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1 Introduction

Computational electronic Structure Theory
Computational:

The ever growing field of Computational electronic structure theory combines theoretical physics and
chemistry, math and computer science. It forms an intersticial between theoretical and experimental
physics and chemistry, gaining more and more recognition as a discipline of its own. It conqueres
the challenges that arise from the availability of faster and novel computer hardware (e.g. massively
paralell systems, GPU, ...).

Electronic structure:
The electrons are the ’glue’ that keeps matter together. They determine shape and color of all things
that surround us. On the atomic level they determine the molecular and crystal structure. On the
level of transport properties conductivity, heat, capacity, phase diagrams and reactivity are due to
electronic interactions.
We distinguish between ground state properties, e.g. atomic structure, forces, reaction barriers and
exited states which give rise to spectroscopic properties and the response of the system to external
pertubations.

Theory:
It is extremly non-trivial to find a theory from firts principle, a theory that does not need additional
parameters, to describe the electronic problem. The field is under constant and active development.
challenging current research topics include the incorporation of finite temperatures, bond breaking
and making, high Tc superconductivity. Of special interest are strong correlations because strong
electron-electron interactions are not described by an effective medium.
The overall goal is to have a theory that accurately and reliably predicts material properties from
first principles (and therefore has to be parameter free!).
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2 The Schrödinger Equation

For a system of electrons and nuclei the non-relativistic time-independent Schödinger equation is:

HΨ = EΨ (2.1)

where the Hamiltonian is:

H =−
N∑

i=1

1

2
∇2
i +

N∑

i=1

M∑

j>i

1

|ri − rj |
−

N∑

i=1

M∑

a=1

Za
|ri −Ra|

︸ ︷︷ ︸
Helec

(2.2)

−
M∑

a=1

1

2Ma
∇2
a +

M∑

a=1

M∑

b>a

ZaZb
|Ra −Rb|

(2.3)

ri : position of the electrons

Ra : position of the nuclei

Za : charge of the nuclei

and we have used atomic units:

me = e = ~ =
1

4πǫ0
= 1

The energy is given in Hartree.
[Ha] = 27.211 eV

It can be solved for some simple systems:

• hydrogen atom (Laguerre polynomials)

• harmonic oscillator (Hermite polynoials)

• particel in a box

In general we have to deal with many electrons (Nelec ∼ 1023 (!) in solids). To demonstrate the sheer
complexity of a naive attempt of an exact solution of equation 2.2 let us consider a Silicon atom. Simply
wanting to store the wavefunction on a grid with only 10 points in each dimensions produces a grid with
103N=1042 points. Assuming 128-bit double precision complex numbers, each sample point requires 16
bytes of storage, which gives approx 1043 bytes of data. A regular blu-ray disc holds about 50 GB and we
would therefore need ∼1032 disks – an astronomical amount. In fact, if each disk case was a centimeter
thick the stack of disks would cover the distance from the earth to the moon ∼1021 times!

We have to find approximations!

Different frameworks lead to different approaches that lead themselves to different approximations that
work for different systems amd circumstances.
In general:

1. wavefunction (Ψ) based:

• Quantum chemistry (finite systems): Hartree Fock pertubation theory (e. g. MP2), coupled
cluster

• Quantum Monte Carlo (finite, periodic): variational MC, diffusion MC
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2 The Schrödinger Equation

2. Density based (n(r))

• Density-funtional theory (finite, periodic)

- many exchange-correlation funtionals

- exact limit not easily attainable

- fast approximations

3. Green’s function based (G (r, r’, ω))

• many-body pertubation theory (finite, periodic): GW, T-Matrix, BSE, FLEX, ...

• DFT+Dynamic Mean Field Theory (DMFT) (periodic, strongly correlated)

4. Density matrix (n(r, r’) = G (r, r’, t = 0)) , not covered in this lecture

• density matrix functional theory

• few xc approximations, little explored

2.1 Born-Oppenheimer Approximation

Since the nuclei are much havier than electrons they move much slower. Therefore the potential feld by
the electrons, caused by the nuclei, can be approximated by the field of fixed nuclei. The kinetic energy
of the nuclei is thereby neclected and the repulsion between nuclei becomes a constant. The remaining
Hamiltonian is Helec (2.2), which describes the motion of N electrons in the field of M point charges.
The electronic Hamiltonia can be solved by:

HelecΨelec = EelecΨelec (2.4)

with the electronic wave function:
Ψelec = Ψelec ({ri} , {Ra}) (2.5)

which depends on:

{ri} explicitlly

{Ra} parametrically

Additionally the total energy depends as well parametrically on positions of the nuclei.

Eelec = Eelec ({Ra}) (2.6)

The total energy for fixed nuclei is:

Etot = Eelec +

M∑

a=1

M∑

b>a

ZaZb
|Ra −Rb|

(2.7)

This is the electronic problrem we are interested in!
Now we can reverse the argument and solve the problem for nuclei moving in an effective potential of
the electrons. Since the electrons move much faster we can replace the electronic coordinates by average
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2 The Schrödinger Equation

values, which are averaged over electronic wavefunctions.

Hnucl =−
M∑

a=1

1

2Ma
∇2
a +

M∑

a=1

M∑

b>a

ZaZb
|Ra −Rb|

+

〈
−

N∑

i=1

1

2
∇2
i +

N∑

i=1

M∑

j>i

1

|ri − rj |
−

N∑

i=1

M∑

a=1

Za
|ri −Ra|

〉

=−
M∑

a=1

1

2Ma
∇2
a +

M∑

a=1

M∑

b>a

ZaZb
|Ra −Rb|

+ Eelec ({Ra})

Hnucl =−
M∑

a=1

1

2Ma
∇2
a + Etot ({Ra}) (2.8)

The total energy of the electrones provides a potential energy surface for the motion of the nuclei.
Forces can be calculated by the derivative of the total energy with respect to the coordinates of the nuclei.

Figure 2.1: Potential energy surface

F ∼ dEtot
dRi

(2.9)

HnuclΨnucl = EΨnucl = EΨnucl ({Ra}) (2.10)

Ψnucl ({Ra}) describes the vibrations, rotations and translations of a system.

Ψ ({ri} , {Ra}) = Ψelec ({ri} , {Ra})Ψnucl ({Ra}) (2.11)

is the full wave function of the system.
The adiabatic approximation fails for system where non-adiabatic effects, e.g. electron-phonon coupling,
are import. The describtion of superconductivity is not possible in this context. The Born-Oppenheimer
approximation also fails in cases where more than one energy landscape is present (molecule approaching
surface).

The central goal of this lecture is to solve the electronic problem

HelecΨelec = EelecΨelec

which is given in (2.2).
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2 The Schrödinger Equation

2.2 Antisymmetry or Pauli Exclusion Principle

Electrons are Fermions and therefore carry a spin. The Schrödinger equation is not explicitly spin depent.
We therefore have to introduce spin functions in spin variable σ.

↑ : α (σ)

↓ : β (σ)

These have to be complete and orthorgonal (for convenience).

∫
dσα∗ (σ)α (σ) =

∫
dσβ∗ (σ) β (σ) = 1

∫
dσα∗ (σ)β (σ) =

∫
dσβ∗ (σ)α (σ) = 0 (2.12)

The electrons are described by a collective coordinate:

x {r, σ} , (2.13)

the wave function is:
Ψ = ({xi}) . (2.14)

Antisymmetry:

A many-electron wave function must be antisymmetric with respect to the interchange of the
coordinate x of any two electrons.

Ψ (x1, . . . ,xi, . . . ,xj , . . . ,xN ) = Ψ (x1, . . . ,xj , . . . ,xi, . . . ,xN ) (2.15)

(Generalization of the Pauli exclusion principle)
The many electron wavefuntion must satisfy:

1. The Schrodinger equation

2. Be antisymmetric.
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3 Wave function based approaches

Let us imagine we only had one electron or we could postulate an effective electron-electron interaction
that describes the effect of all other electrons in an average way.

Figure 3.1: Effective electron-electron interaction

H =−
N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

a=1

Za
|ri −Ra|

︸ ︷︷ ︸
∑

i h
0(i)(one electron)

+

N∑

i=1

M∑

j>i

1

|ri − rj |
︸ ︷︷ ︸

couples all electrons⇒makes life difficult

3.1 Hartree theory

In quantum mechanics we have the wave-particle duality; namely the notion that the electron’s position
in space is given by a probability distribuntion.

n(r) = |ψ(r)|2 (3.1)

we call ψ(r) the spatial orbital or wave function for the electron

|ψ(r)|2 dr3 (3.2)

is then the probability of finding the electron in the small volume element dr. Combinded with its spin
we can define spin orbitals:

ϕ(r) =





ψ(r)α(σ)

or

ψ(r)β(σ)

(3.3)

To make progress we next consider a system of N non-interacting electrons having a Hamiltonian:

HNI =

N∑

i=1

h(i) (3.4)

h(i) will general include the kinetic and potential energy of electron i, but may also contain an effective
electron-electron interaction.
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3 Wave function based approaches

Each operator h(i) will have a set of eigenfunctions that we take to be a set of spin orbitals.

h(i)ϕj (xi) = ǫjϕj (xi) (3.5)

which are orthorgonal for convenience:

∫
dxϕi (x)ϕj (x) = δij (3.6)

What is the corresponding eigenfunction of H then?
Answer:

a product of the spin orbitals

ΨHP (x1, . . . ,xN ) = ϕi (x1)ϕj (x2) . . . ϕk (xN) (3.7)

The eigenvalue of
HNIΨNI = EΨNI (3.8)

is simply the sum of eigenvalues, because h(i) only acts on the orbital with corresponding coordinate xi:

E = ǫi + ǫj + . . .+ ǫk (3.9)

The eigenfunction ΨHP is alos called a Hartree product and is an example for an uncorrected wavefunction,
because the probability of finding electron 1 in dx1, electron 2 in dx2, etc., is simply the product of
probabilities:

|ϕi (x1)|2 |dx1ϕj (x2)|2 dx2 . . . |ϕk (xN )|2 dxN (3.10)

or, if we view this differently we have factorized the wave function; a concept that is recurring throughout
physics.
So if we forget for now that ΨHP does not obey the antisymmetry principle we could make the ansatz:

HΨHP = EΨHP

and ask, which single particle orbitals minimize the energy under the constraint that the orbitals are
normalized.

=⇒ Lagrangian: L [Ψ] = E [Ψ]−
∑

i

ǫi

∫
dxϕ∗

i (x)ϕi (x)

The energy is given by

E [Ψ] =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 = 〈Ψ|H |Ψ〉

because ΨHP is normalized.
We already know that:

〈ΨHP |h(i)|ΨHP 〉 = 〈ϕi|h(i)|ϕi〉
For the Coulomb potential we get:

〈
ΨHP

∣∣∣∣
1

|ri − rj |

∣∣∣∣Ψ
HP

〉
=

∫
dxi . . . dxNϕ

∗
n (x1) . . . ϕ

∗
k (xN )

1

|ri − rj |
ϕn (x1) . . . ϕk (xN )

=

∫
dxidxj

ϕ∗
l (xi)ϕ

∗
m (xj)ϕn (xi)ϕl (xj)

|ri − rj |

=⇒ All other combinations of ϕk integrate out

=⇒ l and m are the occupied orbitals
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3 Wave function based approaches

〈
ΨHP

∣∣∣∣∣∣

N∑

i

N∑

j>i

1

|r− r′|

∣∣∣∣∣∣
ΨHP

〉
=

N∑

i

N∑

j>i

∫
dxdx′ϕ

∗
i (x)ϕ

∗
j (x

′)ϕi (x)ϕj (x′)

|r− r′| (3.11)

Now our Lagrangian reads:

L [Φ] =

N∑

i

∫
dxiϕi (xi)h (xi)ϕi (xi) =

N∑

i

N∑

j>i

∫
dxdx′ϕ

∗
i (x)ϕ

∗
j (x

′)ϕi (x)ϕj (x′)

|r− r′|

−
N∑

i

ǫi

∫
dxϕ∗

i (x)ϕi (x)

doing the varition with respect to ϕ∗
i and demanding:

δL

δϕ∗
i

= 0 ∀i

gives:

0 = h (xi)ϕi (xi)+

N∑

j>i

∫
dx′ϕ

∗
i (x)ϕj (x

′)

|r− r′| ϕi (x)

︸ ︷︷ ︸
=

−
N∑

i

ǫiϕi (x)

∫
dx′

N∑

j

ϕ∗
i (x)ϕi (x

′)

|r− r′| ϕi (x)−
∫

dx′ϕ
∗
i (x)ϕi (x

′)

|r− r′| ϕi (x)

=
∫

dr′
n (r′)

|r− r′|ϕi (x)︸ ︷︷ ︸
=

−
∫

dr′
|ϕi (r′)|2
|r− r′| ϕi (x)

VH (r)ϕi (x) .

[h (r) + VH (r)]ψi (r)−
∫

dr′
|ψi (r)|2
|r− r′| ψi (r) = ǫψi (r) (3.12)

are the Hartree equations.
A few points to note:

• VH , the Hartree potential depends on the electron density: VH = VH (n (r) , r) and the density
depends on the orbitals. Therefore the Hartree equations have to be solved self-consostently.

• The sum in VH runs over all electrons and therefore contains the interaction of an electron with
itself. This is removed exactly by the 2nd, orbital dependent term.

• h (r) and VH (r) are the same for all i electrons but the self-interaction correction introduces an
orbital specific dependence.

• The Hartree potential is the classic electrostatic potential of a charge distribution, it is positive and
therefore repulsive, e.g. for the hydrogen 1s function:

ψ1s (r) =
1√
π
e−r

we get

VH(r) =
1

r

(
1− (1 + r)e−2r

)
,

which looks like:
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3 Wave function based approaches

Figure 3.2: Hartree potential

It is repulsive and delocalizes the electrons.

