

Texts in Computer Science

Editors
David Gries
Fred B. Schneider

For other titles published in this series, go to
http://www.springer.com/3191

Luiz Velho · Alejandro C. Frery ·
Jonas Gomes

Image Processing
for Computer Graphics
and Vision

Second Edition

123

Luiz Velho, BE, MS, PhD
IMPA - Instituto de Matematica Pura e

Aplicada,
Rio de Janeiro, Brazil

Alejandro Frery, BSc, MSc, PhD
Universidade Federal de Alagoas,
Maceió, Brazil

Jonas Gomes, PhD
IMPA - Instituto de Matematica Pura e

Aplicada,
Rio de Janeiro, Brazil

Series Editors
David Gries
Department of Computer Science
415 Boyd Graduate Studies

Research Center
The University of Georgia
Athens, GA 30602-7404, USA

Fred B. Schneider
Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501, USA

Translated by Silvio Levy

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008936836

ISBN: 978-1-84800-192-3 2nd edition e-ISBN: 978-1-84800-193-0 2nd edition
978-0-387-94854-6 1st edition
DOI 10.1007/978-1-84800-193-0

c© Springer-Verlag London Limited 2009
First published 1997
Second edition 2009

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

To Solange and Daniel

To Noni and Alice

To Enilson

Preface

A escrita é a forma mais duradoura de conservar
nossos pensamentos. Através dela, nos é permitido
transmitir, de geração em geração, a essência de
nossas reflexões sobre a vida, a humanidade e, so-
bretudo, o amor.

Solange Visgueiro

This book originated when we noticed, several years ago, that the impor-
tance of image processing in the area of visualization and computer graphics
was not reflected in either the existing curricula or the current textbooks.

On the one hand, traditional image processing books do not cover impor-
tant topics for computer graphics such as warping, morphing, digital composit-
ing, color quantization, and dithering. Often even basic facts about signals are
not adequately discussed in the context of graphics applications. This kind of
knowledge is now more important than ever for computer graphics students,
given the interactions between audio, images, and models in most applications.

Computer graphics books, on the other hand, emphasize primarily model-
ing, rendering, and animation, and usually do not contain a proper exposition
of signal processing techniques.

We have adopted a conceptual approach, with emphasis on the mathemat-
ical concepts and their applications. We introduce an abstraction paradigm
that relates mathematical models with image processing techniques and im-
plementation methods. This paradigm is used throughout the book, and helps
the reader understand the mathematical theory and its practical use. At the
same time, we keep the presentation as elementary as possible by sacrificing
mathematical rigor, when necessary, for an intuitive description.

This book is intended to be useful either as a textbook or as a reference
book. In draft form and after publication, the Portuguese edition has been
used since 1992 at a course taught at Instituto de Matemática Pura e Aplicada
(IMPA) in Rio de Janeiro, attended by undergraduate and master’s students
in mathematics and computer science. Chapters 1 through 7 correspond to
the course’s contents; the remaining chapters have been used as topics for
discussion and seminars with the students. The English version has been in
use outside Brazil since the fall of 1996. The initial edition of the book had a

VIII Preface

strong emphasis on deterministic image models. The current extended edition
of the book includes also stochastic image models, as well as applications in
Computer Vision. The book in its present form can thus be used more flexibly
for teaching or research.

Acknowledgments

We wish to thank our friend Silvio Levy, who accepted the invitation to trans-
late the book and did an excellent job. Our interaction with him during the
translation was very rewarding, and his comments greatly influenced several
changes we have made for this English edition.

We are grateful to numerous colleagues who contributed their comments
and criticism to this work: André Antunes, Bruno Costa, Lucia Darsa, Marcelo
Dreux, Luiz Henrique de Figueiredo, and Valéria Iório, among others. We
also thank Siome Goldenstein and Paulo Roma, who helped us revise the
translation. We acknowledge the editorial work of Martin Gilchrist and Wayne
Wheeler of Springer-Verlag, who respectively agreed to publish the first and
second editions of this book.

Rio de Janeiro, March 2008

Luiz Velho
Alejandro Frery
Jonas Gomes

Contents

Preface . VII

1 Introduction . 1
1.1 Computer Graphics . 1
1.2 Abstraction Paradigms . 3
1.3 About This Book . 5
1.4 Comments and References . 8

2 Signal Theory . 13
2.1 Abstraction Paradigms . 13

2.1.1 Levels of Abstraction . 14
2.2 Mathematical Models for Signals . 15

2.2.1 Approximation of Signals . 16
2.2.2 Functional Models and Abstraction Levels 18
2.2.3 The Spatial Model . 19
2.2.4 The Frequency Model . 22

2.3 Linear Representation of Signals . 27
2.3.1 Existence of Exact Representations 29

2.4 Operations on Signals . 32
2.4.1 Filters . 32
2.4.2 Transforms . 33
2.4.3 Filtering and Frequencies . 34

2.5 Sampling Theory . 35
2.5.1 Uniform Point Sampling . 36
2.5.2 Point Sampling and the Fourier Transform 38
2.5.3 The Sampling Theorem . 41
2.5.4 Extensions of the Sampling Theorem. 44

2.6 Operations in the Discrete Domain . 46
2.6.1 Discrete Convolution . 47
2.6.2 The Discrete Fourier Transform . 47

X Contents

2.7 The Inverse Discrete Transform . 50
2.7.1 Properties of the DFT . 50

2.8 The Discrete Transform on the Interval [0, A] 51
2.9 Matrix Representation of the DFT. 52
2.10 The Fast Fourier Transform . 52
2.11 Finite Transform . 53
2.12 Comments and References . 53

3 Random Processes . 57
3.1 Random Variables . 57
3.2 Stochastic Processes . 63
3.3 Point Processes . 65

3.3.1 Homogeneous Processes with Independence 65
3.3.2 Inhomogeneity and/or Dependence 68

3.4 Comments and References . 72

4 Fundamentals of Color . 75
4.1 Paradigms in the Study of Color . 75
4.2 The Physical Universe of Color . 76

4.2.1 Color Formation . 76
4.2.2 Photometry and Colorimetry . 78

4.3 The Mathematical Universe of Color . 79
4.4 The Representation Universe of Color . 80

4.4.1 Color Sampling . 80
4.4.2 Color Reconstruction . 83
4.4.3 Computation of Primary Components 85

4.5 CIE-RGB Representation . 88
4.5.1 Color Matching Experiments . 90

4.6 Luminance and Chrominance . 91
4.7 The Color Solid . 95

4.7.1 Chromaticity Space . 95
4.8 Grassmann’s Laws . 98
4.9 Comments and References . 100

5 Color Systems . 103
5.1 Preliminary Notions . 103
5.2 Changing Between Color Systems . 104
5.3 Color Systems and Computer Graphics . 106
5.4 Standard Color Systems . 106

5.4.1 The CIE-RGB Standard . 107
5.4.2 The CIE-XYZ Standard . 108
5.4.3 Changing Between the CIE-RGB and CIE-XYZ

Systems . 110
5.4.4 Complementary Color Systems . 115
5.4.5 Uniform Color Systems . 116

Contents XI

5.5 Device Color Systems . 117
5.5.1 The Monitor RGB System . 117
5.5.2 Monitor-Complementary Systems . 119
5.5.3 Component Video Systems . 120
5.5.4 Composite Video Systems . 124

5.6 Color Interface Systems . 125
5.6.1 The HSV System . 127
5.6.2 The HSL System . 129
5.6.3 The Munsell System . 129
5.6.4 The Pantone System . 131

5.7 Computational Color Systems . 132
5.8 Color Transformations . 133
5.9 Comments and References . 133

6 Digital Images . 135
6.1 Abstraction Paradigms for Images . 135
6.2 The Spatial Model . 136

6.2.1 Continuous Images . 136
6.2.2 Image Representation . 138
6.2.3 Digital Images . 139
6.2.4 Digital Topology . 141
6.2.5 Pixel Shape . 142

6.3 Comments and References . 145

7 Operations on Images . 147
7.1 Arithmetic Operations . 147
7.2 Filters . 149

7.2.1 Classification . 150
7.2.2 Morphological Filters . 152
7.2.3 Spatially Invariant Filters . 154

7.3 Spatially Invariant Linear Filters . 155
7.3.1 Discrete Filters . 157
7.3.2 Extending the Domain of the Image 162

7.4 Examples of Linear Filters . 166
7.5 Edge Enhancement Operations . 179

7.5.1 Laplacian Addition . 179
7.5.2 Unsharp Masking . 182
7.5.3 Difference of Gaussians . 183

7.6 Comments and References . 184

8 Sampling and Reconstruction . 187
8.1 Sampling . 187

8.1.1 Time-Domain Viewpoint . 187
8.1.2 Frequency-Domain Viewpoint . 188

XII Contents

8.2 Reconstruction . 188
8.2.1 Frequency Domain Viewpoint . 188
8.2.2 Time-Domain Viewpoint . 189

8.3 Aliasing . 191
8.3.1 Aliasing in Computer-Generated Images 194

8.4 Reconstruction Problems . 196
8.4.1 Reconstruction Using a Box Filter 197
8.4.2 Analysis of Reconstruction Problems 198

8.5 Some Classical Reconstruction Filters . 200
8.6 A Study of Reconstruction Problems . 203
8.7 Reconstructing After Aliasing . 211
8.8 A Case Study . 213
8.9 Comments and References . 215

9 Multiscale Analysis and Wavelets . 217
9.1 The Wavelet Transform . 217

9.1.1 Inverse of the Wavelet Transform . 218
9.1.2 Image of the Wavelet Transform . 219
9.1.3 Filtering and the Wavelet Transform 220

9.2 The Discrete Wavelet Transform . 224
9.2.1 Function Representation . 226

9.3 Multiresolution Representation . 228
9.3.1 Scale Spaces . 229
9.3.2 Multiresolution Representation . 232
9.3.3 A Pause to Think . 233

9.4 Multiresolution Representation and Wavelets 235
9.4.1 A Pause... to See the Wavescape . 238
9.4.2 Two Scale Relation . 239

9.5 The Fast Wavelet Transform . 240
9.5.1 Multiresolution Representation and Recursion 241
9.5.2 Two-Scale Relations and Inner Products 243

9.6 Wavelet Decomposition and Reconstruction 244
9.6.1 Decomposition . 244
9.6.2 Reconstruction . 245

9.7 The Fast Wavelet Transform Algorithm . 246
9.7.1 Forward Transform . 246
9.7.2 Inverse Transform . 247
9.7.3 Complexity Analysis of the Algorithm 248
9.7.4 Boundary Conditions . 249

9.8 Images and 2D-Wavelets . 250
9.8.1 Tensor Product Extension . 250
9.8.2 The 2D Algorithm . 251

9.9 Comments and References . 253

Contents XIII

10 Probabilistic Image Models . 255
10.1 Image Formation . 255
10.2 Observed Data . 256
10.3 Histograms and Estimation . 261
10.4 Correlated Observations . 276
10.5 Filtering . 279
10.6 Classes . 285
10.7 Comments and References . 288

11 Color Quantization . 293
11.1 Quantization Cells . 295
11.2 Quantization and Perception . 296

11.2.1 Overview of the Quantization Process 298
11.3 Quantization Error . 299

11.3.1 Color Frequency Histograms . 299
11.4 Uniform and Adaptive Quantization . 300

11.4.1 Color Map Quantization . 301
11.4.2 Test Images . 301

11.5 Adaptive Quantization Methods . 302
11.5.1 Quantization by Direct Selection . 303
11.5.2 Quantization by Recursive Subdivision 303

11.6 Optimization Methods for Quantization . 307
11.7 Optimal One-Dimensional Quantization . 308
11.8 Optimal Quantization by Relaxation . 309

11.8.1 Optimal Quantization by Simulated Annealing 310
11.9 Comments and References . 310

12 Digital Halftoning . 313
12.1 Dithering . 313

12.1.1 Dithering by Random Modulation 317
12.1.2 A Classification of Dithering Algorithms 318

12.2 Periodic Dithering . 320
12.2.1 Clustered Ordered Dithering . 322
12.2.2 Dot Dispersion Ordered Dithering 327

12.3 Pattern Dithering . 329
12.4 Nonperiodic Dithering . 330

12.4.1 The Floyd–Steinberg Algorithm . 330
12.4.2 Dithering with Space-Filling Curves 331

12.5 Comments and References . 340

13 Image Compression . 345
13.1 Image Encoding . 345
13.2 Image Compression . 349

13.2.1 Compression by Image Model . 350
13.2.2 Compression by Image Representation 351

XIV Contents

13.3 Compression and Multiscale Analysis . 352
13.3.1 Two-Channel Encoding . 353
13.3.2 Multiscale Representation of an Image 356

13.4 Comments and References . 357

14 Combining Images . 361
14.1 Preliminaries . 361
14.2 Combining Images Algebraically . 362

14.2.1 Mixing Images . 363
14.3 Combining Images by Decomposing the Domain 364

14.3.1 Partitions of Unity and Decompositions 365
14.3.2 Image Compositing . 366

14.4 Combining Images in the Discrete Domain 368
14.4.1 The Opacity Function . 368
14.4.2 Discretization and Opacity Function 370

14.5 Computation of the Opacity Function . 372
14.6 Compositing in the Discrete Domain . 374

14.6.1 Compositing Using the Alpha Channel 374
14.6.2 Compositing Using Bitmasks . 376

14.7 Compositing Operations . 377
14.7.1 The Overlay Operator . 378
14.7.2 The Inside Operator . 380
14.7.3 The Outside Operator . 380
14.7.4 The Atop Operator . 381
14.7.5 The Xor Operator . 382
14.7.6 The Clear Operator . 383
14.7.7 The Set Operator . 383

14.8 Comments and References . 384

15 Warping and Morphing . 387
15.1 Warping Filters . 387
15.2 Warping in the Continuous Domain . 388

15.2.1 Expansions and Contractions . 389
15.3 Warping in the Discrete Domain . 391

15.3.1 Resampling . 392
15.4 Some Examples . 394

15.4.1 Zooming . 395
15.5 Warping in Practice . 399

15.5.1 Approximating the Pixel Geometry 400
15.5.2 Warping Using the Direct Map . 401
15.5.3 Warping Using the Inverse Map . 403
15.5.4 Decomposable Transformations . 404

15.6 Morphing . 407
15.7 Continuous Families of Transformations . 409
15.8 Comments and References . 412

Contents XV

16 Image Systems . 413
16.1 Image Characteristics . 413

16.1.1 Matrix Representation of a Digital Image 414
16.1.2 Pixel Geometry . 415

16.2 Image Display . 416
16.2.1 Support Media . 417
16.2.2 Tone Maps . 417
16.2.3 Calibration . 419

16.3 Cross Rendering . 420
16.3.1 Gamut Transformations . 420

16.4 Color Correction . 421
16.4.1 Luminance Overflow . 421
16.4.2 Unrealizable Colors . 421

16.5 Display Models . 422
16.5.1 Physical Reconstruction Function 424

16.6 Electronic Publishing Systems . 426
16.6.1 Offset Printing . 427

16.7 Comments and References . 435

A Appendix: Radiometry and Photometry 439
A.1 Radiometry . 439

A.1.1 Radiometric Magnitudes . 442
A.1.2 Spectral Distribution . 444

A.2 Photometric Variables . 446
A.3 Comments and References . 449

Index . 451

1

Introduction

Images are the final product of most processes in computer graphics. This
book is devoted to the study of images and of image manipulation systems
by computer. It also covers important mathematical concepts in the analysis
and understanding of images.

1.1 Computer Graphics

The International Standards Organization (ISO) defines computer graphics as
the sum total of “methods and techniques for converting data for a graphics
device by computer.” This definition would probably not help a reader totally
unfamiliar with the field to understand what it’s all about. In fact, the best
way to understand a field is to grasp what its main problems are. From this
point of view, the ISO definition can be said, with goodwill, to define the main
problem of computer graphics: converting data into images.

The process of converting data into images is known as visualization. It is
schematically illustrated in Figure 1.1.

In order to understand computer graphics, then, we must study the meth-
ods for creating and structuring data in the computer as well as methods for
turning these data into images. These two steps correspond to the two main
areas of research in computer graphics: modeling and visualization.

In this book we will not study modeling or data visualization. Instead, we
will focus on a more fundamental and very important problem: understanding

Fig. 1.1. Computer graphics: converting data into images.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 1,
c© Springer-Verlag London Limited 2009

2 1 Introduction

the notion of an image and also the techniques of image manipulation by
computer—in other words, image processing. At the same time, this is not
a typical image processing book, because it covers primarily the aspects of
image processing used most often in computer graphics.

Since its inception, computer graphics has sought methods to allow the
visualization of information stored in computer memory. Since there are prac-
tically no limitations on the nature or origins of such data, researchers and
professionals use computer graphics today in the most diverse fields of hu-
man knowledge. Its use is important whenever it is necessary to have a visual
representation of objects, actions, relations, or concepts. The importance of
this visual representation is reflected in the huge number of computer graph-
ics applications, ranging from scientific visualization to special effects in the
entertainment industry.

Partly because computer graphics has so many applications, there are no
sharp boundaries between it and related fields. However, we can take as a
working criterion in differentiating among these fields the nature of the input
and output of the process in question, as shown in Figure 1.2.

In data processing, the system takes in data and, after processing, returns
data of more or less the same nature. For example, a bank account manage-
ment system processes input transactions and yields output data such as a
daily balance, interest earned, and so on.

In computer graphics, the input data are (typically) nonvisual, and the
output is an image that can be seen through some graphics output device.
For instance, the account management system of the preceding paragraph
might plot a graph of the daily balance over a period.

Fig. 1.2. Computer graphics and kindred disciplines.

1.2 Abstraction Paradigms 3

In digital image processing, the input is already an image, which gets pro-
cessed to yield another image, the output. The latter can again be seen through
a graphics output device. An example would be the processing of data sent
by an orbiting satellite, with the purpose of coloring or enhancing the image.

The goal of computer vision is to, given an input image, obtain information
about the physical, geometric, or topological properties of the objects that
appear in it. This is used, for example, in robotics, to endow machines with a
sense of sight.

In most applications, two or more of these areas act in concert. Thus,
the data output by an image processing or computer vision system might be
further subjected to computer graphics techniques, to give the user better
qualitative information. For instance, height information can be extracted
from satellite images and processed to yield a relief map, which can further
be combined with enhanced and colorized image data to yield a realistic three-
dimensional model of the area. It is exactly the joint use of techniques in these
various areas that holds the greatest potential for applications.

Sometimes these cross-disciplinary links are so vigorous that they can
spawn new disciplines. The joint use of geometric modeling and computer
vision is the basis of the discipline known as visual modeling, which allows the
creation of models starting from the images of a scene. Medical imaging, like-
wise, uses (almost transparently) techniques from image processing, computer
graphics, and computer vision.

Another way to summarize these distinctions is by saying that computer
vision is interested in analyzing images, while computer graphics is inter-
ested in synthesizing them. These two areas, plus image processing, are the
triple foundation of all computational processes involving images. In com-
puter graphics, the image is the end product; image processing plays a role in
the early phase of image generation and in a later phase called postprocess-
ing. In computer vision, the image is the input data, and in general the early,
preprocessing phase involves image processing. Figure 1.3 illustrates this idea.

In all these areas, of course, the study of images as abstractions is of
paramount importance. We therefore turn to the general ideas that underlie
this study.

1.2 Abstraction Paradigms

In any area of applied mathematics, one needs to model the objects under
study mathematically. To set things on the right conceptual footing, one must
create a hierarchy of abstractions, and at each level of abstraction one must
apply the most appropriate models.

In applied areas that involve computational methods, and in particular in
computer graphics, one abstraction paradigm that is generally applicable con-
sists in establishing four universes (sets), shown schematically in Figure 1.4:
the physical universe P , the mathematical universe M , the representation

4 1 Introduction

Fig. 1.3. Image synthesis, processing and analysis.

Fig. 1.4. Conceptual levels of abstraction.

universe R, and the implementation universe I. The physical universe con-
tains the real-world objects we intend to study; the mathematical universe
contains an abstract description of the objects from the physical world; the
representation universe is made up of the discrete representations associated
with the objects from the mathematical universe; and, finally, in the imple-
mentation universe, we map the entities from the representation universe to
concrete data structures, in order to actually represent the objects on the com-
puter. The implementation universe is designed to separate the discretization
step (representation) from the particularities of the programming language
used in the implementation.

We call this conceptual layering the four-universe paradigm. In short, in or-
der to study a given phenomenon or object on the computer, we must associate

1.3 About This Book 5

to it a mathematical model and then find a discrete representation of the
model that can be implemented in the computer.

Based on this paradigm, here are the main types of problems that we can
expect to encounter in an area of study:

• defining the elements of the universe M ;
• relating the universes P , M , R, and I with one another;
• defining representation relations from M to R;
• studying the properties of the possible representations from M to R;
• converting among the different representations;
• devising good data structures for implementation.

Clearly, once the elements of M are defined, other specific problems can
be posed; for instance, one may create additional abstraction sublevels, in
a process similar to top-down structured programming. Creating abstraction
levels allows one better to encapsulate, pose, and solve the problems at each
level, much as object-oriented programming does. We will use the paradigm
above many times in this book; in each case we will discuss how it applies
to a particular area and how the problems itemized above translate to that
area.

1.3 About This Book

We now turn to the contents of each chapter of this book. Our goal throughout
has been to present the subject from a theoretically consistent point of view,
and we have adopted innovative formulations whenever we felt that this was
necessary for clarity of exposition. We have likewise included a great many
examples and illustrations, as an aid to understanding.

To the extent possible, we have avoided the discussion of implementation
details. There is no “pseudocode” in this book. Throughout the work, the
emphasis is on describing and analyzing underlying concepts rather than on
presenting algorithms or discussing optimization questions. A good conceptual
understanding is exceedingly important as a basis for further studies, and it
is also a prerequisite for understanding existing algorithms and creating new
ones.

The chapters of the book are as follows.

Chapter 2: Signal Theory

Discusses signal theory and so introduces the reader to the various ideas and
results of digital signal processing. It also prepares the reader for the study of
color and images, two particular cases of signals used in computer graphics,
and which are studied in detail in subsequent chapters.

6 1 Introduction

Chapter 3: Random Processes

Introduces the basic notions of Probability and Random Processes. These
concepts will be used to formulate stochastic image models and design their
applications.

Chapter 4: Fundamentals of Color

Introduces color theory from the point of view of signal processing. Discusses
the various mathematical models of color and develops the notion of color
space representation, or discretization of the visible spectrum, as a means of
allowing the representation of color on the computer.

Chapter 5: Color Systems

Discusses the different color systems used for the specification and computa-
tion of color, emphasizing the RGB and XYZ standards from the International
Commission for Illumination (CIE). Also covers video component systems,
which have acquired great importance in video and computer graphics appli-
cations.

Chapter 6: Digital Images

Introduces the main object of study of this book: the mathematical model for
an image, and its digital representation. The problem of image discretization
is extensively discussed.

Chapter 7: Operations on Images

Covers the important topic of operations on an image’s domain and color
space. Emphasizes image filtering, a topic of great importance in computer
graphics. Discusses a variety of linear filters, both in the spatial and the fre-
quency domain, and gives applications to reconstruction. There is some over-
lap between this chapter and Chapter 2, for the benefit of readers who have
already studied signal processing and who may want to read this chapter
independently.

Chapter 8: Sampling and Reconstruction

This chapter uses the theory and concepts developed in the previous chap-
ters to discuss in more detail the important problem of image sampling and
reconstruction.

1.3 About This Book 7

Chapter 9: Multiscale Analysis and Wavelets

Discusses the concept of multiscale representation of images and computation
with wavelets. Presents the Multiresolution framework to build wavelets and
describes the implementation of the Fast Wavelet Transform.

Chapter 10: Probabilistic Image Models

Introduces stochastic models for images. Relates these models with the pro-
cess of image acquisition from sensors. Analyzes the role of noise in images.
Probabilistic methods for classification and inference are also considered.

Chapter 11: Color Quantization

This chapter is devoted to the discretization of image attributes, with empha-
sis on color quantization. Uniform and adaptive quantization algorithms are
presented.

Chapter 12: Digital Halftoning

Dithering is often treated together with quantization, in a very superficial way.
We treat it separately, to stress the fact that dithering is a type of nonlinear
filtering. The decision to devote a whole chapter to the subject was based
on the importance of dithering in electronic publishing. The chapter contains
a detailed study of dithering algorithms, including some stochastic screening
techniques.

Chapter 13: Image Compression

This chapter gives an overview of image compression techniques. It includes
methods based on image transforms and wavelets.

Chapter 14: Combining Images

Studies several operations that allow one to combine into one image elements
from several. This is a very important topic in applications of image processing
to computer graphics, especially in the creation of special effects for video and
movies.

Chapter 15: Warping and Morphing

Discusses in detail, from a conceptual point of view, image warping and mor-
phing. These techniques are used to obtain smooth transitions between two
images and involve a correspondence of geometric elements simultaneously
with color interpolation.

8 1 Introduction

Chapter 16: Imaging Systems

Discusses a number of problems related to image analysis and processing
systems. As an example, it treats in some detail the case of an electronic pub-
lishing system with the ability to produce color separations for offset printing.

Appendix: Radiometry and Photometry

Covers in detail necessary background material on these classical areas of
physics, which, while useful for understanding parts of Chapter 3, would break
the conceptual flow of ideas if included in the main text.

Naturally, the study of images takes up most of the book. However, the
contents are not identical with those of a traditional course in image pro-
cessing: as already remarked, our interest is to exploit the aspects of image
processing that have importance in computer graphics. For this reason we
stress more color quantization than, say, the different methods of image en-
coding and compression. This also has led us to devote whole chapters to
operations on images, dithering, warping and morphing, and image composi-
tion, topics of great importance in computer graphics applications, which are
not covered in most books devoted to image processing.

1.4 Comments and References

Until recently, many computer graphics books included a historical synopsis
of the field’s evolution. This started in early days, when the field was new
and relatively little-known, as a way to acquaint the public with the potential
of computer graphics; later the tradition was maintained, in large measure
because the explosive growth in the body of knowledge and applications de-
manded constant updating of the literature.

Today, although still a young discipline in comparison with other areas
of science, computer graphics has developed to the point where the historical
dimension plays a different role. A history of computer graphics must cover
not only applications but also the evolution of mathematical and physical
models, the algorithms, and even the hardware. Such a history, or even a
bare chronology, would be far too long to be adequately dealt with in a single
chapter. What is needed is a book entirely devoted to the history of computer
graphics.

Nonetheless, here are some highlights of the literature, from a historical
point of view.

The seminal work of Ivan Sutherland, in his Ph.D. thesis (Sutherland
1963), marked a watershed between early, rudimentary uses of the computer
for graphics and the modern notion of interactive computer graphics. Suther-
land’s “Sketchpad” allowed the user to interactively manipulate plane geo-
metric figures.

The first texts that refer to computer graphics as such were connected with
computer-aided design (CAD) in high-technology industries, especially the

1.4 Comments and References 9

automobile, aircraft and shipbuilding industries. See, for example, (Parslow
1969) and (Prince 1971).

Many introductory articles about computer graphics have appeared in
popular scientific magazines. Among the oldest, and yet most interesting for its
historical perspective, is the article (Sutherland 1970) in Scientific American.
We mention also (Crow 1978), (Whitted 1982), and (van Dam 1984).

An excellent way to get an overall view of the evolution of the state of the
art in computer graphics is to watch the videos put out every year since 1978
by SIGGRAPH, the Special Interest Group in Computer Graphics of the ACM

(Association for Computing Machinery). These videos contain the animations
selected for display at the annual SIGGRAPH meeting in the United States,
itself a showcase of the most important current work in the field.

Among the many introductory computer graphics books available, we men-
tion two classics: (Newman and Sproull 1979) and (Foley et al. 1990). Both
stress the interactive aspects of the field and have appeared in a second, re-
vised, edition. Other general texts are (Giloi 1978), (Magnenat-Thalmann and
Thalmann 1987), and (Watt 1990).

Another general textbook, with good coverage of implementation aspects
of algorithms, is (Rogers 1985). Along the same lines, (Harrington 1983,
pp. 345–352) is geared toward the implementation of a graphics system in
the spirit of the CORE system proposed by the ACM (Michener and Van Dam
1979) as a possible ISO standard.

There is a series of “Graphics Gems” books devoted to the implementation
of graphics algorithms, covering many problems in image synthesis, processing
and analysis: (Glassner 1990), (Arvo 1991), (Kirk 1992), (Heckbert 1994), and
(Paeth 1995). They can be used (selectively) to complement the present book,
which does not stress the implementation side.

Although it can be appropriately applied to all areas of applied mathe-
matics that involve computational methods, the four-universe paradigm first
appeared explicitly in the literature in (Requicha 1980), in the context of ge-
ometric modeling. More details on the use of this paradigm in various areas
of computer graphics can be found in (Gomes and Velho 1995).

As the subject of computer graphics matured, textbooks started to appear
on specific subfields, such as ray tracing (Glassner 1989) and lighting (Hall
1989). The book (Fiume 1989), devoted to raster graphics, is an effort to lay
a solid conceptual foundation for this subject.

Scientific visualization, and its importance to scientific and technological
development, are well documented in (McCormick 1987).

A historical, if anecdotal, perspective on computer graphics can be gleaned
from (Machover 1978) and (Rivlin 1986).

References

[Arvo 1991]Arvo, J. (1991). Graphics Gems II. Academic Press, New York.
[Crow 1978]Crow, F. C. (1978). Shaded computer graphics in the entertain-

ment industry. Computer, 11(3):11–22.

10 1 Introduction

[Fiume 1989]Fiume, E. L. (1989). The Mathematical Structure of Raster
Graphics. Academic Press, New York.

[Foley et al. 1990]Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F.
(1990). Fundamentals of Interactive Computer Graphics, second ed.
Addison-Wesley, Reading, MA.

[Giloi 1978]Giloi, W. K. (1978). Interactive Computer Graphics. Data Struc-
tures, Algorithms, Languages. Prentice-Hall, Englewood Cliffs, NJ.

[Glassner 1990]Glassner, A. (1990). Graphics Gems I. Academic Press, New
York.

[Glassner 1989]Glassner, A. (editor) (1989). An Introduction to Ray Tracing.
Academic Press, New York.

[Gomes and Velho 1995]Gomes, J. and Velho, L. (1995). Abstract paradigms
for computer graphics. The Visual Computer, 11:227–239.

[Hall 1989]Hall, R. A. (1989). Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York.

[Harrington 1989]Harrington, S. (1983). Computer Graphics: a Programming
Approach. McGraw-Hill, New York.

[Heckbert 1994]Heckbert, P. (1994). Graphics Gems IV. Academic Press,
New York.

[Kirk 1992]Kirk, D. (1992). Graphics Gems III. Academic Press, New York.
[Machover 1978]Machover, C. (1978). A brief, personal history of computer

graphics. Computer, 11:38–45.
[Magnenat-Thalmann and Thalmann 1987]Magnenat-Thalmann, N. and

Thalmann, D. (1987). Image Synthesis. Springer-Verlag, New York.
[McCormick 1987]McCormick, B. (1987). Visualization in scientific comput-

ing. Computer Graphics, 21(6).
[Michener and Van Dam 1979]Michener, J. C. and Van Dam, A. (1978). A

functional overview of the Core System with glossary. ACM Computing
Surveys, 10:381–387.

[Newman and Sproull 1979]Newman, W. M. and Sproull, R. F. (1979). Prin-
ciples of Interactive Computer Graphics. McGraw-Hill, New York.

[Paeth 1995]Paeth, Alan W. (1995). Graphics Gems V. Academic Press, New
York.

[Parslow 1969]Parslow, R. D., Prowse, R. W., and Elliot Green, R. (editors),
(1969). Computer Graphics, Techniques and Applications. Plenum
Press, New York.

[Prince 1971]Prince, D. (1971). Interactive Graphics for Computer Aided De-
sign. Addison Wesley, New York.

[Requicha 1980]Requicha, A. A. G. (1980). Representations for rigid solids:
Theory methods, and systems. ACM Computing Surveys, 12:437–464.

[Rivlin 1986]Rivlin, R. (1986). The Algorithmic Image. Microsoft Press, Red-
mond, WA.

[Rogers 1985]Rogers, D. F. (1985). Procedural Elements for Computer Graph-
ics. McGraw-Hill, New York.

1.4 Comments and References 11

[Sutherland 1963]Sutherland, I. (1963). A man-machine graphical communi-
cation system. Ph.D. thesis, MIT, Dept. of Electrical Engeneering.

[Sutherland 1970]Sutherland, I. (1970). Computer displays. Scientific Amer-
ican, June 1970.

[van Dam 1984]van Dam, A. (1984). Computer software for graphics. Scien-
tific American, September 1984, 146–161.

[Watt 1990]Watt, A. (1990). Fundamentals of Three-Dimensional Computer
Graphics, second ed. Addison-Wesley, Wokingham, England.

[Whitted 1982]Whitted, T. (1982). Some recent advances in computer graph-
ics. Science, 215:764–767.

2

Signal Theory

Our everyday interaction with the environment takes place by means of signals
of many types. The sense of sight is based on light signals; the sense of hearing
and the ability to speak are based on sound signals; and electromagnetic
signals open the doors to the fantastic world of telecommunications.

With the advent of computers, and their ever-increasing role in manag-
ing the many activities of everyday life, the representation and processing of
signals in digital form have acquired great importance. The representation of
signals plays a central role in computer graphics, especially in image synthe-
sis, processing, and analysis. The aim of this chapter is to give the reader a
conceptual understanding of the problems arising from signal representation
and processing.

The study of signal theory can involve sophisticated mathematics. Here
we hope to give the reader a firm grasp of the mathematical foundations of
the theory. In order to make the chapter accessible to as wide a readership
as possible, we have not adhered to a rigorous mathematical formulation. A
mathematically sophisticated reader may consider it a good exercise to spot
the places where we left aside mathematical rigor in favor of simplicity of
exposition.

We hope this chapter will be useful to readers who are somewhat ac-
quainted with digital signal processing, as well as to those who are approach-
ing the subject for the first time.

2.1 Abstraction Paradigms

An application of the four-universe paradigm of Chapter 1 to the study of
the multitude of signals that surround us leads to the following breakdown
of our task: we must search for mathematical descriptions of these signals,
find effective means to construct discrete signal representations, and seek al-
gorithms to implement signal synthesis, analysis, and processing operations
in the computer. See Figure 2.1.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 2,
c© Springer-Verlag London Limited 2009

14 2 Signal Theory

Fig. 2.1. Applying the four-universe paradigm to the study of signals.

2.1.1 Levels of Abstraction

Based on the paradigm just described, we think in terms of three abstraction
levels in the study of signals: continuous signals, discrete signals, and encoded
signals. Each level corresponds to one form of signal description, appropriate
for the formulation and solution of a particular set of problems. The transition
between the three abstraction levels is carried out by operations of four types:
discretization, encoding, decoding, and reconstruction. See Figure 2.2.

Discretization and Reconstruction

Discretization is the task of converting a continuous signal into a discrete
representation. The opposite task, converting a discrete representation into a
continuous signal, is called reconstruction.

Ideally, the operation of reconstruction should be inverse to that of dis-
cretization; that is, given a continuous signal s, with discrete representation
sd, the process of reconstruction should recover s from sd:

s → discretization → sd → reconstruction → s.

Fig. 2.2. Levels of abstraction in signal representation.

2.2 Mathematical Models for Signals 15

In general, however, the result of reconstruction is not exactly the original
signal s, but some other signal sr. One of the central problems in signal
processing is finding discretization and reconstruction methods such that the
reconstructed signal sr is a good approximation of the original signal s. The
meaning of “good approximation” depends, of course, on the application.

Encoding and Decoding

Encoding is the step that goes from a discrete representation of the signal to
a finite representation, one that can be described by a finite set of symbols
organized according to some data structure. Decoding allows one to go from the
encoded data back to a discrete representation. Given a discrete representation
sd of a signal s, we have

sd → encoding → sc → decoding → s̃d.

If the decoded signal s̃d equals the discrete signal sd, we have lossless encoding;
otherwise the process is lossy. In addition to lossiness, there are many other
questions to be considered in the creation or choice of structures for a finite
signal representation, the most important of which are the space occupied by
the code and the speed of encoding and decoding.

2.2 Mathematical Models for Signals

According to our plan for following the abstraction paradigm, we now turn to
the mathematical models that can be used in the study of the signals of our
physical universe.

A signal arises when some physical magnitude varies in time or space.
Thus a sound signal corresponds to the variation of air density (or pressure)
with time. A static visual image corresponds to variations of color in space,
say among the points of a photograph. A video signal conveys color variation
in time as well as in space.

It follows that a signal should be represented by a mathematical object
that records the variation of the magnitude in question. If the variation is
deterministic, we can use a function to describe the signal. If it is nondeter-
ministic, we can use a stochastic process. In the first case we have a functional
model for the signal, and in the second a stochastic model.

Functional models are sufficient for the purposes of computer graphics and
therefore are the ones we adopt here. In such a model, a signal is represented
by a function f : U ⊂ R

m → V , where V is an arbitrary vector space; that
is, the physical magnitude in question is represented by a vector, varying in
a space with m degrees of freedom. A signal space is a vector subspace of
the space of functions {f : U ⊂ R

m → V }, where U , m, and V are fixed.
In other words, a signal space is a space of functions with a natural vector

16 2 Signal Theory

space structure given by the usual operations of addition of functions and
multiplication of a function by a real number:

(f + g)(t) = f(t) + g(t),
(λf)(t) = λ · f(t) for λ ∈ R.

It is also important to consider signals whose values are complex numbers.
The definition and the theory are essentially the same, and it will be clear
from the context whether we are referring to real- or complex-valued signals.

Two final remarks about our mathematical model for signals should be
made.

We defined a signal as a function assuming values in an arbitrary vec-
tor space. We might have simplified our mathematical model for signals by
allowing a signal to assume values only in a finite-dimensional space, that
is, f : U ⊂ R

m → R
n. In fact, most signals are covered by this model; but

the image signal, a very important one for us, assumes values in an infinite-
dimensional vector space, as we will see later.

The second remark concerns how general our mathematical model for sig-
nals is. Is it possible to represent any signal from the physical universe by
a function? The answer, unfortunately, is no, as exemplified by an impulse
signal.

An impulse signal is characterized by having an instantaneous variation
in magnitude, a very large intensity, and finite energy. One can attempt to
represent such a signal by a “function” f with the following properties:

• f(t0) �= 0, and f(t) = 0 if t �= t0 (instantaneous variation);
• f(t0) = +∞ (very large intensity at t0);
•

∫ +∞
−∞ f(t) dt < ∞ (finite energy).

Obviously, the second property means that f is not, in fact, a function.
One could use an appropriate extension of the notion of a function in

order to cover such signals: for example, distributions would be adequate.
However, in this book we have opted for a more elementary approach, sacri-
ficing mathematical rigor when necessary. Later we will show how we can use
the functional model to give an approximate description of an impulse signal.

2.2.1 Approximation of Signals

In many problems involving signals it is very important to have a metric
(notion of distance) to measure how close two signals are to one another.
Several metrics can be chosen, depending on the application. Our perception
of signals takes place, directly or indirectly, through our senses: the sense of
sight perceives electromagnetic signals within a certain range of frequencies,
the sense of hearing perceives sound signals, and so on. A metric d on a space
of signals is called a perceptual metric if two signals f and g satisfy d(f, g) = 0
if and only if they are perceptually indistinguishable. Strictly speaking, if

2.2 Mathematical Models for Signals 17

d(f, g) = 0 for two distinct functions f �= g, we should call d a pseudometric
rather than a metric, but we won’t make that distinction, since all perceptual
metrics are of this type, as well as many other nonperceptual metrics that are
important for reasons of computational efficiency.

We now consider two commonly used metrics.

The Uniform Metric

In the uniform metric the distance d(f, g) between two signals f and g is

d(f, g) = sup{|f(u)− g(u)| : u ∈ U},

where sup indicates the supremum (least upper bound) of a set of real num-
bers. We must, of course, assume that the signals are bounded in U . Figure 2.3
shows a neighborhood of radius ε > 0 of a signal f in the uniform metric, and
a signal g in this neighborhood.

The Lp Metric

When the signals take values in R or C, we can introduce the Lp metric, in
which the distance between two signals is

d(f, g) =
(∫ +∞

−∞
|f(u)− g(u)|p du

)1/p

,

assuming the integral exists. A particular case of great importance in signal
theory is p = 2. In this case the metric arises from the L2 inner product in
signal space given by

〈f, g〉 =
∫ +∞

−∞
f(u)g(u)du,

Fig. 2.3. The ε-neighborhood of a signal f in the uniform metric.

18 2 Signal Theory

where the bar indicates complex conjugation. Clearly, the L2 metric is defined
only if ∫ +∞

−∞
|f |2 < ∞

for all f in the space of signals. Physically, this condition means that all signals
have finite energy. The assumption of finite energy is physically meaningful
and mathematically very convenient. In this book we will assume that all
signals have finite energy, unless we say otherwise.

While the uniform metric measures a point-by-point difference between
the two signals, the Lp metric gives an average difference between them. We
leave it to the reader to provide an intuitive discussion of the perceptual
characteristics of these two metrics.

2.2.2 Functional Models and Abstraction Levels

A function f : U ⊂ R
m → R

n on a space of signals is called a continuous
signal. “Continuous” here contrasts with “discrete” and means simply that the
domain and range of f are “continua” (spaces parametrized by real numbers,
rather than discrete spaces). We are not assuming that f is necessarily a
continuous function in the sense of topology or analysis. Continuous signals
are also known as analog signals in engineering.

On a computer, the set of real numbers is replaced by a finite set of
numbers, namely those that can be represented by computer words in some
floating-point arithmetic scheme. Thus, in practice, we consider a continuous
signal to be one that is defined using floating-point arithmetic.

We now return to the three abstraction levels for signal representation
(Section 2.1) in the context of a functional model. Given a signal defined by
a function f , the representation process consists of discretizing the domain
of f , while encoding requires the discretization of both the domain and the
range of f . Discretization of the domain is traditionally known as sampling,
and discretization of the range as quantization.

More precisely, there are four conceptual variants for the functional rep-
resentation of a signal: continuous-continuous, continuous-discrete, discrete-
continuous, and discrete-discrete.

A continuous-continuous signal is what we earlier called a continuous sig-
nal: both the domain and the range are continua. A continuous-discrete signal
has a discrete range (quantization). A discrete-continuous signal has a dis-
crete domain (sampling). Finally, a discrete-discrete signal is both sampled
and quantized. Such a signal is also called a digital signal.

Intuitively, sampling a signal f amounts to computing and preserving the
values taken by f at a finite number of points p1, p2, . . . , pk of the original do-
main U (such values are known as samples) and ignoring all other information
about f .

Reconstruction of the signal amounts to using an interpolation process to
obtain the original signal f , or an approximation fr to f , starting from the

2.2 Mathematical Models for Signals 19

Fig. 2.4. Sampling and reconstruction of a signal.

samples f(p1), f(p2), . . . , f(pk) of f . Figure 2.4 illustrates this idea, using a
particular reconstruction method (linear interpolation).

If the interpolation method recovers the original signal, that is, if fr = f ,
we say the reconstruction is ideal or exact. In this book we will extend and
elaborate on the notions of sampling and reconstruction for images; we will
also briefly review the problem of image encoding and decoding.

Different functional models arise from different interpretations for the do-
main and range variables of the function representing the signal. The physical
interpretation of these variables, although mathematically irrelevant, is of
course what gives a representation its meaning, and it is very important in
applications where different functional models can be used. We will examine
here two functional models: spatial and spectral.

2.2.3 The Spatial Model

In the spatial model, the domain U of the function f : U ⊂ R
m → V repre-

senting the signal stands for a region in physical space or an interval of time
(in which case, m = 1). For this reason U is called the space domain or time
domain; the two expressions are often used interchangeably when m = 1. The
function expresses a physical magnitude, a vector in V , varying according to
position or time. The dimension of the domain is called the dimension of the
signal: for m = 1 we have a one-dimensional signal, and so on.

Returning to our earlier examples: an audio signal (such as recorded sound)
is one-dimensional, varying in time. A photographic image is a two-dimen-
sional signal; U is a subset of the Euclidean plane R

2, and the function f
associates to each point p ∈ U a vector f(p) ∈ R

n representing color informa-
tion at p, where R

n is the color space. For a video signal we also have variation
in time; therefore we have a three-dimensional signal f : U × R ⊂ R

3 → R
n.

20 2 Signal Theory

The theory developed in this chapter is valid for m-dimensional signals,
with m ≥ 1 arbitrary. To simplify the exposition and the notation, we will
introduce our definitions and most examples in the context of one-dimensional
signals. While reading the chapter, you should mentally translate the ideas
also to the m-dimensional case—especially for m = 2, the case of images.

Pulse and Impulse Signals

Let a > 0. The one-dimensional pulse signal pa(t) is represented by

pa(t) =
{

1 if |t| ≤ a,
0 if |t| > a.

Clearly, this signal has constant intensity and finite duration. Its graph is
given in Figure 2.5(a).

It can easily be generalized to m dimensions: the m-dimensional pulse
signal pa : R

n → R is defined as

pa(x1, . . . , xn) = pa(x1)pa(x2) . . . pa(xn)

(that is, it is the tensor product of m one-dimensional signals). The graph of
pa for m = 2 appears in Figure 2.5(b).

Sometimes it is convenient to consider a normalized pulse signal,

p(t) =
pa(t)
2a

,

where the area under the graph equals 1.
As we mentioned in Section 2.2, the impulse signal cannot be represented

by a function. Now we will show how it is possible to use the pulse signal to ob-
tain an approximate mathematical description of an impulse in the functional
model.

Fig. 2.5. (a) One-dimensional pulse signal of duration 2a. (b) The two-dimensional
analogue.

2.2 Mathematical Models for Signals 21

The impulse “function” δ(t), also called a Dirac delta function, can be
represented in the functional model by the limit

δ(t) = lim
n→+∞

1
2n · p1/n(t), (2.1)

where p1/n is the pulse function defined above. Note that, as n → +∞, the
support of the signals 1

2np1/n converges to 0, and the value at t = 0 converges
to +∞, as shown in Figure 2.6. (Recall that the support of a function is the
smallest closed set outside of which the function is zero.)

In the limit, we have a signal with instantaneous variation at the origin
(f(0) �= 0, and f(t) = 0 for t �= 0) and also with a very large intensity at the
origin (f(0) =∞). The energy of this signal is finite and equal to 1. This can
be checked as follows:

∫ +∞

−∞
δ(t) dt =

∫ +∞

−∞
lim

n→+∞
1
2np1/n(t) dt = lim

n→+∞

∫ +∞

−∞

1
2np1/n(t) dt = 1.

The above limit-of-pulses signal represents an impulse signal δ at the ori-
gin. An impulse at an arbitrary point t0 would be represented by δ(t − t0).
However, we should point out that this representation of the impulse signal
is not mathematically correct, because the limit in (2.1) has no meaning for
t = 0.

The above “approximation” can be used to justify most of the properties
of the impulse signal, but be aware that manipulations involving this approx-
imation are not mathematically correct. However, they have heuristic value
and can be rigorously formalized in the context of a distribution model for
signals.

The Dirac δ plays a central role in signal theory, both in theory and in
applications. One of its most important properties is given by the equation

f(x) =
∫ +∞

−∞
f(t) δ(x− t) dt, (2.2)

Fig. 2.6. A sequence of pulses converging toward an impulse at the origin.

22 2 Signal Theory

Fig. 2.7. Graphical representation of the impulse function.

which shows how every signal can be “reconstructed” as an infinite sum of
impulses, translated and scaled according to the value of the signal. We leave
it to the reader to show the plausibility of (2.2), using the definition of δ as a
limit of pulse signals (2.1).

Figure 2.7, left, shows the graphical representation of the impulse δ. The
“graph” of a scaled version kδ, for k ∈ R, is shown on the right. In these
figures, the finite height of the arrow indicates finite energy, and not finite
value.

2.2.4 The Frequency Model

We recall that, in the spatial model, a signal is determined by a function
f : U ⊂ R

m → V that defines the variation of the signal in the space or time
domain U . This is the model that relates directly to the signal magnitudes
of the physical world. The frequency model, to be introduced in this section,
is closely related with our perception of the signal. But instead of motivating
it with a perceptual example, we prefer to start with a very simple and well-
known mathematical example.

Consider the signal defined in time by a sine curve

f(t) = a sin(2πω0t + Φ).

Such a signal is completely characterized by its amplitude a, its frequency ω0,
and its phase angle Φ. The frequency measures how fast the signal changes:
namely, ω0 cycles per unit of time. See Figure 2.8.

Based on this example, we can try to characterize an arbitrary signal in
terms of its frequency components. That is, we can consider a functional model
that associates to each frequency in a signal the corresponding amplitude and
phase. Consider, for example, the periodic signal f(t) = a cos(2πω0t), whose
graph is shown in Figure 2.9(a). This signal has a single frequency component
ω0, with amplitude a and phase 0. Thus its functional representation in terms
of frequencies can be considered to be

2.2 Mathematical Models for Signals 23

Fig. 2.8. Sinusoidal signals with frequencies 2, 4, and 8.

Fig. 2.9. A periodic signal and two alternative frequency models for it.

Freq(f)(s) =
{

a if s = ω0,
0 if s �= ω0.

The graphical representation of Freq(f) is shown in Figure 2.9(b).
We now make an important observation with respect to the definition of

Freq(f)(s). Using complex notation, we can write

cos t = 1
2 (eit + e−it);

therefore,
f(t) = a cos(2πω0t) = 1

2a(e2πiω0t + e2πi(−ω0)t).

We see that in this formulation we have two symmetric frequency components,
with frequencies ω0 and −ω0, both having amplitude 1

2a, so that we can
instead write

Freq(f)(s) =
{

1
2a if s = ω0 or s = −ω0,
0 otherwise.

The graph of this Freq(f) is shown in Figure 2.9(c). As we will see, allowing
components with negative frequencies is a natural way to take into account
the phase information of a periodic signal.

The analysis just made can be generalized, yielding a functional model in
the frequency variable for an arbitrary periodic signal. Indeed, the theory of

24 2 Signal Theory

Fourier series states that any periodic signal f of period T0 can be written as
a sum

f(t) =
+∞∑

k=−∞
ckei2πkω0t, (2.3)

where ω0 is the signal’s fundamental frequency, and the ck are complex num-
bers.

This Fourier series development shows that a periodic signal has (poten-
tially) all the frequencies that are multiples of the fundamental frequency ω0,
and no others. Thus a frequency-domain functional model for a periodic real-
or complex-valued signal is a function that associates to each multiple kω0,
for k ∈ Z, a complex amplitude ck.

Usually f is real-valued. Then the coefficients ck occur in complex conju-
gate pairs. That is, c−k = c̄k for each k (where the bar stands for complex
conjugation), and Equation (2.3) can be written in the form

f(t) = c0 + 2
+∞∑

k=1

(
Re ck cos(2πkω0t)− Im ck sin(2πkω0t)

)
. (2.4)

Thus, for real-valued f , we can think in terms of positive frequencies only, if
we so desire. The component with frequency kω0 is the linear combination of
sin(2πkω0t) and cos(2πkω0t) that appears in (2.4). We see that the modulus
of ck is the amplitude of this component, and the argument of ck is its phase.
In the complex exponential formulation (2.3), this combined component of
frequency kω0 splits into two, with frequencies ±kω0.

Example 2.1 (Sawtooth signal). The periodic signal f(t) whose graph is shown
in Figure 2.10(a) is called a sawtooth signal. With ω0 = 1/T0, the Fourier
series representation of f is

f(t) =
1
T0

+
∑

k>0
k odd

4
π2k2T0

(ei·2πkω0t +e−i·2πkω0t)

=
1
T0

+
8

π2T0

(
cos(2πω0t)+

1
32

cos(6πω0t)+
1
52

cos(10πω0t)+ · · ·
)
.

The frequency representation of f is shown in Figure 2.10(b).

Fourier series allowed us to define a frequency functional model for periodic
signals. We now want to extend this model to nonperiodic signals. We need a
tool to measure the contribution of a given frequency to an arbitrary signal.
We cannot use Fourier series, since a nonperiodic signal can contain arbitrary
frequencies, not just multiples of a fixed fundamental frequency—in other
words, we have a continuum of frequencies.

The classical technique to measure this contribution is the Fourier trans-
form, which we now explain.

2.2 Mathematical Models for Signals 25

The Fourier Transform

Given a signal f : R → R, the Fourier transform F (f) of f is defined by

F (f)(s) = f̂(s) =
∫ +∞

−∞
f(t)e−2πits dt. (2.5)

The reader should be aware that sometimes the transformed signal f̂(s) is
denoted by F (s). We will avoid this notation because it confuses the operator
F with the transformed function.

One can intuitively see that the Fourier transform detects frequencies in
the signal f . Indeed, the kernel e−2πits is a periodic signal with frequency s.
Thus the modulation f(t)e−2πits detects the frequency values s of the signal
f that are in resonance with the frequencies of the kernel e−2πits. The integral
in (2.5) measures the “density” of the frequency s in the signal f throughout
its domain. Thus f̂(s) shows with what intensity the frequency s occurs in
the signal f , but it does not say where it occurs in the domain of the signal.

One immediately checks that the Fourier transform defines a linear op-
erator F : S → S ′, with F (f) = f̂ , between two signal spaces. The Fourier
transform operator F is invertible, and its inverse F−1 is given by

f(t) = F−1(f̂(s)) =
∫ +∞

−∞
f̂(s)e2πist ds. (2.6)

Intuitively, (2.6) says that the signal f can be “reconstructed” as an infinite
sum of signals with frequency s (for s ∈ R) and amplitude f̂(s).

Thus a signal can be characterized either by its spatial model f or by its
frequency model f̂ . The Fourier transform operator and its inverse allow us
to go back and forth between the two models. Thus the spatial model gives us
information on the variation of the signal in the space domain, whereas the
frequency model records the variation of the signal in the frequency domain.
Generally speaking, the spatial model is used for signal synthesis, while the
frequency model is more useful for signal analysis.

Fig. 2.10. A sawtooth signal in a spatial model (a) and frequency model (b) rep-
resentation.

26 2 Signal Theory

We remark that there are three notation conventions in the literature for
writing the Fourier transform and its inverse. These conventions differ from
each other in the placement of the factor 2π. We opted for placing the factor
2π on the exponent, as shown in Equations (2.5) and (2.6), and nowhere
else. In this convention, if t represents time or space, the variable s of the
transformed signal indeed represents the frequency with no scale factor.

All these considerations generalize to m-dimensional signals. The Fourier
transform of a signal f : R

m → R is defined by

f̂(U) =
∫

Rm

f(X)e−2πi〈X,U〉 dX, (2.7)

where U = (u1, u2, . . . , um), X = (x1, x2, . . . , xm), 〈X,U〉 =
∑m

i=1 xiui, and
dX = dx1 dx2 . . . dxm.

Other Frequency Models

There are other frequency-variable functional models for signals in addition to
the one based on the Fourier transform. Each such model has a corresponding
transform operator, which fills the role played by the Fourier transform in the
frequency model described in this section. We mention the cosine transform
and the window Fourier transform. Also, the wavelet transform is associated
with a scale-space model of a signal. The existence of different functional mod-
els for signals, and of transform operators that allow one to convert between
them, is very important for image synthesis and analysis. For each application
we must devise the model most appropriate to the problem.

Fourier Transform of the Pulse

Consider the pulse function

pa(t) =
{

1 if |t| ≤ a,
0 if |t| > a

defined in Section 2.2.3. A short calculation shows that its Fourier transform
is

p̂a(s) = 2a
sin(2πas)

2πas
.

Using the classical notation

sinc(t) =

⎧
⎨

⎩

sin t

t
if t �= 0,

1 if t = 0,

we can write
p̂a(s) = 2a sinc(2πas).

2.3 Linear Representation of Signals 27

Fig. 2.11. The pulse signal and its Fourier transform.

Figure 2.11 shows the graphs of the pulse function and of its Fourier transform
sinc. As we will see, this function plays an important role in the study of
signals.

Looking at the Fourier transform of the pulse signal, we see that, as the
width 2a of the support of the pulse function approaches 0, the presence of high
frequencies in the signal increases: 1/(2a) → ∞. Conversely, if a → ∞, the
presence of high frequencies in the signal decreases. This is a particular case of
a general result that relates the standard deviation of the signal in the space
domain with that in the frequency domain. The smaller the standard deviation
is in one of the domains, the greater it is in the other. This observation is
the basis of the uncertainty principle, which is very important when relating
signals in the spatial and frequency models.

Fourier Transform of the Impulse

The Fourier transform of an impulse signal can be obtained by approximating
the impulse by pulse functions, as explained in Section 2.2.3. The calculations
we make here are not mathematically rigorous, but they have heuristic value;
a rigorous calculation using distributions would lead to the same result.

δ̂(s) = F (δ) = F
(

lim
n→∞

1
2np1/n(t)

)

= lim
n→∞

F
(

1
2np1/n(t)

)
= lim

n→∞

sin(2πs/n)
2πs/n

= 1.

Thus the Fourier transform of a unit impulse signal, or Dirac delta, at the
origin is the constant function δ̂(s) = 1.

2.3 Linear Representation of Signals

Now that we have defined our signal models in the mathematical universe, we
tackle the second level in our abstraction hierarchy: the discretization problem.
As already said, discretization of a signal is classically known as sampling. We
introduce here the concept of representation, which extends, in a sense to be
made precise, the notion of sampling.

28 2 Signal Theory

We start by defining the space �2 of square-summable sequences. This con-
sists of all sequences

(. . . , c−2, c−1, c0, c1, c2, . . .)

of real or complex numbers, such that

+∞∑

i=−∞
|ci|2 < ∞. (2.8)

The convergence condition in (2.8) is made so we can define an inner product
in �2. The inner product of two sequences b = (bi) and c = (ci) is

〈c, b〉 =
+∞∑

i=−∞
cibi.

Note that Euclidean spaces R
n have a natural isometric embedding in �2 (i.e.,

they extend each n-tuple to an infinite sequence by adding zeros).
A linear representation of a signal space S = {f : U ⊂ R

m → V } is a
continuous linear operator R : S → �2. The image V = R(S) of the space
S under R is a subspace of �2, called the representation space of S. If V is
finite-dimensional, we have a finite representation. When the signal f can be
recovered from its representation R(f), we say that f is represented exactly.
If every f ∈ S is represented exactly, we have an exact representation. If
the operator R is invertible, the representation is obviously exact. But it is
possible to obtain exact reconstruction even for noninvertible representation
operators.

The purpose of the representation step is to obtain a discrete signal from
its continuous model.

Example 2.2 (Finite point sampling). Given a signal space S = {f : U ⊂
R

m → V }, fix k points u1, u2, . . . , uk in the domain U . One immediately
verifies that the map R : S → R

k ⊂ �2 defined by

R(f) =
(
f(u1), f(u2), . . . , f(uk)

)

is a linear representation of S, which is also finite. The elements f(ui) of
the representation vector are called samples of the signal f . This representa-
tion is traditionally known as finite point sampling. It is an exact represen-
tation if we can devise an interpolation method that reconstructs f from its
samples.

The purpose of a linear representation is to replace the initial signal space,
which is generally infinite-dimensional, by a subspace of �2. In general, we try
to work with finite-dimensional subspaces of �2, so we can later obtain an
encoding of the represented signal. A linear representation induces a natural
relationship between signal space and representation space. Indeed, given a

2.3 Linear Representation of Signals 29

representation R : S → �2, we define an equivalence relation in the signal
space S by

f � g if and only if R(f) = R(g).

The quotient map R̄ : S/� → V , making the diagram

S S/���

V ⊂ �2
�

R R̄
�

�
�

��

commute, is a linear isomorphism. We can then use the representation space
V instead of the signal space. However, unless the representation is exact—
that is, unless the equivalence relation � is the trivial one—there is a loss of
information in the representation process. This is illustrated in Figure 2.12,
for the case of finite point sampling (Example 2.2): two distinct signals have
the same representation if their values happen to coincide at all sampling
points (here f(ui) = g(ui) for i = 1, . . . , 4).

In principle, the isomorphism R̄ in the diagram above establishes only
an algebraic equivalence between the quotient space and the representation
space. For each representation one must make a detailed analysis of the loss
of information incurred in passing to the quotient.

2.3.1 Existence of Exact Representations

Consider an enumerable set of signals {gk : k ∈ Z} from a signal space S with
an inner product 〈 , 〉. We define the representation operator R by

R(f) = (ck)k∈Z ∈ �2, where ck = 〈f, gk〉.

From the properties of the inner product, it follows that R is indeed a linear
representation of the signal space S. The elements gk are called atoms of the
representation. Here is a well-known example of this representation.

Fig. 2.12. Distinct signals can have the same point sampling representation.

30 2 Signal Theory

Example 2.3 (Fourier sampling). The Fourier series of a periodic signal f ,
given by (2.3), defines in fact a linear representation

f �→ (. . . , c−2, c−1, c0, c1, c2, . . .)

of the signal f , where ck = 〈f, ei2πkω0t〉. This representation gives a discrete
model of the signal in the frequency domain. It is called Fourier sampling.
The exactness of this representation is related to the convergence properties
of the Fourier series.

In Example 2.2 we introduced the finite point representation of a signal.
Clearly, every signal has representations of this type, so a given signal space
always has a linear representation. However, as already seen, this representa-
tion is not necessarily exact.

Using the representation by atoms introduced in the beginning of this
section, one can look for conditions on the set {gk}k∈Z that guarantee the
exactness of the representation operation R. This would give us a method
to obtain exact representations. The following theorem is a result in this
direction.

Theorem 2.4 (Representation theorem). Every space S of signals of fi-
nite energy admits an exact representation.

Proof (Outline of proof). Consider S as a (not necessarily closed) subspace of
L2. It can be proved that there exists a complete orthonormal set { . . . , e−2,
e−1, e0, e1, e2, . . .} , such that

f =
∞∑

k=−∞
ckek

for every signal f ∈ S, where ck = 〈f, ek〉. Moreover,

∞∑

k=−∞
|ck|2 = ‖f‖2 <∞,

so (ck) ∈ �2. Now define a representation by setting

f �→ L(f) = (. . . , c−2, c−1, c0, c1, c2, . . .).

It is clear that L is linear.

In practice, Theorem 2.4 requires that we devise methods to obtain com-
plete orthonormal sets of signal spaces. This is not an easy task in general,
especially when the orthonormal set must satisfy additional properties.

Complete orthonormal sets constitute the proper generalization of a basis
in a signal space with inner product. Theorem 2.4 says that whenever we have
a basis we obtain a method for exact representation, at least theoretically.

2.3 Linear Representation of Signals 31

We should point out, however, that even when the family {gk; k ∈ Z} of
atoms is not a basis, the representation operator can be of great value in
applications. Indeed, if the set generates the space, the only property that
we miss is the uniqueness of the representation, but this is not important for
some applications.

Here is another example of a representation based on an orthonormal fam-
ily of signals.

Example 2.5 (Area sampling). Consider a signal space

S = {f : U ⊂ R
m → R},

and take a countable partition of the domain U , say P =
⋃

i Ui for i ∈ Z, such
that the area of the set Ui satisfies Area(Ui) > ε > 0 (see Figure 2.13). Define
a family of functions χi : U → R on U by setting

χi(p) =

⎧
⎨

⎩

1
Area(Ui)

if p ∈ Ui,

0 if p /∈ Ui.

The family {χi}i∈Z forms an orthogonal set in the space of signals, with respect
to the L2 inner product. Given a signal f , we have

f =
∑

i

Area(Ui) ciχi, (2.9)

where
ci = 〈f, χi〉 =

1
AreaUi

∫

Ui

f(u) du. (2.10)

That is, the value of the coefficient ci in this representation is exactly the
mean value of the signal over the set Ui. This representation is known in
the literature as area sampling. We remark that, since the orthonormal set
of functions {χi}i∈Z is not complete in L2(U), the representation arising
from (2.9) is not exact: distinct signals can have the same mean values over
each Ui.

Fig. 2.13. A partition of U .

32 2 Signal Theory

2.4 Operations on Signals

An operation on a signal space S is a map

T : R
m × Sn → S ′

into a (possibly different) signal space S ′.
As already remarked, since a signal space is a vector space, there are two

natural operations: addition of signals, an operation S × S → S defined by

(f + g)(t) = f(t) + g(t),

and multiplication of a signal by a scalar, an operation R×S → S defined by

(λf)(t) = λ · f(t),

where λ ∈ R. Combining these operations, we can, for example, define the
linear interpolation between two signals f and g, obtaining a one-parameter
family hu of signals

hu(t) = (1− u)f(t) + ug(t), for u ∈ [0, 1].

This family gives a continuous transition between the signals f and g, as the
parameter u varies from 0 to 1.

For real-valued signals f : U ⊂ R
m → R (or for signals taking values in

another space having a product structure, such as the complex numbers C),
we can define the multiplication of two signals, an operation S × S → S, by
setting

(fg)(x) = f(x)g(x).

2.4.1 Filters

A unary operation L : S → S on a signal space is called a filter. If L is a
linear map, so that

L(f + g) = L(f) + L(g) and L(λf) = λL(f),

we say that L is a linear filter. L is spatially invariant if

(Lf)(x− a) = L(f(x− a)),

that is, if its behavior is the same at any point in the signal’s space domain.
An important class of filters that are not spatially invariant consists of

adaptive filters, where the value of the filter at a point depends on the behavior
of the signal in a neighborhood of the point.

2.4 Operations on Signals 33

Convolution and Impulse Response

The impulse response of a filter L is the image L(δ) of the impulse signal δ
under the filter. From (2.2) we see that a signal f can be written as an infinite
sum of impulse signals, appropriately translated and modulated. Thus, if we
know the impulse response h(t) = L(δ) of a linear and spatially invariant filter
L, we can say that the response L(f) of the filter to an arbitrary signal f is
an infinite sum of copies of h, appropriately translated and modulated. More
precisely:

Lf(x) =
∫ +∞

−∞
f(t)L

(
δ(x− t)

)
dt =

∫ +∞

−∞
f(t)h(x− t) dt. (2.11)

The second integral in (2.11) defines an operation S × S → S called the
convolution product, or simply convolution. In general, the convolution of two
signals f and g is denoted f ∗ g and is defined by

f ∗ g(x) =
∫ +∞

−∞
f(t)g(x− t) dt.

We therefore have the following result.

Theorem 2.6. A spatially invariant linear filter L is entirely determined by
its impulse response function h. More precisely, for every signal f we have
L(f) = f ∗ h.

The impulse response function is also called the kernel of the filter. When
using linear and spatially invariant filters, we will often identify the operation
of filtering with the operation of convolution with the appropriate kernel.

2.4.2 Transforms

A linear transformation T : S → S ′ between two functional models of a sig-
nal space is called a transform operation, or just a transform. In general, we
will require our transform operations to be invertible, so that they provide
a faithful conversion between the two functional signal models. An impor-
tant example is the Fourier transform, introduced in Section 2.2.4. It relates
the spatial model to the frequency model, providing information about the
frequencies present in each signal.

The use of transforms allows us to switch among various signal models, so
we can choose the one most appropriate to the solution of a given problem.
It is therefore important to know the correspondence between operations for
different signal spaces under a given transform. As a generic example, consider
a binary operation ⊕ : S × S → S and a transform T : S → S ′ into another
space. It is useful to know what binary operation on S ′ corresponds to ⊕ on
S under the transform T . More precisely, we want to know what operation �
on S ′ makes the diagram

34 2 Signal Theory

S S ′�
T

S × S S ′ × S ′�(T,T)

�

⊕
�

�

commute (this means T (f)� T (g) = T (f ⊕ g) for all f, g ∈ S).
A particular case of great importance consists in finding the operation on

the frequency domain that corresponds to a certain filter on the space domain.
If the filter is linear and spatially invariant, the answer is simple and comes
from a classical connection between the Fourier transform and the convolution
product. Namely, given two real-valued (or complex-valued) signals f and g
in the space domain, we have

F (f ∗ g) = F (f)F (g), (2.12)

where on the right we have the product of signals. Thus, filtering with a kernel
h in the space domain corresponds, in the frequency model, to multiplying by
the Fourier transform F (h) = ĥ of the kernel. We call ĥ the transfer function
of the filter.

This result is fundamental, in theory as well as in applications. The transfer
function allows us, for example, to analyze the action of a filter on the various
frequencies present in a signal. We will discuss this in greater detail in the
next section.

2.4.3 Filtering and Frequencies

It is usual to divide the frequency domain of a signal into two regions: a low-
frequency region, near the origin, and a high-frequency region, away from the
origin. Obviously, what counts as “low” or “high” depends on the application.
For some applications it is useful to subdivide the frequency domain further,
partitioning it into several disjoint regions, so as to obtain a decomposition of
the signal into frequency bands.

We say that a signal f is bandlimited if the support supp f̂ of its Fourier
transform is a bounded set. In the one-dimensional case this means that
supp f ⊂ [−Ω, Ω], where Ω is finite. When the kernel of a filter has bounded
support, we say the filter has finite impulse response, or that it is an FIR filter.
Otherwise we say the filter has infinite impulse response, or that it is an IIR

filter.
Let L be a filter and f a signal. We say that L is a highpass filter if the

action of L removes or attenuates the low frequencies in the signal, leaving the
high frequencies mostly unchanged. We say it is a lowpass or smoothing filter
in the opposite situation, when high frequencies are removed. A bandstop
filter is one that selectively eliminates the frequencies in a certain band of
the spectrum, while allowing to pass frequencies above and below this band.

2.5 Sampling Theory 35

Fig. 2.14. Transfer function for filters: (a) highpass; (b) lowpass; (c) bandpass;
(d) bandstop.

Finally, a bandpass filter eliminates frequencies outside a given band. The
transfer functions of these filters are shown schematically in Figure 2.14.

The frequency value that separates (approximately) the low- and high- fre-
quency regions in lowpass and highpass filters is called the cutoff frequency.
Bandpass and bandstop filters can be considered to have two cutoff frequen-
cies, one at each end of the band in question.

An ideal lowpass filter allows frequencies under the cutoff frequency to
pass and completely rejects other frequencies. The transfer function for such
a filter in dimension 1 is the pulse function, shown in Figure 2.15.

In higher dimensions the transfer function of an ideal filter can assume
different shapes. Figure 2.16 shows a cylinder-shaped and a square-shaped
ideal reconstruction filters.

2.5 Sampling Theory

In this section we return to sampling. We start by defining point sampling, a
notion we discussed briefly in Example 2.2.

Let f : U ⊂ R
m → R

n be a signal, and let Ū = { . . . , u−2, u−1, u0, u1,
u2, . . . } be an enumerable subset of U . Point sampling f at Ū consists in
taking the sequence

36 2 Signal Theory

Fig. 2.15. One-dimensional ideal lowpass filter.

Fig. 2.16. Transfer function of ideal two-dimensional lowpass filters.

(. . . , f(u−2), f(u−1), f(u0), f(u1), f(u2), . . .). (2.13)

Each value f(ui) is a sample of the signal, and the sequence (2.13) is the
sample sequence. See Figure 2.17.

2.5.1 Uniform Point Sampling

Uniform point sampling is very common and important in signal theory. It is
amenable to a relatively simple mathematical treatment and is used in many
types of digital hardware for signal manipulation.

Fig. 2.17. Point sampling of a signal.

2.5 Sampling Theory 37

Fig. 2.18. A plane lattice (lines are not part of the lattice).

We start by defining lattices. For each axis xi of R
n, take a nonzero length

Δxi. The set of points of R
n given by

LΔ = LΔx1,...,Δxn
= {(m1 Δx1, m2 Δx2, . . . , mn Δxn) : mi ∈ Z}

is called a lattice in R
n. Figure 2.18 shows a lattice on the plane R

2.
Each point of LΔ is a vertex of the lattice. We will often refer to the lattice

by its defining vector Δ = (Δx1, . . . ,Δxn).
A point sampling is uniform when the set Ū of points at which samples

are taken in (2.13) forms a lattice. The number of samples per unit of length
in each direction of space is called the sampling rate or sampling frequency in
that direction.

As we saw in Section 2.3 (Figure 2.12), there is usually loss of information
under point sampling. Here we are interested in two problems:

• Under what conditions can we avoid loss of information when performing
point sampling? That is, when is it possible to reconstruct the signal f
from its sample sequence (2.13)?

• Assuming that the sampling was lossless, how can the original signal be re-
constructed from the samples? What interpolation method should be used?

These two questions can be subsumed under one: under what conditions
does point sampling give rise to an exact linear representation? We will study
this question for uniform sampling.

Intuitively, point sampling replaces the signal with a sum of “finite im-
pulses” (Figure 2.17). This process introduces high frequencies in the sampled
signal. These high frequencies, combined with the frequencies present in the
original signal, form the spectral model of the sampled signal. Thus exact
reconstruction is possible whenever we can find an appropriate filter to ex-
tract the frequencies of the original signal from the frequencies of the sampled

38 2 Signal Theory

signal. Once we have the spectrum of the original signal, we can return to the
spatial domain by means of the inverse Fourier transform, thus recovering the
original signal in the space domain. In symbols, let f be the original signal
and fd the sampled signal. We want to find a filter that will transform F (fd)
into F (f), where F is the Fourier transform operator:

F (fd) → filtering → F (f) → f = F−1(F (f)).

From this we conclude that we must analyze the frequencies of the sampled
signal in order to find the desired filter. To do so we will need several results
on Fourier transforms, which we present here without proof.

2.5.2 Point Sampling and the Fourier Transform

A very interesting way of analyzing point sampling is by using an impulse train
associated to the sampling lattice. In the one-dimensional case the impulse
train is given by

δΔt =
∞∑

n=−∞
δ(t− nΔt),

as illustrated in Figure 2.19.
The lattice interval length Δt is called the sampling period, and ω = 2π/Δt

is the sampling frequency. The discretization of the signal is a two-step process.
First we obtain the signal

fΔ(t) = f · δΔt =
∞∑

n=−∞
f(nΔt)δ(t− nΔt) (2.14)

by multiplying the signal and the impulse train. This is illustrated in
Figure 2.20.

From the “train signal” fΔ = f · δΔ, the discretized signal is obtained by
replacing δ(t) by the unit discrete impulse

δ[n] =
{

1 if n = 0,
0 if n �= 0,

and changing the variable to n. This is illustrated in Figure 2.21.
The unit discrete impulse plays the role of a Dirac delta impulse when we

work with signals in the discrete domain.

Fig. 2.19. One-dimensional impulse train.

2.5 Sampling Theory 39

Fig. 2.20. Product of the signal by an impulse train.

Fig. 2.21. From an impulse train to a discrete signal.

40 2 Signal Theory

Fig. 2.22. Train function in two dimensions.

The train function can be generalized for higher dimensions. Given a lattice
LΔ, where Δ = (Δx1, . . . ,Δxn), the train function δΔ is defined by

δΔ =
∑

i1∈Z

· · ·
∑

in∈Z

δ(x− (i1 Δx1, . . . , in Δxn))

for x ∈ R
n. Figure 2.22 shows a graphical representation of the train function

for a two-dimensional lattice. The train function receives different names in
the signal processing literature, such as comb function, spike train, or sha
function.

As we discussed for the one-dimensional case, the importance of the comb
function is that performing uniform point sampling with respect to a lattice
LΔ is equivalent to multiplying the signal by the comb function combΔ, in the
sense that all the information in the product is retained at the lattice vertices
and abandoned in between.

More Properties of the Comb Function

Another important step in our analysis is finding the frequency model of the
comb function. The result, somewhat surprisingly, is another comb function!
More precisely,

F (δΔt(t)) =
1

Δt
δ1/Δt(s).

Notice the change in the lattice frequency from Δt in the spatial domain to
1/Δt in the frequency domain.

Finally, it follows from (2.2) that

(f ∗ δ(t− t0))(t) = f(t− t0). (2.15)

This can be generalized, yielding the convolution product of a signal f with
δΔt(t). The result, in the one-dimensional case, is the following:

(f ∗ δΔt) =
+∞∑

k=−∞
f(t− k Δt). (2.16)

2.5 Sampling Theory 41

Fig. 2.23. Convolution of a signal with a comb function.

In other words, to obtain the convolution f ∗ δΔt, the function f is translated
to the vertices of the lattice, and the result is obtained by adding all these
translates. (In fact, this is true for higher-dimensional signals as well.) See
Figure 2.23.

2.5.3 The Sampling Theorem

Using the results above, we can now obtain information on the frequency
model of a uniformly sampled signal. We do this in Figure 2.24: in the space
domain, sampling is obtained by multiplying the signal by the comb function;
in the frequency domain, this corresponds to convolving (taking the convo-
lution product) with the transform of the comb function, which is given by
(2.16). In Figure 2.24(c), notice the sampled signal and its Fourier transform.

We conclude that the spectral model of a signal sampled at a lattice LΔt

(in one dimension) is obtained by adding translates of the frequency model
of the original signal, the translation distances being all multiples of 1/Δt.
Figure 2.25 is an enlarged version of the frequency model of the sampled
signal of Figure 2.24. One can see that the translates of the original spectrum
overlap. In particular, high frequencies present in the original signal can give

Fig. 2.24. Effect of sampling in the space domain and in the frequency domain.

42 2 Signal Theory

Fig. 2.25. Sampling causes translates of the spectrum of a signal to be superim-
posed.

rise to low frequencies in the spectrum of the sampled signal. In the final
spectrum, within the segment AB in Figure 2.25, the high frequencies get
scrambled with the low frequencies, which makes it impossible to recover the
correct frequencies of the original signal. In fact, in the reconstruction process
these high frequencies are reconstructed as low frequencies.

Now consider a bandlimited signal f , with frequencies contained in the
interval [−Ω, Ω]. As we can see in Figure 2.26, if

1
Δt

> 2Ω, or, equivalently, Δt <
1

2Ω
,

there will be no overlap of translates in the frequency model of the sampled
signal. Then the frequency model of the original signal can be obtained from
that of the sampled filter by applying a lowpass filter with cutoff frequency
Ω and unit gain, that is, a filter whose transfer function is the pulse function
pΩ(s) (this is also shown in Figure 2.26). The original signal can then be
recovered by taking the inverse Fourier transform of the frequency model of
the signal. This argument demonstrates the following result.

Fig. 2.26. Frequency model of a sampled bandlimited signal.

2.5 Sampling Theory 43

Theorem 2.7 (The Shannon–Whittaker sampling theorem).Let f be a
bandlimited signal and Ω the smallest frequency such that supp f̂ ⊂ [−Ω, Ω].
Then f can be exactly recovered from the uniform sample sequence {f(mΔt) :
m ∈ Z} if Δt < 1/(2Ω).

In other words, if the signal is bandlimited to a frequency band going
from 0 to Ω cycles per second, it is completely determined by samples taken
at uniform intervals at most 1/(2Ω) seconds apart. Thus we must sample the
signal at least two times every full cycle.

The sampling rate limit 1/(2Ω) is known as the Nyquist limit, in honor
of H. Nyquist, who pointed out in the 1920s the importance of this limit in
telegraphy.

The Shannon–Whittaker theorem relates the high frequencies in the signal
with the sampling rate. Intuitively speaking, the higher the frequencies present
in the signal, the higher the sampling rate must be if we want to have a faithful
reconstruction. Later we will mention extensions of the theorem to m-dimen-
sional signals.

Ideal Reconstruction

The Shannon–Whittaker theorem does not explain what interpolation method
should be used to reconstruct the original signal from the signal sampled
according to the Nyquist limit. However, we have already seen in the previous
section how we can do this (see especially Figure 2.26). We now go through
the calculations that led to the proof of the Shannon–Whittaker theorem more
carefully, proving that this method leads to the desired ideal reconstruction.

Given a signal f with supp f̂ ⊂ [−Ω,Ω], the signal sampled at the lattice
LΔt has the expression

f(t)δΔt(t).

Using the Fourier transform, we obtain the spectral model of the sampled
signal:

F
(
f(t)δΔt(t)

)
= f̂(s) ∗ F

(
δΔt(t)

)
=

1
Δt

f̂(s) ∗ δ1/Δt(t).

The original frequencies of the original signal can be obtained using a
lowpass filter whose transfer function is the pulse pΩ(s), modulated by the
constant Δt to compensate for the amplitude distortion of the transformed
comb signal. Then

f̂(s) =
(1

Δt
f̂(s) ∗ δ1/Δt(t)

)
pΩ(s)Δt = f̂(s) ∗ δ1/Δt(t) · pΩ(s).

To get the spatial model of the signal, we must apply the inverse Fourier
transform to the above equation. We get

f(t) = F−1(f̂(s)) = F−1
(
f̂(s) ∗ δ1/Δt(t)

)
∗ F−1

(
pΩ(s)

)
.

44 2 Signal Theory

Using (2.12) and the fact that

F−1
(
pΩ(s)

)
= 2Ω sinc(2πΩt),

we get
f(t) = 2ΩΔtf(t)δΔt(t) ∗ sinc(2πΩt).

From Equation (2.14) we obtain

f(t) =
+∞∑

k=−∞
2ΩΔt f(kΔt)δ(t− kΔt) ∗ sinc (2πΩt).

From (2.15) we obtain

f(t) =
+∞∑

k=−∞
2ΩΔtf(kΔt) sinc

(
2πΩ(t− kΔt)

)
. (2.17)

Equation (2.17) is precisely the expression of the exact reconstruction of the
signal f from its samples f(kΔt), for k ∈ Z. One can show that the series in
(2.17) converges absolutely, and the convergence is uniform on compact parts
of the domain.

In fact, one can show that, by normalizing the elements of the set

{sinc
(
2πΩ(t− kΔt)

)
}, for k ∈ Z,

one obtains a complete orthonormal basis in an appropriate signal space.
This is called the Shannon basis. In the notation of the preceding proof, the
Shannon–Whittaker sampling theorem can be restated as follows:

Theorem 2.8 (Ideal reconstruction theorem). Let f be a bandlimited
signal. If f is point sampled within the Nyquist limit, the resulting sample
sequence is an exact representation of f , and f can be reconstructed from this
representation using the Shannon basis.

2.5.4 Extensions of the Sampling Theorem

The Shannon–Whittaker sampling theorem was derived under several assump-
tions, three of which are quite restrictive:

• the signal is one-dimensional;
• sampling is uniform; and
• the signal is bandlimited.

Extensions of the theorem to nonbandlimited signals and to nonuniform
sampling exist, but they will not be discussed here. The reader can consult
the references mentioned in Section 2.12.

2.5 Sampling Theory 45

The extension to n-dimensional signals is of paramount importance, espe-
cially in view of the fact that image signals, those that most concern us in
this book, are two-dimensional. An extension to higher dimensions can also
be applied to the problem of volume reconstruction, which is important in
scientific visualization.

There are several possibilities of extension to n-dimensional signals. One
of the difficulties is the geometry and topology of the signal’s domain. One
very natural extension, sufficient for our purposes, will now be given.

Suppose the signal is defined in a rectangular domain U ∈ R
n, given by

U =
n∏

i=1

[ai, bi].

Samples are taken at the vertices of a uniform n-dimensional lattice Δ = (Δx1,
. . . ,Δxn).

We saw in (2.7) that the Fourier transform extends naturally. The notion
of a bandlimited signal, therefore, still applies. The Nyquist limit must be
satisfied for each coordinate separately. That is, we consider the vector Ω =
(Ω1, . . . , Ωn) of upper bounds Ωi for the frequencies of the signal in each
coordinate. Then we must have

Δx1 <
1

2Ω1
, . . . , Δxn <

1
2Ωn

. (2.18)

The sinc function can be extended to n dimensions by “separability”:

sinc(x1, . . . , xn) = sinc(x1) . . . sinc(xn).

Figure 2.27 shows the graph of sinc in the two-dimensional case, on the square
[−12, 12]× [−12, 12]. It also shows a cross section along the x-axis.

Under the conditions just stated, the theorem’s extension is immediate:
Suppose a signal f : U ⊂ R

n → R is bandlimited and is sampled on a uni-
form lattice above the Nyquist rate—that is, according to (2.18). Then f is
completely determined by its samples. More precisely,

Fig. 2.27. Graph of the sinc function in two dimensions.

46 2 Signal Theory

f(X) =
+∞∑

k1=−∞
· · ·

+∞∑

kn=−∞
2ΩΔXf(KΔX) sinc

(
2πΩ(X −K ΔX)

)
, (2.19)

where X = (x1, . . . , xn), K ΔX = (k1 Δx1, . . . , kn Δxn),

sinc[2πΩ(X −K ΔX)
]

= sinc[2πΩ1(x1 − k1 Δx1), . . . , 2πΩn(xn − kn Δxn)],

and
2Ω ΔX = 2Ω1 . . . Ωn Δx1 Δx2 . . . Δxn.

The proof of this n-dimensional version of the Shannon–Whittaker sam-
pling theorem is analogous to that of the one-dimensional version. The com-
ments we made earlier about sampling, reconstruction, and aliasing are also
valid here. When we study image signals in Chapter 6, we will return to these
problems and give several examples.

2.6 Operations in the Discrete Domain

In this section we extend the operations on signals studied in Section 2.4 to
the discrete universe. Here a signal f is given by a representation sequence

(. . . , f−2, f−1, f0, f1, f2, . . .)

in �2. Sometimes we will use a functional notation f(i) instead of the positional
one fi. The usual operations of addition and multiplication of signals, and
multiplication of a signal by a scalar, extend easily to discrete signals. In
general, given an operation L : S → S ′ in the continuous domain, and a
representation R : S → Sd, we must define an operation L′ : Sd → Sd in the
discrete domain, such that the diagram

Sd Sd
�

L′

S S�L

�
R

�
R

commutes. In symbols, L′(R(f)) = R(L(f)). Normally L′ is an obvious ana-

logue of L and has the same name. This is the case for the sum, multiplication,
and product of a signal by some scalar. The commutativity of the diagram
amounts to saying that the order in which the operation in question and the
discretization operation are applied to the signal is immaterial. An impor-
tant particular case of this problem occurs when L is a linear and spatially
invariant filter and R is the Fourier transform.

2.6 Operations in the Discrete Domain 47

2.6.1 Discrete Convolution

As we saw in Section 2.4, the application of a spatially invariant linear filter
reduces to taking a convolution product of the signal with the filter kernel.
Given two signals f and g, and their discretization sequences (fm), m ∈ Z,
and (gn), n ∈ Z, the convolution product of (fm) and (gn) is the discrete signal
(hq), q ∈ Z, defined by

hk =
(
(fm) ∗ (gn)

)
k

=
+∞∑

j=−∞
fjgk−j . (2.20)

This assumes the series converges, which is always the case if the two original
sequences are in �2.

If the signals (fm) and (gn) are defined only for finitely many values of m
and n, say m = 0, 1, . . . ,M−1 and n = 0, . . . , N−1, and we want to compute
hk for the same range of values of k, the signal (gn) must be extended beyond
its original domain, since we need to have gk−j for k = 0, . . . , N−1. There are
several (inequivalent) ways to extend a signal. We will discuss this problem
in more detail in Chapter 6, in the context of image operations.

An important case of convolution is when we have a discrete representation
(f(tk)) (where k ∈ Z) of a signal f and a continuous signal h. The convolution
is given by

g(t) = (f(tk)) ∗ h) =
+∞∑

j=−∞
f(tj)h(t− tj). (2.21)

That is, the convolution works as an interpolation technique using the trans-
lates h(t− tj) as an “interpolation basis.” This is illustrated in Figure 2.28.

2.6.2 The Discrete Fourier Transform

Consider the expression that defines the Fourier transform,

f̂(s) =
∫ +∞

−∞
f(t)e−2πist dt. (2.22)

Our purpose is to obtain a method to discretize this transform. We will con-
sider the discrete transform for a finite, uniform point sampling of the signal.

Fig. 2.28. Convolution of a continuous signal with a discrete one.

48 2 Signal Theory

Therefore, we suppose that the continuous signal is defined on a bounded,
closed interval of length A and that the signal domain in centered at the
origin, that is, the signal is defined on the interval [−A/2, A/2], where A > 0.

