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Preface to Sixth Edition

This book has regularly been on reading lists for hydraulics and water engineering modules
for university civil engineering degree students. The concise summary of theory and the
worked examples have been useful to me both as a practising engineer and as an academic.

The fifth edition aimed to retain all the good qualities of Nalluri and Featherstone’s
previous editions, with updating as necessary and with an additional chapter on environ-
mental hydraulics and hydrology.

The latest sixth edition now adds a new chapter on coastal engineering prepared by my
colleague Dr Ravindra Jayaratne based on original material and advice from Dr Dominic
Hames of HR Wallingford. As before, each chapter contains theory sections, after which
there are worked examples followed by a list of references and recommended reading.
Then there are further problems as a useful resource for students to tackle. The numerical
answers to these are at the back of the book, and solutions are available to download from
the publisher’s website: http://www.wiley.com/go/Marriott.

I am grateful to all those who have helped me in many ways, either through their advice
in person or through their published work, and of course to the many students with whom
I have enjoyed studying this material.

Martin Marriott
University of East London

2016

http://www.wiley.com/go/Marriott
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Symbols

The following is a list of the main symbols used in this book (with their SI units, where
appropriate). Various subscripts have also been used, for example to denote particular
locations. Note that some symbols are inevitably used with different meanings in different
contexts, and so a number of alternatives are listed below. Readers should be aware of
this, and check the context for clarification.

a area (m2); distance (m); acceleration (m/s2)
b width (m); probability weighted moment of flows (m3/s)
c wave celerity (m/s)
d diameter (m); water depth (m)
f force (N); function; silt factor; frequency
g gravitational acceleration (≈ 9.81 m/s2)
h height (m); pressure head difference (m); head loss (m)
i rank in descending order
j rank in ascending order
k radius of gyration (m); roughness height (m); constant; coefficient
m metacentric height (m); mass (kg)
n Manning’s coefficient; exponent; number; wave steepness; group velocity parameter
p pressure (N/m2)
q discharge per unit width (m2/s)
r radius (m); discount rate
s relative density; distance (m); sinuosity; standard deviation of sample
t time (s); L-moment ratios
u velocity (m/s); parameter
v velocity (m/s)
w velocity (m/s)
x distance (m); variable
y distance (m); reduced variate; depth (m)
z elevation (m); vertical distance (m)

A area (m2)
B width (m); centre of buoyancy; benefit
C constant; centre of pressure; coefficient; cost



xvi Symbols

D diameter (m)
E specifie energy (J/N = m); elastic modulus (N/m2); wave energy (J/m2)
F force (N); head loss coefficient (s2/m); annual probability of non-exceedance
Fr Froude number
G centroid
H height (m); head (m); wave height (m)
I second moment of area (m4); inflow (m3/s)
J junction or node
K bulk modulus of elasticity (N/m2); coefficient; conveyance (m3/s); circulation (m2/s)
L length (m); L-moment of flows (m3/s); wavelength (m)
M metacentre; mass (kg)
N number; rotational speed (rev/min)
P height of weir (m); wetted perimeter (m); power (W); annual exceedance

probability; wave power (W/m)
Q discharge (m3/s)
R resultant force (N); hydraulic radius (m); radius (m)
Re Reynolds number
S slope; energy gradient; storage volume (m3); wave spectrum (m2s)
T thrust (N); time period (s); return period (years); surface width (m); thickness (m);

wave period (s)
U velocity (m/s)
V volume (m3); velocity (m/s)
W weight (N); fall velocity (m/s)
We Weber number
Z elevation (m); section factor (m5∕2)

𝛼 angular acceleration (rad/s2); angle (rad); Coriolis coefficient; parameter
𝛽 momentum correction factor (Boussinesq coefficient); parameter; slope
𝛾 specific weight (N/m3)
𝛿 boundary layer thickness (m)
𝜁 factor
𝜂 efficiency; wave profile (m)
𝜃 angle (radian or degree); slope; wave direction
𝜅 constant
𝜆 Darcy–Weisbach friction factor; scale
𝜇 dynamic or absolute viscosity (Ns/m2); ripple factor; mean
v kinematic viscosity (m2/s)
𝜉 spillway loss coefficient; displacement (m)
𝜋 circle circumference-to-diameter ratio (≈ 3.142); Buckingham dimensionless group
𝜌 mass density (kg/m3)
𝜎 surface tension (N/m); safety factor
𝜏 shear stress (N/m2)
𝜙 function; potential (m2/s); transport parameter; angle of repose (degree)
𝜓 stream function (m2/s); flow parameter
𝜔 angular velocity (rad/s)
Δ increment; submerged relative density



Chapter 1
Properties of Fluids

1.1 Introduction

A fluid is a substance which deforms continuously, or flows, when subjected to shear
stresses. The term fluid embraces both gases and liquids; a given mass of liquid will occupy
a definite volume whereas a gas will fill its container. Gases are readily compressible; the
low compressibility, or elastic volumetric deformation, of liquids is generally neglected in
computations except those relating to large depths in the oceans and in pressure transients
in pipelines.

This text, however, deals exclusively with liquids and more particularly with New-
tonian liquids (i.e. those having a linear relationship between shear stress and rate of
deformation).

Typical values of different properties are quoted in the text as needed for the various
worked examples. For more comprehensive details of physical properties, refer to tables
such as Kaye and Laby (1995) or internet versions of such information.

1.2 Engineering units

The metre–kilogram–second (mks) system is the agreed version of the international system
(SI) of units that is used in this text. The physical quantities in this text can be described
by a set of three primary dimensions (units): mass (kg), length (m) and time (s). Further
discussion is contained in Chapter 9 regarding dimensional analysis. The present chapter
refers to the relevant units that will be used.

The unit of force is called newton (N) and 1 N is the force which accelerates a mass of
1 kg at a rate of 1 m/s2 (1 N = 1 kg m/s2).

The unit of work is called joule (J) and it is the energy needed to move a force of 1 N
over a distance of 1 m. Power is the energy or work done per unit time and its unit is watt
(W) (1 W = 1 J/s = 1 N m/s).

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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2 Civil Engineering Hydraulics

1.3 Mass density and specific weight

Mass density (𝜌) or density of a substance is defined as the mass of the substance per unit
volume (kg/m3) and is different from specific weight (𝛾), which is the force exerted by the
earth’s gravity (g) upon a unit volume of the substance (𝛾 = 𝜌g: N/m3). In a satellite where
there is no gravity, an object has no specific weight but possesses the same density that it
has on the earth.

1.4 Relative density

Relative density (s) of a substance is the ratio of its mass density to that of water at a
standard temperature (4◦C) and pressure (atmospheric) and is dimensionless.

For water, 𝜌 = 103 kg/m3, 𝛾 = 103 × 9.81 ≃ 104 N/m3 and s = 1.

1.5 Viscosity of fluids

Viscosity is that property of a fluid which by virtue of cohesion and interaction between
fluid molecules offers resistance to shear deformation. Different fluids deform at different
rates under the action of the same shear stress. Fluids with high viscosity such as syrup
deform relatively more slowly than fluids with low viscosity such as water.

All fluids are viscous and ‘Newtonian fluids’ obey the linear relationship

𝜏 = 𝜇
du
dy

(Newton’s law of viscosity) [1.1]

where 𝜏 is the shear stress (N/m2), du/dy the velocity gradient or the rate of deformation
(rad/s) and 𝜇 the coefficient of dynamic (or absolute) viscosity (N s/m2 or kg/(m s)).

Kinematic viscosity (𝜈) is the ratio of dynamic viscosity to mass density expressed in
metres squared per second.

Water is a Newtonian fluid having a dynamic viscosity of approximately 1.0 × 10−3

N s/m2 and kinematic viscosity of 1.0 × 10−6 m2/s at 20◦C.

1.6 Compressibility and elasticity of fluids

All fluids are compressible under the application of an external force and when the force
is removed they expand back to their original volume, exhibiting the property that stress
is proportional to volumetric strain.

The bulk modulus of elasticity,K =
pressure change

volumetric strain

= −
dp

(dV∕V)
[1.2]

The negative sign indicates that an increase in pressure causes a decrease in volume.
Water with a bulk modulus of 2.1 × 109 N/m2 at 20◦C is 100 times more compressible

than steel, but it is ordinarily considered incompressible.

1.7 Vapour pressure of liquids

A liquid in a closed container is subjected to partial vapour pressure due to the escaping
molecules from the surface; it reaches a stage of equilibrium when this pressure reaches

C
h
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Properties of Fluids 3

saturated vapour pressure. Since this depends upon molecular activity, which is a function
of temperature, the vapour pressure of a fluid also depends upon its temperature and
increases with it. If the pressure above a liquid reaches the vapour pressure of the liquid,
boiling occurs; for example, if the pressure is reduced sufficiently, boiling may occur at
room temperature.

The saturated vapour pressure for water at 20◦C is 2.45 × 103 N/m2.

1.8 Surface tension and capillarity

Liquids possess the properties of cohesion and adhesion due to molecular attraction. Due
to the property of cohesion, liquids can resist small tensile forces at the interface between
the liquid and air, known as surface tension (𝜎: N/m). If the liquid molecules have greater
adhesion than cohesion, then the liquid sticks to the surface of the container with which it
is in contact, resulting in a capillary rise of the liquid surface; a predominating cohesion,
in contrast, causes capillary depression. The surface tension of water is 73 × 10−3 N/m
at 20◦C.

The capillary rise or depression h of a liquid in a tube of diameter d can be written as

h = 4𝜎 cos 𝜃
𝜌gd

[1.3]

where 𝜃 is the angle of contact between liquid and solid.
Surface tension increases the pressure within a droplet of liquid. The internal pressure

p balancing the surface tensional force of a small spherical droplet of radius r is given by

p = 2𝜎
r

[1.4]

Worked examples

Example 1.1

The density of an oil at 20◦C is 850 kg/m3. Find its relative density and kinematic viscosity
if the dynamic viscosity is 5 × 10−3 kg/(m s).

Solution:

Relative density, s = 𝜌of oil
𝜌of water

= 850
103

= 0.85

Kinematic viscosity,𝜈 = 𝜇

𝜌

= 5 × 10−3

850
= 5.88 × 10−6 m2∕s

C
h

ap
te

r
1



4 Civil Engineering Hydraulics

Example 1.2

If the velocity distribution of a viscous liquid (𝜇 = 0.9 N s/m2) over a fixed boundary is
given by u = 0.68y − y2, in which u is the velocity (in metres per second) at a distance y
(in metres) above the boundary surface, determine the shear stress at the surface and at
y = 0.34 m.

Solution:

u = 0.68y − y2

⇒
du
dy

= 0.68 − 2y

Hence, (du∕dy)y=0 = 0.68 s−1 and (du∕dy)y=0.34m = 0.

Dynamic viscosity of the fluid,𝜇 = 0.9 N s∕m2

From Equation 1.1,

shear stress (𝜏)y=0 = 0.9 × 0.68

= 0.612 N∕m2

and at y = 0.34 m, 𝜏 = 0.

Example 1.3

At a depth of 8.5 km in the ocean the pressure is 90 MN/m2. The specific weight of the
sea water at the surface is 10.2 kN/m3 and its average bulk modulus is 2.4 × 106 kN/m2.
Determine (a) the change in specific volume, (b) the specific volume and (c) the specific
weight of sea water at 8.5 km depth.

Solution:

Change in pressure at a depth of 8.5 km,dp = 90 MN∕m2

= 9 × 104 kN∕m2

Bulk modulus,K = 2.4 × 106 kN∕m2

From K = −
dp

(dV∕V)

dV
V

= −9 × 104

2.4 × 106
= −3.75 × 10−2

Defining specific volume as 1/ 𝛾 (m3/kN), the specific volume of sea water at the surface =
1/10.2 = 9.8 × 10−2 m3/kN.

Change in specific volume between that

at the surface and at 8.5 km depth,dV

= −3.75 × 10−2 × 9.8 × 10−2

= −36.75 × 10−4 m3∕kN

C
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Properties of Fluids 5

The specific volume of sea water at 8.5 km depth = 9.8 × 10−2 − 36.75 × 10−4

= 9.44 × 10−2 m3∕kN

The specific weight of sea water at 8.5 km depth = 1
specific volume

= 1
9.44 × 10−2

= 10.6 kN∕m3

References and recommended reading

Kaye, G. W. C. and Laby, T. H. (1995) Tables of Physical and Chemical Constants, 16th edn,
Longman, London. http://www.kayelaby.npl.co.uk

Massey, B. S. and Ward-Smith, J. (2012) Mechanics of Fluids, 9th edn, Taylor & Francis,
Abingdon, UK.

Problems

1. (a) Explain why the viscosity of a liquid decreases while that of a gas increases with an
increase of temperature.

(b) The following data refer to a liquid under shearing action at a constant temperature.
Determine its dynamic viscosity.

du/dy (s−1) 0 0.2 0.4 0.6 0.8
𝜏 (N/m2) 0 0 1.9 3.1 4.0

2. A 300 mm wide shaft sleeve moves along a 100 mm diameter shaft at a speed of 0.5 m/s
under the application of a force of 250 N in the direction of its motion. If 1000 N of force
is applied, what speed will the sleeve attain? Assume the temperature of the sleeve to be
constant and determine the viscosity of the Newtonian fluid in the clearance between the
shaft and its sleeve if the radial clearance is estimated to be 0.075 mm.

3. A shaft of 100 mm diameter rotates at 120 rad/s in a bearing 150 mm long. If the radial
clearance is 0.2 mm and the absolute viscosity of the lubricant is 0.20 kg/(m s), find the
power loss in the bearing.

4. A block of dimensions 300 mm × 300 mm × 300 mm and mass 30 kg slides down a plane
inclined at 30◦ to the horizontal, on which there is a thin film of oil of viscosity 2.3 × 10−3

N s/m2. Determine the speed of the block if the film thickness is estimated to be 0.03 mm.

5. Calculate the capillary effect (in millimetres) in a glass tube of 6 mm diameter when
immersed in (i) water and (ii) mercury, both liquids being at 20◦C. Assume 𝜎 to be 73× 10−3

N/m for water and 0.5 N/m for mercury. The contact angles for water and mercury are
0 and 130◦, respectively.

6. Calculate the internal pressure of a 25 mm diameter soap bubble if the tension in the soap
film is 0.5 N/m.
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Chapter 2
Fluid Statics

2.1 Introduction

Fluid statics is the study of pressures throughout a fluid at rest and the pressure forces on
finite surfaces. Since the fluid is at rest there are no shear stresses in it. Hence the pressure p
at a point on a plane surface (inside the fluid or on the boundaries of its container), defined
as the limiting value of the ratio of normal force to surface area as the area approaches
zero size, always acts normal to the surface and is measured in newtons per square metre
(pascals, Pa) or in bars (1 bar = 105 N/m2 or 105 Pa).

2.2 Pascal’s law

Pascal’s law states that the pressure at a point in a fluid at rest is the same in all directions.
This means it is independent of the orientation of the surface around the point.

Consider a small triangular prism of unit length surrounding the point in a fluid at rest
(Figure 2.1).

Since the body is in static equilibrium, we can write

p1(AB × l) − p3(BC × l) cos 𝜃 = 0 (i)

and

p2(AC × l) − p3(BC × l) sin 𝜃 − W = 0 (ii)

From Equation (i) p1 = p3, since cos 𝜃 = AB∕BC, and Equation (ii) gives p2 = p3, since
sin 𝜃 = AC∕BC and W = 0 as the prism shrinks to a point.

⇒ p1 = p2 = p3

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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Figure 2.1 Pressure at a point.

2.3 Pressure variation with depth in a static
incompressible fluid

Consider an elementary cylindrical volume of fluid (of length L and cross-sectional area
dA) within the static fluid mass (Figure 2.2), p being the pressure at an elevation of y and
dp being the pressure variation corresponding to an elevation variation of dy.

For equilibrium of the elementary volume,

p dA − 𝜌g dA L sin 𝜃 − (p + dp) dA = 0

or

dp = −𝜌g dy
(

since sin 𝜃 =
dy
L

)
[2.1]
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Figure 2.2 Pressure variation with elevation.

C
h

ap
ter

2



Fluid Statics 9

pa (atmospheric pressure)
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Figure 2.3 Pressure and pressure head at a point.

𝜌 being constant for incompressible fluids, we can write

∫ dp = −𝜌g∫ dy

which gives

p = −𝜌gy + C (i)

When y = y0, p = pa, the atmospheric pressure (Figure 2.3).
From Equation (i),

p − pa = 𝜌g(y0 − y)

= 𝜌gh

or the pressure at a depth h, p = pa + 𝜌gh

= 𝜌gh above atmospheric pressure [2.2]

Note:

(a) If p = 𝜌gh, h = p∕𝜌g and is known as the pressure head (in metres) of fluid of density
𝜌.

(b) Equation (i) can be written as p∕𝜌g + y = constant, which shows that any increase
in elevation is compensated by a corresponding decrease in pressure head. (p∕𝜌g + y)
is known as the piezometric head and such a variation is known as the hydrostatic
pressure distribution.

If the static fluid is a compressible liquid, 𝜌 is no longer constant and it is dependent on
the degree of its compressibility. Equations 1.2 and 2.1 yield the relationship

1
𝜌
= 1

𝜌0
−

gh
K

[2.3]

where 𝜌 is the density at a depth h below the free surface at which its density is 𝜌0.

2.4 Pressure measurement

The pressure at the earth’s surface depends upon the air column above it. At sea level this
atmospheric pressure is about 101 kN/m2, equivalent to 10.3 m of water or 760 mm of
mercury columns. A perfect vacuum is an empty space where the pressure is zero. Gauge
pressure is the pressure measured above or below atmospheric pressure. The pressure
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10 Civil Engineering Hydraulics

Figure 2.4 Pressure measurement devices: (a) piezometer, (b) U-tube, (c) inclined mano-
meter and (d) differential manometers.

below atmospheric pressure is also called negative or partial vacuum pressure. Absolute
pressure is the pressure measured above a perfect vacuum, the absolute zero.

(a) A simple vertical tube fixed to a system whose pressure is to be measured is called
a piezometer (Figure 2.4a). The liquid rises to such a level that the liquid column’s
height balances the pressure inside.

(b) A bent tube in the form of a U, known as a U-tube manometer, is much more con-
venient than a simple piezometer. Heavy immiscible manometer liquids are used to
measure large pressures, and lighter liquids to measure small pressures (Figure 2.4b).

(c) An inclined tube or U-tube (Figure 2.4c) is used as a pressure-measuring device when
the pressures are very small. The accuracy of measurement is improved by providing
suitable inclination.

(d) A differential manometer (Figure 2.4d) is essentially a U-tube manometer containing
a single liquid capable of measuring large pressure differences between two systems.
If the pressure difference is very small, the manometer may be modified by providing
enlarged ends and two different liquids in the two limbs and is called a differential
micromanometer.

If the density of water is 𝜌, a water column of height h produces a pressure p = 𝜌gh
and this can be expressed in terms of any other liquid column h1 as 𝜌1gh1, 𝜌1 being its
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Fluid Statics 11

density:

⇒ h in water column =
(
𝜌1

𝜌

)
h1 = sh1 [2.4]

where s is the relative density of the liquid.
For each one of the pressure measurement devices shown in Figure 2.4, an equation can

be written using the principle of hydrostatic pressure distribution, expressing the pressures
(in metres) of the water column (Equation 2.4) for convenience.

2.5 Hydrostatic thrust on plane surfaces

Let the plane surface be inclined at an angle 𝜃 to the free surface of water, as shown in
Figure 2.5.

If the plane area A is assumed to consist of elemental areas dA, the elemental forces dF
always normal to the surface area are parallel. Therefore the system is equivalent to one
resultant force F, known as the hydrostatic thrust. Its point of application C, which would
produce the same moment effects as the distributed thrust, is called the centre of pressure.

We can write

F = ∫A
dF = ∫A

𝜌gh dA = 𝜌g sin 𝜃 ∫A
dA x

= 𝜌g sin 𝜃 Ax̄

= 𝜌gh̄A [2.5]

where h̄ is the vertical depth of the centroid G.
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Figure 2.5 Hydrostatic thrust on a plane surface.
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12 Civil Engineering Hydraulics
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Figure 2.6 Vertical plane surface.

Taking moments of these forces about the axis O–O shown in Figure 2.5,

Fx0 = 𝜌g sin 𝜃 ∫A
dA x2

The distance to the centre of pressure, C, is therefore

x0 =
∫A dA x2

∫A dA x

= second moment of the area about axis O–O
first moment of the area about axis O–O

[2.6]

=
I0

Ax̄

But I0 = Ig + Ax̄2 (parallel-axis rule), where Ig is the second moment of area of the surface
about an axis through its centroid and parallel to axis O–O.

⇒ x0 = x̄ +
Ig

Ax̄
[2.7]

which shows that the centre of pressure is always below the centroid of the area.

Depth of centre of pressure below free surface, h0 = x0 sin 𝜃

⇒ h0 = h̄ +
Ig sin

2
𝜃

Ah̄
[2.8]

For a vertical surface, 𝜃 = 90◦.

⇒ h0 = h̄ +
Ig

Ah̄
[2.9]

The distance between the centroid and centre of pressure is

GC =
Ig

Ah̄
(see Figure 2.6) [2.10]

The moment of F about the centroid is written as

F × GC = 𝜌gh̄A ×
Ig

Ah̄
= 𝜌gIg

which is independent of the depth of submergence.
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Fluid Statics 13

Table 2.1 Second moments of plane areas

Second moment of area
Shape Size Ig about an axis GG through centroid

Rectangle
G G

dx
dx

b

Ig = ∫
+d∕2

−d∕2
x2b dx = 2b∫

d∕2

0
x2 dx = 1

12
bd3

Triangle

h

b

GG Ig =
1
36

bh3

Circle GG
d

Ig =
𝜋d4

64

Note:

(a) Radius of gyration of the area about G is

kg =

√
Ig

A
[2.11]

giving

h0 = h̄ +
k2

g

h̄
[2.12]

(b) When the surface area is symmetrical about its vertical centroidal axis, the centre of
pressure always lies on this symmetrical axis but below the centroid of the area.

If the area is not symmetrical, an additional coordinate y0 must be fixed to locate the
centre of pressure completely.

By moments (Figure 2.7),

y0 ∫A
dF = ∫A

dF y

⇒ y0 𝜌gx̄ sin 𝜃 A = ∫A
𝜌gx sin 𝜃 dA y

⇒ y0 = 1
Ax̄ ∫A

xy dA [2.13]
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14 Civil Engineering Hydraulics
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Figure 2.7 Centre of pressure of an asymmetrical plane surface.

2.6 Pressure diagrams

Another approach to determine hydrostatic thrust and its location is by the concept of
pressure distribution over the surface (Figure 2.8).

Total thrust on a rectangular vertical surface subjected to water pressure on one side
(Figure 2.9) by a pressure diagram:

Average pressure on the surface =
𝜌gH

2
Total thrust, F = average pressure × area of surface

=
(
𝜌gH

2

)
× H × B

= 1
2
𝜌gH2 × B

= volume of the pressure prism [2.14]

or

total thrust
unit width

= 1
2
𝜌gH2

= area of the pressure diagram [2.15]

and the centre of pressure is the centroid of the pressure prism.
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Figure 2.8 Pressure diagrams: (a) horizontal surface, (b) vertical surface and (c) inclined sur-
face.
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Fluid Statics 15

Pressure prism

B
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Figure 2.9 Pressure prism.

2.7 Hydrostatic thrust on curved surfaces

Consider a curved gate surface subjected to water pressure as in Figure 2.10. The pressure
at any point h below the free water surface is 𝜌gh and is normal to the gate surface, and the
nature of its distribution over the entire surface makes the analytical integration difficult.

However, the total thrust acting normally on the surface can be split into two compo-
nents and the problem of determining the thrust approached indirectly by combining these
two components.

Considering an elementary area of the surface dA (Figure 2.11) at an angle 𝜃 to the
vertical, pressure intensity on this elementary area is 𝜌gh.

Total thrust on this area, dF = 𝜌gh dA

Horizontal component of dF, dFx = 𝜌gh dA cos 𝜃
Vertical component of dF, dFy = 𝜌gh dA sin 𝜃

Horizontal component of the total thrust on the curved area A:

Fx = ∫A
𝜌gh dA cos 𝜃 = 𝜌gh̄Av

where Av = the vertically projected area of the curved surface

Fx = pressure intensity at the centroid of a vertically projected area

(BD) × vertically projected area [2.16]

and vertical component, Fy = ∫A
𝜌gh dA sin 𝜃

= 𝜌g∫A
dV

dV being the volume of the water prism (real or virtual) over the area dA.

⇒ Fy = 𝜌gV
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16 Civil Engineering Hydraulics

Curved surface

Pressure diagram

h

ghρ

Figure 2.10 Hydrostatic thrust on curved surface.

= the weight of water (real or virtual) above the curved surface

BC bounded by the vertical BD and the free water surface CD [2.17]

The resultant thrust, F =
√

F2
x + F2

y [2.18]

acting normally to the surface at an angle 𝛼 to the horizontal

𝛼 = tan−1
(Fy

Fx

)
[2.19]
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Figure 2.11 Thrust components on curved surfaces: (a) surface containing liquid and
(b) surface displacing liquid.
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Fluid Statics 17

2.8 Hydrostatic buoyant thrust

When a body is submerged or floating in a static fluid, various parts of the surface of the
body are exposed to pressures dependent on the depths of submergence.

Consider two elemental cylindrical volumes (one vertical and one horizontal) of the
body shown (Figure 2.12) submerged in a fluid, the cross-sectional area of each cylinder
being dA.

Vertical upthrust on the cylinder BC = (pc − pb) dA

Total upthrust on the body = ∫A
(pc − pb) dA

= ∫A
𝜌gh dA

= ∫A
𝜌g dV

= 𝜌gV = weight of fluid displaced [2.20]

where V is the volume of the submerged body displacing the fluid.

Horizontal thrust on the cylinder BD = (pb − pd) dA

Total horizontal thrust on the body = ∫A
(pb − pd) dA

= 0 (since pb = pd)

Hence it can be concluded that the only force acting on the body is the vertical upthrust
known as the buoyant thrust or force, which is equal to the weight of the fluid displaced
by the body (Archimedes’ principle). This buoyant thrust acts through the centroid of the
displaced fluid volume.

2.9 Stability of floating bodies

The buoyant thrust on a body of weight W and centroid G acts through the centroid
of the displaced fluid volume, and this point or application of the buoyant force is

B D

=

Surface area, A 

dA
C

h

pd pd pb
pb

pb

pc
pc

Figure 2.12 Submerged body and buoyant thrust.
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18 Civil Engineering Hydraulics
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Figure 2.13 Centre of buoyancy and metacentre: (a) equilibrium condition and (b) disturbed
condition.

called the centre of buoyancy, B, of the body. For the body to be in equilibrium, the
weight W must equal the buoyant thrust Fb, both acting along the same vertical line
(Figure 2.13).

For small angles of heel, the intersection point of the vertical through the new centre of
buoyancy B′ and the line BG produced is known as the metacentre M, and the body thus
disturbed tends to oscillate about, M. The distance between G and M is the metacentric
height.

Conditions of equilibrium:

(a) Stable equilibrium (Figure 2.14a): If M lies above G (i.e. positive metacentric
height), the couple so produced sets in a restoring moment equal to W GM sin 𝜃
opposing the disturbing moment, thereby bringing the body back to its original
position, and the body is said to be in stable equilibrium; this is achieved when
BM > BG.

(b) Unstable equilibrium (Figure 2.14b): If M is below G (i.e. negative metacentric
height), the moment of the couple further disturbs the displacement and the body
is then in unstable equilibrium. This condition therefore exists when BM < BG.

(c) Neutral equilibrium (Figure 2.14c): If G and M coincide (i.e. zero metacentric height),
the body floats stably in its displaced position. This condition of neutral equilibrium
exists when BM = BG.

2.10 Determination of metacentre

In Figure 2.15, AA is the waterline; and when the body is given a small tilt, 𝜃◦, two wedge
forces, due to the submergence and the emergence of the wedge areas AOA′ on either side
of the axis of rolling, are imposed on the body, forming a couple which tends to restore
the body to its undisturbed condition. The effect of this couple is the same as the moment
caused by the shift of the total buoyant force Fb from B to B′, the new centre of buoyancy.
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Fluid Statics 19
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Figure 2.14 Conditions of equilibrium: (a) stable, (b) unstable and (c) neutral.

The buoyant force acting through B′,

F′
b = W + df − df = W = Fb

By moments about B, F′
b
× BB′ = df × gg

⇒ BB′ =
df × gg

F′
b

=
df × gg

W

=
df × gg
𝜌gV

(i)

where V is the volume of the displaced fluid.

F ′b

(F
b)

(W )

B′

G

A A

d f

d f

g
g

B

A′

A′

W

θ

M

L

b

Figure 2.15 Determination of metacentre.

C
h

ap
te

r
2



20 Civil Engineering Hydraulics

The wedge force df = 𝜌g × 1
2
AA′ × 1

2
b × L (for small angles), where L is the length of

the body.

AA′ = 1
2

b𝜃 and gg = 2
3

(
1
2

b
)
+ 2

3

(
1
2

b
)

= 2
3

b

⇒ BB′ = BM𝜃 =
𝜌g × 1

4
b𝜃 × 1

2
b × L × 2

3
b

𝜌gV
(from Equation (i))

or

BM = 1
12

Lb3

V
= I

V
[2.21]

where I is the second moment of the plan area of the body at water level about its longi-
tudinal axis.

Hence the metacentric height, GM = BM − BG

= I
V

− BG [2.22]

2.11 Periodic time of rolling (or oscillation) of
a floating body

For a small displacement 𝜃, the restoring moment is Wm𝜃, where W is the weight of the
body and m is the distance GM or metacentric height. Angular acceleration 𝛼 is found by
dividing this restoring moment by the mass moment of inertia of the body:

𝛼 = Wm 𝜃

(W∕g)k2
=

mg𝜃

k2

which shows that 𝛼 is proportional to 𝜃.
Hence the motion is simple harmonic and its periodic time is:

T = 2𝜋

√
displacement

acceleration

= 2𝜋

√
𝜃

mg𝜃∕k2
= 2𝜋

√
k2

gm
[2.23]

For larger values of m, the floating body will no doubt be stable (BM > BG) but the
period of oscillation will decrease, thereby increasing the frequency of rolling which may
be uncomfortable to passengers and also the body may be subjected to damage. Hence the
metacentric height must be fixed, by experience, according to the type of vessel.

2.12 Liquid ballast and the effective metacentric height

For a tilt angle 𝜃, the fluid in the tank (Figure 2.16a) is displaced, thereby shifting its
centroid from G to G′. This is analogous to the case of a floating vessel, the centre of
buoyancy of which shifts from B to B′ through a small heel angle 𝜃.
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Figure 2.16 Floating vessel with liquid ballast: (a) tank and (b) vessel.

Hence we can write

GG′ = GM𝜃 = 𝜃I
V

(
since in the case of floating vessel

BB′ = BM𝜃 = 𝜃I
V

)
When the vessel heels, the centroids of the volumes V1 and V2 in the compartments (Figure
2.16b) will move by 𝜃I1∕V1 and 𝜃I2∕V2, thus shifting the centroid of the vessel from G
to G′.

By taking moments,

WGG′ =
W1𝜃I1

V1
+

W2𝜃I2

V2

or

𝜌gVGG′ =
𝜌1gV1𝜃I1

V1
+

𝜌1gV2𝜃I2

V2

Hence

GG′ =
𝜌1𝜃(I1 + I2)

𝜌V

V being the volume of the displaced fluid by the vessel whose second moment of area at
floating level about its longitudinal axis is I. B′ is the new centroid of the displaced liquid
through which the buoyant force Fb (=𝜌gV) acts, thereby setting a restoring moment equal
to 𝜌gV NM 𝜃, NM being the effective metacentric height.

NM = BM − GN − BG

BM = I
V

; GN = GG′

𝜃
=

(𝜌1∕𝜌)(I1 + I2)
V

⇒ NM =
I − (𝜌1∕𝜌)(I1 + I2)

V
− BG [2.24]
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22 Civil Engineering Hydraulics

and if 𝜌1 = 𝜌,

NM =
I − (I1 + I2)

V
− BG

2.13 Relative equilibrium

If a body of fluid is subjected to motion such that no layer moves relative to an adjacent
layer, shear stresses do not exist within the fluid. In other words, in a moving fluid mass if
the fluid particles do not move relative to each other, they are said to be in static condition
and a relative or dynamic equilibrium exists between them under the action of accelerating
force, and fluid pressures are everywhere normal to the surfaces on which they act.

2.13.1 Uniform linear acceleration

A liquid in an open vessel subjected to a uniform acceleration adjusts to the acceleration
after some time so that it moves as a solid and the whole mass of liquid will be in relative
equilibrium.

A horizontal acceleration (Figure 2.17a) ax causes the free liquid surface to slope
upwards in a direction opposite to ax and the entire mass of liquid is then under the action
of gravity force, hydrostatic forces and the accelerating or inertial force max, m being the
liquid mass.

For equilibrium of a particle of mass m, say, on the free surface,

F sin 𝜃 = max and Fcos 𝜃 − mg = 0 or Fcos 𝜃 = mg

Slope of free surface, tan 𝜃 =
max

mg
=

ax

g
[2.25]

and the lines of constant pressure will be parallel to the free liquid surface.
A vertical acceleration (Figure 2.17b) (positive upwards) ay causes no disturbance to the

free surface and the fluid mass is in equilibrium under gravity, hydrostatic forces and the
inertial force may.

  gh1   gh2   ayH   gH

  g h dA

p = gh

ay

ax
max

θ

h2

h1
hmg

F

dA

(b)(a)

p dA
H

h

  g h dAay

ρ

ρ

ρ ρ ρ
ρ

ρ

Figure 2.17 Fluid subjected to linear accelerations: (a) horizontal acceleration and (b) vertical
acceleration.
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Fluid Statics 23

For equilibrium of a small column of liquid of area dA,

p dA = 𝜌h dA g + 𝜌h dA ay

The pressure intensity at a depth h below the free surface is

p = 𝜌gh
(

1 +
ay

g

)
[2.26]

2.13.2 Radial acceleration

Fluid particles moving in a curved path experience radial acceleration. When a cylindrical
container partly filled with a liquid is rotated at a constant angular velocity 𝜔 about a
vertical axis, the rotational motion is transmitted to different parts of the liquid and after
some time the whole fluid mass assumes the same angular velocity as a solid and the fluid
particles experience no relative motion.

A particle of mass m on the free surface (Figure 2.18) is in equilibrium under the action
of gravity, hydrostatic force and the centrifugal accelerating force m𝜔2r, 𝜔2r being the
centrifugal acceleration due to rotation.

The gradient of the free surface is

tan 𝜃 =
dy

dr
= m𝜔2r

mg
= 𝜔2r

g

⇒ y = 𝜔2r2

2g
+ constant, C

when r = 0, y = 0 and hence C = 0.

⇒ y = 𝜔2r2

2g
[2.27]

which shows that the free liquid surface is a paraboloid of revolution and this principle is
used in a hydrostatic tachometer.

F

r

y

h

mg

mω 2r θ

ω (rad/s)

p = ρgh

Figure 2.18 Fluid subjected to radial acceleration.
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24 Civil Engineering Hydraulics

Worked examples

Example 2.1

A hydraulic jack having a ram 150 mm in diameter lifts a weight of 20 kN under the action
of a 30 mm diameter plunger. The stroke length of the plunger is 250 mm and if it makes
100 strokes per minute, find by how much the load is lifted per minute and what power
is required to drive the plunger.

Solution:

Since the pressure is the same in all directions and is transmitted through the fluid in the
hydraulic jack (Figure 2.19),

Pressure intensity, p = F
a
= W

A

Force on the plunger, F = W
( a

A

)
= 20 × 103 ×

(
302

1502

)
= 800 N

Distance moved per minute by the plunger = 100 × 0.25

= 25 m

Distance through which the weight is lifted per minute = 25 ×
(

302

1502

)
= 1 m

Power required = 20 × 103 × 1
60

N m/s

= 333.3 W

Fluid

Ram
Plunger

F

W

a
A

Figure 2.19 Hydraulic jack.
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m 30
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Figure 2.20 U-tube manometer: (a) initial situation and (b) if pressure falls.

Example 2.2

A U-tube containing mercury (relative density 13.6) has its right-hand limb open to atmo-
sphere and the left-hand limb connected to a pipe conveying water under pressure, the
difference in levels of mercury in the two limbs being 200 mm. If the mercury level in
the left-hand limb is 400 mm below the centre line of the pipe, find the absolute pressure
in the pipeline in kilopascals. Also find the new difference in levels of the mercury in the
U-tube if the pressure in the pipe falls by 2 kN∕m2.

Solution:

Starting from the left-hand-side end (Figure 2.20a):

p
𝜌g

+ 0.40 − 13.6 × 0.20 = 0 (atmosphere)

⇒
p
𝜌g

= 2.32 m of water

or p = 103 × 9.81 × 2.32 = 22.76 kN/m2

The corresponding absolute pressure = 101 + 22.76

= 123.76 kN/m2

= 123.76 kPa

When the manometer is not connected to the system, the mercury levels in both the limbs
equalise and are 300 mm below the centre line of the pipe, and writing the manometer
equation for new conditions (Figure 2.20b):

20.76 × 103

103 × 9.81
+ 0.30 + x

2
− 13.6x = 0

⇒ The new difference in mercury levels, x = 0.184 m or 184 mm
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Oil

50 mm

dx

Water

Area, a

Area, A

dx
p2p1

0

0

h
0

0

Figure 2.21 Differential micromanometer.

Example 2.3

A double-column enlarged-ends manometer is used to measure a small pressure differ-
ence between the two points of a system conveying air under pressure, the diameter of
U-tube being 1/10 of the diameter of the enlarged ends. The heavy liquid used is water
and the lighter liquid in both limbs is oil of relative density 0.82. Assuming the surfaces
of the lighter liquid to remain in the enlarged ends, determine the difference in pressure in
millimetres of water for a manometer displacement of 50 mm.

What would be the manometer reading if carbon tetrachloride (of relative density 1.6)
were used in place of water, the pressure conditions remaining the same?

Solution:

Referring to Figure 2.21, the manometer equation can be written as

p1

𝜌g
+ 0.82h − 0.05 − (h − 0.05 + 2 dx) 0.82 =

p2

𝜌g

and by volumes displaced

dx A =
(

0.05
2

)
a

or

2 dx = 0.05
( a

A

)
= 0.05

(
1
10

)2

⇒
p1 − p2

𝜌g
= 9.41 × 10−3 m or 9.41 mm of water

For the same pressure conditions if y is the manometer reading using carbon tetrachlo-
ride, the manometer equation is

p1

𝜌g
+ 0.82h − 1.6y − 0.82(h − y + 2 dx) =

p2

𝜌g
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and

2 dx =
y

102

⇒
p1 − p2

𝜌g
= 9.41 × 10−3 = 0.788y

Hence the manometer displacement

y = 9.41 × 10−3

0.788
= 11.94 × 10−3 m or 11.94 mm of carbon tetrachloride

Example 2.4

One end of an inclined U-tube manometer is connected to a system carrying air under a
very small pressure. If the other end is open to atmosphere, the angle of inclination is 3◦ to
the horizontal and the tube contains oil of relative density 0.8, calculate (i) the air pressure
in the system for a manometer reading of 500 mm along the slope and (ii) the equivalent
vertical water column height.

Solution:

The manometer equation gives (Figure 2.22)

p
𝜌og

− z = 0 and z = h sin 𝜃

p = 𝜌ogh sin 𝜃 (𝜌o being the density of oil)

= 0.8 × 1000 × 9.81 × 0.5 × sin 3◦

= 205.36 N/m2

p

pah

z

Oil

Atmosphere

θ

Figure 2.22 Inclined U-tube manometer.
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If h′ is the equivalent water column height and 𝜌 the density of water, we can write

p = 𝜌gh′ = 𝜌ogh sin 𝜃

⇒ h′ =
(
𝜌o

𝜌

)
h sin 𝜃

= sh sin 𝜃
= 0.8 × 0.5 × sin 3◦

= 2.09 × 10−2 m

Example 2.5

(a) An open steel tank of base 4 m2 has its sides sloping outwards such that its top is 7 m2.
If the tank is 2 m high and is filled with water, determine the total thrust and its location
(i) on the base and (ii) on one of the sloping sides.

(b) If the four sides of the tank slope inwards so that its top is 1 m2, find the thrust and its
location on the base when it is filled with water.

Solution:

Pressure intensity on the base, p = 𝜌g × 2 N/m2

Hence total thrust on the base, P = p × A

Referring to Figures 2.23a and 2.23b, thrust P = 𝜌g × 2 × 4 × 4 = 314 kN for both cases
(Pascal’s or hydrostatic paradox), and by symmetry this acts through the centroid of the
base.

Total thrust on a side (Figure 2.23a):

Length of sloping side =
√

1.52 + 22 = 2.5 m

By moments,

(7 + 4)
2

× 2.5 × x̄ = 4 × 2.5 × 2.5
2

+ 2 × 1
2
× 1.5 × 2.5 × 2.5

3
13.75x̄ = 12.5 + 3.125

⇒ x̄ = 1.136 m

Depth of immersion, h̄ = x̄ sin 𝜃

= 1.36 × 2
2.5

= 0.91 m

Hence the total thrust, F = 𝜌gh̄A

= 103 × 9.81 × 0.91 × (7 + 4)
2

× 2.5

= 122.75 kN
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7 m

4 m

(a)

1 m

2 m

4 m

(b)

2 m G

7 m

4 m

G
C

2.
5 

mC
θ

h0

h

xx
0

Figure 2.23 Open tank with sloping sides: (a) sides sloping outwards and (b) sloping inwards.

Centre of pressure, h0 = h̄ +
Ig sin

2
𝜃

Ah̄

Ig = 1
12

× 4 × 2.53 + 2 × 1
36

× 1.5 × 2.53

= 5.208 + 1.302

= 6.51 m4

⇒ h0 = 0.91 +
6.51(2∕2.5)2

[(7 + 4)∕2] × 2.5 × 0.91
= 0.91 + 0.333

= 1.243 m

Example 2.6

A 2 m × 2 m tank with vertical sides contains oil of density 900 kg/m3 to a depth of
0.8 m floating on 1.2 m depth of water. Calculate the total thrust and its location on one
side of the tank (see Figure 2.24).
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Oil ρ

ρ

  g (1.2)

1.2 m

0.8 m

Water

o

h0

ρ

Figure 2.24 Oil and water thrusts on a side of a tank.

Solution:

Total thrust on one vertical side, F = volume of the pressure prism

=
[

1
2
𝜌og(0.8)2 + 𝜌og × 0.8 × 1.2 + 1

2
𝜌g(1.2)2

]
2

= 5.65 + 16.95 + 14.13

= 36.73 kN

By moments, centre of pressure, h0,

36.73 × h0 = 5.65
(

1.2 + 0.8
3

)
+ 16.95 × 1.2

2
+ 14.13 × 1.2

3
= 8.29 + 10.17 + 5.65

= 24.11

⇒ h0 = 24.11
36.73

= 0.656 m above the base

Example 2.7

(a) A circular butterfly gate pivoted about a horizontal axis passing through its centroid
is subjected to hydrostatic thrust on one side and counterbalanced by a force F applied at
the bottom, as shown in Figure 2.25. If the diameter of the gate is 4 m and the water depth
is 1 m above the gate, determine the force, F, required to keep the gate in position.

(b) If the gate is to retain water to its top level on the other side also, determine the net
hydrostatic thrust on the gate and suggest the new conditions for the gate to be in equilib-
rium (see Figure 2.26).

Solution:

(a) Water on one side only:
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Water

Pivot

G

C

1 m

4 m diameter

F

P

Figure 2.25 Circular gate.

Hydrostatic thrust on the gate,

P = 𝜌h̄A = 103 × 9.81 × 3 × 1
4
𝜋42

= 369.83 kN

and

the distance, CG =
Ig

Ah

=
(𝜋∕64)44

(𝜋∕4)42
× 3

= 0.333 m

Taking moments about G,

369.83 × 0.333 = F × 2

F = 61.64 kN

(b) If the gate is retaining water on the other side also, the net hydrostatic thrust is due
to the resultant pressure diagram with a uniform pressure distribution of intensity
equal to 𝜌gh (Figure 2.26).

h

ρgh2ρgh1

R = ρghA h2

h1

G

Figure 2.26 Gate retaining water on both sides.
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3 m
A

B

DC

(b)(a)

2  g

3  g

3 m

r = 1 m

r =
 1

 m

ρ

ρ

Figure 2.27 Open tank with plane and curved surfaces: (a) tank elevation and (b) pressure
diameter.

Net hydrostatic thrust, R = 𝜌ghA

= 103 × 9.81 × 1 × 1
4
𝜋42

= 123.28 kN

This acts through the centroid of the gate, G, and since its moment about G is zero,
F = 0 for the gate to be in equilibrium, for any depth h of water above the gate on
the other side.

Example 2.8

An open tank 3 m × 1 m in cross section (Figure 2.27a) holds water to a depth of 3 m.
Determine the magnitude, direction and line of action of the forces exerted upon the plane
surfaces AB and CD and the curved surface BC of the tank.

Solution:

Force on face AB/m length = area of pressure diagram (see Figure 2.27b)

= 1
2
𝜌g × 22 = 19.62 kN/m

acting normal to the face AB at a depth of (2∕3) × 2 = 1.33 m from the water surface.
Force on curved surface BC/m length:

Horizontal component,Fx (from the pressure diagram) = 𝜌g × 2 × 1 + 1
2
𝜌g × 12

= 24.52 kN/m

Vertical component, Fy = weight of water above the surface

= 𝜌g × 2 × 1 × 1 + 𝜌g × 𝜋 × 12

4
× 1

= 27.32 kN/m
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Resultant thrust, F =
√

24.522 + 27.322

= 36.71 kN/m

acting at an angle 𝛼 = tan−1(27.32∕24.52) = 48◦5′ to the horizontal and passing through
the centre of curvature of the surface BC.

Force on surface CD/m length:

Uniform pressure intensity on CD = 𝜌g × 3 N/m2

Total thrust on CD = uniform pressure × area

= 𝜌g × 3 × 1 × 1

= 29.43 kN/m

acting vertically downwards (normal to CD) through the mid-point of the surface CD.

Example 2.9

A 3 m diameter roller gate retains water on both sides of a spillway crest as shown in
Figure 2.28. Determine (i) the magnitude, direction and location of the resultant hydro-
static thrust acting on the gate per unit length; and (ii) the horizontal water thrust on the
spillway per unit length.

Solution:

Thrust on the gate:

Left-hand side: Horizontal component = 1
2
𝜌g × 32

= 44.14 kN/m

Vertical component = 𝜌g × 1
2
𝜋

4
32 × 1

= 34.67 kN/m

+

Gate

Spillway

1 m 3.5 m

3 m

Figure 2.28 Roller gate on a spillway.
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Right-hand side: Horizontal component = 1
2
𝜌g(1.5)2

= 11.03 kN/m

Vertical component = 𝜌g × 1
4
𝜋

4
32 × 1

= 17.34 kN/m

Net horizontal component on the gate (left to right) = 44.14 − 11.03

= 33.11 kN/m

and

net vertical component (upwards) = 34.67 + 17.34

= 50.01 kN/m

Resultant hydrostatic thrust on the gate =
√

(33.11)2 + (50.01)2

= 60 kN/m

acting at an angle 𝛼 = tan−1 (33.11∕50.01) = 33◦30′ to the vertical and passes through the
centre of the gate (normal to the surface).

Depth of centre of pressure = r + r cos 𝛼
= 1.5 (1 + cos33◦30′)

= 2.75 m below the free surface of the left-hand side

Horizontal thrust on the spillway:
From pressure diagrams (see Figure 2.28),

thrust from left-hand side = 1
2

(𝜌g × 3 + 𝜌g × 4) × 1

= 34.33 kN/m

and

thrust from right-hand side = 1
2

(𝜌g × 1.5 + 𝜌g × 3.5) × 2

= 49.05 kN/m

Resultant thrust (horizontal) on the spillway = 49.05 − 34.33

= 14.72 kN/m towards left

Example 2.10

The gates of a lock (Figure 2.29) are 5 m high and when closed include an angle of 120◦.
The width of the lock is 6 m. Each gate is carried on two hinges placed on the top and
bottom of the gate. If the water levels are 4.5 m and 3 m on the upstream and downstream
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a

m5m6

3 m
4.5 m

Rt sin 30°

Rb sin 30°

F1/2
F2/2

A

(b)(a)

C

B

T

DR 1 F

120°

a

Figure 2.29 Lock gates: (a) plan view and (b) section a–a.

sides, respectively, determine the magnitudes of the forces on the hinges due to water
pressure.

Solution:

Forces on any one gate (say, AB) are as follows: F is the resultant water thrust; T, the thrust
of gate; BC, normal to contact surface; andR, the resultant of hinge forces. Since these three
forces keep the gate in equilibrium, they should meet at a point D (Figure 2.29a).

Resolution of forces along AB and normal to AB gives (ABD = BAD = 30◦)

T cos30◦ = R cos 30◦ or T = R (i)

and

F = R sin 30◦ + T sin 30◦ or F = R (ii)

Length of the gate = 3∕ sin60◦ = 3.464 m
The resultant water thrusts on either side of the gate, F = F1 − F2:

F1 = 1
2
𝜌g(4.5)2 × 3.464

= 344 kN acting at 4.5∕3 = 1.5 m from the base

and F2 = 1
2
𝜌g × 32 × 3.464

= 153 kN acting at 3∕3 = 1 m from the base

Resultant water thrust, F = 344 − 153

= 191 kN = R (from Equation (ii))

Total hinge reaction, R = Rt + Rb (sum of top and bottom hinge forces) (iii)

From Equation (ii),

F
2
= R sin 30◦

or

F1 − F2

2
= Rt sin 30◦ + Rb sin30◦ (iv)
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Taking moments about the bottom hinge (Figure 2.29b),

344
2

× 1.5 − 153
2

× 1 = Rt sin 30◦ × 5

⇒ Rt = 72.6 kN

and hence from Equation (iii),

Rb = 191 − 72.6

= 118.4 kN

Example 2.11

A rectangular block of wood floats in water with 50 mm projecting above the water sur-
face. When placed in glycerine of relative density 1.35, the block projects 75 mm above
the surface of glycerine. Determine the relative density of the wood.

Solution:

Weight of wooden block,W = upthrust in water = upthrust in glycerine

= weight of fluid displaced

W = 𝜌wgAh = 𝜌gA(h − 50 × 10−3) = 𝜌GgA(h − 75 × 10−3)

𝜌, 𝜌w and 𝜌G being the densities of water, wood and glycerine, respectively; A the cross-
sectional area of the block; and h its height.

The relative density of glycerine,
𝜌G

𝜌
= h − 50 × 10−3

h − 75 × 10−3
= 1.35

⇒ h = 146.43 × 10−3 m or 146.43 mm

Hence the relative density of wood,
𝜌w

𝜌
= 146.43 − 50

146.43
= 0.658

Example 2.12

(a) A ship of 50 MN displacement has a weight of 100 kN moved 10 m across the deck
causing a heel angle of 5◦. Find the metacentric height of the ship.

(b) A homogeneous circular cylinder of radius R and height H is to float stably in a liquid.
Show that R must not be less than

√
2r(1 − r)H in order to float with its axis vertical,

where r is the ratio of relative densities of the cylinder and the liquid. Hence establish the
condition for R∕H to be minimum.

Solution:

Referring to Figure 2.30a,

C
h

ap
ter

2



Fluid Statics 37

Radius, R

H

MM

B

O

G
G

G′

B′
B

h Liquid

rd = s2

Fb = W = 50 MN
(a)

θ

(b)

10 m

rd = s1

100 kN
+

+

W

Figure 2.30 Determination of metacentric height and stability conditions: (a) ship and
(b) cylinder.

Moment heeling the ship = 100 × 10 = 1000 kN m

= moment due to the shifting of W from G to G′

= W × GG′

⇒ GG′ = GM sin 𝜃 = 1000
50 × 103

= 1
50

m

Hence the metacentric height, GM = 1
50 × sin 5◦

= 0.23 m

Referring to Figure 2.30b,

weight of cylinder = weight of liquid displaced

If the depth of submergence is h, we can write

𝜌gs1𝜋R
2H = 𝜌gs2𝜋R

2h (𝜌 being the density of water)

and hence
s1

s2
= r = h

H
(i)

OG = H
2

(ii)

OB = h
2
= rH

2
(iii)

⇒ BG = OG − OB = H
2

− rH
2

=
(H

2

)
(1 − r)

and

BM = I
V

=
𝜋R4∕4
𝜋R2rH

= R2

4rH

For stable condition,

BM > BG
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10 m

1 m

2 m

ax

ax = 3 m/s2

θ

θ

  g(2 + h)

(b)(a)

2  g

B

A

10 m

h

2 
m

  gh

C

D

ρ

ρ

ρ

Figure 2.31 Oil tanker subjected to accelerations: (a) half full and (b) full.

R2

4rH
>

(H
2

)
(1 − r) or R2

H2
> 2r(1 − r)

⇒
R
H

>
√

2r(1 − r)

and hence

R >
√

2r(1 − r)H

For limiting value of R∕H, r(1 − r) is to be minimum or

d [r(1 − r)] = 0

⇒ 1 − 2r = 0 and hence r = 1
2

Example 2.13

An oil tanker 3 m wide, 2 m deep and 10 m long contains oil of density 800 kg/m3 to a
depth of 1 m. Determine the maximum horizontal acceleration that can be given to the
tanker such that the oil just reaches its top end.

If this tanker is closed and completely filled with the oil and accelerated horizontally at
3 m/s2, determine the total liquid thrust on (i) the front end, (ii) the rear end and (iii) one
of its longitudinal vertical sides (see Figure 2.31).

Solution:

From Figure 2.31a,

maximum possible surface slope = 1
5
=

ax

g

⇒ The maximum horizontal acceleration, ax =
(

1
5

)
× 9.81

= 1.962 m/s2
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When the tanker is completely filled and closed, there will be pressure built up at the
rear-end equivalent to the virtual oil column (h) that would assume a slope of ax∕g (Figure
2.31b).

(i) Total thrust on front end AB = 1
2
𝜌g × 22 × 3 = 58.86 kN

(ii) Total thrust on rear end CD:
Virtual rise of oil level at rear end,

h = 10 × tan 𝜃 = 10 ×
ax

g
= 10 × 3

9.81
= 3.06 m

Total thrust on CD =
𝜌g(3.06) + 𝜌g(2 + 3.06)

2
× 2 × 3

= 239 kN

(iii) Total thrust on side ABCD = volume of the pressure prism

= 1
2
𝜌g × 22 × 10 + 1

2
𝜌g × 3.06 × 10 × 2

= 1
2
𝜌g(2 + 3.06) × 2 × 10

= 496 kN

Example 2.14

A vertical hoist carries a square tank of 2 m × 2 m containing water to the top of a
construction scaffold with a varying speed of 2 m/s. If the water depth is 2 m, calculate
the total hydrostatic thrust on the bottom of the tank.

If this tank of water is lowered with an acceleration equal to that of gravity, what are
the thrusts on the floor and sides of the tank?

Solution:

Vertical upward acceleration, ay = 2 m/s2

Pressure intensity at a depth h = 𝜌gh
(

1 +
ay

g

)

= 𝜌gh
(

1 + 2
9.81

)
= 1.204 × gh kN/m2

Total hydrostatic thrust on the floor = intensity × area

= 1.204 × 9.81 × 2 × 2 × 2

= 94.5 kN

Downward acceleration = −9.81 m/s2

Pressure intensity at a depth h = 𝜌gh
(

1 − 9.81
9.81

)
= 0

Therefore, there exists no hydrostatic thrust on the floor, nor on the sides.
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150 mm diameter

375 mm

r

375 mm

150 mm

12
87

 m
m

(a)

(b)

320 mm

Figure 2.32 Rotating cylinder: (a) 𝜔 = 33.5 rad/s and (b) 𝜔 = 67.0 rad/s.

Example 2.15

A 375 mm high open cylinder, 150 mm in diameter, is filled with water and rotated about
its vertical axis at an angular speed of 33.5 rad/s. Determine (i) the depth of water in the
cylinder when it is brought to rest and (ii) the volume of water that remains in the cylinder
if the speed is doubled (see Figure 2.32).

Solution:

Angular velocity, 𝜔 = 33.5 rad/s

Height of the paraboloid (Figure 2.32a), y = 𝜔2r2

2g

= (33.5 × 0.075)2

19.62
= 0.32 m

Amount of water spilled out = volume of the paraboloid

= 1
2
× volume of circumscribing cylinder

= 1
2
𝜋(0.075)2 × 0.32

= 2.83 × 10−3 m3

Original volume of water = 𝜋(0.075)2 × 0.375

= 6.63 × 10−3 m3
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Remaining volume of water = (6.63 − 2.83) × 10−3

= 3.8 × 10−3 m3

Hence the depth of water at rest = 3.8 × 10−3

𝜋(0.075)2

= 0.215 m

If the speed is doubled, 𝜔 = 67 rad/s.

Height of paraboloid = (67 × 0.075)2

2g
= 1.287 m

The free surface in the vessel assumes the shape as shown in Figure 2.32b, and we can
write

1.287 − 0.375 = 𝜔2r2

2g

r =
√

2g × 0.912
672

= 0.063 m

Therefore, the volume of water spilled out = 1
2
𝜋(0.075)2

×1.287 − 1
2
𝜋(0.063)2 × 0.912

= 5.684 × 10−3m3

Hence the volume of water left = (6.63 − 5.684) × 10−3

= 0.946 × 10−3 m3

Reference and recommended reading

Zipparro, V. J. and Hasen, H. (1993) Davis’ Handbook of Applied Hydraulics, 4th edn,
McGraw-Hill, New York.

Problems

1. (a) A large storage tank contains a salt solution of variable density given by 𝜌 = 1050 +
kh in kilograms per cubic metre, where k = 50 kg∕m4, at a depth h (in metres) below
the free surface. Calculate the pressure intensity at the bottom of the tank holding
5 m of the solution.

(b) A Bourdon-type pressure gauge is connected to a hydraulic cylinder activated by a
piston of 20 mm diameter. If the gauge balances a total mass of 10 kg placed on the
piston, determine the gauge reading (in metres) of water.

2. A closed cylindrical tank 4 m high is partly filled with oil of density 800 kg/m3 to a
depth of 3 m. The remaining space is filled with air under pressure. A U-tube containing
mercury (of relative density 13.6) is used to measure the air pressure, with one end open to
atmosphere. Find the gauge pressure at the base of the tank when the mercury deflection
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in the open limb of the U-tube is (i) 100 mm above and (ii) 100 mm below the level in
the other limb.

3. A manometer consists of a glass tube, inclined at 30◦ to the horizontal, connected to
a metal cylinder standing upright. The upper end of the cylinder is connected to a gas
supply under pressure. Find the pressure (in millimetres) of water when the manometer
fluid of relative density 0.8 reads a deflection of 80 mm along the tube. Take the ratio, r,
of the diameters of the cylinder and the tube as 64. What value of r would you suggest so
that the error due to disregarding the change in level in the cylinder will not exceed 0.2%?

4. In order to measure the pressure difference between two points in a pipeline carrying
water, an inverted U-tube is connected to the points, and air under atmospheric pressure
is entrapped in the upper portion of the U-tube. If the manometer deflection is 0.8 m and
the downstream tapping is 0.5 m below the upstream point, find the pressure difference
between the two points.

5. A high-pressure gas pipeline is connected to a macromanometer consisting of four
U-tubes in series with one end open to atmosphere, and a deflection of 500 mm of
mercury (of relative density 13.6) has been observed. If water is entrapped between the
mercury columns of the manometer and the relative density of the gas is 1.2 × 10−3,
calculate the gas pressure in newtons per millimetre square, the centre line of the pipeline
being at a height of 0.50 m above the top mercury level.

6. A dock gate is to be reinforced with three identical horizontal beams. If the water stands
to depths of 5 m and 3 m on either side, find the positions of the beams, measured above
the floor level, so that each beam will carry an equal load, and calculate the load on
each beam per unit length.

7. A storage tank of a sewage treatment plant is to discharge excess sewage into the sea
through a horizontal rectangular culvert 1 m deep and 1.3 m wide. The face of the
discharge end of the culvert is inclined at 40◦ to the vertical and the storage level is
controlled by a flap gate weighing 4.5 kN, hinged at the top edge and just covering the
opening. When the sea water stands to the hinge level, to what height above the top of
the culvert will the sewage be stored before a discharge occurs? Take the density of the
sewage as 1000 kg/m3 and of the sea water as 1025 kg/m3.

8. A radial gate, 2 m long, hinged about a horizontal axis closes the rectangular sluice of
a control dam by the application of a counterweight W (see Figure 2.33). Determine (i)
the total hydrostatic thrust and its location on the gate when the storage depth is 4 m
and (ii) for the gate to be stable, the counterweight W. Explain what will happen if the
storage increases beyond 4 m.

9. A sector gate of radius 3 m and length 4 m retains water as shown in Figure 2.34. Deter-
mine the magnitude, direction and location of the resultant hydrostatic thrust on the gate.

10. The profile of the inner face of a dam is a parabola with equation y = 0.30x2 (see
Figure 2.35). The dam retains water to a depth of 30 m above the base. Determine the
hydrostatic thrust on the dam per unit length, its inclination to the vertical and the point
at which the line of action of this thrust intersects the horizontal base of the dam.
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Hinge

60°

W

r = 1.5 m
4 m

Figure 2.33 Hinged radial gate.

Hinge

r = 3 m

60°

Figure 2.34 Sector or tainter gate.

11. A homogeneous wooden cylinder of circular section (of relative density 0.7) is required
to float in oil of density 900 kg/m3. If d and h are the diameter and height of the cylinder,
respectively, establish the upper limiting value of the ratio h∕d for the cylinder to float
with its axis vertical.

12. A conical buoy floating in water with its apex downwards has a diameter d and a
vertical height h. If the relative density of the material of the buoy is s, prove that for

30 m Dam

Heel

x

y

Figure 2.35 Parabolic profile of the inner face of a dam.
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0.6 m0.3 m

0.25 m

0.3 m

(b)(a)

h h

0.3 m

0.25 m

10 m

Figure 2.36 Floating platform: (a) single beam and (b) platform.

stable equilibrium,

h
d
<

1
2

√
s1∕3

1 − s1∕3

13. A cyclindrical buoy weighing 20 kN is to float in sea water whose density is 1020 kg/m3.
The buoy has a diameter of 2 m and height of 2.5 m. Prove that it is unstable.

If the buoy is anchored with a chain attached to the centre of its base, find the tension
in the chain to keep the buoy in vertical position.

14. A floating platform for offshore drilling purposes is in the form of a square floor
supported by four vertical cylinders at the corners. Determine the location of the
centroid of the assembly in terms of the side L of the floor and the depth of submergence
h of the cylinders so as to float in neutral equilibrium under a uniformly distributed
loading condition.

15. A platform constructed by joining two 10 m long wooden beams as shown in Figure
2.36 is to float in water. Examine the stability of a single beam and of the platform and
determine their stability moments. Neglect the weight of the connecting pieces and take
the density of wood as 600 kg/m3.

16. A rectangular barge 10 m wide and 20 m long is 5 m deep and weighs 6 MN when
loaded without any ballast. The barge has two compartments, each 4 m wide and 20 m
long, symmetrically placed about its central axis, and each containing 1 MN of water
ballast. The water surface in each compartment is free to move. The centre of gravity
without ballast is 3.0 m above the bottom and on the geometrical centre of the plan. (i)
Calculate the metacentric height for rolling, and (ii) if 100 kN of the deck load is shifted
5 m laterally find the approximate heel angle of the barge.

17. A U-tube acceleration meter consists of two vertical limbs connected by a horizontal tube
of 400 mm long parallel to the direction of motion. Calculate the level difference of the
liquid in the U-tube when it is subjected to a horizontal uniform acceleration of 6 m/s2.

18. An open rectangular tank 4 m long and 3 m wide contains water up to a depth of 2 m.
Calculate the slope of the free surface of water when the tank is accelerated at 2 m/s2

(i) up a slope of 30◦ and (ii) down a slope of 30◦.
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19. Prove that in the forced vortex motion (fluids subjected to rotation externally) of a
liquid, the rate of increase of the pressure p with respect to the radius r at a point in
liquid is given by dp/dr = 𝜌𝜔2r, in which 𝜔 is the angular velocity of the liquid and 𝜌 is
its mass density. Hence calculate the thrust of the liquid on the top of a closed vertical
cylinder of 450 mm diameter, completely filled with water under a pressure of 10 N/cm2,
when the cylinder rotates about its axis at 240 rpm.
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Chapter 3
Fluid Flow Concepts
and Measurements

3.1 Kinematics of fluids

The kinematics of fluids deals with space–time relationships for fluids in motion. In the
Lagrangian method of describing the fluid motion, one is concerned to trace the paths of
the individual fluid particles (elements) and to find their velocities, pressures and so on
with the passage of time. The coordinates of a particle A(x, y, z) at any time t (Figure 3.1a)
are dependent on its initial coordinates (a, b, c) at the instant t0 and can be written as
functions of a, b, c and t; in other words,

x = 𝜙1(a, b, c, t)

y = 𝜙2(a, b, c, t)

z = 𝜙3(a, b, c, t)

The path traced by the particles over a period of time is known as the pathline. Due to
the diffusivity phenomena of fluids and their flows, it is difficult to describe the motion
of individual particles of a flow field with time. More appropriate for describing the fluid
motion is to know the flow characteristics such as velocity and pressure of a particle or
group of particles at a chosen point in the flow field at any particular time; such a descrip-
tion of fluid flow is known as the Eulerian method.

In any flow field, velocity is the most important characteristic to be identified at any
point. The velocity vector at a point in the flow field is a function of s and t and can be
resolved into u, v and w components, representing velocities in the x-, y- and z-directions,
respectively; these components are functions of x, y, z and t and written as (Figure 3.1b)

u = f1(x, y, z, t)

v = f2(x, y, z, t)

w = f3(x, y, z, t)

defining the vector V at each point in the space at any instant t. A continuous curve traced
tangentially to the velocity vector at each point in the flow field is known as the streamline.

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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A(t0)

A(t)

x

z
y

u

w

s

V

dy
dx

(b)(a)

ds

v

a

c
b

Figure 3.1 Descriptions of fluid flow: (a) pathline and (b) velocity vector.

3.2 Steady and unsteady flows

The flow parameters such as velocity, pressure and density of a fluid flow are independent
of time in a steady flow, whereas they depend on time in unsteady flows. For example, this
can be written as (

𝜕V
𝜕t

)
x0,y0,z0

= 0 for steady flow [3.1a]

and
(
𝜕V
𝜕t

)
x0,y0,z0

≠ 0 for unsteady flow [3.1b]

At a point, in reality these parameters are generally time dependent but often remain
constant on average over a time period T. For example, the average velocity ū can be
written as

ū = 1
T ∫

t+T

t
u dt where u = u(t) = ū ± u′(t)

where u′ is the velocity fluctuation from the mean, with time t; such velocities are called
temporal mean velocities.

In steady flow, the streamline has a fixed direction at every point and is therefore fixed
in space. A particle always moves tangentially to the streamline and hence in steady flow
the path of a particle is a streamline.

3.3 Uniform and non-uniform flows

A flow is uniform if its characteristics at any given instant remain the same at different
points in the direction of flow; otherwise it is termed as non-uniform flow. Mathematically,
this can be expressed as (

𝜕V
𝜕s

)
t0

= 0 for uniform flow [3.2a]

and
(
𝜕V
𝜕s

)
t0

≠ 0 for non-uniform flow [3.2b]

The flow through a long uniform pipe at a constant rate is steady uniform flow and at a
varying rate is unsteady uniform flow. Flow through a diverging pipe at a constant rate is
steady non-uniform flow and at a varying rate is unsteady non-uniform flow.
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3.4 Rotational and irrotational flows

If the fluid particles within a flow have rotation about any axis, the flow is called rotational
and if they do not suffer rotation, the flow is in irrotational motion. The non-uniform
velocity distribution of real fluids close to a boundary causes particles to deform with
a small degree of rotation, whereas the flow is irrotational if the velocity distribution is
uniform across a section of the flow field.

3.5 One-, two- and three-dimensional flows

The velocity component transverse to the main flow direction is neglected in one-
dimensional flow analysis. Flow through a pipe may usually be characterised as one-
dimensional. In two-dimensional flow, the velocity vector is a function of two coordinates
and the flow conditions in a straight, wide river may be considered as two-dimensional.
Three-dimensional flow is the most general type of flow in which the velocity vector varies
with space and is generally complex.

Thus, in terms of the velocity vector V(s, t), we can write

V = f (x, t) (one-dimensional flow) [3.3a]

V = f (x, y, t) (two-dimensional flow) [3.3b]

V = f (x, y, z, t) (three-dimensional flow) [3.3c]

3.6 Streamtube and continuity equation

A streamtube consists of a group of streamlines whose bounding surface is made up of
these several streamlines. Since the velocity at any point along a streamline is tangential to
it, there can be no flow across the surface of a streamtube, and therefore, the streamtube
surface behaves like a boundary of a pipe across which there is no flow. This concept of
the streamtube is very useful in deriving the continuity equation.

Considering an elemental streamtube of the flow (Figure 3.2), we can state

mass entering the tube

second
=

mass leaving the tube

second

since there is no mass flow across the tube (principle of mass conservation).

⇒ 𝜌1V1 dA1 = 𝜌2V2 dA2

dA1

A1

A2

V2, ρ2

V1, ρ1

dA2

Figure 3.2 Streamtube.
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where V1 and V2 are the steady average velocities at the entrance and exit of the elementary
streamtube of cross-sectional areas dA1 and dA2, and 𝜌1 and 𝜌2 are the corresponding
densities of entering and leaving fluid.

Therefore, for a collection of such streamtubes along the flow,

�̄�1V̄1A1 = �̄�2V̄2A2 [3.4]

where �̄�1 and �̄�2 are the average densities of fluid at the entrance and exit, and V̄1 and V̄2
are the average velocities over the entire entrance and exit sections of areas A1 and A2 of
the flow tube.

For incompressible steady flow, Equation 3.4 reduces to the one-dimensional continuity
equation

A1V̄1 = A2V̄2 = Q [3.5]

and Q is the volumetric rate of flow called discharge, expressed in metres cubed per second,
often referred to as cumecs.

3.7 Accelerations of fluid particles

In general, the velocity vector V of a flow field is a function of space and time, written as

V = f (s, t)

which shows that the fluid particles experience accelerations due to (a) change in velocity
in space (convective acceleration) and (b) change in velocity in time (local or temporal
acceleration).

3.7.1 Tangential acceleration

If Vs in the direction of motion is equal to f (s, t), then

dVs =
𝜕Vs

𝜕s
ds +

𝜕Vs

𝜕t
dt

or
dVs

dt
= ds

dt

𝜕Vs

𝜕s
+

𝜕Vs

𝜕t

= Vs
𝜕Vs

𝜕s
+

𝜕Vs

𝜕t
[3.6]

where dVs∕dt is the total tangential acceleration equal to the sum of tangential convective
and tangential local accelerations.

3.7.2 Normal acceleration

The velocity vectors of the particles negotiating curved paths (Figure 3.3a) may experience
change in both direction and magnitude.

Along a flow line of radius of curvature r, the velocity vector Vs at A changes to Vs + ΔV
at B. The vector change ΔV can be resolved into two components, one along the vector
Vs and the other normal to the vector Vs. The tangential change in velocity vector ΔVs
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A
Δs

Vs

Vs

ΔVs

ΔV

Vs + ΔV

Vs + ΔV

B
s

α

(a)

(b)

ΔVnα

r

Figure 3.3 Curved motion: (a) curved path and (b) velocity vectors.

produces tangential convective acceleration, whereas the normal componentΔVn produces
normal convective acceleration:

ΔVn

Δt
=
(
ΔVn

Δs
Δs
Δt

)

From similar triangles (Figure 3.3b),

ΔVn

Vs
= Δs

r

or
ΔVn

Δs
=

Vs

r

The total normal acceleration can now be written as

dVn

dt
=

V2
s

r
+

𝜕Vn

𝜕t
[3.7]

where 𝜕Vn∕𝜕t is the local normal acceleration.
Examples of streamline patterns and their corresponding types of acceleration in steady

flows (𝜕V∕𝜕t = 0) are shown in Figure 3.4.
Fluid flows between straight parallel boundaries (Figure 3.4a) do not experience any

kind of accelerations, whereas between straight converging (Figure 3.4b) or diverging
boundaries the flow suffers tangential convective accelerations or decelerations.

Flow in a concentric curved bend (Figure 3.4c) experiences normal convective acceler-
ations, while in a converging (Figure 3.4d) or diverging bend both tangential and normal
convective accelerations or decelerations exist.

3.8 Two kinds of fluid flow

Fluid flow may be classified as laminar or turbulent. In laminar flow, the fluid particles
move along smooth layers, one layer gliding over an adjacent layer. Viscous shear stresses
dominate in this kind of flow in which the shear stress and velocity distribution are gov-
erned by Newton’s law of viscosity (Equation 1.1). In turbulent flows, which occur most
commonly in engineering practice, the fluid particles move in erratic paths causing instan-
taneous fluctuations in the velocity components. These turbulent fluctuations cause an
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(b)(a)

(d)(c)

Figure 3.4 Streamline patterns and types of acceleration: (a) no accelerations exist; (b) tangen-
tial convective accelerations; (c) normal convective accelerations; and (d) tangential and normal
convective accelerations.

exchange of momentum setting up additional shear stresses of large magnitudes. An equa-
tion of the form similar to Newton’s law of viscosity (Equation 1.1) may be written for
turbulent flow by replacing 𝜇 by 𝜂. The coefficient 𝜂, called the eddy viscosity, depends on
the fluid motion and the density.

The type of a flow is identified by the Reynolds number, Re = 𝜌VL∕𝜇, where 𝜌 and 𝜇 are
the density and viscosity of the fluid, V is the flow velocity and L is a characteristic length
such as the pipe diameter (D) in the case of a pipe flow. Reynolds number represents the
ratio of inertial forces to the viscous forces that exist in the flow field and is dimensionless.

The flow through a pipe is always laminar if the corresponding Reynolds number (Re =
𝜌VD∕𝜇) is less than 2000, and for all practical purposes the flow may be assumed to pass
through a transition to full turbulent flow in the range of Reynolds numbers from 2000
to 4000.

3.9 Dynamics of fluid flow

The study of fluid dynamics deals with the forces responsible for fluid motion and the
resulting accelerations. A fluid in motion experiences, in addition to gravity, pressure
forces, viscous and turbulent shear resistances, boundary resistance and forces due to sur-
face tension and compressibility effects of the fluid. The presence of such a complex system
of forces in real fluid flow problems makes the analysis very complicated.

However, a simplifying approach to the problem may be made by assuming the fluid to
be ideal or perfect (i.e. non-viscous or frictionless and incompressible). Water has a rela-
tively low viscosity and is practically incompressible and is found to behave like an ideal
fluid. The study of ideal fluid motion is a valuable background information to encounter
the problems of civil engineering hydraulics.

3.10 Energy equation for an ideal fluid flow

Consider an elemental streamtube in motion along a streamline (Figure 3.5) of an ideal
fluid flow.
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Datum

z   g dA ds
z + dz

p + dp
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Figure 3.5 Euler’s equation of motion.

The forces responsible for its motion are the pressure forces, gravity and accelerating
force due to change in velocity along the streamline. All frictional forces are assumed to
be zero and the flow is irrotational (i.e. uniform velocity distribution across streamlines).

By Newton’s second law of motion along the streamline (force = mass × acceleration),

p dA − (p + dp) dA – 𝜌g dA ds cos 𝜃 = 𝜌dA ds
dV
dt

or – dp – 𝜌g ds cos 𝜃 = 𝜌ds
dV
dt

The tangential acceleration (along streamline) for steady flow can be expressed as

dV
dt

= V dV
ds

(Equation 3.6)

and cos 𝜃 = dz
ds

(Figure 3.5)

⇒ – dp – 𝜌g dz = 𝜌V dV

or dz +
dp
𝜌g

+
d(V2)

2g
= 0 [3.8]

Equation 3.8 is the Euler equation of motion applicable to steady-state irrotational flow
of an ideal and incompressible fluid.

Integrating along the streamline, we get

z +
p
𝜌g

+ V2

2g
= Constant [3.9a]

or z1 +
p1

𝜌g
+

V2
1

2g
= z2 +

p2

𝜌g
+

V2
2

2g
[3.9b]

The three terms on the left-hand side of Equation 3.9a have the dimension of length,
and the sum can be interpreted as the total energy of a fluid element of unit weight. For
this reason Equation 3.9b, known as Bernoulli’s equation, is sometimes called the energy
equation for steady ideal fluid flow along a streamline between two sections, 1 and 2.
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Bernoulli’s theorem states that the total energy at all points along a steady continuous
streamline of an ideal incompressible fluid flow is constant and is written as

z +
p
𝜌g

+ V2

2g
= Constant

where z is the elevation, p pressure and V velocity of the fluid at a point in the flow under
consideration.

The first term, z, is the elevation or potential energy per unit weight of fluid with respect
to an arbitrary datum, z N m/N (or metres), called elevation or potential head. The second
term, p∕𝜌g, represents the work done in pushing a body of fluid by fluid pressure. This
pressure energy per unit weight is p∕𝜌g N m/N (or metres), called pressure head. The third
term, V2∕2g, is the kinetic energy per unit weight of fluid (KE= 1

2
mV2 and mass m = W∕g)

in N m/N (or metres), known as velocity head. The sum of these three terms is known as
total head.

3.11 Modified energy equation for real fluid flows

Bernoulli’s equation can be modified in the case of real incompressible fluid flow
(i) by introducing a loss term in Equation 3.9b which would take into account the energy
expended in overcoming the frictional resistances caused by viscous and turbulent shear
stresses and other resistances due to changes of section, valves, fittings and so on; and (ii)
by correcting the velocity energy term for true velocity distribution. The frictional losses
depend on the type of flow; in a laminar pipe flow they vary directly with the viscosity, the
length and the velocity and inversely with the square of the diameter, whereas in turbulent
flow they vary directly with the length and square of the velocity and inversely with the
diameter. The turbulent losses also depend on the roughness of the interior surface of the
pipe wall and the fluid properties of density and viscosity.

Therefore, for real incompressible fluid flow, we can write

z1 +
p1

𝜌g
+

𝛼1V2
1

2g
= z1 +

p2

𝜌g
+

𝛼2V2
2

2g
+ losses [3.10]

where 𝛼 is the velocity (kinetic) energy correction factor.

Total kinetic energy over the section =∑
kinetic energies of individual particles of mass m

In the case of uniform velocity distribution (Figure 3.6a), each particle moves with a
velocity V and its kinetic energy is 1

2
mV2.

Total kinetic energy at the section = 1
2

(m + m + m +⋯)V2

= 1
2

(
W
g

)
V2

= V2

2g
per unit weight of fluid

In the case of non-uniform velocity distribution (Figure 3.6b), the particles move with
different velocities.

Mass of individual elements passing through an elementary area dA = 𝜌dA v
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V

V
–

ν
Mass, m

Area, dA

Velocity profiles

(b)(a)

Figure 3.6 Velocity (kinetic) energy correction factor: (a) uniform distribution and (b) non-
uniform distribution.

Kinetic energy of individual mass element = 1
2
𝜌dA v v2

and hence

total kinetic energy over the section = ∫A

1
2
𝜌v3 dA = 𝛼

1
2
𝜌AV̄V̄2 or 𝛼 1

2
𝜌AV̄3

V̄ being the average velocity at the section.

⇒ 𝛼 = 1
A ∫A

(
v
V̄

)3

dA [3.11]

(For turbulent flows 𝛼 lies between 1.03 and 1.3, and for laminar flows it is 2.0.)
𝛼 is commonly referred to as the Coriolis coefficient.

3.12 Separation and cavitation in fluid flow

Consider a rising main (Figure 3.7a) of uniform pipeline. At any point, by Bernoulli’s
equation

Total energy = z +
p
𝜌g

+ V2

2g
= Constant

For a given discharge the velocity is the same at all sections (uniform diameter) and
hence we have z + p∕𝜌g = Constant.

As the elevation z increases, the pressure p in the system decreases and if p becomes
vapour pressure of the fluid, the fluid tends to boil, liberating dissolved gases and air bub-
bles. With further liberation of gases the bubbles tend to grow in size eventually blocking
the pipe section, thus allowing the discharge to take place intermittently. This phenomenon
is known as separation and greatly reduces the efficiency of the system.

If the tiny air bubbles formed at the separation point are carried to a high-pressure region
(Figure 3.7b) by the flowing fluid, they collapse extremely abruptly or implode, producing
a violent hammering action on any boundary surface on which the imploding bubbles
come in contact and cause pitting and vibration to the system, which is highly undesirable.
The whole phenomenon is called cavitation and should be avoided while designing any
hydraulic system.
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Liberation
of air bubbles

Intermittent
flow

Low-pressure
region

V, p
V

High-
pressure region

z + p/  g = Constant

z

p/  g + V2/2g = Constant

(b)(a)

p

ρ ρ

Figure 3.7 Separation and cavitation phenomena: (a) rising main of uniform diameter and (b)
horizontal converging–diverging pipe.

3.13 Impulse–momentum equation

Momentum of a body is the product of its mass and velocity (kg m/s), and Newton’s second
law of motion states that the resultant external force acting on any body in any direction
is equal to the rate of change of momentum of the body in that direction.

In the x-direction, this can be expressed as

Fx = d
dt

(mvx)

or Fx dt = d (mvx) [3.12]

Equation 3.12 is known as the implulse–momentum equation and can be written as

Fx dt = m dvx [3.13]

where m is the mass of the body and dv is the change in velocity in the direction considered;
F dt is called the impulse of applied force F.

For a fluid, the sum of external forces on a control volume may be equated to the net
change in the rate of momentum flow 𝜌Qv, as shown in Example 3.7.

3.13.1 Momentum correction factor (𝜷)

In the case of non-uniform velocity distribution (Figure 3.6b), the particles move with
different velocities across a section of the flow field.

Total momentum flow =
∑

momentum flow of individual particles

and can be written as

∫A
𝜌dA v v = 𝛽𝜌AV̄V̄ or 𝛽𝜌QV̄

where V̄ is the average velocity at the section.

⇒ 𝛽 = 1
A ∫A

(
v
V̄

)2

dA [3.14]
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(For turbulent flows 𝛽 is seldom greater than 1.1, and for laminar flows it is 1.33.)
𝛽 is commonly referred to as the Boussinesq coefficient.

3.14 Energy losses in sudden transitions

Flow through a sudden expansion experiences separation from the boundary to some
length downstream of the flow. In these regions of separation, turbulent eddies form result-
ing from pressure loss dissipating in the form of heat energy.

Referring to Figure 3.8a, the pressure against the annular area A2 – A1 is experimentally
found to be the same as the pressure p1, just before the entrance.

Energy equation:
p1

𝜌g
+

V2
1

2g
=

p2

𝜌g
+

V2
2

2g
+ loss (i)

Momentum equation: Net force on the control volume between 1 and 2

= rate of change of momentum

p1A1 + p1(A2 − A1) − p2A2 = 𝜌Q(V2 − V1) (ii)

Continuity equation: A1V1 = A2V2 = Q (iii)

The head or energy loss between 1 and 2 (from Equations (i), (ii) and (iii))

hL =
(V1 − V2)2

2g
[3.15]

Referring to Figure 3.8b, the head loss is mainly due to sudden enlargement of flow from
vena contracta to section 2, and therefore, the contraction loss can be written as (from
Equation 3.15)

hL =
(Vc − V2)2

2g
(iv)

where Vc is velocity at vena contracta v–c.
By continuity,

AcVc = A2V2 = Q

⇒ Vc =
(

A2

Ac

)
V2 =

V2

Cc

where Cc is the coefficient of contraction (=Ac∕A2).

(b)(a)

2

c

v

–121

p1/  g
p2/  g

ρ
ρ

Figure 3.8 Energy losses in sudden transitions: (a) sudden expansion and (b) sudden contrac-
tion.
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Equation (iv) reduces to

hL =
(

1
Cc

− 1
)2 V2

2

2g
=

kV2
2

2g
[3.16]

where k is a function of the contraction ratio A2∕A1.

3.15 Flow measurement through pipes

Application of continuity, energy and momentum equations to a given system of fluid flow
makes velocity and volume measurements possible.

3.15.1 Venturi meter and orifice meter

A pressure differential is created along the flow by providing either a gradual (venturi
meter) or sudden (orifice plate meter) constriction in the pipeline, and is related to flow
velocities and discharge by the energy and continuity principles (see Figure 3.9).

Bernoulli’s equation between inlet section and constriction can be written as

p1

𝜌g
+

v2
1

2g
=

p2

𝜌g
+

v2
2

2g
neglecting losses

⇒
p1 − p2

𝜌g
= h =

v2
1 − v2

2

2g
(i)

The continuity equation gives
a1v1 = a2v2 = Q (ii)

From Equations (i) and (ii),

v1 = a2

√
2gh

a2
1 − a2

2

and Q = a1v1 =
a1a2

√
2gh√

a2
1 − a2

2

[3.17]

or Q = a1

√
2gh

k2 − 1
where k =

a1

a2
[3.18]

(b)(a)

Throat

Piezometer

Constriction
Orifice

d1

h h

d2 d2

10° 3°

Figure 3.9 Discharge measurement through pipes: (a) venturi meter and (b) orifice meter.
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Equation 3.18 is an ideal equation obtained by neglecting all losses.
The actual discharge is, therefore, written by introducing a coefficient Cd in Equation

3.18:

Discharge, Q = Cda1

√
2gh

k2 − 1
[3.19]

The numerical value of Cd, the coefficient of discharge, will depend on the ratio a1∕a2,
type of transition, velocity and viscosity of the flowing fluid.

The gradual transitions of the venturi meter (Figure 3.9a) between its inlet and outlet
induce the least amount of losses, and the value of its Cd lies between 0.96 and 0.99 for
turbulent flows.

The transition in the case of an orifice plate meter (Figure 3.9b) is sudden and hence the
flow within the meter experiences greater losses due to contraction and expansion of the jet
through the orifice. Its discharge coefficient has a much lower value (0.6–0.63), as the area
a2 in Equation 3.17 refers to the orifice and not to the contracted jet.

The reduction in the constriction diameter causes velocity to increase, and correspond-
ingly a large pressure differential is created between the inlet and constriction, thus
enabling greater accuracy in its measurement. High velocities at the constriction cause
low pressures in the system, and if these fall below the vapour pressure limit of the fluid,
cavitation sets in, which is highly undesirable. Therefore, the selection of the ratio d2∕d1
is to be considered carefully. This ratio may be kept between 1∕3 and 3∕4, and a more
common value is 1∕2. The orifice plate and venturi meters provide a good illustration of
hydraulic principles, showing the interchange of energy between the terms in Bernoulli’s
equation. An increasingly widely used alternative method of flow measurement in pipes is
the electromagnetic flowmeter (see e.g. Baker, 2000 and 2006).

3.15.2 Pitot tube

A Pitot tube in its simplest form is an L-shaped tube held against the flow as shown in
Figure 3.10, creating a stagnation point in the flow.

2 Stagnation point
1

p1/  g p2/  g

v

h

ρ ρ

Figure 3.10 Pitot tube.
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The stagnation pressure at point 2 (velocity is zero) can be expressed as

p2

𝜌g
=

p1

𝜌g
+ v2

2g
(by Bernoulli’s equation)

The rise in water level or pressure differential between 1 and 2 can be written as

h =
(p2 − p1)

𝜌g
= v2

2g

⇒ Velocity, v =
√

2gh [3.20]

The actual velocity will be slightly less than the velocity given by Equation 3.20, and it
is modified by introducing a coefficient K (usually between 0.95 and 1.0) as

v = K
√

2gh [3.21]

3.16 Flow measurement through orifices and mouthpieces

3.16.1 Small orifice

If the head h, causing flow through an orifice of diameter d, is constant (small orifice:
h ≫ d) as shown in Figure 3.11, by Bernoulli’s equation

h +
p1

𝜌g
+

v2
1

2g
= 0 +

p2

𝜌g
+

v2
2

2g
+ losses

With p1 = p2 (both atmospheric), assuming v1 ≃ 0 and ignoring losses, we get

v2
2

2g
= h

or the velocity through the orifice,

v2 =
√

2gh [3.22]

Equation 3.22 is called Torricelli’s theorem and the velocity is called the theoretical velocity.

