 2.6. Uncertainty sources from motion-based measurements

2.2. Biomechanical data uncertainty modeling

2.2.1. Uncertainty representation

2.2.1.1. Classical probability functions

Classical probability functions such as the probability
density function (PDF) and cumulative distribution function
(CDF) are common uncertainty representation formalisms
[POT 12]. These functions are governed by the following
equations:

[ ]: 0,1R RPDF CDR V= → [2.5]

( ) Pr( ) ( ) 1R R
x V

PDF x R x PDF x
∈

= = =∑ [2.6]

( ) Pr( )RCDF x R x= ≤ [2.7]
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EXAMPLE 2.5.– PDF and CDF of the volume of the rectus
femoris muscle are shown in Figures 2.8 and 2.9.

Figure 2.8. Probability density function of the volume of
the rectus femoris muscle

Figure 2.9. Cumulative distribution function of the
volume of the rectus femoris muscle
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Furthermore, PDF and CDF have many applications in
risk analysis [SOH 02] or in structure analysis [PED 13, STI
13]. PDF and CDF are commonly used to model the random
(aleatory) uncertainty.

2.2.1.2.Mass function

Classical uncertainty representation formalisms such as
PDF and CDF showed their limitations for the uncertain and
incomplete data modeling. Thus, other uncertainty
representation formalisms and structures such as the mass
function, plausibility function and possibility function could
be used in this case.

The mass function is a structure of belief theory. The
belief theory or the theory of evidence has been known as the
Dempster–Shafer theory. This theory is a general framework
for statistical inference as well as for uncertainty reasoning.
Furthermore, structures of Dempster–Shafer theory such as
mass functions and combination rules provide basic
components for a fusion approach from different
heterogeneous data sources. Let Ω = {C1, C2,..., Cn} denote
the frame of discernment which is defined as a finite set of
possible target values of a variable X. The mass function of
each subset A of Ω is defined as follows:

[ ]: 2 0,1 ( ) 1
A

m m AΩ
Ω⊆

→ =∑ [2.8]

Each subset A with m(A) > 0 is called a focal set. The
mass function m represents a body of evidence, ranging from
1 (perfect knowledge) to 0 (complete ignorance), relative to
the value of X or a state of belief induced from this body of
evidence. From mathematical point of view, m can be
considered as a generated probabilistic distribution (i.e.
mass distributes on the Ω2 instead of Ω).

The construction of mass function is a challenging issue
for the application of belief theory. Some approaches exist
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such as calculation of the mass function based on previous
observations [DEN 06] or based on expert judgment [BRY
99]. We proposed a rule-based approach, which is simple and
intuitive, to build mass functions without significant effort of
experimentations. Basic belief assignments of each object

( ) ( ) ( )C , C ,, , ,m m mk i k k i k k i Ω⎛ ⎞
⎜ ⎟
⎝ ⎠

in the frame of discernment Ω are

computed using a heuristic-based fuzzy rule illustrated in
Figure 2.10. The min and max threshold values are
parameterized according to the selection of Prop (Prop is one
of the extracted useful features from temporal data).

( ) [ ] ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ]
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{ } { }
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: 0,1

1,0

1, , 1, ,

k i k Prop minThreshold maxThreshold

k i k Prop minThreshold

k i Prop minThreshold
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∈

<

<

∈

→
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∀ ∈ … ∀ ∈ …

Ω [2.9]

where n is the number of objects (classes) of the frame of
discernment Ω and m is the number of useful extracted
features.

Figure 2.10. Heuristic-based fuzzy rule for basic belief assignment



Modeling of Biomechanical Data Uncertainty 53

EXAMPLE 2.6.– An example of basic belief assignments (mass
function) of two classes of children with cerebral palsy
(diplegia and hemiplegia) according to kinetics data is
provided in Table 2.7.

Diplegia ( )1C Hemiplegia ( )2C
( )1,1 1m C ( )1,1 1m C ( )1,1 Ωm ( )2 21,m C ( )2 21,m C ( )1,2 Ωm

0.6087 0 0.3913 0.3108 0 0.6892

0.5362 0 0.4638 0.4054 0 0.5946

1.0000 0 0 1.0000 0 0

0.6280 0 0.3720 0.6552 0 0.3448

1.0000 0 0 1.0000 0 0

0.0145 0 0.9855 0.5811 0 0.4189

0.0362 0 0.9638 0.8514 0 0.1486

0.0435 0 0.9565 0.5270 0 0.4730

0.0870 0 0.9130 0.5946 0 0.4054

Table 2.7. An example of basic belief assignments

2.2.1.3. Probability-box

The probability-box (p-box) is a probability structure
which simultaneously represents the random uncertainty
and the epistemic uncertainty. The p-boxes [FER 03]
approach was introduced recently with real potential
applications such as the reliability analysis of polynomial
systems [CRE 12], the evaluation of probabilistic sewer
flooding [SUN 12] and the cost uncertainty analysis
[MEH 12]. The p-boxes structures deal with non-parametric
and parametric p-boxes with known sample distribution
[FER 06]. Recently, the theoretical aspect of the p-boxes has
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been improved with new structures such as generalized
p-boxes [DES 08] and Bayesian p-boxes with multiple
random quantities and dependent parameters [MON 09].
The p-box of an observable random continuous parameter of
interest that has the specified distribution is a parametric
p-box consisting of four distributions

( ) ( ) ( ) ( )( , , , , , , , )l l l u u l u u
i i i i i i i i i i i iD D D Dμ σ μ σ μ σ μ σ , where

,l u
i iμ μ⎡ ⎤⎣ ⎦ and ,l u

i iσ σ⎡ ⎤⎣ ⎦ are the mean and standard deviation

intervals. A graphical representation of a p-box with a
normal distribution assumption is shown in Figure 2.11.
Note that a p-box is used to simultaneously express
incertitude (epistemic uncertainty), which is represented by
the breadth between the left and right edges of the p-boxes,
and variability (random uncertainty), which is represented
by the overall slant of the p-boxes.

Figure 2.11. Graphical representation of a p-box with
normal distribution assumptions
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2.2.1.4. Knowledge-based fusion probability-box

The p-box needs to be improved in the case of data
extracted from sources. We proposed recently new
knowledge-based fusion p-boxes to model the random and
epistemic uncertainties of biomechanics data from multiple
sources or from new updated ones. These new structures
integrate and aggregate the expert’s judgments regarding
the accuracy level of the experimental measuring protocol
into the uncertainty modeling, leading to the improvement of
the accuracy of the uncertainty representation model.

To construct the knowledge-based fusion p-boxes, a
knowledge-based p-box is defined based on the p-box
structure. Given a 5-druple value set [ , , , , ]r e

i i i i iD U Uμ σ
calculated from each source iS where ,l u

i i iμ μ μ⎡ ⎤∈⎣ ⎦ is the

interval of mean range of values of jX , ,l u
i i iσ σ σ⎡ ⎤∈⎣ ⎦ is the

interval of standard deviation range of values of jX and D i

is the known specified distribution of jX . In particular,

{ }0, ,1r
iU ∈ … is defined as a random uncertainty coefficient of

jX , and { }0, ,1e
iU ∈ … is defined as an epistemic uncertainty

coefficient of jX . Note also that l
iμ and l

iσ can be equal to
u
iμ and u

iσ , respectively, for some cases in which only one
value for each mean and standard deviation property is
provided.

The knowledge-based p-box K
iF of jX having the specified

distribution iD from source Si is a parametric p-box
consisting of four iD distributions

( ) ( ) ( ) ( )( , , , , , , , )l l l u u l u u
i i i i i i i i i i i iD D D Dμ σ μ σ μ σ μ σ , where the

mean ,l u
i iμ μ⎡ ⎤⎣ ⎦ and standard deviation ,l u

i iσ σ⎡ ⎤⎣ ⎦ intervals are

computed as follows:
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l r
i i iU

μμ μ γ= − × [2.10]

u r
i i iU

μμ μ γ= + × [2.11]

l e
i i iU

σσ σ γ= − × [2.12]

u e
i i iU

σσ σ γ= + × [2.13]

where andμ σγ γ are the scaling constants calculated as
follows:
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μ μ
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⎧ ⎛ ⎞
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1, otherwise.
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[2.15]

The calculation of the random uncertainty coefficient
{ }( 0, ,1 )r

iU ∈ … of jX from data source { }1 2, , ,i kS S S S∈ … is

based on a variability-based approach. The random
uncertainty coefficient is calculated as follows:

{ }
{ }

r u l u li
i i i i

l l u
i i

u u u
i i

wU w x x w x x
w

x Min i

x Max i

μ σ

μ σ

= = − = −

= − ∀

= + ∀

[2.16]
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The lower and upper probability-bound non-decreasing

functions ( ) ( )( )i iF x F x≤ of K
iF are formulated by using the

following mathematical formulas:
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where 10 step− is the fractional coefficient used to discretize the
lower and upper bound set of jX from all k data sources, and

CDF means the cumulative distribution function. If the
fractional coefficient of 0.01 is used, then step =2 (102).

The knowledge-based fusion p-box K
FF of jX from all k

data sources is a combination of different knowledge-based
p-boxes of each source iS . The lower and upper probability-

bound non-decreasing functions ( ) ( )( )F FF x F x≤ of K
FF are

formulated by using the following mathematical formulas:

( ) ( ) ( ) ( ){ }1 2
, , ,

F k
F x Min F x F x F x= … [2.19]

( ) ( ) ( ) ( ){ }1 2
, , ,F kF x Max F x F x F x= … [2.20]

Graphical illustration of a knowledge-based fusion p-box
is shown in Figure 2.12.



58 Biomechanics of the Musculoskeletal System

Figure 2.12. Graphical representation of a knowledge-based fusion p-box
with normal distribution assumptions

2.2.2. Uncertainty modeling

2.2.2.1. Biomechanical multiphysics model

The biomechanical multiphysics model is a powerful tool
for analyzing the mechanical functions of living systems
such as the human musculoskeletal system. The
development of a biomechanical multiphysics model requires
advanced knowledge of human anatomy and physiology, and
especially the pathophysiological process that occurs in the
case of musculoskeletal diseases. A biomechanical
multiphysics model is a mathematical representation of a
simplified system of interest (e.g. the human
musculoskeletal system). This representation connects the
observable input data into the target output data through
physical or biological laws. From a mathematical point of
view, variations of input data play an essential role in the
range of values of target output data. Thus, the uncertainty
of input data strongly influences the output results.
Consequently, this uncertainty needs to be modeled in order
to control and efficiently manage its effect. In this section,
we present a muscle rheological model, which is commonly
used in the musculoskeletal modeling community. Then in
the next section, the uncertainty of input data is modeled.
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A muscle rheological model, such as the Hill-type model,
aims to estimate the human in vivo muscle forces during
motion. This model is one of the most used muscle
rheological models to estimate the muscle forces through the
input–output relationship (e.g. force–length or force–velocity
relationships) of the muscle of interest. Consequently, the
uncertainty of the input data (e.g. physiological cross-
sectional area, optimal muscle-fiber length) has an impact on
the output results (e.g. muscle tensile force). The simplest
Hill-based muscle model consists of only one contractile
element (CE). For this simplest Hill-based muscle model, the
estimated muscle tensile force is not based on its length or
velocity behavior. There are four input parameters: ( )M ia t
which is the muscle activation as a function of the simulation
time step ( )it s ; ( ²)MpCSA cm which is the muscle
physiological cross-sectional area; (N/ ²)M cmγ which is a

muscle scaling factor; and 0
MF which is the peak isometric

muscle force. The output result is the tendon force TF . The
constitutive equations governing the input–output muscle
behavior law are expressed as follows:

( ) 0T CE
M i MF F a t F= = × [2.21]

0
M M MF pCSA γ= × [2.22]

2.2.2.2. Data uncertainty of muscle morphological properties

In this section, we show how to use the knowledge-based
fusion p-boxes to model the uncertainty of the physiological
cross-sectional area parameter of the skeletal muscle. First,
we collected all possible literature-based values of the
physiological cross-sectional area MpCSA of the rectus
femoris muscle from reliable sources such as ScienceDirect
and PubMed. Related data are given in Table 2.8.
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Data Source
MpCSA (cm²)

( )i iμ σ±

S1 [WAR 09] 13.5 ± 5

S2 [LIM 12] 8.3 ± 2

S3 [HOR 07] 28.9

S4 [NAR 92] 66.2 ± 12.1

S5 [ARN 10] 13.9

Table 2.8. Physiological cross-sectional area of the rectus femoris
muscle from five separate data sources

The lower and upper bounds of the MpCSA are calculated
and shown in Figure 2.13. The total range of values of the
rectus femoris MpCSA is [6.2, 78.3] (cm²).

Figure 2.13. Graphical representation of lower and upper data bounds

The random uncertainty coefficients of the physiological
cross-sectional area of the rectus femoris muscle are
presented in Table 2.9. 78.3 6.3 72pCSAw = − = and

61 25 36wγ = − = .