• The Hartree potential largely counteracts the external potential:

−
N∑

i

M∑

a=1

Za
|ri −Ra|

= −
∑

i

∫
dR

nn (R)

|ri −R|︸ ︷︷ ︸
Vext(ri)

=⇒ Vext (r) + VH (ri) =

∫
dr′

n (r′)− nn (
′)

|r− r′| =

∫
dr′

δn (r′)

|r− r′|

3.2 Hartree and Hartree Fock

ΨHP is an eigenfunction of the many-electron Schrodinger equation, but it does not satisfy the antisym-
metry requirement.
As is easily seen:

ΨHP (x1, . . . ,xi, . . . ,xj , . . . ,xN ) = ΨHP (x1, . . . ,xj , . . . ,xi, . . . ,xN ) (3.13)

Considering the two-electron case - the hydrogen molecule:

Figure 3.3: Two electron case

ΨHP12 (x1,x2) = ϕi (x1)ϕj (x2)

ΨHP21 (x1,x2) = ϕi (x2)ϕj (x1)

9



3 Wave function based approaches

The two wavefunctions clearly distinguish the electrons.
Indistinguishable and antisymmetric:

Ψ (x1,x2) =
1√
2
[ϕi (x1)

a
ϕj (x2)

d

−
−
ϕi (x2)

c
ϕj (x1)

b

] (3.14)

This is mathematically equivalent to a determinat:

A =

(
a b
c d

)
detA =

∣∣∣∣
a b
c d

∣∣∣∣ = ad− cb

Ψ(x1,x2) =
1√
2

∣∣∣∣
ϕi (x1) ϕj (x1)
ϕi (x2) ϕj (x2)

∣∣∣∣ ↑ electrons

−−−−−→
orbitals

or in general

ΨSD (x1, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

ϕi (x1) ϕj (x1) . . . ϕk (x1)
ϕi (x2) ϕj (x2) . . . ϕk (x2)

...
...

...
ϕi (xN ) ϕj (xN ) . . . ϕk (xN )

∣∣∣∣∣∣∣∣∣
(3.15)

and is commonly called a Slater determinant.
Next we will approximate the many-electron wave function by a single slater determinat and use the
variational principle to determine the spin orbitals that minimize the grounnd state energy.
This gives the Hartree-Fock method/approach.
First we need the energy for a Slater determinant (SD):

E =
〈ΨSD|H |ΨSD〉
〈ΨSD|ΨSD〉 = 〈ΨSD|H |ΨSD〉 =⇒ ΨSD is normalized

As we have seen Helec has two distinct parts:

Helec =
∑

i

h(i)−
N∑

i

N∑

j>i

1

|ri − rj |
(3.16)

We therefore need to evaluate two different contributions:

〈ΨSD|h(i)|ΨSD〉

〈ΨSD| 1

|ri − rj |
|ΨSD〉

For simplicity this will be illustrated for the two-electron example:

∫
dx1dx2

1√
2
[ϕi (x1)ϕj (x2)− ϕi (x2)ϕj (x1)]h(1)[ϕi (x1)ϕj (x2)− ϕi (x2)ϕj (x1)]

=

∫
dx1dx2

1√
2
[ϕi (x1)ϕj (x2) h(1)ϕi (x1)ϕj (x2)− ϕi (x1)ϕj (x2)h(1)ϕi (x2)ϕj (x1)

+ ϕi (x2)ϕj (x1)h(1)ϕi (x2)ϕj (x1)− ϕi (x2)ϕj (x1) h(1)ϕi (x1)ϕj (x2)]

After integrating over x2:

∫
dx1

1√
2
[ϕi (x1)h(1)ϕi (x1)− ϕj (x1)h(1)ϕj (x1)]

10



3 Wave function based approaches

h(2) yields an identical result.

=⇒ 〈ΨSD|
∑

i

h(i)|ΨSD〉 =
∑

i

〈ϕi (x1) |h(i)|ϕi (x1)〉

This is the same result we obtained in the derivation of the Hartree approximation. The general proof can
be found in Szabo and Ostlund (and might be given as an appendix).
For the Coulomb operator we again consider two electrons first:

ΨSD2−e =
1√
2
[ϕi (x1)ϕj (x2)− ϕi (x2)ϕj (x1)]

∫ ∫
dx1dx2

1

2

[
ϕ∗
i (x1)ϕ

∗
j (x2)− ϕ∗

i (x2)ϕ
∗
j (x1)

] 1

|ri − rj |
∗ [ϕi (x1)ϕj (x2)− ϕi (x2)ϕj (x1)]

=

∫ ∫
dx1dx2

1

2

1

|ri − rj |
∗[ a) ϕi (x1)ϕj (x2)ϕi (x1)ϕj (x2) 12 12

b) +ϕi (x2)ϕj (x1)ϕi (x2)ϕj (x1) 21 21
c) −ϕi (x1)ϕj (x2)ϕi (x2)ϕj (x1) 12 21
d) −ϕi (x2)ϕj (x1)ϕi (x1)ϕj (x2)] 21 12

↓
i

↓
j

↓
i

↓
j

• down the columns (↓) always the same orbitals

• across (→) filled by different combinations

However,this is not the most convenient way of writing it. So let’s reorder each term so that we have a
different integration order.

x1 x2 x1 x2

a) i j i j

b) j i j i

c) i j j i

d) j i i j

We obtain the same pattern, but now in the orbital indicies.
If we define:

〈ij|kl〉 =
∫

dxdx′ϕi (x)ϕj (x
′)

1

|r− r′|ϕk (x)ϕl (x
′) (3.17)

then the matrix element for the Coulomb operater becomes:
〈
ΨSD


1

|ri − rj |

ΨSD
〉

=
1

2
[〈ij|ij〉+ 〈ji|ji〉] + 1

2
[〈ij|ji〉+ 〈ji|ij〉]

or in general with:

V ee =

N∑

i

N∑

j>i

1

|ri − rj |

〈
ΨSD |V ee|ΨSD

〉
=

1

2

N∑

m

N∑

n6=m
〈mn|mn〉︸ ︷︷ ︸

(1)

−〈mn|nm〉︸ ︷︷ ︸
(2)

11



3 Wave function based approaches

(1) As we will see, this will again give rise to the Hartree potential

(2) This term is new and gives exchange because indices are exchanged

=⇒ The energy of a single Slater determinant:

EHF =
〈
ΨSD |Helec|ΨSD

〉
=

N∑

n

〈n|h|n〉+ 1

2

N∑

nm

〈mn|mn〉 − 〈mn|nm〉

with

〈n|h|n〉 =
∫

dxϕ∗
n (x)h(x)ϕn (x)

Now we make one important observation:

Altough we have a many electron wave-function and a many electron hamiltonian we can write the
energy of a Slater determinat in terms of 1 and 2 electron integrals only.

=⇒ This of course follows from the fact that the Coulomb potential is a two-electron operator!

=⇒ As we will see later: This is one of the key foundations of quantum chemistry

To find the minimum of the Hartree-Fock energy we again define a Lagrangian:

L
[
ΨSD

]
= E

[
ΨSD

]
−

N∑

m

ǫm

∫
dxϕ∗

m (x)ϕm (x)

=

N∑

m

∫
dxϕ∗

m (x)h(x)ϕm (x)−
N∑

m

ǫm

∫
dxϕ∗

m (x)ϕm (x)

+

N∑

m

N∑

n6=m

∫
dxdx′

[
ϕ∗
m (x)ϕ∗

n (x
′)ϕm (x)ϕn (x

′)

|r− r′| − ϕ∗
m (x)ϕ∗

n (x
′)ϕn (x)ϕm (x′)

|r− r′|

]
(3.18)

• ϕ∗
m shows up twice in (3.18) =⇒ cancels factor of 2

and in analogy:
δL

δϕ∗
i

= 0 ∀i

=⇒ h(x)ϕm (x)+

N∑

n6=m

∫
dx′



ϕ∗
n (x

′)ϕm (x)ϕn (x
′)

|r− r′|︸ ︷︷ ︸
=

−ϕ
∗
n (x

′)ϕn (x)ϕm (x′)

|r− r′|


 = ǫmϕm (x)

VH (x)

∫
dx′ϕ

∗
m (x′)ϕm (x)ϕm (x′)

|r− r′|

=⇒ [h(x) + VH (x)]ϕm (x)−
N∑

n

∫
dx′ϕ

∗
n (x

′)ϕn (x)

|r− r′|
︸ ︷︷ ︸

Fock Operator f̂

ϕm (x′) = ǫmϕm (x) (3.19)

12



3 Wave function based approaches

To rewrite equation (3.19) in a more convenient form we apply from the left
∑
m

∫
dxϕ∗

m (x):

∑

m

ǫm =
∑

m

∫
dxϕ∗

m (x) [h(x) + VH (x)]ϕm (x)−
N∑

nm

∫
dxdx′ϕ

∗
m (x′)ϕ∗

n (x
′)ϕn (x)

|r− r′| ϕm (x′)

=

N∑

n

〈n|h|n〉+
N∑

nm

〈mn|mn〉 − 〈mn|nm〉

= EHF =
1

2

N∑

nm

〈mn|mn〉 − 〈mn|nm〉

EHF =
∑

m

ǫm − 1

2

N∑

nm

〈mn|mn〉 − 〈mn|nm〉
︸ ︷︷ ︸

(∗)

(3.20)

(∗) cancels double counting of Coulomb repulsion and exchange in the sum of eigenvalues (which counts
interaction i↔ j once for i and a 2nd time for j)

we define the density matrix:

n (x,x′) =
N∑

n

ϕ∗
n (x)ϕn (x

′) (3.21)

(note: the diagonal of the the density matrix is the density)
We also define the non-local potential:

ΣHF (x,x′) = −n (x,x
′)

|r− r′| (3.22)

=⇒ [h(x) + VH (x)]ϕm (x) +

∫
dx′ΣHF (x,x′)ϕm (x′) = ǫmϕm (x) (3.23)

Often this equation is also written like this:

h(x)ϕm (x) +

∫
dx′V HF (x,x′)ϕm (x′) = ǫmϕm (x)

↓ ↓
independent of {ϕi (x)} dependent of {ϕi (x)}

f̂ = ĥ+ V̂ HF is the Fock operator (3.24)

• The Fock-operator is an effective one electron operator

• It replaces the many-body Schrodinger equation by a set of one electron equations, where each
electron moves in an effective field, also called mean-field

• The mean-field is an important concept because it allows us to seperate the many-electron problem
into one-electron problems:

13



3 Wave function based approaches

Figure 3.4: Effective Potential

• The wave-function of electron m does no longer explicitly depend on that of all other electrons only
implicitly through VHF

• In fact, it is actually possible to speak of one-electron wavefunctions or orbitals, which is not really
possible for the full many-body wave-function Ψ (x1,x2,x3, . . . ,xN ).

• The Fock operator has two parts

f̂ = ĥ + V̂ HF

↓ ↓
{ϕi (x)} -independent {ϕi (x)} -dependent

=⇒It has to be solved self-consistently.

V HF is called the self-consistent-field (scf) in which the electrons move.

1. Start with an initial guess for {ϕi}

2. Calculate n (x), n (x,x′) and V HF (x)

3. Solve the HF equations (3.19) for a new set of {ϕi}

4. Check for convergence (is n (x), n (x,x′) or the total energy the same, within a given tolerance,
as in the previous iteration.

- If not: repeat calculaion (go to 1.)

- If yes: finished

• VH (x)ϕm (x) =

∫
dx′

∑

n

ϕ∗
n (x

′)ϕn (x′)

|r− r′| ϕm (x)

•
∫

dx′Σ (x,x′)ϕm (x) =

∫
dx′

∑

n

ϕ∗
n (x

′)ϕm (x′)

|r− r′| ϕn (x)

ϕn, ϕm have been exchanged =⇒ arises from antisymmetry, Σ is called the exchange operator

Hartree Theory VH : Coulomb
Hartree-Fock Theory: Coulomb and echange
Befor we proceed to an expression of the Hartree-Fock equation that one would solve in the computer let’s
have a different look at the Coulomb and exchange terms.

14



3 Wave function based approaches

3.2.1 Closed shell Hartree Fock

Let’s consider a system with an even number of electrons and this scenario:

Figure 3.5: Closed Shell

The spatial orbitals are restricted to be the same for spin ↑ and ↓.
=⇒ we can pair up orbitals:

ϕ1 (x) = ψ1 (r)α (ω) = ψ1 (x)

ϕ2 (x) = ψ1 (r)β (ω) = ψ̄1 (x)

=⇒The Slater Determinat of ϕ1, ϕ2, . . . , ϕN becomes a Slater determinant of the functions ψ1, ψ̄1, ψ2, ψ̄2, . . . , ψN/2,
and the energy:

E =
N∑

n

〈n|h|n〉+ 1

2

N∑

n

N∑

n6=m
〈mn|mn〉 − 〈mn|nm〉

=

N∑

n

〈n|h|n〉+ 1

2

N∑

n

N∑

m

〈mn|mn〉 − 〈mn|nm〉

=

N/2∑

n

〈n|h|n〉+
N/2∑

n

〈n̄|h|n̄〉+ 1

2

N∑

n

N∑

m

〈mn|mn〉 − 〈mn|nm〉

↓
∫

drdσψ∗
n (r)α

∗ (σ) h (r)ψn (r)α (σ) =

∫
drdσψ∗

n (r)β
∗ (σ) h (r)ψn (r)β (σ)

=

∫
drψ∗

n (r) h (r)ψn (r) = (n|h|n) = hnn
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= 2

N/2∑

n

(n|h|n) + 1

2

N∑

n

N∑

m

〈mn|mn〉 − 〈mn|nm〉

N/2∑

m

N/2∑

n

ϕmϕn =

N/2∑

m

(ϕm + ϕ̄m)

N/2∑

n

(ϕn + ϕ̄n)

=

N/2∑

m

N/2∑

n

ϕmϕn + ϕmϕ̄n + ϕ̄mϕn + ϕ̄mϕ̄n

= 2

N/2∑

n

(n|h|n) + 1

2

N/2∑

n

N/2∑

m

〈mn|mn〉 − 〈mn|nm〉

+ 〈mn̄|mn̄〉 − 〈mn̄|n̄m〉
+ 〈m̄n|m̄n〉 − 〈m̄n|nm̄〉
+ 〈m̄n̄|m̄n̄〉 − 〈m̄n̄|n̄m̄〉

σσ′σσ′ σσ′σσ′
∫

dσdσ′ . . .

For these integrals to be non-zero the 1st and 3rd position and the 2nd and 4th position have to both have
a bar or non.