Vena contracta

Jet

v

1

c

2

h

d

Figure 3.11 Small orifice (h ≫ d).
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The actual velocity is Cv

√
2gh, where Cv is the coefficient of velocity defined as

Cv =
actual velocity

theoretical velocity
[3.23]

The area of jet is much less than the area of the orifice due to contraction, and the corre-
sponding coefficient of contraction is defined as

Cc =
area of jet

area a of orifice
[3.24]

At a section very close to the orifice, known as the vena contracta, the velocity is normal
to the cross section of the jet and hence the discharge can be written as

Q = area of jet × velocity of jet (at vena contracta)

= Cc a × Cv

√
2gh

= Cd a
√

2gh [3.25]

where Cd is called the coefficient of discharge and defined as

Cd =
actual discharge

theoretical discharge

= CcCv [3.26]

Some typical orifices and mouthpieces (short pipe lengths attached to orifice) and their
coefficients, Cc, Cv and Cd, are shown in Figure 3.12.

Cc = 0.62
Cv = 0.98
Cd = 0.61

Cc = 1.0
Cv = 0.98
Cd = 0.98

Cc = 1.0
Cv = 0.8
Cd = 0.8

Cc = 0.5
Cv = 1.0
Cd = 0.5

Cc = 1.0

Vary with
flare and
lengthCv = 0.75

Cd = 0.75

(a) (b)

r

(c)

(f)(e)(d)

Figure 3.12 Hydraulic coefficients for some typical orifices and mouthpieces: (a) sharp-edged
orifice, (b) bell-mouthed orifice, (c) mouthpiece, (d) and (e) Borda’s (re-entrant) mouthpieces
and (f) divergent tube.
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h h

b

dh dh

H2

H1

Figure 3.13 Large rectangular orifice.

3.16.2 Large rectangular orifice (see Figure 3.13)

As the orifice is large, the velocity across the jet is no longer constant; however, if we
consider a small area b dh at a depth h, then

velocity through this area =
√

2gh (Equation 3.22)

The actual discharge through the strip area,

dQ = Cd × area of strip × velocity through the strip

= Cdb dh
√

2gh

The total discharge through the entire opening (h from H2 to H1),

Q = ∫ dQ = Cdb
√

2g ∫
H1

H2

h1∕2 dh

= 2
3

Cd

√
2gb

(
H3∕2

1 − H3∕2
2

)
[3.27]

Modification of Equation 3.27

(a) If Va is the velocity of approach, the head responsible for the strip velocity is h +
𝛼V2

a∕2g (Figure 3.14a) and hence the strip velocity is
√

2g(h + 𝛼V2
a∕2g),𝛼 being the

kinetic energy correction factor (Coriolis coefficient).

αVa
2/2g

αVa
2/2g

αVa
2/2g

β

Va

H1

H1

H2 H2
H

dh dh

h h

b

dh/cos β

Energy line

(c)(b)(a)

Figure 3.14 Velocity of approach – large rectangular orifice: (a) orifice with approach velocity,
(b) orifice in inclined wall and (c) submerged orifice.
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Discharge through the strip,

dQ = Cdb dh

√
2g

(
h +

𝛼V2
a

2g

)

and the total discharge,

Q = ∫ dQ = 2
3

Cd

√
2gb

⎡⎢⎢⎣
(

H1 +
𝛼V2

a

2g

)3∕2

−

(
H2 +

𝛼V2
a

2g

)3∕2⎤⎥⎥⎦ [3.28]

(b) Side wall of the tank inclined at an angle 𝛽 (see Figure 3.14b):

Effective strip area = b dh
cos 𝛽

Discharge, Q = ∫ dQ = ∫
H1

H2

Cd
b dh
cos 𝛽

√
2g

(
h +

𝛼V2
a

2g

)

= 2
3

Cd

√
2g

b
cos 𝛽

⎡⎢⎢⎣
(

H1 +
𝛼V2

a

2g

)3∕2

−

(
H2 +

𝛼V2
a

2g

)3∕2⎤⎥⎥⎦ [3.29]

(c) Submerged orifice (see Figure 3.14c):
It can be shown by Bernoulli’s equation that the velocity across the jet is constant

and equal to
√

2gH or
√

2g(H + 𝛼V2
a∕2g) if Va is considered.

The discharge through a submerged orifice,

Q = Cd × area of orifice × velocity

= CdA

√
2g

(
H +

𝛼V2
a

2g

)
[3.30]

Note: Since the head causing flow is varying, the discharge through the orifice varies with
time.

If h is the head at any instant t (see Figure 3.15), the velocity through the orifice at that
instant is

√
2gh.

Let the water level drop down by a small amount dh in a time dt.

A

h

a

H2

H1

dh

Figure 3.15 Time taken to empty a tank.

C
h

ap
te

r
3



64 Civil Engineering Hydraulics

We can write

volume reduced = volume escaped through the orifice

−A dh = Cda
√

2gh dt (dh is negative)

⇒ dt = − A

Cda
√

2g

dh
h1∕2

[3.31]

Time taken to lower the water level from H1 to H2,

T = ∫ dt =
2A

(
H1∕2

1 − H1∕2
2

)
Cda

√
2g

[3.32]

3.17 Flow measurement in channels

Notches and weirs are regular obstructions placed across open streams over which the
flow takes place. The head over the sill of such an obstruction is related to the discharge
through energy principles. A weir or a notch may be regarded as a special form of large
orifice with the free water surface below its upper edge. Thus Equation 3.27 with H2 = 0,
for example, gives the discharge through a rectangular notch. In general, the discharge
over such structures can be written as

Q = KHn [3.33]

where K and n depend on the geometry of notch.

3.17.1 Rectangular notch

Considering a small strip area of the notch at a depth h below the free water surface (see
Figure 3.16), the total head responsible for the flow is written as h + 𝛼V2

a∕2g, 𝛼 being the
energy correction factor.

Velocity through the strip =

√
2g

(
h +

𝛼V2
a

2g

)

and discharge, dQ = Cdb dh

√
2g

(
h +

𝛼V2
a

2g

)

Total discharge, Q = ∫ dQ = Cd

√
2gb∫

H

0

(
h +

𝛼V2
a

2g

)1∕2

dh

= 2
3

Cd

√
2gb

⎡⎢⎢⎣
(

H +
𝛼V2

a

2g

)3∕2

−

(
𝛼V2

a

2g

)3∕2⎤⎥⎥⎦ [3.34]

The discharge coefficient Cd largely depends on the shape, contraction of the nappe, sill
height, head causing flow, sill thickness and so on.

As the effective width of the notch for the flow is reduced by the presence of end
contractions, each contraction being one-tenth of the total head (experimental result),
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αVa
2/2g

Va

H

P

b

dh

(H + αVa
2/2g)/10

h

Energy line
Nappe

Figure 3.16 Rectangular notch with end contractions.

Equation 3.34 is modified (in SI units) as

Q = 1.84

[
b − 0.1n

(
H +

𝛼V2
a

2g

)]⎡⎢⎢⎣
(

H +
𝛼V2

a

2g

)3∕2

−

(
𝛼V2

a

2g

)3∕2⎤⎥⎥⎦ [3.35]

taking an average value of Cd = 0.623. This is known as the Francis formula, n being the
number of end contractions.

Note: (a) Bazin formula:

Q =
(

0.405 + 0.003
H1

) √
2gb(H1)3∕2 [3.36]

where H1 = H + 1.6(V2
a∕2g).

(b) Rehbock formula:

Q =
[
1.78 + 0.245

(
He

P

)]
b(He)

3∕2 [3.37]

where He = H + 0.0012 m, and P is the height of the sill, the coefficient of discharge Cd
being

Cd = 0.602 + 0.083
(

He

P

)
[3.38]

3.17.2 Triangular or V-notch

A similar approach to determine the discharge over a triangular notch of an included angle
𝜃 results in the equation

Q = 8
15

Cd

√
2g tan 𝜃

2

⎡⎢⎢⎣
(

H +
𝛼V2

a

2g

)5∕2

−

(
𝛼V2

a

2g

)5∕2⎤⎥⎥⎦ [3.39a]

If the approach velocity Va is neglected, Equation 3.39a reduces to

Q = 8
15

Cd

√
2g tan 𝜃

2
H5∕2 [3.39b]
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3.17.3 Cipolletti weir

This is a trapezoidal weir with 14◦ side slopes (1 horizontal : 4 vertical). The discharge over
such a weir may be computed by using the formula for a suppressed (no end contractions)
rectangular weir with equal sill width.

A trapezoidal notch may be considered as one rectangular notch of width b and two
half V-notches (apex angle 1

2
𝜃), and the discharge equation written as

Q = 2
3

Cd

√
2g(b − 0.2H)H3∕2 + 8

15
Cd

√
2g tan 𝜃

2
H5∕2 [3.40]

Equation 3.40 reduces to that for a suppressed rectangular weir (weir with no end contrac-
tions) if the reduction in discharge due to the presence of end contractions is compensated
by the increase provided by the presence of two half V-notches.

Therefore we can write
2
3

Cd

√
2g × 0.2H × H3∕2 = 8

15
Cd

√
2g tan 𝜃

2
H5∕2

Assuming Cd is constant throughout, we get

tan 𝜃

2
= 1

4
⇒

𝜃

2
= 14◦2′

3.17.4 Proportional or Sutro weir

In general, the discharge through any type of weir may be expressed as Q ∝ Hn. A weir
with n = 1 (i.e. the discharge is proportional to the head over the weir’s crest), is called a
proportional weir (Figure 3.17).

Sutro’s analytical approach resulted in the relationship

x ∝ y−1∕2

for the proportional weir profile, and to overcome the practical limitation (as y → 0, x →
∞) he proposed the weir shape in the form of hyperbolic curves of the equation

2x
L

=

[
1 − 2

𝜋
tan−1

√
y
a

]
[3.41]

Y H

X a

L

Figure 3.17 Sutro or proportional weir.
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Hd

P

y

R2
R1

0.126Hd
R1 = 0.2Hd
R2 = 0.5Hd

1.85

0.175Hd 0
x

0.282Hd

Upstream
face

y

Hd
= 0.5

x

Hd

Figure 3.18 Cross section of an ogee spillway.

where a and L are the height and width of the rectangular aperture forming the base of
the weir.

Discharge, Q = CdL(2ga)1∕2
(

H − a
3

)
[3.42]

The proportional weir is a very useful device, for example, in chemical dosing and sampling
and irrigation outlets.

3.17.5 Ogee spillway

Excess flood flows behind dams are normally discharged by providing spillways. The pro-
file of an ogee spillway conforms to the shape of a sharp-crested weir (see Figure 3.18)
at a design head Hd. A discharge equation similar to that of the weir, but with a higher
discharge coefficient Cd0 (since the reference sill level for the spillway is slightly shifted),
written in the form

Q = 2
3

Cd0B
√

2gH3∕2
de

[3.43]

is applicable, in which Hde = Hd + V2
a∕2g, Va being the velocity of approach. For spillways

of P∕Hde ≥ 3, the value of Cd0 ≈ 0.75. Figure 3.19 shows the variation of Cd0 with P∕Hde.
For heads other than the design head, the discharge coefficient varies as the underside
of the nappe no longer conforms to the spillway profile. Figure 3.20 shows the variation
of Cd/Cd0 with He/Hde, He being any other energy head with a corresponding discharge
coefficient Cd. For larger values of P∕H, the approach velocity Va may be negligible, leading
to He ≈ H.

3.17.6 Other forms of flow-measuring devices

Open channel flows may also be measured by broad-crested weir and venturi flume (see
Chapter 8) and some special structures like Crump weir (see e.g. Novak et al., 2007).
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0.0

0.56

0.64

0.72

1.0

P/Hde

3.02.0

C
d0

Figure 3.19 Variation of Cd0 with P∕Hde.

Other open channel flow-measuring methods range from straightforward velocity–area
methods to ultrasonic flow gauging stations (see e.g. Herschy, 2009).

3.17.7 Effect of submergence of flow-measuring structures

If the water level (H2) downstream of a measuring device is below the sill level, the dis-
charge is said to be modular (free flow, Qf) and the above equations are valid to compute
the free flows. When the downstream water level is above the sill level, the structure is said
to be drowned and the discharge (non-modular or drowned flow) is affected (i.e. reduced).
The non-modular flow Qs is given by the equation

Qs = Qf

[
1 −

(
H2

H1

)m]0.385

[3.44]

where m is the exponent of H1 (upstream water level above sill) in the weir equations:
m = 1.5 for a rectangular weir and m = 2.5 for a triangular weir.

0.00

0.80

0.90

1.00

1.10

0.40

He/Hde

1.601.200.80

C
d/

C
d0

Figure 3.20 Variation in Cd∕Cd0 with He∕Hde.
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Q

V = 4.5 m/s
D = 300 mm

Q1, V1 = (5/8)V
D1 = 150 mm

Q2, D2 = 200 mm

Figure 3.21 Branching pipeline.

Worked examples

Example 3.1

A pipeline of 300 mm diameter carrying water at an average velocity of 4.5 m/s branches
into two pipes of 150 mm and 200 mm diameters. If the average velocity in the 150 mm
pipe is 5∕8 of the velocity in the main pipeline, determine the average velocity of flow in the
200 mm pipe and the total flow rate in the system (in litres per second) (see Figure 3.21).

Solution:

Discharge, Q = AV = Q1 + Q2 (by continuity)

⇒ AV = A1V1 + A2V2

1
4
𝜋(0.3)2 × 4.5 = 1

4
𝜋(0.15)2 × 5

8
× 4.5 + 1

4
𝜋(0.2)2 × V2

or V2 = 8.54 m/s

and total flow rate, Q = 1
4
𝜋(0.3)2 × 4.5

= 0.318 m3/s

= 318 L/s

Example 3.2

A storage reservoir supplies water to a pressure turbine (Figure 3.22) under a head of
20 m. When the turbine draws 500 L/s of water, the head loss in the 300 mm diameter
supply line amounts to 2.5 m. Determine the pressure intensity at the entrance to the
turbine. If a negative pressure of 30 kN/m2 exists at the 600 mm diameter section of the
draft tube 1.5 m below the supply line, estimate the energy absorbed by the turbine (in
kilowatts) neglecting all frictional losses between the entrance and exit of the turbine.
Hence find the output of the turbine assuming an efficiency of 85%.

Solution:

Referring to Figure 3.19, by Bernoulli’s equation (between points 1 and 2)

z1 +
p1

𝜌g
+

V2
1

2g
= z2 +

p2

𝜌g
+

V2
2

2g
+ loss (i)
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Reservoir

300 mm diameter

600 mm diameter

2

3
1.5 m

20 m

1

Figure 3.22 Flow through a hydraulic turbine.

With section 2 as datum, Equation (i) becomes (p1 = 0 and V1 = 0)

20 =
p2

𝜌g
+

V2
2

2g
+ 2.5

By the continuity equation,

Q = A2V2 = A3V3

Average velocities,V2 =
Q
A2

= 0.5
(𝜋∕4)(0.3)2

= 7.07 m/s

and V3 =
Q
A3

= 0.5
(𝜋∕4)(0.6)2

= 1.77 m/s

⇒
p2

𝜌g
= 20 − 2.5 − (7.07)2

2g
= 14.95 m of water

or p2 = 𝜌g × 14.95 = 9.81 × 14.95

= 146.95 kN/m2

Between sections 2 and 3, we can write

z2 +
p2

𝜌g
+

V2
2

2g
= z3 +

p3

𝜌g
+

V2
3

2g
+ Et + losses (ii)

where Et it the energy absorbed by the machine/unit weight of water flowing.
Assuming no losses between sections 2 and 3, Equation (ii) reduces to

1.5 + 14.95 + (7.07)2

2g
= −30 × 103

𝜌g
+ (1.77)2

2g
+ Et

⇒ Et = 1.5 + 14.95 + 2.55 + 3.06 − 0.16

= 21.9 N m/N
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Weight of water flowing through the turbine per second, W = 𝜌gQ

= 103 × 9.81 × 0.5

= 4.905 kN/s

Total energy absorbed by the machine = Et × W

= 21.9 × 4.905

= 107.42 kW

Hence its output = efficiency × input

= 0.85 × 107.42

= 91.31 kW

Example 3.3

A 500 mm diameter vertical water pipeline discharges water through a constriction of
250 mm diameter (Figure 3.23). The pressure difference between the normal and con-
stricted sections of the pipe is measured by an inverted U-tube. Determine (i) the difference
in pressure between these two sections when the discharge through the system is 600 L/s,
and (ii) the manometer deflection h if the inverted U-tube contains air.

Solution:

Discharge, Q = 600 L/s = 0.6 m3/s

⇒ Va = 0.6
(𝜋∕4)(0.5)2

= 3.056 m/s (by continuity)

and Vb = 0.6
(𝜋∕4)(0.25)2

= 7.54 m/s

500 mm diameter

250 mm diameter

Air

h

x
0.5 m

aa

bb

Figure 3.23 Flow through a vertical constriction.
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By Bernoulli’s equation between aa and bb (assuming no losses),

0.50 +
pa

𝜌g
+

(3.056)2

2g
= 0 +

pb

𝜌g
+

(7.54)2

2g

or
pa − pb

𝜌g
=

(7.54)2 − (3.056)2

2g
− 0.50

= 2.42 − 0.50

= 1.92 m of water (i)

⇒ pa − pb = 103 × 9.81 × 1.92

= 18.8 kN/m2

Manometer equation:
pa

𝜌g
− (h + x − 0.50) + x =

pb

𝜌g

⇒
pa − pb

𝜌g
= h − 0.50 = 1.92 (from Equation (i))

or h = 1.92 + 0.50

= 2.42 m

Example 3.4

A drainage pump having a tapered suction pipe discharges water out of a sump. The pipe
diameters at the inlet and at the upper end are 1 and 0.5 m, respectively. The free water
surface in the sump is 2 m above the centre of the inlet, and the pipe is laid at a slope of
1 (vertical) : 4 (along pipeline). The pressure at the top end of the pipe is 0.25 m of mercury
below atmosphere and it is known that the loss of head due to friction between the two
sections is 1/10 of the velocity head at the top section. Compute the discharge (in litres per
second) through the pipe if its length is 20 m (see Figure 3.24).

Solution:

By the continuity equation,

Q = a2v2 = a3v3 (i)

3

14

0.5 m diameter

2 m

1

20 m
1 m diameter

2

Figure 3.24 Flow through the suction pipe of a pump.
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By Bernoulli’s equation between 1, 2 and 3,

2 + 0 + 0 = 0 +
p2

𝜌g
+

v2
2

2g
= 20 × 1

4
+

p3

𝜌g
+

v2
3

2g
+
(

1
10

) v2
3

2g
(ii)

assuming the velocity in the sump at 1 as zero and a datum through 2.

Pressure at the top end,
p3

𝜌g
= 0.25 m of mercury below atmosphere

= −0.25 × 13.6

= −3.4 m of water

⇒ 1.1 ×
v2

3

2g
= 2 − 5 + 3.4 = 0.4

or
v2

3

2g
= 0.4

1.1
= 0.364 m

v3 = 2.67 ms

Hence

discharge,Q = a3 × v3 = 1
4
𝜋(0.5)2 × 2.67

= 0.524 m3/s

= 524 L/s

Example 3.5

A jet of water issues out from a fire hydrant nozzle fitted at a height of 3 m from the
ground at an angle of 45◦ with the horizontal. If the jet under a particular flow condition
strikes the ground at a horizontal distance of 15 m from the nozzle, find (i) the jet velocity
and (ii) the maximum height the jet can reach and its horizontal distance from the nozzle.
Neglect air resistance (see Figure 3.25).

P

Energy line

2xp

15 m

3 m

V

x

x1, y1

θ

V12/2gy

Figure 3.25 Jet dynamics.
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Solution:

In the horizontal direction, acceleration a = 0.

⇒ V1 cos 𝜃1 = V cos 𝜃 = Constant (i)

and in time t, horizontal distance covered

x1 = V cos 𝜃 × t or t =
x1

V cos 𝜃
(ii)

and vertical distance

y1 = V sin 𝜃 × t − 1
2

gt2 (since a = −g) (iii)

⇒ y1 = V sin 𝜃 ×
x1

V cos 𝜃
− 1

2
g
( x1

V cos 𝜃

)2
(from Equation (ii))

= x1 tan 𝜃 − 1
2

gx2
1
sec2 𝜃

V2
(iv)

Coordinates of the point where the jet strikes the ground are

y = −3 m and x = 15 m

From Equation (iii),V = 11.07 m/s.
Highest point is P: velocity vector is horizontal and is V cos 𝜃 (from Equation (i)).
In the vertical direction,

initial velocity = V sin 𝜃
final velocity = 0

giving

0 − V2 sin2
𝜃 = −2gymax (since a = −g)

or ymax = V2 sin2
𝜃

2g
= 3.12 m

We can also write

0 = V sin 𝜃 − gtp

or tp = V sin 𝜃
g

(v)

and horizontal distance,xp = V cos 𝜃 × tp

= V2 sin 2 𝜃

2g

= 6.24 m (vi)

Note: Total horizontal distance traversed by the jet = 2xp

= V2 sin 2 𝜃

g
(vii)
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Example 3.6

A 500 mm diameter siphon pipeline discharges water from a large reservoir. Deter-
mine (i) the maximum possible elevation of its summit for a discharge of 2.15 m3/s
without the pressure becoming less than 20 kN/m2 absolute and (ii) the correspond-
ing elevation of its discharge end. Take atmospheric pressure as 1 bar and neglect all
losses.

Solution:

Consider the three points A, B and C along the siphon system, as shown in Figure 3.26.

Discharge,Q = av = 2.15 m3/s

Velocity,v = 2.15
(𝜋∕4)(0.5)2

= 10.95 m/s

and v2

2g
= 6.11 m

Atmospheric pressure = 1 bar = 105 N/m2

= pressures at A and C

Minimum pressure at B = 20 kN/m2 absolute (given)

By Bernoulli’s equation between A and B (reservoir water surface as datum),

0 + 105

𝜌g
+ 0 = zB + 20 × 103

𝜌g
+ 6.11

⇒ zB = 105

𝜌g
− 20 × 103

𝜌g
− 6.11 = 2.04 m

zC

zB

B

A

Reservoir

500 mm diameter
siphon C

Figure 3.26 Siphon pipeline.
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and between A and C (with the exit end as datum)

zC +
pA

𝜌g
+ 0 = 0 +

pC

𝜌g
+ 6.11

⇒ zC = 6.11 m (pA = pC = atmospheric pressure)

Hence the exit end is to be 6.11 m below the reservoir level.

Example 3.7

A horizontal bend in a pipeline conveying 1 cumec of water gradually reduces from
600 mm to 300 mm in diameter and deflects the flow through an angle of 60◦. At the
larger end the pressure is 170 kN/m2. Determine the magnitude and direction of the force
exerted on the bend. Assume 𝛽 = 1.0 (see Figure 3.27).

Solution:

Discharge, Q = 1 m3/s = A1V1 = A2V2 (continuity equation)

⇒ V1 = 1
(𝜋∕4)(0.6)2

= 3.54 m/s

and V2 = 1
(𝜋∕4)(0.3)2

= 14.15 m/s

Energy equation neglecting friction losses:

p1

𝜌g
+

V2
1

2g
=

p2

𝜌g
+

V2
2

2g

Pressure at 1, p1 = 170 × 103 N/m2

⇒
p2

𝜌g
= 170 × 103

103 × 9.81
+ (3.54)2

19.62
− (14.15)2

19.62

or p2 = 7.62 × 104 N/m2

d1 = 600 mm

d2 = 300 mm

Q = 1 m3/s

Fy

Fx

p1
V1

p2

V2

1

2

60°

Figure 3.27 Forces on a converging bend.
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Momentum equation: Gravity forces are zero along the horizontal plane and the only
forces acting on the fluid mass are pressure and momentum forces.

Let Fx and Fy be the two components of the total force F exerted by the bent boundary
surface on the fluid mass; these are considered positive if Fx is left to right and Fy upwards.

In the x-direction,

p1A1 + Fx − p2A2 cos 𝜃 = 𝜌Q (V2 cos 𝜃 − V1)

and in the y-direction,

0 + Fy − p2A2 sin 𝜃 = 𝜌Q (V2 sin 𝜃 − 0)

⇒ Fx = 103 × 1(14.15 cos60◦ − 3.54) + 7.62 × 104 × 1
4
𝜋(0.3)2 cos60◦

−17 × 104 × 1
4
𝜋(0.6)2

= −4.2 × 104 N (negative sign indicates Fx is right to left)

and Fy = 103 × 1(14.15 sin60◦) + 7.62 × 104 × 1
4
𝜋(0.3)2 sin 60◦

= 1.7 × 104 N (upwards)

According to Newton’s third law of motion, the forces Rx and Ry exerted by the fluid
on the bend will be equal and opposite to Fx and Fy.

⇒ Rx = −Fx = 4.2 × 104 N (left to right)

and Ry = −Fy = −1.7 × 104 N (downwards)

Resultant force on the bend,

R =
√

R2
x + R2

y

= 4.53 × 104 N or 45.3 kN

Acting at an angle, 𝜃 = tan−1
(Ry

Rx

)
= 22◦ to the x-direction

Example 3.8

Derive an expression for the normal force on a plate inclined at 𝜃◦ to the jet.
A 150 mm × 150 mm square metal plate, 10 mm thick, is hinged about a horizontal

edge. If a 10 mm diameter horizontal jet of water impinging 50 mm below the hinge keeps
the plate inclined at 30◦ to the vertical, find the velocity of the jet. Take the specific weight
of the metal as 75 kN/m3.

Solution:

Referring to Figure 3.28a, force in the normal direction to the plate,

F = (mass × change in velocity normal to the plate) of jet

F = 𝜌aV [V cos(90◦ − 𝜃) − 0]

= 𝜌aV2 sin 𝜃 N
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Hinge

30°

(b)(a)

Jet

50 mm

Area, a
FF

VθV

W

150 m
m

Figure 3.28 Forces on flat plates: (a) inclined plate and (b) hinged plate.

Now, referring to Figure 3.28b,

F = 𝜌aV2 sin 60◦

= 103 × 𝜋

4
(0.01)2 × sin 60◦ × V2

= 6.8 × 10−2 V2 N

Weight of the plate, W = 0.150 × 0.150 × 0.010 × 75 000

= 16.87 N

Taking moments about the hinge,

F × 50 sec30◦ = W × 75 sin30◦

or 6.8 × 10−2V2 × 50 sec30◦ = 16.87 × 75 sin30◦

⇒ V = 12.7 m/s

Example 3.9

Estimate the energy (head) loss along a short length of pipe suddenly enlarging from a
diameter of 350 mm to 700 mm and conveying 300 L/s of water. If the pressure at the
entrance of the flow is 105 N/m2, find the pressure at the exit of the pipe. What would be
the energy loss if the flow were to be reversed with a contraction coefficient of 0.62?

Solution:

Case of sudden expansion:

Q = 0.3 m3/s = a1v1 = a2v2

⇒ v1 = 3.12 m/s and v2 = 0.78 m/s

and hence

hL = (3.12 − 0.78)2

2g
= 0.28 m of water

Pressure, p1 = 105 N/m2
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By energy equation,
p1

𝜌g
+

v2
1

2g
=

p2

𝜌g
+

v2
2

2g
+

(v1 − v2)2

2g

10.2 + 0.5 =
p2

𝜌g
+ 0.03 + 0.28

⇒
p2

𝜌g
= 10.39 m or p2 = 1.02 × 105 N/m2

Case of sudden contraction:

hL =
[(1∕Cc) − 1]2v2

2g
(where v is the velocity in the smaller pipe)

=
[(1∕0.62) − 1]2(3.12)2

2g
= 0.186 m of water

Example 3.10

A venturi meter is introduced in a 300 mm diameter horizontal pipeline carrying water
under a pressure of 150 kN/m2. The throat diameter of the meter is 100 mm and the
pressure at the throat is 400 mm of mercury below atmosphere. If 3% of the differential
pressure is lost between inlet and throat, determine the flow rate in the pipeline.

Solution:

Bernoulli’s equation between inlet and throat:

p1

𝜌g
+

v2
1

2g
=

p2

𝜌g
+

v2
2

2g
+ 0.03

(
p1

𝜌g
−

p2

𝜌g

)

⇒
0.97(p1 − p2)

𝜌g
=

(v2
2 − v2

1)

2g

p1 = 150 × 103 N/m2 = 15.29 m of water

p2 = −400 mm of mercury = −0.4 × 13.6 m of water

= −5.44 m of water

⇒
p1 − p2

𝜌g
= 15.29 − (−5.44)

= 20.73 m
and hence

v2
2 − v2

1

2g
= 0.97 × 20.73

= 20.11 m (i)
From the continuity equation, a1v1 = a2v2

⇒ v1 =
(

a2

a1

)
v2 =

(
d2

d1

)2

v2

=
(

10
30

)2

v2

=
(

1
9

)
v2 (ii)

C
h

ap
te

r
3



80 Civil Engineering Hydraulics

From Equations (i) and (ii),

v2
2 (1 − 1∕81)

2g
= 20.11

or

v2 =

√
2g × 20.11
1 − 1∕81

= 19.89 m/s

Flow rate, Q = a2v2 = 1
4
𝜋(0.1)2 × 19.98

= 0.157 m3/s or 157 L/s

Example 3.11

A 50 mm × 25 mm venturi meter with a coefficient of discharge of 0.98 is to be replaced by
an orifice meter having a coefficient of discharge of 0.6. If both meters are to give the same
differential mercury manometer reading for a discharge of 10 L/s, determine the diameter
of the orifice.

Solution:

Discharge through venturi meter = discharge through orifice meter

k = a1∕a2 = (50∕25)2 = 4 for the venturi meter and ko for the orifice meter = (50∕do)2,
where do is the diameter of orifice.

Q = 0.01 = 0.98 × 1
4
𝜋(0.05)2

√
2gh

42 − 1

= 0.6 × 1
4
𝜋(0.05)2

√
2gh

k2
o − 1

or

√
k2

o − 1 =
0.6

√
15

0.98

⇒ ko =
(

50
do

)2

= 2.57 or do = 50√
2.57

= 31.2 mm

Example 3.12

A Pitot tube was used to measure the quantity of water flowing in a pipe of 300 mm
diameter. The stagnation pressure at the centre line of the pipe is 250 mm of water more
than the static pressure. If the mean velocity is 0.78 times the centre line velocity and the
coefficient of the Pitot tube is 0.98, find the rate of flow in litres per second.
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Solution:

The centre line velocity in the pipe, v = K
√

2gh

= 0.98
√

2 × 9.81 × 0.25

= 2.17 m/s

Mean velocity of flow = 0.78 × 2.17

= 1.693 m/s

Hence

discharge, Q = av

= 1
4
𝜋(0.3)2 × 1.693

= 0.12 m3/s or 120 L/s

Example 3.13

A large rectangular orifice 0.40 m wide and 0.60 m deep, placed with the upper edge in a
horizontal position 0.90 m vertically below the water surface in a vertical side wall of a
large tank, is discharging to atmosphere. Calculate the rate of flow through the orifice if
its discharge coefficient is 0.65.

Solution:

The discharge rate when b = 0.4 m, H1 = 0.90 + 0.60 = 1.5 m, H2 = 0.90 m and Cd =
0.65 from Equation 3.27,

Q = 2
3
× 0.65 ×

√
2g × 0.40 ×

[
(1.5)3∕2 − (0.9)3∕2]

= 0.755 m3/s

Example 3.14

A vertical circular tank 1.25 m diameter is fitted with a sharp-edged circular orifice
50 mm in diameter in its base. When the flow of water into the tank was shut off, the
time taken to lower the head from 2 to 0.75 m was 253 s. Determine the rate of flow (in
litres per second) through the orifice under a steady head of 1.5 m.

Solution:

T = 253 s, H1 = 2 m, H2 = 0.75 m, a = 1
4
𝜋(0.05)2 = 1.96 × 10−3 m2 and A = 1

4
𝜋(1.25)2 =

1.228 m2.
From Equation 3.32, Cd = 0.61.
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Hence steady discharge under a head of 1.5 m

= Cda
√

2gH

= 0.61 × 1.96 × 10−3 ×
√

2g × (1.5)1∕2

= 0.0065 m3/s or 6.5 L/s

Example 3.15

Determine the discharge over a sharp-crested weir 4.5 m long with no lateral contractions,
the measured head over the crest being 0.45 m. The width of the approach channel is
4.5 m and the sill height of the weir is 1 m.

Solution:

Equation 3.35 is rewritten as

Q = 1.84b
⎡⎢⎢⎣
(

H +
V2

a

2g

)3∕2

−

(
V2

a

2g

)3∕2⎤⎥⎥⎦ (i)

for a weir with no lateral contractions (suppressed weir) and 𝛼 = 1.
Equation (i) reduces to

Q = 1.84b(H)3∕2 (ii)

neglecting velocity of approach as a first approximation.
From Equation (ii),

Q = 1.84 × 4.5 × (0.45)3∕2

= 2.5 m3/s

Now velocity of approach, Va = 2.5
4.5 (1 + 0.45)

= 0.383 m/s

and
V2

a

2g
= 7.48 × 10−3 m

⇒ Q = 1.84 × 4.5
[
(0.45 + 0.00748)3∕2 − (0.00748)3∕2]

= 2.556 m3/s

Example 3.16

The discharge over a triangular notch can be written as

Q =
(

8
15

)
Cd

√
2g tan 𝜃

2
H5∕2

If an error of 1% in measuring H is introduced, determine the corresponding error in
the computed discharge.
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A right-angled triangular notch is used for gauging the flow of a laboratory flume. If
the coefficient of discharge of the notch is 0.593 and an error of 2 mm is suspected in
observing the head, find the percentage error in computing an estimated discharge of 20
L/s.

Solution:

We can write

Q = KH5∕2

⇒ dQ =
(

5
2

)
KH3∕2 dH

and

dQ
Q

=
(5∕2) KH3∕2 dH

KH5∕2

=
(

5
2

)
dH
H

(i)

If dH/H is 1%, the error in the discharge dQ/Q = 2.5% (from Equation (i)).

Q = 0.02 = 8
15

× 0.593 ×
√

2g × 1 × H5∕2

or

H5∕2 = 1.4275 × 10−2

or

H = 0.183 m or 183 mm

and

dQ
Q

= 2.5 × dH
H

= 2.5 × 2
183

= 2.73%

Example 3.17

If the velocity distribution of a turbulent flow in an open channel is given by a power law

v
vmax

=
(

y
y0

)1∕7

where v is the velocity at a distance y from the bed and vmax is the maximum velocity in
the channel with a flow depth of y0, determine the average velocity and the energy (𝛼) and
momentum (𝛽) correction factors. Assume the flow to be two-dimensional.
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Solution:

If the mean velocity of flow is V, the discharge per unit width of the channel is

y0V = q = ∫
y0

0
v dy

which gives q = (7∕8)vmaxy0.

Therefore

V =
q
y0

=
(

7
8

)
vmax

The kinetic energy correction factor 𝛼, given by Equation 3.11, can be written as

𝛼 = 1
A ∫

A

( v
V

)3
dA = 1

y0V3 ∫
y0

0

[
vmax

(
y
y0

)1∕7
]3

dy

Replacing vmax [= (8∕7)V] and integrating, we obtain 𝛼 = 1.045. The momentum correc-
tion factor 𝛽 given by Equation 3.14 can be written as

𝛽 = 1
A ∫

A

( v
V

)2
dA = 1

y0V2 ∫
y0

0

[
vmax

(
y
y0

)1∕7
]2

dy

Again replacing vmax and integrating, we obtain 𝛽 = 1.016.
Note: The energy and momentum correction factors 𝛼 and 𝛽 for open channels may be

computed by the equations

𝛼 = 1 + 3𝜀2 − 2𝜀3 and 𝛽 = 1 + 𝜀2 where 𝜀 =
vmax

V
− 1

If the velocity distributions are not described by any equation and if the measured data are
available, 𝛼 and 𝛽 values may be computed by graphical methods; plots of ∫ v dy, ∫ v3 dy
and ∫ v2 dy will help to give V, 𝛼 and 𝛽, respectively.

Example 3.18

An ogee spillway of large height is to be designed to evacuate a flood discharge of 200 m3/s
under a head of 2 m. The spillway is spanned by piers to support a bridge deck above. The
clear span between piers is limited to 6 m. Determine the number of spans required in order
to pass the flood discharge with the head not exceeding 2 m. Assume the pier contraction
coefficient kp = 0.01 and the abutment contraction coefficient ka = 0.10.

Solution:

The flow between the piers and abutments is contracted, thus reducing the spillway width
for the flow to Be. Each pier has two end contractions and one abutment, and hence the
effective width is given by

Be = B − 2(nkp + ka)He

n being the number of piers.
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The pier contraction coefficient depends on the shape of its nose (kp = 0 for a pointed
nose and kp = 0.02 for a square nose), whereas the abutment contraction coefficient may
be as high as 0.2 for a square abutment, reducing to zero for a rounded abutment. If the
velocity of approach Va is not negligible, a trial-and-error procedure is to be used for the
discharge computations; for large heights (P), Va ≈ 0 and hence He ≈ H. Here, assuming
Va ≈ 0, we can write Equation 3.43 as

Q = 200 = 2
3

Cd0

√
(2g) [6(n + 1) − 2(n × 0.01 + 0.10)2.0]23∕2

which gives n = 4.36 with Cd0 = 0.75 (P∕H > 3). Therefore round up to n = 5, and so
provide five piers. Thus the clear span of the spillway (for flow) = 36 m. From the dis-
charge equation we can now compute the corresponding head for this flow. In fact the
spillway is capable of discharging a larger flood flow at the specified design head of 2 m.
A stage (head)–discharge relationship can be established by using appropriate discharge
coefficients (refer Figure 3.20).
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Problems

1. A tapered nozzle is so shaped that the velocity of flow along its axis changes from 1.5 to
15 m/s in a length of 1.35 m. Determine the magnitude of the convective acceleration at
the beginning and end of this length.

2. The spillway section of a dam ends in a curved shape (known as the bucket) deflecting
water away from the dam. The radius of this bucket is 5 m and when the spillway is
discharging 5 cumecs of water per metre length of crest, the average thickness of the
sheet of water over the bucket is 0.5 m. Compare the resulting normal or centripetal
acceleration with the acceleration due to gravity.

3. The velocity distribution of a real fluid flow in a pipe is given by the equation v = Vmax
(1 – r2/R2), where Vmax is the velocity at the centre of the pipe, R is the pipe radius, and
v is the velocity at radius r from the centre of the pipe. Show that the kinetic energy
correction factor for this flow is 2.
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150 mm diameter

Sump

Pump3 m

4.5 m

B

100 mm diameter

A

Figure 3.29 Flow through a hydraulic pump.

4. A pipe carrying oil of relative density 0.8 changes in diameter from 150 mm to 450 mm,
the pressures at these sections being 90 kN/m2 and 60 kN/m2, respectively. The smaller
section is 4 m below the other, and if the discharge is 145 L/s, determine the energy loss
and the direction of flow.

5. Water is pumped from a sump (see Figure 3.29) to a higher elevation by installing a
hydraulic pump with the data:
Discharge of water = 6.9 m3/min
Diameter of suction pipe = 150 mm
Diameter of delivery pipe = 100 mm
Energy supplied by the pump = 25 kW
(i) Determine the pressure (in kilonewtons per square metre) at points A and B neglecting
all losses.
(ii) If the actual pressure at B is 25 kN/m2, determine the total energy loss (in kilowatts)
between the sump and the point B.

6. A fire-brigade man intends to reach a window 10 m above the ground with a fire stream
from a nozzle of 40 mm diameter held at a height of 1.5 m above the ground. If the jet
is discharging 1000 L/min, determine the maximum distance from the building at which
the fireman can stand to hit the target. Hence find the angle of inclination with which the
jet issues from the nozzle.

7. A 600 mm diameter pipeline conveying oil of relative density 0.85 at the rate of 2 cumecs
has a 90◦ bend in a horizontal plane. The pressure at the inlet to the bend is 2 m of oil.
Find the magnitude and direction of the force exerted by the oil on the bend. If the ends
of the bend are anchored by tie-rods at right angles to the pipeline, determine tension in
each tie-rod.

8. The diameter of pipe bend is 300 mm at inlet and 150 mm at outlet, and the flow is
turned through 120◦ in a vertical plane. The axis at inlet is horizontal and the centre
of the outlet section is 1.5 m below the centre of the inlet section. The total volume of
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fluid contained in the bend is 8.5 × 10−2 m3. Neglecting friction, calculate the magnitude
and direction of the force exerted on the bend by water flowing through it at a rate of
0.225 m3/s when the inlet pressure is 140 kN/m2.

9. A sluice gate is used to control the flow of water in a horizontal rectangular channel,
6 m wide. The gate is lowered so that the stream flowing under it has a depth of 800 mm
and a velocity of 12 m/s. The depth upstream of the sluice gate is 7 m. Determine the
force exerted by the water on the sluice gate, assuming uniform velocity distribution in
the channel and neglecting frictional losses.

10. A 50 mm diameter jet of water strikes a curved vane at rest with a velocity of 30 m/s
and is deflected through 45◦ from its original direction. Neglecting friction, compute the
resultant force on the vane in magnitude and direction.

11. A horizontal rectangular outlet downstream of a dam, 2.5 m high and 1.5 m wide, dis-
charges 70 m3/s of water on to a concave concrete floor of 12 m radius and 6 m length,
deflecting the water away from the outlet to dissipate energy. Calculate the resultant
thrust the fluid exerts on the floor.

12. A venturi meter is to be fitted to a pipe of 250 mm diameter where the pressure head is 6
m of water and the maximum flow is 9 m3/min. Find the smallest diameter of the throat
to ensure that the pressure head does not become negative.

13. (a) Determine the diameter of throat of a venturi meter to be introduced in a horizon-
tal section of a 100 mm diameter main so that deflection of a differential mercury
manometer connected between the inlet and throat is 600 mm when the discharge is
20 L/s of water. The discharge coefficient of the meter is 0.95.

(b) What difference will it make to the manometer reading if the meter is introduced in
a vertical length of the pipeline, with water flowing upwards, and the distance from
inlet to throat of the meter is 200 mm?

14. A Pitot tube placed in front of a submarine moving horizontally in sea water 16 m below
the water surface is connected to the two limbs of a U-tube mercury manometer. Find
the speed of the submarine for a manometer deflection of 200 mm. Relative densities of
mercury and sea water are 13.6 and 1.026, respectively.

15. In an experiment to determine the hydraulic coefficients of a 25 mm diameter sharp-
edged orifice, it was found that the jet issuing horizontally under a head of 1 m travelled
a horizontal distance of 1.5 m from the vena contracta in the course of a vertical drop of
612 mm from the same point. Furthermore, the impact force of the jet on a flat plate held
normal to it at the vena contracta was measured as 5.5 N. Determine the three coefficients
of the orifice, assuming an impact coefficient of unity.

16. A swimming pool with vertical sides is 25 m long and 10 m wide. Water at the deep end
is 2.5 m and shallow end 1 m. If there are two outlets each 500 mm diameter, one at
each of the deep and shallow ends, find the time taken to empty the pool. Assume the
discharge coefficients for both the outlets as 0.8.

17. A convergent–divergent nozzle is fitted to the vertical side of a tank containing water to
a height of 2 m above the centre line of the nozzle. Find the throat and exit diameters
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of the nozzle if it discharges 7 L/s of water into the atmosphere, assuming that (i) the
pressure head in the throat is 2.5 m of water absolute, (ii) atmospheric pressure is 10 m
of water, (iii) there is no hydraulic loss in the convergent part of the nozzle, and (iv) the
head loss in the divergent part is 1/5 of exit velocity head.

18. When water flows through a right-angled V-notch, show that the discharge is given by
Q = KH5∕2, in which k is a dimensional constant and H is the height of water surface
above the bottom of the notch. (i) What are the dimensions of K if H is in metres and
Q in metres cubed per second? (ii) Determine the head causing flow when the discharge
through this notch is 1.42 L/s. Take Cd = 0.62. (iii) Find the accuracy with which the head
in (ii) must be measured if the error in the estimation of discharge is not to exceed 1.5%.

19. (a) What is meant by a ‘suppressed’ weir? Explain the precautions that you would take
in using such a weir as a discharge-measuring structure.

(b) A suppressed weir with two ventilating pipes is installed in a laboratory flume with
the following data:

Width of flume = 1000 mm
Height of weir, P = 300 mm
Diameter of ventilating pipes = 30 mm
Pressure difference between the two sides of the nappe = 1 N/m2

Head over sill, h = 150 mm
Density of air = 1.25 kg/m3

Coefficient of discharge, Cd = 0.611 + 0.075(h/P)
Assuming a smooth entrance to the ventilating pipes and neglecting the velocity of
approach, find the air demand in terms of percentage of water discharge.

20. State the advantages of a triangular weir over a rectangular one, for measuring discharges.
The following observations of head and the corresponding discharge were made in a

laboratory to calibrate a 90◦ V-notch.

Head (mm) 50 75 100 125 150
Discharge (L/s) 0.81 2.24 4.76 8.03 12.66

Determine K and n in the discharge equation, Q = KHn (H in metres and Q in metres
cubed per second) and hence find the value of the coefficient of discharge.

21. A reservoir has an area of 8.5 ha and is provided with a weir 4.5 m long (Cd = 0.6).
Find how long it will take for the water level above the sill to fall from 0.60 to 0.30 m.
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Chapter 4
Flow of Incompressible
Fluids in Pipelines

4.1 Resistance in circular pipelines flowing full

A fluid moving through a pipeline is subjected to energy losses from various sources. A
continuous resistance is exerted by the pipe walls due to the formation of a boundary
layer in which the velocity decreases from the centre of the pipe to zero at the boundary.
In steady flow in a uniform pipeline the boundary shear stress 𝜏0 is constant along the pipe,
since the boundary layer is of constant thickness, and this resistance results in a uniform
rate of total energy or head degradation along the pipeline. The total head loss along a
specified length of pipeline is commonly referred to as the ‘head loss due to friction’ and
denoted by hf. The rate of energy loss or energy gradient Sf = hf∕L.

The hydraulic grade line shows the elevation of the pressure head along the pipe. In a
uniform pipe the velocity head 𝛼V2∕2g is constant and the energy grade line is parallel to
the hydraulic grade line (Figure 4.1). Applying Bernoulli’s equation to sections 1 and 2,

z1 +
p1

𝜌g
+

𝛼V2
1

2g
= z2 +

p2

𝜌g
+

𝛼V2
2

2g
+ hf

and since V1 = V2,

z1 +
p1

𝜌g
= z2 +

p2

𝜌g
+ hf [4.1]

In steady uniform flow the motivating and drag forces are exactly balanced. Equating
between sections 1 and 2,

(p1 − p2)A + 𝜌gAL sin 𝜃 = 𝜏0PL [4.2]

where A is the area of cross section, P the wetted perimeter and 𝜏0 the boundary shear
stress.

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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z1
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p1/ρg

p2/ρg

θ

αV2/2g

Sf

hf = Head loss due
       to friction

L

Energy grade line

Hydraulic grade line

Datum

Figure 4.1 Pressure head and energy gradients in full, uniform pipe flow.

Rearranging Equation 4.2 and noting that L sin 𝜃 = z1 − z2,

p1 − p2

𝜌g
+ z1 − z2 =

𝜏0PL

𝜌gA

and from Equation 4.1,

hf =
p1 − p2

𝜌g
+ z1 − z2

whence hf =
𝜏0PL

𝜌gA

or 𝜏0 = 𝜌gR
hf

L
= 𝜌gRSf [4.3]

where R (hydraulic radius) =A∕P (=D∕4 for a circular pipe of diameter D).
The head loss due to friction in steady uniform flow is given by the Darcy–Weisbach

equation:

hf =
𝜆LV2

2gD
[4.4]

where 𝜆 is a non-dimensional coefficient which, for turbulent flow, can be shown to be
a function of k∕D, the relative roughness, and the Reynolds number, Re = VD∕𝜈. The
effective roughness size of the pipe wall is denoted by k. For laminar flow (Re ≤ 2000), hf
can be obtained theoretically in the form of the Hagen–Poiseuille equation:

hf =
32𝜇LV
𝜌gD2

[4.5]

Thus in Equation 4.4, 𝜆 = 64∕Re for laminar flow.
In the case of turbulent flow, experimental work on smooth pipes by Blasius yielded the

relationship

𝜆 = 0.3164
Re1∕4

[4.6]
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Later work by Prandtl and Nikuradse on smooth and artificially roughened pipes
revealed three zones of turbulent flow:

(i) a smooth turbulent zone in which the friction factor 𝜆 is a function of the Reynolds
number only and expressed by

1√
𝜆
= 2 log

Re
√
𝜆

2.51
[4.7]

(ii) a transitional turbulent zone in which 𝜆 is a function of both k∕D and Re
(iii) a rough turbulent zone in which 𝜆 is a function of k∕D only and expressed by

1√
𝜆
= 2 log 3.7D

k
[4.8]

Equations 4.7 and 4.8 are known as the Kármán–Prandtl equations. Colebrook (1939)
and White found that the function resulting from the addition of the rough and smooth
Equations 4.7 and 4.8 in the form

1√
𝜆
= −2 log

(
k

3.7D
+ 2.51

Re
√
𝜆

)
[4.9]

fitted the observed data on commercial pipes over the three zones of turbulent flow. Further
background notes on the development of the form of the Kármán–Prandtl equations are
given in Chapter 7. The Colebrook–White equation (Equation 4.9) was first plotted in the
form of a 𝜆–Re diagram by Moody (1944) (Figure 4.2) and hence is generally referred
to as the ‘Moody diagram’. This was presented originally with a logarithmic scale of 𝜆.
Figure 4.2 has been drawn, from computation of Equation 4.9, with an arithmetic scale
of 𝜆 for more accurate interpolation.

Combining the Darcy–Weisbach and Colebrook–White equations, Equation 4.4 and
Equation 4.9 yield an explicit expression for V:

V = −2
√

2gDSf log

(
k

3.7D
+ 2.51𝜈

D
√

2gDSf

)
[4.10]

This equation forms the basis of the design charts produced by HR Wallingford (1990).
A typical chart is reproduced as Figure 4.3.

Due to the implicit form of the Colebrook–White equation, a number of approximations
in explicit form in 𝜆 have been proposed.

Moody produced the following formulation:

𝜆 = 0.0055

[
1 +

(
20 000 k

D
+ 106

Re

)1∕3
]

[4.11]

This is claimed to give values of 𝜆 within ±5% for Reynolds numbers between 4 × 103 and
1 × 107 and for k∕D up to 0.01.

Barr (1975) proposed the following form based partly on an approximation to the log-
arithmic smooth turbulent element in the Colebrook–White function by White:

1√
𝜆
= −2 log

(
k

3.7D
+ 5.1286

Re0.89

)
[4.12]
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Discharge Q (L/s) for pipes flowing full
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Figure 4.3 Extract from Charts for the Hydraulic Design of Channels and Pipes (1990).
Reproduced by permission of HR Wallingford.

Further development by Barr (1981) led to an even closer approximation which was
expressed as

1√
𝜆
= −2 log

[
k

3.7D
+

5.02 log (Re∕4.518 log (Re∕7))

Re(1 + Re0.52∕29 (D∕k)0.7)

]
[4.13]

Typical percentage errors in 𝜆 given by Equation 4.13 compared with the solution of the
Colebrook–White function are as follows:

k∕D Re = 3 × 104 Re = 3 × 105 Re = 3 × 106

10−3 −0.12 0.00 −0.07
10−4 −0.16 −0.07 +0.03
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The values given by Equation 4.13 should be sufficiently accurate for most purposes, but
substitution of these values once into the right-hand side of the Colebrook–White function
produces 𝜆 values with a maximum discrepancy of +0.04%.

4.2 Resistance to flow in non-circular sections

In order to use the same form of resistance equations such as the Darcy (Equation 4.4)
and Colebrook–White (Equation 4.9) equations, it is convenient to treat the non-circular
section as an equivalent hypothetical circular section yielding the same hydraulic gradient
at the same discharge.

The ‘transformation’ is achieved by expressing the diameter D in terms of the hydraulic
radius R = A∕P, and since for circular pipes R = D∕4, Equations 4.4 and 4.9 become

hf =
𝜆LV2

8gR
[4.14]

and 1√
𝜆
= −2 log

(
k

14.8R
+ 2.51𝜈

4VR
√
𝜆

)
[4.15]

Because in the actual non-circular section the boundary shear stress is not constant around
the wetted perimeter whereas it is in the equivalent circular section, the ‘transformation’
is not exact but experiments have shown that the error is small.

It is important to note that the equivalent circular pipe does not have the same area
as the actual conduit; their hydraulic radii are equal. Tables by HR Wallingford and Barr
(2006) cover a number of non-circular cross sections, and the hydraulic performance of
ovoid pipes as used in sewerage is discussed by Marriott (1996).

4.3 Local losses

In addition to the spatially continuous head loss due to friction, local head losses occur at
changes of cross section, at valves and at bends. These local losses are sometimes referred
to as ‘minor’ losses since in long pipelines their effect may be small in relation to the
friction loss. However, the head loss at a control valve has a primary effect in regulating
the discharge in a pipeline.

4.3.1 Typical values for circular pipelines

Head loss at abrupt contraction = Kc

V2
2

2g

where V2 is the mean velocity in a downstream section of diameter D2, and D1 is the
upstream diameter.

D2∕D1 0 0.2 0.4 0.6 0.8 1.0
Kc 0.5 0.45 0.38 0.28 0.14 0

Note that the value of Kc = 0.5 relates to the abrupt entry from a
tank into a circular pipeline.
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Head loss at abrupt enlargement =
V2

2

2g

(
A2

A1
− 1

)2

Head loss at 90◦ elbow = 1.0V2

2g

Head loss at 90◦ smooth bend = V2

2g

Head loss at a valve = Kv
V2

2g

where Kv depends on the type of valve and percentage of closure.
The following examples demonstrate the application of the above theory and equations

to the analysis and design of pipelines.

Worked examples

Example 4.1

Crude oil of density 925 kg/m3 and absolute viscosity 0.065 N s/m2 at 20◦C is pumped
through a horizontal pipeline 100 mm in diameter, at a rate of 10 L/s. Determine the head
loss in each kilometre of pipeline and the shear stress at the pipe wall. What power is
supplied by the pumps per kilometre length?

Solution:

Determine if the flow is laminar.

Area of pipe = 0.00786 m2

Mean velocity of oil = 1.27 m/s

Reynolds number, Re = VD
𝜈

= 1.27 × 0.1 × 925
0.065

= 1807

Thus the flow may therefore be assumed to be laminar.
Hence

𝜆 = 64
Re

= 0.0354

Friction head loss per kilometre = 𝜆LV2

2gD

= 0.0354 × 1000 × 1.272

19.62 × 0.1
= 29.2

Boundary shear stress,𝜏0 = 𝜌g R Sf

= 925 × 9.81 × 0.1
4

× 29.2
1000

= 6.62 N/m2
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Power consumed = 𝜌gQhf

= 925 × 9.81 × 0.01 × 29.2 W

= 2.65 kW/km

Note that if the outlet end of the pipeline were elevated above the head of oil at inlet,
the pumps would have to deliver more power to overcome the static lift. This is dealt with
more fully in Chapter 6, which covers pumps.

Example 4.2

A uniform pipeline, 5000 m long, 200 mm in diameter and roughness size 0.03 mm, con-
veys water at 15◦C between two reservoirs, the difference in water level between which is
maintained constant at 50 m. In addition to the entry loss of 0.5V2∕2g, a valve produces a
head loss of 10V2∕2g. Take 𝛼 = 1.0. Determine the steady discharge between the reservoirs
using

(a) the Colebrook–White equation
(b) the Moody diagram
(c) the HR Wallingford charts
(d) an explicit function for 𝜆.

Solution:

Apply Bernoulli’s equation to A and B in Figure 4.4:

H = 0.5V2

2g
+ V2

2g
+ 10V2

2g
+ 𝜆LV2

2gD
Gross Entry Velocity Valve Friction
head loss head head head

loss loss

(i)

(a) Using the Colebrook–White equation:

1√
𝜆
= −2 log

(
k

3.7D
+ 2.51

Re
√
𝜆

)
(ii)

Valve

A

Entry loss

Head loss
at valve

Gross
head
(H)

B

Velocity
head (αV2/2g)

Figure 4.4 Energy losses in uniform pipeline.
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The solution to the problem is obtained by solving Equations (i) and (ii) simultaneously.
However, direct substitution of 𝜆 from Equations (i) into (ii) yields a complex implicit
function in V which can only be evaluated by trial or graphical interpolation.

A simpler computational procedure is obtained if terms other than the friction head
loss in Equation (i) are initially ignored; in other words, the gross head is assumed to be
totally absorbed in overcoming friction. Then Equation 4.10 can be used to obtain an
approximate value of V. That is,

V = −2

√
2gD

hf

L
log

⎛⎜⎜⎜⎜⎝
k

3.7D
+ 2.51𝜈

D

√
2gD

hf

L

⎞⎟⎟⎟⎟⎠
(iii)

Writing hf = H = 50 m, hf∕L = 0.01.

Thus V = −2
√

19.62 × 0.2 × 0.01

× log

(
0.03 × 10−3

3.7 × 0.2
+ 2.51 × 1.13 × 10−6

0.2
√

19.62 × 0.2 × 0.01

)

V = 1.564 m/s

The terms other than friction loss in Equation (i) can now be evaluated:

hm = 11.5 V2

2g
= 1.435 m

where hm denotes the sum of the minor head loss.
A better estimate of hf is thus hf = 50 − 1.435 = 48.565 m.
Thus from Equation (iii), V = 1.544 m/s.
Repeating until successive values of V are sufficiently close yields

V = 1.541 m/s and Q = 48.41 L/s

with hf = 48.61 m and hm = 1.39 m

Convergence is usually rapid since the friction loss usually predominates.

(b) The use of the Moody chart (Figure 4.2) involves the determination of the Darcy fric-
tion factor. In this case the minor losses need not be neglected initially. However, the
solution is still iterative and an estimate of the mean velocity is needed.

Estimate V = 2.0 m/s ; Re = 2 × 0.2
1.13 × 10−6

= 3.54 × 105

Relative roughness, k
D

= 0.00015

From the Moody chart, 𝜆 = 0.015

Rearranging Equation (i) yields

V =

√
2gH

11.5 + (𝜆L∕D)
(iv)
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And a better estimate of mean velocity is given by

V =
√

19.62 × 50
11.5 + (0.015 × 5000∕0.2)

= 1.593 m/s

Revised Re = 1.593 × 0.2
1.13 × 10−6

= 2.82 × 105

Whence 𝜆 = 0.016, Equation (iv) yields

V = 1.54 m/s

Further change in 𝜆 due to the small change in V will be undetectable in the Moody
diagram.

Thus accept V = 1.54 m/s and Q = 48.41 L/s.

(c) The solution by the use of the Wallingford charts is basically the same as method
(a) except that values of V are obtained directly from the chart instead of from Equa-
tion 4.10.

Making the initial assumption that hf = H, the hydraulic gradient (m/100 m) 100 S =
1.0.

Entering Figure 4.3 with D = 0.2 m and 100 S= 1.0 yields V = 1.55 m/s.
The minor loss term 11.5V2∕2g = 1.41 m, and a better estimate of hf is therefore

0.972 m/100 m.
Whence from Figure 4.3 V = 1.5 m/s and Q = 47 L/s. Note the loss of fine accuracy due

to the graphical interpolation in Figure 4.3.

(d) Using Equation 4.12,

1√
𝜆
= −2 log

(
k

3.7D
+ 5.1286

Re0.89

)
(v)

Assuming V = 2.0 m/s, 𝜆 = 0.0156 (from Equation (v)).
Using Equation (iv),

V =

√
2gH

11.5 + 𝜆L∕D

V = 1.563 m/s; 𝜆 = 0.0161 (from Equation (v))

whence V = 1.54 m/s.
Thus accept V = 1.54 m/s, which is essentially identical with that obtained using the

other methods.

Example 4.3 (Pipes in series)

Reservoir A delivers to Reservoir B through two uniform pipelines AJ and JB of diameters
300 mm and 200 mm, respectively. Just upstream of the change in section, which is
assumed gradual, a controlled discharge of 30 L/s is taken off.
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A

J

30 L/s

Entry loss

B

H

hf1

hf2 V2
2/2g

Figure 4.5 Energy losses in pipes in series with outflow.

Length of AJ = 3000 m; length of JB = 4000 m; effective roughness size of both pipes =
0.015 mm; gross head = 25.0 m. Determine the discharge to B, neglecting the loss at J (see
Figure 4.5).

Solution:

Apply the energy equation between A and B.

H =
0.5V2

1

2g
+ hf1 + hf2 +

V2
2

2g

i.e. H =
0.5V2

1

2g
+

𝜆1L1V2
1

2gD1
+

𝜆2L2V2
2

2gD2
+

V2
2

2g
(i)

Since 𝜆1 and 𝜆2 are initially unknown, the simplest method of solution is to input a series
of trial values of Q1.

Since Q2 = Q1 – 30 (L/s), the corresponding values of Reynolds number can be calcu-
lated and hence 𝜆1 and 𝜆2 can be obtained from the Moody diagram (Figure 4.2). The
total head loss H corresponding with each trial value of Q1 is then evaluated directly from
Equation (i). From a graph of H versus Q1 the value of Q1 corresponding with H = 25 m
can be read off.

k1

D2
= 0.00005;

k2

D2
= 0.000075

Q1 (L/s) 50 60 80
V1 (m/s) 0.707 0.849 1.132
V2 (m/s) 0.637 0.955 1.591

Re1 (×105) 1.88 2.25 3.00
Re2 (×105) 1.13 1.69 2.81

𝜆1 0.0164 0.016 0.0156
𝜆2 0.0184 0.018 0.016

H (m) 11.82 22.67 51.66

From Figure 4.6, Q1 = 62.5 L/s, whence Q2 = 32.5 L/s.
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Figure 4.6 Head loss versus discharge.

Note: This problem could also be solved by the ‘quantity balance’ method of pipe net-
work analysis (see Chapter 5).

Example 4.4 (Head loss in pipe with uniform lateral outflow)

Determine the total head loss due to friction over a 100 m length of a 200 mm diameter
pipeline of roughness size 0.03 mm which receives an inflow of 150 L/s and releases a
uniform lateral outflow of 1.0 L/(s m) (see Figure 4.7).

Solution:

Note that the pressure head (p∕𝜌g)X at any section is not simply h1 − hf,X since momentum
effects occur along the pipe due to the continual withdrawal of water. In addition, the

Friction head loss (hf,x)

Lateral outflow q (m3/(s m))

x

L

X
Q1 Q2

h1

Figure 4.7 Head loss in pipe with uniform lateral outflow.
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velocity head decreases along the pipe. Thus applying the energy equation to 1 and section
X

p1

𝜌g
+

V2
1

2g
=

pX

𝜌g
+ PDX + hf,X +

V2
X

2g

where PDX is the increase in pressure head due to the change in momentum between 1 and
X. However the present example will deal only with the evaluation of the friction head
loss hf,X.

The flow rate in the pipe at section X is

QX = Q1 − qx

The hydraulic gradient at X is

dhf

dX
=

𝜆XQ2
X

2gDA2
= B𝜆XQ2

X where B = 1
2gDA2

dhf

dx
= B𝜆X

(
Q1 − qx

)2

and the total head loss due to friction between the inlet and outlet is

hf = B∫
L

0
𝜆X(Q1 − qx)2 dx (i)

Now 𝜆X is given by

1√
𝜆X

= −2 log

(
k

3.7D
+ 2.51𝜈

VXD
√
𝜆X

)

Thus an exact analytical solution to (i) is not possible, but it could be evaluated approxi-
mately by summation over finite intervals 𝛿x.

However, if we take a constant value of 𝜆X, based on the average of the inlet and outlet
values, an approximate, explicit solution is obtained. Thus the solution to (i) is

hf = B�̄�
(

Q2
1x − qQ1x2 +

q2x3

3

)L

0

= B�̄�L
(

Q1 − qLQ1 +
q2L2

3

)
(ii)

k
D

= 0.03
200

= 0.00015 (iii)

Q1 = 150 L/s; Q2 = 50 L/s
V1 = 4.775 m/s; V2 = 1.59 m/s

Re1 = 8.45 × 105; Re1 = 2.82 × 105

whence 𝜆1 = 0.014; 𝜆2 = 0.016
(from the Moody diagram).

Taking �̄�1 = 0.015 and substituting into (ii),

hf = 4.195 m
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Alternatively, by calculating the head loss in each 10 m interval and summating, the vari-
ation of 𝜆 along the pipe can be included, and a more accurate result should be obtained.

Then, using Equation (ii) with subscripts 1 and 2 indicating the upstream and down-
stream ends of each section and with L = 10 m, the below table shows the head loss in
each section.

x 𝝀1 𝝀2 𝚫hf
(m) (m)

10 0.0140 0.0140 0.760
20 0.0140 0.0140 0.659
30 0.0140 0.0144 0.573
40 0.0144 0.0148 0.499
50 0.0148 0.0152 0.427
60 0.0152 0.0152 0.355
70 0.0152 0.0154 0.287
80 0.0154 0.0156 0.225
90 0.0156 0.0160 0.173

100 0.0160 0.0164 0.127

hf =
∑

Δhf = 4.086 m

Example 4.5 (Flow between tanks where the level in the lower tank is
dependent upon discharge)

A constant-head tank delivers water through a uniform pipeline to a tank, at a lower
level, from which the water discharges over a rectangular weir. The length of the pipeline
is 20.0 m, diameter 100 mm and roughness size 0.2 mm. The length of the weir crest is
0.25 m, discharge coefficient 0.6 and crest level 2.5 m below water level in the header tank.
Calculate the steady discharge and the head of water over the weir crest (see Figure 4.8).

Solution:

For pipeline,H = 1.5V2

2g
+ 𝜆LV2

2gD
= (2.5 − h) (i)

or H =
Q2

2gA2

(
1.5 + 𝜆L

D

)
= (2.5 − h) (ii)

Discharge over weir,Q = 2
3

Cd

√
2gBh3∕2 (iii)

H

h

Figure 4.8 Flow through pipeline between two reservoirs, with outflow from receiving reser-
voir.
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⇒ Q = 2
3
× 0.6 ×

√
19.62 × 0.25 × h3∕2

= 0.443h3∕2

h =
(

Q
0.443

)2∕3

(iv)

Then in Equation (ii)

Q2

2gA2

(
1.5 + 𝜆L

D

)
= 2.5 −

(
Q

0.443

)2∕3

⇒
Q2

2gA2

(
1.5 + 𝜆L

D

)
+
(

Q
0.443

)2∕3

= 2.5 (v)

Since 𝜆 is unknown this equation can be solved by trial or interpolation, that is, inputting
a number of trial Q values and evaluating the left-hand side of Equation (v):

H1 =
Q2

2gA2

(
1.5 + 𝜆L

D

)
+
(

Q
0.443

)2∕3

For the same values of Q, the corresponding values of h are evaluated from Equation (iv).
For each trial value of Q, the Reynolds number is calculated and the friction factor

obtained from the Moody diagram, for k∕D = 0.0002. See table below.
Hence Q = 0.0213 m3/s (21.3 L/s) when H1 = 2.5 m and h = 0.132 m.

Q (m3∕s) Re 𝝀 H1 (m) h (m)

0.010 1.13 × 105 0.0250 0.617 0.080
0.015 1.69 × 105 0.0243 1.287 0.105
0.018 2.03 × 105 0.0241 1.810 0.118
0.020 2.25 × 105 0.0241 2.215 0.126
0.022 2.48 × 105 0.0240 2.655 0.135

Example 4.6 (Pipes in parallel)

A 200 mm diameter pipeline, 5000 m long and of effective roughness 0.03 mm, delivers
water between reservoirs. The minimum difference in water level between reservoirs is
40 m.

(a) Taking only friction, entry and velocity head losses into account, determine the steady
discharge between the reservoirs.

(b) If the discharge is to be increased to 50 L/s without increase in gross head, determine
the length of a 200 mm diameter pipeline of effective roughness 0.015 mm to be fitted
in parallel. Consider only friction losses.
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A

C

B
Q2 (D2; k2)

Q1 (D1; k1)

Q3 (D3; k3)

L2

L1

H

Figure 4.9 Pipes in parallel.

Solution:

(a) Using the technique of Example 4.2,

40 = 𝜆LV2

2gD
+ 1.5V2

2g

yields Q = 43.52 L/s.
(b) See Figure 4.9.

In the general case where local losses (hm) occur in each branch

H =
0.5V2

1

2g
+ hm,1 + hf,1 + hm,B + hf,2 + hm,2 +

V2
2

2g
(i)

also H =
0.5V2

1

2g
+ hm,1 + hf,1 + hm,B + hf,3 + hm,3 +

V2
3

2g
(ii)

where hm,B is the head loss at junction.
Note that the head loss along branch 2 is equal to that along branch 3.
The local losses can be expressed in terms of the velocity heads. Thus Equation (i) or (ii)

can be solved simultaneously with the continuity equation at B,

that is,Q1 = Q2 + Q3 (iii)

and hL,2 = hL,3 (iv)

and using the Colebrook–White equation (or the Moody chart) for 𝜆.
If friction losses predominate, Equation (i) reduces to

H = hf,1 +hf,2

⇒ H =
𝜆1L1Q2

1

2gD1A2
1

+
𝜆2L2Q2

2

2gD2A2
2

(v)

Equation (iv) becomes

𝜆2L2Q2
2

2gD2A2
2

=
𝜆3L3Q2

3

2gD3A2
3

(vi)

Since D2 = D3 and L2 = L3, we have

𝜆2Q2
2 = 𝜆3Q2

3 (vii)

also Q3 = 0.05 − Q2
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Equation (vii) can be solved by trial of Q2 and using the Moody diagram to obtain the
corresponding 𝜆 values.

For example

k2

D2
= 0.00015;

k3

D3
= 0.000075

Try Q2 = 0.022 m3/s; Q3 = 0.028 m3/s
Re2 = 1.24 × 105; Re3 = 1.58 × 105

𝜆2 = 0.0182; 𝜆3 = 0.017
𝜆2Q2

2 = 8.81 × 10−6; 𝜆3Q2
3 = 1.33 × 10−5

By adjusting Q2 and repeating, Equation (vii) is satisfied when 𝜆2Q2
2 ≃ 1.10 × 10−5.

Now Equation (v) can be solved:

Q1 = 0.05 m3/s; Re1 = 2.816 × 105;
k1

D1
= 0.00015

whence 𝜆1 = 0.0161;
𝜆1Q2

1

2gDA2
1

= 0.01039

Substituting into (v),

40 = 0.01039 × L1 +
1.10 × 10−5(5000 − L1)

19.62 × 0.2 × 0.031422

whence L1 = 3355 m

and L2 = 1645 m

or duplicated length = 1645 m

Example 4.7 (Design of a uniform pipeline)

A uniform pipeline of length 20 km is to be designed to convey water at a minimum rate
of 250 L/s from an impounding reservoir to a service reservoir, the minimum difference in
water level between which is 160 m. Local losses including entry loss and velocity head
total 10V2∕2g.

(a) Determine the diameter of a standard commercially available lined spun iron pipeline
which will provide the required flow when in new condition (k = 0.03 mm).

(b) Calculate also the additional head loss to be provided by a control valve such that
with the selected pipe size installed the discharge will be regulated exactly to 250 L/s.

(c) An existing pipeline in a neighbouring scheme, conveying water of the same quality,
has been found to lose 5% of its discharge capacity, annually, due to wall deposits
(which are removed annually).
(i) Check the capacity of the proposed pipeline after 1 year of use assuming the

same percentage reduction.
(ii) Determine the corresponding effective roughness size.
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Solution:

(a)

160 = 𝜆LV2

2gD
+ 10V2

2g
(i)

Neglecting minor losses in the first instance,

hf = H = 𝜆LV2

2gD
(ii)

⇒
1√
𝜆
= −2 log

(
k

3.7D
+ 2.51

Re
√
𝜆

)
(iii)

Combining (ii) and (iii),

V = −2

√
2gD

hf

L
log

(
k

3.7D
+ 2.51𝜈

D
√

2gDhf∕L

)
(iv)

Substituting hf = 160 in Equation (iv), and calculating the corresponding discharge
capacity for a series of standard pipe diameters (and noting that there is no need to
correct for the reduction due to minor losses each time since there is a considerable
percentage increase in capacity between adjacent pipe sizes), the following table is
produced:

D (mm) 150 200 250 300 350 400
Q (L/s) 20.3 43.6 78.6 127.3 191.1 271.5

Thus a 400 mm diameter pipeline is required.
Now check the effect of minor losses:

Q = 271.5 L/s; V = 2.16 m/s; hm = 10V2

2g
= 2.38 m

hf = 157.6; revised Q = 269.4 L/s

The 400 mm diameter is satisfactory.
(b) To calculate the head loss at a valve to control the flow to 250 L/s, calculate the

hydraulic gradient corresponding with this discharge:

V = 1.99 m/s

hf may be obtained by trial in Equation (iv) until the right-hand side = 1.99

Thus hf = 137 m

Minor head loss, hm = 10V2

2g
= 2.0 m

Thus valve loss = 160 − 137 − 2.0 = 21.0 m
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Alternatively using the Moody chart,

k
D

= 0.03
400

= 0.000075

Re = 1.99 × 0.4
1.13 × 10−6

= 7.04 × 105

𝜆 = 0.0136; hf =
0.0136 × 20 000 × 1.992

19.62 × 0.4
= 137.25 m

Adopting hf = 137 m; 10V2∕2g = 2.0 m

Additional loss by valve = 160 − (137 + 2.0) = 21 m.
(c) (i) 5% annual reduction in capacity.

Capacity at the end of 1 year = 0.95 × 269.4 = 255.9 L/s
Pipe will be satisfactory if cleaned each year.

(ii) To calculate the effective roughness size after 1 year’s operation, use Equation
(iv)

i.e. k
3.7D

= antilog

(
− V√

2gDhf∕L

)
− 2.5 𝜈

D
√

2gDhf∕L
(v)

Q = 255.9 L/s; V = 2.036 m/s

hf = 160 − 10V2

2g
= 157.89 m

whence from Equation (v), k = 0.0795 mm.

Example 4.8 (Effect of booster pump in pipeline)

In the gravity supply system illustrated in Example 4.6, as an alternative to the duplicated
pipeline, calculate the head to be provided by a pump to be installed on the pipeline and
the power delivered by the pump (see Figure 4.10).

Solution:

L = 5000 m; D = 200 mm; k = 0.03 mm;

H = 40 m; Q = 50 L/s

Hm = manometric head to be delivered by the pump

HHm

B

A

Figure 4.10 Pipeline with booster pump.
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Total head = Hm + H

H + Hm = 1.5V2

2g
+ 𝜆LV2

2gD

V = 1.59 m/s; Re = 2.83 × 105; k
D

= 0.00015

whence 𝜆 = 0.0162 from the Moody chart.

Hence H + Hm = 52.48 m

and Hm = 12.48 m

Hydraulic power delivered =
𝜌gQHm

1000
kW

P = 9.81 × 0.05 × 12.48

P = 6.12 kW

Note that the power consumed Pc will be greater than this.

Pc =
P
𝜂

where 𝜂 is the overall efficiency of the pump and motor unit.
(Pump–pipeline combinations are dealt with in more detail in Chapter 6.)

Example 4.9 (Resistance in a non-circular conduit)

A rectangular culvert to be constructed in reinforced concrete is being designed to convey
a stream through a highway embankment. For short distances upstream and downstream
of the culvert, the existing stream channel will be improved to become rectangular and
6 m wide. The proposed culvert having a bed slope of 1:500 and length 100 m is 4 m
wide and 2 m deep and is assumed to have an effective roughness of 0.6 mm. The design
discharge is 40 m3/s at which flow the depth in the stream is 3.0 m. Water temperature
is 4◦C. Entry and exit from the culvert will be taken to be abrupt (although in the final
design, transitions at entry and exit would probably be adopted). Determine the depth at
the entrance to the culvert at a flow of 40 m3/s (see Figure 4.11).

Entry loss Exit loss

1 2

Z

V1

V2
V3

V3
2/2g

V2
2/2g

V1
2/2g

y1 y3

Figure 4.11 Flow resistance in a non-circular conduit.
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Solution:

Referring to Figure 4.11, apply the energy equation to 1 and 2

Z + y1 +
V2

1

2g
= y3 +

V2
3

2g
+ entry loss + friction loss in culvert + exit loss (i)

The entry loss coefficient Kc may be less than 0.5, which is commonly adopted for entry
from a reservoir. Assuming that the loss at the contraction is similar to that for concentric
pipes, Kc will depend on the ratio of upstream and downstream areas of flow, derived from
the table in Section 4.3 as follows:

A2∕A1 0.00 0.04 0.16 0.36 1.00
Kc 0.50 0.45 0.38 0.28 0.00

Assume y1 = 4.0 m, then A2∕A1 = 8∕24 = 0.3;
whence Kc = 0.3.

Discharge = 40.0 m3/s; V2 = 40
8

= 5.0 m/s

Entry loss = 0.3
V2

2

2g
= 0.38 m

The exit loss (expansion) is expressed as (V2 − V3)2∕2g.

V3 = 40
80

= 2.22 m/s whence exit loss = 0.39 m

Friction head loss in culvert: referring to Section 4.2, the resistance in the duct can be
calculated by ‘transforming’ the cross section into an equivalent circular section by equat-
ing the hydraulic radii. For the culvert, R = A∕P = 8∕12 m and the equivalent diameter
De is therefore 2.67 m (=4R).

Note that either the Colebrook–White equation 4.9 or its graphical form (Figure 4.2)
can now be used with D = 2.67 m.

Kinematic viscosity of water at 4◦C = 1.568 × 10−6 m2/s

V2 = 5 m/s; Re = 5 × 2.67
1.568 × 10−6

= 8.5 × 106

k
D

= 0.6 × 10−3

2.67
= 0.000225

From the Moody chart, 𝜆 = 0.014.

hf =
0.014 × 100 × 52

19.62 × 2.67
= 0.668 m (say 0.67 m)

V2
3

2g
= 2.222

19.62
= 0.25 m
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In Equation (i),

0.2 + y1 +
V2

1

2g
= 3.0 + 0.25 + 0.38 + 0.67 + 0.39

i.e. 0.2 + y1 +
Q2

2g(6y1)2
= 4.49 m

whence by trial y1 = 4.37 m

Since this is close to the assumed value of y1, the entry loss will not be significantly
altered.

Example 4.10 (Pumped-storage power scheme — pipeline design)

The four pump–turbine units of a pumped storage hydroelectric scheme are each to be
supplied by a high-pressure pipeline of length 2000 m. The minimum gross head (difference
in level between upper and lower reservoirs) is 310 m and the maximum head 340 m.

The upper reservoir has a usable volume of 3.25 × 106 m3 which could be released to
the turbines in a minimum period of 4 h.

Maximum power output required/turbine = 110 MW

Turbogenerator efficiency = 80%
Effective roughness of pipeline = 0.6 mm

Taking minor losses in the pipeline, power station and draft tube to be 3.0 m,

(a) determine the minimum diameter of pipeline to enable the maximum specified power
to be developed.

(b) determine the pressure head to be developed by the pump–turbine units when reversed
to act in the pumping mode to return a total volume of 3.25 × 106 m3 to the upper
reservoir uniformly during 6 h in the off-peak period (see Figure 4.12).

Pump–turbine

Losses

hf

He

A

Figure 4.12 Pumped-storage power scheme in generating mode.
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Solution:

(a) Pipe capacity must be adequate to convey the required flow under minimum head
conditions:

Qmax

unit
= 3.25 × 106

4 × 4 × 3600
= 56.42 m3/s

Power generated, P =
efficiency × 𝜌gQHe

106
MW = 110 MW

where He is the effective head at the turbines.

⇒ 110 =
0.8 × 1000 × 9.81 × 56.42 × He

106

whence He = 248 m

Total head loss = 310 − 248 = 62 m

Head loss due to friction = 62 − minor losses = 62 − 3.0 = 59 m

hf =
𝜆LV2

2gD
and 1√

𝜆
= −2 log

(
k

3.7D
+ 2.51

Re
√
𝜆

)

Since the hydraulic gradient is known but D is unknown, it is preferable to use Equation
4.10 in this case rather than use the Moody chart. That is,

V = −2

√
2gD

hf

L
log

(
k

3.7D
+ 251𝜈

D
√

2gDhf∕L

)

and Q = 𝜋D2V
4

Substituting values of D yields the corresponding discharge under the available hydraulic
gradient.

D (m) 1.0 2.0 2.5 2.6 2.65
Q (m3/s) 4.47 27.32 48.87 54.123 56.875

Hence required diameter = 2.65 m.

(b) In pumping mode, static lift = 340 m

Q = 3.25 × 106

6 × 4 × 3600
= 37.616 m3/s
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Since the diameter of the pipeline is known, it is more straighforward to use the Moody
chart in this case.

V = 6.82 m/s

Re = VD
𝜈

= 6.82 × 2.65 × 106

= 1.8 × 107

k
D

= 0.6 × 10−3

2.65
= 0.000226

𝜆 = 0.0138

hf =
𝜆LV2

2gD
= 0.0138 × 2000 × 6.822

19.62 × 2.65
= 24.69 m

Total head on pumps = 340 + 24.69 + 3.0

= 367.69 m

Example 4.11

A high-head hydroelectric scheme consists of an impounding reservoir from which the
water is delivered to four Pelton wheel turbines through a low-pressure tunnel, 10 000 m
long, 4.0 m in diameter, lined with concrete, which splits into four steel pipelines (pen-
stocks) 600 m long, 2.0 m in diameter, each terminating in a single nozzle the area of which
is varied by a spear valve. The maximum diameter of each nozzle is 0.8 m and the coeffi-
cient of velocity (Cv) is 0.98. The difference in level between reservoir and jets is 550 m.
Roughness sizes of the tunnel and pipelines are 0.1 mm and 0.3 mm, respectively.

(a) Determine the effective area of the jets for maximum power and the corresponding
total power generated.

(b) A surge chamber is constructed at the downstream end of the tunnel. What is the
difference in level between the water in the chamber and that in the reservoir under
the condition of maximum power? (See Figure 4.13.)

Hydraulic grade line Surge chamber

2g

hf,T
hf,P

hl,n

αJVJ
2

T

H

Tunnel

(LT; AT; kT)

(LP; AP; kP)

Nozzle turbine

Penstock

Figure 4.13 Tunnel and penstock.
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hl,n

h

αPVP
2/2g

αJVJ
2/2g

Figure 4.14 Pressure and velocity conditions at nozzle.

Solution:

Let subscript T relate to tunnel and P to pipeline.

H =
0.5Q 2

T

2gA 2
T

+
𝜆TLT

2gDT

Q 2
T

A 2
T

+
𝜆PLPQ 2

P

2gDPA 2
P

+
𝛼JV

2
J

2g
+ hl,n (i)

where hl,n is head loss in nozzle and VJ velocity of jet issuing from nozzle. hl,n can be
related to the coefficient of velocity Cv (see Figure 4.14).

h +
𝛼PV2

P

2g
=

𝛼JV
2
J

2g
+ hl,n (ii)

and VJ = Cv

√√√√2g
(
h + (𝛼PV2

P∕2g)
)

𝛼J
(iii)

whence h +
𝛼PV2

P

2g
=

𝛼JV
2
J

C2
v2g

and substituting in (ii),

hl,n =
𝛼jV

2
J

2g

(
1

C2
v

− 1
)

(iv)

Let a be the area of each jet and N be the number of jets (nozzles) per turbine. Since
QP = QT∕4 and VJ = QP∕Na = QT∕4Na, Equation (i) becomes

2gH = Q 2
T

[
0.5 + (𝜆TLT∕DT)

A2
T

]
+

Q 2
T

16

[
𝜆PLP

DPA2
P

]
+

𝛼JQ
2
T

N 2 × 16 × C2
v × a2

(v)

Write

E =
0.5 + (𝜆TLT∕D)

A2
T

; F =
𝜆PLP

16DPA2
P

; G =
𝛼J

16N2C2
v
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Equation (v) becomes

2gH = Q2
T

(
E + F + G

a2

)
= Q2

T

(
C + G

a2

)
where C = E + F

and QT =

√
2gH

C + (G∕a2)
(vi)

Power of each jet, P = 𝜌gQJ

𝛼JV
2
J

2g

and since QJ = QP∕N = QT∕4N and VJ = QT∕4Na

P =
𝛼J𝜌Q3

T

128N3a2

Substituting for QT from Equation (vi),

P = 𝜌

128N3a2

[
2gH

C + (G∕a2)

]3∕2

Thus P ∝ 1
a2

(
a2

Ca2 + G

)3∕2

∝ a2∕3

Ca2 + G

For max dP∕da = 0, that is,

−a2∕3(Ca2 + G)−2 × 2Ca + (Ca2 + G)−1 2
3

a−1∕3 = 0

whence −3a2C
(Ca2 + G)

+ 1 = 0

or a =
√

G
2C

(vii)

and DJ =
√

4a
𝜋

(viii)

To evaluate 𝜆T and 𝜆P, assume VT = VP = 5 m/s.

ReT = 17.6 × 106; (k∕D)T = 0.0003
4

= 0.000025

ReP = 8.8 × 106; (k∕D)P = 0.0003
2

= 0.00015

𝜆T = 0.0095; 𝜆P = 0.013

Noting that in this example N = 1 and taking 𝛼J = 1.0,

E = 0.1536; F = 0.0247; C = 0.1783; G = 0.065
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whence from Equations (vii) and (viii),

DJ = 0.737 m

From Equation (vi),

QT = 142.0 m3/s; VT = 11.3 m/s; VP = 11.3 m/s

Using revised estimates of VT and VP = 11.3 m/s,

ReT = 40 × 106; ReP = 20 × 106

𝜆T = 0.0092; 𝜆P = 0.013

whence DJ = 0.742 m

QT = 143.98 m3/s; VT = 11.46 m/s = VP

Power = 497.4 MW

Head loss in tunnel = 157.24 m

= difference in elevation between water in reservoir

and surge shaft
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Problems

(Note: Unless otherwise stated assume the kinetic viscosity of water 𝜈 = 1.13 ×
10−6 m2∕s).

1. A pipeline 20 km long delivers water from an impounding reservoir to a service reservoir,
the minimum difference in level between which is 100 m. The pipe of uncoated cast iron
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(k = 0.3 mm) is 400 mm in diameter. Local losses, including entry loss, and velocity head
amount to 10V2∕2g.
(a) Calculate the minimum uncontrolled discharge to the service reservoir.
(b) What additional head loss would need to be created by a valve to regulate the dis-

charge to 160 L/s?

2. A long, straight horizontal pipeline of diameter 350 mm and effective roughness size
0.03 mm is to be constructed to convey crude oil of density 860 kg/m3 and absolute
viscosity 0.0064 N s∕m2 from the oilfield to a port at a steady rate of 7000 m3/day.
Booster pumps, each providing a total head of 20 m with an overall efficiency of 60%,
are to be installed at regular intervals. Determine the required spacing of the pumps and
the power consumption of each.

3. A service reservoir, A, delivers water through a trunk pipeline ABC to the distribution
network having inlets at B and C.

Pipe AB: length = 1000 m; diameter = 400 mm; k = 0.06 mm
Pipe BC: length = 600 m; diameter = 300 mm; k = 0.06 mm

The water surface elevation in the reservoir is 110 m o.d. Determine the maximum per-
missible outflow at B such that the pressure head elevation at C does not fall below 90.0
m o.d. Neglect losses other than friction, entry and velocity head. Outflow at C = 160
L/s.

4. (a) Determine the diameter of commercially available spun iron pipe (k = 0.03 mm) for a
pipeline 10 km long to convey a steady flow of at least 200 L/s of water at 15oC from
an impounding reservoir to a service reservoir under a gross head of 100 m. Allow
for entry loss and velocity head. What is the unregulated discharge in the pipeline?

(b) Calculate the head loss to be provided by a valve to regulate the flow to 200 L/s.

5. Booster pumps are installed at 2 km intervals on a horizontal sewage pipeline of diameter
200 mm and effective roughness size, when new, of 0.06 mm. Each pump was found to
deliver a head of 30 m when the pipeline was new. At the end of 1 year, the discharge was
found to have decreased by 10% due to pipe wall deposits while the head at the pumps
increased to 32 m. Considering only friction losses, determine the discharge when the
pipeline was in new condition and the effective roughness size after 1 year.

6. An existing spun iron trunk pipeline of length 15 km, diameter 400 mm and effective
roughness size 0.10 mm delivers water from an impounding reservoir to a service reser-
voir under a minimum gross head of 90 m. Losses in bends and valves are estimated to
total 12V2∕2g in addition to the entry loss and velocity head.
(a) Determine the minimum discharge to the service reservoir.
(b) The impounding reservoir can provide a safe yield of 300 L/s. Determine the min-

imum length of 400 mm diameter unplasticised polyvinyl chloride (PVCu) pipeline
(k = 0.03 mm) to be laid in parallel with the existing line so that a discharge equal to
the safe yield could be delivered under the available head. Neglect local losses in the
new pipe and assume local losses of 12V2∕2g in the duplicated length of the original
pipeline.