Two biomechanical experts (experts, respectively, A and
B), having in 20 and 7 years approximately of qualifying
work experience in the biomechanics domain, especially in
musculoskeletal modeling, had participated in the
computation of the epistemic uncertainty coefficients e

iU for
the MpCSA property. The rating scores of the two experts are
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shown in Table 2.9. Thus, the five-druple value sets with
normal distribution assumption of the MpCSA are presented
in Table 2.10. Finally, the knowledge-based fusion p-boxes of
the physiological cross-sectional area of the rectus femoris
muscle from five separate data sources are shown in
Figures 2.14 and 2.15.

Parameter r
iU

S1 S2 S3 S4 S5

MpCSA 0.14 0.06 0 0.27 0

Table 2.9. Random uncertainty coefficients of the physiological cross-
sectional area of rectus femoris muscle from five separate data sources

Parameter e
iU

S1 S2 S3 S4 S5

MpCSA 0.465 0.4 0.2 0.38 0.1

Table 2.10. Epistemic uncertainty coefficients of the physiological cross-
sectional area of the rectus femoris muscle from five separate data sources

MpCSA

, , , ,r e
i i i i iD U Uμ σ⎡ ⎤⎣ ⎦ ,l u

i iμ μ⎡ ⎤⎣ ⎦ ,l u
i iσ σ⎡ ⎤⎣ ⎦

S1 [ ]13.5,5, ,0.14,0.465N [ ]13.36,13.64 [ ]4.54,5.47

S2 [ ]8.3,2, ,0.06,0.4N [ ]8.24,8.36 [ ]1.6,2.4

S3 [ ]28.9,0, ,0,0.2N [ ]28.9,28.9 [ ]0.2,0.2

S4 [ ]66.2,12.1, ,0.27,0.38N [ ]64.58,66.36 [ ]11.7,12.48

S5 [ ]13.9,0, ,0,0.1N [ ]13.9,13.9 [ ]0.1,0.1

Table 2.11. Five-druple value sets of the MpCSA
(N means the normal distribution)
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Figure 2.14. Graphical representation of separate
knowledge-based p-boxes of the physiological cross-sectional

area from five separate data sources

Figure 2.15. Graphical representation of the knowledge-based fusion
p-boxes of the physiological cross-sectional area from

five separate data sources

2.3. Biomechanical data uncertainty propagation

2.3.1. Forward and backward uncertainty propagation

The aim of the uncertainty propagation is to study the
effect of input parameter uncertainties through a
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mathematical equation, leading to the quantification of the
output response uncertainties. The input variables of our
system could be either independent or dependent parameters.

Forward uncertainty propagation relates to the
quantitative analysis of the impact of input uncertainty
space on the corresponding output results. Backward
uncertainty propagation deals with the reverse direction
starting from the distribution of the output function to
identify the distribution of input data uncertainty space as
illustrated in Figure 2.16.

Figure 2.16. Overview of uncertainty propagation approaches

2.3.2. Independent and dependent parameters

Independent parameters are those parameters that have
no relationship with other parameters. From a
biomechanical point of view, the relationship relates to an
anatomical or functional relationship, measuring
relationship or statistical relationship. Inversely, dependent
parameters have one or more relationships with other
parameters. In the biomechanics field of study, dependent
parameters are common. For example, the muscle length
parameter has anatomical and functional relationships with
the muscle volume parameter.
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2.3.3. Monte Carlo simulation

The Monte Carlo method consists of the random selection
of input variable samples { }( , 1, , )jX j p∈ ∈ …R and the

computation of a sequence of random output response

( )1 2, , , pR f X X X= … based on the input variable samples.

Then, a CDF of the computed sequence is formulated as
shown in Figure 2.17. Monte Carlo simulation is commonly
used in the case of uncertainty propagation of independent
parameters. It is important to note that the random selection
is essential for the Monte Carlo simulation. Thus, the
random process needs a powerful mathematical function to
achieve an effective random outcome.

Figure 2.17. Graphical illustration of Monte Carlo simulation

2.3.4. Copula-based Monte Carlo simulation

For the case of uncertainty propagation of dependent
parameters, the coupling between copula structure and
Monte Carlo simulation could be used as a potential solution.
A copula is a particular joint distribution function describing
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the dependence between random parameters. The basic idea
of a copula is based on Sklar’s theorem [SKA 59, SCA 89,
NEL 06].

Sklar’s theorem: let { }, 1, ,jX j p∈ ∈ …R be random

variables with joint distribution H and marginal distribution
functions ( ) ( ) ( ){ }1 1 2 2, , , p pG x G x G x… . Then, there exists a

copula C controlling the joint distribution such that:

[ ] [ ]2: 0,1 0,1C → [2.23]

( ) ( ) ( ) ( ){ }( )
( )
1 2 1 1 2 2

1 1 2 2

, , , , , ,

Pr , , ,

p p p

p p

H X X X C G x G x G x

X x X x X x

… = …

= ≤ ≤ … ≤
[2.24]

ix∀ ∈R

If ( ) ( ) ( ){ }1 1 2 2, , , p pG x G x G x… are continuous functions,

then C is unique. The constitutive equation of a two-
parameter (X1 and X2) Gaussian copula is expressed as:

( )
( ) ( )

( )

1 1Φ Φ

2

2 2
1 1 2 2

1 22

1, ;
2 1

2
2 1

u v

GaussianC u v exp

X X X X dX dX

ρ
π ρ

ρ
ρ

− −

−∞ −∞

=
−

⎛ ⎞− +⎜ ⎟−
⎜ ⎟−⎝ ⎠

∫ ∫
[2.25]

where u and v are cumulative (empirical) functions of
standardized residuals and ρ is Pearson’s linear correlation.

Thus, for the independent parameters, their lower and
upper probability-bound functions ( ) ( )F F

F x and F x( ) of K
FF

are used to perform the random selection of input variable
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samples. For the dependent parameters, random selection of
input variable samples is performed on the CFDs of their
copulas. For this case, each random selection leads to all
related samples. Then, the corresponding random output
responses are computed using the mathematical governing
function f. Finally, CDFs of the output responses are
calculated as shown in Figure 2.18.

Figure 2.18. Copula-based Monte Carlo simulation approach

2.3.5. Example of uncertainty propagation through a
physical law

In this section, the uncertainty propagation of the
muscle’s physiological cross-sectional area parameter is
addressed through an example by using the forward
uncertainty principle. The impact of the uncertainty of this
parameter is measured through a physical law governed by a
linear mathematical equation expressed by the equation

0
M M MF pCSA γ= × . The knowledge-based fusion p-boxes of the

physiological cross-sectional area parameter are used. For
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the muscle scaling factor (N/ ²)M cmγ , the same methodology
was applied to construct their knowledge-based fusion
p-boxes as illustrated in Figures 2.19 and 2.20.

Figure 2.19. Separate knowledge-based p-boxes of the muscle scaling
factor parameters from three separate data sources

Figure 2.20. Knowledge-based fusion p-boxes of the muscle scaling factor
parameters from three separate data sources
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To maintain generality, a two-case simulation is presented.
The first case relates to the assumption of an independent
relationship between MpCSA and Mγ . The second case deals
with the assumption of a dependent relationship between

MpCSA and Mγ . For the independent case, the input
uncertainties were propagated through the peak isometric
muscle force computing model using a Monte Carlo sampling
with 900 samples. After the propagation process, the
distribution of the output response was estimated using an
empirical CDF as shown in Figure 2.21. The empirical CDFs
seem to be closely matched with the normal CDFs. Note that
the Monte Carlo simulation was repeated 10 times. The
results of the case of a dependent parameter assumption are
shown in Figure 2.21. Related copulas of the physiological
cross-sectional area and muscle tension factor parameters are
shown in Figures 2.22 and 2.23.

Figure 2.21. Set of cumulative distribution functions generated by
propagating the uncertainties of input independent data in the
computation of the peak isometric muscle force: empirical CDFs

from 10 repeated Monte Carlo runs
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Figure 2.22. Set of cumulative distribution functions generated by
propagating the uncertainties of input-dependent data in the
computation of the peak isometric muscle force: empirical

CDFs from 10 repeated Monte Carlo runs

Figure 2.23. CDFs of Gaussian copulas using marginal CDFs of the
physiological cross-sectional area and muscle tension factor parameters

2.4. Conclusions and perspectives

In this chapter, the modeling of biomechanical data
uncertainties is addressed. Different types of biomechanical
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data are presented. The measuring chains of these data are
analyzed to identify the possible uncertainty sources and the
types of these data. A review of different uncertainty
representation structures ranging from classical probability
structures to new knowledge-based fusion p-boxes is
provided. An example of the uncertainty modeling of the
morphological properties of muscles is also presented.
Finally, for uncertain propagation with different propagation
approaches, a new copula-based Monte Carlo simulation is
introduced. We believe that the data uncertainty modeling
and uncertainty propagation play an essential role in the
next generation of in silico multiphysics models used in a
personalized medicine framework.

As far as perspectives are concerned, a roadmap is
required to express how to determine the reduction strategy
when the data uncertainties are modeled and mastered. New
efforts will be investigated to study this challenging
engineering subject.

2.5. Summary

– Biomechanical data types: physiological, morphological,
mechanical and motion analysis parameters.

– Measuring chains: image-based and/or motion-based
processing processes.

– Data uncertainty: random (aleatory) and epistemic
uncertainties.

– Uncertainty sources: experimental protocol or numerical
processing.

– Uncertainty representation structures: classical
probability functions, new advanced structures such as mass
function or knowledge-based fusion p-boxes.
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– Uncertainty propagation: traditional Monte Carlo
simulation for independent parameters and new copula-
based Monte Carlo simulation for the dependent parameters.

– Challenging issue: a roadmap to express how to
determine the reduction strategy when the data
uncertainties are modeled and mastered.
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3

Knowledge Modeling in Biomechanics
of the Musculoskeletal System

Current clinical decision-making is commonly based on the patient data and personal
knowledge of the clinician. Thus, the same patient with the same pathological state
could be diagnosed and treated differently by different clinicians because each clinician
has their own clinical knowledge base and the patient data could be different from one
hospital or clinic to the next. This approach could lead to inefficient diagnosis and
inappropriate treatment prescription in some clinical cases. To tackle this problem,
clinical knowledge needs to be modeled objectively from real multimodal observable
patient data to provide a generic knowledge base allowing evidence-based decision-
making to be performed. This chapter addresses the conceptual and theoretical aspects
of knowledge modeling in the biomechanics of the musculoskeletal system. First, the
definition of the knowledge extraction and its modeling for specific applications in
biomechanics are described. Second, essential steps ranging from knowledge
representation (KR) and knowledge reasoning to conventional and advanced data
mining process are presented. Finally, the conceptual and technical evolutions of
evaluation-based systems ranging from expert systems, knowledge-based systems to
healthcare systems of systems are illustrated and discussed.

3.1. Knowledge modeling in Biomechanics

3.1.1. Introduction

Knowledge modeling is a process of formalization of the
domain knowledge to develop an interpretable model of
knowledge, which could be processed and exploited by both
human beings and computers. Knowledge modeling has been
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widely developed in the computer science field since the
development of artificial intelligence in the 1950s [NIL 10].
Knowledge modeling in biomechanics of the musculoskeletal
system is a novel field of study. It began in 2007 with the
first published musculoskeletal ontology [DAO 07] used as a
knowledge base for a clinical decision support (CDS) system
[DAO 08]. The idea of the development of knowledge
modeling in biomechanics of the musculoskeletal system
arises from the fact that current biomechanical models could
not be developed and applied for clinical applications without
modeling assumptions and technical limitations. A
knowledge model could be used as an alternative solution to
provide better understanding of the mechanical behavior of
the musculoskeletal system in interaction with internal and
external conditions.

3.1.2. Clinical benefits

The use of knowledge modeling in biomechanics of the
musculoskeletal system could lead to the following clinical
benefits:

– Knowledge model (e.g. decision tree or belief decision
tree) derived from supervised knowledge discovery (data
mining) method could be used to assist the clinicians in their
diagnosis process.

– Knowledge model (e.g. clustering model) derived from
unsupervised knowledge discovery method could be used to
propose an appropriate treatment according to the state of
each patient. Moreover, this kind of model could be used to
evaluate the effect or the quality of the treatment on the
patient before and after its realization.

– All patient data could be used for the clinical decision-
making.

– Clinical decision-making is based on a knowledge model
derived statistically from a patient population.
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– There is no modeling assumption for the development of
the knowledge model.

3.2. Knowledge representation

3.2.1. Web Ontology Language

KR is a subresearch area of artificial intelligence aiming
to represent knowledge in specific format such as symbols,
semantic relationship and production rule (PR). KR allows
new elements of knowledge to be induced from existing
knowledge elements. There are many KR formalisms such as
the Resource Description Framework (RDF) and RDF
schema, Topic Maps, DARPA (Defense Advanced Research
Projects Agency) Agent Markup Language (DAML), Ontology
Inference Layer (OIL), Web Ontology Language (OWL) and
PR. These formalisms have become standard frameworks to
formalize the information and the knowledge about a domain
of interest. In this chapter, we focus on two KR formalisms
such as OWL and PR, which were already used in the
biomechanics of the musculoskeletal system.

OWL is an XML-based KR language aiming to create and
manipulate the ontology. Ontology is a structured
specification of the concepts and semantic, intelligent
relationships in a field of study [DAO 07]. OWL allows us to
define the structure and relationship between information
and knowledge through entity and property definitions.
Moreover, it provides an advanced reasoning level of
structured knowledge and information representation.