We define a grid on this interval with N + 1 points, for N even, using
subintervals of length Δx. Therefore, N Δx = A, and the grid vertices are
defined by xk = k Δx, for k = −N/2, . . . , N/2. The samples of the signal f
on the grid are computed by fk = f(k Δx), for k = −N/2, . . . , N/2.

A discrete version of the Fourier transform could be obtained by using some
numerical technique associated to the above partition to solve the integral in
(2.22). The discrete Fourier transform, DFT, is obtained when we use the
trapezoid rule to compute the numerical approximation to the integral. This
is illustrated in Figure 2.29. The integrand is approximated by a line segment
inside each subinterval of the grid (linear interpolation), and the integral is
approximated by the sum of the areas of the resulting trapezoid.

To obtain the expression for the DFT we suppose that f(−A/2) = f(A/2).
Using the trapezoid rule to approximate the integral, we get

f̂(s) =
∫ A

2

−A
2

f(t)e−2πistdt =
A

N

N
2∑

k=−N
2 +1

fke−2πisxk . (2.23)

The above sum is a discretized version of the Fourier transform that allows
us to compute f̂(s) for any frequency value s of the spectrum. We need to
obtain a discrete sequence (f̂n) that is the image of the discrete signal (fn)
by the discrete transform. We will suppose that f̂(s) is defined on a domain
[−Ω/2, Ω/2] and we need to sample f̂ on a uniform grid k Δs, with N intervals.
Before proceeding, we must obtain the relationship between Δx, A, Ω, and
Δs. The equations relating these parameters are called reciprocity relations.
We can obtain them using a very simple and intuitive argument.

The longest period existing in the signal equals at most the length A of
the time domain interval [−A/2, A/2]. The corresponding frequency is 1/A;

Fig. 2.29. Trapezoidal approximation of the integral.

2.6 Operations in the Discrete Domain 49

therefore, in order for it to be detected in the frequency domain sampling, we
should use a grid of length

Δs =
1
A

.

Since we have N subintervals on [Ω/2, Ω/2], we get

Ω = N Δs =
N

A
, or AΩ = N.

This is the first reciprocity relation.
Now, it is easy to verify that

Δx Δs =
A

N
· 1
A

=
1
N

,

the second reciprocity relation.
From the second reciprocity relation we obtain the following correspon-

dence between the vertices xk = k Δx in the space domain and the vertices
sj = j Δs in the frequency domain:

skxj = (k Δs)(j Δx) =
kj

N
. (2.24)

Evaluating Equation (2.23) on the grid vertex sk = k Δs, we obtain

f̂(sk) ≈ A

N

N
2∑

j=−N
2 +1

fje
−2πiskxj .

Substituting (2.24) into this equation, we get

f̂(sk) = A · 1
N

N
2∑

j=−N
2 +1

fje
−2πikj/N .

From this we extract the expression that defines the discrete Fourier transform
of the finite sequence (fn),

(DFT(fn))k = Fk = f̂k =
1
N

N
2∑

j=−N
2 +1

fje
−2πikj/N . (2.25)

Notice the relation

f̂k = f̂(sk) ≈ A · (DFT(fn))k = Fk

between the discrete Fourier transform and the discretized version of it.

50 2 Signal Theory

2.7 The Inverse Discrete Transform

Consider an even positive integer number N , and let Fk be a sequence of N
complex numbers, for k = −(N/2) + 1, . . . , N/2. The inverse discrete Fourier
transform, IDFT, of the sequence (Fn) is another sequence (fn), defined by

(IDFT(Fn))k = fk =

N
2∑

j=−N
2 +1

Fke2πikj/N ,

for k = −(N/2) + 1, . . . , N/2.
It is possible to show that the inverse discrete Fourier transform and the

discrete Fourier transform are inverse to each other, that is,

IDFT(DFT(fk))n = fn and DFT(IDFT(Fn))k = Fk.

The proof of this fact is a long algebraic computation involving the definition
of each transform.

It is also possible to show that if the sequence (Fn) represents a sampling
of the Fourier transform f̂ = F (f) of some signal f , then the IDFT(Fn) are
samples from an approximation to the function f .

2.7.1 Properties of the DFT

In this section we will briefly describe several properties of the discrete Fourier
transform. We will not demonstrate these properties, but we do point out that
since we are dealing with the discrete transform, the proofs reduce to algebraic
computations.

Periodicity

Consider the sequences (Fn) and (fn) defined by the direct and inverse discrete
Fourier transforms. These sequences are N -periodic, that is,

fn+N = fn and Fk+N = Fk

for all integers n and k.

Linearity

The discretization of the Fourier transform preserves the linearity of the con-
tinuous transform. More precisely, we have

DFT[α(fn) + (hn)] = αDFT(fn) + DFT(hn).

Obviously, the inverse discrete transform is also linear.

2.8 The Discrete Transform on the Interval [0, A] 51

Shift

The shift property is very useful when we need to compute the discrete Fourier
transform of a translated (shifted) sequence. It can be stated as

(DFT(fn−j))k = Fke−2πijk/N .

Geometrically, this means that each term Fk of the transformed sequence
DFT(fn) is rotated by an angle e−2πijk/N .

DFT and Discrete Convolution

The relation between the Fourier transform and the operation of convolution
holds in the discrete domain. More precisely,

(DFT[(fn) ∗ (gn)])k = NFk ·Gk,

(DFT[(fn) · (gn)])k = Fk ∗Gk.

2.8 The Discrete Transform on the Interval [0, A]

We defined the DFT for a symmetric domain [−A/2, A/2], centered at the
origin. What happens if the signal does not have this domain symmetry? The
periodicity property of the DFT allows us to extend the signal periodically and
compute the DFT of this extended signal. This is illustrated in Figure 2.30.

The reader should remember when making this extension that we must
enforce the condition f(−A/2) = f(A/2) when making the signal extension.
Also, at jump discontinuities we should take the average of the limits from
each side at the discontinuity point.

There are different formulations of the DFT on the literature. A very
common definition, used in several software packages, is

Fk =
1
N

N∑

j=0

fj−2πikj/N.

This formulation is particularly suitable if the signal is defined over the interval
[0, A].

Fig. 2.30. Periodic extension of the signal.

52 2 Signal Theory

2.9 Matrix Representation of the DFT

We have seen that the discrete Fourier transform is linear. If we represent the
sequence (fn) by f = (f0, f1, . . . , fN−1) and its discrete Fourier transform by
F = (F0, F1, . . . , FN−1), the DFT can be written in matrix form:

F = Wf .

In fact, using the notation ωN = e−2πi/N , the matrix W is easily computed
from Equation (2.25), which defines the DFT:

W =
1
N

⎛

⎜
⎜
⎜
⎜
⎝

ωN
0 ωN

0 ωN
0 · · · ωN

0

ωN
0 ωN

1 ωN
2 · · · ωN

(N−1)

ωN
0 ωN

2 ωN
4 · · · ωN

2(N−1)

...
...

...
. . .

...
ωN

0 ωN
(N−1) ωN

2(N−1) · · · ωN
(N−1)(N−1)

⎞

⎟
⎟
⎟
⎟
⎠

. (2.26)

It is easy to see that the matrix W in invertible, and its inverse is the
matrix of the inverse discrete Fourier transform. The inverse matrix is easily
computed by

W−1 = NW∗,

where W∗ is the complex conjugate matrix.

2.10 The Fast Fourier Transform

The computation of the discrete Fourier transform of a sequence with N points
has complexity N2. This follows easily from the matrix representation of the
DFT.

It is possible to factor the matrix in (2.26) in order to obtain faster compu-
tations of the discrete Fourier transform. There are several algorithms in the
literature that achieve this optimization, reducing the computational com-
plexity of the DFT from N2 to N log N . These algorithms are generically
known by the name of fast Fourier transform, or simply FFT.

The fast Fourier transform and the relation between the product oper-
ation, on the frequency domain, the convolution operation, on the spatial
domain, and the discrete Fourier transform can save substantial computa-
tional time when performing filtering operations. In fact, filtering a signal
using a linear spatial invariant filter reduces to a convolution operation of
complexity O(N2), where N is the number of samples. If we transform the
signal and the filter to the frequency domain, convolution reduces to a point-
by-point product. Therefore, the whole operation of filtering has complexity
2N log N + N . This complexity corresponds to the use of the FFT twice (di-
rect and inverse transform) and to the point-by-point product, which has
complexity N .

2.12 Comments and References 53

2.11 Finite Transform

All calculations so far presupposed that the support of the signal f is a com-
pact (bounded) interval. If this is not the case, we must clip f , replacing it
by the signal

h(x) =
{

f(x) if x ∈ [a, b],
0 if x /∈ [a, b]

(for a and b appropriately chosen). For this reason some texts refer to the
Fourier transform introduced above as the finite Fourier transform. It is clear
that, unless the signal has compact support to begin with, the Fourier trans-
form computed above is not the true Fourier transform of the signal.

Clipping is equivalent to multiplying the spatial domain model of the signal
by a pulse function. It introduces high frequencies in the spectral model of
the signal. Perceptually, these high frequencies give rise to a ringing effect
on the reconstructed image. This is the spatial domain version of the well-
known Gibbs phenomenon that takes place when we truncate a Fourier series
(clipping in the frequency domain).

The operation of clipping a signal to a finite domain is called windowing.
There is a vast literature on how to choose the correct windows to mitigate
the above-mentioned problems (see references below).

2.12 Comments and References

The present chapter is included in the book because it is hard to find in
the literature a concise, conceptual exposition of the various aspects of sig-
nal theory as they apply to computer graphics. Also, the chapter creates a
common basis of knowledge about signal processing that suffices for the un-
derstanding of the whole book. Later on, we will return to study the prob-
lems of signal filtering, aliasing, and reconstruction, in the context of digital
images.

Of course, it is impossible to cover the whole theory of signals in one
chapter. Several topics were omitted. A very important one is multiresolution
signal theory, which is of first importance in signal synthesis, analysis, trans-
formation, and encoding. We refer the reader to the introductory text (Chui
1992). An elementary and quite complete reference for signal processing is
(Oppenheim et al. 1983).

An exposition of sampling theory from the viewpoint of measure theory
can be found in (Fiume 1989). That book includes a proof of the fact that
point supersampling with uniform distribution converges to area sampling as
the number of samples increases.

An elementary but quite complete exposition of the Fourier transform
and its applications can be found in the classical (Bracewell 1986). For an
introductory yet rigorous introduction to the subject using distribution theory,
see (Weaver 1989).

54 2 Signal Theory

The representation theorem (Section 2.3.1) is based on the fact that every
finite-energy signal can be decomposed as a (possibly infinite) sum of “building
blocks” (atoms) in the space in question. This result can be extended to other
signal spaces. There are also many signal representation methods where the
building blocks don’t form a basis of the signal space. See (Zayed 1993).

Brief discussions of the fast Fourier transform can be found in several
books. We recommend in particular (Bracewell 1986) and (Weaver 1989). An
implementation in C is listed in the appendix of (Wolberg 1990).

Two recent books about the Fourier transform are likely to become clas-
sics. One is (Briggs and Henson 1995), which brings a wide coverage of the
theory, computation, and applications of the discrete Fourier transform. Our
exposition of the DFT was greatly inspired by it. The other book is (Van
Loan 1986), which discusses computational frameworks for the fast Fourier
transform from the point of view of matrix factorization.

Many works deal with extensions of the Shannon–Whittaker theorem
to dimensions greater than one. A very good reference for dimension 2 is
(Lim 1990). Another fairly complete source is (Zayed 1993), which includes
extensions to nonbandlimited signals and nonuniform sampling. The same
reference has a synopsis of the theorem’s history.

A concise, but complete, coverage of the history of point sampling theory
and the extensions of the Shannon theorem to non-bandlimited signals can be
found in (Butzer and Stens 1992).

The Shannon basis can be used as an efficient discretization method for the
solution of many numerical problems. The reader interested in this topic can
consult (Lund and Bowers 1992), which contains a proof that the Shannon
basis is a complete orthonormal set in an appropriately chosen signal space.

References

[Bracewell 1986]Bracewell, R. (1986). The Fourier Transform and its Appli-
cations, second ed. McGraw-Hill, New York.

[Briggs and Henson 1995]Briggs, W. L. and Henson, V. E. (1995). The
DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM,
Philadelphia.

[Butzer and Stens 1992]Butzer, P. L. and Stens, R. L. (1992). Sampling theory
for not necessarily band-limited functions: a historical overview. SIAM
Review, 34(1):40–53.

[Chui 1992]Chui, C. (1992). An Introduction to Wavelets. Academic Press,
Boston.

[Fiume 1989]Fiume, E. L. (1989). The Mathematical Structure of Raster
Graphics. Academic Press, Boston.

[Hamming 1983]Hamming, R. W. (1983). Digital Filters. Second Edition.
Prentice-Hall, Englewood Cliffs, NJ.

2.12 Comments and References 55

[Lim 1990]Lim, J. S. (1990). Two-Dimensional Signal and Image Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[Lund and Bowers 1992]Lund, J. and Bowers, K. (1992). Sinc Methods for
Quadrature and Differential Equations. SIAM Books, Philadelphia.

[Oppenheim et al. 1983]Oppenheim, A. V., Willsky, A. S., and Young, I. T.
(1983). Signals and Systems. Prentice-Hall, Englewood Cliffs, NJ.

[Van Loan 1986]Van Loan, C. (1986). Computational Frameworks for the Fast
Fourier Transform. SIAM, Philadelphia.

[Weaver 1989]Weaver, J. (1989). Theory of Discrete and Continuous Fourier
Analysis. John Wiley & Sons, New York.

[Wolberg 1990]Wolberg, G. (1990). Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA.

[Zayed 1993]Zayed, A. (1993). Advances in Shannon’s Sampling Theory. CRC
Press, Boca Raton, FL.

3

Random Processes

This chapter presents some basic definitions on probability and stochastic pro-
cesses that will be used later, mainly in Chapter 10. Among the numerous ex-
cellent textbooks on this field, the reader is referred to the works by (Dekking
et al 2005), by (Grinstead and Snell 1997) and by (Resnick 1999).

3.1 Random Variables

The main idea of this Chapter is that of a stochastic model. By this, we under-
stand a mathematical means of describing a phenomenon with the following
properties:

1. It is observable, so it can be measured somehow.
2. It can be repeated as many times as desired under the same conditions.
3. The result of any trial is unknown beforehand.
4. The set of all possible outcomes is well defined; it is called sample space,

and it will be denoted Ω.

The subsets of Ω are usually called events.
A probability is a measure, denoted here ‘Pr’, defined on subsets of Ω with

the following properties:

A1) Pr(A) ≥ 0 for every A ⊂ Ω
A2) Pr(Ω) = 1
A3) For every sequence of disjoint sets A1, A2, . . . ⊂ Ω holds that Pr(∪iA) =∑

i Pr(Ai)

These, in fact, are the probability axioms.
This measure aims at providing a nice mathematical description of the

plausibility of the set A ⊂ Ω. Other measures, with different properties but
with similar scope, can be defined leading to, for instance, fuzzy sets and
related fields (Banon 1981).

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 3,
c© Springer-Verlag London Limited 2009

58 3 Random Processes

Knowing the distribution of a random experiment is the capacity of being
able to express the probability of all interesting events. The notion of “inter-
esting event” will be made clear after the definition of random variables.

Observing and/or recording random events may be expensive, cumber-
some, dangerous or even impossible. For this reason, and for the convenience
of working with real numbers, random variables are defined.

A real random variable is a transformation between Ω and the real line
R. The term variable should not lead to confusion, albeit random variables
are functions of the form X : Ω → R. More general, i.e., not necessarily real
random variables will be used in Chapter 10.

Knowing the distribution of a random variable X amounts to being able
to compute the probability of all events of the form of enumerable unions and
intersections of real intervals. The events in Ω that are mapped onto such sets
by X are the ones we referred to as “interesting”.

Every well-defined random variable belongs to a probability space given
by three elements: the sample space Ω, the set of interesting events A and a
probability Pr for every element of A.

Example 3.1 (Tossing a coin). Consider the experiment of tossing a coin. The
possible outcomes are either heads or tails, so Ω = {heads, tails}. Assume that
Pr(heads) = 2/3 and that Pr(tails) = 1/3, so the coin is biased to heads; we
have a probability defined on Ω. The mapping X : {heads, tails} → {−1,+1}
is a real random variable, and the information provided about the probabilities
on Ω is enough to compute the distribution of X.

Example 3.2 (Measuring a continuous function). Consider the situation of
making a continuous measurement of the sea level at a certain site. Each
record is the height during 24 hours. In this case, Ω is the set of all con-
tinuous functions defined on the [0, 24) interval, i.e., Ω = {H : [0, 24) →
R such that H is continuous} and there is no obvious way of attaching prob-
abilities to them since they form an uncountable space. Also, making a com-
plete record of each outcome h = H(ω) would demand an infinite amount of
storage. A convenient random variable could be defined as X : Ω → R in the
following manner: X(h) =

∫
[0,24)

h(t) dt for every h ∈ Ω, i.e., a measure of the
mean height.

Example 3.3 (Still measuring a continuous function). In the example above,
consider being interested in detecting flood situations. A more convenient
random variable would be, for that case, X(h) = max{h(t) : t ∈ [0, 24)}.

The sample space of the random variable X is the set of all possible out-
comes. If a distinction between it and the original sample space Ω is needed,
which is seldom the case, it can be denoted ΩX .

The distribution of a random variable can be specified in several manners.
One of the most convenient ways to do it is through the cumulative distribution
function. This function is simply defined as F (t) = Pr(X ≤ t), and it has the
following properties:

3.1 Random Variables 59

1. F is non decreasing, i.e., if t1 < t2 then F (t1) ≤ F (t2)
2. F is right-continuous, i.e., if tn ↑ t when n →∞ then F (tn) → F (t)
3. F (tn) → 0 if tn → −∞ and F (tn) → 1 if tn →∞.

Any function satisfying properties 1, 2 and 3 above is a cumulative distribution
function and, therefore, it characterizes the distribution of a random variable.

There are three basic types of random variables, namely discrete, contin-
uous and singular; we will only see the two first.

Definition 3.4 (Discrete random variable). A discrete random variable
has a non-empty finite or countable sample space. It this case, attaching a
probability pi to every possible outcome ωi completely specifies the distribution.

This specification is called probability function.

Definition 3.5 (Continuous random variable). If there exists a function
f such that f(t) = dF (t)/dt, with F the cumulative distribution function of
the random variable X, then we say that X is a continuous random variable
and that f is its density.

The density of a continuous random variable characterizes its distribution.
It exhibits two properties: it is non-negative f ≥ 0, and it integrates to one∫

f = 1.
The set A ⊂ R such that f(t) > 0 for every t ∈ A is known as the support

of the random variable or of the distribution characterized by f .
The distribution of a set of random variables defined on the same proba-

bility space requires the specification of the probability of all possible events,
i.e., if X = (X1, . . . , Xn) are random variables defined on (Ω,A,Pr), the dis-
tribution of X is known if one is able to compute Pr(X1 ∈ A1, . . . , Xn ∈ An)
for any A1, . . . , An ∈ A. Sets of random variables are often referred to as
“multivariate random variables”, as seen in Example 3.7.

The random variables X1, . . . , Xn, defined on the same probability space
(Ω,A,Pr), are jointly independent if for every A1, . . . , An ∈ A holds that
Pr(X1 ∈ A1, . . . , Xn ∈ An) =

∏n
i=1 Pr(Xi ∈ Ai). Pairwise independence does

not grant joint independence.
The simplest discrete distribution is the Bernoulli. The random variable

X is said to follow a Bernoulli law if ΩX = {0, 1} and p1 = p = 1− p0, with
p ∈ (0, 1). Usually, ω1 is called “success”. A sum of n independent identically
distributed random variables following Bernoulli laws with probability p of
success follows a Binomial distribution with parameters p and n.

Examples of discrete distributions with countable support are the Geo-
metric, for which Ω = {1, 2, . . .} and pi = p(1− p)i−1 with p ∈ (0, 1), and the
Poisson, for which Ω = {0, 1, 2 . . .} and pi = e−λλi/i! with λ > 0.

Two important continuous random variables are the standard versions
of the Uniform and the Gaussian (or Normal) laws. They are characterized,
respectively, by the densities

60 3 Random Processes

f(t) = I(0,1)(t) and f(t) =
1√
2π

exp{−t2/2},

where IA denotes the indicator function of the set A, i.e.,

IA(t) =
{

1 if t ∈ A,
0 otherwise.

It is often important to compute certain functionals on random variables.
In the following we will define the expected value of a transformation of the
continuous real random variable X : Ω → R. The discrete case follows by
replacing integrals by summations.

Definition 3.6 (Expected value). Consider the real random variable X
and the function Ψ : R → R. If the integral exists, the expected value of Ψ(X)
is given by

E(Ψ(X)) =
∫

R

Ψ(t)f(t) dt,

where f is the density that characterizes the distribution of X.

The following particular cases are of interest:

• When Ψ(t) = t we have the mean of X, denoted by E(X).
• When Ψ(t) = tp, with p �= 0, we have the moment of order p of X.
• When Ψ(t) = |t−E(X)|p, with p �= 0, we have the central moment of order

p of X.

Clearly, if well defined, the first central moment of X is zero; the second
central moment is known as “variance”:

Var(X) = E(X − E(X))2 = E(X)2 − (E(X))2.

The mean value is related to the long term tendency of averages of samples,
while the square root of the variance, called “standard deviation”, describes
the width of typical fluctuations around the mean.

The transformation of a random variable used in Definition 3.6 may derive
from more than a single random variable, provided the elements are defined on
the same probability space. This leads us to the need of defining multivariate
random variables.

It is easy to build a multivariate real random variable starting from Ex-
ample 3.2, as will be seen in the following.

Example 3.7 (A multivariate random variable). Consider the situation of im-
proving the measures of the continuous process presented in Examples 3.2
and 3.3. Instead of recording a single value, it would be much informative to
register three: the minimum, the mean and the maximum heights. With this,
X : Ω → R

3 is given by

X(h) =
(
min{h(t) : t ∈ [0, 24)},

∫

[0,24)

h(t) dt,max{h(t) : t ∈ [0, 24)}
)
.

3.1 Random Variables 61

Multivariate random variables play a central role in image modelling.
One can also compute expected values of functions of several random

variables. Consider, for instance, the vector of continuous random variables
X1, . . . , Xn defined on (Ω,A,Pr), whose distribution is characterized by the
density f : R

n → R+, and the real-valued function Ψ : R
n → R.

Definition 3.8 (Expected value of real functions of random
variables). The expected value of Ψ(X1, . . . , Xn) is

E(Ψ(X1, . . . , Xn)) =
∫

R

Ψ(x1, . . . , xn)f(x1, . . . , xn)d(x1, . . . , xn),

if the integral is well defined.

This definition will be particularly useful for computing the covariance and
correlation matrices of random vectors.

The relationships between the elements of a multivariate random variable
can be quantified by means of Covariance and Correlation matrices, among
other measures of association.

Definition 3.9 (Covariance). The covariance between X and Y , real ran-
dom variables defined on the same probability space, is

Cov(X,Y) = E(XY)− E(X) E(Y),

if the integrals are well defined.

Definition 3.10 (Correlation). The correlation between X and Y , real ran-
dom variables defined on the same probability space, is

ρ(X,Y) =
Cov(X,Y)

√
Var(X)Var(Y)

,

if the integrals and the ratio are well defined.

Definition 3.11 (Covariance matrix). The covariance matrix of the ran-
dom vector X = (X1, . . . , Xn) : Ω → R

n is the matrix Σ = (Cov(Xi,Xj)),
1 ≤ i, j ≤ n, provided every element is well defined.

Definition 3.12 (Correlation matrix). The correlation matrix of the ran-
dom vector X = (X1, . . . , Xn) : Ω → R

n is the matrix � = (ρ(Xi,Xj)),
1 ≤ i, j ≤ n, provided every element is well defined.

As we will see in Chapter 10, these matrices play a central role in the
analysis and simulation of image data.

This brief presentation would not be complete without the definition of
conditional probabilities and distributions.

62 3 Random Processes

Definition 3.13 (Conditional probability of A given B). Consider the
probability space (Ω,A,Pr) and two events A,B ⊂ Ω. The following quantity

Pr(A | B) =

⎧
⎨

⎩

Pr(A ∩B)
Pr(B)

if Pr(B) > 0,

Pr(A) otherwise

is a probability, i.e., it satisfies the probability axioms for every A, provided
B fixed.

The following theorems are useful probability tools.

Theorem 3.14 (Product of probabilities). The probability of a compound
event can be computed as the product of conditional probabilities. For arbitrary
events A1, . . . , An on the same probability space holds that

Pr(A1 ∩ · · · ∩An) =
Pr(A1) Pr(A2 | A1) Pr(A3 | A1 ∩A2) · · ·Pr(An | A1 ∩A2 ∩ · · · ∩An−1).

Definition 3.15 (Partition of the sample space). The events B1, . . . , Bk

form a partition of the sample space Ω if they exhibit the following properties:

1. They are pairwise disjoint, i.e., Bj ∩Bk = ∅ whenever j �= k.
2. Their union is the sample space, i.e., ∪k

i=1Bi = Ω.
3. They have positive probability, i.e., Pr(Bi) > 0 for every 1 ≤ i ≤ k.

Theorem 3.16 (Total probability). Consider the event A ∈ A and the
partition B1, . . . , Bk both defined on the same probability space (Ω,A,Pr),
then

Pr(A) =
∑

1≤i≤k

Pr(A | Bi) Pr(Bi).

This theorem is useful for obtaining the probability of events (A) whose direct
computation is cumbersome, or impossible, but for which it is possible to
collect conditional information with respect to a partition of the sample space.

The following is one of the most famous theorems in probability theory
(Bayes 1763).

Theorem 3.17 (Bayes’ theorem). Consider again the event A ∈ A and
the partition B1, . . . , Bk both defined on the same probability space (Ω,A,Pr),
then

Pr(Bi | A) =
Pr(A | Bi) Pr(Bi)∑

1≤i≤k Pr(A | Bi) Pr(Bi)
.

This theorem, that gave birth to a whole branch in statistics, namely Bayesian
inference, allows using prior knowledge as an ingredient in the process of
drawing conclusions from data. This is further commented in Section 10.6,
when dealing with image classification.

3.2 Stochastic Processes 63

3.2 Stochastic Processes

We will now turn our attention sets of random variables with a relatively
complex structure: the so-called stochastic processes.

One of the most important stochastic processes involves both discrete and
continuous random variables: the Poisson process. It serves as a basis for other
relevant stochastic processes, and it is tractable.

The Poisson process can be used to describe a huge variety of phenom-
ena, among them: the arrival times of customers in a bank, the instants at
which a radioactive substance emits particles, the failure of electronic devices
and so forth. Loosely speaking, the Poisson process is a good model for those
situations in which the probability of a single event is very small when com-
pared to the number of trials. This stochastic process is also referred to as
the one with complete randomness. In the following we will present it for the
one-dimensional case, and later it will be used to build two-dimensional point
processes.

Consider we are observing the arrival of customers in a bank, starting at
t = 0. A Poisson process can be built ab initio from the following hypothesis:

P1) Stationary increments: the number of events in interval (t, t+Δt) depends
only on Δt.

P2) Independent increments: the number of events on disjoint intervals are
independent.

P3) Finiteness: the probability of more than one event take place on a small
interval is negligible when compared to the probability of observing just
one event on the same interval.

In technical terms, if Ek
t,Δt denotes “k events took place in interval (t, t+Δt]”,

these hypotheses can be written as

H1) Pr(Ek
t,t+Δt) = Pr(Ek

0,Δt) for every k, t and Δt.
H2) Pr(Ek1

t1,Δt1
∩Ek2

t2,Δt2
) = Pr(Ek1

t1,Δt1
) Pr(Ek2

t2,Δt2
) if (t1,Δt1]∩(t2,Δt2] = ∅.

H3) limt→0(Pr(E2 or more
0,t)/Pr(Eat least 1

0,t)) = 0.

With these hypotheses, and denoting λ = − log Pr(E0
0,1) holds that, for

every t > 0, Pr(E0
0,t) = exp{−λt} and, more generally, that

Pr(Ek
0,t) =

(λt)k

k!
exp{λt}. (3.1)

Consider the time of the first event or arrival T1; it is possible to verify that
Pr(T1 ≤ t) = 1 − exp{−λt}. Denoting now T2, T3, . . . the time of the second
arrival after the first arrival, the time of the third arrival after the second
arrival and so on, also holds that

Pr(Tn ≤ t) = 1− exp{−λt} (3.2)

64 3 Random Processes

for every n ≥ 2 and t > 0. In this manner, the Poisson process can be defined
either in terms of the number of events or in terms of the times between them.
Equation (3.2) implies that the density of the inter arrival times is

fTn
(t) = λ exp{−λt}IR+(t).

In other words, the times between arrivals in a Poisson process obeys an
exponential law.

A very convenient property that stems from the definition of Poisson pro-
cesses concerns the location of the events, given the knowledge of their number.
As can be seen in (Dekking et al 2005), given that there are n points in the
interval [a, b], the locations of these points are independently distributed, each
with a uniform distribution on [a, b]. This property will be useful for building
Poisson point processes on R

2.
In the following we will recall the basic terminology and definitions for the

characterization of stochastic processes.
The main stochastic processes categories are related to

Space state: integer valued (discrete space state) or continuous. Section 10.4
discusses a class from the latter, while Section 10.6 comments an impor-
tant model from the former.

Index parameter: When describing random variables indexed on subsets of
Z

p, integer p, we call them a discrete-time stochastic process. Otherwise,
if the index belongs to R

p we are dealing with a continuous time process.

Consider now the random variables (Xt)t≥0 (unless otherwise stated, this is
a continuous time stochastic process). Some of the classical types of stochastic
processes are defined in the following (Karlin and Taylor 1975)

Definition 3.18 (Stationary independent increments). If the difference
random variables D1,D2, . . . defined as Xt2 −Xt1 ,Xt3 −Xt2 , . . . are indepen-
dent regardless of the times t1 < t2 < t3 < · · ·, then (Xt)t≥0 is a process
with stationary increments. If the time index is discrete, the differences Di,
i ≥ 1, are independent random variables. If the distribution of the differences
Xti+h −Xti

depends solely on h, then the process is said to have stationary
increments.

Definition 3.19 (Markov processes). If

Pr(Xtn+1 ∈ (a, b] | Xt1 = x1,Xt2 = x2, . . .,Xtn
= xn) =

Pr(Xtn+1 ∈ (a, b] | Xtn
= xn),

we have a Markov process. In words, Markov processes have limited memory;
when conditioned on the whole past, they only depend on the last event.

Technically speaking, Definition 3.19 describes a first order Markov process.
If the dependence extends back to � terms, the process is known as Markov
of order �.

3.3 Point Processes 65

Definition 3.20 (Stationary processes). If for every h > 0 and every n
the random variables (Xt1 ,Xt2 , . . . , Xtn

) and (Xt1+h,Xt2+h, . . . , Xtn+h) have
the same joint distribution , then it is a stationary stochastic process.

3.3 Point Processes

Though point processes are just a kind of stochastic processes, it is our un-
derstanding that they deserve a separate treatment. They can be used for
simulating spatial patterns and, therefore, they should be one of the working
tools in image synthesis.

One of the best references for point processes, regarding completeness and
readability, is the work by (Baddeley 2006). It also provides a comprehensive
review of more specialized literature, and it is the reference we will follow in
the remaining of this chapter.

This section is divided into two parts: the first deals with the basic
definitions and examples, and presents homogeneous process governed by in-
dependent laws; the second shows situations for wich either homogeneity or in-
dependence or both are dropped. All the examples were produced by functions
available in R’s spatstat library, available from http://www.spatstat.org
(Baddley and Turner 2005).

3.3.1 Homogeneous Processes with Independence

The most important point processes has already been defined: it stems from
the Poisson process. Without loss of generality, consider λ = 1 in the times
at which events take place in a Poisson process (equation (3.2)). A sample of
size ten from such random variable is T1 = 0.041, T2 = 0.287, T3 = 0.773,
T4 = 0.786, T5 = 3.892, T6 = 0.443, T7 = 0.619, T8 = 0.853, T9 = 0.904 and
T10 = 2.979. Figure 3.1 depicts the position of these arrival times.

Such process is regarded as the one with complete randomness, and can
be used to form other types of point processes.

A formal definition of point processes is well beyond the scope of this text.
Instead of that, we will provide a few constructive examples in two dimensions
which give an idea of their potential in image simulation and analysis.

In the following, consider the window W = [0, 1]× [0, 1], bearing in mind
that the point processes we will present can be defined on bounded regions
of R

2.

T5T1

t

Fig. 3.1. Exponential times from a Poisson process.

http://www.spatstat.org

66 3 Random Processes

Definition 3.21 (Binomial point process). A fixed number of points n ≥ 1
is said to obey a Binomial point process if each of their coordinates in W
are outcomes of independent identically distributed random variables following
uniform laws on [0, 1].

Figure 3.2 shows three Binomial point processes, with n = 10, n = 50 and
n = 100. They were all obtained by taking 2n independent samples from the
Uniform distribution on [0, 1], and placing a mark at each pair. Note that any
perceived pattern in Figures 3.2(a), 3.2(b) and 3.2(c) is mere chance.

(a) n = 10 (b) n = 50 (c) n = 100

Fig. 3.2. Three Binomial point processes.

Introducing randomness on the number of points, i.e., considering that n
is an outcome of the discrete random variable N , we can define the Poisson
point process in a constructive manner.

Definition 3.22 (Poisson point process). Firstly, observe n, the outcome
of N , discrete random variable following the Poisson distribution presented in
equation (3.1) with intensity η = λt (assume t = 1 for simplicity). Secondly,
place these n points on W following a Binomial point process. The resulting
is an outcome of the homogeneous Poisson point process with intensity η.

Figure 3.3 presents three outcomes of a Poisson process with η = 50.
In order to build these events, three outcomes of N : Ω → N following a
Poisson law with mean 50 were observed; these outcomes were n1 = 37,
n2 = 66 and n3 = 47. Three Binomial processes were then obtained, with
n1 (Figure 3.3(a)), n2 (Figure 3.3(b)) and n3 points (Figure 3.3(c))

A more formal definition of the Poisson point process than the one given
in Definition 3.22 can be stated as

Definition 3.23 (Poisson point process). A Poisson point process with
intensity η > 0 is a collection P1, P2, . . . of points located in a compact set
W ⊂ R

p, p ≥ 1, such that the number of points in any set A ⊂ W , denoted
N(A), has the following properties:

3.3 Point Processes 67

(a) n1 = 37 (b) n2 = 66 (c) n3 = 47

Fig. 3.3. Three Poisson point processes with η = 50.

1. N(A) follows a Poisson distribution with mean ημ(A), where μ(A) is the
volume of the set A, and

2. the random variables N(A1), N(A2), . . . are collectively independent if the
sets A1, A2, . . . are disjoint.

A Binomial point process is a Poisson point process, conditioned on the num-
ber of points n.

The Poisson point process is used as a reference for complete randomness,
i.e., for contrasting a process with unknown properties against one where
there is no interaction between disjoint sets, and for building other types
of processes. See, for instance, Figure 3.4. Three Binomial processes with
n = 100 where simulated and used as the centers (not shown in the figure) of
circumferences. Each circumference, independently of its position, has a radius
of size R, a random variable uniformly distributed on (0, 1/20). A different
color is used for each process.

Poisson processes with varying intensities and different (deterministic or
stochastic) rules for the marks are possible.

Fig. 3.4. Three marked Poisson point processes.

68 3 Random Processes

An interesting spatial process is the one formed by segments. Consider, for
instance, 2n points distributed on W according to a Binomial process. Draw
the segment from i to i+1, with i = 1, 3, . . . , 2n−1. This is a Binomial n-lines
process, and Figure 3.5 shows outcomes for n = 10, 50 and 100. Such process,
again, can be enhanced with other point and marks distributions.

(a) n = 10 lines (b) n = 50 lines (c) n = 100 lines

Fig. 3.5. Three line processes on the unit square.

An outcome of the uniform Poisson line process is formed by lines crossing
a convex region of the plane W . Such process is governed by a positive para-
menter, λ: the expected number of lines intersecting W is equal to lambda
times the perimeter length of W . The expected total length of the lines cross-
ing W is equal to πλ times the area of W .

In order to simulate outcomes form the uniform Poisson line process, start
observing n, sample from the random variable N that follows a Poisson law
with parameter λ�(W), where �(W) is the perimeter of the convex set W .
Simulate now a Binomial point process on W with 2n points, and join each
adjacent pair of points by a straight line. Figure 3.6 presents three outcomes
of such process.

3.3.2 Inhomogeneity and/or Dependence

One of the basic properties of the Poisson point process, as presented in Def-
initions 3.22 and 3.23 is that the probability of observing n points in sets
A1, A2 ⊂ W is the same if their areas are equal, regardless their relative lo-
cation in W . This may be a limitation when, for instance, it is desirable to
observe more densely packed points in selected areas of the window.

A simple way of defining such process is using an additional function η :
W → R+, such that

∫
A

η < ∞ in any A ⊂ W , the intensity of the process.
With this, we can formulate the following.

Definition 3.24 (Inhomogeneous Poisson point process). Such pro-
cess with intensity function η is a collection P1, P2, . . . of points located in

3.3 Point Processes 69

(a) λ = 10 (b) λ = 20 (c) λ = 50

Fig. 3.6. Uniform Poisson line processes.

a compact set W ⊂ R
p, p ≥ 1, such that the number of points in any set

A ⊂ W , denoted N(A), has the following properties:

1. N(A) follows a Poisson distribution with mean
∫

A
η, and

2. the random variables N(A1), N(A2), . . . are collectively independent if the
sets A1, A2, . . . are disjoint.

Note that the basic Poisson point process is obtained making η constant
over W .

Figure 3.7 presents an application of such model in nonphotorealistic ren-
dering. Figure 3.7(a) shows an image in shades of gray. As will be seen in
Chapter 10, such image can be described as a function f : S → R; in our
case f : {0, . . . , 259} × {0, . . . , 169} → {0, . . . , 255}. The values {0, . . . , 255}
are presented associating 0 to black, 255 to white and gray levels in between.
Figures 3.7(b) and 3.7(c) show outcomes of inhomogeneous Poisson point pro-
cesses with intensity η = (256−f)/s, where s > 0 is a scale. Notice that darker
regions are associated by this transformation to areas where points are more
likely, and that the smallest probability of observing a point is strictly positive
in any area.

Such inhomogeneous processes capture the main features of the original
image and, at the same time, introduce a stochastic component in its render-
ing. Provided η, the intensity, the points are independent. In the sequel, point
processes with dependence structures will be presented.

Definition 3.25 (Simple Sequentinal Inhibition (SSI)). Starting with
an empty window W , an outcome from the SSI process is built adding points
one-by-one. While (i) less than n points are drawn, or (ii) less than T trials
have been made without changing the previous configuration, generate uni-
formly a new point independently of preceding points; if the new point lies
closer than r units from an existing point, then it is rejected and another
random point is generated.

70 3 Random Processes

(a) Original image

(b) Inhomogeneous Poisson point
process, scale = 50

(c) Inhomogeneous Poisson point
process, scale = 100

Fig. 3.7. Original image and stochastic inhomogeneous derived Poisson point
processes.

As defined, provided the window W , a SSI process is characterized by n,
r and T . If r = 0, the SSI becomes a Binomial point process, while the bigger
r, the more repulsive the process.

Figure 3.8 presents three SSI processes with n = 50 and increasing values
of the exclusion parameter r.

While the point process presented in Definition 3.25 is intuitive and rela-
tively easy to build, it describes a strict exclusion rule; for this reason, it is
also known as hardcore process. A generalization of such process is the Strauss
point process, which ranges from the Poisson point process to the Simple Se-
quential Inhibition process, i.e., from independence among points to exclusion.
This process is defined in terms of an interaction radius r and two parameters:
a normalizing constant β and the dependence parameter 0 ≤ γ ≤ 1.

Definition 3.26 (Strauss point process). The points x = x1, . . . , xn ⊂W
are outcomes of the Strauss process with parameters r, β and γ if they obey a
law characterized by the density

3.3 Point Processes 71

(a) r = 0.01 (b) r = 0.05 (c) r = 0.10

Fig. 3.8. Simple Sequential Inhibition processes with n = 50.

f(x1, . . . , xn) = αβnγs(x),

where s(x) is the number of (distinct unordered) pairs of points that are closer
than r units apart in W .

If γ = 1 it reduces to a Poisson process with intensity β, whereas if γ = 0 it
is a “hard core process” with exclusion radius r/2, since no pair of points is
permitted to lie closer than r units apart. (Kelly and Ripley 1975) prove that,
as presented in Definition 3.26, the process is well defined. Its exact simulation
is discussed by (Berthelsen and Møller 2002).

Figure 3.9 presents three outcomes of the Strauss process for the same
window W , same intensity β = 100, same interaction radius r = 0.1 and
varying dependence paramenter γ.

Another point process that is built upon the notion of stochastic depen-
dence is the Matérn Cluster process, which is characterized on a window W
by the parent intensity κ, the disc r and the cluster intensity μ as follows.

(a) γ = 0.1 (b) γ = 0.5 (c) γ = 0.7

Fig. 3.9. Three outcomes of the Strauss point process with β = 100, r = 0.1 and
varying γ.

72 3 Random Processes

(a) κ = 10, r = 0.05, μ = 10 (b) κ = 100, r = 0.01, μ = 5 (c) κ = 5, r = 0.05, μ = 5

Fig. 3.10. Matérn Cluster processes.

Definition 3.27 (Matérn Cluster process). First generate a Poisson
point process on W with intensty κ, the parent process. Then replace each
point in the parent process by an outcome of a Poisson point process on a disc
of radius r centered on the parent point, with intensity μ, the cluster process.

Points from the cluster process outside W can be either discarded, or the
Matérn Cluster process can be defined on W ′, the dilation of W by a disc
of radius r. This process can be extended for other types of supports for the
cluster process.

Sparse parent processes and dense cluster processes are significantly dif-
ferent from a simple Poisson point process, as presented in Figure 3.10.
Figures 3.10(a) and 3.10(b) show the points with a small symbol, while in
Figure 3.10(c) they are depicted with solid ones.

It is noteworthy that every point process can be turned into a marked
point process, by defining the set of properties of each point.

3.4 Comments and References

The book by (Grinstead and Snell 1997) is highly recommended because it
attains a hard-to-find equilibrium between mathematical rigor and intuitive-
ness. The main ideas are illustrated by means of simulation exercises. (Dekking
et al 2005) provide a nice balance between probability and statistics, where the
former is used to explain application of the latter; the books ranges from ba-
sic probability theory to testing statistical hypothesis. The book by (Resnick
1999) is rigorous, it uses Measure Theory, and is an excellent introduction to
the mathematical details of probability theory.

Discovering the richness of point processes through spatstat (Baddley
and Turner 2005) is one of the best ways to be introduced to these powerful
stochastic models.

3.4 Comments and References 73

The work by (Johnson et al 1993; Johnson et al 1994) is one of the most
complete references for distributions of, respectively, discrete and continuous
random variables. The textbook by (Johnson and Kotz 1972) is a compendium
on continuous multivariate distributions. More references on multivariate ran-
dom variables are discussed in Chapter 10.

References

[Baddeley 2006]A. Baddeley. Spatial point processes and their application. In
W. Weil, editor, Stochastic Geometry, volume 1892 of Lecture Notes in
Mathematics, pages 1–75. Springer, Belin, 2006.

[Baddley and Turner 2005]A. Baddeley and R. Turner. spatstat: An R pack-
age for analyzing spatial point patterns. Journal of Statistical Software,
12(6):1–42, 2005.

[Banon 1981]G. J. F. Banon. Distinction between several subsets of fuzzy
measures. Fuzzy Sets and Systems, 5(3):291–305, May 1981.

[Bayes 1763]T. R. Bayes. An essay towards solving a problem in the doctrine
of chances. Philosophical Transactions of the Royal Society, 53:370–418,
1763.

[Berthelsen and Møller 2002]K. K. Berthelsen and J. Møller. A primer on
perfect simulation for spatial point processes. Bulletin of the Brazilian
Mathematical Society, 33(3):351–367, 2002.

[Dekking et al 2005]F. M. Dekking, C. Kraaikamp, H. P. Lopuhaā, and L. E.
Meester. A Modern Introduction to Probability and Statistics: Under-
standing Why and How. Springer, 2005.

[Grinstead and Snell 1997]C. M. Grinstead and J. L. Snell. Introduction to
Probability. American Mathematical Society, 2 edition, 1997.

[Karlin and Taylor 1975]S. Karlin and H. M. Taylor. A First Course in
Stochastic Processes. Academic, New York, 1975.

[Johnson and Kotz 1972]N. L. Johnson and S. Kotz. Distributions in Statis-
tics: Continuous Multivariate Distributions. Wiley, New York, 1972.

[Johnson et al 1994]N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous
Univariate Distributions, volume 1 of Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons, New York, 2 edition, 1994.

[Johnson et al 1993]N. L. Johnson, S. Kotz, and A. W. Kemp. Univariate
Discrete Distributions. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, New York, 2 edition, 1993.

[Kelly and Ripley 1975]F. P. Kelly and B. D. Ripley. On Strauss’s model for
clustering. Biometrika, 63:357–360, 1975.

[Resnick 1999]S. Resnick. A Probability Path. Birkhäuser, Boston, 1999.

4

Fundamentals of Color

The presence or absence of light is what causes the sensation of color. Light
is a physical phenomenon, but color depends on the interaction of light with
our visual apparatus and is therefore a psychophysical phenomenon.

When one wants to describe an object, one often mentions its color. But
what does it mean to say that an object is red? Does “red” mean the same
to different people? These questions make it necessary to specify precisely
the meaning of colors, to give a quantitative definition that will allow the
creation of a common language based on an appropriate model. There are
several models, and the most appropriate one can only be chosen given the
context: a model that is valid from the perceptual point of view, for example,
can yield inaccurate results when used as a computational model.

In this chapter we study physical and psychophysical aspects of color the-
ory. The problem of displaying a color in a graphics device will be deferred
to Chapter 16, on image systems, since it is directly connected with graphics
output devices.

4.1 Paradigms in the Study of Color

Color is a perceptual manifestation of light, which in turn is an electromag-
netic signal. Last chapter’s paradigm for the study of signals, therefore, applies
perfectly well to this chapter (Figure 4.1).

We must first understand the process of color formation in the physical
universe. Next we must study mathematical models for color (the elements
of the mathematical universe) and the relationship between these models and
the physical universe of color: this study is based on the psychophysics of
color, which investigates the various aspects of color perception by our visual
apparatus. After that we must study models of color representation (the
elements of the representation universe) and problems of conversion between
various such representations. The last step, color encoding on the computer,

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 4,
c© Springer-Verlag London Limited 2009

76 4 Fundamentals of Color

Fig. 4.1. Abstraction levels in the study of color.

is directly related to image encoding and will be deferred to Chapter 6, on
digital images.

4.2 The Physical Universe of Color

To understand color one must first understand the nature of light. Physics has
definitively established the dual (wave/particle) nature of light: a light ray is
made up of particles, called photons, and photons in motion determine a wave
whose intensity at each point represents the probability of finding a photon at
that point. This dual model explains perfectly the physical phenomena where
light behaves sometimes as a particle and sometimes as an electromagnetic
wave.

A photon moves at a velocity c, which depends on the medium; the asso-
ciated wave has a certain frequency f . The frequency and velocity of a photon
determine its wavelength λ, the length of a full cycle in the wave:

λf = c. (4.1)

The energy E of each photon is related to the frequency by means of Planck’s
equation

E = hf, (4.2)

where h ≈ 6.626× 10−34 Joules · sec is Planck’s constant.
When photons hit the retina, they give rise to electrical impulses, which,

on reaching the brain, are translated into color. Different wavelengths are
perceived as different colors. However, not every wavelength can be perceived
by the human eye: only those between 380 nm and 780 nm, approximately,
where 1 nm, or nanometer, is one billionth of a meter (10−9 m; one can also
write mμ, where μ is the micron, one millionth of a meter). This interval is
the visible range of the spectrum, or simply visible spectrum. Table 3.1 shows
the correspondence between the main color words in English and subranges
of the visible spectrum.

4.2.1 Color Formation

The colors that we perceive in our everyday experience arise from very di-
verse physicochemical processes. Some objects are light sources, while others

4.2 The Physical Universe of Color 77

color range

violet 380–440 nm
blue 440–490 nm
green 490–565 nm
yellow 565–590 nm
orange 590–630 nm
red 630–780 nm

Table 3.1. Wavelengths corresponding to different colors.

merely reflect incident light. In order to search for mathematical models for
the various processes of color formation in the physical universe, we must first
understand and classify these processes. That is the goal of this section.

In general, we can talk about three main color formation processes: addi-
tive, subtractive, and by pigmentation.

Additive Color Formation

It is well known that white light is decomposed into spectral colors when it
goes through a prism. It was believed that the colors were created by the
prism, until the British physicist and mathematician Isaac Newton verified
experimentally that white light is made up of colored components and that
the prism simply separates these components. Newton’s experiment consisted
in using another prism to show that the spectral colors that came out of the
first prism could be combined again, yielding white light.

In additive color formation, the spectral distributions corresponding to two
or more light rays that are being combined are added. Thus, in the resulting
color, the number of photons within a given range of wavelengths is the sum
of the number of photons in the same range present in the component colors.

Subtractive Color Formation

Subtractive color formation occurs when the light we see is transmitted
through a light filter or a dye.

A light filter is a partly transparent solid material, that is, a solid object
that absorbs part of the light that reaches it and transmits the rest, the trans-
mitted fraction depending on the wavelength. Thus, a red filter lets through
radiation in the red part of the spectrum, while radiation with other wave-
lengths is blocked. The color may be intrinsic, but more commonly it is the
result of colored particles (pigments) dispersed in a solid medium; see the next
section. Several filters can be used in series, the resulting color being made
up of those wavelengths that can go through all of them.

A dye is a colored liquid: either a liquid colored compound, or a solution or
dispersion of a colored compound. Like a filter, it blocks radiation selectively.

78 4 Fundamentals of Color

Even when the coloring is due to dispersed particles (pigments), the effect of
reflection in these particles is negligible.

Color Formation by Pigmentation

A pigment consists of colored particles in suspension in a liquid, or spread
over a surface (after the liquid in which they were applied to the surface evap-
orates). These particles can absorb, reflect, or transmit the light that reaches
them. When a light ray reaches a surface covered with pigment, it is scat-
tered by the particles, with successive and simultaneous events of reflection,
transmission, and absorption. These events determine what light is returned
by the surface.

Opaque paints and opaque inks used in painting work by pigmentation.
Pigmentation would be the most appropriate process to emulate on the com-
puter, for use in so-called paint programs.

All three color formation processes are common. Additive color is used
in TV monitors. Subtractive color formation occurs, for example, when we
project color slides onto a screen. Color formation by pigmentation allows us
to see the colors in a painted masterwork. In some industrial applications,
such as offset printing (Chapter 16), two or more of the basic processes can
be combined.

We will not study mathematical models of color arising from subtractive
or pigmentation color formation processes. Our perception of color is triggered
by the radiant energy that reaches the eye, and, as already discussed, radiant
energy behaves additively in combination. Therefore, additive color formation
is the process taken as the base for colorimetric studies.

4.2.2 Photometry and Colorimetry

Photometry is the branch of science that deals with the psychophysical as-
pects of radiant energy (without regard to color), and specifically with the
measurement of light, or the comparison of different light source intensities.
Colorimetry is the theory that deals with the psychophysical aspects of color,
and especially with the measurement, specification, and determination of col-
ors. The color formation method used as a basis for colorimetry is the additive
process: The number of photons corresponding to two or more light rays is
added, which corresponds to adding the spectral distributions of the rays.

We will not go into a detailed study of the nature of light. Such a study,
which would lead us immediately to Maxwell’s equations, the foundation of
electromagnetism, would be necessary in order to understand the interaction
of light with matter and other physical phenomena involving light. However,
in this chapter and the next, we are primarily interested in colorimetry, which
uses mathematical models to measure color information. Light–matter inter-
action is directly related with lighting models and will not be studied in this

4.3 The Mathematical Universe of Color 79

book. For a better understanding of this chapter, the reader may want to look
first at Chapter 12, on radiometry and photometry.

4.3 The Mathematical Universe of Color

With very few exceptions, light rays are not made up of photons all of the same
wavelength; rather, a light source radiates photons in a range of wavelengths,
and one may quantify the rate of emission for photons in each subrange of
wavelengths, giving rise to a spectral distribution for the number of photons.

If n(λ) dλ photons are emitted per unit time in the wavelength range
(λ, λ + dλ), we conclude from (4.2) and (4.1) that the energy per unit time
radiated in the same range of wavelengths is hcλ−1n(λ) dλ. We thus get a
spectral distribution for the energy, that is, a function that associates to each
wavelength its energy. Likewise we can consider a spectral distribution for
other magnitudes of colorimetric interest (see Chapter 12). We will return to
this point in the beginning of Section 4.3 (see Figure 4.2).

In physical terms, what we mean by a color will usually be a spectral
distribution, that is, a mix of wavelengths in certain proportions. A source of
radiation that emits photons all of the same wavelength—that has an impulse
function as its distribution—is called monochromatic. The color is called a
spectral color, or a pure color, if its wavelength is in the visible range.

In sum, the spatial model for color signals is the spectral distribution func-
tion. This function associates to each wavelength a measurement representing
one of the physical magnitudes associated with radiant energy. This is illus-
trated in Figure 4.2. For more details, see Chapter 12, on radiometry and
photometry.

A spectrophotometer is an instrument that gives the spectral distribution
of a given color. Such instruments are commonly used in experiments and in
applications.

Fig. 4.2. Possible spectral distribution of a color signal.

80 4 Fundamentals of Color

The spatial model for color (spectral distribution) is of paramount im-
portance in the study of color. The color space associated with this model is
traditionally known as spectral color space and will be denoted in this chapter
by E .

4.4 The Representation Universe of Color

The representation process seeks to replace a continuous model of a signal by a
discrete one. In the case of color, we want to replace the spectral space, which
is infinite-dimensional, by a finite-dimensional space. What representation to
use? To find the answer we must keep in mind that, in practice, we are only
interested in colors directly associated with physical systems, so that the color
space that interests us is the color space associated with such a system. We
must seek a representation of spectral color space E in this space.

As we discussed in the previous chapter, there are two operations asso-
ciated with the representation of a color signal: sampling, which approxi-
mates the infinite-dimensional color space by some finite-dimensional space,
and color reconstruction, which obtains a spectral color from given samples.

In the physical universe of physical color systems, the operation of sam-
pling is associated with physical receptors, and the operation of reconstruction
is associated with physical emitters.

4.4.1 Color Sampling

A physical color receptor consists of a finite number of sensors s1, s2, . . . , sn,
each with a certain spectral response function si(λ). This function gives, for
each wavelength, the weight with which light of this wavelength contributes
to the sensor’s output. Thus, if the receptor is exposed to light with spectral
color distribution C(λ), the resulting signal is given by the n numbers

Ci =
∫

R

C(λ)si(λ) dλ. (4.3)

In an ideal receptor , the spectral response function of each sensor si is a
Dirac impulse at a given wavelength λi, so (4.3) reduces to

Ci =
∫

R

C(λ) δ(λ− λi) = C(λi).

Thus, an ideal receptor performs a point sampling of spectral color space
(Figure 4.3) at n different values of wavelength.

In general, the spectral response of each sensor in a receptor is not an im-
pulse function, but it approximates a pulse function as defined in the preceding
chapter. More precisely, it is usually a unimodal positive function whose mode
(maximum value) is achieved at some wavelength λ0 (Figure 4.4). The smaller

4.4 The Representation Universe of Color 81

Fig. 4.3. Point sampling of color in an ideal receptor.

Fig. 4.4. Typical spectral response function of a sensor in a physical receptor.

the standard deviation of the pulse function, the more localized the response
of the receptor, and the higher the sensitivity to that spectral band.

Nonetheless, it is useful to think of the action of a receptor as a sampling
of the visible spectrum.

A receptor establishes a linear transformation R : E → R
n, defined by

R(C) = (C1, . . . , Cn), (4.4)

where each component Ci is given by (4.3). The transformation R is a repre-
sentation transformation, as defined in Chapter 2. The representation trans-
formation therefore establishes the relationship between spectral color space
and its finite representation R

n.
Note that, in the representation process, colors with distinct spectral dis-

tributions can be represented by the same color vector in R
n. Two colors

C(λ), C ′(λ) ∈ E are said to be metamerous with respect to the receptor with
representation transformation R if R(C(λ)) = R(C ′(λ)). The occurrence of
metamerism means that physically distinct colors (colors with different spec-
tral distributions) can be the same from the point of view of the receptor. A
metamerism relation � can be defined in spectral color space E by setting

C(λ) � C ′(λ) ⇐⇒ R(C) = R(C ′).

Since the representation transformation is linear, this is an equivalence rela-
tion. The space R

n is identified in a natural way with the quotient space E/�
of spectral color space E by the metamerism relation, as indicated by this
commutative diagram:

82 4 Fundamentals of Color

E E/���

R
n
�

R R̄
�

�
�

��

In sum, we see that a physical color receptor performs a natural represen-
tation of spectral color space E in a finite-dimensional vector space, which we
call the color space of the physical receptor.

Example 4.1 (Color space of the human eye). Isaac Newton believed that the
human eye possessed infinitely many photosensitive molecules, corresponding
to the different frequencies of the visible spectrum. In the early nineteenth
century, the physicist Thomas Young proposed, based on experiments, a tri-
chromatic model for the human eye. In Young’s model, the eye has only three
types of photosensitive molecules, one for low frequencies of the visible spec-
trum, one for middle frequencies, and one for high frequencies. In the termi-
nology introduced above, Young’s model says that the eye is a physical color
receptor with three sensors. Figure 4.5 shows a rough sketch of the spectral
response of these three sensors; more precise information can be found in the
literature on color theory.

We observe that the spectral response curves of the eye have maxima at
the wavelengths corresponding to the colors red, green, and blue. As discussed
above, we can consider that the eye samples spectral space at these three
wavelengths. Thus, according to Young’s theory, the color space of the human
eye is a three-dimensional vector space. Much color information is, of course,
lost in the sampling process.

In the beginning, there was a lot of resistance within the scientific com-
munity to Young’s three-color theory. Several perceptual experiments carried
out by Maxwell and Helmholtz made Helmholtz support Young’s model, which

Fig. 4.5. Spectral response curves for the three sensors present in the human eye.

4.4 The Representation Universe of Color 83

became know as Young–Helmholtz’s theory. In the early 1960s it was verified
that the eye does, in fact, possess three types of color-sensitive cells, with
spectral responses roughly as in Figure 4.5.

The metamerism phenomenon that occurs in the color sampling process
of the human vision can be easily illustrated: a pure green light of wavelength
(say) 530 nm and a pure red light of wavelength 700 nm, when combined in
certain proportions, yield a color that is perceived by the eye as being the
same as a pure yellow of wavelength 570 nm mixed with a bit of white. The
spectral distributions are very different, but the color, in the everyday sense
of the word, is the same.

4.4.2 Color Reconstruction

In the preceding section we studied color sampling systems, where the color
signal is processed (filtered) through n sensors s1, s2, . . . , sn, which gives a
representation of the spectral color space as an n-dimensional space.

In order to perceive color from a physical color system, the eye must re-
ceive visible radiation with an appropriate spectral distribution. This contin-
uous (analog) signal must have been previously reconstructed by the physical
system. The reconstruction of colors is performed by physical emitters. In
such systems, the sensors emit light when they receive an external stimulus.

From the mathematical point of view, an emitter has a finite number
of sensors s1, s2, . . . , sn, and the basic emission of each si is a color with
spectral distribution Pi(λ). The set B = {Pk(λ)}, for k = 1, . . . , n, is a basis
of the emitter’s color space. Each color Pk(λ) is called a primary color. Thus,
every reconstructed color that can be produced by the emitter is a linear
combination

C(λ) =
n∑

k=1

βkPk(λ) (4.5)

of the emitter’s primary colors. The basis B is called the primary basis of the
emitter. The vector (β1, . . . , βn) defines the components of the color C in the
emitter, called the primary components of C. Physically, C can be obtained
as an additive combination of the primary colors.

The vector space 〈P1(λ), . . . , Pn(λ)〉 generated by the primary colors
Pk(λ), for k = 1, . . . , n, is a finite-dimensional subspace of spectral color space
E . Thus, we can hardly expect that an arbitrary color C(λ) will be exactly
reconstructed using the primary basis of a physical emitter. In fact, this is
not the correct way to set the problem of color reconstruction. The process
of reconstruction must be considered together with that of representation in
a receptor. More precisely, there are three elements involved:

• a color C(λ), defined by its spectral distribution;
• color sampling, performed by some receptor Sr with sensors s1,...,sn;
• color reconstruction, performed by some emitter Se with primary basis

P1(λ), . . . , Pn(λ).

84 4 Fundamentals of Color

Fig. 4.6. Metamerism and reconstruction.

To make things clearer, we illustrate the situation with a concrete example
(see Figure 4.6): the receptor system is the eye of the observer. The continuous
spectral distribution C(λ) comes from a real scene, and the reconstructed
colors come from a television set. There is another sampling color system in
the figure (the camera that captures the image), but it is not important for
our problem.

In this arrangement, the eye samples the colors from the real scene and
from the television set. The reconstruction system of the TV set uses a basis
with three primaries, red, green, and blue, and it is certainly not able to
reconstruct perfectly the spectral distribution of the color from the real scene.
But, in fact, it does not have to do that in order to reconstruct a good image; it
is enough that the reconstructed image should look the same when processed
by the sampling system of the eye.

Going back to our generic setting, the receptor Sr yields a discrete repre-
sentation (c1, . . . , cn) of the color C(λ), where each ci is defined by (4.3). The
reconstruction problem consists in obtaining a color

Cr(λ) =
n∑

k=1

βkPk(λ), (4.6)

in the color space of the of the emitter Se, such that the representation of the
reconstructed color Cr(λ) in the receptor Sr is the same vector (c1, . . . , cn)
representing the original spectral color C(λ). In other words, the problem
consists in reconstructing a spectral color metameric to the spectral color
C(λ) with respect to the receptor Sr. This is expressed by the diagram

C(λ) Cr(λ)��

(c1, . . . , cn)

R
�

�
�
��

R
�

�
�

��

where � is the metamerism equivalence relation and R is the color represen-
tation functional.

4.4 The Representation Universe of Color 85

In general, the reconstruction problem is posed for the case where the re-
ceptor is the human eye. As a concrete example, consider the case of a real
image, captured by a video camera and displayed (that is, reconstructed) on
a monitor screen (Figure 4.6). To the human eye (the receptor), the recon-
structed image is identical to the original image from the point of view of
color.

Once the color reconstruction problem has been correctly posed, we will
from now on adopt the common convention of omitting the index r in (4.6).
We obtain then the initial equation (4.5), and we say that the scalars βk

are the primary components of the spectral color C in the system with basis
{Pk(λ)}. This doesn’t cause any problems, so long as one keeps in mind that
the equality in (4.5) is, in fact, equality up to metamerism. In the next section
we discuss a method for computing the primary components βk in (4.5).

4.4.3 Computation of Primary Components

Consider a color, with spectral distribution C(λ), and its reconstruction

C(λ) =
n∑

k=1

βkPk(λ)

in the color space of a physical emitter with primary basis {Pk(λ)}, for k =
1, . . . , n.

If s1(λ), . . . , sn(λ) are the spectral response curves of a receptor, the
representation of the color C(λ) in this receptor is given by the vector
(α1(C), . . . , αn(C)), where, by (4.3), we have

αi(C) =
∫

R

(
n∑

k=1

βkPk(λ)

)

si(λ) dλ

=
n∑

k=1

βk

∫

R

Pk(λ)si(λ) dλ, for i = 1, 2, . . . , n. (4.7)

Set
aik = αi(Pk) =

∫

R

Pk(λ)si(λ) dλ,

so that aik is the color response of the i-th sensor of the receptor to the k-th
color of the primary basis. We can then write (4.7) in the form

n∑

k=1

βkaik = αi(C) =
∫

R

C(λ)si(λ). (4.8)

In this equation, if we know aik and si(λ), which are characteristics of the two
physical systems (receptor and emitter), together with the spectral distribu-
tion C(λ), we can compute the primary components β1, . . . , βn of the color
C(λ).

86 4 Fundamentals of Color

Normalized Coordinates

In practice, we calibrate a primary basis Pk(λ) with respect to a reference
color, in order to adjust the components βk correctly. To do this, we take
a standard light source with spectral distribution W (λ) and determine the
primary components wi:

W (λ) =
n∑

k=1

wkPk(λ).

The components βk of the color C(λ) are normalized by

Tk(C) =
βk

wk
. (4.9)

The purpose of normalizing coordinates by means of a reference color is
to adjust the sensors or the emitters of the physical system so as to create a
correct color scale for each color coordinate. For the case of a video camera,
this calibration is known as the white balance. Its purpose is to adapt the
sensors of the camera to the prevailing lighting conditions. The operator places
a white card in the camera’s field of view and pushes the white-equalization
button. This causes a special circuit to adjust the gain of the camera’s sensors
to such values that the output signal, when reconstructed, does indeed look
white. This also guarantees the correct reproduction of neutral colors (grays),
a necessary step toward the faithful rendering of the scene’s colors.

Color Reconstruction Functions

The spectral response curves Si(λ) of a receptor are, in general, difficult to
find experimentally, and this complicates the calculation of the normalized
primary coordinates Tk(λ) through Equation (4.8). For this reason we use
color reconstruction functions Ck(λ), defined in such a way that

δ(λ− λ0) =
n∑

k=1

Ck(λ0)Pk(λ).

Understanding this equation is very important: for each wavelength λ0 of the
spectrum, the values Ck(λ0), for k = 1, . . . , n, are the primary coordinates of
the pure color of wavelength λ0 (that is, having spectrum δ(λ − λ0)) in the
primary basis {Pk(λ)} of the system.

Substituting C(λ) = δ(λ− λ0) in (4.8), we obtain

n∑

k=1

βkaik =
∫

R

si(λ)δ(λ− λ0) dλ = si(λ0).

From (4.9), we get βk = Tk(C)wk = Ck(λ0)wk, so

4.4 The Representation Universe of Color 87

n∑

k=1

wkaikCk(λ0) = si(λ0) (4.10)

for i = 1, 2, . . . , n and λ0 arbitrary.
When the receptor is the human eye, the color reconstruction functions

Ck(λ), for k = 1, 2, 3, are called color matching functions. We spell out their
physical meaning in this context: for each wavelength λ0, the color matching
functions encode the intensities with which we must combine each of the
three primary colors Pk(λ) to obtain a color metameric to the pure color of
wavelength λ0.

The following theorem shows that, if one knows the color reconstruction
functions, one can easily obtain the primary coordinates of any color.

Theorem 4.2. Let C(λ) be a spectral distribution, and let Ck(λ) be the color
reconstruction functions associated with the primary basis of a color recon-
struction system (emitter). The normalized components Tk(C) of the color C
in this basis are

Tk(C) =
∫

R

C(λ)Ck(λ) dλ. (4.11)

Proof. Applying (4.10) to an arbitrary wavelength λ0 and multiplying both
sides by C(λ), we can write

n∑

k=1

wkaikC(λ)Ck(λ) = C(λ)si(λ).

Integrating over λ, we get

n∑

k=1

wkaik

∫

R

C(λ)Ck(λ) dλ =
∫

R

C(λ)si(λ) dλ.

This, together with (4.8), gives

n∑

k=1

aik

(

wk

∫

R

C(λ)Ck(λ) dλ− βk

)

= 0.

Physical considerations, based on the choice of the sensors and the basis of
primary colors, show that the matrix (aik) is invertible. We conclude that

wk

∫

R

C(λ)Ck(λ) = βk,

that is, ∫

R

C(λ)Ck(λ) =
βk

wk
= Tk(C),

as we wished to show.

88 4 Fundamentals of Color

We observe that, in general, the color reconstruction functions Ck(λ) have
compact support, so the integral in (4.11) is computed in an interval [λa, λb],
for λa, λb ∈ R, of the visible spectrum. Thus the integral in (4.11) can be
easily solved numerically, yielding the normalized components of a color with
spectral distribution C(λ). A simple method is to take a partition

λa = λ0 < λ1 < · · · < λn = λb

on n subintervals of the interval [λa, λb], and approximate each integral by
the Riemann sum

ck =
n∑

i=1

C(λ∗
i)ck(λ∗

i)(λi − λi−1),

where λ∗
i is an element of the interval [λi, λi+1]. This method is the rectangle

rule for numerical integration. If necessary, one can integrate to a higher degree
of approximation, using better numerical methods such as Simpson’s rule or
Gaussian quadrature.

Equation (4.11) in Theorem 3.1 allows the calculation of the components
of a spectral color using the color reconstruction functions, instead of requir-
ing the spectral response functions of the system as (4.8) does. As we shall
see, its advantage is that the color matching functions can be computed ex-
perimentally with great precision.

4.5 CIE-RGB Representation

In this section we study in detail an application of the preceding section’s
theory, to a color representation system that has great importance in many
color processes, and in particular in computer graphics.

We have seen that color representation consists in a reduction of the spec-
tral color space to a finite-dimensional space. Young–Helmholtz’s trichromatic
model (Example 4.1) states that, for the purposes of color perception, the hu-
man eye works as a receptor of dimension three, with sensors that sample the
spectrum at the red, green, and blue regions of the visible spectrum. Thus,
it is natural to seek a three-dimensional color reconstruction system whose
primary basis has as elements colors in these same three regions.

Such a representation system was adopted by the International Commis-
sion on Illumination (CIE, for Commission Internationale de l’Éclairage) in
1931. The basis chosen is

P1(λ) = δ(λ− λ1) for λ1 = 700 nm (red),
P2(λ) = δ(λ− λ2) for λ2 = 546 nm (green),
P3(λ) = δ(λ− λ3) for λ3 = 435.8 nm (blue),

where δ is a Dirac delta (impulse function).

4.5 CIE-RGB Representation 89

From (4.8) we now get

aik =
∫

R

si(λ)δ(λ− λk) dλ = si(λk),

for i, k = 1, 2, 3. The reference white used by the CIE has, by definition, a
uniform-energy spectral distribution: W (λ) ≡ 1. Thus, using (4.3), the wi

component of W (λ) is given by

wi =
∫

R

si(λ) dλ,

for i = 1, 2, 3. Using the values computed above for aik and wi in (4.8), and
taking into account that C(λ) = W (λ) ≡ 1, we get

3∑

k=1

wkaik =
3∑

k=1

wksi(λk) =
∫

R

si(λ) dλ = wi,

for i = 1, 2, 3, which allows us to compute the coefficients wk of the CIE

reference white with respect to the primary basis

{P1(λ), P2(λ), P3(λ)}.

Substituting the values of wk thus computed in (4.10), we get the values of
the color matching function Ck(λ) for any λ. The graphs of these functions
are shown in Figure 4.7, each in a different style for clarity.

Fig. 4.7. Color reconstruction functions in the CIE-RGB system.

90 4 Fundamentals of Color

4.5.1 Color Matching Experiments

Note that, in the calculations above, knowledge of the spectral response curves
si(λ) of each of the three types of sensors in the human eye is of paramount
importance. The measurement of these values is only possible through in-
direct methods, and the results are not very precise. As already remarked,
more precise results are obtained by taking another route, namely, establish-
ing the color matching functions directly, by means of experiments that we
now describe.

An observation panel, Figure 4.8, is set up, consisting of a surface that
reflects light uniformly in all directions and in all wavelengths (diffuse reflec-
tor). The panel is divided into two halves. One half is lit with light having
spectral distribution C(λ), called the test light. The other half is lit with a
white reference light, having spectral distribution W (λ), together with three
primary light sources with spectral distributions P1(λ), P2(λ), and P3(λ). The
goal of the experiment is to find the components of the color of the test light
C(λ) with respect to the primary colors P1, P2, and P3.

The three primary lights are shone on the same area, and their intensities
are adjusted until their mix is perceptually indistinguishable from the refer-
ence white W . The intensity values w1, w2, and w3 are recorded. The next
step is to obtain the coordinates of the test light; to do this, one again adjusts
the intensities of the primary lights until the mix has perceptually the same
color as the test light. If these new intensities are denoted by β1, β2, and β3,
the normalized coordinates ck(λ) of the test light are then ck = βk/wk, for
k = 1, 2, 3.

Experiments of this type allow one to obtain with great precision the values
of the color matching functions defined by the primary colors P1, P2, and P3.
One starts by taking a partition λa = λ0 < λ1 < · · · < λn−1 < λn = λb

of the visible spectrum. For each λi one takes as a test light a pure color
of wavelength λi and carries out the matching experiment. The components
ck obtained are the values ck(λi) of the color reconstruction functions at λi.
The graphs of color matching functions of the CIE-RGB system shown in

Fig. 4.8. Color matching experiment.

4.6 Luminance and Chrominance 91

Figure 4.7 were obtained from CIE data compiled using experiments of the
type just described.

Note that one of these graphs takes negative values. Physically, this means
that, in the experiment above, it is impossible to combine the primary colors
P1, P2, and P3 in such a way as to match the test light at that wavelength. In
this case the experiment must be modified as follows: one mixes the primary
color P1 (for example) with the test color C and tries to adjust the other two
primaries, P2 and P3, to get a match. If this is possible, the coordinates of
C are

T1(C) = − β1

w1
, T2(C) =

β2

w2
, T3(C) =

β3

w3
.

If this still doesn’t work, one mixes P2 with the test color and compares with
a combination of P1 and P3, and so on.

4.6 Luminance and Chrominance

As a way to motivate the main topic of this section, we make some remarks
about the evolution of color perception theory.

According to the Young–Helmholtz model (Example 4.1), the eye has three
types of molecules, sensitive to electromagnetic radiation in overlapping ranges
that we loosely correspond to red (R), green (G), and blue (B). In the late
nineteenth century, the physiologist Hering carried out several experiments
in color perception and concluded that the Young–Helmholtz theory did not
explain in a convincing way the results of all of them. Hering then formulated
a new theory of color perception, according to which the color apparatus
of the eye possesses three double channels. One channel carries information
about black and white, which when combined yield light/dark, or luminance,
information. The other two channels carry the red/green and blue/yellow
information, and in each of them there is no color combination.

Hering’s model could explain several experiments that the Young–
Helmholtz model could not cope with. However, as we have already seen,
the fundamental ideas of the Young–Helmholtz theory were confirmed in the
mid-1960s, with the discovery of three types of photosensitive molecules in
the eye, just as the theory predicted. In order to account for the experimen-
tal results that led Hering to postulate his theory, modern color perception
theory has elaborated on the Young–Helmholtz model, as follows.

The process of color perception is believed to take place in two steps. In a
first step, the signals R, G, and B are generated by cells containing the cor-
responding types of photosensitive molecules, just as in the classical Young–
Helmholtz theory. In a second step, these signals are combined, and what is
sent to the brain are the combined signals R +G, R−G, and B− (R +G). It
is an empirical fact that the B component has very little influence on whether
a color is perceived as light or dark, so it can be said that the composite
signal R + G corresponds roughly to the luminance. The other two, R − G

92 4 Fundamentals of Color

and B − (R + G), encode the remainder of the color information, technically
known as chrominance: intuitively speaking, this information corresponds to
the hue. Thus, the eye sends to the brain the light signal decomposed into
a (two-dimensional) chrominance component and a (one-dimensional) lumi-
nance component. This section studies the geometry of the decomposition of
the color space into these two components.

Given a color sampling system with sensors s1, . . . , sn having spectral re-
sponse functions si(λ), for i = 1, . . . , n, we define the average spectral response
curve by setting

V (λ) =
n∑

i=1

aisi(λ), (4.12)

where the positive real constants ai depend on the characteristics of the color
system.

For the human eye’s three-color receptor, the curve V (λ) is called the
relative light-efficiency function. Its values can be obtained experimentally
and have been tabulated. See Figure 4.9 for a graph of V (λ).

Let C(λ) be the spectral distribution of radiance of a color C in spectral
color space E . (See Chapter 12 for the meaning of radiance and a discussion
of units of measurement such as lumens.) The luminance of C with respect to
a physical color receptor having spectral response curve V (λ) is defined by

L(C(λ)) = K

∫

R

C(λ)V (λ) dλ, (4.13)

where the constant K equals approximately 680 lumens/watt.
It is important to interpret Equation 4.13, which defines the luminance. It

represents a weighted average of the values of the color spectral distribution
function, the weights being given by the spectral response curve of the receptor
color system. The modulation C(λ)V (λ) inside the integral shows that the
luminance depends on the wavelength. This means that light sources with
the same energy power, but with different spectral distributions, might have
completely different luminance values.

Fig. 4.9. The human eye’s light efficiency function.

4.6 Luminance and Chrominance 93

The reader should consult Chapter 12 for more details about luminance.
Luminance defines a linear functional L : E → R from spectral color

space into the real numbers. Let R : E → R
n be a representation of spectral

color space in the color space of an n-sensor receptor. If C(λ) and C ′(λ) are
metameric spectral distributions in E , so that R(C(λ)) = R(C ′(λ)), we have
L(C) = L(C ′). Indeed, metamerism implies that

∫ +∞

−∞
C(λ)si(λ) dλ =

∫ +∞

−∞
C ′(λ)si(λ) dλ.

This, together with (4.13) and (4.12), gives

L(C) = K

∫ ∞

−∞
C(λ)V (λ) dλ = K

∫ ∞

−∞
C(λ)

(n∑

i=1

aisi(λ)
)

dλ

= K

n∑

i=1

∫ ∞

−∞
C(λ)aisi(λ) dλ = K

n∑

i=1

∫ ∞

−∞
C ′(λ)aisi(λ) dλ

= K

∫ ∞

−∞
C ′(λ)

(n∑

i=1

aisi(λ)
)

dλ = K

∫ ∞

−∞
C ′(λ)V (λ) dλ

= L(C ′).

This shows that the luminance functional L induces naturally, via the
metamerism equivalence relation, a linear functional L̄ : R

n → R in the color
space of the color physical system, as follows:

E R
n�R

R

�
L L̄

�
�

�
��

In other words, L̄(R(C(λ))) = L(C(λ)). The functional L̄ is called the lumi-
nance of the physical system. In what follows we will simplify the notation,
denoting the luminance functional by L rather than L̄.

Consider a physical color reconstruction system (emitter) with primary ba-
sis {P1(λ), . . . , Pn(λ)}. The primary colors {Pi(λ)} generate an n-dimensional
vector subspace V of the color space. The restriction L|V of the luminance
functional to V defines the luminance of the color system. Thus, the luminance
of a color

C(λ) =
n∑

k=1

ciPi(λ)

in V is

L(C(λ)) =
n∑

k=1

ciL(Pi(λ)).

94 4 Fundamentals of Color

If we denote the luminance of each primary color L(Pi(λ)) by �i, we deduce
that

L(C) =
n∑

k=1

ci�i.

The kernel of the luminance functional L : V → R is an (n−1)-dimensional
vector subspace of V . If C1 and C2 are colors with the same luminance,
we have L(C1) = L(C2) and L(C1 − C2) = 0, so C1 − C2 ∈ ker L; see
Figure 4.10(a). Geometrically, this shows that the color vectors of C1 and
C2 lie in an affine hyperplane Cv = ker L + v (where v ∈ R

n), parallel to
the kernel of the luminance functional L. What varies, then, in each hyper-
plane Cv, is only the color information. This information is called chromi-
nance, or chroma. Each hyperplane Cv is therefore known as a chrominance
hyperplane.

We can write V = ker L ⊕ £, where £ is a subspace complementary to
ker L, that is, a one-dimensional subspace generated by a vector v /∈ ker L.
Thus, every color vector C can be written in a unique way as

C = Cc + Cl, (4.14)

where Cc ∈ ker L and Cl ∈ £; see Figure 4.10(b). The vector Cc is called the
chrominance component of C, and Cl is called its luminance component. The
decomposition in (4.14) is called the chrominance–luminance decomposition
of the system’s color space.

The chrominance–luminance decomposition is not unique. It is, nonethe-
less, of the greatest importance in the definition of various coordinate systems
in the color space. Some of these systems will be studied in the next chapter,
on color systems.

Fig. 4.10. Chrominance-luminance decomposition.

4.7 The Color Solid 95

4.7 The Color Solid

Recall that the spectral color space E is the space of functions consisting of all
spectral distributions. We say that a color is visible if its spectral distribution
has nonzero energy somewhere in the visible range.

If C(λ) is a visible color and t > 0 is a positive real number, tC(λ) is also
a visible color. Therefore, the set of all visible colors is a cone in spectral color
space.

It is also immediate to check that, if C1 and C2 are visible colors and
t ∈ [0, 1] is a real number, the color C = (1− t)C1 + tC2 is also visible. Thus
the set of visible colors is convex.

We will denote by VE the subset of the spectral color space consisting of
all visible colors. Let R : E → R

n be a representation of the spectral color
space. Since R is linear, the image R(VE) of the set of visible colors is also
a convex cone in R

n. This cone is called the color solid. Only vectors in the
color solid of R

n represent colors from the physical world. The other vectors
of R

n can be interpreted as being associated to nonvisible colors.
A color map is a curve ϕ : I → S from a closed interval I ⊂ R into the

color solid S of a physical system. A color map, therefore, parametrizes a
one-dimensional set of colors in the system’s color space. The set of spectral
colors (pure colors) defines a color map that has a natural parametrization ϕ,
where ϕ(λ) is the pure color with wavelength λ.

4.7.1 Chromaticity Space

We saw earlier that the luminance operator gives rise to a decomposition of
color space into a chrominance subspace and a luminance subspace. Classi-
cally, the set of chrominances in a color space is represented by a chromaticity
diagram, which we explain in this section.

By linearity, when we multiply a color C by a real number t > 0, we also
multiply its luminance by the same number: L(tC) = tL(C). Clearly, the color
information itself does not vary with multiplication by t, since we are simply
multiplying by the same factor the energy corresponding to each wavelength
in the color’s spectral distribution. Thus, given a color C, the set of colors

C ′ = {tC : t ∈ R, t �= 0}

has the same color (chroma) information. We can define the color informa-
tion of C as the set C ′ itself. Geometrically, this set is a straight line going
through the origin of color space, excluding the origin itself. This is called
the chrominance line. Thus the set of possible values for chroma information
corresponds to the set of “lines” of R

3 − {0} passing through the origin—in
other words, the projective plane. How can we obtain a representation of this
space? Among the various possible models of the projective plane, the rep-
resentation using homogeneous coordinates seems natural. However, we must
emphasize two important facts:

96 4 Fundamentals of Color

• We are interested only in the visible colors, that is, in a subset of the
projective plane.

• We would like to obtain a representation of chroma space in such a way as
to parametrize the subset of perceptible colors using a single coordinate
system.

The classical solution is to introduce coordinates in chroma space using
the Maxwell plane, as described below.

The Chromaticity Diagram

Our goal is to understand the geometry of the set of chromaticities of the color
solid of a system. To simplify the notation, we will carry out our study for
three-dimensional color representation spaces, but the results extend easily to
n-dimensional representations.

Consider, then, a three-dimensional color space associated with some phys-
ical system. After fixing a basis, we can identify this space in a natural way
with Euclidean space R

3. The primary colors (elements of the chosen basis)
will be denoted P1, P2, and P3, and the coordinates of a color C in this basis
by C1, C2, and C3.

Let the chrominance plane or Maxwell plane be the plane M having equa-
tion x + y + z = 1 (see Figure 4.11). The triangle formed by the intersection
of this plane with the axes of color space is called the Maxwell triangle. Note
that, in general, the Maxwell plane intersects the plane of zero luminance (the
kernel of the luminance operator) in a line of space, which we call the line of
zero luminance.

Each chrominance line is entirely determined by its intersection point with
the Maxwell plane. This gives a parametrization of the chromaticity space by
associating to each chroma line its intersection with the Maxwell plane. What
we are doing, geometrically speaking, is introducing local coordinates in the

Fig. 4.11. The Maxwell triangle.

4.7 The Color Solid 97

projective plane, which, as we have seen, is the model for chroma space. This
local system is sufficient because we are interested only in the set of visible
colors. The coordinates thus obtained are called chromaticity coordinates.

Calculation of chromaticity coordinates is immediate. Indeed, given a color
vector C with nonzero luminance, there exists a unique positive real number
t0 such that t0C lies in the Maxwell plane, that is,

t0C = C ′, (4.15)

where C ′ is in the Maxwell plane. Geometrically, C ′ is the radial projection
of C in the Maxwell plane (Figure 4.11).

The Cartesian coordinates of the vector C ′ are the chromaticity coordi-
nates of the color C. Let the coordinates of C and C ′ be denoted by C1, C2, C3,
and C ′

1, C
′
2, C

′
3, respectively. From (4.15) we obtain

t0C1 = C ′
1, t0C2 = C ′

2, and t0C3 = C ′
3.

Since C ′ is in the Maxwell plane, we have C ′
1 + C ′

2 + C ′
3 = 1. Combining this

with the preceding equation, we obtain

t0 =
1

C1 + C2 + C3
.

Thus the chroma coordinates of C, obtained by substituting the value of t0
in (4.15), are

C ′
1 =

C1

C1 + C2 + C3
,

C ′
2 =

C2

C1 + C2 + C3
,

C ′
3 =

C3

C1 + C2 + C3
. (4.16)

The radial projection of the color solid in the Maxwell plane is a subset of
this plane called the chromaticity diagram. It represents the set of all visible
colors in color space, up to changes in luminance.

Visualization of Color Space

Visualization of the color space solid, and in particular of the chromaticity
diagram, is very important in order to have a perceptual knowledge of the
distribution of colors on space. We will postpone a detailed study of this
problem until the next chapter, but we make some comments about it here.

Since the color solid is a convex cone, it follows that the chromaticity
diagram is a convex subset of the Maxwell triangle.

In order for the chromaticity diagram to be contained in the Maxwell
triangle, we must take a primary basis {P1, P2, P3} such that, if C is a visible
color, the components C1, C2, C3 of

98 4 Fundamentals of Color

C = C1P1 + C2P2 + C3P3

are all positive. Geometrically this means that all the visible colors are in the
first octant of color space.

As seen earlier, the CIE-RGB system (Section 4.5) does not have the prop-
erty just discussed. The next chapter, about color systems, will return to this
issue. We will introduce there a primary color basis that possesses the prop-
erty in question, and we will be able to visualize the chromaticity diagram
and the color space cone.

The achromatic point

The color white is represented by a point in the chroma diagram called the
achromatic point. The line connecting the origin (which represents black) to
the achromatic point is called the achromatic line. The colors along this line
correspond to black, white, and all shades of gray in between.

4.8 Grassmann’s Laws

As discussed above, the representation linear transformation of R defined in
(4.4) is usually not injective. Thus, if C1 and C2 are spectral distributions
with R(C1) = R(C2), this does not imply that C1(λ) = C2(λ), but simply
that C1 and C2 are metameric, or indistinguishable from the point of view
of the sampling color system. This loss of information is a consequence of
the sampling of the spectral space performed by the system. For the human
eye, this means that colors with very different spectral distributions may be
perceptually indistinguishable.

A clear example of this occurs in TV monitors: as shown by Newton, the
white light produced by the sun consists of a mix of electromagnetic waves
with wavelengths throughout the visible range of the spectrum; but on a TV
monitor, white is obtained by mixing only three primary colors, produced by
the red, green, and blue phosphors present on each screen dot.

Many experiments with primary light sources, similar to the one described
in Section 4.5.1, were carried out in the nineteenth century. The results were
summarized by H. Grassmann, in what is now known as the five Grassmann
laws of colorimetry. As we should expect, Grassmann’s laws are a natural con-
sequence of the theory of color representation developed earlier. They apply
not only to the human eye, but to any color representation system. Grass-
mann’s laws simply restate properties of the metamerism relation between
two colors,

C1 � C2 ⇐⇒ R(C1(λ)) = R(C2(λ)).