=⇒with (mn|kl) =
∫
drdr′

ψ∗

m(r)ψ∗

n(r
′)ψk(r)ψl(r′)

|r−r′|

E = 2

N/2∑

n

(n|h|n) +
N/2∑

nm

2 (mn|mn)︸ ︷︷ ︸
Jmn

− (mn|nm)︸ ︷︷ ︸
Kmn

(3.25)

Jmn =

∫
drdr′

ψ∗
m (r)ψ∗

n (r
′)ψm (r)ψn (r

′)

|r− r′| =

∫
drdr′

|ψm (r)|2 |ψn (r′)|2
|r− r′| (3.26)

The Coulomb integral Jmn is the classical Coulomb repulsion between two charge distributions |ψm (r′)|2
and |ψn (r′)|2

Kmn =

∫
drdr′

ψ∗
m (r)ψ∗

n (r
′)ψn (r)ψm (r′)

|r− r′| (3.27)

The exchange integral Kmn has no classical analog.

3.2.2 Hartree Fock in real-space

The Hartree Fock Self Consistent Field Equation in real-space follows either from the expression for EHF

by minimizing the Lagrangian or by integrating out the spin in the spin-dependent HF-equations:

f (r)ψm (r) = [h (r) + VH (r)]ψm (r) +

∫
dr′

N/2∑

n

ψn (r)ψ
∗
n (r

′)

|r− r′| ψm (r′)

︸ ︷︷ ︸∫
dr′Σ (r, r′)ψm (r′)

= ǫmψm (r) (3.28)

The kinetic energy can be written as high order finite difference expansion on a grid (see fig. (3.6)).

∇2
xψ =

M∑

n=−M
Cnψ (xi + nh, yj , zk) +O(h2N+2) (3.29)

For further information see G.D. Smith - Numerical solutions of Partial Differential Equations, Finite
Difference Methods, Oxford University Pree, new York, 1978.
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Figure 3.6: Integration grid

With this expansion for the kinetic energy the Hartree fock equations could be solved on a grid with
suitable quadratures for the integrals.
However, the pproblem are the core states!
Take e.g.a 1s state (fig. (3.7)): It is tightly bound to the nucleus and many grid points are required to
resolve the wavefunctions near the nucleus.

Figure 3.7: 1s state radial function.

17
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Figure 3.8: 3s state radial function.

Even a 3s state (fig. (3.8)) has rapid oscillations in the core region to satisfy orthogonality.

3.2.3 Hartree Fock in a basis

Solution to this problem:

• Introduce a basis

• build the rapid ocillations in the core region into the basis e.g. basis functions could be orbitals of
free atoms

Without specifying the type of basis functions yet we introduce a set of K-many basis functions.

{φµ (r) , µ = 1 . . .K} (3.30)

The molecular orbitals can then be expanded in this basis:

ψi (r) =

K∑

µ=1

Cµiφµ (r) (3.31)

• If {φµ} was complete this would be an exact expansion

• In general {φµ} is not complete

Inserting the expansion into the Hartree Fock equation (3.19).

f̂ψi = ǫiψi

with
f = F (r, r′) = h (r) δ (r− r′) + V HF (r, r′)

we obtain ∫
dr′F (r, r′)

K∑

µ

Cµiφµ (r
′) = ǫi

K∑

µ

Cµiφµ (r) (3.32)
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Acting with
∫
drφ∗ν (r) from the left yields:

K∑

µ

Cµi

∫
drdr′φ∗νF (r, r′)φµ (r

′)
︸ ︷︷ ︸

Fνµ

= ǫi

K∑

µ

Cµi

∫
drφ∗ν (r)φµ (r)

︸ ︷︷ ︸
Sνµ

(3.33)

Overlap matrix Sνµ: Basis functions are in general not orthonormal

=⇒
K∑

µ

FνµCµi = ǫ

K∑

µ

SνµCµi (3.34)

• We have transformed the Hartree Fock equations for single particle states to a Hartree Fock equation
for the expansion coefficients

This can be written in matrix form.
FC = SCǫ (3.35)

Where C is a K ×K square matrix of the expansion coefficents and ǫ a diagonal matrix of singe particle
energies.

ǫ =




ǫ1 0
ǫ2

. . .

0 ǫK


 (3.36)

Note that equation (3.35) produces only as many eigenvalues as there are basis functions, i.e. K-many.
=⇒ K-many basis functions can only expand K-many single particle states.
Equation (3.35) is the Roothan equation, which is central to quatum chemistry.
We have moved form:

HelecΨelec = EelecΨelec

to the Roothan equation:
FC = SCǫ

in two steps:

• Single determinat approximation (conceptual or physical approximation)

• Introduction of a basis (expansion of wavefunctions) (practical or computational approximation)

To solve Roothaan’s equations all that is left to do is to derive equations for F in the basis and for a given
basis term this into equations that can be implemented.

F (r, r′) =h (r) + vH (r) + Σ (r, r′) (3.37)

↓
(ν|h|µ)

The density:

n (r) = 2

N/2∑

i

|ψi (r)|2 =

N/2∑

i

ψ∗
i (r)ψi (r)

= 2

N/2∑

i

∑

ν

C∗
νiφ

∗
ν (r)

∑

µ

C∗
µiφ

∗
µ (r)

=
∑

µν

∑

i

2CνiCµi

︸ ︷︷ ︸
Pµν - density matrix

φ∗ν (r)φµ (r)

=
∑

µν

Pµνφ
∗
ν (r)φµ (r)
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The Hatree potential:

V Hµν =

∫
drφ∗ν (r) vH (r)φµ (r) =

∫
drdr′φ∗ν (r)

n (r)
′

|r− r′|φµ (r)

=
∑

nm

Pnm

∫
drdr′

φ∗ν (r)φ
∗
n (r

′)φm (r′)φµ (r)

|r− r′|

=
∑

nm

Pnm(νn|µm)

The exchange operator:

Σµν =

∫
drdr′φ∗ν (r)Σ (r, r′)φµ (r

′)

=

∫
drdr′φ∗ν (r)

N/2∑

i

ψi (r)ψ
∗
i (r

′)

|r− r′| φmu (r
′)

=

∫
drdr′φ∗ν (r)

∑

nm

N/2∑

i

C∗
niCmi

︸ ︷︷ ︸
1
2Pnm

φm (r)ψ∗
n (r

′)

|r− r′| φmu (r
′)

= −1

2
Pnm(νn|mµ)

=⇒ Fνµ = hνµ︸︷︷︸
independent on P

+
∑

nm

[
(νn|µm)− 1

2
(νn|mµ)

]

︸ ︷︷ ︸
dependent on P

(3.38)

The Roothaan equations are non-linear.

F = F (P) = F (C)

F (C)C = SCǫ

Iterative or self-consistent solution of the Roothaan equation:

1. Choose a basis

2. Calculate the integrals Σµν , hµν , (νn|µm)

3. Initialize Pnm

4. Compute Fµν

5. Solve the Roothaan equations =⇒ New coefficients Cνi =⇒ new Pnm
Repeat steps 4 and 5 until Pnm does not change anymore.

Scaling:
For an atom centered basis it is easy to see that our basis {φµ} grows liniear with the number of atoms N.

=⇒ N4 many integrals (νn|µm) are required

=⇒ Computation of Fµν requires N4 operations if no further tricks and reductions are employed

=⇒ The formal scaling of Hartree Fock is N4
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Figure 3.9: Gaussian

One solution, a fast basis:
Gauss orbital (or Gaussians)

ψnγ (r) = Anxnynzx
nxynyznze−γr

2

Kartesian Gaussians (fig. 3.9) (3.39)

with nx + ny + nz = L we obtain the familiar functions from spherical symmetry (tab. (3.1)).
Atom centered Gaussisans:

φanγ (r) = φnγ (r−Ra) with Ra the position of atom a (3.40)

Important properties:

• Fourier transformation of a Gaussian is also a Gaussian

e−γr
2 FT−−→

√
π

γ
e−

π2

γ k2 (3.41)

=⇒ benefitial for solid state calculations

L # orbital type nx ny nz φnγ

(
x
(
2γ
π

)3/4
e−γr

2
)

0 1 s 0 0 0 1
1 2 px 1 0 0 2

√
γx

3 py 0 1 0 2
√
γy

4 pz 0 0 1 2
√
γz

2 5 dxz 1 0 1 4γxz
6 dyz 0 1 1 4γyz
7 dxy 1 1 0 4γxy

8 d3z2−r2
2γ√
3

(
3z2 − r2

)

9 dx2−y2 2γ
(
x2 − y2

)

10 s 4γr2√
15

Table 3.1: Parameters for cartesian Gaussians up to nx + ny + nz = L = 2. The last three rows for L = 2
follow from the linear combination of x2, y2, z2-orbitals.
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• The product of two Gaussians yields another at a different position:

e−α(r−Ra)
2

e−β(r−Rb)
2

= e−δD
2

e−ξ(r−X)2 (3.42)

with the center of mass X = αRa+βRb

α+β and D = Ra −Rb as well as, δ =
αβ
α+β .

For the cartesian functions a similar relation can be derived (fig (3.10)):

Figure 3.10: Product of two s-type Gaussians

(x−Ra)
i
(x−Rb)

j
=

i+j∑

n=0

∑

l

(
i

n− l

)(
i

l

)
(−1)b−l

αj−lβi−n−l

(α + β)i+j−n
Di+j−n (x−X)

n
(3.43)

Tijn = Di+j−ne−δD
2 ∏

m=x,y,z

Mimjmnm (3.44)

=⇒ φaiα (r)φbjβ (r) =

i+j∑

n

TijnφnXξ (r) (3.45)
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Figure 3.11: Product of Gaussian orbitals on two different atoms

• Products of Gauss orbitals on two different atoms can be expanded in Gauss orbitals centered on
their center of mass

• The transformation tensor is given analytically, to compute k center integrals

(νn|µm) =

∫
drdr′

φ∗ν (r)φ
∗
n (r

′)φµ (r)φm (r′)

|r− r′| (3.46)

we have to expand the two products for r and r′ into Gaussians around their respective centers of
mass.
=⇒ Then the problem is reduced to calculating the Coulomb integral of two Gaussians.

Figure 3.12: k-center integrals

Let us consider two s-type Gaussians at the centers Rq and Rp. We then have to solve the following
integral (the derivation is quite tedious and can be done by inserting the Fourier transformations of
the Gaussians and 1

r ):

∫
drdr′

e−p|r−Rp|2e−q|r′−Rq|2

|r− r′| =
2π

5
2

pq(p+ q)1/2
F0

(
pq

p+ q
|Rp −Rq|2

)
(3.47)
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with

F0(t) = t1/2
∫ t1/2

0

dye−y
2

=
1

2

(π
t

)1/2

erf
(
t1/2

)
(3.48)

erf is the error function, avaiable in any/most programming languages.
The Coulomb integral of two Gaussians is known analytically.

Now all that is left to do is to determine the Cpolomb integral of two arbitrary cartesian Gaussians. We
do this by observing that the derivative if an s-type Gaussian produces higher order Gaussians.

for one dimension φn (r −R) = (r −R)n e−α(r−R)2

↑
note: normalization is different

dφ0 (r −R)

dR
= 2α (r −R) e−α(r−R)2 = 2αφ0 (r −R)

d2φ0 (r −R)

dR2
= −2αe−α(r−R)2 + 2α (r −R)

dφ0 (r −R)

dR

= 2α
[
−φ0 (r −R) + 2α (r −R)

2
e−α(r−R)2

]

= 2α [2αφ2 (r −R)− φ0 (r −R)]

So we make the ansatz:
diφ0 (r −R)

dRi
=

∑

j≤i
Dij (r −R)

i
e−α(r−R)2 (3.49)

Which gives us the recursion relation:

Dij = −2αDi−1, j−1 + (j + 1)Di−1, j+1 (3.50)

with D00 = 1 and Dij = 0 ∀ i, j < 0 ∧ j > i

=⇒ Since derivations in x, y,z, are seperable:

∇n
Rφa0α (r) =

dnx

dRnx
x

dny

dR
ny
y

dnz

dRnz
z
φa0α (r) =

mi≤ni∑

m

Dnmφamα (r) (3.51)

The diagonal elements of Dnm are non-zero and therefore Dnm is invertable and we can write:

φamα (r) =
∑

n

D−1
nm∇n

Rφa0α (r) (3.52)

=⇒ In other words, the other cartesian Gauss functions follow from the s-functions through a recursion
relation involving the derivatives. Since the Coulomb integral of two s-functions is known analytically (see
eq. (3.47)), as well as their derivatives ∇n

Ra
and ∇n

Rb
(see eq.(3.51)), the Coulomb integral of 2 arbitray

Gaussians can be computed fast via a recursion relation.
Recipe for computing (νn|µm) (also see fig. (3.12)):

1. Expand products φνφµ and φnφm in Gauss orbitals around their centers of mass

2. Evaluate recursion relations for the Coulomb integrals on the centers Rp and Rq

Advantages:

• No 6-dimensional real-space integral
∫
drdr′ has to be performed =⇒ fast

• Efficient algorithms and screening prosedures have been developed for carrying out the expansions
and recursions =⇒ fast, even on the fly evaluation of 4-center integrals is possible =⇒ on the fly
saves memory!
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Figure 3.13: Comparison between Gaussian 1s function and actual 1s function

Remark:

• The procedure outlined here is for illustrative purposes, but by no means the most efficient.

Disentvantages:

• Gaussians miss the cusp for 1s functions (certainly not ideal for core states)

• Difficult to design basis sets (exponents, number of functions) that allow for a systematic accuracy
analysis

3.2.4 Performance of Hartree-Fock

Table 3.2: Hartree-Fock total energies for selected atoms and simple molecules.