7. A proposed small-scale hydropower installation will utilise a single Pelton Wheel supplied
with water by a 500 m long, 300 mm diameter pipeline of effective roughness 0.03 mm.
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The pipeline terminates in a nozzle (Cv = 0.98) which is 15 m below the level in the
reservoir. Determine the nozzle diameter such that the jet will have the maximum possible
power using the available head, and determine the jet power.

8. Oil of absolute viscosity 0.07 N s/m2 and density 925 kg/m3 is to be pumped by a roto-
dynamic pump along a uniform pipeline 500 m long to discharge to atmosphere at an
elevation of +80 m o.d. The pressure head elevation at the pump delivery is 95 m o.d.
Neglecting minor losses, compare the discharges attained when the pipe of roughness
0.06 mm is (a) 100 mm and (b) 150 mm diameter, and state in each whether the flow is
laminar or turbulent.

9. A pipeline 10 km long is to be designed to deliver water from a river through a pumping
station to the inlet tank of a treatment works. Elevation of delivery pressure head at the
pumping station is 50 m o.d.; elevation of water in tank is 30 m o.d. Neglecting minor
losses, compare the discharges obtainable using
(a) a 300 mm diameter plastic pipeline which may be considered to be smooth

(i) using the Colebrook–White equation
(ii) using the Blasius equation

(b) a 300 mm diameter pipeline with an effective roughness of 0.6 mm
(i) using the Kármán–Prandtl rough law
(ii) using the Colebrook–White equation.

10. Determine the hydraulic gradient in a rectangular concrete culvert 1 m wide and 0.6
m high of roughness size 0.06 mm when running full and conveying water at a rate of
2.5 m3/s. C

h
ap

te
r

4





Chapter 5
Pipe Network Analysis

5.1 Introduction

Water distribution network analysis provides the basis for the design of new systems and
the extension of existing systems. Design criteria are that specified minimum flow rates
and pressure heads must be attained at the outflow points of the network. The flow and
pressure distributions across a network are affected by the arrangement and sizes of the
pipes and the distribution of the outflows. Since a change of diameter in one pipe length
will affect the flow and pressure distribution everywhere, network design is not an explicit
process. Optimal design methods almost invariably incorporate the hydraulic analysis of
the system in which the pipe diameters are systematically altered (see e.g. Featherstone and
El Jumailly, 1983).

Pipe network analysis involves the determination of the pipe flow rates and pressure
heads which satisfy the continuity and energy conservation equations. These may be stated
as follows:

(i) Continuity: The algebraic sum of the flow rates in the pipes meeting at a junction,
together with any external flows, is zero:

I=NP(J)∑
I=1

QIJ − FJ = 0, J = 1, NJ [5.1]

in which QIJ is the flow rate in pipe IJ at junction J, NP(J) the number of pipes
meeting at junction J, FJ the external flow rate (outflow) at J and NJ the total number
of junctions in the network.

(ii) Energy conservation: The algebraic sum of the head losses in the pipes, together with
any heads generated by inline booster pumps, around any closed loop formed by
pipes is zero.

J=NP (I)∑
J=1

hL,IJ − Hm,IJ = 0, I = 1, NL [5.2]

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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in which hL,IJ is the head loss in pipe J of loop I and Hm,IJ is the manometric head
generated by a pump in line IJ.

When the equation relating energy losses to pipe flow rate is introduced into Equations
5.1 or 5.2, systems of non-linear equations are produced. No method exists for the direct
solution of such sets of equations and all methods of pipe network analysis are iterative.
Pipe network analysis is therefore ideally suited for computer application but simple net-
works can be analysed with the aid of a calculator.

The earliest systematic method of network analysis, due to Professor Hardy-Cross,
known as the head balance or ‘loop’ method is applicable to systems in which the pipes
form closed loops. Assumed pipe flow rates, complying with the continuity requirement,
Equation 5.1, are successively adjusted, loop by loop, until in every loop Equation 5.2
is satisfied within a specified small tolerance. In a similar later method, due to Cornish,
assumed junction head elevations are systematically adjusted until Equation 5.1 is satisfied
at every junction within a small tolerance; it is applicable to both open- and closed-loop
networks. These methods are amenable to desk calculation but can also be programmed for
computer analysis. However convergence is slow since the hydraulic parameter is adjusted
at one element (either loop or junction) at a time. In later methods systems of simultaneous
linear equations, derived from Equations 5.1 and 5.2 and the head loss– flow rate relation-
ship, are formed, enabling corrections to the hydraulic parameters (flows or heads) to be
made over the whole network simultaneously. Convergence is much more rapid but since
a number of simultaneous linear equations, depending on the size of the network, have to
be solved, these methods are only realistically applicable to computer evaluation.

The majority of the worked examples in this chapter illustrate the use of Equations 5.1
and 5.2 in systems which can be analysed by desk calculation using either the head balance
or quantity balance methods. In addition to friction losses, the effect of local losses and
booster pumps is shown. The networks illustrated have been analysed by computer but
the intermediate steps in the computations have been reproduced, enabling the reader to
follow the process as though it were by desk calculation; the numbers have been rounded
to an appropriate number of decimal places. An example showing the gradient method is
also given.

5.2 The head balance method (‘loop’ method)

This method is applicable to closed-loop pipe networks. It is probably more widely applied
to this type of network than is the quantity balance method. The head balance method was
originally devised by Professor Hardy-Cross and is often referred to as the Hardy-Cross
method. Figure 5.1 represents the main pipes in a water distribution network.

The outflows from the system are generally assumed to occur at the nodes (junctions);
this assumption results in uniform flows in the pipelines, which simplifies the analysis.

For a given pipe system with known junction outflows, the head balance method is an
iterative procedure based on initially estimated flows in the pipes. At each junction these
flows must satisfy the continuity criterion.

The head balance criterion is that the algebraic sum of the head losses around any closed
loop is zero; the sign convention that clockwise flows (and the associated head losses) are
positive is adopted.

The head loss along a single pipe is

h = KQ2

C
h

ap
ter

5



Pipe Network Analysis 121

Inflow

Figure 5.1 Closed-loop pipe network.

If the flow is estimated with an error ΔQ,

h = K(Q + ΔQ)2 = K[Q2 + 2QΔQ + ΔQ2]

Neglecting ΔQ2 and assuming ΔQ to be small,

h = K(Q2 + 2QΔQ)

Now round a closed loop
∑

h = 0 and ΔQ is the same for each pipe to maintain
continuity. ∑

h =
∑

KQ2 + 2ΔQ
∑

KQ = 0

⇒ ΔQ = −
∑

KQ2

2
∑

KQ
= −

∑
KQ2

2
∑

KQ2∕Q

which may be written as ΔQ = −
∑

h

2
∑

h∕Q
, where h is the head loss in a pipe based on the

estimated flow Q.

5.3 The quantity balance method (‘nodal’ method)

Figure 5.2 shows a branched-type pipe system delivering water from the impounding
reservoir A to the service reservoirs B, C and D. F is a known direct outflow from the
node J.

C

D

B

ZB

ZA

ZC

J

F

A

ZD

ZJ

Figure 5.2 Branched-type pipe network.
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If ZJ is the true elevation of the pressure head at J, the head loss along each pipe can
be expressed in terms of the difference between ZJ and the pressure head elevation at the
other end.

For example: hL,AJ = ZA − ZJ.
Expressing the head loss in the form h = KQ2, N such equations can be written as (where

N is the number of pipes)

⎡⎢⎢⎢⎣
ZA − ZJ
ZB − ZJ

⋮
ZI − ZJ

⎤⎥⎥⎥⎦
=
=

=

⎡⎢⎢⎢⎣
(SIGN) KAJ(|QAJ|)2

(SIGN) KBJ(|QBJ|)2

⋮
(SIGN) KIJ(|QIJ|)2

⎤⎥⎥⎥⎦
[5.3]

and in general, (SIGN) is + or − according to the sign of (ZI − ZJ). Thus flows towards
the junction are positive and flows away from the junction are negative.

KIJ is composed of the friction loss and minor loss coefficients.
The continuity equation for flow rates at J is

∑
QIJ − F = QAJ + QBJ + QCJ + QDJ − F = 0 [5.4]

Examination of Equations 5.3 and 5.4 shows that the correct value of ZJ will result in
values of QIJ, calculated from Equation 5.3, which will satisfy Equation 5.4.

Rearranging Equation 5.3 we have

[QIJ] =

[
(SIGN)

(|ZI − ZJ|
KIJ

)1∕2]
[5.5]

The value of ZJ can be found using an iterative method by making an initial estimate of
ZJ, calculating the pipe discharges from Equation 5.5 and testing the continuity condition
in Equation 5.4.

If (
∑

QIJ − E) ≠ 0 (with acceptable limits), a correction ΔZJ is made to ZJ and the
procedure repeated until Equation 5.4 is reasonably satisfied. A systematic correction for
ΔZJ can be developed: expressing the head loss along a pipe as h = KQ2, for a small error
in the estimate ZJ, the correction ΔZJ can be derived as

△ZJ =
2(
∑

QIJ − F)∑
QIJ∕hIJ

Example 5.7 shows the procedure for networks with multiple unknown junction head
elevations.

Evaluation of KIJ:

KIJ =
𝜆L

2gDA2
+

Cm

2gA2
(=Kf + Km)

where Cm is the sum of the minor loss coefficients.𝜆 can be obtained from the Moody chart
using an initially assumed value of velocity in the pipe (say 1 m/s). A closer approxima-
tion to the velocity is obtained when the discharge is calculated. For automatic computer
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analysis Equation 5.5 should be replaced by the Darcy–Colebrook–White combination:

Q = −2A

√
2gD

hf

L
log

(
k

3.7D
+ 2.51𝜈

D
√

2gDhf∕L

)
[5.6]

For each pipe, hf,IJ (friction head loss) is initialised to ZI − ZJ, QIJ calculated from Equa-
tion 5.6 and hf,IJ re-evaluated from hf,IJ = (ZI − ZJ) − KmQ2

IJ. This subroutine follows the
procedure of Example 4.2.

5.4 The gradient method

In addition to Equations 5.1–5.6, the gradient method needs the following vector and
matrix definitions:

NT = number of pipelines in the network

NN = number of unknown piezometric head nodes

[A12] = ‘connectivity matrix’ associated with each one of the nodes. Its dimension is

NT × NN with only two non-zero elements in the ith row:

−1 in the column corresponding to the initial node of pipe i

1 in the column corresponding to the final node of pipe i

NS = number of fixed head nodes

[A10] = topologic matrix: pipe to node for the NS fixed head nodes. Its dimension is

NT × NS with a −1 value in rows corresponding to pipelines connected to

fixed head nodes

Thus, the head loss in each pipe between two nodes is

[A11][Q] + [A12][H] = −[A10][H0] [5.7]

where
[A11] = diagonal matrix of NT × NT dimension, defined as

[A11] =

⎡⎢⎢⎢⎢⎢⎣

𝛼1Q(n1−1)
1 + 𝛽1 +

𝛾1

Q1
0 ⋯ 0

0 𝛼2Q(n2−1)
2 + 𝛽2 +

𝛾2

Q2
⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝛼NTQ(nNT−1)

NT + 𝛽NT + 𝛾NT

QNT

⎤⎥⎥⎥⎥⎥⎦
[5.8]

[Q] = discharge vector with NT × 1 dimension

[H] = unknown piezometric head vector with NN × 1 dimension

[H0] = fixed piezometric head vector with NS × 1 dimension

Equation 5.7 is an energy conservation equation. The continuity equation for all nodes
in the network is

[A21][Q] = [q] [5.9]
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where [A21] is the transpose matrix of [A12] and [q] is the water consumption and water
supply vector in each node with NN × 1 dimension.

In matrix form, Equations 5.7 and 5.9 are[
[A11] [A12]
[A21] [0]

] [
[Q]
[H]

]
=

[
−[A10][H0]

[q]

]
[5.10]

The upper part is nonlinear, which implies that Equation 5.10 must use some iterative
algorithm for its solution. The gradient method consists of a truncated Taylor expansion.
Operating simultaneously on the ([Q], [H]) field and applying the gradient operator, we
can write [

[N][A11]′ [A12]
[A21] [0]

] [
[dQ]
[dH]

]
=

[
[dE]
[dq]

]
[5.11]

where [N] is the diagonal matrix (n1, n2, . . . , nNT) with NT × NT dimension and [A11]′ =
NT × NT matrix defined as

[A11]′ =

⎡⎢⎢⎢⎢⎢⎣

𝛼1Q(n1−1)
1 0 0 ⋯ 0
0 𝛼2Q(n2−1)

2 0 ⋯ 0
0 0 𝛼3Q(n3−1)

3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝛼NTQ(nNT−1)

NT

⎤⎥⎥⎥⎥⎥⎦
[5.12]

In any iteration i, [dE] is the energy imbalance in each pipe and [dq] is the discharge
imbalance in each node. These are given by

[dE] = [A11][Qi] + [A12][Hi] + [A10][H0] [5.13]

and

[dq] = [A21][Qi] − [q] [5.14]

The objective of the gradient method is to solve the system described by Equation 5.11,
taking into account that in each iteration

[dQ] = [Qi+1] − [Qi] [5.15]

and

[dH] − [Hi+1] − [Hi] [5.16]

Using matrix algebra, it is possible to show that the solution to the system represented
by Equation 5.11 is

[Hi+1] = −{[A21]([N][A11]′)−1[A12]}−1{[A21]([N][A11]′)−1

([A11][Qi]) + [A10][H0] − ([A21][Qi]) − [q]} [5.17]

[Qi+1] = {[I] − ([N][A11]′) − [A11]}[Qi] − {([N][A11]′)−1([A12]

[Hi+1] + [A10][H0])} [5.18]

The method has the advantage of fast convergence and does not need continuity balancing
in each node to begin the process. The method is not suited for hand calculation. Example
5.8 illustrates the methodology.
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100 1 2

A220 120 B C

D
30

E 2060
50

F
40

60

10

40

10

50

Figure 5.3 Two-loop network.

Worked examples

Example 5.1

Neglecting minor losses in the pipes, determine the flows in the pipes and the pressure
heads at the nodes (see Figure 5.3).

Data

Pipe AB BC CD DE EF AF BE

Length (m) 600 600 200 600 600 200 200
Diameter (mm) 250 150 100 150 150 200 100

Roughness size of all pipes = 0.06 mm
Pressure head elevation at A = 70 m.

Elevation of pipe nodes

Node A B C D E F

Elevation (m) 30 25 20 20 22 25

Procedure:

1. Identify loops. When using hand calculation the simplest way is to employ adjacent
loops, for example Loop 1: ABEFA; Loop 2: BCDEB.

2. Allocate estimated flows in the pipes. Only one estimated flow in each loop is required;
the remaining flows follow automatically from the continuity condition at the nodes;
for example, since the total required inflow is 220 L/s, if QAB is estimated at 120 L/s,
then QAF = 100 L/s. The initial flows are shown in Figure 5.3.

3. The head loss coefficient K = 𝜆L∕2gDA2 is evaluated for each pipe, 𝜆 being obtained
from the 𝜆 versus Re diagram (Figure 4.2) corresponding to the flow in the pipe. Alter-
natively, Barr’s equation (Equation 4.12) may be used.
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If the Reynolds numbers are fairly high (<| 105), it may be possible to proceed with the
iterations using the initial 𝜆 values, making better estimates as the solution nears conver-
gence.

The calculations proceed in tabular form. Note that Q is written in litres per second sim-
ply for convenience; all computations are based on Q in cubic metres per second. However,
h∕Q could have been expressed in m/(L/s) yielding ΔQ directly in litres per second.

Pipe k∕D Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

AB 0.00024 120.00 5.41 0.0157 797.0 11.48 95.64
BE 0.00060 10.00 1.31 0.0205 33 877.0 3.39 338.77Loop 1
EF 0.00040 −60.00 4.51 0.0172 11 229.1 −40.42 673.75
FA 0.00030 −100.00 5.63 0.0162 336.6 −8.36 83.66

∑
−33.91 1191.82

⇒ ΔQ =
−
∑

h

2
∑

h∕Q
= −(−33.91)

2 × 1191.82
= 0.01423 = 14.23 L/s.

Pipe Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

BC 50.0 3.76 0.0174 11 359.7 28.40 567.98
CD 10.0 1.13 0.0205 33 877.0 3.39 338.77Loop 2
DE −20.0 1.50 0.0189 12 338.9 −4.94 246.78
EB −24.23 2.73 0.0189 31 232.9 −18.34 756.77

∑
−8.51 1910.30

⇒ ΔQ = −2.23 L/s.

(Note that the previously corrected value of flow in the ‘common’ pipe EB has been used
in Loop 2.)

Pipe Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

AB 134.23 6.05 0.0156 791.9 14.27 106.30
BE 26.46 2.98 0.0188 31 067.7 21.75 822.05Loop 1
EF −45.77 3.44 0.0175 11 424.9 −23.93 522.92
FA −85.77 4.83 0.0164 846.9 −6.23 72.64

∑
5.86 1523.91

⇒ ΔQ = −1.92 L/s.

Proceed to Loop 2 again, and continuing in this way the solution is obtained within the
required specified limit on

∑
h in any loop after several further iterations. The solution

given is obtained for
∑

h < 0.01 m but an acceptable result may be achieved with a larger
tolerance.
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Final values Pressure heads

Pipe Q (L/s) h (m) Node Pressure head (m)

AB 131.55 13.70 A 40.00
BE 25.02 19.55 B 31.29
FE 48.45 26.67 C 11.57
AF 88.45 6.59 D 10.05
BC 46.53 24.74 E 14.74
CD 6.55 1.52 F 38.41
ED 23.47 6.69

Note: Flows in direction of pipe identifier (e.g. A → B).

Example 5.2

In the network shown in Figure 5.4 a valve in BC is partially closed to produce a local
head loss of 10V2

BC∕2g. Analyse the flows in the network.

Pipe AB BC CD DE BE EF AF
Length (m) 500 400 200 400 200 600 300
Diameter (mm) 250 150 100 150 150 200 250

Note: Roughness of all pipes is 0.06 mm.

Solution:

The procedure is identical with that of the previous problem. KBC is now composed of the
valve loss coefficient and the friction loss coefficient.

With the initial assumed flows shown in the table below, QBC = 50 L/s; Re = 3.7 × 105;
k∕D = 0.0004; and 𝜆 = 0.0174 (from the Moody chart). Hence, Kf = 7573, Km = 1632
and KBC = 9205.

200

Valve

A B
60

1080 1 2

C

40

10

D
30

E
30

F
40

40

120 50

20

Figure 5.4 Pipe network with valve losses.
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Pipe k∕D Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

AB 0.00024 120.00 5.41 0.0157 664.2 9.56 79.70
BE 0.00040 10.00 0.75 0.0208 4 526.5 0.45 45.26Loop 1
EF 0.00030 −40.00 2.25 0.0175 2 711.2 −4.34 108.45
FA 0.00024 −80.00 3.61 0.0163 413.7 −2.65 33.10

∑
3.03 266.51

⇒ ΔQ = −5.69 L/s.

Pipe k∕D Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

BC 0.0004 50.00 3.75 0.0174 9 205.2 23.01 460.26
CD 0.0006 10.00 1.13 0.0205 33 877.0 3.39 338.77Loop 2
DE 0.0004 −20.00 1.50 0.0190 8 226.0 −3.29 164.52
EB 0.0004 −4.31 0.32 0.0242 5 266.4 −0.10 22.70

∑
23.01 986.25

⇒ ΔQ = −11.67 L/s.

Proceeding in this way the solution is obtained within a small limit on
∑

h in any loop:

Final values

Pipe AB BE FE FA BC CD ED
Q (L/s) 111.52 16.48 48.48 88.48 35.05 4.95 34.95
hL (m) 8.31 1.15 6.26 3.20 11.57 0.91 9.52

Example 5.3

If in the network shown in Example 5.2 a pump is installed in line BC boosting the flow
towards C and the valve removed, analyse the network. Assume that the pump delivers a
head of 10 m. (Note: In reality, it would not be possible to predict the head generated by
the pump since this will depend upon the discharge. The head–discharge relationship for
the pump, e.g. H = AQ2 + BQ + C, must therefore be solved for the discharge in the pipe
at each iteration. However, for the purpose of illustration of the basic effect of a pump, the
head in this case is assumed to be known.) An example of a network analysis in which the
pump head–discharge curve is used is given in Chapter 6 (Example 6.8). Consider length
BC (see Figure 5.5).

The net loss of head along BC(ZB − ZC) is (hf − Hp), where Hp is the total head delivered
by pump. The value of K for BC is now due to friction only; the head loss for BC in
the table now becomes hL,BC = (KQ2

BC − 10) m. Otherwise the iterative procedure is as
before.
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CPumpB

HP
ZB ZC

Figure 5.5 Network of Example 5.2 with pump.

Solution:

Pipe k∕D Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

AB 0.00024 120.00 5.41 0.0157 664.2 9.56 79.70
BE 0.00040 10.00 0.75 0.0208 4 526.5 0.45 45.26Loop 1
EF 0.00030 −40.00 2.25 0.0175 2 711.2 −4.34 108.45
FA 0.00024 −80.00 3.61 0.0163 413.7 −2.65 33.10

∑
3.03 266.51

⇒ ΔQ = −5.69 L/s.

Pipe k∕D Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

BC 0.00040 50.00 3.76 0.0174 7 573.0 8.93 178.66
CD 0.00060 10.00 1.13 0.0205 33 877.0 3.39 333.77Loop 2
DE 0.00040 −20.00 1.50 0.0189 8 225.96 −3.29 164.52
EB 0.00040 −4.31 0.32 0.0242 5 266.4 −0.10 22.70

∑
8.93 704.65

⇒ ΔQ = −6.34 L/s.

Pipe Q (L/s) Re (×105) 𝝀 K h (m) h∕Q
(

m
m3∕s

)

AB 114.31 5.15 0.0158 668.4 8.73 76.41
BE 10.65 0.80 0.0206 4 482.9 0.51 47.74Loop 1
EF −45.69 2.57 0.0173 2 680.2 −5.59 122.46
FA −85.69 3.66 0.0162 411.2 −3.02 35.24

∑
0.63 281.85

⇒ ΔQ = −1.11 L/s.

After similar further iterations:

Final values

Pipe AB BE FE FA BC CD ED
Q (L∕s) 113.21 8.90 46.79 86.79 44.30 4.30 25.70
hL (m) 8.57 0.37 5.83 3.10 4.95 0.71 5.29
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C

D

B

J

A

75 m

100 m

120 m

200 m
ZJ

Figure 5.6 Network connecting multi-reservoirs.

Example 5.4

Determine the discharges in the pipes of the network shown in Figure 5.6, neglecting minor
losses. Figure 5.6 shows reservoir water surface elevations in metres, relative to a common
datum.

Pipe Length (m) Diameter (mm)

AJ 10 000 450
BJ 2 000 350
CJ 3 000 300
DJ 3 000 250

Note: Roughness size of all pipes is 0.06 mm.

The friction factor 𝜆 may be obtained from the Moody diagram, or using Barr’s equa-
tion, using an initially estimated velocity in each pipe. Subsequently, 𝜆 can be based on
the previously calculated discharges. However, unless there is a serious error in the initial
velocity estimates, much effort is saved by retaining the initial 𝜆 values until perhaps the
penultimate or final correction.

Solution:

Estimate ZJ (pressure head elevation at J) = 150.0 m (Note: the elevation of the pipe
junction itself does not affect the solution.) See tables below.

First correction

Velocity
(estimate) Q Q∕A

Pipe (m/s) Re (×105) 𝝀 K ZI − ZJ (m/s) Q∕h (×10−3) (m/s)

AJ 2.0 7.96 0.0145 649 +50 0.2775 5.55 1.75
BJ 2.0 6.20 0.0150 472 −30 −0.2521 8.40 2.62
CJ 2.0 5.31 0.0155 1581 −50 −0.1778 3.56 2.50
DJ 2.0 4.42 0.0165 4188 −75 −0.1338 1.78 2.73

∑
−0.2862 0.0193

⇒ Correction to ZJ =
2(−0.2862)

0.0193
= −29.67; ZJ = 120.33 m.
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Second correction

Velocity
(estimate) Q Q∕A

Pipe (m/s) Re (×105) 𝝀 K ZI − ZJ (m/s) Q∕h (×10−3) (m/s)

AJ As 7.96 0.0145 649 79.67 0.3504 4.39 2.20
BJ initial 6.20 0.0150 472 −0.33 −0.0264 80.12 0.27
CJ estimate 5.31 0.0155 1581 −20.33 −0.1134 5.58 1.60
DJ 4.42 0.0165 4188 −45.33 −0.1040 2.29 2.20

∑
+0.1066 +0.092

⇒ ΔZJ = +2.30 m; ZJ = 122.63 m.

Comment: The velocity in BJ has changed significantly but it may oscillate; it is therefore
estimated at 1.0 m/s for the next correction. Note that 𝜆 (BJ) altered accordingly.

Third correction

Velocity
(estimate) Q Q∕A

Pipe (m/s) 𝝀 K ZI − ZJ (m3/s) Q∕h (×10−3) (m/s)

AJ 2.0 0.0145 649 77.37 0.3452 4.46 2.17
BJ 1.0 0.016 503 −2.63 −0.0723 27.50 0.75
CJ 1.8 0.0155 1581 −22.63 −0.1196 5.29 1.69
DJ 2.3 0.016 4061 47.63 −0.1083 2.27 2.21

∑
+0.0450 0.0395

⇒ ΔZJ = 2.27 m; ZJ = 124.90 m.

Final values:

QAJ = 0.344 m3∕s; QJB = 0.105 m3∕s; QJC = 0.127 m3∕s; QJD = 0.112 m3∕s

Example 5.5

If in the network of Example 5.4 the flow to C is regulated by a valve to 100 L/s, calculate
the effect on the flows to the other reservoirs; determine the head loss to be provided by
the valve.

The principle of the solution is identical with that of the previous example except that
the flow in JC is prescribed and simply treated as an external outflow at J. In this example
the flow rates in the pipes have been evaluated directly from Equation 5.6.

Q = −2A

√
2gD

h
L
log

(
k

3.7D
+ 2.51𝜈

D
√

2gDhf∕L

)

in which h = ZI − ZJ, since there are no minor losses. This approach is ideal for computer
analysis; if minor losses are present, use the iterative procedure described in Example 4.2.
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The method is also suitable for desk analysis using an electronic calculator since for each
pipe the only variable is h and Equation 5.6 can be written as

Q = −C1

√
h log

(
C2 +

C3√
h

)

in which C1, C2 and C3 are constants for a particular pipe.
The corresponding velocities and 𝜆 values have been evaluated and tabulated; these data

may be useful for those who wish to work through the example using the Moody diagram
as shown in Example 5.4.

Note that Q is expressed in litres per second; in evaluating
∑

Q∕h, the flow is also
expressed in litres per second so that the units in the correction term ΔZ = 2(

∑
Q − F)∕

(
∑

Q∕h) are consistent.

Example 5.5 calculation

Pipe AJ BJ DJ
k∕D 0.000133 0.000171 0.000240

Note: Estimate ZJ = 150.00 m.

First correction

ZI − ZJ

Pipe (=h) (m) Q (L/s) Q∕h V (m/s) 𝝀

AJ 50.00 279.32 5.59 1.76 0.0143
Junction J BJ −30.00 −255.95 8.53 2.66 0.0146

DJ −75.00 −137.90 1.84 2.81 0.0155

∑
−114.53 15.96

Correction to ZJ =
2(
∑

Q − F)∑
Q∕h

=
2(−144.53 − 100)

15.96
= −26.89 m

ZJ = 123.11 m

Second correction

Pipe ZI − ZJ Q (L/s) Q∕h V (m/s) 𝝀

AJ 76.89 349.70 4.55 2.20 0.0140
Junction J BJ −3.11 −77.61 24.96 0.81 0.0164

DJ −48.11 −109.50 2.28 2.23 0.0158

⇒ ΔZJ = 3.94 m; ZJ = 127.05 m.
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Third correction

Pipe ZI − ZJ Q (L/s) Q∕h V (m/s) 𝝀

AJ 72.95 340.2 4.66 2.14 0.0141
Junction J BJ −7.05 −119.94 17.01 1.25 0.0156

DJ −52.05 −114.08 2.19 2.32 0.0158

⇒ ΔZJ = 0.52 m; ZJ = 127.57 m.

Final values

Pipe AJ JB JD
Q (L/s) 338.98 124.36 114.65

Head loss due to friction along JC:

Diameter = 300 mm; A = 0.0707 m2; Q = 0.100 m3∕s; V = 1.415 m∕s

Re = 1.415 × 0.3
1.13 × 10−6

= 3.76 × 105; k
D

= 0.0002

whence 𝜆 = 0.016; hf =
0.016 × 3000 × 1.4152

19.62 × 0.3
= 16.33 m

(See Figure 5.7.)

⇒ Head loss at valve = ZJ − ZC − hf

= 127.55 − 100.00 − 16.33

= 11.22 m

Example 5.6

In the network as before, a pump P is installed on JB to boost the flow to B. With the flows
to C and D uncontrolled and the pump delivering 10 m head, determine the flows in the
pipes (see Figure 5.8).

C

X

J

ZJ = 127.55 m
100 m

Figure 5.7 Network of Example 5.4 with valve losses.
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J

ZJ

ZA

ZB

ZC

ZD

Hp

BP

C

D

A

Figure 5.8 Network of with pump.

Note: In the case of rotodynamic pumps the manometric head delivered varies with the
discharge (see Chapter 6). Thus it is not strictly possible to specify the head and it is
necessary to solve the pump equation Hp = AQ2 + BQ + C together with the resistance
equation for JB. However, to illustrate the effect of a pump in this example, let us assume
that the head does not vary with flow.

Solution:

The analysis is straightforward and follows the procedure of Example 5.5.
The head giving flow along JB is

hL,JB = ZJ − ZB − Hp

The final solution is as follows:

Pipe AJ JB JC JD
Q (L/s) 357.7 141.6 110.8 105.3

Note: ZJ = 119.66 m.

Example 5.7

Determine the flows in the network shown in Figure 5.9 neglecting minor losses.

Pipe AB BC BD BE EF EG
Length (m) 10 000 3 000 4 000 6 000 3 000 3 000
Diameter (mm) 450 250 250 350 250 200

Note: Roughness of all pipes is 0.03 mm (=k).

C
h

ap
ter

5



Pipe Network Analysis 135

60 m

75 m

80 m
100 m

150 m

A C

D

B

E
G

F

Figure 5.9 Network with multi-reservoirs.

Solution:

In this case there are two unknown pressure head elevations which must therefore be both
initially estimated and corrected alternately.

Estimate ZB = 120.0 m; ZE = 95.0 m

First correction

ZI − ZJ

Pipe (=h) Q (L/s) Q∕h V (m/s) 𝝀

AB 30.00 219.77 7.33 1.38 0.0139

Junction B
CB −20.00 −71.38 3.57 1.45 0.0155
DB −40.00 −86.75 4.34 1.77 0.0151
EB −25.00 −135.00 5.40 1.40 0.0145

∑
−73.35 20.63

⇒ ΔZB = +7.11 m; ZB = 112.89 m.

Proceed to Junction E noting that the amended value of ZB is now used:

Pipe ZI − ZJ Q (L/s) Q∕h V (m/s) 𝝀

BE 17.89 112.81 6.31 1.17 0.0149
Junction E FE −20.00 −71.38 3.57 1.45 0.0155

GE −35.00 −53.38 1.53 1.70 0.0159

∑
11.95 11.40

⇒ ΔZE = −2.1 m; ZE = 92.9 m.
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Second correction

Pipe ZI − ZJ Q (L/s) Q∕h V (m/s) 𝝀

AB 37.11 246.21 6.63 1.55 0.0137

Junction B CB −12.89 −56.38 4.37 1.15 0.0160
DB −32.89 −78.16 6.06 1.59 0.0153
EB −19.99 −119.75 5.99 1.25 0.0148

∑
−8.07 23.06

⇒ ΔZB = −0.7 m; ZB = 112.19 m.

Pipe ZI − ZJ Q (L/s) Q∕h V (m/s) 𝝀

BE 92.9 117.48 6.09 1.22 0.0148
Junction E FE −17.9 −67.26 3.76 1.37 0.0156

GE −32.9 −51.64 1.57 1.64 0.0159

∑
−1.43 11.42

⇒ ΔZE = −0.25 m; ZE = 92.65 m.

Example 5.8

In the network shown in Figure 5.10, a valve in pipe 2-3 is partially closed, producing a
local head loss of 10V2

2-3
∕2g. The head at node 1 is 100 m of water. The roughness of all

pipes is 0.06 mm. The pipe lengths are in metres and the demand discharges are in litres
per second.

The pipe diameters are pipes 1-2 and 1-6, 250 mm; pipe 6-5, 200 mm; pipes 2-3 and
4-5, 150 mm; and pipes 2-5 and 3-4, 100 mm. Analyse the network using the gradient
method.

60

500

600
40 6

300

1 2

400

200
200

40

30

4

3

5

30

400

Figure 5.10 Pipe network with valve loss.
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Figure 5.11 Network solution.

The iterative process can be summarised in the following steps:

1. Assume initial discharges in each of the network pipes. (They can be unbalanced at
each node.)

2. Solve the system represented by Equation 5.17 using a standard method for the solu-
tion of simultaneous linear equations.

3. With the calculated [Hi+1] (Step 2), [Qi+1] is solved by Equation 5.18.
4. With the new [Qi+1], Equation 5.17 is solved (Step 2) to find a new [Hi+1].
5. Process continues until

[Hi+1] ≈ [Hi]

For all pipes initial discharges of 100 L/s have been assumed with the directions as shown
in Figure 5.11.

Solution:

All the matrices and vectors needed for the gradient method are as follows:

NT = 7

NN = 5

NS = 1

[A12] = connectivity matrix; dimension (7 × 5)

|||||||||||||||

1 0 0 0 0
−1 1 0 0 0

0 1 −1 0 0
0 0 1 −1 0

−1 0 0 1 0
0 0 0 1 −1
0 0 0 0 1

|||||||||||||||
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[A21] = transposed matrix of [A12]

|||||||||||

1 −1 0 0 −1 0 0
0 1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 1 0
0 0 0 0 0 −1 1

|||||||||||
[A10] = topologic matrix node to node; dimension (7 × 1)

[Q] = discharges vector; dimension (7 × 1)

[H] = unknown piezometric head vector; dimension (5 × 1)

[H0] = fixed piezometric head vector; dimension (1 × 1)

[q] = water demand vector; dimension (5 × 1)

[A10] [Q] [H] [H0] [q]
(m3∕s) (m) (m3∕s)|||||||||||||||

−1
0
0
0
0
0

−1

|||||||||||||||

|||||||||||||||

0.10
0.10
0.10
0.10
0.10
0.10
0.10

|||||||||||||||

||||||||||||

H2

H3

H4

H5

H6

||||||||||||

||100 || |||||||||||

0.06
0.04
0.03
0.03
0.04

|||||||||||

[N] = diagonal matrix; dimension (7 × 7); having 2 in the diagonal (from the Darcy–
Weisbach head loss equation)

|||||||||||||||

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

|||||||||||||||
[I] = identity matrix; dimension (7 × 7)

|||||||||||||||

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

|||||||||||||||
First iteration:

The previous matrices and vectors are valid for all the iterations. The following matrices
change in each iteration:
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[A11] = diagonal matrix; dimension (7 × 7); having the value of 𝛼iQ
(ni−1)
i on the diago-

nal, with coefficients 𝛽 and 𝛾 zero as no pumps exist in the network
The following table shows the calculated values for 𝛼:

Q V hf hf + hm
Pipe (m3/s) 𝝀 (m/s) (m) (m) 𝜶

1-2 0.10 0.0159 1.974 6.22 6.22 622.28
2-3 0.10 0.0166 5.482 66.89 82.21 8 220.77
3-4 0.10 0.0178 12.335 271.02 271.02 27 101.65
5-4 0.10 0.0166 5.482 66.89 66.89 6 688.98
2-5 0.10 0.0178 12.335 270.99 270.09 27 098.90
6-5 0.10 0.0161 3.084 23.09 23.09 2 308.78
6-1 0.10 0.0159 1.974 3.73 3.73 373.42

Matrix [A11]:

|||||||||||||||

62.23 0 0 0 0 0 0
0 822.08 0 0 0 0 0
0 0 2710.16 0 0 0 0
0 0 0 668.90 0 0 0
0 0 0 0 2709.89 0 0
0 0 0 0 0 230.88 0
0 0 0 0 0 0 37.34

|||||||||||||||
[A11]′ = diagonal matrix; dimension (7 × 7); having the value of 𝛼iQ

(ni−1)
i on the diagonal.

For this network, [A11′] = [A11].

|||||||||||||||

62.23 0 0 0 0 0 0
0 822.08 0 0 0 0 0
0 0 2710.16 0 0 0 0
0 0 0 668.90 0 0 0
0 0 0 0 2709.89 0 0
0 0 0 0 0 230.88 0
0 0 0 0 0 0 37.34

|||||||||||||||
To find Hi+1 by Equation 5.17 following a step-by-step analysis, the following matrices

can be found:

[N][A11]′|||||||||||||||

124.46 0 0 0 0 0 0
0 1644.15 0 0 0 0 0
0 0 5420.33 0 0 0 0
0 0 0 1337.80 0 0 0
0 0 0 0 5419.78 0 0
0 0 0 0 0 461.76 0
0 0 0 0 0 0 74.68

|||||||||||||||
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([N][A11]′)−1|||||||||||||||

0.00804 0 0 0 0 0 0
0 0.00061 0 0 0 0 0
0 0 0.00018 0 0 0 0
0 0 0 0.00075 0 0 0
0 0 0 0 0.00018 0 0
0 0 0 0 0 0.00219 0
0 0 0 0 0 0 0.01339

|||||||||||||||
[A21]([N][A11]′)−1|||||||||||

0.00804 −0.00061 0 0 −0.00018 0 0
0 0.00061 0.00018 0 0 0 0
0 0 −0.00018 0.00075 0 0 0
0 0 0 −0.00075 0.00018 0.00219 0
0 0 0 0 0 −0.00219 0.01339

|||||||||||
[A21]([N][A11]′)−1[A12]|||||||||||

0.00804 −0.00061 0 −0.00018 0
−0.00061 0.00079 −0.00018 0 0

0 −0.00018 0.00093 −0.00075 0
−0.00018 0 −0.00075 0.00310 −0.00217

0 0 0 −0.00217 0.01556

|||||||||||
−([A21]([N][A11]′)−1[A12])−1|||||||||||

−120.541 −100.256 −33.383 −16.879 −2.350
−100.256 −1423.476 −365.444 −104.310 −14.522
−33.383 −365.444 −1460.157 −392.548 −54.651
−16.879 −104.310 −392.548 −463.689 −64.555
−2.350 −14.522 −54.651 −64.555 −73.273

|||||||||||
[A11][Q] [A10][H0] ([A11][Q]) + ([A10][H0])|||||||||||||||

6.223 −100 −93.777
82.208 0 82.208

271.016 0 271.016
66.890 0 66.890

270.989 0 270.989
23.088 0 23.088
3.734 −100 −96.266

|||||||||||||||
([A21]([N][A11]′)−1 [A21][Q] ([A21]([N][A11]′)−1([A11]

([A11][Q][A10][H0])) [Q] + [A10][H0]) − ([A21]
[Q] − [q]))|||||||||||

−0.853 −0.1 −0.6935
0.1 0.2 −0.06
0 0 0.03
0.05 0.1 −0.02

−1.339 0 −1.299

|||||||||||
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Thus

Hi+1 = −([A21]([N][A11]′)−1([A12])−1([A21]([N][A11]′)−1([A11][Q]

+[A10][H0] − ([A21][Q] − [q]))

Node (m)|||||||||||

2
3
4
5
6

|||||||||||
=

|||||||||||

92.000
164.922
80.115
99.317
97.335

|||||||||||
To find Qi+1 by Equation 5.18 following a step-by-step analysis, the following matrices
can be found:

[A12][Hi+1] [A12][Hi+1]+ ([N][A11′]−1)(([A12][Hi+1])
[A10][H0] +([A10][H0]))

|||||||||||||||

92.00
72.92
84.81

−19.20
7.32
1.98

97.33

|||||||||||||||

|||||||||||||||

−8.00
72.92
84.81

−19.20
7.32
1.98

−2.67

|||||||||||||||

|||||||||||||||

−0.0643
0.0444
0.0157

−0.0144
0.0014
0.0043

−0.0357

|||||||||||||||

([N][A11]′)−1[A11]

|||||||||||||||

0.5 0 0 0 0 0 0
0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.5

|||||||||||||||

([I] − ([N])[A11]′)−1[A11]) ([I] − ([N][A11]′)−1 × [A11])[Q]

|||||||||||||||

0.5 0 0 0 0 0 0
0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.5

|||||||||||||||

|||||||||||||||

0.05
0.05
0.05
0.05
0.05
0.05
0.05

|||||||||||||||
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Thus

Qi+1 = ([I] − [N][A11′])−1[A11])[Q] − (([N][A11′])−1([A12][Hi+1]

+[A10][H0]))

Pipe (m3∕s)|||||||||||||||

1-2
2-3
3-4
5-4
2-5
6-5
6-1

|||||||||||||||

=

|||||||||||||||

0.114
0.006
0.034
0.064
0.049
0.046
0.086

|||||||||||||||
After only five iterations the following are the results.

Head at each node:

Node (m)|||||||||||

2
3
4
5
6

|||||||||||
=

|||||||||||

92.960
81.358
81.780
89.812
96.727

|||||||||||
Pipe discharges:

Pipe (m3∕s)|||||||||||||||

1-2
2-3
3-4
5-4
2-5
6-5
6-1

|||||||||||||||

=

|||||||||||||||

0.10667
0.03658
0.00342
0.03342
0.01009
0.05333
0.09333

|||||||||||||||
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60 m
C1

C2

B

A

100 m

Figure 5.12 Pipes in parallel.

Problems

1. Calculate the flows in the pipes of the pipe system illustrated in Figure 5.12. Minor losses
are given by CmV2∕2g.

Minor loss
Length Diameter Roughness coefficients

Pipe (m) (mm) (mm) (Cm)

AB 5000 400 0.15 10.0
BC1 7000 250 0.15 15.0
BC2 7000 250 0.06 10.0

(Note: While this problem could be solved by the method of Example 4.1, the method of
quantity balance facilitates a convenient method of solution. Note that the pressure head
elevations at the ends of C1 and C2 are identical.)

2. In the system shown in Problem 1, an axial flow pump producing a total head of 5.0 m
is installed in pipe BC1 to boost the flow in this branch. Determine the flows in the pipes.
(Note: Although it is not strictly possible to predict the head generated by a rotodynamic
pump since this varies with the discharge (see Chapter 6), axial flow pumps often produce
a fairly flat head–discharge curve in the mid-discharge range.)

3. Determine the flows in the network illustrated in Figure 5.13. Minor losses are given by
CmV2∕2g.

Length Diameter k
Pipe (m) (mm) (mm) Cm

AB 20 000 500 0.3 20
BC 5 000 350 0.3 10
BD1 6 000 300 0.3 10
BD2 6 000 250 0.06 10
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60 m

70 m
100 m

A

D1

D2

C

B

Figure 5.13 Network with reservoirs.

4. In the system illustrated in Figure 5.14, a pump is installed in pipe BC to provide a flow of
40 L/s to Reservoir C. Neglecting minor losses, calculate the total head to be generated by
the pump and the power consumption assuming an overall efficiency of 60%. Determine
also the flow rates in the other pipes.

Pipe Length (m) Diameter (mm) Roughness (mm)

AB 10 000 400 0.06
BC 4 000 250 0.06
BD 5 000 250 0.06

5. Determine the pressure head elevations at B and D and the discharges in the branches in
the system illustrated in Figure 5.15. Neglect minor losses.

Pipe Length (m) Diameter (mm) Roughness (mm)

AB 20 000 600 0.06
BC 2 000 250 0.06
BD 2 000 450 0.06
DE 2 000 300 0.06
DF 2 000 250 0.06

90 m

145 m

A

150 m

C

D

B

Figure 5.14 Network with reservoirs.
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60 m

80 m

200 m

C

D

B

A

50 m

F

E

Figure 5.15 Network with reservoirs.

6. Determine the flows in a pipe system similar in configuration to that in Problem 5. A valve
is installed in BC producing a minor loss of 20V2∕2g; otherwise, consider only friction
losses.

Pipe Length (m) Diameter (mm) Roughness (mm)

AB 20 000 450 0.06
BC 2 000 300 0.06
BD 10 000 400 0.06
DE 3 000 250 0.06
DF 4 000 300 0.06

7. Determine the flow in the pipes and the pressure head elevations at the junctions of the
closed-loop pipe network illustrated, neglecting minor losses. All pipes have the same
roughness size of 0.03 mm. The outflows at the junctions are shown in litres per second
(see Figure 5.16).

Pipe AB BC CD DE EA BE
Length (m) 500 600 200 600 600 200
Diameter (mm) 200 150 100 150 200 100

Pressure head elevation at A = 60 m.

50
C

60
BA

Inlet

40
D

50
E

Figure 5.16 Two-loop network.
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EB

200 L/s200 L/s

F

D

A

C

Figure 5.17 Pipes in parallel.

(Note: A more rapid solution is obtained by using the head balance method. However, the
network can be analysed by the quantity balance method but in this case four unknown
pressure heads, at B, C, D and E, are to be corrected. If the quantity balance method is
used, set a fixed arbitrary pressure head elevation to A, say 100 m.)

8. Determine the flow distribution in the pipe system illustrated in Figure 5.17 and the total
head loss between A and F. Neglect minor losses. A total discharge of 200 L/s passes
through the system.

Pipe AB BCE BE BDE EF
Length (m) 1000 3000 2000 3000 1000
Diameter (mm) 450 300 250 350 450
Roughness (mm) 0.15 0.06 0.15 0.06 0.15

9. In the system shown in Problem 7 (Figure 5.16) a pump is installed in BC to boost the
flow to C. Neglecting minor, losses determine the flow distribution and head elevations
at the junctions if the pump delivers a head of 15.0 m.

10. Determine the flows in the pipes and the pressure head elevations at the junctions in the
network shown in Figure 5.18. Neglect minor losses and take the pressure head elevation
at A to be 100 m. The outflows are in litres per second. All pipes have a roughness of
0.06 mm.

CBA
50

H

FG E

D

20

20

4030

30

Inlet

40

Figure 5.18 Three-loop network.
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Pipe AB BH HF FG GA
Length (m) 400 150 150 400 300
Diameter (mm) 200 200 150 150 200

Pipe BC CD DH DE EF
Length (m) 300 150 300 150 300
Diameter (mm) 150 150 150 150 150

11. Analyse the flows and pressure heads in the pipe system shown in Figure 5.19. Neglect
minor losses.

Pipe AB BC CD DE EF EF
Length (m) 1000 400 300 400 800 300
Diameter (mm) 250 200 150 150 250 200
Roughness (mm) 0.06 0.15 0.15 0.15 0.06 0.15

12. Solve the network in Problem 10 using the gradient method.

13. Analyse the network of Example 5.1 by the gradient method.

90 m

A
B C

60 L/s

80 L/s
D

F

E

100 m

Figure 5.19 Network with reservoirs.
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Chapter 6
Pump–Pipeline System
Analysis and Design

6.1 Introduction

This chapter deals with the analysis and design of pipe systems which incorporate rotody-
namic pumps. The civil engineer is mostly concerned with pump selection in the design of
pumping stations and therefore the design of the shape of pump impellers will not be dealt
with here. Rotodynamic pumps can be subclassified into three main categories according
to the shape of the impellers:
(i) Centrifugal (radial flow)
(ii) Mixed flow
(iii) Propeller (axial flow)
For the same power input and efficiency the centrifugal type would generate a relatively
large pressure head with a low discharge, while the propeller type a relatively large dis-
charge at a low head with the mixed flow having characteristics somewhere between the
other two.

Pump types may be more explicitly defined by the parameter called specific speed (N s),
expressed by

N s =
N
√

Q

H3∕4

where Q is the discharge, H the total head and N the rotational speed (rev/min). This
expression is derived from dynamical similarity considerations and may be interpreted as
the speed in revolutions per minute at which a geometrically scaled model would have to
operate to deliver unit discharge (e.g. 1 L/s) when generating unit head (e.g. 1 m).

Pump type N s range (Q, L/s; H, m)

Centrifugal Up to 2400
Mixed flow 2400 to 5000
Axial flow Above 3400

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott

http://www.wiley.com/go/Marriott
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Be aware of the units in this specific speed term, which is not dimensionless, due to the
exclusion of the gravity term. See Chadwick et al. (2013) for further discussion and details.

The total head generated by a pump is also called the manometric head (Hm) since it is
the difference in pressure head recorded by pressure gauges connected to the delivery and
inlet pipes on either side of the pump, provided that the pipes are of the same diameter.

6.2 Hydraulic gradient in pump–pipeline systems

Figure 6.1 shows a pump delivering a liquid from a lower tank to a higher tank through a
static lift HST at a discharge Q. It is clear that the pump must generate a total head equal
to HST plus the pipeline head losses.

Vs = velocity in suction pipe

Vd = velocity in delivery pipe

hld = head loss in delivery pipe (friction, valves etc.)

hls = head loss in suction pipe

hm = local losses

Manometric head is defined as the rise in total head across the pump:

Hm =
pd

𝜌g
+

Vd
2

2g
−
(

ps

𝜌g
+

Vs
2

2g

)
[6.1]

Now
ps

𝜌g
= Z1 −

Vs
2

2g
− hls;

pd

𝜌g
= Z2 + hld −

Vd
2

2g
Thus Hm = Z2 − Z1 + hld + hls or Hm = HST + hld + hls [6.2]

Note that the energy losses within the pump itself are not included; such losses will affect
the efficiency of the pump.

Total head–discharge and efficiency–discharge curves (Figure 6.2) for particular pumps
are obtained from the manufacturers.

Valve loss

Entry + bend

P
Datum

Delivery pipe
Suction
pipe

Vd
2/2g

Vs
2/2g

hld

hls

hs

hfs

Z1

Z2

HST

Hm

Figure 6.1 Total energy and hydraulic grade lines in pipeline with pump.
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Figure 6.2 Typical performance curve for centrifugal pump.

The total head–discharge curves for a centrifugal pump can generally be expressed in
the functional form

Hm = AQ2 + BQ + C [6.3]

The coefficients A, B and C can be evaluated by taking three pairs of Hm and Q from a
particular curve and solving Equation 6.3.

The power P (in watts) consumed by a pump when delivering a discharge Q (m3/s) at a
head Hm (in metres) with a combined pump–motor efficiency 𝜂 is

P =
𝜌gQHm

𝜂

6.3 Multiple pump systems

6.3.1 Parallel operation

Pumping stations frequently contain several pumps in a ‘parallel’ arrangement. In this
configuration (Figure 6.3) any number of the pumps can be operated simultaneously, the
objective being to deliver a range of discharges. This is a common feature of sewage

Manifold

‘Reflux’ valves

PPP

Figure 6.3 Pumps operating in parallel.
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Single pump

Discharge

To
ta

l h
ea

d

Two pumps

Three pumps

Q(H)Q(H)Q(H)
H

Figure 6.4 Characteristic curves for identical pumps operating in parallel.

pumping stations where the inflow rate varies during the day. By automatic switching
according to the level in the suction well, any number of the pumps can be brought into
operation.

In predicting the head–discharge curve for parallel operation it is assumed that the head
across each pump is the same. Thus at any arbitrary head the individual pump discharges
are added as shown in Figure 6.4.

6.3.2 Series operation

This configuration is the basis of multi-stage and borehole pumps; the discharge from the
first pump (or stage) is delivered to the inlet of the second pump, and so on. The same
discharge passes through each pump, receiving a pressure boost in doing so. Figure 6.5
shows the series configuration together with the resulting head–discharge characteris-
tics which are clearly obtained by adding the individual pump manometric heads at any

Three
pumps

Two
pumps

One
pump

Discharge

Head elevation Hm

To
ta

l h
ea

d

PPP

Figure 6.5 Pumps operating in series.
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arbitrary discharges. Note that, of course, all pumps in a series system must be operating
simultaneously.

6.4 Variable-speed pump operation

By the use of variable-speed motors the discharge of a single pump can be varied to suit
the operating requirements of the system.

Using dimensional analysis and dynamic similarity criteria (see Chapter 9) it can be
shown that if the pump delivers a discharge Q1 at manometric head H1 when running at
speed N1, the corresponding values when the pump is running at speed N2 are given by
the following relationships:

Q2 = Q1

(
N2

N1

)
[6.4]

H2 = H1

(
N2

N1

)2

[6.5]

In constructing the characteristic curve for speed N2, several pairs of values of Q1, H1
from the curve for N1 can be obtained and transformed into homologous points Q2, H2
on the N2 curve (see Figure 6.6).

6.5 Suction lift limitations

Cavitation, the phenomenon which consists of local vaporisation of a liquid and which
occurs when the absolute pressure falls to the vapour pressure of the liquid at the operating
temperature, can occur at the inlet to a pump and on the impeller blades, particularly if the
pump is mounted above the level in the suction well. Cavitation causes physical damage,
noise and reduction in discharge, and to avoid it the pressure head at the inlet should not

M
an
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et

ri
c 

he
ad

Head–discharge
relationship
at speed N1

Head–discharge
relationship
at speed N2

(Q1, H1)

(Q2, H2)

Discharge

Figure 6.6 Effect of speed change on pump characteristics.
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P

hs

hls

Vs
2/2g

Hs

Figure 6.7 Head conditions in suction pipe.

fall below a certain minimum, which is influenced by the further reduction in pressure
within the pump impeller (see Figure 6.7).

If ps represents the pressure at inlet, then (ps − pv)∕𝜌g is the absolute head at the pump
inlet above the vapour pressure (pv) and is known as the net positive suction head (NPSH).

Thus, NPSH =
ps − pv

𝜌g
=

pa

𝜌g
− Hs −

pv

𝜌g
[6.6]

where pa is the ambient atmospheric pressure.

Hs = manometric suction head = hs + hls +
V2

s

2g
[6.7]

where hs is the suction lift, hls total head loss in the suction pipe, Vs velocity head in the
suction pipe and 𝜌 the density of liquid.

Values of NPSH can be obtained from the pump manufacturer and are derived from
full-scale or model tests; these values must not be exceeded if cavitation is to be avoided.

Thoma introduced a cavitation number 𝜎 (=NPSH∕Hm) and from physical tests found
this to be strongly related to specific speed.

In recent years submersible pumps in the small-to-medium size range have been widely
used. This type eliminates the need for suction pipes, and provided that the pump is
immersed to the manufacturer’s specified depth, the problems of cavitation and cooling
are avoided. An example, including many practical details, is given in Water UK/WRc
(2012).

Worked examples

Example 6.1

Tests on a physical model pump indicated a cavitation number of 0.12. A homologous
(geometrically and dynamically similar) unit is to be installed where the atmospheric pres-
sure is 950 mb and the vapour pressure head 0.2 m. The pump will be situated above
the suction well, the suction pipe being 200 mm in diameter, of unplasticised polyvinyl
chloride (PVCu), 10 m long; it is vertical with a 90◦ elbow leading into the pump inlet
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and is fitted with a foot valve. The foot-valve head loss (hv) = 4.5V2
s ∕2g and bend loss

(hb) = 1.0V2
s ∕2g. The total head at the operating discharge of 35 L/s is 25 m. Calculate the

maximum permissible suction head and suction lift.

Solution:

pa = 950 mb = 0.95 × 10.198 = 9.688 m of water

⇒
pa − pv

𝜌g
= 9.688 − 0.2 = 9.488 m of water

NPSH = 𝜎Hm = 0.12 × 25 = 3.0 m

From Equation 6.6, maximum permissible suction head is

Hs = 9.488 − 3.0 = 6.488 m

Now calculate the losses in the suction pipe:

Vs = 1.11 m∕s;
V2

s

2g
= 0.063 m; Re = 1.96 × 105

k = 0.03 mm (PVCu); k
D

= 0.001, whence 𝜆 = 0.0167

⇒ hfs = 0.053 m; hv = 4.5 × 0.063 = 0.283 m; hb = 0.063 m

⇒ hls = 0.4 m

hs = suction lift = Hs − hls − V2
s ∕2g = 6.488 − 0.463 = 6.025 m

(See also Example 6.7.)

Example 6.2

A centrifugal pump has a 100 mm diameter suction pipe and a 75 mm diameter delivery
pipe. When discharging 15 L/s of water, the inlet water–mercury manometer with one limb
exposed to the atmosphere recorded a vacuum deflection of 198 mm; the mercury level on
the suction side was 100 mm below the pipe centre line. The delivery pressure gauge, 200
mm above the pump inlet, recorded a pressure of 0.95 bar. The measured input power was
3.2 kW. Calculate the pump efficiency (see Figure 6.8).

Solution:

Manometric head = rise in total head

Hm =
p2

𝜌g
+

V2
2

2g
+ z −

(
p1

𝜌g
+

V2
1

𝜌g

)

1 bar = 10.198 m of water
p2

𝜌g
= 0.95 × 10.198 = 9.69 m of water
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P

Mercury manometer

200 mm

198 mm

Delivery pipe

Suction pipe

Figure 6.8 Suction and delivery pressures across pump.

p1

𝜌g
= −0.1 − 0.198 × 13.6 = −2.793 m of water

V2 = 3.39 m∕s;
V2

2

2g
= 0.588 m

V1 = 1.91 m∕s;
V2

1

2g
= 0.186 m

Then,Hm = 9.69 + 0.588 + 0.2 − (−2.793 + 0.186) = 13.09 m

Efficiency,𝜂 =
output power
input power

=
𝜌gQHm (watts)

3200 (watts)

𝜂 = 9.81 × 0.015 × 13.09
3.2

= 0.602 (60.2%)

Example 6.3

Calculate the steady discharge of water between the tanks in the system shown in Figure
6.1 and the power consumption. Pipe diameter (Ds = Dd) = 200 mm; length = 2000 m;
k = 0.03 mm (PVCu). Losses in valves, bends plus the velocity head, amount to 6.2V2∕2g.
Static lift is 10.0 m.

Pump characteristics

Discharge (L/s) 0 10 20 30 40 50
Total head (m) 25.0 23.2 20.8 16.5 12.4 7.3
Efficiency (%) – 45 65 71 65 45

The efficiencies given are the overall efficiencies of the pump and motor combined.

Solution:

The solution to such problems is basically to solve simultaneously the head–discharge
relationships for the pump and pipeline.
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For the pump, head delivered at discharge Q may be expressed by

Hm = AQ2 + BQ + C (i)

and for the pipeline, the head required to produce a discharge Q is given by

Hm = HST +
KmQ2

2gA2
+

𝜆LQ2

D2gA2
(from Equation 6.2) (ii)

where Km is the minor loss coefficient.
A graphical solution is the simplest method and also gives the engineer a visual inter-

pretation of the ‘matching’ of the pump and pipeline.
Equation (ii) when plotted (H vs.Q) is called the system curve. Values of H correspond-

ing with a range of Q values will be calculated: k∕D = 0.03; values of 𝜆 obtained from the
Moody diagram.

Q (L/s) 10 20 30 40 50
Re (×105) 0.56 1.13 1.10 2.25 2.81
𝜆 0.0210 0.0185 0.0172 0.0165 0.0160
hf (m) 1.08 3.82 7.99 13.63 20.65
Hm (m) 0.03 0.13 0.29 0.51 0.80
H (m) 11.11 13.95 18.28 24.14 31.45

Alternatively, the combined Darcy–Colebrook–White equation can be used:

Q = −2𝜋D2

4

√
2gD

hf

L
log

(
k

3.7D
+ 2.51𝜈

D
√

2gDhf∕L

)

In evaluating pairs of H and Q, it is now preferable to take discrete values of hf, calculate
Q explicitly from the above equation and add the static lift and minor head loss.

hf (m) 2.00 4.00 8.00 16.00
Q (L/s) 14.06 20.57 30.00 43.61
Hm (m) 0.06 0.13 0.29 0.61
H (m) 12.06 14.13 18.29 26.61

The computed system curve data and pump characteristic curve data are now plotted in
Figure 6.9.

The intersection point gives the operating conditions; in this case, Hm = 17.5 m and
Q = 28.0 L/s. The operating efficiency is 71%. Therefore,

power consumption, P = 1000 × 9.81 × 0.028 × 17.5
0.71

= 6770 W (6.77 kW)
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Figure 6.9 Pump and system characteristics.

Example 6.4 (Pipeline selection in pumping system design)

An existing pump having the tabulated characteristics is to be used to pump raw sewage
to a treatment plant through a static lift of 20 m. A PVCu pipeline 10 km long is to be
used. Allowing for minor losses totalling 10V2∕2g and taking an effective roughness of
0.15 mm because of sliming, select a suitable commercially available pipe size to achieve
a discharge of 60 L/s. Calculate the power consumption.

Pump characterstics

Discharge (L/s) 0 10 20 30 40 50 60 70
Total head (m) 45.0 44.7 43.7 42.5 40.6 38.0 35.0 31.0
Overall efficiency (%) – 35 50 57 60 60 53 40

Solution:

At 60 L/s, total head = 35.0 m; therefore, the sum of the static lift and pipeline losses must
not exceed 35.0 m.

Try 300 mm diameter: A = 0.0707 m2; V = 0.85 m∕s

Re = 2.25 × 105; k∕D = 0.0005; 𝜆 = 0.019

Friction head loss = 0.019 × 10 000 × 0.852

0.3 × 19.62
= 23.32 m

Hs + hf = 43.32 (>35) − pipe diameter too small
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Try 350 mm diameter: A = 0.0962 m2; V = 0.624 m∕s

Re = 1.93 × 105; k∕D = 0.00043; 𝜆 = 0.0185

hf = 10.48 m; hm = 10 × 0.6242

19.62
= 0.2 m

HST + hf + hm = 30.68 (<35 m) − OK

The pump would deliver approximately 70 L/s through the 350 mm pipe, and to regulate
the flow to 60 L/s an additional head loss of 4.32 m by valve closure would be required.

Power consumption, P = 1000 × 9.81 × 0.06 × 35
0.55 × 1000

= 38.85 kW

Example 6.5 (Pumps in parallel and series)

Two identical pumps having the tabulated characteristics are to be installed in a pumping
station to deliver sewage to a settling tank through a 200 mm PVCu pipeline 2.5 km
long. The static lift is 15 m. Allowing for minor head losses of 10V2∕2g and assuming
an effective roughness of 0.15 mm, calculate the discharge and power consumption if the
pumps were to be connected (a) in parallel and (b) in series.

Pump characteristics

Discharge (L/s) 0 10 20 30 40
Total head (m) 30.0 27.5 23.5 17.0 7.5
Overall efficiency (%) – 44 58 50 18

Solution:

The ‘system curve’ is computed as in the previous examples; this is, of course, independent
of the pump characteristics. Calculated system heads (H) are tabulated below for discrete
discharges (Q):

H = HST + hf + Hm

Q (L/s) 10 20 30 40
H (m) 16.53 20.80 27.37 36.48

(a) Parallel operation: The predicted head–discharge curve for dual-pump operation in
parallel mode is obtained as described in Section 6.3.1 (i.e. by doubling the discharge
over the range of heads, since the pumps are identical in this case). The system and
efficiency curves are added as shown in Figure 6.10. From the intersection of the
characteristic and system curves, the following results are obtained:

Single-pump operation, Q = 22.5 L∕s; Hm = 24 m; 𝜂 = 0.58

Power consumption = 9.13 kW
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Figure 6.10 Parallel operation.

Parallel operation, Q = 28.5 L∕s; Hm = 26 m; 𝜂 = 0.51 (corresponding

with 14.25 L∕s per pump)

Power input = 14.11 kW

(b) Series operation: Using the method described in Section 6.3.2 and plotting the dual-
pump characteristic curve, intersection with the system curve yields (see Figure 6.11)
the following:

Q = 32.5 L∕s; Hm = 25 m; 𝜂 = 0.41

Power input = 21.77 kW

Note that for this particular pipe system, comparing the relative power consumptions,
the parallel operation is more efficient in producing an increase in discharge than the series
operation.

Example 6.6 (Pump operation at different speeds)

A variable-speed pump having the tabulated characteristics, at 1450 rev/min, is installed
in a pumping station to handle variable inflows. Static lift = 15 m; diameter of pipeline =
250 mm; length = 2000 m; k = 0.06 mm; minor loss = 10V2∕2g.

Determine the total head of the pump and discharge in the pipeline at pump speeds of
1000 rev/min and 500 rev/min.
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Figure 6.11 Series operation.

Pump characteristics at 1450 rev/min

Discharge (L/s) 0 10 20 30 40 50 60 70
Total head (m) 45.0 44.0 42.5 39.5 35.0 29.0 20.0 6.0

Solution:

The characteristic curve for speed N 2 using that for speed N1 can be constructed using
Equations 6.4 and 6.5 (Section 6.4); in other words,

H2 = H1

(
N2

N1

)2

(i)

Q2 = Q1

(
N2

N1

)
(ii)

where Q1, H1 are pairs of values taken from the N1 curve and Q2, H2 are the correspond-
ing points on the N2 curve.

The system curve is computed giving the following data:

Discharge (L/s) 20 40 60 80
System head (m) 16.40 20.08 26.12 34.23
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Figure 6.12 Pump operation with variable speed.

Construct the pump head–discharge curves for speeds of 1000 rev/min and 500 rev/min
using Equations (i) and (ii). Q1, H1 values (at 1450 rev/min) can be taken from the
tabulated data (or from the plotted curve in Figure 6.12). For example, taking Q1 =
20 L/s and H1 = 42.5 m at 1450 rev/min, the corresponding values at 1000 rev/min
are

Q2 = 20 ×
(

1000
1450

)
= 13.79 L∕s; H2 = 42.5

(
1000
1450

)2

= 20.2 m

Taking three other pairs of values, the following table can be constructed:

N (rev/min)
1450 Q1 0 20 40 60

H1 45.0 42.5 35.0 20.0
1000 Q2 0 13.79 27.59 41.38

H2 21.40 20.20 16.65 9.50
500 Q2 0 6.9 13.90 20.70

H2 5.35 5.05 4.16 2.40

The computed values are now plotted together with the system curve (see Figure 6.12).
Operating conditions:

At N = 1450 rev/min, Q = 55 L∕s; Hm = 25.0 m

At N = 1000 rev/min, Q = 33 L∕s; Hm = 18.5 m

At N = 500 rev/min, no discharge produced.
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Example 6.7

A laboratory test on a pump revealed that the onset of cavitation occurred at a discharge of
35 L/s when the total head at the inlet was reduced to 2.5 m and the total head across the
pump was 32 m. Barometric pressure was 760 mm Hg, and the vapour pressure 17 mm Hg.
Calculate the Thoma cavitation number. The pump is to be installed in a situation where
the atmospheric pressure is 650 mm Hg and water temperature 10◦C (vapour pressure
9.22 mm Hg) to give the same total head and discharge. The losses and velocity head in
the suction pipe are estimated to be 0.55 m of water. What is the maximum height of the
suction lift?

Solution:

NPSH =
(

pa

𝜌g
− Hs

)
−

pv

𝜌g
(Equation 6.6) (i)

where Hs is the manometric suction head.

pa

𝜌g
= 103 m of water;

pv

𝜌g
= 0.23 m of water

pa

𝜌g
− Hs = 2.5 m

⇒ NPSH = 2.5 − 0.23 = 2.27 m

Cavitation number,

𝜎 = NPSH
H

= 2.27
32

= 0.071

Installed conditions:
pa

𝜌g
= 8.84 m;

pv

𝜌g
= 0.1254 m (at 10◦C)

NPSH =
pa

𝜌g
− Hs −

pv

𝜌g
(from Equation (i))

⇒ 2.27 = 8.84 − Hs − 0.1254

whence Hs = 6.44 m

Hs = hs + hls +
V2

s

2g
whence hs = 6.44 − 0.55 = 5.89 m

where hs is the suction lift.

Example 6.8

An impounding reservoir at elevation 200 m delivers water to a service reservoir at eleva-
tion 80 m through a 20 km long, 500 mm diameter coated cast iron pipeline (k = 0.03 mm).
Minor losses amount to 20V2∕2g. Determine the steady discharge (410.9 L/s). A booster
pump having the tabulated characteristics is to be installed on the pipeline. Determine the
improved discharge and the power consumption (see Figure 6.13).
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Hm
H

Pump

Figure 6.13 Pipe delivery with booster pump.

Q (L/s) 0 100 200 300 400 500 600
Hm (m) 60.0 58.0 54.0 47.0 38.4 26.0 8.0
Overall efficiency (%) – 33.0 53.0 62.0 62.0 54.0 28.0

The effective gross head is now He = H + Hm, where Hm is a function of the total dis-
charge passing through the pump.

Thus,

He = f1(Q 2) (i)

The head He is overcome by the pipeline losses

HL = f2(Q 2) (ii)

The discharge in the system is therefore evaluated by equating (i) and (ii); this can be
done graphically as in the previous examples.

Compute the head loss–discharge curve (f2(Q 2)) for the pipeline using one of the meth-
ods described in Chapter 4. The relationship (Equation (ii)) is as follows:

Total pipeline head loss (m) 120 130 140 150 160
Discharge (L/s) 410.90 428.70 445.75 462.25 478.25

Using a common head datum of 120 m, Equations (i) and (ii) are now plotted (see
Figure 6.14):

The point of intersection yields: Q = 465 L∕s; Hm = 32 m; 𝜂 = 58%

Power consumption, P = 9.81 × 0.465 × 32.0
0.58

= 251.67 kW

Example 6.9 (Pipe network with pump, using a head–discharge curve)

Neglecting minor losses, determine the discharges in the pipes of the network illustrated
in Figure 6.15, (a) with the pump in BC absent and (b) with the pump which boosts the
flow to C in operation, and calculate the power consumption.
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Figure 6.14 Pump and gravity and system characteristics.

Length Diameter Roughness
Pipe (m) (mm) (mm)

AB 5000 300 0.06
BC 2000 200 0.06
BD 3000 150 0.06

Pump characteristics

Discharge (L/s) 0 20 40 60 80 100
Total head (m) 40.0 38.8 35.4 29.5 21.0 10.0
Efficiency (%) – 50.0 70.0 73.0 58.0 22.0

Solution:

Plot the pump head–discharge curve (see Figure 6.16).

HpZB

40 m

D

50 m
100 m

A
C

Pump

B

Figure 6.15 Pipe network with pump.
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Figure 6.16 Pump characteristic head–discharge curve.

The analysis is carried out using the quantity balance method, noting that with the pump
in operation in BC the head producing flow is HBC = Zc − ZB − Hp, where Hp is the head
delivered by the pump at the discharge in the pipeline. Initially, Hp can be obtained using
an estimated pipe velocity but subsequently the computed discharges can be used.
(a)

Pipe AB BC BD
k∕D 0.0002 0.0003 0.0004

𝜆 values may be obtained from the Moody diagram using initially assumed values of
pipe velocity.

With the pump not installed,

ZB = 80.25 m

and QAB = 84.87 L∕s; QBC = 58.97 L∕s; QBD = 25.9 L∕s

(b) Estimate ZB = 80 m.

Units in table: V = m∕s; HP (pump total head) = m; Q = m3∕s

‘Head’ = head loss in pipeline

A = area of pipe (m2)

HP is initially obtained from an estimated flow in BC of 60 L/s (29 m).

V (estimated) HP Head Q Q∕h Q∕A
Pipe (m/s) Re (×105) 𝝀 (m) (m) (m3/s) (×10−3) (m/s)

AB 2.0 5.3 0.0155 – 20.0 0.0871 4.36 1.23
BC 2.0 5.3 0.0170 29.0 −59.0 −0.0820 1.39 2.6
BD 2.0 5.3 0.0178 – −40.0 −0.0262 0.65 1.5

∑
−0.0211 6.40
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ΔZB = −6.6 m; ZB = 73.41 m
Note that HP at each step is obtained from the H versus Q curve corresponding with the
value of QBC at the previous step.

Q∕h
Pipe V (estimated) Re (×105) 𝝀 HP Head Q (×10−3) Q∕A

AB 1.5 3.98 0.016 – 26.59 0.0989 3.72 1.40
BC 2.5 4.42 0.017 22.0 −45.41 −0.0720 1.58 2.30
BD 1.5 1.99 0.018 – −33.41 −0.0238 0.71 1.35

∑
0.0031 6.01

ΔZB = 1.03 m; ZB = 74.44 m

Pipe V (estimated) Re (×105) 𝝀 HP Head Q Q∕h (×10−3) Q∕A

AB 1.4 3.7 0.016 – 25.56 0.0969 3.79 1.37
BC 2.3 4.07 0.0165 24.8 −49.24 −0.0760 1.54 2.4
BD 1.35 1.79 0.0185 – −34.44 −0.0239 0.69 1.35

∑
−0.003 6.02

ΔZB = −0.99 m; ZB = 73.45 m

Q∕h
Pipe V (estimated) Re (×105) 𝝀 HP Head Q (×10−3) Q∕A

AB 1.4 3.7 0.016 – 26.55 0.0988 3.72 1.4
BC 2.4 4.2 0.0165 23.0 −46.45 −0.0738 1.59 2.35
BD 1.35 1.79 0.0185 – −33.45 −0.0236 0.70 1.33

∑
0.0014 6.01

ΔZB = 0.47 m; ZB = 73.92 m

Final values:

ZB = 73.79 m

QAB = 98.1 L∕s; QBC = 74.5 L∕s; QBD = 23.6 L∕s

Hp = 23.5 m

At the pump discharge of 74.5 L/s, efficiency = 64%.
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Whence

Power = 9.81 × 0.0745 × 23.5
0.64

= 26.83 kW

References and recommended reading
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Problems

1. A rotodynamic pump having the characteristics tabulated below delivers water from a
river at elevation 52.0 m to a reservoir with a water level of 85 m through a 350 mm
diameter coated cast iron pipeline, 2000 m long (k = 0.15 mm). Allowing 10V2∕2g for
losses in valves, calculate the discharge in the pipeline and the power consumption.

Q (L/s) 0 50 100 150 200
Hm (m) 60 58 52 41 25
𝜂 (%) – 44 65 64 48

2. If, in the system described in Problem 1, the discharge is to be increased to 175 L/s by the
installation of a second identical pump,
(a) Determine the unregulated discharges produced by connecting the pumps (i) in par-

allel and (ii) in series.
(b) Calculate the power demand when the discharge is regulated (by valve control) to

175 L/s in the case of (i) parallel operation and (ii) series operation.

3. A pump is required to discharge 250 L/s against a calculated system head of 6.0 m.
Assuming that the pump will run at 960 rev/min, what type of pump would be most
suitable?

4. The performance characteristics of a variable-speed pump when running at 1450 rev/min
are tabulated below, together with the calculated system head losses. The static lift is 8.0
m. Determine the discharge in the pipeline when the pump runs at 1450, 1200 and 1000
rev/min.

Q (L/s) 0 10 20 30 40
Hm (m) 20.0 19.2 17.0 13.7 8.7
System head loss (m) − 0.7 2.3 4.8 9.0
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5. A pump has the characteristics tabulated when operating at 960 rev/min. Calculate the
specific speed and state what type of pump this is. What discharge will be produced
when the pump is operating at a speed of 700 rev/min in a pipeline having the system
characteristics given in the table? Static lift is 2.0 m. What power would be consumed by
the pump itself?

Q (L/s) 0 50 100 150 200 250 300
Hm (m) 7.0 6.3 5.5 5.0 4.6 4.1 3.5
Pump efficiency (%) − 20.0 40.0 56.0 71.0 81.0 82.0
System head loss (m) − 0.10 0.35 0.80 1.40 2.10 3.40

6. (a) Tests on a rotodynamic pump revealed that cavitation started when the manometric
suction head, Hs, was 5 m, the discharge 60 L/s and the total head 40 m. Barometric
pressure was 986 mb and the vapour pressure 23.4 mb. Calculate the NPSH and the
Thoma cavitation number.

(b) Determine the maximum suction lift if the same pump is to operate at a discharge of
65 L/s and total head of 35 m under field conditions where the barometric pressure
is 950 mb and vapour pressure is 12.5 mb. The sum of the suction pipe losses and
velocity head is estimated to be 0.6 m.

7. The characteristics of a variable-speed rotodynamic pump when operating at 1200
rev/min are as follows:

Q (L/s) 0 10 20 30 40 50 60
Hm (m) 47.0 46.0 42.5 38.4 34.0 27.2 20.0

The pump is required to be used to deliver water through a static lift of 10 m in a 300 mm
diameter pipeline, 5000 m long, and of roughness size 0.15 mm, at a rate of 70 L/s. At
what speed will the pump have to operate?

8. The steady level below ground level in an abstraction well in a confined aquifer is calcu-
lated from the equation

Zw = 2.0 +
Q

2𝜋Kb
loge

Ro

rw
(m)

where Q is the abstraction rate (m3/day), K the coefficient of permeability of the aquifer
(m3/(day m2)), b the aquifer thickness (m), Ro the radius of influence of the well (m) and
rw the radius of the well (m).

K = 50 m3∕(day m
2
); b = 20 m; rw = 0.15 m

During a pumping test, the observed Zw was 5.0 m when an abstraction rate of 30 L/s
was applied.

Under operating conditions the submersible borehole pump delivers the groundwater
to the surface, from where an inline booster pump delivers the water to a reservoir the
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level in which is 20 m above the ground level at the well site. The pipeline is of length
500 m, diameter 200 mm and roughness size 0.3 mm. Minor losses total 10V2∕2g.

Pump characteristics

(a) Borehole pump (b) Booster pump

Discharge (L/s) 0 10 20 30 40 0 10 20 30 40
Total head (m) 10.0 9.6 8.7 7.4 5.6 22.0 21.5 20.4 19.0 17.4

Assuming that the radius of influence of the well is linearly related to the abstraction
rate, determine the maximum discharge which the combined pumps would deliver to the
reservoir.

9. The discharge in a pipeline delivering water under gravity between two reservoirs at
elevations 150 m and 60 m is to be boosted by the installation of a rotodynamic pump,
the characteristics of which are shown tabulated.

The pipeline is 15 km in length and 350 mm in diameter, and has a roughness value of
0.3 mm. Determine the discharges (a) under gravity flow conditions and (b) with the
pump installed. Assume a minor loss of 20V2∕2g in both cases.

Pump characteristics

Discharge (L/s) 0 50 100 150 200 250
Manometric head (m) 50.0 49.0 46.5 42.0 36.0 28.2

10. Reservoir A delivers water to service reservoirs C and D through pipelines AB, BC and
BD. A pump is installed in pipeline BD to boost the flow to D.

Elevations of water in reservoirs: ZA = 100 m; ZC = 60 m; ZD = 50 m

Pipe Length (m) Diameter (mm) Roughness (mm)

AB 10 000 350 0.15
BC 4 000 200 0.15
BD 5 000 150 0.15

Pump characteristics

Discharge (L/s) 0 20 40 60 80
Total head (m) 30.0 27.5 23.0 17.0 9.0
Efficiency (%) − 44.0 68.0 66.0 44.0

Neglecting minor losses, calculate the flows to the service reservoirs:
(a) With the pump not installed
(b) With the pump operating, and determine the power consumption.

C
h

ap
ter

6



Chapter 7
Boundary Layers on Flat
Plates and in Ducts

7.1 Introduction

A boundary layer will develop along either side of a flat plate placed edgewise into a fluid
stream (Figure 7.1) with free stream velocity U0 and kinematic viscosity 𝜈. Initially the
flow in the layer may be laminar with a parabolic velocity distribution. The boundary
layer increases in thickness with distance x along the plate, and at a Reynolds number
U0x∕𝜈 ≃ 500 000 turbulence develops in the boundary layer. The frictional force due to
the turbulent portion of the boundary layer may be considered as that which would be
found if the entire length were turbulent minus that corresponding to the hypothetical
turbulent layer up to the critical point.

For rough plates, Schlichting gave an expression for the maximum height of roughness
elements such that the surface may be considered hydraulically smooth:

k ≤ 100𝜈
U0

[7.1]

The theory of boundary layers on smooth flat plates is to be found in texts such as Massey
and Ward-Smith (2012).

7.2 The laminar boundary layer

Blasius developed analytical equations for the flow in a laminar boundary layer formed
on a flat plate for the case of zero pressure gradient along the plate. Taking the outer limit
of the boundary layer as the position where v = 0.99U0, the boundary layer thickness 𝛿x
at distance x from the leading edge was given as

𝛿x = 5x

Re1∕2
x

where Rex =
U0x
𝜈

[7.2]

Local boundary shear stress, 𝜏0 = 0.332𝜇
U0

x
Re1∕2

x [7.3]

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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Figure 7.1 Boundary layer formation on a flat plate.

Drag along one side of a plate of length L and width B

Fs = ∫
L

0
𝜏0B dx = 0.664B𝜇U0 Re1∕2

L [7.4]

or Fs = CfBL𝜌
U2

0

2
[7.5]

where Cf =
1.33

Re1∕2
L

[7.6]

7.3 The turbulent boundary layer

Studies have shown that the velocity profile in the turbulent boundary layer is approxi-
mated closely over a wide range of Reynolds numbers by the equation:

v
U0

=
(y
𝛿

)1∕7
[7.7]

If the turbulent boundary layer is assumed to develop at the leading edge of the plate,

𝛿x = 0.37x
(

𝜈

U0x

)1∕5

= 0.37 x

Re1∕5
x

[7.8]

Boundary shear stress, 𝜏0 = 0.0225𝜌U2
0

(
𝜈

U0𝛿x

)1∕4

[7.9]

Drag on one side of plate, Fs = CfBL𝜌
U2

0

2
[7.10]

where Cf =
0.074

Re1∕5
L

[7.11]
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7.4 Combined drag due to both laminar and turbulent
boundary layers

Where the plate is sufficiently short such that the laminar boundary layer forms over a
significant proportion of the length, the total drag may be calculated by considering the
turbulent boundary layer to start at the leading edge, deducting the drag in the turbulent
boundary layer up to x0 and adding the drag in the laminar boundary layer.

Hence Fs =

(
1.33x0

Re1∕2
x0

+ 0.074L

Re1∕2
L

−
0.074x0

Re1∕5
x0

)
B𝜌

U2
0

2
[7.12]

7.5 The displacement thickness

Due to the reduction in velocity in the boundary layer, the discharge past a point on the
surface is reduced by an amount

𝛿q = ∫
𝛿

0
(U0 − v) dy [7.13]

The displacement thickness is the distance 𝛿∗, shown in Figure 7.2, by which the surface
would have to be moved in order to reduce the discharge of an ideal fluid at velocity U0
by the same amount. Then

U0𝛿
∗ = ∫

𝛿

0
(U0 − v) dy [7.14]

Assuming that the velocity distribution is

v
U0

=
(y
𝛿

)1∕7
(Equation 7.7)

𝛿∗ = 1
U0 ∫

𝛿

0

[
U0 − U0

(y
𝛿

)1∕7
]

dy [7.15]

𝛿∗ =

[
y − 7

8

(
1
𝛿

)1∕7

y8∕7

]𝛿

0

whence 𝛿∗ = 𝛿

8
[7.16]

y

U0

v

δ*

Figure 7.2 Displacement thickness.
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7.6 Boundary layers in turbulent pipe flow

In Chapters 4 and 5, the analysis and design of pipelines were demonstrated using the
Darcy–Weisbach and Colebrook–White equations. The latter equation

1√
𝜆
= −2 log

(
k

3.7D
+ 2.51

Re
√
𝜆

)

owes its origin to the theoretical hypothesis of Prandtl for the general form of the velocity
distribution in full pipe flow supported by the experimental work of Nikuradse. Using
the concept of the exchange of momentum due to the transverse velocity components in
turbulent flow, Prandtl developed his ‘mixing theory’ expressing the shear stress 𝜏 in terms
of the velocity gradient dv∕dy and ‘mixing length’ 𝓁 in the form

𝜏 = 𝜌𝓁2
(

dv
dy

)2

[7.17]

Prandtl further assumed that the mixing length was directly proportional to the distance
from the boundary and that the shear stress was constant and hence equal to the boundary
shear stress 𝜏0. Hence,

𝜏0 = 𝜌(𝜅y)2
(

dv
dy

)2

[7.18]

whence dv
dy

= 1
𝜅

√
𝜏0

𝜌

1
y

[7.19]

The term
√
𝜏0∕𝜌 has the dimensions of velocity and is called the ‘shear velocity’ and rep-

resented by the symbol v∗. From Equation 7.19,

v
v∗

= 1
𝜅

ln y + C [7.20]

or v
v∗

= 1
𝜅

ln
y
y′

[7.21]

where y′ is the ‘boundary condition’, that is, the distance from the boundary at which the
velocity becomes zero (see Figure 7.3).

Laminar

Turbulent

y

v

y

Figure 7.3 Velocity distribution – log law.
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Observations of friction head loss and velocity distribution on smooth and artificially
roughened pipes, conveying water, by Nikuradse revealed that the forms of the velocity
distribution in the smooth and rough turbulent zones were different. For the smooth turbu-
lent zone he assumed y′ to be proportional to v∕v∗, and Equation 7.21 therefore becomes

v
v∗

= A log
(

v∗y
𝜈

)
+ B [7.22]

where A and B are constants.
From the experimental data Nikuradse plotted 𝜈∕v∗ against log (v∗y∕𝜈), and a straight-

line fit having the equation

𝜈

v∗
= 5.75 log

(
v∗y
𝜈

)
+ 5.5 [7.23]

verified the hypotheses. The mean velocity is obtained by integration

V = 1
𝜋D2∕4 ∫

D∕2

0
2𝜋rv dr

and substitution of v from Equation 7.23 yields

V
v∗

= 5.75 log
(v∗D

2𝜈

)
+ 1.75 [7.24]

The equation for the Darcy friction factor can consequently be obtained.
Since

𝜏0 = 𝜌gR
hf

L
= 𝜌g

D
4

hf

L
(see Example 7.5)

and
hf

L
= 𝜆V2

2gD
;

√
𝜏0

𝜌
= V

√
𝜆

8
[7.25]

substitution into Equation 7.25 yields the equation

1√
𝜆
= 2 log

(
VD
𝜈

√
𝜆

2.51

)

or 1√
𝜆
= 2 log

(
Re

√
𝜆

2.51

)
[7.26]

Similarly for the rough turbulent zone, Nikuradse found y′ to be proportional to k and
obtained the velocity distribution in the form

v
v∗

= 5.75 log
( y

k

)
+ 8.5 [7.27]

and V
v∗

= 5.75 log
( D

2k

)
+ 4.75 [7.28]

whence 1√
𝜆
= 2 log

( D
2k

)
+ 1.74 [7.29]

or 1√
𝜆
= 2 log

(
3.7D

k

)
[7.30]
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Equations 7.26 and 7.30 are referred to as the Kármán–Prandtl equations. While Equa-
tion 7.30 was obtained for artificially roughened pipes, Colebrook and White found that
the addition of the Kármán–Prandtl equations produced a ‘universal’ function which fit-
ted data collected on commercial pipes covering a wide range of Reynolds numbers and
relative roughness values. The Colebrook–White equation was expressed as

1√
𝜆
= −2 log

(
k

3.7D
+ 2.51

Re
√
𝜆

)
[7.31]

where k now becomes the ‘effective roughness size’ equivalent to Nikuradse’s uniform
roughness elements.

7.7 The laminar sub-layer

The 𝜆 versus Re curves for artificially roughened pipes are shown in Figure 7.4.
At the lower range of Reynolds numbers the curves for the rough pipes merge into the

single smooth pipe curve. Thus, rough pipes can behave like smooth ones at low Reynolds
numbers. This phenomenon is explained by the presence of a sub-layer, formed adjacent to
the boundary, in which the flow is laminar. The presence of such a layer was also confirmed
by the velocity distributions obtained by Nikuradse. At low Reynolds numbers the sub-
layer is sufficiently thick to cover the boundary roughness elements so that the turbulent
boundary layer is, in effect, flowing over a smooth boundary (Figure 7.5a).

The sub-layer thickness decreases with increasing Reynolds number, and at high
Reynolds numbers the roughness elements are fully exposed to the turbulent boundary
layer. At intermediate Reynolds numbers, in the transitional turbulent zone, the friction
factor is influenced by both the relative roughness and Reynolds number.

Figure 7.6 shows a sub-layer formed on a smooth boundary beneath a turbulent bound-
ary layer.