These laws were obtained empirically, through color perception experiments.
We state some of them now:

4.8 Grassmann’s Laws 99

Equivalence

The relation � is an equivalence relation. As already seen, this is an immediate
consequence of the linearity of the color representation transformation R.

Additivity

If C1, C2, and C3 are elements of E, we have

C1 � C2 ⇐⇒ C1 + C3 � C2 + C3.

To prove this, note that C1 � C2 means R(C1) = R(C2). Then R(C1 +C3) =
R(C1) +R(C3) = R(C2) +R(C3) = R(C2 + C3), as we wished to show.

Multiplication by a scalar

If C1, C2 ∈ E and t > 0 is a real number, we have

C1 � C2 =⇒ tC1 � tC2.

Dimensionality

There exists a set of n colors P1, P2, . . . , Pn such that every color C is
metamerous to a linear combination of these n colors:

C �
n∑

i=1

βiPi,

where the βi are scalars. This follows from the discussion on color sampling
and reconstruction given earlier in this chapter. The colors Pi form a primary
basis for the color emitter.

Linearity of luminance

If L is the luminance operator, we have

C =
n∑

i=1

βiPi =⇒ L(C) =
n∑

i=1

βiL(Pi).

This is an immediate consequence of the definition of luminance given earlier
(4.13).

Grassmann’s laws follow from the definition of a representation of spectral
color space. Formally, however, we can take them as axioms and develop from
them all of classical colorimetry. This is the point of view adopted in many
books on color theory.

100 4 Fundamentals of Color

4.9 Comments and References

This chapter is an introduction to the study of color. Since there is no concise
and comprehensive treatment of the subject, geared toward computer graphics
applications, in the literature, we opted for an exposition as self-contained as
possible, assuming minimal prerequisites. This chapter is complemented by
Chapter 12 on radiometry and photometry, which gives necessary background,
and by Chapter 5, which covers the various color systems used in computer
graphics.

An elementary, yet reasonably complete, introduction can be found in
(Padgham and Saunders 1975). This book also has a concise discussion of
the evolution of color perception theories, starting with the Young–Helmholtz
model. In particular, the reader can find in this book a more precise sketch of
the spectral response curves of the human eye than the one seen in Figure 4.5.

For a comprehensive coverage of many aspects of color and light science,
see (Wyszecki and Stiles 1982). This work is particularly useful for its wealth
of tables, equations, and other quantitative information on the standards of
colorimetry and photometry. It includes tables for the values of the light inten-
sity function V (λ) and a discussion of experimental methods for determining
these values. It also has a good survey of the various perceptual models of
color vision and discusses the anatomy of the human eye.

Though outdated, (Walsh 1958) is still a good reference on techniques for
photometric and radiometric measurements. It includes a discussion of the
instruments used in radiometry, colorimetry, and photometry.

We mention also (Fishkin 1982), an introductory but comprehensive study
of the use of color in computer graphics. This reference contains a more com-
plete discussion of mathematical models for color formation by subtraction
and by pigmentation.

The Grassmann laws can be regarded as axioms of a system of additive
color formation. Therefore, it is common to encounter different formulations
for them in the literature, tied to one or another way of introducing the
various properties of a trichromatic color space. The reader interested in their
original formulation should consult (Grassmann 1854), a translation of the
original German article. An exposition of the laws using a rigorous axiomatic
formalism, together with a discussion of the algebraic consequences of this
formalism, can be found in (Krantz 1975).

This section is far from being a survey of the large bibliography on color
science. It is restricted to the main references consulted by the authors while
writing the chapter; the reader can turn to these references’ bibliographies for
a more complete picture.

References

[Fishkin 1982]Fishkin, K. P. (1982). Applying color science to computer graph-
ics. Master thesis, UC Berkeley.

4.9 Comments and References 101

[Grassmann 1854]Grassmann, H. (1854). On the theory of compound colours.
Philosophical Magazine, 7:254–264.

[Krantz 1975]Krantz, D. H. (1975). Color measurement and color theory: I.
Representation theorems for Grassmann structures. Journal of Mathe-
matical Psychology, 12:283–303.

[Padgham and Saunders 1975]Padgham, C. A. and Saunders, J. E. (1975).
The Perception of Light and Color. Academic Press, New York.

[Walsh 1958]Walsh, J. T. (1958). Photometry. Dover, New York.
[Wyszecki and Stiles 1982]Wyszecki, G. and Stiles, W. S. (1982). Color Sci-

ence. John Wiley & Sons, New York.

5

Color Systems

We have seen that the mathematical model appropriate for the representation
of spectral color space is a finite-dimensional vector space. A representation
space is associated with every physical color system, be it a receptor or an
emitter. A receptor samples the spectral distribution function of the incident
light, while an emitter performs color reconstruction by combining the ele-
ments of its basis of primary colors, which generate the emitter’s color space.

In this chapter we shall see how different choices of primary colors for a
representation space allow great flexibility in defining coordinate systems in
a color space and how those choices can be geared to the different needs of
various industrial color processes, particularly in computer graphics.

5.1 Preliminary Notions

A color system is a color solid in which we have defined a coordinate system.
A common example of a color system comes from taking a basis {P1, . . . , Pn}
of primary colors in a color representation space. Then a color vector C can
be written as

C =
n∑

i=1

ciPi

and therefore has coordinates (c1, . . . , cn).
Industrial processes involving color rely on different color systems, each

geared toward the relevant applications. This is a particular case of a general
principle: for each problem we seek the coordinate system that is best suited
to that problem’s statement and solution.

The use of standard color systems is of great importance for the comparison
of colors between different systems and is of great interest to the industry. Such
a standard system should be defined independently of the application. The
goal of these systems is to establish paradigms that can be used as a base for
defining color systems suited to particular applications.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 5,
c© Springer-Verlag London Limited 2009

104 5 Color Systems

Fig. 5.1. A standard color system and changes between color systems.

An important aspect of the existence of different color systems is the
possibility of converting between color coordinates in two or more systems.
Mathematically, this amounts to a change in the coordinate system. This is
illustrated in Figure 5.1: two systems A and B are specified with respect to
a standard system, and we need ways to perform a color change between the
three systems.

5.2 Changing Between Color Systems

In general, color conversion between systems can be a complicated and labo-
rious process. A particular case is when the systems are defined through a
basis; then the problem reduces to a change of basis in a vector space.

The transformation of color coordinates from one basis of primaries, say
{P1, P2, . . . , Pn}, to another, say {Q1, Q2, . . . , Qn}, is called a change of pri-
maries. If we denote by (aij) the change of basis matrix, we have

Qi =
n∑

i=1

aijPj . (5.1)

A color C in the relevant color space can be written in the bases {Pi} and
{Qi} as

C =
n∑

i=1

qiQi and C =
n∑

i=1

pjPj . (5.2)

Thus, the vectors (q1, . . . , qn) and (p1, . . . , pn) represent C in the bases {Qi}
and {Pi}.

Using (5.1), we can write

C =
n∑

i=1

qi

(n∑

j=1

aijPj

)
=

n∑

j=1

(n∑

i=1

aijqi

)
Pj .

5.2 Changing Between Color Systems 105

Comparing this with (5.2) gives

pj =
n∑

i=1

aijqi,

which expresses the relation between the coordinates of C in the two coordi-
nate systems.

Now let Pi(λ) and Qi(λ) be the color reconstruction functions of each of
the bases {Pi} and {Qi}. The coefficients qi and pi in (5.2) can be computed
as follows (see Theorem 4.2 in Chapter 4):

qi =
∫

R

C(λ)Qi(λ) dλ and pj =
∫

R

C(λ)Pj(λ) dλ. (5.3)

Therefore, we can write

C =
n∑

i=1

qi

(n∑

j=1

aijPj

)
=

n∑

j=1

n∑

i=1

qiaijPj

=
n∑

j=1

n∑

i=1

(∫

R

C(λ)Qi(λ)dλ

)

aijPj

=
n∑

j=1

(∫

R

C(λ)
(n∑

i=1

aijQi(λ)
)
dλ

)

Pj .

Using the expression for C in the basis Pj , given in (5.2), we obtain

pj =
∫

R

C(λ)
(n∑

i=1

aijQi(λ)
)

dλ.

Comparing this with the value of pj in (5.3), we get

Pj(λ) =
n∑

i=1

aijQi(λ). (5.4)

Thus we see that the same matrix that performs the change of coordinates
from the basis {Qi} to the basis {Pj} can be used to transform the color recon-
struction functions Qi(λ) for the basis {Qi} into the corresponding functions
Pj(λ) for the basis {Pj}.

In practice, changing coordinates from one color representation space to
another is a bit more complicated. This is because the specification of a color—
even a primary color—is generally done in terms of its chromaticity coordi-
nates. As mentioned in the preceding chapter, chroma space is the projective
plane, so the change of coordinates between two systems defined by primary
color bases is naturally expressed by a projective transformation. We will see
concrete examples later.

106 5 Color Systems

5.3 Color Systems and Computer Graphics

In computer graphics we can single out four important types of color systems:
standard systems, device systems, interface systems, and computational sys-
tems.

Standard Color Systems

Standard systems were established to allow the specification of colors indepen-
dently of the particularities of a device or application. Thus, standard systems
are extremely useful in problems of color comparison, in the definition of new
systems, and in the storage of color information.

Device Color Systems

Device systems are color systems associated with input, processing, and out-
put devices. Such systems are very important because it is through them that
we provide or receive color information.

Interface Color Systems

The purpose of interface systems is to allow the user to specify color informa-
tion easily. Such systems usually serve as a bridge between graphics devices
and the user.

Computational Color Systems

Color representation systems associated with physical color systems are not
always the most suitable for calculations. Such processing is of great impor-
tance, for example, in the calculation of the light energy in the area of image
synthesis.

We now study these systems in more detail, including examples.

5.4 Standard Color Systems

The International Lighting Commission (CIE) is the organization responsible
for establishing standards in photometry and colorimetry. It has established
several color standards, for the most part in the 1930s; no new standards have
been introduced specifically for computer graphics. In this section we study
the two basic CIE color standards.

5.4 Standard Color Systems 107

5.4.1 The CIE-RGB Standard

The CIE-RGB standard system, already mentioned in Section 4.5, was defined
in 1931. It defines a trichromatic (three-color) color space, whose basis of
primaries are pure colors in the low, middle, and high portions of the visible
spectrum, or red, green, and blue, respectively; hence the abbreviation RGB.
The wavelengths of the primary colors are

λR = 700 nm (red),
λG = 546 nm (green),
λB = 435.8 nm (blue).

The graphs of the color reconstruction functions R(λ), G(λ), and B(λ)
of this system are shown in Figure 4.7. They reflect values obtained experi-
mentally by means of color perception experiments of the type described in
Section 4.5.1.

These tabulated values allow one to obtain the image of the map of spectral
colors

ϕ(λ) = (R(λ), G(λ), B(λ))

in color space. The two endpoints of the map represent the frequencies at the
limits of the visible spectrum: the longest-wavelength red and the shortest-
wavelength blue-violet. The segment joining these points contains then the
various hues of purple, obtained by interpolating red and blue; it is there-
fore called the purple line. Since the image of the color map ϕ is com-
prised of pure spectral colors, it is contained in the boundary of the color
solid.

The chromaticity diagram of the CIE-RGB color system is obtained by
projecting this solid radially onto the Maxwell plane x + y + z = 1. The
boundary of the diagram is given by the radial projection of the map ϕ(λ),
together with the purple line. The projection of the color map is expressed by

C(λ) =
1

R(λ) + G(λ) + G(λ)
(R(λ), G(λ), G(λ)). (5.5)

To obtain a two-dimensional representation of the diagram, we project
orthogonally from the chroma plane onto the RG plane in color space; that is,
we discard the last coordinate of the map. The result is shown in Figure 5.2.

Note that, in the literature, the expression chromaticity diagram is used for
the object in Figure 5.2, that is, the orthogonal projection of the chromaticity
diagram defined in the preceding chapter. The segment connecting blue to red
in Figure 5.2, which is the projection of the purple line as we have defined it,
is also called the purple line in the literature.

In the CIE-RGB representation, the color reconstruction functions take on
negative values. The physical meaning of this was explained in Section 4.5.1.
The existence of these negative values is reflected in the chromaticity diagram

108 5 Color Systems

Fig. 5.2. Chromaticity diagram of the CIE-RGB system.

(Figure 5.2): the diagram is not contained in the first quadrant of the plane.
Colors falling outside the first quadrant cannot be reproduced by means of a
positive linear combination of primary colors in this model.

The units of measurement along the axes of the CIE-RGB system are ad-
justed in such a way that the chromaticity coordinates of the equal-energy
white are (1

3 , 1
3 , 1

3). It can be shown that the luminance of a color C with
coordinates (R,G,B) in the CIE-RGB system is given by

L(C) = 0.176R + 0.81G + 0.011B. (5.6)

5.4.2 The CIE-XYZ Standard

As a standard, the CIE-RGB model studied in the preceding section has several
drawbacks:

• The primary basis does not span the color solid.
• The color reconstruction functions take on negative values, which com-

plicates the calculation of a color’s coordinates starting from its spectral
distribution: One must compute the integral for the negative part sepa-
rately, and then subtract (see Theorem 4.2 in the preceding chapter).

• In order to obtain an achromatic point with chromaticity coordinates
(1
3 , 1

3 , 1
3), it is necessary to change the scales of the primary colors, so

the region under the graph of each color reconstruction function does not
have the same area.

5.4 Standard Color Systems 109

• Photometric magnitudes are not obtained directly from the three-color
coordinates. For example, to compute the luminance, one must perform
an integration using (4.13) or compute the linear combination in (5.6).

Due to these problems, the CIE established in 1931 a new standard, with
primary colors X, Y, and Z, that is designed to simplify, as much as possible,
calculations involving colorimetric magnitudes. For this purpose, the primaries
must satisfy the following conditions:

1. All XYZ components for all visible colors should be nonnegative.
2. Two of the primaries should have zero luminance.
3. As many spectral colors as possible should have at least one zero XYZ

component.

Let’s analyze what these conditions mean in terms of the CIE-RGB chro-
maticity diagram in Figure 5.2.
1. The color reconstruction functions for the CIE-RGB system take on neg-
ative values because the primaries are visible colors. By choosing the three
primary colors R, G, B to lie in the visible spectrum, we obtain a triangle in
the chromaticity plane; any color outside this triangle necessarily has at least
one negative RGB coordinate. To avoid this, then, we must choose primary col-
ors such that the triangle they form entirely encloses the set of visible colors,
that is, the chromaticity diagram in Figure 5.2. Such primaries do not corre-
spond to physical color stimuli (actual visible colors), but the computational
convenience gained outweighs this drawback.
2. To simplify the calculation of photometric magnitudes, the CIE declared
that two of the primaries, X and Z, should have zero luminance, while the color
reconstruction function of the primary color Y should be the light-efficiency
function V (λ) itself. This condition is consistent with the preceding one, since
the primary colors need not be visible colors, but just vectors in our three-
dimensional color space.

To get an XYZ basis satisfying condition 2, then, it is enough to perform a
chrominance–luminance decomposition of the CIE-RGB space, choosing vec-
tors X and Z in the chrominance component of the space and the vector Y
along the luminance component.

In other words, the vertices X and Z of the triangle of primaries should lie
on the zero-luminance line (see Section 4.7.1). By (5.6), the zero-luminance
plane in RGB color space is given by

0.176R + 0.81G + 0.011B = 0.

The zero-luminance line on the RG-plane of the chromaticity diagram is ob-
tained by substituting B = 1−R−G in the equation just given, thus obtaining

0.066R + 0.70G + 0.11 = 0.

110 5 Color Systems

Fig. 5.3. Choosing the chroma coordinates of the primaries X, Y, and Z.

It is on this line of the RG-plane that we must place the primary colors X
and Z (see Figure 5.3).
3. Finally, to get some spectral colors to have at least one zero XYZ compo-
nent, one should make the triangle of primaries touch the spectral color map
(the curved boundary of the shaded region in Figure 5.3) as much as possible.
The XY-side of the triangle can be taken to be the red-to-yellow portion of
the spectral color map, which is almost straight. The YZ-side of the triangle
should touch the boundary somewhere and is arbitrarily chosen so that the
area of the XYZ triangle is minimized in terms of the RGB coordinates. The
resulting triangle is shown in Figure 5.3.

5.4.3 Changing Between the CIE-RGB and CIE-XYZ Systems

Not all colors in the CIE-XYZ system are physically realizable. We can obtain
the colorimetric magnitudes of colors in this system in terms of those in the
CIE-RGB system. If we knew the vectors corresponding to the primary colors
X, Y , and Z, the problem would boil down to a change of basis in a vector
space, as we saw in Section 5.2. However, we know only the chromaticity coor-
dinates of the primary colors, so the transformation is a bit more complicated;
we study it in this section.

These calculations are important, not only because they allow us to obtain
the values of a color in the XYZ system in terms of its values in the RGB

system, but also because they serve as a foundation for change-of-system
calculations among other color systems.

To begin with, careful choices and computations based on comments 1, 2,
and 3 of the previous section allow us to obtain the chromaticity coordinates

5.4 Standard Color Systems 111

in the CIE-XYZ system of the three primaries R, G, B of the CIE-RGB system.
They are as follows:

primary XYZ chromaticity

x y z

R 0.73467 0.26533 0.0
G 0.27376 0.71741 0.00883
B 0.16658 0.00886 0.82456

These chromaticity coordinates determine three colors of the CIE-XYZ

color space, namely

c1 = ρ× (0.737467, 0.26533, 0),
c2 = γ × (0.27376, 0.71741, 0.00883),
c3 = β × (0.16658, 0.00886, 0.82456),

where ρ, γ, and β are positive real numbers. These three colors constitute
a basis of the space; therefore the change of coordinate matrix should map
the vectors R = (1, 0, 0), G = (0, 1, 0), and B = (0, 0, 1) to c1, c2, and c3,
respectively. The transformation is given by

⎛

⎝
X
Y
Z

⎞

⎠ =

⎛

⎝
0.73467 ρ 0.27376 γ 0.16658β
0.26533 ρ 0.71741 γ 0.00886β
0.0 ρ 0.00883 γ 0.82456β

⎞

⎠

⎛

⎝
R
G
B

⎞

⎠ . (5.7)

The constants ρ, γ, and β must be determined. In order to do this, we require
that the white color have coordinates

(
1
3 , 1

3 , 1
3

)
in both systems, that is,

T
(

1
3 , 1

3 , 1
3

)
=

(
1
3 , 1

3 , 1
3

)
.

Substituting this into (5.7), we obtain the system
⎛

⎝
1
1
1

⎞

⎠ =

⎛

⎝
0.73467 0.27376 0.16658
0.26533 0.71741 0.00886
0.0 0.00883 0.82456

⎞

⎠

⎛

⎝
ρ
γ
β

⎞

⎠ ,

whose solution is

ρ = 0.666952, γ = 1.132407, β = 1.200641.

Substituting these values in (5.7), we finally obtain the desired transformation:
⎛

⎝
X
Y
Z

⎞

⎠ =

⎛

⎝
0.489989 0.310008 0.2
0.176962 0.81240 0.010
0.0 0.01 0.99

⎞

⎠

⎛

⎝
R
G
B

⎞

⎠ . (5.8)

The preceding computations can be better understood by observing that the
chromaticity space is the projective plane. Therefore, we would like to obtain

112 5 Color Systems

a projective transformation between the chromaticity spaces of these two sys-
tems. By the fundamental theorem of projective geometry, a transformation
between projective spaces of dimension n is specified by what it does to n+2
projectively independent points; thus we need to specify the action of the
transformation on a fourth vector in XYZ space. A natural choice is to make
the equal-energy white have coordinates

(
1
3 , 1

3 , 1
3

)
as we did before. Thus the

projective transformation from the RGB system to the XYZ system is defined
by setting T (R,G,B) = (X,Y,Z), where the linear transformation T is given
by Equation 5.7, and the constants ρ, γ, and β must be determined using the
condition

T
(

1
3 , 1

3 , 1
3

)
=

(
1
3 , 1

3 , 1
3

)
.

The inverse transformation, going from the XYZ system to the RGB sys-
tem, is given by

⎛

⎝
R
G
B

⎞

⎠ =

⎛

⎝
2.3647 −0.89658 −0.468083

−0.515155 1.426409 0.088746
0.005203 −0.014407 1.0092

⎞

⎠

⎛

⎝
X
Y
Z

⎞

⎠ . (5.9)

As we saw in the preceding chapter, the chromaticity coordinates x, y, z
of a color with coordinates X,Y,Z in the CIE-XYZ system are given by

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
.

Substituting the values of X, Y , and Z given by (5.8), we immediately obtain
the expression of x, y, z in terms of the chromaticity coordinates r, g, b in the
CIE-RGB system:

x =
0.49000 r + 0.31000 g + 0.20000 b

0.66697 r + 1.13240 g + 1.20063 b
,

y =
0.17697 r + 0.81240 g + 0.01063 b

0.66697 r + 1.13240 g + 1.20063 b
,

z =
0.01000 g + 0.99000 b

0.66697 r + 1.13240 g + 1.20063 b
.

(5.10)

Analogously, using (5.9), we obtain r, g, b as a function of x, y, z. In par-
ticular, the chromaticity coordinates of the XYZ primaries in the RGB system
are given by:

primary RGB chromaticity

r g b

X 1.2750 −0.2779 0.0029
Y −1.7395 2.7675 −0.0280
Z −0.7431 0.1409 1.6022

If x, y, and z are the chromaticity coordinates of a color with coordinates
X, Y , Z, we have y = Y/(X + Y + Z). It follows that X + Y + Z = Y/y,

5.4 Standard Color Systems 113

and, since Y = V , the light-efficiency function, we have X + Y + Z = V/y.
Therefore,

X = x(X + Y + Z) =
x

y
V,

Z = z(X + Y + Z) =
z

y
V.

(5.11)

One can derive from this an expression for the color reconstruction func-
tions of the XYZ system in terms of the color matching functions of the RGB

system. Indeed, using (5.10), we get the functions x(λ), y(λ), and z(λ) in
terms of r(λ), g(λ), and b(λ). Using (5.11), we get

X(λ) =
x(λ)
y(λ)

V (λ),

Y (λ) = V (λ),

Z(λ) =
z(λ)
y(λ)

V (λ).

These calculations allow one to obtain quantitative information about the
CIE-XYZ system from information about the CIE-RGB system, which, in turn,
is obtained by means of experiments, as described in the preceding chapter.

We are now in a position to sketch the graphs of the color reconstruction
functions and the chromaticity diagram of the CIE-XYZ system. They are
shown in Figures 5.4 and 5.5.

Clearly, we can obtain the color reconstruction functions using the result
established in (5.4), together with Equation (5.8), which provides the trans-
formation matrix (aij) from the XYZ system to the RGB system.

Fig. 5.4. Color reconstruction functions of the CIE-XYZ system.

114 5 Color Systems

Fig. 5.5. Chromaticity diagram of the CIE-XYZ system. See Plate 1 in color insert.

In 1964 the CIE changed the CIE-RGB and CIE-XYZ standards, based
on new color perception experiments. An important parameter in these ex-
periments is the angle of view of the standard observer, which in the 1931
experiments was 2◦ and in the 1964 experiments was increased to 10◦. The
1931 standards are still used in computer graphics, on the grounds that the
angle of view of images seen on a monitor is small.

As mentioned earlier, the XYZ primaries were chosen so the resulting sys-
tem would allow the representation of all visible colors with positive coor-
dinates. Therefore, the chromaticity diagram of the CIE-XYZ system, shown
in Figure 5.5, contains a representation of all the colors, up to changes in
luminance. (However, the printed figure cannot exactly reproduce the colors
corresponding to many points of the diagram, because of the reconstruction
process used in the offset printing. We will return to this point in Chapter 16,
on image systems. Nonetheless, for pedagogical reasons, it is worth printing
this diagram in color.)

Finally, we stress that in applications we work with physical color systems,
generally associated with graphics devices. Thus the chromaticity diagram of
these systems is a subset of the chromaticity diagram of the CIE-XYZ system
shown in Figure 5.5.

5.4 Standard Color Systems 115

5.4.4 Complementary Color Systems

Two colors c1 and c2 are called complementary if, when additively combined
in the appropriate proportion, they form an achromatic color (pure gray or
white). This can be illustrated geometrically using the chromaticity diagram
(Figure 5.6). Given a color c in the chromaticity diagram, its complement c′

can be obtained as follows. Take the line going through c and the achromatic
point O in the diagram. The complementary color c′ lies on that same line.

An important case is that of pairs of complementary spectral colors. In
the construction just given, such colors are given by the intersections of a
line going through O with the boundary of the chromaticity diagram. Some
spectral colors don’t possess a complement; they are indicated in Figure 5.6
by the dashed part of the curved boundary.

Color systems based on complementarity start from three primary colors,
C1, C2, and C3, but use as a basis for color space the three complementary
colors C ′

1, C ′
2, and C ′

3. For example, starting from the CIE-RGB standard,
we get the CMY system, whose primaries are cyan (complementary to red),
magenta (complementary to green), and yellow (complementary to blue).

In the RGB system, the combination of the three primary colors in equal
amounts yields white, as shown in Figure 5.7 (left). In Figure 5.7 (right) we
see the combination of the primary colors in the complementary CMY system.
Notice that when the three complementary basis colors combine, we obtain the
color black. This system is quite appropriate for the imitation of the subtrac-
tive process of color formation: as we add colors from the complementary basis
to the paper, the white reflected color is subtracted, in such a way that when
all three colors are added we get no reflection at all (black). For this reason,

Fig. 5.6. Finding the complement of a color c.

116 5 Color Systems

Fig. 5.7. Colors in the additive RGB system (left) and their complements (right).
See Plate 2 in color insert.

in the literature the CMY model is sometimes called “subtractive”; however,
this terminology is incorrect and confusing, because the CMY system does not
uses additive complementary colors to reconstruct colors.

The CMY system is useful when one considers a process that involves
subtractive color formation, such as color printing. In printing we start with
white (the color of the paper), and as we add inks there is a decrease in
luminance. Zero luminance (black) is obtained by superimposing all three
primary colors. From the additive point of view, cyan is a mixture of green
and blue RGB primaries, so putting a layer of cyan ink on paper eliminates
the red component from the light scattered by the paper. We will return to
color printing in Chapter 16, on image systems.

5.4.5 Uniform Color Systems

Visual sensitivity to small differences between colors is of fundamental im-
portance in color perception experiments. Let c0 be a color indicated by a
point in the chromaticity diagram, as in Figure 5.8. We consider the problem
of finding the set of colors c in the diagram that are perceptually at the same
distance from the color c0.

Experiments carried out by MacAdam in the early 1940s showed that this
set is an ellipse centered at c0. The eccentricity and the axes of this ellipse vary
as we move c0 around the chromaticity diagram. This shows that perceptual
distances in color space cannot be measured with the Euclidean metric; if they
were, the set in the figure would be a circle. The perceptual metric is known
in the literature as the jnd metric (“just noticeable difference metric”).

We say that a color system is perceptually uniform if the jnd metric
is the Euclidean metric on the color solid. Several standard color systems
that attempt to be uniform have been introduced: for example, the CIE-Luv

and the CIE-Lab systems. These two systems use a chrominance–luminance

5.5 Device Color Systems 117

Fig. 5.8. MacAdam ellipse.

decomposition of color space. However, luminance is replaced by a related
measure called lightness, which records how light intensity is perceived by the
human eye. The Luv system performs a transformation of the CIE-XYZ system
to establish perceptual uniformity in the chromaticity plane, whereas the CIE-

Lab system establishes perceptually uniform coordinates in three-dimensional
color space.

5.5 Device Color Systems

We now turn to color systems used in certain display devices, such as CRT

(cathode-ray tube) monitors and other video equipment.

5.5.1 The Monitor RGB System

The color space of a color CRT monitor is indicated by mRGB. It has a primary
color basis of the three color vectors (red, green, and blue) defined by the
phosphors used in the monitor. The color solid of this system is a bounded
subset of the space generated by the primaries, because each primary has a
maximum possible intensity. Using an appropriate scale along each primary
axis, we can normalize these coordinates so that the maximum is 1. Therefore,
the color solid is a cube, as shown in Figure 5.9. The figure also shows the
corresponding Maxwell triangle.

This color solid is called the RGB cube. The origin (0, 0, 0) of the cube
corresponds to black, and the point with coordinates (1, 1, 1) corresponds to
the monitor’s brightest white.

118 5 Color Systems

Fig. 5.9. Chromaticity triangle of the mRGB space.

The primary colors of the mRGB system can be represented by three points
in the CIE-XYZ chromaticity diagram. The chromaticity diagram of the color
solid of the mRGB system is then a triangle having these points as vertices,
as shown in Figure 5.10, left.

The basis of primary colors of the mRGB system, as already mentioned, is
determined by the phosphors used on the monitor screen. In general, monitors
from different manufacturers have different color spaces. Figure 5.10, right,
shows the chromaticity diagrams of two distinct mRGB systems. Only the
colors lying in the polygonal region formed by the intersection of the two
triangles can be reconstructed by both monitors.

Fig. 5.10. Left: chromaticity triangle of an mRGB space, inside the CIE-XYZ chro-
maticity diagram. Right: comparison of chromaticity triangles for different mRGB
spaces.

5.5 Device Color Systems 119

A common task is to perform a color transformation between an mRGB

space and the CIE-XYZ or CIE-RGB standard. In general, we know the chroma-
ticity coordinates of the primaries of the mRGB system, because the monitor’s
manufacturer provides them. The problem is then entirely analogous to one
we solved earlier, namely transforming three-color coordinates between the
CIE-RGB and CIE-XYZ standards.

5.5.2 Monitor-Complementary Systems

Associated with the mRGB system of a monitor, we have the complementary
mCMY system for the same monitor, which is of great importance in electronic
publishing. Normalizing the color coordinates in the mRGB cube so that they
lie in the interval [0, 1], we have

C = B + G,

M = R + B,

Y = R + G,

where C represents cyan, M magenta, and Y yellow (see Figure 5.11).
An easy way to obtain a change of coordinates into the CMY system is

to consider a coordinate system whose origin is at the white point W =
(1, 1, 1) and whose coordinate axes at this point are given by {−R,−G,−B}.
In this case, the change of coordinates can be performed by changing to the
basis {−R,−G,−B} and then translating by the vector W . Thus, given a
color with coordinates (r, g, b) in the mRGB system, the change-of-coordinates
transformation T acts in the following way:

T (r, g, b) = (1, 1, 1)− rR− gG− bB

= (1− r)R + (1− g)G + (1− b)B.

Fig. 5.11. The mRGB and mCMY coordinate systems.

120 5 Color Systems

We therefore get

(c,m, y) = T (r, g, b) = (1− r, 1− g, 1− b).

We have thus shown that the components (c,m, y) of a color in the mCMY

system can be obtained from its components (r, g, b) in the mRGB system
using the relations

c = 1− r, m = 1− g, y = 1− b.

The colors cyan, magenta, and yellow, together with the primaries red,
green, and blue, make up six vertices of the color solid of the mRGB system
(the unit cube). The two remaining vertices are the endpoints of the gray
line, a diagonal of the cube. The orthogonal projection of these six vertices
of the cube onto the plane with equation x + y + z − 3 = 0, which is per-
pendicular to the gray line and goes through the white point (1, 1, 1), forms a
hexagon, as shown in Figure 5.12. This geometric construction is important in
understanding the color solid of some color systems that we will study later.

5.5.3 Component Video Systems

Color systems using the chrominance–luminance decomposition of color space
are very common in the video and television industries. The recent advances

Fig. 5.12. The hexagon formed by RGB and their complements CMY.

5.5 Device Color Systems 121

in multimedia technology and its various applications have led to the dissem-
ination of the joint use of video and computer graphics. This has contributed
to the increasing use of these systems in computer graphics.

An important observation, often not encountered in textbooks, is that the
primary color components used in the video and television industries incor-
porate a correction to compensate for the nonlinearity of the video monitors.
(This gamma correction will be studied in Chapter 16.) Despite this, we will
use the same notation for primary colors in the CIE-RGB system and in the
various video systems.

The standard luminance used by the television industry is computed by

Y = 0.299R + 0.587G + 0.114B. (5.12)

This corresponds approximately to the average luminance of the reconstruc-
tion color space of a television monitor; it is called NTSC luminance. By
observing the luminance equation (5.12), we conclude that the R component
contributes 30%, the G component 60%, and the B component 10% toward
the luminance of a color.

As we stressed in the preceding chapter, the human visual system has less
sensitivity toward variations of color than toward variations of luminance. This
can be exploited in color encoding processes that use color systems based in
a chrominance–luminance decomposition of color space.

A simple way to obtain a chrominance–luminance decomposition is to cal-
culate the luminance Y, using (5.12), and make this one of the components of
the system. Next, one subtracts Y from the other color components, obtain-
ing the combinations R−Y, G−Y, and B−Y, which do not carry luminance
information. Any two of these combinations, together with the luminance
component Y, define a coordinate system in color space. Since the green con-
tribution to luminance is the highest, a compact encoding can be obtained
using the components R−Y and B−Y.

Using (5.12), we see that the change of coordinates between the Y, R−Y,

B−Y system and the RGB system is given by

Y = 0.299R + 0.587G + 0.114B,

R− Y = 0.711R− 0.587G− 0.114B,

B − Y = −0.299R− 0.587G + 0.990B,

that is, ⎛

⎝
Y

R− Y
B − Y

⎞

⎠ =

⎛

⎝
0.299 0.587 0.11
0.711 −0.587 −0.11

−0.299 −0.587 0.99

⎞

⎠

⎛

⎝
R
G
B

⎞

⎠ .

Figure 5.13(a) shows the result of the transformation of the cube RGB

of a monitor color system, under the matrix in the preceding equation. The
parallelogram shown in this figure is the color solid in the Y, R−Y, B−Y

space.

122 5 Color Systems

Fig. 5.13. (a) Color solid in the Y, R−Y, B−Y space. (b) Projection of the Y,
R−Y, B−Y solid in the R−Y, G−Y plane.

Color systems based on the Y, R−Y, B−Y decomposition are called video
component systems since they are predominantly used in the video and tele-
vision industries. Recently some of these systems have started to be widely
used in computer graphics.

The chromaticity diagram of the Y, R−Y, B−Y system is obtained by
an orthogonal projection of the color solid of Figure 5.13(a) onto the R−Y,

B−Y plane. This projection yields a hexagon, as displayed in Figure 5.13(b).
In Figure 5.14 we show this hexagon in the R−Y, B−Y plane.

The transformation and projection of the RGB cube just discussed are im-
portant in understanding the differences among the various color systems used
by the industry, based on the Y, R−Y, B−Y decomposition of color space.

Fig. 5.14. Chrominance hexagon of the Y, R−Y, B−Y system.

5.5 Device Color Systems 123

These systems differ by changes of scale or by changes in the chrominance
axes R−Y and B−Y. We give two examples.

The Betacam System

The Y pbpr system used by SONY in its Betacam line of video equipment is
characterized by a scale change. Geometrically, the purpose of this adjustment
is to obtain a regularized chromaticity diagram and to normalize the maximum
and minimum values of the chrominance components R−Y, B−Y. The scaling
is as follows:

pb =
0.5

1− 0.114
(B − Y), pr =

0.5
1− 0.299

(R− Y).

This results in the chrominance hexagon shown in Figure 5.15.

Digital Video System

The Y CbCr system is the international standard for digital video signals.
It is obtained from the Y, R−Y, B−Y system by means of the following
transformation:

Y = 16 + 235Y,

Cb = 128 + 112
(0.5

1− 0.114
(B − Y)

)
,

Cr = 128 + 112
(0.5

1− 0.299
(R− Y)

)
.

This is the color system used in the JPEG image compression standard and
in the MPEG video compression standard.

Fig. 5.15. Chrominance hexagon of SONY’s Betacam system.

124 5 Color Systems

5.5.4 Composite Video Systems

In the preceding section we saw a chrominance–luminance decomposition of
color space that is the basis for the definition of several color systems used by
the video and television industries. The broadcast video systems used (mainly)
by the television industry—NTSC, PAL, SECAM, etc.—are also based on the Y,

R−Y, B−Y decomposition of color space. As in the case of video component
systems, these systems are defined by means of changes of coordinates in the
chrominance plane. However, in order to be broadcast, all components of the
system must be combined into a single signal; hence the establishment of
composite video systems.

The YUV System

The YUV system is used as the basis for the encoding of a composite video
signal. It is obtained from the Y, B−Y, R−Y system by the change of coor-
dinates

U = 0.493(B − Y), V = 0.877(R − Y).

The YIQ System

In the YUV encoding, the UV components occupy the same bandwidth of the
spectrum. By rotating the UV by 33◦, we obtain the color components IQ:

(
I
Q

)

=
(

cos 33◦ − sin 33◦

sin 33◦ cos 33◦

)(
U
V

)

.

In the YIQ system thus obtained, the Q component occupies a narrower band
of the spectrum than the I component. This can be seen geometrically in
Figure 5.14.

Video broadcasting uses either the YUV or YIQ system. The use of these
color systems has at least two advantages:

• The luminance signal Y can be used directly by monochrome TV sets.
• The chrominance components can be encoded, with minimal perceptual

loss in the quality of the image, so a color TV signal can use the same
spectrum band as a monochrome TV channel.

This latter fact is a veritable miracle of twentieth-century electronics. It is
possible only because the human eye is more sensitive to changes in luminance
than to changes in chrominance information. Color information represents
only about 5% of the bandwidth in the standard TV signal received and
decoded by a home television set.

5.6 Color Interface Systems 125

5.6 Color Interface Systems

Color specification systems based on a vector space model, such as the RGB

system, are computationally practical, but they present a human interface
problem in that a user cannot easily and intuitively specify a desired color
in them. For example, suppose we’re given a color in the RGB system and
we want to make it “lighter” or “darker” (change the amount of white in it)
without changing the hue. To achieve this, it is necessary to change all three
RGB components, and the changes have no direct intuitive connection with
the perceptual feature concerned, which is known as saturation.

Features such as luminance, saturation, and hue are much more directly
linked to the way humans respond to color. Therefore, a model in which
these features can be directly controlled is preferable from the viewpoint of
color specification. The study of such models requires some basic terms from
color perception theory; we introduce these terms here, relating them to the
corresponding colorimetric concepts.

Dominant Wavelength and Hue

In colorimetry the dominant wavelength of a color is the wavelength of the
pure color that, when (additively) combined with white, yields the given color.
The dominant wavelength of a color can be easily read from the chromaticity
diagram, as follows (see Figure 5.16): draw a line from the achromatic point
(white) to the point representing the given color; the intersection of this line
with the boundary of the diagram gives the dominant wavelength.

Fig. 5.16. Point D represents the dominant wavelength of color S.

126 5 Color Systems

From the perceptual point of view, the dominant wavelength corresponds
to the color’s hue; intuitively, it represents the color in its pure form (green,
yellow, blue, and so on).

Note that the dominant wavelength of some colors lies on the purple line
of the diagram. We have seen, however, that in practice we work with a
color representation model whose chromaticity diagram is a subset of the
chromaticity diagram of the visible colors—for example, the chromaticity
triangle of the mRGB system. The problem, therefore, does not arise in
practice.

Purity and Saturation

Once we have determined the hue of a color, we can change the color by mixing
it with white. The less white, the more saturated the color. This perceptual
idea of saturation corresponds to the magnitude called purity in colorimetry.
In the notation of Figure 5.16, the purity of a color is geometrically defined by
p = ES

ED . As the point representing the color approaches the achromatic point
E, the segment ES gets shorter. Since ED has constant length (we’re keeping
the hue fixed), purity decreases until it reaches 0 at E. Thus, saturation grows
monotonically with purity.

Luminance and Brightness

The parameters of hue and saturation determine the chroma characteristics
of the color. To fully determine a color, we need a third parameter related
to the color luminance, which is connected with the perceptual notion of
color intensity. In practice, interface models use some magnitude that varies
monotonically with luminance. The name of this magnitude depends on the
model, but we will refer to it generically as brightness.

Many color representation models are based on the perceptual notions of
hue, saturation, and brightness. From a purely descriptive point of view, the
color solid of these models is a three-dimensional set parametrized by cylin-
drical coordinates, as indicated in Figure 5.17: hue changes along horizontal
circles, saturation increases radially, and brightness increases as one goes up,
orthogonally to the hue–saturation plane.

There are two methods for defining color specification systems: by coordi-
nates and by samples.

Specification by Coordinates

In this method the user specifies a color by choosing its coordinates in a
given system. One can use the mRGB or mCMY system, or any other, but
in general one tries to use color systems involving the perceptual parameters
just discussed: hue, saturation, and brightness.

5.6 Color Interface Systems 127

Fig. 5.17. Cylindrical coordinates representing hue, saturation, and brightness.

Specification by Samples

This method performs a discretization of the color solid of the system. This
discretization leads to a finite number of color samples, which are generally
collected in a color atlas, grouped into color charts.

Recently there has been great progress in the area of color specification
by computer. Color specification is closely related to the more general prob-
lem of color management. Specialized software has been developed to cope
with it; such programs, called color management systems, not only offer the
user an interface for color specification but also attempt to store color infor-
mation in a way that is independent of the various device-dependent color
systems in use, converting to the appropriate device color system at display
time.

In the rest of this section, we give a geometric description of some color
specification systems that use either the method of specification by coordi-
nates or the method by samples. These systems are widely used in computer
graphics and in the color industry in general.

5.6.1 The HSV System

The HSV model derives its name from the parameters hue, saturation, and
value, the name of the magnitude corresponding to brightness in this system.
It is defined in terms of the mRGB system. By definition, the value of a color
C with mRGB coordinates (CR, CG, CB) is

V (C) = max{CR, CG, CB}.

128 5 Color Systems

As we have seen, the color solid in the mRGB is a unit cube I3, called the
color cube, whose main diagonal goes from (0, 0, 0) (black) to (1, 1, 1) (white).
For each real number t in the interval [0, 1], we get a cube Ct parallel to the
unit cube I3, having side length t. All colors on the sides R = t, G = t, or
B = t have the same value V = t. An illustration of this fact is shown in
Figure 5.18.

Consider a plane Πt perpendicular to the diagonal of the cube and con-
taining the point (t, t, t). As shown in Figure 5.18, the orthogonal projection
of each cube Ct, of constant-value colors, onto Πt is a hexagon centered at
the point (t, t, t). All colors in this hexagon have constant value t. As t varies
from 1 to 0 we obtain a family of hexagons that form a right pyramid with
a hexagonal base and vertex at the origin. The base of this pyramid is the
hexagon corresponding to the unit cube C. In this hexagon each vertex cor-
responds to one of the RGB primary colors or to one of the complementary
colors CMY, as can be seen in Figure 5.19, left.

Note that each hexagonal cross section parallel to the base of the pyramid
represents a set of colors of the unit cube having the following characteris-
tics: The hue of each color is on the border of the hexagon, and the satu-
ration decreases as we approach the center along a radius; the value of the
colors in each hexagon is constant and varies in proportion to the distance
from the plane of the hexagon to the vertex of the pyramid. The axis of the
pyramid, formed by the centers of the hexagons, corresponds to the diag-
onal of the cube and therefore to the achromatic colors (black, white, and
grays). Figure 5.19, right, shows the variation of these parameters in the HSV

pyramid.

Fig. 5.18. Cube of colors with constant value in the HSV system.

5.6 Color Interface Systems 129

Fig. 5.19. Color solid of the HSV system.

5.6.2 The HSL System

The HSL model (hue, saturation, and lightness) is also defined in terms of an
mRGB system. The magnitude corresponding to brightness, called lightness,
is defined for a color C with mRGB coordinates (CR, CG, CB) as

L = 1
2 (max(CR, CG, CB) + min(CR, CG, CB)).

Thus, the color (0, 0, 0), or black, has lightness zero, and the color (1, 1, 1),
or white, has lightness one. The corresponding color solid is made up of two
congruent right cones of altitude 1, whose bases coincide (Figure 5.20).

The link between the perceptual parameters and the geometry of the two
cones is the following: lightness varies from 0 to 1 along the common axis; the
hue is determined by the points on the outer circle of the common base; and
saturation varies with distance to the axis.

In the literature, the HSV color solid appears with other geometries. See
Section 5.9 at the end of this chapter.

The HSV and HSL systems have certain drawbacks as interface systems,
from the perceptual point of view. For instance, colors with the same value in
the HSV system, or the same lightness in the HSL system, do not necessarily
have the same luminance.

5.6.3 The Munsell System

Whereas the HSV and HSL models define a color solid parametrized by hue,
saturation, and brightness, the Munsell model uses the color atlas method:

130 5 Color Systems

Fig. 5.20. Color solid for the HSL system.

hue, saturation, and brightness are used for sampling. In this system, bright-
ness is called value, and saturation is called chroma. Each chart of the color
atlas is defined by fixing a hue, and each color in the chart is obtained by
varying chroma and value. All the charts together make up the atlas, which
is the color solid of the system. Figure 5.21 illustrates part of the color solid
(four charts).

Fig. 5.21. Color solid of the Munsell system.

5.6 Color Interface Systems 131

We mention two important facts. The Munsell system was conceived in
1915 and significantly predates the CIE color standards, which, as we men-
tioned, were established in 1931. The choice of color samples in the Munsell
system is based on a criterion of perceptual uniformity, as discussed in Sec-
tion 5.4.5. The uniform standard CIE-Lab of Section 5.4.5 is, in fact, obtained
by applying cubic interpolation to the samples of the Munsell system.

There are other classical color systems constructed in a way similar to
Munsell’s: for example, the Ostwald system.

The method used by the Munsell and Ostwald systems for constructing
color charts establishes a paradigm for the creation of user interface systems
geared toward computer color selection, based on hue, saturation, and bright-
ness parameters. In either system, we obtain a color atlas by means of the
following sampling process: we initially take a finite number of hues; each hue
t0 determines a section of the color solid, defined by cutting the solid with the
half-plane going through the axis of the color solid and the chosen hue (Fig-
ure 5.22). The chart for hue t0 is constructed by choosing a finite number of
colors in this section, as shown in Figure 5.22 for the HSV system. When the
color atlas is defined in this way, the determination of the color coordinates
corresponding to a given sample is immediate.

5.6.4 The Pantone System

Another color interface system that uses the sampling method is the Pantone
Color Matching System. Introduced in the early 1960s, this system starts

Fig. 5.22. Definition of a color atlas in the HSV system.

132 5 Color Systems

from a certain number of basic colors, including black and white, and uses
them to determine the color samples in the various charts of the color at-
las. The Pantone system was developed to aid in the specification of color
for printing on paper and is still widely used for this purpose. For this rea-
son, besides charts with colors defined from basic colors, it includes cer-
tain special charts with metallic colors, phosphorescent colors, and others.
With the developments in electronic publishing, this system has gradually
been making its way into sample-based color selection systems in computer
graphics.

There are other atlas-based color systems like Pantone: we mention True-
match and Focoltone.

5.7 Computational Color Systems

Two problems must be considered when we discuss computational aspects of
color: color resolution, and computational color systems.

Color resolution is the number of bits needed to represent each color com-
ponent in the computer. This number is of great importance in calculations
involving color, and it will be discussed in detail in the next chapter.

We know from the preceding chapter that any physical color space is a rep-
resentation of spectral color space E ; in other words, color spaces are obtained
essentially by sampling of E . Although this sampling is perceptually accept-
able, it can lead to computational problems, as we discussed in Chapter 2. One
specific source of problems is that the interaction of light with the environ-
ment takes place over the whole visible spectrum, so two objects whose colors
have metameric spectral distributions, and are therefore indistinguishable in
white light, may have very different colors under colored light. The effect of
this interaction leads to erroneous results if we restrict our calculations to
three-color models.

There are two possible ways to tackle this problem. One can either sam-
ple the spectrum at a higher rate (that is, at more than three points) or
sample using a computationally robust method. In the first case the system
obtained is inappropriately called a spectral system. In the first technique we
increase the dimension of the color space, which raises the computational cost
of calculations. In the second technique we keep the dimension of the repre-
sentation space low, but the computational cost may still be higher because
the calculations are more elaborate.

In general, the definition of a spectral system involves the spectral dis-
tribution of the colors to be used in the system. Thus one must use color
reconstruction methods starting from the color specified by the user. The use
of spectral systems for computational color problems is of great importance
in image synthesis, intervening in the correct calculation of the color intensity
function.

5.9 Comments and References 133

5.8 Color Transformations

Given a subset U of a color space E1, and a subset V of a color space E2, a
color transformation is a map T : U → V .

One important color transformation is the change of coordinates from one
color system to another. Such a transformation associates to each color in
one system a color in the other and is therefore called a change of system.
Change-of-system transformations are important because they allow the use
of different color systems in an application.

Many important changes of system cannot be performed simply by a
change of basis in color space—usually because one or both coordinate sys-
tems are not defined by means of a basis of primary colors. Such is the case,
for instance, when going from an mRGB system to the corresponding mHSV

or mHSL system. Such change-of-system transformations are nonlinear. One
must then, in each case, take into account the geometry of the color solid,
so as to obtain the formulas for the change of coordinates. The algorithms
involved in the determination of these transformations will not be discussed
here.

Since the color representation model we are considering is a vector space,
any transformation that can be defined on this space can be used as a color
transformation. Many color transformations are used frequently in computer
graphics, usually in connection with the color space of an image; we will discuss
them later. In particular, in the next chapter we will study the quantization
transformation, which is crucially involved in the display of an image on a
graphics device.

5.9 Comments and References

Quantitative information, such as tables, equations, and so on, about the
standards used in colorimetry and photometry can be found in (Wyszecki and
Stiles 1982). In particular, the book tabulates approximate values for the color
reconstruction functions for the CIE-RGB and CIE-XYZ models and discusses
in detail the 1931 CIE representation models, as well as the modifications
introduced in 1964.

The HSV interface model was first published in (Smith 1978). The HSL

model was introduced in the specification of the CORE graphics system pro-
duced by an ACM SIGGRAPH committee in 1977, and refined in 1979 (Mich-
ener and Van Dam 1979). The geometry of the color solid in this specification
is the same one we used here (two right cones glued at the base), but other ge-
ometries occur in the literature. In particular, (Rogers 1985) and (Foley et al.
1990) replace the cones by hexagonal prisms, while (Joblove and Greenberg
1978) use a right cylinder.

A comparative discussion of the HSV and HSL color systems, leaning to-
ward the HSV system, can be found in (Smith 1981). Algorithms for converting
between several color systems are given in (Rogers 1985).

134 5 Color Systems

The Munsell model is discussed in detail in (Wyszecki and Stiles 1982),
where the criteria for the choice of samples are explained.

Uniform color systems are covered well in (Padgham and Saunders 1975).
The transformation equations between these systems and the CIE-XYZ system
are given in (Wyszecki and Stiles 1982). These equations are complex, and
their application is computationally expensive.

Spectral color models in computer graphics were introduced in (Hall and
Greenberg 1983); see also (Hall 1989) for details. A method for robust sam-
pling of spectral space using few samples is discussed in (Meyer 1988). Several
methods to obtain the spectral distribution of a color starting from its three-
color coordinates can be found in (Wyszecki and Stiles 1982).

Further details on color systems for the video and television industries can
be found in the immense literature on television technology.

References

[Foley et al. 1990]Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F.
(1990). Fundamentals of Interactive Computer Graphics, second ed.
Addison-Wesley, Reading, MA.

[Hall 1989]Hall, R. A. (1989). Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York.

[Hall and Greenberg 1983]Hall, R. A. and Greenberg, D. P. (1983). A testbed
for realistic image synthesis. IEEE Computer Graphics and Applica-
tions, 3:10–20.

[Joblove and Greenberg 1978]Joblove, G. H. and Greenberg, D. (1978). Color
spaces for computer graphics. Computer Graphics (SIGGRAPH ’78
Proceedings), 12(3):20–25.

[Meyer 1988]Meyer, G. W. (1988). Wavelength selection for synthetic image
generation. Computer Vision, Graphics and Image Processing, 41:57–
79.

[Michener and Van Dam 1979]Michener, J. C. and Van Dam, A. (1978). A
functional overview of the Core System with glossary. ACM Computing
Surveys, 10:381–387.

[Padgham and Saunders 1975]Padgham, C. A. and Saunders, J. E. (1975).
The Perception of Light and Color. Academic Press, New York.

[Rogers 1985]Rogers, D. F. (1985). Procedural Elements for Computer Graph-
ics. McGraw-Hill, New York.

[Smith 1978]Smith, A. R. (1978). Color gamut transform pairs. Computer
Graphics (SIGGRAPH ’78 Proceedings), 12(3):12–19.

[Smith 1981]Smith, A. R. (1981). Color tutorial notes. Technical Report No.
37, Lucasfilm.

[Wyszecki and Stiles 1982]Wyszecki, G. and Stiles, W. S. (1982). Color Sci-
ence. John Wiley & Sons, New York.

6

Digital Images

Digital images are the focus of many computer graphics processes. They are
links between the user and these processes, revealing the results of the latter.
We may even say that all areas of computer graphics involve digital images,
whether as a final product, as in the case of visualization, or as an essential
intermediate step in the interaction process, as in the case of modeling. Thus,
an understanding of the meaning of images in this context is essential. A
rigorous formulation of the various notions associated with digital images is
necessary in order to allow an analysis of the data structures used in image
representation and of the algorithms used in image creation and manipulation.

This chapter is devoted to the conceptual underpinnings of digital images,
to abstract models for images, and to the various ways of representing and
encoding images on the computer.

6.1 Abstraction Paradigms for Images

In order to represent and manipulate images on the computer, we must define
appropriate mathematical models. Once more, the four-universe paradigm of
Chapter 1 is helpful in understanding the various image models we are about
to study.

An image is the result of light stimuli produced by a two-dimensional
support. This is the case whether the image arises through an intermediate
step, as in the case of a photograph, or ultimately through the projection of
our three-dimensional world onto our retina.

We must establish a mathematical universe in which we can define abstract
models for images. Then we must create a representation universe, where we
try to find schemes to allow the discrete representation of these models, with
the purpose of obtaining an encoding of the image on the computer.

An image is a two-dimensional signal; therefore, we can use the conceptual
framework introduced in Chapter 2, on signal theory. We will now special-
ize those concepts to the case of images. We have three abstraction levels,
corresponding to continuous models, discrete representations, and symbolic
encoding of images, as illustrated in Figure 6.1.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 6,
c© Springer-Verlag London Limited 2009

136 6 Digital Images

Fig. 6.1. Abstraction levels in the representation of an image.

Note that these levels will be realized concretely in different ways in an
image processing system. For this reason, in order to obtain a unified scheme
for image processing, we must use transformations to pass from one level to
another, and we must also be able to manipulate descriptions on a single level
(see Chapter 2).

6.2 The Spatial Model

Although there are several mathematical models appropriate for the descrip-
tion of images, we will stress in this book the so-called spatial model, which
is the one best suited for computer graphics applications.

6.2.1 Continuous Images

When we look at a photograph or a real-life scene, we receive from each point
in space a light impulse, which associates color information to that point.

6.2 The Spatial Model 137

Thus, a natural mathematical model for describing an image is a function
defined on a two-dimensional surface and taking values in a color space.

A continuous image is a map f : U → C, where U ⊂ R
2 is a subset of

the plane, and C is a vector space. (We stress that continuous here means
nondiscrete; it doesn’t mean that the map f is continuous in the topological
sense.) In most applications, U is a rectangle of the plane, and C is a color
space. However, it is convenient to allow C to be any vector space, in general
containing color space as a subspace. The function f is called the image func-
tion. The set U is called the support of the image, and the set of values of f (a
subset of C) is called the set of values of the image, or the image color gamut.

When C is a one-dimensional color space, we talk of a monochrome or
grayscale image. The image can then be regarded geometrically as the graph
G(f) of the image function f :

G(f) = {(x, y, z) : (x, y) ∈ U and z = f(x, y)},

where we consider the intensity values as the height z = f(x, y) of the graph
at each point (x, y) of the domain. Figure 6.2 shows a grayscale image, to-
gether with a sketch of the graph of the corresponding image function f(x, y).
This geometric interpretation allows a more intuitive visualization of certain
aspects of the image. In Figure 6.2, for example, it is easy to identify the dis-
continuities of the function, corresponding to abrupt variations in the image’s
intensity. This approach of manipulating images as geometric models and vice
versa makes clear the connection between image processing, geometric mod-
eling, and, further down the line, computer vision.

In agreement with current image processing literature, an image as de-
fined above should more appropriately be called a two-dimensional image.
This is because modern computer graphics, especially in the area of scientific
visualization, deals also with three-dimensional images, or volumes. We could
extend the notion of an image to cover the three-dimensional case as well
(simply by not requiring that the support set be two-dimensional); however,
we prefer not to do so, because two-dimensional images are the ones that

Fig. 6.2. A halftone and the graph of its image function.

138 6 Digital Images

can be exhibited directly in today’s graphical output devices. Still, many of
the techniques described in this book generalize to volume images. From the
viewpoint of computer graphics, the study of volume images is related to the
area of geometric modeling.

6.2.2 Image Representation

The most common representation of an image f : U ⊂ R
2 → C in computer

graphics consists in taking a discrete subset U ′ ⊂ U of the image’s domain
and sampling the image function f in the set U ′. In this case the image f(x, y)
will be spatially continuous or discrete, depending on whether the coordinates
(x, y) of each point vary in the set U or U ′, respectively. Each point (xi, yi)
of the discrete subset U ′ is called a pixel. We stress that “continuous” and
“discrete” here refer to the discreteness of the domain of the image function,
not to topological continuity.

In order to encode the image in the computer, we must also work with
image models where the image function f takes on values in a discrete subset
of the color space C. This discretization of an image’s color space is called
quantization. Although the floating-point representation of real numbers on
the computer is itself a discretization, in image processing we consider a color
space parametrized by floating-point coordinates as a continuum. This is rea-
sonable, because only when we use a very small number of bits in representing
the colors of an image does the error introduced lead to perceptual or com-
putational difficulties.

Matrix Representation

The most common case of spatial discretization of an image consists in taking
as the domain a rectangle

U = [a, b]× [c, d] = {(x, y) ∈ R
2 : a ≤ x ≤ b and c ≤ y ≤ d},

choosing positive real numbers Δx and Δy, and discretizing the rectangle U
using the two-dimensional orthogonal lattice

{(xj , yk) ∈ U : xj = j ·Δx, yk = k ·Δy with j, k ∈ Z}.
This is shown in Figure 6.3. Each pixel (xj , yk) of the image can therefore be
represented by the integer coordinates (j, k). Thus, the image can be conve-
niently represented in matrix form, say by means of an m× n matrix A with
entries ajk = f(xj , yk).

Each entry ajk represents the value of f at a lattice point (xj , yk) and
is therefore a vector in color space, expressing the color of the pixel with
coordinates (j, k). For a monochrome image, A = (ajk) is a real matrix, each
entry being a scalar that expresses the corresponding pixel’s luminance.

The number m of rows in A is the image’s vertical resolution, and the
number n of columns is the horizontal resolution. The spatial resolution or

6.2 The Spatial Model 139

Fig. 6.3. A uniform lattice gives rise to a matrix representation for the image.

geometric resolution of the representation is the product m × n. The spatial
resolution establishes the final sampling rate for the image. Thus, the higher
the resolution, the more detail (high frequencies) the matrix representation
captures. Each row of the matrix is usually called a scanline of the image.

In absolute terms, the spatial resolution does not tell us much about the
actual fineness of the image as realized on a physical device, since the device
pixel size can vary. Usually, the more appropriate measurement is the reso-
lution density, which gives the number of pixels per unit length. The most
common unit for the resolution density is pixels per inch (ppi), also known
as dots per inch (dpi). The resolution and resolution density of the matrix
representation of an image enable us to obtain the dimensions—width and
length—of the image.

Figure 6.4 shows the same image at four different spatial resolutions. The
pixel sizes are chosen so that all images have the same dimensions (width and
length). This clearly illustrates the effect of low resolutions.

The color resolution or color depth of an image is the number of bits used
in storing the color vector ajk associated with each pixel. We will return to
this topic in Chapter 11.

The natural isomorphism between the space of m×n matrices and R
mn is

commonly used in image processing in order to identify the matrix represen-
tation of a digital image with a vector whose coordinates are the rows of the
image’s matrix representation. The matrix representation, or the equivalent
representation by means of a vector with mn coordinates, allows the use of
linear algebra techniques in image processing. An example of this fact ap-
peared in Chapter 2, where the calculation of the discrete Fourier transform
was reduced to matrix multiplications.

6.2.3 Digital Images

Although on the computer we must work with discrete representations, con-
ceptually it is important to be able to idealize an image in any of the possible
combinations described in Chapter 2, depending on the nature of the domain

140 6 Digital Images

Fig. 6.4. The same image sampled at different spatial resolutions.

and range: continuous-continuous, continuous-quantized, discrete-continuous,
and discrete-quantized.

In practice, on the one hand continuous-continuous images serve as a con-
cept used in the development of mathematical methods for image processing;
on the other hand, the discrete-quantized image is the representation used
by many graphics devices. A discrete-continuous image is convenient for most
image operations, for in it the image function takes on floating-point values,
which (although represented by a finite number of bits) approximate real val-
ues. A discrete-quantized image is also called a digital image.

Elements of a Digital Image

The elements of a digital image are, essentially, the pixel coordinates and
the color information at each pixel. These two elements define the spatial
resolution and color resolution of the image. The number of components of
the pixel is the dimension of the color space in question. Thus, each pixel in
a monochrome image has a single component. The gamut of a digital image
is the set of colors of the quantized color space. A monochrome image whose
gamut has only two colors is called a bilevel image, or bitmap. A monochrome
image whose gamut has more than two levels is a grayscale image.

If the color space of an image has dimension k, for most processes we
can consider each color component separately. The image can therefore be
decomposed into k grayscale images, each of which is a component of the

6.2 The Spatial Model 141

original image. It is very common in image processing to work separately
with each component. This simplifies certain operations considerably. How-
ever, processing by components does not take advantage of the correlation in
color information that exists between the components of an image.

In addition to the color information, other components of the vector space
C that forms the range of a digital image can be used to carry additional
information. A scalar value, called opacity, can be used to define a mask for
the purposes of image compositing (see Chapter 14). For synthetic images, it
is very common to store the pixel depth (distance from the observer to the
point in space represented by the pixel). Such information is generated and
used by graphics algorithms for various purposes.

6.2.4 Digital Topology

When we use geometrical and topological methods to work with discrete-
domain images, we need to use results from digital topology, which studies
topological concepts associated with a space decomposition. We will not go
into a detailed study of digital topology, but it is important to have an un-
derstanding of its fundamentals.

Several graphs can be associated to any space partition. The graph nodes
and edges are defined by the geometric subsets of the partition and by the ad-
jacency relationship between them. The combinatorial topology of this graph
induces a combinatorial topology of the decomposed space. When the space
decomposition is defined by some lattice, this induced topology is called the
digital topology of the lattice.

Different graphs induce different topologies for the same underlying space
decomposition. This can be illustrated with the concept of connectedness,
associated with the matrix representation of a digital image.

The regular lattice used for the matrix representation of an image defines
a decomposition of the plane into rectangles. We can associate a graph to this
decomposition by defining the nodes to be the rectangles and by connecting
two nodes if the associated rectangles have a common edge (see Figure 6.5(a)).

Fig. 6.5. Graphs associated to the matrix representation.

142 6 Digital Images

Another graph can be associated to the same rectangular decomposition of
the image domain by connecting two rectangles (graph nodes) if they have
either an edge or a vertex in common (see Figure 6.5(b)).

Now we recall that the neighborhood of a graph node is the set of all nodes
connected to it. The two graphs defined above induce two common types of
discrete neighborhoods used in image processing.

The graph in Figure 6.5(a) induces the 4-connected neighborhood. Given
an element ai,j , its 4-connected neighborhood is the set of elements ai−1,j ,
ai+1,j , ai,j−1, and ai,j+1, as shown in Figure 6.6(a).

The graph in Figure 6.5(b) induces the 8-connected neighborhood. In this
case, the neighborhood of an element aij consists of the elements of its 4-
connected neighborhood, plus the elements ai−1,j−1, ai+1,j−1, ai−1,j+1, and
ai+1,j+1, as shown in Figure 6.6(b).

An important remark is that sometimes it is possible to use some metric
on the plane such that the neighborhood defined by the digital topology of the
lattice can be obtained by using metric relations between the subsets of the
space partition. We illustrate this for the 4-connected and 8-connected neigh-
borhoods defined above. An 8-connected neighborhood is defined by the norm
|(x, y)| = max{|x|, |y|}, the maximum norm. A 4-connected neighborhood is
defined by the norm |(x, y)| = |x|+ |y|, called the sum norm.

In Figure 6.7 we show a curve going from pixel A to pixel B. This curve
is 8-connected but not 4-connected.

6.2.5 Pixel Shape

Consider the uniform polygonal mesh defined by the orthogonal lattice of the
matrix representation of an image (see Figure 6.3).

The continuous image gives rise to two discrete images. One is the image
defined in the initial pixel lattice, and the other is the image defined in the dual

Fig. 6.6. The 4-connected neighborhood (a) and 8-connected neighborhood (b) of
a pixel.

6.2 The Spatial Model 143

Fig. 6.7. A curve that is 8-connected but not 4-connected.

Fig. 6.8. A pixel lattice (a), the corresponding mesh (b), and the dual lattice (c).

lattice. In the dual lattice, each pixel is located in the center of the rectangle
of the polygonal mesh. See Figure 6.8.

The matrix representation of an image is a particular case of a family of
image representations based on regular lattices of the plane, not necessarily
orthogonal. Let v1 and v2 be linearly independent vectors of the plane R

2.
The corresponding lattice in R

2 is the set of all linear combinations of v1 and
v2 with integer coefficients,

Δ(v1,v2) = {jv1 + kv2 : j, k ∈ Z}.

This is illustrated in Figure 6.9. The lattice used for the matrix representation
is a particular case, where the vectors v1 and v2 are orthogonal.

The fundamental parallelogram of the lattice is defined by

R(v1,v2) = {xv1 + yv2 : |x| < 1, |y| < 1, x, y ∈ R}.

This is illustrated by the shaded parallelogram in Figure 6.9. Notice that by
translating the fundamental parallelogram to the lattice vertices, we cover the
whole plane.

144 6 Digital Images

Fig. 6.9. Nonorthogonal, regular lattice of the plane.

Fig. 6.10. Shape of a pixel in a nonorthogonal lattice.

The shape of a pixel P in a lattice Δ(v1,v2) is the set of all points in R
2

closer to P than to any other pixel of the lattice (for those familiar with
computational geometry, this is the Voronoi cell of the pixel P). The pixel
shape is illustrated in Figure 6.10.

By appropriately choosing the lattice generators v1 and v2, it is possi-
ble to obtain a lattice whose pixel shape is a regular hexagon. This is il-
lustrated in Figure 6.11(a). In this case the digital topology induced by the
adjacency graph of the lattice has a very symmetric neighborhood, as shown
in Figure 6.11(b), and it is defined by the usual Euclidean metric of the plane.
This hexagonal image representation is very useful when we are interested in
using topological methods for image processing and analysis in the discrete
domain.

One problem that arises when we work with representations in which the
pixel topology is not rectangular is that graphical devices for digital im-

6.3 Comments and References 145

Fig. 6.11. (a) Hexagonal discretization. (b) Neighborhood of a pixel in the hexag-
onal discretization.

ages tend to use a representation matrix, which presupposes a rectangular
discretization. This is a typical case where we must reconstruct the image and
then resample it for display.

When we work with geometric pixels in the continuous domain, the color
information can change greatly within each polygon that defines the geometric
pixel. Thus, in order to compute the digital image in the dual lattice, we must
take into account this variation, so as to minimize aliasing. Two commonly
used methods are area sampling and supersampling, which we mentioned in
Chapter 2. We will return to this question in Chapter 8.

6.3 Comments and References

This chapter introduced what we can call the functional model of an image.
In this model, an image is a function of two variables, taking values in a color
space. There are other possible models; we concentrated on the functional
model because it is the most commonly used, and the most appropriate, in
computer graphics. Other models, especially stochastic ones, are discussed in
(Rosenfeld 1993). Chapter 10 will be devoted to Probabilistic Image Models.

The concepts of image and of volumetric image constitute examples of
graphical objects. For a generic definition of a graphical object, several exam-
ples, and applications, the reader should consult (Gomes et al. 1996).

Among the many books devoted exclusively to image processing, we men-
tion the two classics (Pratt 1978) and (Rosenfeld and Kak 1976), which cover
this chapter’s topics very well. For a more advanced approach and a fuller
discussion of recent developments in digital image processing, see (Jain 1989),
which also contains many references. We also mention (Gonzalez e Wintz
1987), a comprehensive introduction appropriate for a first course.

An elementary approach covering certain topics related to computer graph-
ics and image processing can be found in (Pavlidis 1982).

146 6 Digital Images

References

[Gomes et al. 1996]Gomes, J., Costa, B., Darsa, L., and Velho, L. (1996).
Graphical objects. The Visual Computer 12(6):269.

[Gonzalez and Wintz 1987]Gonzalez, R. and Wintz, P. (1987). Digital Image
Processing. Addison-Wesley, Reading, MA.

[Pavlidis 1982]Pavlidis, T. (1982). Algorithms for Graphics and Image Pro-
cessing. Computer Science Press, Rockville, MD.

[Pratt 1978]Pratt, W. (1978). Digital Image Processing. Wiley–Interscience,
New York.

[Rosenfeld 1993]Rosenfeld, A. (1993). Image modelling during the 1980’s: A
brief overview. In Markov Random Fields, Theory and Applications,
1–10.

[Rosenfeld and Kak 1976]Rosenfeld, A. and Kak, A. C. (1976). Digital Picture
Processing. Academic Press, New York.

7

Operations on Images

Image operations play an important role in computer graphics. Unless we ex-
plicitly say otherwise, in this chapter we will suppose that a digital image is
given by its matrix representation. We’ll illustrate certain operations using
one-dimensional signals instead of images; this allows a better understand-
ing of the two-dimensional case. You can always think of a one-dimensional
signal as the restriction of an image to a single scanline (row of its matrix
representation).

Chapter 2, on signals, is a prerequisite for this chapter. Nonetheless, there
is some overlap between the two chapters; this is for the benefit of readers
who have already studied signal processing and who may want to read this
chapter independently.

7.1 Arithmetic Operations

The space of images I = {f : U ⊂ R
2 → C} has a vector space structure,

with operations of addition of functions and multiplication of a function by a
scalar:

(f + g)(x, y) = f(x, y) + g(x, y) and (λf)(x, y) = λ f(x, y).

In matrix representation, these operations reduce to the standard operations
of addition and scalar multiplication on matrices with vector entries.

These operations have applications in several contexts, where they acquire
a concrete meaning. For example, the difference of two images, which we
define by

f − g = f + (−1)g,

can be used to detect the motion of some object present in the images.
We can define other operations in I. Generally speaking, an operation

between elements of I is a map

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 7,
c© Springer-Verlag London Limited 2009

148 7 Operations on Images

T : I × I × · · · × I︸ ︷︷ ︸
m times

×R× R× · · · × R︸ ︷︷ ︸
n times

→ I,

where × denotes the Cartesian product. Thus, an operation associates to an
m-tuple (f1, . . . , fm) of images and to the vector (λ1, . . . , λn) ∈ R

n an image
in I, the result of the operation. The addition operation, defined above, is a
map I × I → I, and multiplication by a scalar is a map I × R → I.

As a matter of terminology, when m = 1 and n = 0, we say that the op-
eration is unary. Thus, a unary operation transforms one image into another.
Otherwise, when m > 1 and n ≥ 0, we say that the operation is m-ary; such
operations combine two or more images to produce a new image. One impor-
tant case occurs for m = 2, when the operation is called binary. In general,
it’s possible to reduce an m-ary operation to a sequence of binary operations.

In the monochrome case, the image is given by a real-valued function
f : U ⊂ R

2 → R, so we can define the product of two images f and g as

(f · g)(x, y) = f(x, y) g(x, y),

where on the right-hand side we have the product of two real numbers. For
color images, we can define the product by multiplying each color component
separately.

As we saw in Chapter 2, a transform is a linear operator, generally invert-
ible, that allows us to pass from one functional image space, using a certain
model, to another space, using a different model.

Operations can be classified according to the scope of their action into
local operations and point operations. For a local operation T , the value
of the result at a pixel p depends on the values of the image’s pixels in a
neighborhood of p. For a point operation, the value of T at each pixel p does
not depend on the behavior of the image in a neighborhood of p.

Example 7.1 (Luminance). Given an image f(x, y), we can obtain a mono-
chrome image g by calculating, for each pixel, the brightness (luminance) at
that point. That is, we set g(x, y) = L(f(x, y)), where L is the luminance
operator. For example, if f(x, y) = (R(x, y), G(x, y), B(x, y)) is given by its
components in the RGB system, we can compute g using the NTSC luminance
operator, defined by

g(x, y) = 0.176R(x, y) + 0.81G(x, y) + 0.011B(x, y).

This is the standard method to obtain a grayscale image from a color image.
The operator L is a unary point operator.

Example 7.2. As an example of a local unary operation on an image f , we
define, for each pixel (i, j), the result T (i, j) as the average

T (i, j) = 1
3 (f(i− 1, j) + f(i, j) + f(i + 1, j))

of the values of f at the pixel itself and at its two neighbors on the same row.
(At the beginning and end of the row we have only one neighbor, so we take
the average of two pixels.)

7.2 Filters 149

The Fourier Transform

In Chapter 2 we defined the Fourier transform of an n-dimensional signal. In
particular, that definition applies to images. It is straightforward to extend
the discrete Fourier transform, given by Equation (2.25) in Chapter 2, to
two-dimensional discrete signals:

F (k1, k2) =
1

N1N2

N1∑

n1=1

N2∑

n2=1

f(n1, n2)e−2πik1n1/N1e−2πik2n2/N2 .

The inverse transform is given by

f(n1, n2) =
N1∑

k1=1

N2∑

k2=1

F (k1, k2)e2πik1n1/N1e2πik2n2/N2 .

Observe that, in order to compute F (k1, k2) for each pair (k1, k2), we
must carry out N1N2 − 1 additions and N1N2 multiplications. Since there
exist N1N2 different pairs (k1, k2), we need a total of N2

1 N2
2 multiplications

and N1N2(N1N2 − 1) additions to compute F (k1, k2). It is easy to see that
we can compute the transform of an image in a two-step procedure: first we
transform the rows and then we apply the DFT again to the columns of the
resulting image. This reduces the computation of the two-dimensional DFT
to the computation of two one-dimensional ones. For this, we can apply the
fast Fourier transform discussed in Chapter 2.

7.2 Filters

Unary operations on images are also called filters. Figure 7.1 illustrates the
action of a filter.

Filtering and Computer Graphics

Filtering is of paramount importance in several stages of the process of image
synthesis. We mention its uses at three stages: visualization, mapping, and
postprocessing.

Fig. 7.1. Action of a filter on an image.

150 7 Operations on Images

Visualization

During visualization, filters are used to attenuate the high-frequency compo-
nents in the sampled image. This helps ensure that the reconstructed image
has as little aliasing as possible and is free of other defects.

Mapping

The various mappings used in computer graphics (texture mapping, reflection
mapping, and so on) work essentially by applying a deformation transform
to the texture to be mapped. In this context, filters play an important role
in resampling (reconstruction with later sampling) of the mapped image. We
will study deformation filters in a later chapter.

Postprocessing

Filters are used for several purposes in the postprocessing of the synthesized
image. As an example, we mention the resampling of an image to adjust it
to a different geometry (an image might be generated at video resolution,
say 512 × 512, and then might have to be transformed into a 35-mm slide
at a higher resolution and a different aspect ratio). Another example is the
use of filters to obtain special effects: thus, the use of a lowpass filter gives
the feeling of an out-of-focus image. This application is quite useful, because
virtual camera models generally do not take into account depth of field.

7.2.1 Classification

Filters can be classified according to the linear structure of the space of images
(linear versus nonlinear), according to the computational method used (statis-
tic versus deterministic), and according to their domain of action (topological
versus amplitude filters).

Linear Filters

A filter is linear if the corresponding operator T is linear, that is, if

T (λf) = λT (f) and T (f + g) = T (f) + T (g),

where λ is a real number and f, g are images.
From the mathematical point of view, linear filters preserve the vector-

space structure of the space of images. The first equation above says that
the response of the filter is invariant under a scaling transformation of the
image values. Thus, applying a linear filter to an image f and then making a
constant scaling of its values is equivalent to scaling the values of the original
image and then applying the filter; the order does not matter. The second

7.2 Filters 151

equation says that the response of a linear filter when applied to two images
that are added together can be obtained by adding together the response for
each of the images.

The filters in Examples 7.1 and 7.2 are linear. Examples of nonlinear filters
are very easy to obtain. An obvious example is the filter defined on the space
of grayscale images by T (f) = f2.

Statistical Filters

A statistical filter uses statistic properties of the image to determine the result
at each pixel. Two important examples are the median filter and the mode
filter, used in noise elimination.

Median Filter of Order n

In this filter, we take for each pixel p an 8-connected neighborhood of p with
n pixels p1, p2, . . . , pn. The response of the filter at p is defined as the median
of the pixel values at p1, . . . , pn, these values being ordered according to their
intensity. Note that, if the intensity of a pixel is very different from that of
neighboring pixels, that pixel will certainly not be the median, so its value
after filtering will change to the original value of a more representative pixel
in the neighborhood. Therefore, this filter eliminates intensity values that are
“outliers” in a neighborhood (“speckles”); such values are often due to noise.
The resulting image intensities are more uniform.

Mode Filter of Order n

The mode filter is defined in the same way as the median filter, but instead of
taking the median of the pixels in a neighborhood, we take their mode, that
is, the intensity value that occurs most frequently in that neighborhood. It is
clear that, as for the median filter, the resulting image intensities are more
uniform.

The mode and median filters are local and nonlinear.

Amplitude Filters and Topological Filters

Regarding the domain of action, we can have amplitude filters and topological
filters. Amplitude filters act directly on the color space of the image, while
topological filters act on the support set of the image. Amplitude filters directly
change the color of the pixels, while topological filters change the topology,
or structure, of the objects present in the image.

The filters of Examples 7.1 and 7.2, as well as the median and mode filters,
are amplitude filters. An important class of amplitude filters in computer
graphics consists of those that change the color system of the image or perform

152 7 Operations on Images

color adjustments such as gamma correction, gamut transformation, and color
clipping. Details on these operations will be given in Chapter 16.

An important class of topological filters consists of warping filters, which
apply a deformation to the domain of the image, resulting in a change in
the geometric structure of the image objects. Such filters will be studied in
Chapter 10, together with morphing transformations, which combine warp
and amplitude filters.

Topological filters are also important in mathematical morphology, which
we now discuss briefly.

7.2.2 Morphological Filters

Mathematical morphology is the field that studies topological and structural
properties of objects based on their images. The techniques used in this field,
especially in the case of continuous-domain images, are similar to some tech-
niques used in geometric modeling.

The filters used in mathematical morphology are defined based on a struc-
tural element, that is, a subset of the plane that interacts with the image of
the object to determine topological properties of the object and reveal struc-
tural information about it. Two basic examples are erosion filters and dilation
filters. We define them first in the continuous domain.

Given a subset B of the plane, we denote by B(x, y) the translate of B
by the vector (x, y). The erosion of a set X ⊂ R

2 by B is the set X � B
consisting of points (x, y) ∈ X such that B(x, y) ⊂ X:

X �B = {(x, y) ∈ X : B(x, y) ⊂ X}.

The set B is the structural element. The gray area of Figure 7.2(b) shows
the erosion of the set of Figure 7.2(a) by the disc of radius r centered at the
origin.

Fig. 7.2. Parts (b) and (c) show the erosion and the dilation of the set shown in (a).

7.2 Filters 153

The dilation X ⊕ B(x, y) of a set X by the structural element B(x, y) is
defined as X ⊕B = (Xc �B(x, y))c, where the superscript c denotes the set
complement operation. It is easy to see that this definition is equivalent to

X ⊕B = {(x, y) ∈ R
2 : B(x, y) ∩X �= ∅}; (7.1)

that is, X⊕B is the set of points in the plane for which the structural element
B intersects X. The gray area of Figure 7.2(c) shows the dilation of the set
X of Figure 7.2(a) by a disc of radius r centered at the origin. The dilation
operation can be considered as a geometric convolution.

Intuitively, the erosion operation takes away points from X, while dilation
adds points to the set. This intuition is true if the structural set is convex,
but otherwise it is not always accurate. Figure 7.3 shows an example of a
dilation with a disconnected structural set. The resulting set is disconnected
and disjoint from the original set.

On a binary image, the image function f assumes values 0 or 1 only.
Thus, the image defines a subset of the image plane where the point mem-
bership classification function (characteristic function) of the set is defined
by χ(x, y) = f(x, y). Therefore, the operations just defined of dilation and
erosion of subsets of the plane can be immediately extended to binary images.
Extending them to grayscale and color images needs an additional effort.

In the discrete domain the erosion and dilation filters are defined analo-
gously, but using discrete sets. In Figure 7.4(c) we show the dilation of the
set of black pixels in (b), using as structural element B the set of pixels in
(a), the basepoint being the center pixel. The pixels added by this process are
shown in gray in (c).

As an application of morphological filters in obtaining topological infor-
mation about the objects of an image, we consider the problem of determining
the boundary of a given object. We define

∂X = X − (X �B), (7.2)

Fig. 7.3. Dilation can yield a set disjoint from the original.

154 7 Operations on Images

Fig. 7.4. Part (c) shows the dilation of the set in (b) by a disc of radius r (a).

Fig. 7.5. Computation of the boundary of an object using an erosion filter.

for an appropriately chosen structural element B. Figure 7.5 illustrates the
action of this filter ∂. Part (a) shows the set X; part (b) shows the structural
element, whose basepoint is the center pixel; and part (c) shows the set X�B
in gray, while the boundary pixels, computed according to (7.2), are shown in
black.

Besides the boundary operator, several other operations in mathematical
morphology can be derived from the erosion and dilation filters. The literature
on the subject is fairly large; see Section 7.6.

7.2.3 Spatially Invariant Filters

Given an operation T on the space of images, a filter F is invariant with
respect to T if, for every image g ∈ I, we have (F ◦ T)(g) = (T ◦ F)(g). In
other words, T commutes with the filter. This means that we get the same
result applying the filter before or after the operation. This is indicated by
the following commutative diagram:

I I�
T

I I�T

�
F

�
F

7.3 Spatially Invariant Linear Filters 155

An important case of invariance occurs when T is a translation operator on
the plane. This means that there exists a vector with coordinates (x0, y0) such
that T (g(x, y)) = g(x−x0, y−y0), where g is the image function. Thus, T has
the effect of translating the image by the vector (x0, y0). When a filter F is
invariant with respect to any translation, we say that F is spatially invariant,
and we have

(Fg)(x− x0, y − y0) = F (g(x− x0, y − y0)).

Geometrically, spatial invariance means that the behavior of the filter is the
same in all points of the domain of the image.

Example 7.3. Consider a filter T defined by T (f) = af + b, where a and b
are real numbers, with a �= 0. It is easy to see that T is spatially invariant.
Indeed,

(Tf)(X −X0) = (af + b)(X −X0) = a(X −X0) + b = T (f(X −X0)).

Moreover, T is linear if and only if b = 0.
On the other hand, consider the filter T defined by Tf(x, y) = f(y, x), so

that T reflects the image f in the diagonal line x = y of the plane. T is clearly
linear, but it is easily seen not to be spatially invariant.

Example 7.4. One can easily check that the dilation and erosion filters of Sec-
tion 7.2.2 are spatially invariant.

An important class of filters that are not spatially invariant consists
of filters that change their behavior according to the properties of the
image in a neighborhood of the pixel in question. Such filters are called
adaptive.

7.3 Spatially Invariant Linear Filters

The impulse response of a filter T is the image h(x, y) obtained by applying
the filter to a unit impulse input, or Dirac delta function:

h(x, y) = T (δ(x, y)).

For images, the impulse function δ(x, y) is an image with zero luminance
everywhere except at the origin, where the luminance is maximal (pure white).
Thus, the impulse response function h(x, y) tells how the filter spreads a point
of light; for this reason it is also called the point spread function. If a spatially
invariant filter has impulse response function h, its response to a point source
δ(x − x0, y − y0) is the image h(x − x0, y − y0) obtained by translating the
filter’s point spread function.

156 7 Operations on Images

A filter has finite impulse response if its impulse response has compact
support. We also say in this case that we have an FIR filter. Otherwise we say
that the filter has infinite impulse response (IIR).

For spatially invariant linear filters, we have the following result:

Theorem 7.5. A spatially invariant linear filter is completely characterized
by its point spread function h (impulse response function).

Proof (Informal proof). Indeed, if f is an image, we can write f as an infinite
sum of point sources (Dirac deltas):

f(x) =
∫ +∞

−∞
f(u, v)δ(u− x, v − y) du dv.

Since the filter is linear,

Tf(x, y) = T

(∫ +∞

−∞
f(u, v)δ(u− x, v − y) du dv

)

=
∫ +∞

−∞
f(u, v)T (δ(u− x, v − y)) du dv.

Because the filter is spatially invariant, its response to the point signal δ(u−
x, v − y) is h(u− x, v − y). The previous equation therefore becomes

Tf(x, y) =
∫ +∞

−∞
f(x, y)h(u− x, v − y) du dv. (7.3)

Thus, the filtered image is an infinite average of translations of the point
spread function, weighted by the input image values. This proves the
theorem.

The impulse response function of a spatially invariant linear filter is called
its kernel. The integral in (7.3) is called the convolution of f and h and
is denoted by f ∗ h. The proof of the theorem, therefore, shows that pro-
cessing an image f through a spatially invariant linear filter is the same as
convolving f with the filter’s kernel. As we saw in Chapter 2, this is equiv-
alent to multiplying the Fourier transform of f by the transfer function of
the filter, which is, by definition, the Fourier transform of the filter’s impulse
response.

Separable Filters

A filter is separable if its kernel satisfies

h(x, y) = h1(x)h2(y)

7.3 Spatially Invariant Linear Filters 157

for some functions h1 and h2. Separable filters are very important because,
when applying them to images, it is possible to use a matrix representation
for the image, and the filtering operation can be carried out independently on
each line (or column) of the image. This generally reduces the filtering of the
image to one-dimensional operations over the lines and columns of the image,
which is advantageous in terms of computational efficiency.

There is another property of a separable kernel that will be used later in
this chapter: the Fourier transform of a separable kernel h = h1 · h2 is the
product of the Fourier transform of h1 and h2. That is,

ĥ = ĥ1 · ĥ2. (7.4)

The proof is immediate:

ĥ(u, v) =
∫ 2

R

h(x, y)e−2πi(ux+vy)dxdy

=
∫ 2

R

h1(x)h2(y)e−2πiuxe−2πivydxdy

=
∫

R

h1(x)e−2πiuxdx

∫

R

e−2πivydy

= ĥ1(u) · ĥ2(v).

7.3.1 Discrete Filters

In practice, we work with discrete images, so we must introduce a discrete
version of the filters described in the previous section. We will limit ourselves
to spatially invariant linear filters.

Discretization of the Kernel

In general, if h is the convolution kernel of a linear and spatially invariant
filter, we assume that ∫

R2
h(x, y) dx dy = 1. (7.5)

This equality guarantees that the filtering process does not change the average
intensity of the image pixels.

A simple and commonly used discretization method consists in fixing res-
olutions Δx,Δy ∈ R, taking the plane lattice Δ of points (xj , yk) ∈ U with
xj = j Δx and yk = k Δy, where j, k ∈ Z, and sampling the kernel at the
vertices of Δ. In this way we obtain a matrix hij = h(i, j). If the kernel is de-
fined in a rectangular region of the plane, this discretization defines a matrix
representation (hij) of h, analogous to the matrix representation of an image.