Etot [Ha] H He Be Mg H2 LiH
HF∗ −0.5 −2.8610 −14.5697 −199.6900 −1.1371 −7.9872
CI† −0.5 −2.9362 −14.6674 −200.0530 −1.1660 −8.0400
deviation (CI-HF) 0.0 −0.0427 −0.0977 −0.3630 −0.0289 −0.0528
in % 0 1.5 0.7 0.2 2.5 0.7
∗FHI-aims calculations with cc-pV5Z Gaussian basis set
†from Chakravorty et. al. Phys. Rev. A 47, 3649 (1993)

L. Wolniewicz J. Chem. Phys. 99, 1851 (1993)
X. Li and J. Paldus, J. Chem. Phys. 118, 2470 (2003)

• Hartree-Fock underestimates the total energy compared to escentially exact Configuration Interac-
tion calculations

• The underestimation is only a small persentage of the correlation enrgy

• However, this can be decisive for energy differences
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Figure 3.14: Total energy of H2 in restricted closed-shell Hartree-Fock as a function of the interatomic
distance.

Figure (3.14) shows the restricted Hartree Fock energy for H2 as a function of the interatomic distance.
The curve shows 3 distinct regimes:

- Repulsion at short distances

- A minimum at intermediate distances (to see if it actually binds one has to look at the binding energy)

- Levelling out at dissociation

(a) Wavefunction of the bonding state of H2 at equilib-
rium in restricted closed-shell Hartree-Fock. The two
spheres mark the atoms, the ellipsoid is an isosurface
plot of the orbital and the shading corresponds to the
wavefunctions on a 2D cut through the molecule.

(b) Isosurface of the wavefunction for the anti-bonding
state of H2 at equilibrium in restricted closed-shell
Hartree-Fock. The lobe on the left corresponds to nega-
tive values and the lobe on the right to positive ones.

Figure 3.15: The wavefunction for the bonding and anti-bonding state of H2 at equilibrium in restricted
closed-shell Hartree-Fock.

Figures (3.15, 3.16) show the two lowest Hartree Fock single particle orbitals at the equilibrium bond
distance and close to dissociation at 6Å.

• The bonding state is occupied by 2 electrons
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(a) Wavefunction of the bonding state of H2 at a binding
distance of 6 Å in restricted closed-shell Hartree-Fock.
The two spheres that mark the atoms are hidden under
the isosurface plot of the orbital. The shading corre-
sponds to the wavefunctions on a 2D cut through the
molecule.

(b) Isosurface of the wavefunction for the anti-bonding
state of H2 at a binding distance of 6 Å in restricted
closed-shell Hartree-Fock. The sphere on the left corre-
sponds to negative and the one on the right to positive
values.

Figure 3.16: The wavefunction for the bonding and anti-bonding state of H2 at a binding distance of 6 Å
in restricted closed-shell Hartree-Fock.

• The antibonding state is empty

• The bonding state derives from a positive superposition of the 1s states of the two hydrogen atoms
and the anitbonding state from a negative superposition (This is most obvious at dissociation (6Å)).
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Figure 3.17: Binding energy of H2 in restricted closed-shell Hartree-Fock as a function of the interatomic
distance. The exact curve is taken from L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993)

Figure (3.17) shows the binding energy

Ebind = E (H2)− 2E (H) (3.53)

compared to exact calculations.
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Figure 3.18: Binding energy of Ar2 in restricted closed-shell Hartree-Fock as a function of the interatomic
distance. The reference curve bt K. T. Tang and J. P. Toennies (J. Chem. Phys. 118, 4976
(2003)) is based on theoretical modeling of experimental data.

• The equilibrium distance in Hartree Fock is good

• The binding energy is underestimated

• The dissociation limit is incorrect

Figure (3.18) shows the binding energy curve of a van der Waals bonded dimer.

• Ar atom is closed shell - no covalent bond

• Binding energy is much lower (meV)

• Hartree-Fock gives no binding in this case!

• But correct dissociation limit

Theoretical descrition of bond breaking and bond making is a great challenge!
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Table 3.3: Individual energies (in Ha) for reactants and the transition state of the reaction
OH + H2 → H + H2O. The deviation is measured with respect to accurate
Coupled Cluster (CCSD(T) CBS cc-pV(Q,5)Z) calculations. The experimental
value is taken from Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126
(2006).

OH H2 H H2O TS

HF −75.4284825 −1.1336606 −0.5000000 −76.0680526 −76.5283317

deviation (CCSD(T)-HF) −0.2482897 −0.0409171 0.0000000 −0.3092634 −0.3148024

reaction barrier forward reverse forward reverse

HF 0.92 eV 1.08 eV 21.2 kcal/mol 24.9 kcal/mol

Exp. 0.22 eV 0.92 eV 5.09 kcal/mol 21.2 kcal/mol

Hartree Fock in chemestry (see tab. (3.3):

• Typically underbinds by about 4eV per bond =⇒ too large for thermo chemistry (energy for disso-
ciation)

• 1kcal/mol (∼ 1/20eV ) error in transistion state energy of a chemical reaction gives a factor of 5
error in the reaction rate

Table 3.4: Lattice constants (in Å) of some solids in HF. Values are taken
K. Doll and H. Stoll, Phys. Rev. B 56, 10121 (1997)

cohesive energy (eV) LiF NaF KF LiCl NaCl KCl
HF 4.011 4.636 5.450 5.281 5.791 6.548
Exp. 4.010 4.609 5.311 5.106 5.595 6.248
deviation 0.02% 0.6% 2.6% 3.4% 3.5% 4.8%

Table 3.5: Cohesive energy (E(solid)−∑
iE(atomi)) of some solids in HF. Values are taken from R. Dovesi et

al. Reviews in Computational Chemistry, Volume 21 and K. Doll and H. Stoll, Phys. Rev. B 56,
10121 (1997)

cohesive energy (eV) LiF LiCl NaF NaCl KF KBr KCl MgO Si Be
HF 6.81 5.70 5.95 5.31 5.65 4.94 5.54 7.25 6.67 1.87
Exp. 8.92 7.24 8.00 6.68 7.70 6.27 6.75 10.26 9.50 3.31
deviation 23.7% 21.2% 25.6% 20.5% 26.6 21.2% 17.9% 29.3% 29.7% 43.6%

Hartree Fock in condensed matter (see tab. (3.2.4)):

• Not often applied

• Lattice constants overestimated

• cohesive energies underestimated significantly (like in chemistry)
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3.2.5 Koopmann’s Theorem and the meaning of Hartree-Fock eigenvalues

Eigenvalue equation:

∫
dx′F (x,x′)ϕm (x′) = ǫmϕm (x′) | ×

∫
dxϕ∗

n (x)

=⇒
∫

dxdx′ϕ∗
n (x)F (x,x′)ϕm (x′) ǫmδnm

=⇒
∫

dxdx′ϕ∗
n (x)

[
h (x) δ (x− x′)

N∑

i

ϕ∗
i (x

′)ϕi (x′)

|r− x′| +

N∑

i

ϕ∗
i (x

′)ϕi (x)

|r− x′|

]
ϕn (x

′) = ǫn

=⇒hnn +

N∑

i

〈ni|ni〉 − 〈ni|in〉 = ǫn

Now consider an occupied state (a):

ǫa = haa +

N∑

i

〈ai|ai〉 − 〈ai|ia〉

= haa +

N∑

i6=a
〈ai|ai〉 − 〈ai|ia〉

because 〈aa|aa〉 − 〈aa|aa〉 = 0

ǫa is the kinetic and external energy of an electron in state a plus Coulomb and exchange energy with
all remaining N − 1 electrons. This suggests that ǫa is the removal energy of electron a or the ionization
potential (IP), a is the highest occupied state.

IP = E(N − 1)− E(N) (3.54)

in Hartree-Fock:

E(N − 1) =
〈
ΨSDN−1|HelecΨ

SD
N−1

〉

E(N) =
〈
ΨSDN |HelecΨ

SD
N

〉

ΨSDN and ΨSDN−1 are generally not composed of the same orbitals. If for a moment we assume that they
are, we obtain:

E(N) =

N∑

a

〈a|h|a〉+ 1

2

N∑

ai

〈ai|ai〉 − 〈ai|ia〉

Ec(N − 1) =
N∑

a 6=c
〈a|h|a〉+ 1

2

N∑

a 6=c, i6=c
〈ai|ai〉 − 〈ai|ia〉

where c is the electron that has been removed.

IP = E(N − 1)− E(N)

= −〈c|h|c〉 − 1

2

N∑

a, i=c

〈ac|ac〉 − 〈ac|ca〉 − 1

2

N∑

i, a=c

〈ci|ci〉 − 〈ci|ic〉

= −〈c|h|c〉 −
∑

i

〈ci|ci〉 − 〈ci|ic〉

= −ǫc
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=⇒ The eigenvalues of occupied Hartree-Fock orbitals are the negativ ionization energies, provided the
orbitals are not allowed to change (relax).

For the unoccupied states with orbital energy ǫr we can derive an analogous expression:

EA = E(N)− Er(N + 1) = −ǫr (3.55)

Where EA is the electron affinity.
Koopman’s theorem:

Given an N-electron Hartree-Fock single determinant ΨSDN with occuoied and unoccupied (virtual)
spin orbital energies ǫa and ǫr, then the ioniszation potential to produce an (N-1)-electron single
determinat ΨSDN−1 with identical spin orbitals, obtained by removing an electron from spin orbital ϕa
and the electron affinity to produce an (N+1)-electron singe determinatn ΨSDN+1 with identical spin
orbitals obtained by adding an electron to spin orbital ϕr are just −ǫa and −ǫr respectively.

Table 3.6: Lowest ionization potentials (in eV) of some small
molecules in HF. Values taken from A. Szabo and N.
S. Ostlund, Modern Quantum Chemistry, Introduction
to Advanced Electronic Structure Theory (Dover)

ionization potential (eV) CH4 NH3 H2O FH
HF 14.86 11.65 13.80 17.69
Exp. 14.40 10.88 12.60 15.81
deviation 3.1% 7.1% 9.5% 11.9%

Hartree Fock:

• Overestimates ionization potentials (see tab. (3.2.5))

• Undersetimates electron affinities - often negative ions are not stable in Hartree-Fock

In solids (see fig. (3.19):

• Band gap severly overestimated, Hartree Fock ∼ 6eV , experiment ∼ 0.7eV

• Shape of bands is correct, but bandwidth considerably overestimated

3.3 Form of the exact wave function and configuration interaction

In the previous section we had introduced a single slater determinant formed by occupying the lowest spin
orbitals. But we can also occupy differently.

In total there are

(
2k

N

)
=

(2k)!

N !(2k −N)!
many configurations. We have seen that a single slater determi-

nant of Hartree-Fock spin orbitals gives the Hartree-Fock approximation to:

HelecΨelec = EelecΨelec

How can we expand the full many-body wave-function Ψelec? Suppose we have a complete basis {χi}. A
function of a single variable can than be exactly expanded as:

Φ (x1) =
∑

i

aiχi (x1) (3.56)
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Figure 3.19: HF band structure of the Germanium crystal. Experimental values (squares) correspond to
direct and inverse photoemission spectroscopy and are taken from Landolt-Börnstein, New
Series, Group III, Vol. 17, Pt. a (Springer-Verlag, New York, 1982) and A. L. Wachs et al.
Phys. Rev. B 32, 2326 (1985)

A function of two variables can be expanded in stages:

Φ (x1,x2) =
∑

i

ai (x2)χi (x1) (3.57)

Inserting eq. (3.56):

Φ (x1,x2) =
∑

ij

bijχi (x1)χj (x2) (3.58)

If Φ is supposed to be a fermionic wave-function we require antisymmetry:

Φ (x1,x2) = −Φ (x2,x1)

=⇒ bij = −bji bii = 0

=⇒ Φ (x1,x2) =
∑

i

∑

j>i

bij [χi (x1)χj (x2)− χi (x2)χj (x1)]

=
∑

j>i

bij
√
2ΨSD (x1,x2)

An arbitrary antisymmetric function can be expanded in terms of all unique determinats formed in terms
a complete set of one-variable funtions χi (x).
This can be easily generalized to the N-body wafe-function:

Ψelec = C0,Ψ0 +
∑

ra

CraΨ
r
a +

∑

a<b, r<s

CrsabΨ
rs
ab +

∑

a<b<c, r<s<t

CrstabcΨ
rst
abc + . . . (3.59)
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Figure 3.20: Single slater determinats with different occupation.

The coefficients are then obtained by diagonalizing.

〈Ψelec|Helec|Ψelec〉 =

Ψra Ψrsab Ψrstabc . . .
Ψ0 S D T . . .

Ψ0 〈Ψ0|H |Ψ0〉 〈Ψ0|H |S〉 〈Ψ0|H |D〉 . . . . . .
S 〈S|H |Ψ0〉 〈S|H |S〉 〈S|H |D〉 . . . . . .
D 〈D|H |Ψ0〉 〈D|H |S〉 〈D|H |D〉 . . . . . .

T 〈T |H |Ψ0〉 . . .
...

...
. . .

(3.60)

and the matrix elements are given by:

O1 =
∑
i h(i) O2 =

∑
i

∑
i<j

1
|ri−rj |

case 1:
|K〉 = | . . .mn . . .〉 〈K|O1|K〉 =

∑
m 〈m|h|m〉 〈K|O2|K〉 = 1

2

∑
mn 〈mn|mn〉 − 〈mn|nm〉

case 2:
|K〉 = | . . .mn . . .〉
|L〉 = | . . . pn . . .〉 〈K|O1|L〉 = 〈m|h|p〉 〈K|O2|L〉 =

∑
n 〈mn|pn〉 − 〈mn|np〉

(differ by one)
case 3:

|K〉 = | . . .mn . . .〉
|L〉 = | . . . pq . . .〉 〈K|O1|L〉 = 0 〈K|O2|L〉 = 〈mn|pq〉 − 〈mn|qp〉
(differ by two)

and zero otherwise

• The martrix elements are quite simple and involve at most the Coulomb integrals of 4 states.

• Each slater determinant describes a configuration of electrons in the spin orbitals. Through the
Hamiltonian these configurations interact with each other.

=⇒ Configuration Interaction (CI)

For a complete basis CI would be exact but:

• Basis is never complete
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•
(
2k
N

)
many configurations

=⇒ Complexity grows exponentially

=⇒ Only applicable to small systems

• Defines correlation energy
Ecorr = Eelec − E0︸︷︷︸

=EHF

(3.61)

Figure 3.21: Evolution of Hartree Fock and Correlation Interaction with respect to the number of basis
functions and included slater determinants. The number of slater determinats can be reduced,
according to the level of sophistication in the approach/approximation.