0.10

0.08

0.06

0.04

0.02

0.01

103 104 105 106

Re

k/D = 1/30

= 1/61.2

= 1/120

= 1/252
= 1/504

= 1/1014

λ

0.01

Figure 7.4 Variation of 𝜆 with Re for artificially roughened pipes.
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)b()a(

δ′δ′ δ′

(c)

Figure 7.5 Variations in thickness of a laminar sub-layer with Reynolds number: (a) smooth
turbulent, (b) transitional turbulent and (c) rough turbulent.

In the laminar sub-layer,

𝜏 = 𝜇
dv
dy

whence dv
dy

= 𝜏

𝜌𝜈
and v =

𝜏y
𝜌𝜈

[7.32]

At the upper boundary of the sub-layer, y = 𝛿′, the velocities given by Equations 7.23 and
7.32 are identical and 𝜏 = 𝜏0.

Whence

v∗
[
5.75 log

(
v∗𝛿′

𝜈

)
+ 5.5

]
= (v∗)2𝛿′

𝜈

the solution to which is

𝛿′ = 11.6𝜈
v∗

[7.33]

substituting v∗ = V
√
𝜆∕8 and introducing D on both sides yield

𝛿′

D
= 32.8

Re
√
𝜆

[7.34]

Thus the thickness of the laminar sub-layer decreases with Reynolds number.
For rough surfaces the zone of turbulent flow is clearly related to the ratio of the mag-

nitudes of 𝛿′ and k. Since 𝛿′∕D is inversely proportional to Re
√
𝜆,

Re
√
𝜆

D∕2k
∝ k

𝛿′

v

Turbulent

Laminar

+ 5.5= 5.75 log νv*

δ′y′

v*y

Figure 7.6 Laminar sub-layer on a smooth boundary.
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Figure 7.7 The transition zone for artificially roughened pipes.

Each of the curves in Figure 7.4 should therefore deviate from the smooth pipe law at the
same value of k∕𝛿′. Thus, superimposing all curves by plotting (1∕

√
𝜆) − 2 log(D∕2k) on

a base of

Re
√
𝜆

D∕2k
(Figure 7.7)

shows that the transition from the smooth law begins when 𝛿′ is approximately 4k and
ends when k is approximately 6𝛿′ (see Figure 7.7).

Worked examples

Example 7.1

A thin smooth plate 2 m long and 3 m wide is towed edgewise through water, at 20◦C, at
a speed of 1 m/s.

(a) Calculate the total drag and the thickness of the boundary layer at the trailing
edge.

(b) If the plate were towed with the 3 m side in the direction of flow, what would be the
drag?

Solution:

(a)

𝜈20◦C = 1 × 10−6 m2∕s; 𝜌 = 1000 kg∕m3

Assuming the laminar layer to become unstable at Rex = 500 000, the length of the layer
x0 = 0.5 m.
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Using Equation 7.11 for the combined drag in the laminar and turbulent layers,

Fs = 2

(
1.33x0

Re1∕2
x0

+ 0.074L

Re1∕5
L

−
0.074x0

Re1∕5
x0

)
B𝜌

U2
0

2

Fs = 2
(

1.33 × 0.5
707.1

+ 0.074 × 2
18.2

− 0.074 × 0.5
13.8

)
3 × 1000 × 1

2
Fs = 19.17 N

Boundary layer thickness: Experiments have shown that when the turbulent boundary
layer develops downstream of the laminar layer, the characteristics of the turbulent layer
are those of one which develops at the leading edge. Thus,

𝛿L = 0.37L

Re1∕5
L

= 0.041 m

If the drag were assumed to be entirely due to the turbulent boundary layer,

Fs = 2CfBL𝜌
U2

0

2

Cf =
0.074

Re1∕5
L

= 0.074
18.2

= 0.0041

Fs = 2 × 0.004 × 2 × 3 × 1000 × 1
2
= 24.6 N

(b)

B = 2.0; L = 3.0

From Equation 7.11,

Fs = 2 × 2
(

1.33 × 0.5
707.1

+ 0.074 × 3
19.74

− 0.074 × 0.5
13.8

)
1000 × 1

2
= 19.01 N

Example 7.2

A 5 m long smooth model of a ship is towed in fresh water of kinematic viscosity 1 × 10−6

m2/s at 3.5 m/s. The wetted hull area is 1.4 m2. What is the skin friction drag?

Solution:

Assuming that a turbulent boundary layer develops at the leading edge,

drag = CfA𝜌
U2

0

2

Cf =
0.074

Re1∕5
L

; ReL = 3.5 × 5
1 × 10−6

= 17.5 × 106

whence Cf = 0.00263
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and drag = 0.00263 × 1.4 × 1000 × 3.52

2
= 22.55 N

Example 7.3

Water enters a 300 mm diameter test section of a water tunnel at a uniform velocity of
15 m/s. Assuming that the boundary layer starts 0.5 m upstream of the test section, estimate
the increase in axial velocity at the end of a 3 m test section due to the growth of the
boundary layer. Take 𝜈 = 1 × 10−6 m2/s.

Solution:

Length of boundary layer = 3.5 m

ReL = 15 × 3.5 × 106 = 52.5 × 106

Re1∕5
L = 35.0

𝛿L = 0.37L

Re1∕5
L

= 0.37 × 3.5
35

= 0.037 m

From Section 7.5, assuming that the velocity distribution in the boundary layer is of the
form

v
U0

=
(y
𝛿

)1∕7
(Equation 7.15)

the displacement thickness is expressed by

𝛿∗ = 𝛿

8
(Equation 7.16)

or 𝛿∗ = 0.004625 m

Effective duct diameter = 300 − 9.25 = 290.75 mm

Then

U0A0 = ULAL

whence UL = 15
(

300
290.75

)2

= 15.97 m∕s

Change in pressure due to boundary layer formation: apply Bernoulli’s equation, assum-
ing ideal fluid flow:

p0

𝜌g
+

U2
0

2g
=

pL

𝜌g
+

U2
L

2g

p0 − pL

𝜌g
= Δh =

U2
L − U2

0

2g

Δh = 15.972 − 152

2g
= 1.53 m
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Example 7.4

Water at 20◦C enters the 250 mm square working section of a water tunnel at 20 m/s
with a turbulent boundary layer of thickness equal to that from a starting point 0.45 m
upstream. Estimate the length of the sides of the divergent duct for constant pressure core
flow at 1, 2 and 3 m downstream from the duct entrance.

Solution:

From Equation 7.16, displacement thickness is

𝛿∗x =
𝛿x

8

From Equation 7.7,

𝛿x = 0.37x

Re1∕5
x

At 1 m from the entrance of the working section, the length of the boundary layer is
1.45 m.

Rex = 20 × 1.45
1 × 10−6

= 29 × 106

whence 𝛿 = 0.01726 m

and 𝛿∗ = 0.00216 m = 2.16 mm

Thus the section size is 254.32 mm2.
At 2 m from the entrance, the boundary layer is 2.45 m long.

𝛿∗ = 3.29 mm

⇒ section size = 256.58 mm

At 3 m from the entrance,

𝛿∗ = 4.32 m

⇒ section size = 258.64 mm

Example 7.5

The velocity distribution in the rough turbulent zone is expressed by

v√
𝜏0∕𝜌

= 5.75 log
( y

k

)
+ 8.5 (Equation 7.27) (i)

Local axial velocities measured at 25 and 75 mm across a radius from the inner wall of
a 150 mm diameter pipe conveying water at 15◦C were 0.815 and 0.96 m/s, respectively.
Calculate (a) the effective roughness size, (b) the hydraulic gradient and (c) the discharge.
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Solution:

(a) Writing v∗ =
√
𝜏0∕𝜌 and inserting the pairs of values of v and y in the velocity distri-

bution equation,

0.96
v∗

= 5.75 log
(

75
k

)
+ 8.5 (ii)

0.815
v∗

= 5.75 log
(

25
k

)
+ 8.5 (iii)

Note: y can be expressed in millimetres since y∕k is dimensionless; the calculated value of
k will then be in millimetres. Hence,

0.96 − 0.815
v∗

= 5.75 log
(

75
25

)

whence v∗ = 0.0528

and 𝜏0 = 2.79 N∕m2

Substituting for v∗ in (ii),

0.96
0.0528

= 5.75 log
(

75
k

)
+ 8.5

whence k = 1.55 mm

(b) The hydraulic gradient (Sf = hf∕L) can be related to the boundary shear stress. Consider
an element of flow in a pipeline (see Figure 7.8).

For steady, uniform flow, equate the forces on the element of length 𝛿L.

(p1 − p2)A + 𝜌gA𝛿L sin 𝛼 = 𝜏0P𝛿L

i.e.
p1 − p2

𝜌g
+ 𝛿z =

𝜏0P𝛿L

𝜌gA

or hf =
𝜏0𝛿L
𝜌gR

p1/ρg

V 2/2g hf

p2/ρg

δz

δL

τ0 α

Figure 7.8 Flow analysis in a pipeline.
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where R = A∕P = D∕4.

hf

L
= Sf =

0.05282

9.806 × 0.0375
= 0.00758

(c) The discharge can now be evaluated using the Darcy–Colebrook–White combination:

Q = −2A
√

2gDSf log

[
k

3.7D
+ 2.51𝜈

D
√

2gDSf

]

Q = 13.37 L∕s

Mean velocity

V = 0.757 m∕s

Re = 1.004 × 105

k
D

= 1.55
150

= 0.0103

Referring to the Moody chart, this is in the rough turbulent zone.
Alternatively, as shown in Section 7.6, the mean velocity V can thus be expressed as

V√
𝜏0∕𝜌

= 5.75 log
( D

2k

)
+ 4.75

whence V = 0.762 m∕s and Q = 13.45 L∕s

Thus, location of local velocity equals to mean velocity:

v − V√
𝜏0∕𝜌

= 5.75 log
(

2y
D

)
+ 3.75 (from Equations 7.28 and 7.29)

i.e. log
(

2y
D

)
= −0.6522

2y
D

= 0.22275

y = 16.7 mm

Example 7.6

The velocity distribution in the smooth turbulent zone is given by

v
v∗

= 5.75 log
(

v∗y
𝜈

)
+ 5.5 (Equation 7.23)

The axial velocity at 100 mm from the wall across a radius in a 200 mm perspex pipeline
conveying water at 20◦C was found to be 1.2 m/s. Calculate the hydraulic gradient and
discharge. 𝜈 = 1.0 × 10−6 m2/s.

1.2
v∗

= 5.75 log
(

v∗ × 0.1
1 × 10−6

)
+ 5.5

(Note: y must be expressed here in metres.)
Solve by trial or graphical interpolation.
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Solution:

v∗ = 0.045 m∕s (=
√
𝜏0∕𝜌)

Now

Sf =
𝜏0

𝜌gR
(see previous example)

⇒ Sf =
0.0452

9.806 × 0.05
= 0.00413

Now if the flow is assumed to be in the smooth turbulent zone (k∕D = 0), the discharge
may be calculated from the Darcy–Colebrook–White equation in the form

Q = −2A
√

2gDSf log

(
2.51𝜈

D
√

2gDSf

)

= 32.03 L∕s

V = 1.02 m∕s; Re = 2.04 × 105

Example 7.7

Sand grains 0.5 mm in diameter are glued to the inside of a 200 mm diameter pipeline.
At what velocity of flow of water at 15◦C will the surface roughness (a) cause the flow to
depart from the smooth pipe and (b) enter the rough pipe curve?

Solution:

(a) The transition from the smooth law begins when 𝛿′ = 4k

whence 𝛿′ = 4 × 0.5 = 2.0 mm

Also,

𝛿′ = 32.8 D

Re
√
𝜆

(Equation 7.34)

2.0 = 32.8 × 200

Re
√
𝜆

whence Re
√
𝜆 = 3280.0 (i)

The smooth turbulent zone is represented by

1√
𝜆
= 2 log

(
Re

√
𝜆

2.51

)

1√
𝜆
= 2 log

(
52 480

2.51

)
= 6.232

Then from Equation (i),

Re = 20 441 = VD
𝜈

whence V = 0.102 m∕s
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(b) At k = 6𝛿′, the flow enters the rough turbulent zone.

𝛿′ = 32.8D

Re
√
𝜆

= 0.0833

Re
√
𝜆 = 78 751.0 (ii)

The rough turbulent zone is represented by

1
𝜆
= 2 log 3.7 D

k
= 2 log 3.7 × 200

0.5
= 6.341

Substituting in Equation (ii),

Re = 499 372.0

whence V = 2.5 m∕s
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Problems

1. A pontoon 15 m long and 4 m wide with vertical sides floats to a depth of 0.5 m. The
pontoon is towed in sea water at 10◦C (𝜌s = 1024 kg∕m3, 𝜇 = 1.31 × 10−3 N s/m2) at a
speed of 2 m/s. (a) Determine the viscous resistance and the thickness of the boundary
layer at the downstream end. (b) What is the shear stress at the mid-length?

2. Sealed hollow pipes 2 m in external diameter and 6 m long, fitted with rounded nose-
pieces to reduce wave-making drag, are towed in a river to a construction site; the pipes
float to a depth of 1.5 m. The towing speed is 5 m/s in the water which has a density of
1000 kg/m3 and dynamic viscosity of 1.2 × 10−3 N s/m2. Determine the viscous drag of
each pipe, assuming that (a) a turbulent boundary layer exists over the entire length and
(b) the drag is a combination of that due to the laminar and turbulent boundary layers.

3. Air of density 1.3 kg/m3 and dynamic viscosity 1.8 × 10−5 N s/m2 enters the test section 1 m
wide and 0.5 m deep of a wind tunnel at a velocity of 20 m/s. Determine the increase in axial
velocity 10 m downstream from the entrance to the test section due to the development of
the boundary layer, assuming that this forms at the entrance to the test section.

4. Wind velocities over flat grassland were observed to be 3.1 and 3.3 m/s at the height of 3
and 6 m above the ground, respectively. Determine the effective roughness of the surface
and estimate the wind velocity at a height of 25 m.

5. The centre line velocity in a 100 mm diameter brass pipeline (k = 0.0) conveying water at
20◦C was found to be 3.5 m/s. Determine the boundary shear stress, the hydraulic gradient,
the discharge and the thickness of the laminar sub-layer.
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6. The velocities at 50 and 150 mm from the pipe wall of a 300 mm diameter pipeline convey-
ing water at 15◦C were 1.423 and 1.674 m/s, respectively. Determine the effective rough-
ness size, the hydraulic gradient, the discharge and the Darcy friction factor, and verify that
the flow is in the rough turbulent zone.

7. Show that the equation

vmax − v√
𝜏0∕𝜌

= 5.75 log D
2y

applies to full-bore flow in circular pipes in both the rough and smooth turbulent zones.
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Chapter 8
Steady Flow in
Open Channels

8.1 Introduction

Open channel flow, for example flow in rivers, canals and sewers not flowing full, is char-
acterised by the presence of the interface between the liquid surface and the atmosphere.
Therefore, unlike full pipe flow, where the pressure is normally above atmospheric pres-
sure, but sometimes below it, the pressure on the surface of the liquid in open channel flow
is always that of the ambient atmosphere.

The energy per unit weight of the liquid flowing in a channel at a section where the
depth of flow is y and the mean velocity is V is

H = z + y cos 𝜃 + 𝛼V2

2g
(see Figure 8.1) [8.1]

where z is the position energy (or head), 𝜃 the bed slope and 𝛼 the Coriolis coefficient (see
also Equation 3.11).

𝛼 = 1
AV3 ∫

A

0
v3 dA

The motivating force establishing flow is predominantly the gravity force component
acting in parallel with the bed slope, but net pressure forces and inertia forces may also be
present. Flow in channels may be unsteady, resulting from changes in inflow such as floods
or changes in depth caused by control gate operation. Steady flow can either be uniform or
be varied depending upon whether or not the mean velocity is constant with distance. In
gradually varied flow there is a gentle change in depth with distance; a common example is
the backwater curve (Figure 8.2a). Rapidly varied surface profiles are created by changes
in channel geometry, for example flow through a venturi flume (Figure 8.2b).

Steady, uniform flow occurs when the motivating forces and drag forces are exactly
balanced over the reach under consideration. This type of flow is analogous with steady
pressurised flow in a pipeline of constant diameter. Thus the area of flow in the channel

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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Total energy line

Liquid surface

Datum

y cos θ

αV2/2g

z

y
H

θ

Figure 8.1 Energy components.

must remain constant with distance, a condition requiring the bed slope and channel geom-
etry to remain constant. The liquid surface is parallel to the bed.

8.2 Uniform flow resistance

The nature of the boundary resistance is identical to that of full pipe flow (Chapter 4),
and the Darcy–Weisbach and Colebrook–White equations for non-circular sections may
be applied (see Section 4.2).

Noting that the energy gradient Sf is equal to the bed slope S0 in uniform flow:

Darcy–Weisbach:
hf

L
= Sf = S0 = 𝜆V2

8gR
[8.2]

Colebrook–White: l√
𝜆
= −2 log

(
k

14.8R
+ 2.51𝜈

4RV
√
𝜆

)
[8.3]

(a)

(b)

Gate

Figure 8.2 Steady, varied-flow surface profiles: (a) gradually varied and (b) rapidly varied
through a venturi flume
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Steady Flow in Open Channels 189

Table 8.1 Typical values of Manning’s n.

Type of surface n

Concrete
Culvert, straight and free of debris 0.011
Culvert, with bends, connections and some debris 0.013
Cast on steel forms 0.013
Cast on smooth wood forms 0.014
Unfinished, rough wood form 0.017

Excavated or dredged channels
Earth, after weathering, straight and uniform 0.022
Earth, winding, clean 0.025
Earth bottom, rubble sides 0.030

For a comprehensive list, see Chow (1959).

Eliminating 𝜆 from Equations 8.2 and 8.3 yields

V = −
√

32gRS0 log

(
k

14.8R
+ 1.255𝜈

R
√

32gRS0

)
[8.4a]

where R = A
P

= area of flow
wetted perimeter

In addition to the Darcy–Weisbach equation, the Manning equation is widely used in open
channel water flow computations. This was derived from the Chezy equation V = C

√
RS0

by writing C = R1∕6∕n, resulting in

V = R2∕3

n
S1∕2

0 (SI units) [8.4b]

where n is called the Manning roughness factor and its value is related to the type of
boundary surface. If the value of n is taken to be constant regardless of depth, then unlike
the Darcy friction factor it does not account for changes in relative roughness; nor does it
include the effects of viscosity (see Table 8.1). The Manning equation is in general applica-
ble to shallow flows in rough boundaries, and for a boundary of roughness k, Manning’s
n may be written as (Strickler’s equation)

n = k1∕6

26
[8.4c]

where k is in metres.

8.3 Channels of composite roughness

In applying the Manning formula to channels having different n values for the bed and
sides it is necessary to compute an equivalent n value to be used for the whole section. The
water area is ‘divided’ into N parts having wetted perimeters P1, P2,… , PN with associated
roughness coefficients n1, n2,… , nN. Horton and Einstein assumed that each sub-area has
a velocity equal to the mean velocity.
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Thus,

n =

(∑N
i=1 Pin

3∕2
i

P

)2∕3

[8.5]

where P is the total wetted perimeter.
Pavlovskij and others equated the sum of the component resisting forces to the total

resisting force and thus found

n =

(∑N
i=1 Pin

2
i

P

)1∕2

[8.6]

Lotter applied the Manning equation to sub-areas and equated the sum of the individual
discharge equations to the total discharge. Thus the equivalent roughness coefficient is

n = PR5∕3∑N
i=1 PiR

5∕3
i ∕ni

[8.7]

8.4 Channels of compound section

A typical example of a compound section (two-stage channel) is a river channel with flood
plains. The roughness of the side channels will be different (generally rougher) from that
of the main channel and the method of analysis is to consider the total discharge to be the
sum of component discharges computed by the Manning equation.

Thus in the channel shown in Figure 8.3, assuming that the bed slope is the same for the
three sub-areas,

Q =
(

A1

n1
R2∕3

1 +
A2

n2
R2∕3

2 +
A3

n3
R2∕3

3

)
S1∕2

0

The above assumption leads to large discrepancies between computed and measured dis-
charges under flood flow (above bank-full stages) conditions. The interaction between the
slower-moving berm flows and the fast-moving main channel flow significantly increases
head losses. As a result, the discharge computed by this conventional method will
overestimate the flow. Utilising research data from the Flood Channel Facility at Walling-
ford, Ackers (1992) has shown that the discrepancy between the conventional calcula-
tions and the measured flow is dependent on flood flow levels. He formulated appropriate

A1, n1

A2, n2

A3, n3

P3

P2

P1

Figure 8.3 Compound channel section.
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correction factors for each region of flow; a detailed exposure of the analysis of the research
is beyond the scope of this book.

8.5 Channel design

The design of open channels involves the selection of suitable sectional dimensions such
that the maximum discharge will be conveyed within the section. The bed slope is some-
times constrained by the topography of the land in which the channel is to be constructed.

In the design of an open channel, a resistance equation, whether Darcy or Chezy or
Manning, may be used. However, at least one other equation is required to define the
relationship between width and depth. This second series of equations incorporates the
design criteria; for example, in rigid-boundary (non-erodible) channels the designer will
wish to minimise the construction cost, resulting in what is commonly termed the most
economic section. In addition, there may be a constraint on the maximum velocity to
prevent erosion or on the minimum velocity to prevent settlement of sediment.

In the case of erodible unlined channels (excavated in natural ground, e.g. clay and silts),
the design criterion will be that the boundary shear stress exerted by the moving liquid will
not exceed the ‘critical tractive force’ of the bed and side material.

8.5.1 Rigid-boundary channels – best hydraulic or ‘economic’ section

Using the Darcy-type resistance equation,

Q = A

√
8g
𝜆

A
P

S0 = KA3∕2

P1∕2

A = f (y); P = f (y)

Qmax is achieved when

dQ

dy
= 0 ⇒

d
dy

(
A3

P

)
= 0

3A2

P
dA
dy

− A3

P2

dP
dy

= 0

whence 3P
dA
dy

− A
dP
dy

= 0

For a given area, dA∕dy = 0; then, for Qmax, dP∕dy = 0; in other words, the wetted perime-
ter is a minimum. For a trapezoidal channel (see Figure 8.4),

A = (b + Ny)y

P = b + 2y
√

1 + N2

For a given area A,

P = A
y
− Ny + 2y

√
1 + N2 C
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N

y

b

l

Figure 8.4 Trapezoidal channel.

For Qmax,

dP
dy

= − A
y2

− N + 2
√

1 + N2 = 0

⇒
dP
dy

= −(b + Ny) − Ny + 2y
√

1 + N2 = 0

or b + 2Ny = 2y
√

1 + N2 [8.8]

It can be shown that if a semicircle of radius y is drawn with its centre in the liquid surface,
it will be tangential to the sides and bed. Thus the most economic section approximates
as closely as possible to a circular section which is known to have the least perimeter for
a given area.

For a rectangular section, N = 0 and b = 2y.

8.5.2 Mobile-boundary channels (erodible)

The ‘critical tractive force’ theory and the ‘maximum permissible velocity’ concept are
commonly used in the design of erodible channels for stability.

8.5.2.1 Critical tractive force theory
The force exerted by the water on the wetted area of a channel is called the tractive force.
The average unit tractive force is the average shear stress given by 𝜏0 = 𝜌gRS0. Boundary
shear stress is not, however, uniformly distributed; the distribution varies somewhat with
channel shape, but not with size. For trapezoidal sections the maximum shear stress on
the bed may be taken as 𝜌gyS0 and on the sides as 0.76 𝜌gyS0 (see Figure 8.5); however,
the shear distribution depends on the channel aspect ratio b∕y (see Table 8.2).

τz

τb

Figure 8.5 Distribution of shear stress on channel boundary.
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Table 8.2 Maximum bed/side shear stress.

Aspect ratio b∕y 𝝉b 𝐦𝐚𝐱∕𝝆gyS0 𝝉s 𝐦𝐚𝐱∕𝝆gyS0

2 0.890 0.735
4 0.970 0.750

>8 0.985 0.780

If the shear stresses can be kept below that which will cause the material of the channel
boundary to move, the channel will be stable. The critical tractive force of a particular
material is the unit tractive force, which will not cause erosion of the material on a hori-
zontal surface. Material on the sides of the channel is subjected, in addition to the shear
force due to the flowing water, to a gravity force down the slope. It can be shown that if
𝜏cb is the critical tractive force, the maximum critical shear stress due to the water flow on
the sides is

𝜏cs = 𝜏cb

√
1 − sin2

𝜃

sin2
𝜙

[8.9]

where 𝜃 is the slope of the sides to the horizontal and 𝜙 the angle of repose of the material.
Table 8.3 gives some typical values of critical tractive force and permissible velocity.

Table 8.3 Critical tractive force and mean velocity for different bed materials.

Critical The
tractive Approximate Manning
force mean velocity coefficient

Material Size (mm) (N/m2) (m/s) of roughness

Sandy loam (non-colloidal) 2.0 0.50 0.020
Silt loam (non-colloidal) 2.5 0.60 0.020
Alluvial silt (non-colloidal) 2.5 0.60 0.020
Ordinary firm loam 3.7 0.75 0.020
Volcanic ash 3.7 0.75 0.020
Stiff clay (very colloidal) 1.22 1.15 0.025
Alluvial silts (colloidal) 12.2 1.15 0.025
Shales and hardpans 31.8 1.85 0.025
Fine sand (non-colloidal) 0.062–0.25 1.2 0.45 0.020
Medium sand (non-colloidal) 0.25–0.5 1.7 0.50 0.020
Coarse sand (non-colloidal) 0.5–2.0 2.5 0.60 0.020
Fine gravel 4–8 3.7 0.75 0.020
Coarse gravel 8–64 14.7 1.25 0.025
Cobbles and shingles 64–256 44.0 1.55 0.035
Graded loam and cobbles
(non-colloidal)

0.004–64 19.6 1.15 0.300

Graded silts to cobbles
(colloidal)

0–64 22.0 1.25 0.300
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8.5.2.2 Maximum permissible mean velocity concept
This appears to be a rather uncertain concept since the depth of flow has a significant effect
on the boundary shear stress. Fortier and Scobey (1926) published the values in Table 8.3
for well-seasoned channels of small bed slope and depths below 1 m.

8.6 Uniform flow in part-full circular pipes

Circular pipes are widely used for underground storm sewers and wastewater sewers.
Storm sewers are usually designed to have sufficient capacity so that they do not run full
when conveying the computed surface runoff resulting from a storm of a specified aver-
age return period. Under these conditions, ‘open channel flow’ conditions exist. However,
more intense storms may result in the capacity of the pipe, when running full at a hydraulic
gradient equal to the pipe slope, being exceeded and pressurised pipe conditions will fol-
low. Wastewater sewers, on the other hand, generally carry relatively small discharges and
the design criterion in this case is that the mean velocity under the design flow condi-
tions should exceed a ‘self-cleansing velocity’ so that sediment will not be permanently
deposited.

Although the flow in sewers is rarely steady (and hence non-uniform), some commonly
used design methods adopt the assumption of uniform flow at design flow conditions; the
rational method for storm sewer design is an example, as is the modified rational method
(National Water Council, 1981). Foul sewers are invariably designed under assumed uni-
form flow conditions. Mathematical simulation and design models of flow in storm sewer
networks take account of the unsteady flows using the dynamic equations of flow, but
such models often incorporate the steady uniform flow relations in storage–discharge
relationships.

Flow equations may be calculated from the geometrical properties derived from
Figure 8.6.

z = D
2

− y

𝜃 = cos−1
(

2z
D

)
radians

A = D2

8
(2𝜃 − sin2𝜃)

D

y

z θ

Figure 8.6 Circular channel section.

C
h

ap
ter

8



Steady Flow in Open Channels 195

P = D𝜃

R = A
P

V = −
√

32gRS0 log

(
k

14.8R
+ 1.255𝜈

R
√

32gRS0

)
[8.10]

Q = −A
√

32gRS0 log

(
k

14.8R
+ 1.255𝜈

R
√

32gRS0

)
[8.11]

8.7 Steady, rapidly varied channel flow energy principles

The computation of non-uniform surface profiles caused by changes of channel section
and the like requires the application of energy and momentum principles.

The energy per unit weight of liquid at a section of a channel above some horizontal
datum is

H = z + y cos 𝜃 + 𝛼V2

2g
(see Figure 8.1)

For mild slopes, cos 𝜃 = 1.0,

H = z + y + 𝛼V2

2g
[8.12]

Specific energy E is measured relative to the bed:

E = y + 𝛼V2

2g
or E = y +

𝛼Q2

2gA2

For a steady fixed inflow into a channel, the specific energy at a particular section can
be varied by changing the depth by means of a structure such as a sluice gate with an
adjustable opening. Plotting y versus E for a section where the relationship A = f (y) is
known and Q is fixed results in the ‘specific energy curve’; Figure 8.7 shows that at a
given energy level two alternative depths are possible.

y

yc

Specific energy, E

αV 2/2g

D
ep

th
, y

Figure 8.7 Specific energy curve. C
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Specific energy becomes a minimum at a certain depth called the critical depth (yc). For
this condition,

dE
dy

= 1 −
𝛼Q 2

A3g
dA
dy

= 0

Now dA∕dy = B, the surface width

whence
𝛼Q 2B

A3g
= 1 or

Q√
g∕𝛼

= A

√
A
B

[8.13]

For the special case of a rectangular channel and where 𝛼 = 1.0,

V2

gy
= 1

that is, the Froude number is unity and

yc =
3

√
Q2

gb2
= 3

√
q2

g
[8.14]

where q is the discharge per unit width.
At the critical depth,

Emin = yc +
V2

c

2g
and Vc =

√
gyc

Emin = yc +
yc

2

In a rectangular channel, the depth of flow at the critical flow is two-thirds of the specific
energy at critical flow.

The velocity corresponding to the critical depth is called the critical velocity.
At depths below the critical the flow is called supercritical, and at depths above the

critical the flow is subcritical or tranquil.
From the specific energy equation we can write

Q = A

√
2g
𝛼

(E − y)

which shows that Q = f (y) for a constant E. This exhibits a maximum discharge occurring
at a depth equal to critical depth (see Figure 8.21).

8.8 The momentum equation and the hydraulic jump

The hydraulic jump is a stationary surge and occurs in the transition from a supercritical
to subcritical flow (Figure 8.8).

A smooth transition is not possible: if this were to occur, the energy would vary according
to the route ABC on the specific energy curve. At B the energy would be less than that at
C, corresponding to the downstream depth ys. Therefore a rapid depth change occurs
corresponding to the route AC on the curve. The depth at which the jump starts is called
the initial depth, yi, and the downstream depths the sequent depth, ys. For a given channel
and discharge, there is a unique relationship between yi and ys which requires application
of the momentum equation.
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E

yiyi
yc

ys

ys

B

C

A

Figure 8.8 The hydraulic jump.

The steady-state momentum equation may be applied to the situation shown in
Figure 8.9.

Assuming hydrostatic pressure distribution,

𝜌gA1ȳ1 + 𝜌Q(𝛽1V1 − 𝛽2V2) − 𝜌gA2ȳ2 + 𝜌gĀS0 − 𝜌gĀSf = 0

where ȳ is the depth of the centre of area of the cross section and Ā = (A1 + A2)∕2.

⇒ A1ȳ1 +
Q
g

(𝛽1V1 − 𝛽2V2) − A2ȳ2 + Ā(S0 − Sf) = 0 [8.15]

Equation 8.15 may be rewritten as M1 = M2, where

M = Aȳ +
Q
g
𝛽V = f (y)

The M function (specific force) exhibits a minimum value at critical depth. When applied
to the analysis of the hydraulic jump, the term (S0 − Sf) may be neglected. In the special
case of a rectangular channel, the above equation reduces to a quadratic which can be
solved for either yi or ys. Taking 𝛽1 = 𝛽2 (𝛽 = Boussinesq coefficient = (1∕AV2) ∫ A

0 v2 dA,
often taken for practical purposes to equal 1.0),

yi =
ys

2

(√
1 + 8𝛽Fr2

s − 1
)

[8.16]

or ys =
yi

2

(√
1 + 8Fr2

i − 1
)

[8.17]

where Frs =
Vs√
gys

and Fri =
Vi√
giyi

(Froude numbers)

V2V1

P1 P2

S0

21

S f

Figure 8.9 Reference diagram for momentum equation. C
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The energy loss through the jump (EL =E1 − E2) can also be shown as

EL =
(y2 − y1)3

4y1y2
[8.18]

The length of the jump is a function of the approach flow Froude number, and for Fr1 > 9,
the length is approximately equal to 7y2. The excess kinetic energy of the downstream
flow over a control structure (such as a spillway) is often destroyed by the formation of
a hydraulic jump (energy dissipator) over a confined solid structure known as a stilling
basin.

8.9 Steady, gradually varied open channel flow

This condition occurs when the motivating and drag forces are not balanced, with the
result that the depth varies gradually along the length of the channel (Figure 8.10).

The dynamic equation of gradually varied flow is obtained by differentiating the
energy equation H = z + y cos 𝜃 + 𝛼V2∕2g with respect to distance along the channel bed
(x-direction):

dH
dx

= dz
dx

+ cos 𝜃
dy

dx
+ d

dx

(
𝛼V2

2g

)

Now Sf = −dH
dx

; S0 = sin 𝜃 = − dz
dx

dy

dx
=

S0 − Sf

cos 𝜃 + d
(
𝛼V2∕2g

)
∕dy

d
dy

(
V2

2g

)
= d

dy

(
Q 2

2gA2

)
= −

2Q 2

2gA3

dA
dy

and dA∕dy = T, the width at the liquid surface.

d
dy

(
V2

2g

)
= −

Q2T

A3g

Since channel slopes are usually small, cos 𝜃 = 1.0

whence
dy

dx
=

S0 − Sf

1 − 𝛼Q 2T∕A3g
[8.19]

αV 2 /2g

y cos θ

θ
Datum

S f

z

x

Figure 8.10 Varied flow in channel.
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which gives the slope of the water surface relative to the bed. Various types of gradually
varied surface profiles can occur, depending on whether the bed slope is mild, steep, crit-
ical, horizontal or adverse, and on the depth of flow, as shown in Example 8.24. Further
treatment and illustration of this topic can be found in texts such as Chow (1959) and
Chadwick et al. (2013).

8.10 Computations of gradually varied flow

The gradually varied flow (Equation 8.19) may be solved using numerical methods, which
have superseded earlier approaches by direct and graphical integration. Two such methods
are described in the following sections.

Computations of gradually varied surface profiles should proceed upstream from the
control section in subcritical flow and downstream from the control section in supercritical
flow.

8.11 The direct step method

The direct step method is a simple method applicable to prismatic channels. As in the
graphical integration method, depths of flow are specified and the distances between suc-
cessive depths calculated.

Consider an element of the flow (Figure 8.11).
Equating total heads at 1 and 2,

S0Δx + y1 + 𝛼1

V2
1

2g
= y2 + 𝛼2

V2
2

2g
+ Sf Δx

i.e. Δx =
E2 − E1

S0 − Sf
[8.20]

where E is the specific energy.
In the computations Sf is calculated for depths y1 and y2 and the average taken denoted

by S̄f.

y1

z1 z2

y2

Sfα1V1
2/ 2g

α2V2
2/ 2g

S0Δx

S0

Δx

Sf Δ x

Datum

21

Figure 8.11 The direct step method. C
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8.12 The standard step method

The standard step method is applicable to non-prismatic channels and therefore to nat-
ural rivers. The station positions are predetermined and the objective is to caculate the
surface elevations, and hence the depths, at the stations. A trial-and-improvement method
is employed (see Figure 8.12).

y1 +
𝛼V2

1

2g
+ hf = S0 Δx + y2 +

𝛼V2
2

2g
Z1 = y1; Z2 = S0 Δx + y2

and assuming 𝛼1 = 𝛼2 = 𝛼,

Z1 +
𝛼V2

1

2g
+ hf = Z2 +

𝛼V2
2

2g
[8.21]

Writing H1 = Z1 + 𝛼V2
1∕2g and H2 = Z2 + 𝛼V2

2∕2g, Equation 8.21 becomes H1 + hf =
H2.

Proceeding upstream (in subcritical flow), for example, H1 is known and Δx is predeter-
mined. Z2 is estimated, for example, by adding a small amount to Z1; y2 is obtained from
y2 = Z2 − z2. The area and wetted perimeter, and hence hydraulic radius corresponding to
y2, are obtained from the known geometry of the section.

Calculate Sf,2 = n2V2
2∕R4∕3

2 and S̄f = (Sf,2 + Sf,1)∕2.
Calculate 𝛼V2

2∕2g and H(2) = Z2 + 𝛼V2
2∕2g.

Calculate H(1) = H1 + S̄f Δx.

Compare H(2) and H(1); if the difference is not within prescribed limits (e.g. 0.001 m), re-
estimate Z2 and repeat until agreement is reached; Z2, y2 and H(2) = H2 are then recorded
and Z2 and H2 become Z1 and H1 for the succeeding station.

y2

z1
z2

Z2

Z1

y1

Sfα2V2
2

α1V1
2

S0 Δx

Δx

Sf Δ x

Datum

12

/ 2g

/2g

S0

Figure 8.12 The standard step method.
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8.13 Canal delivery problems

When a channel is connected to two reservoirs its discharge capacity depends upon inlet
(upstream) and outlet (downstream) conditions imposed by the water levels in the reser-
voirs. The reservoir–canal–reservoir interaction depends upon the channel characteristics
such as its boundary roughness, its slope, the length between reservoirs and the state of
water levels in the reservoirs.

8.13.1 Case 1: Upstream reservoir water level is constant

For a given boundary characteristic the discharge rate in the channel depends on whether it
is a long or short channel with a mild or critical or steep bed slope. A long channel delivers
water with no interference from the downstream water levels (i.e. with no downstream
control); only the inlet controls the flow rate. This suggests that any water surface profiles
likely to develop with the available downstream water levels will not be long enough to
reach the inlet, thus allowing the inlet to discharge freely. On the other hand, if the channel
is short, the water surface profiles could submerge the inlet and this submergence affects
the flow rate. The types of profile and their appropriate lengths would depend on the
channel slope.

(a) Long channel with mild slope (see Figure 8.20): The flow on entering the inlet estab-
lishes uniform conditions from a short distance downstream of the entry. Thus at
entry we have two simultaneous equations to compute the flow depth y0 and dis-
charge Q0 or velocity:

Energy equation: upstream water level above inlet,H = y0 + 𝛼V2∕2g + K𝛼V2∕2g

Uniform flow resistance equation (say Manning’s), V = (1∕n)R2∕3S1∕2

See Example 8.7 for the solution of these two equations.
(b) Long channel with critical slope: The flow now establishes with its normal flow

depth equal to the critical depth from the inlet, thus allowing maximum possible
discharge through the channel. We now have at the channel entry two equations
enabling the computations of Q and y:

Energy equation at inlet: H = yc + 𝛼V2
c ∕2g + 𝛼KV2

c ∕2g

Either the critical depth criterion 𝛼Q2B∕gA2 = 1 or the appropriate uniform flow
resistance equation.

(c) Long channel with steep slope: The flow depth at the entry is critical, the channel
delivering maximum possible discharge, and if the channel is sufficiently long uniform
flow will establish further downstream of the entry. The flow up to this point will be
non-uniform with the development of an S2 profile which asymptotically merges with
the uniform flow depth (see Example 8.8).

The problems are much more complicated if the channels are short; in other words, any
downstream control or disturbance (e.g. downstream water level variations) extends its
influence right up to the entry, thus submerging the entry and changing the delivery capac-
ities of the channel. Such problems are solved iteratively by computer. C
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8.13.2 Case 2: Downstream water level is constant and upstream level varies

Long channel with mild slope: here the discharge gradually increases with increasing
upstream level (y1) with the formation of M1 profiles and attains uniform flow condi-
tions (Q = Q0) when y1 = y2, the downstream level. Further increases in y1 produce M2
profiles, ultimately delivering a maximum discharge whose critical depth is equal to y2.
Any further rise in y1 would develop an M2 profile terminating with its corresponding
critical depth, now greater than y2; this necessitates a corresponding increase in y2.

8.13.3 Case 3: Both water levels varying (mild slope)

For a constant Q, the levels y1 and y2 are fluctuating, thus leading to a number of possible
surface profiles. With y1 = y2, uniform flow is established.

However, for water levels above uniform flow depth M1, profiles develop with the
upper limit occurring when y2 = y1 + S0L, L being the length of the channel between
reservoirs. For water levels below uniform depth M2, profiles develop with the mini-
mum depth of flow occurring when y2 = yc, the critical depth corresponding to the given
discharge.

8.14 Culvert flow

Highway cross drainage is normally provided with culverts, bridges and dips. Culverts
are structures buried under a high-level embankment (see Figure 8.13). The culvert con-
sists of a pipe barrel (conveyance part, i.e. the channel) with protection works at its
entrance and exit. It creates a backwater effect to the approach flow, causing a pondage
of water above the culvert entrance. The hydraulic design of the culvert is based upon the
characteristics of the barrel flow (free surface flow, orifice flow or pipe flow) conditions
which depend on its length, roughness, gradient and upstream and downstream water
levels.

TEL

KV1
2/2g

V2
2/2g

y1

S0

y2

H
TEL

TWL
D

Embankment

L

Figure 8.13 Culvert flow with free entrance. L, length of culvert; D, height of culvert; S0, bed
slope; y1, depth at entrance; y2, depth at exit; y0, uniform flow depth; yc, critical depth; K, entry
loss coefficient; TEL, total energy line; TWL, tail water level.
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Free entrance conditions:

1. H∕D < 1.2; y0 > yc < y2 < D; any length; mild slope: open channel subcritical flow
2. H∕D < 1.2; y0 > yc > y2 < D; any length; mild slope: open channel subcritical

flow
3. H∕D < 1.2; y0 < yc > y2 < D; any length; steep slope: open channel supercritical

flow; critical depth at inlet
4. H∕D < 1.2; y0 < yc < y2 < D; any length; steep slope: open channel supercritical

flow; formation of hydraulic jump in barrel
Submerged entrance conditions:

5. H∕D > 1.2; y2 < D; short; any slope: orifice flow
6. H∕D > 1.2; y2 < D; long; any slope: pipe flow
7. H∕D > 1.2; y2 > D; any length; any slope: pipe flow

See Example 8.27 for a complete analysis of culvert flow.

8.15 Spatially varied flow in open channels

Spatially varied flow (SVF) is represented by the discharge variation along the length of
the channel due to lateral inflow (side spillway channel) or outflow (side weir or bottom
racks).

8.15.1 Increasing flow (q∗ , inflow rate per unit length)

In this case there exists a considerable amount of turbulence due to the addition of the
incoming flow, and the energy equation is not of much use. With the usual assumptions
introduced in the development of non-uniform flow equations, and assuming that the lat-
eral inflow has no x-momentum added to the channel flow, we can deduce an equation for
the surface slope as

dy

dx
=

S0 − Sf − 2𝛽Qq∗∕gA2

1 − 𝛽Q2T∕gA3
[8.22]

In the case of subcritical flow all along the channel, the control (critical depth) of the profile
is at the downstream end of the channel. For all other flow situations the establishment of
the control point is essential to initiate the computational procedures.

In a rectangular channel (T = B, the bed width), the location of the control point xc may
be written approximately (Henderson, 1966) as

xc =
8q2

∗𝛽
3

gB2
(
S0 − gP∕C2B

)3
[8.23]

where C is the Chezy coefficient and P the wetted perimeter of the channel. The control
point in a channel will exist only if the channel length L > xc. In a given length of the
channel, for a control section to exist, its slope S0 should have a minimum value given by

S0 >
gP

C2B
+ 2𝛽

B

(
q2
∗B

gL

)1∕3

[8.24]

and the flow upstream of the control is subcritical. C
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8.15.2 Decreasing flow (q∗ , outflow rate per unit length) – side weir

Assuming the energy loss (due to diversion of the water) in the parent channel is zero, the
water surface slope equation can be deduced as

dy

dx
=

S0 − Sf − 𝛼Qq∗∕gA2

1 − 𝛼Q2T∕gA3
[8.25]

Equation 8.25 can be extended to be applicable to a side weir of short length with S0 =
Sf = 0 and 𝛼 = 1. In the case of a rectangular channel, Equation 8.25 is rewritten as

dy

dx
=

Qy
(
−dQ∕dx

)
gB2y3 − Q2

[8.26]

The outflow per unit length, q∗ = −dQ∕dx, is given by the weir equation

−
dQ

dx
= 2

3
CM

√
2g(y − s)3∕2 [8.27]

where CM is the De Marchi discharge coefficient; s, sill height; and y, flow depth in the
channel. If the specific energy in the channel, E, is assumed constant, the discharge in the
channel at any section is given by

Q = By
√

2g(E − y) [8.28]

Combining Equations 8.26, 8.27 and 8.28 and integrating, we obtain

x = 3B
2CM

𝜙M(y, E, s) + Constant [8.29]

in which

𝜙M(y, E, S) = 2E − 3s
E − s

√
E − y
y − s

− 3 sin−1

√
E − y
y − s

[8.30]

The weir length L between two sections is then given by

L = x2 − x1 = 3
2

B
CM

(𝜙M2 − 𝜙M1) [8.31]

The De Marchi coefficient, CM, for a rectangular sharp-crested side weir is given by

CM = 0.81 − 0.60Fr1 [8.32]

for both subcritical and supercritical approach flows, Fr1 being the flow Froude number.
For a broad-crested side weir, the discharge coefficient is given by

CM = (0.81 − 0.60Fr1)K [8.33]

where K is a parameter depending on the crest length W, and for a 90◦ branch channel is
given by

K = 1.0 for
y1 − s

W
> 2.0 [8.34]

and

K = 0.80 + 0.10
(y1 − s

W

)
for

y1 − s
W

< 2.0 [8.35]
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8.15.3 Decreasing flow (bottom racks)

The flow over bottom racks (e.g. kerb openings) is spatially varied with the surface slope
given by

dy

dx
=

2𝜀C
√

y(E − y)

3y − 2E
[8.36]

in which 𝜀 is the void ratio (opening area to total rack area); E, the specific energy (con-
stant); and C, a coefficient of discharge depending on the configuration of openings. Fur-
ther treatment of these topics can be found, for example, in French (1994, 2007).

Worked examples

Example 8.1

Measurements carried out on the uniform flow of water in a long rectangular channel
3.0 m wide and of bed slope 0.001 revealed that at a depth of flow of 0.8 m, the dis-
charge of water at 15◦C was 3.6 m3/s. Estimate the discharge of water at 15◦C when the
depth is 1.5 m using (a) the Manning equation and (b) the Darcy equation, and state any
assumptions made.

Solution:

From the flow measurement, the value of n and the effective roughness size (k) can be
found:

(a)

Q = A
n

R2∕3S1∕2
0 (Equation 8.4) (i)

n = A
Q

R2∕3S1∕2
0

= 0.0137

when y = 1.5m; Q = 8.60 m3∕s

(b) Using Equation 8.11,

Q = −A

√
32gRS0

2.303
ln

(
k

14.8R
+ 1.255𝜈

R
√

32gRS0

)
(ii)

(Note the conversion from log (base 10) to ln (base e).)

whence k
14.8R

+ 1.255𝜈

R
√

32gRS0

= exp

(
−

Q × 2.303

A
√

32gRS0

)

k =

[
exp

(
−

Q × 2.303

A
√

32gRS0

)
− 1.255𝜈

R
√

32gRS0

]
× 14.8 × R = 0.00146 m C
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Substitution in Equation (ii) with y = 1.5 m and k = 0.00146 m yields Q =
8.44 m3/s.

Example 8.2

A concrete-lined trapezoidal channel has a bed width of 3.5 m, side slopes at 45◦ to the
horizontal, a bed slope 1 in 1000 and the Manning roughness coefficient of 0.015. Calcu-
late the depth of uniform flow when the discharge is 20 m3/s.

Solution:

See Figure 8.14.

A = (b + Ny)y = (3.5 + y) y

P = b + 2y
√

1 + N2 = 3.5 + 2
√

2y

R = A
P

=
(3.5 + y)y

3.5 + 2
√

2y

Manning equation: Q = A
n

R2∕3S1∕2

i.e. Q =
(3.5 + y)y

0.015

[
(3.5 + y)y

3.5 + 2
√

2y

]2∕3

(0.001)1∕2 (i)

Setting Q = 20 m3/s, Equation (i) may be solved for y by trial or by graphical interpolation
from a plot of discharge against depth for a range of y values substituted into Equation (i)
(see Figure 8.15 and the table below).

At 20 m3/s, depth of uniform flow is 1.73 m.
Of course, the graph (Figure 8.15) will enable the depth at any other discharge to be

determined.

Depth y (m) A (m2) P (m) R (m) Q (m3/s)

1.0 4.50 6.33 0.711 7.56
1.2 5.64 6.89 0.818 10.40
1.4 6.86 7.46 0.920 13.67
1.6 8.16 8.02 1.017 17.39
1.8 9.54 8.59 1.110 21.57
2.0 11.00 9.16 1.200 26.21

N

y

b

l

Figure 8.14 Flow through trapezoidal channel.
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302520

Figure 8.15 Normal depth versus discharge.

Example 8.3

Assuming that the flow in a river is in the rough turbulent zone, show that in a wide river
a velocity measurement taken at 0.6 of the depth of flow will approximate closely to the
mean velocity in the vertical.

Solution:

See Figure 8.16.
In Chapter 7 it was shown that the velocity distribution in the turbulent boundary layer

formed in the fluid flow past a rough surface is

v√
𝜏0∕𝜌

= 5.75 log
y

k
+ 8.5 (i)

or v√
𝜏0∕𝜌

= 5.75 log
30y

k
(ii)

Noting that the local velocity given by Equation (i) is reduced to zero at y′ = k∕30 from
the boundary, the mean velocity in the vertical is obtained from

V = 1
y0 ∫

y0

y′
v dy

whence V =
5.75

√
𝜏0∕𝜌

2.303y0 ∫
y0

y′
ln

30y

k
dy

V

v

y

y′

y0

Velocity
distribution

Figure 8.16 Velocity profile in rough turbulent zone.
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=
5.75

√
𝜏0∕𝜌

2.303y0

[
y0 ln

30
k

+ y0 ln y0 − y0 −
(

y′ ln 30
k

+ y′ ln y′ − y′
)]

=
5.75

√
𝜏0∕𝜌

2.303y0

(
y0 ln

30y0

k
− y0 + y′

)

i.e. V = 5.75
√

𝜏0

𝜌

(
log

30y0

k
− 1

2.303

)
(iii)

ignoring the single y′ term.
The distance above the bed at which the mean velocity coincides with the local velocity

is obtained by equating (ii) and (iii):

log
30y

k
= log

30y0

k
− 0.434

or y = 0.37y0 ≃ 0.4y0

This verifies the field practice of taking current meter measurements at 0.6 of depth to
obtain a close approximation to the mean velocity in the depth.

Example 8.4

Derive Chezy’s resistance equation for uniform flow in open channels, and show that the
Chezy coefficient C is a function of the flow Reynolds number and the channel’s relative
roughness and is given by

C = 5.75
√

g log
(

12R
k + 𝛿′∕3.5

)

where 𝛿′ is the sub-layer thickness given by Equation 7.33.

Solution:

Balancing the gravity and resisting forces along a reach length L of the channel (for uniform
flow), we obtain

𝜌gALS0 = 𝜏PL (i)

giving the uniform boundary shear stress

𝜏 = 𝜌gRS0 [8.37]

In turbulent flows, 𝜏 ∝ V2 (V is the mean velocity of flow), and we can hence write

V = C
√

RS0 [8.38]

Comparing Equation 8.38 (Chezy’s) with the Darcy–Weisbach equation (Equation 8.2),
we obtain

C =
√

8g
𝜆

[8.39]
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In pipe flow, 𝜆 = f (Re, k∕D), and extending this to open channel flow (De = 4R),

𝜆 = f (4RV∕𝜈, k∕4R) [8.40]

Equation 8.40 is represented by the same Moody diagram constructed for pipe flow.
Evaluation of the Chezy coefficient:
The velocity distributions (two-dimensional flows) for smooth and rough boundaries

given by Equations 7.23 and 7.27 can be written as

u
u∗ = 5.75 log

(
9u∗y
𝜈

)
and u

u∗ = 5.75 log
(

30y

k

)
(ii)

In turbulent two-dimensional flows, u = V at y = 0.4y0 (see Example 8.3), y0 being the
flow depth. Also, Equation 7.33 suggests that u∗ = 11.6𝜈∕𝛿′. Combining these with (ii)
and (iii) and replacing y0 by R yield

V = 5.75u∗ log
(

12R
k + 𝛿′∕3.5

)
(iii)

By writing u∗ = (gRS0)1∕2 in Equation (iv) and comparing with the Chezy equation (Equa-
tion 8.38), we can deduce

C = 5.75
√

g log
(

12R
k + 𝛿′∕3.5

)
[8.41]

Example 8.5

A trapezoidal channel with side slopes 1:1 and bed slope 1:1000 has a 3 m wide bed
composed of sand (n = 0.02) and sides of concrete (n = 0.014). Estimate the discharge
when the depth of flow is 2.0 m.

Solution:

See Figure 8.17.

P1(=P3) = 2.828 m; P2 = 3.0 m; P = 8.656 m (on solid surface only)

A1(=A3) = 2.0 m2; A2 = 6.0 m2; A = 10.0 m2

R1(=R3) = 0.7072 m; R2 = 2.0 m; R = 1.155 m

3.0 m

P2

P1

2.0 m

Figure 8.17 The equivalent Manning, n in channel of variable boundary roughness. C
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Evaluate composite roughness:

Horton and Einstein: n =

(∑
Pin

1.5
i

P

)2∕3

n =
(

2 × 2.828 × 0.0141.5 + 3 × 0.021.5

8.656

)2∕3

= 0.0162

Pavlovskij: n =

(∑
Pin

2
i

P

)1∕2

n =
(

2 × 2.828 × 0.0142 + 3 × 0.022

8.656

)1∕2

= 0.0163

Lotter: n = PR5∕3∑N
i=1 PiR

5∕3
i ∕ni

= 0.0157

With y = 2.0 m,

Discharge (Horton and Einstein) = A
n

R2∕3S1∕2
0 = 21.49 m3∕s

Discharge (Pavlovskij) = 21.36 m3∕s

Discharge (Lotter) = 22.17 m3∕s

Example 8.6

The cross section of the flow in a river during a flood was as shown in Figure 8.18. Assum-
ing the roughness coefficients for the side channel and main channel to be 0.04 and 0.03,
respectively, estimate the discharge.

Bed slope = 0.005
Area of main channel (bank-full) = 280 m2

Wetted perimeter of main channel = 54 m
Area of flow in side channel = 152.25 m2

Wetted perimeter of side channel around the solid boundary only (excluding the inter-
faces X−X between the main and side channel flows) = 104.24 m. Area of main channel

X

X

40 m50 m

1
1

50 m

1.5

Figure 8.18 Two-stage (compound) channel.
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component = 280 + 40 × 1.5 = 340 m2.

Discharge = 340
0.03

(
340
54

)2∕3 √
0.005 + 152.25

0.04

(
152.25
104.24

)2∕3 √
0.005

= 3079 m3∕s

Note that the treatment of this problem by the equivalent roughness methods of Horton
and Pavlovskij will produce large errors in the computed discharge due to the inherent
assumptions. However, the Lotter method should produce a similar result to that computed
above since it basically uses the same method.

Lotter equivalent roughness, n = PR5∕3∑N
i=1 PiR

5∕3
i ∕ni

n = 0.0241

and Q = 492.25
0.0241

(
492.25
158.242

)2∕3 √
0.005

= 3077 m3∕s

Example 8.7

A long rectangular concrete-lined channel (k = 0.3 mm), 4.0 m wide, bed slope 1:500, is
fed by a reservoir via an uncontrolled inlet. Assuming that uniform flow is established a
short distance from the inlet and that entry losses are equal to 0.5V2∕2g, determine the
discharge and depth of uniform flow in the channel when the level in the reservoir is 2.5 m
above the bed of the channel at inlet.

Figure 8.19 is an example of natural channel control; the discharge is affected both by
the resistance of the channel and by the energy available at the inlet.

Two simultaneous equations therefore need to be solved:

1. Apply the energy equation to sections 1 and 2, assuming negligible velocity head at 1:

2.5 = y + V2

2g
+ hL = y + V2

2g
+ 0.5V2

2g
= y +

Q2

(by)22g
(1 + 0.5) (i)

2.5 m
y

hL

V2/2g

1 2
3

Figure 8.19 Channel inlet. C
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or Q2 = by

√
2g

(2.5 − y)
1.5

(ii)

2. Resistance equation applied downstream of section 2:

Q3 = −A
√

32gRS0 log

(
k

14.8R
+ 1.255𝜈

R
√

32gRS0

)
(iii)

Solution:

Equation (ii) could be incorporated in Equation (iii) to yield an implicit equation by y,
which could then be found iteratively. However, a graphical solution can be obtained by
generating curves for Q versus y from Equations (ii) and (iii).

y (m) 0.4 0.8 1.2 1.6 2.0 2.4 2.5
Q2 (m3/s) 8.38 15.09 19.79 21.95 20.45 10.98 0
Q3 (m3/s) 2.14 5.94 10.50 15.51 20.80 26.30 27.70

Q2 and Q3 are plotted against y in Figure 8.20 whence discharge = 20.5 m3/s at a uniform
flow depth of 1.98 m, given by the point of intersection of the two curves.

Note: Care must be taken in treating this method of solution as a universal case. For
example, if the channel slope is steep the flow may be supercritical and the plots of Equa-
tions (ii) and (iii) would appear as in Figure 8.21.

The solution is now not the point of intersection of the two curves. The depth passes
through the critical depth at inlet and this condition controls the discharge, given by Qc.
Channel resistance no longer controls the flow and the depth of uniform flow corresponds
with Qc on the curve of Equation (iii).

Q2
2.5

2.0

1.5

D
ep

th
 (

m
)

1.0

0.5

0 10

Discharge (m3/s)

3020

Q3

Figure 8.20 Depth at inlet versus discharge.
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Discharge, Q

Qc

Q2

Q3

D
ep

th
, y

  

Figure 8.21 Q curves in steep-sloped channel.

Example 8.8

Using the data of Example 8.7 but with a channel bed slope of 1:300, calculate the dis-
charge and depth of uniform flow.

Solution:

The discharge-versus-depth curve using the inlet energy relationship, Equation (ii) of
Example 8.7, is unaffected by the bed slope. Q3 is recomputed from Equation (iii) of
Example 8.7 with S0 = 1∕300.

y (m) 0.4 0.8 1.2 1.6 2.0 2.4 2.5
Q2 (m3/s) 8.38 15.06 19.79 21.95 20.45 10.98 0
Q3 (m3/s) 3.94 10.91 19.27 28.44 38.14 48.20 50.77

The plotted curves of Q 2 versus y and of Q3 versus y appear as in Figure 8.21. The flow at
the channel inlet is critical, thus controlling the discharge (=Qc). Downstream, the uniform
depth of flow is supercritical.

Summary: Discharge = 21.95 m3∕s; depth in channel = 1.31 m

Example 8.9

Determine the dimensions of a trapezoidal channel, lined with concrete (k = 0.15 mm)
with side slopes at 45◦ to the horizontal and bed slope 1: 1000 to discharge 20 m3/s of
water at 15◦C under uniform flow conditions such that the section is the most economic.

Solution:

See Figure 8.4.

N = 1.0

b + 2Ny = 2y
√

1 + N 2 C
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b + 2y = 2
√

2y

or b = 0.828y

Then A = 1.828y2; P = 3.656y

Q = −A
√

32gRS0 log

(
k

14.8R
+ 1.255𝜈

R
√

32gRS0

)

This must be solved by trial, calculating Q for a series of y.

y (m) 0.5 1.0 1.5 1.8 1.9 2.0
Q (m3/s) 0.54 3.30 9.50 15.26 17.56 20.06

Adopt y = 2.0 m, then

b = 1.414 m

Example 8.10

A trapezoidal irrigation channel excavated in silty sand having a critical tractive force on
the horizontal of 2.4 N/m2 and angle of friction 30◦ is to be designed to convey a discharge
of 10 m3/s on a bed slope of 1:10 000. The side slopes will be 1 (vertical) : 2 (horizontal)
(n = 0.02).

Solution:

The channel bed is almost horizontal and the critical tractive force on the bed may therefore
be taken as 2.4 N/m2.

The limiting tractive force on the sides is

𝜏cs = 𝜏cb

√
1 − sin2

𝜃

sin2
𝜙

(see Section 8.5.1)

= 2.4

√
1 − sin2(26.565◦)

sin2(30◦)

= 2.4
√

1 − 0.8 = 1.073 N∕m2

⇒ 0.76𝜌gyS0 >| 1.073 N∕m2

⇒ y >| 1.073
0.76 × 1000 × 9.81 × 0.0001

y >| 1.44 m

Now Q = A
n

R2∕3S1∕2
0

10 =
(b + 2y)y

n

(
(b + 2y)y

b + 2y
√

5

)2∕3

S1∕2
0
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10 = (b + 2.88) × 1.44
0.02

(
(b + 2.88) × 1.44

b + 6.44

)2∕3

×
√

0.0001

Solving by trial (graphical interpolation) for series of values of b,

b 1.0 2.0 4.0 8.0 10.0 12.0
RHS 2.31 3.11 4.78 8.27 10.05 11.84

required b = 9.95 m

V = 0.54 m∕s

which agrees reasonably with the maximum mean velocity criterion (Table 8.3).

Example 8.11 (Maximum mean velocity criterion)

Using the data of the previous example, determine the channel dimensions such that the
mean velocity does not exceed 0.5 m/s when conveying the discharge of 10 m3/s.

Solution:

Q = AV; 10 = A × 0.5

whence A = 20 m2

and A = (b + 2y)y

whence b = (20∕y) − 2y

Q = A
n

R2∕3S1∕2
0 = A5∕3

nP2∕3
S1∕2

i.e. 10 =
205∕3 ×

√
0.0001

0.02 × P2∕3

whence P = 20 m

and P = b + 2y
√

5 = 20
y

+ 2y
(√

5 − 1
)

that is, 2.472y2 − 20y + 20 = 0

whence y = 1.169 m

and b = 14.77 m

Example 8.12

Check the proposed design of a branch of a wastewater sewerage system receiving the flow
from 300 houses. The pipe is 150 mm in diameter with a proposed slope of 1 in 100. The
roughness of the sewer is 1.5 mm. The average flow, known as dry weather flow (DWF),
is calculated assuming a population of 3 person per house, a flow of 200 L/day per person C
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and an allowance of 10% for additional infiltration into the sewer. A peak flow of at least
twice the average (2 DWF) is generally achieved each day, and this flow value is to be used
to check the minimum self-cleansing velocity criterion of 0.75 m/s. A flow value of 6 DWF
is to be used to check the pipe discharge capacity.

Solution:

From Equations 8.10 and 8.11 with kinematic viscosity, 𝜈 = 1.14 × 10−6 m2/s, or by using
appropriate hydraulic charts or tables (HR Wallingford, 1990), the full pipe velocity and
discharge may be found to be

Vfull = 0.88 m∕s

Qfull = 15.5 L∕s

To check the pipe discharge capacity, 6 DWF is calculated:

6 DWF = 6 × 300 × 3 × 200 × 1.1
24 × 3600

= 13.8 L∕s

This is satisfactory since it does not exceed the Qfull value of 15.5 L/s.
The velocity V at Q = 2 DWF = 4.6 L/s must also be checked.
A chart showing proportional depth (depth divided by diameter D) against proportional

velocity (V∕Vfull) and proportional discharge (Q∕Qfull) is useful for this purpose. This is
shown in Figure 8.22, with the proportional discharge as the upper line and proportional
velocity as the lower line. The proportional discharge in this example is 4.6/15.5 = 0.30.
Using this value to enter the figure as indicated, or by using calculated tables, it is found

0.00

0.25

0.50

0.75

1.00

1.251.000.750.500.250.00

Proportional discharge and velocity

Pr
op

or
ti

on
al

 d
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th

Figure 8.22 Proportional depth versus proportional discharge and proportional velocity.
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that the proportional depth is 0.38 and the corresponding proportional velocity is 0.87.
The velocity at 2 DWF is therefore given by

V =
(

V
Vfull

)
Vfull = 0.87 × 0.88 m∕s = 0.77 m∕s

The design is therefore satisfactory since this exceeds the required self-cleansing velocity
of 0.75 m/s.

Example 8.13

Design a branch within a storm sewer network which has a length of 100 m, a bed slope
of 1 in 125 and a roughness size of 0.6 mm and which receives the storm runoff from
3.5 ha of impermeable surface using the rational method. In designing the upstream pipes,
the maximum ‘time of concentration’ at the head of the pipe has been found to be 6.2
min. Use the relationship between rainfall intensity and average storm duration tabulated
below.

Storm duration (min) 6.0 7.0 8.0
Average rainfall intensity (mm/h) 61.4 57.2 53.5

Notes: The rational method gives the peak discharge (Qp) from an urbanised catchment
in the form

Qp = 1
360

Ai (m3∕s)

where A is the impermeable area (ha) assuming 100% runoff; and i is the average rainfall
intensity (mm∕h) during the storm.

Since the average rainfall intensity of storms of a given average return period decreases
with increase in storm duration, the critical design storm is that which has a duration equal
to the ‘time of concentration of the catchment’, tc. tc is the longest time of travel of a liquid
element to the point in question in the catchment and includes the times of overland and
pipe flow; the time of pipe flow is based on full-bore velocities. For further coverage of
design rainfall data see, for example, Mansell (2003).

Solution:

The selection of the appropriate pipe diameter is by trial and improvement. Try D =
500 mm.

Full-bore conditions are found in a similar way to the previous example:

Vfull = 1.94 m∕s

Qfull = 0.38 m3∕s

Travel time along pipe = 100
1.94 × 60

= 0.9 min C
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Thus tc = 6.2 + 0.9 = 7.1 min;

whence i = 56.8 mm∕h

⇒ Qp = 3.5 × 56.8
360

= 0.55 m3∕s

This is greater than the full-bore discharge (Qfull) of the 500 mm diameter pipe which is
therefore too small. Try 600 mm diameter pipe.

Vfull = 2.18 m∕s

Qfull = 0.62 m3∕s

Travel time along pipe = 100
2.18 × 60

= 0.8 min

tc = 7.0 min; whence i = 57.2 mm∕h

Qp = 3.5 × 57.2
360

= 0.56 m3∕s

This does not exceed the full-bore discharge capacity, and so a 600 mm diameter sewer is
a satisfactory design without surcharging.

Example 8.14

A rectangular channel 5 m wide laid to a mild bed slope conveys a discharge of 8 m3/s at
a uniform flow depth of 1.25 m.

(a) Determine the critical depth.
(b) Neglecting the energy loss, show how the height of a streamlined sill constructed

on the bed affects the depth upstream of the sill and the depth at the crest of the
sill.

(c) Show that if the flow at the crest becomes critical, the structure can be used as a
flow-measuring device using only an upstream depth measurement.

Solution:

(a)

yc = 3

√
q2

g
; q = 8

5
= 1.6 m3∕(s m)

yc = 3

√
1.62

9.81
= 0.639 m

(b) Neglecting losses between 1 and 2 (see Figure 8.23),

E1 = E2 + z

In the case of a uniform rectangular channel the specific energy curve is the same for any
section, and if this is drawn for the specified discharge it can be used to show the variation
of y1 and y2.
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V1
2/ 2g

Total energy line

y1 y2

z

V2
2/ 2g

1 2

Figure 8.23 Flow over hump.

y (m) V = Q∕by (m/s) V2/2g (m) E = y + V2∕2g (m)

0.2 8.00 3.262 3.462
0.3 5.33 1.450 1.750
0.4 4.00 0.815 1.215
0.6 2.67 0.362 0.962
0.8 2.00 0.204 1.004
1.0 1.60 0.130 1.130
1.2 1.33 0.091 1.291
1.4 1.14 0.067 1.467
1.6 1.00 0.051 1.651

For small values of z (crest height) and assuming that the upstream depth is the uniform
flow depth (yn) (see Figure 8.24), the equation

E1 = E2 + z

can be evaluated (for y2) by entering the diagram with y1 (=yn) moving horizontally to
meet the E curve (at x) setting off z to the left to meet the E curve again at w, which
corresponds with the depth at the crest y2.

This procedure can be repeated for all values of z up to zc at which height the flow at
the crest will just become ‘critical’. Within this range of crest heights, the upstream depth
(the uniform flow depth, yn) remains unaltered.

E1

E2

E E

y2

y1

y′1

y2

y1

z

z
c c

D
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x
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w

Figure 8.24 Specific energy curves with hump. C
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Sill height, z (m)
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m
)

1.00.90.80.70.6

y1 vs. z

y2 vs. z

Figure 8.25 Sill height versus depths upstream and over hump.

Of course, the solution can also be obtained from the equation

y1 +
V2

1

2g
= y2 +

V2
2

2g
+ z

but it is important to realise that if z exceeds zc, then y1 will not remain equal to yn.
If z exceeds zc, the E curve can still be used to predict the surface profile; y2 remains

equal to yc. Set off z to the right from c (right-hand diagram of Figure 8.24).
Note that y1 has increased (to y′1) to give the increased energy to convey the discharge

over the crest.
The solution using a numerical method of solution of the energy equation for greater

accuracy is tabulated: the graphical method described gives similar values. See Figure 8.25
and the table here:

z (m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
y1 (m) 1.250 1.250 1.250 1.280 1.390 1.500 1.610 1.715 1.820
y2 (m) 1.130 1.000 0.850 0.639 0.639 0.639 0.639 0.639 0.639

(c) See Figure 8.26.

H1 = yc +
V2

c

2g

z

ycy1

H1h1

αVc
2/ 2g

αV1
2/ 2g

Figure 8.26 Hump as flow-measuring structure.

C
h

ap
ter

8



Steady Flow in Open Channels 221

Now yc =
2
3

H1 (see Section 8.7)

H1 =
2H1

3
+

V2
c

2g

Vc =
√

2g
3

H1∕2
1

and Q = bycVc =
2
3

bH1

√
2g
3

H1∕2
1

i.e. Q = 2b
3

√
2g
3

H3∕2
1

Note that H1 is the upstream energy measured relative to the crest of the sill. In practice,
the upstream depth above the crest (h1) would be measured and the velocity head 𝛼V2

1∕2g
is allowed for by a coefficient Cv and energy losses by Cd:

Q = 2
3

b

√
2g
3

CvCdh3∕2
1

(see BS 3680 Part 4A, 1981).
See also Example 8.18, which illustrates the effect of downstream conditions on the

existence of critical flow over the sill.

Example 8.15

Venturi flume: A rectangular channel 2.0 m wide is contracted to a width of 1.2 m. The
uniform flow depth at a discharge of 3 m3/s is 0.8 m. (a) Calculate the surface profile
through the contraction, assuming that the profile is unaffected by downstream conditions.
(b) Determine the maximum throat width such that critical flow in the throat will be
created.

b′

B

y1 y2

V1
2/ 2g

V2
2/ 2g

b″

1 2

Figure 8.27 Channel contraction – venturi flume. C
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Solution:

See Figure 8.27.
In principle, the system, and the method of solution, is similar to that of Example 8.14.

However, the specific energy diagrams for any of the contracted sections are no longer
identical with that for section 1.

E1 = E2 = y2 +
V2

2

2g

Entering with y1 (=yn) to meet the E curve for section 1 (width B) at X and moving verti-
cally to meet the curve for width b′ yields y′2, the depth in the throat (see Figure 8.28).

If the throat is further contracted to b′′, the vertical through X no longer intercepts the
E curve for width b′′; this means that the energy at 1 is insufficient and must rise to meet
the specific energy at 2 corresponding to the critical depth at 2 (E2min).

For a given discharge a minimum degree of contraction is required to establish critical
flow at the throat; this is bc corresponding to the specific energy curve which is just tan-
gential to the vertical through X. Provided it is recognised that if b < bc, y1 will be greater
than yn, the problem can be solved numerically.

At uniform flow E1 = yn +
Q 2

2gB2y2
n

= 0.8 + 32

19.62 × 22 × 0.82

= 0.979 m

If flow at the throat were critical, the minimum specific energy would be yc + yc∕2 = 1.5yc

and yc = 3

√
q2

g
= 3

√
Q2

gb2

yc = 3

√
32

9.81 × 1.22
= 0.86 m

and Emin = 1.291 m

E

B

Throat width b′

Depth

Throat width b″y1″
y1 (=yn)

y2(c)
y2

E1

E2 (min)

X

Figure 8.28 Specific energy curves at throat.
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This is greater than the energy upstream at uniform flow; thus, the flow in the throat will
be critical.

Therefore, y2 = 0.86 m and y1 is obtained from

1.291 = y1 +
Q 2

2gB2y2
1

1.291 = y1 +
32

19.62 × 22 × y2
1

whence y1 = 1.215 m

(b) Let bc be the throat width to create critical flow at the specified discharge. Critical flow
can just be achieved with the upstream energy of 0.979 m.

0.979 = yc +
Q 2

2gb2
c y2

c

(i)

Since 0.979 m is also the energy corresponding to the critical flow at the throat,

yc = 2∕3 × 0.979 = 0.653 m
whence from Equation (i)

0.326 = 32

19.62 × b2
c × 0.6532

The solution to which is bc = 1.816 m.
Note: In a similar manner to that of Example 8.14(c), it can be shown that if the flow in
the throat is critical, the discharge can be calculated from the theoretical equation

Q = 2
3

√
2g
3

bH3∕2
1

(
Practical form: Q = 2

3

√
2g
3

bCvCdh3∕2
1

)

where H1 is the upstream energy (h1 + V2
1∕2g) and h1 the upstream depth. In practice,

the throat would be made narrower than that calculated in the example above in order
to create supercritical flow conditions in the expanding section downstream of the throat
followed by a hydraulic jump in the downstream channel. The reader is referred to BS
3680 Part 4C (1981) and also to Example 8.19.

Example 8.16

A vertical sluice gate with an opening of 0.67 m produces a downstream jet depth of 0.40
m when installed in a long rectangular channel 5.0 m wide conveying a steady discharge
of 20.0 m3/s. Assuming that the flow downstream of the gate eventually returns to the
uniform flow depth of 2.5 m,

(a) verify that a hydraulic jump occurs. Assume 𝛼 = 𝛽 = 1.0.
(b) calculate the head loss in the jump.
(c) if the head loss through the gate is 0.05V2

J ∕2g, calculate the depth upstream of the
gate and the force on the gate.

(d) if the downstream depth is increased to 3.0 m, analyse the flow conditions at the gate. C
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y1

y2
yi

ys

a

hL

Fx

α1V1
2/ 2g

α1V2
2/ 2g

1 2

Figure 8.29 Sluice gate control and hydraulic jump.

Solution:

(a) See Figure 8.29.
If a hydraulic jump is to form the required initial depth, (yi) must be greater than

the jet depth.

yi =
ys

2

(√
1 + 8F2

s − 1
)

; Frs =
Vs√
gVs

= 20

5.0 × 2.5
√

9.8 × 2.5

That is, Frs = 0.323 and hence yi = 0.443 m (Equation 8.16). Therefore, a jump will
form.

(b) Head loss at jump:

hL =

(
yi +

V2
i

2g

)
−

(
ys +

V2
i

2g

)

= 0.443 − 2.5 + 1
2g

[(
4

0.443

)2

−
(

4
2.5

)2
]

= 1.97 m

(c) (i) Apply the energy equation to 1 and 2:

y1 +
V2

1

2g
= y2 +

V2
2

2g
+ 0.05

V2
2

2g

V2 = 4
0.4

= 10 m∕s;
V2

2

2g
= 5.099 m

y1 +
q2

2gy2
1

= 5.752 m

whence y1 = 5.73 m

(ii) Fx = gate reaction per unit width
Apply momentum equation to element of water between 1 and 2:

𝜌gy2
1

2
+ 𝜌q(V1 − V2) −

𝜌gy2
2

2
− Fx = 0
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yG
y0

y1

y2

ys

2 3

Figure 8.30 Submerged hydraulic jump.

(Note: The force due to the friction head loss through the gate is implicitly included
in the above equation since this affects the value of y1.)

1000
[

9.806
2

(5.732 − 0.42) + 4(0.693 − 10)
]
− Fx = 0

whence Fx = 123 kN∕m width

(d) With a sequent depth of 3.0 m, the initial depth required to sustain a jump is 0.327
m (following the procedure of (a)). Therefore the jump will be submerged (see Figure
8.30), since the depth at the vena contracta is 0.4 m.

Apply the momentum equation to 2 and 3, neglecting friction and gravity forces:

𝜌gy2
G

2
+ 𝜌q(V2 − Vs) −

𝜌gy2
s

2
= 0

y2
G − y2

s +
2q2

g

(
1
y2

− 1
ys

)
= 0

whence yG = ys

√
1 + 2Fr2

s

(
1 −

ys

y2

)

where Frs =
Vs√
gys

; ys = 3.0 m; y2 = 0.4 m

⇒ yG = 1.39 m

Applying the energy equation to 1 and 2,

y1 +
V2

1

2g
= yG +

V2
2

2g
+ 0.05

V2
2

2g

y1 +
V2

1

2g
= 6.74 m

whence the upstream depth, y1, is now 6.73 m.

Example 8.17

A sluice gate is discharging water freely (modular flow) under a head of 5 m (upstream
of the gate) with a gate opening of 1.5 m. Compute the discharge rate per unit width C
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of the gate. If the water depth immediately downstream of the gate is 2 m (drowned or
non-modular flow), determine the discharge rate.

Solution:

Referring to Figure 8.29 for the modular/free flow case,

q = Cda
√

2gy1 (8.42)

where

Cd =
Cc√

1 + Cc a∕y1

(8.43)

The contraction coefficient Cc (=y2∕a) is a function of a∕y1; a reasonable constant value
of Cc = 0.60 may be assumed for most conditions. Equation 8.42 can also be written as

q = C′
da
√

2g(y1 − Cca) (8.44)

where

C′
d =

Cc√
1 −

(
Cc a∕y1

)2
(8.45)

For the submerged (non-modular) flow condition, the discharge

qs = C′
dsa

√
2g(y1 − yG) (8.46)

where C′
ds
= C′

d
with Cc = 0.60. The depth of submergence, yG, downstream of the gate

(see Figure 8.30) is computed by the momentum equation (see Example 8.16) as

yG

ys
=

√
1 + Fr2

s

(
1 −

ys

Cca

)
(8.47)

(i) Modular flow:
a
y1

= 0.3

⇒ Cd = 0.552 (Equation 8.43)

hence q = 8.2 m3∕(s m) (Equation 8.42)

(ii) Non-modular flow:

C′
ds
= C′

d
= 0.610 (Equation 8.45)

⇒ q = 0.61 × 1.5 ×
√

2g(5 − 2) = 7.08 m3∕(s m)

Note: If we assume that the flow condition immediately downstream of the gate remains
unaffected by submergence, we can obtain V1 by the energy and continuity equations.

5 +
V2

1

2g
= 2 +

V2
2

2g
; 5V1 = 0.6 × 1.5V2

as V1 = 1.4 m∕s; hence q = y1 × V1 = 7.0 m3∕(s m)
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z y3
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V1
2/ 2g
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2/ 2g V3

2/ 2g Vs
2/ 2g

321

Figure 8.31 Design of broad-crested weir.

Example 8.18

A broad-crested weir is to be constructed in a long rectangular channel of mild bed slope
for discharge monitoring by single upstream depth measurement.

Bed width = 4.0 m. Discharge measurement ranges from 3.0 to 20.0 m3/s. Depth–
discharge (uniform flow) rating curve for the channel:

Depth (m) 0.5 1.0 1.5 2.0 2.5
Discharge (m3/s) 3.00 8.15 14.22 20.80 27.70

Select a suitable crest height for the weir.

Solution:

See Figure 8.31.
Ideally the design criterion is that a hydraulic jump should form downstream of the sill.

From the table the depth of uniform flow at 20 m3/s is 1.95 m (yn). Required initial depth
to sustain a hydraulic jump of sequent depth 1.95 m (yn) is

yi =
ys

2
(
√

1 + 8Fr2
s − 1)

yi = 0.913 m (=y3)

= y3 +
Q2

2g(by3)2
= 0.913 + 1.529 = 2.442 m

For critical flow conditions at the crest of the sill,

y2 = yc =
3

√
q2

g
= 1.37 m and

V2
2

2g
=

V2
c

2g
=

Q2

2g(byc)2
= 0.679 m

Thus the specific energy at critical flow at the crest of the sill is

E2(crit) = yc +
V2

c

2g
= 1.37 + 0.679 = 2.049 m C
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To find the minimum sill height, equate energy at sections 2 and 3:

⇒ z + E2(crit) = E3

⇒ z + 2.049 = 2.442;

whence z = 0.393 (say 0.4 m)

The upstream depth can be calculated by equating E1 to E3 neglecting losses.

⇒ y1 +
Q2

2g(by1)2
= 2.442

whence y1 = 2.17 m

At the lower discharge of 3.0 m3/s the depth of uniform flow is 0.5 m. Required initial
depth for a hydraulic jump of sequent depth 0.5 m is 0.29 m (=y3). The minimum specific
energy required to convey the discharge of 3 m3/s over the sill is that corresponding to
critical flow conditions.

yc = 3

√
q2

g
= 0.386 m;

V2
c

2g
= 0.193 m

Ec = 0.579 m

With the established crest height of 0.4 m the minimum total energy is 0.4 + 0.579 =
0.979 m.

Since this is much greater than 0.5 m, the downstream uniform flow depth, the flow at
the crest is certainly critical, provided there are no downstream constraints.

Check the existence of a hydraulic jump:

E3 = 0.979 m (neglecting losses)

y3 +
Q2

2g(by3)2
= 0.979 m; whence y3 = 0.191 m

Since this is less than that required for a jump to form (0.29 m), a hydraulic jump will
form in the channel downstream of section 3. The design is therefore satisfactory.

Example 8.19 (The ‘critical depth flume’)

Using the data of Example 8.15, determine the minimum width of the throat of the ven-
turi flume such that a hydraulic jump will be formed in the downstream channel with a
sequent depth equal to the depth of uniform flow. Determine the upstream depth under
these conditions.

Solution:

See Figure 8.32.

Downstream depth (=sequent depth) = depth of uniform flow

= 0.8 m
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bB

21 3

H1 y1
y2

y3

ys (=yn)

Figure 8.32 Design of venturi flume.

Q = 3 m3∕s; channel width = 2.0 m

Vs =
3

2 × 0.8
= 1.875 m∕s; Frs =

Vs√
gys

= 0.67

Required initial depth for a hydraulic jump to form in the channel, with a sequent depth
of 0.8 m,

yi =
ys

2

(√
1 + 8Fr2

s − 1
)

= 0.456 m

Thus the maximum value of

y3 = 0.456 m and E3 = y3 +
Q2

2g(by3)2
= 1.007 m

Conditions in the throat will be critical; if b is the throat width,

y2,c =
3

√
Q2

gb2

Equating energies at 2 and 3,

y2,c +
V2

2,c

2g
= E3 = 1.007 m

that is, 3

√
Q2

gb2
+

Q2

2gb2
(
Q2∕gb2

)2∕3
= 1.007

that is, 1.5
(

Q2

gb2

)1∕3

= 1.007 m

whence b = 1.74 m C
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(Note: This is narrower than that in Example 8.15, which specifically stated that, in that
case, downstream controls did not affect the flow profile.)

The upstream depth can be calculated, neglecting losses, from E1 = E2 = E3.

that is, y1 +
Q2

2gB2y2
1

= 1.007 m

whence y1 = 0.98 m

(Note: This is greater than the uniform flow depth.)

Example 8.20

A trapezoidal concrete-lined channel has a constant bed slope of 0.0015, a bed width of
3 m and side slopes 1:1. A control gate increases the depth immediately upstream to 4.0 m
when the discharge is 19.0 m3/s. Compute the water surface profile to a depth 5% greater
than the uniform flow depth. Take n = 0.017 and 𝛼 = 1.1.

Notes: The energy gradient at each depth is calculated as though uniform flow existed at
that depth. For hand calculation the Manning equation is much simpler than the Darcy–
Colebrook–White equations which could, however, be incorporated in a computer pro-
gram.

Calculations: Using the Manning equation the depth of uniform flow at 19.0 m3/s is
1.75 m. The systematic calculations are shown in tabular form below.

Δx = ∫
y2

y1

dx
dy

dy = x2 − x1 where dx
dy

=
1 −

(
𝛼Q2T∕A3g

)
S0 − Sf

y (m) B (m) A (m2) R (m) dx∕dy 𝚫x (m) x (m)

4.0 11.0 28.0 1.956 677.71 0
3.9 10.8 26.91 1.918 679.10 67.8 67.8
3.8 10.6 25.84 1.880 680.65 68.0 135.8
3.7 10.4 24.79 1.840 682.47 68.2 204.0
3.6 10.2 23.76 1.800 684.59 68.3 272.3
3.5 10.0 22.75 1.760 687.92 68.6 340.9
3.4 9.8 21.76 1.725 690.00 68.9 409.8
3.3 9.6 20.79 1.685 693.45 69.2 472.0
3.2 9.4 19.84 1.646 697.58 69.5 548.5
3.1 9.2 18.91 1.607 702.54 70.0 618.5
3.0 9.0 18.00 1.567 708.56 70.6 689.1
2.9 8.8 17.11 1.527 715.94 71.2 760.3
2.8 8.6 16.24 1.487 725.10 72.0 832.3
2.7 8.4 15.39 1.447 736.64 73.1 905.4
2.6 8.2 14.56 1.406 751.43 74.4 979.8
2.5 8.0 13.75 1.365 770.80 76.1 1056

C
h

ap
ter

8



Steady Flow in Open Channels 231

2.4 7.8 12.96 1.324 796.90 78.4 1134
2.3 7.6 12.19 1.282 833.35 81.5 1216
2.2 7.4 11.44 1.240 886.86 86.0 1302
2.1 7.2 10.71 1.198 971.33 92.9 1395
2.0 7.0 10.00 1.155 1120.92 104.6 1499
1.9 6.8 9.31 1.111 1448.07 128.5 1628
1.8 6.6 8.64 1.068 2667.73 205.8 1834

Note: The surface profile is illustrated by plotting y versus x on the channel bed.

Example 8.21

Using the data of Example 8.20, compute the surface profile using the direct step method.

y0 = 4.0 m; S0 = 0.0015; Q = 19 m3∕s

n = 0.017; 𝛼 = 1.1

Solution:

At the control section, depth = 4.0 m, A = 28.0 m2, R = 1.956 m

Specific energy
(

y +
Q2

2gA2

)
= 4.0 + 1.1 × 192

19.62 × 282
= 4.026 m

Sf =
Q2n2

A2R4∕3
= 5.44 × 10−5

y (m) A (m2) R (m) E (m) 𝚫E (m) Sf S̄f 𝚫x (m) x (m)

4.0 28.0 1.956 4.026 — 5.44 × 10−5 0 0 0
3.9 26.91 1.918 3.928 0.098 6.05 × 10−5 5.74 × 10−5 67.84 67.84
3.8 25.84 1.880 3.830 0.098 6.74 × 10−5 6.39 × 10−5 67.98 135.82
3.7 24.79 1.840 3.733 0.097 7.52 × 10−5 7.13 × 10−5 68.16 203.98
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1.8 8.64 1.068 2.0712 0.0623 1.28 × 10−3 1.16 × 10−3 184.94 1809.3

The surface profile is very similar to that calculated by the integration method (Example
8.20).

Example 8.22

Using the standard step method, compute the surface profile using the data of Example
8.20.

The solution is shown in the next table, the intermediate iterations where H(1) ≠ H(2)
have not been included. It is noted that the result is almost identical with the numerical C
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integration and direct step methods. However, unless a computer is used the calculations
in the standard step method are laborious, and for prismatic channels with constant bed
slopes the other methods would be quicker. The standard step method is particularly suited
to natural channels in which the channel geometry and bed elevation at spatial intervals,
which are not necessarily equal, have been measured. Variations in roughness coefficient,
n, along the channel can also be incorporated.

Example 8.23

A vertical sluice gate situated in a rectangular channel of bed slope 0.005, width
4.0 m and Manning’s n = 0.015 has a vertical opening of 1.0 m and Cc = 0.60. Taking
𝛼 = 1.1 and 𝛽 = 1.0, determine the location of the hydraulic jump when the discharge is
20 m3/s and the downstream depth is regulated to 2.0 m.

Solution:

See Figure 8.33.
Note: Sf = Q2n2∕A2R4∕3.

Depth at vena contracta = 1.0 × 0.6 = 0.6 m
Depth of uniform flow (from the Manning equation) = 1.26 m

Critical depth, yc = 1.366 m (Equation 8.14)

Initial depth at jump = 0.884 m (Equation 8.16)

Note: ys = 2.0 m.