The entries hij of the kernel matrix representation (where i =1, . . . , m and
j = 1, . . . , n) should satisfy

158 7 Operations on Images

1
mn

m∑

i=1

n∑

j=1

hij = 1. (7.6)

This says that the mean of discretized kernel entries is 1. It is the analog, in
the discrete domain, of Equation (7.5), and it guarantees that the filtering
process does not change the average intensity of the pixels of the image.

In certain exceptional cases, it is not desirable to preserve the average
intensity of the pixels of the filtered image; one then chooses a kernel that
does not satisfy Equation (7.6).

We know from the foregoing discussion that applying a linear and spatially
invariant filter to an image is equivalent to taking the convolution of the image
with the filter’s kernel. Thus, the study of filtering in the discrete domain
reduces to that of the convolution of two functions in the discrete domain. In
what follows, we discuss this operation in detail, treating separately the one-
and two-dimensional cases for ease of comprehension.

One-dimensional Filters

If f and h are two discrete signals, defined on the set Z of integers, we define
the discrete convolution product f ∗ h of f and h by analogy with Equa-
tion (7.3):

(f ∗ h)(n) =
+∞∑

k=−∞
f(k)h(n− k). (7.7)

Naturally, we are supposing that the sum converges. This occurs, for example,
if one or both of f and h have finite support: indeed, in this case f or h are
discretized into a finite number of samples, and, for each value of n, the sum
has only finitely many nonzero summands.

When the impulse response function h of the filter has compact support
(FIR filters), the kernel h(k) (where k ∈ Z) has only a finite number of nonzero
samples. In this case we generally call h the mask of the filter. The process of
filtering then amounts to replacing each pixel f(n) by the weighted average,
with weights h(i), of the pixels f(i) (where −k1 ≤ i ≤ k2). This follows
immediately from (7.7).

Figure 7.6 illustrates the calculation of the convolution for an FIR filter:
we show the sequence h(k) defining the kernel, the sequence h(−k), and the
sequence h(n− k). The part of the signal f(k) corresponding to the nonzero
elements h(n−k) is indicated by a darker shading. To obtain the convolution
f ∗ h at the point n, we multiply corresponding elements in the sequences
h(n− k) and f(k) and add the results.

A common case is that of symmetric FIR filters h whose kernel is dis-
cretized into a finite number of samples. If h has 2k+1 samples, we can index
them from −k to k, so the filter is determined by the values

h(−k), h(−k + 1), . . . , h(0), . . . , h(k − 1), h(k), (7.8)

7.3 Spatially Invariant Linear Filters 159

Fig. 7.6. Computation of the one-dimensional discrete convolution.

Fig. 7.7. Convolution with a symmetric FIR filter of odd order.

where h(−j) = h(j) for j = 0, . . . , k. The convolution sum in (7.7) is obtained
simply by translating the origin of the sequence in (7.8) to the n-th position
of signal f , multiplying the corresponding terms, and adding. We illustrate
this in Figure 7.7.

It is interesting to compute the transfer function of a discrete filter directly
from its mask coefficients. We will do the computations for the important case
of a finite and symmetric mask of odd order N = 2M + 1.

The transfer function is given by the Fourier transform of the mask dis-
cretization (hk), where k = −M, . . . ,M . We have

ĥ(s) = h0 +
∑

k �=0

hke−i2πks/N

= h0 +
∑

k<0

hke−i2πks/N +
∑

k>0

hke−i2πks/N

= h0 + 2
∑

k>0

hk cos(2πks/N),

where in the last equality we used the mask symmetry and the Euler equation

ei2πks/N = cos(2πks/N) + i sin(2πks/N).

Two-Dimensional Filters

Let’s now turn to the two-dimensional case. We start with a convention. Given
a digital image in matrix representation (f(i, j)), unless we say otherwise,

160 7 Operations on Images

the pixel with coordinates (0, 0) corresponds to the bottom left entry of the
matrix:

...
...

...
f(0, 2) f(1, 2) f(2, 2) · · ·
f(0, 1) f(1, 1) f(2, 1) · · ·
f(0, 0) f(1, 0) f(2, 0) · · ·

This corresponds to the use, in the continuous domain, of the usual Cartesian
coordinate system for the plane lattice. The convolution product f ∗ h of the
image f with the kernel h is defined at the pixel (n,m) by

(f ∗ h)(n,m) =
+∞∑

k=−∞

+∞∑

j=−∞
f(k, j)h(n− k, m− j), (7.9)

where we assume that the double series converges. Again, this is certainly the
case if one or both of f and h have compact support.

In Figure 7.8 we illustrate geometrically the process of two-dimensional
convolution given by Equation (7.9). The sequence h(−k,−j) is obtained from
h(k, j) by reflecting about the x-axis and then reflecting about the y-axis
(this is equivalent to rotation by 180◦ about the origin). The sequence h(n−
k, m− j) is the translate of the sequence h(−k,−j) by the vector (n,m). The
pixels common to the images h(n− k, m− j) and f(k, j), represented by the
darker area in Figure 7.8(c), are multiplied together, and the result is added
to yield the value of f ∗ h at (n,m). Note that the filter mask h must have a
distinguished origin. We take it as the lower left corner.

Example 7.6. Consider the image f(k, j) of order 2× 3 with matrix represen-
tation

1 2 3
2 1 6

Fig. 7.8. Two-dimensional convolution with FIR filter.

7.3 Spatially Invariant Linear Filters 161

Let h be the filter whose impulse response function is discretized by the matrix

−1 2
2 −1

The convolution product f ∗ h is then given by

−1 0 1 6
0 6 0 9
4 0 11 −6

As in the one-dimensional case, we obtain significant simplifications in the
expression for the two-dimensional discrete convolution when the mask of the
filter is symmetric and of odd order. If the mask has order (2k +1)× (2k +1),
we can index its matrix as

(−k, k) · · · (k, 0) · · · (k, k)
...

...
...

(−k, 0) · · · (0, 0) · · · (k, 0)
...

...
...

(−k,−k) · · · (−k, 0) · · · (k,−k)

The convolution f ∗ h at the pixel (m,n) is obtained by placing the origin
(0, 0) of the mask on top of the pixel (m,n), multiplying the corresponding
elements of mask and image, and adding the results. Figure 7.9 illustrates this
operation geometrically for a 3× 3 mask.

Computations similar to those performed for the one-dimensional discrete
filters allow us to obtain an analytic expression for the transfer function of a
finite symmetric filter of odd order N ×N , N = 2M + 1. In fact, if the mask
matrix is (hjk), for j = −M, . . . ,M and k = −M, . . . ,M , then the transfer
function is given by

ĥ(u, v) = h00 +
∑

j,k>0

2hjk cos[2π(ju + kv)/N].

Fig. 7.9. Two-dimensional convolution with symmetric FIR filter of odd order.

162 7 Operations on Images

Computational Considerations

Before we can implement the convolution product we must take into con-
sideration three problems: nonrealizable colors, computational efficiency, and
extension of the image’s domain.

Nonrealizable Colors

It may happen that, as we carry out the convolution of an image with the filter
mask, the resulting color value at certain pixels is outside the intended color
space of the image or of the output device. For instance, some of the values
obtained may be negative. Two simple solutions can be adopted. The first
is clipping: approximating the color by the nearest point of the desired color
space. The second is to apply a global transformation to the output values
so they end up within the desired color space. Both approaches, in effect,
amount to contracting the color space of the convolved image by applying
another filter.

Computational Efficiency

The problem of computational complexity is directly linked to the actual
implementation, and we will not discuss it here. We merely mention, as an
example, that for a separable filter the implementation of Equation (7.9) can
be reduced to the successive application of two one-dimensional convolutions,
one along rows and one along columns. This fact, whose proof we leave as
an exercise, reduces the number of required operations. Other situations are
amenable to other techniques for enhancing computational efficiency.

Extension of the Domain

In applying Equation (7.9) to obtain the convolution of an image with a mask
h, we assumed implicitly that the image extends to infinity in all directions.
In practice, of course, this is not the case, so we have to deal with the problem
of extending the image beyond its original domain in order for (7.9) to make
sense. This can be seen clearly in Figure 7.8: including in the sum only the
pixels that are in the intersection of the two masks is equivalent to extend-
ing the image with zeros in the complement of its domain. Other extension
methods are possible, and the best method depends on the problem at hand.
In the next section we describe some of the possibilities in common use.

7.3.2 Extending the Domain of the Image

For one to compute, over a domain X, the convolution of a signal with a kernel
whose support is B, the signal must be defined at least on the set X⊕B (this

7.3 Spatially Invariant Linear Filters 163

notation is defined in (7.1); it represents the dilation of X by B). Normally
we want the filtered image to be defined on the same domain as the original
image, so the original image must be extended to the dilation of the domain.
There are several ways to perform this extension.

Constant Extension

This method extends the signal by a constant. We illustrate this in Figure 7.10,
where we use a continuous one-dimensional signal for ease of understand-
ing. For example, in the discrete one-dimensional case, the signal f(0),
f(1), · · · , f(n− 1) can be extended to

· · · f(0) f(0) f(0) f(1) · · · f(n− 1)
︸ ︷︷ ︸

original signal

f(0) f(0) · · · .

In two dimensions, the 3× 3 image

f(0, 0) f(1, 0) f(2, 0)
f(0, 1) f(1, 1) f(2, 1)
f(0, 2) f(1, 2) f(2, 2)

might be extended to

...
f(0, 0) f(0, 0) f(0, 0) f(1, 0) f(2, 0) f(2, 0) f(2,0)
f(0, 0) f(0, 0) f(0, 0) f(1, 0) f(2, 0) f(2, 0) f(2,0)
f(0, 0) f(0, 0) f(0, 0) f(1, 0) f(2, 0) f(2, 0) f(2,0)

· · · f(0, 1) f(0, 1) f(0, 1) f(1, 1) f(2, 1) f(2, 1) f(2,1) · · ·
f(0, 2) f(0, 2) f(0, 2) f(1, 2) f(2, 2) f(2, 2) f(2,2)
f(0, 2) f(0, 2) f(0, 2) f(1, 2) f(2, 2) f(2, 2) f(2,2)
f(0, 2) f(0, 2) f(0, 2) f(1, 2) f(2, 2) f(2, 2) f(2,2)

...

Fig. 7.10. Constant extension of a signal.

164 7 Operations on Images

which is piecewise constant. It is also very common to extend the image with
zeros; this is a particular case of a constant extension.

Periodic Extension

Here we simply repeat the signal, forming a periodic function. Figure 7.11
illustrates this type of extension.

Observe that the signal obtained generally has a discontinuity, unless
f(0) = f(n− 1). For a discrete one-dimensional signal

f(0) f(1) · · · f(n− 1),

we obtain the extension

· · · f(0) f(1) · · · f(n− 1) f(0) f(1) · · · f(n− 1)
︸ ︷︷ ︸

original signal

f(0) f(1) · · · f(n− 1) · · · .

This method can be easily generalized to the two-dimensional case: we
repeat the one-dimensional process first for each row of the image and then
for each column. We obtain a doubly periodic image, as shown below for a
3× 3 image.

...
f(1, 1) f(2, 1) f(0, 1) f(1, 1) f(2, 1) f(0, 1) f(1,1)
f(1, 2) f(2, 2) f(0, 2) f(1, 2) f(2, 2) f(0, 2) f(1,2)
f(1, 0) f(2, 0) f(0, 0) f(1, 0) f(2, 0) f(0, 0) f(1,0)

· · · f(1, 1) f(2, 1) f(0, 1) f(1, 1) f(2, 1) f(0, 1) f(1,1) · · ·
f(1, 2) f(2, 2) f(0, 2) f(1, 2) f(2, 2) f(0, 2) f(1,2)
f(1, 0) f(2, 0) f(0, 0) f(1, 0) f(2, 0) f(0, 0) f(1,0)
f(1, 1) f(2, 1) f(0, 1) f(1, 1) f(2, 1) f(0, 1) f(1,1)

...

Fig. 7.11. Periodic extension of a signal.

7.3 Spatially Invariant Linear Filters 165

Extension by Reflection

With this method the signal is extended by successive reflections in the edges,
as indicated in Figure 7.12. The signal obtained is periodic and has no dis-
continuities, unlike the methods given above.

In one dimension, the signal f(0) f(1) · · · f(n− 1) is extended to

· · · f(2) f(1) f(0) f(1) · · · f(n− 1)
︸ ︷︷ ︸

original signal

f(n− 2) f(n− 3) · · · .

It is easy to check (see Figure 7.12) that this extension method is equiva-
lent to reflecting the signal once and then performing a periodic extension as
described before.

In two dimensions, we may first reflect horizontally in the top and bottom
edges, and then reflect the extended image vertically in the left and right
edges. This is illustrated in the following extension of a 3× 3 matrix:

...
f(2, 2) f(1, 2) f(0, 2) f(1, 2) f(2, 2) f(1, 2) f(0,2)
f(2, 1) f(1, 1) f(0, 1) f(1, 1) f(2, 1) f(1, 1) f(0,1)
f(1, 0) f(1, 0) f(0, 0) f(1, 0) f(2, 0) f(1, 0) f(0,0)

· · · f(2, 1) f(1, 1) f(0, 1) f(1, 1) f(2, 1) f(1, 1) f(0,1) · · ·
f(2, 2) f(1, 2) f(0, 2) f(1, 2) f(2, 2) f(1, 2) f(0,2)
f(2, 1) f(1, 1) f(0, 1) f(1, 1) f(2, 1) f(1, 1) f(0,1)
f(2, 0) f(1, 0) f(0, 0) f(1, 0) f(2, 0) f(1, 0) f(0,0)

...

Null Extension

For some applications, the order of the matrix defining the mask is much
smaller than the spatial resolution of the image. If it is not very important to
preserve the values of the filtered image in a small neighborhood of the edge,
we may simply decide not to extend the image. In other words, we compute
f ∗h only for pixels (n,m) where Equation (7.9) makes sense. Thus, an m×n

Fig. 7.12. Extension of a signal by reflection.

166 7 Operations on Images

Fig. 7.13. Null extension of an image.

image filtered with an order-k mask, where k is odd, yields an image of order(
m− 1

2 (k − 1)
)
×

(
n− 1

2 (k − 1)
)
. Figure 7.13 illustrates this situation with a

3× 3 mask. In this case the rows and columns of the image whose pixels are
shown in white will be undefined in the filtered output (the original pixel’s
values could be repeated if necessary).

7.4 Examples of Linear Filters

We now introduce the spatially invariant linear filters most commonly used in
computer graphics and image processing. In each case we treat the filter first
in the continuous domain and then in the discrete domain.

Box Filter

In one dimension, the box filter has kernel

box1(x) =
{

1/(2a) if − a ≤ x ≤ a,
0 if |x| > a.

Note that this function differs from the pulse function defined in Chapter 2
by a normalization factor 1/(2a).

The definition just given can easily be extended to the two-dimensional
case by imposing a separability condition

box2(x, y) = box1(x) box1(y).

The graph of this kernel is shown in Figure 7.14 for the one- and two-
dimensional cases.

The box filter is a lowpass filter. This is easy to verify by analyzing the
filter in the frequency domain. In fact, the transfer function of the filter box2

is the two-dimensional sinc function. Indeed, from (7.4) we obtain

7.4 Examples of Linear Filters 167

Fig. 7.14. Kernel of the box filter in one and two dimensions.

F (box2)(u, v) = F (box1 · box1)(u, v)
= F (box1)(u) · F (box1)(v)

=
sin x

x

sin y

y
= sinc(x, y),

whose graph is shown in Figure 7.15, together with its cross section along
the x-axis. Note that the cross section sinc(x, 0) is exactly the graph of the
one-dimensional sinc function.

Thus, in the frequency domain, filtering (in the spatial domain) with a box
filter corresponds to multiplying the Fourier transform by the sinc function;
this clearly dampens high frequencies.

Figure 7.16 shows a contour density image of the transfer function of the
box2 filter (white regions correspond to positive values, black areas to negative
values, and gray areas to intermediate values). From this picture we conclude
that the filter is not isotropic. That is, the dampening of high frequencies
depends not only on the frequency values but also on the directions these
frequencies occur on the image. Also, the negative values assumed by the
transfer function cause a phase shift on some pixels of the filtered image.
These problems may give rise to artifacts on the filtered image.

In order to give examples, a discretization of the box filter should be
computed. It is very easy to obtain a mask of order n: it is defined by an n×n

Fig. 7.15. Graph of the function sinc(x, y) and a cross section thereof.

168 7 Operations on Images

Fig. 7.16. Contour density image of the sinc function.

matrix (hij) such that hij = 1/n2. Thus, a discretization of this filter with a
3× 3 mask would be

1
9 ·

1 1 1
1 1 1
1 1 1

.

Since the mask is symmetric and of odd order, convolution consists in
taking the mean of the pixels in the 8-connected neighborhood of every
pixel.

Now consider the test image f(x, y) = cos2(x2 + y2), shown on the left in
Figure 7.17. This image has very high frequencies with a strong directionality.

Fig. 7.17. Artifacts of box filtering.

7.4 Examples of Linear Filters 169

By filtering it using a box filter mask of order 11, we obtain the image on the
right. Artifacts due to the filter anisotropy and phase shift are quite percep-
tible.

When the image does not have strong directionalities in its frequencies, the
filtering artifacts are difficult to perceive, especially if we use a small mask.
Figure 7.18 shows the effect of a box filter with a 5×5 mask, or about 0.11 cm
on a side.

Bartlett Filter

In one dimension, the Bartlett filter or triangular filter has kernel

h1(x) =
{

1− |x| if |x| ≤ 1,
0 if |x| ≥ 1.

It is easy to verify that this filter is obtained by the convolution product
h1(t) = box(t) ∗ box(t), where box(t) is the kernel of the box filter defined
above with a = 1

2 . In other words, applying the Bartlett filter is equiv-
alent to applying the box filter twice in cascade. Its transfer function is
therefore

ĥ(t) = sinc2t = h1(x) =
{

(sin2 t)/t2 if t �= 0,
0 if t = 0.

Fig. 7.18. Top: Original image. Bottom: Image after applying a box filter of order 5.

170 7 Operations on Images

Fig. 7.19. Bartlett filter impulse function (a) and transfer function (b).

Figure 7.19 shows the graphs of the impulse function h and of the transfer
function ĥ in the one-dimensional case. The Bartlett filter is therefore also a
smoothing filter and dampens high frequencies even more than the box filter.

In two dimensions, the Bartlett filter h2 is defined by separability:

h2(x, y) = h1(x) · h1(y).

From the separability of the filter kernel h2, and equation (7.4), we conclude
that the transfer function in two dimensions is given by sinc2(x, y). The graph
of this function is shown in Figure 7.20, together with a cross section along
the x-axis.

The graphs in Figures 7.20 and 7.15 have the same domain, [−12, 12] ×
[−12, 12]. Figure 7.21 shows the density plot of the transfer function (black
areas correspond to 0, and lighter areas to positive values). We can conclude
that the Bartlett filter has better decay properties when filtering high fre-
quencies and that it assumes only nonnegative values, but it is an anisotropic
filter.

To obtain a mask of order 3 for the one-dimensional Bartlett filter, we can
discretize the support [−1, 1] of the kernel h1(x) at the points x = − 1

2 , x = 0,
and x = 1

2 . We get

1
2 · 1

2 1 1
2

= 1
4 · 1 2 1 .

Fig. 7.20. Transfer function of the Bartlett filter in two dimensions, and a cross
section thereof.

7.4 Examples of Linear Filters 171

Fig. 7.21. Density plot of Bartlett’s filter transfer function.

To obtain a mask of order 5, we can discretize the support uniformly at the
points − 2

3 ,− 1
3 , 0, 1

3 , 2
3 . We get

1
3 · 1

3
2
3 1 2

3
1
3

= 1
9 · 1 2 3 2 1 .

In the same way we can get a discretization of the Bartlett kernel of any
order. You can check that the order-7 discretization is given by

1
16 · 1 2 3 4 3 2 1 .

To get a discretization of the two-dimensional Bartlett kernel h2(x, y),
we just have to remember that this kernel is separable, that is, h2(i, j) =
h1(i)h1(j) for i = 1, . . . ,m and j = 1, . . . , n. We illustrate this below, deriving
the order-5 convolution mask for the Bartlett filter.

1
2
3
2
1

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

1 2 3 2 1

We are omitting the normalizing factor 1
9 for each one-dimensional kernel.

Recall that the two-dimensional mask obtained above must be normalized so
the entries add up to one, that is, we must divide each entry by 81.

Clearly, in computing these masks we can exploit the symmetry of the
convolution kernels.

Figure 7.22 shows an image processed by an order-5 Bartlett filter (about
0.11 cm on a side). Comparing it with Figure 7.18, we see again that the
dampening of high frequencies is greater than for the box filter.

172 7 Operations on Images

Fig. 7.22. Top: Original image. Bottom: Image after applying a Bartlett filter of
order 5.

Piecewise Polynomial Filters

The box filter has a piecewise polynomial kernel of degree 0 and the Bartlett
filter has a piecewise polynomial kernel of degree 1. If we continue the process
of convolving the box1 filter successively, we obtain a family of piecewise
polynomial filters of increasing degree. In one dimension we would have

P1(t) = box1(t) ∗ · · · ∗ box1(t)︸ ︷︷ ︸
n times

.

The two-dimensional filters are obtained by requiring separability:

P2(x, y) = P1(x) · P1(y).

If the number of convolution factors n increases arbitrarily, this family of
piecewise polynomial filters converges to the gaussian filter. This result follows
from the famous central limit theorem.

Since the blurring properties of piecewise polynomial filters improve as the
degree increases, we expect that the gaussian filter, as a lowpass filter, has
very good properties. This is true, as we will see in the next section.

7.4 Examples of Linear Filters 173

Gaussian Filter

In one dimension the kernel Gσ(x) of the continuous-domain gaussian filter
is given by the gaussian function

Gσ(x) =
1

σ
√

2π
e−x2/(2σ2),

where σ is a constant, called the variance of the function. In two dimensions
the kernel is defined by

Gσ(x, y) =
1

2σ2π
e−(x2+y2)/(2σ2).

This filter is separable: Gσ(x, y) = Gσ(x)Gσ(y). The graph of Gσ(x, y) for
σ = 2 is shown in Figure 7.23 together with a cross section along the x-axis.
Geometrically, this graph is obtained from the graph of a one-dimensional
gaussian curve, by rotation around the vertical axis.

A quick analysis in the continuous domain shows that the gaussian filter
is a lowpass filter. We just observe that the Fourier transform of a gaussian
distribution is also a gaussian. In other words, the transfer function is gaussian,
so that high frequencies in the filtered signal are damped by a factor that
grows exponentially with the frequency. The transfer function assumes only
nonnegative values, and the rotational symmetry of the gaussian shows that
the filter is isotropic.

Compare the graph for the gaussian filter (Figure 7.23) with those for the
box and Bartlett filters (Figures 7.15 and 7.20); we observe that the gaussian
graph is shown in the square [−6, 6]× [−6, 6]. Figure 7.24 shows the effect of
the gaussian filter on the test image used to show the anisotropic effects of
the box filter (Figure 7.17).

To discretize the one-dimensional gaussian filter, we could proceed as for
the Bartlett filter. However, because of the defining expression of the gaussian
kernel, it is not possible to obtain a uniform mask whose entries are rational
numbers. This leads to certain problems, mostly of a computational nature.
A more elegant and efficient method is to use the central limit theorem to

Fig. 7.23. Gaussian distribution function with mean 0 and variance 2.

174 7 Operations on Images

Fig. 7.24. Test image filtered with the gaussian filter.

obtain successive approximations to the gaussian mask. We will do this in the
next section.

Binomial Filters

The gaussian function used to define the gaussian filter represents in fact a
probability density function with mean zero and variance σ, called the nor-
mal probability distribution. A particular case of the central limit theorem,
which is well known in statistics, shows that the normal distribution can be
approximated by the binomial distribution, which is discrete. We will soon
give more details about this.

Consider an event with two possibilities (success and failure) such that the
probability of success is p. The event is repeated independently n times, and
we want to measure the probability of s successes occurring.

The above problem is modeled by the well-known binomial distribution of
probability, and the solution is given by the expression

b(s) =
(n

s

)
ps(1− p)(n−s), s = 0, 1, . . . , n. (7.10)

The central limit theorem guarantees that, for large values of n, b(s) ap-
proximates a normal distribution with the same mean and variance. That
is, as n tends to ∞, the function values b(s) approach the value g(s) of a
gaussian g.

If we take p = 1
2 in (7.10), we have

b(s) =
n!

s!(n− s)!
1
2n

, for s = 0, 1, . . . , n. (7.11)

7.4 Examples of Linear Filters 175

By varying s, with n fixed, we obtain a mask of order n + 1 that is an
approximation to a gaussian mask. The table below shows some masks for
n = 1, 2, 3, . . . , 8.

n 2n mask coefficients
1 2 1 1
2 4 1 2 1
3 8 1 3 3 1
4 16 1 4 6 4 1
5 32 1 5 10 10 5 1
6 64 1 6 15 20 15 6 1
7 128 1 7 21 35 35 21 7 1
8 256 1 8 28 56 70 56 28 8 1

For masks of odd orders n = 2m + 1, Equation (7.11) can be rewritten in
the form

b(s) =
1

22m+1

(2m + 1)!
(m− k)!(m + k)!

, for k = −R, . . . , R.

As n increases, we obtain discrete convolution masks that approximate the
family of piecewise polynomial filters introduced before (box filter, Bartlett
filter, and so on). For large values of n we obtain good approximation masks
for the gaussian filter.

Using the separability of the gaussian filter, one can easily obtain two-
dimensional masks, just as we did for the Bartlett filter in the previous section.
We show here two-dimensional masks of order 2, 3, 4, and 5.

1
4 ·

1 1
1 1

1
16 ·

1 2 1
2 4 2
1 2 1

1
64 ·

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

1
256 ·

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

·

The bottom part of Figure 7.25 was obtained from the top part by applying
a gaussian filter of order 5, which represents about 0.11 cm of the image side.
Note how the loss of high frequencies in this image is more noticeable than in
the corresponding box-filtered and Bartlett-filtered images (Figures 7.18 and
7.22, respectively).

176 7 Operations on Images

Fig. 7.25. Use of a gaussian filter of order 5.

Laplacian Filter

The laplacian operator ∇ is defined on the space of twice-differentiable func-
tions of two variables:

∇f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
.

It defines a linear filter in the continuous domain. In fact, it is a highpass filter.
To see this, we first recall the following important property of the Fourier
transform:

F

[
∂f

∂x

]

= 2πuf̂(u, v);

F

[
∂f

∂y

]

= 2πvf̂(u, v),

where f̂(u, v) indicates the Fourier transform of the function f(x, y). It follows
that

F [∇f] = (2π)2(u2 + v2)f̂(u, v),

that is, the transfer function of the laplacian filter is

H(u, v) = −(2π)2(u2 + v2).

The graph of this function is a paraboloid of revolution (Figure 7.26). Thus,
low frequencies are damped by the laplacian filter, while high frequencies are

7.4 Examples of Linear Filters 177

Fig. 7.26. Transfer function of the laplacian filter.

amplified by a factor that grows with the square of the frequency (quadratic
modulation).

We now turn to the laplacian filter in the discrete domain. Using Taylor’s
formula, we have

f(x + 1) = f(x) + f ′(x) + 1
2f ′′(x0), for x < x0 < x + 1.

Thus,
f(x + 1) ≈ f(x) + f ′(x) + 1

2f ′′(x).

Since f ′(x) ≈ f(x)− f(x− 1), it follows from this that

f(x + 1) ≈ 2f(x)− f(x− 1) + 1
2f ′′(x),

so that
f ′′(x) ≈ 2f(x + 1)− 4f(x) + 2f(x− 1).

We conclude that, apart from a proportionality factor 1
2 , we have

d2f

dx2
≈ Δ2f(x) = f(x + 1)− 2f(x) + f(x− 1).

The discrete laplacian is therefore given by

∇f(i, j) = Δ2
xf(i, j) + Δ2

yf(i, j)

=
(
f(i + 1, j) + f(i− 1, j) + f(i, j + 1) + f(i, j − 1)

)
− 4f(i, j).

A 3× 3 mask for the laplacian filter is

0 1 0
1 −4 1
0 1 0

.

178 7 Operations on Images

By analyzing the kernel mask for the laplacian filter obtained above, we see
that in regions of the image where we have low variations of intensities (low
frequencies), the filtered image is almost black (it is black if the image intensity
is constant). It is easy now to devise different masks for highpass filters with
behavior similar to the laplacian. An improvement can be obtained by taking
the average on an 8-connected neighborhood. The mask is given by

1 1 1
1 −8 1
1 1 1

.

Fig. 7.27. Top: Original image. Middle: filtered with truncation; Bottom: filtered
with offset.

7.5 Edge Enhancement Operations 179

When applying the laplacian filter to an image, we may get negative val-
ues; in order to visualize the filtered image, we must either clip the negative
intensities to 0 or add an offset to the image intensities. This is illustrated
in Figure 7.27. The middle figure is the filtered image with negative values
clipped. The bottom image shows the same image with an offset of 100 added
to the filtered image. The laplacian filter used was the 8-connected neighbor-
hood defined above. Observe that all the low-frequency details of the original
(slow variations) are lost in the filtering process.

A Plethora of Highpass Filters

Apart from the proportionality factor 1
5 , the expression just given for ∇f(i, j)

is equal to

f(i, j)− 1
5 (f(i + 1, j) + f(i− 1, j) + f(i, j) + f(i, j + 1) + f(i, j − 1)),

which is exactly the difference between the original image and the output of
the image through a (lowpass) box filter with a diamond-shaped mask (the
corners of the discretized kernel having zero entries). This means the laplacian
filter (apart from a constant factor) can be obtained by lowpass filtering the
image and subtracting the blurred image from the original one. This fact can
be generalized. If I denotes the identity filter, that is, if I(f) = f for any
image f , and B is a blurring (lowpass) filter, then H = I − B is a highpass
filter. As an example, taking B as the Bartlett filter, we obtain the highpass
filter mask

1
16 ·

1 2 1
2 4 2
1 2 1

−
0 0 0
0 1 0
0 0 0

= 1
16 ·

1 2 1
2 −12 2
1 2 1

.

7.5 Edge Enhancement Operations

In this section we will use the filters studied earlier in order to obtain several
operations that enhance image edges. Edge enhancement is a very important
filtering operation. In fact, when manipulating images it is very common that
some operations destroy high-frequency information; thus, edge enhancement
is used as a way to restore the original image’s details.

We will study three operations of edge enhancement: laplacian addition,
unsharp masking, and difference of gaussians.

7.5.1 Laplacian Addition

Filtering an image with the laplacian results in an image with informa-
tion about the high frequencies of the original image. This high-frequency

180 7 Operations on Images

information concentrates around discontinuities of the image function that
are perceived as boundaries between the objects present on the image.

Therefore, subtracting the laplacian frequency information decreases the
image high contrast, and adding the laplacian frequency information enhances
the image details. This is illustrated in Figure 7.28. In (a) we show the original
image; in (b) we show the filtered image (with offset); and in (c) we have the
image in (a) with the details in (b) added.

Blurring and Diffusion

There is a very interesting physical interpretation of the use of the laplacian
filter as an operation for edge enhancement. The operation of blurring an
image (decreasing its high frequencies) can be modeled as a diffusion process
whose evolution is dictated by the partial differential equation

∂f

∂t
= −k∇2f, (7.12)

where k is a positive constant. The function f(x, y, t) is the blurred image
after a time t has elapsed from the beginning of the diffusion process. By
expanding f in a Taylor series in time around t = 0, we obtain

f(x, y, t) = f(x, y, 0) + t
∂f

∂t
+ t2

∂2f

∂t2
+ · · · .

By neglecting higher-order terms and using (7.12), we obtain

f(x, y, t) = f(x, y)− tk∇2f,

that is,
f(x, y) = f(x, y, t) + tk∇2f.

This equation shows that the original, unblurred image f(x, y) = f(x, y, 0)
is obtained from the blurred image f(x, y, t) by adding the laplacian of the
original image.

Fig. 7.28. (a) Original image. (b) Filtered image. (c) Image with enhanced edges.

7.5 Edge Enhancement Operations 181

Mach Bands and Laplacian

It is interesting to understand geometrically how laplacian addition acts as
an edge enhancement filter. For this, consider the step pattern shown in
Figure 7.29. The graph on the right shows the intensity values of the pat-
tern along a scanline. At discontinuity points the intensity is the average of
the limits on the left and on the right. Suppose that the intensities along each
scanline are given by

· · ·m m m m
m + n

2
n n n n · · · ,

where m and n are positive constants. Using the one-dimensional laplacian

−1 2 −1

and filtering the scanline, we obtain

· · · 0 0 0 m− m + n

2
0 n− m + n

2
0 0 0 · · · .

This is better illustrated, in the continuous domain, by Figure 7.30. On the
left we have the step intensities before filtering, and on the right we show the
filtered steps. By adding the filtered scanline to the original scanline inten-
sities of Figure 7.29, we obtain the scanline intensities shown in the graph
of Figure 7.31. The overshoots at the discontinuities are responsible for the
perception of enhancement of the edge. The enhanced step pattern is also
shown in Figure 7.31. Besides illustrating geometrically edge enhancement by
laplacian addition, the preceding example conveys another interesting fact.

The result of the edge enhancement operation is similar to the human vi-
sion behavior of the step pattern by the perception of Mach bands discussed
in Section 11.2. This remark supports the fact that the human visual sys-
tem concentrates on edges, ignores uniform regions, and performs an edge
enhancement operation similar to the technique of enhancement by laplacian
addition.

Fig. 7.29. Left: Step pattern. Right: Scanline intensities.

182 7 Operations on Images

Fig. 7.30. Left: step pattern. Right: filtered step.

Fig. 7.31. Left: Enhanced ladder. Right: Filtered intensities of scanline.

7.5.2 Unsharp Masking

This section will introduce the most popular edge enhancement operation in
use. The unsharp masking technique (USM) is present in most of the im-
age manipulation software on the market. The technique mimics a traditional
photographic technique that is very commonly used to enhance images, espe-
cially in the field of scientific photography. It is worth describing the analog
technique before introducing its digital counterpart.

First we make a blurred contact copy on film. The blurring is obtained
by leaving a small gap between the emulsions. After this copy is ready, we
produce a new contact print in a two-step exposure. First we expose using the
original film, and then we use the blurred negative (with perfect alignment)
to expose again.

The rationale behind this process is the following: in low-frequency regions
of the image, the blurred film is dark. In high-frequency regions, the edges
get blurred and allow some light to pass through in the second exposure.
Therefore, the blurred film is used as a mask to allow overexposure on the
image details.

Now we describe how the analog unsharp masking technique can be imi-
tated in the digital domain using the operations studied before.

Given an image f , we use a gaussian filter to obtain a blurred image g.
We obtain an image h by subtracting the blurred image g from f . We have
already seen that the image h could essentially be obtained directly from f

7.5 Edge Enhancement Operations 183

Fig. 7.32. (a) Original image. (b) Blurred image. (c) Difference between first two.
(d) Enhanced image.

using a laplacian filter. The edge enhancement on the original image f is
obtained by adding the details of the image h to it. Figure 7.32 illustrates the
whole process geometrically by using the change of intensities along a scanline
under the operation. In (c) we add an intensity offset in order to visualize the
negative values.

Even better results in unsharp masking filtering can be obtained by com-
bining the gaussian and laplacian filters: first we blur the image with a gaus-
sian filter, and then we use a laplacian to enhance the edges. This enhanced
image is then used to construct the unsharp mask.

Since the above operation

Δ(f ∗Gσ) = f ∗ΔGσ,

this is equivalent to using a filter with kernel ΔGσ, whose continuous version
is

ΔGσ(x, y) =
x2 + y2 − 2σ2

2πσ6
e−(x2+y2)/(2σ2). (7.13)

A discrete mask for this filter is given by

0 1 1 0
1 −2 −2 1
1 −2 −2 1
0 1 1 0

.

7.5.3 Difference of Gaussians

The use of the laplacian filter to improve the unsharp masking technique can
be avoided. Very good results are obtained by using the difference between

184 7 Operations on Images

Fig. 7.33. Kernel of the DOG filter.

two gaussian filters with the same mean and distinct variance. This filter is
called the difference of gaussians (DOG).

Figure 7.33 shows the shape of a DOG filter kernel (the two gaussians are
shown in dashed lines) in the one-dimensional case. The two-dimensional ker-
nel is obtained by rotating the one-dimensional kernel around the vertical axis.
Notice that the shape is similar to the kernel of the “laplacian-of-gaussian”
filter in Equation (7.13).

The DOG filter is widely used in the area of computer vision. Since the
eye performs a lowpass filtering operation, it seems reasonable that the DOG
filter is a model for the way the human visual system locates boundaries and
other high-frequency details on the image.

7.6 Comments and References

The fast Fourier transform is discussed in a great many articles and books; we
suggest the reader consult (Lim 1990) and its comprehensive list of references.
A fast Fourier transform program, written in C, can be found in (Wolberg
1990).

An elementary approach to general aspects of computer graphics and im-
age processing can be found in (Pavlidis 1982).

The morphological filters introduced in this chapter show only the tip of
an iceberg. These filters lie at the foundation of the discipline of mathematical
morphology. The classical references for the study of mathematical morphol-
ogy are (Serra 1982) and (Serra 1988).

A comprehensive discussion on color clipping and color conversion can be
found in (Hall 1989), (Cook and Torrance 1981), and (Catmull 1979). See also
Chapter 16 of this book.

The space of images defined on a given domain has a natural vector space
structure, so it is natural to define algebras on it. This allows the reduction
of many problems about images to operations in this algebra. The interested
reader can consult (Ritter, Wilson and Davidson 1990).

7.6 Comments and References 185

Image compression using the laplacian pyramid was introduced in (Burt
and Adelson 1983). A good survey on the use of pyramid structures can be
found in (Adelson et al. 1984). A very accurate and complete discussion of
pyramids and their relationship with wavelets can be found in (Meyer 1993).
A general overview of the theory of wavelets and its relationship with mul-
tiresolution decomposition can be found in (Daubechies 1992).

(Jahne 1993) is a very good and well-illustrated book covering linear filter
operations, including detailed discussion of laplacian and gaussian pyramids.

We have tried to illustrate all of the image operations introduced in this
chapter. The reader interested in more pictorial examples of the filtering op-
erations should see (Russ 1992), a wonderful book containing hundreds of
beautiful images.

The eye image used in Figures 7.18, 7.22, 7.25, 7.27 and 7.35 is a detail
from the image “Portrait of a girl in red”, by Bob Clemens, from the Kodak
PhotoCD, Photo Sampler.

The original image in Figures 7.28 and 7.32 is a detail from “Market Place”,
by Alfons Rudolph, from the Kodak PhotoCD, Photo Sampler.

References

[Adelson et al. 1984]Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt,
P. J., and Ogden, J. M. (1984). Pyramid methods in image processing.
RCA Engineer, 29(6).

[Burt and Adelson 1983]Burt, P. J. and Adelson, E. H. (1983). The laplacian
pyramid as a compact image code. IEEE Trans. Commun., 532–540.

[Catmull 1979]Catmull, E. (1979). A tutorial on compensation tables. Com-
puter Graphics (SIGGRAPH ’79 Proceedings), 13(3):1–7.

[Cook and Torrance 1981]Cook, R. L. and Torrance, K. E. (1981). A re-
flectance model for computer graphics. Computer Graphics (SIG-
GRAPH ’81 Proceedings), 15(3):307–316.

[Daubechies 1992]Daubechies, I. (1992). Ten Lectures on Wavelets. Num-
ber 61 in CBMS-NSF Series in Applied Mathematics. SIAM Publica-
tions, Philadelphia.

[Hall 1989]Hall, R. A. (1989). Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York.

[Jahne 1993]Jahne, B. (1993). Digital Image Processing: Concepts, Algorithms
and Scientific Applications, second ed. Springer-Verlag, New York.

[Lim 1990]Lim, J. S. (1990). Two-Dimensional Signal and Image Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[Meyer 1993]Meyer, Y. (1989). Wavelets Algorithms and Applications. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia.

[Pavlidis 1982]Pavlidis, T. (1982). Algorithms for Graphics and Image Pro-
cessing. Computer Science Press, Rockville, MD.

186 7 Operations on Images

[Ritter, Wilson and Davidson 1990]Ritter, G. X., Wilson, J. N., and Davidson,
J. L. (1990). Image algebra: An overview. Computer Vision, Graphics
and Image Processing, 49:297–331.

[Russ 1992]Russ, J. C. (1989). The Image Processing Handbook. CRC Press,
Boca Raton, FL.

[Serra 1982]Serra, J. P. (1982). Image Analysis and Mathematical Morphology.
Academic Press, New York.

[Serra 1988]Serra, J. P. (1988). Image Analysis and Mathematical Morphology:
Theoretical Advances. Academic Press, London.

[Wolberg 1990]Wolberg, G. (1990). Digital Image Warping. IEEE Computer
Society Press, Washington, DC.

8

Sampling and Reconstruction

Analog images must be sampled before being represented on the computer.
In order to be visualized they must be displayed on a device that is able
to reconstruct color, such as a CRT monitor. The sampling process is called
rasterization; it is carried out by some sampling device, such as a scanner
or TV camera, or by discretizing a continuous mathematical description of a
scene, as in the case of the rendering process of image synthesis systems. The
display device reconstructs the discrete image, creating an optical-electronic
version that is perceived by the eye. Thus, an understanding of sampling and
reconstruction is a good foundation for producing good-quality images.

The process of sampling and reconstruction can be translated into opera-
tions with images. In this chapter we use the signal theory developed earlier in
order to study the problems involved. We restrict our study to uniform point
sampling, which is simply called sampling in this chapter.

In the first section we make a review of sampling and reconstruction in
order to attain some degree of independence from previous chapters.

8.1 Sampling

To keep the notation simple, we will consider one-dimensional signals. Let f
be a continuous signal and {k Δt : k ∈ Z} a uniform lattice.

8.1.1 Time-Domain Viewpoint

Point sampling of f in the time domain is attained by multiplying f by an
infinite Dirac delta impulse train, or comb function, associated to the uniform
lattice Δt of the signal domain. That is,

fd = f · combΔt

and

combΔt =
+∞∑

k=−∞
δ(t− k Δt), for k ∈ Z.

This is illustrated in Figure 8.1.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 8,
c© Springer-Verlag London Limited 2009

188 8 Sampling and Reconstruction

Fig. 8.1. Sampling in the time domain.

8.1.2 Frequency-Domain Viewpoint

Multiplication by the comb signal in the time domain corresponds to convo-
lution of the signal spectrum with the Fourier transform of the comb signal in
the frequency domain. The latter is another comb signal associated with the
lattice comb1/Δt (with amplitude modulated by 1/Δt). Convolution with this
filter corresponds geometrically to translating the signal spectrum along the
lattice vertices and summing up the result. This is illustrated in Figure 8.2.

Fig. 8.2. Sampling in the frequency domain.

8.2 Reconstruction

The reconstruction problem is very simple to state: it consists in obtaining the
original signal f from the sampled signal fd. As for sampling, it is instructive
to look at this problem in both time and frequency domains.

8.2.1 Frequency Domain Viewpoint

The spectrum of a sampled signal consists of replicas of the spectrum of the
original signal, translated along the frequency axis, as illustrated in Figure 8.3.
The graph shows that the signal is bandlimited and was sampled within the
Nyquist limit of the Shannon-Whittaker theorem.

The sampling process introduces high frequencies not present in the orig-
inal signal (these frequencies appear as copies of the original spectrum).
These high frequencies are introduced by replicating the original spectrum. In
Figure 8.3, s0 separates the frequencies present in the original signal (s ≤ s0)
from those introduced in the sampling process (s ≥ s0). The cutoff frequency

8.2 Reconstruction 189

Fig. 8.3. Spectral model of a sampled signal.

s0 is important because it enables a signal to be exactly reconstructed from
the sampled signal by means of a filter that

• eliminates frequencies above the cutoff frequency, and
• leaves unchanged the frequencies below the cutoff (we say it has unit gain

in the base band s ≤ s0).

An ideal reconstruction filter is one that satisfies these two conditions. The
dashed lines in Figure 8.3 illustrate the transfer function of such a filter.

8.2.2 Time-Domain Viewpoint

In the time domain, reconstructing a signal from its samples amounts to in-
terpolating the samples in order to obtain the continuous signal. This inter-
polation can be achieved by convolving the time-domain sampled signal with
a convenient filter kernel. Indeed, if g is the transfer function of the recon-
struction filter in the frequency domain, the reconstructed signal in the time
domain is obtained by convolving the sampled signal with h = F−1(g), where
F−1 is the inverse Fourier transform. The filter h is called a reconstruction
filter or reconstruction kernel.

If the discrete samples are defined by fk = f(tk) = f(k Δt), for k ∈ Z, the
convolution is given by the equation

f(t) = fd ∗ h =
+∞∑

k=−∞
f(tk)h(t− tk). (8.1)

Geometrically, the reconstruction kernel h is translated to each lattice vertex
tk = k Δt, modulated by the value f(tk) of the sample at the vertex, and
the results are added. Mathematically, the translates h(t − tk) of the filter
kernel constitute the interpolation basis of the reconstruction process. This is
illustrated in Figure 8.4.

Fig. 8.4. Reconstruction from uniform samples.

190 8 Sampling and Reconstruction

Fig. 8.5. Sampling and reconstruction sequence.

Figure 8.5 illustrates the whole process of sampling and reconstruction:
part (a) represents the input image; part (b) shows the comb filter; part (c)
shows the sampled image; and part (d) shows the reconstructed image from
(c) using a box-shaped reconstruction filter.

Here we see an obvious relationship between reconstruction and filtering:
the reconstruction of a signal f can be regarded as the filtering of the discrete
signal fd using a spatially invariant linear filter with kernel h. In this case
the comparison between the various methods of reconstruction reduces to the
comparison of interpolation kernels.

Ideal Reconstruction

Shannon’s sampling theorem guarantees that it is possible to reconstruct the
original signal f from the discrete signal fd if we take at least one sample for
each half-cycle of the signal (Nyquist limit). When this happens, the original

8.3 Aliasing 191

signal can be recovered using the sinc function as a reconstruction kernel. This
is called the ideal reconstruction filter. Equation (8.1) in this case becomes

f(t) =
+∞∑

k=−∞
2Ω Δtf(k Δt) sinc

(
2πΩ(t− k Δt)

)
, (8.2)

where Ω is an upper bound for the signal bandwidth; that is, the support of
the Fourier transform f̂ is contained in the interval [−Ω,Ω]. A proof of this
fact can be found on Chapter 2.

8.3 Aliasing

Consider an arbitrary signal f . As just explained, the existence of a cutoff
frequency enables us to separate the base band of the signal from the high
frequencies introduced in the sampling process. When the translated spectrum
overlaps, there is no cutoff frequency: high frequencies in the original signal
are replicated in the sampled signal as low-frequency components. This is
illustrated in Figure 8.6. This phenomenon is called aliasing, and the spurious
low-frequency components are called aliases of the high-frequency components
they come from.

There are two sources of aliasing:

• the signal is not bandlimited, as in Figure 8.6(a); or
• the signal is bandlimited but was sampled at a lower rate than prescribed

by the Shannon-Whittaker theorem. See Figure 8.6(b).

Fig. 8.6. Spectrum of an image sampled with aliasing.

192 8 Sampling and Reconstruction

In order to avoid or minimize aliasing, we must therefore work with band-
limited signals and sample at a rate equal to or above the Nyquist limit.
That is,

1
Δt

> 2Ω, or Δt <
1

2Ω
,

where Ω is an upper bound for the signal bandwidth.
In order to satisfy the above inequality, we should either reduce Δt or

decrease Ω. These two possibilities give rise to two distinct methods used to
avoid, or at least minimize, aliasing:

• increasing the sampling rate (reducing Δt);
• reducing the high frequencies of the signal (reducing Ω).

The sampling rate can’t always be chosen above the Nyquist limit, be-
cause it is usually directly related to the resolution of the signal output de-
vice. Moreover, a very high sampling rate causes considerable storage and
processing problems.

A reduction of the high frequencies can always be performed, using a
lowpass filter; but this course of action is only appropriate when the high-
frequency information can be discarded without harm to signal perception.

Aliasing Error

When aliasing takes place, the use of an ideal lowpass filter, which allows an
ideal reconstruction for signals sampled within the Nyquist limit, no longer
works. It is not possible to recover the high frequencies from its low-frequency
aliases, because they are combined with the low frequencies present in the
original signal. This means that the series in (8.2) does not converge to the
signal f . This gives rise to an aliasing error, which can be expressed as

ε =

∣
∣
∣
∣
∣
f(t)−

+∞∑

k=−∞
2Ω Δt f(k Δt) sinc

(
2πΩ(t− k Δt)

)
∣
∣
∣
∣
∣
. (8.3)

The reconstructed signal may then be a poor approximation of the original
signal.

Perception of Aliasing

It is instructive to understand the way we perceive aliasing. For this we must
look at this phenomenon in the time domain. We give an example using the
periodic signal f(t) = sin(2πω0t), with frequency ω0. The spectral model of f

is shown in Figure 8.7(a). The signal f is bandlimited with supp f̂ ⊂ [−ω0, ω0].
Thus the Nyquist limit is Δt < 1/(2ω0); as already observed, this means we
should take at least one sample per half-cycle. See Figure 8.7(b).

8.3 Aliasing 193

Fig. 8.7. Sampling rate and frequency.

Fig. 8.8. Aliasing in the space domain.

Now we consider what happens when we sample the signal f using dif-
ferent sampling rates. In Figure 8.8(a) the sampling rate is four times the
Nyquist limit (four samples per half-cycle), and we clearly see that even a
linear interpolation of the samples reconstructs a good approximation of the
signal. In Figure 8.8(b) the sampling rate is exactly twice the Nyquist limit
(two samples per half-cycle). In this case, a linear interpolation of the samples
results in a constant null signal. Finally, in Figure 8.8(c) the sampling rate
is less than the Nyquist limit (no samples are taken in some half-cycles). If,
in this figure, we interpolate the samples in the most natural way, we obtain
a signal (thick curve in the figure) with a much lower frequency than the
original.

As we explained, in Figure 8.8(c) high frequencies of the original signal
are reconstructed as low frequencies. The reconstructed signal is completely
distorted compared with the original signal. You should persuade yourself,
by making measurements, that the frequency of the interpolated signal is
the sampling frequency minus the frequency of the original signal. This is
characteristic of aliasing.

Consider the image f(x, y) = cos2(x2 + y2) shown in Figure 8.9(a). It has
radial bands that get thinner and closer as the “squared radius” x2 + y2 in-
creases. Thus it has very high frequencies in regions where x2+y2 is high. The
image in 8.9(b) was undersampled and reconstructed. Notice that “ghosts” of
the low frequency information of the image appear in the reconstructed image,

194 8 Sampling and Reconstruction

Fig. 8.9. Reconstruction problems due to aliasing.

in regions of high frequencies. This is a drastic reconstruction problem caused
by aliasing: high frequencies of the original image are reconstructed as low
frequencies.

8.3.1 Aliasing in Computer-Generated Images

In computer graphics we generate an image from a synthetic scene containing
objects and light sources. The rendering equation enables us to compute the
illumination function f that gives the color for any location in the scene, from
the camera point of view. This illumination function is the signal that must
be sampled in order to generate the synthetic image of the scene.

You may have heard terms like point sampling, supersampling, and area
sampling, all of which are related to the question of avoiding aliasing when
sampling a scene in an image rendering system. What do these terms mean
in light of the preceding discussion about sampling and aliasing?

Point Sampling

Point sampling simply means what we have been calling so far the sampling
of a signal. In our case it means uniform point sampling.

Supersampling

Supersampling means taking a large number of samples p1, p2, . . . , pn in a
pixel p, and computing the final intensity of the pixel as the mean of these
intensities:

f(p) =
1
n

n∑

i=1

f(pi).

8.3 Aliasing 195

Observe that this is equivalent to using a smoothing filter on the image, and
then performing point sampling. As we have seen, this process really does
minimize aliasing.

Area Sampling

Area sampling consists in taking the intensity of the illumination function at
each pixel as the average of the function intensities over the whole pixel. Thus,
the value at a pixel P is taken as

f(p) =
1

Area(P)

∫

P

f(x, y) dx dy.

This is based on the intuitive idea that the “most representative” value of a
function over an area is the average.

It can be shown that supersampling converges to area sampling as the
number of samples increases to infinity (this is the essential concept behind
Monte Carlo methods). See the references in Section 8.9.

The process of taking the average reduces the high frequencies of the signal
within the pixel, thus minimizing aliasing.

Analytic Sampling

Another technique, known as analytic sampling, is appropriate when the signal
has large discontinuity boundaries inside the pixel, which is very common
when the signal is the illumination function of a scene. Such discontinuities
give rise to high frequencies in the image, which can bring serious aliasing
problems. To perform analytic sampling, we partition the pixel P into regions
R1, R2, . . . , Rn where the signal is continuous (Figure 8.10). Then we compute
an intensity on each set Ri of the partition using area sampling:

Fig. 8.10. Partition of a pixel into image continuity regions.

196 8 Sampling and Reconstruction

fRi
=

1
Area(Ri)

∫

Ri

f(x, y) dx dy.

The final intensity f(P) at the pixel is defined as the weighted average of the
intensity values for the individual regions:

f(P) =
1

Area(P)

n∑

i=1

Area(Ri)fRi

Again we observe the same idea: this method is equivalent to applying a
smoothing filter and then doing point sampling.

Other Sampling Techniques

Several other methods are used in computer graphics to minimize the effects
of aliasing when sampling the illumination function of a scene. Most are varia-
tions of the preceding methods, which seek increased efficiency and flexibility
in implementation and, in some cases, take advantage of perceptual factors
involved in human vision.

A different sampling method for minimizing aliasing artifacts in computer
graphics is nonuniform sampling. For this and more information on sampling
techniques, see the references in Section 7.9.

8.4 Reconstruction Problems

In the sampling/reconstruction problem we have to deal with three distinct
signals: the continuous signal f , the discrete signal fd, and the reconstructed
signal fr. Ideally we would like fr = f . When this happens we say the re-
construction is exact. Exact reconstruction is not always possible. The aim of
reconstruction techniques is to minimize the error |f − fr|.

Reconstruction techniques are very important in the manipulation of sig-
nals in the computer, for at least three reasons:

• In the solution of certain problems we need a continuous representation of
the signal.

• Output devices must deliver a reconstructed signal, to be absorbed by
the user’s senses: thus a video monitor reconstructs an analog (optical-
electronic) image when a digital image is sent to it.

• A good knowledge of the reconstruction techniques used by a given output
device is important in the creation or choice of algorithms to process the
signal to be displayed on that device.

In the next section we analyze a very simple reconstruction technique
in order to have a basic understanding of the problems we may face when
reconstructing a signal.

8.4 Reconstruction Problems 197

8.4.1 Reconstruction Using a Box Filter

We consider here reconstruction using the filter whose kernel is the pulse
function box filter

pa(t) =
{

1 if |t| ≤ a,
0 if |t| > a

introduced in Section 2.2.3. The reconstruction series in Equation (8.1)
reduces to

fr(t) = fd ∗ pΔt/2 =
∑

k

f(tk)pΔt/2 (t− tk). (8.4)

The reconstructed signal is a sum of pulse functions, modulated by the values
of the samples; it is therefore constant on each interval [tk −Δt/2, tk + Δt/2]
(see Figure 8.11). We say that the original signal is being approximated by
a piecewise constant signal. Unless the original signal is piecewise constant,
there is no chance of achieving exact reconstruction with this method. The
reconstruction process is illustrated in Figure 8.11 for one-dimensional signals.
An example of box reconstruction with images was shown in Figure 8.5.

The signal reconstructed with the box filter has discontinuities, which in-
troduce high frequencies in the resulting signal. Indeed, in the time domain
the signal is reconstructed by the convolution product appearing in (8.4). In
the frequency domain, the spectral model of the reconstructed signal is there-
fore given by the (usual) product of the spectral model of the discrete signal
(fk) with the transfer function p̂Δt/2(t) of the box filter. We know that

p̂Δt/2(s) = Δt sinc(2π Δt s).

Figure 8.12 shows the spectral model of the sampled signal (dashed curves),
superimposed on the graph of the transfer function p̂Δt/2(s). As the figure
shows, even if the signal is bandlimited and sampling is done according to
the Nyquist limit, the spectral model of the reconstructed signal has high
frequencies absent from the original signal, because the sinc filter has no cut-
off frequency. Such high frequencies manifest themselves perceptually in the
reconstructed signal in various ways, depending on the type of signal. When
the reconstructed image is displayed on a video monitor, the high frequencies
introduced generally impart a jagged appearance to the boundaries of the
displayed image.

Fig. 8.11. Reconstruction with a box filter.

198 8 Sampling and Reconstruction

Fig. 8.12. High frequencies introduced by box reconstruction.

It is worth remarking that this jaggedness is usually attributed to alias-
ing. As just explained, however, the source of the problem is not always
aliasing—in a sense, in fact, it is just the opposite. With aliasing we lose
the high-frequency information, which gets confused with the low frequencies
in the reconstructed signal. The reconstruction process described above, on
the other hand, is characterized by the introduction of high frequencies into
the reconstructed signal.

8.4.2 Analysis of Reconstruction Problems

In a general setting, if a signal f has a linear representation in a basis {ek} of
the signal space, we can reconstruct it exactly from the samples ck = 〈f, ek〉
using the equation

f(t) =
+∞∑

k=−∞
ckek(t).

This equation defines an interpolation among the values of the signal samples
ck. As explained in the beginning of the chapter, when we use uniform point
sampling, ck = f(k Δt), the latter reconstruction series can be written as

f(t) =
+∞∑

k=−∞
f(k Δt)h(t− k Δt). (8.5)

Thus, the elements of the reconstruction basis {ek} are translates of a fixed
reconstruction filter h.

A vector-space interpretation of the reconstruction equation (8.5) is useful
in getting a better understanding of the reconstruction process. The translates
h(t− k Δt) of h constitute a set of linear independent functions in the signal
space S. In general, however, this set generates only a subspace V of the space
S. When V = S, exact reconstruction is always possible. When V �= S, only
signals in V can be reconstructed exactly.

In practice, exact reconstruction may be impossible for any of several
reasons:

8.4 Reconstruction Problems 199

1. The samples are not an exact linear representation for the signal. This is
the case when point sampling is performed disregarding the Nyquist limit.

2. The reconstruction series in (8.5) may have infinitely many nonzero terms,
and thus must be truncated when computing the reconstructed signal.

3. The elements of the reconstruction basis may not have compact sup-
port. This happens with the sinc function (the ideal reconstruction ker-
nel). Thus, even when the signal is sampled within the hypothesis of the
Shannon-Whittaker theorem (Nyquist limit), it may be impossible to com-
pute an exact reconstruction from the sampled signal.

In the first case we have an aliasing error in the signal representation, as
already discussed.

In the second case we have a truncation error, given by

ε =
∣
∣
∣
∣f(t)−

+N∑

k=−N

ckek(t)
∣
∣
∣
∣ =

∣
∣
∣
∣
∑

|k|>N

ckek(t)
∣
∣
∣
∣. (8.6)

We now analyze the third case, where the reconstruction basis must be
clipped to a compact interval in time domain. We will illustrate this with

Fig. 8.13. Transfer function of the clipped sinc filter.

200 8 Sampling and Reconstruction

Fig. 8.14. Ringing due to sinc filter clipping.

the sinc filter, which gives exact reconstruction according to the Shannon-
Whittaker theorem (see Chapter 2). Figure 8.13(a) plots the filter in the time
domain, and Figure 8.13(b) shows its transfer function.

Clipping the filter is equivalent to multiplication in the time domain by
some box filter. Parts (c) and (d) of Figure 8.13 show the box filter and its
transfer function (sinc).

Parts (e) and (f) of Figure 8.13 show, respectively, the clipped recon-
struction filter and its transfer function. The transfer function is obtained by
convolving the spectra in parts (b) and (d).

Two points should be stressed: the clipping process introduces high fre-
quencies in the clipped filter; these high frequencies give rise to ripple patterns
because of the shape of the sinc filter.

If the clipping is performed with very good control, it may cause the ac-
centuation of high frequencies, producing a sharpening of the image details. If
not, the high-frequency modulation causes a perceptual artifact called ringing
in the reconstructed image. This is illustrated in Figure 8.14.

8.5 Some Classical Reconstruction Filters

The box filter used in the reconstruction process of Section 8.4.1 is the sim-
plest of a family of filters called polynomial, since their kernels are defined
piecewise by polynomial expressions. Other filters in this family are obtained
from the box filter by successive convolutions:

box ∗ box = linear;
box ∗ linear = quadratic spline;
box ∗ quadratic spline = cubic spline;

and so on. Because of the correspondence between convolution in the space
domain and multiplication in the frequency domain, the transfer function of
these filters is a power of that of the box filter, sinc:

8.5 Some Classical Reconstruction Filters 201

Fig. 8.15. Reconstruction with linear filter.

transfer function filter

sinc(s) box
sinc2(s) linear
sinc3(s) quadratic
sinc4(s) cubic

...
...

A linear filter interpolates linearly between samples, so that the recon-
structed signal is continuous but has discontinuities in the first derivative.
Figure 8.15 shows this method of reconstruction.

Polynomial filters of higher degree have a faster decay rate than those of
lower degree. Therefore, the high frequencies introduced in the reconstruction
process decrease as the degree of the filter increases.

Signals reconstructed by means of higher-order polynomial filters have a
higher order of differentiability, as shown in Figure 8.16. These filters mini-
mize the introduction of high frequencies, but they may eliminate some high
frequencies present in the original image. We could say that sharpening is
traded for blurring as the degree increases.

High-degree filters have better decay properties and the oscillations of
their transfer function are milder, so images processed with these filters are
less prone to ringing. We can say that in using higher-degree filters we are
trading sharpness for blurring. This is desirable if we cannot control the degree
of sharpness to avoid ringing. However, there are other reconstruction filters
that allow better control of the trade-off of between sharpness and blurring.
See Section 8.9 for references.

Fig. 8.16. Reconstruction with higher-order polynomial filter.

202 8 Sampling and Reconstruction

Bilinear Interpolation

The process of reconstructing an image with a linear filter is called bilinear
interpolation, for the following reason. When used in image reconstruction,
the output of a Bartlett filter at a pixel can be obtained by making two linear
interpolations, one on the row and one on the column that contain the pixel.
For example, if we apply the Bartlett filter with mask

1
4 ·

1 2 1
2 1 2
1 2 1

to the image

f(i, j) a f(i, j + 1)
b c d

f(i + 1, j) e f(i + 1, j + 1)
,

where a, b, c, d, e = 0, we get the following replacements:

a → 1
2 (f(i, j) + f(i, j + 1));

b → 1
2 (f(i, j) + f(i + 1, j));

c → 1
4 (f(i, j) + f(i, j + 1) + f(i + 1, j) + f(i + 1, j + 1));

d → 1
2 (f(i, j + 1) + f(i + 1, j + 1));

e→ 1
2 (f(i + 1, j) + f(i + 1, j + 1)).

Note that polynomial filters seek to perform the reconstruction in a form
that approximates the action of the ideal filter given by the sinc function
corresponding to the Shannon basis. By the central limit theorem, the process
of successive convolutions discussed above converges to the gaussian

g(t) =
1√

2πσ2
e−x2/(2σ2),

whose transfer function is also a gaussian: ĝ(s) = e−2σ2π2s2
.

In Figure 8.17 we show the kernels of all the reconstruction filters just
discussed, together with their transfer functions. We also include the ideal
reconstruction filter.

One can extend the filters discussed above to arbitrary dimensions by
taking tensor powers of the kernel:

p(x1, x2, . . . , xn) = p(x1)p(x2) · · · p(xn).

We have already used two-dimensional versions of these filters, as examples
of lowpass filters in Chapter 6.

The polynomial reconstruction kernels approach the gaussian kernel as the
degree increases. The gaussian filter is far from being an ideal reconstruction

8.6 A Study of Reconstruction Problems 203

Fig. 8.17. Classical reconstruction filters (left) and their transfer functions (right).

filter, however. In fact, interpolation with Lagrange polynomials, well-known
from linear algebra, is a method that approximates exact reconstruction with
the Shannon basis as the number of samples tends to infinity.

The literature on reconstruction filters is abundant. See Section 8.9 for
references.

8.6 A Study of Reconstruction Problems

The ideal reconstruction filter does not produce good results in practice: the
reconstruction series is infinite, and interpolation filter in the space domain
(sinc kernel) does not have compact support (it must be clipped to a bounded

204 8 Sampling and Reconstruction

interval before being used to interpolate the samples of the image to be re-
constructed). Therefore, in trying to achieve a balance between computational
efficiency and the quality of the reconstructed image, we use simpler recon-
struction filters, the most common of which are the box filter, the Bartlett
filter, cubic interpolation filters, and approximations to the gaussian filter.

Because the filters used in practice do not satisfy the two defining prop-
erties of an ideal reconstruction filter—they don’t completely eliminate the
high frequencies introduced by sampling, and don’t have unit gain at the fre-
quencies of the original signal—the reconstructed image may present several
reconstruction artifacts.

In this section we will study several cases of reconstruction problems:

• introduction of high frequencies;
• loss of high frequencies;
• base-band modulation;
• hybrid cases, combining the first two above with the third;
• moiré patterns;
• anisotropic effects;
• frequency ripples.

We will illustrate the discussion of some of these problems with the signal
f(t) = sinc2(2π · 125t), whose graph is shown in Figure 8.18(a). We chose this
signal because it is bandlimited; its Fourier transform is the sawtooth function
whose graph is shown in Figure 8.18(b). These two graphs, like all the others
in this section, have ω = 2πs along the x-axis, where s is the frequency of the
signal.

The highest frequency in the signal f is 250. Thus, if we sample uniformly
at intervals of 10−3, we are within the Nyquist limit imposed by the Shannon–
Whittaker theorem. The discrete signal obtained is shown in Figure 8.18(c),
and its Fourier transform in Figure 8.18(d).

To reconstruct the original signal exactly, we would use an ideal recon-
struction filter with cutoff frequency between 250 and 750. Figure 8.19(a)
shows the Fourier transform of the sampled signal together with the graph of
an ideal filter with cutoff frequency 500. Multiplying the two together and tak-
ing the inverse transform, we get the reconstructed signal in Figure 8.19(b).
There is no perceptible difference between this signal and the original one
shown in Figure 8.18(a).

We now use the signal f above to study each of the reconstruction problems
just listed.

Introduction of High Frequencies

Spurious high frequencies are present in the reconstructed image when the re-
construction filter’s cutoff frequency is not low enough to exclude the frequen-
cies introduced by the sampling process, and these frequencies “leak” into the

8.6 A Study of Reconstruction Problems 205

(a)

(c) (d)

(b)

Fig. 8.18. A bandlimited signal (a), its Fourier transform (b), the sampled signal
(c), and its Fourier transform (d).

Fig. 8.19. Ideal reconstruction with a sinc filter.

reconstructed signal. To illustrate this problem, we take an ideal reconstruc-
tion filter whose support in the frequency domain is the interval [−850, 850]:
see Figure 8.20(a). Filtering the signal and taking the inverse Fourier trans-
form, we obtain the reconstructed signal, shown in Figure 8.20(b). Observe
how the high frequencies introduced in the reconstruction process distort
the original signal shown in Figure 8.18(a). In the reconstructed image these

206 8 Sampling and Reconstruction

Fig. 8.20. Too high a cutoff frequency leads to the introduction of spurious high
frequencies.

high frequencies will be perceived as ringing, a reconstruction artifact already
shown in Figure 8.14.

Loss of High Frequencies

The problem opposite the one just discussed occurs when the reconstruction
filter has too low a cutoff frequency and causes the loss of high frequencies
present in the original signal. To illustrate this, we take a sinc filter whose
Fourier transform has support [−150, 150], as in Figure 8.21(a). Filtering the
signal and taking the inverse Fourier transform, we obtain the reconstructed
signal shown in Figure 8.21(b). Observe the significant loss of high frequencies
in comparison with the original signal.

Perceptually, this problem causes blurring (loss of sharpness) in the image.
The final result is equivalent to what one would get by reconstructing the
image exactly and then applying a lowpass filter.

Base-Band Modulation

Base-band modulation occurs when the reconstruction filter has the right
cutoff frequency but does not have unit gain throughout the frequency range
of the original signal. The reconstruction filter we will use to illustrate this

Fig. 8.21. Too low a cutoff frequency leads to a loss of high frequencies.

8.6 A Study of Reconstruction Problems 207

Fig. 8.22. Variable gain leads to frequency modulation.

problem is the sinc2 filter, whose transfer function is the sawtooth graph
shown in Figure 8.18. As shown in Figure 8.22(a), this filter neither introduces
new frequencies nor removes frequencies present in the original signal, but
it does modulate the original frequencies in the process of reconstruction.
Perceptually, this modulation distorts the signal, as we see in the reconstructed
signal shown in Figure 8.22(b).

Loss of High Frequencies Plus Modulation

The problem of frequency modulation is commonly found simultaneously with
one of two earlier ones: loss of high frequencies or introduction of spurious high
frequencies. We look first at the case when the reconstruction filter has a low
cutoff and variable gain below the cutoff, as shown in Figure 8.23(a). The
reconstructed signal is shown in Figure 8.23(b). One can clearly see the dis-
tortion of the signal and the elimination of high frequencies (loss of sharpness)
by comparing with the original signal. Perceptually, the reconstructed image
will be blurred and the objects on the image will be distorted.

Introduction of High Frequencies Plus Modulation

Here the reconstruction filter has too high a cutoff frequency and also has
variable gain over the base band of the original signal. The result is distortion

Fig. 8.23. Loss of high frequencies plus modulation.

208 8 Sampling and Reconstruction

Fig. 8.24. Introduction of high frequencies plus modulation.

of the reconstructed image, together with the introduction of spurious high
frequencies, as we see in Figure 8.24. Perceptually, the reconstructed image
may present a severe “ringing” effect.

Moiré Patterns

A moiré pattern occurs when we use a reconstruction filter with high cutoff
frequency and the original image has periodic patterns. It is due to interference
between the periodic patterns of the original image and those introduced in
the process of reconstruction.

Suppose the image has a periodic pattern with spectrum as in
Figure 8.25(a) (a cosine spectrum). The frequency of the image pattern is
ξ0. If we sample the image at a frequency rate fs slightly greater than 2ξ0, we
obtain for the sampled signal the spectrum shown in Figure 8.25(b), where
gray arrows represent the translated copies of the original spectrum. Note that
the frequency ξ0 of the original signal is very close to the frequency fs − ξ0

introduced into the sampled signal.
Now consider a reconstruction filter whose cutoff frequency is greater than

fs− ξ0, as shown by the dashed curve in Figure 8.25(b). This filter will intro-
duce the high-frequency component fs − ξ0 in the reconstructed signal. The
signal reconstructed with this filter will have two periodic patterns, corre-

Fig. 8.25. Moiré patterns in the frequency domain.

8.6 A Study of Reconstruction Problems 209

sponding to the frequencies ξ0 and fs − ξ0. Because of the proximity of these
frequencies, these patterns get superimposed, creating a periodic pattern that
did not exist in the original image (like the beat heard when two very similar
tones sound together). This gives rise to a wavy pattern superimposed on the
reconstructed image (moiré, or moire, is a French word applied to fabrics, like
watered silk, that display a similar pattern).

Figure 8.9 illustrated this effect. The original image, on the left, has a set
of concentric rings of increasing radii and decreasing thicknesses. The image
function is f(x, y) = cos2(x2 + y2). In part (a) the image was sampled at
a good frequency rate, and the reconstructed image shows what should be
expected from the function f . In part (b) the image was sampled using a
very low sampling frequency. Notice that new frequencies are introduced in
the reconstruction process, which causes periodic patterns (circles) to appear
in the final image. These patterns interfere with the original image, creating
small wave patterns.

Anisotropic Effects

When reconstructing images, besides controlling the introduction of high fre-
quencies with the reconstruction filter, we must also control the filter shape—
the geometry of the filter support and the filter values. We have seen that
ringing artifacts may be caused by the ripples of the sinc filter on high fre-
quency values. The geometry of the filter support may also introduce aniso-
tropic artifacts in the reconstructed image. This is illustrated in Figure 8.26,
where the image on the right was obtained by resampling (i.e. sampling and
reconstructing) the image on the left. In the reconstruction step we used an
elliptically shaped approximation of the gaussian filter.

(a) (b)

Fig. 8.26. Reconstruction with anisotropic effects.

210 8 Sampling and Reconstruction

Anisotropic reconstruction artifacts are one of the causes of staircase ef-
fects when images are displayed on low-resolution monitors. The reconstruc-
tion function of these devices uses “square shaped” filters which produce an-
isotropic effects on lines that are neither horizontal nor vertical. Anisotropic
reconstruction filters are very useful in creating special effects in the recon-
structed image.

Frequency Ripples

To understand the problem of frequency ripples, consider the constant signal
f(t) = 1 shown in Figure 8.27(a). Its spectrum is the Dirac delta function
shown in Figure 8.27(b). Part (c) of the figure shows the sampled signal, and
part (d) shows its spectrum: a train of Dirac delta functions (the gray arrows
in (d) represent the translated copies of the original spectrum). Suppose that
in the reconstruction process the impulse at frequency ω0 = 1/Δt is not
eliminated.

In this case the spectrum of the reconstructed signal fr is

f̂r(ω) = δ(ω + ω0) + δ + δ(ω − ω0)
= δ + {δ(ω − ω0) + δ(ω − ω0)}.

The part of the spectrum inside brackets is a cosine spectrum; therefore the
reconstructed signal in the time domain is

fr(t) = f(t) + 2 cos(2πω0t)
= 1 + 2 cos(2πω0t).

That is, a cosine wave pattern was introduced in the reconstructed signal,
causing a ripple effect to appear.

Fig. 8.27. Constant signal and its spectrum.

8.7 Reconstructing After Aliasing 211

Fig. 8.28. Reconstruction with replicated DC component.

The cause of the ripple effect in the above example is easy: the spectrum
of the signal contains only the component of frequency 0 (called the DC com-
ponent of the signal); The ripples appear because this component is replicated
during the sampling process, and its replicas are not filtered during the re-
construction process.

The same ripple effect occurs for arbitrary signals when the DC component
of the signal, replicated during the sampling process, is not filtered in the
reconstruction. This is illustrated in Figure 8.28, where one replicated DC
component is introduced by the reconstruction filter (image on the left). The
ripples on the reconstructed image (on the right) are quite perceptible. The
correct reconstructed signal for this example is the squared sinc function,
shown in Figure 8.18(a).

8.7 Reconstructing After Aliasing

The examples in the previous section show that even a signal sampled ac-
cording to the Nyquist limit may be improperly reconstructed. In this section
we will study a case of reconstructing a signal that has been sampled with
aliasing.

Figure 8.29(a) shows a subsampling of the signal sinc2(2π 125t) used in the
previous section’s examples. Figure 8.29(b) shows the Fourier transform of the
subsampled signal. The presence of aliasing is quite marked, so problems in
reconstructing the original signal are unavoidable.

Indeed, the high frequencies introduced by the sampling process interfere
with the low frequencies of the original signal. During the reconstruction, if we
try to avoid these high frequencies by eliminating them with the reconstruction
filter, we lose high frequencies from the original signal. See Figure 8.30.

On the other hand, if we use a reconstruction filter whose transfer function
has bigger support, so as to preserve all of the frequencies from the original

212 8 Sampling and Reconstruction

Fig. 8.29. Sampling with aliasing.

Fig. 8.30. Aliasing and loss of high frequencies.

signal, we do not avoid the high frequencies introduced in the sampling pro-
cess. These frequencies distort the low frequencies in the reconstructed signal.
This is illustrated in Figure 8.31. We can say that the high frequencies that
appear in the reconstructed signal in Figure 8.31(b) are caused by aliasing.

Fig. 8.31. Aliasing and reconstruction with high frequencies.

8.8 A Case Study 213

8.8 A Case Study

In practice, how can one avoid or minimize reconstruction problems? Certainly
one obvious answer is immediate: choose a good reconstruction filter. But it
is also true that reconstruction problems can be minimized by increasing the
sampling rate. Indeed, by increasing the sampling rate, we increase the sepa-
ration between the translates of the spectrum of the original signal, and this
makes it easier for the reconstruction filter to eliminate high frequencies at
reconstruction time. (Increasing the sampling rate also helps minimize alias-
ing. The same solution to remedy two different problems may be the cause of
the confusion between aliasing and reconstruction artifacts in the literature.)

It is useful to look at a final example using images instead of one-
dimensional signals. Consider the four images shown in Figure 8.32. The im-
age in (a) was sampled and then reconstructed using an appropriate sampling
rate. There are no visible reconstruction problems. In (b) the same image was
undersampled and then reconstructed using a box filter. Note the distortion
in window shades (caused by aliasing) and the introduction of high frequen-
cies (caused by the reconstruction technique), as evidenced by the jagged
appearance of details such as the flowers. Image (c) was reconstructed from
the undersampled imaged using a Bartlett filter (bilinear interpolation), and

Fig. 8.32. Aliasing and reconstruction.

214 8 Sampling and Reconstruction

image (d) was obtained from the same image using a polynomial reconstruc-
tion filter of order 3, or bicubic filter.

Note that the jagged edges of the objects in (b) decrease in image (c)
and disappear in (d). These artifacts are due to the introduction of high
frequencies by the box filter used in the reconstruction; the other two filters do
not introduce high frequencies. Instead, they lead to a loss of high frequencies
in the image, which translates into a loss of sharpness (image blurring).

Note also that the distortion of the window shades does not disappear
when we switch to higher-order filters, in (c) and (d), since it is caused by
aliasing originating from undersampling. Aliasing artifacts are not eliminated
by using good reconstruction filters. They must be eliminated, or minimized,
before sampling the signal, either by using a lowpass filter or by increasing the
sampling rate.

When an image is sampled without aliasing, or in such a way as to minimize
aliasing, the quality of the reconstruction depends primarily on the process
of reconstruction. When the image is sampled with aliasing, reconstruction
problems are unavoidable. The aliased high frequencies introduced at sampling
time cannot be filtered out at reconstruction time.

Confusion between aliasing and reconstruction artifacts arises because, in
spite of being different, these two phenomena present some subtle similarities.
Therefore, it is important to stress the relationship between the artifacts re-
sulting from aliasing and those artifacts originating from poor reconstruction:

• When the image is sampled with aliasing, the reconstructed image will
necessarily be distorted (see the window shades).

• When aliasing occurs, high frequencies of the sampled signal are superim-
posed on the frequencies of the original signal, but these high frequencies
are lost in the reconstruction process.

• One of the problems of reconstruction is the introduction of spurious high
frequencies in the reconstructed image.

• An increase in the sampling rate minimizes the possibility of aliasing and
also minimizes some problems of reconstruction.

In general, when we look at an image, it is hard to tell apart problems due
to aliasing from those due to poor reconstruction. In any case this is usually
not important. Rather, the point of our study is to allow a better understand-
ing of the relationship between aliasing and reconstruction, so better-quality
images can be produced.

It is also worth observing that, for a given reconstruction filter, the qual-
ity of the reconstructed image improves when we look at it from far away.
Looking at an image from a distance (or, equivalently, with half-shut eyes)
amounts to applying a lowpass filter to the image, which palliates the problems
arising from spurious high frequencies introduced at reconstruction time (say
because the right cutoff frequency could not be determined). Aliasing prob-
lems cannot be corrected by dampening high frequencies in the reconstructed
image.

8.9 Comments and References 215

8.9 Comments and References

Aliasing problems in signal processing have attracted attention for a long
time (Mertz and Grey 1934). Also, early attention was given to the problem
in computer graphics (Crow 1977). An exposition of image sampling from the
viewpoint of measure theory can be found in (Fiume 1989). In particular, that
book contains a proof that supersampling converges to area sampling as the
number of samples increases.

It is important to stress that aliasing is a phenomenon closely associated
with point sampling. When we use a linear representation arising from a com-
plete orthonormal basis of the signal space, aliasing does not occur.

Nevertheless, for a long time the computer graphics literature did not
clearly differentiate between aliasing and reconstruction artifacts in image re-
construction. To our knowledge, the first work to address the difference was
(Mitchell and Netravali 1988). In this paper the authors make a clear distinc-
tion between sampling artifacts (which they call pre-aliasing) from artifacts
introduced by the reconstruction process (which they call post-aliasing). The
paper extensively discusses the problem of reconstruction and introduces a
parameterized cubic reconstruction filter whose parameters may be tuned in
order to minimize some commonly found reconstruction problems.

Another early work that addressed the problem of image sampling and
reconstruction was Heckbert’s master’s thesis (Heckbert 1989), which dis-
cusses sampling and reconstruction techniques in the context of image warp-
ing. This work and the previously mentioned one did not immediately receive
widespread dissemination in the area of computer graphics.

On the other hand, the recent book (Glassner 1995) devotes substantial
space to the discussion of reconstruction filters: Chapters 8, 9, and 10 cover
the subject of sampling and reconstruction. They contain a rather complete
and detailed survey of reconstruction filters and include nonuniform sampling.
This reference should be consulted by anyone seriously interested in further
pursuing the subject of image reconstruction.

The problem of image sampling and reconstruction is a particular case
of the larger problem of sampling and reconstructing an arbitrary graphical
object. This more general problem is covered in (Gomes et al. 1996), and,
with more details, in (SIGGRAPH 1996).

We mentioned in this chapter that Lagrange interpolation approximates
ideal interpolation with the sinc filter. For more information about this the
reader should consult (Jain 1989).

Understanding moiré patterns is crucial in the electronic publishing in-
dustry. A detailed study of moiré patterns both on the frequency and time
domains can be found in (Amidor 1991) and (Amidor et al. 1994).

The sampling and reconstruction of three-dimensional signals is very im-
portant because it is directly connected with volumetric visualization and
time-varying images. The theory developed in this chapter extends naturally
to this case. For time-varying images—in particular, video—we need detailed

216 8 Sampling and Reconstruction

knowledge of a video signal spectrum (e.g., the NTSC spectrum). See (Dubois
1985) for a well-written treatment.

The image with the ringing effect that appears in Figure 8.14 is taken from
(Mitchell and Netravali 1988).

The image that appears in Figure 8.32 is a detail from “Shuttered win-
dows”, by Don Cochran, from the Kodak PhotoCD, Photo Sampler.

The authors wish to acknowledge the help of Siome Goldenstein, a student
at the Instituto de Matemática Pura e Aplicada (IMPA), in computing several
of the examples in this chapter.

References

[Amidor 1991]Amidor, J. P. (1991). The moiré phenomenon in color separa-
tion. In Raster Imaging and Digital Typography II, Proceedings of the
2nd Intl. Conf. Raster Imaging and Digital Typography, Vol. 6, 96–119.

[Amidor et al. 1994]Amidor, J. P., Hersch, R., and Ostromoukhov, V. (1994).
Spectral analysis and minimization of moiré patterns in color separation.
J. Electronic Imaging, 3(3):295–317.

[Crow 1977]Crow, F. (1977). The aliasing problem in computer generated
shaded images. Comm. of the ACM, 20(11):799–805.

[Dubois 1985]Dubois, E. (1985). The sampling and reconstruction of time-
varying imagery with application in video systems. Proceedings of the
IEEE, 73(4).

[Fiume 1989]Fiume, E. L. (1989). The Mathematical Structure of Raster
Graphics. Academic Press, New York.

[Glassner 1995]Glassner, A. (1995). Principles of Digital Image Synthesis,
vol. 2. Morgan Kaufmann Publishers, Inc. San Francisco.

[Gomes et al. 1996]Gomes, J., Costa, B., Darsa, L., and Velho, L. (1996).
Graphical objects. The Visual Computer 12(6):269.

[Heckbet 1989]Heckbert, P. S. (1989). Fundamentals of Texture Mapping and
Image Warping. Master’s thesis, Dept. of Electrical Engineering and
Computer Science, University of California, Berkeley.

[Jain 1989]Jain, A. K. (1989). Fundamentals of Digital Image Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[Mertz and Grey 1934]Mertz, P. and Grey, F. (1934). A theory of scanning
and its relation to the characteristics of the transmitted signal in tele-
photography and television. Bell System Tech. J. 13:464–515.

[Mitchell and Netravali 1988]Mitchel, D. P. and Netravali, A. N. (1988).
Reconstruction filters in computer graphics. Computer Graphics
22(4):221–228.

[SIGGRAPH 1996]SIGGRAPH (1996). Warping and morphing of graphical
objects. ’96 Course Notes ACM/SIGGRAPH. Also available on CD-
ROM.

[Wolberg 1990]Wolberg, G. (1990). Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA.

9

Multiscale Analysis and Wavelets

In this chapter we will introduce the wavelet transform with the purpose of
obtaining better representation of images using atomic decompositions in the
space-frequency domain.

Most of the derivations will be done for one-dimensional functions that
will be extended to images, i.e., two-dimensional functions, afterwards.

9.1 The Wavelet Transform

To analyze an image jointly in the spatial and frequency domains, we must
define a transform which is independent of scale. This transform should not
use a fixed scale, but the scale should vary.

The scale is defined by the width of the modulation function. Therefore we
must use a modulation function which does not have a fixed width. Moreover
the function must have good space localization. To achieve this we start from
a function ψ(t) as a candidate of a modulation function, and we obtain a
family of functions from ψ by varying the scale: We fix p ≥ 0 and for all
s ∈ R, s �= 0, we define

ψs(u) = |s|−pψ(
u

s
) =

1
|s|p ψ(

u

s
). (9.1)

If ψ has width T (given as the standard deviation) then the width of ψs

is sT . The modulation of the function ψ by the factor 1/|s|2, increases its
amplitude when the scale s decreases and vice-versa. In terms of frequencies,
we can state: For small scales s, ψs has high frequencies, and as s increases
the frequency of ψs decreases. This fact is illustrated in Figure 9.1.

We need to localize each function ψs in space. For this we define for each
t ∈ R the function

ψs,t(u) = ψs(u− t) = |s|−pψ(
u− t

s
) =

1
|s|p ψ(

u− t

s
). (9.2)

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 9,
c© Springer-Verlag London Limited 2009

218 9 Multiscale Analysis and Wavelets

(a) (b) (c)

Fig. 9.1. Scales of a function: (a) s < 1; (b) s = 1; (c) s > 1.

Note that if ψ ∈ L2(R), then ψs,t ∈ L2(R), and

||ψs,t||2 = |s|1−2p||ψ||2.

By taking p = 1/2, we have ||ψs,t|| = ||ψ||.
Now we can define a transform on L2(R) using functions from the family

ψs,t as modulating functions. More precisely, we have

f̃(s, t) =
∫ +∞

−∞
f(u)ψs,t(u)du = 〈ψs,t, f〉. (9.3)

This transform is known by the name of the wavelet transform.
We can pose the following questions concerning the wavelet transform:

Question 9.1. Is the wavelet transform f̃(s, t) invertible?

Question 9.2. What is the image of the wavelet transform f̃(s, t)?

9.1.1 Inverse of the Wavelet Transform

By definition we have

f̃(s, t) = 〈ψs,t, f〉 = 〈ψ̂s,t, f̂〉.

Moreover,
ψ̂s,t(ω) = |s|1−pe−2πiωtψ̂(sω). (9.4)

From this it follows that

f̃(s, t) =|s|1−p
∫ +∞

infty
e2πiωtψ̂(s, ω)f̂(ω)dω (9.5)

= |s|1−pF−1
(
ψ̂(sω)f̂(ω)

)
, (9.6)

Where F indicated the Fourier transform.