OWL is supported by the World Wide Web Consortium
(W3C)1. There are many recommendations allowing us to
define three variants of OWL such as OWL Lite, OWL

1 http://www.w3.org/TR/owl-guide/.
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description logic (DL), and OWL Full. The difference of these
variants is the level of expressiveness. OWL Full is the
highest expressive language and the OWL Lite is the
simplest expressive language. It is important to note that
each variant is a syntactic extension of the precedent
languages. For example, the OWL Full is a syntactic
extension of the OWL DL and so on. To check the syntaxes
and the species of the ontology, we could use the ontology
validators such as the OWL validator2 developed by the
University of Manchester. The use of OWL to create linked
information includes the definitions of the OWL header,
OWL classes, subclasses and individuals, OWL properties,
and OWL reasoning mechanisms.

EXAMPLE 3.1.– An example of the definition of a class “Bone”
using OWL is provided as follows:

<owl:Classrdf:ID="Bone">

<rdfs:subClassOfrdf:resource="&BiologicalTissues"/>

<rdfs:labelxml:lang="en">Bone</rdfs:label>

<rdfs:labelxml:lang="fr">Os</rdfs:label>

<rdfs:labelxml:lang="vn">Xương</rdfs:label>

...

</owl:Class>

3.2.2. Production rule

PR is a KR formalism to organize the expert knowledge in
form of a set of rules. A conventional PR has the form of
IfCondition X1 and/or Condition X2 and/or….Condition Xn

ThenConclusion or Action Y. Each rule could be fired using
the real facts satisfying the set of conditions. A set of PRs is

2 http://owl.cs.manchester.ac.uk/validator/.
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commonly used as a knowledge base of a traditional expert
system such as MYCIN [SHO 76]. In particular, the
combination of PRs and an inference engine allows the
reasoning to be performed. In fact, a PR system commonly
includes a set of PRs derived from expert knowledge, a
working temporary memory and a reasoning mechanism
using an inference engine.

EXAMPLE 3.2.– An example of the traditional set of PRs is
provided as follows:

R1:

If Bone deformation = Yes and muscle paralysis = Yes

Then Pathology = Orthopedic disorder

R2:

If Pathology = Orthopedic disorder and muscle
recoverable = Yes

Then Treatment strategy = Functional rehabilitation

3.3. Knowledge reasoning

Reasoning aims to perform a conclusion or decision or
action by using the known facts or to determine what the
facts needed for a specific conclusion or decision or action
are. In this book, we focus only on the knowledge reasoning
using PRs. Thus, there are three reasoning approaches such
as forward chaining, backward chaining, and a hybrid
combination of them. These reasoning approaches mimic
human reasoning logics.

3.3.1. Forward chaining

Forward chaining is commonly used to discover the
conclusion or decision or action, which could be derived from
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known facts as illustrated in Figure 3.1. During the process,
an inference network is applied to fire the rule based on
given facts satisfying the set of conditions governed by a set
of Boolean operators (And, Or, Not).

Figure 3.1. Forward chaining: bold box represented given facts
and fired conclusion/decision/action; bold connections

represent the forward inference network

3.3.2. Backward chaining

Backward chaining is commonly used to verify what the
facts needed to perform a conclusion or decision or action
are. For example, to determine if a clinical treatment is
appropriate, we could use backward chaining to justify it by
the facts through the backward inference network as
illustrated in Figure 3.2.

3.4. Conventional and advanced knowledge discovery
methods

3.4.1. Knowledge discovery in databases

The concept of data differs with those of knowledge and
information. Data represent or describe an example or
precise element or a fact of the world. Data could be verified
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using a reference in the real world. The detail of clinical
observations of a patient is such a concept of data.
Knowledge is the concept of know-how. Knowledge could be
derived from deeper understanding gained through
experiences or studies. It is important to note that experts
are needed to acquire and formalize the knowledge. The
interpretation of a pathological state based on patient data is
such a kind of knowledge. Information is defined as a set of
acquired data and knowledge to be shared among human
beings or computer agents. The interaction between data,
information, knowledge and decision is shown in Figure 3.3.

Figure 3.2. Backward chaining: bold box represented given
conclusion/decision/action and fired facts; bold connections

represent the backward inference network

Figure 3.3. Graphical illustration of the interaction
between data, information and knowledge
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Knowledge discovery in databases is a process aimed at
the extraction of knowledge from a huge quantity of data (i.e.
Big data) using automatic or semi-automatic approaches
[HAN 00, RAJ 13]. This analysis process is different from a
statistical process. Statistical process allows us to verify a
priori assumptions based on the observable data. Inversely,
there are no a priori assumptions for the knowledge
discovery analysis. This process aims to find out useful and
pertinent knowledge from draw data. A knowledge
management process is shown in Figure 3.4. From draw
data, some target data are selected. Then, these data are
processed to provide validated data, which is transformed
into more useful data. Knowledge discovery is applied to
develop a knowledge model, which could be visualized and
used for decision-making purposes.

Figure 3.4. Workflow of knowledge management process

It is important to note that the knowledge discovery is
only one step of the knowledge management process. Data
mining is the analysis step in the process of knowledge
discovery in databases. Data mining methods consist of two
main approaches such as supervised classification and
unsupervised classification (i.e. clustering). Supervised
classification approach [HAN 01, ALO 12, CAR 13] uses
given data and known labeled classes to develop a knowledge
model such as a decision tree describing the statistical
relationships between input data and output class. The
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unsupervised classification (i.e. clustering) method
[GOW 84, FU 07] uses given data and unknown classes to
develop a clustering model assigning a data set to a specific
class. Recently, a new hybrid approach called semi-
supervised classification has been introduced [MOU 10,
YU 12]. This approach allows the classification model to be
developed for given data, labeled and unlabeled classes.

A methodology of a knowledge discovery study in
databases is shown in Figure 3.5. To develop a robust
knowledge model, databases are divided into two sets such
as a training set and testing set. A data mining algorithm is
applied to the training set to develop the knowledge-based
model. This model needs to be validated using the testing
set. When validated, the model could be used for decision-
making purposes with new patient data. It is important to
note that the databases need to be representative and large
enough to cover all possible patterns of the problem under
investigation. Cross-validation could be an alternative
solution in the case of small testing set.

Figure 3.5. Methodology of a knowledge discovery study
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From an applicative point of view, a classification model
derived from knowledge discovery in databases could be used
as a knowledge-based decision support tool. For example,
clinician could use a knowledge model to assist his or her
medical decision to perform a diagnosis or to prescribe an
appropriate treatment planning. In the following sections,
common supervised classification methods in biomechanics
of the musculoskeletal system are described and discussed.

3.4.2. Decision tree and belief decision tree

3.4.2.1. Classical decision tree

Among supervised classification methods, a decision tree
is the most self-explained decision support tool [ROK 08]. A
decision tree is a tree-like graph or model of knowledge
describing the statistical relationships between observable
and measurable data and labeled classes as illustrated in
Figure 3.6.

Figure 3.6. Example of a decision tree with two measurable
properties (P1 and P2), three labeled classes (C1, C2 and C3)

and two comparable values (V1 and V2)

On the basis of decision tree, a set of PRs could be
extracted and used for decision support purposes. Moreover,
forward and backward chaining approaches could be applied
to determine how to reach a class with given data or to
justify what the data needed to lead a specific class are.
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A decision tree could be created manually from the
knowledge of a domain expert. This approach is very
time consuming and becomes impractical when the decision
tree is large. Thus, a decision tree is commonly created and
tested using a database, which is divided into two sets: a
training set and testing set. The training set is used to grow
the decision tree while the testing set is used to evaluate the
performance of the decision tree.

There are many existing algorithms (e.g. ID3, CHAID,
C4.5, QUEST and random forest) for creating a decision tree.
The most used algorithm is the C4.5 [QUI 93]. A decision
tree has three principal elements: decision node, branch and
class. To develop a decision tree from given data set, the
following components needed to be taken into consideration:
(1) attribute selection, (2) partitioning strategy, (3) stopping
criterion and (4) leave structure.

Attribute selection: this requires a metrics to be used to
select the best attribute to develop the decision tree from the
root node. Entropy and gain information could be used as
such a metrics. Let { }1 2,C ,..,CnCΘ = be the set of labeled
classes, A an attribute and its domain D(A) and T a training
set. Each element in the training set T only belongs to only
one labeled class. Gain information G could be computed
using the following mathematical formulas:

( , ) ( ) ( )AG T A Info T Info T= − [3.1]

2
1

(C , ) (C , )( ) log
n

i i

i

fre T fre TInfo T
T T=

= − ×∑ [3.2]

( )
( ) (T )v

A v
v D A

T
Info T Info

T∈

= ×∑ [3.3]
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where (C , )ifre T is the number of elements in T having the
labeled classCi . vT is a subset of elements in T having the
value of attribute A equals to v. It is important to note that
the best attribute is selected if its gain information ( , )G T A is
maximal. Once selected, the growing process is iterative and
repeated on each subset of the training set. One possible
improvement of the gain information metrics is the use of
gain ratio metrics GR, which is defined as follows:

( , )( , )
( , )

G T AGR T A
SplitInfo T A

= [3.4]

( , ) ( )ASplitInfo T A Info T= − [3.5]

Partitioning strategy: this is defined according to the data
type. If the attribute is symbolic, the test of all possibilities is
one of the partitioning strategies. If the attribute is numeric,
its values could be discretized.

Stopping criterion: this needs to be defined to decide
whether the tree could be grown or not. When all elements
belong to their classes, the growing process of the decision
tree could be stopped. The growing process could be stopping
at the leaf level of the decision tree.

Leaf structure: this includes only one labeled class.

3.4.2.2. Belief decision tree

One of the advanced versions of the decision tree is the
belief decision tree. This method is based on the classical
decision tree and belief functions [ELO 01]. This method
could be used to develop a decision tree in the framework of
data uncertainty, for example the attributes are uncertain or
missing and the class of each element is not a singleton. The
growing process of a belief decision tree is the same as a
traditional decision tree. It also requires the four following
components to be taken into consideration: (1) attribute
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selection, (2) partitioning strategy, (3) stopping criterion and
(4) leaf structure.

Attribute selection: this step aims to select the most
appropriate attribute served as a decision node of the belief
decision tree. There are two computing approaches:
averaging and conjunctive approaches.

The averaging approach [ELO 01] is based on the
pignistic probability entropy derived from the information
entropy of the classical decision tree method. Given the mass
function of each subset A of Ω is defined as [ ]: 2 0,1m Ω → with

( ) 1
A

m A
Ω⊆

=∑ . The selection of the best attribute is

performed using the following steps:

– Step 1: computing of the pignistic probability of each
instance jI of the training set T:

{ } { }
{ }C

( )1(C ) , C
1 ( )i

j
j i i

C j

m I C
BetP I

C m I

Θ
Θ

Θ
Θ

Θ
∈ ∈ ∅

= × ∀ ∈
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– Step 2: computing of the average pignistic probability of
each class on the set of elements S:

{ } { }1(C ) (C )
j

i j i
I S

BetP S BetP I
S

Θ Θ

∈

= ∑ [3.7]

– Step 3: computing of the entropy of average pignistic
probabilities in S:

{ } { }2
1

( ) (C ) log (C )
n

i i
i

Info S BetP S BetP SΘ Θ

=

= − ×∑ [3.8]

– Step 4: select the attribute A and create a subset A
vS in

which the attribute A has the value v.

– Step 5: computing of the average pignistic probability of
each class on the set of elements A

vS as follows:
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{ }(C ),v D(A),A ,CA
v i t iBetP S A CΘ ∈ ∈ ∈ [3.9]

– Step 6: computing of the information entropy of the
attribute A as follows:

( )
( ) (S )

A
v A

A v
v D A

S
Info S Info

S∈

= ×∑ [3.10]

– Step 7: computing of the gain information provided by
the attribute A in the set S as follows:

( , ) ( ) ( )AG S A Info S Info S= − [3.11]

– Step 8: computing of the ratio gain of the following
formulas:

( , )RG( , )
( , )

G S AS A
SplitInfo S A

= [3.12]

– Step 9: repeat for all attributes A tA∈ and select the
best one maximizing the gain ratio RG.

The conjunctive approach [ELO 01] is based on the belief
theory with the use of the distance between elements. The
objective is to minimize the intragroup distance in
maximizing the intergroup distance. The selection of the best
attribute is performed using the following steps:

– Step 1: for each instance jI of the training set T,

compute the following value:

{ } { }( ) lnq ( ),j jK I C I C CΘ Θ= − ∀ ⊆ [3.13]

– Step 2: for each value v of the attribute A, compute the
following coefficient:

{ } { }( ) ( )
A

j v

A
v j

I S

K S C K J C
∈

= ∑ [3.14]
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– Step 3: compute the intragroup distance as follows:

{ } { } 21 1( ) (K (X) K (X))
A

j v

A A
v j vA A

XI Sv v

SumD S I S
S SΘ⊆∈

= × − ×∑ ∑ [3.15]

– Step 4: for each attribute A tA∈ , compute the following
values:

( )
( ) ( )

A
v A

A v
v D A

S
SumD S SumD S

S∈

= ×∑ [3.16]

– Step 5: compute the intergroup distance as follows:

( , ) ( ) ( )ADiff S A SumD S SumD S= − [3.17]

– Step 6: compute the difference ratio as follows:

( , )( , )
( , )

Diff S ADiffRatio S A
SplitInfo S A

= [3.18]

– Step 7: repeat the computing process for each A tA∈ and
select the best one maximizing the difference ratio.