Proceeding downstream (in supercritical flow) from the control section, y = 0.6 m, and
using the direct step method with Δy = 0.04 m, the calculations are shown in the next
table.

0.6 m
0.884 m

2.0 m

x

y

Figure 8.33 Non-uniform flow downstream of sluice gate. C
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y A R E 𝚫E Sf S̄f 𝚫x x

0.60 2.4 0.461 4.495 — 0.0438 — — 0
0.64 2.56 0.485 4.063 0.4317 0.0361 0.040 12.36 12.36
0.68 2.72 0.507 3.712 0.3510 0.0300 0.0330 12.50 24.87
0.72 2.88 0.529 3.425 0.2876 0.0253 0.0278 12.67 37.54
0.76 3.04 0.551 3.188 0.2372 0.0216 0.0235 12.85 50.39
0.80 3.20 0.571 2.991 0.1967 0.0185 0.0200 13.07 63.46
0.84 3.36 0.591 2.827 0.1637 0.0160 0.0173 13.31 76.11
0.88 3.52 0.611 2.691 0.1365 0.0140 0.0150 13.61 90.38

Example 8.24

Identify the types of water surface profiles behind (upstream) and between the gate and
hydraulic jump using the data of Example 8.23.

Solution:

The solution here is generalised by rewriting the basic water surface slope equation (Equa-
tion 8.19) as

dy

dx
=

S0(1 − Sf∕S0)

1 − 𝛼Q2B∕gA3
(i)

If the conveyance of a channel is K and its section factor is Z, we can write Q2 = K2Sf =
K2

0S0, Z2 = A3∕B and Z2
c = 𝛼Q2∕g; Equation (i) now becomes

dy

dx
=

S0

[
1 −

(
K0∕K

)2
]

1 −
(
Zc∕Z

)2
(ii)

Equation (ii) for the case of a wide rectangular channel with the Manning resistance equa-
tion reduces to

dy

dx
=

S0

[
1 −

(
y0∕y

)10∕3
]

1 −
(
yc∕y

)3
(iii)

Equation (iii) is very convenient to identify the types of surface profile once the normal
depth, y0, and critical depth, yc, are established in a channel of given slope, S0.

Case (i): Mild channel
In this channel, S0 < Sc (critical slope) and hence y0 > yc.

For y > y0 > yc (zone 1): dy∕dx is positive (i.e. increasing depths along x–M1 profile)
For y < y0 > yc (zone 2): dy∕dx is negative (i.e. decreasing depths along x–M2 profile)
For y < y0 < yc (zone 3): dy∕dx is positive (i.e. increasing depths along x–M3 profile)

Case (ii): Steep channel
Here S0 > Sc and hence y0 < yc, and depending on the level of y, again three profiles (S1,
S2 and S3) exist.
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Case (iii): Critical slope channel
Here S0 = Sc and y0 = yc; zone 2 is absent, and two profiles (C1 and C3) exist.

Case (iv): Horizontal channel
Here S0 = 0 and y0 will not exist and hence zone 1 is absent; again two profiles (H2 and
H3) exist.

Case (v): Adverse slope channel
Now S0 is negative with no y0 and two profiles (A2 and A3) exist in this case. The dis-
charge Q = 20 m3/s and by the Manning resistance equation y0 = 1.26 m. The critical
depth in rectangular channel yc = (𝛼Q2∕b2g)1∕3. Hence yc = 1.366 m > y0; hence, steep
channel with gate opening below critical depth. The depth upstream of the gate (by energy
balance)= 4.05 m> yc > y0; zone 1 is on steep slope; S1 profile exists immediately upstream
of the gate.

The flow downstream of the gate is supercritical (zone 3 of the steep channel) merging
with the controlled subcritical flow with the formation of hydraulic jump. Here the S3
profile forms between the depths, 0.6 m (just d∕s of gate) and 0.884 m, sequential to the
controlled depth of 2 m.

Example 8.25

Discharge from a natural lake occurs through a very long rectangular channel of bed width
3 m, Manning’s n = 0.014 and the bed slope = 0.001. The maximum level of the water
surface in the lake above the channel bed at the lake outlet is 3 m. Calculate the discharge in
the channel. If the channel slope were to be 0.008, compute the discharge. Also, determine
the uniform flow depth and the minimum length of the channel for the uniform flow to
establish. Ignore entrance losses.

Solution:

Slope = 0.001; first establish whether this is a mild or steep slope. If the slope were to be
assumed critical, the channel will have inlet control with critical depth; critical depth in
a rectangular channel is 2H/3, H being the energy head (lake level above channel inlet)
available.

Therefore the critical depth at inlet, yc =
2
3
× 3 = 2 m

Since the channel is long (with no downstream control), uniform flow with depth y0 = yc
establishes at the inlet itself; using the Manning resistance equation, the corresponding
critical slope, Sc, is computed.

At critical depth the discharge is maximum and is computed from yc = (q2∕g)1∕3 (from
𝛼Q2B∕gA3 = 1). Hence, Q = qb = 26.58 m3/s, and from Q = An−1R2∕3S1∕2 the slope, S =
Sc = 0.0047.

If the channel is other than rectangular in cross section, two simultaneous equations
(i) the energy equation and (ii) the critical depth criterion, 𝛼Q2B∕gA3 = 1, must be solved
for computing yc.

Since the bed slope S0 < Sc, the channel is of mild slope. C
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Two equations at the inlet to solve two unknowns, depth and velocity, are required:

(i) Energy equation, H = y0 + V2∕2g
(ii) The Manning resistance equation, V = n−1R2∕3S1∕2

Both are applicable at the inlet (long channel; uniform flow establishes from the inlet).
Simultaneous solution of (i) and (ii) gives

y0 = 2.75 m and V = 2.213 m∕s
Thus the discharge, Q0 = 18.26 m3∕s

The slope S0 = 0.008 > Sc = 0.0047; the channel is a steep-sloped one, and the inlet con-
trols the flow. The discharge is maximum (= 26.58m3∕s) with critical depth at the inlet
(yc = 2 m). The corresponding uniform flow depth (y0) from the Manning resistance equa-
tion

26.58 × 3 × y0 × (1∕0.014) × [(3 × y0)∕(3 + 2y0)]2∕3 × (0.008)1∕2

is computed. Thus y0 = 1.64 m; this unform flow establishes in the channel if its length is
at least equal to the length of the surface profile (non-uniform flow) that exists between
the inlet depth, yc, and the uniform flow depth, y0.

The channel is of steep slope, and the flow between these two depths corresponds to
region 2 and hence an S2 profile develops whose length can be computed by any appro-
priate method. By the step method we obtain L ≈ 80 m between the two depths; the cal-
culations should commence at a depth slightly less than the critical depth and terminate
at a depth slightly higher than the normal (uniform) depth.

Example 8.26

A rectangular channel (b = 15 m, length = 10 km, slope = 1/10 000, Manning’s n = 0.015)
fed by an upstream lake is discharging into a downstream lake. If the upstream and down-
stream lake levels are 1.5 and 2 m (above the channel bed), respectively, determine the
discharge rate in the channel.

Solution:

The channel delivery depends upon the following considerations:

(i) Is the channel long (i.e. no downstream control)?
(ii) Is the slope mild or critical or steep?

If we assume a long and mild channel, two equations at its inlet are applicable (i.e. the
energy and resistance equations). If we assume a long and critical sloped channel, the two
equations are the energy equation and the critical depth criterion. Here it is convenient
to assume initially a long and critical sloped channel. Since the channel is of rectangular
cross section, yc = 2H∕3 = 1 m. Therefore, from the Manning resistance equation (uni-
form flow depth = yc), the critical slope, Sc = 0.00256 > S0 = 0.0001 (see Example 8.25).
Hence the channel is of mild slope; if we still assume that it is long, we now can obtain
the corresponding uniform flow rate, Q0, from the energy and resistance equations.

(iii) Is the channel long enough to satisfy the above assumptions?
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Identify the type of water surface profile based on the discharge, uniform flow depth and
downstream lake level and compute its length. If the surface profile length is shorter than
channel length, the channel is long enough and uniform flow does exist at the inlet (i.e.
free inlet). If the profile length is longer than the channel length, the inlet will be drowned
(short channel) and the discharge rate is reduced. To compute the actual discharge rate in
a short channel, the following iterative procedure is to be followed:

(a) Assume Q < Q0 (since the inlet is drowned) and compute the corresponding flow
depth at the inlet by the energy equation.

(b) Compute the new surface profile length corresponding to this discharge and verify
whether it fits between the inlet depth and the downstream lake level.

(c) Repeat (a) and (b) until the profile length matches the channel length.

The problem is best approached on a computer for executing these iterative procedures.

Example 8.27

A concrete twin-box-type culvert is proposed to discharge a design flood of 13.5 m3/s. The
following data refer to each opening:

Manning’s n = 0.013
Height = 0.75 m
Width = 1.5 m
Length = 30 m
Slope = 1/100
Entrance conditions = square edge, loss coefficient, K = 0.5
Downstream conditions = free jet

Establish the rating curve (discharge vs. headwater elevation above the invert at the
entrance) for rising head conditions over a discharge range from 0 to 13.5 m3/s. Neglect
the velocity of approach. Determine the minimum elevation of the road surface assuming
a free board of 300 mm to avoid any flooding of the highway.

Solution:

The culvert behaviour is dependent on the headwater level H, the height of culvert D, slope
So and length L; here the outlet is to discharge freely and has no effect on the type of flow
through the culvert.

(i) For H∕D ≤ 1.2, open channel flow. If entrance control exists, the depth at the inlet
is critical (i.e. the slope is either critical or steep). Assuming entrance control, yc =
(2∕3) × H (rectangular channel; inlet with no entrance losses) and Vc =

√
gyc; hence,

Q can be computed. Also from the Manning resistance equation, the critical slope, Sc,
can be computed and checked against the proposed slope of the culvert; if the slope
is then found to be mild, the depth and discharge calculations must be computed by
the energy and resistance equations (see Example 8.25).

The energy equation at the inlet gives H = 1.75yc, assuming entrance control with
a loss coefficient of 0.5 (i.e. S0 ≥ Sc).
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For H = 0.1 m, yc = 0.057 m and Vc = 0.748 m/s. From the Manning equation,
Sc = 0.00476, and as S0 (= 0.01) > Sc (= 0.00476), entrance control exists. The dis-
charge through the culvert of width b can be written as Q = byc

√
gyc for one box.

Various values for yc and hence the headwater levels (H = 1.75yc) are assumed until
H = 1.2D (=0.9 m, the upper limit for open channel flow); a check for S0 > Sc is
necessary for all values.

Headwater level H (m) Discharge Q (m3/s) (two boxes)

0.175 0.297
0.525 1.544
0.700 2.377
0.900 3.465

(ii) For H∕D ≥ 1.2, the culvert entry behaves like an orifice (constriction); if the normal
depth in the barrel corresponding to the orifice discharge is less than D, the flow
downstream of the inlet is free. The orifice flow equation

Q = Cd × b × D ×
[
2g

(
H − D

2

)]1∕2
for one box

with the discharge coefficient Cd = 0.62 (assumed). Computations between H =
1.2D and the value at which y0 = D are as below:

Headwater level H (m) Discharge Q (m3/s) (two boxes)

0.900 4.477
1.300 5.943
1.700 7.113
2.100 8.116
2.500 9.007

(iii) For H∕D > 1.2 and y0 > D, pipe flow exists in the culvert. The energy equation
between the inlet and outlet of the culvert gives

H + S0L = D + (1 + K)V2

2g
+ SfL

where Sf is the friction slope given by the Manning equation, as Sf = (Vn)2∕R4∕3. The
above reduce to

Q = 3.41(H − 0.45)1∕2 for one box

pipe flow condition with the following:
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Headwater level H (m) Discharge (m3/s) (two boxes)

2.500 9.774
2.900 10.685
3.100 11.112
3.500 11.921
3.900 12.679
4.200 13.219
4.368 13.500 (design discharge)

Elevation of the road surface with a free board of 300 mm = 4.368 + 0.300 = 4.668
m above the culvert invert at its inlet.

Example 8.28

A lateral spillway channel, 120 m long and trapezoidal in section, is designed to carry a
discharge which increases at a rate of 3.7 m3/s per metre length. The cross section has a bed
width of 3 m with side slopes of 0.5 (horizontal) : 1 (vertical). The bed slope is 0.15 and
Manning’s n = 0.015. Compute the water surface profile of the design discharge assuming
uniform velocity distribution.

Solution:

The type of surface profile depends upon the length of the channel and whether the channel
characteristics would permit the existence of a control section (i.e. a section where the
depth is critical). The existence of a critical depth section and its longitudinal location are
to be examined first; this is achieved by a trial-and-improvement process using Equation
8.23 and the critical depth criterion, Q2B∕gA3 = 1. The following table of results is self-
explanatory:

Q = qx R = A∕P C = R1∕6/n
x (m) (m3/s) yc (m) A (m2) P (m) B (m) (m) (m1∕2/s) x (m)

60.0 222.0 5.97 35.73 16.37 8.97 2.18 76.00 43.0
43.0 159.1 4.90 26.70 13.98 7.90 1.91 74.26 56.0
56.0 207.2 5.57 32.24 15.48 8.57 2.08 75.34 47.6
47.0 173.9 5.22 29.28 14.69 8.22 1.99 74.79 51.6
52.0 192.4 5.52 31.79 15.36 8.52 2.07 75.26 48.0
48.0 177.6 5.29 29.86 14.85 8.29 2.01 74.90 51.0
51.0 188.7 5.46 31.28 15.23 8.46 2.05 75.16 48.7
49.0 181.3 5.35 30.36 14.98 8.35 2.03 75.00 50.0
50.0 185.0 5.40 30.78 15.09 8.40 2.04 75.07 49.0
49.5 183.1 5.38 30.61 15.05 8.38 2.03 75.04 49.6

From the table, xc = 49.5 m < L (=120 m). As the length available is greater than xc, the
water surface profile upstream of the control section is in subcritical flow, while that of the
downstream part is in supercritical flow. The surface profile computations are generally C
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carried out by numerical integration combined with trial and improvement; the procedures
are laborious and well described in textbooks of open channel hydraulics (see French,
1994, 2007; also see Example 15.3).

The non-uniform flow (GVF and SVF) computations may be carried out using the
advanced numerical methods. The surface slope dy∕dx, given by Equations 8.19, 8.22
and 8.25, is a function of x and y and can be written as dy∕dx = F(x, y); and the standard
fourth-order Runge–Kutta (SRK) method uses the following operation:

yi+1 = yi +
1
6

(K1 + 2K2 + 2K3 + K4) (8.48)

in which

K1 = ΔxF(xi, yi)

K2 = ΔxF
(

xi +
Δx
2

, yi +
K1

2

)

K3 = ΔxF
(

xi +
Δx
2

, yi +
K2

2

)
K4 = ΔxF(xi + Δx, yi + K3)

The solution is easily achieved with the help of a computer.

Example 8.29

A rectangular channel of bed width 2 m, Manning’s n = 0.014, is laid on a slope of 1/1000.
A side weir is to be designed at a section such that it comes into operation when the
discharge in the channel exceeds 0.6 m3/s. A lateral outflow of 0.15 m3/s is expected to be
delivered by the side weir when the channel discharge is 0.9 m3/s. Compute the elements
of the weir.

Solution:

The sill (crest) height of the side weir is decided by the flow depth corresponding to
0.6 m3/s. The normal depths in the channel (by the Manning resistance equation):

For Q = 0.6 m3∕s, y0 = 0.33 m
For Q = 0.9 m3∕s, y0 = 0.44 m

The crest height is therefore (for the weir to come into operation) s = 0.33 m. For Q =
0.9 m3/s, the critical depth in the channel yc1 = (q2∕g)1∕3 = 0.274 m. Now the sill height
s > yc1 and y0 > yc1, the dy/dx of the flow profile over the weir is positive; and the flow
is subcritical. The De Marchi equation assumes y1 ≈ y0 = 0.44 m. With the assumption
E1 = E2, we can write

E1 = 0.493 = y2 +
Q2

2

(by2)22g
; Q2 = 0.90 − 0.15 = 0.75 m3∕s

and hence y2 = 0.46 m (subcritical flow). The De Marchi functions 𝜙1 = −1.84 and 𝜙2 =
−1.42. The De Marchi coefficient Cm = 0.81 − 0.60Fr1 (assuming a sharp-crested weir),
where Fr1 = V1∕

√
(2g) = 0.49. Hence, Cm = 0.516, and by Equation 8.31, the weir length,

L = 2.442 m.
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Problems

1. Water flows uniformly at a depth of 2 m in a rectangular channel of width 4 m and bed
slope 1:2000. What is the mean shear stress on the wetted perimeter?

2. (a) At a measured discharge of 40 m3/s, the depth of uniform flow in a rectangular
channel 5 m wide and with a bed slope of 1:1000 was 3.05 m. Determine the mean
effective roughness size and the Manning roughness coefficient.

(b) Using (i) the Darcy–Weisbach equation (together with the Colebrook–White equa-
tion) and (ii) the Manning equation, predict the discharge at a depth of 4 m. C
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3. Determine the depth of uniform flow in a trapezoidal concrete-lined channel of bed width
3.5 m and bed slope 0.0005 with side slopes at 45◦ to the horizontal when conveying 36
m3/s of water. The Manning roughness coefficient is 0.014.

4. Determine the rate of uniform flow in a circular section channel 3 m in diameter of
effective roughness 0.3 mm, laid to a gradient of 1:1000 when the depth of flow is
1.0 m. What are the mean velocity and the mean boundary shear stress?

5. A circular storm water sewer 1.5 m in diameter and effective roughness size 0.6 mm is
laid to a slope of 1:500. Determine the maximum discharge which the sewer will convey
under uniform open channel conditions. If a steady inflow from surface runoff exceeds the
maximum open channel capacity by 20%, show that the sewer will become pressurised
(surcharged) and calculate the hydraulic gradient necessary to convey the new flow.

6. Assuming that a rough turbulent velocity distribution having the form

v√
𝜏0∕𝜌

= 5.75 log
30y

k

exists in a wide river, show that the average of current meter measurements taken at 0.2
and 0.8 of the depth from the surface approximates to the mean velocity in a vertical
section.

7. A long, concrete-lined trapezoidal channel with a bed slope 1:1000, bed width 3.0 m,
side slopes at 45◦ to the horizontal and Manning roughness 0.014 receives water from a
reservoir. Assuming an energy loss of 0.25V2∕2g calculate the steady discharge and depth
of uniform flow in the channel when the level in the reservoir is 2.0 m above the channel
bed at inlet.

8. A trapezoidal channel with a bed slope of 0.005, bed width 3 m and side slopes 1:1.5
(vertical:horizontal) has a gravel bed (n = 0.025) and concrete sides (n = 0.013). Calcu-
late the uniform flow discharge when the depth of flow is 1.5 m using (a) the Einstein,
(b) the Pavlovskij and (c) the Lotter methods.

9. Figure 8.34 shows the cross section of a river channel passing through a flood plain. The
main channel has a bank-full area of 300 m2, a top width of 50 m, a wetted perimeter of
65 m and the Manning roughness coefficient of 0.025. The flood plains have a Manning
roughness of 0.035 and the gradient of the main channel and plain is 0.00125. Determine
the depth of flow over the flood plain at a flood discharge of 2470 m3/s.

m40m40 50 m

Figure 8.34 Compound channel.
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10. A concrete-lined rectangular channel is to be constructed to convey a steady maximum
discharge of 160 m3/s to a hydropower installation. The bed slope is 1:5000 and Man-
ning’s n appropriate to the type of surface finish is 0.015. Determine the width of the chan-
nel and the depth of flow for the ‘most economic’ section. Give reasons why the actual
constructed depth would be made greater than the flow depth.

11. A concrete-lined trapezoidal channel with a bed slope of 1:2000 is to be designed to
convey a maximum discharge of 75 m3/s under uniform flow conditions. The side slopes
are at 45◦ and Manning’s n = 0.014. Determine the bed width and depth of flow for the
‘most economic’ section.

12. A channel with a bed slope of 1:2000 is to be constructed through a stiff clay formation.
Compare the relative costs of the alternative design of best rectangular concrete-lined
and trapezoidal unlined channels to convey 60 m3/s if the cost of the 100 mm thick
lining per square metre is twice the cost of excavation per cubic metre. Manning’s n for
concrete lining is 0.014 and for the unlined channel is 0.025. Side slopes (stable) are
1:1.5.

13. An unlined irrigation channel of trapezoidal section is to be constructed through a sandy
formation at a bed slope of 1:10 000 to convey a discharge of 40 m3/s. The side slopes
are at 25◦ to the horizontal. The angle of internal friction of the material is 35◦ and the
critical tractive force is 2.5 N/m2; Manning’s n is 0.022. Assuming that the maximum
boundary shear stress exerted on the bed, due to the water flow, is 0.98 𝜌gyS0 and that
on the sides is 0.75 𝜌gyS0, determine the bed width and flow depth for a non-eroding
channel design.

14. A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce an
opening of 1.0 m. Assuming that free flow conditions exist at the vena contracta down-
stream of the gate verify that the flow in the vena contracta is supercritical when the dis-
charge is 15 m3/s, and determine the depth just upstream of the gate. Cv = 0.98; Cc = 0.6.
Take the upstream velocity energy coefficient (Coriolis) to be 1.0 and that at the vena
contracta to be 1.2.

15. A sill is to be constructed on the bed of a rectangular channel conveying a specific dis-
charge of 5 m3/s per metre width. The depth of uniform flow is 2.5 m. Neglecting energy
losses,
(a) Determine the variation of the depths upstream of the sill (y1) and over the sill (y2)

for a range of sill heights (z) from 0.1 to 0.8 m. Take the Coriolis coefficient to be
1.2.

(b) Determine the critical depth (yc).
(c) Determine the minimum sill height (zc) to create critical flow conditions at the sill.

16. A venturi flume with a throat width of 0.5 m is constructed in a rectangular channel 1.5
m wide. The depth of uniform flow in the channel at a discharge of 1.6 m3/s is 0.92 m;
𝛼 = 1.1. Assuming that downstream conditions do not influence the natural flow profile
through the contraction and neglecting losses, verify that the flume acts as a ‘critical depth
flume’ and determine the upstream and throat depths.
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Show that for critical flow conditions in the throat, the discharge can be obtained from

Q = 2
3

√
2g
3

bH3∕2
1

where b is the throat width and H1 = y1 + (𝛼V2
1∕2g).

Calculate the discharge when the upstream depth is 1.0 m. (Verify that critical flow
conditions are maintained in the throat.)

17. A vertical sluice gate in a long rectangular channel 4 m wide has an opening of 1.0 m and a
coefficient of contraction of 0.6. At a discharge of 25 m3/s, the depth of uniform flow (yn)
is 3.56 m. Assuming that a hydraulic jump were to occur in the channel downstream with
a sequent depth equal to yn and taking the Boussinesq coefficient to be 1.2, what would be
the initial depth of the jump? Hence verify that a hydraulic jump will occur. Determine the
depth upstream of the gate and the hydrodynamic force on the gate, assuming Cv = 0.98
and 𝛼 = 1.2.

18. If in Problem 17 the gate is raised to give an opening of 1.5 m, determine whether or not
a hydraulic jump will form. Calculate the depths immediately upstream of the gate and
at the position of the vena contracta and the force on the gate.

19. A long rectangular channel 8 m wide, bed slope 1:5000 and the Manning roughness
0.015 conveys a steady discharge of 40 m3/s. A sluice gate raises the depth immediately
upstream to 5.0 m. Taking the Coriolis coefficient 𝛼 to be 1.1, determine the uniform
flow depth and the distance from the gate at which this depth is exceeded by 10%. What
is the depth 5000 m from the gate?

20. A rectangular channel having a bed width of 4 m, a bed slope of 0.001 and Manning’s
n = 0.015 conveys a steady discharge of 25 m3/s. A barrage creates a depth upstream of
4.0 m. Compute the water surface profile taking 𝛼 = 1.1.

21. A long rectangular channel, 2.5 m wide, bed slope 1:1000 and the Manning roughness
coefficient 0.02, discharges 4.5 m3/s freely to atmosphere at the downstream end. Taking
𝛼 = 1.1 and noting that at a free overfall the depth approximates closely to the critical
depth, compute the surface profile to within approximately 10% of the uniform flow
depth.

22. A long trapezoidal channel of bed width 3.5 m, side slopes at 45◦, bed slope 0.0003 and
Manning’s n = 0.018 conveys a steady flow of 50 m3/s. A control structure creates an
upstream depth of 5.0 m. Taking 𝛼 = 1.1, determine the distance upstream at which the
depth is 4.2 m.

23. Two reserviors are connected by a wide rectangular channel of length 1500 m, where
Manning’s n is 0.02, the bed slope is 4 × 10−4, the channel entry loss coefficient K is
0.02, the channel invert elevation (u∕s) is 101.00 m above ordnance datum (AOD) and
the water level in the u∕s reservoir is 104.00 m AOD (constant).
(a) Determine the limiting downstream reservoir level to cause uniform flow in the chan-

nel.
(b) If the downstream reservoir level is 103.50 m AOD, examine whether or not it will

affect the uniform flow rate (submerged inlet and reduced flow).
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24. A culvert is proposed under a highway embankment where the design flood is 15 m3/s,
the width of the highway is 30 m and the natural drainage slope is 0.015. The available
pipe barrels are corrugated pipes of diameter in multiples of 250 mm, with Manning’s n
equal to 0.024 and the entry loss coefficient 0.9.
(a) Compute the proposed culvert barrel size if the maximum permissible headwater

level is 4 m above the invert, with the barrel discharging free at its outlet.
(b) If a fare-edged entry (loss coefficient = 0.25) is chosen, calculate the required barrel

diameter for the conditions in (a).
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Chapter 9
Dimensional Analysis,
Similitude and Hydraulic
Models

9.1 Introduction

Hydraulic engineering structures or machines can be designed using (i) pure theory, (ii)
empirical methods, (iii) semi-empirical methods, which are mathematical formulations
based on theoretical concepts supported by suitably designed experiments, (iv) physical
models or (v) mathematical models.

The purely theoretical approach in hydraulic engineering is limited to a few cases of
laminar flow, for example the Hagen–Poiseuille equation for the hydraulic gradient in
the laminar flow of an incompressible fluid in a circular pipeline. Empirical methods are
based on correlations between observed variables affecting a particular physical system.
Such relationships should only be used under circumstances similar to those under which
the data were collected. Due to the inability to express the physical interaction of the
parameters involved in mathematical terms, some such methods are still in use. One well-
known example is in the relationship between wave height, fetch, wind speed and duration
for the forecasting of ocean wave characteristics.

A good example of a semi-empirical relationship is the Colebrook–White equation for
the friction factors in turbulent flow in pipes (see Chapters 4 and 7). This was obtained
from theoretical concepts and experiments designed on the basis of dimensional analysis;
it is universally applicable to all Newtonian fluids.

Dimensional analysis also forms the basis for the design and operation of physical scale
models which are used to predict the behaviour of their full-sized counterparts called pro-
totypes. Such models, which are generally geometrically similar to the prototype, are used
in the design of aircraft, ships, submarines, pumps, turbines, harbours, breakwaters, river
and estuary engineering works, spillways and so on.

While mathematical modelling techniques have progressed rapidly due to the advent
of high-speed digital computers, enabling the equations of motion coupled with semi-
empirical relationships to be solved for complex flow situations such as pipe network
analysis, pressure transients in pipelines and unsteady flows in rivers and estuaries, there

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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are many cases, particularly where localised flow patterns cannot be mathematically mod-
elled, when physical models are still needed.

Without the technique of dimensional analysis, experimental and computational
progress in fluid mechanics would have been considerably retarded.

9.2 Dimensional analysis

The basis of dimensional analysis is to condense the number of separate variables involved
in a particular type of physical system into a smaller number of non-dimensional groups
of the variables.

The arrangement of the variables in the groups is generally chosen so that each group
has a physical significance.

All physical parameters can be expressed in terms of a number of basic dimensions; in
engineering, the basic dimensions such as mass (M), length (L) and time (T) are sufficient
for this purpose. For example, velocity = distance/time (=LT−1); discharge = volume/time
(=L3T−1). Force is expressed using Newton’s law of motion (force = mass × acceleration);
hence, force = MLT−2.

A list of some physical quantities with their dimensional forms can be seen below.

Physical quantity Symbol Dimensional form

Length 𝓁 L
Time t T
Mass m M
Velocity V LT−1

Acceleration a LT−2

Discharge Q L3T−1

Force F MLT−2

Pressure p ML−1T−2

Power P ML2T−3

Density 𝜌 ML−3

Dynamic viscosity 𝜇 ML−1T−1

Kinematic viscosity 𝜈 L2T−1

Surface tension 𝜎 MT−2

Bulk modulus of elasticity K ML−1T−2

9.3 Physical significance of non-dimensional groups

The main components of force which may act on a fluid element are those due to viscosity,
gravity, pressure, surface tension and elasticity. The resultant of these components is called
the inertial force, and the ratio of this force to each of the force components indicates the
relative importance of the force types in a particular flow system.

For example, the ratio of inertial force to viscous force is

Fi

F𝜇

= 𝜌L3LT−2

𝜏L2
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Now 𝜏 = 𝜇
dy

dy
= 𝜇LT−1L−1

whence
Fi

F𝜇

= 𝜌L2T−1

𝜇
= 𝜌LV

𝜇
= 𝜌𝓁V

𝜇

where 𝓁 is a typical length dimension of the particular system.
The dimensionless term 𝜌𝓁V∕𝜇 is in the form of the Reynolds number.
Low Reynolds numbers indicate a significant dominance of viscous forces in the system,

which explains why this non-dimensional parameter may be used to identify the regime
of flow (i.e. whether laminar or turbulent).

Similarly, it can be shown that the Froude number is the ratio of inertial force to gravity
force in the form

Fr = V2

g𝓁

(
but usually expressed as Fr = V√

g𝓁

)

The Weber number, We, is the ratio of inertial to surface tension force and is expressed by
V∕

√
𝜎∕𝜌𝓁.

9.4 The Buckingham 𝝅 theorem

This states that the n quantities Q1, Q2,… , Qn involved in a physical system can be
arranged in (n − m) non-dimensional groups of the quantities, where m is the number
of basic dimensions required to express the quantities in dimensional form.

Thus f1(Q1, Q2,… , Qn) = 0 can be expressed as f2(𝜋1,𝜋2,… ,𝜋n−m), where f means ‘a
function of …’ . Each 𝜋 term basically contains m repeated quantities which together con-
tain the m basic dimensions together with one other quantity. In fluid mechanics m = 3,
and therefore each 𝜋 term basically contains four of the quantity terms.

Further information on the historical development of this approach is given in the rec-
ommended reading, and a matrix method suited to computer application is presented in
Chadwick et al. (2013).

9.5 Similitude and model studies

Similitude, or dynamic similarity, between two geometrically similar systems exists when
the ratios of inertial force to the individual force components in the first system are the
same as the corresponding ratios in the second system at the corresponding points in space.
Hence for absolute dynamic similarity, the Reynolds, Froude and Weber numbers must be
the same in the two systems. If this can be achieved the flow patterns will be geometrically
similar (i.e., kinematic similarity exists).

In using physical scale models to predict the behaviour of prototype systems or designs,
it is rarely possible (except when only one force type is relevant) to achieve simultaneous
equality of the various force ratios. The ‘scaling laws’ are then based on equality of the
predominant force; strict dynamic similarity is thus not achieved, resulting in ‘scale effect’.

Reynolds modelling is adopted for studies of flows without a free surface such as pipe
flow and flow around submerged bodies (e.g. aircraft, submarines, vehicles and buildings).
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The Froude number becomes the governing parameter in flows with a free surface since
gravitational forces are predominant. Hydraulic structures, including spillways, weirs and
stilling basins, rivers and estuaries, hydraulic turbines and pumps and wave-making resis-
tance of ships, are modelled according to the Froude law.

Worked examples

Example 9.1

Obtain an expression for the pressure gradient in a circular pipeline, of effective roughness
k conveying an incompressible fluid of density 𝜌, dynamic viscosity 𝜇, at a mean velocity
V, as a function of non-dimensional groups.

By comparison with the Darcy–Weisbach equation, show that the friction factor is a
function of relative roughness and the Reynolds number.

Solution:

In full pipe flow, gravity and surface tension forces do not influence the flow. Let Δp =
pressure drop in a length L. Then

f1(Δp, L, 𝜌, V, D,𝜇, k) = 0 (i)

The repeating variables will be 𝜌, V and D. Δp clearly is not to be repeated since this
variable is required to be expressed in terms of the other variables. If 𝜇 or k were to be
repeated, the relative effect of the parameter would be hidden.

f2(𝜋1,𝜋2,𝜋3,𝜋4) = 0 (ii)

Then

𝜋1 = 𝜌𝛼D𝛽V𝛾Δp (iii)

where 𝛼, 𝛽 and 𝛾 are indices to be evaluated.
In dimensional form,

𝜋1 = (ML−3)𝛼L𝛽(LT−1)𝛾ML−1T−2

The sum of the indices of each dimension must be zero.

Thus for M, 0 = 𝛼 + 1, whence 𝛼 = −1

for T, 0 = −𝛾 − 1, whence 𝛾 = −2

and for L, 0 = −3𝛼 + 𝛽 + 𝛾 − 1, whence 𝛽 = 0

⇒ 𝜋1 =
Δp

𝜌V2
(iv)

𝜋2 = 𝜌𝛼D𝛽V𝛾L (v)

The 𝜋 terms are dimensionless, and since D and L have the same dimensions the solution
is

𝜋2 = L
D

(vi)
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Similarly,

𝜋3 = k
D

(vii)

𝜋4 = 𝜌𝛼D𝛽V𝛾𝜇 (viii)

𝜋4 = (ML−3)𝛼L𝛽(LT−1)𝛾ML−1T−1

Indices of M: 0 = 𝛼 + 1; 𝛼 = −1

Indices of T: 0 = −𝛾 − 1; 𝛾 = −1

Indices of L: 0 = −3𝛼 + 𝛽 + 𝛾 − 1; 𝛽 = −1

⇒ 𝜋4 = 𝜇

𝜌DV
(ix)

⇒ f2

(
Δp

𝜌V2
, L

D
, k

D
,

𝜇

𝜌DV

)
= 0 (x)

The 𝜋 terms can be multiplied or divided, and since the pressure gradient is required
Equation (x) may thus be reformed as

f2

(
Δp D

L 𝜌V2
, k

D
,

𝜇

𝜌DV

)
= 0

whence
Δp
L

= 𝜌V2

D
𝜙

[
k
D

, Re
]

where 𝜙 means ‘a function of …’ the form of which is to be obtained experimentally.
The hydraulic gradient,

Δh
L

=
Δp
𝜌gL

whence Δh
L

= V2

gD
𝜙

[
k
D

, Re
]

(xi)

Comparing Equation (xi) with the Darcy–Weisbach equation,

hf

L
= 𝜆V2

2gD

it is seen that 𝜆 is dimensionless and that

𝜆 = 𝜙

[
k
D

, Re
]

This relationship enabled experiments to be designed (as described in Chapter 7), which
eventually led to the Colebrook–White equation.

Example 9.2

Show that the discharge of a liquid through a rotodynamic pump having an impeller of
diameter D and width B, running at speed N when producing a total head H, can be
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expressed in the form

Q = ND3𝜙

[
D
B

, N2D2

gH
,
𝜌ND2

𝜇

]

Solution:

f1(N, D, B, Q, gH, 𝜌,𝜇) = 0

Note that the presence of g represents the transformation of pressure head to velocity
energy; it is convenient, but not essential, to combine g and H instead of treating them
separately.

f2(𝜋1,𝜋2,𝜋3,𝜋4) = 0

Using 𝜌, N and D as the recurring variables,

𝜋1 = 𝜌𝛼N𝛽D𝛾B

𝜋1 = B
D

𝜋2 = 𝜌𝛼N𝛽D𝛾Q
𝜋2 = (ML−3)𝛼(T−1)𝛽L𝛾L3T−1

For M, 0 = 𝛼; 𝛼 = 0
For T, 0 = −𝛽 − 1; 𝛽 = −1
For L, 0 = −3𝛼 + 𝛾 + 3; 𝛾 = −3

𝜋2 =
Q

ND3

𝜋3 = 𝜌𝛼N𝛽D𝛾 (gH)

𝜋3 = (ML−3)𝛼(T−1)𝛽L𝛾L2T−2

whence 𝜋3 =
gH

N2D2

𝜋4 = 𝜌𝛼N𝛽D𝛾𝜇

𝜋4 = (ML−3)𝛼(T−1)𝛽L𝛾ML−1T−1

whence 𝜋4 = 𝜇

𝜌ND2

⇒ f1

(
B
D

,
Q

ND3
,

gH

N2D2
,

𝜇

𝜌ND2

)
= 0

whence Q = ND3𝜙

[
D
B

, N2D2

gH
,
𝜌ND2

𝜇

]

Note that the 𝜋 terms may be inverted for convenience and that 𝜌ND2∕𝜇 is a form of the
Reynolds number and N2D2∕gH a form of the square of the Froude number.

C
h

ap
ter

9



Dimensional Analysis, Similitude and Hydraulic Models 253

Example 9.3

Show that the discharge Q of a liquid of density 𝜌, dynamic viscosity 𝜇 and surface ten-
sion 𝜎, over a V-notch under a head H, may be expressed in the form

Q = g1∕2H5∕2𝜙

[
𝜌g1∕2H3∕2

𝜇
,
𝜌gH2

𝜎
, 𝜃
]

where 𝜃 is the notch angle, and hence define the parameters upon which the discharge
coefficient of such weirs is dependent.

Solution:

f1(𝜌, g, H, Q,𝜇, 𝜎, 𝜃) = 0

in other words,

f2(𝜋1,𝜋2,𝜋3,𝜋4) = 0

Using 𝜌, g and H as the repeating variables,

𝜋1 = 𝜌𝛼g𝛽H𝛾Q
𝜋1 = (ML−3)𝛼(LT−2)𝛽L𝛾L3T−1

For M, 0 = 𝛼; 𝛼 = 0
For T, 0 = −2𝛽 − 1; 𝛽 = −1∕2
For L, 0 = −3𝛼 + 𝛽 + 𝛾 + 3; 𝛾 = −5∕2

𝜋1 =
Q

g1∕2H5∕2

𝜋2 = 𝜌𝛼g𝛽H𝛾𝜇

𝜋2 = (ML−3)𝛼(LT−2)𝛽L𝛾ML−1T−1

𝜋2 = 𝜇

𝜌g1∕2H3∕2

𝜋3 = 𝜌𝛼g𝛽H𝛾𝜎

𝜋3 = (ML−3)𝛼(LT−2)𝛽L𝛾ML−2

𝜋3 = 𝜎

𝜌gH2

𝜋4 = 𝜌𝛼g𝛽H𝛾𝜃

𝜋4 = 𝜃 (since 𝜃 itself is dimensionless)

⇒ f2

[
Q

g1∕2H5∕2
,

𝜇

𝜌g1∕2H3∕2
, 𝜎

𝜌gH2
, 𝜃
]
= 0

Rearranging,

Q = g1∕2H5∕2𝜙

[
𝜌g1∕2H3∕2

𝜇
,
𝜌gH2

𝜎
, 𝜃
]

From energy considerations the discharge over a V-notch is expressed as

Q = 8
15

√
2g Cd tan 𝜃

2
H5∕2
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Comparing the above two forms it is seen that

Cd = f
(
𝜌g1∕2H3∕2

𝜇
,
𝜌gH2

𝜎

)

The group 𝜌g1∕2H3∕2∕𝜇 has the form of the Reynolds number Re, and the group 𝜌gH2∕𝜎
relates to the square of the Weber number, We. Hence

Cd = f (Re, We)

Surface tension effects represented by the Weber number may become significant at low
discharges.

Example 9.4

Derive an expression for the discharge per unit crest length of a rectangular weir over
which a fluid of density 𝜌 and dynamic viscosity 𝜇 is flowing with a head H.

The crest height is P. By comparison with the discharge equation obtained from energy
considerations,

q = 2
3

√
2g CdH3∕2

state the parameters on which the discharge coefficient depends for a given crest profile.

Solution:

f1(q, g, H, 𝜌,𝜇, 𝜎, P) = 0

f2(𝜋1,𝜋2,𝜋3,𝜋4) = 0

With 𝜌, g and H as the repeating variables,

𝜋1 = 𝜌𝛼g𝛽H𝛾q

𝜋1 =
q

g1∕2H3∕2

𝜋2 = 𝜌𝛼g𝛽H𝛾𝜇

𝜋2 = 𝜇

𝜌g1∕2H3∕2

𝜋3 = 𝜌𝛼g𝛽H𝛾𝜎

𝜋3 = 𝜎

𝜌gH2

𝜋4 = 𝜌𝛼g𝛽H𝛾P

𝜋4 = P
H

⇒ f2

(
q

g1∕2H3∕2
,

𝜇

𝜌g1∕2H3∕2
, 𝜎

𝜌gH2
, P

H

)
= 0

or q = g1∕2H3∕2𝜙

[
𝜌g1∕2H3∕2

𝜇
,
𝜌gH2

𝜎
, P

H

]
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Hence

Cd = f
[
Re, We, P

H

]
In addition, of course, the discharge coefficient will depend on the crest profile, and

the influence of this factor together with that of the non-dimensional groups in the above
expression can only be found from experiments.

Example 9.5

A spun iron pipeline 300 mm in diameter and with 0.3 mm effective roughness is to be
used to convey oil of kinematic viscosity 7.0 × 10−5 m2/s at a rate of 80 L/s. Laboratory
tests on a 30 mm pipeline conveying water at 20◦C (𝜈 = 1.0 × 10−6 m2/s) are to be carried
out to predict the hydraulic gradient in the oil pipeline.

Determine the effective roughness of the 30 mm pipe, the water discharge to be used
and the hydraulic gradient in the oil pipeline at the design discharge.

Solution:

It was shown in Example 9.1 that the hydraulic gradient in a pressure pipeline is expressed
by

Sf =
hf

L
= V2

gD
𝜙

[
k
D

, Re
]

(i)

For geometrical similarity, the relative roughness k∕D must be the same in both systems.
Using subscript ‘o’ for oil and ‘w’ for water,(

k
D

)
o
= 0.3

300
= 0.001

⇒ roughness of water pipe = 0.001 × 30 = 0.03 mm

(An unplasticised polyvinyl chloride (PVCu) pipeline with chemically cemented joints
could be used.)

For dynamic similarity the Reynolds numbers must be the same.

(VD
𝜈

)
w
=
(VD

𝜈

)
o

Vo = 1.132 m/s; Reo = 1.132 × 0.3
7.0 × 10−5

= 4851.0

⇒ Vw = 4851.0 × 1.0 × 10−6

0.03
= 0.1617 m/s

The velocity 0.1617 m/s for water is called the corresponding speed for dynamic simi-
larity.

⇒ Water discharge = 0.114 L∕s
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From Equation (i),

Sf,o

Sf,w
=

(V2∕gD)o

(V2∕gD)w

since 𝜙[k∕D, Re] is the same for the two systems at the corresponding speeds.

⇒ Sf,o =
(1.3322∕0.3)
(0.16172∕0.3)

× 0.0017 = 0.00833

Example 9.6

A V-notch is to be used for monitoring the flow of oil of kinematic viscosity 8.0 × 10−6

m2/s. Laboratory tests using water at 15◦C over a geometrically similar notch were used
to predict the calibration of the notch when used for oil flow measurement. At a head of
0.15 m, the water discharge was 12.15 L/s. What is the corresponding head when measur-
ing oil flow and what is the corresponding oil discharge?

Solution:

In Example 9.3 it was shown that the discharge over a V-notch is given by

Q = g1∕2H5∕2𝜙

[
𝜌g1∕2H3∕2

𝜇
,
𝜌gH2

𝜎
, 𝜃
]

(i)

where 𝜃 is the same for both notches; and for dynamic similarity the groups 𝜌g1∕2H3∕2∕𝜇
and 𝜌gH2∕𝜎 should be the same, respectively, for the water and oil systems. That is

Reo = Rew and Weo = Wew

using subscript ‘o’ for oil and ‘w’ for water.
However, it will be realised that these two relationships will lead to two different scaling

laws, but since the surface tension effect will become significant only in relation to the
viscous and gravity forces at very low heads this effect can be neglected. The scaling law
is therefore obtained by equality of the Reynolds numbers.(

H3∕2

𝜈

)
o
=
(

H3∕2

𝜈

)
w

whence Ho = 0.15
(

8 × 10−6

1.13 × 10−6

)2∕3

= 0.553 m

Using Equation (i), and since the 𝜙[ ] terms are the same for both systems,

Qo

Qw
=
(

Ho

Hw

)5∕2

whence Qo = 12.15
(

0.553
0.15

)5∕2

Qo = 0.3171 m3∕s (317.1 L∕s)
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Example 9.7

(a) Show that the net force acting on the liquid flowing in an open channel may be
expressed as

F = 𝜌V2𝓁2𝜙

[
Re, Fr, We, k

𝓁

]
(ii)

where 𝓁 is a typical length dimension.
(b) A 1:50 scale model of part of a river is to be constructed to investigate channel

improvements. A steady discharge of 420 m3/s was measured in the river at a section
where the average width was 105 m and water depth 3.5 m.

Determine the corresponding depth, velocity and discharge to be reproduced in
the model. Check that the flow in the model is in the turbulent region, and discuss
how the boundary resistance in the model could be adjusted to produce a geometrical
similarity of surface profiles.

Solution:

(a)

f (𝜌, V,𝓁, g,𝜇, 𝜎, k) = 0

With 𝜌, V and 𝓁 as the repeating variables, dimensional analysis yields

F = 𝜌V2𝓁2𝜙

[
V𝓁𝜌
𝜇

, V2

g𝓁
,
𝜌V2𝓁
𝜎

, k
𝓁

]

i.e. F = 𝜌V2𝓁2𝜙

[
Re, Fr, We, k

𝓁

]

(b) For dynamic similarity the non-dimensional groups should be equal in the model
and prototype. Surface tension effects will be negligible in the prototype and its
effect must be minimised in small-scale models. Although the boundary resistance,
as reflected in the Re and k∕𝓁 terms, and the gravity force are both significant, open
channel models are operated according to the Froude law,(

V√
gy

)
m

=

(
V√
gy

)
p

(i)

where the length parameter is the depth y. Subscript ‘m’ relates to the model and ‘p’ to the
prototype.

ym

yp
= 1

50

whence ym = 3.5
50

= 0.07 m

Vp =
Q
A

= 420
105 × 3.5

= 1.14 m/s
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From Equation (i),

Vm = Vp

√
ym

yp
= 1.14

√
1

50
= 0.161 m/s

Qm

Qp
=

VmAm

VpAp
=

Vm

Vp

(by)m

(by)p

=
√

𝜆y 𝜆x𝜆y = 𝜆3∕2
y 𝜆x

where 𝜆y is the vertical scale and 𝜆x is the horizontal scale.
Note that the term 𝜆 is commonly used to indicate a scaling ratio in model studies. It is

not to be confused with the Darcy friction factor.
In this case 𝜆y = 𝜆x (undistorted model), whence

Qm

Qp
=
√

1
50

(
1
50

)2

Qm = 420 ×
(

1
50

)5∕2

= 0.02376 m3∕s

= 23.76 L∕s

The Reynolds number in the model for testing the flow regime is best expressed in terms
of the hydraulic radius Rm:

bm = 105
50

= 2.1 m (bm = average width in model = bp × 𝜆x)

Wetted perimeter, Pm = 2.1 + 2 × 0.07 = 2.24 m

Rm = 2.1 × 0.07
2.24

= 0.0656 m

Rem = 0.161 × 0.0656
1 × 10−6

= 10 561.6

which indicates a turbulent flow.
The discharge in the model has been determined, in relation to the geometrical scale,

to correspond with the correct scaling of the gravity forces. In order to scale correctly the
viscous resistance forces, in the model the discharge ratio should comply with the Reynolds
law with the geometrically relative roughness.

In the Froude scaled model, therefore, the resistance forces would be underestimated
if the boundary roughness were to be modelled to the geometrical scale, and in practice,
roughness elements consisting of concrete blocks, wire mesh or vertical rods are installed
and adjusted until the surface profile in the model, when operating at the appropriate scale
discharge, is geometrically similar to the observed prototype surface profile.

Example 9.8

(a) Explain why distorted scale models of rivers are commonly used.
(b) A river model is constructed to a vertical scale of 1:50 and a horizontal scale of 1:200.

The model is to be used to investigate a flood alleviation scheme. At the design flood
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of 450 m3/s, the average width and depth of flow are 60 and 4.2 m, respectively.
Determine the corresponding discharge in the model and check the Reynolds number
of the model flow.

Solution:

(a) The size of a river model is determined by the laboratory space available (although in
some cases special buildings are constructed to house a particular model, notably the
Eastern Schelde model in the Delft Hydraulics Laboratory, the Netherlands). In the
case of a long river reach, a natural model scale may result in such small flow depths
that depth and water elevations cannot be measured with sufficient accuracy, the flow
in the model may become laminar, surface tension effects may become significant and
sediment studies may be precluded because of the low tractive force.

To avoid these problems, geometrical distortion wherein the vertical scale 𝜆y is
larger than the horizontal scale 𝜆x is used, typical vertical distortions being in the
range of 5–100 with a vertical scale not smaller than 1:100.

(b) Velocity in prototype = 450
60 × 4.2

= 1.786 m/s

The Froude scaling law is based on the vertical scale ratio

Vm = Vp

√
𝜆y = 1.786

√
1
50

= 0.25 m/s

Qm

Qp
=

Vm

Vp

(xy)m

(by)
= 𝜆3∕2

y 𝜆x

=
(

1
50

)3∕2

× 1
200

= 1.414 × 10−5

⇒ Qm = 450 × 1.414 × 10−5 m3∕s

= 6.36 L/s

Average dimensions of model channel:

Width = 60
200

= 0.30 m

Depth = 4.2
50

= 0.084 m

Hydraulic radius ≃ 0.3 × 0.084
0.468

= 0.0538

Reynolds number = VR
𝜈

= 0.25 × 0.0538
1 × 10−6

= 13 450

The flow therefore will be turbulent.

Example 9.9

An estuary model is built to a horizontal scale of 1:500 and vertical scale of 1:50. Tidal
oscillations of amplitude 5.5 m and a tidal period of 12.4 h are to be reproduced in the
model. What are the corresponding tidal characteristics in the model?
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Solution:

The speed of propagation, or celerity, of a gravity wave in which the wavelength is very
large in relation to the water depth y, as in the case of tidal oscillations, is given by c =

√
gy.

Thus, estuary models must be operated according to the Froude law.
The tidal range is modelled according to the vertical scale.

Hm = Hp ×
1

50
= 5.5

50
= 0.11 m

Tidal period, T = L
c

where L is the wavelength. Hence

Tm

Tp
=

Lm

Lp

cp

cm
= 𝜆x

√
yp

ym
=

𝜆x√
𝜆y

⇒ Tm =
12.4 × 1∕500√

1∕50
= 0.1754 h

= 10.52 min

Example 9.10

The discharge Q from a rotodynamic pump developing a total head H when running at
N revolutions per minute is given by

Q = ND3𝜙

[
D
B

, N2D2

gH
,
𝜌ND2

𝜇

]
(see Example 9.2) (i)

(a) Obtain an expression for the specific speed of a rotodynamic pump and show how
to predict the pump characteristics when running at different speeds.

(b) The performance of a new design of rotodynamic pump is to be tested in a 1:5 scale
model. The pump is to run at 1450 rev/min.

The model delivers a discharge of 2.5 L/s of water and a total head of 3 m, with an
efficiency of 65% when operating at 2000 rev/min. What are the corresponding discharge
head and power consumption in the prototype? Determine the specific speed of the pump
and hence state the type of impeller.

Solution:

(a) For geometrically similar machines operating at high Reynolds numbers, the term
𝜌ND2∕𝜇 becomes unimportant and Equation (i) may be rewritten as

f
(

Q

ND3
, D

B
, N2D2

gH

)
= 0
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The term D∕B is automatically satisfied by the geometrical similarity, and the terms
Q∕ND3 and N2D2∕gH should have identical values in the model and prototype.

⇒

(
Q

ND3

)
m
=
(

Q

ND3

)
p

(ii)

and
(

N2D2

gH

)
m
=
(

N2D2

gH

)
p

(iii)

The scale

Dm

Dp
=

Np

Nm

(
Hm

Hp

)1∕2

(from Equation (iii))

whence from Equation (ii)

Nm

Np
=

√
QP

Qm

(
Hm

Hp

)3∕4

(iv)

If Hm and Qm are made equal to unity, then Equation (iv) becomes

Nm =
Np

√
Qp

H3∕4
p

(v)

The term N
√

Q∕H3∕4 is called the specific speed and is interpreted as the speed
at which a geometrically scaled model would run in order to deliver unit discharge
when generating unit head. All geometrically similar machines have the same specific
speed.

In the case of the same pump running at different speeds, Dm = Dp and Equa-
tion (ii) becomes

Q1

N1
=

Q2

N2
or Q2 = Q1

(
N2

N1

)

and Equation (iii) becomes

N1

H2
1

=
N2

H2
2

or H2 = H1

√
N2

N1

(b) From Equation (ii)

Qp = Qm

(ND3)p

(ND3)m

⇒ Qp = 2.5 × 53 × 1450
2000

= 226 L∕s

From Equation (iii)

Hp = Hm

( Np

Nm

Dp

Dm

)2

= 3.0
(

1450
2000

× 5
)2

= 39.42 m
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Power input required = 9.81 × 0.226 × 39.42
0.65

= 134.5 kW

Specific speed, Ns =
N
√

Q

H3∕4
=

1450
√

226
(39.42)3∕4

= 1385

The impeller is of the centrifugal type (see Chapter 6).

Example 9.11

A model of a proposed dam spillway was constructed to a scale of 1:25. The design flood
discharge over the spillway is 1000 m3/s. What discharge should be provided in the model?
What is the velocity in the prototype corresponding with a velocity of 1.5 m/s in the model
at the corresponding point?

Solution:

Example 9.4 showed that the discharge per unit crest length of a rectangular weir could
be expressed as

q = g1∕2H3∕2𝜙

[
𝜌g1∕2H3∕2

𝜇
,
𝜌gH2

𝜎
, P

H

]
(i)

The governing equation for spillways and weirs is identical. Flood discharges over spill-
ways will result in very high Reynolds numbers, and since surface tension effects are also
negligible the only factor affecting the discharge coefficient is P∕H. In modelling dam spill-
ways, therefore, if the ratios of P∕H in the model and prototype are identical and the crest
geometry is correctly scaled,

q

g1∕2H3∕2
= Constant

Therefore, spillway models are operated according to the Froude law and are made
sufficiently large that viscous and surface tension effects are negligible.(

V√
g𝓁

)
m

=

(
V√
g𝓁

)
p

(ii)

Q = V𝓁2 (iii)

⇒

(
Q

𝓁5∕2

)
m
=
(

Q

𝓁5∕2

)
p

(iv)

whence

Qm = 1000
(

1
25

)5∕2

= 0.32 m3∕s

From Equation (ii)

Vp = Vm

√
𝓁p

𝓁m
= Vm

√
25

⇒ Vp = 1.5 × 5 = 7.5 m/s
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Problems

1. The head loss of water of kinematic viscosity 1 × 10−6 m2∕s in a 50 mm diameter pipeline
was 0.25 m over a length of 10.0 m at a discharge of 2.0 L/s. What is the corresponding
discharge and hydraulic gradient when oil of kinematic viscosity 8.5 × 10−6 m2∕s flows
through a 250 mm diameter pipeline of the same relative roughness?

2. Find the pressure drop at the corresponding speed in a pipe 25 mm in diameter and
30 m long conveying water at 10◦C if the pressure head loss in a 200 mm diameter smooth
pipe 300 m long in which air is flowing at a velocity of 3 m/s is 10 mm of water. Density
of air = 1.3 kg∕m3; dynamic viscosity of air = 1.77 × 10−5 N s∕m2; dynamic viscosity of
water = 1.3 × 10−3 N s∕m2.

3. A 50 mm diameter pipe is used to convey air at 4◦C (density = 1.12 kg∕m3 and dynamic
viscosity = 1.815 × 10−5 N s/m2) at a mean velocity of 20 m/s. Calculate the discharge of
water at 20◦C for dynamic similarity, and obtain the ratio of the pressure drop per unit
length in the two cases.

4. If, in modelling a physical system, the Reynolds and Froude numbers are to be the same
in the model and prototype, determine the ratio of kinematic viscosity of the fluid in the
model to that in the prototype.

5. The sequent depth ys of a hydraulic jump in a rectangular channel is related to the initial
depth yi, the discharge per unit width, q, g and p. Express the ratio ys∕yi in terms of
a non-dimensional group and compare with the equation developed from momentum
principles:

ys =
yi

2

(√
1 + Fr2

i − 1
)

6. A 60◦ V-notch is to be used for measuring the discharge of oil having a kinematic viscosity
10 times that of water. The notch was calibrated using water. When the head over the
notch was 0.1 m the discharge was 2.54 L/s. Determine the corresponding head and
discharge when the notch is used for oil flow measurement.

7. The airflow and wind effects on a bridge structure are to be studied on a 1:25 scale
model in a pressurised wind tunnel in which the air density is eight times that of air at
atmospheric pressure and at the same temperature. If the bridge structure is subjected
to wind speeds of 30 m/s, what is the corresponding wind speed in the wind tunnel?
What force on the prototype corresponds with a 1400 N force on the model? (Note:
The dynamic viscosity of air is unaffected by pressure changes provided the temperature
remains constant.)
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8. A rotodynamic pump is designed to operate at 1450 rev/min and to develop a total head
of 60 m when discharging 250 L/s.

The following characteristics of a 1:4 scale model were obtained from tests carried out
at 1800 rev/min.

Qm (L∕s) 0 2 4 6 8
Hm (m) 8 7.6 6.4 4.2 1.0

Obtain the corresponding characteristics of the prototype, and state whether or not it
meets its design requirements.

9. (a) Show that the power output P of a hydraulic turbine expressed in terms of non-
dimensional groups in the form

P = 𝜌N3D5𝜙

[
Q

ND3
, D

B
, N2D2

gH
,
𝜌ND2

𝜇

]

Derive an expression for the specific speed of a hydraulic turbine.
(b) A 1:20 scale model of a hydraulic turbine operates under a constant head of 10 m.

The prototype will operate under a head of 150 m at a speed of 300 rev/min. When
running at the corresponding speed, the model generates 1.2 kW at a discharge of
13.6 L/s. Determine the corresponding speed, power output and discharge of the
prototype.

10. The wave action and forces on a proposed sea wall are to be studied on a 1:10 scale
model. The design wave has a period of 9 seconds and a height from crest to trough of 5
m. The depth of water in front of the wall is 7 m.

Assuming that the wave is a gravity wave in shallow water and that the celerity c =
√

gy
(where y is the water depth), determine the wave period, wavelength and wave height
to be reproduced in the model. If a force of 4 kN due to wave breaking on a 0.5 m
length of the model sea wall were recorded, what would be the corresponding force per
unit length on the prototype?
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Chapter 10
Ideal Fluid Flow and
Curvilinear Flow

10.1 Ideal fluid flow

The analysis of ideal fluid flow is also referred to as potential flow. The concept of an
ideal fluid is that of one which is inviscid and incompressible; the flow is also assumed
to be irrotational. Since flow in boundary layers is rotational and strongly influenced by
viscosity, the analytical techniques of ideal fluid flow cannot be applied in such circum-
stances. However, in many situations the flow of real fluids outside the boundary layer,
where viscous effects are small, approximates closely to that of an ideal fluid.

The object of the study of ideal fluid flow is to obtain the flow pattern and pressure distri-
bution in the fluid flow around prescribed boundaries. Examples are the flow over airfoils,
through the passages of pump and turbine blades, over dam spillways and under control
gates. The governing differential equations of ideal fluid flow have also been successfully
applied to oscillatory wave motions, groundwater and seepage flows.

10.2 Streamlines, the stream function

A streamline is a continuous line drawn through the fluid such that it is tangential to
the velocity vector at every point. In steady flow the streamlines are identical with the
pathlines or tracks of discrete liquid elements. No flow can occur across a streamline, and
the concept of a stream tube in two-dimensional flow emerges as the flow per unit depth
between adjacent streamlines.

From Figure 10.1a,

dy

dx
= v

u
; u dy − v dx = 0 [10.1]

The continuity equation for two-dimensional steady ideal fluid flow is

𝜕u
𝜕x

+ 𝜕v
𝜕y

= 0 [10.2]
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y

V

u
v

x

x
y

zδQ

(b)(a)

Figure 10.1 Two-dimensional ideal fluid flow: (a) streamlines and (b) streamtube.

Equation 10.2 is satisfied by the introduction of a stream function denoted by 𝜓 such that

u = 𝜕𝜓

𝜕y
and v = −𝜕𝜓

𝜕x

whence Equation 10.2 becomes

𝜕2𝜓

𝜕y 𝜕x
− 𝜕2𝜓

𝜕x 𝜕y
= 0

Substitution of u and v in Equation 10.1 yields

𝜕𝜓

𝜕y
dy + 𝜕𝜓

𝜕x
dx = 0

Now mathematically

d𝜓 = 𝜕𝜓

𝜕y
dy + 𝜕𝜓

𝜕x
dx

whence d𝜓∕ds = 0, where s is the direction along a streamline. Thus, 𝜓 is constant along
a streamline and the pattern of streamlines is obtained by equating the stream function to
a series of numerical constants.

Since 𝛿Q = Vb, where b is the spacing of adjacent streamlines and 𝛿Q the discharge per
unit depth between the streamlines, the velocity vector V is universely proportional to the
streamline spacing.

In polar coordinates the radial and tangential velocity components vr and v𝜃, respec-
tively, are expressed by

vr =
1
r
𝜕𝜓

𝜕𝜃
; v𝜃 = −𝜕𝜓

𝜕r
[10.3]

10.3 Relationship between discharge and stream function

Let 𝛿Q be the discharge per unit depth between adjacent streamlines (Figure 10.2).

𝛿Q = u sin 𝜃 𝛿s − v cos 𝜃 𝛿s

= u 𝛿y − v 𝛿x

= 𝜕𝜓

𝜕y
𝛿y + 𝜕𝜓

𝜕x
𝛿x

Now 𝛿𝜓 = 𝜕𝜓

𝜕y
𝛿y + 𝜕𝜓

𝜕x
𝛿x; whence 𝛿Q = 𝛿𝜓 = 𝜓2 − 𝜓1 [10.4]
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δQ
δs δy

θ

δx

ψ2

ψ1

v cos θ

u sin θ

B

A
v

u

Figure 10.2 Adjacent streamlines.

10.4 Circulation and the velocity potential function

Circulation is the line integral of the tangential velocity around a closed contour expressed
by

K = ∫ vs ds [10.5]

Velocity potential is the line integral along the s-direction between two points (see Figure
10.3).

𝜙A − 𝜙B = ∫
B

A
V sin 𝛼 ds [10.6]

If 𝛼 = 0, 𝜙A − 𝜙B = 0; thus, the potential 𝜙 along AB is constant.
Note that

𝜕𝜙

𝜕s
= V sin 𝛼, that is,

𝜕𝜙

𝜕s
= vs [10.7]

Lines of constant velocity potential are orthogonal to the streamlines, and the set of
equipotential lines and the set of streamlines form a system of curvilinear squares described
as a flow net (see Figure 10.4).

10.5 Stream functions for basic flow patterns

(a) Uniform rectilinear flow in x-direction (Figure 10.5a):

u = 𝜕𝜓

𝜕y
; 𝜓 = uy + f (x) (i)

ψ2

ψ1
α

A

B
V

Figure 10.3 Velocity potential.
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BAA

(b)(a)

Figure 10.4 Flow nets: (a) flow over a sharp-crested area and (b) flow under a sluice gate.

v = −𝜕𝜓
𝜕x

; 𝜓 = −vx + f (y) (ii)

Since v = 0 and Equations (i) and (ii) are identical,

f (x) = 0 and 𝜓 = uy (10.8)

(b) Uniform rectilinear flow in the y-direction (Figure 10.5b): Similarly since u = 0,

𝜓 = −vx (10.9)

(c) Line source (Figure 10.5c): A line source provides an axi-symmetric radial flow.
Using polar coordinates,

vr = 1
r
𝜕𝜓

𝜕𝜃
; 𝜓 = rvr𝜃 + f (r)

v𝜃 = −𝜕𝜓

𝜕r
; 𝜓 = −rv𝜃 + f (𝜃)

v𝜃 = 0, whence 𝜓 = rvr𝜃

vr =
q

2𝜋r

where q is the ‘strength’ of the source, which is equal to discharge per unit depth.
Therefore,

𝜓 =
q𝜃
2𝜋

(10.10)

(c)(b)(a)

θ

Figure 10.5 Rectilinear flows (a) in the x-direction, (b) in the y-direction and (c) from a line
source.
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Figure 10.6 Combinations of basic flow patterns.

Similarly a line ‘sink’ which is a negative source is defined by

𝜓 = −
q𝜃
2𝜋

(10.11)

10.6 Combinations of basic flow patterns

10.6.1 Source in uniform flow (See Figure 10.6)

The stream function of the resultant flow pattern is obtained by addition of the component
stream functions. Thus

𝜓 = uy +
q𝜃
2𝜋

[10.12]

The streamlines are obtained by solving Equation 10.12 for a number of values of 𝜓 . Alter-
natively superimpose the streamlines for the individual flow patterns and algebraically
add the values of the stream function where they intersect. Obtain the new streamlines by
drawing lines through points having the same value of stream function.

10.7 Pressure at points in the flow field

The pressure p at any point (r, 𝜃) in the flow field is obtained from application of Bernoulli’s
equation:

p0

𝜌g
+

V2
0

2g
=

p
𝜌g

+ V2

2g

where p0 and V0 are the pressure and velocity vector in the undisturbed uniform flow;
and V is the velocity vector at (r, 𝜃). V is obtained from the orthogonal spacing of the

streamlines at (r, 𝜃) or analytically from V =
√

v2
r + v2

𝜃
.
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10.8 The use of flow nets and numerical methods

The analytical methods, as described in Section 10.6 and illustrated in Example 10.1, can
be applied to other combinations of basic flow patterns to simulate, for example, the flow
round a cylinder, flow round a corner and vortex flow. The reader is referred to texts on
fluid mechanics such as Massey and Ward-Smith (2012) for a more detailed treatment of
these applications.

In civil engineering hydraulics, however, the flows are generally constrained by non-
continuous or complex boundaries. A typical example is the flow under a sluice gate (Fig-
ure 10.4b), and such cases are incapable of solution by analytical techniques.

10.8.1 The use of flow nets

One method of solution in such cases is the use of the flow net described in Section 10.4.
Selecting a suitable number of streamtubes, streamlines ‘𝜓 ’ are drawn starting from equally
spaced points where uniform rectilinear flow exists such as section A (Figure 10.4a) and
A and B (Figure 10.4b). A system of equipotential lines ‘𝜙’ is now added such that they
intersect the ‘𝜓 ’ lines orthogonally. If the streamlines have been drawn correctly to suit
the boundary conditions, the resulting flow net will correctly form a system of curvilinear
‘squares’. As a final test, circles drawn in each ‘square’ should be tangential to all sides.
On the first trial the test will probably fail and successive adjustments are made to the ‘𝜓 ’
and ‘𝜙’ lines until the correct pattern is produced.

Local velocities are obtained from the streamline spacings (or the spacing between the
equipotential lines, since Δ𝜓 and Δ𝜙 are locally equal) in relation to the rectilinear flow
velocities, and hence local pressures are calculated from Bernoulli’s equation (Example
10.1). The technique has also been widely used in seepage flow problems under water-
retaining structures usually covered in geotechnical texts.

10.8.2 Numerical methods

Where computer facilities are available, the streamline pattern can be obtained for complex
boundary problems. With computer graphics a plot of the streamlines can be produced in
addition. However, the problems can be solved using an electronic calculator. The method
involves the solution of Laplace’s equation using finite difference methods.

Theory: The assumption of irrotational flow when applied to a liquid element yields

𝜕u
𝜕x

− 𝜕v
𝜕y

= 0 [10.13]

that is,
𝜕2𝜓

𝜕x2
+ 𝜕2𝜓

𝜕y2
= 0 or ∇2𝜓 = 0 [10.14]

Equation 10.14 is known as Laplace’s equation.
Since we have seen that the stream function has numerical values at all points over the

flow field, the streamline pattern can be produced if Equation 10.14 can be solved in 𝜓 at
discrete points in the field.

Superimpose a square or rectangular mesh of straight lines in the x- and y-directions to
generally fit the boundaries of the physical system (see Figure 10.7).
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20

4
Δx Δx

x

Δy

Δy

3

y

1

Figure 10.7 Rectangular mesh – numerical method.

Equation 10.14 is to be solved at points such as (x, y) where the grid lines intersect and
must first be expressed in finite difference form.

Using the notation

f ′(x) =
𝜕f (x)
𝜕x

; f ′′(x) =
𝜕2f (x)
𝜕x2

; etc.

Taylor’s theorem gives

f (x + Δx, y) = f (x, y) + Δxf ′(x, y) + Δx2

2!
f ′′(x, y)

+ Δx3

3!
f ′′′(x, y) + Δx4

4!
f iv(x, y) +⋯

and f (x − Δx, y) = f (x, y) − Δxf ′(x, y) + Δx2

2!
f ′′(x, y) − Δx3

3!
f ′′′(x, y)

+ Δx4

4!
f iv(x, y) +⋯

Adding gives

f (x + Δx, y) + f (x − Δx, y) = 2f (x, y) + Δx2f ′′(x, y)

neglecting Δx4 and higher order terms.
Thus

f ′′(x, y) =
[f (x + Δx, y) − 2f (x, y) + f (x − Δx, y)]

Δx2

Since 𝜓 = f (x, y)

𝜕2𝜓

𝜕x2
=

[𝜓(x + Δx, y) − 2𝜓(x, y) + 𝜓(x − Δx, y)]
Δx2

Similarly

𝜕2𝜓

𝜕y2
=

[𝜓(x, y + Δy) − 2𝜓(x, y) + 𝜓(x, y − Δy)]
Δy2
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Using the grid notation of Figure 10.7 for simplicity, Equation 10.1 becomes

(𝜓1 − 2𝜓0 + 𝜓2)

Δx2
+

(𝜓3 − 2𝜓0 + 𝜓4)

Δy2
= 0 [10.15]

where the point (x, y) is located at point 0, point (x + Δx, y) is at point 2 and so on.
Or, if Δx = Δy,

𝜓1 + 𝜓2 + 𝜓3 + 𝜓4 − 4𝜓0 = 0 [10.16]

10.8.2.1 Method of solution
The method of ‘relaxation’ originally devised by Southwell, for the numerical solution of
elliptic partial differential equations such as Laplace’s, Poisson’s and biharmonic equations
describing fluid flow and stress distributions in solid bodies, is not amenable to automatic
computation and is not to be confused with the methods described here.

10.8.2.2 Boundary conditions
The solid boundaries and free water surfaces are streamlines and therefore have constant
values of stream function. The allocation of values to the boundaries can be quite
arbitrary: for example, in Figure 10.4 the bed can be allocated a value of 𝜓 = 0 and the
surface to a value of 𝜓 = 100.

Where grid points do not coincide with a boundary the following form of Equation
10.17, for example, is obtained, assuming a linear variation of 𝜓 along the grid lines (Fig-
ure 10.8).

𝜓0 =
𝜓1 + (𝜓2∕𝜆2) + 𝜓3 + 𝜓4

3 + (1∕𝜆2)
[10.17]

(i) Matrix method. Equations 10.15, 10.16 or 10.17 for the interior grid points together
with the boundary conditions can be globally expressed in the form

[A][𝜓] = [B]

Thus 𝜓1, 𝜓2 and so on can be found directly using Gaussian elimination on a
computer.

(ii) Method of successive corrections. This method is also amenable to computer solution
and is probably quicker than (i) above; it can also be executed using an electronic

Δx

Δxλ2

Δx

3

20

4

1

Figure 10.8 Grid points and boundary.
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calculator. Values of 𝜓 are allocated to the boundaries and, in relation to these, esti-
mated values are given to the interior grid points. Considering each interior grid
point in turn, the allocated value of 𝜓0 is revised using Equations 10.15, 10.16 or
10.17 as appropriate. This procedure is repeated at all grid points as many times as
necessary until the differences between the previous and revised values of 𝜓 at every
grid point are less than a prescribed limit. The discrete streamlines are then drawn
by interpolation between the grid values of 𝜓 .

10.9 Curvilinear flow of real fluids

The concepts of ideal fluid flow can be used to obtain the velocity and pressure distribu-
tions in curvilinear flow of real fluids in ducts and open channels. Curvilinear flow is also
referred to as vortex motion.

Curvilinear flow is not to be confused with ‘rotational’ flow; ‘rotation’ relates to the net
rotation of an element about its axis.

Theory: Consider an element of a fluid subjected to curvilinear motion (see Figure 10.9).

Radial acceleration =
v2
𝜃

r
Equating radial forces,

dp r d𝜃 dy = 𝜌r d𝜃 dr dy
v2
𝜃

r
whence

dp

dr
=

𝜌v2
𝜃

r
or in terms of pressure head

dh
dr

=
v2
𝜃

gr
[10.18]

dy

dθ
p

r
p + dp

dr
vθ

Figure 10.9 Curvilinear flow.
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10.10 Free and forced vortices

(a) Free vortex motion occurs when there is no external addition of energy; examples
occur in bends in ducts and channels, and in the ‘sink’ vortex.

The energy at a point where the velocity is v0 and pressure head is h is

E = h +
v2
𝜃

2g
[10.19]

where E is constant across the radius; hence

dh
dr

+
v𝜃
g

d(v𝜃)

dr
= 0

From Equation 10.19,

v2
𝜃

gr
+

v𝜃
g

d(v𝜃)

dr
= 0

whence

dv𝜃
v𝜃

= dr
r

or ln(v𝜃r) = Constant

Hence

v𝜃r = Constant = K (circulation) [10.20]

(b) Forced vortex motion is caused by rotating impellers or by rotating a vessel contain-
ing a liquid. The equilibrium state is equivalent to the rotation of a solid body where
v𝜃 = r𝜔, where 𝜔 is the angular velocity (rad/s).

Worked examples

Example 10.1

A line source of strength 180 L/s is placed in a uniform flow of velocity 0.1 m/s.

(a) Plot the streamlines above the x-axis.
(b) Obtain the pressure distribution on the streamline denoted by 𝜓 = 0.

Solution:

(a) It is convenient to consider the uniform flow to be in the x-direction. This results in
a streamline having the value 𝜓 = 0, which may be interpreted as the boundary of a
solid body.

𝜓 = uy +
q𝜃
2𝜋

(Equation 10.12)

or

𝜓 = ur sin 𝜃 +
q𝜃
2𝜋
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Δθ

ψs = 0.07
ψs = 0.06

ψs = 0.05 ψs = 0.04 ψs = 0.03
ψs = 0.02

ψu = –0.08

ψu = –0.06

ψu = –0.04

ψu = –0.02

ψs = 0.01

ψu = 0

y

Figure 10.10 Flow net using polar coordinates.

Setting𝜓 successively to 0,−0.01,−0.02,… and noting that u=−0.1, the coordinates
(r, 𝜃) along the streamlines can be obtained from Equation 10.12.

Values of r (m)

𝝍 𝜽◦ = 10 20 40 60 80 100 120 140 160

0 0.29 0.29 0.31 0.35 0.41 0.51 0.69 1.09 2.34
−0.01 0.86 0.58 0.47 0.46 0.51 0.61 0.81 1.24 2.63
−0.02 1.44 0.87 0.62 0.58 0.61 0.71 0.92 1.40 2.92
−0.03 2.02 1.17 0.78 0.69 0.71 0.81 1.04 1.56 3.21

The pairs of coordinates (𝜃, r) are plotted to give the streamline pattern. The graph-
ical method gives identical results and is clearly quicker; however, the mathematical
approach is appropriate in computer applications where computer graph-plotting
facilities are available (see Figure 10.10).

The graphical construction proceeds as follows: the uniform flow is represented by
a series of equidistant parallel straight lines (defined by𝜓u in Figure 10.10). Discharge
between the streamlines was chosen to be 0.010 m3/s m in the analytical solution;
thus, the spacing of the uniform flow streamlines in the diagram represents to scale a
distance of 0.10 m. It is convenient to choose the streamlines of the source such that
the discharge between them is also 0.010 m3/(s m); the angle Δ𝜃 is simply obtained
since

Δ𝜓s =
qΔ𝜃
2𝜋

that is, 0.010 = 0.180 × Δ𝜃
2𝜋

whence Δ𝜃 = 20◦
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At the points of intersection of the uniform flow and source streamlines, the indi-
vidual stream functions are added algebraically and the resultant flow pattern is
obtained by sketching the streamlines through points of equal resultant stream func-
tion. The construction and final flow pattern are illustrated in Figure 10.10.

(b) The pressure distribution in the disturbed flow field at (r, 𝜃) is obtained from

pr,𝜃 − p0

𝜌g
=

V2
0 − V2

r 𝜃

2g
(i)

where V0 is the undisturbed velocity and Vr,𝜃 the velocity vector at (r, 𝜃).

Vr,𝜃 =
√

v2
r + v2

𝜃

vr =
1
r

𝜕𝜓

𝜕𝜃
(Equation 10.3)

= ur cos 𝜃
r

+
q

2𝜋r

v𝜃 = −𝜕𝜓

𝜕r
(Equation 10.3)

= −u sin 𝜃

⇒ V2
r,𝜃 = u2 + 2u cos 𝜃

q
2𝜋r

+
( q

2𝜋r

)2
(ii)

Around the ‘body’ (𝜓 = 0),

ur sin 𝜃 +
q𝜃
2𝜋

= 0

i.e.
q

2𝜋
= −ur sin 𝜃

𝜃

Thus

V2
r,𝜃 = u2

(
1 − sin 2𝜃

𝜃
+ sin2

𝜃

𝜃2

)

whence, from Equation (i), since V0 = u in this case

pr,𝜃 − p0

𝜌g
= u2

2g𝜃

(
sin 2𝜃 − sin2

𝜃

𝜃

)
(iii)

Substitution of u = −0.1 m/s into Equation (iii) yields the pressure distribution for a
range of 𝜃.

Example 10.2

A discharge of 7 m3/(s m) width flows in a rectangular channel. A vertical sluice gate situ-
ated in the channel has an opening of 1.5 m. Cc = 0.62; Cv = 0.95. Assuming that down-
stream conditions permit free flow under the gate, draw the streamline pattern.
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A B C

y1

y0 y2

Figure 10.11 Flow under gate.

Solution:

See Figure 10.11.

y2 = Cc × y0 = 0.62 × 1.5 = 0.93 m

y1 +
V2

1

2g
= y2 +

V2
2

2g
+ hL (i)

and hL =

[(
1

Cv

)2

− 1

]
V2

2

2g
; V2 = 7

0.93
= 7.527 m∕s

hL = 0.31 m

whence from Equation (i), y = 3.97 m (say 4.0 m).
Divide the field into a 1.0 m square grid (see Figure 10.11) and allocate boundary values

and interior grid values of 𝜓 .
Numbering rows and columns from the top left-hand corner, note that at point (4, 7)

two of the adjacent grid points do not coincide with the boundary. Using the notation of
Figure 10.8, 𝜆2 = 0.6 and 𝜆3 = 0.5.

The results of successive corrections using Equation 10.17 in the form

𝜓0 =
𝜓1 + 𝜓2 + 𝜓3 + 𝜓4

4

at all interior grid points with the exception of point (4, 7) where Equation 10.17

𝜓0 =
𝜓1 + (𝜓2∕𝜆2) + (𝜓3∕𝜆3) + 𝜓4

2 + (1∕𝜆2) + (1∕𝜆3)

is used are shown in the following table:

First correction

Column

Row 2 3 4 5 6 7

2 80.00 85.00 89.50 93.40 97.00 100.00
3 60.00 70.00 79.40 88.19 93.82 100.00
4 35.00 43.75 52.03 57.55 61.59∗ 75.57

∗Maximum correction = −28.41.
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Second correction

Column

Row 2 3 4 5 6 7

2 80.00 84.88 89.40 93.67 96.87 100.00
3 58.75 66.69 74.08 79.78 84.56 100.00
4 31.87 37.65 42.32 45.92∗ 51.51 73.79

∗Maximum correction = −11.63.

Values (all corrections < |1.0|) after 8 iterations

Column

Row 2 3 4 5 6 7

2 76.49 77.86 79.69 83.02 89.39 100.00
3 51.90 53.78 56.59 62.20 74.27 100.00
4 26.22 27.53 29.69 34.35 45.34 72.71

The above is probably sufficiently accurate for most purposes, but computations can be
continued if required.

Values after 12 iterations

Column

Row 2 3 4 5 6 7

2 75.78 76.84 78.71 82.33 89.07 100.00
3 51.08 52.62∗ 55.50 61.44 73.91 100.00
4 25.76 26.88 29.09 33.92 45.13 72.67

∗Maximum correction = |0.125|.

The discrete streamline can now be drawn (see Figure 10.12).

Example 10.3

Water flows under pressure round a bend of inner radius 600 mm in a rectangular duct
600 mm wide and 300 m deep. The discharge is 360 L/s. If the pressure head at the entry
to the bend is 3.0 m, calculate the velocity and pressure head distributions across the duct
at the bend.

Solution:

See Figure 10.13.
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Figure 10.12 Plot of flow net.

Energy at entry to bend

E = h + V2

2g
(where V = approach velocity = 2 m∕s)

= 3.0 + 22

2g
= 3.204 m

E = Constant = hA +
v2
𝜃,A

2g
= hB +

v2
𝜃,B

2g

dh∕dr = v2
𝜃
∕gr from Equation 10.18, and therefore the variation of v𝜃 with radius is

required.
Now v𝜃 = K∕r, and to evaluate K express the discharge Q as

Q = w∫
rB

rA

v𝜃 dr

r

A
B

b

SectionPlan

w

rB

rAr A

rB

dr

Figure 10.13 Flow across bend.
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that is, Q = w∫
rB

rA

K
r

dr = Kw ln
(

rB

rA

)

0.36 = K × 0.3 × ln
(

1.2
0.6

)
= 0.208K

or

K = 1.73

v𝜃,A = 1.73
0.6

= 2.88 m∕s; v𝜃,C = 1.73
0.9

= 1.92 m∕s

v𝜃,B = 1.73
1.2

= 1.44 m∕s

E(=3.204 m) = h +
v2
𝜃

2g
; h = 3.204 −

v2
𝜃

2g

whence

hA = 2.78 m; hC = 3.02 m; hB = 3.10 m

Example 10.4

Water flows round a horizontal 90◦ bend in a square duct of side length 200 mm, the inner
radius being 300 mm. The differential head between the inner and outer sides of the bend
is 200 mm of water. Determine the discharge in the duct.

Solution:

See Figure 10.14.

dh
dr

=
V2

𝜃

gr
(Equation 10.18)

Δh = hA − hB = ∫
B

A
dh = ∫

rB

rA

v2
𝜃,r dr

gr

where v𝜃,r means the tangential velocity at r, and v𝜃,r = K∕r (Equation 10.20).
Therefore

Δh = hA − hB = K2

g ∫
rB

rA

dr
r3

= K2

2g

[
− 1

r2

]rB

rA

(i)

Q = w ∫
rB

rA

v𝜃 dr = w ∫
rB

rA

K
r

dr

Q = wK ln
(

rB

rA

)
; K =

Q

w ln
(
rB∕rA

)
Therefore, in Equation (i)

Δh =
Q2

w2[ln(rB∕rA)]2

(
1
r2
A

− 1
r2
B

)
1
2g

where Q =
√

2gΔh w ln
(

rB

rA

)√√√√ r2
B × r2

A

r2
B − r2

A
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AA

r

h

r

C

(a) (b)

vθ,r

C BB

Figure 10.14 (a) Velocity and (b) pressure variations, across bend.

rA = 0.3 m; rB = 0.5 m; w = 0.2 m; Δh = 0.2 m

⇒ Q = 0.076 m3∕s

Example 10.5

A cylindrical vessel is rotated at an angular velocity of 𝜔. Show that the surface profile of
the contained liquid under equilibrium conditions is parabolic.

Solution:

This is an example of forced vortex motion (see Figure 10.15).
For all types of curvilinear flow, Equation 10.18 is applicable.

dh
dr

=
v2
𝜃,r

gr
(i)

and v𝜃,r = r𝜔 (for the forced vortex). (ii)

r dr

dh

h

ω

Figure 10.15 Forced vortex motion.
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Therefore

h2 − h1 = ∫
2

1
dh = 1

g ∫
r2

r1

v2
𝜃,r

r
dr

i.e. h2 − h1 = 1
g ∫

r2

r1

r𝜔2 dr = 𝜔2

2g

(
r2
2 − r2

1

)
Taking the origin (r = 0, h = 0) at 0,

h = 𝜔2

2g
r2

which is a paraboloid of revolution.

Example 10.6

A siphon spillway of constant cross section 3.0 m wide by 2.0 m deep operates under a
head of 6.0 m. The crest radius is 3.0 m and the siphon has a total length of 18.0 m, the
length from inlet to crest being 5.0 m along the centre line.

(a) Assuming the inlet head loss to be 0.3V2∕2g, the bend loss 0.5V2∕2g, the Darcy
friction factor 0.012 and 𝛼 = 1.2, calculate the discharge through the siphon.

(b) If the level in the reservoir is 0.5 m above the crest of the siphon, calculate the pres-
sures at the crest and cowl and comment on the result.

Solution:

Notes: Siphon spillways are used on dams to discharge floodwater. They are particularly
useful where the available crest length of a free overfall spillway would be inadequate.
Once a siphon spillway has ‘primed’, it operates like full-bore pipe flow under the head
between the reservoir level and the outlet and has a high discharge capacity per unit area.
Unlike a free overfall spillway which provides a gradual increase in discharge (see Exam-
ple 11.9), the siphon discharge reaches a peak very quickly, which may cause a surge to
propagate downstream. For this reason a number of siphons may have their crests set at
different levels so that their priming times are not simultaneous.

Since siphons incorporate one vertical bend at a high level, the resulting vortex motion
can produce very low pressures at the crest, which may result in air entrainment, cavitation
and vibration. The design of the crest radius is therefore of utmost importance.

In this example while head losses in the direction of flow are taken into account (i.e. real
fluid flow is considered), no energy losses across the flow occur and the curvilinear flow is
treated as in ideal fluid flow (see Figure 10.16).

Using the principles of resistance to flow in non-circular ducts,

H = entry loss + velocity head + bend loss + friction loss

that is, H = 0.3V2

2g
+ 𝛼V2

2g
+ 0.5V2

2g
+ 𝜆LV2

8gR
(i)

R = hydraulic radius = 0.6 m

6 = V2

2g

(
0.3 + 1.2 + 0.50.012 × 18

4 × 0.6

)
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H

r

rA

vθ,r

Tailwater

Crest

B Cowl

A

Figure 10.16 Siphon spillway.

6 = V2

2g
× 2.09 whence V = 6.37 m∕s

Discharge = 6 × 6.37 = 38.22 m3∕s

(Note that the discharge may be expressed as Q = CdA
√

2gh, where Cd is the overall
discharge coefficient.)

Net head at crest HA of bend = 0.5 − losses

HA = 0.5 − 0.3V2

2g
−

𝜆LAV2

8gR
= 0.5 − 2.87 ×

(
0.3 + 0.012 × 5

4 × 0.6

)
(relative to crest)

= −0.433 m

At the crest A,

HA =
pA

𝜌g
+

v2
𝜃,A

2g
(ii)

whence

pA

𝜌g
= HA −

v2
𝜃,A

2g

v𝜃,A = K
rA

(iii)

The discharge across the section of the duct at the crest,

Q = ∫
rB

rA

v𝜃b dr

where b is the width of the duct.

Q = b∫
rB

rA

K
r

dr = bK ln
(

rB

rA

)

38.22 = 3 × K × ln
(

5
3

)
= 1.532K

whence K = 24.94

⇒ v𝜃,A = 24.940
3

= 8.313 m∕s;
v2
𝜃,A

2g
= 3.52 m
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Therefore from Equation (iii),

pA

𝜌g
= −0.433 − 3.52 = −3.953 m

At B (the cowl),

HB =
pB

𝜌g
+

v2
𝜃,B

2g
+ 2.0 (relative to crest)

Since HB = HA,

pB

𝜌g
= HA −

v2
𝜃,B

2g
− 2.0

v𝜃,B = K
rB

= 24.940
5

= 4.988;
v2
𝜃,B

2g
= 1.268

⇒
pB

𝜌g
= −0.433 − 1.268 − 2.0 = −3.701 m

Comment: Neither pA∕𝜌g nor pB∕𝜌g are particularly low, and there should be no danger
of cavitation. The spillway could satisfactorily operate under a larger gross head, provided
the crest pressure does not fall below −7 m, that is, a gauge pressure head of 7 m below
atmospheric pressure.