9.1 The Wavelet Transform 219

Applying the Fourier transform to both sides of the equation we obtain
∫ +∞

−∞
e−2πiωtf̃(s, t)dt = |s|1−pψ̂(sω)f̂(ω). (9.7)

From the knowledge of f̂ we can obtain f using the inverse transform.
But we can not simply divide the above equation by ψ̂, because it might
have zero values. Multiplying both sides of (9.7) by ψ̂(sω), and making some
computations we obtain the result below:

Theorem 9.3. If ψ satisfies the condition

C =
∫ +∞

−∞

|ψ̂(u)|2
|u| < ∞, (9.8)

then
f(u) =

1
C

∫ ∫

R2
|s|2p−3f̃s,t(u)ψs,t(u)dsdt. (9.9)

This theorem answers the first question posed at the end of the previous
section: The wavelet transform is invertible and equation (9.9) reconstructs f
from its wavelet transform.

We can read equation (9.9) of the inverse wavelet transform in two distinct
ways:

1. The function f can be recovered from its wavelet transform;
2. The function f can be decomposed as a superposition of the space-

frequency atoms ψs,t(u).

We have seen that the second interpretation is of great importance because,
it will lead us to obtain good representations by atomic decompositions of the
function f .

9.1.2 Image of the Wavelet Transform

In this section we will discuss the second question we asked before about the
image of the wavelet transform.

The wavelet transform takes a function f ∈ L2(R) into a function f̃(s, t)
of two variables. A natural question consist in computing the image of the
transform.

The interested reader should consult (Kaiser 1994), page 69. Besides char-
acterizing the image space, this reference brings a proof that the wavelet
transform defines an isometry over its image. We will not go into details of
the computation here.

220 9 Multiscale Analysis and Wavelets

9.1.3 Filtering and the Wavelet Transform

Equation (9.3) that defines the wavelet transform can be written as a convo-
lution product

f̃(s, t) = f ∗ ψs(u),

where ψs(u) is defined in (9.1). Thus the wavelet transform is a linear space-
invariant filter. In this section we will discuss some properties of the wavelet
filter.

The condition (9.8) that appears in the hypothesis of the Theorem 9.3
is called admissibility condition. A function ψ that satisfies this condition is
called a wavelet.

From the admissibility condition it follows that

lim
u→0

ψ̂(u) = 0.

If ψ̂(u) is continuous, then ψ̂(0) = 0, that is,
∫ +∞

−∞
ψ(u)du = 0.

Geometrically, this condition states that the graph of the function ψ must
oscillate so as to cancel positive and negative areas in order to have integral
zero. Therefore the graph of ψ has the form of a wave. In fact since ψ should
have good space localization properties it has a form of a “small wave” (see
Figure 9.2). That is why ψ is named by wavelet.

Another important conclusion can be drawn from the above computations.
Since ψ̂(u) ∈ L2(R), then

lim
u→0

ψ̂(u) = 0.

Along with the fact that ψ̂(0) = 0, we conclude that the graph of the Fourier
transform ψ̂ is as depicted in Figure 9.3(a).

Fig. 9.2. Graph of a wavelet.

9.1 The Wavelet Transform 221

(a)

(b)

Fig. 9.3. Fourier transform of a wavelet.

If ψ̂ has a fast decay when u → 0 and u →∞, then ψ̂(u) is small outside
of a small frequency band α ≤ |u| ≤ β (see Figure 9.3(b)). It follows from
equation (9.4) that ψ̂s,t ≈ 0 outside of the frequency band

α

|s| ≤ |u| ≤
β

|s| .

Moreover, from equation (9.6) the wavelet transform f̃ does not contain infor-
mation about f outside of this spectrum interval. In sum, the computations
above show that “the wavelet transform is a linear, space invariant band-pass
filter”.

The next two examples are taken from (Kaiser 1994).

Example 1 (Blur Derivative) Consider a function φ of class C∞, satisfy-
ing the conditions

φ ≥ 0;
∫

R
φ(u)du = 1;

∫
R

uφ(u)du = 0;
∫

R
u2φ(u)du = 1.

That is, φ is a probability distribution with average 0 and variance (width) 1.
Suppose that

lim
u→+∞

∂n−1φ

∂un−1
(u) = 0.

Defining

222 9 Multiscale Analysis and Wavelets

ψn(u) = (−1)n ∂nφ

∂un
(u),

we have, ∫

R

ψn(u)du = 0.

That is, ψn satisfies the admissibility condition (9.8). Therefore we can define
a wavelet transform

f̃(s, t) =
∫

R

ψn
s,t(u)f(u)du, (9.10)

where
ψn

s,t(u) =
1
s
ψn(

u− t

s
).

(We are taking p = 1 in equation (9.2) that defines ψs,t(u)). In an analogous
way we define,

φs,t(u) =
1
s
φ(

u− t

s
).

From the definition of ψn we have that

ψ−n
s,t (u) = (−1)ns−n ∂nφs,t

∂un
(u) = s−n ∂nφs,t

∂tn
(u). (9.11)

From equations (9.10) and (9.11) it follows that

f̃(s, t) = s−n ∂n

∂tn

∫

R

φs,t(u)f(u)du. (9.12)

The above integral is a convolution product of the function f with the
function φs,t, therefore it represents a low-pass filtering linear space-invariant
filtering operation of the function f , which is dependent of the scale s. We
will denote this integral by f(s, t). Therefore we have

f̃(s, t) = s−n ∂nf(s, t)
∂tn

, (9.13)

that is, the wavelet transform of f is the n-th space derivative of the average
of the function f on scale s. This derivative is known in the literature by the
name of blur derivative.

We know that the n-nth derivative of f measures the details of f in the
scale of its definition. Therefore, equation (9.13) shows that the wavelet trans-
form f̃(s, t) gives the detail of order n of the function f , in the scale s. Keeping
this wavelet interpretation in mind is useful, even when the wavelet does not
come from a probability distribution.

Example 9.4 (The Sombrero Wavelet). We will use a particular case of the
previous example to define a wavelet transform. Consider the Gaussian dis-
tribution

9.1 The Wavelet Transform 223

φ(u) =
1√
2π

e−u2/2,

with average 0 and variance 1. The graph of this function is depicted in the
image on the left of Figure 9.4. Using the notation of the previous example,
we have

ψ1(u) = −φ′(u) =
1√
2π

ue−u2/2,

and

ψ2(u) = φ′′(u) =
1√
2π

(u2 − 1)e−u2/2.

The function −ψ2 is known as the “sombrero” function, because of the shape
of its graph, shown in the right of Figure 9.4.

From the previous example it follows that we can use the sombrero func-
tion to define a wavelet transform. We will use this wavelet to illustrate the
flexibility of the wavelet transform in analyzing frequencies of a signal. For
this, consider the signal whose graph is shown in Figure 9.5.

This signal has high frequencies localized in the neighborhood of t = 50,
and t = 150. From time t = 280, the signal has a chirp behavior: a con-
tinuum of increasing frequencies. In this region the signal is defined by the
function

f(t) = cos(t3).

Fig. 9.4. Graph of the sombrero wavelet.

Fig. 9.5. Signal f to be analyzed(Kaiser 1994).

224 9 Multiscale Analysis and Wavelets

Fig. 9.6. The wavelet transform(Kaiser 1994).

Figure 9.6 shows the graph of the signal and the graph of the wavelet
transform for 5 distinct values of the scale s (the scale decreases from top to
bottom).

Note that the frequencies associated to the sudden change of the signal at
time t = 50 and time t = 150 are detected by the wavelet transform. Moreover,
as the scale s decreases the high frequencies of the chirp signal cos(t3) are also
detected.

9.2 The Discrete Wavelet Transform

The wavelet transform is defined on the space-scale domain. A natural ques-
tion is:

Question 9.5. How to discretize the space-scale domain in such a way to obtain
a discrete wavelet transform?

We know that the scaling operation acts in a multiplicative way, that is,
composing two consecutive scalings is attained by multiplying each of the
scale factors. Therefore the discretization of the scaling factor is simple: We
fix an initial scale s0 > 1, and we consider the discrete scales

sm = sm
0 , m ∈ Z.

Positive values of m produce scales larger than 1, and negative values of m
produce scales less than 1.

9.2 The Discrete Wavelet Transform 225

How to discretize the space? Initially we should observe that we must
obtain a lattice in the space-scale domain in such a way that when we sample
the wavelet transform f̃(s, t) on this lattice, we are able to reconstruct the
function f from the space-scale atoms f̃m,n, with minimum redundancy. As
the wavelet width changes with the scale, we must correlate the space with
the scale discretization: As the scale increases the width of the wavelet also
increases, therefore we can take samples further apart in the space domain.
On the other hand, when the width of the wavelet decreases with a reduction
of the scale, we must increase the frequency sampling.

To obtain the correct correlation between the scale and space discretization
we observe that an important property of the wavelet transform is: The wavelet
transform is invariant by change of scales. This statement means that if we
make a change of scale in the function f and simultaneously change the scale
of the underlying space by the same scaling factor, the wavelet transform does
not change. More precisely, if we take

fs0(t) = s
−1/2
0 f(

t

s0
),

then

f̃s0(s0s, s0t) = f̃(s, t).

Invariance by changing of scale constitutes an essential property of the
wavelet transform. It is important that this property be preserved when we
discretize the wavelet, so as to be also valid for the discrete wavelet transform.
In order to achieve this goal, when we pass from the scale sm = sm

0 to the scale
sm+1 = sm+1

0 , we must also increment the space by the scaling factor s0. In
this way, we can choose a space t0 and take the length of the sampling space
intervals as Δt = sm

0 t0. Therefore, for each scale sm
0 the space discretization

lattice is

tm,n = nsm
0 t0, n ∈ Z.

Finally, the discretization lattice in the space-scale domain is defined by

Δs0,t0 = {(sm
0 , nsm

0 t0) ; m,n ∈ Z}.

Example 9.6 (Dyadic Lattice). We will give a very important example of a
wavelet discretization using s0 = 2 (dyadic lattice). We have

Δ2,t0 = {(2m, n2mt0) ; m,n ∈ Z}.

The vertices of this lattice are shown in Figure 9.7(a). This lattice is called
hyperbolic lattice because it is a uniform lattice in hyperbolic geometry (only
the points are part of the lattice).

226 9 Multiscale Analysis and Wavelets

(a) (b)

Fig. 9.7. (a) Space-scale lattice.(b) Space-frequency lattice.

To obtain a space-frequency lattice, we must observe that the frequency
is the inverse of the scale. In this manner, for a given initial frequency ω0 the
lattice will be given by

Δ2ω0,t0 = {(2−mω0, n2−mt0) ; m,n ∈ Z}.

The vertices of this lattice are shown in Figure 9.7(b).

9.2.1 Function Representation

From the point of view of atomic decomposition the space-frequency atoms
define a tiling of the space-frequency domain in rectangles as shown in
Figure 9.8.

The discretization of the wavelet transform f̃(s, t) = 〈f, ψs,t(u)〉 in the
space-scale lattice is given by

f̃m,n = 〈f, ψm,n(u)〉,

where

ψm,n(u) = ψsm
0 ,nt0sm

0
(u) (9.14)

= s
−m/2
0 ψ

(
u−nt0sm

0
sm
0

)
(9.15)

= s
−m/2
0 ψ(s−m

0 u− nt0). (9.16)

In this context we can pose again the two questions which motivated the
process of defining a discrete wavelet transform:

9.2 The Discrete Wavelet Transform 227

Fig. 9.8. Space-frequency decomposition using wavelets.

Question 9.7. Is the sequence 〈f, ψm,n〉,m, n ∈ Z an exact representation of
the function f?

Question 9.8. Is it possible to reconstruct f from the family of wavelet space-
frequency atoms ψm,n?

A positive answer to these two questions would give us atomic decompo-
sitions of the function f using a family ψm,n. of discrete wavelets.

There are several directions we could take to answer the two questions
above. Based on the representation theory two natural questions in this di-
rection are:

Question 9.9. Is it possible to define a lattice such that the corresponding
family {ψm,n} constitutes an orthonormal basis of L2(R)?

Question 9.10. Is it possible to define lattices for which the family {ψm,n} is
a frame?

If we have orthonormal basis of wavelets or a frame the answer to the two
questions posed above are positive.

Chapter 3 of (Daubechies 1992) brings a comprehensive discussion of
frames of wavelets. The explicit construction of some wavelet frames is given.

Example 9.11 (Haar Basis). Consider the function

ψ(x) = { 1 if x ∈ [0, 1/2)− 1if x ∈ [1/2, 1)0if x < 0 ou x > 1.

The graph of f is shown in Figure 9.9. This function satisfies the admissibility
condition (9.8).

228 9 Multiscale Analysis and Wavelets

Fig. 9.9. Haar wavelet.

It is possible to show that the set ψm,n, where

ψm,n(u) = 2−m/2ψ(2−mu− n), m, n ∈ Z,

constitutes an orthonormal basis of L2(R). Therefore we have an orthonormal
basis of wavelets. A direct, and long, proof of this fact is found in (Daubechies
1992), Section 1.3.3. The orthonormality of the set ψm,n is easy to proof. The
fact that the set generates the space L2(R) is more complicated. This will
follow as a consequence of the theory of multiresolution analysis that we will
study next.

9.3 Multiresolution Representation

Our perception of the universe uses different scales: Each category of observa-
tions is done in a proper scale. This scale should be adequate to understand
the different details we need. In a similar manner, when we need to represent
an object, we try to use a scale where the important details can be captured
in the representation.

A clear and well known example of the use of scales occurs on maps. Using
a small scale we can observe only macroscopic details of the mapped regions.
By changing the scale we can observe or represent more details of the object
being represented on the map.

Multiresolution representation is a mathematical model adequate to for-
malize the representation by scale in the physical universe. As we will see, this
problem is intrinsically related to the wavelets.

The idea of scale is intrinsically related with the problem of point sampling
of a signal. We call sampling frequency the number of samples in the unit of

9.3 Multiresolution Representation 229

time. The length of the sample interval is called the sampling period. When
we sample a signal using a frequency 2j , we are fixing a scale to represent
the signal: Details (frequencies) of the signal that are outside of the scale
magnitude of the samples will be lost in the sampling process. On the other
hand, it is clear that all of the details of the signal captured in a certain scale
will also be well represented when we sample using a higher scale, 2k, k > m.

These facts are well translated mathematically by the sampling theorem of
Shannon-Whittaker that relates the sampling frequency with the frequencies
present on the signal.

9.3.1 Scale Spaces

How to create a mathematical model to formalize the problem of scaling
representation in the physical universe? The relation between sampling and
scaling discussed above shows us the way. For a given integer number j, we
create a subspace Vj ⊂ L2(R), constituted by the functions in L2(R) whose
details are well represented in the scale 2j . This means that these functions
are well represented when sampled using a sampling frequency of 2j .

The next step consists in creating a representation operator that is able
to represent any function f ∈ L2(R) in the scale 2j . A simple and effective
technique consists in using a representation by orthogonal projection. A simple
and effective way to compute this representation is to obtain an orthonormal
basis of Vj . But at this point we will demand more than that to make things
easier: We will suppose that there exists a function φ ∈ L2(R) such that the
family of functions

φj,k(u) = 2−j/2φ(2−ju− k), j, k ∈ Z, (9.17)

is an orthonormal basis of Vj .
Notice that we are using here a process similar to the one we used when we

introduced the wavelet transform: We define different scales of φ producing
the continuous family

φs(u) =
1

|s|1/2
φ(

u

s
).

The width of φ and φs are related by

width(φ) = swidth(φs).

Thus, as the scale increases or decreases, the width of φs does the same.
Equation (9.17) is obtained by discretizing the parameter s, taking s = 2j , j ∈
Z. Also, we have demanded that the translated family

φj,k = φ2j (u− k) = 2−j/2φ(2−ju− k)

is an orthonormal basis of Vj . Note that when j decreases, the width of φj,k

also decreases, and the scale is refined. This means that more features of f
are detected in its representation on the space Vj .

230 9 Multiscale Analysis and Wavelets

The representation of a function f ∈ L2(R) by orthogonal projection in
Vj is given by

ProjVj
(f) =

∑

k

〈f, φj,k〉φj,k.

We want the representation sequence (〈f, φj,k〉) to contain samples of the func-
tion f in the scale 2j . In order to attain this we know that the representation
sequence (〈f, φj,k〉)j,k∈Z is constituted by the samples of a filtered version of
the signal f . More precisely,

〈f, φj,k〉 = F (k),

where F is obtained from f by sampling with a filter of kernel φj,k: F = f∗φj,k.
In order that the elements of the representation sequence are close to the
samples of f , the filter kernel φj,k must define a low-pass filter. This can
be attained by demanding that φ̂(0) = 1, because φ̂(ω) approaches 0 when
ω → ±∞. The graph of φ is depicted in Figure 9.10. With this choice of φ,
representing a function at scale 2j amounts to sample averages of f over
neighborhoods of width 2j .

The space Vj is called space of scale 2j , or simply scale space.
It is very important that we are able to change from a representation in

a certain scale to a representation on another scale. For this we must answer
the question: How are the different scale spaces related?

Since the details of the signal which appear on scale 2j certainly must
appear when we represent the signal using a smaller scale 2j−1, we must
have

Vj ⊂ Vj−1. (9.18)

Given a function f ∈ L2(R), a natural requirement is

f ∈ Vj if, and only if, f(2u) ∈ Vj−1. (9.19)

In fact, the scaling of the variable of f by 2 reduces the width of f by
the factor of 1/2 (see Figure 9.11). Therefore the details of f go to a finer
scale.

Fig. 9.10. Low-pass filter.

9.3 Multiresolution Representation 231

Fig. 9.11. Scaling of f by an scale factor of 2.

Applying successively the condition in (9.19), we obtain

f ∈ Vj if, and only if, f(2ju) ∈ V0.

That is, all spaces are scaled version of the space V0. In particular, from the
fact that φj,k in equation (9.17), is an orthonormal basis of Vj , we conclude
that

φ0,k(u) = φ(u− k)

is an orthonormal basis of the scale space V0.
The space L2(R), our universe of the space of functions, contains all of the

possible scales. This is reflected in the relation
⋃

j∈Z

Vj = L2(R).

On the other hand, we have
⋂

j∈Z

Vj = {0}.

In effect, this expression says that the null function is the only function that
can be well represented in every scale. In fact it should be observed that
any constant function can be represented in any scale, nevertheless the only
constant function that belongs to L2(R) is the null function.

A Remark About Notation

It is important here to make a remark about the index notation we use for
the scale spaces, because there is no uniformity on the literature. We use the
notation of decreasing indices

· · ·V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · .

From the discussion above, this notation is coherent with the variation of the
scale when we pass from one scale space to the other: As the indices decrease,
the scale is refined, and the scale spaces get bigger.

232 9 Multiscale Analysis and Wavelets

If we use a notation with increasing indices

· · ·V−1 ⊂ V0 ⊂ V1 · · · ,

which also appears on the literature, than the base φj,k of the scale space Vj

should be constituted by the functions

φj,k(x) = 2j/2φ(2jx− k).

This is rather confusing because it is not in accordance with the notation used
when we discretized wavelets.

9.3.2 Multiresolution Representation

The scale spaces and their properties that we studied above define a mul-
tiresolution representation in L2(R). We will resume them into a definition to
facilitate future references:

Definition 1 (Multiresolution Representation) We define a multireso-
lution representation in L2(R) as a sequence of closed subspaces Vj, j ∈ Z, of
L2(R), satisfying the following properties:

(M1) Vj ⊂ Vj−1;
(M2) f ∈ Vj if, and only if, f(2u) ∈ Vj−1.
(M3)

⋂
j∈Z

Vj = {0}.
(M4)

⋃
j∈Z

Vj = L2(R).
(M5) There exists a function φ ∈ V0 such that the set {φ(u− k); k ∈ Z} is an

orthonormal basis of V0.

The function φ is called the scaling function of the multiresolution represen-
tation. Each of the spaces Vj is called scale spaces, or, more precisely, space
of scale 2j.

Example 9.12 (Haar Multiresolution Analysis). Consider the function

φ(t) = χ[0,1] = { 0 if x < 0 ou t ≥ 11if x ∈ [0, 1)

It is easy to see that φ is a scale function of a multiresolution representa-
tion. In this case,

Vj = {f ∈ L2(R); f |[2jk, 2j(k + 1)] = constant, k ∈ Z}.

That is, the projection of a function f on the scale space Vj is given by a
function which is constant on the intervals [2jk, 2j(k + 1)]. This is the Haar
multiresolution representation.

9.3 Multiresolution Representation 233

We should notice that conditions (M1), . . . (M5), that define a multires-
olution representation are not independent. In fact it is possible to prove
that condition (M3) follows from (M1), (M2) e (M5). Moreover, condition
(M5) can be replaced by the weaker condition that the set {φ(u − k)} is a
Riesz basis. Also, the reader might have noticed that we have not imposed
that the scale function φ satisfies the condition φ̂(0) = 1 (as we know, this
condition guarantees that φ is a low-pass filter). It can be proved that this
low-pass filter condition follows from (M4). For a proof of all of these facts we
suggest consulting (Hernandez e Weiss 1996) or (Daubechies 1992). We will
return to this problem with more details in next chapter about construction of
wavelets.

9.3.3 A Pause to Think

How to interpret geometrically the sequence of nested scale spaces in the
definition of a multiresolution representation?

In general, visualizing subspaces of some space of functions is not an easy
task. Nevertheless, in this case a very informative visualization of the nested
sequence of scale space can be obtained in the frequency domain.

Indeed, the orthogonal projection of a function f ∈ L2(R) in Vj is obtained
using a filtering operation of f with the different kernels φj,k, k ∈ Z which
define low-pass filters. Indicating the cutting frequency of these filters by αj

(see Figure 9.12), we conclude that each space Vj is constituted by functions
whose frequencies are contained in the interval [−αj , αj], αj > 0.

When we go from the space Vj to the space Vj−1 we change from the scale
2j to a finer scale 2j−1. Therefore the frequency band increases to an interval
[−αj−1, αj−1]. The graph of the spectrum of φj−1,k is the dotted curve in
Figure 9.12. The scale space Vj−1 consists of the set of all the functions whose
spectrum is contained in [−αj−1, αj+1].

For each space Vj , with scale 2j , we have the representation operator
Rj : L2(R) → Vj , given by the orthogonal projection over Vj

Rj(f) = ProjVj
(f) =

∑

k

〈f, φj,k〉φj,k.

Fig. 9.12. Spectrum of the scaling function.

234 9 Multiscale Analysis and Wavelets

From condition (M4) of the definition of a multiresolution representation, we
have

lim
j→∞

Rj(f) = f, (9.20)

that is, as the scale gets finer we get a better representation of the function
f . This is illustrated in Figure 9.13 (from (Daubechies 1992)) we show a
function f , and its representation on the spaces of scale V0 e V−1 of the Haar
multiresolution representation.

There is a different, and very important way, to interpret equation (9.20)
Consider the graph representation of the space Vj on Figure 9.14. We see that
the space Vj−1 is obtained from the space Vj by adding all of the functions from
L2(R) with frequencies in the band [αj , αj−1] of the spectrum. We indicate
this “detail space” by Wj . It follows immediately that Wj is orthogonal to Vj .
Therefore we have

Vj−1 = Vj ⊕Wj .

The space Wj contains the details of the signal in the scale Vj . The
above equation says that a function represented on a finer scale space Vj−1 is
obtained from the representation on a coarser scale space Vj , by adding details.
These details can be obtained using a band-pass filtering, whose passband is
exactly the interval [αj , αj−1]. We have seen that the wavelets constitute linear
time-invariant band-pass filters. Therefore it seems natural that there might
exist some relation between the detail spaces and the wavelets. We will discuss
this relation “with details” in next section.

Fig. 9.13. Scale approximations of a function(Daubechies 1992).

9.4 Multiresolution Representation and Wavelets 235

Fig. 9.14. Frequency band between Vj and Vj−1.

9.4 Multiresolution Representation and Wavelets

We have proved that given two consecutive scale spaces Vj ⊂ Vj−1, the or-
thogonal complement Wj of Vj in Vj−1 could be obtained using a band-pass
filter defined on L2(R). In this section we will show that this complementary
space is in fact generated by an orthonormal basis of wavelets.

For every j ∈ Z, we define Wj as the orthogonal complement of Vj in Vj−1.
We have

Vj−1 = Vj ⊕Wj .

We remind that the best way to visualize the above equality is by observing
the characterization of these spaces on the frequency domain (Figure 9.14).

It is immediate to verify that Wj is orthogonal to Wk, if j �= k. Therefore
by fixing J0 ∈ Z, for every j < J0 we have (see Figure 9.15)

Vj = VJ0 ⊕
J0−j⊕

k=0

WJ0−k. (9.21)

We should remark that because of the dyadic scales used in the discretization,
the frequency bands do not have uniform length, they are represented in the
figure using logarithmic scale.

Fig. 9.15. Frequency bands between Vj and VJo−j .

236 9 Multiscale Analysis and Wavelets

In sum, equation (9.21) says that the signals whose spectrum is in the
frequency band of Vj , is the sum of the signals with frequency band in VJ0

with those signals whose frequency band are in WJ0 , WJ0−1, . . . , Wj . All of
the subspaces involved in this sum are orthogonals. If J0, k → ∞, if follows
from conditions (M3) and (M4) that define a multiresolution representation
that

L2(R) =
⊕

j∈Z

Wj ,

that is, we obtain a decomposition of L2(R) as a sum of orthogonal subspaces.
We have seen that the projection of a function f in each subspace Wj

could be obtained using a band-pass filter. In fact, this filtering process can
be computed by projecting f on an orthogonal basis of wavelets. This fact is
a consequence of the theorem below:

Theorem 9.13. For each j ∈ Z there exists an orthonormal basis of wavelets
{ψj,k, k ∈ Z} of the space Wj.

We will sketch the proof of the theorem because it has a constructive
nature which will provide us with a recipe to construct orthonormal basis of
wavelets.

Basis of W0.

Initially we observe that the spaces Wj inherit the scaling properties of the
scale spaces Vj . In particular,

f(u) ∈Wj if, and only if, f(2ju) ∈ W0. (9.22)

For this reason, it suffices to show that there exists a wavelet ψ ∈ W0 such
that the set {ψ(u− k)} is an orthonormal basis of W0. In fact, in this case, it
follows from (9.22) that the set

{ψj,k(u) = 2−j/2ψ(2−ju− k)}

is an orthonormal basis of Wj .

Low-pass filter and scaling function.

Since φ ∈ V0 ⊂ V−1, and also φ−1,k is an orthonormal basis of V−1, we have

φ =
∑

k

hkφ−1,k, (9.23)

where
hk = 〈φ, φ−1,k〉, and

∑

k∈Z

||hk||2 = 1.

9.4 Multiresolution Representation and Wavelets 237

Substituting φ−1,k(u) =
√

2φ(2u− k) in (9.23 we obtain

φ(x) =
√

2
∑

k

hkφ(2x− k).) (9.24)

Applying the Fourier transform to both sides of this equation, we have

φ̂(ξ) = mo(
ξ

2
)φ̂(

ξ

2
), (9.25)

where
m0(ξ) =

1√
2

∑

k

hke−ikξ.

Note in equation (9.25) that φ̂(ξ
2) there exists a frequency band which has

twice the size of the frequency band of φ(ξ). Therefore, it follows from (9.24)
that the function m0 is a low-pass filter. The function m0 is called de low-pass
filter of the scaling function φ. It is not difficult to see that m0 is periodic
with period 2π.

Characterization of W0.

Now we need to characterize the space W0. Given f ∈ W0, since V−1 =
V0 ⊕W0, we conclude that f ∈ V−1 and f is orthogonal to V0. Therefore

f =
∑

n

fnφ−1,n, (9.26)

where

fn = 〈f, φ−1,n〉.

Computations similar to the ones we did to obtain the low-pass filter m0

of the scaling function, give us the equation

f̂(ξ) = mf (
ξ

2
)φ̂(

ξ

2
), (9.27)

where
mf (ξ) =

1√
2

∑

n

fne−inξ.

After some computations, we can rewrite the equation (9.27) in the form

f̂(ξ) = e
iξ
2 m0

(
ξ

2
+ π

)

ν(ξ)φ̂(
ξ

2
), (9.28)

where ν is a periodic function of period 2π.

238 9 Multiscale Analysis and Wavelets

Choosing the Wavelet.

Equation (9.28) characterizes the functions from W0 using the Fourier trans-
form, up to a periodic function ν. A natural choice is to define a wavelet
ψ ∈W0 such that

ψ̂(ξ) = e
−iξ
2 m0

(
ξ

2
+ π

)

φ̂(
ξ

2
). (9.29)

Taking this choice, from equation (9.28), it follows that

f̂(ξ) =

(
∑

k

νke−ikξ

)

ψ̂(ξ),

and applying the inverse Fourier transform, we have

f(x) =
∑

k

νkψ(x− k).

We need to show that defining ψ by the equation (9.29), ψ0,k is indeed an
orthonormal basis of W0. We will not give this proof here.

Details of the above proof can be found on (Daubechies 1992) or (Hernan-
dez e Weiss 1996).

9.4.1 A Pause... to See the Wavescape

If Vj is the scale space 2j we have Vj−1 = Vj⊕Wj . We know that Wj has an or-
thonormal basis of wavelets {ψj,k, k ∈ Z}, therefore if Rj is the representation
operator on the scale space Vj , we have, for all f ∈ L2(R),

Rj−1(f) = Rj(f) +
∑

k∈Z

〈f, ψj,k〉ψj,k. (9.30)

The second term of the sum represents the orthogonal projection of the
signal f on the space Wj and it will be denoted by ProjWj

(f). The terms of
this representation sequence are obtained using the discrete wavelet transform.

We know that the wavelet transform is a band-pass filtering operation,
ant the scale spaces allow us to represent a function f in different resolutions.
When we obtain a representation of f in a certain scale 2j , we are loosing
details of the signal with respect with its representation in the scale 2j−1.
The lost details are computed by the orthogonal projection on the space Wj ,
that is,

ProjWj
(f) =

∑

k∈Z

〈f, ψj,k〉ψj,k, (9.31)

which is a representation of the signal f in the basis of wavelets of the space
Wj .

9.4 Multiresolution Representation and Wavelets 239

It is useful to interpret the decomposition Vj−1 = Vj ⊕Wj in the language
of filters. The representation of a signal f in the scale Vj ,

Rj(f) =
∑

k∈Z

〈f, φj,k〉φj,k,

is equivalent to filter the signal using the low-pass filter defined by the scaling
function φ. The representation of the details of f in the space Wj , equation
(9.31) is obtained by filtering f with the band-pass filter defined by the wavelet
transform associated with ψ.

From the relation Vj−1 = Vj ⊕Wj , we are able to write

Rj−1(f) = Rj(f) + ProjWj
(f)

Rj−2(f) = Rj−1(f) + ProjWj−1
(f)

...

Note that each line of the equation above represents a low-pass filtering and
a band-pass filtering of the signal. Iterating this equation for Rj−2, . . . , Rj−J0 ,
summing up both sides and performing the proper cancellations, we obtain

Rj−J0(f) = Rj(f) + ProjWj−1
(f) + · · ·ProjWj−J0

(f). (9.32)

The projection Rj(f) represents a version of low resolution (blurred ver-
sion) of the signal, obtained using successive low-pass filtering with the filters
φj , φj−1, . . . , φJ0−j . The terms ProjWj−1

(f), . . ., ProjWj−J0
(f) represent the

details of the signal lost in each low-pass filtering. These details are obtained
by filtering the signal using the wavelets ψj , ψj−1, . . . , ψJ0−j . Equation (9.32)
states that the original signal f can be reconstructed exactly from the low
resolution signal, summing up the lost details.

9.4.2 Two Scale Relation

We now revisit some equations we obtained in the computations of this chapter
in order to distinguish them for future references.

Consider an scaling function φ associated to some multiresolution repre-
sentation. Then φ ∈ V0 ⊂ V−1 and φ−1,n is an orthonormal basis of V−1.
Therefore

φ =
∑

k∈Z

hkφ−1,k, (9.33)

with hk = 〈φ, φ−1,k〉. This equation can be written in the form

φ(x) =
√

2
∑

k∈Z

hkφ(2x− k). (9.34)

240 9 Multiscale Analysis and Wavelets

Similarly, given a wavelet ψ associated with a multiresolution representa-
tion ψ ∈ V0, since V−1 = V0⊕W0, we have that ψ ∈ V−1, and ψ is orthogonal
to V0, therefore

ψ =
∑

k∈Z

gkφ−1,k, (9.35)

or,
ψ(x) =

√
2
∑

k∈Z

gkφ(2x− k). (9.36)

Equations (9.33) and (9.35) (or equivalently (9.34) and (9.36)), are called
two-scale relations, or scaling relations of the scaling function and the wavelet
respectively. In several important cases, the sum that defines the two-scale
relations is finite:

φ(x) =
√

2
N∑

k=0

gkφ(2x− k).

It is not difficult to see that when this is the case, the support of the scaling
function φ is contained in the interval [0, N].

Also, note that if φ is a solution of the equation defined by the two-scale
relation, then λφ, λ ∈ R, is also a solution. In this way, to have uniqueness of
the solution we must impose some kind of normalization (e.g. ψ(0) = 1).

A priori, it is possible to construct a multiresolution representation and
the associated wavelet starting from an adequate choice of the function φ.
This choice can be done using the two scale relation (9.34). In a similar
manner, the two scale equation (9.36) can be used to obtain the associated
wavelet.

9.5 The Fast Wavelet Transform

The Fast Wavelet Transform (FWT) algorithm, is the basic tool for compu-
tation with wavelets. The forward transform converts a signal representation
from the time (spatial) domain to its representation in the wavelet basis.
Conversely, the inverse transform reconstructs the signal from its wavelet rep-
resentation back to the time (spatial) domain. These two operations need to
be performed for analysis and synthesis of every signal that is processed in
wavelet applications. For this reason, it is crucial that the Wavelet Transform
can be implemented very efficiently.

We will see that recursion constitutes the fundamental principle behind
wavelet calculations. We will start with a revision of the multiresolution anal-
ysis to show how it naturally leads to recursion. Based on these concepts, we
will derive the elementary recursive structures which form the building blocks
of the fast wavelet transform. Finally, we will present the algorithms for the
decomposition and reconstruction of discrete one-dimensional signals using
compactly supported orthogonal wavelets.

9.5 The Fast Wavelet Transform 241

9.5.1 Multiresolution Representation and Recursion

The efficient computation of the wavelet transform exploits the properties
of a multiresolution analysis. In the previous chapters, we have seen that a
multiresolution analysis is formed by a ladder of nested subspaces

· · ·V1 ⊂ V0 ⊂ V−1 · · ·

where all Vj are scaled versions of the central subspace V0.
From the above structure, we can define a collection of “difference” sub-

spaces Wj , as the orthogonal complement of each Vj in Vj−1. That is,

Vj = Vj+1 ⊕Wj+1

As a consequence, we have a wavelet decomposition of L2(R) into mutually
orthogonal subspaces Wj

L2(R) =
⊕

j∈Z

Wj

Therefore, any square integrable function f ∈ L2(R) can be decomposed
as the sum of its projection on the wavelet subspaces

f =
∑

j∈Z

ProjWj
(f)

where ProjWj
(f) is the projection of f onto Wj .

From Vj = Vj+1 ⊕ Wj+1, it follows that any function fj ∈ Vj can be
expressed as

fj = ProjVj+1
(f) + ProjWj+1

(f).

This fact gives us the main recursive relation to build a representation of a
function using the wavelet decomposition.

If we denote the projections of f onto Vj and Wj respectively by fj =
ProjVj

(f) and oj = ProjWj
(f), we can write

fj = fj+1 + oj+1
︷ ︸︸ ︷
fj+2 + oj+2

Applying this relation recursively we arrive at the wavelet representation

fj = fj+N + oj+N + · · ·+ oj+2 + oj+1

where a function fj in some Vj is decomposed into its projections on the
wavelet spaces Wj+1 . . . Wj+N , and a residual given by its projection onto the
scale space Vj+N . This recursive process can be illustrated by the diagram in
Figure 9.16.

We assumed above that the process starts with a function fj which already
belongs to some scale subspace Vj . This is not a restriction because we can

242 9 Multiscale Analysis and Wavelets

fj → fj+1 → fj+2 → · · · → fj+N

oj+1 og+1 · · · oj+N

Fig. 9.16. Wavelet decomposition of a function f .

take the initial j arbitrarily small (i.e. a fine scale). In practice, we work with
functions that have some natural scale associated with them.

The wavelet decomposition gives an analysis of a function in terms of its
projections onto the subspaces Wj . Note that, since by construction Wj ⊥Wl

if j �= l and Vj ⊥ Wj , this decomposition of a function is unique once the
spaces Vj and Wj are selected.

It is also desirable to reconstruct a function from its wavelet representa-
tion using a recursive process similar to the decomposition in Figure 9.16. It
turns out that, since Wj ⊂ Vj−1 and Vj ⊂ Vj−1, the original function can be
obtained from the projections, and the wavelet reconstruction is essentially
the reverse of the decomposition, as illustrated in Figure 9.17.

The reconstruction gives a mechanism for the synthesis of functions from
the wavelet representation.

To implement the wavelet decomposition and reconstruction we need to
compute the projections onto the spaces Vj and Wj . We know that the set of
functions {φj,n;n ∈ Z} and {ψj,n;n ∈ Z}, defined as

φj,n(x) = 2−j/2φ(2−jx− n) (9.37)

ψj,n(x) = 2−j/2ψ(2−jx− n), (9.38)

are respectively orthonormal basis of Vj and Wj . Therefore, the projections
operators ProjVj

and ProjWj
are given by inner products with the elements

of these bases

ProjVj
(f) =

∑

n

〈f, φj,n〉φj,n =
∑

n

(∫
f(x)φj,n(x)dx

)

φj,n (9.39)

fj+N → fj+N−1 → · · · → fj+1 → fj

oj+N oj+N−1 · · · oj+1

Fig. 9.17. Wavelet reconstruction process of a function f .

9.5 The Fast Wavelet Transform 243

ProjWj
(f) =

∑

n

〈f, ψj,n〉ψj,n =
∑

n

(∫
f(x)ψj,n(x)dx

)

ψj,n (9.40)

The problem now is how compute the projection operators ProjVj
and

ProjWj
efficiently. In fact, we would like to avoid altogether computing the

integrals explicitly. To find a solution we take advantage of the fact that the re-
cursive decomposition/reconstruction processes requires only projections be-
tween consecutive subspaces of the multiresolution ladder. For that purpose
we will rely on the two–scale relations.

9.5.2 Two-Scale Relations and Inner Products

We have seen before that the interdependencies between two consecutive sub-
spaces in a multiresolution analysis are formulated by the equations below,
called two-scale relations

φ(x) =
∑

k

hkφ−1,k(x) (9.41)

ψ(x) =
∑

k

gkφ−1,k(x) (9.42)

Using these two relations, we can express the basis functions of the scale
and wavelet spaces, Vj and Wj , at level j in terms of the basis functions of
the subsequent scale space Vj−1, at finer level j − 1. This is possible because,
since Vj−1 = Vj ⊕Wj , both Vj ⊂ Vj−1 and Wj ⊂ Vj−1.

Substituting (9.37) into (9.41), we have

φj,k(x) = 2−j/2φ(2−jx− k)

= 2−j/2
∑

n

hn 21/2φ(2−j+1x− 2k − n)

=
∑

n

hn φj−1,2k+n(x)

=
∑

n

hn−2k φj−1,n(x) (9.43)

Similarly, substituting (9.38) into (9.42), we have

ψj,k(x) = 2−j/2ψ(2−jx− k)

= 2−j/2
∑

n

gn 21/2φ(2−j+1x− 2k − n)

=
∑

n

gn−2k φj−1,n(x) (9.44)

244 9 Multiscale Analysis and Wavelets

Now, we need to find a way to use the sequences (hn)n∈Z and (gn)n∈Z to
help us compute recursively the inner products 〈f, φj,k〉, and 〈f, ψj,k〉. This
can be easily done by inserting the expressions obtained for φj,k and ψj,k into
the the inner products.

〈f, φj,k〉 = 〈f,
∑

n

hn−2kφj−1,n〉 =
∑

n

hn−2k〈f, φj−1,n〉 (9.45)

〈f, ψj,k〉 = 〈f,
∑

n

gn−2kφj−1,n〉 =
∑

n

gn−2k〈f, φj−1,n〉 (9.46)

9.6 Wavelet Decomposition and Reconstruction

Using the two–scale relations, we showed how to relate the coefficients of the
representation of a function in one scale 2j−1, with the coefficients of its repre-
sentation in the next coarse scale 2j and with coefficients of its representation
in the complementary wavelet space. It is remarkable, that from the inner
products of the function f with the basis of Vj−1, we are able to obtain the
inner products of f with the basis of Vj and Wj , without computing explicitly
the integrals! This is the crucial result for the development of the recursive
wavelet decomposition and reconstruction method described in this section.

9.6.1 Decomposition

The wavelet decomposition process starts with the representation of a function
f in the space V0. There is no loss of generality here because, by changing the
units, we can always take j = 0 as the label of the initial scale.

We are given the function f = ProjV0
(f), represented by the coefficients

(ck) of its representation sequence in the scale space V0. That is

ProjV0
(f) =

∑

k

[〈f, φ0,k〉φ0,k(x)] =
∑

k

c0,kφ0,k (9.47)

In case we only have uniform samples f(k), k ∈ Z of the function, the
coefficients (ck) can be computed from the samples by a convolution operation.
This fact is well explained in Section 3.7 of Chapter 3 (see Theorem 2).

The goal of the decomposition is to take the initial coefficient sequence
(c0

k)k∈Z, and transform it into the coefficients of the wavelet representation of
the function. The process will be done by applying recursively the following
decomposition rule

ProjVj
(f) = ProjVj+1

(f) + ProjWj+1
(f). (9.48)

In this way, the process begins with f0 ∈ V0 = V1 ⊕W1, and in the first
step, f0 is decomposed into f1/o1, where f1 = ProjV1

(f) and o1 = ProjW1
(f).

9.6 Wavelet Decomposition and Reconstruction 245

The recursion acts on f j , decomposing it into f j+1+oj+1, for j = 0, . . . N . The
components oj are set apart. In the end we obtain the wavelet representation of
f , consisting of the residual scale component fN and the wavelet components
o1, . . . oN .

The core of the decomposition process splits the sequence (cj
k) of scale

coefficients associated with f j , into two sequences (cj+1
k) and (dj+1

k), of scale
and wavelet coefficients associated, respectively with f j+1 and oj+1.

We can view this process as a basis transformation where we make the
following basis change (φj,k)k∈Z → (φj+1,k, ψj+1,k)k∈Z. Note that both sets
form a basis of the space V j . Equations (9.45) and (9.46) give the formulas
to make the transformation on the coefficients of the bases:

cj+1
k =

∑

n

hn−2kcj
n (9.49)

dj+1
k =

∑

n

gn−2kcj
n (9.50)

with the notation a = (a−n)n∈Z.
Note that we are computing the coefficients (cj+1

k) and (dj+1
k) by discrete

convolutions, respectively, with the sequences (hn) and (gn). Note also, that we
are retaining only the even coefficients for the next step of recursion (because
of the factor 2k in the indices). This is a decimation operation.

In summary, if we start with a sequence (c0
n), containing n = 2J coeffi-

cients, it will be decomposed into the sequences (d1
n/2), (d2

n/4), . . . (dJ
n/2J), and

(cJ
n/2J). Note that the decomposition process outputs a wavelet representation

with the same number of coefficients of the input representation.
Another important comment is that, up to now, we implicitly assumed

doubly infinite coefficient sequences. In practice, we work with finite repre-
sentations, and therefore it is necessary to deal with boundary conditions.
This issue will be discussed in more detail later.

9.6.2 Reconstruction

The reconstruction process generates the coefficients of the scale representa-
tion from the coefficients of the wavelet representation. We would like to have
an exact reconstruction, such that the output of the reconstruction is equal
to the input of the decomposition. This is possible because we have just made
an orthogonal basis transformation.

In order to bootstrap the recursive relations for the reconstruction process,
we recall that one step of the decomposition takes a function representation
f j−1 and splits into the components f j and oj .

f j−1(x) = f j(x) + oj(x)

=
∑

k

cj
kφj,k(x) +

∑

k

dj
kψj,k(x) (9.51)

246 9 Multiscale Analysis and Wavelets

We need to recover the coefficients (cj−1
n) from (cj) and (dj)

cj−1
n = 〈f j−1, φj−1,n〉 (9.52)

Substituting (9.51) into (9.52), we obtain

cj−1
n = 〈

∑

k

cj
kφj,k +

∑

k

dj
kψj,k, φj−1,n〉 (9.53)

=
∑

k

cj
k〈φj,k, φj−1,n〉+

∑

k

dj
k〈ψj,k, φj−1,n〉 (9.54)

Because both φ0 ∈ V−1 and ψ0 ∈ V−1, they can be represented as a linear
combination of the basis {φ−1,n;n ∈ Z}. Therefore φ0 =

∑
n〈φ0, φ−1,n〉φ−1,n

and ψ0 =
∑

n〈 ψ0, φ−1,n〉φ−1,n. Since this representation is unique, using the
two scale relations (9.41) and (9.42), we know that

hn = 〈φ0, φ−1,n〉 (9.55)
gn = 〈ψ0, φ−1,n〉 (9.56)

The above results provide a reconstruction formula for the coefficients cj−1
n

from the coefficient sequences of the decomposition at level j.

cj−1
n =

∑

k

hn−2kcj
k +

∑

k

gn−2kdj
k

=
∑

k

[
hn−2kcj

k + gn−2kdj
k

]
(9.57)

The reconstruction process builds the final representation (c0
n), from bottom

up. At each step, it combines the sequences (cj
n) and (dj

n) to recover the
intermediate (cj−1

n), from j = J, . . . , 1.

9.7 The Fast Wavelet Transform Algorithm

The fast wavelet transform (FWT) algorithm is a straightforward implemen-
tation of the method described in the previous section. It consists of the
recursive application of equations (9.49) and (9.50) for the forward transform,
and of equation (9.57) for the inverse transform.

In this section we present the pseudo-code, in C-like notation, of an im-
plementation of the FWT algorithm. The code was structured for clarity and
simple comprehension.

9.7.1 Forward Transform

The input of the algorithm is an array v, with 2m+1 elements, containing the
coefficient sequence to be transformed, and the number of levels m. It uses

9.7 The Fast Wavelet Transform Algorithm 247

the global arrays containing the two-scale sequences h and g. There are also
global variables associated with these sequences: their number of elements hn
and gn; and their offset values ho and go (i.e. the origins h0 and g0 of the
sequences (hn) and (gn)). The main procedure wavelet fwd xform executes
the iteration of the basic wavelet decomposition.

wavelet_fwd_xform(v, m, h, g)
{

for (j = m; j >= 0; j--)
wavelet_decomp(v, pow(2,j+1));

}

The procedure wavelet decomp performs the decomposition for just one
level, splitting the array v0 of size 2j+1, into two arrays v and w with sizes 2j .
The result is accumulated into the input array v, such that in the end of the
decomposition the array v is partitioned into [vN | wN | ... | w2 | w1],
with sizes respectively 1, 1, . . . , 2m, 2m−1.

wavelet_decomp(v, n)
{

zero (w, 0, n);
for (l = 0; l < n/2; l++) {

i = (2*l + ho) % n;
for (k = 0; k < hn; k++) {

w[l] += v[i] * h[k];
i = (i+1) % n;

}
i = (2*l + go) % n;
m = l + n/2;
for (k = 0; k < gn; k++) {

w[m] += v[i] * g[k];
i = (i+1) % n;

}
}
copy (w, v, n/2);

}

The procedure uses a local array w that must have, at least, the same size
of v. It calls two auxiliary procedures, zero that fills and array with zeros,
and copy that copies one array to another.

9.7.2 Inverse Transform

The inverse transform takes as input an array containing the wavelet repre-
sentation, in the format produced by wavelet fwd xform, and converts it into
a scale representation.

248 9 Multiscale Analysis and Wavelets

The procedure wavelet inv xform executes the iteration of the basic re-
construction step.

wavelet_inv_xform(v, m)
{

for (j = 0; j <= m; j++)
wavelet_reconst(v, pow(2, j+1));

}

The procedure wavelet reconst performs the reconstruction combining
the components vj and wj of the input array to reconstruct vj-1. It replaces
[vj wj...] with [vj-1...]. Note that the number of elements of vj and wj
is 1/2 of the number of elements of vj-1, therefore they use the same space
in the array.

wavelet_reconst(w, n)
{

zero(v, 0, n);
for (k = 0; k < n; k++) {

i = floor((k-ho)/2) % (n/2);
m = (k - h.o) % 2;
for (l = m; l < hn; l += 2) {

v[k] += w[i] * h[l];
i = (i-1) % (n/2);

}
i = floor ((k-go)/2) % (n/2);
m = (k - go) % 2;
for (l = m; l < gn; l += 2) {

v[k] += w[i + n/2] * g[l];
i = (i-1) % (n/2);

}
}
copy(v, w, n);

}

9.7.3 Complexity Analysis of the Algorithm

The computational performance of the algorithm is very important. Let’s
determine what is the computational complexity of the fast wavelet transform.

The computation of each coefficient is a convolution operation with the
two-scale sequences. Assuming that these sequences have n coefficients, then
the convolution requires n multiplications and n− 1 additions.

In order to make the decomposition of a coefficient sequence at level j,
from Vj into Vj+1 and Wj+1, we have to compute 2j new coefficients: 2j+1

9.7 The Fast Wavelet Transform Algorithm 249

for the two components f j+1 and oj+1. Since each coefficient requires 2n− 1
operations, we have a total of 2j(2n− 1) operations for one-level transforma-
tion.

The full decomposition process is applied for j log2(m) levels. Therefore,
we have

O = 2j(2n− 1) + 2j+1(2n− 1) + · · ·+ 2(2n− 1)

factoring out (2n− 1) and noting that m = 2j , we obtain:

O(m(2n− 1)[1 + 2−1 + 2−2 + · · ·+ 2−j+1])
O(m(2n− 1) 1−2−j

1−2−1)
O(mn)

The above analysis leads us to the following conclusions:

• The complexity is linear with respect to the size of the input sequence;
• The size of the two-scale sequences have a direct relation with the algo-

rithm complexity.

9.7.4 Boundary Conditions

Since in practice we work with finite sequences, it is necessary take special
care with the computation near the beginning and the end of the sequences
(boundaries).

In order to compute the coefficients in the boundary regions, we have to
perform a discrete convolution with the two-scale sequences, and therefore,
we may need coefficients that lie beyond the boundaries of the sequence. Note
that, for this reason, the boundary region is determined by size of the two-scale
sequences. This situation is illustrated in Figure 9.18.

There are some techniques to deal with boundary conditions:

• Extending the sequence with zeros (see Figure 9.19 (a));
• Periodization by translation of the sequence with x(N + i) ≡ x(i)

(figure 9.19 (b));

Fig. 9.18. Boundary regions for convolution between finite sequences.

250 9 Multiscale Analysis and Wavelets

(a)

(b)

(c)

Fig. 9.19. Options for boundary computation (a) Extending with zeros; (b) Peri-
odization; (c) Reflection.

• Periodization by reflection of the sequence with x(N + i) ≡ x(N − i + 1)
e x(−i) ≡ x(i− 1) (Figure 9.19 (c));

• Use basis functions adapted to the interval (we are going to discuss this
option later).

In the implementation of the fast wavelet transform algorithm presented
in Section 9.7, we deal with the boundary problem by a simple periodization
of the sequence. This is accomplished using the coefficient with indices i % m.

9.8 Images and 2D-Wavelets

The one-dimensional wavelet transform described in the previous sections can
be extended to higher dimensions in several ways. Here we are going to de-
scribe only the extension using tensor products.

9.8.1 Tensor Product Extension

A natural way to extend a one-dimensional transformation to two dimensions
is using a tensor product structure. This has two main advantages: it is simple
and computationally efficient.

9.8 Images and 2D-Wavelets 251

The tensor product extension is as follows:

V0 = vh
o ⊗ vv

o

such that
F ∈ Vj ↔ F (2jx1, 22x2) ∈ V0

The scale function φj is then defined as:

φj(x1, x2) = 2jφ(2jx1 − k1)φ(2jx2 − k2) (9.58)

The multiresolution relation now needs to be analyzed more carefully, since
it is the result of a tensor product:

Vj+1 = vh
j+1 ⊗ vv

j+1

= (vh
j ⊕ wh

j)⊗ (vv
j ⊕ wv

j)
= (vh

j ⊗ vv
j)⊕ [(vh

j ⊗ wv
j)⊕ (wh

j ⊗ vv
j)⊕ (wh

j ⊗ wv
j)]

(9.59)

Note that, as a consequence of the tensor product structure, we now have
three types of wavelet functions: two mixed components and a pure compo-
nent. It is possible to interpret these components as the horizontal wavelets
(which detect edges in the horizontal direction), vertical wavelets (which de-
tect edges in the vertical direction) and diagonal wavelets (which detect edges
in the main diagonal direction).

ψh(x1, x2) = ψ(x1)φ(x2)
ψv(x1, x2) = φ(x1)ψ(x2)
ψd(x1, x2) = ψ(x1)ψ(x2)

(9.60)

9.8.2 The 2D Algorithm

The algorithm for the two-dimensional wavelet transform expoits the sepa-
rability of the tensor product structure. In this way, both the decompostion
algorithm and the reconstruction algoritm can be implemented in two di-
mensions by the sequential aplication of the corresponding one-dimensional
algorithms, to the lines and columns of a 2D matrix representing the image.

The direct 2D wavelet transform is:

wavelet_2D_fwd_xform(a, h, g)
{

for (u=0; u<m; u++)
wavelet_fwd_xform(a[u,0], h, g);

for (v=0; v<n; v++)
wavelet_fwd_xform(a[0,v], h, g);

}

The inverse 2D wavelet transform is:

252 9 Multiscale Analysis and Wavelets

wavelet_2D_inv_xform(a, h, g)
{

for (v=0; v<n; v++)
wavelet_inv_xform(a[0,v], h, g);

for (u=0; u<m; u++)
wavelet_inv_xform(a[u,0], h, g);

}

c0 c1

d1,h

d1,v

d1,d

H rows H cols

G rows

G cols

H cols

G cols

Fig. 9.20. Wavelet transform over a 2D domain: Decomposition scheme.

Fig. 9.21. Wavelet transform over a 2D domain: Original image original, interme-
diate result (horizontal pass) and final result (horizontal and vertical pass).

9.9 Comments and References 253

We can observe in Figures 9.20 e 9.21 how this decomposition process takes
place. In Figure 9.20 we have an schematic diagram of the decomposition and
in Figure 9.21 we have the intermediate results and the final image.

9.9 Comments and References

The concept of multiresolution representation and its relation to wavelets was
developed by S. Mallat (Mallat 1989b). In the literature it carries different
names: multiscale analysis or multiscale approximation. We have opted for
multiresolution representation because it fits better to the emphasis we have
been given on function representation.

The material covered in this chapter can be found on (Hernandez e Weiss
1996). Nevertheless the notation of the indices in the scale space differs from
the one used here.

For an exposition of the topics in this chapter using the language of opera-
tors in function spaces the reader should consult (Kaiser 1994). The approach
is algebraically very clear and clean, nevertheless a lot of geometric insight is
lost.

The fast wavelet transform algorithm was introduced by Stephane Mallat
(Mallat 1989a). One of the first references on the computational implementa-
tion of the algorithm appeared in (Press, Teukolsky e Vetterling 1996).

The code for the fast wavelet transform algorithm presented in this chapter
was based in the pseudo-code from (Jawerth e Sweldens 1994). This algorithm
was implemented in (Bourges-Sévenier 1994).

The book (Wickerhauser 1994) describes a complete system for computa-
tion with wavelets, including the fast wavelet transform.

There are several possibilities of extending the wavelet transform to func-
tions of several variables, i.e. L2(Rn). The interested reader should consult
(Daubechies 1992), page 33, or (Mallat 1998).

The beautiful examples 1 and 9.4 of this chapter were taken from (Kaiser
1994).

References

[Bourges-Sévenier 1994]Bourges-Sévenier, M. (1994). Réalisation d’une bib-
liothque c de fonctions ondelettes. Technical report, IRISA – INRIA.

[Chui 1992]Chui, C. K. (1992). An introduction to wavelets. Academic Press.
[Costa e Darsa 1992]Costa, B. e Darsa, L. (1992). Visionaire—Commercial

Morphing Software. Impulse, Inc., Minneapolis.
[Daubechies 1992]Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM

Books, Philadelphia, PA.
[Fiume 1989]Fiume, E. (1989). The Mathematical Structure of Raster Graph-

ics. Academic Press, Boston.

254 9 Multiscale Analysis and Wavelets

[Gonzalez e Wintz 1987]Gonzalez, R. C. e Wintz, P. (1987). Digital Image
Processing (2nd Edition). Addison-Wesley, Reading, MA.

[Hernandez e Weiss 1996]Hernandez, E. e Weiss, G. (1996). A First Course
on Wavelets. CRC Press, Boca Raton.

[Jawerth e Sweldens 1994]Jawerth, B. e Sweldens, W. (1994). An overview of
wavelet based multiresolution analyses. SIAM Rev., 36(3):377–412.

[Kaiser 1994]Kaiser, G. (1994). A Friendly Guide to Wavelets. Birkhauser,
Boston.

[Lim 1990]Lim, J. S. (1990). Two Dimensional Signal and Image Processing.
Prentice-Hall, New York.

[Mallat 1989a]Mallat, S. (1989a). Multifrequency channel decomposition of
images and wavelet models. IEEE Transaction on ASSP, 37:2091–2110.

[Mallat 1989b]Mallat, S. (1989b). Multiresolution approximation and
wavelets. Trans. Amer. Math. Soc., 315:69–88.

[Mallat 1998]Mallat, S. (1998). A Wavelet Tour of Signal Processing. Aca-
demic Press.

[Press, Teukolsky e Vetterling 1996]Press, W. H., Teukolsky, S. A., e Vetter-
ling, W. T. (1996). Numerical Recipes : The Art of Scientific Comput-
ing, chapter 13, pages 591–606. Cambridge Univ Press.

[Weaver 1989]Weaver, J. (1989). Theory of Discrete and Continuous Fourier
Transform. John Wiley & Sons, New York.

[Wickerhauser 1994]Wickerhauser, M. V. (1994). Adapted Wavelet Analysis
from Theory to Software. A. K. Peters, Wellesley, MA.

[Zayed 1993]Zayed, A. (1993). Advances in Shannon’s Sampling Theory. CRC
Press, Boca Raton.

10

Probabilistic Image Models

Nature is a complex scenario, and problem solving is an essential component
of human nature. These two ingredients lead to curiosity, the seeking for new
useful information among myriads of stimuli.

Deterministic models, as presented in previous chapters, are useful for
describing those phenomena without inherent uncertainty and for which all
relevant data can be gathered without observation errors. This is seldom the
case when dealing with real world data. The latter situation requires models
able to cope with the complexity of randomness, and stochastic models are
among them.

This chapter presents some of the most successful stochastic models for
dealing with image data. The conceptual framework is the image model pro-
posed by (Geman and Geman 1984), that splits image formation into two main
components: an unobserved truth and the observed data; this framework is
discussed in section 10.1. Models for the observed data, are commented in
section 10.2, while models for the classes are presented in section 10.6.

Examples presented here were produced with R, an open source software,
freely available for a number of platforms (R 2006).

10.1 Image Formation

As seen in the previous chapter, a discrete image defined on a regular
Euclidean grid is a special kind of signal, namely

f : U ⊂ Z
2 → Km, (10.1)

where K ⊂ R or K ⊂ C and m is called “number of bands”. We will deal
mostly with images defined on a finite grid so, without loss of generality, we
will write U = [0, . . . , n1−1]× [0, . . . , n2−1] ⊂ Z

2, and n1, n2 will be referred
to as the number of rows and the number of columns, respectively.

The main problems that arise when dealing with images are related to
processing and analysis, as presented in section 1.2. In order to illustrate

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 10,
c© Springer-Verlag London Limited 2009

256 10 Probabilistic Image Models

these two kinds of problems, the models and techniques to tackle them, we
will consider them as disjoint, though in many situations they are not.

(Geman and Geman 1984) provided a very useful stochastic framework,
that we will now put in the form of equation (10.1). Consider two images f, g
as in equation (10.1), such that

g = φ(H(f))� n, (10.2)

where H are operations that “blurr” the original information, φ are point-
wise operations, and n is a random signal called generically “noise” that is
composed to the blurred and distorted data by means of a binary operator
�. Image processing deals with the problem of retrieving f from g, as will be
presented in Section 10.5

Let us see now an example of image analysis, namely, image classification.
Assume that, given the support of the image U , nature chooses a class ξu

for each coordinate u ∈ U ; by classes we mean “natural” simple targets as,
for instance, shallow water, deep water, dry sand, wet sand, forest etc. The
number of different classes can be either known or not. A sensor will observe
the scene, and will produce a value in Km for each coordinate as a function
of the class in that position and of the imaging technique. The manner in
which each class is trasformed into a value is idiosyncratic of the sensor, the
class and the conditions under which the observation was made, including the
class of neighboring sites. Image classification consists of estimating the true
classes (ξu)u∈U from the observed data (f(u))u∈U , possibly using additional
information.

A closely related image analysis problem is that of segmentation. Instead
of estimating the unobserved classes, an image segmentation is a partition
of the support U into disjoint non-empty sets Uk, 1 ≤ k ≤ M , such that if
u1, u2 ∈ Uk but u3 ∈ U	, with k �= �, then f(u1) and f(u2) share a common
property but f(u3) does not. Typical properties are mean value, texture, color
etc.

Edge detection is one of the many tasks that can be formulated such that
encompasses both problems: image processing and image analysis.

In the following we will provide a brief account of stochastic models for
these problems, and will discuss some of the tools that can be derived under
such hypotheses.

10.2 Observed Data

One of the most popular models for describing image data is the multivariate
Gaussian law. Among the reasons for this popularity one can mention the
central limit theorem, which states that if observations are the result of the
sum of infinitely many small loosely related contributions, then the result
should follow this law. It is important to notice, though, that the theorem

10.2 Observed Data 257

says nothing about actual data and, as will be seen later in this chapter, this
rationale should be used with caution in practice.

Another reason for assuming the multivariate Gaussian distribution is that
it is tractable from both the theoretical and computational viewpoints, and
that it leads to well known restoration and analysis techniques.

This distribution is characterized by the following density:

p(x) =
1

(2π)m/2|Σ|1/2
exp

{
−1

2
(x− μ)′Σ−1(x− μ)

}
, (10.3)

where x = (x1, . . . , xm)′ describes the observation in R
m, μ = (μ1, . . . , μm)′ ∈

R
m is the mean vector and Σ is the m ×m positive definite covariance ma-

trix, so Σ−1 exists. The mean vector is the point at which the mode of the
distribution is located. The covariance matrix is of the form Σ = (σij) where

σij = σji is the covariance between components i and j,

σii = σ2
i > 0 is the variance of component i.

The covariance between components i and j can also be expressed in terms
of their correlation −1 < ρij < 1, namely, σij = ρijσiσj . More details about
this distribution can be found in, among other references, the textbooks by
(Krzanowski 1988; Muirhead 1982; Tong 1990).

For simplicity reasons, but without loss of generality, consider the bivariate
case. The density given in equation (10.3) reduces to

p(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp
{
− 1

2(1− ρ2)

[(x1 − μ1

σ1

)2

+
(x2 − μ2

σ2

)2

−

2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)]}
, (10.4)

where ρ = ρ12. This distribution will be used to analyze the data that compose
Figure 10.1.

As can be seen in Figure 10.1 (the dashed lines denote an area to be further
studied, not in the original work), the painting is mainly composed of light
blue (the sky), green (the cactus), black (eyes, eyelids, hair and contours),
light brown (the skin) and dark brown (the hat) regions. Small white spots
are also seen.

Figure 10.2 shows the values of each pixel projected onto the plane formed
by the red and blue channels. Each point is shown in the same color as seen
in Figure 10.1, and it is clear that a single Gaussian distribution will be
inadequate to explain this dataset.

A sample of 14190 pixels were taken from the class ‘skin’, namely the area
shown in Figure 10.1. These values are, at first sight, good candidates for a
fit with the bivariate Gaussian law.

The sample mean and covariance matrix, computed with the red and blue
channels of the training data, are given by

258 10 Probabilistic Image Models

Fig. 10.1. “Moreno Bom” by Enilson Costa, acrylic on canvas, 2007, sampled to
458 × 372 pixels, with region of interest.

Fig. 10.2. Pixels values projected onto the red-blue plane.

10.2 Observed Data 259

μ̂ =
(

0.625
0.190

)

and Σ̂ = 10−4

(
2.486 2.109
2.109 4.450

)

.

With this, the estimated correlation between the channels is, approximately,
ρ̂ = 0.634. Using this information, one can plot contour curves of equa-
tion (10.3), given these estimates; this is presented in Figure 10.3.

Besides such statistical analysis, which is useful for image processing and
analysis, one can use this information in order to synthesize data. The com-
plete estimates from the skin data, i.e., using the red, green and blue chan-
nels are

μ̂skin =

⎛

⎝
0.625
0.467
0.190

⎞

⎠ and Σ̂skin = 10−4

⎛

⎝
2.486 1.869 2.101
1.870 1.823 2.162
2.109 2.162 4.450

⎞

⎠ . (10.5)

A number of computational platforms can be used to draw samples from the
multivariate Gaussian distribution, provided the parameters.

Using this approach, a simulated palette of colors of the painting shown
in Figure 10.1 is shown in Figure 10.4. For each color, it was built simulating
100×100 independent outcomes from the Gaussian distribution with the mean

Fig. 10.3. Data from the class ‘skin’, with contour curves of the estimated bivariate
Gaussian density.

260 10 Probabilistic Image Models

Fig. 10.4. Simulated palette of colors: skin, cactus, sky and hat (top to bottom,
left to right).

and covariance matrix as estimated from the data. These parameters, besides
the ones presented in equation (10.5), are:

μ̂sky =

⎛

⎝
0.516
0.677
0.735

⎞

⎠, Σ̂sky = 10−4

⎛

⎝
0.859 0.655 0.792
0.655 1.035 1.187
0.792 1.187 1.587

⎞

⎠ , (10.6)

μ̂hat =

⎛

⎝
0.490
0.332
0.182

⎞

⎠, Σ̂hat = 10−4

⎛

⎝
7.377 4.589 1.009
4.589 3.517 1.222
1.009 1.222 1.589

⎞

⎠ , (10.7)

and

μ̂cactus =

⎛

⎝
0.281
0.420
0.252

⎞

⎠ , Σ̂cactus = 10−3

⎛

⎝
2.001 1.938 1.783
1.938 3.001 1.247
1.783 1.247 2.61

⎞

⎠ . (10.8)

Using simulation introduces variability in the data, a desirable feature
when realism is sought. Notice that the cactus and hat colors shown in the
synthetic palette in Figure 10.4 vary more than the other two introducing,
thus, a more lively effect.

Different applications require different parameters in order to obtain ac-
ceptable samples. (Richards and Jia 1999, p. 188) provide the estimated pa-
rameters from four different areas: water, fire burn, vegetation and urban. The
four bands data they employ come from the Landsat multispectral scanner.

10.3 Histograms and Estimation 261

A major weakness of this proposal is the spatial independence among
the random variables. This issue can be tackled in two ways: incorporating
dependence on the model of the observed data, or providing such structural
information in the classes.

Special care must be taken in the choice of the distribution. Though the
multivariate Gaussian law is tractable and, under conditions oftern observed in
practice, acceptable, this is not the case when leading with imagery obtained
with coherent illumination: sonar, ultrasound-B, laser and SAR (Synthetic
Aperture Radar) data. The departure from the Gaussian law in such cases
plays a central role in the development of tools for image processing and
analysis. For details on this kind of data, the reader is referred to (Oliver and
Quegan 1998) and the references therein.

10.3 Histograms and Estimation

The previous section presented the use of simulation for building synthetic
data. As seen, this technique requires the estimation of paramenters that
characterize the model for the observations. This section presents definitions
leading to procedures that allow the obtainment of such estimates, and other
statistically-related techniques for image enhancement.

In the following we will consider g : S → K ⊂ R a single-channel image
defined on the regular grid S with values in K, i.e., definition (10.1) with
m = 1.

One of the most important tools for the analysis of data in general, and
of images in particular, is the histogram. Consider IK = {K0, . . . ,Ko−1} a
partition of the set K in o elements, i.e.,

1. Ki �= ∅ for every 0 ≤ i ≤ o− 1,
2. Ki ∩Kj = ∅ for every i �= j, and
3. ∪o

i=0Ki = K,

then H(g, IK) = (v0, . . . , vo−1) ∈ N
o
0, an o-dimensional vector of natural num-

bers, is the histogram of the image g with respect to the partition IK if

vi = #{s ∈ S : g(s) ∈ Ki},

in other words, the number of coordinates s where the observed value g(s)
belongs to Ki. A very convenient practice consists of using the histogram of
proportions, given by h(g, IK) = (v0, . . . , vo−1)/#S.

The histogram (of proportions, a denomination which we will omit thereof)
is, in some sense, an estimator of the density of the distribution that describes
the data and, therefore, it provides important information about the observed
values.

In practice, the most frequent partition of K is in o disjoint intervals
of equal length. If K is an interval of Z, say K = [0, k − 1], then a good
starting point is using Ki = i. For a discussion on ways of building histograms,

262 10 Probabilistic Image Models

(a) Histogram and density (b) Empirical and cumulative distribu-
tion functions

Fig. 10.5. Histogram, fitted Gaussian density, empirical and estimated cumulative
distribution function of the red channel of samples from the skin class.

and other important statistical issues, the reader is referred to (Venables and
Ripley 2002).

Figure 10.5(a) presents the histogram of the red channel data of the sam-
ples from the skin class, along with the fitted Gaussian density. One can see
that the histogram is fairly symmetric, with no evident departure from the
assumption of normality.

An important function, closely related to the histogram, is the empirical
function F̂ : R → [0, 1], defined as F̂ (t) = #{s ∈ S : g(s) ≤ t}/#S. This
function computes, in every t ∈ R, the proportion of coordinates s such that
the observed value g(s) is at least t.

The empirical function can be regarded as an estimate of the cumula-
tive distribution function, and the latter contains all the relevant information
about the (marginal) process that generated the observed data {g(s) : s ∈ S}.

Figure 10.5(b) shows, in steps, the empirical function of the red channel of
samples from the skin class. The solid line exhibits the estimated cumulative
distribution function of the same data. The fit is visually acceptable.

The empirical function plays a central role in an important class of image
transformations: the histogram-based poinwise radiometric operations, being
the histogram equalization one of its most used members in practice.

Consider f, g : S → R two images, then f is a pointwise radiometric
transformation of g if for every s ∈ S holds that f(s) = Υs(g(s)), where
Υs : R → R are real functions. More often than not, Υs = Υ : R → R, for
every s ∈ S, i.e., there is only one radiometric transformation. In this last
case one says that f is the result of a location-invariant pointwise radiometric
transformation.

10.3 Histograms and Estimation 263

There are countless useful radiometric transformations, being the square
root and the logarithm two of the most used for positive data. These trans-
formation enhance (expand) low values, at the expense of compacting high
values. They are, therefore, useful for visualizing relatively dark images. An-
other important transformation of this kind is the negative: if f : S → [0, 1],
then g such that g(s) = 1− f(s) is the digital negative of f .

Figure 10.6(a) shows the blue channel of Figure 10.1, while Figures 10.6(b)
and Figures 10.6(c) present the result of applying the square root and the
negative, respectively.

In the quest of a pointwise radiometric transformation that enhances every
portion of the data, we will now recall an useful result from probability.
Consider the continuous random variable X and its cumulative distribution
function F . The random variable Y that results from the transformation
Y = F (X) has uniform distribution on (0, 1).

A perceptually well-contrasted image is close to one with an uniform his-
togram, so given f : S → R, the transformation that produces such image
is g = F (f), where F is the cumulative distribution function of the random
variable X whose outcomes are the observed values {f(s) : s ∈ S}. . . but one
seldom has access to this information.

Instead of relying on the improbable knowledge of F , one can use F̂ , which
is an estimator. In this fashion, g = F̂ (f) : S → [0, 1], with F̂ the empirical
function of the image f , is the equalized version of f .

Figure 10.7 shows the ingredients and the result of the histogram equal-
ization. Figure 10.7(a) presents the histogram of the blue channel data
(Figure 10.6(a)); it is bimodal, corresponding to the two main classes present
in this dataset: the sky (high values) and the rest of the picture (low values).
Figure 10.7(b) exhibits the empirical function of these dat; the flat region to
the middle of the curve corresponds to the intensity levels between the two
peaks of the histogram, for which few observations are available. Figure 10.7(c)

(a) Blue channel (b) Square root (c) Negative

Fig. 10.6. Original blue channel, square root and digital negative transformations.

264 10 Probabilistic Image Models

(a) Histogram (b) Empirical function

(c) Equalized blue channel

Fig. 10.7. Histogram equalization.

presents the result of applying the empirical function to the values of the blue
channel. As can be seen, the image with its histogram equalized exhibits an
aggressive contrast.

In the sequel, we will see the effect of applying these operations on each
of the three channels of the color image. Figures 10.8(a), 10.8(b) and 10.8(c)
present the result of the square root, digital negative and equalization, re-
spectively, applied independently on each red, green and blue channels of
Figure 10.1. Notice that the latter does not necessarily preserve the hues as,
for instance, the color of cactus is bluer than the original.

Once we have an equalized image, we can choose the shape of the his-
togram of a new image. It is immediate to see that if U has uniform distri-
bution on (0, 1) and if F is the cumulative distribution function of a random
variable, then the random variable Y = F−(U) has the distribution charac-
terized by F . F− denotes the pseudoinverse of F , which is given by F−(t) =
inf{x ∈ R : F (x) ≥ t}. Notice that if Y is a continuous random variable, then

10.3 Histograms and Estimation 265

(a) Square root (b) Negative (c) Equalization

Fig. 10.8. Pointwise radiometric transformation on the three channels.

F−(t) = F−1(t), but F− can also be used for discrete random variables. This
is known as the ‘inversion method’ in simulation: a very general procedure
for obtaining samples from any distribution, starting from outcomes of the
Uniform law.

The Gaussian distribution is usually regarded to as a shape that provides a
smooth perception of the data. Since the data in Figure 10.7 are approximately
distributed in an uniform fashion, we can apply them Φ−1, with

Φ(x) =
∫ x

−∞

1√
2π

exp{−v2/2} dv

the cumulative distribution function of the standard Gaussian law, in order
to obtain g′ = Φ−1(g) the Gaussian version of the original image f . The
result of applying this transformation to the three channels of our test image
(Figure 10.1) is presented in Figure 10.9, along with the histogram of the data
in channel blue.

Histogram specification is a very general and useful technique. It provides
means to checking the appearance of images for which the physics of the data
acquisition imposes certain distributions, as is the case of, for instance, laser,
sonar, ultrasound-B, the already mentioned SAR and night-vision devices.

In the following, we will conduct a simple statistical analysis of the data,
with the purpose of building other techniques of image enhancement.

Table 10.1 presents the main statistical descriptors of each band of
Figure 10.1. If x = (x1, . . . , xn) denotes a sample of n real values, and the
vector (x1:n, . . . , xn:n) is built with the values sorted in non-decreasing order,
i.e., x1:n ≤ · · · ≤ xn:n, then these quantities, assuming n odd for the sake of
simplicity, are

• the minimum value: min(x) = x1:n,
• the first quartile: q1/4(x) = x(n+1)/4:n,

266 10 Probabilistic Image Models

Fig. 10.9. Histogram specification: Gaussian shape.

• the median: q1/2(x) = x(n+1)/2:n,
• the mean value: x = n−1

∑n
i=1 xi,

• the third quartile: q3/4(x) = x3(n+1)/4:n, and
• the maximum value: max(x) = xn:n.

The sample standard deviation, given by sx =
√

n−1
∑n

i=1(xi − x)2, is an-
other important descriptive measure of a dataset. Notice that, as defined, it
is the square root of the variance presented in Definition 10.4, page 273.

Notice that these quantities depend only on each data set, i.e., on the
values of each band regardless the other bands. These are, then, marginal de-
scriptors, in the sense that are solely related to the marginal properties of the
data. They do not describe, for instance, the relationship between channels;
this will be discussed later in this chapter.

The range of a set of values x is the interval [min(x),max(x)], and as
we can see from Table 10.1, none of the channels under assessment has full
(maximum, complete) range, i.e., [0.0240, 933], [0.051, 0.867] and [0, 0.878] are
all strictly contained in [0, 1]. An equalized image, by definition, has full range
but, as previously presented, it does not necessarily preserve the hues.

Another important graphical tool for the assessment of the data are the
boxplots. They provide additional, and more quantitative, information to that
available in a histogram. It is particularly useful for comparing two or more
data sets.

Table 10.1. Main descriptors of each channel of Sertanejo

min q1/4 q1/2 x q3/4 max sx

Red 0.024 0.455 0.514 0.514 0.620 0.933 0.116
Green 0.051 0.447 0.486 0.508 0.631 0.867 0.132
Blue 0.000 0.196 0.251 0.406 0.682 0.878 0.240

10.3 Histograms and Estimation 267

–
3

–
2

–
1

0
1

2
3

xn:n

x1:1

q3 4/

q1 2

q1 4

/

/

Fig. 10.10. Elements of a boxplot.

Figure 10.10 presents the main elements of a boxplot: the box extends
from the lower to the upper quartile, i.e., from q1/4 to q3/4; the horizontal bars
extend from those data that encompass at least 1.5(q3/4 − q1/4), and if there
are points beyond these bars they are marked as spots, and they are usually
referred to as “outliers”. Notice that, in the case of Figure 10.10, there are two
outliers: two below (one being the minimum x1:n) and one above (one being
the maximum xn:n). The central bar is the median (q1/2). Two notches are
drawn besides the median, and if the notches of two plots do not overlap this
is strong evidence that the two medians differ significantly; see the boxplot
reference in the R package (R 2006).

See, for instance, the boxplots presented in Figure 10.11; they exhibit in-
formation for the three bands that compose the Sertanejo picture. One readily
notices that, though all medians are significantly different, the red and green
ones are closer to each other than the blue one; the blue component is lower
than the other two and, therefore, may require some additional or stronger
enhancement for a well balanced picture.

Another interesting issue of the blue channel is that its mean and median
values are, respectively, 0.406 (see Table 10.1) and 0.251. This discrepancy

268 10 Probabilistic Image Models

Red Green Blue

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 10.11. Boxplots of the three bands of Sertanejo.

suggests the presence of highly skewed data and/or more than one population,
as already checked in the histogram presented in Figure 10.7(a).

The distribution of observations allows us to conclude that

Red channel: the median is skewed towards lower values, there are outliers
both below and above the extreme bars

Green channel: the median is skewed towards lower values, only outliers below
the extreme bars are present

Blue channel: does not exhibit outliers and, as the other two channels, the
median is skewed towards lower values.

As already presented, graphical and quantitative exploratory analysis of
image data leads to relevant information, and provide guidelines for building
successful image processing techniques.

A milder pointwise radiometric transformation aiming at improving con-
strast is the linear stretch. It takes the form of any linear transformation
g(s) = a + bf(s), with a, b real numbers. In order to enhance contrast of the
data set x, with values in K = [0, 1], we will apply the linear transforma-
tion given by x �→ (x − x1:n)/(xn:n − x1:n). With this, the transformed data

10.3 Histograms and Estimation 269

Fig. 10.12. Result of applying the full range linear stretch.

have full range. Figure 10.12 shows the result of applying this transformation
independently to each channel of Figure 10.1.

In the following, we will present the contrast enhancement by decorrela-
tion, a technique based on the use of the covariance matrix of the data. Firstly,
consider the plot of all the values of the dataset presented in Figure 10.13 in
a 3D cube, where every point is painted with the respective color.

As can be seen in Figure 10.13, the amount of contrast enhancement that
can be attained by any linear stretch applied independently to the Red, Green
and Blue channels is limited. This is due to the fact that the data are correlated
and, thus, the cloud of points is cigar-shaped; no pointwise radiometric linear
transformation will fill the cube. We will see that it is possible to compute an
adequate rotation, after which pointwise radiometric linear transformations
can be applied in order to fill the space and, therefore, provide a very strong
image enhancement. The inverse rotation applied to the stretched data will
restore, to a certain extent, the original hue of the data.

The first part of the transformation consists of producing a spectral ro-
tation and full stretch. Figures 10.14 and 10.15 show the result of this stage,
namely the points in the RGB cube and the resulting image.

In this case, the skin class had its hue more preserved than the oth-
ers. This is due to a number of factors, related to the transformation, but
in this case it is mainly because it is the most numerous class and, then,
the covariance matrix of the whole dataset is strongly influenced by these
values.

270 10 Probabilistic Image Models

Fig. 10.13. Values of the original image in the RGB cube.

Fig. 10.14. Values of the image after principal components transformation in the
RGB cube.

10.3 Histograms and Estimation 271

Fig. 10.15. Image after principal components transformation stretch.

The second part of the transformation consists of making the inverse rota-
tion, in order to retrieve, to a certain extent, the original hues. Figures 10.16
and 10.17 show the result of this stage, namely the points in the RGB cube
and the resulting image.

In the following, we will provide the technical details of this important
transformation, which is closely related to the well know Principal Com-
ponents Analysis (PCA). We will discuss here only RGB images, but the
technique can be applied to data in R

m, with m ≥ 2.
In order to transform f into g using contrast enhancement by decorrela-

tion, we first need the mean and covariance matrix of f .
Consider f1, f2 : S → R; then R

S is a vector space and we can define the
following operations:

• sum of images: f1 + f2 ∈ R
S , given by (f1 + f2)(s) = f1(s) + f2(s) for

every s ∈ S,
• scalar times an image: αf1 ∈ R

S , given by (αf1)(s) = αf1(s) for every
α ∈ R and every s ∈ S,

• the scalar or inner product between two images, given by

〈f1, f2〉 =
∑

s∈S

f1(s)f2(s),

• the Ld norm of an image, given by

‖f1‖d =

{(
1

#S

∑
s∈S fd

1 (s)
)1/d

if d > 0,

maxs∈S f1(s) if d = ∞.

272 10 Probabilistic Image Models

Fig. 10.16. Values of the image after contrast enhancement by decorrelation in the
RGB cube.

Fig. 10.17. Image after contrast enhancement by decorrelation.

10.3 Histograms and Estimation 273

Usually, L1 is called “Manhanttan norm” and L2 “Euclidean norm” and,
for the sake of brevity, ‖f1‖2 is simply denoted ‖f1‖.
Consider now IS , the unitary image in R

S , i.e., I(s) = 1 for every s ∈ S.

Definition 10.1 (Mean value). The mean of f1 is given by 〈f1, Is〉:

f1 = 〈f1, Is〉 =
1

#S

∑

s∈S

f1(s).

Definition 10.2 (Centered image). The centered version of f1 is f̃1 =
f1 + (−f1)IS.

Note that f̃1 = 0, i.e., the mean of the centered version of any image is
zero.

Definition 10.3 (Covariance). The covariance between two scalar images
f1 and f2 is given by the inner product of their centered versions, i.e.,
Cov(f1, f2) = 〈f̃1, f̃2〉.

Definition 10.4 (Variance). The variance of a scalar-valued image f1 is the
covariance between f1 and f1, i.e., Var(f1) = Cov(f1, f1) = 〈f̃1, f̃1〉 = ‖f̃1‖.

It is immediate that Cov(fi, fj) = Cov(fj , fi) and that Var(fi) ≥ 0 being
equal to zero if and only if fi(s) = k, k ∈ R, for every s ∈ S.

Definition 10.5 (Linear Correlation). The coefficient of (linear) correla-
tion between f1 and f2 is

ρ̂f1,f2 =
Cov(f1, f2)√

Var(f1)Var(f2)
=

〈f̃1, f̃2〉
‖f1‖‖f2‖

.

The following property can be easily checked: −1 ≤ ρ̂f1,f2 ≤ 1 for every
f1, f2 ∈ R

S , and if ρ̂f1,f2 = 0 we say that f1 and f2 are uncorrelated. Notice
that ρ̂f1,f2 = 0 does not imply, in general, that the random variables F1 and
F2, whose outcomes are f1 and f2 respectively, are independent. Independence
is more general than zero correlation.

Let us move now back to RGB images as, for instance, f, g : S →
R

3. Whenever neccessary, each component will be made explicit by f =
(f1, f2, f3), where fi : S → R for i = 1, 2, 3. We can now define the covariance
matrix of image f as

Σf =
(
Cov(fi, fj)

)
1≤i≤j≤3

.

The diagonal elements of Σf are the variance of each component, and the
off-diagonal elements are the covariances among them.

Since Cov(fi, fj) = Cov(fj , fi), Σf is symmetric and there exists A or-
thogonal (i.e. for which holds that AtA is the identity matrix) such that

274 10 Probabilistic Image Models

AtΣfA = Ω is diagonal. The columns of A are called eigenvectors of Σf ,
while the elements in the diagonal of Ω are the eigenvalues of Σf . It is con-
venient to swap the columns of A such that the diagonal elements of Ω are in
non-increasing order.

Defining g : S → R
3 as g = fA, we say that g is the Karhunen-Loève

transform or, more often, the Principal Components transform of f and g =
(g1, g2, g3) are the principal components of f . Since g is the result of a linear
orthogonal transformation of f , it is a rotation in R

3.
Principal components are uncorrelated by construction, since

Cov(g) = Σg = ΣfA = AtΣfA = Ω =

⎛

⎝
ω1 0 0
0 ω2 0
0 0 ω3

⎞

⎠

and, therefore, Cov(gi, gj) = 0 when i �= j, so the principal component image
is formed by uncorrelated bands.

The diagonal entries of Ω are the variance of each component, i.e.,
Var(gi) = ωi. The variance can be regarded as a measure of innovation or
of information and, therefore,

πi =
ωi

∑3
j=1 ωj

(10.9)

can be used as a measure of the fraction of information band gi carries with
respect to the whole data set.

As presented, the principal components transformation of image f is ob-
tained using Σf , the covariance matrix of f . Arbitrary spectral rotations can
be performed on f with respect to any appropriate symmetric matrix Σ, be-
ing the only requirement that the dimensions are compatible. In this manner
one can use, for instance, the covariance matrices from selected samples of the
whole data set as, for instance, the ones computed for skin (equation (10.5)),
sky (equation (10.6)), hat (equation (10.7)) and cactus (equation (10.8)).
These transformations produce, respectively, Figures 10.18(a), 10.18(b),
10.18(c) and 10.18(d).

One of the most succesful applications of the principal components trans-
formation is related to image compression. For computer graphic applications,
it can be used to transform a colored image into gray-tones one. Figure 10.19
presents the three principal components of Figure 10.1 in decreasing order of
information content, as measured by equation (10.9).

The proportion of variance each principal component explains in this
case is 0.810, 0.185 and 0.005 respectively. The proportion of information
the red, green and blue channels carry are, respectively, 0.151, 0.197 and
0.652. Notice how principal components is able to concentrate more informa-
tion (81%) than the best band with respect to information content (the blue
one, 65%).

10.3 Histograms and Estimation 275

(a) Using Σskin (b) Using Σsky

(c) Using Σhat (d) Using Σcactus

ˆ ˆ

ˆ ˆ

Fig. 10.18. Contrast enhancement by decorrelation with respect to selected sam-
ples.

276 10 Probabilistic Image Models

(b) Second(a) First (c) Third

Fig. 10.19. The three principal components.

10.4 Correlated Observations

The dependence of observations from site to site has not been considered so
far. Spatial correlation is an issue frequently observed in any picture, since
close sites tend to have similar values. This spatial dependence is visually
perceived as texture, and the modelling and simulation of a particular class
of textures is the purpose of this section.