Partitioning strategy: this is defined as the same strategy
used in the case of classical decision tree.

Stopping criterion: the growing process of the belief
decision tree is stopped when there is no attribute to verify
or there is no better separation for the training set.

Leaf structure: this includes only one labeled class. Its
mass function is computed using the following rules: (1) if
the leaf includes only one element, its mass function equals
that of this element; (2) if the leaf includes many elements,
its mass function is computed as follows:

Averaging approach: { } { }1( ) ( )
j

j
I

m S C m I C
S

Θ Θ= ∑ [3.19]
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Conjunctive approach: { } { }
jI S jm S m IΘ Θ
∈= ∩ [3.20]

3.4.3. Artificial neural network

An artificial neural network is computing model inspired
from the biological neural network. An artificial neural
network is a flexible and adaptive model in which its
structure could be changed to find patterns in a big data set
[CHA 01]. A graphical representation of an artificial neural
network denoted as a multilayer perceptron (MLP) [GAL 90]
is shown in Figure 3.7. This type of network allows linear
combination of input data using a connection-weighted
principle. Another type of neural network is the radial basis
function (RBF) [BUH 03] in which the distance between
input data is taken into consideration.

Figure 3.7. Graphical representation of an artificial neural network

3.4.4. Support vector machine

A support vector machine is the generalized case of the
linear classifiers. Two main basic ideas are the maximal
margin and the kernel function [COR 95, SUY 99]. The
maximal margin is defined as the distance between
the separate hyperplane and support vectors defined as the
nearest data to the hyperplane. The kernel function allows
the scalar product in large dimension space to be
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transformed into an evaluation of one simple function.
This approach could be used to perform biclasses or
multiclasses classification. Graphical illustration of a
biclasses classification using a support vector machine is
shown in Figure 3.8.

Figure 3.8. Graphical representation of a biclasses classification using a
support vector machine

3.5. CDS system

A decision support system is a computer-aided program
that could be used to assist clinicians in their decision-
making. It is important to note that the aim of a CDS system
is not to replace the clinicians but to assist them in
performing a better diagnosis or to propose a more
appropriate treatment prescription. Recently, a group of
researchers proposed 10 grand challenges in CDS [SIT 08] as
follows: (1) improve the human–computer interface, (2)
disseminate the best practices in CDS design, development
and implementation, (3) summarize patient-level
information, (4) prioritize and filter recommendations to the
user, (5) create an architecture for sharing executable CDS
modules and services, (6) combine recommendations for
patients with co-morbidities, (7) prioritize CDS content
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development and implementation, (8) create internet-
accessible CDS repositories, (9) use free-text information to
drive CDS and (10) nine large clinical databases to create
new CDS. In this section, different generations of CDS
systems are presented and discussed.

3.5.1. Expert system

An expert system is the first generation of the decision
support system. The software architecture of a first-
generation CDS system is illustrated in Figure 3.9. This
system includes a knowledge base, an inference engine and a
user interaction module. The knowledge base is commonly
extracted directly from expert knowledge and stored in the
form of a set of PR (IF …AND…THEN …). The inference
engine consists of forward and backward chaining
algorithms. The user interaction module provides only text-
based dialogue between the expert system and the end users
(e.g. clinicians).

Figure 3.9. Software architecture of a first-generation
clinical decision support system

MYCIN is one of the first expert systems. MYCIN was
developed by Stanford University in the 1970s [SHO 76]. This
expert system aims to identify the bacteria and recommend an
antibiotics dosage according to the body weight of the patient.
The knowledge base of the MYCIN system includes around
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500 PRs. The accuracy of the MYCIN system is approximately
69% of correct diagnosed cases.

The first generation of the expert systems (e.g. MYCIN
and CADUCEUS [BAN 86]) has a strong impact on research
but these first expert systems were never used in routine
practice. One of the main reasons relates to the fact that in
the 1970s, the use of computer program in medical diagnosis
created a debate about the responsibility of a wrong
diagnosis performed by the computer. Another important
reason deals with the limited software development
technologies to create a user-friendly and helpful system for
a clinician. For example, MYCIN provides only poor user
interaction. The executing algorithm was very resource-
demanding and time-consuming. Despite not being used in
routine practice, the first generation of the expert systems
was successful from a research point of view, giving the
potential application of artificial intelligence theories,
methods and techniques to the development of a CDS
system.

3.5.2. Knowledge-based system

A knowledge-based system could be considered as a
second-generation of a CDS system. Knowledge-based
systems are currently being developed around the world to
solve complex clinical problems using available knowledge
and reasoning mechanisms. For this second-generation
system, knowledge is commonly extracted from multiple
sources (expert knowledge and databases) and represented
by various KR formalisms such as classical and/or
probabilistic PRs, frames and cases. In particular, artificial
intelligence is the main core of such a system. By using
traditional (e.g. a decision tree) and/or advanced data mining
methods (e.g. a belief decision tree), useful knowledge could
be extracted from a huge amount of data to provide evidence-
based assets (e.g. a PR base). And then, statistical inference
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could be performed to provide predictive models for clinical
purposes. The software architecture of a second-generation
CDS system is illustrated in Figure 3.10.

Figure 3.10. Software architecture of a second-generation
clinical decision support system

3.5.3. System of systems

Knowledge-based systems have proven validity for the
clinical and healthcare problems by using biomedical
informatics approaches. However, this approach could detect
only simple statistical relationships between data. More
useful information or knowledge about anatomical or
biological or physical causal relationships cannot be detected
and extracted in a straightforward manner. Moreover, the
accuracy of the predictive model is based on the
generalization of the database under investigation. Recently,
we proposed the integration of the knowledge-based system
(i.e. a decision support system) with the multi-physical
modeling one as a next-generation decision support system
for performing personalized clinical recommendations. In
short, a multi-physical model provided by a multi-physical
modeling system is a personalized model describing the
musculoskeletal structures (e.g. bone, muscle, tendon and
ligament) and their mechanical behaviors. However, many
modeling assumptions (such as muscle modeling, joint
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properties and functions) were performed. Consequently, a
multi-physical model cannot integrate all accumulated
knowledge (e.g. mechanical properties and behaviors) and
experimental data due to their difficult implementations
(e.g. appropriate formulation of mechanical behaviors,
efficient algorithms and computing time). On the other hand,
a knowledge-based model provided by a knowledge-based
system is a predictive statistical model derived from one or
multiple data sources. Thus, it can integrate all accumulated
knowledge and data to improve the accuracy of the
diagnosis, treatment and monitoring processes. Moreover,
computational results of a multi-physical model could be
used as input data of the knowledge-based model. In fact,
these two modeling approaches are closely complementary.
Thus, the integration of these approaches into a next-
generation CDS system should be of great interest;
benefiting their complementary advantages and limiting
their weakness for performing efficient and personalized
clinical recommendations. It is important to note that a next-
generation decision support system needs to respond to the
following requirements [MIT 11]: incorporating lessons from
history, uniform vocabularies, integrative interfaces,
contextualized decisions, personalized recommendations and
adaptive solutions.

The notion of system of systems (SoS) has been recently
introduced in the engineering system field [MAI 98]. From
an engineering point of view, a system is defined as a group
of functionally, physically and/or behaviorally interactive,
independent, material or non-material components. An SoS
is a set of useful systems integrated into a larger system to
achieve a unique set of tasks [JAM 08]. Recently, a
healthcare SoS was introduced to analyze and exploit the
human brain as well as the orthopedic kinematic analyses
using medical imaging techniques such as 2D X-ray
fluoroscopy, ultrasound or magnetic resonance imaging
[HAT 09]. In fact, an SoS approach could be an appropriate
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engineering approach to integrate the knowledge-based
modeling system and the physics-based simulation system
into an innovative decision support system for clinical
purposes.

An example of the software architecture of a
biomechanical SoS is shown in Figure 3.11. This CDS system
consists of the following constituent systems:

– A data management system aiming to manage the
multidimensional (morphological, mechanical, kinematic,
kinetic and EMG) and multimodal (medical imaging
techniques and 3D motion capture) data from different data
acquisition sources. This system consists of data
preprocessing and database modules.

– An ontology and information retrieval system dealing
with a musculoskeletal ontology [DAO 07] served as common
vocabularies used in our clinical DSS and as a knowledge
kernel of information retrieval for web-based human
musculoskeletal resources [DAO 13]. This system integrates
an ontology module and a knowledge-based search engine
module.

– A physics-based modeling system dealing with the
modeling and simulation of the human musculoskeletal
system in interaction with the external environment using
mechanical engineering approaches [DAO 12]. This system
integrates a multi-physics simulation module and a
validation module.

– A knowledge-based system relating to the modeling of the
musculoskeletal system using knowledge-based engineering
approaches such as advanced data mining and artificial
intelligence methods to perform statistical inference functions
[DAO 11a, DAO 11b]. This system integrates an advanced
statistical inference module and a validation module.

– An integration system aiming to aggregate knowledge
from multi-physics simulation and knowledge-based
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modeling to provide evidence-based facts and knowledge for
clinical decision-making. This system consists of a knowledge
aggregation module and a decision-making module.

– A user interaction system aiming to manage the
interaction between the results of our biomechanical SoS and
the end users such as clinicians or biomedical researchers or
biomedical engineers. This system consists of visualization
and user online/offline interaction modules.

Figure 3.11. Software architecture of the biomechanical system of systems

3.6. Conclusions

In this chapter, theoretical concepts of knowledge
modeling in the biomechanics of the musculoskeletal system
are addressed. Different steps of a knowledge extraction
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process are presented and detailed. It is important to note
that decision-making is always based on the knowledge of
the pathologies under investigation. This knowledge could
come from a personal (individual) base or from a more
objective base. Thus, knowledge modeling of the investigated
pathology will allow the diagnosis or treatment evaluation to
be performed in an objective and quantitative manner.
Furthermore, the use of a knowledge model needs to develop
a CDS system. Among different software architectures, the
SoS approach could be considered as a potential solution for
the development of a next-generation CDS system.

3.7. Summary

– KR: OWL and PR.
– Knowledge reasoning: forward chaining and backward

chaining.
– Data, information and knowledge: three basic elements

of a knowledge extraction process.
– Clinical decision-making: diagnosis, treatment and

prevention of a disease.
– CDS system: useful tool to assist the clinicians in their

decision-making.

3.8. Bibliography

[ALO 12] ALONSO A.M., CASADO D., ROMO J., “Supervised
classification for functional data: a weighted distance
approach”, Computational Statistics & Data Analysis, vol. 56,
no.7, pp. 2334–2346, 2012.

[BAN 86] BANKS G., “Artificial intelligence in medical diagnosis:
the INTERNIST/CADUCEUS approach”, Critical Reviews in
Medical Informatics, vol. 1, no. 1, pp. 23–54, 1986.

[BUH 03] BUHMANN M., Radial Basis Functions: Theory and
Implementations, Cambridge University Press, 2003.



Knowledge Modeling 99

[CAR 13] CARRIZOSA E., MORALES D.R., “Supervised classification
and mathematical optimization”, Computers & Operations
Research, vol. 40, no. 1, pp. 150–165, 2013.

[CHA 01] CHAU T., “A review of analytical techniques for gait data.
Part 2: neural network and wavelet methods”, Gait and Posture,
vol. 13, pp. 102–120, 2001.

[COR 95] CORTES C., VAPNIK V.N., “Support-vector networks”,
Machine Learning, vol. 20, pp. 273–297, 1995.

[DAO 07] DAO T.T., MARIN F., HO BA THO M.C., “Ontology of the
musculoskeletal system of lower limbs”, Proceedings of IEEE
Engineering in Medicine and Biology Society, pp. 386–389,
2007.

[DAO 08] DAO T.T., MARIN F., HO BA THO M.C., “Ontology-based
computer-aided decision system: a new architecture and
application concerning the musculoseletal system of the lower
limbs”, IFMBE, Springer, Berlin, Heidelberg, pp. 1540–1543,
2008.

[DAO 11a] DAO T.T., HO BA THO M.C., “Knowledge-based System
for orthopedic pediatric disorders”, IFMBE Proceedings, vol. 37,
pp. 125–128, 2011.

[DAO 11b] DAO T.T., MARIN F., BENSAHEL H., et al., “Computer-
aided decision system applied to the clubfeet deformities”,
Advances in Experimental Medicine and Biology, vol. 696, no. 7,
pp. 623–635, 2011.

[DAO 12] DAO T.T., MARIN F., POULETAUT P., et al., “Estimation of
accuracy of patient specific musculoskeletal modeling: case
study on a post-polio residual paralysis subject”, Computer
Method in Biomechanics and Biomedical Engineering, vol. 15,
no. 7, pp. 745–751, 2012.

[DAO 13] DAO T.T., HOANG T.N., TA X.H., et al., “Knowledge-based
personalized search engine for the web-based human
musculoskeletal system resources (HMSR) in biomechanics”,
Journal of Biomedical Informatics, vol. 46, no. 1, pp. 160–173,
2013.