Example 10.7

At a discharge of 10 m3/s the depth of uniform flow in a rectangular channel 3 m wide is
2.2 m. The water flows round a 90◦ bend of inner radius 5.0 m. Assuming no energy loss
at the bend, calculate the depth of water at the inner and outer radii of the bend.

Solution:

See Figure 10.17.

B

B

E

O

A

A

SectionPlan

C
C

yA

rA

yr

v2
θ, r/2g

yB

rB

r

Figure 10.17 Flow across a rectangular channel bend.
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Since there is no energy loss between the entry to the bend and points within the bend,
E0 = EA = EB = E; that is,

y0 +
V2

0

2g
= yA +

v2
𝜃,A

2g
= yB +

v2
𝜃,B

2g
(i)

Hence, if v𝜃,A and v𝜃,B can be determined, yA and yB can be calculated.

y0 = 2.2 m; V0 = 10
3 × 2.2

= 1.515 m∕s;
V2

0

2g
= 0.117 m

⇒ E0 = 2.2 + 0.117 = 2.317 m

v𝜃,r =
K
r

and Q = ∫
rB

rA

v𝜃,ryr dr (ii)

yr = E −
v2
𝜃,r

2g
= E − K2

2gr2

And substituting in Equation (ii),

⇒ Q = K∫
rB

rA

1
r

(
E − K2

2gr2

)
dr = K∫

rB

rA

(
E
r
− K2

2gr3

)
dr

Q = K

[
E ln

(
rB

rA

)
+ K2

4g

(
1
r2
B

− 1
r2
A

)]

10 = K
[
2.317 ln

(
8
5

)
+ K2

4g

(
1
82

− 1
52

)]

By trial, K = 9.71.

⇒ v𝜃,A = 9.71
5

= 1.942;
v2
𝜃,A

2g
= 0.192 m

v𝜃,B = 9.71
5

= 1.2137;
v2
𝜃,B

2g
= 0.075 m

⇒ yA = 2.317 − 0.192 = 2.125 m

yB = 2.317 − 0.075 = 2.242 m

References and recommended reading

Massey, B. S. and Ward-Smith, J. (2012) Mechanics of Fluids, 9th edn, Taylor & Francis,
Abingdon, UK.

United States Bureau of Reclamation (USBR) (1987) Design of Small Dams, 3rd edn, US Depart-
ment of the Interior, Washington, DC.

Problems

1. Determine the stream function for a uniform rectilinear flow of velocity V inclined at 𝛼
to the x-axis in (a) Cartesian and (b) polar forms.
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Ambient flowPollutant source
1.0 m/s

Intake

30 m

7 m

Figure 10.18 Source release of pollutant.

2. A stream function is defined by 𝜓 = xy. Determine the flow pattern and the velocity
potential function.

3. Draw the streamlines defining streamtubes conveying 1 m3/(s m) depth for a source of
strength 12 m3/(s m) in a rectilinear uniform flow of velocity −1.0 m/s.

4. In the system described in Problem 3, a sink of strength 12 m3/(s m) is situated 5 m
downstream from the origin of source in the direction of the x-axis. Draw the streamlines
and determine the shape of the ‘body’ defined by the streamline 𝜓 = 0.

5. A pollutant is released steadily from the vertical outlet of an outfall into a river (Figure
10.18) such that it rises vertically without radial flow (neglecting the effects of entrain-
ment). The pollutant is carried downstream by a uniform current of 1.0 m/s. A water
abstraction is situated 30 m downstream of the outfall; this may be considered as a line
sink, the total inflow over the 2 m of the stream being 6 m3/s. Neglecting the effects
of dispersion, investigate the possibility of the pollutant entering the intake (see Figure
10.18).

6. Water flows through a rectangular duct 4 m wide and 1 m deep at a rate of 20 m3/s. The
flow passes through the side contraction shown in Figure 10.19. Assuming ideal fluid flow
and using either a flow net construction or a numerical method of streamline plotting,
determine the pressure distribution through the transition between AA and BB (a) along
the centre line of the duct and (b) along the boundary if the pressure head at AA is 10 m
of water (see Figure 10.19).

A
Lc

A

3210
Distance (m)

2 m

87654 B

B

1 m

Figure 10.19 Flow through a contracted rectangular duct.
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7. A discharge of 6 m3/s per unit width approaches a vertical sluice gate in a rectangular
channel at a depth of 4 m. The vertical gate opening is 1.5 m and Cd = 0.6. Assuming
that downstream conditions do not affect the natural flow through the gate opening,
verify that the flow through the opening is supercritical, draw the streamline pattern and
determine the pressure distribution and force per unit width on the gate. Compare the
value of force obtained with that obtained using the momentum equation.

8. Water flows under pressure in a horizontal rectangular duct of width b and depth w.
The pressure head difference across the duct, at a horizontal bend of radius R to the
centre line, is h. Show that if R = 1.5 b, the discharge is obtained from the expression

Q = 3.545 w b
√

h.

9. Water flows round a horizontal 90◦ bend in a square duct of side length 200 mm, the
inner radius being 400 mm. The differential head between the inner and outer sides of
the bend is 150 mm of water. Determine the discharge in the duct.

10. The depth of uniform flow of water in a rectangular channel 5 m wide conveying 40 m3/s
is 2.5 m. The water flows round a 90◦ bend of inner radius 10 m. Assuming no energy
loss through the bend, determine the depth of water at the inner and outer radii of the
bend at the discharge of 150 m3/s.

11. A proposed siphon spillway is of uniform rectangular sections 5 m wide and 3 m deep.
The crest radius is 3 m, and the length of the approach to the crest along the centre line is
7 m. The overall discharge coefficient is 0.65; the entry head loss = 0.2V2∕2g, where V is
the mean velocity; and the Darcy friction factor is 0.015. Determine the discharge when
the siphon operates under a head of 6 m with the upstream water level 0.5 m above the
crest, and determine the pressure heads at the crest and cowl.

12. Water discharges from a tank through a circular orifice 25 mm in diameter in the base.
The discharge coefficient under conditions of radial flow towards the orifice in the tank
is 0.6. A free vortex forms when water is discharging under a head of 150 mm; at a
horizontal distance of 10 mm from the centre line of the orifice, the water surface is
50 mm below the top water level. Determine the discharge through the orifice.

13. A cylindrical vessel 0.61 m in diameter and 0.97 m in depth, open at the top, is rotated
about a vertical axis at 105 rev/min. If the vessel was originally full of water, how much
water will remain under equilibrium conditions?
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Chapter 11
Gradually Varied Unsteady
Flow from Reservoirs

11.1 Discharge between reservoirs under varying head

Figure 11.1 shows two reservoirs, of constant area, interconnected by a pipeline through
which water transfer occurs under gravity. Reservoir A receives an inflow I1, while a dis-
charge Q2 is withdrawn from B; I1 and Q2 may be time variant.

In the general case the head h and hence the transfer discharge will vary with time, and
the object is to obtain a differential equation describing the rate of variation of head with
time, dh∕dt. The corresponding rate of change of discharge is considered to be sufficiently
small so that the steady-state discharge–head relationship for the pipeline flow may be
applied at any instantaneous head; compressibility effects are also neglected. Such unsteady
flow situations are therefore sometimes referred to as ‘quasi-steady’ flow.

Let h be the gross head at any instant, Δh1 the change in level in A during a small time
interval Δt and Δh2 the change in level in B in time Δt; then

change in total head = Δh = Δh1 − Δh2 [11.1]

Continuity equation for A: I − Q1 = A1
Δh1

t
[11.2]

Continuity equation for B: Q1 − Q2 = A2
Δh2

t
[11.3]

Note that Q1 is the discharge in the pipeline and hence is the inflow rate into B.
From the steady-state head–discharge relationship for the pipeline,

h =
(

Km + 𝜆L
D

) Q2
1

2gA2
p

where Ap is the area of pipe and Km the minor loss coefficient. Whence

Q1 = Kh1∕2 [11.4]

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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A1

A2

A

B

Q2

h

Δh1

Δh2

I

Figure 11.1 Flow through pipe with varying head.

in which

K = Ap

√
2g

Km + (𝜆L∕D)

From Equations 11.1, 11.2 and 11.3,

Δh =
(

I − Q1

A1
−

Q1 − Q2

A2

)
Δt

Introducing Equation 11.4,

Δh =
[

1
A1

− Kh1∕2
(

1
A1

+ 1
A2

)
+

Q2

A2

]
Δt

and in the limit Δt → 0,

dt = dh(
I

A1
+ Q2

A2

)
− Kh1∕2

(
1

A1
+ 1

A2

) [11.5]

In a similar dynamic system where the upper reservoir discharges to atmosphere through a
pipeline, orifice or valve (Figure 11.2), the term Δh2 in Equations 11.1 and 11.3 disappears
and a similar treatment, or alternatively removing the irrelevant terms A2 and Q2 from
Equation 11.5, yields

dt =
A1 dh

I − Kh1∕2
[11.6]

I(t)

A1

Q

h

dh

Figure 11.2 Flow through orifice under varying head.
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or

I − Kh1∕2 = A1
dh
dt

[11.7]

where Kh1∕2 represents the appropriate steady-state discharge–head relationship for the
outlet device.

11.2 Unsteady flow over a spillway

The computation of the time variation in reservoir elevation and spillway discharge during
a flood inflow to the reservoir is essential in design of the spillway to ensure safety of the
impounding structure (see Figure 11.3).

The continuity equation is

I(t) − Q(t) =
dS
dt

[11.8]

where dS∕dt is the rate of change of storage, or volume, S. dS∕dt may be expressed as
A(dh∕dt), where A is the instantaneous plan area of the reservoir and dh∕dt the instanta-
neous rate of change of depth.

Assuming that in the case of a fixed-crest free overfall spillway, the discharge rate Q
may be expressed by the steady-state relationship

Q = 2
3

√
2gCdLh3∕2 [11.9]

where L is the crest length and Cd the discharge coefficient,

that is, Q = Kh3∕2 [11.10]

Equation 11.7 becomes

I(t) − Kh3∕2 = dS
dt

= A
dh
dt

[11.11]

I(t) is the known time-variant inflow rate. Except in the rather special case where A does
not vary with depth and I(t) is constant, Equation 11.11 is not directly integrable and in
general must be evaluated numerically.

This is known as reservoir routing, also referred to as level pond routing, and the numer-
ical solution of the flood routing equation may be carried out by either a semi-graphical
or a finite difference approach. The storage is treated simply as a function of the head

I(t)

A(h)

Q(t)
h

Figure 11.3 Reservoir routing.
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above the outlet crest, assuming negligible backwater effect through the reservoir. If that
assumption does not apply, then a channel routing approach is required as described, for
example, in Mansell (2003) or Chadwick et al. (2013).

11.3 Flow establishment

Figure 11.4 shows a constant-head tank discharging to atmosphere through a pipeline
terminated by a control valve. If the valve, which is initially closed, is suddenly opened
the discharge will not instantaneously attain its equilibrium value, and the object is to
determine the time taken for this to be attained (i.e. the time of steady-flow establishment).

Initially the total head H is available to accelerate the flow but this decreases as the
velocity increases due to the associated head losses. At any instant the available head is
H − KV2 (where K is the head loss coefficient)

=
(
𝜆L
D

+ Km

) 1
2g

where Km is the minor loss coefficient.
The equation of motion (force = mass × acceleration)

𝜌gAp(H − KV2) = 𝜌ApL
dV
dt

[11.12]

where Ap is the area of pipe cross section. Whence

T = ∫
t2

t1

dt = L
g ∫

V2

V1

dV
H − KV2

[11.13]

Assuming 𝜆 to be constant in the interval between velocities V1 and V2 and writing
a2 = H and b2 = K (constant), Equation 11.13 becomes

T = L
g ∫

V2

V1

dV
a2 − b2V2

= L
2ag ∫

V2

V1

(
1

a + bV
+ 1

a − bV

)
dV

= L
2gab

[
ln
(

a + bV
a − bV

)]V2

V1

= L

2g
√

KH

[
ln

(√
H +

√
KV√

H −
√

KV

)]V2

V1

[11.14]

KV2

h

H

Figure 11.4 Flow establishment through pipeline.
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Hence the time for flow establishment is the value of the integral (Equation 11.13)
between V = 0 and V = V0, where V0 is the steady-state velocity in the pipeline under
the head H. Therefore, since H = KV2

0 , Equation 11.14 becomes

T =
LV0

2gH
ln
[

V0 + V
V0 − V

]V0

V=0
[11.15]

If the variation of 𝜆 with discharge is taken into account during the accelerating period,
the time of flow establishment must be evaluated by numerical or graphical integration of
Equation 11.13.

Worked examples

Example 11.1

A circular orifice 20 mm in diameter with a discharge coefficient Cd = 0.6 is fitted to the
base of a tank having a constant cross-sectional area of 1.5 m. Determine the time taken
for the water level to fall from 3.0 m to 0.5 m above the orifice.

Solution:

Since there is no inflow (I = 0), Equation 11.7 becomes

−Kh1∕2 = A1
dh
dt

whence

dt = −A1
dh

Kh1∕2

Integrating

time, T = ∫
t1

t=0
dt = −

A1

K ∫
h1

h0

dh
h1∕2

T = −
A1

K

[
2h1∕2]h1

h0
=

2A1

K

[
h1∕2]h0

h1

K = CdA0

√
2g = 0.6 × 3.142 × 4.43 = 8.35 × 10−4

whence

T = 2 × 1.5
8.35 × 10−4

[
h1∕2]3.0

0.5 = 3682.4 s

Example 11.2

If the tank in Example 11.1 has a variable area expressed by A1 = 0.0625(5 + h)2, calculate
the time for the head to fall from 4 m to 1 m.
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Solution:

dt =
A1 dh

Kh1∕2

whence

T = − 0.0625
0.000835 ∫

0.5

3.0

(5 + h)2

h1∕2
dh

= 74.85∫
3.0

0.5
(25h−1∕2 + 10h1∕2 + h3∕2) dh

= 74.85
[
50h1∕2 + 20

3
h3∕2 + 2

5
h5∕2

]3.0

0.5

= 6713.75 s

Example 11.3

A pipeline 1000 m in length, 100 mm in diameter and with a roughness size of 0.03
mm discharges water to atmosphere from a tank having a cross-sectional area of 1000
m2. Find the time taken for the water level to fall from 20 m to 15 m above the pipe
outlet.

Solution:

Continuity equation: I − Q = A1
dh
dt

(i)

The pipeline discharge Q may be expressed by the Darcy–Colebrook–White equation:

Q = −2Ap

√
2gD

hf

L
log

[
k

3.7D
+ 2.51𝜈

D
√

2gDhf∕L

]
(ii)

However, if this were substituted into Equation (i), the resulting equation would need to
be evaluated using graphical or numerical integration methods. Such a procedure is fairly
straightforward, but if constant value of 𝜆 over the range of discharges is adopted, a direct
solution is obtained. In this latter case, Q is expressed by

Q =
Ap

√
2gh1∕2√

Km + (𝜆L∕D)
= Kh1∕2 (Equation 11.4)

Thus Equation (i) reduces to Equation 11.6: dt = A1 dh∕(1 − Kh1∕2).
To evaluate K calculate the pipe velocities at values of hf = 20 m and 15 m using

Equation (ii) (i.e. neglecting minor losses), and evaluate 𝜆 from the Darcy–Weisbach
equation:

𝜆 =
2gD

V2

hf

L
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(a) When hf = h = 20 m, V = 1.46 m/s and 𝜆 = 0.0184.
(b) When hf = h = 15 m, V = 1.25 m/s and 𝜆 = 0.0188.

Adopting 𝜆 = 0.0186 and Km = 1.5, K = 0.00254. Whence

T = ∫
h2

h1

A1 dh

Kh1∕2
(since I = 0)

T = 2 × 1000
0.00254

(201∕2 − 151∕2)

= 471 660 s

= 131.02 h

Example 11.4

If in Example 11.3 a constant inflow of 5 L/s enters the tank, determine the time for the
head to fall from 20 m to 18 m.

Solution:

dt =
A1 dh

1 − Kh1∕2
(i)

T = A1 ∫
h1

h0

dh
I − Kh1∕2

(ii)

Write y = Kh1∕2 − I, whence

h = 1
K2

(y2 + 2Iy + I2) (iii)

dh = 1
K2

(2y + 2I)dy

Equation (ii) becomes

T = −2
A1

K2 ∫
y1

y0

y + I
y

dy

i.e. T = −2
A1

K2 ∫
y1

y0

(
1 + I

y

)
dy = −2

A1

K2
[y + I ln(y)]y1

y0

Substituting for y from Equation (iii),

T = 2
A1

K2

[
Kh1∕2 − I + I ln(Kh1∕2 − I)

]20

18
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Using K = 0.00254 (as in Example 11.3),

T = 2 × 1000
0.002542

{
0.00254

(√
20 −

√
18

)
+ 0.005

×
[
ln
(

0.00254
√

20 − 0.005
)
− ln

(
0.0254

√
18 − 0.005

)]}
= 329 579.8 s

= 91.55 h

Example 11.5

Reservoir A with a constant surface area of 10 000 m2 delivers water to Reservoir B with a
constant area of 2500 m2 through a 10 000 m long, 200 mm diameter pipeline of roughness
0.06 mm. Minor losses including entry and velocity head total 20V2∕2g. A steady inflow
of 10 L/s enters Reservoir A, and a steady flow of 20 L/s is drawn from Reservoir B. If the
initial level difference is 100 m, determine the time taken for this to become 90 m.

Solution:

Refer to Section 11.2 and Figure 11.1.
From Equation 11.5,

dt = dh(
I

A1
+ O2

A2

)
− Kh1∕2

(
1

A1
+ 1

A2

) (i)

Since in this case I, Q2, A1 and A2 are constant, Equation (i) can be directly integrated.
Let

W =
(

I
A1

+
Q2

A2

)
and Z = K

(
1

A1
+ 1

A2

)

Then in Equation (i),

dt = dh
W − Zh1∕2

and T = ∫
h2

h1

dh
W − Zh1∕2

(ii)

Using the mathematical technique of Example 11.4, this integral (Equation (ii)) becomes

T = 2
Z2

[
Z(h1∕2

1 − h1∕2
2 ) − W ln

(
Zh1∕2

1 − W

Zh1∕2
2 − W

)]
(iii)

Now K = Ap

√
2g√

Km+(𝜆L∕D)
and 𝜆 is evaluated as in Example 11.4.

Adopting 𝜆 = 0.0173, K = 4.678 × 10−3, W = 9.0 × 10−6 and Z = 2.339 × 10−6.
Thus from Equation (iii),

T = 725 442 s

= 201.51 h
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Example 11.6

For the system described in Example 11.5, find the time taken for the level in Reservoir A
to fall by 1.0 m.

Solution:

Continuity equation for Reservoir A (from Equation 11.1):

I − Q1 = A1
dh1

dt
(i)

Since Q1 = Kh1∕2,

I − Kh1∕2 = A1
dh1

dt
(ii)

Thus the rate of change of level in A is related to the instantaneous gross head h. A
numerical or graphical integration method must be used to evaluate the time taken for the
level in A to change by a specified amount since, in Equation (ii), the head h also varies
with time.

Thus

Δh1 = I − Kh1∕2

A1
Δt (iii)

By taking a series of values of h, the variation of h with time is evaluated using Equation
(iii) in Example 11.5.

Head (m) Time (s)

99 69 786.6
98 140 148.3
97 211 100.0
96 282 656.0
95 354 827.0

Plotting head versus time (Figure 11.5a), values of h at discrete time intervals Δt, say
100 000 s, are obtained. Equation (iii) is then evaluated for Δh1 in the time interval Δt.

The following values are obtained from Figure 11.5a and Equation (iii). h is the average
head in the time interval. The negative sign for Δh1 indicates a falling level in A.

Time (s × 105) 0 1 2 3
h (m) 99 98.5 97.2 95.0
h1∕2 (m) 9.94 9.89 9.89
Δh1 (m) −0.355 −0.353 −0.349∑

Δh1 (m) −0.355 −0.708 −1.057

From the graph of
∑
Δh1 versus t (Figure 11.5b), t = 2.95 × 105 s when

∑
Δh1 = −1.0 m.
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Figure 11.5 Variation of reservoir levels with time.

Example 11.7

An impounding reservoir is to be partially emptied from the level of the spillway crest
through three 1.0 m diameter valves with Cd = 0.95, set at the same level with their axes
20 m below the spillway crest. The variation of reservoir surface area (A1) with height (h)
above the valve centre line is tabulated (see table below).

Assuming that a continuous inflow of 0.5 m3/s enters the reservoir, determine the time
required to lower the level from the spillway crest to 1.0 m above the valves.

h (m) 0 5 10 15 20
A1 (m2 × 106) 2.5 6.0 11.5 15.0 17.0

Solution:

I − Q = A1
dh
dt

(i)

Q (the outflow) = 3 × CdA0

√
2gh1∕2 = Kh1∕2

where K = 3 × 0.95 × 0.7854
√

2g = 9.915.
From Equation (i),

T = ∫
t1

t0

dt = ∫
h1

h0

A1dh

I − kh1∕2
(ii)

Since A1 is not readily expressible as a continuous function of h, Equation (ii) is not directly
integrable, but may be evaluated graphically or numerically.

Writing

X(h) =
A1

I − Kh1∕2
, T = ∫

h1

h0

X(h) dh

X(h) is evaluated for a number of discrete values of h and the integral

∫
h1

h0

X(h) dh
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obtained from the area under the X(h) versus h curve.

h (m) 20 15 10 5 1
A1(h) (m2 × 106) 17.0 15.0 11.5 6.0 3.0
X(h) (s/m × 106) −0.38776 −0.39571 −0.37272 −0.27687 −0.318640

The negative sign for X(h) indicates that h is decreasing with time. Plotting X(h) versus A
between h = 20.0 and h = 1.0 yields

T = 6.61 × 106 s

= 1836 h

Example 11.8

Flood water discharges from an impounding reservoir over a fixed-crest spillway 100 m
long; Cd = 0.7. The variation of surface area with head above the crest (h) and the inflow
hydrograph are shown in the next three tables.

Calculate the outflow hydrograph and state the maximum water level and peak outflow,
assuming that an outflow of 20 m3/s exists at t = 0 h.

Solution:

See Figure 11.3.
The continuity equation (Equation 11.8) is

I(t) − Q(t) =
dS
dt

(i)

where S is the volume of storage.

Q(t) = Outflow rate over spillway crest

= 2
3

√
2gCdLh3∕2

= Kh3∕2 (ii)

Thus Equation (i) becomes

I(t) − Kh3∕2 = dS
dt

= A dh
dt

(iii)

Since I(t) is not a function of h and S is not a readily expressible function of h, Equation
(iii) is best evaluated using a numerical method. Taking small time intervals Δt, Equation
(iii) may be written as

I − Kh̄3∕2 = A
Δh
Δt

(iv)

where

I =
I1 + I2

2
; h̄3∕2 =

(h1 + Δh)3∕2 + h3∕2
1

2

A =
A1 + A2

2
; A1 = A(h1); A2 = A(h1 + Δh)
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Subscripts 1 and 2 indicate values at the beginning and end of each time interval, respec-
tively.
Δh is estimated and adjusted until Equation (iv) is satisfied and the computation pro-

ceeds to the next time interval. A curve, or numerical relationship, relating A with h is
required. This procedure is best carried out on a digital computer.

A simpler, explicit method is obtained by writing Equation (i) in finite difference form
taking discrete time intervals Δt.

I1 + I2

2
−

(Q1 + Q2)
2

=
S2 − S1

Δt
(v)

i.e. I1 + I2 +
2S1

Δt
− Q1 =

2S2

Δt
+ Q2 (vi)

At each time step the values of S1 and Q1 are known; hence, the value of the left-hand

side (LHS) is known and hence S2 and Q2 can be found from curves relating
(

2S
Δt

+ Q
)

versus h and Q versus h.
Taking S =

∑(
A(h) × Δh

)
and Δt = 1 h = 3600 s.

Table of calculations of outflow rate and head

t (h) I (m3/s) 2S
𝚫t

− Q Value of LHS (vi) Q (m3/s) h (m)

0 20 1160 20 0.21
1 40 1180 1220 20 0.21
2 70 1242 1290 24 0.23
3 100 1360 1412 26 0.25
4 128 1528 1588 30 0.27
5 150 1730 1806 38 0.32
6 155 1949 2035 43 0.35
7 140 2144 2244 50 0.39
8 112 2286 2396 55 0.41
9 73 2359 2471 56 0.42

10 46 2478 56 0.42

Note: At t = 0, Q = 20 m3/s, and hence h = 0.21 m, and 2S
Δt

+ Q = 1200; 2S
Δt

− Q = 2S
Δt

+
Q − (2Q); hence, Column 3 is completed.

Variation of surface area

h (m) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
A (m2 × 106) 10.00 10.10 10.20 10.34 10.46 10.60 10.75 10.92 11.10 11.30 11.50

Inflow hydrograph

t (h) 0 1 2 3 4 5 6 7 8 9 10
I (m3/s) 20 40 70 100 128 150 155 140 111 73 46
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Table of calculations of
(

2S
Δt

+ Q
)

versus h

h(m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Q = K(h)3∕2 6.54 18.49 33.97 52.29 73.08 96.07 121.06 147.91 176.49 206.71
A (h) (m2× 10.10 10.20 10.34 10.46 10.60 10.75 10.92 11.10 11.30 11.50
106)
2S
Δt

+ Q 567 1146 1736 2335 2945 3565 4197 4840 5497 6166
(m3∕s)

At t = 1 h,

I1 + I2 +
2S
Δt

− Q = 20 + 40 + 1160 = 1220

2S
Δt

+ Q = 1220, whence h = 0.21 m and Q = 20 m3∕s

Peak outflow = 58 m3∕s at t = 9.5 h; hmax = 0.42 m

Plot the inflow and outflow hydrographs (see Figure 11.6), and note that Qmax coincides
with the falling limb of the inflow hydrograph.

Example 11.9

A pipeline 5000 m long, 300 mm in diameter and with roughness size 0.03 mm discharges
water from a reservoir to atmosphere through a terminal valve. The difference in level
between the reservoir and the valve is 20 m, which may be assumed constant. If the valve,
which is initially closed, is suddenly opened, determine the time for steady flow to become
established, neglecting compressibility effects. Assume minor losses = 5V2∕2g including
velocity head and entry loss.

Inflow hydrograph

Outflow hydrograph

Time (h)

D
is

ch
ar

ge
 (

m
3 /

s)

160

120

80

40

0 1 2 3 4 5 6 7 8 9 10

Figure 11.6 Reservoir flood routing.
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Solution:

From Equation 11.15 and Section 11.3, the theoretical time for flow establishment is

T =
LV0

2gH
ln
[

V0 + V
V0 − V

]V0

V=0
(i)

Using the techniques of Chapter 4 the steady-state velocity V0 under the head of 20 m
is calculated to be 1.23 m/s. Theoretically, the time taken to attain steady flow is infinite
(substituting V = V0 in Equation (i)); therefore, adopt V0 = 0.99 × 1.23 = 1.2 m/s (say)
whence in Equation (i),

T = 5000 × 1.23
19.62 × 20

ln
[

2.43
0.03

]
= 68.9 s

The above solution assumes a constant value of 𝜆. The reader should evaluate T, taking
account of the variation of 𝜆 with velocity, using a graphical or numerical integration of
Equation 11.13.

References and recommended reading

Chadwick, A., Morfett, J. and Borthwick, M. (2013) Hydraulics in Civil and Environmental
Engineering, 5th edn, Spon, Abingdon, UK.

Mansell, M. G. (2003) Rural and Urban Hydrology, Thomas Telford, London.

Problems

1. A reservoir with a constant plan area of 20 000 m2 discharges water to atmosphere
through a 2000 m long pipeline of 300 mm diameter and roughness 0.15 mm. The reser-
voir receives a steady inflow of 20 L/s. If the head between the reservoir surface and the
pipe outlet is initially 40 m, determine (neglecting minor losses) the time taken for the head
to fall to 35 m.

2. An impounding reservoir of constant area 100 000 m2 discharges to a service reservoir
through 20 km of 400 mm diameter pipeline of roughness 0.06 mm. Minor losses amount
to 20V2∕2g. The impounding reservoir of constant plan area 10 000 m2 receives a steady
inflow of 30 L/s, while a steady outflow of 10 L/s takes place from the service reservoir. If
the initial level difference is 50 m, determine the time taken for the head to become 48 m
and the time for the level in the upper reservoir to fall by 0.5 m.

3. An impounding reservoir delivers water to a hydroelectric plant through four pipelines,
each 2.0 m in diameter and 1000 m in length with a roughness of 0.3 mm. The reservoir is
to be drawn down using the four pipelines with bypasses around the turbines to discharge
into the tailrace which has a constant level. Allowing 5V2∕2g for local losses including
velocity head, entry and bypass losses, determine the time taken for the level in the reservoir
to fall from 50 m above the tailrace to 20 m above the tailrace assuming a constant inflow
of 1.0 m3/s. Reservoir surface area data are given in the table below.
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Level above tailrace (m) 20 30 40 50
Surface area of reservoir (m2 × 106) 2.0 4.0 6.8 12.2

4. Using the data given for the reservoir in Example 11.8, obtain the outflow hydrograph
resulting from the following inflow hydrograph if the spillway is 50 m long with Cd = 0.7.
Assume the outflow rate at t = 0 to be 10 m3/s.

Time (h) 0 1 2 3 4 5 6 7 8 9 10 11 12
Inflow (m3/s) 10 30 80 130 216 250 228 176 120 80 52 44 20
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Chapter 12
Mass Oscillations and
Pressure Transients
in Pipelines

12.1 Mass oscillation in pipe systems – surge
chamber operation

When compressibility effects are not significant the unsteady flow in pipelines is called
surge. A typical example of surge occurs in the operation of a medium- to high-head hydro-
electric scheme (Figure 12.1).

If, while running under steady power conditions, the turbine is required to be closed
down, values in the inlet to the turbine runner passages will be closed slowly. This will
result in pressure transients, which involve compressibility effects, occurring in the pen-
stocks between the turbine inlet valve and the surge chamber. (For details of pressure tran-
sients, see Section 12.5 onwards.) The pressure transients do not proceed beyond the surge
chamber and hence high pressures in the tunnel are prevented, resulting in a reduced cost
of construction.

Due to the presence of the surge chamber the momentum of the water in the tunnel is not
destroyed quickly and water continues to flow, passing into the surge chamber at a level
which stops rising when the pressure in the tunnel at the surge chamber inlet is balanced
by the pressure created by the head in the chamber.

At this time the level in the chamber will be higher than that in the reservoir and reversed
flow will occur, setting up a long-period oscillation between the two. Figure 12.2 shows a
typical time variation of level in a surge chamber, the oscillations being eventually damped
out by friction in the tunnel, and losses at the inlet to the chamber and in the chamber itself.
Since there are many different types of surge chambers and types of inlets, the reader is
referred to the recommended reading for such details.

The governing equations describing the mass oscillations in the reservoir–tunnel–surge
chamber system are as follows:

(a) The dynamic equation:
L
g

dV
dt

+ z + FsVs |Vs| + FTV |V| = 0 [12.1]

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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Tunnel, L, DT

z z0

As

Q
(t)

Penstocks

Surge chamber

Figure 12.1 Medium-head hydropower scheme.

(b) The continuity equation:

VAT = As
dz
dt

+ Q [12.2]

where L is the length of tunnel, z elevation of water in the surge chamber above
that in the reservoir, Fs head loss coefficient at the surge chamber inlet (throttle), Vs
velocity in the surge chamber (=dz∕dt), FT head loss coefficient for tunnel friction
head loss (=𝜆L∕2gDT), DT diameter of the tunnel, V velocity in the tunnel, AT area
of cross section of the tunnel, As area of cross section of the surge chamber and Q
discharge to turbines.

Equations 12.1 and 12.2 can be integrated directly only for cases of sudden load rejec-
tion; tunnel friction and throttle losses may be included.

12.2 Solution neglecting tunnel friction and throttle
losses for sudden discharge stoppage

Fs, FT and Q = 0 and Equations 12.1 and 12.2 become

L
g

dV
dt

+ z = 0 [12.3]

VAT = As
dz
dt

[12.4]

Reservoir level

Time

0

z

z0

Figure 12.2 Surge chamber oscillations.
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Differentiating Equation 12.4,

dV
dt

=
As

AT

d2z
dt2

[12.5]

Hence L
g

As

AT

d2z
dt2

+ z = 0 [12.6]

This is a linear, homogeneous, second-order differential equation with constant coefficient,
the solution to which is

z = C1 cos
2𝜋t
T

+ C2 sin
2𝜋t
T

[12.7]

where T is the period of oscillation. Since the tunnel is assumed to be frictionless, z = 0 at
t = 0.

Hence z = C2 sin
2𝜋t
T

[12.8]

T = 2𝜋

√
L
g

As

AT
[12.9]

dz
dt

= C2
2𝜋
T

cos 2𝜋t
T

(from Equation 12.8) [12.10]

and dz
dt

= V
AT

As
(from Equation 12.4) [12.11]

Hence V =
As

AT
C2

2𝜋
T

cos 2𝜋t
T

when t = 0, V = V0 and V0 =
As

AT
C2

2𝜋
T

[12.12]

Substituting for T from Equation 12.9,

C2 = V0

√
L
g

AT

As
[12.13]

whence (from Equation 12.8),

z = V0

√
L
g

AT

As
sin 2𝜋t

T
[12.14]

12.3 Solution including tunnel and surge chamber losses
for sudden discharge stoppage

Since Q = 0, VsAs = VTAT whence Equation 12.1 becomes

L
g

dV
dt

+ z +

[
Fs

(
AT

As

)2

+ FT

]
V|V| = 0

or L
g

dV
dt

+ z + FRV|V| = 0 [12.15]
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From Equations 12.4, 12.5 and 12.15, the following relationships are obtainable:

V2 = − z
FR

+
LAT

2gAsF
2
R

+ C exp
(−2gAsFRz

LAT

)
[12.16]

when t = 0, V = V0 and z0 = FTV2
0 whence we obtain

V2 + (z∕FR) − (LAT∕2gAsF
2
R)

V2
0 + (FTV2

0∕FR) − (LAT∕2gAsF
2
R)

= exp

(
−2gAsFR(z + FTV2

0 )

LAT

)
[12.17]

zmax occurs when V = 0.
Note that since dz∕dt = Vs, dt = dz∕Vs, and the time corresponding with any value

of z is

Tz = ∫
t

0
dt = ∫

z

0

dz
Vs

= ∫
z

0

dz
VAT∕As

[12.18]

Equation 12.18 can be evaluated by using a graphical integration or numerical integration
method, in the latter case taking small intervals of z.

12.4 Finite difference methods in the solution of
the surge chamber equations

Numerical methods of analysis using digital computers provide solutions to a wide range
of operating conditions, and types and shapes of surge chambers.

Considering the general case of a surge chamber with a variable area and taking a finite
interval Δt during which V changes by ΔV and z changes by Δz, Equations 12.1 and 12.2
become

L
g
ΔV
Δt

+ zm + FTVm|Vm| + FsVs|Vs| = 0 [12.19]

VmAT = As,m
Δz
Δt

+ Qm [12.20]

where subscript m indicates the average value in the interval and As,m is the average area
of the surge chamber between z and z + Δz.

(a) Solution by successive estimates. In each time interval, estimate ΔV. Then, Vm =
Vi + (ΔV∕2), and from Equation 12.19 calculate zm (=zi + (Δz∕2)) whence z is cal-
culated, noting that Vs = Δz∕Δt. Subscript i indicates values at the beginning of the
time interval and which are therefore known. Qm is known since the time variation
of discharge to the turbines will be prescribed and substitution of Δz into Equation
12.20 yields Vm. If the two values of Vm agree, the estimated value of ΔV is correct;
otherwise adjust ΔV and repeat until agreement is achieved and proceed to the next
time interval.

Alternatively, estimate Δz and proceed in similar fashion; this is preferable if the
chamber has a variable area. In both cases the time variation of z is obtained.

Such calculations are ideally carried out on a computer spreadsheet.
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(b) Direct solution of Equations 12.19 and 12.20. From Equation 12.20,

Δz = Δt
As,m

(
ViAT +

AT

2
ΔV − Qm

)
[12.21]

where Vm = Vi +
ΔV
2

Also zm = zi + (Δz∕2) and Vs = Δz∕Δt; Equation 12.19 becomes

L
g

ΔV
Δt

+ zi +
Δt
2As

(
ViAT +

AT

2
ΔV − Qm

)
± FT

(
Vi +

ΔV
2

)2

±
Fs

A2
s

[
A2

T

(
V2

i + Vi ΔV + ΔV2

4

)
− 2AT

(
Vi +

ΔV
2

)
Qm + Q2

m

]
= 0

Rearranging

±
FR

4
ΔV2 +

[
L

gΔt
+

AT

4As,m
Δt ±

(
FRVi −

FsATQm

A2
s

)]
ΔV + zi

+
AT

2As,m
Vi Δt −

Qm

2As,m
Δt ±

[
FRV2

i +
Fs

A2
s

Qm

(
− 2ViAT + Qm

)]
= 0 [12.22]

which is of the form

aΔV2 + bΔV + c = 0 [12.23]

whence ΔV = −b +
√

b2 − 4ac
2a

[12.24]

ΔV is therefore determined explicitly in each successive time step Δt, and the cor-
responding change in z is obtained from Equation 12.21. Note that if V becomes
negative (i.e. on the downswing) the negative value of FR is used. As with most finite
difference methods, in this case Δt should be small since the use of average values
of the variables implies a linear time variation. A 10 s time interval usually gives a
sufficiently accurate solution.

12.5 Pressure transients in pipelines (waterhammer)

Changes in the discharge in pipelines, caused by valve or pump operation, either closure
or opening, result in pressure surges which are propagated along the pipeline from the
source. If the changes in control are gradual, the time variation of pressures and discharge
may be achieved by assuming the liquid to be incompressible and neglecting the elastic
properties of the pipeline such as in the problems on surge analysis dealt with in Sections
12.1–12.4.

In the case of rapid valve closure or pump stoppage, the resulting deceleration of the
liquid column causes pressure surges having large pressure differences across the wave
front. The speed (celerity) of the pressure wave is dependent on the compressibility of the
liquid and the elasticity of the pipeline, and these parameters are therefore incorporated
in the analysis.
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Figure 12.3 Pressure transients in uniform pipeline due to sudden valve closure.

The simplest case of waterhammer, that due to an instantaneous valve closure, can be
used to illustrate the phenomenon (Figure 12.3).

At time Δt after closure, the pressure wave has reached a point x = cΔt, where c is the
celerity of the wave. In front of the wave the velocity is V0, and behind it the water has
come to rest. The pressure within the region 0–x will have increased significantly, and the
pipe diameter will have increased due to the increased stress. The density of the liquid will
increase due to its compressibility. Note that it takes a time t = L∕c for the whole column
to come to rest. At this time the wave has reached the reservoir where the energy is fixed
at HR (Figure 12.3c). Thus the increased stored strain energy in the pipeline cannot be
sustained and in its release water is forced to flow back into the reservoir in the direction
of the pressure gradient. The wave front retreats to the valve at celerity c (Figure 12.3d)
and arrives at t = 2L∕c (=T) (Figure 12.3e). Due to the subsequent arrest of the retreating
column, a reduced pressure wave is propagated to the reservoir and the whole sequence
repeated. In practice, friction eventually damps out the oscillations.

It will be shown later that in the case of an instantaneous stoppage the pressure head rise
Δh = cV0∕g, where V0 is the initial steady velocity. c may be of the order of 1300 m/s for
steel or iron pipelines. For example, if V0 = 2 m/s, Δh = (1300 × 2)∕9.81 = 265 m, thus
giving some idea of the potentially damaging effects of waterhammer.
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12.6 The basic differential equations of waterhammer

The continuity and dynamic equations applied to the element of flow 𝛿x (Figure 12.4)
yield

Continuity equation: 𝜕h
𝜕t

+ V
𝜕h
𝜕x

+ c2

g
𝜕V
𝜕x

= 0 [12.25]

Dynamic equation: 𝜕h
𝜕x

+ V
g
𝜕V
𝜕x

+ 1
g
𝜕V
𝜕t

+ 𝜆

2Dg
V |V| = 0 [12.26]

c is the speed of propagation of the pressure wave given by

c =
√√√√ 1

𝜌

(
1
K
+ C1D

TE

) [12.27]

where K is the bulk modulus of liquid, 𝜌 density of liquid, E elastic modules of pipe mate-
rial, T pipe wall thickness,D pipe diameter, and C1 constant, depending on the method of
pipeline anchoring.

For a thin-walled pipe fixed at the upper end, containing no expansion joints but free to
move in the longitudinal direction, C1 = (5∕4) − 𝜂, where 𝜂 is Poisson’s ratio for the pipe
wall material. For steel and iron, 𝜂 = 0.3. C1 = 1 − 𝜂2 for a pipe without expansion joints
and anchored throughout its length.

C1 = 1 − 𝜂∕2 for a pipe with expansion joints throughout its length. If longitudinal
effects are ignored, C1 is taken to equal 1.

Equation 12.27 can be expressed in the form

c =
√

K∗

𝜌

where K∗ is the effective bulk modulus of the fluid in the flexible pipeline. Since the speed of
propagation of a pressure wave (or speed of sound) in an infinite fluid or in a rigid pipeline
is c =

√
K∕𝜌, the effect of the term C1D∕TE is to reduce the speed of propagation.

For water, K = 2.1 × 109 N/m2

For steel, E = 2.1 × 1011 N/m2

P

A

h

V

x
z

A +
δx∂A

∂x

p +
δx∂p

∂x

V +
δx

δx

∂V
∂x

Datum

Figure 12.4 Unsteady flow field.
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12.7 Solutions of the waterhammer equations

Equations 12.25 and 12.26 can be solved analytically only if certain simplifying assump-
tions are made, such as the neglect of certain terms, and for simple boundary conditions
such as reservoirs and valves. Some methods neglect friction losses, which can lead to
serious errors in the calculation of pressure transients.

Since the advent of the digital computer, Equations 12.25 and 12.26 when expressed in
discretised form can be readily evaluated for a whole range of boundary conditions and
pipe configurations including networks. The computations proceed in small time steps, and
the pipeline is ‘divided’ into equal sections. At every ‘station’ between adjacent sections,
the transient pressure head and velocity are calculated at each time step. In this way the
complete history of the waterhammer in space and time is revealed. No simplifying
assumptions to the basic equations need be made. Indeed, if interior boundary conditions
such as low pressures causing cavitation arise, especially in sloping pipelines, these can be
incorporated in the analysis.

The most commonly used numerical method is probably the method of ‘characteris-
tics’ which reduces the partial differential equations to a pair of simultaneous ordinary
differential equations. These when expressed in numerical (finite difference) form can be
programmed for automatic evaluation on a digital computer. Such methods are, however,
beyond the scope of this text.

In the present day, therefore, it hardly seems justifiable to use simplified methods. How-
ever, in the following sections some of these methods will be illustrated. These were devel-
oped before the advent of computers and represent examples of classic analytical tech-
niques. In some cases friction can be included, and the results, for example for the pressure
transients at closing valves, are very similar to those obtained using the ‘characteristics’
method. Friction losses are often simplified by assuming them to be localised, for example
at an ‘orifice’ at the outlet from a reservoir. Such losses may also be discretely distributed
along the pipeline but this makes the analysis more laborious.

The analytical methods which are included hereafter illustrate some aspects of the water-
hammer phenomenon. The inclusion of additional features has been kept to a minimum
in view of the superiority of numerical analysis for practical problems.

12.8 The Allievi equations

The differential Equations 12.25 and 12.26 cannot be solved analytically unless certain
simplifications are carried out.

The term V𝜕h∕𝜕x is of the order of [V∕(V + c)]∕(𝜕h∕𝜕t) and may therefore be small.
𝜕V∕𝜕x is small compared with 𝜕V∕𝜕t since

dV
dt

= −V 𝜕V
𝜕x

+ 𝜕V
𝜕t

= 𝜕V
𝜕t

(
1 − V 𝜕V

𝜕x
𝜕t
𝜕V

)
= 𝜕V

𝜕t

(
1 − V

𝜕x∕𝜕t

)

in which the last term is small.
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h

x

F (t + xc)f (t + xc)

Figure 12.5 Propagation of pressure wave.

Neglecting the friction loss term in addition yields

𝜕V
𝜕x

= −
g

c2

𝜕h
𝜕t

(continuity equation) [12.28]

𝜕V
𝜕t

= −g
𝜕h
𝜕x

(dynamic equation) [12.29]

Riemann obtained a solution to such simultaneous differential equations which may be
expressed in the form

htx = h0 + F
(

t − x
c

)
+ f

(
t + x

c

)
[12.30]

Vtx = V0 −
g
c

[
F
(

t − x
c

)
− f

(
t + x

c

)]
[12.31]

where F and f mean ‘a function of’ and +x is measured as in Figure 12.5 so that the signs
in Equations 12.28 and 12.29 become positive. The functions F and f have the dimension
of head.

An observer travelling along the pipeline in the +x direction will be at a position X1 =
ct +X0 at time t, where X0 is his position at t = 0.

For the observer, the function

F
(

t − x
c

)
= F

(
t −

ct +X0

c

)
= F

(
X0

c

)
= Constant

Thus the function F(t − x∕c) is a pressure (head) wave which is propagated upstream at
the wave speed c.

By similar argument the function f (t + x∕c) is a pressure wave propagated in the −x
direction at the wave speed c (Figure 12.5).

An F(t + x∕c) wave generated, for example, by valve operation at x = 0 will propagate
upstream towards the reservoir at which it will be completely and negatively reflected as
an f wave at time T∕2 = (L∕c), where T is the waterhammer period (2L∕c).

Denoting i as the discrete time period with interval T, Equations 12.30 and 12.31 can
be written for the downstream control, for example valve.

hi = h0 + Fi + fi [12.32]

Vi = V0 −
g
c

(Fi − fi) [12.33]

At i = 0, t = 0, then h0 = h0 + F0 + f0

V0 = V0 −
g
c

(
F0 − f0

)
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At i = 1, t = T, then h1 = h0 + F1 + f1

V1 = V0 −
g
c

(
F1 − f1

)
and so on.

Since f is the reflected F wave, f0 = 0, f1 = −F0, f2 = −F1 and so on. Thus,

h1 = h0 + F1 − F0

V1 = V0 −
g
c

(F1 + F0)

and

h2 = h0 + F2 − F1

V2 = V0 −
g
c

(F2 + F1)

Adding successive pairs of head equations and subtracting successive pairs of velocity
equations,

h1 + h0 = 2h0 + F1

h2 + h1 = 2h0 + F2 − F0

V0 − V1 =
g
c

(F1 + F0)

V1 − V2 = −
g
c

(F0 − F2)

whence, in general,

Fi − Fi−2 = c
g

(Vi−1 − Vi)

hi + hi−1 − 2h0 = c
g

(Vi−1 − Vi) [12.34]

Boundary conditions may be set at the valve at the downstream end.
The discharge through a valve of area Av,i at time i when the pressure head behind it is

hi is given by

Q = Cd,iAv,i

√
2ghi [12.35]

and the velocity in the pipe immediately upstream is

Vi =
Cd,iAv,i

Ap

√
2ghi [12.36]

where Ap is the area of the pipe and Cd,i the discharge coefficient.
The ratio

Vi

V0
=

Cd,iAv,i

Cd,0Av,0

√
hi√
h0

Denoting

𝜂i =
Cd,iAv,i

Cd,0Av,0
and 𝜉2

i =
hi

h0

Vi = V0𝜂i𝜉i [12.37]

and hi = h0𝜉
2
i [12.38]
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Substituting into Equation 12.34 yields

h0𝜉
2
i + h0𝜉

2
i−1 − 2h0 =

cV0

g
(𝜂i−1𝜉i−1 − 𝜂i𝜉i) [12.39]

and denoting cV0∕2gh0 by the symbol 𝜌 (not fluid density), [12.39a]

𝜉2
i + 𝜉2

i−1 − 2 = 2𝜌(𝜂i−1𝜉i−1 − 𝜂i𝜉i) [12.40]

Equation 12.40 represents a series of equations which enable the heads, at time intervals
(T) i = 1, 2, 3,… , at the valve to be calculated for a prescribed closure pattern (Av,i vs. t).
The equations are known as the Allievi interlocking equations.

If the valve closure is instantaneous, 𝜂1=0 in Equation 12.40 and

𝜉2
i + 𝜉2

0 − 2 = 2𝜌(𝜂0𝜉0 − 0)

Now 𝜂0 = 1; 𝜉0 = 1. Whence

𝜉2
1 − 1 = 2𝜌 =

cV0

gh0

⇒ h0

(
h1

h0
− 1

)
=

cV0

g

or Δh = h1 − h0 =
cV0

g

Note therefore that if the valve is closed in any time t < 2L∕c, the result is the same as that
for instantaneous closure since 𝜂1 = 0.

12.9 Alternative formulation

For a downstream valve boundary condition at discrete time intervals T, from Equation
12.36

Vi =
Cd,iAv,i

Ap

√
2ghi

Then Vi = Bi

√
hi; hi =

V2
i

B2
i

where Bi =
Cd,iAv,i

√
2g

Ap

Substituting in Equation 12.32 and adding Equation 12.33 yield

V2
i

B2
i

+
cVi

g
− h0 − 2f −

cV0

g
= 0

whence Vi = −
B2

i c

2g
+ Bi

√(
Bic
2g

)2

+
cV0

g
+ h0 + 2f [12.41]
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Note that fi = −F(i − 1) (see Section 12.8)

Fi =
c
g

(V0 − Vi) + fi [12.42]

and hi − h0 = Fi + fi [12.43]

Worked examples

Example 12.1

A surge chamber 10 m in diameter is situated at the downstream end of a low-pressure
tunnel 10 km long and 3 m in diameter. At a steady discharge of 36 m3/s the flow to the
turbines is suddenly stopped by closure of the turbine inlet valves. Determine the maximum
rise in level in the surge chamber and its time of occurrence.

Solution:

V0 = 36
7.063

= 5.093 m∕s; AT = 7.069 m2; As = 78.54 m2

From Section 12.2,

T = 2𝜋

√
10 000
9.81

× 78.54
7.069

= 668.67 s (Equation 12.9)

From Equation 12.12,

C2 = V0
AT

As

T
2𝜋

= 5.093 × 7.069
78.54

× 668.67
2𝜋

= 48.78

From Equation 12.8,

z = C2 sin
2𝜋t
T

= 48.78 sin 2𝜋t
T

z = maximum, when t = T∕4, = 48.78 m occurring after 167.17 s.

Example 12.2

A surge chamber 100 m2 in area is situated at the end of a 10 000 m long, 5 m diameter
tunnel, with 𝜆 = 0.01. A steady discharge of 60 m3/s to the turbines is suddenly stopped
by the turbine inlet valve. Neglecting surge chamber losses, determine the maximum rise
in level in the surge chamber and its time of occurrence.

Solution:

Substitution of a series of values of z into Equation 12.17 and use of Equation 12.16 enable
the z versus V relationship to be plotted. When V = 0 (maximum upsurge), z is found to
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be about 37.1 m at a time of 123 s.

z0 = −9.42 m; V0 = 3.056 m∕s

Example 12.3

A low-pressure tunnel, 8000 m long, 4 m in diameter, with 𝜆 = 0.012, delivers a steady
discharge of 45 m3/s to hydraulic turbines. A surge chamber of constant area 100 m2

is situated at the downstream end of the tunnel, Fs = 1.0. Calculate the time variation
of tunnel velocity V and level in surge chamber using the finite difference form of the
governing differential equations given by Equations 12.19 and 12.20 if the flow to the
turbines is suddenly stopped.

Solution:

Individual steps in the iterative procedure are not given; the solution is shown in the ‘Sum-
mary of computations using iterative method’ table at the end of this solution. The reader
should carry out a few calculations.

Note that FR = (𝜆L∕2gD) + Fs(AT∕As)
2.

Solving Example 12.3 by the direct method (Equation 12.24), take

Δt = 10 s

AT = 12.566 m2; As = 100 m2 (constant)

FR = Fs

(
AT

As

)2

+ 𝜆L
2gDT

= 1.0
(

12.566
100

)2

+ 0.012 × 8000
19.62 × 4

= 1.239

V0 =
Q0

AT
= 45

12.566
= 3.581 m∕s

z0 = FTV2
0 = −15.686 m

In Equation 12.24,

a =
FR

4
= 0.3097

b = L
gΔt

+
AT

4As,m
Δt + FRVi

Vi being the velocity at the beginning of the time step (= 3.581 m∕s).

⇒ b = 8000
9.81 × 10

+ 12.566 × 10
4 × 100

+ 1.239 × 3.581

= 86.90 (s−1)

c = zi +
AT

2As,m
ViΔt −

Qm,Δt

2As,m
+ FRV2

i
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= −15.686 + 12.566 × 3.581 × 10
2 × 100

+ 1.239 × 3.5812 (since Qm = 0)

= 2.4525 m

Hence, ΔV = −86.3 +
√

86.32 − 4 × 0.3097 × 2.4525
2 × 0.3097

(Equation 12.24)

= −0.0284 m∕s

⇒ Vi+1 = 3.552 m∕s

From Equation 12.21,

Δz = Δt
As,m

(
ViAT +

AT

2
ΔV − Qm

)

= 10
100

(
3.581 × 12.566 − 12.566

2
× 0.0284 − 0

)
= 4.482 m

that is, zi+1 = (zi + Δz) = −15.686 + 4.48

= −11.204 m

The values Vi+1 and zi+1 become Vi and zi for the next time step and computations proceed
in the same manner, as shown in the ‘Summary’ table.

Summary of computations using iterative method

t (s) 0 10 20 30 40 50 60 70
z (m) −15.686 −11.204 −6.788 −2.497 1.620 5.519 9.161 12.515
V (m/s) 3.581 3.552 3.475 3.355 3.197 3.007 2.790 2.550

t (s) 80 90 100 110 120 130 140
z (m) 15.554 18.254 20.597 22.568 24.153 25.344 26.134
V (m/s) 2.288 2.010 1.720 1.417 1.106 0.789 0.468

t (s) 150 160 170 180
z (m) 26.52 26.49 26.06 25.23
V (m/s) 0.143 −0.182 −0.50 −0.82

Example 12.4

Calculate the speed of propagation of a pressure wave in a steel pipeline 200 mm in diam-
eter with a wall thickness of 15 mm,

(a) assuming the pipe to be rigid
(b) assuming the pipe to be anchored at the reservoir, with no expansion joints, and free

to move longitudinally
(c) assuming the pipe to be provided with expansion joints.

In each case determine the pressure head rise due to sudden valve closure when the initial
steady velocity of flow is 1.5 m/s.
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Solution:

K = 2.1 × 109 N∕m2; E = 2.1 × 1011 N∕m2; 𝜂 = 0.3

(a)

c =
√

K
𝜌

=
√

2.1 × 109

1000
= 1450 m∕s

Δh =
cV0

g
= 1450 × 1.5

9.81
= 221.7 m

(b)

C1 = 5
4
− 𝜂 = 0.95

c =
√√√√ 1

𝜌

(
1
K
+ C1D

TE

) =
√√√√√ 1

1000
(

1
2.1 × 109

+ 0.95 × 0.2
0.015 × 2.1 × 1011

)
c = 1365.2 m∕s; Δh = 208.7 m

(c)

C1 = 1 − 𝜂

2
= 1 − 0.15 = 0.85

c = 1373.4 m∕s; Δh = 210.0 m

Example 12.5

A steel pipeline 1500 m in length and 300 mm in diameter discharges water from a reser-
voir to atmosphere through a valve at the downstream end. The speed of the pressure wave
is 1200 m/s. The valve is closed gradually in 20s, and the area of gate opening varies as
shown in the ‘Av vs. t for Example 12.5’ table. Neglecting friction, calculate the variation
of pressure head at the valve during closure if the initial head at the valve is 10 m, using
(a) the Allievi method and (b) the method of Section 12.9.

Solution:

Waterhammer period, T = 2L
c

= 3000
1200

= 2.5 s

Working in time intervals of 2.5 s, the corresponding valve areas by interpolation are
shown in the ‘Valve area at discrete time intervals’ table.

(a) Allievi method: From Equation 12.40,

𝜉2
i + 𝜉2

i−1 − 2 = 2𝜌
(
𝜂i−1𝜉i−1 − 𝜂i𝜉i

)
(i)

where 𝜉2
i =

hi

h0
; 𝜂i =

Cd,iAv,i

Cd,0Av,0
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where i indicates the discrete time intervals separated by T = 2L∕c (s) and Vi = V0𝜂i𝜉i

(Equation 12.37); Cd = 0.6 (constant); V0 = (CdAv,0∕Ap)
√

2gh0 = 3.567 m∕s; and
𝜌 = cV0∕2gh0 (Equation 12.39a).

Table of calculations

(1) (2) (3) (4) (5) (6)

Ti t (s) 𝜼 𝝃 h (m) v (m/s)

0 0 1 1 10 3.567
1 2.5 0.780 1.2644 15.988 3.518
2 5.0 0.550 1.6908 28.588 3.317
3 7.5 0.347 2.2816 52.057 2.821
4 10.0 0.260 2.2952 52.678 2.128
5 12.5 0.193 2.1508 46.260 1.483
6 15.0 0.147 1.8753 35.166 0.981
7 17.5 0.073 2.0117 40.470 0.526
8 20.0 0 2.0952 43.897 0

Notes: At T = 1,

𝜉2
1 + 𝜉2

0 − 2 = 2𝜌 (𝜂0𝜉0 − 𝜂1𝜉1)

𝜉2
1 + 1 − 2 = 2𝜌 (1 − 0.78𝜉1)

𝜉2
1 − 1 = 43.632 (1 − 0.78𝜉1)

whence 𝜉1 = 1.2644; h1 = 𝜉2
1 × h0 = 15.988 m

V1 = V0𝜂𝜉i = 3.567 × 0.78 × 1.2644 = 3.518 m∕s

At T = 2,

𝜉2
2 + 𝜉2

1 − 2 = 2𝜌(𝜂1𝜉1 − 𝜂2𝜉2)

𝜉2
2 + (1.2644)2 − 2 = 43.632(0.78 × 1.2644 − 0.55 × 𝜉2)

whence 𝜉2 = 1.6908; h2 = 28.588 m
V2 = 3.567 × 0.55 × 1.6908 = 3.317 m∕s

(b) Alternative algebraic method:

Table of calculations

(1) (2) (3) (4) (5) (6) (7) (8)

Ti t (s) B V (m/s) F (m) f (m) 𝚫h (m) H (m)

0 0 1.128 3.567 0 0 0 10.0
1 2.5 0.880 3.518 5.988 0 5.988 15.988
2 5.0 0.620 3.317 24.577 −5.988 18.588 28.588
3 7.5 0.391 2.821 66.634 −24.577 42.057 52.057
4 10.0 0.293 2.128 109.313 −66.634 42.678 52.678
5 12.5 0.218 1.483 145.573 −109.313 36.260 46.260
6 15.0 0.165 0.991 170.739 −145.573 25.166 35.166
7 17.5 0.083 0.526 201.209 −170.739 30.470 40.470
8 20.0 0 0 235.107 −201.209 33.898 43.898
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Notes: i indicates time step; h0, initial head at valve; and V0, initial velocity in pipe.

Column 3: Bi =
CdAvi

√
2g

Ap

Column 4: Vi = −
B2

i c

2g
+ Bi

√(
Bic
2g

)2

+
cV0

g
+ h0 + 2fi

Column 5: Fi =
c
g

(V0 − Vi + f )

Column 6: fi = −Fi−1
Column 7: Δhi = Fi + fi
Column 8: hi = h0 + Δhi
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Problems

1. A low-pressure tunnel 4 m in diameter and 8000 m in length, having a Darcy friction
factor of 0.012, delivers 45 m3/s to a hydraulic turbine. A surge chamber 8 m in diameter
is situated at the downstream end of the tunnel. Taking Fs = 1.0 and using the method of
Section 12.3, plot the variation of water level in the surge chamber relative to the reservoir
level when the flow to the turbines is suddenly stopped.

2. (a) Repeat Problem 1 using a numerical method.
(b) If the discharge to the turbines were to be reduced linearly to zero in 90 s, calculate the

time variation of water level in the surge chamber and state the maximum upswing
and time of occurrence.

3. A steel pipeline 2000 m in length and 300 mm in diameter discharges water from a reservoir
to atmosphere through a control valve, the discharge coefficient of which is 0.6. The valve
is closed so that its area decreases linearly from 0.065 m2 to zero in (a) 15 s and (b) 30 s. If
the initial head at the valve is 3.0 m and the wave speed is 1333.3 m/s, calculate, neglecting
friction, the pressure head and velocity at the valve at the discrete waterhammer periods.
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Chapter 13
Unsteady Flow in Channels

13.1 Introduction

River flood propagation, estuarial flows and surges resulting from gate operation or dam
failure are practical examples of unsteady channel flows. Natural flood flows in rivers
and the propagation of tides in estuaries are examples of gradually varied unsteady flow
since the vertical component of acceleration is small. Surges are examples of rapidly varied
unsteady flow.

Consider the two-dimensional propagation of a low wave which has a small height in
relation to its wavelength (see Figure 13.1). The celerity or speed of propagation relative
to the water is given by

√
gy, where y is the water depth. Therefore the velocity of the

wave relative to a stationary observer is

c =
√

gy ± V [13.1]

Note that the Froude number Fr expressed by V∕
√

gy is the ratio of water velocity to wave
celerity. If the Froude number is greater than unity, which corresponds with supercritical
flow, a small gravity wave cannot be propagated upstream. Waves of finite height are dealt
with in Sections 13.3 and following sections.

13.2 Gradually varied unsteady flow

Examples of gradually varied unsteady flow are floodwaves and estuarial flows; in such
waves the rate of change of depth is gradual.

In one-dimensional form (i.e. depth and width integrated) it can be shown that the two
governing continuity and dynamic partial differential equations are

𝜕Q
𝜕x

+ 𝜕A
𝜕t

= 0 [13.2]

𝜕y
𝜕x

+ V
g

𝜕V
𝜕x

+ 1
g

𝜕V
𝜕t

= S0 − Sf [13.3]
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c
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H

Figure 13.1 Propagation of low wave in channel.

where Q is the discharge at section located at x, with cross-sectional area A at time t; y is
the depth; V is Q/A; S0 is the bed slope; and Sf is the energy gradient.

These equations were first published by Saint-Venant. However analytical solutions of
these equations are impossible unless, for example, the dynamic equation 13.3 is reduced
to a ‘kinematic wave’ approximation by omitting the dynamic terms. In this form the
equations are often applied to flood routing and overland flow computations. In general,
the equations have to be evaluated at discrete space and time intervals using numerical
methods such as finite difference methods. The availability of computers has enabled the
governing equations to be applied to a wide range of practical problems. Such methods
are, however, outside the scope of this text and the reader is referred to the recommended
reading for more specialist literature.

However, the case of rapidly varied unsteady flow is, with certain simplifying assump-
tions, amenable to direct solution.

13.3 Surges in open channels

A surge is produced by a rapid change in the rate of flow, for example by the rapid opening
or closure of a control gate in a channel. The former causes a positive surge wave to move
downstream (Figure 13.2a); the latter produces a positive surge wave to moves upstream
(Figure 13.2b).

A stationary observer therefore sees an increase in depth as the wave front of a positive
surge wave passes. A negative surge wave, on the other hand, leaves a shallower depth as
the wave front passes.

Negative waves are produced by an increase in the downstream flow, for example by
the increased demand from a hydropower plant (Figure 13.3a) or downstream from a gate
which is being closed (Figure 13.3b).

Figures 13.2 and 13.3 demonstrate that each type of surge can move either upstream or
downstream.

(b)(a)

Figure 13.2 Positive surge waves: (a) rapid opening of gate and (b) rapid closure of gate.

C
h

ap
ter

1
3



Unsteady Flow in Channels 325

Figure 13.3 Negative surge waves.

13.4 The upstream positive surge

Consider the propagation of a positive wave upstream in a frictionless channel resulting
from gate closure (Figure 13.4).

The front of the surge wave is propagated upstream at a celerity c relative to a stationary
observer. To the observer, the flow situation is unsteady as the wave front passes; to an
observer travelling at a speed c with the wave, the flow appears steady although non-
uniform. Figure 13.5 shows the surge reduced to steady state.

The continuity equation is

A1(V1 + c) = A2(V2 + c) [13.4]

orV2 =
A1V1 − c(A2 − A1)

A2
[13.5]

The momentum equation is

gA1y1 − gA2y2 + A1(V1 + c)(V1 − V2) = 0 [13.6]

where y1 and y2 are the respective depths of the centres of area.
Substituting for V2 from Equation 13.5, Equation 13.4 yields

g(A2y2 − A1y1)
A2

A1(A2 − A1)
= (V1 + c)2

whence c =
[
gA2

(A2y2 − A1y1)
A1(A2 − A1)

]1∕2

− V1 [13.7]

In the special case of a rectangular channel,

A = by, y =
y
2

y1 V1

V2 y2

c

Figure 13.4 Upstream positive surge.
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y1

y2V1 + c
V2 + c

Figure 13.5 Upstream positive surge.

From Equation 13.7,

c =

[
gy2

2

(y2
2 − y2

1)

y1(y2 − y1)

]1∕2

− V1

whence c =
[

gy2

2
(y2 + y1)

y1

]1∕2

− V1 [13.8]

The hydraulic jump can be shown to be a stationary surge.
Putting c = 0 in Equation 13.8,

V2
1 =

gy2

2
(y2 + y1)

y1

2V2
1y1

g
= y2

2 + y2y1

Now

Fr2
1 =

V2
1

gy1

⇒ y2
2 + y2y1 − 2Fr2

1y2
1 = 0

whence y2 =
y1

2

(√
1 + 8Fr2

1 − 1
)

which is identical with Equation 8.17 with 𝛽 = 1.0.
In the case of a low wave where y2 approaches y1, Equation 13.8 becomes

c =
√

gy − V1 [13.9]

and in still water (V1 = 0),

c =
√

gy [13.10]

13.5 The downstream positive surge

This type of wave may occur in the channel downstream from a sluice gate at which the
opening is rapidly increased (see Figure 13.6).

Reducing the flow to steady state:

Continuity: (c − V1)A1 = (c − V2)A2 [13.11]

that is, V1 =
cA1 − cA2 + V2A2

A1
[13.12]

Momentum: gA1y1 − gA2y2 + (c − V2)A2(V2 − V1) = 0
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y1

y2

c

V1

V2

Figure 13.6 Downstream positive surge.

Substituting for V1 yields

c =
[

g(A1y1 − A2y2)
(A1 − A2)

A1

A2

]1∕2

+ V2 [13.13]

In the case of a rectangular channel,

c =
[

gy1

2y2
(y1 + y2)

]1∕2

+ V2 [13.14]

13.6 Negative surge waves

The negative surge appears to a stationary observer as a lowering of the liquid surface.
Such waves occur in the channel downstream from a control gate the opening of which is
rapidly reduced or in the upstream channel as the gate is opened. The wave front can be
considered to be composed of a series of small waves superimposed on each other. Since the
uppermost wave has the greatest depth it travels faster than those beneath; the retreating
wave front therefore becomes flatter (Figure 13.7).

Figure 13.8 shows a small disturbance in a rectangular channel caused by a reduction
in downstream discharge; the wave propagates upstream.

Reducing the flow to steady state, the continuity equation becomes

(V + c)y = (V − 𝛿V + c)(y − 𝛿y)

Neglecting the product of small quantities,

𝛿y = −
y𝛿V

(V + c)
[13.15]

The momentum equation is

𝜌g
2

[y2 − (y − 𝛿y)2] + 𝜌y(V + c){V + c − (V − 𝛿V + c)} = 0

whence
𝛿y
𝛿V

= − (V + c)
g

or 𝛿y = −𝛿V(V + c)
g

[13.16]

Figure 13.7 Propagation of negative surge.
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y

δy

 y − δy  V − δV
 V

c

Figure 13.8 Negative surge propagation (upstream).

Equating 13.15 and 13.16,

y𝛿V
(V + c)

=
(V + c)𝛿V

g

whence c =
√

gy − V [13.17]

Substituting for (V + c) from Equation 13.16 into Equation 13.17 yields

𝛿y = −𝛿V
g

√
gy

and in the limit as 𝛿y → 0

dy√
y
= − dV√

g
[13.18]

For a wave of finite height (Figure 13.9), integration of Equation 13.18 yields

V = −2
√

gy + Constant

When y = y1, V = V1. Whence Constant = V1 + 2
√

gy1,

V = V1 + 2
√

gy1 − 2
√

gy [13.19]

From Equation 13.17, c =
√

gy − V and substituting in Equation 13.19 yields

c = 3
√

gy − 2
√

gy1 − V1 [13.20]

The wave speed at the crest is therefore

c1 =
√

gy1 − V1 [13.21]

and at the trough

c2 = 3
√

gy2 − 2
√

gy1 − V1 [13.22]

y1 V1
V2y2

c2

c1

c

y

Figure 13.9 Negative surge of finite height.
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y1 V1

V2y2

c

y

c1

c2

Figure 13.10 Downstream negative surge.

In the case of a downstream negative surge in a frictionless channel (Figure 13.10), a
similar approach yields

c =
√

gy + V [13.23]

V = 2
√

gy − 2
√

gy2 + V2 [13.24]

c = 3
√

gy − 2
√

gy2 + V2 [13.25]

c1 = 3
√

gy1 − 2
√

gy2 + V2 [13.26]

c2 =
√

gy2 + V2 [13.27]

13.7 The dam break

The dam, or gate, holding water upstream at depth y1 and zero velocity is suddenly
removed (see Figure 13.11).

From Equation 13.20,

c = 3
√

gy − 2
√

gy1

The equation to the surface profile is therefore

x = (ct) = (3
√

gy − 2
√

gy1)t

If x = 0, y = 4y1∕9 and remains constant with time. The velocity at x = 0 is

V = V1 + 2
√

gy1 − 2
√

gy (from Equation 13.19)

that is,V = 2
3

√
gy1 (since V1 = 0)

y1 V1 = 0

c

x

Position of dam

y

c1

c2

Figure 13.11 Sudden gate or dam bursting.
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Worked examples

Example 13.1

A rectangular channel 4 m wide conveys a discharge of 25 m3/s at a depth of 3 m. The
downstream discharge is suddenly reduced to 12 m3/s by partial closure of a gate. Deter-
mine the initial depth and celerity of the positive surge wave.

Solution:

Referring to Figure 13.4,

y1 = 3 m; V1 = 2.083 m∕s; V2 = 12
4 × y2

= 3
y2

From Equation 13.4,

(V1 + c)y1 = (V2 + c)y2 (i)

that is, (2.083 + c) × 3 =
(

3
y2

+ c
)

y2

whence c = 3.249
(y2 − 3)

Substituting in Equation 13.8 yields

3.249
(y2 − 3)

=
[

gy2

2
(y2 + 3)

3

]1∕2

− 2.083

By trial, y2 = 3.75 m; c = 4.35 m/s.

Example 13.2

A tidal channel, which may be assumed to be rectangular, 40 m wide, bed slope 0.0003
and the Manning roughness coefficient n = 0.022, conveys a steady freshwater discharge of
60 m3/s. A tidal bore is observed to propagate upstream with a celerity of 5 m/s. Determine
the depth of flow and the discharge immediately after the bore has passed, neglecting the
density difference between the freshwater and saline water.

Solution:

The depth of uniform flow using the Manning equation = 1.52 m (=y1)

V1 = 60
40 × 1.52

= 0.987 m∕s

y2 can be determined using Equation 13.8; in other words,

c =
[

gy2

2
y2 + y1

y1

]1∕2

− V1

5.0 =
[

9.81y2

2
(y2 + 1.52)

1.52

]1∕2

− 0.987

By trial, y2 = 2.66 m.
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Using the continuity equation,

(V1 + c)y1 = (V2 + c)y2

or V2 =
(V1 + c)y1

y2
− c

=
(0.987 + 5.0) × 1.52

2.66
− 5.0

V2 = −1.578 m∕s

and Q2 = V2 by2 = −168.2 m2∕s (upstream)

Example 13.3

A rectangular tailrace channel, 15 m wide, bed slope 0.0002 and Manning’s roughness co-
efficient 0.017, conveys a steady discharge of 45 m3/s from a hydropower installation. A
power increase results in a sudden increase in flow to the turbines to 100 m3/s. Determine
the depth and celerity of the resulting surge wave in the channel.

Solution:

Using the Manning equation the depth of uniform flow under initial conditions at a dis-
charge of 45 m3/s = 2.42 m.

Using Equation 13.11,

(c − V1)y1 = (c − V2)y2

c =
V1y1 − V2y2

(y1 − y2)

c =
Q1y1∕by1 − V2y2

(y1 − y2)

V2 =
Q2

by2
= 45

15 × 2.42
= 1.24 m∕s

Q1 = 100 m3∕s

whence c = 6.67 − 3
(y1 − 2.42)

= 3.67
(y1 − 2.42)

Substituting in Equation 13.13 yields

3.67
(y1 − 2.42)

=
[ gy1

2 × 2.42
(y1 + 2.42)

]1∕2
+ 1.24

By trial, y1 = 2.95 m;

c = 3.67
(2.95 − 2.42)

= 6.92 m∕s
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y1

c2
c1

V1
V2y2

c

Figure 13.12 Wave front propagation.

Example 13.4

A steady discharge of 25 m3/s enters a long rectangular channel 10 m wide, bed slope
0.0001, the Manning roughness coefficient 0.017, regulated by a gate. The gate is rapidly
partially closed resulting in a reduction of the discharge to 12 m3/s. Determine the depth
and mean velocity at the trough of the wave, the surface profile and the time taken for the
wave front to reach a point 1 km downstream neglecting friction (see Figure 13.12).

Solution:

y2 = 2.86 m (using the Manning equation)

V2 = 25
10 × 2.86

= 0.874 m∕s

V1 = 12
10y1

= 1.2
y1

From Equation 13.24,

V = V2 − 2
√

g(
√

y2 −
√

y)

whence V1 = V2 − 2
√

g(
√

ys −
√

y1)

that is, 1.2
y1

= 0.874 − 6.26(1.691 −
√

y1)

Solving by trial,

y1 = 2.637 m

Then V1 = 0.455 m∕s

c2 =
√

gy2 + V2 = 6.17 m∕s

V1

V2y2
y1

y

c

x

Figure 13.13 Wave front propagation.
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Time taken to travel 1 km = 2.7 min.

Surface profile: x = ct = (3
√

gy − 2
√

gy2 + V2)t

or x = (9.4
√

y − 10.6 + 0.874)t

x = (9.4
√

y − 9.726)t.
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Problems

1. A rectangular channel 4 m wide conveys a discharge of 18 m3/s at a depth of 2.25 m.
Determine the depth and celerity of the positive surge wave resulting from (a) sudden
partial gate closure which reduces the downstream discharge to 10 m3/s and (b) sudden
total gate closure.

2. At low tide the steady freshwater flow in an estuarial channel, 20 m wide, bed slope 0.0005
and the Manning roughness coefficient 0.02, is 20 m3/s. A tidal bore forms on the flood
tide and is observed to propagate upstream at a celerity of 4 m/s. Neglecting the density
difference between the freshwater and the saline water, determine the depth and discharge
immediately after the bore has passed.

3. A rectangular channel, 10 m wide, bed slope 0.0001 and the Manning roughness coefficient
0.015, receives inflow from a reservoir with a gated inlet. When a steady discharge of 30
m3/s is being conveyed, the gate is suddenly opened to release a discharge of 70 m3/s.
Calculate the initial celerity and depth of the surge wave.

4. A steady discharge of 30 m3/s is conveyed in a rectangular channel of bed width 9 m at a
depth of 3.0 m. A control gate at the inlet is suddenly partially closed reducing the inflow
to 10 m3/s. Assuming the channel to be frictionless, determine the depth behind the surge
wave and the time taken for the trough of the wave to pass a point 500 m downstream.

5. A rectangular channel 30 m wide discharges 60 m3/s at a uniform flow depth of 2.5 m
into a reservoir. The levels of water in the channel and reservoir at the reservoir inlet are
initially equal. Water in the reservoir is released rapidly so that the level falls at the rate of
1 m/h. Neglecting friction and the channel slope, determine the time taken for the level in
the channel to fall 0.5 m at a section 1 km upstream from the reservoir.
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Chapter 14
Uniform Flow in
Loose-Boundary Channels

14.1 Introduction

The loose boundary (consisting of movable material) of a channel deforms under the action
of flowing water and the deformed bed with its changing roughness (bed forms) interacts
with the flow. A dynamic equilibrium state of the boundary may be expected when a steady
and uniform flow has developed.

The resulting movement of the bed material (sediment) in the direction of flow is called
sediment transport and a certain critical bed shear stress (𝜏c) must be exceeded to start the
particle movement. Such a critical shear stress is referred to as the incipient (threshold)
motion condition, below which the particles will be at rest and the flow is similar to that
on a rigid boundary.

14.2 Flow regimes

Shear stresses above the threshold condition disturb the initial plane boundary of the chan-
nel, and the bed and water surface assume various forms depending on the sediment and
fluid flow characteristics. Two distinct regimes of flow may be identified with the increasing
flows with the following bed forms:

(a) Lower regime: ripples (for smaller sediment size <0.6 mm and low Froude number
≪1), dunes and ripples, dunes with increasing shear (𝜏0) and Froude number Fr;
further increases in 𝜏0 introduce transition to dunes/plane bed (Fr ≃ 1)

(b) Upper regime: flat bed, antidunes, chutes and pools with large shear and Froude
numbers (>1).

14.3 Incipient (threshold) motion

Shields (1936) introduced the concept of the dimensionless entrainment function
(𝜏0∕𝜌gΔd) as a function of shear Reynolds number, Re∗ (=U∗d∕𝜈), where 𝜌 is density of
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Figure 14.1 Shields diagram.

the fluid, Δ the relative density of sediment submerged in the fluid, d the diameter of sedi-
ment, g the acceleration due to gravity, U∗ the shear velocity (=

√
𝜏0∕𝜌) and 𝜈 the kinematic

viscosity of the fluid.
Note that the submerged relative density Δ is equal to (𝜌s − 𝜌)∕𝜌, which equals (s−1)

where s is the relative density of the sediment as defined in Section 1.4.
The resulting Shields diagram is shown in Figure 14.1, with a curve defining the thresh-

old condition.
When the flow is fully turbulent around the bed material (Re∗ > 400 and d ≃ 6 mm),

the Shields criterion can be written as
𝜏0

𝜌gΔd
= 0.056 [14.1]

Combining Equation 14.1 with the uniform boundary shear equation

𝜏0 = 𝜌gRS [14.2]

gives the limiting particle size (with Δ = 1.65) for incipient motion

d = 11RS [14.3]

where R is the hydraulic radius and S the friction gradient.
Combining Equation 14.3 and the Manning equation for mean velocity

V = 1
n

R2∕3S1∕2 [14.4]

with

n = d1∕6

26
(Strickler’s equation) [14.5]

gives

Vc√
gd

≈ 1.9
√
Δ
(

d
R

)−1∕6

[14.6]

where Vc is the critical velocity for the incipient motion of sediment particles.
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Some recommended values of critical tractive forces and maximum permissible mean
velocities for different sizes of bed material are listed in Table 8.3.

14.4 Resistance to flow in alluvial (loose-bed) channels

The resistance of an alluvial channel varies considerably with flow velocity once threshold
has been passed. The bed introduces additional form drag due to bed formations, and
the overall friction factor 𝜆 rises rapidly to three to four times its original value. Several
attempts have been made to describe a relationship between the mean velocity V, the depth
y0 or hydraulic radius R, slope S and sediment size d, which can be broadly divided into
two categories.

14.4.1 Total resistance approach

14.4.1.1 Regime channel equation
This was one of the earliest resistance relationships for alluvial channel flow proposed by
Lacey (1930) in the form

V = 10.8R2∕3S1∕3 [14.7]

in SI units based on the regime canal data from India. Its applicability in channels or rivers
with different sediment sizes and flow depths is questionable.

14.4.1.2 Japanese equation
Sugio proposed the following equation using river data from Japan (Novak and Nalluri,
1984):

V = KR0.54S0.27 [14.8]

in SI units where K = 6.51 for ripples, 9.64 for dunes and 11.28 for the transition regime.

14.4.1.3 Garde–Ranga Raju’s formula
Garde and Ranga Raju (1966) analysed data from flumes, canals and natural
streams, and a graphical relationship (Figure 14.2) between the parameters K1V∕√

(ΔgR) versus K2(R∕d)1∕3S∕Δ, where K1 and K2 are functions of sediment size (see Fig-
ure 14.3), was proposed. Figures 14.2 and 14.3 facilitate the calculations of discharge in
alluvial channels.

14.4.2 Grain and form resistance approach

This approach splits either the overall resistance into grain resistance 𝜆′ and form resistance
𝜆′′ (Alam and Kennedy, 1969) or U∗ into U′

∗ and U′′
∗ corresponding to grain and form

resistances, respectively (Einstein and Barbarossa, 1952). Introducing the concept of bed
hydraulic radius (Rb), charts and graphs have been produced to predict the resistance
equations in alluvial channels. The proposed methods are out of scope of the present book.

In the case of rectangular channels (bed width B) with smooth sides, Einstein suggested
the following equation for the hydraulic radius of the bed:

Rb =
[
1 + 2

(y0

B

)]
R − 2

y0

B
Rw [14.9]
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Figure 14.2 Plot of K1 and K2 functions.

where the hydraulic radius corresponding to the walls Rw is computed from the Manning
equation, assuming it is applicable to the side walls and the bed independently.

Vanoni and Brooks (1957) proposed for rough channels with smooth sides that

Rb =
𝜆bV2

8gS
[14.10]
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Figure 14.3 Plot of K1 and K2 versus particle diameter.
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The bed friction factor 𝜆b can be found from

P𝜆 = Pb𝜆b + Pw𝜆w [14.11]

where P is the wetted perimeter with suffixes ‘b’ and ‘w’ for bed and walls, respectively.
Resistance equations of the type Colebrook–White (or appropriate resistance plots; e.g.

see Figure 14.10) can be used to predict 𝜆w in Equations 14.9 and 14.11, which is a function
of Re∕𝜆, where Re is the Reynolds number and 𝜆 the overall friction factor of the channel.

In the channels where roughness of the walls is different from the bed, the bed hydraulic
radius may be used in place of the total hydraulic radius to determine the regimes, mean
velocities and so on.

14.5 Velocity distributions in loose-boundary channels

Einstein’s equation in the form

u
U′

∗
= 5.75 log

(
30.2 yx

ks

)
[14.12]

where u is the temporal mean velocity at a distance y from the boundary is applicable
universally for smooth, transition and rough beds. The correction factor x is a function of
ks∕𝛿′ (𝛿′ sub-layer thickness given by 11.6𝜈∕U∗) given in Table 14.1.

Equation 14.12 gives the mean velocity V as

V = 5.75U∗ log
(

12.27Rx
ks

)
[14.13]

For ks∕𝛿′ > 6.0, the boundary is fully rough and the Manning–Strickler equation could
conveniently be used to calculate the mean velocity.

14.6 Sediment transport

When flow characteristics (velocity, average shear stress, etc.) in an alluvial channel exceed
the threshold condition for the bed material, the particles move in different modes along
the flow direction. The mode of transport of the material depends on the sediment char-
acteristics such as its size and shape, density 𝜌s and movability parameter U∗∕Ws, where
Ws is the fall velocity of the sediment particle.

Fall velocities are equally of importance in reservoir sedimentation and settling processes
and may be expressed as Ws = f (shape and density of sediment, number of particles falling,
and particle Reynolds number).

The fall velocity of a single spherical particle can be written as

Ws =

√
4
3

gΔd
CD

[14.14]

Table 14.1 Correction factor x.

ks∕𝛿′ 0.2 0.3 0.5 0.7 1.0 2.0 4.0 6.0 10.0
x 0.70 1.00 1.38 1.56 1.61 1.38 1.10 1.03 1.00
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Figure 14.4 Fall velocities of sediment particles.

where CD is the drag coefficient. The drag coefficient is a function of the particle Reynolds
number (Red = Wsd∕𝜈).

For Red < 1,

CD = 24
Red

[14.15]

For particles with a shape factor (SF) of 0.7 (natural sands) CD is nearly equal to 1
when Red >≃ 200, whereas it is around 0.4 in the case of spherical particles (SF = 1) for
Red > 2000.

Figure 14.4 may be used to establish fall velocities of sediment particles of different sizes
with SF = 1.

Some sediment particles roll or slide along the bed intermittently and some others saltate
(hopping or bouncing along the bed). The material transported in one or both of these
modes is called bed load. Finer particles (with low fall velocities) are entrained in suspen-
sion by the fluid turbulence and transported along the channel in suspension. This mode
of transport is called suspended load. The combined transport derived from the bed mate-
rial is called total bed material load. Sometimes finer particles from upland catchment
(sizes which are not present in the bed material), called wash load, are also transported in
suspension. The combined bed material and wash load is called total load.

14.7 Bed load transport

Several empirical equations from laboratory flume data have been proposed by many
investigators with the basic assumptions that the sediment is homogeneous and nonco-
hesive. The results differ appreciably and it is dangerous to transfer the information to
outside the limits of the experiments. However, one can discern general trends of the

C
h

ap
ter

1
4



Uniform Flow in Loose-Boundary Channels 341

transport rate by using several formulae (with some theoretical background). The fol-
lowing are the most commonly used equations:

1. The Shields equation

Shields used the concept of excess shear responsible for the transport and presented a
dimensionally homogeneous equation

qbΔ
qS

=
10(𝜏0 − 𝜏c)

𝜌gΔd
[14.16]

where qb is the bed load per unit width and q the unit discharge in the channel. Equation
14.16 is based on the ranges of 0.06 < Δ < 3.2 and 1.56 mm < d < 2.47 mm.

2. Schoklitsch’s equation

The bed load gb in kilograms per metre second is given by

gb = 2500S3∕2(q − qcr) [14.17]

where qcr is the unit discharge at threshold condition given by

qcr =
0.20(Δ)5∕3 d3∕2

S7∕6
[14.18]

It must be noted that Equation 14.17 is not dimensionally homogeneous and is valid only
for q and qcr in metres cubed per metre second.

3. Kalinske’s equation

For Shields function > 0.09, this can be written as

qb

U∗d
= 10

[
U2

∗

Δgd

]2

[14.19]

Equation 14.19 is dimensionally homogeneous and may not be good for high transport
rates.

4. Meyer–Peter and Muller’s formula

The energy slope S is split into two parts, and only one part (𝜇S) is considered to be
responsible for transport (grain drag; the other is expended in the form drag). The factor
𝜇 is dependent on the bed form (ripple factor) and is expressed as

𝜇 =

(
Cchannel

Cgrain

)3∕2

[14.20]

where C is Chezy’s coefficient given by

C = 18 log
(

12R
k

)
[14.21]

in which k = d for Cgrain and k is a function of bed form (≃ dune height) for Cchannel.
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The ripple factor varies between 0.5 and 1.0 for dune to flat-bed condition. The bed
load qb is given by

qb = 8
√

Δgd3

(
𝜇RS
Δd

− 0.047
)3∕2

[14.22]

Equation 14.22 is dimensionally homogeneous, covers a wide range of particle sizes and
is widely used.