One of the most useful ways to describing, simulating and analyzing struc-
tured data, as is the case of images, is by means of Gaussian random fields
(discrete random fields will be treated in Section 10.6, for modelling context).
These models rely on the specification of two ingredients, namely, marginal
laws and correlation structure. More general models require the specification
of the complete joint distribution of the process, which is seldom possible in
practice, let alone convenient.

Equation (10.3) presents the density of the multivariate Gaussian distribu-
tion. Along previous Sections, the meaning of ‘multivariate’ was strongly tied
to the components, i.e., bands of a multispectral image f : S → R

p. Covari-
ance and correlation were measures of the relationship between observations
in different bands i, j but on the same site s ∈ S, in other words, between
fi(s) and fj(s).

In this section, this multivariate structure will be used to describe the
stochastic relationship between the observations in sites s, t ∈ S of the real-
valued image f : S → R, i.e., between f(s) and f(t).

The mean and covariance functions of the random field F defined on S
are, respectively,

E(F (s)) = μ(s), and (10.10)

10.4 Correlated Observations 277

Cov(F (s), F (t)) = E(F (s)F (t))− μ(s)μ(t), (10.11)

and we will only consider stationary processes for which holds that

μ(s) = μ for every s ∈ S, and
Cov(F (s), F (t)) = C(‖s− t‖),

where C : Z → R. In such processes, the mean does not change with the
position and the covariance function only depends on the distance between
the coordinates, so one of the points can be the origin and, then, C(‖s− t‖) =
C(‖s − 0‖) = C(‖s‖). Without loss of generality, we can also assume that
the random field has unitary variance, so covariance and (auto) correlation
functions coincide:

Cov(F (s), F (0)) = ρ(F (s), F (0)) = �(‖s‖).

An autocorrelation function is called separable if it admits the following
decomposition:

�(‖s‖) = �(‖(s1, s2)‖) = �1(s1)�2(s2),

where �i : Z → [0, 1), i = 1, 2, are suitable one-dimensional correlation func-
tions.

The point now is, given a suitable correlation function �, how can we get
samples from the stochastic process F obeying the zero-mean unitary variance
Gaussian model with the specified correlation function?

The straightforward approach consists of factoring the correlation function
� into the product � = AAt. If F ′ is a collection of independent identically
distributed Gaussian random variables with zero mean and unitary variance,
then the convolution between F ′ and A, F = A ∗ F ′, has zero mean and
correlation matrix

E(FF t) = E(AF ′(AF ′)t) = E(AF ′(F ′)tAt) = AE(F ′(F ′)t)At = AIAt = �.

The factorization of � can be accomplished by Cholesky decomposition.
Given a symmetric positive definite matriz �, its Cholesky decomposition

is an upper triangular matrix A such that � = AtA. It is a special case of
a broader class of transformations: matrix factorization, a successful tool for
image analysis (Lee and Seung 1999). Consider, for instance, the following cor-
relation matrix � (with only the elements in and above the principal diagonal
here shown to unclutter the visualization):

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.000 0.992 0.621 0.465 0.979 0.991 0.971
1.000 0.604 0.446 0.991 0.995 0.984

1.000 −0.177 0.687 0.668 0.502
1.000 0.364 0.417 0.457

1.000 0.994 0.960
1.000 0.971

1.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10.12)

278 10 Probabilistic Image Models

and its Cholesky decomposition

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.992 0.621 0.465 0.979 0.991 0.971
0 0.129 −0.086 −0.111 0.156 0.096 0.161
0 0 0.779 −0.610 0.118 0.079 −0.111
0 0 0 0.632 −0.002 0.024 −0.069
0 0 0 0 0.054 −0.015 −0.043
0 0 0 0 0 0.036 0.090
0 0 0 0 0 0 0.067

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice the presence of a first-order negative correlation coefficient in equa-
tion (10.12).

Applying the aforementioned direct transformation on a set of 128 × 128
independent identically distributed Gaussian random variables with zero mean
and untary variance, one obtains the field shown in Figure 10.20.

As pointed out by (Dietrich and Newsam 1997), this direct procedure is
computationally expensive due to the need of factoring the autocorrelation
matrix � and then computing each convolution on the independent Gaussian
field. The simplest way to accomplish this task is using the Fourier transform.

The spectral density function of the random field F is the Fourier trans-
form of its covariance function, and if F ′ is the independent zero-mean unitary
variance Gaussian field as above, then the spectral density of A ∗ F ′ is the
Fourier transform of � = AAt. Assume in the following that � is a separable

Fig. 10.20. Correlated Gaussian random field by direct transformation.

10.5 Filtering 279

(a) Exponential correlation (b) Gaussian correlation

Fig. 10.21. Gaussian Random fields.

function for which holds that �(s, t) = �1(s)�1(t). Then, an algorithm for
generating F with specified correlation function � is the following:

1. Simulate F ′, as defined above
2. Compute the frequency mask Ψ(u, v) =

√
F(u)F(v)

3. Calculate the resulting field F = F−1(Ψ · F(F ′)),

where ‘·’ denotes the element-by-element product and F the Fourier transform
operator.

The easiest way to specify valid correlation functions for this method
is through functional forms. Usual functional forms include the log-linear
or exponential (�1(t) = exp{−t}) and log-quadratic or Gaussian (�1(t) =
exp{−t2}) functions. Figure 10.21 presents two outcomes of such fields on a
grid of size 128× 128.

(Schlather 1999) provides a detailed discussion of the properties of positive
definite functions, which are good candidates for building covariance functions.

Using the inversion method, and the technique based on the frequency
mask, (Bustos et al 2001) present a general technique for obtaining correlated
fields with a wide variety of marginal distributions.

10.5 Filtering

The discussion that ended the last section, namely the generation of textures
by means of convolutions, provides a clue for image restoration.

Back to the model presented in equation (10.2), consider the situation of
having an unobserved image f that is transformed into the available image

280 10 Probabilistic Image Models

g by the convolution with a matrix h, i.e., g = f ∗ h. If all the coefficients
in h are non-negative, his kind of degradation is called “blurring” or “low-
pass”. Figure 10.22(a) shows the green channel of the painting presented in
Figure 10.1, denote it f . Notice the detail of the eye; it will be useful to
compare the effect of the forthcoming transformations with the original data.

Figure 10.22(b) shows the effect of applying a convolution mask of size
9× 9 with values 1/81 (i.e., it shows g = h ∗ f). The detail of the eye clearly
shows the extent of the degradation: the light line below the eyelid is now
barely visible, for instance.

Assume also that h is known and that one wants to retrieve f from the
observed data g. It would suffice to convolve g with a function h′ that ellimi-
nates the effect of h. When available, h′ is known as the inverse filter and it
is defined as the function that satifies f = Ψ(g) = Ψ(f ∗ h) = f ∗ h ∗ h′, so
h ∗ h′ is the identity.

Such exact inversion is seldom possible in practice, mainly because degra-
dation is frequently associated to noise. Figure 10.22(c) presents the effect of
adding Gaussian white noise to the blurred image (g = h ∗ f + n). Though
at first glace it might seem that this picture has retrieved part of the detail
lost in figure 10.22(b), this is an effect of noise on blurred imagery; notice
that in the detail of the eye there is no edge information, in the contrary, the
degradation is now stronger. In such cases, one has to rely on estimators.

The general purpose of restoration through filtering is finding an estimate
of f , say f̂ , which is a function of the available data and, eventually, of addi-
tional information about the degradation process.

There are many approaches to restoration. In the following we will com-
ment a few of those that stem from statistical ideas.

The image shown in figure 10.22(c) suffers from additive Gaussian noise.
In this case, it was built in that way; in practice, this is the first hypothesis
to be tested when there is no information suggesting other model.

A first idea to combat this kind of noise is taking local means. The ratio-
nale behind this technique is that if X1, . . . , Xn are independent identically
distributed random variables with mean μ and variance σ2, then the mean
X = n−1

∑n
i=1 Xi has the same mean and variance n−1/2σ2. Since the vari-

ance is a measure of dispersion, the smaller the variance the more concentrated
the data and, hopefully, the less noisy the image. Figure 10.23(a) presents the
result of applying a Gaussian low-pass filter of size 13× 13 to the blurred and
noisy image.

A Gaussian low-pass filter of size K×K (K odd) and scale s > 0 is defined
by a convolution mask with entries

ai,j = ZK,s exp
{
− i2 + j2

2s2

}
,

where −(K − 1)/2 ≤ i, j ≤ (K − 1)/2 and ZK,s is the constant that grants∑
i,j ai,j = 1. Values decrease as they are further apart from the center of the

mask, so the variance reduction is not a factor of K, but the filter introduces

10.5 Filtering 281

(a) Green channel (b) Blurred by convolution

(c) Blurred and noisy

Fig. 10.22. Original image, blurred and noisy versions.

less blurring than one with constant values. Figure 10.23(b) shows the effect
of applying a mask of side 13 with constant values equal to 1/132; the intense
blurring is noticeable, as well as the noise reduction.

Though not a convolutional, i.e., linear filter, the median is an interest-
ing trade-off between noise reduction and edge preservation. Figure 10.23(c)
presents the result of applying this filter over a window of size 13× 13 to the
blurred and noisy data. As can be seen, the noise reduction is less effective
than the one obtained by the constant filter, but edges are better preserved.

The filters presented so far employ a fixed rule on the data, i.e., they
are invariant. With the exception of the median, they are also linear. From
the observation of the data, it is clear that the data do not follow the same
model over the whole image: there are edges dividing dark and light areas, for
instance, besides different textures. In order to cope with this local informatin,
that can hardly be dealt with invariant filters, the literature abounds with the
so-called adaptive techniques.

282 10 Probabilistic Image Models

(a) Low-pass Gaussian (b) Low-pass constant

(c) Median

Fig. 10.23. Filtered images with windows of size 13 × 13.

Consider, for instance, the Local-σ filter with parameter α > 0. It com-
putes a new value by first calculating the standard variation σ̂ of the data
around the pixel fs. The new value is the mean of those observations that
lie within the interval [fs − ασ̂, fs + ασ̂]. See figure 10.24(a) for the result of
applying such filter on the noisy and blurred data, over windows of size 9× 9
with α = 1.5.

The Local-σ filter belongs to the class of trimmed mean estimators, i.e.,
those where the estimate is computed as a weighted mean of the observations∑M

i=1 aixs, and the coefficients ai typically depend on the whole data set. This
class is known in the literature of quantitative robustness as T estimators
(Maronna et al 2006).

An interesting and pioneering approach to adaptive image smoothing is
the Nagao-Matsuyama filter (Nagao and Matsuyama 1979). It computes the
mean on subwindows within the main window, and retains the value which is

10.5 Filtering 283

(a) Local-σ with α = 1.5 (b) Nagao-Matsuyama 3 iterations

(c) Nagao-Matsuyama 11 iterations (d) Nagao-Matsuyama 50 iterations

Fig. 10.24. Adaptive filters.

closer to the central one. In this manner, it adds geometrical information to
the computation of the coefficient of this T estimate.

Figures 10.24(b), 10.24(c) and 10.24(d) present the result of applying the
Nagao-Matsuyama filter to the blurred and noisy data from figure 10.22(c)
iteratively 3, 11 and 50 times, respectively. Besides the noise reduction, the
edge preservation is clear, as is the (often undesired) the blocking effect. In
our implementation, nine windows of size 3 × 3 were used around the cen-
tral pixel. Other window sizes, subwindow shapes and comparison criteria
can be used depending on the acceptable hypothesis that govern the data
formation.

Edge detection is an important tool in several image applications. In par-
ticular, many non-photorealistic rendering techniques rely on the detection of
edges for the generation of cartoon models. Figure 10.25 presents the result of
applying the laplacian filter to the images shown in figure 10.22. The laplacian
filter is the discrete version of the second derivative of the image in each point.

284 10 Probabilistic Image Models

(a) With original data (b) With blurred data

(c) With blurred and noisy data

Fig. 10.25. Edge detection by convolution with the laplacian filter.

It enhances edges regardless the orientation, and it is defined as a convolution
filter with mask ⎛

⎝
0 −1 0
−1 4 −1
0 −1 0

⎞

⎠ .

This simple filter does not only enhance edges, but also noise. As can be seen
in figures 10.25(a) and 10.25(b), it tolerates a fair amount of blurring in the
input data, but checking figure 10.25(c) one concludes that when applied to
noisy data the results are of little use.

An iterative procedure for the detection of edges under the presence of
noise is presented by (Tupin et al 1998). The technique starts smoothing
the data and detecting edges; these edges are used for further smoothing,
but avoiding using data from different sides of an edge. After this selective
smoothing has been applied, a new edge detection is performed and so on.

10.6 Classes 285

The literature about image filters is vast, stemming from classical ap-
proaches based on signal processing (Lim 1989), statistical methods (Kay
1993; Shiavi 1999), mathematical morphology (Serra 1988), wavelets and mul-
tiscale decomposition (Mallat 1999; Meyer 1993) among others.

10.6 Classes

Previous sections have dealt with properties of the observed data. In order to
have a complete view of Geman and Geman model, c.f. equation (10.1), this
section presents a brief discussion about one of the most important models
for classes, namely, the Potts model.

Imagine we want to provide a stochastic model for the observation of maps,
as the one presented in Figure 10.26(b). Such a model, if both adequate and
tractable, would lead to two important outcomes. The first is the development
of tools that take into account what is expected as a good result; this leads
to Bayesian techniques. The second is the ability to generate believable maps
that can be used as input for Monte Carlo experiments with the purpose
of quantifying the quality of image processing procedures. (Moschetti et al
2006) provide a detailed discussion on the importance of using a Monte Carlo
approach for speckle filters.

Figure 10.26 presents a typical situation where simulation is used for gen-
erating believable images. In this case, discussed by (Lucca et al 1998), the
purpose is simulating an arbitrary number of images from a SAR sensor over
the same area in the Amazon forest. Since this is technically and econom-
ically unfeasible, a map of edges is built from real data (Figure 10.26(a).
Figure 10.26(a) presents the result of this preliminar analysis; this can be as-
sumed as the ground truth. Figure 10.26(b) presents these areas after labelling
them into classes; notice that there are disconnected segments with the same
class as, for instance, the two red areas: a big one and a smaller, linear one.

(c) Observations(a) Edges (b) Classes

Fig. 10.26. Edges, classes and observations.

286 10 Probabilistic Image Models

Figure 10.26(b) presents the result of sampling data from those distributions
that are able to characterize each type of class for a certain kind of sensor; for
details about these distributions, the reader is referred to (Frery et al 1997;
Frery et al 2007).

This approach grants the adequacy of both classes as observations, but the
conclusions drawn from it are only pertinent for areas of the same type. When
one wants to consider a fully random situation, classes have to be modeled as
a stochastic process.

The Ising model was proposed in the early 20s as a means of explaining
the magnetic properties of certain materials. The idea behind the model is
describing the interaction of particles with two possible spin states; when
most spins point to the same direction, there is magnetization.

The beauty of the Ising model is related to the complex behavior it
presents, albeit its simple formulation. Instead of dealing directly with the
joint distribution of all the random variables, one may start by proposing
conditional laws governing the behavior of the random variable indexed by
sites s ∈ S ⊂ Z

2 in the following manner:

Pr(Xs = ξ | XS\{s} = xS\{s}) = Pr(Xs = ξ | X∂s
= x∂s

) (10.13)

∝ exp{β#{t ∈ ∂s : xt = ξ}}, (10.14)

where ξ is one of the possible states, β is a real number, ∂s ⊂ S \ {s} is the
neigborhood of site s ∈ S, ‘∝’ denotes equality up to a constant that does not
depend on ξ and ‘\’ denotes set substraction, i.e., A \B = A ∩Bc.

Equations (10.13) and (10.14) imply two important issues of the model,
respectively

1. that the probability of observing class ξ at site s given all other observa-
tions xS\s, depends only on the state of neighboring sites x∂s

, and
2. that the log-probability depends linearly, through the factor β only, on

the number of neighboring sites that chose class ξ.

Assuming a finite number of possible states, instead of just two as in the Ising
model, one has the Potts model (Wu 1982).

A relevant question is either equation (10.14) induces a unique joint distri-
bution for the classes on every site s ∈ S ⊂ Z

2. The answer, when S is finite,
is always affirmative, so one does not have to worry about computing the
cumbersome joint distribution; it is enough to specify the conditional laws, as
presented in equation (10.14).

Technical details about this model are way out of the scope of this book,
since it is still an active field of research. Suggested additional references
commented at the end of this Chapter.

A good repertoire of techniques includes the judicious use of algorithms for
the simulation of the Potts model. Unfortunately, there are no straight ways of
sampling from the joint distribution induced by equation (10.14). There are,

10.6 Classes 287

though, at least four important iterative procedures that lead to obtaining
such samples.

There are two main classes of techniques for obtaining samples from the
joint distribution induced by equation (10.14): pointwise and cluster-based.
The Gibbs sampler belongs to the former, while the Swendsen-Wang and
Wolff algorithm belong to the latter; the Metropolis technique belongs to
either class, depending on its implementation. In the following, we will briefly
see the Gibbs sampler and the Wolff algorithm.

Starting from an arbitrary initial configuration, the Gibbs sampler con-
sists of replacing the observation in each coordinate by the outcome of
a random variable obeying the conditional distribuition specified in equa-
tion (10.14). This sampling should be performed infinitely many times for
the whole set of coordinates in order to obtain a true sample from the cor-
rect distribution but, in practice, a finite number of iterations will do the
trick.

The Wolff algorithm requires an additional structure. Starting from an
arbitrary initial configuration, it first finds the connected clusters of neigh-
boring sites that exhibit the same value. Once these clusters are found, each
link is deleted with probability e−β . Among the newly formed clusters, one is
randomly chosen with a probability proportional to their sizes. All the obser-
vations in this last cluster are changed into a new value, uniformly sampled
among the other allowable values. Similarly to the previous algorithm, this
procedure should be repeated infinitely many times in order to obtain a gen-
uine sample from the desired distribution, but a finite number of times will
suffice in practice.

Figure 10.27 presents five outcomes of the Ising model on a squared support
of size 64. Figures 10.27(a), 10.27(b) and 10.27(c) present outcomes of the
model with two classes (N = 2), the indepent case (β = 0) and two positive
values of β. Figures 10.27(d) presents the Potts model with three classes (N =
3) and β = 0.88, while Figure 10.27(e) presents the four classes (N = 4) model
with β = 0.96.

Notice that the bigger β the tighter the clusters are, but there is also the
tendency of having just one class with isolated spots. In fact, the theory of
Potts random fields states that, for the case with infinite support, values of
β > log(1 +

√
N) yield outcomes of mostly one class.

Though these figures may not look too appealing of believable as prior
outcomes for maps, when the Potts model is incorporated into a Bayesian
context, the resulting techniques are much better than the ones obtained by
merely dealing with marginal information. The reader is referred to the works
by (Frery et al 2007) and (Frery et al in press) for a quantitative assessment
of the improvement of classification results of using the Potts model for two
quite different data sets, namely, polarimetric and optical.

Details about these simulation techniques can be found in (Metropolis et al
1953; Geman and Geman 1984; Swendsen and Wang 1987; Wolff 1989a; Wolff
1989b).

288 10 Probabilistic Image Models

(a) N = 2, β = 0

(d) N = 3, β = 0.88 (e) N = 4, β = 0.96

(b) N = 2, β = 0.5 (c) N = 2, β = 0.9

Fig. 10.27. Samples from the Ising model.

10.7 Comments and References

The paper by (Geman and Geman 1984) is one of the most influential works
in the area. Until the preparation of this book, it counted more than 3600 cita-
tions in the ISI Web of knowledge. Though less cited, the work by (Carnevalli
et al 1985) is also important and seminal. The formal approach to image for-
mation, analysis and restoration was presented in the former, and extended
in (Bustos and Frery 1992). Edge detection combining image processing and
analysis is well presented, with excellent results for difficult to deal with non-
gaussian data, in (Tupin et al 1998).

Regarding the multivariate Gaussian distribution, there are many text-
books that present it. The three we cited here provide different approaches.
(Krzanowski 1988) is directed towards applications, with emphasys on classi-
fication and discriminant analysis. (Tong 1990) is brief and more theoretical
thant the former. (Muirhead 1982) is quite rigorous, and provides a compre-
hensive account of the theory.

R (R 2006) is one of the most successful initiatives in computational statis-
tics. It can be freely downloaded, for a variety of hardware and software

10.7 Comments and References 289

platforms, from www.r-project.org. This was the choice because (quoting
the authors’ site):

One of R’s strengths is the ease with which well-designed publication-
quality plots can be produced, including mathematical symbols and
formulæ where needed. Great care has been taken over the defaults for
the minor design choices in graphics, but the user retains full control.

The book by (Venables and Ripley 2002) is an excellent reference for both the
language and its use in the statistical analysis of data.

Among the books on image processing, the following provide either a clas-
sical viewpoint or a specific approach. (Jain 1989) is one of the most com-
plete and classical textbooks on this subject, while (Lim 1989) tackles image
processing from a signal processing viewpoint; these are essential and com-
plementary books. Two other very important books on image processing are
those by (Gonzalez and Woods 1992), with emphasis on computer vision,
and by (Richards and Jia 1999), which provides an approach particularly
useful for remote sensing. The work by (Barrett and Myers 2004) is a mon-
umental book with strong bias towards image formation and low-level image
processing.

The work by (Schlather 1999) is an excellent starting point for the study
of random fields. He discusses the general problem of characterizing valid co-
variance functions as positive definite (complex) functions, provides examples,
ways of building such functions and of checking candidates, and also discusses
simulation techniques and computational issues. He mostly discusses Gaussian
random fields, but other laws are also considered. The works by (Bustos et al
2001) and by (Tough and Ward 1999) also study techniques for the generation
of non-Gaussian random fields with specified correlation structure.

Additional references about the use of robust statistics in the design of
image filters are (Allende et al 2006; Bustos et al 2002; Frery et al 1998).

The paper by (Wu 1982) is one of the most complete and authoritative
works about the Potts model. This, along with the book by (Kinderman and
Snell 1980) are excellent starting points for the study of this important model
for image processing and analysis. The book by (Winkler 2006) provides an
updated account of applications of this model in image analysis. (Pickard
1987) presents, from a probabilistic viewpoint, relevant issues of the Ising
model, while (Besag 1986; Besag 1989) propose a statistical framework for
image analysis and restoration.

References

[Allende et al 2006]H. Allende, A. C. Frery, J. Galbiati, and L. Pizarro.
M-estimators with asymmetric influence functions: the GA0 distribu-
tion case. Journal of Statistical Computation and Simulation, 76(11):
941–956, 2006.

www.r-project.org

290 10 Probabilistic Image Models

[Barrett and Myers 2004]H. H. Barrett and K. J. Myers. Foundations of Im-
age Science. Pure and Applied Optics. Wiley-Interscience, NJ, 2004.

[Besag 1986]J. Besag. On the statistical analysis of dirty pictures (with discus-
sion). Journal of the Royal Statistical Society B, 48(3):259–302, 1986.

[Besag 1989]J. Besag. Towards Bayesian image analysis. Journal of Applied
Statistics, 16(3):395–407, 1989.

[Bustos et al 2001]O. H. Bustos, A. G. Flesia, and A. C. Frery. Generalized
method for sampling spatially correlated heterogeneous speckled im-
agery. EURASIP Journal on Applied Signal Processing, 2001(2):89–99,
June 2001.

[Bustos and Frery 1992]O. H. Bustos and A. C. Frery. A contribution to the
study of Markovian degraded images: an extension of a theorem by
Geman and Geman. Computational and Applied Mathematics, 11(1):
17–29, 281–285, Jan., Sept. 1992.

[Bustos et al 2002]O. H. Bustos, M. M. Lucini, and A. C. Frery. M-estimators
of roughness and scale for GA0-modelled SAR imagery. EURASIP
Journal on Applied Signal Processing, 2002(1):105–114, 2002.

[Carnevalli et al 1985]P. Carnevalli, L. Coletti, and S. Patarnello. Image pro-
cessing by simulated annealing. IBM Journal of Research and Develop-
ment, 29(6):569–579, Nov. 1985.

[Dietrich and Newsam 1997]C. R. Dietrich and G. N. Newsam. Fast and exact
simulation of stationary Gaussian processes through circulant embed-
ding of the covariance matrix. SIAM Journal on Scientific Computing,
18(4):1088–1107, 1997.

[Frery et al 2007]A. C. Frery, A. H. Correia, and C. C. Freitas. Classifying
multifrequency fully polarimetric imagery with multiple sources of sta-
tistical evidence and contextual information. IEEE Transactions on
Geoscience and Remote Sensing, 45(10):3098–3109, 2007.

[Frery et al in press]A. C. Frery, S. Ferrero, and O. H. Bustos. The influence
of training errors, context and number of bands in the accuracy of image
classification. International Journal of Remote Sensing, in press.

[Frery et al 1997]A. C. Frery, H.-J. Müller, C. C. F. Yanasse, and S. J. S.
Sant’Anna. A model for extremely heterogeneous clutter. IEEE
Transactions on Geoscience and Remote Sensing, 35(3):648–659, may
1997.

[Frery et al 1998]A. C. Frery, S. J. S. Sant’Anna, N. D. A. Mascarenhas, and
O. H. Bustos. Robust inference techniques for speckle noise reduction
in 1-look amplitude SAR images. Applied Signal Processing, 4:61–76,
1997.

[Geman and Geman 1984]D. Geman and S. Geman. Stochastic relaxation,
Gibbs distributions and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6(6):
721–741, 1984.

[Gonzalez and Woods 1992]R. C. Gonzalez and R. E. Woods. Digital Image
Processing. Addison-Wesley, MA, 1992.

10.7 Comments and References 291

[Jain 1989]A. K. Jain. Fundamentals of Digital Image Processing. Prentice-
Hall International Editions, Englewood Cliffs, NJ, 1989.

[Kay 1993]S. M. Kay. Fundamentals of statistical signal processing. Prentice
Hall Signal Processing Series. Prentice Hall, NJ, 1993.

[Kinderman and Snell 1980]R. Kinderman and J. L. Snell. Markov Random
Fields and Their Application. Contemporary Mathematics. AMS, Prov-
idence, Rhode Island, 1980.

[Krzanowski 1988]W. J. Krzanowski. Principles of Multivariate Analysys: a
User’s Perspective. Oxford Statistical Science Series. Claredon Press,
Oxford, 1988.

[Lee and Seung 1999]D. D. Lee and H. S. Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–791, 1999.

[Lim 1989]J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice
Hall Signal Processing Series. Prentice Hall, Englewood Cliffs, 1989.

[Lucca et al 1998]E. V. D. Lucca, C. C. Freitas, A. C. Frery, and
S. J. S. Sant’Anna. Comparison of SAR segmentation algorithms. In
Second Latinoamerican Seminar on Radar Remote Sensing: Image Pro-
cessing Techniques, pages 123–130, Santos, SP, Brazil, Sept. 1998. Eu-
ropean Space Agency (ESA).

[Mallat 1999]S. Mallat. A wavelet tour of signal processing. Academic, San
Diego, CA, 2 edition, 1999.

[Maronna et al 2006]R. A. Maronna, R. D. Martin, and V. J. Yohai. Robust
Statistics: Theory and Methods. Wiley series in Probability and Statis-
tics. Wiley, England, 2006.

[Metropolis et al 1953]N. Metropolis, A. W. Rosembluth, M. N. Rosembluth,
A. H. Teller, and E. Teller. Equations of state calculations by fast
computing machines. Journal of Chemical Physics, pages 1087–1092,
1953.

[Meyer 1993]Y. Meyer and R. D. Ryan. Wavelets: Algorithms & Applications.
SIAM, Philadelphia, 1993.

[Moschetti et al 2006]E. Moschetti, M. G. Palacio, M. Picco, O. H. Bustos,
and A. C. Frery. On the use of Lee’s protocol for speckle-reducing
techniques. Latin American Applied Research, 36(2):115–121, 2006.

[Muirhead 1982]R. J. Muirhead. Aspects of Multivariate Statistical Theory.
Wiley Series in Probability and Mathematical Statistics. Wiley, New
York, 1982.

[Nagao and Matsuyama 1979]M. Nagao and T. Matsuyama. Edge preserving
smoothing. Computer Graphics and Image Processing, 9:394–407, 1979.

[Oliver and Quegan 1998]C. Oliver and S. Quegan. Understanding Synthetic
Aperture Radar Images. Artech House, Boston, 1998.

[Pickard 1987]D. K. Pickard. Inference for discrete Markov fields: The sim-
plest nontrivial case. Journal of the American Statistical Association,
82(1):90–96, 1987.

[R 2006]R Development Core Team. R: A language and environment for sta-
tistical computing, 2006. ISBN 3-900051-07-0.

292 10 Probabilistic Image Models

[Richards and Jia 1999]J. A. Richards and X. Jia. Remote Sensing Digital
Image Analysis. Springer, Berlin, 1999.

[Serra 1988]J. P. F. Serra. Image Analysis and Mathematical Morphology:
Theoretical Advances, volume 2. Academic Press, London, 1988.

[Shiavi 1999]R. Shiavi. Introduction to Applied Statistical Signal Analysis.
Academic Press, San Diego, 1999.

[Schlather 1999]M. Schlather. Introduction to positive definite functions and
to unconditional simulation of random fields. Technical Report ST-99-
10, Department of Mathematics and Statistics, Lancaster University,
UK, 1999.

[Swendsen and Wang 1987]R. Swendsen and J. Wang. Nonuniversal criti-
cal dynamics in Monte Carlo simulations. Physical Review Letters,
58(2):86–88, 1987.

[Tong 1990]Y. L. Tong. The Multivariate Normal Distribution. Springer Se-
ries in Statistics. Springer-Verlag, New York, 1990.

[Tough and Ward 1999]R. J. A. Tough and K. D. Ward. The correlation prop-
erties of gamma and other non-Gaussian processes generated by memo-
ryless nonlinear transformation. Journal of Physics D: Applied Physics,
32:3075–3084, 1999.

[Tupin et al 1998]F. Tupin, H. Maitre, J.-F. Mangin, J.-M. Nicholas, and
E. Pechersky. Detection of linear features in SAR images: application
to road network extraction. IEEE Transactions on Geoscience and Re-
mote Sensing, 36(2):434–453, 1998.

[Tupin et al 1998]F. Tupin, H. Maitre, J.-F. Mangin, J.-M. Nicholas, and
E. Pechersky. Detection of linear features in SAR images: application
to road network extraction. IEEE Transactions on Geoscience and Re-
mote Sensing, 36(2):434–453, 1998.

[Venables and Ripley 2002]W. N. Venables and B. D. Ripley. Modern Applied
Statistics with S. Statistics and Computing. Springer, New York, 4
edition, 2002.

[Winkler 2006]G. Winkler. Image Analysis, Random Fields and Markov Chain
Monte Carlo Methods: A Mathematical Introduction. Stochastic Mod-
elling and Applied Probability. Springer, 2 edition, 2006.

[Wolff 1989a]U. Wolff. Collective Monte Carlo updating for spin systems.
Physical Review Letters, 62(4):361–364, 1989.

[Wolff 1989b]U. Wolff. Comparison between cluster Monte Carlo algorithms
in the Ising model. Physics Letters B, 228(3):379–382, 1989.

[Wu 1982]F. Y. Wu. The Potts model. Reviews of Modern Physics, 54(1):
235–268, 1982.

11

Color Quantization

We have mentioned that the color discretization process is known as quanti-
zation. Quantization allows the conversion of an image having a continuous
color gamut into one having a discrete color gamut.

In this chapter we will study in more detail the various problems that arise
in color discretization. In order to do this, we must characterize more precisely
the notion of quantization. Let Rk = {v1, v2, . . . , vk} be a finite-dimensional
subset of R

n. A quantization of R
n is a map q : R

n → Rk. We are interested
in quantization of color spaces. In this case, R

n is a finite-dimensional color
space, and Rk is a finite subset of colors of the space. The map q is called
a quantization map. The set Rk is called the codebook of the quantization
map.

Frequently we need to define a quantization map between two finite sets
of colors. This occurs, for instance, when we need to define a map q : C → C ′

from a color solid C, where colors are represented by M bits, into a color solid
C ′, where colors are represented by N bits, with N < M . We consider this
quantization problem as a particular case of the general definition above, by
including the color space C into R

n, for some n. Such a q is called an N -bit
quantization map.

The quantization of a digital image consists in discretizing the image’s
color gamut, which implies the quantization of the color information associ-
ated with each pixel in the image. More precisely, if f : U → C is a discrete-
continuous or discrete-discrete image, the result of the quantization of f(x, y)
is a discrete-discrete image f ′ : U → C ′ such that f ′(x, y) = q(f(x, y)), where
q is the quantization map. Thus, quantization changes the color resolution of
the image.

When the color spaces C and C ′ have dimension 1, the quantization process
is called one-dimensional quantization. When the color spaces have dimension
n, and the quantization of each color vector c = {c1, c2, . . . , cn} is performed
by quantizing each component ci separately, we have scalar quantization. In
this case, we have a one-dimensional quantization map q, and the quantization
map Q : C → C ′ is defined by

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 11,
c© Springer-Verlag London Limited 2009

294 11 Color Quantization

Q(c) = (q(c1), q(c2), . . . , q(cn)).

When the quantization is not scalar, it is called vector quantization or block
quantization.

Example 11.1 (Two-level quantization). Consider the problem of quantizing a
monochrome color space with 256 gray levels into one with only two levels.
One possible method is to map to 0 all colors below the halfway intensity
level (that is, up to 127) and to map the remaining colors to the maximum
value of 255. This quantization process partitions color space into two sets,
one that maps to 0 and one that maps to 255. Figure 11.1 shows the effect of
this quantization.

Fig. 11.1. (a) 8-bits quantization (b) 1-bit quantization.

Why should one quantize an image? There are two basic reasons: display
and compression.

Image Display

For an image to be displayed in a graphics device, the image’s color gamut
cannot be greater than the gamut of the device (that is, the number of colors
in the device’s physical color space). Here the quantization space C ′ is directly
linked to the color space of the display graphics device. Image display will be
discussed in Chapter 16.

Image Compression

The quantization of an image allows a reduction in the number of bits used to
store its color gamut. This reduces the overall amount of memory needed to
store the image and the amount of data needed for transmitting the image over
a communications channel. We will return to the subject of image compression
later in Chapter 13.

11.1 Quantization Cells 295

From the perceptual point of view, 8 bits of quantization suffice for
grayscale images. For color images an acceptable quantization for most ap-
plications uses 24 bits, 8 for each of the color channels R, G, and B. Some
applications (such as images for the movie industry) require up to 12 bits for
each color component.

It is very common to find display devices that are capable of displaying
only 256 colors (8 bits). For those devices we must quantize the colors to 8
bits.

11.1 Quantization Cells

As we saw in Example 11.1, quantization into a one-bit color space partitions
the initial color space into two sets, in each of which the quantization function
has one value. More generally, consider a quantization map q : C → C ′.
To each quantized color c′i ∈ C ′ there corresponds a color subset Ci ⊂ C,
consisting of all colors in C that are mapped to c′i:

Ci = q−1(c′i) = {c ∈ C : q(c) = c′i}.

The (finite) family of sets Ci forms a partition of the color space C. Each
set Ci is called a quantization cell. In each of them the quantization function
takes on a constant value c′i, called its quantization level or quantization value.

In the case of one-dimensional quantization, let qi, for 1 ≤ i ≤ L, de-
note the quantization levels taken on by the map q. The quantization cells
in this case are intervals ci−1 < c ≤ ci, for 1 ≤ i ≤ L. Figure 11.2(a) shows
three quantization intervals, [c1, c2], [c2, c3], and [c3, c4]. In each interval lies
the associated quantization level qi. Figure 11.2(b) shows the graph of the
quantization function q, constant within each quantization interval.

In one-dimensional quantization each quantization cell is an interval, and
we can control only its length. In n-dimensional quantization the cells are
regions of the color space. For scalar quantization each cell is an n-dimensional
box. For vector quantization the cell can assume arbitrary shapes.

Fig. 11.2. Quantization levels and the graph of the quantization function.

296 11 Color Quantization

Fig. 11.3. Two-dimensional quantization cells.

In vector quantization the cells are regions of color space that can have
more complex shapes. Figure 11.3 shows an example of two-dimensional quan-
tization with eight cells, and therefore eight quantization levels (three bits).

11.2 Quantization and Perception

Consider a monochrome image function f : U → C whose color space is
quantized to L levels c1, c2, . . . , cL. This quantization partitions the domain
U of the image into subsets

Ui = f−1(ci) = {(x, y) ∈ U : f(x, y) = ci},

each consisting of the pixels of the image whose intensity maps to a certain
quantization level. If the number of quantization levels is small, there are few
Ui. Moreover, if the image function is well behaved (for example, of class C1),
the boundary separating neighboring regions is a regular curve. Depending on
the difference in value between the quantization levels of neighboring regions,
the boundary curve may be perceptible to the eye. Such curves are called
quantization contours.

Figure 11.4 shows the problem of quantization contours. In (a) we have
an image with 256 quantization levels, in (b) one with 16 levels, in (c) one
with 8 levels, and in (d) the image is quantized to 2 levels. Clearly, as the
number of quantization levels decreases, the quantization contours become
more perceptible. One aim of the study of quantization is to obtain techniques
to avoid the perception of the quantization contours.

Whether or not quantization contours are perceptible depends not only on
the number of quantization levels but also on the method of quantization used.
In general, for grayscale images, 256 levels (8 bits) are enough to avoid the
appearance of quantization contours, regardless of the quantization method

11.2 Quantization and Perception 297

Fig. 11.4. Quantization contours under different numbers of quantization levels:
(a) 256; (b) 16; (c) 8; (d) 2.

used. This is illustrated in Figure 11.4(a), which shows an image quantized to
eight bits. For color images it is usually enough to use 24 bits of quantization,
8 bits for each color component in RGB space.

However, depending on the image and the quantization method, we can
sometimes reduce the number of quantization levels further, without the ap-
pearance of contours.

Our perception of quantization contours is worsened by the phenomenon
known as Mach bands: the human eye magnifies transitions in color intensity,
so we can perceive more easily the difference between very similar colors if they
are immediately juxtaposed. This is illustrated by the two parts of Figure 11.5.
Part (a) shows five vertical stripes of different intensities. The first four stripes
are also shown in (b), but slightly separated. One perceives the difference
between consecutive stripes as being much more marked in (a) than in (b).

Because the quantization error usually correlates well for neighboring pix-
els, the boundary between two regions of the domain with distinct but adjacent
quantization levels is in general a connected curve and therefore easily picked
out by the human eye because of the Mach band phenomenon.

In two-level quantization, contouring is extremely marked, since the final
image has only two intensities: black and white. One way to minimize

298 11 Color Quantization

Fig. 11.5. Mach bands.

quantization contours, even in the more critical case of grayscale images, is
dithering. This is a filtering process that decreases the correlation in the quan-
tization error between neighboring pixels, thus avoiding that the boundary
between quantization levels be a connected curve. Dithering is very impor-
tant for two-level quantization and therefore has a chapter to itself in this
book (Chapter 12).

Connections between quantization and color perception have been exten-
sively exploited in the search for good quantization methods. An example
of this is the NTSC system for color television signals, which is based on
color coordinates in YUV space, where Y is the luminance and (U, V) are the
chrominance coordinates (Chapter 4). In quantizing the components, we can
use significantly fewer bits for each chrominance channel than for the lumi-
nance information, because the eye is more sensitive to variations in luminance
than in chrominance.

11.2.1 Overview of the Quantization Process

From what we have seen, the quantization of a color space, that is, the choice
of a quantization map q, involves two parts: determining the quantization
cells and determining the quantization level for each cell. Once we know q,
the quantization of an image is simple: for each pixel color c in the image,
we must identify the quantization cell containing c and replace c by the cell’s
quantization level q(c).

Existing quantization methods deal in different ways with the two parts
of the task of choosing q. One can

• first determine the quantization cells and then choose the quantization
level for each cell; or

• first choose the quantization levels and then decide what colors should be
mapped to each level; or

• choose quantization cells and levels at the same time, in an interdependent
way.

We shall soon see examples of each approach.

11.3 Quantization Error 299

11.3 Quantization Error

The optimal determination of the quantization cells, and of the quantization
level for each cell, depends on the criterion used to gauge the quantization
error and on the distribution of colors in the image. If q is the quantization
map and c is a color to be quantized, we can write

c = q(c) + eq,

where eq is the quantization error or quantization noise.
Distortion is caused when we replace a color c by its quantization value

q(c). To measure the distortion we use a distortion measure d(c, q(c)). There
are many possibilities for choosing a distortion measure d in C. In choosing
one, we must take into account perceptual criteria as well as computational
efficiency. It is common to use a pseudometric instead of a metric, or even some
positive function that, in some sense, gives information about “proximity”
in color space. One possible choice is the square of the Euclidean distance,
d(c1, c2) = 〈c2 − c1, c2 − c1〉.

The quantization of an image implies the quantization of each of its pixels’
colors. Thus, a measure of the distortion must take into account not only the
quantization distortion of each color from the image color space, but also
the frequency of this color on the image. A good measure is given by the
mean-square error

E((c, q(c)) =
∫

C

p(c) d(c, q(c)) dc, (11.1)

where p is the color probability distribution function in C. The use of this
equation to measure the distortion in the quantized image is quite intu-
itive: it averages the quantization error, taking into account the probability of
occurrence of each color in the space being quantized.

11.3.1 Color Frequency Histograms

We have just mentioned the importance of knowing the color distribution of
an image in estimating the distortion caused by quantization and therefore in
determining optimal quantization cells and levels.

In general, it is very hard to know the color probability distribution of an
image. An approximation of this distribution is given by the color histogram.
In this histogram we associate to each color intensity c present in an image
its frequency of occurrence, that is, the number of pixels in the image that
have color c. Figure 11.6 shows the image of a house and its histogram. The
horizontal axis shows the gradation of the 256 levels of gray (from black to
white).

A look at this histogram shows that the image has a great number of pixels
with low intensity values, and several pixels have average intensity values.

In the case of color images, one can compute a separate histogram for each
color component or create a three-dimensional histogram.

300 11 Color Quantization

Fig. 11.6. Histogram of a grayscale image.

11.4 Uniform and Adaptive Quantization

We have seen that quantization is straightforward once we have chosen the
quantization cells. But how should one determine them? A simple and natural
method would seem to be this: divide color space into congruent cells and
take the center of each cell as the corresponding quantization level. This is
called uniform quantization. For L-level one-dimensional quantization, the L
quantization cells are intervals (ci−1, ci] of equal length, ci − ci−1 = constant,
and in each cell the quantization value is the average

qi =
ci + ci−1

2
, for 1 ≤ i ≤ L.

If the color space is the RGB cube and we use uniform quantization in each
component separately, the quantization cells are little cubes in color space, and
the center of each cube defines the quantization value. Figure 11.7 shows two
possible cell geometries for uniform quantization in the two-dimensional case.

Fig. 11.7. Cells in two-dimensional uniform quantization.

Although uniform quantization is easy to compute, it is not necessarily to
be preferred. It has significant shortcomings: for example, some quantization
cells may not even contain colors from the image gamut.

Suppose that the image’s color distribution is very nonuniform, that is,
colors in certain regions of color space occur much more often than those in

11.4 Uniform and Adaptive Quantization 301

other regions. If we subdivide the better-represented regions more finely, thus
decreasing the size of the cells, the quantization error for pixels having these
colors decreases. These colors occur more often, so the overall quantization
distortion as defined by (11.1) decreases.

A quantization method that does not partition color space into congruent
cells is called nonuniform. Nonuniform quantization is called adaptive when
the geometry of the cells is chosen according to the specific characteristics of
the image’s color distribution.

11.4.1 Color Map Quantization

It is very common to use a color map to obtain the colors of an image’s pixels.
More precisely, suppose we have an image f : U ⊂ R

2 → C taking values on
some color space C. We define a color map ϕ : [0, 1] ⊂ R → C, and the image
color values are taken as a subset of the color map values ϕ([0, 1]) ⊂ C (see
Figure 11.8).

We discretize the unit interval [0, 1] into n subintervals defined by some
partition 0 = t1 < t2 < · · · < tn = 1. By choosing a point xi ∈ [ti, ti+1],
for i = 1, . . . , n− 1, we obtain a quantization of the set ϕ([0, 1]) into n levels
ϕ(t1), ϕ(t2), . . . , ϕ(tn). This discretization of the color map is called a palette.
Quantization of the color map implies quantization of the image.

When we refer to uniform quantization of a color image, we mean uniform
quantization of its palette, obtained as above, by subdividing the interval [0, 1]
into n uniform subintervals.

11.4.2 Test Images

We will use the image shown in Figure 11.9 to compare various quantization
methods. The image was initially quantized at 24 bits (8 bits per channel)
and therefore does not have perceptible quantization contours.

Fig. 11.8. Color map of an image.

302 11 Color Quantization

Fig. 11.9. Digital color image quantized at 24 bits. See Plate 3 in color insert.

Fig. 11.10. Uniform quantization at eight bits (left) and four bits (right). See Plate
4 in color insert.

For later comparison with other quantization algorithms, we show in the
two parts of Figure 11.10 the result of applying uniform quantization to Figure
11.9, using eight and four bits, respectively. Here the quantization contours
are quite visible.

11.5 Adaptive Quantization Methods

We now study methods for adaptive color quantization. They consist of two
steps: estimating the relevant statistical properties of the image and applying
that information to the partitioning of color space. Thus, we start by con-
structing a color frequency histogram of the image, which approximates the
color probability distribution function.

11.5 Adaptive Quantization Methods 303

11.5.1 Quantization by Direct Selection

Methods of direct selection start by choosing the quantization levels to be
used, based on the statistical properties of the image, and then determine the
quantization function in a way that minimizes quantization error. An example
is the populosity algorithm.

Populosity Algorithm

This method starts by constructing the color frequency histogram of the
image. It then chooses as the L quantization values the L colors that occur
most often in the image’s gamut. The quantization function can be defined
as follows: for each color c in the gamut of the image, let q(c) be the quanti-
zation value nearest to c, as measured, for example, by the Euclidean metric.
(If there is more than one quantization value at minimal distance, we must
decide which one to use. One possibility is to choose randomly among the
candidates. A more prudent choice would take into account the quantization
of neighboring pixels.)

The problem with the populosity algorithm is that it completely ignores
colors in regions that are not well represented in color space. Thus, a highlight
in the image may disappear entirely in the quantization process, since it only
takes up a few pixels. However, the algorithm can be used satisfactorily for
images that have an approximately uniform color distribution.

Figure 11.11 shows the result of applying the populosity algorithm to
Figure 11.9, at eight bits and four bits. Compare with the uniform quanti-
zation shown in Figure 11.10.

11.5.2 Quantization by Recursive Subdivision

Whereas direct selection methods start by choosing quantization levels and
then determine the quantization function, recursive subdivision methods start

Fig. 11.11. Populosity algorithm: result of quantization at eight bits (left) and four
bits (right). See Plate 5 in color insert.

304 11 Color Quantization

by determining the quantization cells and then compute the quantization func-
tion in each cell. As the name implies, such methods work by recursively
subdividing color space, in order to choose quantization cells.

We start with a region of color space containing all colors present in the
image. At each step of the recursion, this region is subdivided into two or more
subregions, based on statistical data on the image’s color distribution. The
recursion continues until there is just one color of the original image contained
in a set of the subdivision, or until the desired number of quantization cells
(levels) has been reached. Once the quantization cells have been determined,
the quantization function is derived by choosing a quantization value within
each cell.

A simple and effective criterion for quantization by recursive subdivision
(and adaptive quantization in general) is choosing the quantization levels in
such a way that each level occurs in approximately the same number of image
pixels. In terms of the image’s histogram, this corresponds to carrying out
histogram equalization, that is, replacing the original histogram by a uniform
one, as shown in Figure 11.12. The statistical estimator that allows one to
achieve this is the median.

The Median of a Set

Given a finite, ordered set of points

C = {c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ cn},

the median mC of C is the middle element c(n+1)/2 if n is odd and is the mean
of the two middle elements if n is even. Thus, the median divides the data
set into two equal portions, each having the same number of elements. Unlike
the mean of the elements in a set, the median is insensitive to magnitude
variations at the extremes of range. If we have an unordered set (possibly with
repetitions), the median is defined by first ordering the set and then applying
the definition above. Note that one must take into account how many times
each value occurs. Thus, the construction of the color frequency histogram of
the data set is an important step in the calculation of the median.

Fig. 11.12. Adaptive quantization. (a) Original histogram. (b) Equalized histogram.

11.5 Adaptive Quantization Methods 305

In quantization by histogram equalization for monochrome images, one
successively subdivides the range of intensities, using the median of each sub-
range as the point for the subdivision. The extension of this idea to color
images is known as the median cut algorithm. It is one of the most popular
quantization algorithms in computer graphics, due to its ease of implementa-
tion, its computational efficiency, and the good results obtained in converting
24-bit images to 8 bits. Simply put, the algorithm consists in applying his-
togram equalization recursively to the most spread-out color component of
the image’s color gamut. We spell this out in more detail, assuming we’re
working in RGB color space.

Median Cut Algorithm

Let L be the desired number of quantization levels. Take the smallest rectan-
gular box

V = {[r0, r1]× [g0, g1]× [b0, b1]}
that contains all the colors present in the image to be quantized. Take the axis
of color space in whose direction V is longest—say the green or g-axis. Order
the colors present in the image according to their g component, and compute
the median mg of the set of colors based on this ordering. This divides V into
two subregions:

V1 = {(r, g, b) ∈ C : g ≤ mg} and V2 = {(r, g, b) ∈ C : g ≥ mg}.

(One could arbitrarily assign colors with g = mg evenly between the two
boxes, but we will ignore this complication.) Recursively subdivide in the
same way each of the regions V1 and V2 that contains more than one color,
unless the target of L quantization cells has already been reached. For each
cell thus created (which is a rectangular box), define the quantization value
as the mean of the color values in the box.

Now, to quantize the image, one must find, for each pixel, the cell that
contains the pixel’s color, then replace that color by the quantization value
for that cell. This can be done efficiently by using an appropriate spatial data
structure associated with the recursive subdivision of the color space.

Here is an example in two-dimensional color space.

Example 11.2. Consider a two-dimensional set with nine distinct colors, as
shown in Figure 11.13(a), with frequencies given by

color c1 c2 c3 c4 c5 c6 c7 c8 c9

frequency 2 3 2 1 2 1 1 1 2

Suppose we wish to assign these colors to four quantization levels (two bits).
The longest side of the color rectangle is vertical. Ordering according to the
y-coordinate, we get the following distribution:

306 11 Color Quantization

Fig. 11.13. (a), (b), (c): Applying the median cut algorithm. (d) Quantization
levels obtained.

color c1 c9 c8 c2 c3 c4 c7 c5 c6

frequency 2 2 1 3 2 1 1 2 1

More precisely, by taking into account the frequency, we have the ordered set
(c1, c1, c9, c9, c8, c2, . . .) with 15 elements. The median is the average of the
seventh and eighth elements in the array, which are both c2. We thus choose
c2 (or rather, its y-coordinate) as the place for the cut, as shown in Figure
11.13(b).

Next we apply subdivision to each subrectangle. For both, the longest
side is horizontal. Ordering the colors in each rectangle according to their
x-coordinates, we get

color c1 c2 c9 c8

frequency 2 3 2 1

and
color c3 c6 c4 c5 c2 c7

frequency 2 1 1 2 3 1

For the first rectangle, the median color is c2, and for the second it is c5. The
subsequent subdivisions are shown in Figure 11.13(c).

Now that we have the four quantization cells, we choose the quantization
level for each cell by taking the average of the colors in each cell. Colors that
are on the edge of a cell should be mapped to the nearest quantization level.
Figure 11.13(d) shows the values associated with the four quantization cells.
The quantization function q is given by

c (color) q(c)
c1, c2 q1

c3, c4, c6 q2

c5, c7 q3

c8, c9 q4

11.6 Optimization Methods for Quantization 307

Fig. 11.14. Median cut algorithm: result of quantization at eight bits (left) and
four bits (right). See Plate 6 in color insert.

The median cut algorithm can be modified in two ways: by changing the
method for calculating the quantization levels and by changing the method for
choosing a subdivision point. Using the median as the subdivision point causes
the histogram of the image to be equalized, so that each quantization level
is assigned approximately the same number of pixels in the image. Another
possibility is to choose the partition so as to minimize the variance between the
colors of each subregion and the corresponding quantization level. For most
images, the many possible variations in the algorithm lead to imperceptible
differences in the result when we are quantizing a 24-bit image to 8 bits. These
variations can therefore be selected largely from the computational efficiency
point of view.

Figure 11.14 shows the result of applying the median cut algorithm to
the image in Figure 11.9. Compare with the results of uniform quantization
(Figure 11.10) and quantization using the populosity algorithm (Figure 11.11).

11.6 Optimization Methods for Quantization

We saw in Section 11.3 that quantization introduces an error that can be
estimated by the formula

E((c, q(c))) =
∫

C

p(c) d(c, q(c)) dc.

If we’re performing N -level quantization, that is, partitioning color space into
N cells K1, . . . ,KN , with quantization values q1, . . . , qN , the preceding equa-
tion takes on the form

E((c, q(c))) =
∑

1≤j≤N

∫

Kj

p(c) d(c, qj) dc.

308 11 Color Quantization

Or, since we have finitely many colors in each cell,

E((c, q(c))) =
∑

1≤j≤N

∑

c∈Kj

p(c) d(c, qj) dc. (11.2)

Ideally, therefore, we should try to minimize the quantity (11.2) over all
possible N -element partitions of color space. The fact that there are an enor-
mous number of such partitions means that the problem is computationally
very difficult, so that complete optimization is usually not possible. Existing
optimization methods, therefore, tend to solve only a restricted form of the
problem, or use heuristic guesses, or return an approximate answer. We now
turn to some of these methods.

11.7 Optimal One-Dimensional Quantization

Recall that the notion of optimality depends on the statistics of the color
distribution in the image and on the measure of distortion one uses. Suppose,
in the one-dimensional case, that the color probability distribution function
is p(c) and that we use the mean-square error as our measure of distortion
(Section 11.3). Thus we want to minimize

D =
∫ +∞

−∞
p(c) (q(c)− c)2 dc. (11.3)

The quantization cells are intervals [ci−1, ci], each corresponding to a quan-
tization value qi. Since q(c) = qi in the interval [ci−1, ci], the quantity (11.3)
that we wish to minimize can be rewritten as

D(c0, . . . , cN , q1, . . . , qN−1) =
N∑

i=1

∫ ci

ci−1

p(c) (qi − c)2dc. (11.4)

Necessary conditions for the global quantization error to be minimal are
obtained by computing the critical points of the function D. To do this, we
take the derivative of (11.4) with respect to ck and qk and set it to zero. We
obtain

∂D

∂ck
= (ck − qk−i)2p(ck)− (ck − qk)2p(ck) = 0,

∂D

∂qk
= 2

∫ ck

ck−1

(c− qk)p(c) dc = 0.

Solving both sets of equations, we get

qk =

∫ ck

ck−1

cp(c) dc

∫ ck

ck−1

p(c) dc

and ck =
qk + qk+1

2
, (11.5)

11.8 Optimal Quantization by Relaxation 309

where k = 1, . . . , N .
The first of these equations says that the quantization value is the cen-

troid of the probability distribution p(c) in the interval [ck−1, ck]. The second
says that the endpoints of quantization intervals are the average between
consecutive quantization values. It is easy to check that, when the probabil-
ity distribution is uniform, that is, p(c) = 1/(cN − c0), the optimal solution
results in the one-dimensional uniform quantization described earlier.

Note that a solution of (11.5) is a priori just a critical point of D, and not
necessarily a minimum. One can show that, for some probability distributions,
the solution does minimize D. This is the case, for example, when the proba-
bility distribution is uniform or normal (gaussian). As previously mentioned,
the solution in the case of uniform distribution corresponds to uniform quan-
tization. For a normal distribution the solution is more complicated and must
be computed numerically. The reader interested in details should consult the
references section at the end of this chapter.

11.8 Optimal Quantization by Relaxation

The calculations of the preceding section extend to dimensions greater than
1, but in this case the counterpart to (11.5) is more complicated, because
it involves integration over the boundary of the quantization cells. A more
appropriate quantization method is a relaxation procedure, which attains a
solution through successive approximations.

Consider a color vector c, which must be mapped to a vector c′, and
suppose we have N quantization levels c′1, . . . , c

′
N . Moreover, using the squared

Euclidean metric d(c1, c2) = 〈c1 − c2, c1 − c2〉, Equation (11.1) implies that
the mean-square error is

D =
∫ +∞

−∞
d(c, c′) p(c) dc =

N∑

i=1

∫

c∈Ci

d(c, c′i) p(c) dc,

where p is the probability distribution and Ci is the quantization cell cor-
responding to the level c′i. Two conditions must be satisfied in order for an
optimal quantization to be obtained:

(a) The quantization map q must map each color to the quantization level
nearest to it:

q(c) = c′i ⇐⇒ d(c, c′i) ≤ d(c, c′j), for all 1 ≤ j ≤ N with j �= i.

(b) In each cell Ci we must compute the level c′i in a way that minimizes the
mean error D in Ci.

Condition (a) allows one to calculate Ci from the metric d and the quan-
tization levels. Condition (b) allows one to calculate c′i from the cell Ci. Just

310 11 Color Quantization

as in one-dimensional optimal quantization, once we know the metric d, the
quantization cells and quantization levels are interdependent; if we know one,
we can determine the other.

The two conditions can be used to approach an optimal solution by means
of a relaxation process, as follows:

• Start with quantization levels c
(1)
i chosen in some way.

• From the c
(1)
i and the metric d, compute the quantization cells C

(1)
i using

condition (a).
• From the quantization cells C

(1)
i and the metric d, find new quantization

levels using (b).
• Repeat the two preceding steps until the total mean-square error no longer

changes (to within the desired precision).

This process involves several difficulties:

• We must compute the quantization levels c
(j)
i for all possibilities of color

in the space, which is computationally expensive.
• The probability distribution of colors is usually not known exactly.
• Conditions (a) and (b) are necessary, but not sufficient, for optimal quanti-

zation, so the process may not converge, or it may converge to a nonoptimal
solution.

The literature includes many attempts to get around these problems. Addi-
tional conditions can be added to ensure that the relaxation process converges
and to improve its computational efficiency. See Section 5.6 for references.

11.8.1 Optimal Quantization by Simulated Annealing

Since the optimal quantization depends on the statistical properties of the
image, it is natural to try to achieve it using simulating annealing, a stochas-
tic relaxation procedure. Such methods work by successive approximations
like the preceding one, but they rely on stochastic, rather than deterministic,
algorithms to proceed from one approximation to the next. Statistical me-
chanics shows that the least-energy configurations of certain physical systems
are the most probable ones. The energy functionals describing these systems
are associated to the so-called Gibbs distribution. The minimum of the system
can be obtained, for example, through a stochastic relaxation algorithm. Such
an algorithm uses a priori the probability distribution and performs random
perturbations in the initial configuration of the system until the least-energy
state is achieved. In an entirely analogous way, this theory can be applied to
color quantization. See Section 6.3 for references.

11.9 Comments and References

A classic work in the area of quantization is (Heckbert 1982). This is where
the median cut algorithm discussed in this chapter was introduced. It has

11.9 Comments and References 311

become the algorithm of choice in computer graphics due to its ease of imple-
mentation, its computational efficiency, and its good perceptual performance
in quantizing 24-bit color images at 8 bits.

The subject of spatial data structures for partitioning space, necessary for
the implementation of the median cut algorithm, is well covered in (Samet
1990). Heckbert’s original article suggested an implementation using a K-D-
tree structure.

The classical reference for optimization methods in quantization is (Lloyd
1957). A quantizer based on the minimization of the mean-square error (11.3)
is called a Lloyd–Max quantizer (Max 1960). The problem is extended to
vector quantization in (Linde et al. 1980), which includes a demonstration of
the convergence of the method and applications to voice and image signals.
See also (Heckbert 1982), which includes a fairly comprehensive discussion of
the image quantization problem.

For stochastic relaxation methods in the quantization of digital images,
see (Fiume and Ouellette 1989).

The original image used in Figures 5.4, 5.12, 5.15, and 5.17 is “Barn and
Pond” (KINSA Photo Contest), by Cindy Branham, from the Kodak Pho-
toCD, Photo Sampler.

References

[Heckbert 1982]Heckbert, P. S. (1982). Color quantization for frame buffer
display. Computer Graphics (SIGGRAPH ’82 Proceedings), 14(3):
297–307.

[Samet 1990]Samet, H. (1990). The Design and Analysis of Spatial Data
Structures. Addison–Wesley, Reading, MA.

[Lloyd 1957]Lloyd, S. P. (1957). Least square quantization in pcm’s. Technical
Memo. Bell Telephone Labs.

[Max 1960]Max, J. (1960). Quantizing for minimum distortion. IEEE Trans-
actions Inform. Theory, Vol. IT-6, March 1960, 7–12.

[Linde et al. 1980]Linde, Y., Buzo, A., and Gray, R. M. (1980). An algo-
rithm for vector quantizer design. IEEE Transactions Comm., COM-
28(12):84–95.

[Fiume and Ouellette 1989]Fiume, E. and Ouellette, M. (1989). On dis-
tributed, probabilistic algorithms for computer graphics. Proceedings
of Graphics Interface ’89, 211–218.

12

Digital Halftoning

There are extreme situations where even with the best quantization algorithms
it is hard or impossible to mask quantization contours. This is the case, for
example, in two-level quantization, which must be used for display on one-bit
graphical output devices. Such output devices are very common: laser printers
and phototypesetters are examples of them. In spite of their limitations in
what concerns color reconstruction, they can be used to display grayscale
images. As we will see in Chapter 16, offset color printing also reduces, via
color separation, to the printing of grayscale images on one-bit devices.

In this chapter we will study a filtering process called dithering, whose
purpose is to minimize the perceptual effects of quantization contours under
color discretization. We will devote most of our attention to the problem of
two-level (one-bit) quantization, due to the importance of this case in the
area of digital publishing. We suggest that you review Chapter 11, on color
quantization, which is a prerequisite for this chapter.

12.1 Dithering

When we quantize an image, we create at each pixel a quantization error: the
difference between the pixel’s original color and its quantized value. Because
of the strong correlation among values of neighboring pixels, we obtain a
quantization contour that is usually a connected curve, and this makes the
passage from one quantization level to the next perceptible.

The basic idea is to replace a sharp boundary between quantization levels
by a fuzzy one, where the two levels are so intimately mixed together that
the eye is fooled into seeing intermediate levels and perceives the transition as
smooth rather than abrupt. (The everyday meaning of the word “dither”—
to act nervously or indecisively—is applied metaphorically to the wavering
between two levels that appears to take place.)

Analog methods for producing the perception of halftones from a two-level
image have been used by the printing industry (in magazines, newspapers, and

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 12,
c© Springer-Verlag London Limited 2009

314 12 Digital Halftoning

so on) since the end of the nineteenth century. For this reason, dithering algo-
rithms are also known as digital halftone algorithms. In fact, some dithering
algorithms attempt to implement digital versions of the analog process of
halftone generation.

Dithering and Perception

Dithering is effective because of a basic characteristic of human vision: our
eye integrates (averages) the stimuli received within a certain solid angle.
Thus, we are able to perceive color intensities that are not necessarily present
in the image but instead arise from the averaging of the intensities in the
neighborhoods of each image element contained in a certain area. From this
point of view what matters is the average intensity in a region, not at a pixel.

Physically, perceptual resolution is measured by visual acuity, that is, the
eye’s ability to detect details in observing a scene. The field of vision of the
human eye extends for about 150◦ horizontally and about 120◦ vertically. Yet
the eye cannot distinguish details separated by less than about one minute
of arc, that is, one-sixtieth of a degree. This angle is called the angle of vi-
sual acuity. It depends on the wavelength, the geometry of the eye’s optical
apparatus, and, above all, on the dimensions and distribution of the eye’s
photosensitive cells, because the eye can only resolve two objects when the
photons they emit reach different cells. Thus, the perception of details in an
image depends on three parameters: the distance from the image to the eye,
the resolution density of the image, and the eye’s aperture.

Distance from the Image to the Eye

This distance is measured along the direction of the optical axis. The greater
it is, the fewer the details that can be perceived.

Resolution Density

As we defined in Chapter 5, the resolution density of the image is the number
of pixels per unit length. The smaller the distance between adjacent pixels,
the less able the eye is to resolve individual pixels. The most common unit
for the resolution density is pixels per inch (ppi), also known as dots per inch
(dpi). Some devices have different vertical and horizontal densities.

Eye Aperture

When one looks at an image with half-closed eyes, the field of vision becomes
narrower, and the angle of visual acuity decreases. One therefore perceives
fewer details in the image.

12.1 Dithering 315

When displaying a digital image, we must look for ways to increase the
perceptual resolution of the image, so as to get rid of the artifacts introduced
by the color discretization and reconstruction process. We do this by chang-
ing the parameters that affect visual acuity. Thus, there are three physical
methods that help increase the perceptual resolution of an image:

• displaying the image on a device having higher resolution density;
• observing the image from further away; and
• observing the image with the eyes somewhat closed.

Whichever method is more convenient should be used to improve image per-
ception in any given case.

Dithering Strategy

Given a region Rk(i, j), where i, j ∈ Z, in the domain of an image f , the
average intensity of the image in this region is

If =
1
|Rk|

∑

i

∑

j

f(i, j), (12.1)

where |Rk| is the number of pixels in the region.
When we quantize the image on the region R, we obtain a bitmap image f̄

on R. The average quantization error or local quantization error is the absolute
value |If − If̄ | of the difference between the average intensity of the image f

on R, and the average intensity on R of the bitmap image f̄ .
The basic strategy of dithering filters is to distribute the local quantization

error over areas of the image, so that the error averages out to zero. There
are two possible approaches: statistic and deterministic. Statistic dithering
attempts to change the elements of the image in such a way that the average
quantization error is zero for the image as a whole. Deterministic dithering
tries to minimize the global error, making the quantization error incurred in
one image element be compensated for in the quantization of the neighboring
elements.

Dithering and Optimization

We can pose the dithering problem from an optimization point of view: we
must find a map � : G → G on the space of monochrome images G, and a
metric d on G, such that for every grayscale image f ∈ G we have

• �(f) ∈ G is a binary image;
• the distance d(f, �(f)) is minimized.

This is a viable approach for posing the dithering problem, but additional
conditions are necessary in order to obtain good solutions. Indeed, the metric

316 12 Digital Halftoning

Fig. 12.1. Grayscale images for the comparison of dithering methods.

must have perceptual characteristics, and side conditions must be imposed—
for example, the characteristics of the display devices. We will not pursue this
approach, but the interested reader can consult the references mentioned in
Section 12.5.

Test Images

In this section we will use the images shown in Figure 12.1 in order to illustrate
various dithering algorithms. On the left is a reproduction of a charcoal draw-
ing by the Brazilian artist Cândido Portinari; we chose it because it displays
subtle variations of shading on the boy’s face, as well as a wealth of detail
(high-frequency information), as in the hair, for example. The other image is
synthetic; it was created so as to contain lots of high-frequency information,
as well as areas with mild intensity gradations.

A reader with average visual acuity will not notice any difference between
the gray levels in Figure 12.1 and those in a photograph. Both images in Fig-
ure 12.1 were reproduced using digital methods to be discussed in this chapter.
We have selected the reproduction parameters in a way that minimizes the
perceptual difference between the reproduced image and the halftone origi-
nals. Ideally, we should have reproduced these images using the traditional
analog process for halftone reproduction. We did not do this, because our
primary aim in this chapter is not to compare dithering algorithms in terms
of their advantages and disadvantages in the quantization process. Our in-
tent, instead, is to give a conceptual exposition of the problem and describe
the various algorithms, highlighting, whenever possible, their virtues and
limitations.

12.1 Dithering 317

12.1.1 Dithering by Random Modulation

One basic two-level quantization algorithm for a halftone image was discussed
in Chapter 5 (page 294). It consists in choosing a certain constant gray level
and using it as a global threshold in deciding whether a pixel should be quan-
tized to 0 or to 1. All pixels whose intensity level lies above the threshold are
quantized to 1; all others get a value of 0.

Figure 12.2 shows the result of applying this method to the images in
Figure 12.1, with 50% gray as a threshold. Quantization contouring is quite
perceptible.

A simple change in this algorithm decreases the correlation in quantiza-
tion error: namely, changing the intensity level by a random amount before
quantization. Thus, instead of comparing the value f(x, y) of the intensity
at a given pixel with the threshold, we compare the value f(x, y) + i, where
i is a random value, chosen independently for each pixel, according to some
appropriate probability distribution. This is known as dithering by random
modulation.

Fig. 12.2. Two-level quantization with 50% threshold.

318 12 Digital Halftoning

Fig. 12.3. Effect of dithering by random modulation.

The random perturbations cause the intensity of each pixel to be less cor-
related with that of neighboring pixels. This makes the quantization contour
no longer be a connected curve, so that the boundary separating the two
quantization regions is not well defined. In Figure 12.3 we show the effect of
dithering by random modulation on the images of Figure 12.1, using a 50%
threshold and a uniform random variable. Notice how quantization contours,
so obvious in Figure 12.2, are absent from Figure 12.3.

The most common distribution for the random perturbation in this al-
gorithm is a uniform distribution over a range of intensities. This process
introduces a uniform amount of noise at all frequency ranges, which degrades
the quality of the final image. Comparing Figure 12.3 with Figure 12.1, one
sees a great loss of high-frequency information. In spite of that, dithering by
random modulation can be very effective when used for quantization at more
than one bit.

We will see later that there exist digital halftoning algorithms that are far
superior to random modulation in terms of perceptual results, and about as
easy computationally.

12.1.2 A Classification of Dithering Algorithms

An effective way to analyze and classify dithering algorithms is through the
patterns that they produce in areas of constant intensity. These patterns are
particularly obvious in two-bit images, where intermediate levels are realized
by means of black and white dots. The validity of this criterion is justified
by the fact that the configuration of dots is the only difference among the
discretizations of an image produced by distinct dithering algorithms when
these discretizations have the same average intensity and therefore the same
number of black and white dots.

12.1 Dithering 319

Our eye performs a perceptual characterization of an image using basic
low- and high-frequency information. High frequencies delimit regions of inter-
est (contours), whereas low frequencies define the texture information inside
each region. Digital halftoning algorithms, therefore, must strive to maintain
the high-frequency information and to replace gray shades by binary tex-
ture patterns that are perceptually the same. Texture patterns generated by
dithering algorithms are classified according to regularity and structure. Re-
garding regularity, they can be periodic or nonperiodic. Regarding structure,
the patterns can be clustered or dispersed.

In general, periodic patterns are generated by deterministic processes that
try to minimize the local quantization error based on a regular sampling. Non-
periodic patterns arise from methods that attempt to minimize quantization
error by distributing it globally around the image. Dispersed configurations
realize gray levels by distributing individual dots as uniformly as possible,
whereas clustered configurations concentrate dots into small clusters of con-
stant value.

The technique of dispersed dithering is more appropriate for graphical
devices that allow precise control over the placement of pixels, as in the case of
video monitors. By contrast, the clustering approach is the better alternative
for devices that don’t reproduce isolated dots well, such as laser printers and
phototypesetters.

The above classification will be used to study the different dithering meth-
ods discussed in this chapter. It is convenient to use a graphical representation
for this classification, as shown in Figure 12.4. In this representation we have
a horizontal axis for measuring clustering, and a vertical axis for periodic-
ity. Clustering increases as we move to the right along the horizontal axis;
periodicity decreases as we move up the vertical axis.

Fig. 12.4. Basic classification of dithering algorithms.

320 12 Digital Halftoning

By subdividing the first quadrant of the plane into four areas, we obtain
four basic classes of dithering algorithms:

• dispersed and aperiodic algorithms;
• dispersed and periodic algorithms;
• clustered and periodic algorithms;
• clustered and aperiodic algorithms.

Dithering by random modulation, introduced in Section 12.1.1, is an ex-
ample of a nonperiodic, dispersed dithering filter. In this chapter we will study
dithering algorithms for each of the above classes.

12.2 Periodic Dithering

An important family of periodic dithering algorithms consists of ordered
dithering filters. Here “ordered” is used in contrast with “random”: the basic
idea of these algorithms is to use a finite, deterministic, and localized thresh-
old function to achieve the goal of decreasing the correlation of quantization
error. A detailed description will be given below.

A digital image defines a lattice RΔ = R(Δx,Δy) of the plane. We consider
a sublattice RΔ′ of RΔ, where Δ′ = (NΔx,MΔy), N and M positive integers.
Each “pixel” in the lattice RΔ′ is called a dithering cell. Thus, dithering cells
are made out of blocks of N ×M pixels from RΔ. RΔ′ is called the dither-
ing lattice. The shaded region in Figure 12.5 shows a dithering cell of order
4× 4.

For each dithering cell we define a threshold function t(x, y). Thus, two-
level quantization inside the cell is very easy to accomplish. For each pixel
p = (x, y) in the cell, if t(x, y) ≤ f(x, y), we quantize f(p) to 1; if not, we
quantize the pixel f(p) value to 0.

Fig. 12.5. Dithering cell.

12.2 Periodic Dithering 321

Fig. 12.6. Dithering cell and threshold quantization function.

In the discrete domain the threshold function is discretized to obtain a
matrix of thresholds of order N ×M , called the dithering matrix. Figure 12.6
illustrates, in dimension 1, the quantization function (a), its discretization
(b), the image values inside the cell (c), and the quantized image inside the
cell (d).

Several variations are possible in the scheme just described: the threshold
function may vary from one cell to another, or it can be defined to produce
either clustered or dispersed dithering.

Dithering Patterning

In the above description of dithering we clearly have a trade-off between spa-
tial and tonal resolution: pixels are grouped into cells, and inside each cell we
are able to render more tonal values (the average intensities of the bitmap
patterns inside the cell). For an N ×N cell we are able to display from 1 to
N2 black pixels, corresponding to N2 intensity levels. Considering the addi-
tional intensity of no black pixels inside the cell, we have a total of N2 + 1
tonal values in the dithering cell. Note that we are not considering the many
different arrangements of the pixels inside the cell for each of the intensity
levels; they depend on the threshold function.

By using a constant image with intensity varying from 0 to N2 +1, we can
have a glimpse on the different “shapes” of dot patterning for each intensity
level. As an example, for the dithering matrix

9 5 6
4 1 2
8 3 7

we obtain the 10 patterns shown in Figure 12.7.

322 12 Digital Halftoning

Fig. 12.7. Patterns of intensity levels in a dithering cell.

12.2.1 Clustered Ordered Dithering

Clustered dithering attempts to simulate on the computer the traditional ana-
log photographic method for obtaining image halftoning. This analog halfton-
ing process consists of using a special camera to record, on high-contrast film,
a superimposition of the image with a screen. Thus, the light coming from the
image is modulated by the screen lattice before hitting the film. Each small
opening in the screen works as a lens, focusing the light coming from a small
region of the image onto a dot on the film. The size of the dot depends on
the luminance of the region that is being sampled: bright areas produce small
dots, whereas dark areas produce large dots that generally overlap with their
neighbors. The geometry of the lattice obtained depends on several factors,
such as the characteristics of the screen, the time of exposure, and so on.

In ordered dithering by clustering, a similar effect is achieved digitally by
arranging the threshold function so that black pixels are clustered together.

Consider the problem of quantizing an image of constant intensity,
f(x, y) = k, inside a dithering cell. Parts (a) and (b) of Figure 12.8 illustrate
the quantization by plotting the threshold function and the image value k.

For a sufficiently regular threshold function t, the inverse image of the
level, t−1(k) = {(x, y) : t(x, y) = k}, defines a curve γ in the dithering cell.
We choose t so that γ is a closed, nonself-intersecting curve, as shown in
Figure 12.8(c). The quantization is easily done: all pixels inside γ will be
quantized to 1, and the pixels outside it will be quantized to 0. This is shown,
in discrete form, in Figure 12.8(d). It is clear from this picture that the ge-
ometry of the black dots clustering is controlled by the shape of the threshold
function.

For a grayscale image of constant intensity, the dithering pattern is re-
peated periodically in the quantized image. In the general case of an image
with variable gray values, the threshold function is repeated periodically along
the dithering lattice, but the percentage of dark and light regions within each
dithering cell changes according to the intensities of the pixel in the original
image. The final result is a collection of pixel clusters of varying sizes: an

12.2 Periodic Dithering 323

Fig. 12.8. Threshold function and constant image.

effect very similar to the one obtained with traditional, optical, halftoning
techniques.

Figure 12.9(a) shows a 6× 6 ordered dithering matrix that performs clus-
tered dithering. Note that the threshold function of this matrix is shaped like
the function in Figure 12.8(b). The numbers in the dithering matrix indicate
the ordering of the threshold values, not their intensity in absolute terms; one
can regard the intensities as being 1

37 , 2
37 , etc., since there are 6 × 6 = 36

thresholds and therefore 37 intervals of intensity can be distinguished. In or-
der to apply the algorithm, the image intensities are normalized to the interval
[0, 1].

Fig. 12.9. Clustered dithering matrix.

324 12 Digital Halftoning

Fig. 12.10. Effect of cluster dithering.

Figure 12.9(b) shows, in gray, pixels with intensity threshold above 50%,
and in white those with threshold below 50%. Now consider an image with
constant intensity, equal to 50%. After two-level quantization and dithering
with the filter defined by this matrix, the image would be a periodic pattern
obtained by repeating Figure 12.9(b). If we take a constant-gray image with
intensity higher than 50%, the white region in Figure 12.9(b) is reduced; if
the intensity is less than 50%, the white region is enlarged.

Figure 12.10 shows our test images after one-bit quantization using the
ordered dithering filter defined by the matrix of Figure 12.9(a).

Diagonal Patterning

Perceptual studies show that the human eye’s sensitivity to artifacts produced
by a periodic pattern changes according to the angle of the pattern and is
least when the periodicity axis makes an angle of about 45◦ or −45◦ with the
horizontal direction. This perceptual fact can be exploited to create better
cluster dithering algorithms. Toward this goal, we try to define a threshold
function that forces the clusters to be aligned along the 45◦ diagonals.

The easiest way to achieve this uses diamond-shaped cells: we subdivide
the square dithering cells into four pieces and construct a square using the
four midpoints (see Figure 12.11(a)). The threshold function is defined in such
a way that, for a 50% intensity value, the black and white quantized values
produce the patterns shown in Figure 12.11(b).

An explicit example is given by the dithering matrix in Figure 12.12(a).
This cell has 32 pixels, so it serves to distinguish 33 levels of quantization.
Figure 12.12(b) shows in gray all those pixels with intensity threshold above
50%, and in white those with threshold below 50%.

12.2 Periodic Dithering 325

Fig. 12.11. Diamond patterning for diagonal clustering.

Fig. 12.12. Cluster dithering matrix with pixel clusters along the diagonal.

Figure 12.13 shows the result of applying this dithering matrix to the test
images in Figure 12.1. Notice how the periodicity pattern now has a diagonal
bias of 45◦.

Practical Hints

As we have seen, ordered dithering increases tonal resolution (number of re-
alizable intensity levels) at the cost of spatial resolution. The effective spatial
resolution of the dithered image is not that of the display device, but that of
the dithering lattice. The former is what matters in terms of the perceptual
quality of the dithered image. Of course, the device resolution density also
matters, in that it gives an upper bound for the number of elements in the
dithering cells.

By analogy with the traditional analog halftoning process, the dithering
lattice is often called a screen, and the density of dithering cells is called the
screen density (or, more precisely, screen resolution density). It is measured
in lines per inch (lpi).

326 12 Digital Halftoning

Fig. 12.13. Effect of cluster dithering with diagonal periodicity.

One of the secrets in making the best use of ordered dithering lies in choos-
ing the screen density properly. The higher the screen density, the better the
quality of the dithered image. The individual dithering cells of a 150-lpi screen
are virtually imperceptible, even at close range; the images in Figure 12.1 are
printed at that screen frequency. A screen density of 120 lpi can still give good
results. By contrast, the screen density in Figure 12.13 is about 35 lpi, and in
Figure 12.10 it is about 30 lpi. See also Figure 12.14.

A high screen density requires that the device resolution density be even
higher, by a factor equal to the order of the dithering cell. Thus, in Figure 12.1,
the screen density of 150 lpi is still many times less than the resolution density
of the phototypesetter used to produce this book. This means the dithering cell
is large (has lots of entries), so that many levels of gray can be distinguished,
but the display resolution of the device does not allow us to perceive the
dithering cells. (The ratio between the device resolution density and the screen
density is the order of the dithering cell, and the number of intensity levels
that can be distinguished is roughly the square of the order of the dithering
cell.)

Fig. 12.14. Ordered dithering at screen densities of 15 lpi, 30 lpi, and 60 lpi.

12.2 Periodic Dithering 327

Artistic Screens

As observed before, by changing the shape of the threshold function we change
its level curves and consequently the cluster geometry of the dithered image.
This fact can be used to create various effects in the dithered image, as illus-
trated in Figure 12.15.

12.2.2 Dot Dispersion Ordered Dithering

Ordered dithering by dot dispersion is the preferred method in the display
of images on devices with fine control over pixel placement, such as video
monitors. As in the case of cluster dithering, the crux of the algorithm lies in
the choice of a dithering matrix.

While cluster dithering tries to imitate the lattice obtained by traditional
photographic processes, dithering by dot dispersion tries to arrange the quan-
tization thresholds in the dithering matrix in such a way that the texture
created has the same frequency distribution as the original texture. In par-
ticular, in regions of constant intensity, the resulting dithered texture should
avoid low-frequency components as much as possible. This is done by dis-
tributing quantization thresholds as homogeneously as possible among the
entries of the dithering matrix.

Ordered dithering by dot dispersion is also known in the literature as
Bayer dithering, because it was B. Bayer who determined the dithering ma-
trices of various orders that maximize the homogeneity of the distribution of
quantization thresholds. The 2× 2 Bayer dithering matrix is

2 3
4 1

.

The distribution of intensities using this matrix is shown in Figure 12.16. For
a region with 50% intensity, the resulting texture is the checkerboard pattern
obtained by periodic replication of Figure 12.16(c).

Fig. 12.15. Changes in the dithering matrix lead to different geometries for the
pixel clusters.

328 12 Digital Halftoning

Fig. 12.16. Dithering cells filled at various intensities, for order-2 Bayer dithering.

The 4× 4 Bayer matrix is

2 16 3 13
10 6 11 7
4 14 1 15

12 8 9 5

.

Notice that the each group of four threshold levels (1 to 4, 5 to 8, 9 to 12,
and 13 to 16) is dispersed in the same arrangement as levels 1 to 4 in the
2× 2 Bayer matrix. This stems from the recursiveness of the algorithm used
in the generation of Bayer matrices or arbitrary order. For a description of
this algorithm, and further details on Bayer dithering, see the references given
in Section 12.5.

Figure 12.17 shows the result of applying order-4 Bayer dithering to the
test images in Figure 12.1.

As already mentioned, dispersed dot dithering algorithms do not perform
well with display devices where pixel placement and size cannot be controlled
very well. This is because a small variation in the dot size can lead to sig-
nificant changes in average intensity over the dithering cell. Cluster dithering

Fig. 12.17. Effect of order-4 Bayer dithering.

12.3 Pattern Dithering 329

is not so sensitive to this problem because pixels tend to coalesce anyway,
so variations in pixel size affect only the edges of the cluster. If pixel place-
ment and size can be controlled well, it is advantageous to use dot dispersed
dithering, because the perceived resolution density is, in effect, higher than
the density of the dithering lattice.

The upshot of this is that dot dispersion algorithms—in particular, Bayer
dithering—are used very commonly for dithering on video monitors that have
insufficient “frame buffer depth” (that is, simultaneously addressable bits of
color resolution) for the desired purpose.

For a given device resolution, Bayer dithering has a much better perfor-
mance, from the perceptual point of view, than dithering by random mod-
ulation, studied in Section 12.1.1, and its computational cost is no higher.
For this reason dithering by random modulation is seldom used nowadays; its
interest is primarily historical and academic.

12.3 Pattern Dithering

Ordered dithering is commonly confused with a technique called pattern
dithering. In this technique we subdivide the image into dithering cells of
size N × N , similar to what we did in ordered dithering. Each cell defines
N2 + 1 quantization levels.

The algorithm proceeds as follows: we use the N2 + 1 quantization levels
to address a table of dithering patterns; for each cell, we compute the average
intensity of the image using Equation (12.1) and quantize it to one of the
N2 + 1 quantization levels. The quantized value is used to address the table
of dithering patterns.

Notice that if we take the table of dithering patterns as the N2 + 1 pat-
terns for ordered dithering as computed in Section 12.2, the pattern dithering
algorithm performs almost, but not quite, as well as the ordered dithering
algorithm. In fact, for each average intensity, pattern dithering addresses the
same pattern on the table, whereas ordered dithering may associate different
bitmap patterns depending on the distribution of the image intensity values
inside the dithering cell.

Note that the dithering pattern table is quite arbitrary. Indeed, pattern
dithering can be used to create several special rendering effects on the dithered
image. A well-known and classical example of this technique is the images
created on line printers, like the one shown in Figure 12.18. Such effects are
produced by creating a dithering table that associates to each quantization
level a well-chosen set of overprinted characters.

But even in this arena, dithering with threshold functions, or ordered
dithering, is much more flexible than pattern dithering. We remind the reader
that the geometry of the cluster produced by ordered dithering is controlled
by the geometry of the level curves of the threshold function, which can be
quite arbitrary.

330 12 Digital Halftoning

Fig. 12.18. Pattern dithering for line printers.

12.4 Nonperiodic Dithering

Among nonperiodic dithering algorithms, one of the earliest was dithering
by random modulation, which, as observed, has now been largely supplanted
by superior algorithms. A more recent method, already a classic and very
popular, is the Floyd–Steinberg algorithm, which was originally introduced
for grayscale images but is easily adapted to color images.

12.4.1 The Floyd–Steinberg Algorithm

The Floyd–Steinberg algorithm computes the effective quantization error at
each pixel and compensates for it in neighboring pixels. In this way, the overall
error can be minimized. More precisely, suppose we want to perform one-bit
quantization on an image defined by the image function f(x, y). Starting with
a pixel of coordinates (x, y), we replace f(x, y) by its quantized value f̄(x, y)
equals 1 or 0, depending on whether this value is above or below the desired
threshold (usually 50%). Then take the quantization error δ = f(x, y)−f̄(x, y)

Fig. 12.19. Propagation of the quantization error in the Floyd–Steinberg algorithm.

12.4 Nonperiodic Dithering 331

Fig. 12.20. Effect of Floyd–Steinberg dithering.

and proceed as follows (see Figure 12.19): add 3
8δ to f(x + 1, y), add 3

8δ
to f(x, y + 1), and add 1

4δ to f(x + 1, y + 1). Move to the next pixel on
the same row, (x + 1, y), and repeat the process with the modified value
f(x + 1, y) + 3

8δ. Continue in this way to the end of the row, then move on
to the next row, and so on. (At the last pixel of a row, do not apply the
horizontal and diagonal corrections, and on the last row, do not apply the
vertical and diagonal corrections.)

The problem with this dithering method is that it propagates the error
along the diagonal, which causes a certain directionality effect in the resulting
image. See Figure 12.20, which shows our test images after processing with
the Floyd–Steinberg algorithm. The effect of diagonal error propagation can
be clearly seen. There are several variations of this algorithm in the literature
aimed at avoiding the directional artifacts. For more information, consult
Section 12.5.

Dithering of Color Images

Although we have been focusing primarily on the use of dithering for one-bit
quantization of grayscale images, the same techniques can be used in color
quantization, to avoid or minimize quantization contours. For example, the
image in Figure 12.21, left, was quantized from 24 to 8 bits without dithering.
Figure 12.21, right, shows the same image, quantized to the same number
of bits, but using the Floyd–Steinberg dithering algorithm. Observe how the
dithered image is devoid of perceptible quantization contours.