3.4 A brief excursion into pertubation theory

Another way to go beyond Hartree-Fock is to use pertubation theory. If we treat HHF as zeroth order
approximation to Helec we can write:

Helec = HHF + V where V := Helec −HHF (3.62)

or more generally:
Helec = H0 + V (3.63)

where H0 is any Hamiltonian we can solve easily:

H0Ψ
(0)
i = E

(0)
i Ψ

(0)
i or H0|Ψ(0)

i 〉 = E
(0)
i |Ψ(0)

i 〉 (3.64)

For Hartree-FocK Ψ
(0)
i are the ground state slater determinants and all excited slater determinants formed

from the Hartree-Fock single particle orbitals. If now Ψ
(0)
i is close to Ψelec the effect of the pertubation V

is small.

=⇒ Maybe there is an expansion that systematically improves the wave-function and the energy.
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For this we introduce an expansion parameter λ:

H = H0 + λV

{
λ = 0 H = H0

λ = 1 H = Helec

(3.65)

and then expand in powers of λ:

Eeleci = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . (3.66)

|Ψelec〉 = |Ψ0
i 〉+ λ|Ψ1

i 〉+ λ2|Ψ2
i 〉+ . . . (3.67)

We now wish to express the n-th order quantities in terms of the zeroth order quantities. For that we
introduce the intermediate normalization:

〈Ψ0
i |Ψ0

i 〉 = 1 and 〈Ψ0
i |Ψni 〉 = 0 ∀ n > 0 (3.68)

and insert eq. (3.66) and eq. (3.67) into eq. (3.65):

(H0 + λV )
(
|Ψ0

i 〉+ λ|Ψ1
i 〉+ λ2|Ψ2

i 〉+ . . .
)
=

(
E

(0)
i + λE

(1)
i + λ2E

(2)
i + . . .

) (
|Ψ0

i 〉+ λ|Ψ1
i 〉+ λ2|Ψ2

i 〉+ . . .
)

(3.69)
Regrouping in terms of orders of λ gives:

n = 0 H0|Ψ0
i 〉 = E

(0)
i |Ψ0

i 〉
n = 1 H0|Ψ1

i 〉+ V |Ψ0
i 〉 = E

(0)
i |Ψ1

i 〉+ E
(1)
i |Ψ0

i 〉
n = 2 H0|Ψ2

i 〉+ V |Ψ1
i 〉 = E

(0)
i |Ψ2

i 〉+ E
(1)
i |Ψ1

i 〉+ E
(2)
i |Ψ0

i 〉

Acting with 〈Ψ0
i | from the left yields:

E
(0)
i =〈Ψ0

i |H0|Ψ0
i 〉

E
(1)
i =〈Ψ0

i |V |Ψ0
i 〉

→֒Simple, because terms only involve Ψ0
i

E
(2)
i =〈Ψ0

i |V |Ψ1
i 〉

...

For the ground state Ψ0
0 = Ψ0 and H0 = HHF we get:

E
(0)
0 = 〈ΨHFi |HHF |ΨHFi 〉 =

∑

i

ǫHFi

→֒mean field Hamiltonian acting on Slater determinant gives sum over eigenvalues

E
(1)
0 = 〈ΨHF0 |V |ΨHF0 〉

→֒= Helec︸ ︷︷ ︸−HHF

=
∑

i

h(i) +
1

2

∑

ij

1

|ri − rj |
−
[
∑

i

h(i) + VHF (i)

]

=
1

2

∑

ij

1

|ri − rj |
− VHF (i)

=
1

2

∑

nm

〈mn|mn〉 − 〈mn|nm〉
︸ ︷︷ ︸

from eq. 3.20

−
∑

nm

〈mn|mn〉 − 〈mn|nm〉

= −1

2

∑

nm

〈mn|mn〉 − 〈mn|nm〉
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=⇒ EHF = E
(0)
0 + E

(1)
0 (3.70)

For 2nd order we need an expression for |Ψ1
0〉. This we get from the expression for n = 1:

(
E

(0)
i −H0

)
|Ψ1

i 〉 =
(
V − E

(1)
i

)
|Ψ0

i 〉

=
(
V − 〈Ψ0

i |V |Ψ0
i 〉
)
|Ψ0

i 〉 (3.71)

This is no longer an eigenvalue problem, because no eigenvalue shows up on the right. We solve it by
expanding |Ψ1

i 〉 in a basis. For this we take the solutions of H0:

|Ψ1
i 〉 =

∑

n

c
(1)
in |Ψ0

i 〉

c
(0)
in are obtained by acting with 〈Ψ0

n| from the left:

〈Ψ0
n|Ψ1

i 〉 = c
(1)
in

From intermediate normalization we know that c
(1)
ii = 0. Reinserting into the expansion:

|Ψ1
i 〉 =

∑

n6=i
Ψ0
n〉〈Ψ0

n|Ψ1
i 〉 (3.72)

Multiplying equation (3.71) by 〈Ψ0
n| gives:
(
E

(0)
i − E(0)

n

)
〈Ψ0

n|Ψ0
i 〉 = 〈Ψ0

n|V |Ψ0
i 〉 (3.73)

No we can insert eq. (3.72) and (3.73) into the expression for the 2nd order energy.

E
(2)
i = 〈Ψ0

i |V |Ψ1
i 〉

=
∑

n6=i
〈Ψ0

i |V |Ψ0
n〉〈Ψ0

n|Ψ1
i 〉

=
∑

n6=i

〈Ψ0
i |V |Ψ0

n〉〈Ψ0
n|V |Ψ0

i 〉
E

(0)
i − E

(0)
n

=
∑

n6=i

∣∣〈Ψ0
i |V |Ψ0

n〉
∣∣2

E
(0)
i − E

(0)
n

(3.74)

The 2nd order energy is expressed in eigenfuntions Ψ0
i and eigenvalues E

(0)
i of H0, i represents the order

of the excitation in the determinant. In other words:

• Take the eigenfuntions and eigenvalues of H0 (the Slater determinant)

• Form the matrix elements with the pertubations operator

• Sum over expression (3.74)

If H0 is the Hartree-Fock Hamiltonian HHF , E
(2)
0 becomes (without proof):

E
(2)
0 =

1

2

∑

abrs

〈ab|rs〉〈rs|ab〉
ǫa + ǫb − ǫr − ǫs

− 1

2

∑

abrs

〈ab|rs〉〈rs|ba〉
ǫa + ǫb − ǫr − ǫs

(3.75)

ab ab order ab ba order

This is also called the Møller-Plesset pertubation theory (MP2 energy).

36



4 Density functional theory

In the previous chapter we have considered theories that work with the many-body wave function to solve
the electronic Schrödinger equation. However, the many-body wave function is quite an unwieldy object,
with 3N-many coordinates.

Ψ = Ψ ({xi}) (4.1)

Wouldn’t it be nicer to work with objects that just depend on one variable like the density.

n = n (r)

This is not unreasonable because knowing the wave function implies we also know the density:

n (r) = N

∫
dσ

∫
dx2 . . . dxN |Ψ({xi})|2︸ ︷︷ ︸

normalized to 1

(4.2)

∫
drn (r) = N (gives particle number) (4.3)

4.1 Kohn-Sham’s equations

Kohn and Sham’s solution:

=⇒ Consider an auxiliary system of non-interacting electrons that has the same ground state density as
the fully interacting system.

Figure 4.1: Auxiliary system with same ground state as interacting system.

haux = −∇2

2
+ V (r, σ) (4.4)

The non-interacting electrons move in an effective potential Veff that we assune to be V-representable,
but this is a problem we know, because our full Hamiltonian

H ({xi}) =
∑

i

haux (xi) = Haux ({xi}) (4.5)
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now becomes a sum over single particle Hamiltonians. These we know how to deal with from Hartree-Fock.

hauxϕi = ǫiϕi we get a set of single-particle orbitals

=⇒density:

n (r) =

N/2∑

i

∫
dσ |ϕi (r, σ)|2

=⇒This defines the classic Coulomb interaction energy:

EH [n] =
1

2

∫
drdr′

n (r)n (r′)

|r− r′| (4.6)

=⇒The kinetic energy is now also trivial:

TS[n] = −1

2

N/2∑

i

∫
dσ〈ϕi|∇2|ϕi〉 =

1

2

N/2∑

i

∫
dσ |∇ϕi|2 (4.7)

and

EKS [n] = TS [n] +

∫
drVext (r)n (r)

︸ ︷︷ ︸
=Eext

+EH [n] + Erest[n]︸ ︷︷ ︸
EXC [n] for now

(4.8)

We now apply the same procedure as in the derivation of the Hartree and Hartree-Fock equations:

L[n] := EKS [n]−
∑

i

ǫi

∫
dxϕ∗

i (x)ϕi (x)

δL

δϕ∗
i

= 0 ∀i

=⇒ δTs
δϕ∗

i

+

[
δEext
δn

+
δEH
δn

+
δEXC
δn

]
δn

ϕ∗
i

− ǫiϕi = 0

⇔ −1

2
∇2ϕi (x) [vext (r) + vH (r) + vXC (r)]ϕi (x) = ǫiϕi (x)

⇔
[
−1

2
∇2 + VKS (r)

]
ϕi (r) = ǫiϕi (r) (only wave function depends on spin)

The Kohn-Sham or effective potential is given by:

VKS (r) = Veff (r) = vext (r) + vH (r) + vXC (r) (4.9)

vXC (r) :=
δEXC [n]

δn (r)
(4.10)

4.2 Hohenberg-Kohn Theorem

Can we now recast

HelecΨelec = EelecΨelec

Helec = −
N∑

i

∇2
i

2
︸ ︷︷ ︸

+
N∑

i

vext (ri)

︸ ︷︷ ︸
+

1

2

N∑

i6=j

1

|ri − rj |
︸ ︷︷ ︸

= T + Vext + Vee

in terms of the density? It is in principle self-evident that the external potential, i.e. the positions of the
nuclei, determines the properties of the system, but is this also true for the density?
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Hohenberg-Kohn Theorem I
The ground-state density n (r) uniquely determines the potential up to an arbitrary constant.

Proof

• The proof proceeds by contradiction

• Let’s assume non-degenerate ground states

Suppose we have two external potentials v1ext (r) and v
2
ext (r) that differ by more than a constant, but lead

to the same density n (r).

v1ext (r) 6=v2ext (r) + const.

↓ ↓
H1 H2 two different Hamiltonians

↓ ↓
Ψ1 Ψ2 two different wave-functions

Then by the variational principle we have:

〈Ψ2|H1|Ψ2〉 > 〈Ψ1|H1|Ψ1〉 = E1

as a side note:

〈Ψ|Vext|Ψ〉 =
∫

dx1 . . . dxN
∑

i

vext (r) |Ψ({x1 . . .xN})|2

=
∑

i

∫
drdσdx2 . . . dxNvext (r) |Ψ(r, σ,x2 . . .xN )|2

=

∫
drvext (r)n (r)

〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉 = E2 +

∫
dr

[
v1ext (r)− v2ext (r)

]
n (r)

(T and Vee give the same constant because the wave-funtion is the same)

=⇒ E1 < E2 +

∫
dr

[
v1ext (r)− v2ext (r)

]
n (r)

but we can swap indicies 1 and 2:

=⇒ E2 < E1 +

∫
dr

[
v2ext (r)− v1ext (r)

]
n (r)

=⇒ There cannot be two different vext that differ by more than a constant that give rise to the same
density.

=⇒ This uniquely determines the external potential.

vext (r) ⇐⇒ n (r) (4.11)

Corrolary:
Since the Hamiltonian is fully determined (except for a constant) the many-body wave-functions (for
ground and excited states) are fully determined
=⇒ All properties of the system are fully determined given only the ground state density.
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Hohenberg-Kohn Theorem II
A universal functional for the energy E[n] in terms of the density n (r) can be defined, valid for any
external potential vext (r). For any given vext (r), the exact ground state energy of the system is the
global minimum of this funtional, and the density that minimizes the functional is the exact ground
state density.

Proof:

1. Variational space =⇒ restrict to v-representable densities (densities that can be represented by a
potential v (r)

2. Definition of functional =⇒ Density determines T and Vee

EHK [n] = T [n] + Vee[n]︸ ︷︷ ︸+
∫

drvext (r)n (r)

= F [n] +

∫
drvext (r)n (r)

Suppose n1 (r) is the ground state density of v1ext (r).

=⇒ E1 = EHK [n1] = 〈Ψ1|H1|Ψ1〉

Let’s now consider a different density n2 (r) that corresponds to a different wave-function Ψ2.

E1 = EHK [n1] = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉 = E2

=⇒ Hohenberg-Kohn functional evaluated at ground state density gives the lowest energy

=⇒ If the functional of the density is known, than the total energy of the system can be obtained by
variational minimization with respect to the density

=⇒ Hohenberg-Kohn functional only gives ground state, not excited states (like e.g. Configuration Inter-
action)

Figure 4.2: Short Summary

Problems:

• Our proofs somewhat want back to the many-body wave-function

• There exists no prescription to determine the kinetic energy from the density

• We have no prescription for generating densities
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EHK [n] = F [n] +

∫
drvext (r)n (r) (4.12)

EKS [n] = TS[n] +

∫
drvext (r)n (r) + EH (r) + EXC (r) (4.13)

=⇒EXC [n] = T [n]− TS [n]︸ ︷︷ ︸
1.

+Vee[n]− EH [n]︸ ︷︷ ︸
2.

1. Difference between interacting and non-interacting kinetic energy

2. Difference between electron-electron interaction and classic Coulomb energy

• The key now is to find good approximations for EXC [n]

• EXC [n] is in general small, because TS and EH capture a large part of T an Vee

=⇒ Simple approximations might already be successful

! Altough what matters again are energy differences and there EXC [n] can be decisive

4.3 The local density approximation

Figure 4.3: Slowly varying density.