5. Einstein’s equation

Introducing probability concepts of sediment movement, Einstein (1950) developed an
empirical relationship

𝜙 = f (𝜓) [14.23]

where

shear intensity or flow parameter, 𝜓 = Δd
𝜇RS

[14.24]

transport parameter, 𝜙 =
qb√
gΔd3

[14.25]

(Note: 𝜇R in Equation 14.24 may be treated as grain (bed) hydraulic radius R′.)
Figure 14.5 shows the functional relationship (Equation 14.23). For small values of

𝜓 (<10) (𝜓 is around 20 for threshold conditions), the relationship between 𝜙 and 𝜓 can
be expressed as

𝜙 = 40
(

1
𝜓

)3

[14.26]

Rearranging Meyer–Peter and Muller’s equation in terms of 𝜙 and 𝜓 parameters results
in

𝜙 =
(

4
𝜓

− 0.188
)3∕2

[14.27]

which agrees well with Einstein’s curve in Figure 14.5.
Einstein’s relationship covers a very wide range of experimental data (0.785 mm < d <

28.65 mm; 0.052 < Δ < 1.68).
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Figure 14.5 Plot of 𝜙 versus 𝜓 functions.
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14.8 Suspended load transport

1. Rouse’s (1937) distribution equation

The vertical (suspended) mass balance equation in a two-dimensional flow was first
expressed by O’Brien (1933) as

cWs + 𝜀s
dc
dy

= 0 [14.28]

where c is the volumetric concentration of the sediment and 𝜀s the kinematic eddy viscos-
ity (turbulence diffusion coefficient) in the presence of sediment, equal to 𝛽𝜀, 𝜀 being the
eddy viscosity for clear water. 𝛽 is of the order of unity in the presence of fine sediment and
decreases with increasing particle size. Combining Equation 14.28 with the turbulent mix-
ing theory (log law distribution of velocity) gives the solution for sediment concentration
c at a height y in a channel as

c
ca

=
[

a(y0 − y)
y(y0 − a)

]Ws∕𝛽𝜒U

[14.29]

where ca is the reference concentration at a height a from the bed and 𝜒 Karman’s constant.
The theoretical distributions of the concentration (Equation 14.29) are shown in Fig-

ure 14.6 for different values of Ws∕𝛽𝜒U∗ with 𝛽 = 1 and 𝜒 = 0.4 (i.e. clear water
conditions).

Table 14.2 shows the state of suspension under different values of the movability param-
eter U∗∕Ws.
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Figure 14.6 Plot of suspended load concentrations.
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Table 14.2 States of suspension.

States of suspension Movability parameter U∗∕Ws

Intensive saltation 0.25
Lower half in suspension 1
Particles reach surface 3
Well-developed suspension 20
Homogeneous suspension 200

The reference level a may be assumed to be around 2d (d being the diameter of suspended
particles), and ca as bed load corresponding to this diameter. Equation 14.29 must be used
with care as the parameter Ws∕𝛽𝜒U∗ is not accurately computable.

The suspended load transport qs can be obtained by summation as

qs = ∫
y0

a
cu dy [14.30]

where u is given by an appropriate velocity distribution. Equation 14.30 may be solved
either numerically or graphically. Suspended load can generally be measured easily and
accurately, and good field measurements of both c and u predict suspended load with
reasonable accuracies.

2. Lane and Kalinske’s (1939) approximate method

The suspended load qs in wide channels is given by

qs ≈ qcaP15(aWs∕y0U∗)
e [14.31]

in which P is a function of the movability parameter, U∗∕Ws and n∕y1∕6
0 , n being Manning’s

coefficient. Figure 14.7 shows the plot of P in SI units.
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Figure 14.7 Values for the parameter P.
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3. Empirical equations

Several practising engineers have reported several formulae of the type

qs ∝ qb [14.32]

the exponent b varying between 1.9 and 3.
Engelund (1970) alternatively proposed that

qs = 0.5q
(

U∗

Ws

)4

[14.33]

14.9 Total load transport

Total load includes both bed material load and wash load. Wash load is usually caused by
land erosion, and a useful criterion for its existence may be taken as the particle Froude
number (=V∕

√
gd) around 20. Due to its small-size fractions, wash load moves in suspen-

sion and thus can be estimated from the total suspended load provided the suspended bed
material load is known. The following approaches describe some of the available direct
methods of estimating the total bed material load.

1. Laursen’s (1958) approach

The cross-sectional mean concentration by volume Cv of the bed material load for quartz
material was suggested

Cv =
160qb

q
[14.34]

applicable to flume data with sand of d < 0.2 mm.

2. Garde’s (1968) equation

Field and flume data with the sediment size range of 0.011 mm < d < 0.93 mm gave

qt ≈ 10
(

U∗

d3

)(
RS
Δ

)4

[14.35]

3. Graf’s approach

Similar to Einstein’s bed load equation, Graf (1984) used several flume and stream data
including closed conduit data to establish the equation

𝜙A = 10.39(𝜓A)−2.52 [14.36]

over a range of 10−2 < 𝜙 < 103, where

𝜙A =
CvVR√

gΔd3
[14.37]

and𝜓A = Δd
RS

[14.38]
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Table 14.3 Coefficients in Equation 14.39.

Coefficient Fine and transitional Coarse

1.0 < dgr < 60 dgr > 60
n n = 1.00 − 0.56 log dgr 0.00

Agr Agr = 0.14 + 0.23∕
√

dgr 0.17

m m = 1.67 + 6.83∕dgr

C log C = 2.79 logdgr − 0.98(log dgr)
2 − 3.46 0.025

4. Ackers–White’s formula

This method introduced by Ackers and White (1973) was updated by Ackers (1993) using
additional data. The total sediment transport load is predicted from the equation:

qty0

qd

(
U∗

V

)n

= C

(
Fgr

Agr
− 1

)m

[14.39]

where

Fgr =
Un

∗√
gΔd

[
V√

32 log(10y0∕d)

]1−n

[14.40]

With the dimensionless grain diameter dgr defined by

dgr = d
[

gΔ
𝜈2

]1∕3

[14.41]

the coefficients in Equation 14.39 are shown in Table 14.3.

14.10 Regime channel design

1. Kennedy’s approach

Regime equations were developed using data from stable channels in the Indian subconti-
nent, carrying moderate sediment loads of less than 500 ppm by weight. These equations
do not consider sediment load variable and have limitations due to the fact that they are
applicable to boundary characteristics similar to those found in the Indian subcontinent.

Kennedy’s equation for nonsilting and nonscouring velocities V is given by

V = 0.55my0.64
0 [14.42]

where y0 is the flow depth in metres and V is in metres per second; m is the critical velocity
ratio (=V∕V0), a function of the sand size (m = 1 for the standard size, d ≈ 0.323 mm).
Table 14.4 shows m values for other sand sizes.

Equation 14.42 combined with the Manning equation (Equation 8.4b) gives two equa-
tions (Ranga Raju, 1993):

y0 =
[

1.818Q
(p + 0.5)m

]0.378

[14.43]
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Table 14.4 m values as a function of sand size.

Type of sand m Remark

Fine silt 0.7
Light sand silt 1.0 Standard size (data)
Coarse sand silt 1.1
Sand loamy silt 1.2
Coarser silt 1.3

where p = b∕y0, b being the bed width of a trapezoidal channel with side slopes of 0.5
(horizontal) : 1 (vertical) (the final shape of the regime channel is not truly trapezoidal,
and the final side slopes are much steeper due to silt deposition on banks), and

SQ0.02

n2m2
= 0.3

[
(p + 2.236)4∕3

(p + 0.5)1.31

]
[14.44]

Equations 14.43 and 14.44 give any number of solutions for the three unknowns, b, y0 and
the slope S for given values of Q, m and Manning’s n. Usually, the bed slope is assumed to
be a reasonable value (based on past experience and surrounding terrain slope), and p and
y0, and hence b, are computed. Table 14.5 alternatively suggests the recommended values
of p for stable channels as a function of Q.

2. Lacey’s approach

Lacey proposed the following equations (Kennedy’s equation does not specify the channel
width, and experience suggests that this is an important parameter) for regime channel
design:

P = 4.75
√

Q [14.45]

R = 0.47
(

Q

f

)1∕3

[14.46]

S = 3 × 10−4 f 5∕3

Q1∕6
[14.47]

in which the silt factor f is given by

f = 1.76
√

d [14.48]

where d is in millimetres, P and R are in metres and Q is in metres cubed per second.
The silt factor f is a function of its size, as indicated in Table 14.6. Combining Equations
14.45–14.47, Lacey suggested the resistance equation

V = 10.8R2∕3S1∕3 [14.49]

Table 14.5 Recommended b∕y0 values.

Q (m3/s) 5.0 10.0 15.0 50.0 100.0 200.0 300.0
p (=b∕y0) 4.5 5.0 6.5 9.0 12.0 15.0 18.0
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Table 14.6 Silt factor f .

Type of sand f d (mm)

Very fine silt 0.5 0.081
Fine silt 0.6 0.120
Medium silt 0.85 0.233
Standard silt 1.0 0.323
Medium sand 1.25 0.505
Coarse sand 1.50 0.725

Equation 14.49 is commonly used in the Indian subcontinent practice in designing stable
(regime) channels. Normally an additional margin of flow depth (freeboard) is provided in
the design to allow any water level fluctuations. The recommended freeboards as functions
of discharges are shown in Table 14.7.

3. Blench’s approach

Blench developed more rational formulae (using flume and Indian subcontinent data), tak-
ing into account the effects of bank cohesiveness on channel geometry and sediment load.
In a channel of mean width b and mean depth y0, the discharge Q is written as

Q = Vby0 [14.50]

Blench introduced bed and side factors as fb (=V2∕y0) and fs (=V3∕b), respectively, and
wrote

b =

√
fbQ

fs
[14.51]

y0 =
(

fsQ

f 2
b

)1∕3

[14.52]

V2

gy0S
= 3.63

(
Vb
𝜈

)1∕4

[14.53]

S =
f 5∕6
b

f 1∕12
s 𝜈1∕4

11.91gQ1∕6 [1 + (c∕2330)]
[14.54]

where c is the sediment concentration in parts per millimetre by weight and 𝜈 the kine-
matic viscosity of water. He suggested fs = 0.1−0.3 for slight to high cohesivity and

fb = 1.9
√

d(1 + 0.012c), d being in millimetres.

Table 14.7 Recommended freeboards for canals.

Q (m3∕s) <0.75 0.75–1.50 1.50–85.0 >85.0
Freeboard (m) 0.45 0.60 0.75 0.90
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Table 14.8 Regime equations of Simons and Albertson (Garde and Ranga Raju,
1991).

Type of Sand bed Sand bed and Cohesive bed Coarse noncohesive
channel and banks cohesive banks and banks boundary

m 6.33 4.74 4.63 3.44
P

n 0.512 0.512 0.512 0.512
m 2.57 2.25 2.25 0.939

A
n 0.873 0.873 0.873 0.873
m 0.403 0.475 0.557 0.273

R
n 0.361 0.361 0.361 0.361

4. Simons–Albertson’s method

Regime channel data from the United States, Punjab and Sind (Indian subcontinent) were
analysed by Simons and Albertson; their modified regime equations have a wider appli-
cability. The channels are classified according to the nature of the bed and bank material
(see Table 14.8) and the following equations were suggested:

b = 0.92B − 0.60 [14.55]

where b is the average width and B the water surface width (in metres), and

P, A and R = mQn [14.56]

where the coefficients m and n are given in Table 14.8.
The following resistance equations were also proposed by Simons and Albertson:

Sand bed and banks: V = 9.33
(
R2S)1∕3 [14.57]

V2

gy0S
= 0.885

(
Vb
𝜈

)0.37

[14.58]

Sand bed and cohesive banks: V = 10.8(R2S)1∕3 [14.59]

V2

gy0S
= 0.525

(
Vb
𝜈

)0.37

[14.60]

Coarse noncohesive material: V = 4.75(R2S)0.286 [14.61]

V2

gy0S
= 0.324

(
Vb
𝜈

)0.37

[14.62]

The slope equations (Equations 14.58, 14.60 and 14.62) are recommended for Vb∕𝜈 <

2 × 107, and Equations 14.57, 14.59 and 14.61 may be preferred to Equation 14.54 for
the determination of the slope when Vb∕𝜈 > 2 × 107. It has been suggested that the flow
Froude number be kept less than 0.30 for stability considerations.
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5. Non-scouring erodible boundary channel design

This method approaches the criterion that the bed material (coarse) does not move when
the channel carries either clear water or water with fine silt in suspension (not depositing).
The principle of design is to achieve a cross section in which the boundary material is on
the verge of motion (initiation criterion). The method utilises the information on boundary
shear distribution and Shields’ initiation criterion (on both bed and banks) and establishes
either permissible depth or slope (given one or the other). The Manning resistance equation
with the appropriate n value (=d1∕6∕26) further establishes the bed width required to
transport the design discharge. (See Example 14.6 for the detailed design procedures.)

In the above approach it is to be noted that not all the boundary particles are on the verge
of motion (side slopes are less sustainable) and such a section is not economical/efficient.
The most desirable section (bed and bank material at the incipient motion) is of the fol-
lowing profile (Glover and Florey, 1951):

y = y0 cos
(

0.8x
y0

tan𝜙
)

[14.63]

The design procedures using Equation 14.63 are illustrated in Example 14.7.

6. Design of stable erodible boundary channel

The most important physical processes in the formation of stable channels are now well
documented, and White et al. (1980) proposed a solution using the Ackers–White sediment
transport model coupled with the resistance equation for alluvial channels.

For a defined channel boundary material (i.e. known d and 𝜌s) and water viscosity, there
are six channel/sediment parameters: Q, Qs, V, B, y0 and S. Three equations (continuity,
the Ackers–White transport equation and the resistance equation) and a fourth one based
on the variational principle – minimum stream power (i.e. maximised transport with least
energy expenditure) – would then facilitate the design procedures if two of the six parame-
ters are stipulated. For further detailed information and design tables based on this method,
see White et al. (1981), reviewed with proposed modifications by Valentine and Haidera
(2005).

14.11 Rigid-bed channels with sediment transport

Rigid-bed channels are the conveyances with no boundary erosion and the sediment is fed
from external source (e.g. lined irrigation canals carrying silt, sewers and outfalls). The
channel is designed for no deposition criteria. The mode of transport and design criteria
largely depend on the sediment and channel characteristics. A great deal of research into
the areas of sediment initiation, transport, cohesivity aspects of sediments and so on has
taken place (e.g. Novak and Nalluri, 1975; Butler et al., 2003).

Studies of noncohesive suspended silt reveal (Garde and Ranga Raju, 1991) that the lim-
iting (for no deposition) concentration (Cv) is a function of sediment size (d), density (𝜌s),
fall velocity (Ws), water discharge (Q), flow depth (y0), water surface width (B), channel
slope (S) and bed friction factor (𝜆b). Figure 14.8 shows the proposed relationship valid
for circular, rectangular and trapezoidal channels.
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Figure 14.8 Limit-deposition concentration of suspended silt in circular, rectangular and
trapezoidal channel.

Novak and Nalluri (1984) suggested the following equation for initiation of noncohesive
coarser sediment (bed load):

Vc√
gd50Δ

= 0.50
(

d50

R

)−0.4

[14.64]

The limit-deposition criterion in the case of rectangular channels is given by (Mayerle
et al., 1991)

Vs√
gΔd50

= 11.59D−0.4
gr C0.15

v

(
d50

Rb

)−0.43

𝜆−0.18
s [14.65]

where Cv is the limiting sediment concentration by volume that can be transported with
a velocity Vs (self-cleansing). The overall friction factor 𝜆s (Nalluri and Kithsiri 1992) is
given by

𝜆s = 0.851𝜆0.86
c C0.04

v D0.03
gr [14.66]

where 𝜆c is the channel’s clear water friction factor given by Colebrook–White’s equation
(Equation 4.15). Equations 14.65, 14.66 and 4.15 will give (by iterative solution) the
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design velocity for the self-cleansing criterion in rigid-boundary rectangular channels with
bed load transportation.

In the case of clean pipe channels, the limit-deposition criterion may be written as (Nal-
luri et al., 1994)

Vs√
gΔd50

= 3.08D−0.09
gr C0.21

v

(
d50

R

)−0.53

𝜆−0.21
s [14.67]

with the friction factor 𝜆s given by

𝜆s = 1.13𝜆0.98
c C0.02

v D0.01
gr [14.68]

where 𝜆c is the clear water friction factor given by Equation 4.15.
The limit-deposition criterion in the case of pipe channels with deposited flat beds of

width b is given by

Vs√
gΔd50

= 1.94C0.165
v

(
b
y0

)−0.4 (d50

D

)−0.57

𝜆0.10
sb

[14.69]

The bed friction factor with transport 𝜆sb is given by

𝜆sb = 6.6𝜆1.45
s [14.70]

where 𝜆s is given by

𝜆s = 0.88C0.01
v

(
b
y0

)0.03

𝜆0.94
c [14.71]

where 𝜆c is the clear water friction factor given by Equation 4.15.
It must be stressed that the proposed Equations 14.64–14.71 are developed by analysing

experimental data and are valid within the experimental ranges of the data used.

Worked examples

Example 14.1

(a) Starting from first principles, show that the fall (sedimentation) velocity Ws of a
particle size d in a fluid is given by

Ws = A
√

gΔd

where A is a function of the drag coefficient CD and Δ the relative density of the
particle in water [= (𝜌s − 𝜌)∕𝜌].

Assuming that for particles of SF = 1,

CD = Constant (=2) for large diameters

and CD = 24
Red

for very fine particles

give the full equation for Ws in each of these cases.
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(b) Examine the stability of the bed material (𝜌s = 2650 kg/m3, mean diameter = 1 mm)
of a wide stream having a slope of 10−3 and carrying a flow at a depth of 0.3 m.

(c) What type(s) of transport and bed form, if any, do you expect in this stream?

Solution:

(a) Equating gravity force (weight of the particle) to drag force

(𝜌s − 𝜌)g𝜋d3

6
= 1

2
CD𝜌

(
𝜋d2

4

)
W2

s

or W2
s =

4Δgd
3CD

or Ws =

√(
4

3CD

)
(gΔd)

Comparing this with the given equation,

A =

√
4

3CD
= f (Red)

since the drag coefficient CD is a function of Red:

Coarse sediment: CD = 2 (given)

⇒ Ws =

√(
2
3

)
gΔd

Fine sediment: CD = 24
Red

= 24𝜈
Wsd

⇒ A =

√
Wsd
18𝜈

Hence Ws = gΔ d2

18𝜈

(b) Threshold condition: Shields criterion
Wide channel ⇒ R ≈ y0 = 0.3 m
By constructing a d (=1 mm) line on Figure 14.1 (Shields diagram) we obtain

𝜏c

𝜌gΔd
= 0.035

or 𝜏c = 𝜌U2
∗ = 0.035 × 𝜌g × 1.65 × d

Available boundary shear stress

𝜏 = 𝜌gRS = 2.943 N∕m2

Thus minimum d for stability = 5.2 mm > 1 mm. Hence the bed material is not stable.
(c) Available 𝜏∕𝜌gΔd = U2

∗∕gΔd = RS∕(1.65 × 0.001) = 0.181, and from Figure 14.1
this relates to bed dunes to high regime plane bed transition.
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Example 14.2

It is intended to stabilise a river bed section with the following data by depositing a layer
of gravel or stone pitching:

Channel width = 20 m

Bed slope = 0.0045

Maximum discharge = 500 m3∕s

Chezy’s C = 18 log (12R∕d) (d is the mean diameter of the material)

Submerged relative density of the bed material Δ = 1.65

Determine the depth of flow assuming the section to be rectangular and the minimum size
of stone required for stability. Use Shields criterion for stability: 𝜏∕𝜌gΔd = 0.05.

Solution:

From Shields criterion,

d = 12RS

⇒ Chezy’s C = 18 log
(

12R
12RS

)

= 18 log
(

1
S

)
= 42.24 m1∕2∕s

Mean velocity, V =
Q
A

= 500
20 × y0

= 42.24
√

RS (i)

Hydraulic radius, R =
20y0

20 + 2y0
(ii)

Equations (i) and (ii) give

y0 ≈ 4.9 m (by iteration)

⇒ R = 3.29 m giving d (=12RS) = 147 mm

Hence provide an armour layer with 150 mm size stones.

Example 14.3

The following data relate to a wide stream:

Slope = 0.0001

Bed material: size, d = 0.4 mm

density, 𝜌s = 2650 kg∕m3

(a) Find the limiting depth of flow at which the bed material just begins to move.
(b) Find the corresponding mean velocity in the stream.
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Figure 14.9 Modified Shields curve.

Solution:

(a) Problems of this kind may explicitly be solved by using the modified Shields diagram
(Figure 14.9):
Modified Re∗ can be written as

Re′∗ =
(Re∗)

2∕3

(𝜏∕𝜌gΔd)1∕3

=
(Δg)1∕3d

𝜈2∕3
(=dgr)

Re′∗ = (1.65 × 9.81)1∕3 × 0.0004
(10−6)2∕3

= 10.12

From Figure 14.9,

𝜏c

𝜌gΔd
= 0.035

giving 𝜏c = 0.227 N∕m2

Boundary shear in wide channel, 𝜏c = 𝜌gy0S

Hence for critical condition, 𝜌gy0S = 0.227

⇒ The limiting flow depth, y0 = 0.231 m

(b) At the threshold condition the bed is plane with roughness, k = d

Chezy’s C (in transition) = 18 log
[

12R
(k + 2𝛿′∕7)

]
(Equation 8.41)
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where 𝛿′ is the sub-layer thickness given by 𝛿′ = 11.6𝜈∕U∗.

k = d = 0.0004 m, 𝛿′ = 11.6 × 10−6√
9.81 × 0.231 × 0.0001

= 7.7 × 10−5 m

⇒ k + 2𝛿′

7
= 0.0004 + 0.000022 = 0.000422 m

⇒ C = 18 log
(

12 × 0.231
0.000422

)
= 54.7 m1∕2∕s

Hence mean velocity, V = C
√

RS

= 54.7 ×
√

0.231 × 0.0001

= 0.263 m∕s

Example 14.4

A wide alluvial stream carries water with a mean depth of 1 m and slope of 0.0005. The
mean diameter of the bed material is 0.5 mm with a relative density of 2.65. Examine the
bed stability and bed form, if any. Also calculate the sediment transport rate that may exist
in the channel.

Solution:

Wide channel ⇒ R ≈ y0 = 1.0 m; S = 0.0005; d = 0.0005 m
⇒ dgr = 12.5

From Figure 14.9,

𝜏

𝜌gΔd
= 0.32

⇒ 𝜏c = 0.032 × 1000 × 9.81 × 1.65 × 0.0005

= 0.234 N∕m2

Channel boundary shear stress, 𝜏0 = 𝜌gRS = 4.9 N/m2

Since 𝜏0 > 𝜏c, sediment transport exists.

Type of transport:
Fall velocity of sediment particle from Figure 14.4

Ws = 0.075 m∕s

⇒ Movability parameter,
U∗

Ws
= 0.93

Referring to Table 14.2, most part of the transport may be treated as bed load which
may be computed using Shields’ equation (Equation 14.16).

C
h

ap
ter

1
4



Uniform Flow in Loose-Boundary Channels 357

Discharge computations:
Referring to Garde and Ranga Raju’s plots (Figures 14.2 and 14.3), mean velocity in the

channel may be determined.

For d = 0.5 mm; K1 = K2 = 0.95 (Figure 14.3)

⇒ K2

(R
d

)1∕3 S
Δ

= 3.63 × 10−3

From Figure 14.2,

K1V√
gΔR

= 0.20

Hence V = 0.847 m/s, giving q = Vy0 = 0.847 m3/(m s).
From Shields’ equation 14.19, the bed load transport

qb =
10(𝜏0 − 𝜏c) qS

𝜌gΔ2d

= 10 × (4.9 − 0.292) × 0.847 × 0.0005
1000 × 9.81 × 1.652 × 0.0005

= 1.46 × 10−3 m3∕(m s)

≈ 40 N/(m s) or 4 kg/(m s)

Bed form:

𝜏0

𝜌gΔd
= 4.9

1000 × 9.81 × 1.65 × 0.0005
= 0.61

From Shields’ curve (Figure 14.1), the bed form may be in high regime transition to
antidunes; however, the flow Froude number (=V∕

√
gy0) is less than 1 and the bed may

be in dune to high regime transition form.
Equivalent bed roughness (k) or dune height:

Using Chezy’s equation, V = C
√

(RS)

Chezy’s C = 0.847∕
√

(1 × 0.0005) = 37.88 m1∕2

Hence from C = 18 log (12R∕k) (assuming fully rough bed)

k = 9.5 × 10−2 m or 95 mm

Example 14.5

A laboratory rectangular flume with smooth sides and rough alluvial bed (d = 6.5 mm) of
the following data carries 0.1 m3/s of water:

Bed width = 0.5 m

Depth of flow = 0.25 m

Slope = 3 × 10−3

Find the bed hydraulic radius using the resistance curve for smooth sides (Figure 14.9),
bed shear stress and Manning’s coefficient. Also examine the stability of the bed.
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Figure 14.10 Resistance curve for smooth walls.

Solution:

Overall hydraulic radius, R = A
P

= 0.5 × 0.25
0.5 + 2 × 0.25

= 0.125 m

Velocity, V =
Q
A

= 0.1
0.5 × 0.25

= 0.8 m∕s

⇒ Reynolds number, Re = 4VR
𝜈

= 4 × 105

Overall friction factor, 𝜆 =
8gRS

V2
= 0.046

⇒
Re
𝜆

= 8.7 × 106

and, from Figure 14.10, wall friction factor 𝜆w = 0.017.
From Equation 14.11,

⇒ P𝜆 = Pb𝜆b + Pw𝜆w

Bed friction factor, 𝜆b = 0.075

⇒ Bed hydraulic radius, Rb =
𝜆bV2

8gS
(Equation 14.10)

= 0.204 m

Bed shear stress, 𝜏b = 𝜌gRbS = 6 N∕m2

From the Manning equation V = 1
nb

(Rb)2∕3S1∕2

nb = 0.0237

Bed stability:

dgr = 167.5

Hence 𝜏c∕𝜌gΔd = 0.056 (Shields criterion) (see Figure 14.9) or critical shear stress for
stability, 𝜏c = 5.9 N/m2.
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As 𝜏b ≃ 𝜏c, the bed is just stable.
Note: Overall Manning’s n = R2∕3S1∕2∕V = 0.017, which may be compared with Strick-

ler’s equation giving n = d1∕6∕26 = 0.0166 with k = d.

Example 14.6

Design a stable alluvial channel of trapezoidal cross section with the following data:

Discharge = 50 m3∕s

Bed material size = 4 mm

Angle of repose, 𝜙 = 30◦

Bed slope = 10−4

Channel side slopes = 2 (horizontal) : 1 (vertical)
(
tan 𝜃 = 1

2

)

Solution:

Re′∗ =
(Δg)1∕3d

𝜈2∕3
= 100.8

From Figure 14.9,

Fr2
d = 𝜏

𝜌gΔd
= 0.054

⇒ Critical bed shear stress, 𝜏bc = 0.054 × 1000 × 9.81 × 1.65 × 0.004

= 3.496 N∕m2

Hence critical shear on slopes, 𝜏sc = K𝜏bc

where K =
(

1 − sin2
𝜃

sin2
𝜙

)1∕2

=
(

1 − 0.2
0.25

)1∕2

= 0.447

⇒ 𝜏sc = 0.447 × 3.496 = 1.563 N∕m2

Mean boundary shear distribution in a 2 (horizontal) : 1 (vertical) trapezoidal channel (see
Figure 8.5):

For B
y0

> 10,
𝜏bm

𝜌gy0S
≈ 0.985

𝜏sm

𝜌gy0S
≈ 0.78
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Using critical shear on bed as the criterion for stability,

𝜏bc = 𝜏bm = 0.985 × 𝜌gy0S

Limiting flow depth, y0 = 3.62 m

Using critical shear on sides as the criterion,

𝜏sc = 𝜏sm = 0.78 × 𝜌gy0S

Limiting flow depth, y0 = 2.04 m

Choose y0 = 2 m (smaller of the two criteria).
The channel boundary is in threshold condition; thus, the bed is plane, with roughness

k = d.

Manning’s n = d1∕6

26
(Strickler’s formula)

= 0.0153

Mean velocity, V = 1
n

R2∕3S1∕2 (the Manning formula)

Select various B∕y0 values and calculate Q (see Table 14.9).

Adopt a trapezoidal section of bed width = 23 m

Flow depth = 2 m

Example 14.7

The most economical section (i.e. in which the particles are at threshold all over its perime-
ter) of an alluvial channel is given by (see Figure 14.11)

y = y0 cos
(

0.8x tan𝜙
y0

)
[14.63]

where 𝜙 is the angle of repose of the bed material.
Calculate the maximum possible discharge that such a channel in an alluvium (d = 4

mm, 𝜙 = 30◦) with a bed slope of 10−3 can carry.
Design the most economical section to carry a discharge of 1 m3/s.

Table 14.9 Design of stable channel.

B∕y0 y0 (m) B (m) A (m2) P (m) R (m) V (m/s) Discharge Q (m3/s)

10 2 20 48 28.94 1.659 0.916 43.97
11.5 2 23 54 31.04 1.691 0.924 50.09
12 2 24 56 32.94 1.700 0.931 52.14
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x

y
y0

T/2

Figure 14.11 Cosine profile – most economical section.

Solution:

The parameters like area (A), perimeter (P), hydraulic radius (R) and water surface width
(T) are all functions of flow depth y0 and 𝜙 (see Table 14.10).

(Note: In order to accommodate lift forces on particles, the working value of 𝜙 may be
taken as tan−1(0.8 tan 𝜙).)

Limiting bed shear for d = 4 mm,

𝜏bc = 3.496 N∕m2 (Shields)

As the shear distribution is uniform and equal to 𝜌gy0S,

𝜌gy0S = 3.496

flow depth, y0 = 0.356 m

The boundary cross section of the channel is given by Equation 14.63:

y = 0.356 cos (1.3x)

From Table 14.10 we can get for 𝜙 = tan−1(0.8 tan 30◦) = 24.8◦, A = 0.54 m2, R =
0.214 m and T = 2.43 m.

Manning’s n = d1∕6

26
= 0.0153

Mean velocity, V = (0.214)2∕3(0.001)1∕2

0.0153
= 0.739 m/s

Maximum safe discharge, Q0 = AV = 0.4 m3∕s

Design discharge, Q = 1 m3∕s

as Q > Q0 provides an additional central rectangular section (Figure 14.12) to accomodate
the excess flow.

Table 14.10 Economic alluvial section as a function of 𝜙.

𝝓 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

A∕y2
0 7.5 5.4 4.21 3.46 2.79 2.31 2.00

P∕y0 12 8.8 7.0 5.8 4.9 4.2 3.85
R∕y0 0.625 0.615 0.602 0.588 0.570 0.550 0.520
T∕y0 11.72 8.63 6.74 5.44 4.49 3.74 3.14
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1.62 m

0.
35

6 
m

Figure 14.12 Cosine profile with flat bed for large discharges.

Velocity in the central section using the Manning equation

V =
(0.356)2∕3(0.001)1∕2

0.0153
= 1.038 m∕s

Additional bed width, b =
(1.0 − 0.4)

(1.038 × 0.356)
= 1.62 m

(Note: For discharges Q < Q0, the section may be shortened by reducing T to (T − 2x) as
per Table 14.11.)

Example 14.8

The following data refer to an alluvial canal:

Average water surface slope = 5 × 10−4

Average water depth = 4.82 m

Width = 52.5 m

Average velocity = 2.43 m∕s

Grain size distribution: d90 = 50 mm

d50 = 20 mm

Estimate the bed load transport in the canal.

Solution:

Hydraulic radius, R = 52.5 × 4.82
52.5 + 2 × 4.82

= 4.07 m

Cchannel =
V√
RS

= 53.87 m1∕2∕s

Cgrain = 18 log
(

12R
d90

)

Table 14.11 Design table for Q < Q0.

2x∕T 0 0.2 0.4 0.6 0.8 1.0
Q∕Q0 1 0.615 0.310 0.110 0.015 0
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(Note: Grain roughness exposed to flow is equivalent to d90 as d50 is eroded and kept in
motion as sediment load.)

Cgrain = 53.8 m1∕2∕s

As Cchannel = Cgrain,

Ripple factor, 𝜇 = 1 ⇒ flat bed

Discharge in canal = 4.82 × 2.43 = 11.7 m3∕(m s)

Bed shear, 𝜏0 = 𝜌gRS = 19.96 N∕m2

Critical shear stress for d50,

𝜏c = 0.056 𝜌gΔd = 18.1 N∕m2

Bed load transport:

(i) Meyer–Peter and Muller’s equation (Equation 14.22):

qb = 8(1.65 × 9.81)1∕2(0.02)3∕2
(
𝜇RS
Δd

− 0.047
)3∕2

𝜇RS
Δd

= 0.062

⇒ qb = 1.67 × 10−4 m3∕(m s)

or total bed load ≈ 23 kg∕s

(ii) Einstein’s curve (Figure 14.5):

𝜓 = Δd
𝜇RS

= 16.12 giving 𝜙 = 0.015

⇒ qb = 0.015(gΔd3)1∕2 = 1.71 × 10−4 m3∕(m s)

or total bed load ≃ 24 kg∕s

(iii) Schoklitsch’s equation (Equation 14.17):

Bed load in kilogram per metre second, gs = 2500S3∕2(q − qcr)

From Equation 14.18,

qcr = 9.27 m3∕(m s)

⇒ gs = 6.79 × 10−2 kg∕(m s)

or total load = 3.6 kg∕s

(iv) Shields’ equation (Equation 14.16):

qb = 10qS
(
𝜏0 − 𝜏c

𝜌gΔ2d

)
= 5.2 × 10−4 m3∕ms

or total load = 72 kg∕s

Shields’ equation is applicable for the sediment range of 1.56 < d (mm) < 2.47 and is not
reliable in this case where d = 20 mm. Also Schoklitsch’s equation is not dimensionally
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homogeneous and does not include coarse material. Hence the probable total bed load in
the canal is around 30 kg/s.

Example 14.9

The following data refer to a wide river:

Depth = 3 m

Mean velocity = 1 m∕s

Chezy’s coefficient = 50 m1∕2∕s

Density of sediment = 2650 kg∕m3

A sample of wash load (mean diameter of 0.02 mm) taken at half depth of flow showed
a concentration of 200 mg/L (200 ppm).

(i) Establish the wash load concentration distribution as a function of depth, and calcu-
late the rate of suspended load assuming a homogeneous distribution.

(ii) Determine the transport rate using Lane and Kalinske’s approximate method, and
compare with the above result.

Solution:

From Chezy’s formula, (RS)1∕2 = V∕C = 0.02,

shear velocity, U∗ = (gRS)1∕2 = 0.063 m∕s

fall velocity, Ws = 0.00035 m∕s (Figure 14.4)

movability parameter,
U∗

Ws
= 0.063

0.00035
= 180

Referring to Table 14.2, the sediment is almost in homogeneous suspension.

Total suspended load = 200 × 3 × 1 × 1000
106

= 0.6 kg∕(m s)

Distribution of sediment concentration:
From Equation 14.29,

⇒ a = 1.5 m; ca = 200 mg∕L; y0 = 3 m

Ws = 0.00035 m∕s (Figure 14.4.)

𝛽 = 1; 𝜒 = 0.4

c(y) = 200
[

1.5(3 − y)
1.5y

]0.00035∕(0.4×0.063)

= 200
(

3 − y
y

)0.0139

mg∕L

Equation 14.31 (Lane and Kalinske):

⇒
qs

q
= 200Pe15(1∕2)0.00555
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P from Figure 14.7:

Manning’s n = R2∕3S1∕2

V

S1∕2 = 0.02
31∕2

= 0.01155

⇒ n = 32∕3 × 0.01155
1

= 0.024

⇒
n

y1∕6
0

= 0.02

and hence P = 1 at Ws∕U∗ = 0.000555.

⇒
qs

q
= 200 × 1 × e0.0416 = 200 × 1.04

Hence qs = 208 × 1 × 3 × (1000∕106) = 0.624 kg/(m s).

Example 14.10

An alluvial river with the following data discharges water into a downstream reservoir of
10 × 106 m3 capacity.

Width = 12 m

Depth = 4 m

Slope = 3 × 10−4

Discharge = 75 m3∕s

Bed material size, d50 = 0.5 mm

Density of bed material = 2650 kg∕m3

Determine the total sediment transport rate by Ackers–White’s formula in the river, and
compare the result with that of Graf’s formula. What is the life expectancy of the reservoir
fed by this river?

Solution:

R = A
P

= 48
20

= 2.4 m

Graf’s formula (Equation 14.36):

⇒ 𝜓A = Δd
RS

= 1.146

𝜙A = 10.39 × (1.146)−2.52 = 7.37

Hence

Cv
VR√
gΔd3

= 7.37

or
1.56 × 2.4Cv

4.5 × 10−5
= 7.37
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Cv = 8.86 × 10−5

Total transport rate = 8.86 × 10−5 × 75 = 6.6 × 10−3 m3∕s

Ackers–White’s approach:
Using kinematic viscosity for water at 15◦,

dgr = 0.0005
[

9.81 × 1.65
(1.14 × 10−6)2

]1∕3

= 11.6 (Equation 14.41)

For dgr in transition (1 < dgr < 60),

n = 1 − 0.56 log dgr = 0.404

Agr = 0.14 + 0.23√
dgr

= 0.208

m = 1.67 + 6.83
dgr

= 2.26

logC = 2.79 logdgr − 0.98(logdgr)
2 − 3.46 = −1.60

⇒ C = 0.0251

U∗ = (9.81 × 2.4 × 0.0003)1∕2 = 0.084 m∕s

Un
∗ = 0.368; (gΔd)1∕2 = 0.0900

V =
Q
A

= 75
48

= 1.56 m∕s

√
32 log

(
10y0

d

)
= 27.7

⇒ Fgr =
(

0.368
0.0900

)(
1.56
27.7

)1−0.404

= 0.736 (Equation 14.40)

Fgr

Agr
= 0.736

0.208
= 3.54

⇒ C

(
Fgr

Agr
− 1

)2.26

= 0.206

qt

q
=
(

0.206 × 0.0005
4

)(
1.56
0.084

)0.404

= 8.38 × 10−5 (Equation 14.39)

⇒ Qt = 8.38 × 10−5 × 75 = 6.3 × 10−3 m3∕s

Reservoir life expectancy:

Ackers–White ⇒ Annual deposit = 6.3 × 10−3 × 365 × 24 × 60 × 60

= 2.0 × 105 m3∕year

⇒ Reservoir life = 10 × 106

2.0 × 105
≈ 50 years

A similar estimate results in this case from Graf’s approach.
Note that porosity and consolidation of sediments will affect the filling rate.
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Problems

1. (a) Using Shields’ threshold criterion 𝜏∕𝜌gΔd = 0.056 and Strickler’s equation for
Manning’s n = d1∕6∕26, show, for wide channels,

(i) d = 11RS (Equation 14.3)
(ii) Vc∕

√
(gd) = 1.9

√
𝜆(d∕R)1∕6 (Equation 14.6)

(iii) qcr = 0.2(𝜆)5∕3d3∕2∕S7∕6 (Equation 14.18)
(b) A flood plain river bank in fine silty sand is experiencing extensive erosion. The bank-

full discharge of the river is 60 m3/s, and the section is approximately 10 m wide and
2 m deep at this discharge. The flood plain is protected by a cover of 30 mm size stone
rip-rap whose friction coefficient 𝜆 = 0.022. Examine the stability of the rip-rap cover
using Shields’ criterion.

2. A river bed of the following data is stabilised by the deposition of a gravel layer:

Channel width = 12 m

Bed slope = 5 × 10−3

Maximum discharge = 15 m3∕s

Determine the limiting depth of flow, assuming the section to be rectangular if the gravel
size is 30 mm.

3. A straight canal with side slopes of 2 1
2
(horizontal) : 1 (vertical) is carrying water with

a mean depth of 1 m and mean velocity of 0.87 m/s. Chezy’s coefficient is around 25
m1∕2/s. Determine the minimum size of broken gravel that can be used as a protective
layer around the periphery of the canal. The angle of internal friction for the stone whose
density is 2600 kg/m3 may be assumed as 35◦.

4. A channel of trapezoidal cross section (with side slopes of 2 (horizontal) : 1 (vertical), bed
width of 8 m and flow depth of 2 m) is excavated in gravel (mean diameter of 4 mm and
𝜙 of 30◦). Determine the limiting bed slope of the channel.

5. A channel bed is protected with 40 kg stones (𝜌s = 2800 kg/m3). If the flow depth in the
channel is 4 m, calculate the critical velocity at which the stability of the protective layer
is in danger. If the velocity in the channel exceeds this critical velocity by 20%, determine
the size of the stones that will be needed for its protection.
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6. A long and wide laboratory flume is to be prepared to carry out experiments to check
Shields’ diagram. It is proposed to cover the bed of the flume with a layer of homogeneous
noncohesive material.

Determine the unit discharge rate and slope of the bed required for a flow depth of 2 m
to investigate the studies using (i) sand with d = 0.125 mm and (ii) gravel with d = 4 mm.
The density of both the materials may be assumed as 2650 kg/m3 with a water temperature
of 12◦C.

7. The following data refer to a wide river:

Flow depth = 2 m
Mean velocity = 0.71 m/s
Slope = 1/12 000
Grain size = 1 mm
Density of grains = 2000 kg/m3

Settling velocity = 0.10 m/s
Kinematic viscosity of water = 10−6 m2/s

(a) (i) Calculate the rate of sediment transport in newtons per day using Meyer–Peter
and Muller’s formula: 𝜙 = (4∕𝜓 − 0.188)3∕2.

(ii) Determine the k value of the bed, identify the possible bed formation and explain
whether the bed is hydraulically smooth or rough.

(iii) Check whether there will be suspended load or not.
(b) If this river is discharging into a lake of constant water level and the sediment trans-

port is interrupted at 10 km upstream of the lake, discuss, with the help of neat
sketches, the consquences of the river regime along this 10 km stretch of the river.

8. In a wide stream of 3 m depth, the shear stress on the bed is estimated to be 2.4 N/m2.

The concentration of suspended sediment is found to be 25.8 kg/m3 at a point 0.03 m
from its bed. The settling velocity of the sediment is 9.14 mm/s in still water.
(i) Plot the profile of the sediment concentration through the depth with Karman’s con-

stant, 𝜒 = 0.4.
(ii) Assuming the velocity profile as

u
u∗

= 5.8 + 2.5 ln
(u∗y

𝜈

)
estimate the suspended load transport per unit width of the channel.

9. Suspended particles 50% by weight with Ws = 9.1 mm/s and 50% with Ws = 15.2 mm/s
are admitted to a sedimentation tank with a mean velocity of 0.152 m/s and a depth of
1.52 m. Find the fraction of removal (F) of the total load if a tank length of 30 m with a
bed slope of 10−4 is used. Use Sumer’s equation: x∕y0 = 12V log (1 − F)∕(U∗ − 10Ws).

10. A mountainous creek is monitored to measure the suspended load by sampling the con-
centration of silt at its mid-depth. For a flow depth of 1 m, the mean concentration is
found to be 21 N/m3 (dry weight) with d = 30 μm and 𝜌s = 2650 kg/m3. The average
width of the creek at the sampling section is 22 m, and from the topographic map of the
area its slope was determined to be 3.6 m/km. Stage-discharge measurements of the creek
indicated that its bed roughness (k value) could be taken as 0.12 m. The water tempera-
ture during sampling was 20◦C. Calculate the suspended load transport for this flow in
the creek.
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Chapter 15
Hydraulic Structures

15.1 Introduction

A variety of hydraulic structures are available to control water levels and regulate dis-
charges for purposes of water supply, water storage, flood alleviation, irrigation and so
on. These range from the weirs/sluices of small channels to the overflow spillways of
large dams. Many of these structures may also be used as discharge-measuring devices, as
described in standards such as BS3680 Part 4 (1981, 1990). This chapter mainly deals with
the spillways and their associated energy dissipators as examples of common hydraulic
structures.

15.2 Spillways

A spillway is the overflow device of a dam project which is essential to evacuate excess
of water, which otherwise may cause upstream flooding, dam overtopping and eventually
dam failure. Basically there are three types of spillways: overfall (ogee or side channel),
shaft (morning glory) and siphon. The overfall types are the most frequently encountered,
and they are described here in detail. The reader may refer to Novak et al. (2007) for other
types and further information.

15.2.1 Overfall spillways

The basic shape of the overfall spillway (ogee spillway) is derived from the lower envelope
of the overfall nappe (see Figure 15.1) flowing over a high vertical rectangular notch with
an approaching velocity Va close to zero and a fully aerated space beneath the nappe (see
also Section 3.17.5). For a notch of width b, head h and discharge coefficient C′

d
, the

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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h

P

+y

+x

Spillway
surface

Nappe

Crest

H = Hd

Figure 15.1 Crest of an ogee overfall spillway.

discharge equation (see also Equation 3.34) is

Q = 2
3

√
2gb C′

d

⎡⎢⎢⎣
(

h +
𝛼V2

a

2g

)3∕2

−

(
𝛼V2

a

2g

)3∕2⎤⎥⎥⎦ [15.1]

which, for Va = 0, reduces to

Q = 2
3

√
2gbC′

dh3∕2 [15.2]

This coefficient C′
d

(=0.62) is valid for a rectangular sharp-crested weir.
Scimeni (see USBR, 1987) expressed the shape of the nappe in coordinates x and y,

measured from the highest point (at a distance 0.282Hd away from the sharp-crested sill)
of the water jet, for H∕Hd = 1.0 as

y = Kxn [15.3]

with

K = 0.5; n = 1.85

For other values of H the nappes are similar and the equation can be rewritten as

y
H

= K
( x

H

)n

or

y = KxnH1−n = 0.5x1.85H−0.85

Towards upstream of the summit point the nappe has the shape of two circular arcs,
one with a radius R = 0.5Hd up to a distance of 0.175Hd and the other with a radius of
R = 0.2Hd up to the sharp sill (Novak et al., 2007).

In Figure 15.1 it is clear that the head H above the new crest is smaller than the head
h above the crest of the sharp-edged notch from which the shape of the overfall spillway
was derived. For an overfall spillway one can rewrite the discharge equation as

Q = 2
3

√
2gbCd0

H3∕2
de

[15.4]
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or, if Va = 0,

Q = 2
3

√
2gbCd0

H3∕2
d

In Equation 15.4, Hde
is the design energy head given by

Hde
= Hd + 𝛼

V2
a

2g
[15.5]

Hd being the design head and Cd0
the design discharge coefficient equal to 0.745 for spill-

ways of P∕Hde
> 3.0.

For any other head (H) the discharge coefficient varies, suggesting that for H∕Hd <

1.0, 0.580 < Cd < 0.745, and for H∕Hd > 1.0, Cd > 0.745 (see Figures 3.19 and 3.20).

15.2.1.1 Negative pressures and cavitation
When H∕Hd > 1.0, negative pressure exists on the underside of the nappe which may lead
to cavitation problems. In order to avoid this problem it is suggested that H < 1.65Hd.
To find the pressure under the downstream nappe one can use Cassidy’s (see USBR, 1987)
relation:

pm

𝜌g
= −1.17H

(
H
Hd

− 1
)

in which pm is the gauge pressure under the nappe.

15.2.1.2 Gated spillways
Gates are used in spillways to increase the reservoir capacity. For gated spillways, the
placing of the sill by 0.2Hd (see Novak et al., 2007) downstream of the crest substantially
reduces the tendency towards negative pressures for outflow under partially raised gates.
The discharge through partially raised gates can be calculated from

Q = 2
3

√
2gbCd1

(
H3∕2 − H3∕2

1

)
[15.6]

with Cd1
= 0.6, in which H is the distance from the spillway crest until the upstream (reser-

voir) water level and H1 the distance from the lower gate lip until the same water level.
Alternatively, an equation (orifice) of the type

Q = Cd2
ba(2gHe)

1∕2 [15.7]

where a is the distance of the gate lip from the spillway surface and He the effective head
on the gated spillway (which is very similar to H) could also be used.

15.2.1.3 Offset spillways
For slender dam sections as in the case of arch dams, it may be necessary to offset the
upstream spillway face into the reservoir in order to gain enough space to develop its
shape. This upstream offset has no effects on the discharge coefficient.

15.2.1.4 Effective spillway length
In all the previous equations, b refers to the spillway length. If the crest has piers (to support
gates) this length must be reduced to (see Example 3.18)

be = b − 2(nkp + ka)He [15.8]
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Boundary layer

Air

Fully aerated flow

hb

Lc

Hl

h C

Figure 15.2 Air entrainment on overfall spillway surface.

where n is the number of piers, kp the pier contraction coefficient and ka the abutment
contraction coefficient. The pier contraction coefficient is a function of the pier shape; for
example,

Point nose pier: kp = 0
Square nose pier: kp = 0.02
Round nose pier: kp = 0.01

The abutment contraction coefficient is 0 < ka < 0.2.

15.2.1.5 Self-aeration
An important design feature is the point at which self-aeration of the overfall nappe (in
contact with the spillway) starts. A steep slope implies high velocities which in turn entrain
air from the atmosphere into the flow. The appearance of the water is white with a violently
agitated free surface. The air entrapment occurs at a location (say C, Figure 15.2) where

𝜌hu2

𝜎

(
𝜈

u∗h

)1∕2

≥ 56 [15.9]

The location of point C (incipient point) is a function of the discharge per unit width
(q), the surface roughness (ks) and the slope (S) of the downstream channel:

LC = f (q, ks, S) ≅ 15
√

q (as an approximation)

The entrainment of air has an effect of increasing (bulking effect) the flow depth down-
stream of the incipient point. To calculate the new depth one can use the following process:

1. The theoretical velocity at point C is

ut =
√

2gH1

and the actual velocity is

u = 0.875ut

2. With this velocity, the depth at point C is

h =
q
u
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3. The air concentration in the fully aerated flow is given by

C̄ =
1.35nFr3∕2

C

1 + 1.35nFr3∕2
C

where n is Manning’s coefficient for the channel (spillway surface) and FrC the Froude
number at C

FrC = u√
gh

4. Now the bulked depth (fully aerated) is

hb =
hna

1 − C

where hna
is the depth without air entrainment given by the Manning equation

hna
=

(
nq√

S

)3∕5

15.2.2 Side channel spillways

In the case of a side channel spillway (in case part of the main body of the dam cannot be
used as a spillway), the proper spillway is designed as a normal overfall spillway. The side
channel itself must be designed in such a way that the maximum flood discharge passes
without affecting the free flow operation of the spillway crest.

The flow in the side channel is an example of a spatially varied flow that is best solved
by the application of the momentum principle, assuming that the lateral inflow into the
channel (see Figure 15.3) has no momentum in the direction of the main flow towards the
chute or tunnel (see also Section 8.16).

Chute or
tunnel

A

A Dam axis

Spillway crest
Reservoir

Side
channel

(a)

(b)

Figure 15.3 Side channel spillway: (a) plan view and (b) section A–A.
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Equation 8.23 suggests the location of the control point (critical depth) in the side chan-
nel, and in a given length of the channel, the control section exists only if its slope satisfies
Equation 8.24. Equations 8.23 and 8.24 may be modified for the use of Manning’s n
instead of Chezy’s C by the relation

C = R1∕6

n
[15.10]

To determine the spatially varied flow profiles, one can use a numerical integration tech-
nique with a trial-and-error process (see Chow, 1959; Henderson, 1966). The change in
water surface elevation can be written as

Δh′ = −Δh + S0Δx [15.11]

We can also write (using the finite difference approach) from the momentum equation

Δh′ =
Q1

g
V1 + V2

Q1 + Q2

(
ΔV +

V2

Q1
ΔQ

)
+ SfΔx [15.12]

Equations 15.11 and 15.12 can be used to determine the spatially varied water surface
profile for the case of increasing (longitudinal direction) discharge that occurs in the side
channel of the spillway (see Example 15.3).

15.3 Energy dissipators and downstream scour protection

Creation of a hydraulic jump downstream of the spillway toe is the most effective way
of dissipating the high energy (supercritical flow) of the incoming water (see Section 8.8
and Example 8.16). In addition, numerous devices such as stilling basins, aprons and vor-
tex shafts are known in general as energy dissipators. The most common type of energy
dissipator is through the formation of a hydraulic jump (free or forced) in a stilling
basin (horizontal apron downstream of the toe of spillway), which at times may consist
of impact blocks, ramps, steps, baffles and so on (see USBR, 1987; Vischer and Hager,
1998).

Equation 8.17 suggests a sequential (conjugate) downstream subcritical depth (y2) to
incoming supercritical depth (y1). The necessary measures to control erosion and dissi-
pate energy (Equation 8.18) of the incoming flow depend on the available tailwater depth
(yT) and the conjugate depth (y2) (see Figures 15.4–15.6 illustrating various scenarios of
downstream conditions of energy dissipation). Figure 15.4a shows the classic formation
of a hydraulic jump downstream of the toe when y2 = yT (a condition rarely encountered),
and in this case a simple ‘horizontal apron’ is adequate for downstream scour protection.
Figure 15.4b suggests a remedial method to achieve this condition, if necessary.

TWL

(a) (b)

yT = y2

yn = yT < y2y2

Figure 15.4 Hydraulic jump with conjugate depth equal to tailwater level: (a) simple horizon-
tal (stilling basin) apron and (b) stilling basin with lowered bed to achieve y2 = yT.
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y2
Hydraulic jump

(a) (b)

Dam or weir

Figure 15.5 Hydraulic jump with conjugate depth greater than tailwater level: (a) hydraulic
jump outside of the stilling basin when y2 > yT and (b) downstream prominent weir pushing
hydraulic jump into the stilling basin.

Figure 15.5 shows the scenario when the tailwater level is less than the conjugate depth.
In this case the hydraulic jump would occur downstream of the stilling basin (see Figure
15.5a) without achieving the energy dissipation and scour protection. To avoid this, one
can use a stilling basin with lowered level, as before, or a secondary dam or weir to increase
the tailwater depth causing the jump to form at the toe of the main dam.

A third possible scenario is shown in Figure 15.6, the case when the tailwater level is
greater than the conjugate hydraulic jump depth. This case is not desirable as a submerged
jet (highly inefficient for energy dissipation) is likely to form downstream of the spillway
face (see Figure 15.6a). Figure 15.6b suggests an alternative solution when y2 < yT, thus
creating adequate energy dissipation.

The USBR (Design of Small Dams, 1987) suggests elaborate layouts of these dissipating
structures, and Example 15.4 illustrates various design elements of such structures (stilling
basin).

In order to choose the appropriate lowered bed level of a stilling basin, to achieve y2 >

yT, it is necessary to develop the following design procedure, which uses the hydraulic
jump and energy conservation equations and the geometry shown in Figure 15.7. The
hydraulic jump equation is derived in Section 8.8, with y1 being the incoming supercritical
flow depth for a given (design) discharge.

y2 =
y1

2

(√
1 + 8 Fr2

1 − 1
)

[8.17]

where Fr2
1 = V2

1∕gy1.

Submerged jet
(no hydraulic jump)

Sloping apron

Hydraulic jump

(b)(a)

Figure 15.6 Hydraulic jump with conjugate depth smaller than the tailwater level: (a) sub-
merged jump at the dam toe when y2 < yT and (b) extension of the toe by a sloping apron (free
jump in stilling basin).
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E0

y1
y2′ yn

y+

H Spillway crest

River bed level

Maximum reservoir
level

Figure 15.7 Design of a stilling basin bed level.

Making use of Figure 15.7, the following equations can be established:

y′2 > y2 ⇒ y′2 = 𝜎y2 ⇐ 𝜎 > 1.0

y+ = y′2 − yn = 𝜎y2 − yn [15.13]

The energy conservation equation between the reservoir upstream and the point just down-
stream of the basin entrance, including all the losses, is given by (see Figure 15.7)

E0 = y1 +
V2

1

2g
+ 𝜉

V2
1

2g

with 𝜉 being the spillway (control and chute) loss coefficient. By writing

𝜁2 = 1
1 + 𝜉

we can have

E0 = y1 +
q2

2gy2
1𝜁

2
[15.14]

The value of 𝜎, which represents the safety factor for the conjugate jump depth, must
be between the limits of 1.05 < 𝜎 < 1.20, with 1.10 being the best value. The value of 𝜉
increases with the crest height and roughness of the spillway, which implies more losses.
The range of 𝜁 , 1 > 𝜁 > 0.5, is suggested for the design considerations. Example 15.4 illus-
trates the design process of a stilling basin.
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Worked examples

Example 15.1

An overflow spillway is to be designed to pass a discharge of 2000 m3∕s of flood flow at
an upstream water surface elevation of 200 m. The crest length (spillway width) is 75 m
and the elevation of the average bed is 165 m. Determine

(a) the design head
(b) the spillway profiles, upstream and downstream
(c) the discharge through the spillway if the water surface elevation reaches 202 m.

Solution:

(a) The discharge over the spillway per unit width is

qd =
Q

b
=

2000 m3∕s
75 m

= 26.67 m2∕s

For the first calculation, one can assume a discharge coefficient corresponding to a deep
upstream approaching channel. For such a case,

P
Hde

≥ 3.0

⇒ Cd0
= 0.74

Now the design head can be computed using the discharge equation:

qd = 2
3

Cd0

√
2gH3∕2

de

26.67 = 2
3

0.74
√

2 × 9.81H3∕2
de

⇒ Hde
= 5.30 m

The approach velocity (channel upstream of the spillway crest) is

Va =
q

P + Hd
= 26.67

200 − 165
m∕s = 0.762 m∕s

and the velocity head is

V2
a

2g
= 0.7622

2 × 9.81
m ≈ 0.03 m

Therefore the spillway crest elevation is

200 m +
V2

a

2g
− Hde

= 194.73 m

Now the previous assumption of a deep approaching channel can be checked:

P = 194.73 − 165 = 29.73 m

⇒
P

Hde

= 29.73
5.30

= 5.6 > 3

⇒ Assumption → OK
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Figure 15.8 Upstream and downstream profiles for the proposed spillway.

The design head is

Hd = Hde
−

V2
a

2g
= 5.30 m − 0.03 m = 5.27 m

(b) The upstream spillway profile is given by Equation (i) that can replace the two circular
curves mentioned earlier. The result of this profile must be extended until it reaches the
same slope of the upstream face of the dam.

y
Hd

= 0.724
(

x
Hd

+ 0.27
)1.85

− 0.432
(

x
Hd

+ 0.27
)0.625

+ 0.126 (i)

i.e.
y

5.27
= 0.724

( x
5.27

+ 0.27
)1.85

− 0.432
( x

5.27
+ 0.27

)0.625
+ 0.126

And the downstream spillway profile is given by Scimeni’s equation (ii):

y
Hd

= 0.50
(

x
Hd

)1.85

(ii)

i.e.
y

5.27
= 0.50

( x
5.27

)1.85

The resulting upstream and downstream profiles are shown in Figure 15.8.
(c) The new head causing the flow is

H = 202.0 m − 194.73 m = 7.27 m

As one does not know the approach velocity, it can be assumed, for first iteration, say

V2
a

2g
= 0.05 m

⇒ He = 7.27 m + 0.05 m = 7.32 m
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The discharge coefficient and the new discharge per unit width can now be found (see
Figure 3.20):

He

Hde

= 7.32
5.30

= 1.38

⇒
Cd

Cd0

= 1.04

⇒ Cd = 0.768

⇒ q = 2
3

Cd

√
2gH3∕2

e

q = 2
3

0.768
√

2 × 9.81 × 7.321.5

q = 45 m2∕s

Using this new discharge per unit width, the approach velocity and the corresponding
velocity head are

Va =
q

P + H
= 45

29.73 + 7.27
= 1.216 m∕s

⇒
V2

a

2g
= 1.2162

2 × 9.81
m = 0.08 m

Second iteration: Using the new velocity head, it can be found that

He = 7.27 m + 0.08 m = 7.35 m

⇒
He

Hde

= 1.386

⇒ Cd = 0.7683

Therefore
q = 45.28 m2∕s

and finally
Q = qb = 45.28 m2∕s × 75 m = 3396 m3∕s

Example 15.2

A vertical-faced overfall spillway of large height (deep approaching channel) is to be
spanned by a bridge deck. The design discharge is 450 m3∕s under a maximum design
head of 3.45 m. The pier contraction coefficient is 0.012 and the abutment contraction
coefficient is 0.1.

The following table suggests the variation of Cd with H for this spillway:

H∕Hd Cd∕Cd0

1.000 1.000
0.908 0.988
0.682 0.952
0.455 0.920
0.227 0.855
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(a) Find the number of spans required if the maximum span length is 7 m.
(b) Establish the stage–discharge relationship for the proposed design.

Solution:

(a) To find the number of spans required, the spillway discharge equation, with the design
discharge coefficient, can be used:

Q = 2
3

Cd0
be

√
2gH3∕2

d

450 = 2
3

0.74be

√
2 × 9.81 × 3.453∕2

⇒ be = 32.136 m

As the maximum span between piers is 7 m, 4 piers (5 spans of 7 m) are needed. The
real effective width can now be found:

be = b − 2(nKp + Ka)H

beR
= 35 m − 2(4 × 0.012 + 0.1) × 3.45 m

beR
= 33.98 m > be

⇒ Safe

(b) Stage–discharge relationship for the proposed design.

Using the data given for the variation of the discharge coefficient and an Excel spreadsheet,
it is possible to construct the graph shown in Figure 15.9.

Ratio of coefficients

1.2
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0.98

0.96
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0.88
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10.80.60.40.20

H/Hd

C
/C

d

Figure 15.9 Variation of the discharge coefficient as a function of H∕Hd.
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Table 15.1 Stage–discharge data of the proposed spillway.

H H∕Hd Cd∕Cd0
Cd be Q

(m) (−) (−) (−) (m) (m3/s)

0.00 0.00000 0.7903050 0.58483 35.0000 0.0000
0.30 0.08696 0.8150876 0.60316 34.9112 10.2174
0.60 0.17391 0.8398702 0.62150 34.8224 29.7021
0.90 0.26087 0.8913478 0.65960 34.7336 57.7631
1.20 0.34783 0.9041304 0.66906 34.6448 89.9769
1.50 0.43478 0.9169130 0.67852 34.5560 127.1970
1 80 0.52174 0.9296957 0.68797 34.4672 169.1010
2.10 0.60870 0.9424783 0.69743 34.3784 215.4650
2.40 0.69565 0.9552609 0.70689 34.2896 266.1280
2.70 0.78261 0.9680435 0.71635 34.2008 320.9720
3.00 0.86957 0.9808261 0.72581 34.1120 379.9020
3.45 1.00000 1.0000000 0.74000 33.9788 475.8020
3.80 1.10145 1.0149130 0.75104 33.8752 556.5140
4.10 1.18841 1.0276957 0.76049 33.7864 629.9010
4.40 1.27536 1.0404783 0.76995 33.6976 707.1330
4.70 1.36232 1.0532609 0.77941 33.6088 788.1810
5.00 1.44928 1.0660435 0.78887 33.5200 873.0190
5.30 1.53623 1.0788261 0.79833 33.4312 961.6280
5.70 1.65217 1.0958696 0.81094 33.3128 1085.6100

Using Figure 15.9 and the discharge equation, it is possible to establish the stage–
discharge relationship for the proposed design (again an Excel spreadsheet was used to
construct the graph – see Table 15.1 and Figure 15.10).

The proposed design, finally, has the following results:

H = 3.45 m = Hd ⇒ Cd = 0.74 ⇒ Q = 475.8 m3∕s > Qd

H = 5.7 m = 1.65Hd ⇒ Cd = 0.81 ⇒ Qmax = 1085.6 m3∕s

(to avoid cavitation problems)

Example 15.3

A rectangular lateral spillway channel 77 m long is designed to carry a discharge which
increases at a rate of 6 m3∕(s m). The cross section has a width of 20 m. The longitudinal
slope of the channel is 0.12 and begins at an upstream elevation of 100 m. If Manning’s n
is equal to 0.013, determine the water surface profile.

Solution:

The first step is to determine if a critical cross section exists, and if so, the second step
is to determine its longitudinal position. This requires a trial-and-error method to solve
Equation 8.23. Table 15.2 suggests the final results with the following procedure:
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Figure 15.10 Stage–discharge relationship for the proposed spillway.

Column 1: An assumed longitudinal position
Column 2: The total discharge at the assumed longitudinal position (in this case it is

equal to Column 1 times 6 m3∕(s m))
Column 3: Critical depth of flow corresponding to the discharge of Column 2,

yc =
3

√
Q2

gb2

Column 4: Wetted area = 20yc
Column 5: Wetted perimeter = 20 + 2yc

Table 15.2 Location of the control section.

1 2 3 4 5 6 7

Trial Xc Q yc A P R Xc
(m) (m3∕s) (m) (m2) (m) (m) (m)

60.0000 360.000 3.2084 64.1685 26.417 2.4291 44.2515
50.0000 300.000 2.8412 56.8244 25.682 2.2126 44.2568
40.0000 240.000 2.4485 48.9697 24.897 1.9669 44.2719
44.0000 264.000 2.6091 52.1823 25.218 2.0692 44.2643
44.2600 265.560 2.6194 52.3876 25.239 2.0757 44.2639
44.2640 265.584 2.6195 52.3908 25.239 2.0758 44.2639
44.2639 265.583 2.6195 52.3907 25.239 2.0758 44.2639
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Figure 15.11 Water surface profile of spatially varied flow along the side channel.

Column 6: Hydraulic radius = Column 4 divided by Column 5
Column 7: The calculated distance to the critical section (Equation 8.23,

with 𝛽 ≈ 1.0)

xc =
8q2

gb2
[
S0 − (gP∕C2b)

]3
[8.23]

C being Chezy’s coefficient given by Equation 15.10.
With the critical flow section located 44.264 m downstream of the beginning of the

channel, the water surface profile both upstream (subcritical) and downstream (supercrit-
ical) of this point (control point) can be estimated by Equation 5.11. The calculations for
the water surface profile upstream of the critical flow section are contained in Table 15.3,
while those for the profile downstream are contained in Table 15.4 (see also Figure 15.11).
In these tables,

Column 1: Distance between the point of computation and the beginning of the chan-
nel

Column 2: Incremental distance between adjacent points of calculation
Column 3: Elevation of the channel bottom
Column 4: Assumed depth of flow
Column 5: Elevation of water surface (Column 3 + Column 4)
Column 6: Change in water surface elevation

Δh′ = −Δh + S0Δx [15.11]

Column 7: Wetted area
Column 8: Discharge = Column 1 times the discharge per unit length of the channel
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Column 9: Velocity = Column 8 divided by Column 7
Column 10: Addition of discharges
Column 11: Addition of velocities
Column 12: Change in discharge
Column 13: Change in velocity
Column 14: Drop in the water surface due to impact loss,

Δh′
m =

Q1

g
V1 + V2

Q1 + Q2

(
ΔV +

V2

Q1
ΔQ

)
[15.12a]

Column 15: Hydraulic radius associated with the assumed depth of flow
Column 16: Head loss due to friction computed from

hf = SfΔx =
(

nQ

AR2∕3

)2

Δx

Column 17: Drop in the water surface between two adjacent sections calculated by

Δh′ =
Q1

g
V1 + V2

Q1 + Q2

(
ΔV +

V2

Q1
ΔQ

)
+ SfΔx [15.12b]

At each station a trial-and-error process is used until the values of Columns 6 and 17 agree.

Example 15.4

In a small dam for water supply purposes it is necessary to design a baffle stilling basin.
The level of the reservoir is located 30 m above the original river bed. The chute has a
width of 15 m and a rectangular section, and moves a maximum discharge of 170 m3∕s.
Select the basin floor level and carry out its design. At this maximum flow rate the normal
depth in the river is 4.5 m and for this chute assume 𝜎 = 1.10 and 𝜁 = 0.7.

Solution:

For the first iteration, y+ (see Figure 15.12) may be assumed as 8 m. Thus the energy head
and the discharge per unit width are

E0 = 30 m + 8 m = 38 m

q =
Q

b
= 170

15
m2∕s = 11.33 m2∕s

Using Equation 15.14 we get

E0 = y1 +
11.332

2gy2
10.72

= y1 +
13.36

y2
1

(i)

Also Equation 8.17 results in

y2 =
y1

2

(√
1 + 104.74

y3
1

− 1

)
(ii)
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30 m

8 m (first
iteration)

E0 = 38 m

yn = 4.5 m

y2′ y1 

y+ 

Figure 15.12 Stilling basin design example.

and Equation 15.13 gives

y+ = y′2 − 4.5 (iii)

where y′2 = 𝜎y2.
Using Equations (i), (ii) and (iii), it is possible to follow the design procedure, which is

iterative. Table 15.5 shows the result for the final basin floor level; note that the method
converges very fast.

Thus the stilling basin floor level is 2.12 m below the river bed. Using USBR (1987), it
is possible to choose one of the standard stilling basin designs. For this case, the Froude
number and the velocity of the incoming supercritical flow are

Fr1 = 6.88 > 4.5

V1 = 17.39 m/s < 20 m∕s

Using these results, it is clear that USBR type III stilling basin must be used (see USBR,
1987). The details of the stilling basin are shown in Figure 15.13.

Table 15.5 Stilling basin floor level design.

Trial y+ E0 y1 [Eq. (i)] V1 Fr1 y2 [Eq. (ii)] y+ [Eq. (iii)]
(m) (m) (m) (m/s) (−) (m) (m)

8.000 38.000 0.5976 18.96475 7.832624 6.327557 2.460313
2.460 32.460 0.6480 17.48971 6.936824 6.041229 2.145351
2.145 32.145 0.6513 17.40110 6.884169 6.023559 2.125915
2.126 32.126 0.6515 17.39575 6.881000 6.022492 2.124741

References and recommended reading

British Standards Institution (1981) Methods of Measurement of Liquids in Open Channels –
Thin Plate Weirs, BS 3680, Part 4A, British Standards Institution, London.
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Incoming flow
Hydraulic jump

Impact block

1:1 slope

2:1 slope

End sill

2.12 m

Chute block

6

Chute block: width and spacing = y1
Impact block: width and spacing = 0.75h, h being its height given by

h=

0.92 m
= h

6.624 m
= y2′

4.5 m
= yn

15.36 m = 2.7y2

y1

y1(4 + Fr1)

4.82 m = 0.8y2

0.65 m

0.2 h

Figure 15.13 Scheme of the stilling basin final design including its floor level and general
dimensions (USBR, 1987; Novak et al., 2007).

British Standards Institution (1990) Methods of Measurement of Liquids in Open Channels –
Rectangular Broad Crested Weirs, BS 3680, Part 4E, British Standards Institution, London.

Chow, V. T. (1959) Open Channel Hydraulics, McGraw-Hill, New York.
Henderson, F. M. (1966) Open Channel Flow, MacMillan, New York.
Novak, P., Moffat, A. I. B., Nalluri, C. and Narayanan, R. (2007) Hydraulic Structures, 4th edn,

Spon, London.
United States Bureau of Reclamation – USBR (1987) Design of Small Dams, 3rd edn, US Depart-

ment of the Interior, Washington, DC.
Vischer, D. L. and Hager, W. H. (1998) Dam Hydraulics, John Wiley & Sons, Chichester, UK.

Problems

1. An overflow spillway is to be designed to pass a discharge of 1700 m3∕s of flood flow with
an upstream water surface elevation of 230 m. The crest length is 22 m and the elevation
of the average river bed is 183 m.
(a) Determine the design head.
(b) Determine the spillway profiles, upstream and downstream.
(c) Calculate the discharge through the spillway if the water surface elevation reaches the

point of maximum allowable head.
(d) What would be the minimum pressure downstream (underside of the nappe) of the

spillway crest under part (c) discharge condition? Use Cassidy’s relation given in the
text.

For the discharge coefficients:

Cd∕Cd0
H∕Hd

1.06 1.50
1.07 1.60
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2. If the spillway of Problem 1 is required to have piers to support a bridge deck over it and if
the maximum free span between them is 6.3 m, what would be the discharge corresponding
to the design head? What is the new allowable maximum discharge? The pier coefficient
is 0.011, and the abutment contraction coefficient is 0.12.

3. A trapezoidal lateral spillway channel 127 m long is designed to carry a discharge which
increases at a rate of 11 m3∕(s m). The cross section has a bottom width of 18 m and
lateral slopes of 2 (vertical) : 1 (horizontal). The longitudinal slope of the channel is 0.08
and starts at an upstream elevation of 520 m. If Manning’s n is equal to 0.014 (concrete),
determine if there is a critical section and the corresponding water surface profile.

4. A hydraulic jump stilling basin is to be designed to dissipate the energy of a maximum
discharge of 750 m3∕s. The water surface in the upstream reservoir is located at a level of
350 m. The chute channel has a slope of 45◦, rectangular in cross section with a width of
22.5 m. At this discharge the river downstream of the basin has a normal depth of 4.4 m,
and the bed is located at an elevation of 307 m. For this chute 𝜎 = 1.05 and 𝜁 = 0.75.
(a) Determine the sequent depth of the hydraulic jump and the bed level of the stilling

basin.
(b) Choose the stilling basin design according to the USBR (1987) standards. Make a

sketch of the basin.
(c) Determine the percentage of energy dissipation in the basin.
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Chapter 16
Environmental Hydraulics
and Engineering Hydrology

16.1 Introduction

This chapter extends the discussion from previous chapters to cover wider issues con-
cerning water in the environment and presents some further worked examples relevant to
environmental engineering topics, with a particular theme of flood alleviation.

The well-known natural hydrological cycle traces the path of rainfall as it results in
infiltration to the ground, surface runoff, evaporation and transpiration from trees and
plants, returning to clouds and resulting in further rainfall. Alongside this, there is also a
cycle of human use of water. Water in the environment is impounded by dams or pumped
from the ground, treated for human consumption, distributed through pipes and channels
for drinking and irrigation purposes, collected after use by sewerage systems and returned
to the environment usually after suitable treatment. Many of the theories and calculation
techniques from previous chapters find useful applications at different points in these cycles
and enable engineers to analyse and design works to manage water in the environment.

Management of water has increasingly been recognised as involving environmental
and sustainability issues, with particular concerns arising from urbanisation and climate
change which have a bearing on flood risk management. Recommended reading includes
more extended treatment of such topics, whilst the following sections serve to introduce
the worked examples.

16.2 Analysis of gauged river flow data

Much of hydrology is concerned with analysis of data. Where river discharges are required,
it is considered preferable where possible to work with actual discharge data, rather than
to deduce results from rainfall and catchment characteristics. The latter approach may be
needed where reliable discharge data are not available, and reference for this can be made
to more specialised texts in the recommended reading. The analysis that follows illustrates
the former approach where gauged records of discharge values are available.

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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For gauged catchments, a time series of measured annual maximum discharge values
may be analysed to provide values with particular probabilities for design purposes. The
measured data may come from a weir or flume, as described in Chapter 8, or from an
ultrasonic gauging station or other velocity–area method. The annual exceedance proba-
bility P is related to the annual probability of non-exceedance F and to the return period
T years by the following expression:

P = 1 − F = 1
T

[16.1]

Return period T has been widely used to express the average time interval between
events greater than or equal to the value specified. However, this term has been criticised
for implying a periodic regularity, which is not the case in reality (see Fleming, 2002).

Having ranked the annual maximum data for N years, in descending order from greatest
i = 1 to least i = N, each point may be assigned a value of P from a formula of the form

P = i − a
N + b

[16.2]

where a and b are constants depending on the probability distribution of the data. Alter-
natively, if ranked ascending from least with j = 1 to greatest with j = N, such a formula
produces the annual probability of non-exceedance:

F =
j − a

N + b
[16.3]

From the two approaches to ranking, either in descending order i or in ascending order
j, it is noted that

i + j = N + 1 [16.4]

A combination of Equations 16.1–16.4 then yields the result

b = 1 − 2a [16.5]

Widely used values include a = 0 (Weibull) and a = 0.44 (Gringorten), with the latter
generally preferred for extreme value distributions. The Gringorten plotting position for-
mula for exceedance probability P is thus

P = i − 0.44
N + 0.12

[16.6]

and the non-exceedance probability F may be calculated either from Equation 16.1 or
from ranked data:

F =
j − 0.44

N + 0.12
[16.7]

For a two-parameter analysis, a straight line may be fitted to the points plotted against
an appropriate reduced variate. One such is the Gumbel reduced variate:

yG = − ln(− ln(F)) [16.8]

This relates to the extreme value type 1 (EV1) distribution, for which the cumulative
distribution function F(x) is

F(x) = e−e−[(x−u)∕𝛼]
[16.9]
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Hence, when values of flow rate Q are plotted as the variable x against the Gumbel
reduced variate yG, we have the straight-line relationship

Q = u + 𝛼yG [16.10]

The parameters u and 𝛼 may be found approximately by a best-fit line through the
displayed data or estimated by a method of moments drawing on the properties of the EV1
distribution, using the mean (𝜇) and sample standard deviation (s) of the data as follows:

u = 𝜇 − 0.45s [16.11]

and

𝛼 = 0.78s [16.12]

This is shown in Example 16.1 using the River Thames data.
An alternative approach recommended in the Flood Estimation Handbook (Institute of

Hydrology, 1999) advocates the use of the generalised logistic distribution, and data are
displayed using the logistic reduced variate

yL = −ln
(

1 − F
F

)
[16.13]

In this approach, the flow rates Q are non-dimensionalised using the median annual
maximum flood QMED, and related to the following growth curve:

Q
QMED

= 1 + 𝛽

k

[
1 −

(
1 − F

F

)k
]

[16.14]

Values of k and 𝛽 are estimated by a method using L moments, illustrated in Example
16.2 using the River Thames data, and this method is considered more appropriate for
skewed data. In the special case of k = 0, the two-parameter logistic distribution is used
with

Q
QMED

= 1 + 𝛽yL [16.15]

Space does not permit a fuller discussion here of the details of this method, or other rec-
ommended procedures such as the pooling of data from hydrologically similar catchments
to extend the amount of data (see Institute of Hydrology, 1999, volume 3). The compari-
son of Examples 16.1 and 16.2 usefully illustrates how the results depend on the method
of analysis, as well as demonstrates the methods involved.

16.3 River Thames discharge data

For the worked examples that follow, 120 years of published Thames discharge data are
used for illustration, and some comments follow on the data which serve to indicate some
of the issues associated with such data series. These data for the water years 1884–2003
are presented by Herschy (2003, 2004), with the Thames data updated and corrected in the
later supplement dated 2004. These data are the highest daily mean flows (for the hydro-
logical day 0900–0900 hours) for each water year (October to September) and have been
naturalised (adjusted to account for major upstream abstractions). For large river basins
worldwide, the mean daily value is usually not significantly different from the instanta-
neous maximum value, and peak flows quoted are often daily mean flows. However in the
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UK, catchment response times are usually such that instantaneous or 15 minute peak flow
data are generally used (Institute of Hydrology, 1999), hence the reason for noting this
point. Herschy (2003) advises that for these Thames data, instantaneous peak flows can
by estimated by increasing the quoted daily mean values by 2–5%. One further comment
on the data used is that the earlier records are from Teddington Weir, whereas since 1977,
data have been recorded at an ultrasonic gauging station at Kingston; as noted in Marsh
et al. (2005), this is still considered as one continuous series, due to the negligible difference
in catchment areas. The inherent assumption of hydrological stationarity remains that the
data do not contain a significant trend over time from a cause such as climate change.
The examples that follow are analysed on that basis, and the present pragmatic advice in
this context concerning effects of climate change is to investigate the sensitivity of future
designs to the addition of a percentage to predicted peak river flows to allow for such
future changes.

16.4 Flood alleviation, sustainability and
environmental channels

The main components of constructed works to alleviate the effects of flooding are the pro-
vision of storage, the increase in channel conveyance capacity and the provision of protec-
tion by means of banks or walls. Other measures include better warning and emergency
planning.

One of the main components of sustainable urban drainage systems is to provide stor-
age near to the source, by use of swales, permeable pavements and tank sewers. Advice
for developers on such issues is now included in such publications as Water UK (2012).
Storage can also be beneficial and cost-effective on larger rural catchments, as provided,
for example, by the use of check dams on tributaries. The flood routing in Example 11.8
has demonstrated the beneficial effect of storage on reducing the magnitude of the peak
of a flood hydrograph, as illustrated in Figure 11.6.

Sustainability in a broad sense involves balancing the effects of economic, social and
environmental constraints, and places the traditional engineering concerns of quality, cost
and time within a complex framework of other issues (see Fenner et al., 2006). The trend
in river engineering works has been to maintain to a greater extent the natural features
of channels, with sediment transport issues as discussed in Chapter 14 being of particular
significance.

Section 8.4 and Example 8.6 demonstrated the properties of a two-stage channel, and
this combination of river and flood plain provides the combined conveyance for a valley.
Often the main channel meanders within the flood plain, and there has been a growing
concern to maintain such features. The degree of meandering is measured by the sinuosity
s, which is defined in relation to the length L or slope S of the flood plain (subscript ‘F’)
and the main channel (subscript ‘C’) as follows:

s =
LC

LF
=

SF

SC
[16.16]

In a simple one-dimensional approach, the discharge equation may be adjusted for a
meandering channel to allow for the different hydraulic gradients on the channel and
flood plain components of the flow, for example using the Manning formula,

Q =
AF

nF
R2∕3

F S1∕2
F +

AC

nC
R2∕3

C S1∕2
C [16.17]
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but the previous vertical division between flood plain and main channel shown in
Figure 8.3 becomes less appropriate as the degree of meandering increases.

The complex nature of interaction between the components is the subject of ongoing
research beyond the scope of this text, concerning not only the conveyance but also the
sediment transport (see e.g. Loveless et al., 2000).

16.5 Project appraisal

A final section is included on the appraisal of schemes such as those for flood allevia-
tion, using cost–benefit analysis. The discounted cash flow approach is used to express the
present values of costs and benefits that arise at different points in time. Benefits need to
be expressed in cost terms, and represent desirable consequences of the project, and tech-
niques exist to help to quantify and include non-tangible and environmental benefits, as
well as those that simply relate to the prevention of damage in monetary terms. All costs are
expressed at present price levels, and a discount rate r is selected, which reflects the extent
to which positive benefits are preferred sooner rather than later, and adverse or undesirable
costs later rather than sooner. For a single sum arising at the end of year n in the future,
the appropriate factor is the inverse of the well-known formula for compound interest.

Single sum factor = (1 + r)−n [16.18]

Hence the present value of sum X arising at the end of the year n

= X(1 + r)−n [16.19]

For a regular stream of annual sums at the end of each year, the cumulative present value
factor is given by

Cumulative factor =
n∑

i=1

(1 + r)−i = 1 − (1 + r)−n

r
[16.20]

Hence the present value of annual sums Y for n years = Y
(

1 − (1 + r)−n

r

)
[16.21]

The formula for the cumulative present value factor is derived using the mathematical
technique for summing a geometric progression, and may be seen to tend to the limit of 1/r
as n tends to infinity. Sometimes that simplification is taken, but more usually a value of n is
set for the design life of the scheme, which it should be noted may well differ from the level
of protection provided and from the asset lives of the various components of the scheme.

Costs are often a mix of capital and annual running or maintenance costs, to which
Equations 16.19 and 16.21 would apply, respectively. Benefits arising from the damage
prevented are assessed over the design life of the scheme as the stream of annual expected
benefits, using the cumulative present value factor approach as in Equation 16.21. The
annual expected benefit is calculated from combining the damage and probability data, as
illustrated in Example 16.3. It should be noted that as well as the damage that has been
prevented, there may also be other benefits, such as the opening up of areas for recreation
such as riverside footpaths, which could be valued using willingness to pay or contingent
valuation methods (see e.g. Penning-Rowsell and Green, 2000, for a discussion of these
and other issues, such as above-design-standard benefits).

Having established the present value of benefits B and the present value of costs C,
these may be compared as the benefit-to-cost ratio B/C, and values exceeding 1 show that
the scheme may be justified in this way. The calculation approach above is illustrated in
Example 16.3.
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Worked examples

Example 16.1

Display the Thames data from Table 16.1 using the Gringorten plotting position formula
and the Gumbel reduced variate. Estimate the magnitude of the flood discharge which has
an annual exceedance probability of 2% (average recurrence interval or return period of
50 years).

Solution:

From ranked data on a computer spreadsheet, produce Figure 16.1.
For example, if ranked in ascending order, the smallest annual maximum flood discharge

of 94 m3/s has rank j = 1 and N = 120.

Gringorten F = 1 − 0.44
120 + 0.12

= 0.00466

Gumbel reduced variate,yG = −ln(−ln(0.00466)) ≈ −1.68

and the largest flood of 806 m3/s has

Gringorten F = 120 − 0.04
120 + 0.12

= 0.995338

(do not round this off too soon)

Gumbel reduced variate, yG = −ln(−ln(0.995338)) ≈ 5.37

The target flood, often known as Q50 in view of the 50-year return period, has P = 0.02
and F = 0.98, so yG = −ln(−ln(0.98)) = 3.90.

From a best-fit straight line through the displayed data on Figure 16.1, it may be seen that
the flood discharge corresponding to this value of the Gumbel reduced variate is approxi-
mately 630 m3/s.

By calculation from the sample data set,

mean, 𝜇 = 324.025 m3∕s

standard deviation, s = 117.6 m3∕s

u = 324.0 − 0.45 × 117.6 = 271.1

𝛼 = 0.78 × 117.6 = 91.7

Q50 = 271.1 + 91.7 × 3.90 = 629 m3∕s

Example 16.2

Analyse the Thames data from Table 16.1 using the generalised logistic approach recom-
mended in the Flood Estimation Handbook. Hence estimate the magnitude of the flood
discharge with an annual exceedance probability of 2%, for comparison with the solution
from Example 16.1.
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Table 16.1 River Thames maximum mean daily flows.

Water Discharge Rank i Rank j Annual exceedance
year (m3/s) (descending) (ascending) probability (Gringorten)

1884 231 93 28 0.771
1885 229 96 25 0.796
1886 244 88 33 0.729
1887 284 74 47 0.612
1888 207 105 16 0.870
1889 237 90 31 0.746
1890 204 106 15 0.879
1891 171 113 8 0.937
1892 339 46 75 0.379
1893 300 66 55 0.546
1894 173 112 9 0.929
1895 806 1 120 0.005
1896 202 108 13 0.895
1897 351 42 79 0.346
1898 171 114 7 0.945
1899 262 79 42 0.654
1900 533 7 114 0.055
1901 200 109 12 0.904
1902 162 116 5 0.962
1903 386 25 96 0.204
1904 516 10 111 0.080
1905 229 97 24 0.804
1906 249 86 35 0.712
1907 220 102 19 0.845
1908 375 31 90 0.254
1909 204 107 14 0.887
1910 231 94 27 0.779
1911 428 18 103 0.146
1912 367 39 82 0.321
1913 255 84 37 0.696
1914 256 82 39 0.679
1915 585 4 117 0.030
1916 373 34 87 0.279
1917 327 52 69 0.429
1918 350 43 78 0.354
1919 334 49 72 0.404
1920 251 85 36 0.704
1921 240 89 32 0.737
1922 197 110 11 0.912
1923 231 95 26 0.787
1924 297 69 52 0.571
1925 522 9 112 0.071
1926 370 35 86 0.288
1927 374 32 89 0.263
1928 526 8 113 0.063

(Continued)
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Table 16.1 (Continued )

Water Discharge Rank i Rank j Annual exceedance
year (m3/s) (descending) (ascending) probability (Gringorten)

1929 235 92 29 0.762
1930 552 6 115 0.046
1931 228 98 23 0.812
1932 274 75 46 0.621
1933 478 12 109 0.096
1934 94 120 1 0.995
1935 227 99 22 0.821
1936 478 13 108 0.105
1937 237 91 30 0.754
1938 247 87 34 0.721
1939 369 36 85 0.296
1940 409 20 101 0.163
1941 384 28 93 0.229
1942 298 68 53 0.562
1943 457 15 106 0.121
1944 115 119 2 0.987
1945 261 81 40 0.671
1946 256 83 38 0.687
1947 714 2 119 0.013
1948 227 100 21 0.829
1949 299 67 54 0.554
1950 324 55 66 0.454
1951 385 26 95 0.213
1952 377 30 91 0.246
1953 263 78 43 0.646
1954 214 104 17 0.862
1955 452 17 104 0.138
1956 315 59 62 0.488
1957 314 60 61 0.496
1958 316 58 63 0.479
1959 374 33 88 0.271
1960 308 63 58 0.521
1961 456 16 105 0.130
1962 344 45 76 0.371
1963 285 73 48 0.604
1964 369 37 84 0.304
1965 131 118 3 0.979
1966 323 57 64 0.471
1967 312 62 59 0.512
1968 600 3 118 0.021
1969 369 38 83 0.313
1970 224 101 20 0.837
1971 362 40 81 0.329
1972 330 51 70 0.421
1973 266 77 44 0.637
1974 353 41 80 0.338

(Continued)
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Table 16.1 (Continued )

Water Discharge Rank i Rank j Annual exceedance
year (m3/s) (descending) (ascending) probability (Gringorten)

1975 559 5 116 0.038
1976 157 117 4 0.970
1977 334 50 71 0.413
1978 326 53 68 0.438
1979 324 56 65 0.463
1980 393 24 97 0.196
1981 289 71 50 0.587
1982 314 61 60 0.504
1983 345 44 77 0.363
1984 286 72 49 0.596
1985 270 76 45 0.629
1986 408 21 100 0.171
1987 304 64 57 0.529
1988 402 22 99 0.179
1989 262 80 41 0.662
1990 427 19 102 0.155
1991 220 103 18 0.854
1992 165 115 6 0.954
1993 378 29 92 0.238
1994 400 23 98 0.188
1995 385 27 94 0.221
1996 301 65 56 0.537
1997 192 111 10 0.920
1998 295 70 51 0.579
1999 325 54 67 0.446
2000 335 48 73 0.396
2001 463 14 107 0.113
2002 338 47 74 0.388
2003 482 11 110 0.088

Solution:

Enter data onto a computer spreadsheet, rank in ascending order and calculate the prob-
ability of weighted moments b (all with units of m3/s) as follows:

b0 = 1
N

N∑
j=1

Qj = 324.025

b1 = 1
N

N∑
j=2

j − 1
N − 1

Qj = 193.750

b2 = 1
N

N∑
j=3

(j − 1)(j − 2)
(N − 1)(N − 2)

Qj = 141.416
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Figure 16.1 River Thames Gumbel extreme value type 1 distribution, 1884–2003; points dis-
played using Gringorten formula and trend line fitted by method of moments.