12.4.2 Dithering with Space-Filling Curves

Before proceeding, we look back at our classification scheme for dithering
algorithms (Figure 12.4) in order to locate the algorithms studied so far. The
result is shown in Figure 12.22.

332 12 Digital Halftoning

Fig. 12.21. Quantization from 24 to 8 bits, without dithering (left) and with Floyd–
Steinberg dithering (right). See Plate 7 in color insert.

Fig. 12.22. Classification of dithering algorithms encountered so far.

Looking at the figure, we observe that we haven’t discussed any nonpe-
riodic clustered dithering algorithm. In principle, such an algorithm should
give good results, since it would emulate the action of photographic emul-
sion. (In black-and-white photography, the film is covered with an emulsion
of small, light-sensitive grains, distributed randomly, and therefore nonperi-
odically. Each grain has finite area, so the effect is that of a cluster being
turned on or off by light.)

The missing slot in Figure 12.22 will be occupied by an important class of
nonperiodic digital halftoning algorithms, which uses fractal curves generically
known as Peano curves or space-filling curves. Such algorithms possess several
advantages over those already studied:

• they use a combination of dot clustering with dot dispersion, by diffusing
the average quantization error of each dithering cell;

• the diffusion of the average quantization error that arises does not have a
preferred directionality as in the case of the Floyd–Steinberg algorithm;

12.4 Nonperiodic Dithering 333

• they are nonperiodic, so the texture of the final image does not have spu-
rious regular patterns;

• they enable us to change the size of the dithering cell during execution
time, thus achieving a better rendition of image details.

In the digital publishing literature clustering algorithms are called ampli-
tude modulation (AM) algorithms, because they modulate the size of the dot
clustering. Dot dispersion algorithms are called frequency modulation (FM)
algorithms, because they disperse the dots and control the frequency of their
distribution. The space-filling curve algorithm to be described here performs
in a range from AM to FM dithering techniques, and so can be tuned to
work with a wide range of devices with different degrees of point placement
precision.

Pixel Enumeration

A pixel enumeration of an image f : U ⊂ R
2 → C is a one-to-one path

c : I ⊂ R → U , defined on a subset I of the real line and such that the image
c(I) contains all the pixels in the image’s domain. Thus, an enumeration c
associates with each pixel, having coordinates (i, j), say, a unique k ∈ R

satisfying c(k) = (i, j). Intuitively, an enumeration is a method to run through
all the pixels of an image exactly once, in an orderly way.

When we use images encoded in matrix format, the standard enumeration
consists in running through the pixels row by row, one after another, as in
Figure 12.23.

This enumeration, although convenient and efficient, has two drawbacks
regarding its use in dithering algorithms: it has a horizontal directionality;
and it has discontinuities, when the curve jumps from one row to the next.

The second drawback is not present in the boustrophedonic enumeration of
Figure 12.24, but the first one, the directionality of the enumeration, still is.
This directionality is responsible, in particular, for the appearance of diagonal
patterns in the Floyd–Steinberg algorithm. We can eliminate both drawbacks
by using an enumeration curve that approximates a space-filling curve.

Fig. 12.23. Standard enumeration of the pixels in an image matrix.

334 12 Digital Halftoning

Fig. 12.24. Boustrophedonic enumeration.

Enumeration with Peano Curves

A space-filling curve is a map ϕ : [0, 1] → [0, 1]× [0, 1] that is continuous and
surjective. Such a curve visits, in a continuous way, every point in the unit
square. By means of a scaling transformation, we obtain space-filling curves
for an arbitrary rectangle of the plane. Our intent is to use a one-to-one
approximation to some space-filling curve in order to define an enumeration
for the pixels in a digital image.

Space-filling curves were discovered by the mathematician Giuseppe Peano
in the late nineteenth century. Peano constructed explicitly a continuous curve
that visits every point in the unit square; this curve became known as the
Peano curve. In honor of this mathematician, all space-filling curves are com-
monly called Peano curves as well, and we adopt this nomenclature.

Figure 12.25 shows four steps in the recursive construction of a space-filling
curve known as the Hilbert curve.

It is interesting to observe that each step of the iteration in the construction
of the Hilbert curve gives a polygonal curve that uniquely visits all vertices
of a regular lattice. Thus, by iterating successively, we obtain a method to
enumerate the pixels of an image with arbitrary resolution. The enumeration
thus obtained has no discontinuities and no preferred direction. Figure 12.26
shows the enumeration with the Hilbert curve for a 4× 4 image.

At first sight an enumeration with the Hilbert space-filling curve works
only for images with resolution 2p × 2p, for p a positive integer. Neverthe-
less, the uniform lattice associated with an image of resolution m× n can be

Fig. 12.25. Recursive construction of the Hilbert curve.

12.4 Nonperiodic Dithering 335

Fig. 12.26. An enumeration of a 4 × 4 block of pixels.

embedded into a power-of-two square lattice, and it is easy to induce an enu-
meration for the embedded lattice from an enumeration of the square lattice.
Working in this way is more effective than implementing an enumeration for
rectangular space-filling curves.

Several other space-filling curves can be recursively constructed using
polygonal curves and used to define an enumeration of the pixels of a dis-
crete image. We will use the Hilbert curve for illustration.

Partition by Peano Curves

In order to describe the Peano curve halftoning algorithm, it is necessary to
understand the partition that such curves determine in the image’s domain.
Consider an enumeration c : I → U ⊂ R

2 of a digital image by a Peano
curve. Let I1 ∪ I2 ∪ · · · ∪ In be a partition of the interval I into n subintervals.
Since the enumeration is one to one, this partition determines a partition
c(I1) ∪ c(I2) ∪ · · · ∪ c(In) of the image’s domain. Note that the restriction
c|Ij : Ij → Rj = c(Ij) is an enumeration of the pixels of the image contained
in the region Rj . Figure 12.27 shows a block of 4 × 4 pixels partitioned into
three regions of 5, 4, and 7 pixels (each region is shaded with a different
intensity).

We stress that the partition obtained in the image has a natural ordering:
when we describe the Peano curve once, we visit every set of the partition,
each exactly once, in an orderly way.

Fig. 12.27. Three partition cells of the Hilbert curve.

336 12 Digital Halftoning

The partition determined by a Peano curve is essential for the under-
standing of the dithering algorithm about to be introduced. Each set in this
partition will play a role similar to that of the dithering cells in the ordered
dithering algorithm. For this reason each set of the partition is also called a
dithering cell, or simply a cell.

Adaptive Partitioning

We have already mentioned that nonperiodic clustered dithering algorithms
provide a rough emulation of the analog process of halftoning by photographic
emulsion. This emulation gets better if we are able to change the dithering
cell size; this corresponds to a variation in the film grain size.

Each pixel of the image belongs to some cell, but this correspondence is
not one to one. A pixel size function is a function that associates to each pixel
the size of the cell to which it belongs (that is, the number of pixels in the
cell).

In order to get a better rendition of image details without compromising
tonal reproduction in the dithering process, it would be interesting to vary the
size of the cell associated with a pixel P based on how fast image intensities
vary in a neighborhood of P . If the intensity varies quickly (high frequencies),
the cell size should be small; otherwise, a bigger cell is enough. This variation
can be measured by using the absolute value of the directional derivative at P
in the direction of the curve being used as an approximation to the space-filling
curve.

In fact, the correct relationship between the cell size and the directional
derivative values is based on the fact that the eye’s response to intensity
changes obeys a logarithmic law. For this reason the cell size function is the
exponential of the directional derivative magnitude. This rule maintains a
linear relationship between the perceptual intensity inside each cell and the
directional slope of the image intensity.

Figure 12.28 shows a grayscale image and an adaptive partition associated
with an enumeration using the Hilbert space-filling curve.

Computing the Partition

Using the size function s, we are able to compute the adaptive partition of
the image domain. The partitioning algorithm proceeds as follows:

• take the (user-specified) maximal cell size as the current cell size s0;
• scan the pixels of the image using the enumeration of the space-filling

curve;
• for each pixel p, compute its cell size s(p);
• compare s(p) with the current cell size s0.

If s(p) < s0, make s(p) the current cell size, and continue with the
next pixel p + 1.

12.4 Nonperiodic Dithering 337

Fig. 12.28. Grayscale image and adaptive partition.

If s(p) ≥ s0, p is the last pixel of the cell. Then start a new cell of the
partition by repeating the procedure for the next pixel p + 1.

Cell Quantization

To perform the quantization of each dithering cell, we use the previously de-
fined enumeration of the cell’s pixels, as shown in Figure 12.29. More precisely,
we work as follows: the average image intensity inside the cell is computed
using Equation (12.1). We turn on and off pixels inside the cell so that the
average intensity of the bitmap pattern obtained is approximately equal to
the average intensity of the cell. The error is called the quantization error of
the cell. The bitmap pattern of on and off pixels is created in such a way that
the black pixels are clustered together inside the cell.

Figure 12.29(a) shows a 16-pixel cell in the domain of the image, enumer-
ated using a Hilbert curve. Figure 12.29(b) shows the clusters constructed by

338 12 Digital Halftoning

Fig. 12.29. Enumeration and clusters using the Hilbert curve.

the algorithm, corresponding to the 16 levels of intensity of the region in the
part (a) (not counting intensity 0).

Figure 12.30, left, shows the grayscale image from Figure 12.28 with each
dithering cell filled with its average grayscale value. Figure 12.30, right, shows
the dithered cells using the method above.

Positioning the Cluster

When quantizing the cell, we get a cluster of black pixels inside it. We have
one degree of freedom in positioning this cluster of black pixels inside the cell,
by sliding it along the space-filling curve. A good choice consists in aligning
the central pixel of the cluster with the central pixel of the cell. This centering
process adds a certain degree of randomness to the dithered image and per-
ceptually improves the quality of the final image. This operation is illustrated
in Figure 12.31: in (b) we locate the pixel with darkest intensity in the 4× 4

Fig. 12.30. Left: average values inside each cell. Right: two-level quantization of
each cell.

12.4 Nonperiodic Dithering 339

Fig. 12.31. Centering the cluster in the dithering cell.

cell shown in (a); in (c) we show the cluster of five pixels; and in (d) we show
the centered cluster.

The Dithering Algorithm

In brief, the idea of dithering with Peano curves is quite simple. After choosing
an appropriate Peano curve to enumerate the pixels, we

• determine the partition of the image into dithering cells, as explained
above;

• calculate the average intensity of the image in each region of the partition,
using Equation (12.1);

• compute the cluster for each cell so that the bitmap pattern obtained has
approximately the same intensity as the average image intensity inside the
cell;

• position the cluster inside the cell;
• move on to the next cell along the Peano curve, and repeat the steps

above, adding the quantization error of the previous cell when computing
the average intensity.

This algorithm can be implemented very efficiently; the partition can be
computed simultaneously with the average intensities for each cell.

Figure 12.32 shows our test images processed with the Peano curve dither-
ing algorithm just described. The curve used here is the Hilbert curve of
Figure 12.25, with a fixed cell size of seven pixels. Figure 12.33 shows the ef-
fect of the same algorithm but using adaptive dithering cells with a maximum
value of seven pixels.

Observe that this algorithm diffuses the quantization error along the Peano
curve. If each cell of the partition has a single pixel, the algorithm performs
dot error diffusion along the Peano curve; if the cells are bigger, the algorithm
performs clustering within each cell, with error diffusion from one cell to the
next.

In ordered dithering, the pixel clustering pattern is defined by the dithering
matrix. Once the size of the dithering cell has been chosen, this matrix is fixed.

340 12 Digital Halftoning

Fig. 12.32. Effect of Peano curve dithering with cells of seven pixels.

In the Peano curve algorithm the size of the cluster depends only on the chosen
partition of the domain and can be modified at execution time.

Figure 12.34 is part of a cartoon, containing line drawings and areas of
constant gray level. The shadow on the wall in the background is rendered as
a regular pattern of dots simulating a standard halftone screen. The image
was processed with both constant and adaptive Peano curve dither algorithms.
The effect of adaptiveness is striking. The improvement obtained is mainly due
to the treatment of high frequencies in the image. In this case, the algorithm
was capable of matching exactly the edges of the drawings, at the same time
reproducing with uniform dot patterns the different gray shades.

12.5 Comments and References

A fairly comprehensive study of the techniques of digital halftoning, includ-
ing an analysis of the algorithms in the frequency domain, can be found in

12.5 Comments and References 341

Fig. 12.33. Adaptive dithering with maximum cell of seven pixels.

(Ulichney 1987). The book also introduces a class of dot dispersion dithering
algorithms called “blue noise” dithering.

The classic article (Jarvis et al. 1976), although out of date, should be read
by anyone interested in dithering techniques; it describes several dithering
algorithms very well.

Dithering by random modulation, one of the earliest methods, was intro-
duced (in the context of image quantization for broadcasting) in (Roberts
1962).

As we have mentioned, ordered dithering is generally confused with pattern
dithering; (Knowlton 1972) is a pioneer work on pattern dithering. For a
discussion of the use of pattern dithering in the creation of “halftones” on line
printers, see (Hamill 1977) or (Perry and Mendelsohn 1964).

The idea of using a fixed table of thresholds for determining quantization
levels was introduced in (Limb 1969), in the context of color quantization of
television images. The first use of a dot dispersion dithering algorithm for

342 12 Digital Halftoning

Fig. 12.34. Line-drawing cartoon dithered with (a) constant cluster size of 27 pixels
and with (b) variable cluster size.

displaying images on two-level devices was in (Lippel and Kurland 1971).
Bayer’s article (Bayer 1973) was responsible for definitively associating his
name with dot dispersion algorithms, since there he constructed dithering
matrices that minimize the occurrence of low frequencies in regions of constant
intensity.

The ordered dithering matrices we used in this chapter’s examples were
taken from (Ulichney 1987). That book uses a beautiful recursive algorithm
to generate dot dispersion dithering matrices, based on planar subdivision.
The matrices thus obtained coincide with Bayer’s.

The Floyd–Steinberg algorithm was introduced in (Floyd and Steinberg
1975). Several variations and extensions of this algorithm can be found in
the literature. The interested reader should consult (Ulichney 1987). One
algorithm that attempts to minimize the directionality problems that char-
acterize the Floyd–Steinberg algorithm is the method of dot diffusion pre-
sented in (Knuth 1987). Of course, space-filling curve dithering with a cell
size of one pixel is a dot dispersion, nonclustered dithering method and
has no directionality artifacts. The use of the Floyd–Steinberg algorithm to

12.5 Comments and References 343

minimize quantization artifacts in color images first appeared in the literature
in (Heckbert 1982).

The use of space-filling curves in dithering algorithms was introduced in
(Witten and Neal 1982). The algorithm was generalized to the clustering case
in (Velho and Gomes 1991) and later extended to use an adaptive cell size
(Velho and Gomes 1995). Another digital halftoning algorithm using space-
filling curves can be found in (Cole 1991).

Optimization-based dithering algorithms are covered in (Geist et al. 1993).
A different optimization dithering algorithm, which is appropriate for dither-
ing sequences of images, can be found in (Gotsman 1993).

The flexibility of the ordered dithering technique in changing the shape of
the cluster is nicely exploited to create artistic screening effects in
(Ostromoukhov and Hersch 1995).

A comprehensive coverage of clustered dithering with a detailed study of
screening, dot shapes, and moiré problems can be found in (Peter 1992).

The Indian boy used as a running example in this chapter is a charcoal
drawing by the twentieth-century Brazilian painter Cândido Portinari (see,
for example, (MOMA 1940) or (Fabris 1990)). We thank Projeto Portinari for
permission to use it.

The original of Figure 12.18 is titled Portrait of Fabiana and was produced
by the late Brazilian artist Waldemar Cordeiro in 1969 (Belluzzo et al. 1986).

References

[Bayer 1973]Bayer, B. E. (1973). An optimum method for two-level rendition
of continuous-tone pictures. In International Conference on Communi-
cations, Conference Record, pp. 26–11 to 26–15.

[Belluzzo et al. 1986]Belluzzo, A. M. et al. (1986). Waldemar Cordeiro: Uma
aventura da razão. Museu de Arte Comtemporânea, Universidade de
São Paulo, São Paulo.

[Cole 1991]Cole, A. J. (1991). Halftoning without dither or edge enhancement.
The Visual Computer, 7:232–246.

[Fabris 1990]Fabris, A. (1990). Portinari, pintor social. Editora Perspectiva
and Editora da Universidade de São Paulo, São Paulo.

[Floyd and Steinberg 1975]Floyd, R. W. and Steinberg, L. (1975). An adap-
tive algorithm for spatial gray scale. In SID 75, Intl. Symp. Dig. Tech.
Papers, 36.

[Geist et al. 1993]Geist, R., Reynolds, R., and Suggs, D. (1993). A marko-
vian framework for digital halftoning. ACM Transactions on Graphics,
12(2):136–159.

[Gotsman 1993]Gotsman, C. (1993). Halftoning of image sequences. The
Visual Computer, 9:255–266.

344 12 Digital Halftoning

[Hamill 1977]Hamill, P. (1977). Line printer modification for better grey level
pictures. Computer Graphics and Image Processing, 6:485–491.

[Heckbert 1982]Heckbert, P. (1982). Color image quantization for frame buffer
display. Computer Graphics (SIGGRAPH ’82 Proceedings), 14(3):
297–307.

[Jarvis et al. 1976]Jarvis, J. F., Judice, C. N., and Ninke, W. H. (1976). A
survey of techniques for the display of continuous tone pictures on bilevel
displays. Computer Graphics and Image Processing, 5:13–40.

[Knowlton 1972]Knowlton, K. (1972). Computer-produced greyscales. Com-
puter Graphics and Image Processing, 1:1–20.

[Knuth 1987]Knuth, D. E. (1987). Digital halftones by dot diffusion. ACM
Transactions on Graphics, 6(4):245–273.

[Limb 1969]Limb, J. O. (1969). Design of dither waveforms for quantized
visual signals. Bell System Tech. J., 2555–2582.

[Lippel and Kurland 1971]Lippel, B. and Kurland, M. (1971). The effect of
dither on luminance quantization of pictures. IEEE Transaction of
Communication Technology, 6:879–888.

[MOMA 1940]MOMA (Museum of Modern Art) (1940). Portinari of Brazil.
The Museum of Modern Art, New York.

[Ostromoukhov and Hersch 1995]Ostromoukhov, V. and Hersch, R. (1995).
Artistic Screening. Computer Graphics (SIGGRAPH ’95 Proceedings),
219–228.

[Perry and Mendelsohn 1964]Perry, B. and Mendelsohn, M. L. (1964). Picture
generation with a standard line printer. Comm. of the ACM, 7(5):
311–313.

[Peter 1992]Peter, F. (1992). Postscript Screening: Adobe Accurate Screens.
Adobe Press, Mountain View, CA.

[Roberts 1962]Roberts, L. G. (1962). Picture coding using pseudo-random
noise. IRE Trans. Infor. Theory, IT-8:145–154.

[Ulichney 1987]Ulichney, R. (1987). Digital Halftoning. MIT Press, Cam-
bridge, MA.

[Velho and Gomes 1991]Velho, L. and Gomes, J. (1991). Digital halftoning
with space filling curves. Computer Graphics (SIGGRAPH ’91 Pro-
ceedings), 25(4):81–90.

[Velho and Gomes 1995]Velho, L. and Gomes, J. (1995). Stochastic screening
dithering with adaptive clustering. Computer Graphics (SIGGRAPH
’95 Proceedings), 273–276.

[Witten and Neal 1982]Witten, I. H. and Neal, M. (1982). Using Peano curves
for bilevel display of continuous-tone images. IEEE Computer Graphics
and Applications, 47–52.

13

Image Compression

In this chapter we are going to discuss the problem of image encoding and
compression. We will present the classical methods for image compression
based on transformation to the frequency domain (i.e. Discrete Cosine Trans-
form) and exploiting multiresolution decomposition (i.e., the Wavelet Trans-
form). These methods are employed respectively on the JPEG compression
and JPEG 2000 compression standards.

13.1 Image Encoding

As we saw in Section 6.1 (Figure 6.1), there are three abstraction levels for
the specification of an image in the computer: the continuous image, the dig-
ital image (image after discretization of domain and range), and the encoded
image. In an encoded image, the digital image is transformed into a set of
symbols, which are organized according to some data structure, and encoded
using strings of bits.

When we encode an image, we usually try to store the image as compactly
as possible. Thus, encoding is directly linked to image compression.

Matrix Encoding

As an example, consider a monochrome image with geometric resolution m×n,
and quantized at 8 bits (256 color levels). One of the possible encodings for
this image is a matrix format arising directly from the matrix representation
introduced earlier. In this representation an image might be encoded by means
of the following data:

• a descriptor indicating the geometric resolution (m× n);
• the number of components per pixel (in this case 1, since the image is

monochrome), and the number of quantization bits per component (8 in
this case);

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 13,
c© Springer-Verlag London Limited 2009

346 13 Image Compression

• an ordered list of the m× n elements of the matrix of pixels.

Even for such an extremely simple encoding scheme, the data structure
used must allow the information to be extracted correctly. Thus, details such
as whether the matrix entries are listed by row or by column must be stated
in the specification of the matrix encoding.

Run-Length Encoding

The classical encoding method for images takes advantage of the fact that
neighboring pixels often have the same color. Consider, for instance, each
image scanline. Instead of storing the information f(xi, yj) for each pixel
(xi, yj), we encode, for each row of the image, the length of the intervals
where the image function is constant, together with the constant value in
that interval. This is called run-length encoding.

It is intuitively clear that run-length encoding leads to good compression
only if the intervals along which the image function is constant are relatively
long with respect to the image’s horizontal resolution.

Instead of using color correlation along scanlines of the image, we can
devise a version of the algorithm to exploit spatial correlation, using images
that are piecewise constant as functions of two variables. In this case the sets
in the partition have a more complicated geometry and topology, and we must
devise better spatial data structures to represent them. Two good choices are
quadtrees or BSP trees (binary space partition trees).

Pulse Code Modulation

Instead of encoding the image based on regions of the domain where there is
no color variation, a more flexible and efficient procedure encodes the color
variation itself. Many encoding techniques, known as pulse-code modulation
methods, use this strategy.

Entropy Encoding

In order to compare two encoding schemes with respect to the compactness
achieved in the encoding process, we must devise a way to measure the amount
of information carried by the image. This problem is studied in information
theory, and it is important to get acquainted with the basic principles of this
theory.

The techniques of this area apply to the encoding of any information and
not only to images. Generally, we can regard the information to be encoded
as a “message” to be stored or transmitted. The message is encoded using
symbols from a fixed, finite alphabet

A = {f0, f1, . . . , fL−1},

13.1 Image Encoding 347

with L elements. It is natural to associate the alphabet a probability measure
P . The value of P at each symbol fi ∈ A gives the probability of occurrence of
the symbol in a message. The message itself is modeled as a random function
F defined over the alphabet.

The probability of the symbol fk occurring in a message is

P (F = fk) = pk, for k = 0, 1, . . . , L− 1.

In the case of images, the symbols are the color quantization levels of
the image color space. That is, an image can be considered as a source of
independent pixels; each pixel has its own color. The set of all pixel colors is
the message to be encoded. The probability can be approximated by using
the image histogram.

Intuitively, the amount of information when a symbol fk is present in the
message is related to the inverse of pk: if the probability is high, the symbol
will almost certainly occur; therefore, the information it carries is low. On the
other hand, if the probability is low, and the symbol does occur, it must carry
a great amount of new information.

In accordance with the above intuition, the amount of information I is
measured by

I(fk) = log
(

1
pk

)

.

The base of the logarithm is irrelevant from the mathematical point of view. In
applications, the choice of a base depends on the data we wish to represent. A
widely used standard base is two. In this case, the unit of information is called
a bit. In this case, if the alphabet has two symbols {f0, f1} and p0 = p1 = 1

2 ,
then I(fk) = 1. Thus, one bit is the amount of information we gain when we
have the choice of two symbols that can occur with equal probability.

One should be careful not to confuse the use of the word “bit” here with
the notion of a binary digit when dealing with numbers represented in base
two. One bit of information is not necessarily encoded on the computer using
one bit (binary digit) for its storage.

The amount of information carried by the message is the sum of the
amount of information carried by each symbol in the message. That is,

E =
L−1∑

k=0

pkI(fk) =
L∑

k=1

pk log2

1
pk

= −
L∑

k=1

pk log2 pk. (13.1)

The number E is called the entropy of the message.
Suppose we have L symbols in an alphabet (in the case of an image, this

means L quantization levels). Using the convexity property of the logarithmic
function, it is possible to show that

E ≤ log2 L. (13.2)

That is, the entropy is bounded above by log2 L.

348 13 Image Compression

Now that we have devised a concept for the amount of information carried
by a message, we are able to discuss the binary encoding of the message, that
is, the binary encoding of the alphabet symbols the message uses. This is done
by associating a string of bits (binary digits) to each symbol in the alphabet.
This string of bits is called a codeword.

The simplest method to accomplish this association is to use codewords
with the same number of bits. For example, say we have four symbols in our
alphabet (four levels of quantization in the case of an image), namely f0,
f1, f2, and f3. Using uniform two-bit codewords, we are able to obtain the
following encoding for the symbols:

symbol f0 f1 f2 f3

code 00 01 10 11

The number of bits used to encode a codeword is called the length of the
codeword. When all of the codewords have the same length, we say that the
encoding is uniform, or that the encoding has a constant bit rate. In the above
example, we have uniform encoding with bit rate 2.

Usually, the various symbols in a message occur with different probabili-
ties. If we know ahead of time the probability distribution of these symbols,
we can use this knowledge to design a nonuniform encoding such that the
more frequent levels use fewer bits than rarer ones. We call such an encoding
adaptive. Adaptive encoding leads to a reduction in the total number of bits
needed to encode the image.

Suppose that for each symbol fk we use a codeword of length lk. If we
have L symbols in the alphabet, the average codeword length M is given by

M =
L−1∑

k=0

pklk,

where pk is the probability of the occurrence of the symbol fk. The number M
represents the average number of bits (binary digits) used per symbol in the
encoding process. Thus, for uniform encoding M coincides with the number
of bits to encode each symbol. The source coding theorem by Shannon (see the
references) says that E ≤ M . That is, the entropy is the lower bound for the
average number of binary digits used in the binary encoding. For this reason,
the entropy is called the fundamental encoding limit.

Two-Symbol Encoding

Consider the case where the alphabet has two symbols (L = 2) with proba-
bilities p1 = p and p2 = 1− p, 0 ≤ p ≤ 1. The entropy will be

E(p) = −p log2 p− (1− p) log2(1− p).

The graph of E is shown in Figure 13.1.

13.2 Image Compression 349

Fig. 13.1. Graph of the entropy of two-symbol alphabet encoding.

The maximum entropy is 1, and corresponds to p = 1
2 : each symbol has

the same probability of occurring in the message. Shannon’s source coding
theorem says that we must use one bit to encode the message. When p → 0
or p → 1, the entropy decreases and from the source coding theorem it is
possible to encode the message using less than 1 bit, on the average.

Huffman Encoding

One of the most common types of nonuniform encoding is called Huffman
encoding. It uses the probability distribution of the image’s quantization levels
(obtained from the frequency histogram) in order to perform an adaptive
encoding whose average bit rate is fairly close to the fundamental limit of
the entropy. Moreover, Huffman encoding is relatively easy to implement. For
details, see the relevant references given in Section 5.6.

13.2 Image Compression

The goal of compression is to obtain an image representation while reducing
as much as possible the amount of memory needed to encode the image.
Image compression is possible because images, in general, are highly coherent
(nonrandom), which means that there is redundant information. Visual data,
like other meaningful data, are usually structured, and this structure means
that the data over different parts of an image are interrelated.

For example, consider an image in matrix format. If we take an arbitrary
pixel, its color will likely be close to that of neighboring pixels, since they
are more likely than not to belong to the same object. Or perhaps the colors
aren’t close, but some more complex relationship applies: for instance, the
pixel might be on the boundary of two objects, or it may be part of a tex-
ture pattern. In any case, there are usually some redundant data because of
the image’s structure. Image compression methods try to eliminate some of
this redundancy to produce a more compact code that preserves the essential
information contained in the image.

350 13 Image Compression

Depending on the application, the information we wish to preserve may be
objective or subjective. In the first case, compression must allow the data to be
recovered exactly in its original form when desired. This is known as reversible,
or lossless, compression. When the original data cannot be recovered exactly,
we have irreversible, or lossy, compression.

Typical applications of compression involve the storage and transmission
of an image, or a sequence of images (as in the case of television). Whether or
not reversibility is needed depends directly on the application. In medicine,
for example, it may be necessary to preserve the contents of a digital X-ray
exactly. On the other hand, when sending a fax, one usually cares only that
the recipient be able to read the message.

In order to understand the problem of image compression, we return to
the three levels of image representation shown in Figure 6.1. In the continuous
level the image is represented by some model describing the image function f :
U ⊂ R

2 → R
3. In the discrete level the image is given by some representation

(e.g., matrix representation resulting from spatial point sampling). There are
essentially two methods of encoding an image: encode a model of the image
function or encode some representation of the image function.

13.2.1 Compression by Image Model

This class of compression algorithms includes the methods that encode a
model of the image function. In general, these methods are resolution in-
dependent, because from the image model we can sample the image at any
resolution.

For a simple example of this method, take a grayscale “ramp” given by
the linear function f(x, y) = ax + by + c. The linear equation is the model of
the image function, and the image is compressed by encoding the coefficients
a, b, and c.

Another example is a procedural description of a scene in a computer
graphics system (containing geometric models for the objects, space transfor-
mations, illumination information, and so on). Such a description may actually
be longer than a single image generated from it, so no compression results.
However, if we are dealing with an animation, the synthetic description is
usually much more compact than the resulting sequence of images. The main
drawback of such a description is that the decoding time—the time needed to
generate the actual images—may be very long.

Compression by Approximation

This type of compression, by transformation of the model, is commonly used.
We compute an image model that approximates the original image function
within a specified tolerance. The approximation techniques involved usually
consist of interpolation methods, and the encoding of the approximated model
data (in general, control points and interpolation basis) should take less space
than encoding the data in the original image.

13.2 Image Compression 351

A simple example of compression by approximation uses a piecewise linear
approximation of the image on each scanline. This is illustrated in Figure 13.2,
where the dashed curves represent the tolerance used for the approximation
(uniform metric).

Fig. 13.2. Piecewise linear approximation of an image.

Note that, once the linear approximation has been obtained, encoding the
image reduces to encoding the equation y = ax + b on each linear part of the
approximating function. This is a simple task and uses less storage space than
storing data for all pixels.

Fractal Image Compression

For a given image function f , a mapping T : I → I of the image space is
constructed such that f is obtained as the limit set of the sequence of images

T (f0), T 2(f0), T 3(f0), . . . ,

where f0 is an arbitrary image. In this case the image function is modeled
by the dynamical system associated to the map T . The image is encoded
by encoding this dynamical system. The image is decoded by a relaxation
procedure that consists in iterating the transformation T .

13.2.2 Compression by Image Representation

These are the methods that encode some representation of the image function.

Compression by Discretization

Methods of compression by discretization use a functional model of the im-
age and achieve compression by reducing the information in the range (color
resolution) or in the domain (spatial resolution).

352 13 Image Compression

Fig. 13.3. Compression by transformation of the model.

A simple method is compression by subsampling, which resamples the im-
age at a lower rate. The decoding process consists in reconstructing the origi-
nal image from the subsamples. If low frequencies predominate on the image,
the original image can be reconstructed with little or no loss, by the Shannon–
Whittaker sampling theorem.

Compression by domain discretization is closely related to decomposition
schemes of the image domain. There are several compression techniques in
this direction. These techniques use spatial data structures, such as quadtrees
or BSP trees, to encode the domain decomposition efficiently.

Compression by Transformation

Compression by transformation of the model involves analyzing the image
using filters, transforms, and so on, with the goal of finding a better represen-
tation of the image for the purposes of encoding. This new model should be
pursued in such a way that its encoding occupies less storage than the original
image representation, thus achieving compression. Figure 13.3 illustrates the
pipeline of this method.

Many classical transforms can be used for the analysis of an image: the
Fourier transform, the cosine transform, the Hadamard transform, and so
on. More recently, the wavelet transform has been added to this arsenal. A
detailed study of the use of such transforms is well outside the scope of this
work. The interested reader should consult the references in the next section.

13.3 Compression and Multiscale Analysis

In this section we will apply our study of image filtering to two very important
areas: image compression and multiscale representation of images.

The use of filters in image compression stems from the idea that one can
take advantage of the spectral characteristics of the image, that is, of infor-
mation about the various frequencies present in the image. Roughly speaking,
one can run an image f through n bandpass filters h1, h2, . . . , hn, obtaining n
components f1, f2, . . . , fn of the image with distinct spectral characteristics.
Each of these components is called a spectral band of the image and is char-
acterized by the presence of frequencies in a given region of the spectrum.

13.3 Compression and Multiscale Analysis 353

One then applies compression methods adapted to each band separately. This
is called subband encoding. An important particular case is that of two-band
compression, also known in the literature as two-channel encoding.

13.3.1 Two-Channel Encoding

This type of encoding uses a highpass and a lowpass filter to split the image
signal f into two components: a high-frequency component H and a low-
frequency component L. The original image is the sum f = H + L.

Since L contains only low frequencies, one can sample it at a low rate with-
out substantial loss of information. On the other hand, the high-frequency
component can be compressed using quantization with a small number of
bits, again without significant loss of information. Figure 13.4 shows one pos-
sible implementation of this process. In this figure, the original image f goes
through a lowpass filter, and the output is resampled at a lower rate, yielding
a low-frequency component with lower spatial resolution. This component is
then quantized with an appropriate number of bits, resulting in a compressed
version of the low-frequency portion of the image. We will denote by L̄ this
subsampled low-frequency component.

The encoding of the high-frequency portion is obtained by subtracting the
low frequency component from the original image, that is,

H(x, y) = f(x, y)− L(x, y).

After this, we quantize H, to obtain an encoded version of the high-frequency
portion of the image.

The low-frequency component L is obtained from the subsampled version
L̄ by using an interpolation filer I. Therefore, we can write

f(x, y) = L(x, y) + H(x, y) = I(L̄(x, y)) + H(x, y).

Fig. 13.4. Two-channel encoding: low and high frequencies.

354 13 Image Compression

Fig. 13.5. Two-channel decoding.

In general the reconstruction (interpolation) is not exact and we have

f(x, y) ≈ I(L̄(x, y)) + H(x, y).

The whole process is illustrated in Figure 13.5.
We can iterate this process, repeatedly applying the method of two-channel

encoding to the low-frequency component L̄ of the image. After M steps,
we get three sequences of M images, denoted (L̄j), (Lj), and (Hj) (for
j = 1, . . . ,M), where L1 = L, L̄1 = L̄, and H1 = H. As j varies from 1 to M ,
each Lj represents an image with increasingly coarser spatial resolution, rep-
resenting the low-frequency component of f at that resolution. Each element
Hj has the same spatial resolution of Lj and represents the high-frequency
component of the image f at that resolution.

To summarize, the sequences (Lj) and (Hj), for j = 1, . . . ,m, encode the
low- and high-frequency information for f at a particular spatial resolution.
This is illustrated by the decomposition diagram below:

LM LM−1
�

�
�

�
��

HM

. . . Lj+1
� Lj+1 Lj

�

�
�

�
��

Hj+1

. . . L1 = L f�

�
�

�
��

H1 = H

From the above diagram we can write

Hj+1 = L̄j − Lj+1,

Since Lj+1 is a blurred copy of L̄j we conclude that Hj is obtained essentially
by applying a laplacian filter to L̄j . For this reason, the sequence (Hj)j=1,...,m

is known as the laplacian pyramid.
On the other hand, each Lj is obtained from the previous one by the

application of a lowpass filter, followed by subsampling. The lowpass filter

13.3 Compression and Multiscale Analysis 355

can be considered an approximation to a gaussian filter. For this reason, the
sequence (Lj)j=1,...,m is known as the gaussian pyramid.

Figure 13.6 shows some steps in the construction of the gaussian (on the
right) and the laplacian (on the left) pyramids, for the image of an eye. In
this figure, each image Li on the right is obtained by doubling the size of the
image Li+1 above it, and adding to the result the image on the left, Hi.

To encode an image f , we construct the gaussian and laplacian pyramids,
and keep the low-frequency, blurred and subsampled image Lm, and the asso-
ciated laplacian pyramid. For decoding we must start with the coarsest image
Lm of the gaussian pyramid and the whole sequence of Hj ’s (the laplacian
pyramid). We then repeatedly apply the reconstruction procedure described
above. Indeed, this reconstruction procedure gives

H1 + L1 = f,

H2 + L2 = L1,

...
Hm−1 + Lm−1 = Lm−2,

Hm + Lm = Lm−1.

Adding these equations term by term and simplifying, we obtain

H1 + H2 + · · ·+ Hm + Lm = f. (13.3)

Fig. 13.6. Gaussian and laplacian pyramids. Starting from the image on the top
of the gaussian pyramid, and applying the reconstruction operation recursively, we
recover the original image f .

356 13 Image Compression

Perceptually, the image Lm is a blurred version of f , with very low spatial
resolution. The decoding process reconstructs the original image f by stages;
at the end of each stage we get an image with higher spatial resolution and
more details (high frequencies).

The above encoding method allows the gradual reconstruction of the orig-
inal image during the decoding process. We have at each stage a coarse (but
increasingly finer) version of the final image. This enables us to get infor-
mation about the final image before having a complete reconstruction. This
property is important in some applications. In image transmission we can stop
the process, if desired, before receiving the whole image.

Subband encoding and decoding is also important historically; it intro-
duced the use of multiscale analysis in image processing. We will outline this
development in the next section.

13.3.2 Multiscale Representation of an Image

Let F be a space of signals, and S1 ⊃ S2 ⊃ · · · ⊃ Sm−1 ⊃ Sm a sequence of
subspaces of F . Given a signal f ∈ F , a multiscale decomposition of f is a
sum

f = g1 + · · ·+ gm−1 + gm + fm, (13.4)

where
gi ∈ Si+1 − Si. (13.5)

Intuitively, each subspace Si contains signals with more detail (information
about variations in frequency) than the space Si+1. Therefore, each component
signal gi in equation (13.4) measures the variation in details (frequencies)
between two consecutive levels. We conclude that the sum in (13.4) represents
the signal f as a low-frequency component fm ∈ Sm plus variations gi between
consecutive levels, as expressed by (13.5). For a digital image, fm contains
the low frequencies and so corresponds to a blurred image; as we add each
component gi, we get increasingly sharper and more detailed versions of the
image f .

Note that equation (13.3) resembles the multiscale decomposition in equa-
tion (13.4), with fm = Lm and gi = Hi. Moreover, since Hj = Lj+1 − Lj ,
we see that Hj is the difference between two images of different resolu-
tions and therefore that (13.3) is indeed a multiscale decomposition of the
image f .

Besides presenting a beautiful application of linear filtering theory to im-
age processing, we included this section because it describes some basic ideas
behind the theory of multiresolution analysis. These techniques have found
enormously wide application in recent years. This is the natural setup for the
theory of wavelet transforms, which enables us to construct different multires-
olution decompositions of the space of images. This is quite beyond the scope
of this book; see the next section for references.

13.4 Comments and References 357

13.4 Comments and References

In our section on image compression, we tried to establish a framework that
would allow a general understanding of the many available methods, with-
out getting into the details of any one of them. For certain specific classes of
images, one can find more efficient algorithms than the generic ones. Thus,
the compression of bilevel images, of great importance in telecommunications
(bitmaps are used for text image transmissions, for example), has been inten-
sively studied and heavily optimized. For details, see (Jain 1989).

The chapter about image encoding in (Lim 1990) is very complete and
has a good classification of compression techniques, along with an abundant
bibliography about this topic.

A recent new approach to compression, introduced in (Barnsley et al.
1988), uses iterated functions systems; such methods are also loosely known
as fractal compression. Details can be found in (Barnsley and Hurd 1993).
For an approach to fractals from the viewpoint of computational computer
graphics, see (Peitgen and Saupe 1988).

The JPEG group (Joint Photographic Experts Group) was established in
the 1980s to develop a standard format for the compression of digital images.
The standard it developed, likewise known as JPEG, has been adopted by
the ISO (International Standards Organization) and is well described in (Pen-
nebaker and Mitchell 1993). Likewise, the MPEG standard was developed by
the Motion Photographic Experts Group for the compression of sequences of
images (animations); it has also been adopted by the ISO. The MPEG com-
pression format is always evolving to account for the requirements from the
different segments of the video and television industries.

The paper (Velho and Alvarenga 1990) describes an image compression
algorithm that employs piecewise linear approximation along the rows of an
image, as discussed in the text. This algorithm is very well suited to synthetic
images.

Huffman encoding was originally introduced in (Huffman 1962). For a full
treatment, see (Rosenfeld and Kak 1976). The very popular Lempel–Ziv–
Welch (LZW) compression algorithm, which performs even better than Huff-
man’s, can be found in (Welch 1984). For an information-theoretic discussion
of run-length encoding, see (Jain 1989).

The use of transforms in image compression is covered in many books. We
mention (Pratt 1978) and (Jain 1989) for a simple introduction, and (Clark
1990) for a deeper and more complete treatment.

Reconstructing an image can be regarded as a problem of interpolation of
scattered data. A solution from this point of view is proposed in (Chen et al.
1994).

For an appealing and intuitive treatment of information theory, and in
particular of the origin and evolution of the concept of entropy, see (Resnikoff
1987). An introductory and well-written book covering this topic is (Haykin

358 13 Image Compression

1988). In this reference the reader will find a proof of inequality (13.2). The
classical reference on the subject is Shannon’s seminal paper (Shannon 1949),
which laid down the mathematical base of information theory. Here the reader
will find a proof of the source coding theorem.

Different data structures are used in commercial and academic software
to encode the image on the computer. These structures give rise to dozens of
different formats for image storage. A detailed description of these formats
can be found in (Murray and Ryper 1994).

References

[Barnsley and Hurd 1993]Barnsley, M. and Hurd, L. P. (1993). Image Com-
pression with Fractals. A. K. Peters, Wellesley, MA.

[Barnsley et al. 1988]Barnsley, M. F., Jacquin, A., Malassenet, F., Reuter, L.,
and Sloan, A. D. (1988). Harnessing chaos for image synthesis. Com-
puter Graphics (SIGGRAPH ’88 Proceedings), 22(4):131–140.

[Chen et al. 1994]Chen, Y.-S., Yen, H.-T., and Hsu, W.-H. (1994). Compres-
sion of color images via the technique of surface fitting. CVGIP: Graph-
ical Models and Image Processing, 56(3):272–279.

[Clark 1990]Clark, R. J. (1990). Transform Coding of Images. Academic
Press, London.

[Haykin 1988]Haykin, S. (1988). Digital Communications. John Wiley and
Sons, New York.

[Huffman 1962]Huffman, D. A. (1962). A method for the construction of min-
imum redundancy codes. In Proceedings of IRE, 40:1098–1101.

[Jain 1989]Jain, A. K. (1989). Fundamentals of Digital Image Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[Lim 1990]Lim, J. S. (1990). Two-Dimensional Signal and Image Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[Murray and Ryper 1994]Murray, J. D. and Ryper, W. V. (1994). Encyclo-
pedia of Graphics File Formats. O’Reilly and Associates, Sebastopol,
CA.

[Peitgen and Saupe 1988]Peitgen, H. O. and Saupe, D. (1988). The Science
of Fractal Images. Springer-Verlag, New York.

[Pennebaker and Mitchell 1993]Pennebaker, W. and Mitchell, J. (1993).
JPEG: Still Image Data Compression Standard. The Color Resource,
San Francisco.

[Pratt 1978]Pratt, W. (1978). Digital Image Processing. Wiley–Interscience,
New York.

[Resnikoff 1987]Resnikoff, H. L. (1987). The Illusion of Reality. Springer-
Verlag, New York.

[Shannon 1949]Shannon, C. E. (1949). The Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana, IL.

13.4 Comments and References 359

[Velho and Alvarenga 1990]Velho, L. and Alvarenga, C. (1990). Image com-
pression by first-order approximation. In Proceedings IMAGE’COM,
First International Conference on Image Chains, 387–391.

[Welch 1984]Welch, T. A. (1984). A technique for high-performance data com-
pression. Computer, (6):8–19.

14

Combining Images

Techniques for combining digital images have been used extensively to obtain
special effects in movies and television. (In fact, the motion picture industry
has been using analog methods for the same purposes since the 1920s.) In this
chapter we study a number of such techniques.

14.1 Preliminaries

The purpose of combining images is to create a new image that contains fea-
tures from each of the components. This allows great flexibility in the process
of image generation. Thus, if we want a single image containing elements cre-
ated by different processes—for example, a live shot and a computer-generated
scene—we must combine the two images using an appropriate method. Even
in the case of purely synthetic scenes, it is often advantageous to synthesize
different elements of the scene separately and then combine them into a single
image. The interaction between windows in a graphical user interface is also
an example of image combination.

Several analog methods for combining images have been used by the movie
industry, either to lower production costs or to achieve special effects. For
example, live action can be filmed at a studio and superimposed on footage
of an outdoor scene. A related technique is to use small-scale models for the
background and superimpose the live action in such a way that it appears to
take place in front of a full-scale background scene.

With the advances in computer graphics and image processing, and with
the increase in computational power, analog techniques have increasingly
given way to digital ones, in both the television and the movie industries.

Our mathematical approach to the problem of combining images will con-
sist in defining operations comp that associate with two images f and g an
image h = comp(f, g). For some applications we will need operations on more
than two images, comp(f1, . . . , fn); but in general we can regard the process
of combining n images as n− 1 successive binary operations.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 14,
c© Springer-Verlag London Limited 2009

362 14 Combining Images

Note that the operation comp(f, g) is well defined only if f and g belong
to the same image space: in particular, they must have the same support set
and take values in the same color space.

We will start by developing the theory in the continuous domain, and then
we will examine the problems arising from discretization.

14.2 Combining Images Algebraically

We saw in Chapter 7 that an image space I = {f : U ⊂ R
2 → C} is a

vector space. Thus, given a set fi, where i = 1, . . . , n, of images in I, and
real numbers ci, where i = 1, . . . , n, we can obtain an image f using a linear
combination

f = c1f1 + c2f2 + · · ·+ cnfn. (14.1)

This operation can be generalized as follows: instead of n real numbers ci,
take n real-valued functions αi : U ⊂ R

2 → R, defined in the support set U
of the image space. Equation (14.1) is then replaced by

f(x, y) = α1(x, y)f1(x, y) + · · ·+ αn(x, y)fn(x, y). (14.2)

In order for f in this equation to be well defined, we must suppose that
αi(x, y) ≥ 0. Moreover, the effect of (14.2) should normally be a weighted
average of intensities at each point, so that each pixel has an intensity that is
an average of those from the component images, avoiding problems of color
overflow. Algebraically, we should require that

α1(x, y) + · · ·+ αn(x, y) = 1, for all (x, y) ∈ U.

Obviously, if we start from functions αi that do not satisfy this constraint,
we can obtain new functions βi that do, by setting C(x, y) =

∑
αi(x, y) and

applying the normalization βi = αi/C.
The two conditions we have imposed on the αi make this family of func-

tions into a partition of unity. A (finite) partition of unity for a subset U ⊂ R
n

is a family of functions αi : U → R, where i = 1, . . . , n, satisfying the following
conditions for every (x, y) ∈ U :

(i) αi(x, y) ≥ 0 for i = 1, . . . , n;
(ii) α1(x, y) + α2(x, y) + · · ·+ αn(x, y) = 1.

Two important properties follow from this definition:

• For every (x, y) ∈ U , we have 0 ≤ αi(x, y) ≤ 1, by (i) and (ii).
• For every (x, y) ∈ U , there exists at least one i such that αi(x, y) > 0, by

(ii).

If the functions αi are continuous, we say that the partition of unity is
continuous. Figure 14.1(a) shows a two-element partition of unity {α1, α2}

14.2 Combining Images Algebraically 363

Fig. 14.1. Two partitions of unity of an interval. The partition in (b) is continuous,
but not the one in (a).

on an interval of the real line. Figure 14.1(b) shows another such partition,
{β1, β2}, this time continuous.

A discontinuous partition of unity αi can be turned into a continuous one—
in fact, one of any desired class Ck, for k ≥ 0—by taking the convolution αi∗ϕ
of each function in the partition with a convolution kernel ϕ of class Ck+1,
satisfying

ϕ(x, y) ≥ 0 and
∫

U

ϕ = 1.

The partition of unity illustrated in Figure 14.1(b) can be obtained from the
one in Figure 14.1(a) by convolving with a one-dimensional box filter.

14.2.1 Mixing Images

An important particular case of algebraic combination of images occurs when
the functions αi are constant over the domain U of the image space, that
is, αi(x, y) = ci for every (x, y) ∈ U . This reduces to the linear combination
defined earlier in (14.1) and is called mixing the images. A classical exam-
ple is cross-dissolving: given two images f and g, cross-dissolving (or simply
dissolving) f to g means taking a sequence of images

ht = dissolvet(f, g) = (1− t)f + tg,

where the number t ranges from 0 to 1. We have dissolve0(f, g) = f at t = 0,
and dissolve1(f, g) = g at t = 1. For other values of t, the intermediate image
ht displays, at each point, a weighted average of the colors at that point in f
and g; moreover, the weights are the same everywhere, since the functions in
our partition of unity are the constants α1(x, y) = 1− t and α2(x, y) = t.

Figure 14.2(c) shows a dissolve of the images in (a) and (b).
The more general equation (14.2) for combining images is useful in appli-

cations because it allows for an adaptive choice of weights: the contribution
of each image to the end result in this case depends on the pixel.

364 14 Combining Images

Fig. 14.2. The images f1 and f2 shown in (a) and (b) are mixed in (c), with
parameter α1 = 0.4 and α2 = 0.6.

14.3 Combining Images by Decomposing the Domain

It is common in computer graphics to obtain an image by combining specific
elements from different images belonging to the same image space. This is
illustrated in Figure 14.3, where we superimpose an element from image (a)
on top of image (b), to obtain the image in (c).

To describe this type of superimposition using the formulation of (9.2),
we need to decompose the domain. Denote by f1 and f2 the images in
Figure 14.3(a) and (b), and let their domain be U . The image f of Figure
14.3(c) is given by

f(x, y) =
{

f1(x, y) if (x, y) ∈ A,
f2(x, y) if (x, y) ∈ B, (14.3)

where the sets A and B form the partition (decomposition) of U shown in
Figure 14.4 (B has two connected components).

In general, given n images f1, . . . , fn in the same image space, with do-
main U , and a decomposition of U into m sets U1, . . . , Um, one can define
an operator comp(f1, . . . , fn) piecewise, by giving a different rule for each Ui.
As a more elaborate example, parts (a) and (b) of Figure 14.5 show images
f1 and f2, and part (c) shows a decomposition of the domain U into sets A,
B, and C. Part (d) shows the result of combining f1 and f2 according to the
piecewise rule

Fig. 14.3. Superimposing an element of an image onto another image.

14.3 Combining Images by Decomposing the Domain 365

Fig. 14.4. Decomposition of the domain.

Fig. 14.5. Combining images using piecewise constant weight functions.

f(x, y) =

⎧
⎨

⎩

f1(x, y) if (x, y) ∈ A,
f2(x, y) if (x, y) ∈ B,
dissolve0.5(f1, f2) if (x, y) ∈ C.

14.3.1 Partitions of Unity and Decompositions

The reader may have realized that, of the two general methods for combining
images that we’ve seen so far (using a partition of unity, in Section 14.2, and
using a decomposition of the domain, in Section 14.3), the second is in fact a
particular case of the first. Indeed, given a decomposition of U into sets Ui, for
i = 1, . . . , n, we associate to each Ui its characteristic function χUi

, defined
by

χUi
(x, y) =

{
1 if (x, y) ∈ Ui,
0 if (x, y) /∈ Ui.

366 14 Combining Images

The family of characteristic functions {χUi
} defines a (discontinuous) partition

of unity, of the set U . It is easy to see that combining images algebraically
using this partition of unity is the same as combining them by using different
rules for each set of the partition, as we did before.

14.3.2 Image Compositing

When we observe an image, or even a real-life scene, we often classify its
objects mentally as belonging to either the foreground or the background.
The foreground consists of those elements, generally toward the front, where
attention is concentrated. The background has the role of “visual support”
for the scene’s foreground objects.

Dividing the objects in a image into foreground and background has the
effect of defining a decomposition of the domain U into two corresponding
sets, Uf and Ub. These sets may have more than one connected component.

We can use this to define an important particular case of combining two
images f and g by decomposition of the domain: if {Uf , Ub} is the background–
foreground decomposition of the domain U of the images, we define

f(x, y) =
{

f1(x, y) if (x, y) ∈ Uf ,
f2(x, y) if (x, y) ∈ Ub.

(14.4)

This is called overlaying f1 on f2. Note that (14.4) is a particular case of (14.3),
with Uf and Ub playing the role of A and B. Figure 14.6 shows the overlaying
of a computer-generated (synthetic) image on a digital image obtained by
scanning a photograph.

Overlaying is clearly not a commutative operation, since we’re picking the
elements of one image to define the foreground and the background regions.

We now define the more general notion of image compositing, a very
common way of combining images in computer graphics. Consider images
f1, f2, . . . , fn in the same image space, with domain U . Suppose each image

Fig. 14.6. Superimposing a synthetic image on a photograph. See Plate 8 in color
insert.

14.3 Combining Images by Decomposing the Domain 367

fi defines a background–foreground decomposition U i = {U i
f , U i

b} of U . The
intersection of the partitions U i defines a partition Vk of the domain U . In
each set V k ⊂ Vk of this partition, compositing is defined by mixing the im-
ages f1, f2, . . . , fn with certain weights. Figure 14.3, as we have seen, shows
the compositing of two images. By contrast, Figure 14.5 is not an example of
compositing, although the images are being combined using a decomposition
of the domain: the decomposition is not a background–foreground decompo-
sition associated to each image.

Besides a single overlaying operation, probably the most important partic-
ular case of image compositing is a succession of overlays. That is, given n im-
ages f1, f2, . . . , fn, one recursively sets g1 = over(f1, f2), gk = over(gk−1, fk+1)
for 2 ≤ k ≤ n− 1, and outputs the image gn−1.

Example 14.1 (Depth-of-scene merging). Suppose we have two images f1 and
f2, in which to each point (x, y) we have associated not only the color infor-
mation (R,G,B) but also the depth Z (distance to observer) of the object
visible at that point. Write

f1(x, y) = (R1(x, y), G1(x, y), B1(x, y), Z1(x, y)),
f2(x, y) = (R2(x, y), G2(x, y), B2(x, y), Z2(x, y)).

We can define a merging operation h = comp(f1, f2) as follows:

f(x, y) =
{

f1(x, y) if Z1(x, y) ≤ Z2(x, y),
f2(x, y) if Z1(x, y) > Z2(x, y).

Thus, the merged image gets at each point the value of whichever object is
closer to the observer; when there is a tie, we choose f1 arbitrarily.

We can reformulate this problem in terms of a decomposition of the do-
main, by setting

U1 = {(x, y) ∈ U : Z1(x, y) ≤ Z2(x, y)},
U2 = {(x, y) ∈ U : Z1(x, y) > Z2(x, y)}.

We then have f = f1 in U1 and f = f2 in U2.

The background–foreground decomposition {Uf , Ub} corresponds to the
partition of unity given by the two functions αf = χUf

and αb = (1 − αf).
Clearly, 1 − αf is the characteristic function of the background
region Ub.

Thus, the overlaying operator of the previous section can be defined by a
partition of unity with two functions αf and αb, where αf = 1 at the pixels
of f1 belonging to foreground elements (those that should be overlaid on the
background), and αf = 0 at the remaining pixels. We therefore have

f(p) = αf (p)f1(p) + (1− αf)(p)f2(p). (14.5)

368 14 Combining Images

14.4 Combining Images in the Discrete Domain

In this section we study the operators for combining images in the discrete
domain. We will sometimes work with one-dimensional signals, for ease of
illustration. We can regard a one-dimensional signal as an image scanline.

Recall that the images to be combined must lie in the same image space,
and in particular must have the same domain and same color space. When
discretizing two images we should use the same grid, and we must quantize
the color information to the same number of bits for both images. These
assumptions will be implicit during the rest of this chapter.

When we mix or cross-dissolve two images, the partition functions are con-
stant over the domain. Therefore, assuming the images were correctly sam-
pled, there is no problem working in the discrete domain: we just work pixel
by pixel, combining the sampled values from the two images.

In the case of compositing, we work with the restriction of the images to
the sets of decomposition of the domain. Thus, when discretizing the domain,
we must take into account how the sets of the decomposition behave inside
each pixel.

Consider the overlay operator f = over(f1, f2) of (14.5), based on the
background–foreground decomposition of the domain. Working in the contin-
uous domain, we had two options for the value of f(p) at a point p: it might
equal f1(p) or f2(p), depending on whether p was in the foreground or the
background. In the discrete case, we have another option for pixels that strad-
dle the boundary between background and foreground (Figure 14.7). Here we
are dealing with sampling problems. Indeed, the discontinuities of the α func-
tion on the boundaries of the decomposition gives rise to high frequencies, and
this causes trouble when sampling pixels that contain boundary points. We
will discuss the different sampling options in more detail later in this chapter.

14.4.1 The Opacity Function

The overlaying operation can be thought of as placing the first image, f1, “in
front” of the second, f2, except that only parts of f1—namely, where αf = 1

Fig. 14.7. Types of pixels in the background–foreground decomposition of an image
in the discrete domain.

14.4 Combining Images in the Discrete Domain 369

in (14.5)—actually cover f2: the rest of f1 is discarded. It is useful to think of
αf as a measure of the degree of opacity of the image in front. When αf = 1,
we think of f1 as being opaque at that point, and the image in the back does
not appear. Where αf = 0, the image in front is transparent, and the result
has the same color as the back image at that point. Finally, as we mentioned,
it is useful to allow values 0 < αf < 1 after discretization, corresponding to
a partially transparent pixel: we can see the color of the image in back, but
only in part.

The notion of opacity can be extended to other operators and turns out to
lend great versatility to techniques for combining images. For example, we can
have a partially transparent overlay, where the objects in front are assumed
not to be fully opaque in the first place but to have an intrinsic degree of
opaqueness, perhaps varying from point to point. The background of the figure
in front, as before, is considered fully transparent and has no influence on the
final result. Then the operation of partially transparent overlaying is given by

f(p) = α(p)f1(p) + (1− α)(p)f2(p), (14.6)

which is exactly the same as (14.5), except that αf is replaced by a more
general opacity function α, which is no longer the characteristic function of the
foreground objects but instead that characteristic function times the intrinsic
opacity of the objects.

Thus, images that are to be overlaid on others can naturally be thought
of as having an additional channel (dimension in the range), encoding the
opacity. If we’re representing color in RGB space, then each pixel actually has
four components (r, g, b, α), the last one being the opacity. For efficiency, one
often stores (αr, αg, αb, α) instead of (r, g, b, α).

As explained earlier, values of alpha between 0 and 1 can be useful even
in the case of a fully opaque overlay, at the boundary between background
and foreground. A pixel entirely contained in the opaque region defined by
the foreground objects has an opacity value α = 1, as in Figure 14.8(a). One
that is entirely contained in the background has α = 0, as in part (c) of the
same figure. In the intermediate case, shown in part (b), the pixel’s opacity
is defined as the fraction of the pixel area that lies in the opaque region.

Fig. 14.8. Alpha channel and pixel geometry.

370 14 Combining Images

14.4.2 Discretization and Opacity Function

Formally, the discussion of the preceding paragraphs describes the discretiza-
tion of opacity information by area sampling. There is another common way
to handle opacity, based on supersampling (compare Section 8.3.1). In this
section we formalize the two approaches.

Taking the case of an opaque overlay to fix ideas, we recall that in the con-
tinuous domain the opacity α is the characteristic function of a subset of the
domain U . As a real function α : U → [0, 1], it can be regarded as a mono-
chrome image: a signal with two-dimensional domain and one-dimensional
range. In discretizing such an image, we should try to minimize aliasing by
using one of the techniques of Section 8.3.1, such as area sampling or super-
sampling. Area sampling discretizes α by averaging its values over each pixel.
Supersampling consists in subdividing each boundary pixel and computing
the value of α in each subpixel. We consider each method in turn.

Area-Sampling Discretization

Area sampling preserves only one aspect of the pixel geometry, namely, the
fraction of the pixel that lies in the opaque region. This amounts to using
a smoothing (lowpass) filter before sampling the function α. The resulting
monochrome digital image is stored together with the color information, con-
stituting the alpha channel of the overall, four-channel, digital image.

Figure 14.9 shows a synthetic image on the left, and its alpha channel
on the right. Notice how the alpha channel is the digital counterpart of the
traditional masks long employed by the movie and television industries in the
analog process of compositing.

Together with the opacity function α, the function 1 − α forms the par-
tition of unity associated with the background–foreground decomposition of
an image. When we discretize 1−α and represent it as a monochrome image,
we get the countermask of the opacity mask, as shown in Figure 14.10.

Fig. 14.9. A digital image and its alpha channel.

14.4 Combining Images in the Discrete Domain 371

Fig. 14.10. Countermask of the opacity mask.

Figure 14.11, left, is an enlargement of the alpha-channel representation of
a detail from Figure 14.9: the rightmost corner of the table. Note the different
shades of gray along the edges. Figure 14.11, right, shows the same detail
but with one-bit point sampling: the value of α is 1 if the center of the pixel
belongs to the opaque region, and 0 otherwise.

Supersampling Discretization

The boundary between the opaque and transparent regions is rich in high
frequencies, since it encodes an abrupt variation in the opacity function. The
alpha-channel technique minimizes aliasing along this boundary in the pro-
cess of compositing, but at the cost of discarding most of the information
about the pixel geometry, since it uses area sampling. To preserve more of
this information, we can instead perform discretization using supersampling.

To do this, we subdivide boundary pixels into subpixels, and in each sub-
pixel we sample the partition function. We use one bit of storage for each sub-
pixel, with value 1 or 0 depending on whether the sample lies in the foreground
or in the background, respectively. Thus, instead of a monochrome image,
we obtain a bitmask with information about the pixel geometry. Figure 14.12
shows one pixel on the background–foreground boundary, and the correspond-
ing bitmask.

Fig. 14.11. Detail from the alpha channel of an image.

372 14 Combining Images

Fig. 14.12. Bitmask for a pixel on the boundary of a background–foreground de-
composition.

Fig. 14.13. Possible pixel geometries.

As remarked before, the bitmask carries information about the pixel geom-
etry. This is very important in order to avoid or minimizing sampling artifacts.
Indeed, a pixel might be divided by the background–foreground boundary, as
in Figure 14.13(a). But it might at the same time be divided by another
boundary relevant to the compositing operation in question, in which case we
get more than two regions, as in Figure 14.13(b). When we discretize, it is im-
portant to preserve a certain amount of information about the pixel geometry,
that is, the geometry of the decomposition inside the pixel.

14.5 Computation of the Opacity Function

We now turn to the problem of computing the opacity function of an image
and look at the various methods that can be used in the computation. This
problem is directly related to the method used for creating the image. There
are three main cases:

• synthetic two-dimensional images, created using a program for drawing or
painting, for example;

14.5 Computation of the Opacity Function 373

• synthetic “three-dimensional” images, generated from a three-dimensional
scene using an image synthesis system; and

• real-life images created using a video camera, scanner, or other raster input
device.

Synthetic Two-Dimensional Images

These images are typically produced using programs that model the physical
process of painting or drawing. Modern paint programs offer the user control
over the shape, size, color, and opacity of the brush. Each brush stroke is
treated as an image that is overlaid on what is already on the screen; the
opacity information is taken into account in performing the overlay and stored
by the program together with the color information. Drawing programs often
allow only opaque strokes, but they may use partial opacity internally, to
avoid aliasing, as discussed earlier. Since they keep a structured description
of the geometry of the scene, they can precisely determine the geometry of
each pixel and therefore its opacity.

Synthetic Three-Dimensional Images

Images of this type are produced by visualization programs that have access
to the scene’s geometric data and that therefore can generate the opacity
channel accurately. Three-dimensional objects are projected onto the virtual
camera plane and colored according to the lighting model used. Since the ge-
ometry of each pixel can be determined accurately, so can the opacity function.
The discrete representation of the pixel geometry depends on the visualiza-
tion method used and may rely on either bitmasks or alpha-channel infor-
mation. More details can be found in textbooks on three-dimensional image
synthesis.

Scanned Images

When we scan a photograph or capture an image using a video camera, we
have no information beyond the color at each pixel. If opacity information
is desired, it must be deduced from the color information. Typically, what
is desired is a background–foreground decomposition of the domain, and the
associated opacity function, so the image can later be combined with others.
In general, such a decomposition constitutes a hard problem in image anal-
ysis. In practice, the geometry of the decomposition is often simple and can
be obtained using fairly robust methods. Once the background–foreground
decomposition is known, the opacity function can be defined pixelwise, us-
ing area-fill algorithms; see the references in Section 14.8. Clearly, in this case
there is no possibility of generating a bitmask unless one reduces the resolution
of the image by grouping pixels.

374 14 Combining Images

Fig. 14.14. Blue screen and alpha channel. See Plate 9 in color insert.

Example 14.2 (Blue screen). A special case that makes the calculation of the
opacity function easy is when the background has been created with a uniform
color. This trick, known as “blue screen” or “chroma key,” has been widely
used for decades in analog compositing. Figure 14.14 shows a torus against
a uniform blue background, then the image’s opacity channel, obtained by
defining the background to be the set of pixels whose color is that hue of blue.
The figure also shows the overlay of the torus with a different background.

14.6 Compositing in the Discrete Domain

The two methods for discretizing the opacity function give rise to two ways
of compositing images in the discrete domain: alpha-channel compositing and
bitmask compositing. We study each in turn.

14.6.1 Compositing Using the Alpha Channel

As we have seen, the alpha channel is obtained by spatial discretization of the
opacity function using the same grid as the color discretization. Normally, the
same number of bits is used for the alpha channel as for each color channel. By
treating the alpha channel as if it were another color channel, for the purposes
of storage, one achieves a fairly homogeneous representation for the image.

14.6 Compositing in the Discrete Domain 375

We will see now how we can use the opacity function to define other
operations for combining images, beyond overlaying.

When we combine two images f and g, we must also combine their alpha
channels into an alpha channel for the resulting image, which may be needed
later—for example, if the image is to be combined further. Now, the alpha
channel of the input images does not remember the pixel geometry, only the
percentage of the pixel area that comes from an opaque region. Thus, when
we combine these two percentages, we have to make assumptions about the
pixel geometry from which they come. Several heuristics are possible here.

Specifically, Figure 14.15 shows three possible configurations for a pixel in
f and g, prior to discretization. In part (a), the opaque regions don’t intersect
inside the pixel. In part (b), the opaque region of f contains that of g, always
restricted to the pixel in question. Finally, part (c) shows the general position,
the one most likely to occur in general: the two opaque regions overlap par-
tially. We will always assume that we are in the case of Figure 14.15(c). We
then have a subdivision of the pixel into four sub-regions (see Figure 14.16):
f̄ ∩ ḡ, f ∩ ḡ, f̄ ∩g, and f ∩g, where the bar indicates complement with respect
to the full pixel.

We will also assume that, if αf and αg are the values of the opacity func-
tions of f and g at a pixel, the fraction of the area of the intersection of the two
opaque regions in the pixel is the product αfαg. This is equivalent to saying
that the event that a point in the pixel belongs to the opaque region of f is
independent of its belonging to the opaque region of g, so the probabilities of

Fig. 14.15. Configurations of pixel geometry.

Fig. 14.16. The four subregions of a pixel.

376 14 Combining Images

these two events can be multiplied to give the probability of the joint event.
It is also equivalent to saying that the fraction of the opaque region of g that
lies in the opaque region of f is αf .

Clearly, this assumption may lead to errors in the estimate of the fraction
of the pixel that lies in the intersection. However, these errors are irrelevant
in most cases.

The same assumption yields the fraction of the pixel covered by the other
three subregions of the partition. The area covered by f but not g is f−(f∩g),
so the corresponding fraction is αf (1−αg). Analogously, the fraction covered
by g but not f is αg(1−αf), and the fraction neither covers is (1−αf)(1−αg).

From these considerations we will deduce in Section 14.7 the weights Af

and Ag with which the colors and opacity of f and g should be combined
at each pixel, so that for each compositing operation the resulting image is
Aff + Agg, with Af and Ag appropriately computed.

14.6.2 Compositing Using Bitmasks

When the opacity function is discretized by supersampling, instead of by area
sampling, more information about the pixel geometry is preserved, and the
areas of the pixel subregions in Figure 14.16 can be estimated more accurately.
Thus, the bitmask technique illustrated in Figure 14.12 is superior from the
viewpoint of compositing images. Using this technique, compositing is carried
out in three steps:

• compositing of the bitmasks,
• calculation of the alpha channel, and
• calculation of the color channels.

Compositing the Bitmasks

In the first step, the bitmasks of the same pixel from the two images are
combined using bitwise Boolean operators, to determine the decomposition of
the pixel into subregions. Denoting by Mf and Mg the bitmasks of the pixel
associated to the images f and g, we can write

f̄ ∩ ḡ = (not Mf) and (not Mg),
f ∩ ḡ = Mf and (not Mg),
f̄ ∩ g = (not Mf) and Mg,

f ∩ g = Mf and Mg.

Calculation of the Alpha Channel

Once we have the bitmask of a pixel in the composite image, we can use it to
compute that pixel’s opacity, which is the fraction

14.7 Compositing Operations 377

A =
number of subpixels with bit value 1

total number of subpixels
.

Note that here no supposition needs to be made regarding the relative position
of the opaque sets within the pixel, since we have this information stored (to
within the resolution of the supersampling grid).

Calculation of the Color Channels

In this step we use the opacity information just computed to derive the color
values in the composite image. This is done in the same way as in the alpha-
channel method: the composite image is

Aff + Agg.

14.7 Compositing Operations

Several image compositing operations are obtained from decompositions of
the domain. The compositing operation consists of two steps: determining the
sets that define the decomposition, and assigning color to each pixel in the
sets of the decomposition.

The color assignment comes from the colors in the pixels of the images
f and g that are being composited. We stress that, in addition to the colors
of f and g, we can also assign a pixel the color 0, that is, eliminate all color
information in a particular region of the decomposition. Here are the possible
choices of color for each region:

Region Possible Colors

f̄ ∩ ḡ 0
f ∩ ḡ 0 or f
f̄ ∩ g 0 or g
f ∩ g 0, f , or g

This gives rise to 12 possibilities (2×2×3), so there are 12 image composit-
ing operators. We briefly describe each in turn. In each case we denote by Af

the fraction of the pixel area occupied by a color coming from image f , and
likewise for Ag. Thus, the color at the corresponding pixel of the composite
image is given by

Aff + Agg. (14.7)

Analogously, the alpha channel value in the composite image is

Afαf + Agαg. (14.8)

378 14 Combining Images

Fig. 14.17. Images used to illustrate compositing operators. Left: f and its alpha
channel. Right: g and its alpha channel.

Each compositing operator will also be analyzed using the bitmask method.
Here we must compute, for each operator, the bitmask Mr of the composite
image, as well as the fractions Af and Ag.

To illustrate the operators, we use the images of Figure 14.17: f is a torus
and g a checkerboard floor. Both images are synthetic. Figure 14.17 also shows
the alpha channel of these images.

In Figure 14.18 we show in different shades of gray the regions f̄ ∩ ḡ, f ∩ ḡ,
f̄ ∩ g, and f ∩ g. Black indicates f̄ ∩ ḡ, the background of both f and g. Note
that f̄ ∩ g is not connected.

14.7.1 The Overlay Operator

The overlay operator, often called simply “over,” was introduced in
Section 14.3.2. The color of the elements of the front image f always predom-
inates over that of the back image g. Figure 14.19, top, defines this operator
by giving the table of color assignments in each region of the pixel partition.
Here the area fraction occupied by f is Af = 1, and that occupied by g is
Ag = 1− αf . Clearly, this operator is noncommutative.

In bitmask formulation, we have

14.7 Compositing Operations 379

Fig. 14.18. Decomposition of the domain of f and g.

Mr = Mf ,

Af = 1,

Ag =
number of bits Mg

number of bits [(not Mf) and Mg]
.

Figure 14.19, bottom, shows the effect of the over operator on the images
f and g, and the alpha channel of the resulting image, obtained according to
(14.7) and (14.8).

Fig. 14.19. Pixel geometry and effect of the over operator.

380 14 Combining Images

14.7.2 The Inside Operator

The inside operator, when applied to f and g, considers only the information
from f that lies inside the image g. Figure 14.20, top, defines the operation
precisely by giving the color assignments for each region of the partition. The
fraction of the pixel area with color information from f is Af = αg. The
fraction with information from g is Ag = 0. This operator, too, is noncommu-
tative.

In bitmask formulation, we have

Mr = Mf and Mg,

Af =
number of bits Mr

number of bits Mf
,

Ag = 0.

Figure 14.20, bottom, shows the effect of the inside operator on the images
f and g, including the resulting alpha channel.

14.7.3 The Outside Operator

The result of the operation outside(f, g) is to preserve that part of image f
that lies outside the region delimited by the elements of image g. Figure 14.21
gives the color assignments for each region and illustrates the effect of the
operator. The fraction of a pixel with color coming from f is Af = 1 − αg;
the fraction coming from g is 0. This operator is again noncommutative.

Fig. 14.20. Pixel geometry and effect of the inside operator.

14.7 Compositing Operations 381

Fig. 14.21. Pixel geometry and effect of the outside operator.

In bitmask formulation, we have

Mr = Mf and (not Mg),

Af =
number of bits Mf

number of bits Mf
,

Ag = 0.

14.7.4 The Atop Operator

The result of the operation atop(f, g) is to superimpose the colors from
image f onto regions where there are elements of image g, but not else-
where. Figure 14.22 gives the color assignments for each region and illus-
trates the effect of the operator. The fraction of a pixel with color coming
from f is Af = αg; the fraction coming from g is Ag = 1 − αf . The alpha
channel of the result coincides with that of g. This operator is again non-
commutative.

In bitmask formulation, we have

Mr = Mg,

Af =
number of bits (Mf and Mg)

number of bits Mf
,

Ag =
number of bits [Mf and (not Mg)]

number of bits Mg
.

382 14 Combining Images

Fig. 14.22. Pixel geometry and effect of the atop operator.

14.7.5 The Xor Operator

The result of the operation xor(f, g) is the symmetric difference, also known
as exclusive-or, between the images f and g: xor(f, g) = (f − g) ∪ (g − f).
Figure 14.23 defines the operator by giving the color assignments for each
region and illustrates its effect. The fraction of a pixel with color coming from
f is Af = 1 − αg; the fraction coming from g is Ag = 1 − αf . Unlike the
preceding ones, this operator is commutative.

Fig. 14.23. Pixel geometry and effect of the xor operator.

14.7 Compositing Operations 383

Fig. 14.24. Pixel geometry of the clear operator.

In bitmask formulation, we have

Mr = [Mf and (not Mg)] or [(not Mf) and Mg],

Af =
number of bits [Mf and (not Mg)]

number of bits Mf
,

Ag =
number of bits [(not Mf) and Mg]

number of bits Mg
.

The compositing operators introduced above can be used in succession in
order to obtain other combinations of images. In this context it is convenient
to define, using the same procedure above, two additional operators on images:
clear and set.

14.7.6 The Clear Operator

The clear operator assigns the zero color (background color) to each pixel, in-
dependently of its geometry, and makes the pixel totally transparent. There-
fore, Af = Ag = 0. Note that there is a difference between a pixel (0, 0, 0, α),
where α > 0, and a pixel (0, 0, 0, 0): the form has zero color but is partly
opaque, while the latter has zero color and is transparent. Clearing means
making the pixel value (0, 0, 0, 0). See Figure 14.24.

In bitmask formulation, we have Af = 0, Ag = 0, and Mr = 0.

14.7.7 The Set Operator

The result of the operation set(f, g) is f : the information from image g is
discarded. In symbols, Af = 1 and Ag = 0. See Figure 14.25. This operator

Fig. 14.25. Pixel geometry of the set operator.

384 14 Combining Images

is clearly noncommutative. In bitmask formulation, we have Af = 1, Ag = 0,
and Mr = Mf .

14.8 Comments and References

A brief but useful exposition of compositing techniques can be found in (Porter
and Duff 1984), the paper that introduced compositing using the alpha chan-
nel. See also (Duff 1985), which discusses the problem of compositing synthetic
images. For such images, besides opacity information, one can store depth-of-
scene information (Example 14.1). The problem of discretization, which we
studied in detail for the opacity function, can be posed for the depth function
as well, and similar considerations apply.

The bitmask method was developed simultaneously in (Fiume et al. 1983)
and (Carpenter 1984) to solve the problem of sampling em three-dimensional
image synthesis systems.

The computation of the opacity function from color information is dis-
cussed in (Bloomenthal 1983) and (Fishkin and Barsky 1984).

An important problem in compositing images created by distinct processes
is to make the lighting compatible. The article (Nakamae et al. 1986) gives a
method to superimpose computer-generated images with photographs of real
scenes that takes into account the luminance and chrominance of the real
image, and even atmospheric effects.

The cross-dissolve image in Figure 14.2 was created by Lucia Darsa and
Bruno Costa.

The original image used in Figures 14.6 and 14.9 is the “alias foyer”, from
the Alias Sketch tutorial.

References

[Bloomenthal 1983]Bloomenthal, J. (1983). Edge inference with applications
to antialiasing. Computer Graphics (SIGGRAPH ’83 Proceedings),
17(3):157–162.

[Carpenter 1984]Carpenter, L. (1984). The a-buffer, an antialiased hidden
surface method. Computer Graphics (SIGGRAPH ’84 Proceedings),
18(3):103–108.

[Duff 1985]Duff, T. (1985). Compositing 3D rendered images. Computer
Graphics (SIGGRAPH ’85 Proceedings), 19(3):41–44.

[Fishkin and Barsky 1984]Fishkin, K. P. and Barsky, B. A. (1984). A family
of new algorithms for soft filling. Computer Graphics (SIGGRAPH ’84
Proceedings), 18:235–244.

[Fiume et al. 1983]Fiume, E., Fournier, A., and Rudolph, L. (1983). A
parallel scan conversion algorithm with anti-aliasing for a general pur-
pose ultracomputer. Computer Graphics (SIGGRAPH ’83 Proceed-
ings), 17(3):141–150.

14.8 Comments and References 385

[Nakamae et al. 1986]Nakamae, E., Harada, K., Ishizaki, T., and Sancha, T. L.
(1986). A montage method: The overlaying of computer generated im-
ages onto a background photograph. Computer Graphics (SIGGRAPH
’86 Proceedings), 20(4):207–214.

[Porter and Duff 1984]Porter, T. and Duff, T. (1984). Compositing digi-
tal images. Computer Graphics (SIGGRAPH ’84 Proceedings), 18(3):
253–259.

15

Warping and Morphing

This chapter studies topological filters designed to change the shape of the
objects of an image. This process is called deformation or warping, and there-
fore we talk about warping filters. Together with amplitude filters, which
change the image’s color information, warping filters can be used to create a
transition between images of different objects, in a technique known as mor-
phing. Warping and morphing filters are important in many applications, from
the correction of preexisting image distortions to the creation of special effects
in the entertainment industry.

15.1 Warping Filters

The study of warping filters involves three basic problems: specification, com-
putation, and implementation.

Warping specification is related to the user interface. This is a very difficult
and delicate topic. The user should be given tools to specify a transformation
using the smallest possible number of parameters. For some mappings this is
an easy task; for example, a rotation requires only the center of rotation and
the angle of rotation. But, in general, specifying warpings based on predeter-
mined goals requires a lot of work. In general, the warp is specified by the user
in the discrete universe and it must be reconstructed when doing resampling.
We will not cover the topic of warping specification here; the interested reader
should look for references in the final section of the chapter.

Also, as in the rest of the book, we will not get involved in implemen-
tation issues. Again, for this topic we direct the reader to the references in
Section 15.8.

In this chapter we will study different techniques involved in the computa-
tion of the warping map. Knowledge of these techniques is of great importance
in implementing robust and efficient warping filters. Moreover, they constitute
a beautiful application of the theory of sampling and reconstruction studied
in previous chapters.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 15,
c© Springer-Verlag London Limited 2009

388 15 Warping and Morphing

15.2 Warping in the Continuous Domain

Given an image f : U ⊂ R
2 → C, a warping filter is defined by a map

h : U → V ⊂ R
2. Such a map acts on the image, giving rise to another image

that can be regarded as a deformation of the original one. Figure 15.1 shows
the effect of a particular warping filter.

In general, we make several assumptions about the warping map h. One
natural requirement is that h should be injective and continuous. Injectivity
says that there is no superposition of points in the deformation, so it is possible
to define an inverse map h−1. Continuity says that there are no tears or rips.

From the mathematical point of view, is it natural to require that h be
bijective and that both it and its inverse h−1 be continuous. A map with
these properties is called a homeomorphism. The warped image is given by
g = f ◦ h−1 : V → C; equivalently, f = g ◦ h:

U C�f

V
�

h g

�
�

�
��

Intuitively, a homeomorphic warping can be imagined as distorting an image
stamped on a rubber sheet, without tearing or ripping it.

In fact, we will usually assume that h and h−1 have continuous partial
derivatives and that the Jacobian determinant of h be nowhere zero. In this
case h is called a diffeomorphism. These conditions are important when we
need to apply techniques from analysis and differential topology; otherwise

Fig. 15.1. An image before and after warping.

15.2 Warping in the Continuous Domain 389

homeomorphic warpings are sufficient to work with. Also, when working in
the representation universe, we use discrete images and at most we have a
bijective map between the discrete set of pixels and their colors.

A warp map can also be regarded as a coordinate change. One must be
careful when taking this point of view: changes in coordinate systems can lead
to confusion, because (for example) turning the coordinate axes counterclock-
wise has the same effect on equations as turning the image’s objects clockwise
while the axes stay fixed. (To read the next paragraph, you can move your
eyes down or slide the page up.) This is also why we get the warped image g
by composing with h−1 rather than with h.

We will always suppose that the original coordinate system is (x, y) and
the warped coordinate system is (u, v). That is, if the coordinates of a feature
in the original image were (x, y), the coordinates of the same feature in the
warped image would be

h(x, y) = (u, v), with u = u(x, y) and v = v(x, y).

When we apply a warping transformation h to an image f , obtaining
an image g, it is very common to call f the source image and g the target
image.

15.2.1 Expansions and Contractions

A map T : U ⊂ R
2 → R

2 is an expanding transformation, or an expansion, if
there is λ > 1 such that

|T (X)− T (Y)| ≥ λ |X − Y | for all X,Y ∈ U .

Thus, T always increases distances. Similarly, T is a contracting transforma-
tion, or a contraction, if there is λ ∈ (0, 1) such that

|T (X)− T (Y)| ≤ λ |X − Y | for all X,Y ∈ U .

Thus, T always decreases distances.

Example 15.1 (Homotheties and scaling maps). A homothety is a map of the
form T (X) = λX, where the real number λ > 0 is the scaling factor. Clearly,
this is an expansion for λ > 1 and a contraction for λ < 1. A homothety is
also called an isotropic or proportional scaling map; the adjectives mean that
the scaling factor is the same in all directions. One can have nonproportional
scaling maps, but usually when we say scaling we have proportional scaling
in mind.

A transformation that preserves distances is called an isometry:

|T (X)− T (Y)| = |X − Y | for all X,Y ∈ U .

390 15 Warping and Morphing

Fig. 15.2. Another example of warping.

In general, a warp transformation is neither a contraction, nor an ex-
pansion, nor an isometry. Most commonly, it expands certain regions and
contracts others, so we can speak of the map being locally expanding or con-
tracting. The map may also expand in one direction while contracting in
another. The reader may be amused by trying to identify the contraction and
expansion regions in Figure 15.2.

Expanding a signal in the time domain causes a contraction of the sig-
nal spectrum support in the frequency domain. Conversely, a contraction
in the time domain increases the signal’s frequencies. See Figure 15.3. This
should be kept in mind when we study certain problems associated with
warping.

Fig. 15.3. Contractions and expansions in the time and frequency domains.

15.3 Warping in the Discrete Domain 391

15.3 Warping in the Discrete Domain

In the computations, we use the discrete-continuous model: images with dis-
cretized domains, and colors encoded as floating-point numbers. In general,
the warp map takes points of the original lattice to points not necessarily on
a lattice. Therefore, we cannot transform the source image by simply copying
the color from the source lattice points to the lattice points of the target im-
age. This would most likely lead to pixels in the target image without a value
or to pixels with multiple values.

We can illustrate this by using a one-dimensional array of pixels, which,
as usual, can be thought of as a single row from an image (image scanline).
Figure 15.4 shows the graph of a warp transformation h, which is seen to
be roughly expanding between pixels 4 and 5, roughly contracting between
pixels 5 and 6, and roughly isometric between pixels 1 and 4. Obviously, this
map suffers from the problems we have been discussing: points with integer
coordinate are not mapped to points with integer coordinate in the target
image, and although h is bijective in the continuous domain, it doesn’t give
rise to a bijection in the discrete domain.

Following the arrows in the graph, we see that pixel 5 in the target image
does not correspond to any pixels in the source, so the naive method out-
lined above would leave this pixel without a color value. Likewise, pixel 6 of
the target is matched with two pixels in the source, so its color assignment
is ambiguous—it corresponds to the overlapping of two pixels of the source
image.

Fig. 15.4. Effect of expansion and contraction in the discrete domain.

392 15 Warping and Morphing

Fig. 15.5. Problems arise in the discrete domain under either an expansion (a) or
a contraction (b).

To summarize, in the case of an expansion, we have the problem of sup-
plying values for pixels that are “left out,” as shown in Figure 15.5(a). In the
case of a contraction, we have the problem of several pixels collapsing into
one, as shown in Figure 15.5(b), and we must have some method for choosing
the final color value. Both problems can be solved in a unified way, by recon-
structing the source image in order to work in the continuous universe. This
will be explained in next section.

15.3.1 Resampling

When we work in the continuous domain, the warping is either a homeomor-
phism or a diffeomorphism and we have at our disposal many mathematical
tools and results to use. On the other hand, when moving to the discrete
universe, we are faced with maps that might not behave well.

The obvious solution is to use reconstruction techniques in order to be able
to work in the continuous domain. We reconstruct the source image, apply
the warping filter, and finally sample the warped continuous image in order
to obtain the target digital image. The whole process is known as resampling
and is illustrated in Figure 15.6.

This method completely solves the two problems discussed earlier: working
in the continuous domain we have a bijective warping; therefore, blanking pix-
els in the warped image does not occur. Also, the problem of pixel overlapping
disappears.

We should point out that the warping map is specified by the user in the
discrete universe. Therefore, it must also be reconstructed in the resampling
process. Depending on the reconstruction method used the warping mapping
in the continuous domain is a homeomorphism or a diffeomorphism and we
therefore have several mathematical tools at our disposal. Of course, we must
be careful when reconstructing the image and when sampling it after the warp.

In a region where h is expanding, we reconstruct the image and sample at
the lattice pixels. The fact that the transformed image has lower frequencies

15.3 Warping in the Discrete Domain 393

Fig. 15.6. Warping by resampling: (a) original digital image; (b) continuous image
obtained by reconstruction; (c) warped continuous image; (d) target image, obtained
by sampling (c).

than the original image works in our favor; reconstruction and sampling errors
are minimized. By contrast, in a region where h is contracting, frequencies
become higher. Since the target image is usually sampled at the same rate as
the source image, this can lead to severe aliasing problems in the resampled
image. One way to avoid this is to use a smoothing filter prior to the final
sampling step. The whole process, then, is composed of the steps shown in
Figure 15.7.