For inhomogeneous systems that have a slowly varying density the system localy looks like the homo-
geneous electron gas (see fig. (4.3)).
=⇒ constant density n =⇒ constant external potential

=⇒ Exc[n] =

∫
drn (r) ǫxc ([n], r) (4.14)

ǫxc is the energy density (i.e. the energy per electron) at point r in space, that depends only on the density
at that point. The exchange-correlation potential vxc follows straight forwardly by functional derivative:

vxc (r) =
δExc[n]

δn (r)
= ǫ ([n], r) + n (r)

δǫ ([n], r)

δn (r)
(4.15)

The exchange-correlation enrgy density for the homogeneous electron gas is known from accurate Quatum
Monte Carlo calculations:

ǫx[n] =
3kF
4π

with the Fermi momentum kF =
(
3π2n

)1/3
(4.16)
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is given exactly.

=⇒ Exc[n] =

∫
drn (r) ǫxc ([n], r) =

∫
drn (r) ǫxc (n (r))

=

∫
drn (r)

3

4π

(
3π2n

)1/3

=
3

4

(
3

π

)1/3 ∫
drn (r)

4/3

and for vx:

vx[n] =
3

4

(
3

π

)1/3

n1/3 + n
3

4

(
3

π

)1/3
1

2
n−2/3

=
4

3

3

4

(
3

π

)1/3

n1/3

=

(
3

π

)1/3

n1/3

• Very simple expression!

Figure 4.4: The correlation energy density of the homogenous electron gas.

The correlation energy density for the homogeneous electron gas is not known analytically, but can be
computed to very high precision using Quantum Monte Carlo techniques (like Configuration Interation
it is a method that works directly with the many-body wave-function). An analytic expression for this
behaviour (see fig. (4.4)) was first estimated by Wigner in 1938:

ǫc[n] = − 0.44

rs + 7.8
(4.17)

later better parameterizations by e.g. Perdew and Zunger:

ǫc[n] =





Gell-Mann/Brückner︷ ︸︸ ︷
Alnrs +B + Crslnrs +Drs rs ≤ 1

γ

1 + β1
√
rs + β2rs

rs > 1
(4.18)
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(The numerical values of A, B, C, D, γ, β1 and β2 are given in Perdew, Zunger, Phys. Rev. B 23, 5048
(1981))

• Spin polarized extension

ESLDAxc

[
n↑, n↓] =

∫
drn (r) ǫxc

(
n↑, n↓) (4.19)

or if we introduce the spin polarization:

ξ (r) =
n↑ (r)− n↓ (r)

n (r)

ESLDAxc

[
n↑, n↓] =

∫
drn (r) ǫxc (n (r) , ξ (r)) (4.20)

What we need now is reference data for the spin-polarized homogenous electron gas and appropriate
paramterizations, which can also be found in Perdew, Zunger, Phys. Rev. B 23, 5048 (1981).
LDA:

• Is by construction exact for HEG

=⇒ Expected to perform well for systems with slowly varying density (e.g. simple metals)

• Typically gives dissociation energies of molecules and cohesive energies of solids within 10-20%

• Bond length (lattice constant) typically within 1-2% (and typically to small)

• Problems e.g. for rapidly varying densities e.g. atoms

4.4 Generalized Gradient Approximation

Ar Atom

Figure 4.5: Radial density in Ar Atom, From The ABC of Density Functional Theory by Kieron Burke

• The shell structure is clearly visible in figure (4.5)

• The density is far from homogeneous!
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The idea: add gradients to Exc:

EGGAxc

[
n↑, n↓] =

∫
drn (r) ǫxc

(
n↑, n↓,

∣∣∇n↑∣∣ ,
∣∣∇n↓∣∣ , . . .

)

=

∫
drn (r) ǫHEGx Fxc

(
n↑, n↓,

∣∣∇n↑∣∣ ,
∣∣∇n↓∣∣ , . . .

)
(4.21)

Generalized gradient expansion:
It makes sense to work with a scaled gradient

S (r) =
|∇n (r)|
2kFn (r)

(4.22)

that measures the gradient on the scale of the density itself.

=⇒ EGGAxc

[
n↑, n↓] =

∫
drn (r) ǫHEGx [n]Fxc

(
n↑, n↓, S↑, S↓) (4.23)

Figure 4.6: Scaled gradient for Ar Atom, From The ABC of Density Functional Theory by Kieron Burke

• There’s no unique form or parameterization for Fxc

=⇒ Many different parameterizations have been proposed by now that fall largely into two cate-
gories:

– Satisfy a certain number of exact constraints

– Are fit to benchmark sets

• GGAs usually work best in the regime for which they were designed

4.5 Self-interaction and exact-exchange

Our DFT energy expression is:

Etot[n] = TS[n] + Eext[n] + EH [n] + Exc[n] (4.24)

Let’s recall that in EH we summed over all single particle states in the system for convenience:

EH [n] =
1

2

∫
drdr′

n (r)n (r′)

|r− r′| =
1

2

∑

ij

∫
drdr′

ψ∗
i (r)ψi (r)ψ

∗
j (r

′)ψj (r′)

|r− r′|

=
1

2

∑

ij

∫
drdr′

|ψi (r)|2 |ψj (r′)|2
|r− r′|
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so when i = j an electron interacts with itself =⇒ self-interaction
In Hartree-Fock this term is exacly canceld by the exchange energy:

Ex = −1

2

∑

ij

∫
drdr′

ψ∗
i (r)ψj (r)ψ

∗
j (r

′)ψi (r′)

|r− r′|

For i 6= j we now have terms

−1

2

∫
drdr′

|ψi (r)|2 |ψi (r′)|2
|r− r′|

that exactly cancel those coming from EH . However, for LDAs and GGAs this cancellation does not occur:

ELDA/GGAxc =

∫
drn (r) ǫxc ([n], r, (∇r, . . .))

=

∫
dr |ψi (r)|2 ǫxc ([n], r, (∇r, . . .))

Perdew and Zunger (in their 1981 LDA paper) defined a 1-electron self-interaction error on this basis:

δi =
1

2

∫
drdr′

|ψi (r)|2 |ψi (r′)|2
|r− r′| + EXC

[
|ψi (r)|2

]
(4.25)

• δi is in general not zero

• As we saw earlier in section (3.1) the self-interaction error has a tendency to delocalize states

We know that Hartree-Fock removes the self-interaction error but can it be cast into the DFT framework?
For that we would need the functional derivative with respect to the density:

EHF = TS + Eext + EH + Ex

The challenge is

vx (r) =
δEx
δn (r)

; (4.26)

all other terms are standard, but

n (r) =
∑

i

|ψi (r)|2

=⇒ chain rule:

vx (r) =
∑

i

∫
dr′

δEx
δψi (r′)

δψi (r
′)

δn (r)
+ c.c. (4.27)

and chain rule applied again:

vx (r) =
∑

i

∫
dr′dr′′

[
δEx

δψi (r′)

δψi (r
′)

δvKS (r′′)
+ c.c.

]
δvKS (r′′)

δn (r)
(4.28)

The first term we have already encountered in the derivation of Hartree-Fock:

δEx
δψi (r′)

= −
occ∑

j

∫
dr′

ψ∗
j (r

′)ψi (r′)ψj (r′)

|r− r′| =

∫
dr′Σx (r, r

′)ψi (r
′)

The second term
δψi (r

′)

δvKS (r′′)
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follows from first order pertubation theory. We recall:

ǫi = ǫ0i + λǫ
(1)
i + . . .

ψi = ψ0
i + λψ

(1)
i + . . .

vKS = v0 + λv(1) + . . .

inserting this in the Kohn-Sham equtions

hKSψi = ǫiψi with hKS = −∇2

2
+ vKS

gives:

n = 0 h0KSψ
0
i = ǫ0iψ

0
i

n = 1 h0KSψ
(1)
i + v(1)ψ0

i = ǫ0iψ
(1)
i + ǫ

(1)
i ψ0

i

now we need to get rid of ǫ
(1)
i

=⇒apply 〈ψ0
j |

=⇒〈ψ0
j |h0KS |ψ

(1)
i 〉

︸ ︷︷ ︸
ǫ0j〈ψ0

j |ψ
(1)
i 〉

+〈ψ0
j |v(1)|ψ

(0)
i 〉 = ǫ0i 〈ψ0

j |ψ
(1)
i 〉

⇔〈ψ0
j |ψ

(1)
i 〉 =

〈ψ0
j |v(1)|ψ

(0)
i 〉

ǫ0j − ǫ0i

Now we recall the expansion of ψ
(1)
i in terms of

{
ψ0
j

}
:

|ψ(1)
i 〉 =

∑

j 6=i
|ψ0
j 〉〈ψ0

j |ψ
(1)
i 〉 =

∑

j 6=i

〈ψ0
j |v(1)|ψ

(0)
i 〉

ǫ0j − ǫ0i
|ψ(0)
j 〉

From this follows with δψi = |ψ(1)
i 〉 and δvKS = v(1):

δψi (r)

δvKS (r′)
=

∑

j 6=i

ψ∗
j (r

′)ψj (r)

ǫj − ǫi
ψi (r

′) = Gi (r, r
′)ψi (r

′) (4.29)

The last term
δv (r)

δn (r′)

is the inverse of the Kohn-Sham response function:

δn (r)

δv (r′)
=

∑

i

|ψi (r)|2
δv (r′)

=

N∑

i

ψ∗
i (r

′)Gi (r, r
′)ψi (r

′) + c.c.

=

N∑

i

∑

j 6=i

ψ∗
i (r)ψj (r)ψ

∗
j (r

′)ψi (r′)

ǫj − ǫi
+ c.c.

= XS (r, r
′)

Putting this all together yields:

vX (r) =
∑

i

∫
dr′

∫
dr′′

[∫
dr′′′ΣX (r′, r′′)ψi (r

′′′)Gi (r
′, r′′)ψi (r

′) + c.c.

]
X−1
S (r′′, r) (4.30)

This expression
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• Is rather involved and computaionally challenging

• But it shows that a self-interaction free multiplicative potential can be constructed

This formalism is also known as OEP: optimized effective potentail approach, because vx is the variationally
best potential to Ex or Exx in solids

• Exonly implicitly depends on the density

Ex = Ex [{ψi}] = Ex [{ψi[n]}]

This is known as orbital functional

OEPx or EXX (see figure (4.7) and (4.8):

• Moves Hartree-Fock into the realm of DFT

• Is self-interaction free

• But includes no correlation

Scandium Nitrogen Indium

LDA

EXX

Figure 4.7: Kohn-Sham eigenvalues of the highest atomic states in LDA and EXX (=̂OEPx). (from Qteish
et al. Phys. Rev. B 74, 245208 (2006))

4.6 Hybrid functionals

OEPx (EXX) and HF contains too much exact echange. A pragmatic solution that was adopted first in
quantum chemistry was to construct a hybrid:

Ehybxc = EDFTxc + α
(
EHFx − EDFTx

)
(4.31)

In this simplest form a portion of DFT exchange is replaced by exact exchange, while correlations remain
on the DFT level. More complex hybrids with more parameters exist (e.g. B3LYP) or where EHFx is range
restricted (long, short). One of the most popular choices is α = 0.25. Combined with PBE-exchange this
functional is known as PBE0 (Perdew-Burke-Enzerhof). Contrary to common believe hybrid funtionals
are not cast into the Kohn-Sham formalism of multiplicative potentials via the OEP formalism. Instead
δEXC

δϕ∗

i
is performed like in HF theory, which leads to a non-local potential:

vhybXC (r, r′) =
[
vDFTXC (r)− αvDFTX (r)

]
δ (r− r′) + αΣX (r, r′) (4.32)

The non-local potential has certain advantages over the multiplicative potential, as we will see later.
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Figure 4.8: Kohn-Sham band structure of ScN and InN. In LDA ScN is a semimetal and InN a metal.
EXX correctly predicts both compounds to be semiconducting. (from Rinke et al. phys. stat.
sol. (b) 245, 929 (2008))

4.7 DFT and excitation energies

In general, and for excitation energies in particular, it is very important to distinguish two things:

• Can a quantity in principle be calculated exactly with exact DFT?

• How do approximate funtionals perform?

Let us for now consider two different simple excitations (figure (4.9)):

exitation energy ǫS = Etotfinal − Etotminimal (4.33)

1. ǫS = E(N, s)− E(N)

• For a wave-function based methos (CI, Coupled Clousters, etc.) ǫS are the eigenvalue differences
of HΨ = EΨ

2. ǫS = E(N − 1, s)− E(N) - ionization energies

3. ǫS = E(N, s)− E(N + 1, s) - affinities (are for some reason defined as Ei − Ef )

2. und 3. do not come out of HΨ = EΨ.
Where are we with our two questions? The way the excitiation energies are written they involve only
differences in total energies. But remember in DFT only the ground state can be exact.

=⇒ only

• ionization potential I = E(N − 1)− E(N)

• electron affinity A = E(N)− E(N + 1)

• gap Egap = I −A
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Figure 4.9: Simple excitations

could be calculated exactly in exact DFT.
All quantities involving an ”s” are excited states of the system, that cannot be expressed as difference
of two ground states. To mention only two problems with trying to prepare excited states E(N, s) or
E(N ± 1, s):

• Finding a suitable constrained to keep the system in state s may not be possible or it may not survive
the self-consistency cycle

• Excited state densities are not unique (unlike ground state densities), i.e. there is no Hohenberg-
Kohn theorem for excited states

What about the Kohn-Sham eigenvalues then? In Hartree-Fock we had Koopmans’ theorem:

−ǫHFs = E∗(N ± 1, s)− E(N)

Where the orbitals for the calcultaion of E∗ were constrained to be the ones of E(N) (frozen orbitals). In
DFT there is no such theorem/relation. It can, however, be proven that the highest KS eigenvalue of a
finite system equals the negative of the ionization potential.