Now calculate the L moments as follows (again all with units of m3/s):

L1 = b0 = 324.025 (which is the mean of the data)

L2 = 2b1 − b0 = 63.475

L3 = 6b2 − 6b1 + b0 = 10.02

Now calculate the dimensionless L moment ratios t as follows:

t2 =
L2

L1
= 63.475

324.025
= 0.196

t3 =
L3

L2
= 10.02

63.475
= 0.158

These ratio values are used to calculate the growth curve parameters as follows:

k = −t3 = −0.158

𝛽 =
t2k sin 𝜋k

k𝜋(k + t2) − t2 sin 𝜋k
= 0.198 (noting that angles are in radians)

The growth curve is then found from Equation 16.14.
For Q50, we have the annual exceedance probability P = 0.02 and F = 0.98, and we note

that the median value from the sample data set is 314 m3/s, so

Q50 = 314

{
1 + 0.198

−0.158

[
1 −

(
0.02
0.98

)−0.158
]}

= 648 m3∕s

which is approximately 3% higher than the result from Example 16.1. Further comparison
between the two approaches is discussed in Marriott and Hames (2007).

C
h

ap
ter

1
6



Environmental Hydraulics and Engineering Hydrology 403

0

100

200

300

400

500

600

700

800

900

1000

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Logistic reduced variate

D
is

ch
ar

ge
 (

cu
m

ec
s)

Figure 16.2 River Thames generalised logistic distribution, 1884–2003; points displayed using
Gringorten formula and trend line fitted using L moments.

The growth curve is displayed in Figure 16.2, showing that this data set is unbounded
above. Note that had k been zero, a straight line would have resulted using 𝛽 = t2 in Equa-
tion 16.15. Note also that for this approach it is recommended that if the record length
N is less than twice the target return period T, further data are sought from other similar
catchments to form a pooling group, with the aim of achieving 5T station years of data
(see Institute of Hydrology, 1999).

Example 16.3

A proposed project, costing £4.5 million to construct, will protect against flooding up to a
100-year return period, but may be assumed not to affect higher floods. In addition to the
initial capital cost of the project, there are annual operation costs of £0.05 million. The
estimated costs of damage caused by floods of various magnitudes are given in the table
below, with all costs being at present price levels.

Return period Damage
(years) £ million)

5 0
10 2
20 4
50 6

100 7
200 8

Calculate the benefit-to-cost ratio of the proposed project, assessed over a 50-year
period, using an annual discount rate of 6%. C
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Figure 16.3 Loss versus probability relationship.

Solution:

Either plot the damage data against annual exceedance probability and find the relevant
area under this curve as shown in Figure 16.3, or do this calculation in a tabular way as
follows:

Damage Average damage
T P = 1∕T (£ million) 𝚫P ×𝚫P

5 0.20 0
0.10 0.100

10 0.10 2
0.05 0.150

20 0.05 4
0.03 0.150

50 0.02 6
0.01 0.065

100 0.01 7

The annual expected benefit from prevention of damage up to T = 100 years is given
by the sum of the final column above, 0.100 + 0.150 + 0.150 + 0.065 = £0.465 million.

With n given as 50 years, and the discount rate r = 6% = 0.06, the relevant cumulative
present value factor

= 1 − (1.06)−50

0.06
= 15.762

So the present value of benefits = 0.045 × 15.762 = £7.33 million

The present value of costs = 4.50 + 0.05 × 15.762 = £5.29 million

Hence the benefit-to-cost ratio = 7.33∕5.29 = 1.4
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Taking a vertical cut-off line at P = 0.01 in Figure 16.3 is consistent with the instruction
to assume that the proposed works will not affect rarer floods, but it is likely not to be
completely realistic. If the project will have some beneficial impact on higher return period
floods, the value presented above may be regarded as a lower bound to the true benefit-to-
cost ratio. With further data, the vertical line could be replaced by a more realistic post-
project loss against probability curve, to evaluate what are referred to as above-design-
standard benefits (Penning-Rowsell and Green, 2000).
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Problems

1. Use the following annual maximum river discharge data to estimate the value of discharge
that has a return period of 10 years (annual exceedance probability of 0.1). Make use of
the Gumbel distribution. Comment on the likely accuracy of the result.

48, 42, 35, 33, 30, 28, 25, 22, 20, 18, 15, 12, 10 m3∕s

2. The onset of flooding at a location takes place at a river flow rate of 40 m3/s. Twenty-
one years of data for annual maximum river flows are available as given below (in metres
cubed per second) in ascending order. Estimate the annual probability of flooding, using
the generalised logistic distribution. Compare the result obtained from using the Gumbel
distribution.

9, 10, 12, 13, 13, 15, 17, 18, 20, 22, 24, 25, 28, 30, 33, 33, 35, 42, 48, 51, 56 m3∕s

3. A flood hydrograph as tabulated below is to be routed through a reservoir as part of a
proposed flood alleviation scheme. Determine the magnitude and time of the peak outflow
from the reservoir, and comment on the amount of attenuation. The reservoir may be
assumed to have an effectively constant surface area of 0.5 km2. Outflow Q (m3/s) from
the reservoir is determined from the water level h (m) above the crest of the outflow control
structure, by the discharge equation Q = 30 h3∕2. Assume that the reservoir is full before
the start of the storm and that a steady flow of 1.0 m3/s has been passing through the
reservoir for some hours.

Time (h) 0 1 2 3 4 5 6 7 8

Flow (m3∕s) 1 15 30 17 10 6 4 2 1

4. For the compound channel described in Chapter 8, Problem 9, take the cross section and
roughness data as given, but assume that the main channel has a sinuosity of 1.1 within
the flood plain of gradient 0.00125. Calculate (a) the bank-full discharge, and (b) the total
flood discharge when the depth of flow over the flood plain is 2.5 m.

5. A river has bank-full flow capacity of a 5-year return period, and the estimated amounts of
damage caused by various floods are as shown in the table below. The second table below
shows three proposed flood alleviation schemes, with their levels of protection and con-
struction costs. Calculate which scheme shows the most favourable benefit-to-cost ratio,
considered over a project design life of 50 years using an annual discount rate of 6%.
Ignore any above-design-standard benefits, and other environmental or intangible benefits,
but discuss the likely effect of these and other assumptions inherent in the calculations.

Flood return period (years) Damage caused by flood (£ million)

5 0
10 16
20 30
50 41

100 49
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Level of protection, expressed Construction cost
Scheme as a return period (years) (£ million)

A 20 16
B 50 22
C 100 28
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Chapter 17
Introduction to Coastal
Engineering

17.1 Introduction

This chapter provides an introduction to theory that underpins coastal engineering, an
extremely wide-ranging specialism with major challenges to design coastal structures and
manage shorelines. Starting with waves and wave theories, the text leads through wave
processes and properties, tides, surges and mean sea level including a section on tsunami
waves. Worked examples are included, with references for further study, as well as addi-
tional problems to tackle.

17.2 Waves and wave theories

Coastal waves are mainly generated by the action of wind blowing across the sea surface.
This causes the surface of the sea to exert a frictional drag on the lower layer of the wind,
with the top layer (with the least drag) moving faster than the lower layer. This sets up a
circular motion of wind energy that acts on the sea and thus creates waves. These waves
travel vast differences in various directions, reducing gradually in height in the absence
of further winds, generally only stopping when they meet an obstacle such as land or a
coastal structure. Figure 17.1 illustrates two wave types in general: (a) regular long-crested
waves following a sinusoidal pattern, and (b) random short-crested waves consisting of a
number of sinusoidal waves travelling in different directions superimposed on top of each
other. In general long-crested waves (see also Section 17.2.1) are observed in the nearshore
region, whereas random short-crested waves (also see Section 17.2.4) are more commonly
observed offshore.

In general, there are two types of wave theories: linear wave theory, sometimes known
as Airy’s waves, is the earliest, simplest and most widely used by coastal engineers; and,
secondly, non-linear wave theory (e.g. Cnoidal and Stokes waves) is more complex and
gives accurate predictions in shallow waters.

Nalluri & Featherstone’s Civil Engineering Hydraulics: Essential Theory with Worked Examples,
Sixth Edition. Martin Marriott.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Marriott
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Figure 17.1 Wave patterns of (a) long-crested waves (regular waves), and (b) short-crested
waves (irregular waves).

17.2.1 Linear wave theory

Linear wave theory is derived with the help of assumptions given in this section, and in
addition, it is assumed that the waves to be described have heights (H) which are small
compared with the wavelength (L) and the water depth (d) (H∕L < 0.04 and HL2∕d3 <

40). Under these conditions, the wave profile is essentially sinusoidal (regular wave).
Linear wave theory is exact for zero wave height. However, its range of applicability is

surprisingly large, and for most purposes it will provide a very good estimate of values.
Despite its relative simplicity, the derivation of linear wave theory is fairly complex, and
depends on a solution to the Laplace equation that is satisfied throughout the body of the
flow. Further details on the derivation of linear wave theory can be obtained for example
from Dean and Dalrymple (1991), and Sorensen (2010).

The assumptions made for the derivation are:

Water is homogeneous (of the same kind, uniform) and incompressible, and so it has a
uniform density.
Water lacks viscosity and surface tension.
Waves are long crested (their analysis may be considered as a two-dimensional problem).
Waves are of constant form (they do not change shape as they travel across the water
surface).
The seabed is horizontal and impermeable.
Waves are propagating on quiescent (dormant) water (there is no motion of the water
apart from that induced by the waves).

Under this set of assumptions, the wave height (H), the wave period (T) and the water
depth (d) uniquely define a train of regular waves. All other characteristics of the wave
train, including the wavelength (L), are functions of these three independent parameters.

17.2.2 Non-linear wave theory

In circumstances where wave heights are not small compared with wavelengths and water
depths, then the wave profile is no longer approximately sinusoidal – wave crests become
more peaked, and troughs are longer and flatter. There are corresponding changes in other
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wave properties. For example, the wavelength and wave speed (c) are no longer indepen-
dent of the wave height. In these cases, it may be necessary to employ a non-linear wave
theory.

These wave theories are very much more complex than linear (or Airy) wave theory. The
main difference between them and linear wave theory is that they produce more accurate
answers in the shallow water region. The most commonly referred to non-linear wave
theories are Stokes’ (first, third and fifth order) and Cnoidal wave theories.

17.2.3 Solutions from linear wave theory

The surface profile 𝜂 of a linear wave relative to sea water level (SWL) is given by:

𝜂 = H
2
cos2𝜋

( x
L

− t
T

)
= a cos(kx − 𝜔t) [17.1]

A definition sketch for this sinusoidal wave pattern is given in Figure 17.2.
The wavelength L is related to the wave period by the equation:

L =
gT2

2𝜋
tanh

(
2𝜋d
L

)
=

gT2

2𝜋
tanh kd [17.2]

and the wave celerity c is:

c = L
T

=
gT
2𝜋

tanh kd =
√

gL
2𝜋

tanh kd [17.3]

These are the two most widely used equations in linear wave theory. These equations
depend not only on the wave period but also on the water depth. However, when d∕L >

0.5, tanh kd ≈ 1.0, the waves can be considered to be in ‘deep water’, and the expressions
for wavelength and celerity are given as Equations 17.4 and 17.5. In these equations,
subscript 0 refers to deep water.

L0 =
gT2

2𝜋
[17.4]

c0 =
gT
2𝜋

=
√

gL
2𝜋

[17.5]

L

SWL

d

Z

X
η

H

Figure 17.2 Definition sketch of sinusoidal wave (regular wave).
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When d∕L < 0.04, tanh kd ≈ kd, the waves can be considered to be in ‘shallow water’, and
the expressions for wavelength and celerity are given as Equations 17.6 and 17.7. In these
equations, subscript s refers to shallow water.

Ls = T
√

gd [17.6]

cs =
√

gd [17.7]

The terms ‘deep’ and ‘shallow’ water are relative terms that depend on the lengths of the
waves being considered. For example, a 5 m water depth is considered deep water for wave
periods shorter than about 2.5 s, but shallow for wave periods in excess of about 18 s.

Equations 17.4 and 17.6 provide simple solutions for the wavelength under these con-
ditions. However, in general L must be evaluated from an expression for which there is
no explicit solution. Alternatively, an approximation can be made such as that given by
Fenton and McKee (1990):

L = L0

{
tanh

[(
2𝜋
√

d∕g∕T
)3∕2

]}2∕3

[17.8]

Figures 17.3 and 17.4 show how the wavelength and wave celerity vary as a function of
wave period and water depth.

The corresponding equations for the horizontal and vertical velocities, accelerations and
displacements of a water particle at a mean depth −z below the still water level are given
below. Note that as stated, in these equations, z is measured positively upwards. Therefore,
at the water surface z = 0, and at the seabed z = −d. xm and zm denote the mean positions
of water particles.

horizontal water particle velocity (u) = a𝜔
cosh k(d + z)

sinhkd
cos(kx − 𝜔t) [17.9]

vertical water particle velocity (w) = a𝜔
sinhk(d + z)

sinh kd
sin(kx − 𝜔t) [17.10]
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Figure 17.3 Wavelength as a function of wave period and water depth.
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Figure 17.4 Wave celerity as a function of wave period and water depth.

horizontal water particle acceleration
(

du
dt

)
= a𝜔2 cosh k(d + z)

sinh kd
sin(kx − 𝜔t) [17.11]

vertical water particle acceleration
(

dw
dt

)
= −a𝜔2 sinhk(d + z)

sinh kd
cos(kx − 𝜔t) [17.12]

horizontal water particle displacement (𝜉x) = −a
cosh k(d + zm)

sinhkd
sin(kxm − 𝜔t) [17.13]

vertical water particle displacement (𝜉y) = a
sinhk(d + zm)

sinh kd
cos(kxm − 𝜔t) [17.14]

These equations are elliptical. Figure 17.5 illustrates graphically the ellipse formed by the
water particle displacement through a sinusoidal wave pattern. You will notice that for

Direction of wave propagation

Deep water depths Intermediate water depths Shallow water depths

Figure 17.5 Water particle displacement through a sinusoidal wave pattern.
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deep water waves, the ellipses are almost circular at the water surface. The further you get
below the surface of the water level, the ratio of the vertical amplitude of the ellipse to the
horizontal amplitude of the ellipse reduces. At the seabed, there is no vertical motion of
the particles. The horizontal motion at the seabed is proportionally larger at smaller d∕L
ratios. This has important effects in respect to sediment transport.

As can be seen in Figure 17.5, the effects of the seabed on the deep water waves, and
conversely those of the deep water waves on the seabed, are negligible. The deep water
wavelength and celerity equations can therefore be considered to be solely a function of
wave period (see Equations 17.4 and 17.5).

The seabed is affected by shallow water waves, and conversely shallow water waves are
affected by the seabed. The shallow water wavelength can therefore be considered to be
a function of wave period and depth, whereas the wave celerity can be considered to be
solely a function of wave period (see Equations 17.6 and 17.7).

The energy of a wave consists of potential, kinetic and surface energies of all the water
particles per unit wavelength, and it is given as energy per unit area of the sea (ignoring
surface tension energy, which is negligible):

wave energy (E) =
𝜌gH2

8
[17.15]

This is a considerable amount of energy. For example, wave heights around the coasts of
Britain generally exceed 5–6 m on average at least once a year. This will produce wave
energy in excess of 30–45 kJ/m2. Due to the shortage of hydrocarbons and the demand
for renewable energy such as wave energy, this is an important area of interest at present.

The wave power P, or rate of transmission of wave energy, is given by:

P = Ecg [17.16]

where cg is the group wave celerity and is given by the product of group velocity parameter
(n) and wave celerity (c):

cg = nc = 1
2

(
1 + 2kd

sinh2kd

)
c [17.17]

In deep water (d∕L > 0.5), the group velocity cg → c∕2. In shallow water (d∕L < 0.04),
the group velocity cg → c. For intermediate depths, the group velocity is between these
two values. Group velocity is the velocity with which a train of waves moves through an
area. It is less than that of individual waves.

17.2.4 Irregular waves

In reality, waves are random, with many different waves of different directions, amplitudes
and phases travelling in many different directions. These kinds of waves are known as
‘short-crested waves’.

Offshore waves are generally short-crested. As the waves travel towards the shore, waves
from certain directions are intercepted by landmasses, and the waves tend to become more
long-crested. Also, the effects of refraction (see Section 17.3) will tend to align the waves
closer with the seabed contours.

In the analysis of wave data, two kinds of analysis can be considered, a short-term anal-
ysis or a long-term analysis. A short-term analysis is an analysis of waves over a short
duration (i.e. hours or minutes), such as a storm. A long-term analysis is the analysis of
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Figure 17.6 Time domain analysis of a wave record.

waves over a long duration such as several years. In coastal engineering, a long-term anal-
ysis is the analysis that is usually of most importance, and it is the analysis that you will
encounter the most.

Based on random short-crested waves, two types of analysis may be performed: a time
domain analysis or a frequency domain analysis. Only the time domain analysis is outlined
in this chapter. Details on the frequency domain analysis can be found in Kamphuis (2000).

17.2.4.1 Time domain analysis
The following wave parameters can be defined with respect to time domain analysis of
irregular wave records as illustrated in Figure 17.6.

The zero-crossing period (TZ) is the average time between successive upward crossings
of the mean sea level (m.s.l.), and it is given by:

TZ = 1
N

N∑
i=1

TZi
[17.18]

The crest period (TC) is the average time between successive crests (not all of which are
above the m.s.l.), and it is given in Equation 17.19. Note that TC ≤ TZ.

TC = 1
N

N∑
i=1

TCi
[17.19]

The mean wave height (H) is the vertical distance between the highest crest and the lowest
trough bounded by successive up-crossings of the m.s.l.

H = 1
N

N∑
i=1

Hi [17.20]
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Further wave properties are as follows:

The spectral wave period (TP) is determined in the frequency domain, and it is included
in this chapter for completeness. This is the mode of the ‘spectral’ period (i.e. the most
commonly occurring wave period).
The root-mean square wave height (Hrms) is the square root of the average of the square
of the individual wave heights, and it is given by:

Hrms =

√√√√ 1
N

N∑
i=1

H2
i [17.21]

The significant wave height (Hs) is defined, and is sometimes referred to, as the average
of the highest one-third of the wave heights.
Other wave properties are given by H1∕n, which is the average of the highest 1∕n’th of
the wave heights. Aside from when n = 3, the most commonly used wave height is when
n = 10.

If the surface elevation of waves, 𝜂(x, t), is a Gaussian process, then it can be shown that
wave heights closely follow a Rayleigh distribution, given by Equation 17.22. Figure 17.7
shows a Rayleigh distribution for a variance of 1.

p(H) = H
4𝜎2

𝜂

exp

[
− H2

8𝜎2
𝜂

]
[17.22]

The cumulative distribution function (cdf ) is given by

P(H ≤ H∗) = 1 − exp

[
−

H2
∗

8𝜎2
𝜂

]
[17.23]

and therefore:

P
(
H > H∗

)
= exp

[
−

H2
∗

8𝜎2
𝜂

]
[17.24]
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Figure 17.7 Rayleigh distribution.
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From Equation 17.22, the following properties for random waves can be determined:

H =

∞

∫
0

H p(H)dH = 2.51𝜎𝜂 [17.25]

Hrms =

√√√√√
∞

∫
0

H2p (H)dH = 2
√

2𝜎𝜂 [17.26]

From Equation 17.26, therefore, Equation 17.24 may be rewritten as:

P
(
H > H∗

)
= exp

[
−
(

H∗

Hrms

)2
]

[17.27]

The average height of the highest 1∕n’th of the waves may be found by considering the
height H∗ above which the highest 1∕n’th of the waves lie, given by:

P
(
H > H∗

)
=

∞

∫
H∗

p (H)dH = 1
n

[17.28]

Therefore, H1∕n may be written:

H1∕n =

∞∫
H∗

Hp (H)dH

∞∫
H∗

p (H)dH

= n

∞

∫
H∗

Hp (H)dH [17.29]

Equating Equations 17.27 and 17.28 gives

H∗

Hrms
=
√
lnn [17.30]

Using these relationships, it can be shown that:

H1∕3 = 1.416Hrms = 1.60H = 4.0𝜎𝜂 [17.31]

H1∕10 = 1.800Hrms = 2.03H [17.32]

H1∕100 = 2.359Hrms = 2.66H [17.33]

If m waves out of a total of N waves are larger than H∗, then:

P
(
H > H∗

)
= exp

[
−
(

H∗

Hrms

)2
]
= m

N
[17.34]

Therefore,

H∗

Hrms
=
√

− ln
(m

N

)
[17.35]

This is the same as Equation 17.30, since m∕N = 1∕n.
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Putting n = 1 into Equation 17.35 gives Hmax, the wave height expected to be exceeded
only once in a sample of N waves. Therefore, Hmax can be written as:

Hmax = Hrms

√
lnN = Hs

√( lnN
2

)
[17.36]

Therefore, for a 20-minute wave trace of waves with a mean zero-crossing period of 7 s,
the maximum wave height that could be expected in that period would be about 1.6 Hs.

17.2.4.2 Wave prediction from wind records
For a given wind speed, the waves produced will depend on the duration of the wind
D and the fetch F. The bigger the fetch or the longer the duration, the bigger the waves
produced. However, as the wind contains only a limited amount of energy, there is a limit
to the height of waves produced for a given duration and/or fetch. This is the point where
the rate of transfer of energy to the waves equals the energy dissipation by wave breaking
and friction.

Wind is recorded for meteorological purposes at many sites. This and the fact that wave
measurement can be very difficult for several reasons, including the frequent inaccessibility
of the recording apparatus and maintenance problems, mean that wind speeds are often
more frequently recorded than waves. As storm waves are dependent solely on wind, dura-
tion and fetch length, the most common technique used to determine the wave climate is
using wind records. This technique is commonly referred to as ‘hindcasting’.

17.2.4.3 Pierson Moskowitz wave spectrum
The most common technique used to determine wind speeds offshore is by means of the
Pierson Moskowitz spectrum (PMS). For a fully arisen sea, this is given as:

S
(
f , 𝜃
)
=

𝛼g2

(2𝜋)4 f 5
exp

{
−5

4

(
fm

f

)4
}

[17.37]

The PMS was derived from measurements of ocean waves taken by weather ships in the
North Atlantic. It does not describe conditions in fetch-limited seas. It is not going to be
considered any further in this chapter.

17.2.4.4 JONSWAP wave spectrum
The JONSWAP (Joint North Sea Wave Project) spectrum was derived for fetch-limited
seas. This spectrum was determined based on observations of wave heights in the North
Sea. It is more complicated than the equation for the PMS, because it is a function of
both wind and fetch. This is the spectrum that is used for locally generated seas across
(for example) estuaries. This is also the spectrum most likely to be encountered in coastal
engineering.

The JONSWAP spectrum (Hasselmann et al., 1973) is given by the formula:

S
(
f , 𝜃
)
=

𝛼g2

(2𝜋)4 f 5
exp

{
−5

4

(
fm

f

)4
}

𝛾a [17.38]

The PMS and JONSWAP spectra are deep water spectra. Where a spectrum is required
in transitional water depths, the TMA spectrum may be used, which is given in Sec-
tion 17.2.4.5; this is a modified JONSWAP spectrum.
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17.2.4.5 TMA spectrum
The JONSWAP spectrum is applicable for deep water conditions. To correct for shallow
water conditions, the TMA spectrum is used (Bouws et al., 1985, 1987). Based on linear
wave theory, this can be written as:

S
(
f , 𝜃
)

TMA = S
(
f , 𝜃
)

JONSWAP Φ
(
f
)

[17.39]

where Φ(f ) can be expressed in the form:

Φ
(
f
)
= tanh3 kd

tanh kd + kd − kd tanh2 kd
= tanh2 kd

1 + 2kd
/
sinh2kd

[17.40]

Considering Φ(f ) as a function of Φ(fd), then the following non-dimensional relationship
can be drawn:

fd = 2𝜋f

√
d
g
=
√[

kd tanh
(
kd
)]

[17.41]

Alternatively, an approximation accurate to 4% was given by Thompson and Vincent
(1983) as:

Φ
(
f
)
=

⎧⎪⎪⎨⎪⎪⎩

f 2
d

2
for fd ≤ 1

1 − 1
2

(
2 − fd

)2
for fd > 1

[17.42]

This is shown graphically in Figure 17.8.
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Figure 17.8 TMA shallow water correction.
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17.2.4.6 Effective fetch
In cases where the fetch width is small in comparison with the fetch length, then waves will
not be able to reach their full height as dictated by the JONSWAP spectrum. Therefore, a
technique has to be used which considers the effective fetch length for the wind speed being
looked at. Several methods have been proposed; however, the one considered here uses
what is known as ‘directional spreading’. This assumes that the wave energy is distributed
evenly according to a cosine6 function over a 180◦ arc, and is given by:

S
(
f
)
= 3.2𝛿𝜃

𝜋

n∑
i=1

{
S
(
f , 𝜃i

)
cos6 (𝜃i − 𝜃0

)}
[17.43]

The significant wave height (Hs) and the zero crossing period (Tm) from the TMA spectrum
are given as:

Hs = 4
√

m0 [17.44]

Tm =
√

m0

m2
[17.45]

where m0 and m2 are, respectively, the zeroth and second moments of the spectrum
S(f , 𝜃)TMA. The mean wave direction is given by:

𝜃w = 𝜃0 +
∬ S(f , 𝜃)(𝜃 − 𝜃0)df d𝜃

∬ S(f , 𝜃)df d𝜃
[17.46]

17.3 Wave processes

17.3.1 Refraction

As waves move into shallower water, they shorten and generally steepen. This process is
known as wave shoaling. If a wave approaches the coast in such a way so that the wave
front is at an angle to the seabed contours, then each part of the front travels at a different
speed. Those parts in deep water travel faster than those in shallow water; therefore, the
wave direction tends to change so that the wave crests become more nearly aligned with
the seabed contours. This process is known as wave refraction. This will tend to cause
waves to spread out, and therefore reduce their height in bays and bunch together and
increase in height at headlands.

Linear wave theory for wave refraction gives:

Ecgb = constant [17.47]

where b is the distance between adjacent orthogonals. The wave height H at any particular
inshore location relative to the value Ho in deep water is given by:

H = KRKSH0 [17.48]

where KR = (bo∕b)1∕2 is the refraction coefficient which accounts for changes in wave
height associated with changes in orthogonal spacing, and b0 is the spacing between
orthogonals in deep water. KS = (2n tanhkd)−1∕2 is the shoaling coefficient which accounts
for changes in wave height resulting from changes in wave group velocity induced by vari-
ations in water depth.
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To evaluate the refraction coefficient, wave orthogonals may be constructed from deep
water to the point of interest using Snell’s law, an approach originally considered by
O’Brien (1942).

Snell’s law for wave refraction is given as:

sin 𝛼1

sin 𝛼2
= L1

L2
=

c1

c2
[17.49]

The change of direction of an orthogonal as it passes over the seabed is therefore given by:

sin 𝛼1 =
c2

c1
sin 𝛼2 [17.50]

The assumptions of this theory are as follows:

No wave energy is transmitted across orthogonals (this is reasonable provided that there
is a small variation in wave height and no currents of any significance in the area).
The direction of the wave advance is perpendicular to the wave crest (i.e. in the direction
of the orthogonals).
The speed of a wave with a given period at a particular location depends only on the
depth at that location.
Changes in bottom topography are gradual.
Waves are long-crested, of constant period, small-amplitude and monochromatic.
The effects of currents, winds and the reflections from beaches and underwater topo-
graphic variations are considered negligible.

If 𝛼1 is taken to apply in deep water, then the local wave direction 𝛼2 at water depth d is
given by:

𝛼2 = sin−1 (sin 𝛼1 tanh kd
)

[17.51]

and the corresponding refraction coefficient KR (for straight parallel bed contours) by:

KR =
√

cos 𝛼1

cos 𝛼2
[17.52]

Wave refraction can be considered graphically as shown in Figure 17.9.
Consider the wave front XX travelling over the seabed from the deep water region to

the shallower water region as shown in Figure 17.9. The part of the wave front that travels
from A to B travels a distance gT2∕2𝜋 over a wave period. However, the part of the wave
front that travels from C to D travels a shorter distance over the same time, as it is in a
shallower water depth. Hence, the wave front that travelled from AC is at BD one wave
period later, which has rotated to be more in line with the seabed contours.

Repeating this process over successive time steps means that the changing direction of
a wave can be traced as it travels across a seabed. This is demonstrated in Figure 17.10,
which shows an example of predicted wave refraction patterns as waves move into a shal-
low water area over an offshore shoal. The part of the wave ‘nearer’ the shallow areas
will slow down more, and therefore ‘bend’ towards these shallower areas. This is more
pronounced as the water becomes shallower, as indicated by the waves as they travel over
the edge of the shoal.

When wave rays cross, caustics are formed. At these points, b → 0, and wave heights
according to this theory are infinite. This is indicated in Figure 17.10, where the wave rays
passing over the edge of the shoal would cross if continued. In reality, however, diffraction
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Figure 17.9 Wave refraction by Snell’s law.
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Figure 17.11 Variation of shoaling coefficient (Ks) with water depth.

effects (see Section 17.3.3) will cause wave energy to be transferred laterally, and a caustic
would not be formed.

Deeply dredged entrance channels to ports can cause very strong refraction effects. If d1
is the water depth outside the channel and d2 is the depth inside, then d1 < d2 and thus
c1 < c2. Since sin 𝛼2 cannot be greater than unity, the above equation can only be satisfied
provided that:

sin 𝛼1 ≤ c1

c2
[17.53]

If this is not the case, then the waves cannot enter the channel and they will be reflected
from it. The presence of currents as well as changes in water depth can also cause wave
refraction. When currents are present, Equation 17.47 is no longer generally valid, and
instead use is made of the principle of wave action conservation.

17.3.2 Shoaling

The variation of the shoaling coefficient Ks with the d∕L ratio is shown in Figure 17.11.

17.3.3 Diffraction

Wave diffraction is the process by which energy is transferred in a direction perpendicu-
lar to that in which the waves are propagating. Figure 17.12 gives an example of wave
diffraction, with waves passing the tip of a breakwater. If the transfer of energy behind the
breakwater did not occur, then the water behind the breakwater would be perfectly calm.

Figure 17.12 shows three distinct regions:

1. the region shadowed from the main wave direction, where diffraction takes place;
2. the region where incident waves meet reflected waves, causing a short-crested sea to

be set up; and
3. the undisturbed region where incident waves pass by.
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Figure 17.12 Wave diffraction at a breakwater.

17.3.4 Wave breaking

Wave breaking is one of the most commonly observed features in the nearshore zone. Wave
breaking is a non-linear process that is difficult to describe analytically. Considering the
wave-breaking process, if you return to Equation 17.54, the speed of the wave in shallow
water is given by:

cs =
√

gd [17.54]

For this demonstration, we assume that this equation is correct locally at every point in
the wave. The velocity of the water particles in the top portion of the wave will therefore
be significantly greater than the velocity of the water particles in the bottom portion of the
wave. This will cause the wave to steepen towards the front, and eventually topple over
(i.e. break) (Figure 17.13).

Waves may break in a number of different ways. Steep waves on mild slopes tend to
break by spilling water gently from their crests, and there is little reflection of the incident

dmin

dmax

gdmin

gdmax

Figure 17.13 Wave-breaking phenomenon.
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wave energy. In contrast, long low waves on steep slopes tend not to break at all. Instead,
they surge up and down the slope with most of the wave energy being reflected.

The Iribarren number, NI, also sometimes known as the ‘surf similarity parameter’, gives
the most useful parameter that is used for describing wave behaviour on a slope:

NI =
tan 𝛽√
H∕L0

[17.55]

where H is measured at the toe of the slope, and the slope is 𝛽.
Equation 17.55 is as applicable for random waves replacing H with Hs as it is for linear

waves.
The breaker types can be classified as follows, and they are represented graphically in

Figure 17.14.

Spilling breakers break gradually and are characterised by white water at the crest (NI <

0.4).
Plunging breakers curl over at the crest with a plunging forward of the mass of water
at the crest (0.4 < NI < 2.3).

SWL

SWL

SWL

SWL

Shallow beach slope

(a) Spilling NI < 0.4

(c) Collapsing 2.3 < NI < 3.2

(d) Surging NI > 3.2

(b) Plunging 0.4 < NI < 2.3

Steep beach slope

 Very steep beach slope

Steep beach slope

Figure 17.14 Wave breaker types.
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Collapsing breakers are waves in the transition between plunging and surging (2.3 <

NI < 3.2).
Surging breakers build up as if to form a plunging breaker, but the base of the wave
surges up the beach before the crest can plunge forward (3.2 < NI).

In general, the point at which waves break depends on the wavelength, the water depth
and the seabed slope. Much research has been done into wave breaking at a coastline, and
no definitive equations are available which are generally considered the most appropriate
to define the wave-breaking process.

Goda’s (2000) wave-breaking index is the most commonly used formula to estimate the
limiting height of individual breaking waves within the surf zone.

Hb

L0
= A

{
1 − exp

[
−1.5𝜋h

L0
(1 + 15 tan4∕3 𝜃)

]}
[17.56]

The coefficient A is set to 0.17 for regular waves, whilst it is 0.12 and 0.18 for random
wave breaking of the lower and upper limits of the surf zone, respectively.

Moreover, Goda (2000) derived a set of formulae for wave height distribution within
the surf zone. In general, Equation 17.57 is based on random waves that exist in real life
and that the coastal engineer will encounter.

Hs =

{
KsH

∕
0

min
{(

𝛽0H∕
0 + 𝛽1h

)
, 𝛽maxH

∕
0, KsH

∕
0

} : h∕L0 ≥ 0.2
: h∕L0 < 0.2

[17.57]

where the coefficients 𝛽0, 𝛽1, 𝛽max are formulated as follows:

𝛽0 = 0.028
(
H∕

0∕L0

)−0.38 exp[20 tan1.5 𝜃]

𝛽1 = 0.52 exp [4.2 tan 𝜃]

𝛽max = max
{

0.92, 0.32
(
H∕

0∕L0

)−0.29 × exp [2.4 tan 𝜃]
}

where 𝜃 is the beach slope.
The ratio of wave height (H) to wavelength (L) is called wave steepness. Wave steepness

is a commonly used term in coastal engineering. It is usually given the notation n, and
it is usually referenced to deep water conditions (e.g. L0). Under these conditions, wave
steepness is given as in Equation 17.58:

n = 2𝜋H
gT2

[17.58]

For locally generated large wind waves (e.g. within a bay, or across a narrow stretch of
water such as the Severn Estuary), the wave steepness value is usually high (e.g.>0.05). For
swell waves, the wave steepness condition is usually very low (e.g. <0.04). Swell waves are
waves arriving at a coastline from a storm occurring some distance away. For example,
waves generated by a storm in the Atlantic Ocean could arrive in Britain from a west-
erly direction possibly several days later. The effects of travelling long distances will have
reduced their wave height and therefore the wave steepness. Waves generated by storms
off an exposed coast within a large body of water usually have wave steepness values in
the range of 0.04–0.05.
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Figure 17.15 Standing wave pattern off a vertical wall.

17.3.5 Wave reflection

Waves normally incident on solid vertical or near vertical walls such as a harbour or sea-
wall are reflected. The reflected wave has the same phase but the opposite direction as the
incident wave. For vertical or near vertical sea walls, the reflected wall is almost of the
same amplitude as the incident wave.

The resulting wave pattern set-up off a vertical or near vertical wall is called a stand-
ing wave, or clapotis. A typical standing wave pattern is shown in Figure 17.15. At the
nodal points, there is no vertical movement with time, but the horizontal velocities are at
a maximum. By contrast, at the antinodes, crests and troughs appear alternately, but the
horizontal velocities are zero.

Standing waves at seawalls can cause considerable damage to structures and can lead to
large movements of sediment at the seabed, and hence increased erosion at the base of the
wall. This is especially noticeable at the base of seawalls built during Victorian times, where
beach levels have almost disappeared as a result of the construction of vertical seawalls.

The equation of the standing wave pattern is found by adding the waveform of the
incident wave to that of the reflected wave. The formula of the incident wave is given by
Equation 17.59, where the subscript i stands for the ‘incident’ wave.

𝜂i =
H
2
cos
[
2𝜋
( x

L
− t

T

)]
[17.59]

The reflected wave is given by Equation 17.60, where in this instance, the subscript r stands
for the ‘reflected’ wave.

𝜂r =
H
2

cos
[
2𝜋
( x

L
+ t

T

)]
[17.60]
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This gives the resultant standing wave pattern as:

𝜂s = 𝜂i + 𝜂r [17.61]

where the subscript s is in this instance for a standing wave.
If the amplitude of the incident and the reflected wave are taken to be the same, then

Equation 17.61 can be written as:

𝜂s = H cos
(

2𝜋x
L

)
cos
(

2𝜋t
T

)
[17.62]

17.4 Wave set-down and set-up

As waves propagate towards the shore, not only is there a flow of wave energy (see Equa-
tion 17.15), but also there is a flow of momentum. Changes in the wave height as waves
travel shoreward cause changes in the flow of momentum that must be balanced by varia-
tions in the mean water level. When the wave height increases, the mean water level must
fall; and when the wave height decreases, the mean water level must rise. Consequently, as
waves approach a slope there is a gradual lowering of the mean water level as the wave
height increases until the breaking point is reached. After breaking begins, the wave height
continues to reduce as a result of the decreasing water depth, and the mean water level
rises. At the shoreline, the mean water level is above the level of the still water. The nega-
tive and positive changes of water level due to the presence of a train of water waves are
known as the wave set-down and wave set-up, respectively (Figure 17.16).

Denoting the difference between the still water level and the mean water level as S, its
value at the breaking point, Sb, is given as:

Sb =
−k H2

b

8 sinh2k db
[17.63]

Set-down

Set-up

Run-up

Breaker line
Mean water level

Limit of wave uprush

Still water level

Figure 17.16 Wave set-down and set-up.
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in which db is the depth of water at the breaking point measured to the mean water level
(negative since the mean water level is below the still water level).

If we assume that shallow water conditions exist at the breaking point, then sinh2kdb ≈
2kdb, giving:

Sb

db
≈
(

Hb

4db

)2

[17.64]

Now, the maximum value of the ratio Hb∕db is about 1.3, suggesting that the greatest set-
down is about 10% of the mean water depth. However, the theory is not really valid for
such highly non-linear conditions, and in practice, the maximum set-down is only about
half of this theoretical value.

The maximum set-up, Smax, occurs at the shoreline. Ignoring the small set-down at the
breaking point, then,

Smax ≈
3𝛾 Hb

8
[17.65]

Since the value of 𝛾 is in the range of 0.7 to 1.3, Smax is between about 25% and 50% of
the breaking wave height.

It is clear from Equation 17.64 that a change in the breaking wave height causes a change
in the set-up. Thus, when groups of waves in a natural ‘sea state’ arrive at a beach, there is
a slow fluctuation in the mean water level on the beach. This is known as surf beat. This
rise and fall in the water level causes very long, low waves to radiate seaward.

17.5 Wave impact, run-up and overtopping

17.5.1 Wave impact

Wave impact occurs when an incoming wave meets a coastal defence structure, particu-
larly such as a vertical seawall, in the nearshore region. Forces caused by wave impacts are
the most intense and dangerous that a structure can suffer. Wave impact is highly depen-
dent on both the wave conditions and the type of structure being considered. The typical
wave conditions of the sea state are unbroken, breaking and broken waves. When a small
amount of air is trapped between the structure and the breaking wave at the point of
impact, the impact pressure increases considerably. Recent research studies show that air
pocket dynamics play a paramount role in the evaluation of impact wave pressures (see
Bullock et al., 2007; Bredmose et al., 2015).

17.5.2 Wave run-up

After a wave has broken, much of the wave energy that remains when the mass of water
reaches the shoreline is used in driving it up the face of the beach or structure. This move-
ment of water up the slope is called wave run-up. The run-up, R, which is measured ver-
tically above the mean surface of the sea, is the maximum height above still water level to
which the water rises, and it includes the effect of wave set-up.

C
h

ap
te

r
1

7



430 Civil Engineering Hydraulics

The run-up on a smooth impermeable slope may be estimated with the aid of Hunt’s
formula (1959) as:

Rsi

H
≈ Ni

tan 𝛽√(
H

L0

) (for NI ≤ 2.3 − spilling plunging waves) [17.66]

Rsi

H
≈

√(
𝜋

2𝛽

)
+ 𝜋H

L
cot
(

2𝜋d
L

)
(for NI > 3.2 − surging waves) [17.67]

In the range of 2.3 < NI < 3.2 (collapsing waves), Rsi may be estimated using both equa-
tions, with the lower value chosen.

To allow for slope roughness and permeability, Rsi may be multiplied by a roughness
factor r. Note, however, that Rsi cannot be less than Smax.

17.5.3 Wave overtopping

Wave overtopping occurs when a wave impacts a coastal structure, and the resulting
momentum of the wave as it breaks on the structure causes some of the water to rise
above and over the top of the structure. Based on the structure type (either permeable or
impermeable), there will be two processes taking place: wave transmission and/or passing
of water (green water) over the structure. If the structure freeboard exceeds the maximum
run-up height, the overtopping occurs due to splashing (white water).

Prediction of wave overtopping is usually based on empirical formulae fitted with the
help of experimental data. In general, overtopping is measured as mean discharge of water
per linear metre of width of the structure; for example, m3∕s∕m or l∕s∕m. The EurOtop
Manual (2007) highlights the latest overtopping models based on wave conditions and
variety of structure types. The manual also gives tolerable discharge values for human and
structural safety.

The principal formula employed to calculate wave overtopping (q) is of the form:

q√
gH3

m0

= a exp(−bRc∕Hm0) [17.68]

where Hm0 is the significant wave height estimated from spectral analysis; Rc is the free-
board of the structure; and a and b are overtopping coefficients. Rc will be replaced with
Rc∕𝛾, where 𝛾 is the roughness coefficient, when a structure consists of roughness elements
or roughened surface (see EurOtop Manual, 2007).

17.6 Tides, surges and mean sea level

17.6.1 Sea level

Sea levels are constantly changing under the influence of both astronomical and meteo-
rological effects. The astronomical effects result in a sinusoidal variation in the sea level
surface, which is dominated by the semi-diurnal and diurnal tide components. The mete-
orological effects result in surges as a result of differential pressure changes and the wind,

C
h

ap
ter

1
7



Introduction to Coastal Engineering 431

and waves as a result of the wind. A third component in the variation of the sea level
surface, which is not easily noticeable without long-term measurements, is the tendency of
the sea level surface to rise (or fall) over a long period of time. This is known as the ‘trend’
in the sea level, and it is usually referred to as a rate in the form of ‘x mm/year’.

Sea levels relative to land can vary markedly from ‘average’ sea levels as a result of
‘isostatic’ effects (often referred to as ‘glacial rebound’). During the last Ice Age, large
areas of the Northern Hemisphere such as Northern Europe and Canada were covered
with large ice sheets. This caused the land to be pushed down. With the disappearance of
the ice, these regions are now rising, often at a rate greater than the increase in mean sea
levels. This results in the phenomenon that exists in these areas of sea levels actually falling
relative to a fixed datum on land (e.g. at Juneau in Alaska, sea levels relative to land are
estimated to be falling by 13.8 mm/year) (National Research Council, 1987).

Britain is currently rotating along an axis running from the North Welsh coastline,
through Liverpool to Hull, with land levels rising to the north of this line and falling
to the south of it. The rise or fall is greater further away from this line.

17.6.2 Estimation of sea level rise

17.6.2.1 Use of tide gauges
Tide gauges are fixed relative to a land datum. Therefore, tide gauges only measure ‘rel-
ative’ changes in sea levels, and any calculation of trends from tide gauge data would
need to take local land movements into account. However, the determination of rises in
sea levels from tide gauge data is extremely difficult and notoriously inaccurate. There
are several reasons for this, not least of which is the fact that long-term accurate records
are only available from digital records, most of which have only been in place since the
late 1980s at the earliest. To determine trends in sea levels from tide gauge records would
probably need at least 50 years of digitally recorded data. The reason for needing such
a large data set over such a long period of time is because tides repeat themselves over
a period of 18.61 years. This means that trends determined over (say) the 9-year period
between a peak and a trough of the 18.61-year cycle would almost certainly indicate a
spurious negative trend. However, trends determined over (say) the 9-year period between
a trough and a peak of the 18.61-year cycle would almost certainly indicate a spurious
large positive trend.

17.6.2.2. Manually recorded sea level records
Before digital tide gauges were in operation, sea levels were measured manually (i.e. by
watching the sea level go up and down on a tide board and estimating the sea level from
this observation). Long-term records of these measurements have usually been transferred
into a digital format only for the maximum recorded sea level in any particular year or,
at best, the maximum recorded sea level in every month. Apart from the obvious human
error that exists in these measurements, this technique has the added problem that the
largest sea level recorded in any one year will almost certainly correspond to a very windy
day, with large onshore waves. This therefore makes the determination of the sea level to
the nearest (say) 10 cm extremely difficult, and these records are notoriously inaccurate
(Hames et al., 2004) However, many of these records exist back to the mid-late nineteenth
century, and the effect of the 18.61-year cycle of tides is therefore mostly negated.
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17.6.3 Current and future trends in sea levels

The most important body who publish information on changes in sea level are the Inter-
governmental Panel on Climate Change (IPCC). They have published five assessment
reports since 1988 on scientific, technical and socio-economic information related to cli-
mate change, its impact and future risks, and countermeasures for adaptation and mitiga-
tion. IPCC (2013) predicted the mean rate of sea level rise over the next 100 years between
26 and 82 cm based on four scenarios considered. CU Sea Level Research Group (2015)
presented a global mean sea level rise of 3.3 ± 0.4 mm/year for the period of 1993–2015.

Many other organisations publish reports and give guidance on sea level rises through-
out the world. Apart from the IPCC, the main body responsible for analysing sea levels are
the Permanent Service for Mean Sea Level, based at the Proudman Oceanographic Labo-
ratory (POL). National guidance is given by bodies such as the Environment Agency (UK).

17.7 Tsunami waves

Tsunamis are large ocean waves, or a series of waves with very large wavelengths and long
periods of up to an hour, triggered by volcanic eruptions, explosions, landslides, earth-
quakes and planetary impacts. ‘Tsunami’ as a Japanese word is represented by two charac-
ters which translate into English as ‘harbour wave’. Tsunamis are often incorrectly referred
to as tidal waves or seismic sea waves.

In deep depths, tsunamis can be difficult to identify. There can be hundreds of kilometres
between crests (typically 10–500 km), and the height of the wave may only be 1–2 m high
at most. With several minutes passing between successive waves of a tsunami, they are
hardly noticeable as they pass under ships in deep waters. When these waves approach
a shoreline, however, they exhibit all the characteristics of waves covered in this chapter.
Rapid draw-down of water levels can occur in harbours (i.e. set-down), often drawing
people to the shoreline and subsequently to their deaths. Similar to water waves, when a
tsunami wave approaches onshore, part of the wave energy is reflected back offshore, and
the onshore propagating wave energy is dissipated through bottom friction and turbulence.
Despite these losses, a tsunami waves inundates inland with a significant amount of energy,
causing destruction to people, beaches and infrastructure such as coastal defences. The first
part of the tsunami wave propagating inland can be either crest or trough-focused with
a considerable amount of momentum and inertia. For example, recent studies revealed
that most coastal defences such as coastal dikes and seawalls in northern Japan collapsed
by scour failure due to the great erosive power of the 2011 Tohoku tsunami waves (see
Jayaratne et al., 2013, 2015; Esteban et al., 2015).

Due to large wavelengths, tsunami waves act as shallow water waves. Under such con-
ditions, the wavelength is very large compared to the water depth, and the wave speed
depends only on water depth as seen in Equation 17.69:

c =
√

gh [17.69]

where h is the water depth.
For example, in offshore conditions, the water depth of around 5000 m generated a

tsunami speed of around 220 m/s, or about 800 km/h.
The distance and height achieved by a tsunami depend on the natural contours of the

land that it approaches. Waves flowing over flat land will reach a long way inshore (large
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inundation). Waves travelling up a river valley will increase in height, and potentially flood
areas to a much greater height than adjacent areas at a lower land level, which may be
perhaps unaffected by the effects of the tsunami.

On land, the velocity of the tsunami wave (horizontal velocity, or u) is affected by the
topography of the land; therefore, Equation 17.69 is further modified as:

u = A
√

g(R − hG) [17.70]

where hG is the height of land above mean sea level; R is the tsunami run-up height; and
A is a coefficient of order 1.0 (see Murata et al., 2010).

The slowing down of the tsunami as it reaches the shore results in a shoaling wave,
reaching many times its height offshore. It would not be unknown for a tsunami 1–2 m
high in the deep depths of an ocean to reach 25–50 m by the time it reaches the shoreline
(e.g. the 2004 Indian Ocean and 2011 Tohoku tsunamis). These waves will then surge
unbroken onto the land, and one of the reasons for the significant damage and loss of
life is the violent turbulent nature of the leading edge of the tsunami wave. The tsunami
event also continues for a long time after the leading edge has passed, exacerbating the
destruction caused.

The increase of the tsunami wave height as it approaches shallow water (as described
in this section) is given by:

Hs

Hd
=
(

hd

hs

)0.25

[17.71]

where Hs and Hd are wave heights in shallow and deep water and hs and hd are the depths
of the shallow and deep water, respectively. For example, a tsunami with a wave height
of 1 m in the open ocean where the water depth is 5000 m would have a wave height
approaching 5 m in water of depth 10 m.

Disaster prevention or preparedness for future tsunami events was brought into focus
after the 2004 Indian Ocean tsunami. Since tsunami events are infrequent, people may
forget about the implications for them and civil engineering infrastructure. Researchers
attempted to classify different levels of tsunamis (Levels 1 and 2) and gave an introduc-
tion to classification of evacuation areas after the 2011 Tohoku tsunami (see Shibayama et
al., 2013). The key purpose of tsunami countermeasures is to mitigate casualties, injuries
and physical damage to the infrastructure. There are two types of countermeasures being
adopted in the coastal environment, namely hard and soft engineering methods. Defences
such as mass concrete tsunami seawalls, breakwaters, coastal dikes and high-rise evacua-
tion buildings are, to name a few, hard engineering countermeasures; whilst tsunami haz-
ard maps with evacuation routes and signs, and coastal forests and wetlands, are examples
of soft solutions.

Worked examples

Example 17.1

A wave in water depth of 100 m has a wave height of 3.0 m and a wave period of 12 s.
Calculate wavelength, celerity and wave steepness of that wave. Check whether this wave
is in shallow, transition or deep water.
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Solution:

Given d = 100m, H = 3m, T = 12s,

Using L0 =
gT2

2𝜋

L0 = 9.81 × 122

2𝜋
= 225m

Using the Fenton and McKee wavelength formula (Equation 17.8),

L = L0

{
tanh

[(
2𝜋
√

d∕g∕T
)3∕2

]}2∕3

L = 225 ×
{
tanh

[(
2𝜋 ×

√
100∕9.81∕12

)3∕2
]}2∕3

L = 221m

Wave celerity is given by c = L
T

∴ c = 221
12

= 18.4m∕s

Wave steepness is given by n = H
L

∴ n = 3.0
221

= 0.014

To check whether the wave is in shallow or deep water, using the d∕L ratio,

d∕L = 100∕221 = 0.45

that is, 0.5 > d∕L > 0.04, so this is considered to be in the transition region between deep
and shallow water.

Example 17.2

The distance between wave orthogonals at the breaker wave height is 15 m. The off-
shore distance between wave orthogonals is 10 m. If the wave orthogonals at the breaker
wave height are perpendicular to the seabed contours, calculate the wave height in deep
water. Take nearshore wavelength = 40.1 m, wave height = 4.87 m and shallow water
depth = 8 m.

Solution:

The refraction coefficient, KR =

√
b0

b
=
√

10
15

= 0.816

The group velocity parameter, n

n = 1
2

(
1 + 2kd

sinh2kd

)
= 1

2

(
1 +

2 × (2𝜋∕40.1) × 8
sinh[2 × (2𝜋∕40.1) × 8]

)
= 0.706
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The shoaling coefficient, KS

KS = (2n tanhkd)−1∕2 = (2 × 0.706 × tanh[(2𝜋∕40.1) × 8])−1∕2 = 0.913

∴ Deepwater wave height, H0 = H
KRKS

= 4.87
0.816 × 0.913

= 6.5m

Example 17.3

If a wave with a period of 12 s is travelling from offshore to a depth of 5 m with a
seabed slope of 1 in 100, and it is on the point of breaking (upper limit), find the wave
height at this point. Assume that the breaker wave height is given by Goda’s breaker index
formula.

Solution:

Given h = 5m, T = 12s, tan 𝛽 = 1∕100,

From
Hb

L0
= A

{
1 − exp

[
−1.5𝜋h

L0
(1 + 15 tan4∕3 𝛽)

]}
For upper limit of random wave breaking A = 0.18

L0 =
gT2

2𝜋
= 9.81 × 122

2𝜋
= 225m

Re-arranging, Hb = 0.18 × L0

{
1 − exp

[
−1.5𝜋h

L0
(1 + 15 tan4∕3 𝛽)

]}

Hb = 0.18 × 225 ×
{

1 − exp
[
−1.5𝜋 × 5

225
(1 + 15 × (1∕100)4∕3)

]}
Hb = 4.15m

Example 17.4

Determine the wavelength, surface elevation and power generated by a wave with a period
of 10 s travelling in a water depth of 20 m when it is approaching a sandy beach of
1:30. Assume that the waves are regular with plunging breaking characteristics (Iribarren
number = 0.65), and follow linear wave theory.

Solution:

Given beach slope tan 𝛽 = 1∕30, T = 10s, d = 20m, NI = 0.65,

Using L0 =
gT2

2𝜋

L0 = 9.81 × 102

2𝜋
= 156m
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To calculate wavelength from the Fenton and McKee formula:

L = L0

{
tanh

[(
2𝜋
√

d∕g∕T
)3∕2

]}2∕3

L = 156 ×
{
tanh

[(
2𝜋 ×

√
20∕9.81∕10

)3∕2
]}2∕3

L = 122m

Using the Iribarren number to find H,

NI =
tan 𝛽√
H∕L0

Re-arranging the above formula, H =
L0 tan2 𝛽

N2
I

H =
156 × (1∕30)2

0.652
= 0.41m

General equation for a water wave is given by 𝜂 = a cos(kx − 𝜔t)

a = H∕2 = 0.41∕2 = 0.205

k = 2𝜋∕L = 2𝜋∕122 = 0.052

𝜔 = 2𝜋∕T = 2𝜋∕10 = 0.63

∴ Equation for the surface profile of a particular wave is given by

𝜂 = 0.205 cos(0.052x − 0.63t)

To calculate power generated by the wave P,

Energy density E = 1
8
𝜌gH2

Taking seawater density, 𝜌 = 1025 kg∕m3

E = 1
8
× 1025 × 9.81 × 0.412

E = 211J∕m2 [1]

Group velocity cg = 1
2

[
1 + 2kd

sinh2kd

]
c

cg = 1
2
×
[
1 + 2 × 0.052 × 20

sinh(2 × 0.052 × 20)

]
× 122

10
= 9.3m∕s [2]

From (1) and (2), P = Ecg = 211 × 9.3

P = 2.0KW∕m
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Example 17.5

The wave heights (in metres) given below were measured by a wave recorder over a period
of 3 minutes. Determine the value of significant wave height (Hs). If the wave steepness
of the coastal site is 0.045, calculate the maximum probable wave height in a storm of
3 hours.

0.68 1.21 0.58 0.36 1.60 1.18 0.47 0.96 1.02
1.70 0.28 0.92 1.75 1.20 0.93 0.41 1.75 0.79
0.55 1.75 0.59 1.01 1.00 0.54 0.24 0.86 1.36
1.73 0.48 0.38 1.72 1.52 1.69 0.23 0.99 1.12
1.77 0.86 0.42 0.72 1.73 1.53 1.49 1.68 0.53

Solution:

Rank the data from the highest to the lowest (45 values), and take the top one-third of the
wave heights (15 values).

1.77 1.75 1.75 1.75 1.73 1.73 1.72 1.70 1.69
1.68 1.60 1.53 1.52 1.49 1.36

Find the average, Hs = 1.65m

Using the wave steepness formula, n =
2𝜋Hs

gT2
z

Re-arranging, Tz =

√
2𝜋Hs

gn
=
√

2𝜋 × 1.65
9.81 × 0.045

= 4.846s

Number of storm waves, N = 3 × 3600
Tz

= 3 × 3600
4.846

= 2229

Maximum wave height, HMAX = Hs

√
lnN

2
= 1.65 ×

√
ln2229

2
= 3.24m

Example 17.6

A tsunami with a wave height of 1 m in the deep ocean where the water depth is 6000 m
has moved to a nearshore depth of 2 m. Calculate the wave height at this water depth. If the
distance between the epicentre of the tsunami and nearshore is about 1000 km, estimate
how long it will take this wave to reach the nearshore region.

Solution:

Given Hd = 1m, hd = 6000m, hs = 2m,

Using
Hs

Hd
=
(

hd

hs

)0.25
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Re-arranging above, the wave height at 2 m depth,

Hs = Hd

(
hd

hs

)0.25

= 1.0 ×
(

6000
2

)0.25

= 7.4m

Speed of the tsunami wave in deep water is approximated by c =
√

gh,

c =
√

9.81 × 6000 = 242.6m∕s

Time taken to reach the nearshore region, T = Distance
c

= 1000 × 1000
242.6 × 3600

hr

∴ T = 1.15hr
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Problems

1. A wave in water depth of 10 m has a wave height of 2.0 m and a wave period of 10 s.
Calculate the wavelength, celerity and wave steepness of that wave. Check whether this
wave is in shallow, transition or deep water.

2. Time series data measured at an offshore site are given in this table:

Incident wave height (m) Wave period (s)

2.35 5.0
2.58 4.8
2.89 5.5
3.75 4.0
3.27 4.7
2.62 5.2
3.13 5.0
3.66 4.5
2.71 5.0
3.75 5.2
3.01 4.6
2.50 4.9
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Determine the zero-crossing wave period (mean period) and the significant wave height.
Given a wave steepness of 0.04, calculate the maximum probable wave height in a storm
of 1 hour.

3. The water level at a coastal site is given relative to ordnance datum as 8.0 m, and prior to
reaching the site, the waves pass over a sand bank at a level of 4.0 m.

If a 7.5 m high offshore wave travels over the sand bank and the breaker wave height–
to–water depth ratio is given as 0.78, determine the height of the waves after they have
passed over this sand bank. Find the period of these broken waves, assuming that the
steepness of the waves offshore is given as 0.045.

4. A tsunami has generated a wave height of 10 m at a nearshore depth of 2 m. Calculate
the wave height at its offshore depth of 8000 m. If the time taken for the tsunami wave to
travel from its epicentre to nearshore is about 2 hours, estimate the distance between the
epicentre and the nearshore region.
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Answers

1. Properties of Fluids

(1(b)) 5 N s/m2; (2) 2 m/s, 0.4 N s/m2; (3) 1.7 kW; (4) 21.3 m/s; (5) 5.0 mm, −1.6 mm;
(6) 80 N/m2.

2. Fluid Statics

(1(a)) 57.63 kN/m2; (1(b)) 31.83 m; (2) 36.9 kN/m2, 10.2 kN/m2; (3) 32 mm, 31.6;
(4) 2.94 kN/m2; (5) 0.25 N/mm2; (6) 0.67 m, 2.0 m, 3.53 m, 26.16 kN/m; (7) 0.19 m;
(8) 100.7 kN, 3.49 m below water level, 53.3 kN; (9) 171.2 kN; 39.23◦ to the horizontal,
1.90 m below water surface; (10) 4.83 MN/m, 66◦, 26.21 m from heel; (11) 0.85; (13) 12.82
kN; (14) L2

4h
− h

2
above water level; (15) 0, 11.92 sin 𝜃 kN m; (16) 1.41 m, 2.54◦;

(17) 244.6 mm; (18) 9.10◦, 11.12◦; (19) 17.17 kN.

3. Fluid Flow Concepts and Measurements

(1) 15 m/s2, 150 m/s2; (2) 21 m/s2; (4) 3.62 kW, towards 450 mm diameter section;
(5) −50.62 kN/m2, 36.7 kN/m2, 1.34 kW; (6) 3.98 m, 76.8◦; (7) 23.7 kN, 45◦, 16.75 kN;
(8) 12.91 kN, 9.4◦ to the horizontal; (9) 811 kN; (10) 1.35 kN, 67.5◦ to the horizontal;
(11) 856 kN, 12.54◦ to the vertical; (12) 130 mm; (13(a)) 46.36 mm; (13(b)) no change;
(14) 25 km/h; (15) Cv = 0.96, Cc = 0.62, Cd = 0.596; (16) 7 min 51.7 s; (17) 25.5 mm,
39.5 mm; (18) m1∕2∕s [L1∕2 T−1] 62.3 mm, 0.6%; (19(b)) 1.6%; (20) 1.48, 2.5, 0.626;
(21) 3 h 10 min.

4. Flow of Incompressible Fluids in Pipelines

(1(a)) 170.9 L/s; (1(b)) 20.174 m; (2) 8700 m, 22.78 kW; (3) 158 L/s; (4(a)) 350 mm,
214.7 L/s; (4(b)) 12.44 m; (5) 58.77 L/s, 0.28 mm; (6(a)) 215.5 L/s; (6(b)) 9350 m;
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(7) 0.1147 m,13.37 kW; (8(a)) 9.5 L/s, laminar; (8(b)) 25 L/s, turbulent; (9(a)(i)) 62.25 L/s, (ii)
64.82 L/s; (9(b)(i)) 50.1 L/s, (ii) 49.12 L/s; (10) 0.0144.

5. Pipe Network Analysis

(1) ZB = 91.48 m, QAB = 107.56 L/s, QBC1
= 52.05 L/s, QBC2

= 55.51 L/s; (2) ZB = 90.98 m,
QAB = 110.82 L/s, QBC1

= 55.78 L/s, QBC2
= 55.03 L/s; (3) ZB = 75.31, QAB = 156.43 L/s,

QBC = 56.29 L/s, QBD1
= 59.20 L/s, QBD2

= 40.98 L/s; (4) ZB = 132.3 m, QAB = 118 L/s,
QBC = 40 L/s,QBD = 78 L/s.Pump total head = 21.75 m, power consumption = 14.22 kW; (5)
ZB = 126.73 m, ZD = 109.41 m, QAB = 505.3 L/s, QBC = 133.2 L/s, QBD = 372.1 L/s, QDE =
221.2 L/s, QDF = 150.8 L/s; (6) ZA = 200 m, ZC = 100 m, ZE = 60 m, ZF = 50 m, ZB =
100.19 m, ZD = 71.71 m, QAB = 279 L/s, QBC = 126.7 L/s, QBD = 152.4 L/s, QDE = 52.1 L/s,
QDF = 100.3 L/s; (7) QAB = 104.8 L/s, QBC = 45.4 L/s, QDC = 4.6 L/s, QED =
44.6 L/s, QAE = 95.2 L/s, QEB = 0.6 L/s, ZA = 60 m, ZB = 39.03, ZC = 17.37, ZD = 18.14 m,
ZE = 39.06; (8) QBCE = 61.98 L/s, QBE = 44.91 L/s, QBDE = 93.10 L/s, head loss in AF =
12.5 m; (9) QAB = 106.4 L/s, QBC = 52.5 L/s, QCD = 2.5 L/s, QED = 37.5 L/s, QAE = 93.6 L/s,
QEB = 6.1 L/s, ZA = 60 m, ZB = 38.50 m, ZC = 25.03 m, ZD = 24.77 m, ZE = 39.78 m; (10).

Pipe AB BH HF GF AG
Discharge (L/s) 136.41 56.57 2.51 53.59 93.59

Pipe BC CD HD DE FE
Discharge (L/s) 29.84 9.84 24.06 13.90 26.10

Junction A B C D E F G H
Head elevation (m) 100.00 69.44 64.18 63.85 63.22 67.31 88.94 67.34

(11)

Pipe AB BC CD ED FE BE
Flow (L/s) 95.31 90.14 30.14 49.86 44.69 5.17

Junction A B C D E F
Head elevation (m) 100.00 87.70 71.67 65.48 87.66 90.00

(12) See (10); (13) QAB = 131.56 L/s, QBE = 25.02 L/s, QFE = 48.44 L/s, QAF = 88.44 L/s,
QBC = 46.54 L/s, QCD = 6.54 L/s, QED = 23.46 L/s; HA = 40.000 m, HB = 31.294 m, HC =
11.650 m, HD = 10.124 m, HE = 14.795 m, HF = 38.418 m.

6. Pump–Pipeline System Analysis and Design

(1) 136 L/s, 88.9 kW; (2(a)(i)) 182 L/s, (ii) 192 L/s; (2(b)(i)) 138.4 kW, (ii) 186.3 kW;
(3) mixed flow; (4) 31 L/s, 20.8 L/s, 10.0 L/s; (5) Ns = 5120, axial flow, 125 L/s, 6.44 kW;
(6(a)) 4.81 m, 0.12; (6(b)) 4.76 m; (7) 1386 rev/min; (8) 27.5 L/s; (9(a)) 137.6 L/s;
(9(b)) 166 L/s; (10(a)) ZB = 90.46 m, QAB = 57.1 L/s, QBC = 38.5 L/s, QBD = 18.6 L/s; (10(b))
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ZB = 89.04 m, QAB = 61.4 L/s, QBC = 37.6 L/s, QBD = 23.8 L/s, Hp = 26.5 m, power
consumption = 12.4 kW.

7. Boundary Layers on Flat Plates and in Ducts

(1) 381.6 N, 0.186 m, 4.56 N/m2; (2(a)) 770.8 N; (2(b)) 748.9 N; (3) 22.23 m/s; (4) 1.95 mm,
3.7 m/s; (5) 16.38 N/m2, 0.067, 23.65 L/s, 0.091 mm; (6) 2.97 mm, 0.0114, 0.094 m3/s,
0.0379.

8. Steady Flow in Open Channels

(1) 4.9 N/m2; (2(a)) k = 2.027 mm, n = 0.0149; (2(b)) QDarcy = 56.21 m3/s, QManning = 56.57
m3/s; (3) 2.74 m; (4) 3.776 m3/s, 1.83 m/s, 5.48 N/m2; (5) 3.6 m3/s, 0.00324;
(7) 17.6 m3/s, 1.67 m; (8(a)) 30.12 m3/s; (8(b)) 29.29 m3/s; (8(c)) 33.95 m3/s; (9) 2.5 m;
(10) width = 12.26 m, depth = 6.13 m; (11) bed width = 3.33 m, depth = 4.02 m;
(12) 1.45:1; (13) bed width = 20.5 m, depth = 2.29 m; (14) 2.09 m;
(15(a))

z (m) 0.1 0.2 0.3 0.4 0.5
y1 (m) 2.5 2.5 2.5 2.5 2.5
y2 (m) 2.373 2.24 2.097 1.937 1.739

z (m) 0.6 0.7 0.8 0.9 1.0
y1 (m) 2.54 2.66 2.78 2.89 3.01
y2 (m) 1.45 1.45 1.45 1.45 1.45

(15(b)) yc = 1.45 m; (15(c)) zc = 0.568 m; (16) y1 = 1.544 m, y2 = 1.047 m, Q =
0.877 m3/s; (17) initial depth = 0.639 m, upstream depth = 7.42 m, force = 786 kN;
(18) submerged flow at gate, 5.157 m, 2.176 m, 257 kN; (19) yn = 3.5 m, 13 km, 4.44 m; (20)
see table below; (21) yn = 1.48 m, yc = 0.714 m, y = 1.32 at x = 350 m; (22) > 10 km; (23(a))
103.20 m, A OD; (23(b)) submerged inlet and reduced flow rate; (24(a)) 2.25 m; (24(b))
2.000 m.
(20)

Depth (m) 4.0 3.9 3.8 3.7 3.6 3.5 3.4
Distance (m) 0 151 308 472 643 824 1018

Depth (m) 3.3 3.2 3.1 3.0 2.9 2.8
Distance (m) 1229 1463 1730 2049 2464 3106

9. Dimensional Analysis, Similitude and Hydraulic Models

(1) 85 L/s, 0.01445; (2) 35176 N/m2; (3) 2.42 L/s, 3.4; (4) (length scale)3∕2; (6) 0.4645 m,
118.1 L/s; (7) 93.75 m/s, 11.2 kN;
(8)

Qp (L/s) 0.0 103.1 206.2 309.3 412.44
Hp (m) 83.06 78.89 66.45 43.61 10.38
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(9(a)) Ns = N
√

P∕H5∕4; (9(b)) 1549.2 rev/min, 27.89 MW, 21.07 m3/s; (10) 2.85 s, 7.5 m,
0.5 m, 800 kN/m.

10. Ideal Fluid Flow and Curvilinear Flow

(1) V(y cos 𝛼 − x sin 𝛼), Vr (sin 𝜃 cos 𝛼 − cos 𝜃 sin 𝛼); (2) 𝜙 = (x2 − y2)∕2
(9) 0.075 m3/s; (10) 2.2 m, 2.658 m; (11) 105.8 m3/s, −5.36 m, −4.40 m;
(12) 0.2 L/s; (13) 0.20 m3.

11. Gradually Varied, Unsteady Flow from Reservoirs

(1) 175.9 h; (2) 39.69 h, 131.39 h; (3) 602.78 h; (4) peak outflow = 45 m3/s at t = 11 h.

12. Mass Oscillations and Pressure Transients in Pipelines

(1) zmax = 40.5 m at t = 95 s; (2(a)) zmax = 40.80 m after 100 s;
(2(b)) zmax = 37.12 m after 150 s;
(3(a))

Time (s) 0 3 6 9 12 15
V (m/s) 4.233 4.221 4.171 4.031 3.559 0
h (m) 3.00 4.66 8.09 17.00 53.03 436.74

(3(b))

Time (s) 0 3 6 9 12 15 18 21 24 27 30
V (m/s) 4.2339 4.2278 4.2107 4.1768 4.1190 4.0253 3.8740 3.6230 3.1767 2.2733 0.0
h (m) 3.0 3.68 4.64 5.96 7.89 10.85 15.71 24.42 42.24 86.54 228.46

13. Unsteady Flow in Channels

(1(a)) y2 = 2.815 m, c = 3.54 m/s; (1(b)) y2 = 3.295 m, c = 4.31 m/s; (2) y1 = 0.98 m, y2 =
1.807 m, Q2 = 46.15 m3/s (upstream); (3) y2 = 2.98 m, y1 = 3.54 m, c = 7.14 m/s; (4) y1 =
2.631 m, 1.515 min; (5) 36.45 min.

14. Uniform Flow in Loose-boundary Channels

(1) Safe; (2) 0.57 m; (3) 15 mm; (4) 9.2 × 10−5; (5) 6.95 m/s, 0.6 m; (6(i)) 0.69 m3/(s m),
8.2 × 10−6; (6(ii)) 2.5 m3/(s m), 1.73 × 10−4; (7(a)) 9 ×10−6 m3/(sm), 21 mm, dunes, rough;
(8) 20 kg/(s m); (9) 83.4%; (10) 1060 N/s.

15. Hydraulic Structures

(1(a)) 10.599 m; (1(c)) 3787 m3/s; (1(d)) −11.9 m of water; (2) 1424 m3/s; 2764 m3/s;
(3) Xc = 105.38 m; yc = 7.01 m; (4(a)) y1 = 1.423 m; y2 = 11.924 m; y+ = 8.12 m;
(4(c)) 61%.
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16. Environmental Hydraulics and Engineering Hydrology

(1) 41 m3∕s; (2) 0.144; (3) 9 m3∕s just after t = 4 h (4(a)) 1120 m3∕s; (4(b)) 2360 m3∕s;
(5) Scheme B, 2.2.

17. Introduction to Coastal Engineering

(1) 94 m, 9.4 m/s, 0.021, transition; (2) 4.87 s, 3.61 m, 6.34 m; (3) 3.12 m, 10.3 s;
(4) 1.26 m, 2017 km.





Index

absolute pressure, 10
acceleration

centrifugal, 23
convective, 50
horizontal, 22
local, 50
normal, 50
radial, 23
tangential, 50
uniform linear, 22
vertical, 22

Ackers–White, 346
Airy, 409, 411
alluvial, 337
angular velocity, 23
antidune, 335
Archimedes, principle of, 17
atmospheric pressure, 9

backwater curves in channels, 187, 234
Barr, 91, 93
beach slope, 425–426, 435
bed forms, 335
bed hydraulic radius, 337
bed load, 340
bed shear, 335
benefits, 397
Bernoulli’s equation, 53
Blasius, 90, 171

boundary layers
boundary shear stress, 89, 172
displacement thickness, 173
drag, 172–173
effect of plate roughness, 171
flat plates, 172–173
Kármán–Prandtl equations, 176
laminar boundary layers, 171
laminar sub-layer, 176
mixing length, 174
Nikuradse, 175–176
Prandtl mixing theory, 174
shear velocity, 174
thickness, 171
turbulent boundary layers, 172
turbulent pipe flow, 174

Boussinesq, coefficient of, 57, 197
bulk modulus, 2, 248

effect on wave speed, 311
buoyancy, centre of, 18
buoyant thrust, 17

canal delivery, 201
capillarity, 3
cavitation, 55, 59, 153

number, 154
celerity, 309, 323, 411, 413–414
centrifugal pumps, 149
channels, see open channel flow
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characteristic curves, pumps, 151–153
Chezy equation, 189
climate change, 396, 432
coastal engineering, 409
Colebrook–White, 91, 176, 188, 247, 251
compressibility, 2
concentration, 217, 343
continuity, equation of, 50, 120, 306, 311

two-dimensional flow, 265
contraction, coefficient of, 57, 61
Coriolis coefficient, 55, 187
corresponding speed, 255
cost–benefit analysis, 397
critical depth, 196
critical shear, 335
critical velocity, 196
culvert, 202, 237–239
curved surface, hydrostatic thrust, 15
curvilinear flow, 273

channel bend, 284
duct bend, 278–281
rotating cylinder, 281
siphon spillway, 282–283

Darcy–Weisbach equation, 90, 188
density, mass, 2

relative density, 2, 336
specific volume, 4
specific weight, 2

diffraction, 423–434
dimensional analysis, 247

Buckingham 𝜋 theorem, 249
corresponding speed, 255
dimensional forms, 248
Froude number, 249–262
model studies, 249, 257–259, 262
non-dimensional groups, 248
pipelines, 250
prototype, 247
rectangular weir, 254
Reynolds number, 248–249, 254, 256–257
rotodynamic pumps, 251–252, 260–262
similitude, 249
V-notch, 253, 256
Weber number, 249, 254, 256–257

discharge, 50
coefficient of, 59, 61, 371, 373
under varying head, 63, 289

discounted cash flow, 397
displacement thickness, 173
drag coefficient, 340

drag, flow over flat plate, 172
dunes, 335
dynamic similarity, 249

eddy viscosity, 52, 343
Einstein’s equation, 339, 342, 345
energy

equation for ideal fluid flow, 52
equation for real, incompressible flow, 54
gradient, 89, 188
kinetic, 54
potential, 54
pressure, 54
total, 54

energy dissipators, 376
energy equation, 52, 54, 89, 187, 195
energy losses

flowing fluid, 89, 198
pipes, 54, 89
sudden transitions, 57, 95

Engelund, 345
environment, 393
equilibrium

neutral, 18
relative, 22
stable, 18
unstable, 18

equipotential lines, 267
estuary models, 259
Euler’s equation of motion, 53

fall velocity, 339
Fenton and McKee, 412
fetch, 247, 418, 420
floating bodies

equilibrium of, 18
liquid ballast, 20
periodic time of oscillation, 20
stability of, 17

flood alleviation, 396
flood routing, 291, 299–301, 396
flow

channels, 187, 323
curvilinear, 273
dynamics of, 52
Eulerian description of, 47
gradually varied, steady, 198–200
gradually varied, unsteady, 289, 323
ideal, 52, 265
incompressible fluids in pipelines, 89–118
irrotational, 49
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kinematics of, 47
Lagrangian description of, 47
laminar, 51, 90, 92
measurement of, see flow measurement
non-uniform, 48
one dimensional, 49
pipe networks, 119–148
rapidly varied, steady, 195
rapidly varied, unsteady, see pressure

transients, waterhammer, surge
real, 54
rotational, 49
subcritical, 196
supercritical, 196
steady, 48, 195, 198–199
three dimensional, 49
turbulent, 51, 91–92
two dimensional, 49
uniform, 48
unsteady, 48, 287, 323

flow measurement, 58–68, 218–221, 227,
376

flow nets, 268, 270, 275, 279
flow regimes, 335
fluid

definition of, 1
flow concepts and measurements, see flow,

flow measurement
ideal, definition, 52
Newtonian, 1–2

fluid statics, 7
fluids in relative equilibrium, 22

effect of acceleration, 22–23
fluids, real and ideal, 52, 54, 265
force exerted by a jet on a flat plate, 77–78
force on pipe bend, 76
forced vortex, 274, 281
form drag, 337
free vortex, 274
friction factor

dependence on Reynolds number, 90–92
laminar flow, 90, 92
rough pipes, 91–94
smooth pipes, 90–92
turbulent flow, 90–94

friction losses in pipes, 89–90
Froude number, 196–197, 249–262, 323,

335

Garde, 345
Garde–Ranga Raju’s formula, 337

gas, definition of, 1
generalised logistic distribution, 395,

398–403
geometric similarity, 247
Goda’s index and formulae, 426
gradually varied flow, see flow
Graf, 345
grain resistance, 337
Gringorten, 394, 398, 402–403
group wave celerity, 414
Gumbel distribution, 394, 398, 402

Hagen–Poiseuille equation, 90, 247
Hardy-Cross, 120
head

potential or elevation, 54
pressure, 9, 54
varying, 63
velocity or kinetic, 54

HR Wallingford design chart, 93
hydraulic grade line, 89, 150
hydraulic jump, 196–198, 376–378
hydraulic radius, 90, 336
hydraulic structures, 371
hydrograph, 299–301, 396
hydrological cycle, 393
hydrology, 393
hydrostatic thrust (force)

curved surface, 15
plane surface, 11

ideal fluid flow, 52, 265
boundary conditions, 272
circulation, 267
combination of basic flow patterns, 269
curvilinear flow, 273, 281
equipotential lines, 267
flow nets, 268, 270, 275, 279
forced vortex, 274, 281
free vortex, 274
graphical methods, 275
Laplace equation, 270
line sink, 269
line source, 268
numerical methods, 270
pathline, 47, 265
radial velocity component, 266
siphon spillway, 282
stream function, 265, 267
streamlines, 47, 265
streamtube, 49, 265
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ideal fluid flow (Continued)
tangential velocity component, 266
uniform flow pattern, 268

impeller, 149, 260–262
incipient motion, 335
Iribarren number, 425
irrotational flow, 49, 265

JONSWAP wave spectrum, 418

Kalinske, 341, 344
Kármán–Prandtl equations, 91, 176
Kármán’s constant, 343
kinetic energy correction factor, 55

Lacey, 337
laminar boundary layer, 171
laminar flow, 51
laminar sub-layer, 176
Lane and Kalinske, 344
Laplace’s equation, 270
Laursen, 345
liquid, definition of, 1
logarithmic velocity distribution, 174
loose-boundary, 335
losses

in pipe fittings, 94
sudden contraction, 57
sudden enlargement, 57

Manning formula, 189, 193, 336, 396
manometer

differential, 10
inclined, 10
U-tube, 10

mass oscillations in pipelines
finite difference methods, 308
sudden discharge stoppage, 306–307
surge chamber operation, 305

meandering, 396
metacentre, 18
metacentric height, 18, 20
Meyer–Peter and Muller’s equation, 341
model studies, see dimensional analysis
model testing, see similitude
momentum

correction factor, 56
equation, 56, 77, 196

Moody diagram, 92
mouthpieces, 61

hydraulic coefficients of, 61
movability parameter, 339, 343–344

negative surge, 327
net positive suction head, 154
Newtonian fluid, 1–2
Newton’s law of motion, 56, 248
Newton’s law of viscosity, 2
Nikuradse, 91, 175–176
notches, 64

Bazin formula, 65
end contractions, 65
Francis formula, 65
rectangular, 64
Rehbock formula, 65
trapezoidal, 66
V or triangular, 65

ogee spillway, 67, 371–372
open channel flow (steady)

best hydraulic section, 191
channel design, 191
Chezy equation, 189, 208
Colebrook–White equation, 188
composite roughness, 189
compound section, 190, 210
conveyance of river and flood plain,

396
critical depth flume, 228
critical tractive force, 192–193, 337
Darcy–Weisbach equation, 188
economic section, 191
energy components, 195
energy principles, 195
flow measurement, 64–68, 218–221
gradually varied flow, 198–200
hydraulic jump, 196–198, 376–378
Manning formula, 189, 193, 336,

396
mobile boundary, 192
momentum equation, 196
part-full circular pipes, 194, 216
rapidly varied flow, 195
rigid boundary, 191
sewers, 194
spatially varied flow, 203
specific energy, 195
storm sewer, 194, 217
uniform flow, 187
uniform flow resistance, 188
velocity distribution, 207
venturi flume, 221, 228–229
wastewater sewer, 194, 215
water surface profile, 234–235
wetted perimeter, 191, 339
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open channel flow (unsteady)
celerity (wave), 323
dam break, 329
downstream positive surge, 326
gradually varied, 323
negative surge waves, 327
upstream positive surge, 325

orifice
hydraulic coefficients of, 61
large, 62
small, 60
submerged, 63
varying head, 63, 289

orifice meter, 58

particle Reynolds number, 340
Pascal’s law, 7
pathline, 47, 265
Pierson Moskowitz wave spectrum, 418
piezometer, 10
piezometric pressure head, 9
pipe networks, 119

effect of booster pump, 128–129
gradient method, 123
head balance method, 120
quantity balance method, 121

pipelines
Colebrook–White equation, 91, 176
Darcy–Weisbach equation, 90
effective roughness size, 90, 176
friction factor, 90
Hagen–Poiseuille equation, 90
incompressible steady flow resistance, 89
Kármán–Prandtl equations, 91, 176
laterally distributed outflow, 100
local losses, 94
Moody diagram, 92
Moody formula, 91
networks, see pipe networks
pipes in series, 98–100
resistance in non-circular sections, 94

pitot tube, 59
plane boundary, 315
Poiseuille, 90
Prandtl, 91, 174
pressure

absolute, 10
atmospheric, 9
centre of, 11–14
diagram, 14
distribution, 14
within a droplet, 3

gauge, 9
head, 9
hydrostatic pressure distribution, 9
measurement of, 9
piezometric pressure head, 9
at a point, 7–8
saturated vapour pressure, 3
stagnation, 59–60
vacuum, 9
vapour pressure, 2–3
variation with depth, 8

pressure transients in pipelines, 309
Allievi equations, 312
basic differential equations, 311
waterhammer, 309, 311
wave celerity, 309

probability, 394
project appraisal, 397
pumps

cavitation in, 153–154
characteristic curves, 151–152
efficiency, 151
impeller, 149, 260
manometric head, 150
manometric suction head, 154
net positive suction head, 154
parallel operation, 151, 160
in pipe network, 128–129
pipeline selection in pumping system, 158
power input, 151
pump–pipeline system, 150
rotodynamic types, 149
series operation, 152, 161
specific speed, 149
static lift, 150
system curve, 158
Thoma cavitation number, 154
variable speed, 153, 162

quasi-steady flow, 289

rainfall, 217, 393
Rayleigh distribution, 416
reflection, 427
refraction, 420–423
regime channel design, 337, 346

Blench’s approach, 348
Kennedy’s approach, 346
Lacey’s approach, 337, 347
non-scouring boundary, 350
Simons–Albertson’s method, 349
stable erodible boundary, 350
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Rehbock formula, 65
relative density, 2, 336
relative roughness, 90
reservoir routing, 291, 299–301
return period, 194, 394
Reynolds number, 52, 90, 249–262
Riemann, 313
rigid-bed channels

friction factors, 351–352
limit deposition, 350–352
sediment transport, 350

ripples, 335
river models, 257–258
rotational flow, 49, 265, 273
roughness, 90
Rouse’s distribution, 343
Runge–Kutta method, 240
runoff, 194, 217, 393

saltation, 340, 344
Schoklitsch’s equation, 341
sea level, 430–432
sediment, 194, 335
sediment transport, 335, 350, 396
self-cleansing velocity, 194, 216, 351
separation, 55
sewers, 187, 194, 350
shear Reynolds number, 335
shear stress, 1, 7, 89, 171, 192–193,

335
shear velocity, 174, 336
Shields criterion and diagram, 336
Shields transport equation, 341
side weir, 204
similitude, similarity, 247, 249

dynamic, 249
geometric, 249
laws for river models, 257–260
laws for rotodynamic machines,

260
laws for weirs and spillways, 262

sink, 269
sinuosity, 396
siphon, 75
sluice gate, 223–224
Snell’s law, 421–422
source, 269
spatially varied flow, 203, 375
specific energy, in channels, 195
specific speed, rotodynamic machines, 149,

261

specific volume, 4
specific weight, 2
spillway

cavitation, 373
effective spillway length, 373
gated spillway, 373
model, 262
negative pressures, 373
offset spillway, 373
ogee spillway, 67, 371–372
profile (ogee spillway), 372
self-aeration, 374
shaft (morning glory) spillway, 371
side channel spillway, 375
siphon spillway, 282–283

standing wave, 427
static lift, 150
steady flow energy equation, 53, 89
stilling basin, 376, 388–390
stream function, 265–266
streamline, 47, 265

patterns of, 52
streamtube, 49, 265
Strickler’s equation, 189, 336
surface tension, 248, 253, 259
surge, 305, 323–324, 430
surge chambers, 305–309
suspended load, 340, 343
sustainability, 393, 396
sustainable drainage systems, 396

Thames data, 395, 398–403
threshold, 335, 342
tidal modelling, 259
tidal period, 259, 431
tides, 431
time domain analysis, 415
time of concentration, 217
TMA spectrum, 419
Torricelli’s theorem, 60
total load, 340, 345
tractive force, 192–193
tsunami, 432–433, 437–438
turbine, 110, 112
turbulent flow, 51–52, 90–91

units
energy, 1
force, 1
power, 1
pressure, 7
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SI system, 1
work, 1

unsteady flow
negative surge wave, 327
open channels, 324
pipe flow, 289
positive surge wave, 325–326

vapour pressure, 2
velocity

angular, 23
approach, 65
average, 50
coefficient of, 61
components of, 47
distribution, 171–172, 174, 207
fluctuations of, 48
potential, 262
self-cleansing, 194, 216, 351
temporal mean, 48

vena contracta, 57, 61
venturi flume, 187–188, 221, 228–229
venturi meter, 58

coefficient of discharge, 59
viscosity, 2

dynamic, 2, 248
kinematic, 2, 248
Newton’s law of, 2

volume, specific, 4
vortex

forced, 45, 274, 281
free, 274

wash load, 340, 345
waterhammer, 309
wave breaking, 424–426
wave energy, 414
wave height, 410, 420
wave impact, 429
wavelength, 410–412
wave overtopping, 430
wave period, 410
wave propagation speed, 311, 411, 413
wave reflection, 313, 427
wave refraction, 420–423
wave run-up, 429
waves, 409, 420

irregular, 410, 414
linear, 410–411
non-linear, 410
regular, 410–411

wave set-down and set-up, 428
wave spectrum, 418–419
wave steepness, 426
Weber number, 249, 254
Weibull, 394
weirs

broad-crested, 227
Cipolletti, 66
De Marchi coefficient, 204
proportional or Sutro, 66
Rehbock formula, 65
side weir, 204
submergence of, 68

wetted perimeter, 89, 94, 191, 339
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