[ELO 01] ELOUEDI Z., MELLOULI K., SMETS P., “Belief decision
trees: theoretical foundations”, International Journal of
Approximate Reasoning, vol. 28, pp. 91–124, 2001.



100 Biomechanics of the Musculoskeletal System

[FU 07] FU J., GAO H., FRANK J., “Unsupervised classification of
single particles by cluster tracking in multi-dimensional space”,
Journal of Structural Biology, vol. 157, no. 1, pp. 226–239, 2007.

[GAL 90] GALLANT S.I., “Perception-based learning algorithms”,
IEEE Transactions on Neural Networks, vol. 2, pp. 179–191,
1990.

[GOW 84] GOWDA K.C., “A feature reduction and unsupervised
classification algorithm for multispectral data”, Pattern
Recognition, vol. 17, no. 6, pp. 667–676, 1984.

[HAN 00] HAN J., KAMBER M., Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers, 2000.

[HAN 01] HAND D.J., LI H.G., ADAMS N.M., “Supervised
classification with structured class definitions”, Computational
Statistics & Data Analysis, vol. 36, no. 2, pp. 209–225, 2001.

[HAT 09] HATA Y., KOBASHI S., “Human health care system of
systems”, IEEE Systems Journal, vol. 3, no. 2, pp. 231–238,
2009.

[JAM 08] JAMSHIDI M., Systems of Systems Engineering –
Principles and Applications, CRC/Taylor & Francis, London,
2008.

[MAI 98] MAIER M.W., “Architecting principles for system of
systems”, Systems Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[MIT 11] MITCHELL J.A., GERDIN U., LINDBERG D.A.B., et al., “50
years of informatics research on decision support: what’s next”,
Methods of Information in Medicine, vol. 50, no. 6, pp. 525–535,
2011.

[MOU 10] MOUCHAWEH M.S., “Semi-supervised classification
method for dynamic applications”, Fuzzy Sets and Systems,
vol. 161, no. 4, pp. 544–563, 2010.

[NIL 10] NILSSON N.J., The Quest for Artificial Intelligence: A
History of Ideas and Achievements, Cambridge University
Press, 2010.

[QUI 93] QUINLAN J.R., C4.5 Programs for Machine Learning,
Morgan-Kaufmann Publishers, San Francisco, 1993.



Knowledge Modeling 101

[RAJ 13] RAJARAMAN A., LESKOVEC J., ULLMAN J., Mining of
Massive Datasets, Cambridge University Press, 2013. Available
at http://infolab.stanford.edu/~ullman/mmds/book.pdf.

[ROK 08] ROKACK L., MAIMON O., Data Mining with Decision
Trees: Theory and Applications, World Scientific Publishing
Company, 2008.

[SHO 76] SHORLIFFE E.H., Computer Based Medical Consultations:
MYCIN, Elsevier, New York, 1976.

[SIT 08] SITTIG D.F., WRIGHT A., OSHEROFF J.A., et al., “Grand
challenges in clinical decision support”, Journal of Biomedical
Informatics, vol. 41, no. 2, pp. 387–392, 2008.

[SUY 99] SUYKENS J.A.K., VANDEWALLE J.P.L., “Least squares
support vector machine classifiers”, Neural Processing Letters,
vol. 9, no. 3, pp. 293–300, 1999.

[YU 12] YU G., ZHANG G., DOMENICONI C., et al., “Semi-supervised
classification based on random subspace dimensionality
reduction”, Pattern Recognition, vol. 45, no. 3, pp. 1119–1135,
2012.

.





4

Clinical Applications of Biomechanical
and Knowledge-based Models

In silico medicine is one of the challenging research areas in the field of biomechanics.
This relates to the direct use of computer-based models and simulation in the diagnosis,
treatment or prevention of a disease. In this chapter, clinical applications of
biomechanical and knowledge-based models are expressed. The first application deals
with the use of a patient specific musculoskeletal model to evaluate the effect of the
orthosis on the functional behavior of a post-polio residual paralysis (PPRP) subject.
The second application relates to the use of a computational ontology of the
musculoskeletal system of the lower limbs in the interpretation of a cause–effect
relationship of the rotational abnormalities. The third application expresses the
development of predictive models of the pathologies (rotational abnormalities and
clubfoot deformities) of the lower limbs.

4.1. Patient-specific musculoskeletal model: effect of
the orthosis

4.1.1. Introduction

Orthopedic disorders such as children with cerebral
palsy or PPRP affected the peripheral nervous and
musculoskeletal systems leading to muscle spasticity or
muscle paralysis and bony deformities [FAR 10, EUN 12].
The consequence of these disorders strongly influences the
biomechanical functions (e.g. weight support or gait
behaviors) of the human body of the involved patients
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[WAK 07, DAO 12]. One of the most used clinical routine
practices is the prescription of medical helping devices such
as orthoses or crutches to recover normal motion behavior as
well as to provide compensating aid for body support [FAR
10, LAM 05, GAR 06, GEN 10]. However, the impact of the
orthosis on the biomechanical functions of the human body is
still not well understood. Thus, inappropriate effects of the
orthosis could make the handicap problem more serious for
the patients. Furthermore, the current design of orthosis
devices is based on laborious manual processes subject to
human error (e.g. subjective measurements) and unfitted
positions, not to mention being time consuming. All this can
lead to bad quality clinical treatment and a high cost for
medical activity [DEA 95, MAV 11]. Consequently, new
specifications need to be recommended to improve the
orthosis design process.

Orthoses such as ankle-foot orthosis (AFO) [CRU 09] or
knee-ankle-foot orthosis (KAFO) [CUL 09] or hip-knee-ankle-
foot orthosis (HKAFO) [FAR 10] are often designed to recover
the biomechanical functions of the involved joints such as the
hip, knee, ankle or a combination of the three. The choice
the appropriate orthosis depends on the type as well as the
pathological state of the patient. For example, a KAFO is
commonly prescribed for a post-polio patient with paralyzed
muscles on one side. Recently, the 3D motion capture
technique has become a potential experimental technique to
assess the performance of orthosis devices. Some research
studies reported the improved locomotion patterns such as
spatiotemporal parameters (gait speed and stride length),
oxygen consumption, mechanical work and energy cost
[LAM 05, CHE 05, DES 06, BLE 08]. However, these orthoses
also showed intrinsic design limitations such as materials
which were either too flexible or not flexible enough, inflexible
and misadapted joints, inappropriate aids for gait kinematics
and kinetics patterns as well as uncomfortable and
unaesthetic patterns [LAM 05, BLE 08]. Furthermore, the
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pathophysiological state of the orthopedic patient could make
the use of orthoses inefficient in some cases due to patient
motion limitations. In fact, spatiotemporal or kinematics or
kinetics data derived from 3D motion capture systems become
qualitative and quantitative assessment properties of the
consequence effect derived from the compromise between
pathophysiological patient state and orthoses restrictions.
However, the computing of these properties is based directly
on the generic simplified biomechanical models provided with
the motion capture systems such as VICON or visual 3D. It is
well known that these generic biomechanical models do not
accurately reflect the geometry of the patient involved.
Consequently, a patient-specific biomechanical model would
be of interest to provide more accurate data for the
assessment of the orthosis effect.

The objective of this section is to present the
quantification of the effect of a KAFO using a patient-specific
biomechanical model derived from medical imaging and 3D
motion capture techniques. On the basis of this evaluation,
patient-specific KAFO orthosis design could be improved.

4.1.2. Materials and methods

4.1.2.1. Data acquisitions

CT scanner images were acquired on a PPRP patient
(male, 26 years old, 170 cm height and 66 kg body mass) in a
supine position. This patient was diagnosed and followed by
an experienced radiologist and the orthopedic surgeon at the
Polyclinique Saint Côme (Compiègne, France). Consequently,
all parameters of the CT scan acquisition protocol were set up
as clinical routine practice. A spiral-imaging scanner (GE
Light Speed VCT 64) was used to perform our imaging
acquisition protocol. Also note that the participated subject
signed an informed consent agreement before participating
into this study. Our CT scan protocol was set up by the
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experienced radiologist to ensure the lowest effective radiation
dose with the best image quality (less than 2 mSv). The
acquisition had 384 joint slices with a 3 mm thickness and a
matrix of 512 × 512 pixels (Figure 4.1(a)). The time duration
of the full image acquisition was about 30 s.

Figure 4.1. a) CT-based anatomical images, b) threshold-based
segmented images and c) STL-based skeletal surface envelop

model of the lower limb structures of a PPRP patient

Gait kinematics data have been collected on the PPRP
patient with a KAFO attached on his left lower limb to
support and compensate his skeletal deformity and muscle
weakness. The KAFO was designed using a casting and
subjective rectification process. The PPRP patient has no
specific pain during his gait with KAFO. Note also that he
cannot perform his gait without the KAFO. Another healthy
subject (male, 39 years old, 175 cm height and 75 kg body
mass) also participated in gait data acquisition to serve as
reference kinetic data. Data acquisition was performed using
the Helen Hayes protocol based on the Davis marker
configuration model [DAV 91]. The 3D marker’s trajectories
were collected using a VICON Motion Capture system
(Vicon, Oxford, UK) with six cameras. The 3D trajectories of
the markers were filtered by a fourth-order Butterworth
filter with cut-off frequency of 5 Hz (Vicon Nexus software,
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Oxford, UK). Gait kinetics data such as foot–ground reaction
forces were acquired using two force platforms AMTI (AMTI,
Watertown, United Kingdom).

4.1.2.2. Patient-specific biomechanical analysis of the effect of
the KAFO

On the basis of acquired 3D trajectories of the skin-based
markers, joint kinematics during gait cycles including stance
and swing phases of the PPRP patient were computed using
a patient-specific biomechanical model developed with
BGR.LifeMod software (LifeModeler, Inc., San Clemente,
CA) [DAO 12]. This model consists of seven rigid segments
(pelvis, thighs, legs and feet) (Figure 4.1(c)) derived from
segmented CT images (Figure 4.1(b)) with 20 degrees of
freedom [DAO 12]. 3D Slicer software (Surgical Planning
Laboratory – MIT 1998) was used to perform segmentation
of all rigid segments using the semi-automatic method. On
the basis of 2D CT-based slice-by-slice anatomical images,
bony segments were segmented from surrounding tissues. A
threshold-based segmentation method was applied. Then,
each image was verified and cleaned to ensure that the
segmented pixels belonged to the tissue of interest as well as
to avoid unnecessary segmented pixels, respectively. 3D
geometries of all these segments were reconstructed and
stored in STL format. Then, these geometries were used to
develop a patient-specific osteoarticular model. The inverse
kinematics (IK) algorithm was used to compute the joint
kinematics using 3D trajectories of skin-mounted markers. It
is important to note that the calibration between the
model derived from CT images and 3D motion data is
performed using an optimization approach provided by the
BGR.LifeMod software. Thus, this process aims to put
the supine imaging data and standing kinematics data into
the same reference system. During the calibration step, the
Euclidian distance errors between the coordinates of
markers posed virtually on the image-based model and those
of the real skin-mounted markers are minimized.
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4.1.2.3. Definition of evaluation parameters

To quantify the change of kinematics patterns of the
PPRP patient due to the effect of the KAFO, his joint
kinematics were compared to those of the reference range of
values of the normal subject extracted from reference data
provided by the OpenSIM software [DEL 07] and standard
deviation from literature-based values [MCG 09]. Absolute
deviation of joint kinematics (angles in degree) was
computed using the following formula:

( ) { } { }with , , , 0,..,100
kin normal pprp

dev a a a hip knee ankle ii i° = − ∈ ∈ [4.1]

where a is the hip or knee or ankle joint and i is the gait
cycle percentage. Thus, mean absolute deviations and their
standard deviation were computed during different phases of
gait ranging from heel strike to terminal swing phases.

Concerning the analysis of kinetic patterns, relative peak-
to-peak GRF deviations were computed at the heel strike
(hs) and toe-off (to) during stance phase by using the
following mathematical formula:

( ) { }% 100 with ,
pprp normalgrf grfkinetics j jdev j hs tonormalgrf j

⎛ ⎞
−⎜ ⎟

⎜ ⎟= × ∈
⎜ ⎟⎜ ⎟
⎝ ⎠

[4.2]

where GRF is the ground reaction force.

Relative contact time based on the GRF was also
computed by using the following mathematical formula:

( ) ( ) ( )
( )

{ }% 100 with ,
s s normal normalt t t ttime to hs to hs

dev s affected unaffected
normal normalt tto hs

⎛ ⎞
− − −⎜ ⎟

⎜ ⎟= × ∈
⎜ ⎟−⎜ ⎟
⎝ ⎠

[4.3]

Data postprocessing was performed using Matlab R2008b
(The Matworks, Inc., Natick, MA).
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4.1.3. Results

4.1.3.1. Kinematics analysis

Hip joint kinematics of the PPRP patient were compared
to those of the normal reference values (Figure 4.2). For the
unaffected side of PPRP patient, we found that his hip
kinematics pattern is quasi-similar to that of the normal
range of values. Mean absolute deviation ranges from
− 1 ± 0.2° to 9.3 ± 1° with maximal deviation at the toe-off
phase (Tables 4.1 and 4.2). However, there is a phase shift
between these kinematic patterns. Furthermore, the PPRP
patient reaches the maximal extension amplitude peak
faster than the normal subject. Concerning the affected side
with orthosis of the PPRP patient, his joint kinematic
pattern is completely altered by the orthosis effect. During
the heel strike phase, the PPRP hip joint begins its flexion-
to-extension activity with a significantly smaller angle than
that of a normal range of values. Moreover, there is a
redundant flexion activity during the swing phase (i.e. from
60% to 100% of gait cycle) of gait. We noted that the mean
absolute deviation ranges from 0.1 ± 9.5° to −27.9 ± 3° with
the maximal deviation at the heel strike phase (Table 4.1).