I = −ǫKSN (N) in exact KS (4.34)

A hand-waving argument for this is:

• The asymptotic long-range density of a bound system is governed by the occupied state with highest
eigenvalue

• Since the density is supposed to be exact, so must the eigenvalue be

(A more rigorous proof can be found in C. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985) or
M. Levy, J. P. Perdew and V. Sham, Phys. Rev. A 30, 2745 (1984))

For approximate functionals this is not true, see figure (4.10)

49



4 Density functional theory
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Ionisation potential in the LDA

Figure 4.10: Ionization potentials of atoms calculated as total energy difference in LDA and by the LDA
Kohn-Sham eigenvalue. Shown is the error with respect to the experimental ionization po-
tential. (Reference: NIST – Atomic reference data)

Then there is Janak’s theorem that establishes a connection between the KS-eigenvalues and the deriva-
tive of the total energy:

∂E

∂ni
= ǫi Janak, Phs. Rev. A 18, 7165 (1978)) (4.35)

where n is the occupation of a given state i. For the proof we write:

ti =

∫
drΨ∗

i

(
−∇2

2

)
Ψi = ǫi −

∫
drΨ∗

i (vext + vH + vxc) Ψi (4.36)

TS =

N∑

i

ti

Then we introduce the occupation factors ni:

n (r) =

N∑

i

ni |Ψi|2 and T̃ =

N∑

i

niti (4.37)

=⇒ Ẽ = T̃ + Eext[n] + EH [n] + Exc[n] (4.38)

∂Ẽ

∂ni
= ti +

∑

j

nj
∂tj
∂ni

+

∫
dr (vext + vH + vxc)


|Ψi|2 +

∑

j

nj
∂ |Ψi|2
∂ni




Inserting the second part of eq. (4.36) into this equation cancels the first part in the integral.

∂Ẽ

∂ni
= ǫi +

∑

j

nj
∂tj
∂ni

+

∫
dr

∑

j

nj
∂ |Ψj|2
∂ni︸ ︷︷ ︸

∂Ψ∗

j
∂ni

Ψj+
∂Ψj
∂ni

Ψj

Now considering the first part of eq. (4.36):

∂tj
∂ni

=

∫
dr
∂Ψ∗

i

∂ni

(
−∇

2

)
Ψj + c.c
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∂Ẽ

∂ni
= ǫi +

∑

j

nj

∫
dr



∂Ψ∗

j

∂ni

(
−∇

2
+ vext + vH + vxc

)
Ψj

︸ ︷︷ ︸
ǫjΨj

+c.c




= ǫi +
∑

j

njǫj

∫
dr

[
∂Ψ∗

j

∂ni
Ψj + c.c

]

= ǫi +
∑

j

njǫj
∂

∂ni

∫
dr |Ψj |2 · 2

︸ ︷︷ ︸
=1︸ ︷︷ ︸

=0

(wave-functions are normalized)

= ǫi �

Rearanging Janak’s theorem:

E(N + 1, i)− E(N) =

∫ 1

0

dnǫi(n) ≈ ǫ(0.5) (mid-point approximation) (4.39)

In other words:

• Excitation energies are approximately given by the value of the eigenvalue of half occuption (also
known as Slater-Janak’s or Slater transition state)

• The problem remains, however, that for any but the highest (lowest) state occupations need to be
suitably constrained.

Derivative discontinuity
Let’s consider the gap of a large system (finite, but so large it could be a solid). The gap is defined as:

eN+1(N)
KS

eN(N)
KS

Dxc
eN+1(N+1)

KS

Egap

KS
Egap

e
KS

e
KS

k kN electrons N+1 electrons

Figure 4.11: After the addition of an electron into the conduction band (right) the xc potential and the
whole band-structure shift up by a quantity ∆xc. Figure after R. W. Godby et al., in A

Primer in DFT, Springer 2003

Egap = I −A = E(N + 1)− 2E(N) + E(N − 1) (4.40)

But we know that the highest occupied state in exact KS is exact:

Egap = ǫKSN+1(N + 1)− ǫKSN (N)

= ǫKSN+1(N + 1)− ǫKSN+1(N)
︸ ︷︷ ︸

∆xc

+ ǫKSN+1(N)− ǫKSN (N)
︸ ︷︷ ︸

EKS
gap
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4 Density functional theory

Because our system is large we have

N ≫ 1 ⇒ ∆n (r) → 0 for N → N + 1

In other words, our density change is infitesimal.

⇒ vH and vext will not change

⇒ ∆xc can only come from change in vxc

⇒ ∆xc =

(
δExc[n]

∂n (r)
|N+1−

δExc[n]

∂n (r)
|N

)
+O

(
1

N

)

⇒ the derivative of Exc with respect to particle number changes discontinously

⇒ vxc changes by a constant (see figure (4.11, 4.12))

Figure 4.12: Exact-exchange potential (KLI) shifts up almost uniformily by ≈ 1 eV upon adding 10−6

electrons. J. B. Krieger et al., Phys. Rev. A 45, 101 (1992)

• Even exact KS calculation will not capture the derivative discontinuity and therefore will give incor-
rect gaps, if only KS eigenvalue differences are considered

• There is currently fierce debate about the size of the derivative discontinuity in exact KS

• The role of the kinetic energy is unclear

In summary:

• We have certain exact relations linking total energies and eigenvalues with excitation energies

• But then there is the derivative discontinuity and approximate functionals (LDAs and GGAs do not
contain the discontinuity, a problem even for total energy differences and they are plagued by the
self-interaction error)

• Note that non-local functionals do not really have the discontinuity problem because they are not
generated from δE

δn (see figure (4.7, 4.8, 4.10, 4.13))
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cluster size
0

en
er

gy
 g

ap

bulk KS gap

KS

∆SCF

exp. bulk gap

Figure 4.13: Typical behaviour of most current DFT functionals for the case of a finite system (e.g. a
cluster) that approaches its bulk limit.
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5 Green’s function theory

Figure 5.1: Time dependence of excitation process

• Include time dependence of excitation process

• Switch to time dependent pertubation theory

• What about total energies?

5.1 Second Quantization

In this section we introduce the method of second-quantisation, which provides an elegant, alternative to
the conventional notation in quantum mechanics. In second-quantisation a physical state is represented by
a state vector in Hilbert space and observables by an operator acting on this state. If the operator applied
to a state reproduces the state bar a multiplicative factor, we speak of an eigenstate. The eigenstates of
a Hermitian operator form a complete set. With this knowledge we can chose a suitable, complete set of
states to represent the many-body problem. In the set of all Slater determinants based on a complete set
of single particle functions ϕk(x) we find a basis system and a many-body wavefunction that meet the
requirements. We label this many-body state ΨN and use the short hand notation

ΨN = |k1, k2, . . . , kN > (5.1)

The fermionic creation operator a†k creates a particle in state k if this has previously been unoccupied

a†k|k1, k2, . . . , kN >= |k, k1, k2, . . . , kN > (5.2)

similarly a particle is destroyed in state k by the annihilation operators ak

ak|k, k1, k2, . . . , kN >= |k1, k2, . . . , kN > (5.3)
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5 Green’s function theory

Based on the definitions for a†k and ak we define the field operators ψ†(x) and ψ(x)1

ψ†(x) =
∑

k

a†kϕ
∗
k(x) (5.4)

ψ(x) =
∑

k

akϕk(x) (5.5)

The anti commutation relations for the creation (5.2) and annihilation (5.3) operators are retained for the
field operators:

{ψ(x), ψ†(x′)} = δ(x,x′) ∧ {ψ†(x), ψ†(x′)} = {ψ(x), ψ(x′)} = 0 (5.6)

In field operator notation operators of the form O1(x) and O2(x
′) assume the shape

Ô1 =
∑

σ

∫
dr ψ†(x)O(x)ψ(x) (5.7)

Ô2 =
∑

σσ′

∫
drdr′ ψ†(x)ψ†(x′)O(x,x′)ψ(x)ψ(x′) (5.8)

The Hamiltonian in second quantized form

H =
∑

ij

〈i|h|j〉a†iaj +
1

2

∑

ijkl

〈ij|kl〉a†ia
†
jakal (5.9)

is thus transformed according to

H =
∑

σ

∫
dr ψ†(x)h(r)ψ(x) +

1

2

∑

σσ′

∫ ∫
drdr′ ψ†(x)ψ†(x′)

1

|r− r′|ψ(x)ψ(x
′) (5.10)

where h(r) is the single-particle Hamiltonian

h(r) = −1

2
∇2 + vext(r) (5.11)

as always.
For the following analysis it is convenient to switch to the Heisenberg notation for the field operators

ψ(x, t) = eiHtψ(x)e−iHt (5.12)

If we now consider the N -electron ground-state, ΨN or in short |N > and an eigenstate s of the N + 1
particle state: |N + 1, s >, we then obtain from (5.12)

〈N |ψ(x, t)|N + 1, s〉 = 〈N |eiHtψ(x)e−iHt |N + 1, s〉 = e−iǫstfs(x) (5.13)

with the excitation energy ǫs and amplitudes fs(x) defined by

ǫs = E(N + 1, s)− E(N), fs(x) = 〈N |ψ(x)|N + 1, s〉 (5.14)

From the definition of the field operators (5.4,5.5) combined with the relation (5.3) we find that fs(x)

〈N |ψ(x)|N + 1, s〉 = 〈N |
∑

k

akϕk(x)|N + 1, s〉 = 〈N |ϕs(x)|N〉δsk = ϕs(x) (5.15)

gives the excited state wavefunction. In the next section we explore the connection between ϕs(x) and
the propagation of a quasiparticle is made.

1We introduce the shorthand notation x to denote the set (r, σ).
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Figure 5.2: Single Particle Greensfunction for t > t′ and t < t′.

5.2 Green’s function theory

5.2.1 The Single-Particle Green’s Function

We will begin our introduction by defining the single particle Green’s function, G, and then proceed to
show that the one-particle excitation spectra is naturally contained in G.
Using the notation of second quantisation we define the single-particle Green’s function as:

G(xt,x′t′) = −i〈N |T̂{ψ(x, t)ψ†(x′, t′)}|N〉 (5.16)

where ψ†(x′, t′) and ψ(x, t) are the creation and annihilation operators of a particle, respectively, and the
time ordering operator, T̂ , assures an ascending order in the set of field operators from right to left. Every
pair commutation of fermionic field in Equation (5.16) operators is accompanied by a sign change and
(5.16) can thus also we written as

G(xt,x′t′) =− i〈N |ψ(x, t)ψ†(x′, t′)|N〉Θ(t− t′)

+ i〈N |ψ†(x′, t′)ψ(x, t)|N〉Θ(t′ − t) (5.17)

For times t > t′ the Green’s function describes the creation of an additional electron at x′ and subsequent
propagation and annihilation at x and time t. Conversely for t < t′ a hole is created by extraction of an
electron from the ground-state by the operation ψ(x, t)|N >. The overlap with ψ†(x′)|N > then gives the
probability of the hole having propagated to x′ at time t′.
Making use of the Heisenberg notation (5.12) equation (5.17) becomes

G(xt,x′t′) =− i〈N |eiHtψ(x)e−iHteiHt′ψ†(x′)e−iHt
′ |N〉Θ(t− t′)

+ i〈N |eiHt′ψ†(x′)e−iHt
′

eiHtψ(x)e−iHt|N〉Θ(t′ − t)

=− i〈N |ψ(x)e−i(H−EN )(t−t′)ψ†(x′)|N〉Θ(t− t′)

+ i〈N |ψ†(x′)ei(H−EN )(t−t′)ψ(x)|N〉Θ(t′ − t) (5.18)

If we insert the completeness relation in Fock-space

1 = |vac >< vac|+
∑

s

|Ψ1
s >< Ψ1

s|+ . . .
∑

s

|ΨNs >< ΨNs |+ . . . (5.19)

where |ΨNs > denote the eigenfunctions of a N-particle system |N, s >, equation (5.18) transforms to

G(xt,x′t′) =− i
∑

s

〈N − 1|ψ(x)|N, s〉e−i(EN−1−EN )(t−t′)〈N, s|ψ†(x′)|N − 1〉Θ(t− t′)

+ i
∑

s

〈N + 1|ψ†(x′)|N, s〉ei(EN+1−EN )(t−t′)〈N, s|ψ(x)|N + 1〉Θ(t′ − t) (5.20)

The sum over particle number disappears because the scalar product of wavefunctions with different
particle numbers vanishes. In a more compact notation the Green’s function appears as

G(xt,x′t′) = −i
∑

s

fs(x)f
∗
s (x

′)e−iǫs(t−t
′) [Θ(t− t′)Θ(ǫs − µ)−Θ(t′ − t)Θ(µ− ǫs)] (5.21)
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5 Green’s function theory

where we have defined the excitation energies ǫs and wave functions fs(x) by
2

ǫs = E(N + 1, s)− E(N), fs(x) = 〈N |ψ(x)|N + 1, s〉 for ǫs ≥ µ (5.22)

ǫs = E(N)− E(N − 1, s), fs(x) = 〈N − 1, s|ψ(x)|N〉 for ǫs < µ (5.23)

The energies ǫs correspond to the true single-particle excitation energies upon addition and removal of an
electron from the system in the ground-state.

5.2.2 Spectral Representation of the Green’s Function

In order to extract more physical information from the Green’s function we switch to the spectral, or
Lehmann, representation of G. We first note that for explicitly time-independent Hamiltonians the Green’s
function only dependents on the time difference τ = t− t′. Secondly we need to treat the discontinuity in
the time argument, brought in by the Heavyside function, carefully. We state without proof that Θ(±τ)
can be represented by

Θ(±τ) = lim
η→0+

∓ 1

2πi

∫ ∞

−∞
dω

e−iωτ

ω ± iη
(5.24)

Inserting this equation into (5.21) we obtain

G(x,x′, τ) = lim
η→0+

∑

s

fs(x)fs(x
′)

∫ ∞

−∞

dω

2πi
e−i(ǫs+ω)τ

[
Θ(ǫs − µ)

ω + iη
+

Θ(µ− ǫs)

ω − iη

]
(5.25)

and with the additional substitution ω ≡ ǫs + ω we identify the Fourier transform of G to be

G(x,x′, ω) = lim
η→0+

∑

s

fs(x)f
∗
s (x

′)

[
Θ(ǫs − µ)

ω − (ǫs − iη)
+

Θ(µ− ǫs)

ω − (ǫs + iη)

]
(5.26)

Re ω

Im ω

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxx

µN−1 µN

µ

Poles of G

III

III IV

Figure 5.3: The poles of the Green’s function for a finite system lie infitesimally close above the real axis for

energies smaller than the chemical potential of the N-1-particle system µN−1. For energies greater

than µN the poles fall infitesimally close below the real frequency axis. In the limit of zero temperature

a single chemical potential can be defined by µ, as indicated in this figure.