Figure 4.2. Comparison of hip kinematics between PPRP data
and normal reference data
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Joint

Joint kinematics deviation stance
phase (0–60%)

Heel strike
(0–2%)

Midstance
(10–30%)

Toe-off (50–
60%)

Hip(in ° ± SD)

Left side
(with orthosis) –26.3 ± 1 –27.9 ± 3 17.4 ± 2

Right side
–1 ± 0.2 –8.2 ± 6 9.3 ± 1

Knee(in ° ± SD)
Left side
(with orthosis) - - -

Right side 8.4 ± 3.2 –2 ± 3.5 40.9 ± 15.5

Ankle (in ° ± SD)
Left side
(with orthosis) 10.5 ± 1.1 11.7 ± 1.3 7.5 ± 6.5

Right side 3.5 ± 1.6 –2.3 ± 4.4 8.3 ± 3

Table 4.1. Absolute mean deviation of joint kinematics of the PPRP patient
comparing to the normal ranges of values during stance phase

Joint

Joint kinematics deviation
swing phase (60–100%)

Initial swing
(60–73%)

Midswing
(73–87%)

Terminal
swing (87–
100%)

Hip
(in ° ± SD)

Left side
(with orthosis) 0.1 ± 9.5 –17.6 ± 3.8 –24 ± 2

Right side 2 ± 4.7 –5.8 ± 0.9 –2.8 ± 1.8

Knee
(in ° ± SD)

Left side
(with orthosis) - - -

Right side –22.7 ± 21 –31.5 ± 8.9 2.2 ± 9.8

Ankle
(in ° ± SD)

Left side
(with orthosis) 15.1 ± 4.8 4 ± 1.5 5.2 ± 1.5

Right side 10 ± 3 1.8 ± 2.1 1.6 ± 0.7

Table 4.2. Absolute mean deviation of joint kinematics of the PPRP patient
comparing to the normal ranges of values during swing phase

Quasi-similar kinematics pattern between PPRP knee
kinematics and the normal range of values was found for
the unaffected side of the PPRP patient (Figure 4.3).
However, the initial knee flexion is almost omitted. A phase
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shift is also noted, especially for the knee flexion pattern.
Moreover, the PPRP patient performs knee flexion faster
than the normal subject. Mean absolute deviation ranges
from − 2 ± 3.5° to 40.9 ± 15.5° with the maximal deviation at
the toe-off phase (Tables 4.1 and 4.2). Concerning the
affected side with orthosis of the PPRP patient, knee angles
were quasi-null during all gait cycles due to the locked joint
of the KAFO at the knee level.

Figure 4.3. Comparison of knee kinematics between
PPRP data and normal reference data

In the case of the ankle joint, the PPRP ankle kinematic
pattern of the unaffected side is quasi-similar to that of the
normal range of values. However, the ankle kinematic
pattern is not smooth at the dorsiflexion and plantar flexion
activites (Figure 4.4). The maximal dorsiflexion peak of the
PPRP patient is greater than that of the normal range of
values. The maximal plantar flexion peak of the PPRP
patient is smaller than that of the normal range of values.
Mean absolute deviation ranges from 1.8 ± 2.1° to 8.3 ± 3°
with the maximal deviation at the toe-off phase (Table 4.1).
In the affected side with orthosis, the ankle kinematics
omitted the initial plantar flexion phase. The maximal
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dorsiflexion peak is reached faster than that of the normal
range of values. Moreover, the ankle kinematics is not
smooth during all gait cycles. Mean absolute deviation
ranges from 4 ± 1.5° to 15.1 ± 4.8° with the maximal
deviation at the initial swing phase (Table 4.1).

Figure 4.4. Comparison of ankle kinematics between
PPRP data and normal reference data

4.1.3.2. Kinetics analysis

Experimental vertical GRF of PPRP patient compared to
those of normal range of value are illustrated in Figure 4.5.
We noted that there is a phase shift between PPRP kinetics
patterns and those of the normal subject. Moreover, kinetic
patterns of the PPRP patient are not smooth compared to
those of the normal range of values. The PPRP patient
reaches the heel strike and toe-off phases slower than the
normal subject. Furthermore, the foot–ground contact time of
the PPRP patient is longer than that of the normal subject,
especially for his unaffected side. The relative peak-to-peak
GRF revealed that the orthosis contributes to the increasing
foot–ground reaction forces of 14% and 5% at the heel strike
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phase for the affected and unaffected sides, respectively. At
the toe-off phase, PPRP’s foot–ground reaction force increases
(approximately 4.5%) for the affected side and it decreases
(around −14.3 %) for the unaffected side. Moreover, we noted
that the orthosis effect contributes to the increase in relative
contact times of around 212% and 117% for the PPRP’s
affected and unaffected sides, respectively.

Figure 4.5. Comparison of experimental ground reaction forces in the
vertical direction between PPRP data and normal reference data during

stance phase (60% of a gait cycle)

4.1.4. Discussion

Musculoskeletal geometries and functions of the PPRP
patient show abnormal characters consisting of skeletal
deformities and muscle paralysis. So the qualitative and
quantitative assessment of the consequence effect of the
KAFO under the pathophysiological state of the PPRP
patient on the biomechanical functions of this
musculoskeletal disorder needs to be investigated in a
patient-specific manner. In this study, we showed that the
combination of medical imaging and 3D motion capture
techniques provides a potential technical routine practice for
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the patient-specific biomechanical analysis of the effect of
the KAFO on the PPRP patient during motions such as gait.
Moreover, a PPRP patient-specific KAFO design could be
established to optimize its biomechanical recovering
functions.

In fact, joint kinematics patterns at the hip, knee and
ankle joints of the PPRP patient during his gait were altered
due to the knee joint fixed by KAFO design as illustrated in
Figures 4.2–4.4. Consequently, the gait kinematics on the
PPRP’s unaffected side is influenced. From a biomechanical
point of view, this imbalance effect may have consequences
on the mechanical properties of bones, muscles and
osteoarticular joints. To avoid this imbalance loading effect
on the joints and gait, it would be of importance to optimize
the KAFO.

For the PPRP’s hip kinematics, the use of orthosis creates
a phase shift for both sides as well as an additional and
longer flexion activity for the affected side during its swing
phase of gait (from 60% to 100%). The improvement of the
hip joint pattern could be performed during the transition
extension-to-flexion phase to avoid the additional flexion
activity for the affected side. In this case, the following
objective function could be used to optimize the orthosis
performance at the hip joint:

Minimize _ _kinematics normal hip pprp hipf angle anglehip i i∑= − , { }0,..,100i∀ ∈ [4.4]

For the PPRP’s knee kinematics, the unaffected side has a
phase shift and a faster flexion peak while the affected side
is completely locked due to the KAFO’s functional fixed joint.
The results suggest that the KAFO design should allow joint
movement such as the flexion/extension activities of the knee
during gait. This should help decelerate the flexion velocity
of the PPRP’s unaffected side (Figure 4.3). For this joint, the
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following objective function could be used to optimize the
orthosis performance at the knee joint:

Minimize _ _kinematics normal knee pprp kneef angle angleknee j j∑= − , { }0,..,100j∀ ∈ [4.5]

For the PPRP’s ankle kinematics, there are phase shifts
over times as well as over joint amplitudes. Moreover, the
kinematic patterns are not smooth at all gait cycles,
especially at the maximal dorsiflexion and plantar flexion
and in the dorsiflexion-to-plantar flexion transition.
Furthermore, foot–ground reaction forces reveal that the
orthosis decelerated the foot–ground contact time for both
affected and unaffected sides. The patterns of foot–ground
reaction forces are altered leading to the lack of three
separate contact peak forces at heel strike, stance and toe-off
phases. Consequently, an ankle joint design allowing
smoother ankle kinematic patterns should be considered. In
this case, following objective functions could be used to
optimize the orthosis performance at the ankle joint:

Minimize _ _kinematics normal ankle pprp anklef angle angleankle k k∑= − , { }0,..,100k∀ ∈ [4.6]

Minimize _ _kinetics normal foot pprp footf GRF GRFfoot l l∑= − , { }0,..,100l∀ ∈ [4.7]

In summary, based on the kinematics and kinetics
patterns of the PPRP patient from patient-specific
biomechanical analysis, a design-oriented multiobjective
function could be used to optimize the KAFO design of PPRP
patients as follows:

Minimize 1 2 3 4
design kinematics kinematics kinematics kineticsf w f w f w f w forthosis hip knee ankle foot

⎛ ⎞∑= + + +⎜ ⎟
⎝ ⎠

[4.8]

where , , 4,1 2 3w w w w are the kinematics and kinetics weighted
design factors. These factors will be adapted to the specificity
of the target orthopedic disorder.
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The use of 3D motion capture in the quantitative
assessment of the medical support devices such as orthosis
or prosthesis is not new [JOH 04, KAR 11, SIL 11]. However,
only generic and simplified biomechanical models (e.g.
VICON or visual 3D) were used to perform this task leading
to inaccurate analysis results [CAP 05, CRO 05, FER 08].
Our study opens a new direction in which to perform patient-
specific biomechanical analysis of the effect of medical
orthopedic devices using the coupling between medical
imaging and 3D motion capture, thereby leading to more
accurate analysis results. In fact, the use of patient-specific
models could lead to better evaluation and design
characteristics than the use of generic models. The first
advantage relates to the individualized bone geometries,
which allows a more accurate joint range of motion to be
acquired. The second advantage is the possible
individualized design of the orthosis using individualized
geometries derived from medical imaging and numerical
approach such as virtual computer-aided orthosis design
[MAV 11]. Furthermore, on the reliable analysis results,
objective design specifications could be recommended to
optimize the performance of the orthopedic devices [JOH 04].
Our analysis was focused only on the kinematics and
kinetics data in the sagittal plane because of their reliability
as shown in previous study [DAO 12].

From a methodological point of view, the main limitation
of the present methodology remains in the fact that the
development of in silico patient-specific models derived from
medical imaging and 3D motion capture requires advanced
knowledge and expertise in image processing and physics-
based simulation. Another limitation is the time-consuming
character of the development of an image-based model.
However, with the progress of methodological and technical
approaches, this development process has been standardized.
In fact, different modeling and computing steps have been
optimized leading to facilitate their developments as well as
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to reduce the processing time for a clinical purpose [CHA 03,
BLE 07].

4.2. Computational musculoskeletal ontological model

4.2.1. Introduction

The connection of knowledge is necessary in all the
scientific fields, but the diversity of representation of
knowledge is an obstacle to formalizing research. Ontology
appeared as a good solution because it gives the possibility of
sharing the common comprehension of the structure of
information between researchers [THO 07, STE 07]. Then, it
also allows the reuse of the knowledge in various computer-
based systems. This approach is also applied to building the
knowledge-based system using the accumulated knowledge
in a machine-readable format to reason, diagnose or give
adequate decisions [DAN 06]. In medicine, the exponential
increase of biomedical data and knowledge has also led to
the application of ontological methods for reusing the
voluminous knowledge.

The ontology is defined as an explicit specification of a
conceptualization of a field. The conceptualization is also the
abstract model of real phenomena. To facilitate the
comprehension by keeping the principal idea, we propose our
definition of the ontology as a structured specification of the
concepts and semantic, structural, functional and intelligent
relationships in a field [DAO 07]. The quality of ontologies
depends on the degree of representation of a certain portion
of reality [SCH 03].

Biomechanics has recently come into full evolution with
many research topics performed in computer-based
simulation of the musculoskeletal system [DAO 12, BLE 07,
DEL 07]. An inevitable problem is the heterogeneity of
research studies. Moreover, developed models are simplified
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and especially partial. There is a need to structure the vast
amount of conceptual knowledge in this field in order to
access to biomechanics data such as controlled vocabularies,
terminologies and thesauri. In the literature, there are many
studies concerning biomedical ontologies [ZWE 95, CHA 06,
ROS 03, HUN 06]. The Open Biomedical Ontologies (OBO)
project has also been developed to enrich biological fact
databases [SMI 07, DIN 07]. A large amount of terminologies
of the biological structure have been published. The
Foundational Model of Human Anatomy has already been
represented [ROS 03]. But there is no study on biomechanics
ontology and the diagnosis of the pathologies of the lower
limbs. We have recently initiated it for the musculoskeletal
system. The aim of this section is to present a computational
ontology of the musculoskeletal system of the lower limbs.

4.2.2. Materials and methods

4.2.2.1. Representation formalism

We use the platform Protégé 2000 to develop our ontology
using the OWL formalism [RUB 07]. OWL is a standard
ontology markup language based on the DLs for the Semantic
Web. DLs are expressed by a formal, logic-based semantics
and they are used for different ontologies. The Protégé 2000
also permitted us to facilitate creating and reasoning about
ontologies through a graphical user interface.

4.2.2.2. The semantic-based extraction process of the
knowledge

In the knowledge representation literature, many general
methodologies for developing ontologies have been described
[STA 01, ALE 06]. The knowledge of the ontology could be
extracted manually or semi-automatically or automatically
from the raw text. This approach is not efficient due to the
requirement of a powerful extraction tool and a representative
text base. To face this disadvantage, we propose a
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semantic-based extraction approach process and its
application to construct a diagnostic-based ontology. The top-
down strategy is used to identify concepts and relationships
between concepts. We started at the general concepts and
then identified the specific concepts. For example, the bone
concept is verified before the tibia concept. This semantic-
based extraction process of the knowledge (Figure 4.6) is
based on the partitions and granularity theory [BIT 03]. In
this approach, the objects and relations are made more easily
graspable by cognitive subjects. The input is the expertise of
the biomechanical experts and this process begins with the
interview and the discussion with the experts.
The biomechanical experts work directly with the knowledge
engineer to treat, normalize and verify the semantics of
the knowledge. This process is iterative to verify directly the
semantics of the knowledge with the experts. In the semantic-
based extraction, the graph construction and the document
ontology construction are considered. This semantic-based
extraction consists of the following steps: (1) enumerate the
important terms; (2) define the classes and the hierarchy of
these classes; (3) define the properties of the classes-
attributes; (4) define the facets of the attributes: cardinality,
types of value, domain, etc.; (5) create the instances. This
semantic-based extraction process is specified, dedicated to
the construction of the diagnostic-based ontology where the
physiological and functional semantics decide the robustness
of the system. The uncertainties are guaranteed by an
iterative verification unit.

4.2.2.3. Principal software components

First, the conceptual structure of the OSMMI has to be
established by using the Unified Modeling Language (UML)
schema in order to have a general sight of ontology. Second,
we start to create the OSMMI using the platform Protégé
2000 (Stanford University). On the basis of the built
ontology, the last component is the construction of the
reasoning part (Figure 4.7).
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Figure 4.6. The semantic-based extraction process
of the knowledge

Figure 4.7. Principal software components concerning
the musculoskeletal ontology
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4.2.3. Results

4.2.3.1. Ontology

The architecture of our ontology includes 14 functional
and anatomical structures of the musculoskeletal system of
the lower limbs (Figure 4.8 and Table 4.3), which are defined
like classes of ontology: nervous system, ligament, muscle,
tendon, cartilage, bone, limb, posture, support of load,
diarthrosis joint, movement, articular contact, contact of
environment and gait.

Figure 4.8. Principal concepts of the musculoskeletal ontology
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Relation Inverse relation Description
Inform N/A Unidirectional relationship

Command N/A Unidirectional relationship

Attach Inverse of attach Bidirectional relationship
Compose Inverse of compose Bidirectional relationship

Act Inverse of act Bidirectional relationship

Influence Inverse of influence Bidirectional relationship
Form Inverse of form Bidirectional relationship

Support Inverse of support Bidirectional relationship
Create Inverse of create Bidirectional relationship

Characterize Inverse of characterize Bidirectional relationship

Table 4.3. Musculoskeletal ontology: class-level relations between
anatomical and functional constituents

For the physiological and functional semantics of our
ontology, what is considered as implicit on anatomy and
function is defined by the following relationships:

– inform: the ligaments inform the nervous system if
there are active signals;

– command: the nervous system commands the muscles;

– attach: the muscles are attached to the bones through
the tendons; the cartilage and the ligaments are attached to
the bones;

– compose: the limb is composed of different bones that
correspond to a particular function in gait;

– act: the muscles, the support of load, the movement and
the ligaments act on the diarthrosis joint; the cartilage acts
as the articular contact;

– influence: the contact of environment, the movement
influence the gait;

– form: the limbs form the corresponding posture;

– support: the posture is supported by the support of load;
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– create: the support of load is created by the contact with
the environment;

– characterize: the articular contact characterizes the
diarthrosis joint.

All parameters are collected properly for each part of the
musculoskeletal ontology. These parameters are well chosen
to study the impact of the pathologies of the lower limbs.
They are considered as follow:

– Nervous system: to decrease the complexity of our
ontology, we do not take into account the characteristics of
the nerve control, and we define a variable state having two
states: active or inactive.

– Bone: we define the length, size, weight, center of mass,
proximal diameter, distal diameter, orientation alpha,
orientation beta, orientation delta, elasticity, shearing,
density and ultimate stress.

– Tendon: we define the length, size, weight, center of
mass, proximal diameter, distal diameter, orientation alpha,
orientation beta and orientation delta.

– Muscle: we define the length, size, weight, center of
mass, proximal diameter, distal diameter, orientation alpha,
orientation beta, orientation delta, elasticity, force, strength,
physiological cross-sectional area, maximum tissue stress,
resting load and overall muscle tone.

– Ligament: we define the length, size, weight, center of
mass, proximal diameter, distal diameter, orientation alpha,
orientation beta, orientation delta and elasticity.

– Cartilage: we define the length, size, weight, center of
mass, proximal diameter, distal diameter, orientation alpha,
orientation beta, orientation delta and elasticity.
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– Movement: we define the position, the velocity and the
acceleration.

– Contact with the environment: we define the generated
force by the environment, the reaction force at ground contact.

– Support of load: we define the load.

– Limb: we define the number and the name of bones that
compose the limb of interest.

– Posture: we define the limbs that form the posture of
interest, and also the state of current posture: normal or
abnormal.

– Articular contact: we define the pressure, the zone of
contact.

– Diarthrosis Joint: we define the force, the moment and
the torque.

– Gait: we define the average velocity, the hip, knee and
ankle torques, the GRF, the level of balance, and the
intersegmental angles and forces.

We define the semantic relationships of our ontology such
as the object properties and the parameters are defined such
as the data-type properties in the Protégé framework
(Table 4.4).

Classes DP OP Restriction

119 100 31 131

Table 4.4. Musculoskeletal ontology: number of defined classes, data
properties (DP), object properties (OP) and restrictions

For each part of our ontology, there are several subparts
(as illustrated in Figure 4.9). We define the elements needed
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for the gait analysis. The hierarchy of our ontology is defined
as follows:

– Bone: we define the subclasses of bone such as the talus,
the calcaneus, the first cuneiform, the second cuneiform, the
third cuneiform, femur, tibia, fibula, iliac, ilion, ischion,
kneecap, metatarsal bone, distal phalanges, intermediate
phalanges, proximal phalanges, pubis and scaphoide.

– Muscle: we define 22 principal muscles: the adductor
magnus, biceps crural, crural, gluteus maximus, gluteus
medius, gluteus minimus, lateral peroneus brevis, lateral
peroneus longus, long biceps, calf, phyramidal, quadriceps,
rectus femoris, sartorius, semimembranosus,
semitendinosus, short biceps, soleus, tensor faciale latae,
tibialis anterior, tibialis posterior and the triceps sural.

– Ligament: we chose the ligaments needed for gait
analysis such as the iliofemoral, posterior ilio femoral, ischio
femoral, lateral ligaments, anterior ligament, posterior
ligament (which has two subclasses: arched poplity and
oblique poplity), patellar aileron (which has two subclasses:
patellar external aileron and patellar internal aileron),
pubofemoral, anterior cross-ligament, posterior cross-
ligament, internal ligament, external ligament, anterior
tibio-fibular, posterior tibio-fibular, ichio-femoral and pubo-
femoral.

– Tendon: we define the following subclasses of the
tendons: the gastroneminus and the plantaris tendons.

– Articular contact: we define the following subclasses: the
contact between the cartilage and the cartilage, and the
contact between the cartilage and the meniscus.

– Diarthrosis joint: we define the following subclasses: the
coxo-femoral joint, femoro-tibial, patello-femoral, sacro-
iliaque, symphyse pubic and tibiotarsienne.

– Cartilage: we define the following subclasses: the
hyaline cartilage, elastic cartilage and fibrocartilage.
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– Movement: we define the following subclasses: the
translation and the therotation.

– Limb: we define the following subclasses: the pelvis,
thigh, leg and foot.

– Contact with the environment: we define the following
subclass: the foot–floor contact.

– Posture: we define the following subclasses: the neutral,
the varus and the valgus.

– Gait: we define the following subclasses: the normal
gait, the crouch gait, rotational abnormality (RA) and
cerebral palsy.

– Support of load: we define the following subclasses: the
hip load, the knee load and the ankle load.

Figure 4.9. OSMMI ontology (in OWL format). Classes of the physiological
and functional structures are shown on the left panel, and formal
definitions of the structure are shown on the right. The class Tibia is
defined by five assertions, all necessary conditions for this class. The
disjoint classes of the Tibia are also defined
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4.2.3.2. Application

As an example, the RA [CAH 92] is studied as the
pathological case to test reasoning aspect of the
musculoskeletal ontology. It is important to note that this
pathology is one of the most frequent consultations in
pediatric orthopedics [CAH 92]. Different causes can be
deduced by the biomechanics experts:

– position (directions: lateral, medial, frontal, symmetrical,
asymmetrical) of the knee during stance phase;

– position (directions: lateral, medial, frontal, symmetrical,
asymmetrical) of the foot during stance phase;

– relationship between femoral anteversion (FA) and
medial hip rotation.

On the basis of these causes expressed above and by using
the semantics of our musculoskeletal ontology, the RA could
be derived from joint problem. Then, the schema would be in
accordance with Figure 4.10 [Gait → Movement →
Diarthrosis joint → Articular contact → Cartilage → Bone].
Another schema could be in accordance with Figure 4.11
[Bone → Limb → Posture → Support of load → Contact of
environment → Gait]. These results will be used in
orthopedics treatment; when the physiotherapist realizes a
functional rehabilitation gesture, these above relationships
will be taken into account to avoid impairment of the
penetrating injuries of the anatomical and functional parts
of the musculoskeletal system of the lower limbs. For
example, before the treatment on the diarthrosis joint, the
articular contact must be taken into account (first schema).
Detailed anatomical and functional knowledge are only
available to an expert but they can be encoded in ontologies
and exploited by the computer applications to reason,
diagnose or give adequate decisions. By applying the
reasoning methods, new knowledge could be inferred from
available knowledge asserted in the ontology.
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Figure 4.10. Backward chaining scenario

Figure 4.11. Forward chaining scenario
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4.2.4. Discussion

The current musculoskeletal ontology consists of
physiological and functional structures concerning the
musculoskeletal system of the lower limbs. But the other
structures such as the upper limbs or the nervous system
can be easily developed and integrated into the ontology by
using our semantic-based extraction process. The UML
schema is extensible and the Protégé 2000 framework
technically ensures the extensibility and the scalability of
the ontology. The Protégé ontology editor permits the
handling of semi-automated detection and handling of
changes in ontologies. It is a user–friendly editor and our
ontology is more accessible for non-specialist users. With the
format OWL, our ontology is consulted even if someone does
not have Protégé.

The developed ontology is a domain ontology and it is
already permitted to link to medical top-level ontologies.
Top-level ontologies describe the general concepts or
categories that are presumed to be common across domains
[ALE 06]. Many biomedical ontologies (domain or top-level
ontologies) have been published: the Foundational Model
of Anatomy [ROS 03], the GALEN Common Reference Model
to provide the reuse of terminology resources for clinical
systems [REC 91], the Gene ontology for representation of
gene product information in different databases [GEN 01],
the Medical Entities Dictionary [CIM 00], the SNOMED
CT system, the DOLCE, the Cyc’s upper ontology, the Sowa’s
top-level ontology and the UMLS Semantic
Network.

The developed ontology has been used in many real
applications such as the development of a knowledge-based
search engine for the web-based Human Musculoskeletal
System Resources (HMSR) [DAO 13] or development of an
ontology-driven decision support system for gait analysis
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[TUR 13] or the development of an ontology-based modeling
pipeline to create specific musculoskeletal simulation
[DIC 13].

Protégé is a powerful ontology development environment
(http://protege.stanford.edu). This platform is dedicated to
biomedical applications. It is supported by a great
community of developers and users. It is easy to share our
common understanding of information among people or
intelligent agents. It provides functionalities for editing
classes, properties and instances. The knowledge is accessed
by locating the pertinent anatomical and functional
entities (classes in our ontology), and recovering their
attributes (slots on the class). By using this platform, the
developed musculoskeletal ontology could be shared and
reused easily in the fields of biomechanics and biomedical
informatics.

4.3. Predictive models of the pathologies of the lower
limbs

4.3.1. Introduction

The period of 2000–2010 was labeled as the “Decade of
Bones and Joints”. The pathologies of the musculoskeletal
system of lower limbs are various and complex. These
pathologies directly influenced the quality of life of the
people involved [CAH 92, ARN 05]. The diagnosis of these
pathologies aims to depict the abnormal observations
describing the altered behavior of the anatomy or function of
the human body. The diagnosis is based on the clinical data
of the patient. These data are heterogeneous and
multidimensional. Thus, the interpretation of these data is
not obvious. It could be of great clinical interest if an
automatic process could be proposed to extract significant
pathological parameters in term of probability.
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Classification is an important task in a data mining
application that exploits large amounts of data and picks out
relevant information. The increasing number
of electronic medical database has led to the study of data
mining techniques for building classification models
[HAN 06]. The classification method estimates the risk
factors by computing the most significant parameters in
terms of probability based on the information gain and
entropy (decision tree), the support vectors (support vector
machines) and the error propagation (artificial neural
network).