From the spectral representation (5.26) we deduce, that the poles of the Green’s function are the exact
excitation energies (5.22) and (5.23) of the system, referenced to the chemical potential. For a finite sys-
tem the energy spectrum is discrete with the poles of G lying infitesimally above the real frequency axis
for energies smaller than the chemical potential and infitesimally below otherwise, as illustrated in Figure

2In principle µ has to be defined for the addition (µ(N)=E(N+1)−E(N)) and the removal (µ(N−1)=E(N)−E(N−1)) of an
electron separately. We will comment on this point in Section 5.2.2
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5.2.2. The Green’s function is analytic in quadrant3 I of the complex plane for energies larger than µN−1

and in quadrant III for energies lower than µN . For an infinite system N ≈ N − 1 and the two chemical
potentials merge into one. In this case the discrete series of poles form a branch cut in the complex plane,
except possibly for a band gap region where there are no eigenstates.

5.2.3 Expectation value of single particle operators

According to equation (5.7) we have:

Ô1 =
∑

σ

∫
dr ψ†(x)O(x)ψ(x)

Let us write Ô1 with non-locality in the spin index for now:

Ô1 =
∑

αβ

∫
dr ψ†

β (r)Oβα′ (r)ψα (r)

the expectation value is then

〈N |Ô1|N〉 = 〈N |
∑

αβ

∫
dr ψ†

β (r)Oβα′ (r)ψα (r) |N〉 (5.27)

we now have to:

• Pull the operator out of the expectation value

• Swap the order of the field operators

• Introduce the time ordering operator

Using equation (5.4) and (5.5) we can write

〈N |ψ† (x) Ô (x)ψ (x) |N〉 = 〈N |ψ† (x) Ô (x)
∑

j

ϕj (x) aj |N〉

We introduce an artificial x′ dependence

ψ† (x) = lim
x′→x

ψ† (x′) (5.28)

=⇒ now we can swap Ô and ψ†

〈N |ψ† (x) Ô (x)ψ (x) |N〉 =
∫

dr lim
r′→r

∑

αβ

Oαβ (r) 〈N |ψ†
β (r)ψα (r) |N〉

Then we can employ the limit trick once more:

1 = lim
t′→t

e−iE(t−t′) = lim
t′→t

eiH(t′−t) (5.29)

3To be absolutely precise, it is only sensible to speak of quadrants in connection to the Green’s function or the self-energy,
if the chemical potential coincides with the origin of the complex plane. In the following Chapters the chemical potential
is implicitly assumed to be zero unless otherwise stated.
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〈N |ψ†
β (r

′)ψα (r) |N〉 = lim
t′→t

e−iE(t−t′)〈N |ψ†
β (r

′) lim
t′→t

eiH(t′−t)ψα (r) |N〉

= lim
t′→t

〈N |eiH(t′)ψ†
β (r

′) e−iH(t′)eiH(t)ψα (r) e
−iH(t)|N〉

= lim
t′→t

〈N |ψ†
β (r

′, t′)ψα (r, t) |N〉

= lim
t′→t

(−1)〈N |ψα (r, t)ψ†
β (r

′, t′) |N〉

= lim
t′→t
t′>t

(−1)〈N |T̂ψα (r, t)ψ†
β (r

′, t′) |N〉

= − lim
t′→t

iGαβ (r, t; r′, t′)

Putting this together:

〈N |Ô|N〉 = −i

∫
dr lim

r′→r
lim
t′→t

∑

αβ

Oαβ (r)Gαβ (r, t; r′, t′) (5.30)

− i

∫
dr lim

r′→r
tr
{
Ô (r)G (r, t; r′, t′)

}
(5.31)

The expectation value of any one particle operator can be determined with the one-particle Green’s
function.

In particular:

〈T 〉 = +i

∫
dr lim

r′→r

∇2

2
tr {G (r, t; r′, t′)} (5.32)

and for the density we get
Oαβ (r) = δαβδ (r− r′) (5.33)

n (r) = 〈N |Ô|N〉 = −i

∫
dr lim

r′→r

∑

αβ

δαβδ (r− r′)Gαβ (r, t; r′, t′)

= −iGαα (r, t; r, t′) = itr {G (r, t; r, t′)} (5.34)

what about the two particle operator, i.e. the Coulomb potential and therefore the total energy?
For this we consider the equation of motion for the field operator:

i
∂

∂t
ψ(x, t) = [ψ(x, t), H ] (5.35)

The commutator is calculated in the Heisenberg picture ((5.12) and (5.10)). Applying the anti commuta-
tion relations (5.6) and the identity

[A,BC] = {A,B}C −B {C,A} (5.36)
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we obtain for

[ψ(x), h] =

∫
dx′[ψ(x)︸ ︷︷ ︸

A

, ψ†(x′)︸ ︷︷ ︸
B

h(x′)ψ(x)︸ ︷︷ ︸
C

]

=

∫
dx′



{
ψ(x), ψ†(x′)

}
︸ ︷︷ ︸

δ(x−x′)

h(x′)ψ(x′)− ψ†(x′) {h(x′)ψ(x′), ψ(x)}




= h(x)ψ(x) −
∫
dx′ψ†(x′) (h(x′)ψ(x′)ψ(x) + ψ(x)h(x′)ψ(x′))

= h(x)ψ(x) −
∫
dx′ ((−1)ψ†(x′)h(x′)ψ(x′)ψ(x) + ψ†(x′)ψ(x)h(x′)ψ(x′)

)

= h(x)ψ(x) −
∫
dx′



{
ψ†(x′), ψ(x)

}
︸ ︷︷ ︸

0

h(x′)ψ(x′)




= h(x)ψ(x) (5.37)

For the two particle part of H we obtain an analogous expression. The equation of motion therefore reads

i
∂

∂t
ψ(x, t) =

[
ĥ(r) +

∫
ψ†(x′, t)v(r, r′)ψ(x′, t)dx′

]
ψ(x, t) (5.38)

with v(r, r′) being the Coulomb potential.
We now multiply from the left with ψ†(x′, t′) and take the ground state expectation value:

(i∂t − h (x)) 〈N |ψ†(x′, t′)ψ(x, t)|N〉 =
∫

dx′′〈N |ψ(x′, t′)ψ†(x′′, t)V (r, r′))ψ(x′, t))ψ(x, t)|N〉
︸ ︷︷ ︸

(5.39)

integrating over

∫
dx gives the expectation value of the two particle

part of the Hamiltonian in the limits x′ → x and t′ → t+

〈N |v|N〉 = − i

2

∫
dx lim

t′→t+
lim
x′→x

(
∂

∂t
− h (x)

)
G (xt,x′t′)

where we applied the same tricks as before to turn 〈N |ψ†(x′, t′)ψ(x, t)|N〉 into the Green’s function. Now
we have:

E0 = 〈N |h+ v|N〉 (5.40)

recall that

〈N |h|N〉 =
∫

dx lim
t′→t+

lim
x′→x

h(x)G (xt,x′t′)

=⇒ E0 = − i

2

∫
dx lim

x′→x

[
∂

∂t
− h (x)

]
G
(
xt,x′t+

)

The ground state total energy can also be calculated from the single particle Green’s function!
Summary of this part:
The one-particle Green’s function gives:

• Charged excitations

• The ground state total energy

What remains to be done is to find suitable approximations.
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5.3 The self-energy

Before we proceed to find approximations it is useful to introduce the concept of the self-energy. Going
back to the equation of motion for the field operator (eq. (5.39)).

(i∂t − h (x)) 〈N |ψ†(x′, t′)ψ(x, t)|N〉 =
∫

dx′′〈N |ψ(x′, t′)ψ†(x, t)V (r, r′))ψ(x′, t))ψ(x, t)|N〉

We can apply similar tricks as before to write this as:

(i∂t − h (x))G (xt,x′t′) = δ (t− t′) δ (x− x′)−i

∫
dx′′v (r, r′′) 〈N |T

{
ψ†(x′, t)ψ(x′′, t)ψ(x, t))ψ†(x′, t′)

}
|N〉

︸ ︷︷ ︸
G2(xt,x′′t,x′′t+,x′t′)

The two particle Green’s function defined as:

G (xt,x2t2,x
′t′,x′

2t
′
2) = 〈N |T

{
ψ(x1, t1)ψ(x2, t2)ψ

†(x′
2, t

′
2))ψ

†(x′
1, t

′
1)
}
|N〉 (5.41)

Therefore, to calculate the one-particle Green’s function requires knowledge of the two-particle green’s
function, which in turn will require knowledge of the three-particle Green’s function and so on, It is easily
seen that this builds up the full many-body Schrödinger equation. Alternatively we can here make an
attempt at factorizing:

−i

∫
dx′′v (r, r′′)G2

(
xt,x′′t,x′′t+,x′t′

)
≡

∫
dt′′dx′′M (xt,x′′t′′)G (x′′t′′,x′t′)

From M we seperate out the Hatree potential.

vH (r) =

∫
dr′v (r, r′)n (r′) =

∫
dr′v (r, r′) 〈N |ψ†(r′, t′)ψ(r′, t)|N〉 (5.42)

So that with
Σ =M + vH (5.43)

we arrive at
(
i
∂

∂t
− h (r)− vH (r)

)
G (xt,x′t′) = δ (t− t′) δ (x− x′) +

∫
dt′′dx′′Σ (xt,x′′t′′)G (x′′t′′,x′t′) (5.44)

and Fourier transformed:

(ω − h (r) − vH (r))G (x,x′, ω)−
∫

dx′′Σ (x,x′′, ω)G (x′′,x′, ω) = δ (x− x′) (5.45)

If Σ (x,x′′, ω) were static like in HF or local as in DFT this equation would simplify:

(ω − h0)G (x,x′, ω) = δ (x− x′) where h0 = h (r) + vH (r) +

{
vHF (r, r′)

vXC (r) δ (r− r′)
(5.46)

H0 =

N∑

i

h0(i)

This is the homogenous differential equation to the Schrödinger equation

H0Ψs = E(0)
s Ψs h0ϕs = ǫsϕs (5.47)

For this system we know that |N〉 is a single slater determinant φ0.

=⇒ fs (x) = 〈N − 1, s|ψ (x) |Φ0〉
= 〈N − 1, s|

∑

k

ϕk (x) ak|Φ0〉

=
∑

k

ϕk (x) 〈N − 1, s|ak|Φ0〉︸ ︷︷ ︸
δsk

= ϕs (x)
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G0 (x,x
′, ω) = lim

η→0

∑

s

ϕs (x)ϕ
∗
s (x

′)

ω − (ǫs ± iη)

{
+ for occupied

− for unoccupied
states (5.48)

So we have

(ω − h0)G0 = Î → (ω − h0) = G−1
0

(ω − h0)G− ΣG = Î

y G−1
0 G− ΣG = Î

⇔ G = G0 +G0ΣG

This is Dyson’s equation!
Starting from a non-interacting Green’s function, G can be obtained through Dyson’s equation.

5.4 Hedin’s equations

Without proof Hedin’s equations are listed here. The derivation can be found in the appendix of Hedin’s
original paper: Phys. Rev. 139 A796.

Σ (x1t1,x2t2) =i

∫
dx3dx4dt3dt4W

(
x1t

+
1 ,x3t3

)
G (x1t1,x4t4) Γ (x4t4,x2t2,x3t3) (5.49)

W (x1t1,x2t2) =v (r1, r2) +

∫
dx3dx4dt3dt4W (x1t1,x3t3)P (x3t3,x4t4) v (x4t4,x2t2) (5.50)

P (x1t1,x2t2) =− i

∫
dx3dx4dt3dt4G (x2t2,x3t3)G (x4t4,x2t2) Γ (x3t3,x4t4,x1t1) (5.51)

Γ (x1t1,x2t2,x3t3) =δ (x1 − x2) δ (x3 − x4) δ (t1 − t2) δ (t1 − t2) (5.52)

+

∫
dx4dx5dx6dx7dt4dt5dt6dt7

δΣ (x1t2,x2t2)

δG (x4t4,x5t5)

×G (x4t4,x6t6)G (x7t7,x5t5) Γ (x6t6,x7t7,x3t3)

With

• W (x1t1,x2t2) - the screend Coulomb interaction

• P (x1t1,x2t2) - the Polarisability

• Γ (x1t1,x2t2,x3t3) - the vertex function

This is an exact set of equations that expresses the many body problem in 5 quantities G, P , W , Σ and
Γ. The complexity of the full many-body problem is shifted to the vertex function.
=⇒ find approximations for Γ
A simpe approximation is to neglect the 2nd part of Γ i.e. Γ := Î
=⇒ Hedin’s GW approximation

Σ (x1,x2, t) = iG (x1,x2, t)W
(
x1,x2, t

+
)

(5.53)

P (x1,x2, t) = −iG (x1,x2, t)G (x2,x1,−t) (5.54)

W stays as it is (5.55)

The real merit of Hedin’s equations lies in the fact that the bare Coulomb interaction has been replaced by
the screened Coulomb interaction. This is important for solids and systems with large polarizability.

W (r, r′, t) =

∫
dr′′dt′ǫ−1 (r, r′′, t− t′) v (r′′ − r) (5.56)

ǫ (r, r′, t) = δ (r− r′)−
∫

dr′′dt′v (r− r′′)P (r′′, r′, t− t′) (dielectric function) (5.57)

The procedure of a typical GW calculation is:
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1. Perform a DFT calculation

2. Build Kohn Sham Green’s funtion G0

3. Calculate P0 = −iG0G0

4. Calculate ǫ = 1− vP0

5. Invert ǫ

6. Calculate W0 = ǫ−1v

7. Calculate σ0 = iG0W0

8. Solve Dyson’s equation which can be rewritten as

(h(r) + vH(r))ψs(r) +

∫
dr′Σ0

(
r, r′, ǫGWs

)
ψs(r

′) = ǫGWs ψs(r) (5.58)

A typical approximation is ψs(r) = ψKSs (r)

ǫGWs = ǫKSs + 〈s|σ0
(
ǫGWs

)
− vxc|s〉 (5.59)

The performace of the GW approximation is compared to HF and LDA with respect to band structure
and band gap in figures (5.4) and (5.5).

exp: 1.17 eV

Figure 5.4: Band structure of silicon.
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Figure 5.5: Band gaps of selected compounds compared to experimental values.
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