The objective of this section is to study some classical data
mining techniques to develop predictive models of the
pathologies of the lower limbs. Then, a specific case of
clubfoot deformities [DAO 11] will be analyzed.

4.3.2. Materials and methods

4.3.2.1. Data sets

The first studied pathology of the lower limbs is the RA
(Figure 4.11). A total of 15 morphological properties
(Q angle, lateral and medial rotation angles at the hip joint,
tibial torsion angle, femoral anteversion angle, etc.) of the
RA are included into the predictive models. The symbolic
data are used as training and testing data sets. The training
data set includes 100 cases and the testing data set includes
70 cases. The cases are randomly selected.

The second studied pathology is the clubfoot deformities
(Figure 4.12). A total of 15 morphological parameters (e.g.
midfoot supination angle, equinus angle and varus angle)
are used to perform the classification model. The training
data set includes 700 random cases and the testing data set
includes 300 random cases.
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Figure 4.12. Clubfoot deformities (Robert Debré, Paris, France)

4.3.2.2. Data mining methods

The classical decision tree, support vector machine and
artificial neural network are used to develop predictive
models of the rotational abnormalities. The C4.5 decision tree
and random forest methods are used. Two types of neural
network algorithms are applied as RBF neural network and
MLP neural network. Different kernel functions (polynomial,
Gaussian) of the support vector machine method are tested.

The decision tree was used to develop the classification
model of the clubfoot deformities. Then, a user interface was
created allowing the clinician to make the automatic
classification using the patient data.

4.3.3. Results

4.3.3.1. Explicit knowledge model of the rotational
abnormalities

The knowledge model induced by the classical decision
tree method is shown in Figure 4.13. It leads to
the observation that the Q angle and tibial torsion angles are
the most significant and discriminant parameters for
depicting the rotational abnormalities. The RA pathology
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rule set could be deduced from the decision tree and
expressed as follows: (1) If Q − angle > 17, then class = NRA;
(2) If Q − angle ≤ 17 and ttc> 10, then class = RA; and (3) If
Q − angle≤ 17 and ttc≤ 10, then class = NRA.

Figure 4.13. Decision tree model of the rotational
abnormalities (RA): NRA means the normal case

4.3.3.2. User interface of the classification system of the
clubfoot deformities

The user interface of the clubfoot classification model was
developed as a web-based interface (Figure 4.14). The
diagnosis, treatment and monitoring of the clubfoot
deformities were set up via a step-by-step process. The
validation of clubfoot deformities’ application was performed
using real patient data from hospital of Robert Debré, Paris,
France.

4.3.3.3. Performance comparison of different data mining
methods

The RBF neural network gives better results than the
MLP neural network (1% versus 5.9% error rate)
(Figure 4.15). The error rate is defined as the percent of the
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poorly-classified pathological cases. Among the SVM
methods, the polynomial kernel methods (1% error rate) give
better results than the Gaussian kernel methods. The
polynomial kernel degree 2 & 3 converged to the optimal
classifications with 1% error rate. But among these methods,
the decision tree gives the best results for the error rate (1%)
and also for the computing time (<50 ms).

Figure 4.14. User interface of the classification system
for the clubfoot deformities
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Figure 4.15. Performance comparison of different data
mining methods for RA instances

4.3.4. Discussion

In the case of an RA study, we found that the decision
tree with C4.5 algorithm gives a good performance for the
trained and tested instances. Furthermore, the results of the
C4.5 are more comprehensive in terms of result explanation
for the medical diagnostic. As a result, the rule set is
reported to determine risk factors and the effect of these
factors on the pathological case. In the literature, the
comparison between decision trees and support vector
machines is studied [LOR 07]. In this study, the comparison
of three methods (decision tree, artificial neural network and
SVM) was studied. The results showed that these methods
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converge to optimal classifiers for the RA pathology with a
1% error rate.

Specifically, the decision tree method gives an
understandable format in form of the reduction rule. Other
approaches such as the artificial neural network are
considered as a “black box” and not obvious to the user.
Consequently, the decision tree could be a good choice for the
medical decision-making in the framework of in silico
medicine.

For the clubfoot deformities, a classification model as a
meta-model was developed using the knowledge-based
engineering method. In fact, causal relationships between
experimental data were computed and extracted. Then,
diagnosis, treatment and monitoring processes of the
clubfoot deformities were set up via a step-by-step process.
Patient information and individual development states of the
patients were centralized. This reduces the medical cost as
well as the administration time [DAO 11].

4.4. Conclusions

In this chapter, some applications of biomechanical and
knowledge-based models are expressed and analyzed.
However, to reach the clinical objectives, these models need
to be analyzed further with larger populations. Moreover,
the promotion of these models in the clinical routine practice
needs a strict collaboration between biomechanical experts
and clinicians. Furthermore, methodological and technical
aspects need to be investigated to improve the precision and
the accuracy of current biomechanical and knowledge-based
models.
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4.5. Summary

– The biomechanical musculoskeletal model could be used
to study the effect of the orthosis on the mechanical function
of the human body.

– The musculoskeletal ontology allows the knowledge of the
musculoskeletal system to be formalized and reused by
human being or computers.

– Data mining methods could be used to develop predictive
models of the pathologies of the lower limbs.

– The decision tree provides an easy-to-understand
predictive model for the clinical interpretation of medical
observations.
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5

Software and Tools for Knowledge
Modeling and Reasoning/Inference

This chapter presents the software and computing tools that could be used for practical
works regarding the knowledge modeling and reasoning/inference functionalities of a
specific application. A non-exhaustive list of open source and commercial software and
tools will be presented. Two open source tools (Protégé and Java Expert System Shell
(JESS)) will be focused on and described in more detail for practical purpose.

5.1. Open source and commercial knowledge modeling
software and tools

5.1.1. Open source

Open source is one of the most important advancements
in the development of the software community from the
1960s. Open source aims to provide universal access to a
specific software application or programming library for a
wide range of users throughout the world. A computer
program under the open source label provides the source
code to all users for possible use and/or eventual modification
from its original design. The concept of open source is always
linked to the collaborative effort to create, update and share
the code with the community of interest.
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A computer program under the open source label has a
copyleft free software license that gives the users all
freedoms in downloading, use, modification and
redistribution of the software. GNU General Public License
(GPL) is an example of copyleft free software license.

5.1.2. List of open source software and tools for
knowledge modeling

Knowledge modeling and management plays an essential
role in the formalization and sharing of domain-based
knowledge in a specific field of study. Thus, the use of open
source software and tools accelerates the impact of
the knowledge modeling and management within the
community. A non-exhaustive list of the most widely used
open source software and tools is provided as follows:

– Protégé is a free, open source ontology editor and
knowledge-based framework [STA 13].

– Freeplane aims to develop, organize and communicate
the ideas and knowledge [POL 13].

– Knowledge Mapper is an open source tool for document
repository, knowledge extraction or categorization
[SOU 13a].

– TextToOnto aims to apply text mining techniques in the
ontology construction process [SOU 13b].

– Exteca is a software solution for developing knowledge
models to support knowledge management systems [FER 13].

– JESS with academic license is a rule engine and
scripting environment [SAN 13].

– Apache Jena is a free and open source for building
semantic web and linked data applications [APA 13].
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5.1.3. List of commercial software and tools for
knowledge modeling

Open source software and tools could be downloaded and
used free of charge but the main disadvantages are the non-
supportive character and heterogeneous updates of new
components due to the lack of well-controlled processes.
Commercial software and tools allows a continuous support
and well-controlled update process for the end users. A non-
exhaustive list of the most widely used commercial software
and tools is provided as follows:

– JESS with commercial license is a rule engine and
scripting environment [SAN 13].

– SAS® Text Miner aims to discover information and
knowledge such as themes, patterns or emerging issues in
document collections [SAS 13a].

– SAS® Ontology Management is a technical solution to
define and manage semantic terms [SAS 13b].

– WordMapper is a text mining solution [FBC 13].

– IBM InfoSphere Data Explorer is an information and
content discovery and management tool [IBM 13].

– Be Informed Suite is a tool for building large ontology-
based applications (visual editors, inference engines,
standard formats exportation, etc.) [BE 13].

5.2. Protégé: ontology editor and knowledge-based
framework

5.2.1. Introduction

Among the most widely used knowledge modeling tools for
biomedical applications is the Protégé software. Protégé is a
Java-based ontology editor developed at Stanford University
in collaboration with the University of Manchester. This
software is made available under the Mozilla Public
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License 1.1. Protégé is a powerful and widely used tool for
knowledge creation and management as quoted in the
official Website (http://protege.stanford.edu/): “Protégé is
supported by a strong community of developers and
academic, government and corporate users, who are using
Protégé for knowledge solutions in areas as diverse as
biomedicine, intelligence gathering, and corporate modeling”.
The interaction between the Protégé platform and the end
user to model a specific ontology is managed via a web client
or a desktop client interface. There are three ontology
formats supported by the Protégé platform such as OWL,
RDF(S) and XML schema. Moreover, the Protégé platform is
extensible, thus the end user could include additional
components into the Protégé platform. The current version of
the Protégé platform is 4.3 (November 2013). The main
interface of the Protégé platform is illustrated in Figure 5.1.

Figure 5.1. Protégé platform: main interface of version 4.3

5.2.2. Ontology development methodology

The development of an ontology using the Protégé
platform consists of the following steps [NOY 13]:

– Step 1: determine the domain and scope of the ontology;

– Step 2: consider reusing existing ontologies;
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– Step 3: enumerate important terms in the ontology;

– Step 4: define the classes and the class hierarchy
(Figure 5.2);

– Step 5: define the properties of classes slots;

– Step 6: define the facets of the slots;

– Step 7: create instances.

Figure 5.2. Class definition within Protégé platform

5.2.3. Bio-ontology example

To show the different functionalities of the Protégé
platform in the creation of a bio-ontology, a simplified
neuromusculoskeletal ontology was designed and created.
The neuromusculoskeletal ontology consists of two main
classes: the nervous system and musculoskeletal system. The
musculoskeletal system class consists of two subclasses:
muscle and bone. The nervous system consists of one class:
motor unit (as shown in Figure 5.3). An “attach” object
property was created between muscle and bone classes to
define their anatomical relationship (as shown in
Figure 5.4). The morphological and mechanical properties of
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muscles were created and linked to muscle class using the
data property as shown in Figure 5.5.

Figure 5.3. Classes of the neuromusculoskeletal ontology

Figure 5.4. “Attach” object property to define the anatomical relationship
between bone and muscle classes

Figure 5.5. Data properties of the muscle class

5.3. JESS: reasoning and inference library

5.3.1. Introduction

JESS is a Java-based programming library developed by
Ernest Friedman-Hill at Sandia National Laboratories. This
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library is a rule engine dedicated to Java-based
reasoning/inference applications. Using JESS, new facts/
knowledge could be deduced from existing facts/knowledge in
the form of declarative rules. JESS engine implemented a
well-known Rete algorithm [FOR 82] to fire the new rules
from the fact database.

5.3.2. Development process of a rule engine

The development of a rule engine program needs the
following steps:

– Step 1: define all initial facts as declarative and
production rules;

– Step 2: develop a reasoning motor;

– Step 3: enter facts to fire the rule set;

– Step 4: extract new facts/knowledge from firing process.

5.3.3. Example

The example presented here is a simplified medical
diagnosis of muscle spasticity using morphological and
mechanical properties. It is assumed that current knowledge
about muscle spasticity is presented in Table 5.1.

Facts RulesMuscle has a thickness R1: If muscle thickness < 5 cm², thenFire R2Muscle has a volume R2: If muscle volume < 10 cm3, thenFire R3Muscle has a shear modulusin passive or active conditions R3: If muscle passive shear modulus < 1 kPa,then muscle spasticity = severe
Table 5.1. Example of facts set and rules database
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The diagnosis process is based on the values of
morphological and mechanical properties of the patient. An
example of values and fired rules are presented in Table 5.2.Working facts of patientX Fired rules

Muscle thickness = 4 cm²
Muscle volume = 8 cm3
Muscle passive shear
modulus = 0.8 kPa

Fired R1, R2 and R3
Result:
Muscle spasticity = severe

Table 5.2. Example of fired rules using facts

5.4. Conclusion

This chapter presents some open source useful software
and tools to frequently extract, create, formalize and reason
about the knowledge of a domain of interest. Two main tools
(Protégé and JESS) were described in detail with illustrative
examples.

5.5. Summary

– Open source software and tools provide universal access
to a computer program.

– An open source computer program could be downloaded
and used free-of-charge. It could be updated, modified and
redistributed by any end user.

– Protégé is a Java-based ontology editor platform.

– JESS is a Java-based rule engine allowing backward
and forward chaining to be executed to deduce new
facts/knowledge about a domain of interest.
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