Fig. 15.7. Warping by resampling and filtering.

394 15 Warping and Morphing

The filtering of the image after the warping is very delicate. In general, as
clarified by the one-dimensional example of Figure 15.4, the warping trans-
formation expands and contracts at different rates in different regions of the
image domain. Therefore, the use of a spatially invariant filter is not recom-
mended; rather, we should use a filter that adapts to the warping distortions.
Such filters are called adaptive.

15.4 Some Examples

A simple example of a warping filter is the flipping of a square digital
image with respect to its diagonal. The geometric transformation is de-
fined by (x, y) �→ (y, x), so that u(x, y) = y and v(x, y) = x. This gives
f(x, y) = g(h(x, y)) = g(u, v) = g(y, x).

Another simple example is rotating the image, say counterclockwise by
90◦. The transformation is then given by

h

(
x
y

)(
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

)(
x
y

)

=
(

0 −1
1 0

)(
x
y

)

=
(
−y

x

)

.

Figure 15.8 shows the effect of this transformation.
Both of these examples have a special property that makes their imple-

mentation very easy. Reflection and rotation are rigid motions, so there is no
change in the relationships among pixels as a result of warping. Moreover, un-
der this particular reflection and this particular rotation, the resulting pixel
lattice is perfectly aligned with the original pixel lattice. This is the best
possible situation.

Fig. 15.8. Effect of a 90◦ counterclockwise rotation.

15.4 Some Examples 395

15.4.1 Zooming

Zooming is the special case of warping with a scaling map (Example 15.1).
Zooming in refers to an expansion, and zooming out to a contraction. Two
properties of scaling maps make the implementation of zooming easier than
that of a general warp transformation:

• although pixel distances are not preserved, the expansion or contraction
ratio is the same everywhere; and

• if the scaling ratio is an integer, the pixel lattice of the target image is a
subset or superset of the lattice of the original image.

The first property allows the use of spatially invariant filters, and the second
avoids the need for resampling when the scaling ratio is an integer.

Zoom-in with the Box Filter

When we zoom in by a factor of two, there is a simple method to supply
the pixels of the enlargement: replace every row by two identical rows, and
likewise for columns. This is known as zooming by pixel replication.

In formal terms, this is achieved by applying a box interpolation filter.
More precisely, we start by inserting a row of zeros at the top and one after
each row of the original image, thus obtaining an image with 2n+1 rows if the
original had n rows. We do likewise for columns. Thus, if the original image was

...
...

· · · f(i, j) f(i, j + 1) · · ·
· · · f(i + 1, j) f(i + 1, j + 1) · · ·

...
...

this step leads to

...

f(i, j) 0 f(i, j + 1)

· · · 0 0 0 · · ·
f(i + 1, j) 0 f(i + 1, j + 1)

...

We then convolve with the box filter of order two, which has mask

1 1

1 1
.

396 15 Warping and Morphing

This leads to an image with 2n rows, looking like this:

...

f(i, j) f(i, j) f(i, j + 1)

· · · f(i, j) f(i, j) f(i, j + 1) · · ·
f(i + 1, j) f(i + 1, j) f(i + 1, j + 1)

...

Note that this convolution kernel has total mass four instead of one; this
makes the average intensity of the target image four times greater than that
of the image enlarged with zeros and therefore equal to the average intensity
of the original image.

This method can be applied repeatedly to obtain enlargements by factors
22, 23, and so on. More generally, we can zoom in by any integer factor r by
interlacing the original image with r− 1 rows of zeros per row, then applying
an r × r box filter. This also works with nonproportional scaling maps of the
form h(x, y) = (rx, sy), for r and s integers.

Figure 15.9 shows the effect of two consecutive enlargements by a fac-
tor of two. Notice the effect of the box filter’s discontinuous character, in
the form of clearly defined sharp edges between groups of pixels (compare to
Figure 6.4). With each zoom-in, this reconstruction defect inherent in the box
filter becomes more perceptible, and the enlarged image appears coarser.
Nonetheless, zooming by replication is very popular, due to its ease of im-
plementation and computational efficiency. Its use is especially common in
hardware implementations.

Zoom-in with the Bartlett Filter

Carrying out the same zoom-in process using the Bartlett (triangular) filter
instead of the box filter, one obtains smoother images, as shown in Figure
15.10. This is because the Bartlett filter has a less spread-out transfer function,
and therefore its use does not amplify the high frequencies to nearly the same
extent as the box filter.

Formally, one adds rows and columns of zeros exactly as in Section 15.4.1
and then applies the filter, which has mask

1
4

1
2

1
4

1
2 1 1

2

1
4

1
2

1
4

15.4 Some Examples 397

Fig. 15.9. Zooming in by factors of two and four, using the box filter.

in the case of a zoom-in by a factor of two. The result is an image with twice as
many rows minus one, and twice as many columns minus one. Computation-
ally, the effect is to insert between each two consecutive rows of the original
image a new row that is the average of the two, and likewise for columns.
In other words, we perform linear interpolation between rows and between
columns (independently). For this reason the application of this filter is also
known as zoom-in with bilinear interpolation.

This technique is easily generalized to a scaling map

h(x, y) = (rx, sy),

with r and s integers. It is almost as computationally efficient and easy to
implement as the method of the preceding section. Its main drawback is the
fuzziness of the resulting image, which can sometimes be corrected by the
subsequent use of other filters. In a great many applications, and especially
in television, where spatial and color resolution are relatively low, zoom-ins
using bilinear interpolation yield very satisfactory results.

398 15 Warping and Morphing

Fig. 15.10. Zooming in by factors of two and four, using the Bartlett filter.

Zoom-out

As we have seen, zooming out increases the incidence of high frequencies and
causes several pixels to collapse into one. We need to apply a smoothing filter
in order to minimize aliasing problems in the target image. Since the scaling
factor is constant, we can use a spatially invariant filter. For a contraction
factor of two, each 2× 2 block of the original image, say

f(i, j) f(i + 1, j)

f(i, j + 1) f(i + 1, j + 1)

is mapped to one pixel of the target image. Using a box filter, with mask

1
4

1 1

1 1

15.5 Warping in Practice 399

Fig. 15.11. Zooming out by factors of two and four, using the box filter.

we get the value

1
4

(
f(i, j) + f(i + 1, j) + f(i, j + 1) + f(i + 1, j + 1)

)

for the pixel. Figure 15.11 shows the effect of two consecutive applications of
this method.

More effective smoothing filters can also be used, in order to obtain a final
image that is better in certain respects. Such filters minimize the introduction
of high frequencies during reconstruction, in exchange for a loss of definition
(sharpness) in the final image.

15.5 Warping in Practice

When working with warping filters we must decide on the best process for
reconstructing, transforming, filtering, and resampling the image. To a large
extent, this decision should be based on considerations of computational ef-
ficiency. When possible, we exploit the geometric features of the warp trans-
formation in search of the optimal implementation.

In this section we will cover the following topics related to the computation
of the warping map:

• approximating the pixel geometry;
• direct mapping;
• inverse mapping;
• decomposable mappings.

400 15 Warping and Morphing

15.5.1 Approximating the Pixel Geometry

When we reconstruct an image, each pixel corresponds to a region of the im-
age support plane, which represents the pixel shape. Therefore, the warping
map performs a region transformation when moving pixels. In general, the
pixel shape is defined by some polygonal boundary, but the polygon edges get
distorted during the warping. This fact is ignored in most of the computa-
tions: polygonal shapes are transformed into polygonal shapes by transforming
their vertices. Since the pixels are small, we will not be making a great error
by approximating curved edges of the transformed polygon by straight-line
segments.

The most common case occurs when using uniform lattices associated to
the matrix representation of an image. In this case the pixel shape is a rectan-
gle that is transformed into an arbitrary quadrilateral shape by the warping
map. Figure 15.12 shows the pixel shape (shaded rectangle on the left), the
transformed pixel (shaded region on the right), and the approximation used
for the transformed pixel (the dashed quadrilateral).

Therefore, in the continuous universe the discretization of the image do-
main U consists of a rectangular mesh. When transforming the image domain
this mesh is mapped into an irregular mesh, as illustrated in Figure 15.13.
Each quadrilateral of this irregular mesh is called a cell.

Since we are working in the continuous domain U , each point p ∈ U has a
color attribute. In particular, each point in the pixel shape has a color, includ-
ing the vertices. Whether we consider the color of the pixel shape constant or
variable depends on the reconstruction process used.

Fig. 15.12. Approximating the warped pixel by a quadrilateral.

Fig. 15.13. Image of the original pixel mesh under the warp map.

15.5 Warping in Practice 401

We should stress that the methods we are about to study apply equally
well to pixel geometries other than rectangles.

15.5.2 Warping Using the Direct Map

The technique we will introduce to compute the warp is called direct mapping
because it does not consider the warp as a coordinate change. The warping
map is directly applied to the source image elements in order to compute the
elements of the target image.

Thus, the original rectangular mesh of the reconstructed image is mapped
into an irregular mesh by the warping transformation, as seen in Figure 15.13.
This irregular mesh represents the warped image in the continuous domain.
Indeed, from the colors of each mesh vertex we can reconstruct the color at
any point of the domain.

Several reconstruction techniques are possible here. A common, easy-to-
compute technique is to take for each cell the average of the colors at the
cells’ vertices and applying the resulting color to every point of the cell. This
is clearly a poor reconstruction method because it corresponds to a recon-
struction with an adaptive, and irregular, box filter, which has discontinuities
at the boundaries of the cells. A better reconstruction uses bilinear interpo-
lation in defining the color at each point of the cell. This is illustrated in
Figure 15.14: the colors c1 and c2 are interpolated linearly to obtain c′; the
process is repeated with the colors c3 and c4 to obtain the color c′′; finally,
the colors c′ and c′′ are interpolated to obtain the color at the point p. As we
know, this corresponds to the use of an adaptive, irregular, Bartlett filter for
reconstruction. We will use both Bartlett and box reconstruction techniques
in what follows.

Fig. 15.14. Reconstruction using bilinear interpolation.

402 15 Warping and Morphing

In order to discretize the warped image, we superimpose the rectangular
mesh from the regular lattice of the target image to the irregular mesh and
sample the image at the vertices of the uniform lattice. Of course, we should
use a sampling technique that minimizes aliasing problems in the target image.
This will be explained below.

Let p be a rectangular pixel of the target image to which we need to assign
a color. The pixel p is superimposed to the irregular mesh. If we are lucky, p is
entirely contained in a cell of the irregular mesh, as shown in Figure 15.15(a).
The color at pixel p in this case is obtained by interpolating the colors of each
of the vertices of the cell. An easy method is to use bilinear interpolation as
illustrated in Figure 15.15(b).

Generically, the pixel p intersects several polygons of the irregular mesh,
as shown in Figure 15.16, left. Let p1, p2, . . . , pn be the pixels of the source
image such that h(pi) ∩ p �= ∅. We have a partition of the pixel p,

p =
n⋃

i=1

(
h(pi) ∩ p

)
.

The area of each partition set is small compared to the area of the pixel p.
Therefore, we can consider each cell to have a constant color (as we know, this
amounts to reconstructing the warped image using an adaptive, irregular, box
filter). This is illustrated by Figure 15.16, right. Some filtering must be done
before sampling the pixel p, in order to minimize aliasing artifacts. A natural
choice here is area sampling. To do this, we compute the fraction wi of the
area of p that overlaps with each h(pi) and use these fractions to compute a
weighted average. Thus, we set

g(p) =
N∑

i=1

f(pi)wi,

where g(p) is the color of the pixel p, and f is the reconstructed warped image.

Fig. 15.15. Target pixel entirely contained in the warped image of a source pixel.

15.5 Warping in Practice 403

Fig. 15.16. Target pixel that overlaps several warped source pixels.

A more accurate approach to compute the color of pixel p is to reconstruct
the warped image using bilinear interpolation and apply supersampling to
compute the color of the pixel p.

We divided the computation of the color of pixel p into two cases mainly
for pedagogical reasons. In fact, the reader should note that the first case is
a particular case of the second situation, when we have only one set in the
partition.

15.5.3 Warping Using the Inverse Map

This approach to compute the warping map considers the mapping as being
a change of coordinates: for each point p in the domain of the warped image,
we find its original coordinates h−1(p) in the domain of the original image, in
order to compute its color.

Applying the inverse map h−1 to the regular lattice of the warped image,
we obtain an irregular mesh superimposed to the regular lattice of the source
image. This is illustrated in Figure 15.17.

If we reconstruct the original image on the irregular mesh, we obtain the
color values for every pixel of the target image.

Generically, each cell of the irregular mesh intersects several rectangles of
the regular lattice of the source image, as illustrated by Figure 15.18, left.
The exceptional case where the cell is contained in a rectangular pixel is a
particular case of a partition with one set, the cell itself; see Figure 15.18,
right.

Fig. 15.17. Image of the target pixel mesh under the inverse warp map.

404 15 Warping and Morphing

Fig. 15.18. Inverse warp image of a target pixel.

The color of each cell is computed using supersampling or area sampling,
as we did for the direct method approach.

It is interesting to observe that in the direct map approach the target
image is easily computed on the vertices of an irregular grid, and we must
reconstruct it in order to sample on a regular lattice. On the other hand, in
the inverse map approach the source image must be reconstructed in order
to be sampled on an irregular grid. From these irregular samples, the pixel
values of the target image are computed without additional effort.

The reader can verify that the two approaches lead to the same results
to first-order approximation, assuming that the same sampling method is
used. The choice between them should therefore be guided by implementation
concerns, such as whether it is easier to compute the image of a vertex under
h or h−1.

15.5.4 Decomposable Transformations

Sometimes one can exploit specific properties of a warp map, or class of warp
maps, in order to gain a more efficient implementation than can be achieved
using the general methods of the preceding two sections. We have already
seen how zooms by integer factors can be easily implemented. We now turn
to another important special case, that of decomposable maps. We say that a
map h : U ⊂ R

2 → R
2 is decomposable if it can be written as a composition

h = hn ◦ · · · ◦ h2 ◦ h1 of simpler transformations. The term “simpler” is inten-
tionally vague and depends on the application, but subsequent examples will
clarify the situation.

(Warning: in the literature, decomposable maps are often called “separa-
ble.” We avoid this term because it conflicts with its meaning, introduced
in Section 7.3, of a filter that can be written as a product of filters in each
variable.)

When the desired warp transformation is decomposable, the image can be
transformed in stages: one first applies h1, then h2, and so on. This may be

15.5 Warping in Practice 405

more efficient than applying h directly, and it may have other advantages such
as reduced approximation errors, when the component maps are particularly
simple.

An important case of “simple” component maps consists of shears. A ver-
tical shear is a map f : U ⊂ R

2 → R
2 that preserves the x-coordinate of

each point: f(x, y) = (x, f2(x, y)). In other words, f maps each vertical line
into itself. Similarly, a horizontal shear preserves y-coordinates, mapping each
horizontal line into itself: g(x, y) = (g1(x, y), y). When the map is a shear,
the warping process is effectively reduced to a number of independent one-
dimensional operations, since each row or column, as the case may be, can
be considered separately. This means that the resampling concerns discussed
earlier are much simplified.

We now consider the problem of writing a general warp map h = (h1, h2)
as a composition g ◦ f , where f is a vertical shear and g is a horizontal shear.
Since h will be acting in two steps, we have three coordinate systems, as
shown in Figure 15.19: the original system (x, y), the system (u, v) after the
application of f , and the system (r, s) after application of g to (u, v). Thus
we have

(r, s) = h(x, y) = (h1(x, y), h2(x, y)), (15.1)

and we wish to determine f(x, y) and g(u, v). By the assumptions on f and
g, we have

f(x, y) = (x, f2(x, y)) and g(u, v) = (g1(u, v), v). (15.2)

Therefore,

(r, s) = g(u, v) = g(f(x, y)) = g(x, f2(x, y)) = (g1(x, f2(x, y)), f2(x, y));

comparing with (15.1) we get

f2(x, y) = h2(x, y),

so that f(x, y) = (x, h2(x, y)). To compute g(u, v), we use the fact that

g(u, v) = h(x, y) = (h1(x, y), h2(x, y)).

Comparing with the expression of g(x, y) in (15.2), and taking into account
that x = u, we obtain

Fig. 15.19. Decomposing a general warp map into shears.

406 15 Warping and Morphing

g1(u, v) = h1(x, y) = h1(u, y). (15.3)

Thus, we need to determine a function ϕ such that y = ϕ(u, v). Using this
function we can write

g1(u, v) = h1(u, ϕ(u, v)), (15.4)

so that g(u, v) = (h1(u, ϕ(u, v)), v).
The function ϕ is guaranteed to exist because g is bijective, but finding it

is not always easy. We consider a simple example.

Example 15.2 (Two-step rotation). Suppose the warp map h is a plane rotation
through an angle θ, so that

h(x, y) =
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)

.

This implies
h1(x, y) = x cos θ − y sin θ,

h2(x, y) = x sin θ + y cos θ.

Substituting h2(x, y) into (15.5.4), we get

f2(x, y) = x sin θ + y cos θ,

which takes care of the vertical shear f . Turning to the horizontal shear g, we
substitute h1(x, y) into (15.3), obtaining

g1(u, v) = u cos θ − y sin θ. (15.5)

We must compute y as a function of u and v, that is, we must determine the
function ϕ from (15.4). We have

v = f2(x, y) = x sin θ + y cos θ,

so that
y =

v − u sin θ

cos θ
if cos θ �= 0.

Substituting into (15.5) gives

g1(u, v) = u cos θ − v − u sin θ

cos θ
sin θ,

which determines g.
Notice that g is not defined when θ is an odd multiple of π/2. Moreover,

when θ is near such a value, the horizontal shear distorts the image very
severely. Fortunately we can avoid these values altogether: if we wish to turn
an image through 87◦, for example, we can first perform a 90◦ rotation, then
a 3◦ rotation in the opposite direction.

Figure 15.20 shows a two-step rotation through 30◦.
When we use the multistep approach to implement warp transformations,

there may occur problems during the intermediate step. A common case,
known as a bottleneck, happens when one of the component maps is not in-
jective, so certain points collapse together.

15.6 Morphing 407

Fig. 15.20. A rotation can be achieved through a horizontal shear followed by a
vertical one.

15.6 Morphing

As we saw in the preceding chapter, one important class of filters consists
of amplitude filters, those that act only on the color space of the image and
perform a color change. In mathematical terms, this corresponds to post-
composition of the image with a transformation T : C → C of the color space:
g(x, y) = T (f(x, y)), where g is the new image and f is the original one.

Amplitude filters are often used to create color transitions between two
images. Thus, the cross-dissolve operation of Section 14.2.1 performs a linear
interpolation in color space between two images:

ht(x, y) = (1− t)f(x, y) + tg(x, y). (15.6)

For t = 0, the result is the initial image h0 = f of the transition, and for
t = 1 it is the target image h1 = g. In order to regard a cross-dissolve as a
filter (which is a unary operation), we make the target image g part of the
definition of the filter and make only f its input.

The cross-dissolve operator performs a transition between two images
without taking into account the transition between the different objects con-
tained in the image. The result is generally very poor. This is illustrated by
Figure 15.21(c), which represents a cross-dissolve between the images in (a)
and (b).

The shapes of the objects contained in an image are given by the color of
the pixels that define them. Certainly, changes of these colors imply changes
of the associated shapes. But transforming an object shape into another by
simply transforming the colors of one object into the colors of the other is
not effective, because we distinguish shapes by their boundaries. Therefore,
to obtain good shape transition between objects in two distinct images, we
should transform the boundaries from one shape into the boundaries of the
other shape, while simultaneously changing the colors from one shape into
those of the other.

408 15 Warping and Morphing

(a)

(c) (d)

(b)

Fig. 15.21. Morphing and cross-dissolve. Image (c) is an intermediate frame of the
cross-dissolve between (a) and (b), where (b) has weight t = 0.6. Image (d) is a
frame from a morphing sequence between (a) and (b).

Mathematically, a transition that changes the boundaries and the colors
of the objects in an image can be achieved by transformations that act both
on the image domain (warping) and on the image range (color space). These
transformations are called morphing transformations. As stated before, mor-
phing transformations allow us to obtain much better transitions between
images than can be obtained using only color transformations. This is illus-
trated in Figure 15.21(d), which shows a morphing transformation applied
to the images in (a) and (b). The reader should notice the perfect alignment
of the eyes, nose, and mouth, in contrast with the image in (c), obtained by
using only cross-dissolve. A sequence of frames of the morphing between the
woman’s face and the cheetah is shown in Figure 15.24.

The morphed image in Figure 15.21(d) has two important chara-
cteristics:

• We have applied a warping filter to the original images, so as to make the
geometry of the woman’s face align with that of the panther (note how
the mouth, the nose, and the outline of the face are made to coincide).
The warping is carried out at the same time as the dissolve.

15.7 Continuous Families of Transformations 409

• The dissolve is carried out adaptively, that is, the weight functions are
not constant from pixel to pixel. For example, the woman’s hair on the
right-hand side has been attenuated more than other features such as the
earring.

The following diagram synthesizes the different maps involved in a mor-
phing transformation:

U C�
g

U C�f

�
h

�
T

T is the amplitude transformation, h is the warp transformation, f is the
initial image, and g is the final image. The morphing transformation M , when
applied to f , results in

g = M(f) = T ◦ f ◦ h−1. (15.7)

If h is the identity, there is no change of coordinates in the domain, and we’re
back to the case of an amplitude filter, g = T ◦ f , which changes only the
image color:

U C�f

g
�

�
�
��

C
�
T

If, on the other hand, T is the identity, we’re back to the case of a pure warp
map, g = f ◦ h−1, which deforms the shape boundaries without changing
colors:

U C�f

U
�

h g

�
�

�
��

15.7 Continuous Families of Transformations

Warping, morphing, and color transformations are used to correct distortions
in the geometry and in the color space of an image, and also to create smooth
transitions between images. In this latter case these operations usually occur
in families, which are defined as follows.

Given a subset V ⊂ R
n, an n-parameter family of transformations is a

map h : V ⊂ R
n → F , where F is a space of transformations. We call V

410 15 Warping and Morphing

the parameter space. To each (k1, . . . , kn) ∈ V ⊂ R
n, there corresponds a

transformation in the family, which we denote h(k1,...,kn). An example of a
one-parameter family is the cross-dissolve (15.6) between two images.

Consider an n-parameter family h(k1,...,kn) of warp maps and an n-
parameter family T(k1,...,kn) of color transformations, both defined on the same
parameter space V . From (15.7), we obtain an n-parameter family of morphing
transforms g(k1,...,kn) of an image f , by setting

g(k1,...,kn) = T(k1,...,kn) ◦ f ◦ h−1
(k1,...,kn).

An n-parameter family of images can be regarded geometrically as an
n-dimensional parametrized surface in the space of images. For n = 1 it is
natural to regard the parameter as time, and we get a curve h(t) in image
space, as shown in Figure 15.22. As the parameter t varies from 0 to 1, we
obtain a continuous transition between the images h(0) and h(1); such a con-
tinuous sequence of images constitutes an animation. One classical example
is the cross-dissolve operation discussed earlier.

The case of two parameters is also important. Here we have a surface
h(u, v) in image space, as indicated in Figure 15.23. Setting v = 0 and varying
u, we get a one-parameter family h(u, 0), which transforms the image h(0, 0)
into the image h(1, 0). Setting v = 1 and varying u, we get another animation
sequence h(u, 1), going from h(0, 1) to h(1, 1). Thus, the full two-parameter
family provides a transition between the two animation sequences h(u, 0) and
h(u, 1), for 0 ≤ u ≤ 1. Picking a path c : [0, 1] → R

2 in parameter space, where

Fig. 15.22. One-parameter family in image space.

Fig. 15.23. Two-parameter family in image space.

15.7 Continuous Families of Transformations 411

c(0) = (0, 0) and c(1) = (1, 1), we obtain a one-parameter family (animation
sequence) hc(t), which combines the two animations in a certain way. This
process is known as animation morphing.

Figure 15.24 shows eight frames from a morphing transformation between
a woman’s and a panther’s face. Note that the position of the main features
(nose, mouth, outline of face) changes gradually by means of a warp transfor-
mation, to mediate between the initial and final positions; at the same time,
the colors are averaged.

Fig. 15.24. Morphing animation sequence. See Plate 10 in color insert.

412 15 Warping and Morphing

15.8 Comments and References

The concept of resampling first appeared explicitly in the literature in (Heck-
bert 1989). This is a pioneering work in image warping that has never been
published.

For a fairly complete book on warping filters and morphing, see (Wolberg
1990). This work covers sampling and reconstruction techniques and is strongly
directed toward implementation, containing several examples with source
code.

Digital image warping is a particular case of deformations of graphical ob-
jects. The n-dimensional warping problem deals with deforming graphics ob-
jects more general than images (such as volumetric images or two-dimensional
geometric models). The interested reader should consult (Gomes et al. 1996a).
This reference contains a rigorous definition of a graphical object and con-
siders, in a unified way, the problem of warping and morphing of arbitrary
graphical objects. More details about these topics can be found in (Gomes
et al. 1996b).

As mentioned at the beginning of this chapter, one major problem in
implementing warping and morphing filters lies in the user interface, including
the specification of desired warp transformation. The reference (Costa et al.
1992) has a classification of the various methods that can be used for specifying
such transformations. More details can be found in (Gomes et al. 1996b).

The images in the two-step rotation example of Figure 15.20 were produced
by George Wolberg. The images in Figure 15.21 were produced by Lucia Darsa
and Bruno Costa. The morphing sequence of Figure 15.24 was produced using
the morphing software Visionaire (Costa and Darsa 1992).

The original image in Figures 10.3 and 10.9 is a detail from “Market Place”,
by Alfons Rudolph, from the Kodak PhotoCD, Photo Sampler.

References

[Costa and Darsa 1992]Costa, B. and Darsa, L. (1992). Visionaire users and
reference manual. Technical report, Impulse Inc., Minneapolis, MN.

[Costa et al. 1992]Costa, B., Darsa, L., and Gomes, J. (1992). Image meta-
morphosis. In Proceedings of SIBGRAPI V, 19–27.

[Gomes et al. 1996a]Gomes, J., Costa, B., Darsa, L., and Velho, L. (1996a).
Graphical objects. The Visual Computer, 12(6):269.

[Gomes et al. 1996b]Gomes, J., Costa, B., Darsa, L., and Velho, L. (1996b).
Warping and morphing of graphical objects. Notes from Colóquio
Brasileiro de Matemática. IMPA, Rio de Janeiro.

[Heckbert 1989]Heckbert, P. S. (1989). Fundamentals of Texture Mapping and
Image Warping. Master’s thesis, Dept. of Electrical Engineering and
Computer Science, University of California, Berkeley.

[Wolberg 1990]Wolberg, G. (1990). Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA.

16

Image Systems

The end product of a computer graphics process is usually an image or
sequence of images. This is so, by definition, in the area of image synthesis,
where the goal is to generate an image according to certain criteria: photo-
realism, simulation, animation, and so on. The image may be displayed on a
variety of devices, depending on the application. This chapter discusses certain
problems arising in computer systems for image manipulation.

16.1 Image Characteristics

An image system is a graphics device, or set of devices, used for the storage,
processing, display, and transmission of images. Three types of images may
be present in an image system:

1. An optical image is one where the signal consists of visible electromag-
netic radiation. Ultimately, this is the only type of image that the eye
can perceive, and therefore the system must use this type of image to
communicate with the user.

2. An analog-electronic image is generally characterized by a physical mag-
nitude varying continuously in time. The modulation of the physical mag-
nitude encodes the image. The image produced on the screen of a CRT

monitor is of this type.
3. Digital images and their models were the subject of Chapter 6. They arise

from analog-electronic images by discretization. From the viewpoint of
image systems, we can distinguish four types of discretization:
• Spatial discretization is the discretization of the domain into pixels,

studied in Chapter 6.
• Spectral discretization is the representation of the spectral color space

by means of a finite-dimensional space, obtained by sampling the vis-
ible spectrum, as discussed in Chapter 4.

L. Velho et al., Image Processing for Computer Graphics and Vision,
Texts in Computer Science, DOI 10.1007/978-1-84800-193-0 16,
c© Springer-Verlag London Limited 2009

414 16 Image Systems

• Amplitude discretization is the discretization of the color vector com-
ponents, also known as quantization; see Chapter 6.

• Time discretization is necessary when one considers images that vary
in time, as in the case of an animation. For example, time discretiza-
tion underlies the various digital formats used by the video and TV
industries.

16.1.1 Matrix Representation of a Digital Image

In this chapter we consider the spatial model of an image, where the domain
is a rectangle

R = [a, b]× [c, d] = {(x, y) ∈ R
2 : a ≤ x ≤ b and c ≤ y ≤ d}.

In practice, we work with digital images, where the domain is a discrete regular
lattice of the rectangle R:

RΔ = {(jΔx, kΔy) ∈ R : j, k ∈ Z}, with Δx,Δy ∈ R fixed.

Each pixel of the image can therefore be assigned integer coordinates (j, k),
and the image is given by the matrix (cjk), where each entry is a vector in color
space, representing the color at the pixel (j, k). For a monochrome image, cjk

is a real number representing the luminance of the pixel. See Figure 16.1.
The quotient (d − c)/(b − a) is called the image’s aspect ratio. This ratio

varies greatly in practice, depending on the application and the target display
device. Images for television have aspect ratio 3

4 ; images for 35-mm film should
have aspect ratio 2

3 .
The quotient Δy/Δx is called the pixel aspect ratio. It determines the shape

of the pixel, which can be rectangular or square, as shown in Figure 16.2. The
pixel aspect ratio depends on the device that stores the image (frame buffer).
Most commonly, it equals unity (Δx = Δy), but for many matrix devices it

Fig. 16.1. Matrix model of a digital image.

16.1 Image Characteristics 415

Fig. 16.2. Pixel aspect ratio and geometry.

has a different value, and this must be taken into account in generating and
displaying an image.

We recall some terminology introduced in Chapter 6. The order m×n of the
matrix (cij) representing a digital image is called the image’s spatial resolution
(or geometric resolution); the number m of rows is the vertical resolution, and
the number n of columns is the horizontal resolution. The number of bits used
to represent the color of a pixel is the image’s color resolution. The set {cij}
of all colors occurring in the image is the gamut.

16.1.2 Pixel Geometry

In the matrix model, as we have seen, each pixel determines a rectangle in
the image plane, as shown in Figure 16.2. In fact, one can also use other pixel
configurations, where the plane region assigned to each pixel (pixel shape) is
not a rectangle but some other compact, convex subset of the plane. Hexagonal
cells are a relatively common choice, as shown in Figure 16.3.

There are many ways of encoding a digital image for storage, manipulation,
and transmission. These different encodings give rise to the many existing im-
age file formats (PCX, GIF, TIFF, PhotoCD, and so on). We will not attempt
to cover these formats in this book. There are also a great many graphics pro-
grams and libraries to convert among the various formats. See the references
listed in Section 16.7.

Fig. 16.3. Hexagonal pixel lattice.

416 16 Image Systems

16.2 Image Display

When an image is displayed on a matrix device, such as a CRT-based de-
vice, its matrix representation is mapped to the device’s dot matrix. The
device’s physical pixel shape is given by the pixel spread function, which
is the pixel’s response curve to the impulse that generates the color of one
pixel. The impulse signal here consists of an image with maximum luminance
value in one pixel and zero intensities on the other pixels. The quality of the
displayed image depends on several characteristics of the pixel spread func-
tion. Four of these characteristics are related to the geometry and the color
space of the device: pixel size, pixel density, geometric resolution, and color
resolution.

Pixel Size

The physical dimensions of the pixel are determined by the distance between
dots in the device matrix. In video monitors this value is known as the dot
pitch and ranges from 0.26 to 0.31mm (0.01 to 0.012 inches) for commercial
CRT monitors.

Pixel Density

Pixel density is the number of pixels per unit length in the matrix device.
It is usually expressed in dots per inch (dpi), and it may be different in the
horizontal and vertical directions. When only one density is mentioned, it
applies to both directions.

Geometric Resolution

The device’s geometric resolution is the order of the display matrix defining
the number of pixels of the image display. It must be compatible with the
resolution of the image to be displayed.

Color Resolution

Another important characteristic is the device’s color gamut, which deter-
mines the number of colors available for the value of each pixel. This number
usually depends on the number of bits used to store color (number of “bit
planes”) and on the architecture chosen to implement color space. The color
of each pixel must be quantized to the number of bits available in the device’s
color space.

16.2 Image Display 417

16.2.1 Support Media

To display an image on a support medium means to reconstruct the color val-
ues stored in the pixels. There are many types of support media: a monitor
screen, paper, film, video, and so on. The technologies used for displaying the
image vary widely: some support media use digital technology; others, analog
technology; yet others a hybrid analog-digital technology. The most appropri-
ate support medium to use depends, of course, on the type of application as
well as the cost.

The most commonly used display device is the video monitor. It uses a
cathode ray tube (CRT) to realize the image, which is of the analog-electronic
type.

To display a color image on paper, one can use a color printer or one of
the traditional printing processes (offset printing, rotogravure, and so on).
There are many printing technologies, such as thermal wax transfer and dye
sublimation. Choosing the best process depends largely on the application.
Generally speaking, thermal wax transfer is appropriate for vector-based im-
ages (“line art”), while dye sublimation gives much better results when the
gamut is wide, as in the case of color photographs.

Offset printing, traditionally used in the graphics industry for large print
runs, is completely analog. With the development of the market and the dis-
semination of electronic publishing systems, the production process is now
almost entirely in the digital realm. Offset printing and its interface with
digital image processing will be studied in more detail later in this chapter.

16.2.2 Tone Maps

When an image is displayed, the values of the color components at each pixel
are used to generate colors in the color space of the display device. Ideally,
there should be a linear relation between the intensity of the pixel value and
the color produced, so that, for example, doubling the red component also dou-
bles the amount of energy emitted by the red phosphor on the CRT screen.
This is important in order to obtain a faithful color balance. The transforma-
tion that maps color intensities of the image into color intensities of the display
device is called the tone map. Computation of the tone map is a complex task,
as will be clear from the discussions of this section.

Unfortunately, the response of most display devices is nonlinear. It is pos-
sible to get around this problem by compensating for this nonlinearity before
sending the color values to the device. Typically, the user’s application has
to do this, based on the type of device or other information supplied by the
manufacturer.

A general rule to carry out this correction is to create an image with a linear
gradient of color and to plot the graph of the function associating the intensity
of each pixel of this image to the intensity of color actually displayed. This
requires the use of an instrument that can measure color intensities accurately.

418 16 Image Systems

If this graph is linear, no correction is necessary; if not, the function is used
as the basis for the correction. When the display device has a lookup table,
that is, a user-controlled map between input values and values sent to the
actual display, this table can be used to compensate for the nonlinearities.
Otherwise, it is necessary to actually change the values of the pixels in the
image.

Laser Printers

Laser printers are usually markedly nonlinear, due to the type of paper used,
to the imperfect shape, dimensions, and placement of pixel dots, and to in-
terference among pixels due to dot overlap.

CRT Devices

In a CRT device, the components of a pixel determine the voltage that drives
the electrons toward the phosphor on the screen, creating an electron flow
(current). The relation input intensity × voltage is roughly linear, but the
relation voltage × pixel luminance is not, and a correction is needed. We
discuss this in detail now.

Gamma Correction

In a CRT monitor, the voltage V driving the electron flow is related to the
intensity I of light emitted by the phosphor hit by the electrons according to
the approximate formula

I ∼ V γ , (16.1)

where γ is a constant that depends on the phosphor. This nonlinearity causes
serious distortions in the colors of the image displayed: some areas are too
dark, while in other, the colors are too saturated. To avoid this problem, we
must use an amplitude filter that corrects the intensity of each pixel before
that information is passed to the CRT. Because of the conventional use of
the letter γ as the exponent in (16.1), this step is generally called gamma
correction. We can rewrite (16.1) as

V ∼ I1/γ ,

so we know what voltage to use in order to create a desired intensity. In
Figure 16.4, the black line is the graph of Equation (16.1). The gray line
shows the correction function that must be used to obtain a linear relationship
between intensity and voltage, which is indicated by the dotted line.

The correction given by the equation V ∼ I1/γ must be applied to the pixel
intensities before the signal is converted into voltage at the CRT. As already
mentioned, if the device has a lookup table, this table can be used to store

16.2 Image Display 419

Fig. 16.4. Monitor gamma correction curve.

the correspondence, avoiding the need to recompute the gamma correction for
every pixel. However, there is a disadvantage to this procedure: usually, the
precision of the values that can be stored in the lookup table is low; typically
only eight bits are available. In any case, when there is no lookup table, one
must carry out the correction separately for each image pixel.

In the case of synthetic images, another alternative is to perform the cor-
rection immediately after the calculation of the value of each pixel. However,
this means the image is now optimized for a particular display device, and
one cannot use it on a device having a different response, or process it in
other ways, without first undoing the gamma correction already introduced.
In general, it is better to store the image with its “natural” color values
and apply a gamma correction only when it is being sent to a particular
device.

To carry out the gamma correction we must of course know the value of γ.
If this value is not specified by the manufacturer, it must be experimentally
determined. The literature contains procedures for this determination. For
best results one should determine separately the γ values for each of the
monitor’s three primary colors.

16.2.3 Calibration

Gamma correction is only one component in the process of calibration of the
various devices in an image system, a process that is essential for the correct
display of the image. Calibration is often complicated and may involve even
mechanical adjustments, in the case of systems with analog components. One
important step in calibration is adjusting the system’s color space. In general,
this is done by comparison with some standard color space.

420 16 Image Systems

16.3 Cross Rendering

An image system often involves more than one display device or display
subsystem, and the physical processes involved in the realization of the
image on each device may be completely different. One of the main prob-
lems in such systems is to make an image look the same when displayed
on the various devices. This problem is known as cross rendering. For ex-
ample, one may have a workstation connected to a printer and expect im-
ages to come out on the printer looking as closely as possible to how they
look on the screen. Clearly, “as closely as possible” involves some notion
of distance, or metric, for comparison between images; this metric should
take into account that, ultimately, it is our perception of the images that
matters.

To give another example, the reader may have seen in a video and electron-
ics store a number of TV sets tuned to the same show simultaneously. Almost
certainly, the image was noticeably different on sets from different manufactur-
ers. This is a simple but significant example of the problem of cross rendering:
monitors from different manufacturers use different phosphors and sometimes
even different technologies to turn on the pixels on the screen. This makes the
color spaces of the devices different.

In general, the solution to the problem of cross rendering is quite com-
plex, since it involves the particular characteristics of each device. A real-life
example, namely electronic publishing systems, will be studied later in this
chapter.

16.3.1 Gamut Transformations

Making an image look the same in different display devices is a difficult task,
because in general the gamut of these equipments is quite different, and we
must take into consideration the gamut of the image and of each device. Thus,
it is necessary to carry out a color transformation, called a gamut transfor-
mation, with the purpose of making the gamuts of the various color systems
compatible. In order to carry out the gamut transformation, we should con-
sider a “universal space” that contains the gamut of the different devices and
of the image. In this space we determine the gamut transformation in a way
that makes the various gamuts compatible by means of appropriate correc-
tions. This is essentially the task to be accomplished by color management
systems.

The object of a gamut transformation is to make the image look the same
when displayed on any device of the system. The right choice of gamut trans-
formation involves psychophysical considerations and is, in general, extremely
difficult when the devices involved use very different technologies.

16.4 Color Correction 421

16.4 Color Correction

In image synthesis, it is often impossible to display a given color on an RGB

monitor for two reasons:

• The luminance of a pixel’s color may be outside the range that can be
displayed on the device; this is known as luminance overflow.

• The chromaticity of a pixel’s color may be outside the color gamut of the
device; we say that the color is unrealizable.

16.4.1 Luminance Overflow

Assuming that the color components are normalized to be in the interval [0, 1],
luminance overflow occurs when one of the color components computed for
a pixel falls outside this interval. An attempt to solve this problem should
try to maintain the color information, changing only the luminance. For ex-
ample, reducing to 1 each color component that is greater than 1 is easily
seen to change the chromaticity, and is therefore an inappropriate method.
An appropriate method is to divide each component by the maximum value
of the components; thus, if C = (r, g, b) is the original color vector, with
max{r, g, b} > 1, we replace it by the new color vector

C ′ =
(r

max{r, g, b} ,
g

max{r, g, b} ,
b

max{r, g, b}
)
.

16.4.2 Unrealizable Colors

A color is unrealizable when its chromaticity point, given by the radial pro-
jection of the color vector onto the chromaticity plane, does not belong to the
device’s gamut. Figure 16.5(a) illustrates this problem when the gamut is a
triangle.

The existence of unrealizable colors is very common in image synthesis,
especially when one uses a spectral model of color space in computing lighting
and shading. The same problem occurs when we apply certain filters. One such
example is the laplacian filter (see Chapter 7 on image operations).

There are several possible solutions, and the choice among them de-
pends on the application. If the correction is to be made to the final im-
age, one should use a method that preserves hue and luminance, changing
only the saturation. In other words, one should add white to the color, so
as to bring it into the device’s color gamut: see Figure 16.5(b). We de-
scribe two methods to do this: by a color space contraction, and by color
clipping.

422 16 Image Systems

Fig. 16.5. Correcting an unrealizable color.

Color Space Contraction

One can make a color contraction in the chromaticity diagram of the CIE-XYZ

system in order to guarantee that the colors to be displayed will belong to
the device’s color gamut. An easy way to do this change of coordinates is to
take three (unrealizable) primary colors in such a way that the triangle they
determine contains the gamut of colors to be reproduced. We then compute
the chromaticity coordinates in this new color system and use these values as
the chromaticity coordinates in the CIE-RGB system. Geometrically, this cor-
responds to applying a contracting affine transformation of the chromaticity
diagram, leaving fixed the color white. One disadvantage of this method is
that a significant part of the device’s color gamut will then never be accessed.

Color Clipping

Another disadvantage of the contraction mapping method just described is
that all colors have their saturation decreased, and this can change the whole
image perceptually. The method of color clipping changes the saturation only
of those colors that cannot be displayed; it is therefore a less intrusive and
more local correction method. Here is a simple clipping method. Start by
changing coordinates to HSV. An unrealizable color has saturation S > 1;
replace this value by S = 1 and convert back to RGB coordinates. The color
thus obtained is obviously realizable and differs from the original color only
in saturation.

16.5 Display Models

After studying some technical aspects of the image display process, our goal in
this section is to introduce a conceptual model for the process. Such a model

16.5 Display Models 423

Fig. 16.6. Display model for digital images.

allows the comparison of different systems with greater objectivity and helps
in the development of algorithms for solving image display problems.

Figure 16.6 shows a conceptual model for a digital image display system.
The input consists of a digital image, and the output is an image displayed
on some graphics device, which is seen by the observer as an optical image.
We turn to each box in this diagram.

Geometric Adjustments

The first box represents geometric filters that transform the image domain
with the goal of making it geometrically compatible with the characteristics
of the display devices. The necessary transformations may include, for example

• a change in spatial resolution,
• a change in the image representation (from a hexagonal lattice to a rect-

angular one, say),

424 16 Image Systems

• a change in the image aspect ratio,
• a change in the pixel aspect ratio.

Sometimes one must use reconstruction and resampling to carry out the
desired adjustment.

Color Adjustments

The second box represents amplitude filters used to transform the image’s
color gamut. Such transformations may include

• a change from the image color space to the display device color space,
• compatibilization of the image gamut with the gamut of the display device,
• hue correction (tone map).

Quantization and Dithering

Although quantization and dithering logically belong to the color adjustment
operations just discussed, we mention them separately because of their great
importance in the process of image display. Quantization is one of the trans-
formations that aim at making the image gamut compatible with the device
gamut; dithering filters are designed to avoid perceptual quality loss after
quantization. Dithering is of particular importance in the case of bitmap (two-
level) display devices.

Physical Reconstruction

Finally, after the preprocessing operations, the image is physically recon-
structed in the support of the graphics display device. After being displayed,
the image can be seen by the observer as an optical image. The filters that
reconstruct the image at this step can be quite complex. We describe one
model for this filtering process.

16.5.1 Physical Reconstruction Function

The physical reconstruction function of a graphics device uses the values of
color intensity of the image to reconstruct the image physically. It is important
to have specific knowledge of the device’s physical reconstruction function in
order to optimize the quality of the image displayed; this knowledge should
influence one’s choice of device-dependent filters to be applied to the image.

Let pi be a physical pixel of the device, such as a dot on the screen of
a video monitor, and let δ be a unit impulse at pi. The system’s impulse
response function (the response to δ) is called the pixel spread function and
will be denoted by hi. If the physical reconstruction process were linear in
terms of the various image parameters (image color, image dimensions, pixel

16.5 Display Models 425

size, etc), the reconstructed image would be given by the convolution of the
digital image I with the pixel spread function:

(I ∗ h)(n) =
+∞∑

j=−∞
I(j)h(n− j).

In practice, the process introduces nonlinearities, both spatial and of am-
plitude, and their modeling is more complicated than we have written above.
One must take into account several factors, such as the following:

• randomness in the spatial placement of the device’s pixels (this is called
positional noise, and it occurs quite markedly in the case of low-resolution
laser printers, for example);

• randomness in the pixel’s impulse response function;
• influence of the support medium on the appearance of the reconstructed

image;
• the nonlinearity of the values of the reconstructed function with respect

to the pixel values of the digital image.

Figure 16.7 shows a general conceptual model of the physical reconstruc-
tion function, taking into account the factors just mentioned. The first box in
the figure represents the reconstruction of the image function in the continu-
ous domain. Positional noise is modeled by a unit impulse δ(x− ε(x)), where

Fig. 16.7. Conceptual model of the device’s physical reconstruction function.

426 16 Image Systems

ε(x) is a random perturbation. The variation of the spread function at each
pixel is modeled by a noise spread function ω(x), to be added to the average
impulse response function d(x). The influence of the support medium on the
perception of the reconstructed image is modeled by the background function
b(x). The final reconstructed image is therefore given by

I(x) =
(∑

n

I(n)δ(x− ε(x)
)

∗ (d(x) + ω(x)) + b(x).

This equation does not include a correction for amplitude nonlinearity,
because we included such a correction among the preprocessing operations
(Figure 16.6).

For each specific device, we can determine δ, ε, d, ω, and b. With this
knowledge, we can apply specific filters to the image at display preprocessing
time, in order to improve the perceptual quality of the final result.

16.6 Electronic Publishing Systems

We could use different image systems to illustrate the above problems in a
real-world environment. Several of these systems exist for different areas of
application. We could mention

• image systems for video production,
• image systems for film production,
• image systems for multimedia, and
• image systems for electronic publishing.

A complete study of each of these systems is outside the scope of this
chapter. In the remainder of this chapter we will give an overview of an image
system for electronic publishing.

Electronic publishing systems use the techniques of computer graphics and
image processing toward the goal of producing printed publications (books,
magazines, newspapers, and so on). The most common devices used in such
a system are scanners, workstations, printers, and phototypesetters.

Scanners

A scanner transforms an image on paper or film into a digital image by sam-
pling it and digitizing it. Together with optical character recognition (OCR)
software, it can also be used to transform a printed text into its electronic
equivalent. Other types of software can extract vector data (line art) from the
digital image. Figure 16.8 illustrates the use of a scanner.

Digital cameras avoid the need to take a photograph of a scene and then
scan it; their output is already a digital image. Traditional analog video cam-
eras can also be used to capture a scene digitally when they are coupled with
a frame grabber, which takes one frame of the video signal and transforms it
into a digital image.

16.6 Electronic Publishing Systems 427

Fig. 16.8. Use of a scanner in an electronic publishing system.

Workstations

Typically, an electronic publishing system includes a workstation (desktop
computer) with a matrix-based monitor, mouse, keyboard, and frame buffer.
The spatial and color resolutions should be compatible with the needs of
the publications to be produced. The software used generally has interaction
capabilities that allow the user to manipulate directly the various elements of
the publication.

Printers

A printer is part of any electronic publishing system, so that proofs (sam-
ples) of the material being composed can be made at low cost on paper. The
resolution densities typically range from 300 to 1200 dpi (dots per inch) for
black-and-white printers, and from 120 to 600 dpi for color printers. Print-
ers can be used to produce final copy for jobs where high resolution is not
essential.

Phototypesetters

Phototypesetters are monochrome devices that use laser or infrared technology
to produce very high-resolution output (up to 3000 dpi). They can typically
output either onto photographic paper or directly onto film. The per-page cost
is relatively high, so phototypesetters are not used for mass printings; instead,
their output is used as input for offset printing, which we turn to now.

16.6.1 Offset Printing

For large print runs, the most economical alternatives are still the two tra-
ditional methods of offset printing and rotogravure. Here we discuss offset
printing briefly, concentrating on its characteristics that matter to electronic
publishing.

428 16 Image Systems

The process starts with a positive image on paper or a negative on film.
The image is transferred to a thin metal plate by a photochemical process: the
plate is coated with a photosensitive material, and exposure to light hardens
the coating on printing areas. The rest of the coating (on nonprinting areas)
is washed away. The plate is rolled onto a cylinder and a greasy ink is applied;
it sticks only to the areas that have the coating, the nonprinting areas having
been previously wetted so as to repel the ink. The rotating plate cylinder
comes into contact with a rubber cylinder, to which it transfers the ink; finally,
the traveling paper is pressed against the rubber cylinder, and receives the
printed image. The basic steps are shown in Figure 16.9.

This process has been used for decades, employing analog techniques at
each step. With the development of electronic publishing, it became possible
to go digital in several ways:

• As discussed earlier, for small print runs and low-to-middle quality, the fi-
nal output may be obtainable from a low-end digital device (laser printer).
For a single printout, a high-end digital device (phototypesetter) provides
better quality than offset printing. However, the use of digital printers in-
stead of offset printing is far from satisfying the combined requirements of
time, quality, and cost for large print runs.

• There now exist graphical output devices that produce a metal plate di-
rectly, thus allowing the elimination of the film step in offset printing.
However, the cost–quality equation is not yet favorable to the use of this
shortcut. Moreover, the material from which the plate is made is not very
resistant, so that large print runs tend to wear it out.

• Image processing techniques and laser printer technology allow the creation
of film directly from a digital image, using high-resolution phototypeset-
ters, as explained earlier. This is the path most commonly followed. Thus,
the production of good-quality film can be carried out efficiently by digital
means.

We now consider separately the cases of monochrome (grayscale) and color
printing, and how they affect the production of film.

Monochrome Images

The offset printing process is essentially a one-bit affair: a point on the
metal plate either accepts ink or does not. Thus, in order to reproduce a
grayscale image, one must use digital halftoning, or dithering, as discussed in
Chapter 12. The halftone images in this book can serve as examples; the film

Fig. 16.9. Flowchart of the offset printing process.

16.6 Electronic Publishing Systems 429

for them was produced from digital images using a cluster ordered dithering
algorithm, on an 1800-dpi phototypesetter.

The raster image processor (RIP) associated with a phototypesetter in
general has built-in dithering algorithms. The user has the choice of using his
or her own algorithm or relying on the one built into the RIP software.

Color Images

Because, perceptually, three primary colors are enough to generate color space,
color images can be obtained by offset printing if the same sheet of paper
is exposed to inks of the three primary colors. Thus, color offset printing
theoretically reduces to three monochrome printings: we create a piece of film
for each color channel; we then transfer each channel to a metal plate; and
we print the image from each plate in succession. To make this actually work,
one must answer two basic questions:

• What color system should be used?
• How do the colors from each channel combine to produce the final color

seen on the paper?

Color Systems

The perception of color printed on paper is reflective, that is, light falling on
the paper is reflected (diffused) and so reaches the eye. Starting from a white
sheet of paper, we have maximal luminance before adding any color. As we
add color, there is a loss of luminance, until when we reach black there is
(ideally) no reflection of the incident light. Thus, color formation takes place
subtractively. From our study of color systems in Chapter 5, we know that the
most appropriate system to use in this context is that of the complementary
primary colors cyan, magenta, and yellow, or CMY.

As shown in Figure 5.7 of Chapter 5, in the CMY system zero luminance
(black) is obtained by superimposing the three primary colors. From the addi-
tive point of view, cyan is a mixture of the primaries green and blue, so it has
the effect of eliminating the red component of light reflected from the paper.
An analogous process of elimination happens for the other two complementary
colors.

The Black Component

Although, from the point of view of color theory, all shades of gray can be
produced from cyan, magenta, and yellow, in practice it is more convenient
to treat gray (including black) separately, for the following reasons.

• Registration problems, that is, slight misalignments in the mechanical
setup, cause the cyan, magenta, and yellow components of the image to be

430 16 Image Systems

printed at slightly different positions. Thus, a black dot made from dots
of the primary colors invariably has colored edges. The better (and more
expensive) the printing press, the less perceptible these registration errors
are, but they are always present. Therefore, for printing text, the use of
black is essential.

• It is extremely difficult to combine the three primary colors consistently in
exactly the proportions that yield black; most often the combination has
a brownish or purplish hue.

• Making black from colors requires much more ink, and color ink is more
expensive to begin with. The excess of ink also delays the drying.

• The use of black ink allows a better balance in the printing density in areas
of low luminance.

For these reasons, instead of using three channels CMY, we use also a
fourth channel, black, abbreviated K (since B already means blue). This leads
to the CMYK system, which is universally used in offset printing. Figure 16.10
shows a color image produced by offset printing (in fact, the whole book was
printed this way, the films having been created digitally). Figure 16.11 shows,
from left to right, the results of printing separately the cyan, magenta, yellow,
and black channels of the same image.

The introduction of the K component solves the practical and technical
problems we have mentioned, but it creates another: how to convert from the
image color space to the CMYK system, and specifically how to compute the
K component, which, we observe, is linearly dependent on the components C,
M, and Y. This is known as the color separation problem, and we will return
to it later.

Fig. 16.10. Reproduction of a color image. See Plate 11 in color insert.

16.6 Electronic Publishing Systems 431

Fig. 16.11. CMYK components of the image of Figure 16.10. See Plate 12 in color
insert.

Note that in some special applications it may be desirable to go beyond
four colors and directly apply inks of other colors that are difficult or impos-
sible to obtain as a combination of cyan, magenta, yellow, and black. This is
known as a spot color application, while the use of the four primaries only
is known as process color. Spot colors can be used, for instance, to obtain
metallic and fluorescent effects and a wide range of textures that complement
color. A photograph with very dark regions will nonetheless stand out against
a black background if the background is matte and the photograph’s colors
are glossy.

Color Reconstruction

As we have seen, the physical reconstruction of color in offset printing hap-
pens when the C, M, Y, and K color channels are successively printed on the
same piece of paper. The details of this reconstruction process are somewhat
complex.

432 16 Image Systems

In producing the film for each channel, the images must be dithered, as
explained above; cluster dithering algorithms are preferable, since they are
more robust with respect to errors in the placement of individual pixels on the
phototypesetter. Next, when combining the channels, we want to ensure that
small variations in registration affect as little as possible the final perceived
color. Ideally, this would be achieved by having the distribution of dots be
totally independent for each channel, so that, when combining a 50% magenta
with a 50% cyan, exactly 25% of the area should be covered by both inks, 25%
by each ink separately, and 25% by neither. In practice we can only achieve
partial independence; we will return to this point later.

Note that, in terms of color theory, the effect of nonoverlapping dots of dif-
ferent colors is additive, while the effect of overlapping dots is subtractive. The
overall dependence of the final color on the intensity of each channel, is, there-
fore, neither purely additive nor purely subtractive; the formulas expressing it
are complicated, and it is usually more practical to use an empirical approach
to calibrate the press. Hence the use of match prints, which are high-quality
proofs produced from the negatives by means of some other technology and
are used for comparison to ensure reasonably faithful tones.

Figure 16.12 shows an enlarged detail of the floor from the image in Figure
16.11. Notice the clusters of each one of the colors CMYK, and look at how
they vary in size to control the intensity of each channel.

The choice of the lattice (screen) that underlines the dithering of each
channel is very important. The most important consideration is that the
screens should be placed at different angles. If they were aligned, a small
registration error might cause all yellow dots (for example) to overlap with
magenta dots, while an equally small error in the opposite direction might
cause all dots to be disjoint; the final perceived color would be significantly
different from the desired one in either case. In practice, one chooses screen
angles widely spaced in the interval (0, 90◦): for example, 0◦, 15◦, 45◦, and
75◦. (Notice that a screen rotated 90◦ is aligned with one rotated 0◦.)

Fig. 16.12. Enlargement of an offset-printed image. See Plate 13 in color insert.

16.6 Electronic Publishing Systems 433

Fig. 16.13. Moiré pattern arising from interference between two screens.

Even with this precaution, there is a certain amount of interference among
the screens, due to periodicity. Figure 16.13 illustrates this: on the left we have
an image dithered on a (very coarse) screen tilted 5◦, and on the middle the
same image is dithered on a screen tilted 25◦. The image on the right is the
superposition of the first two. Notice the interference patterns (moiré patterns)
in the form of regularly distributed, darker than average, clusters. Compare
to the images in Section 7.5.1.

The most common choices for screen angles lead to the type of “rosette
patterns” seen in Figure 16.12 rather than the type of pattern seen in
Figure 16.13. Rosette patterns don’t stand out, and screen interaction tends
not to be a problem at screen densities of 150 lpi (lines per inch) and higher.

More recently, there has been a move toward the use of nonperiodic dis-
persed algorithms for color printing. This has been possible because of the
high precision in the dot placement attained by modern phototypesetters. The
Peano curve dithering algorithm studied in Chapter 12 is well suited for this
purpose. For more information, consult the references given in Section 16.7.

Color Separation

We now turn to the question of color separation, that is, conversion to CMYK

color space of a digital image whose image space is, most likely, quite different.
Figure 16.14 shows the main steps in this conversion, assuming that the image
color space is RGB and that we use the standard color space XYZ to perform
the conversion. Another commonly used standard is CIE-Lab. Both of these
systems allow the specification of color independently of the device and are
used in order to mediate between image color space and device color space
because their gamut contains the gamut of all graphical output devices.

In principle, color separation with the computer should be very simple,
since cyan, magenta, and yellow are complementary to red, green, and blue.
Assuming that colors are normalized to lie in the interval [0, 1], we can write
(see Section 5.4.4)

434 16 Image Systems

Fig. 16.14. Steps in the digital generation of film.

C = 1−R, M = 1−G, Y = 1−B.

The next step is to remove the presence of gray that is produced via a
combination of the primaries CMY and replacing it directly by black, K. The
simplest method to do this is known as gray component replacement (GCR).
To compute the intensity of the K component at a point, we find the least of
the three values CMY at that point; call it d. We then take a certain fraction of
d, say p%, where p is a number determined empirically, and set K = pd/100.
Finally, we subtract K from the other components, setting C ′ = C − K,
M ′ = M −K, and Y ′ = Y −K. See Figure 16.15.

For simple applications, this procedure works well enough. However, for
more complex images, having a wide gamut, it may lead to unexpected results,
and the printed image may be perceptually quite different from the one seen
on the monitor screen. This is because the map from the monitor color gamut
to the offset printing gamut is nonlinear.

Another method for replacing “composite” gray by a black component is
known as undercolor removal (UCR). It acts only on areas where the CMY

components are approximately equal, that is, areas that are really grayish

16.7 Comments and References 435

Fig. 16.15. Calculation of the black component.

and not merely dark in color. This method can also be combined with GCR,
leading to more sophisticated algorithms involving complicated heuristics and
designed to counteract the nonlinearities of the process.

The replacement of process gray by a black channel allows greater control
over the ink density deposited on the paper during printing. This density may
vary from 0% (absence of ink) to 400% (all four components at maximum).
Control over ink density is important because this density should be suited
to the type of paper being used.

We stress that our discussion of offset printing and color separation was
meant as an illustration of the problems inherent in image systems and is far
from a complete treatment of the subject.

16.7 Comments and References

For a fairly complete reference containing technical information about a great
variety of image formats, see (Murray and Ryper 1994). Another good source
is (Kay and Levine 1992).

In comparing renderings of an image on different devices, one must take
into account perceptual factors, so it is important to be aware of the various
mechanisms of visual perception. An elementary but reasonably comprehen-
sive discussion can be found in (Rosenfeld and Kak 1976). For a more detailed
discussion, see (Wyszecki and Stiles 1982).

A concise but excellent reference on the use of color in image systems is
(DeMarsh and Giorgianni 1989).

A detailed discussion of color clipping and compression algorithms can be
found in (Hall 1989). This book also contains a good discussion about image
systems for video production, with emphasis on the NTSC composite video
standard.

436 16 Image Systems

A more complete reference on image systems for video production is (Win-
kler 1992), a comprehensive, if somewhat terse, reference.

The conceptual model for the physical reconstruction function presented
in this chapter is the one given in (Ulichney 1987). This book gives more
details on this model, for the case of bitmap devices.

Good discussions of the problem of reproducing digital color images on
paper can be found in (Stone et al. 1988) and in (Lamming and Rhodes
1990).

Complete details about the use of dithering with space-filling curves for
color printing can be found in (Velho and Gomes 1996).

The subject of gamma correction for monitors is well covered in (Catmull
1979). The procedures discussed there can be adapted to the case of tone
maps for other display devices. A brief discussion about tone maps for printers
can be found in (Ulichney 1987). Detailed procedures for the calibration of
individual devices are set forth in their technical documentation, and more
general treatments are sometimes found in manuals for image manipulation
software. A good example is the Photoshop manual, from Adobe Systems.

The original image used in Figures 16.10, 16.11, and 16.12 is taken from
the Strata Vision tutorial demo.

References

[Catmull 1979]Catmull, E. (1979). A tutorial on compensation tables. Com-
puter Graphics (SIGGRAPH ’79 Proceedings), 13(3):1–7.

[DeMarsh and Giorgianni 1989]DeMarsh, L. and Giorgianni, E. (1989). Color
science for imaging systems. Physics Today, September, pp. 44–52.

[Hall 1989]Hall, R. A. (1989). Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York.

[Kay and Levine 1992]Kay, D. C. and Levine, J. R. (1992). Graphics File
Formats. Windcrest/McGraw-Hill, Blue Ridge Summit, PA.

[Lamming and Rhodes 1990]Lamming, M. G. and Rhodes, W. L. (1990). A
simple method for improved color printing of monitor images. ACM
Transactions on Graphics, 9(4).

[Murray and Ryper 1994]Murray, J. D. and Ryper, W. V. (1994). Encyclo-
pedia of Graphics File Formats. O’Reilly and Associates, Sebastopol,
CA.

[Rosenfeld and Kak 1976]Rosenfeld, A. and Kak, A. C. (1976). Digital Picture
Processing. Academic Press, New York.

[Stone et al. 1988]Stone, M. C., Cowan, W. B., and Beatty, J. C. (1988). Color
gamut mapping and the printing of digital color images. ACM Trans-
actions on Graphics, 7(3).

[Ulichney 1987]Ulichney, R. (1987). Digital Halftoning. MIT Press,
Cambridge, MA.

16.7 Comments and References 437

[Velho and Gomes 1996]Velho, L. and Gomes, J. (1996). Color printing,
stochastic screening and space filling curves. Preprint, IMPA, Rio de
Janeiro.

[Winkler 1992]Winkler, D. (1992). Video technology for computer graphics.
SIGGRAPH ’92 Course Notes.

[Wyszecki and Stiles 1982]Wyszecki, G. and Stiles, W. S. (1982). Color Sci-
ence. John Wiley & Sons, New York.

A

Appendix:
Radiometry and Photometry

This appendix deals with the photometric and radiometric variables that
are useful in setting and understanding problems about color and energy
exchange.

All eletromagnetic radiation transfers energy, called radiant energy.
Radiometry is the science of the measurement of the physical variables as-
sociated with the propagation and exchange of radiant energy. Photometry is
the branch of radiometry that deals with these variables from the viewpoint
of visual responses; that is, it studies how radiant energy is perceived by an
observer. Thus, radiometry in general deals with physical processes, while
photometry deals with psychophysical ones.

A.1 Radiometry

Although an understanding of the physics of electromagnetic waves is impor-
tant in the study of light–matter interaction, we need not be concerned with
the nature of electromagnetism in the study of radiometry and photometry. It
is enough to know that radiant energy flows through space; the fundamental
variable involved is the flux through a surface, that is, the rate at which radi-
ant energy is transferred through a surface. This notion is therefore analogous
to the notion of an electric current or to the flow of matter in fluid dynamics.

In contrast with the situation in fluid dynamics, however, there exist point
sources of radiant energy, and indeed they are of great importance in radio-
metry. To define the radiometric variables associated with point sources, we
introduce the notion of solid angles.

Solid Angles

In the plane, angles can be regarded as a measure of apparent length from
an observer’s viewpoint. To compute the angle subtended by an object when

440 A Appendix: Radiometry and Photometry

Fig. A.1. Angles and radial projection.

observed from a point O, we project the object radially onto the unit circle
centered at O and measure the arc determined by this projection; this is how
big the object looks to someone stationed at O (Figure A.1).

We can also use a circle of radius other than 1, but in this case we must
divide the length of the projected arc by the radius of the circle. Thus, angles
are dimensionless quantities. Radians and other units of angle measurement
are a notational device to avoid confusion when working with such measure-
ments: a radian is simply the number 1; a degree is the number π/180; and
so on.

This way of looking at angles can be extended to higher dimensions, leading
to the definition of a solid angle, that is, a measurement of the apparent area
as seen from a point. Consider a subset A of space and a viewpoint O. The
solid angle ω determined by A (with respect to O) is the area of the radial
projection of A onto the unit sphere centered at O, which we call the visual
sphere (Figure A.2). As in the plane case, we can take as the visual sphere

Fig. A.2. Measuring a solid angle.

A.1 Radiometry 441

a sphere of arbitrary radius r �= 1, but then we must divide the area of the
projection by the square of the radius. Thus, the solid angle is given by

ω =
Area(A′)

r2
. (A.1)

The radial projection of A onto the visual sphere determines a cone with
vertex O and base A, that is, the solid formed by all the rays (half-lines) in
space starting at O and going through points of A (Figure A.3). The solid
angle defined by (A.1) can also be regarded as a measurement of this cone.

Two subsets of the plane that subtend the same angle (from a fixed point of
view O) are called perceptually congruent (with respect to O); this is illustrated
in Figure A.4, left. Similarly, subsets of space that determine the same cone
(or, which is the same, the same projection on the visual sphere) are called
perceptually congruent; see Figure A.4, right.

Since (A.1) is a ratio of two areas, solid angles are dimensionless. However,
just as in the case of plane angles, it is comforting to be able to use a unit when

Fig. A.3. Cone with vertex O and base A.

Fig. A.4. Perceptual congruence.

442 A Appendix: Radiometry and Photometry

Fig. A.5. Element of solid angle.

discussing measurements of solid angles. The standard unit, representing the
number 1, is the steradian, abbreviated sr. The whole visual sphere has solid
angle 4π sr, since the area of a sphere of radius r is 4πr2.

When integrating over the visual sphere (or part thereof), we will consider
an infinitesimal element of solid angle dω. Pictorially, we represent dω by a
vector pointing radially away from O; see Figure A.5.

A.1.1 Radiometric Magnitudes

Suppose a light bulb is turned on, left on for a while, then turned off. There
are several measurements that one might be interested in: the total energy
emitted by the bulb during this period; the energy emitted per second; the
energy that reaches a certain target; the brightness as seen from that target;
and so on.

Radiant Flux

The total energy emitted is denoted by Qe, and it is measured in units of
energy: joules in the MKS system. The radiant flux Φe is the rate at which
energy is being emitted:

Φe =
dQe

dt
.

In the MKS system it is measured in joules per second, also known as watts.

Irradiance

The energy emitted by the light source can also be considered to be going
through a closed surface surrounding the source, so it makes sense to consider
the flux density—that is, flux per unit area—at points of such a closed surface.
Flux density, also called irradiance and denoted Ee, is vector-valued: given
a point P and an element of surface containing P , having area dA, the flux
through that surface element is Ee cos θdA, where Ee is the magnitude of the
irradiance vector at P and θ is the angle between the irradiance vector and
the normal to the area element (see Figure A.6, where the flux through the

A.1 Radiometry 443

Fig. A.6. The amount of radiant energy crossing a surface per unit time depends
on which way the surface faces.

surface is negative on the left, zero in the middle, and positive on the right).
Loosely, we can write

Ee =
dΦe

dA
.

Irradiance is measured (in the MKS system) in watts per square meter.

Radiant Intensity

The irradiance depends, of course, on how far the point of measurement is
from the source (and usually also on the direction as seen from the source). It
is often useful to work instead with a magnitude that is associated with the
source itself. For a point light source, this is easy: we just consider flux per
solid angle instead of flux per area. The radiant intensity Ie of a point source
is defined as

Ie =
dΦe

dω
,

where dω is the element of solid angle as seen from the source and is measured
in watts per steradian. (Note that this does not make sense unless the light
source has negligible extension, since the notion of solid angle depends essen-
tially on the choice of an origin.) The radiant intensity is a function of the
direction as seen from the source. When we integrate it over all directions, we
recover the total flux, Φe =

∫
Iedω. For a source that sheds light uniformly in

all directions, Ie is constant and Φe = 4πIe.
Clearly, the flux density an observer perceives at a distance d from the

source is Ee = Ie/d2.

Radiance

This concept can be adapted to the case of nonpoint light sources, as follows.
Consider a surface S that delimits the source in question—the surface of a
light bulb, say, or a sphere around it. (The light need not be generated on S;
it is the flux through S that concerns us.) If we take an element of the surface,
of area dA, we can regard it as a point source and look at its radiant intensity

444 A Appendix: Radiometry and Photometry

Fig. A.7. Radiance of a light source.

dIe in a certain direction. The ratio dIe/dA is the density of radiant intensity
at the given point of the source surface, in the given direction. Actually, we
must take into account that the area of the surface element as seen from the
chosen direction is not dA, but dA cos θ, where θ is as in Figure A.7. This
leads us to the following definition: the radiance (not to be confused with the
irradiance defined earlier) is

Le =
dIe

dA cos θ
=

d2Φe

dω dA cos θ
.

We stress that this is a function of the chosen point P on the source surface
S and of the chosen direction as seen from P . (In mathematical terms, it is
a function on the unit tangent bundle to S.) Radiance is measured in watts
per square meter per steradian.

Integrating the radiance over the points of the source gives the flux density.
More precisely,

Ee =
∫

S

uP
Le(P, u) cos θ dA

r2
,

where P ranges over the surface S, u is the unit vector in the direction from
P to the observer, θ is the angle between u and the normal to S at P , and
r is the distance from P to the observer. This equation is a generalization of
the earlier formula Ee = Ie/d2 for point sources.

A.1.2 Spectral Distribution

So far we have ignored the fact that light is composed of many wavelengths.
When it is necessary to study the dependency on wavelength, we can define
a spectral version of each of the variables studied above, called a spectral
distribution function. For example, recall that Φe denotes the radiant flux
(through some fixed surface). By writing Φ′

e(λ) dλ for the contribution to this

A.1 Radiometry 445

Fig. A.8. Spectral distribution of a radiometric variable.

flux that has wavelength between λ and λ + dλ, where dλ is an infinitesimal
wavelength, we obtain the spectral distribution of flux Φ′

e(λ). Clearly, we have

Φe =
∫ +∞

−∞
Φ′

e(λ) dλ.

Figure A.8 shows a possible spectral distribution.
The radiometric variables we have introduced are also functions of time,

and some are also functions of position and/or direction, as we have seen.
These dependences are essential in image synthesis and animation. In col-
orimetry, however, we usually concentrate on wavelength dependence.

Black-Body Radiation

Every material emits radiant energy, at a rate that increases rapidly with
the temperature. The spectral distribution of this radiation depends on the
temperature and on the nature of the emitter, but at each frequency and
temperature the radiant flux of a physical body is bounded by a certain limit
predicted by quantum mechanics. A black body is an ideal object that emits
exactly the predicted maximum amount of energy at each temperature. The
radiance of a black body is given by Planck’s equation,

Le(λ) =
2c2h

λ5(ehc/(kTλ) − 1)
,

where T is the temperature (in degrees Kelvin), h = 6.6260755× 10−34 joule-
second is Planck’s constant, c = 2.99792458 × 108 meters per second is the
speed of light, and k = 1.380658 × 10−23 joule per degree is Boltzmann’s
constant. Figure A.9 shows the graph of this function for several temperature
values.

It is possible to construct, for experimental purposes, devices that approx-
imate very well the emission of a black body, at least within a certain range
of frequencies and temperatures.

446 A Appendix: Radiometry and Photometry

Fig. A.9. Spectral distribution of black-body radiance.

Standard Illuminants

Paint manufacturers give fancy names to dozens of shades that mere mortals
would call white. Because the designation “white” is applied so loosely and
subjectively, it is essential (for example, in calibration procedures or in the
specification of color systems) to specify exactly the spectral distribution of
certain colors, taken as standard whites, or standard illuminants. The CIE, or
International Commission on Illumination, defines illuminant A as the spectral
distribution of a black body at 2856◦K; this spectrum can be approximated
by the light of an incandescent tungsten filament. Illuminant B, which cor-
responds approximately to direct solar light, has by definition the spectral
distribution of a black body at 4874◦K, whereas illuminant C has the spec-
tral distribution of a black body at 6774◦K. A number of illuminants attempt
to approximate daylight under different conditions: D55, D65, and D75 corre-
spond to temperatures of 5500◦K, 6500◦K, and 7500◦K, respectively. Finally,
Illuminant E is defined by an ideal source whose spectral distribution is flat
in terms of energy; for this reason it is also called the equal-energy white. The
color of such a source is perceptually the same as that of a black body at
around 6000◦K, but its spectral distribution is of course different.

More details on these illuminants and other standards can be found in the
literature cited in Section A.3.

A.2 Photometric Variables

In photometry our interest shifts from purely physical characteristics of light
to the question of how a human observer perceives light. To a first approxima-
tion, this means that radiometric variables, such as the energy flux reaching
the observer, should be weighted according to the human eye’s sensitivity
to light of that wavelength, which is encoded in the light-efficiency function
V (λ), discussed in Section 4.6. Recall that this function measures the eye’s

A.2 Photometric Variables 447

Fig. A.10. Graph of the light-efficiency function V (λ).

relative sensitivity to each wavelength of the visible spectrum (and is zero
outside the visible range); by convention, it has value 1 at λ = 555 nm, the
wavelength at which sensitivity is maximal. See Figure A.10.

Thus, each radiometric variable has a photometric counterpart. Each ra-
diometric variable defined in the preceding section was denoted by a letter
with the subscript e (for “energy”); the corresponding photometric variable
will be denoted by the same letter, with the e replaced by v (for “visual”).
Each photometric variable is commensurable with its radiometric counter-
part but is traditionally expressed in a different unit, to avoid confusion and
perhaps also because photometry predates radiometry.

Thus, the luminous flux Φv is the photometric counterpart of the radiant
flux Φe. For monochromatic light of wavelength λ, we can write Φv = V (λ)Φe.
For light that is not monochromatic, we need to consider the spectral distri-
bution Φ′

e(λ) of Φe; then the spectral distribution Φ′
v(λ) of Φv is given by

V (λ)Φ′
e(λ), and we can obtain the total luminous flux Φe by integrating over

the visible spectrum. In symbols,

Φv(λ) =
∫ λb

λa

Φ′
v(λ) dλ =

∫ λb

λa

Φ′
e(λ)V (λ) dλ,

where λa and λb are the bounds of the visible spectrum. The luminous flux
is measured in lumens, abbreviated lm; there are approximately 680 lumens
per watt at the wavelength 555 nm, while for an arbitrary wavelength we can
write

1 watt = 680V (λ) lumens.

Integrating radiant flux over time, we obtain radiant energy, which is ex-
pressed in joules. In the same way, integrating luminous flux over time we
obtain luminous energy, which is measured in lumens-second. A lumen-second
is also also called a talbot.

The counterpart of the radiant intensity Ie is the luminous intensity Iv,
measured in candelas (cd). Thus, 1 candela equals one lumen per steradian.

448 A Appendix: Radiometry and Photometry

It is in fact the candela that is taken as the fundamental unit of photometric
magnitudes: by definition, one candela is the luminous intensity in the per-
pendicular direction of a surface of 1/600,000 of a square meter of a blackbody
at the temperature of fusion of platinum (approximately 1773◦C, 2046◦K, or
3223◦F).

The photometric counterpart of irradiance is illuminance, measured in
lumens per square meters. A lumen per square meter is also called a lux (lx).

The photometric counterpart of radiance is luminance, Lv. Luminance is a
photometric variable that corresponds most closely to the notion of brightness
perceived by the eye. It is measured in candelas per square meter.

Other photometric and radiometric variables are used in the literature,
including some that are specifically geared toward computer graphics needs.
Moreover, for the variables discussed here, there are other units in use, the
most important of which is the foot-candle, a unit of illuminance equal to one
lumen per square foot, or 10.7639 lux.

Table 12.1 summarizes the preceding discussion.

Table 12.1. Photometric and radiometric variables.

Radiometric variable Symbol Unit

radiant energy Qe J (joule)
radiant flux Φe W (watt)
irradiance Ee W/m2

radiant intensity Ie W/sr
radiance Le W/sr·m2

Photometric variable Symbol Unit
luminous energy Qv lm·s (talbot)
luminous flux Φv lm (lumen)
illuminance Ev lm/m2 (lux = lx)
luminous intensity Iv lm/sr (candela = cd)
luminance Lv cd/m2 = lx/sr

Example: Spectral Luminance

Consider a light source whose radiance spectral distribution function is known;
let it be C(λ), in units of W/sr·m2. The corresponding luminance distribution
function is therefore

680C(λ)V (λ),

in units of cd/m2. The total luminance of the source can then be computed
by integrating over the visible spectrum:

Lv = 680
∫ λb

λa

C(λ)V (λ) dλ,

in units of cd/m2.

A.3 Comments and References 449

In performing integrals such as this one in practice, we must be aware the
V (λ) is known from tabulated values at a discrete set of points λa = λ0 < λ1 <
· · · < λn = λb. The integral therefore must be approximated numerically; the
simplest method is to use the trapezoid rule, so that

Lv = 680
n∑

i=1

1
2

(
C(λi)V (λi) + C(λi−1)V (λi−1)

)
(λi − λi−1).

Better results can be obtained by using, for example, Gaussian quadrature.

A.3 Comments and References

The purpose of this appendix is simply to give self-contained definitions of the
main variables of interest in radiometry and photometry, such as the lumi-
nance of a color, without interfering with the exposition in Chapter 4. It does
not attempt to be a complete exposition of the subject. In particular, we have
omitted any mention of the illumination equation, which is of fundamental
importance in image synthesis. A concise but good exposition of radiometry
and photometry geared toward computer graphics can be found in (Kajiya
1990).

A comprehensive treatment of radiometry and photometry, describing
physical experiments and including quantitative information on standard il-
luminants, can be found in (Wyszecki and Stiles 1982).

There are whole books devoted to colorimetry and photometry in general;
a good one is (Walsh 1958). The subject is also covered in many optics books,
such as (Klein and Furtak 1986).

References

[Kajiya 1990]Kajiya, J. (1990). Radiometry and photometry for computer
graphics. SIGGRAPH ’90 Course Notes.

[Klein and Furtak 1986]Klein, M. and Furtak, T. (1986). Optics, 2nd ed.
John Wiley and Sons, New York.

[Walsh 1958]Walsh, J. T. (1958). Photometry. Dover, New York.
[Wyszecki and Stiles 1982]Wyszecki, G. and Stiles, W. S. (1982). Color

Science. John Wiley & Sons, New York.

Index

support medium, 417
dot dispersion, 327
three-dimensional image, 137
two-dimensional image, 137

abstraction paradigms, 3, 9
achromatic color point, 98
achromatic line, 98
ACM, 133
acuity visual

angle de, 314
adaptive filter, 32
addition of signals, 32
Adobe Systems, 436
algorithm

Floyd–Steinberg, 330
median cut, 305
populosity, 303

algorithms
cluster ordered dithering, 429
digital halftone, 314

aliasing, 191
and reconstruction, 211
error, 192

alpha channel, 369, 370
alpha-channel compositing, 374
amplitude discretization, 413
analog signal, 18
analog-electronic image, 413
analytic sampling, 195
angle of visual acuity, 314
animation, 410
animation morphing, 411

Antunes, André, VIII

area sampling, 31, 145, 195
atlas

of color, 127

Author
Adelson, E., 185
Anderson, C., 185

Barnsley, Michael, 357
Barsky, Brian, 384
Bayer, B., 342

Beatty, J. C., 436
Bergen, J., 185
Bloomenthal, James, 384

Burt, P., 185
Buzo, A., 311
Carpenter, Loren, 384

Catmull, Edwin, 184, 436
Clark, R., 357
Cole, A., 343

Cook, Rob, 184
Costa, Bruno, 215, 384, 412
Cowan, W. B., 436

Crow, Frank, 215
Darsa, Lucia, 215, 384, 412
Daubechies, Ingrid, 185

Davidson, J., 184
DeMarsh, LeRoy, 435
Dubois, Eric, 216

Duff, Tom, 384
Fishkin, K. P., 384
Fiume, Eugene, 215, 311, 384

Floyd, R., 342
Foley, James, 133

451

452 Index

Fournier, Alan, 384
Furtak, Thoms, 449
Geist, R., 343
Giorgianni, Edward, 435
Glassner, Andrew, 215
Gomes, Jonas, 215, 343, 412
Gonzalez, R., 145
Gotsman, C., 343
Gray, R., 311
Greenberg, Donald, 133
Grey, F., 215
Hall, Roy, 134, 184, 435
Hamill, P., 341
Harada, K., 384
Harmon, L., 341
Haykin S., 358
Heckbert, Paul, 215, 310, 311
Hilbert, David, 334
Hurd, Lyman, 357
Ishizaki, T., 384
Jain, A., 145, 215, 357
Jarvis, J. F., 341
Joblove, G., 133
Judice, C. N., 341
Kajiya, James, 449
Kak, A. C., 435
Kay, David C., 435
Klein, Miles, 449
Knowlton, K., 341
Knuth, Donald, 342
Kurland, M., 342
Lamming, M., 436
Levine, John R., 435
Lim, J. S., 357
Limb, J. O., 341
Linde, Y., 311
Lippel, B., 342
Lloyd, S., 311
Max, J., 311
Mendelsohn, M., 343
Mertz, P., 215
Meyer, Gary, 134
Mitchell, ???, 215
Murray, J. D., 358
Nakamae, E., 384
Neal, M., 343
Netravali, ???, 215
Ninke, W. H., 341
Ogden, J., 185

Ouellette, M., 311
Padgham, C., 134
Pavlidis, Teo, 145
Pavlidis, Theo, 184
Peano, Giuseppe, 332, 334
Peitgen, Heinz-Otto, 357
Perry, B., 343
Planck, Max, 445
Porter, Tom, 384
Portinari, Cândido, 316
Portinari,Cândido, 343
Pratt, W., 145, 357
Resnikoff, H., 357
Reynolds, R., 343
Rhodes, W. L., 436
Ritter, G., 184
Roberts, L., 341
Rogers, David, 133
Rosenfeld, A., 357
Rosenfeld, Azriel, 145, 435
Rudolph, L., 384
Ryper, W. V., 358
Samet, Hana, 311
Sancha, T., 384
Saunders, J., 134
Saupe, D., 357
Serra, 184
Shannon, C., 358
Smith, Alvy Ray, 133
Steinberg, L., 342
Stiles, W. S., 133, 435, 449
Stone, Maureen, 436
Suggs, D., 343
Ulichney, R., 340, 342, 436
Velho, Lucia, 412
Velho, Luiz, 215, 343
Walsh, John, 449
Welch, T., 357
Wilson, J., 184
Winkler, D., 436
Wintz, P., 145
Witten, I., 343
Wolberg, George, 184, 412
Wyszecki, G., 133, 435, 449

Autor
Arvo, James, 9
Bowers, Kenneth, 54
Bracewell, R., 53, 54
Chui, C., 53

Index 453

Crow, Frank, 9
Fishkin, K. P., 100
Fiume, Eugene, 9, 53
Foley, James, 9
Giloi, W., 9
Glassner, Andrew, 9
Gomes, Jonas, 9
Grassmann, H., 98, 100
Hall, Roy, 9
Harrington, Steve, 9
Heckbert, Paul, 9
Kirk, David, 9
Krantz, D. H., 100
Lim, Jae, 54
Lund, John, 54
Machover, C., 9
McCormick, B., 9
Newmann, W., 9
Newton, Isaac, 77, 82
Padgham, C., 100
Paeth, Alan W., 9
Parslow, R., 9
Prince, D., 9
Requicha, 9
Rivlin, R., 9
Rogers, David, 9
Saunders, J., 100
Sproull, R., 9
Stiles, W. S., 100
Sutherland, Ivan, 8
Thalmann, Daniel, 9
Thalmann, Nadia, 9
Van Dam, Andries, 9
Velho, Luiz, 9
Walsh, John, 100
Watt, Alan, 9
Weaver, J., 53, 54
Whitted, Turner, 9
Wolberg, George, 54
Wyszecki, G., 100
Young, Thomas, 82

background, 426
band

spectral, 352
bandlimited, 34
bandpass filter, 34
bandstop filter, 34
Bartlett filter, 169

basis
primary, 83
Shannon, 44, 199, 202

Bayer dithering, 327
BETACAM color system, 123
bilinear interpolation, 202
bitmask, 371
black body, 445
black component, 429
blue screen compositing, 374
Boolean operators

bitwise, 376
bottleneck, 406
box filter, 197, 200
brightness, 126

calibration, 419
cell

dithering, 320
central limit theorem, 202
change of primaries, 104
characteristic function, 365
charts of color, 127
chroma key compositing, 374
chromaticity coordinates, 97
chromaticity diagram, 97

of the CIE-RGB system, 107
of the CIE-XYZ system, 113

chromaticity triangle, 126
chrominance, 92, 94, 96
chrominance plane, 96
chrominance–luminance decomposition,

94
CIE, 88, 91, 131, 446
CIE-RGB color representation system,

88
CIE-XYZ color system, 108
clipping

color, 421, 422
cluster ordered dithering algorithm, 429
clustered dithering, 319
codebook, 293
codeword, 348
coding

two-channel, 353
color

achromatic point, 98
BETACAM system, 123
brightness, 126

454 Index

change of coordinates, 422
chromaticity, 97
chromaticity diagram, 107
chrominance, 92, 94, 96
chrominance–luminance decomposi-

tion of, 94
clipping of, 152
complement, 115
composite video systems, 124
computer graphics, 106
conversion between systems, 104
digital video system, 123
discretization, 293
dominant wavelength, 125
gamma correction, 121
histogram, 299
hue, 126
lightness, 117, 129
lookup table, 418
luminance, 92–94, 108, 126
mathematical models of, 79
metamerism, 81, 98
normalized coordinates, 86
palette, 301
physical universe of, 76
primary, 83
primary components of, 83, 85
quantization, 293, 424
reconstruction of, 86
representation of, 80, 81
specification by coordinates, 126
specification by samples, 127
spectral distribution, 79, 444
system

CIE-RGB, 107
CIE-XYZ, 108
reflective, 80

systems
computational, 106
device, 106
HSV, 127
interface, 106

test light, 90
transformations of, 133
unrealizable, 421
video component systems, 122
visible, 95

color atlas, 127
color charts, 127

color clipping, 421, 422
color correction, 421
color cube, 128
color depth, 139
color formation, 76

additive process of, 77, 78
by pigmentation, 77
subtractive process of, 77

color images, 429
color interface systems, 125
color management systems, 127
color map, 95
color matching

Focoltone system, 132
Pantone system, 131
Truematch system, 132

color matching experiments, 90
color matching function, 87
color model of Hering, 91
color model of Young-Helmholtz, 88, 91
color quantization, 317
color reconstruction, 86, 431
color reconstruction function, 87
color representation

system
CIE-RGB, 88

color resolution, 132, 139, 415, 416
color separation, 430, 433
color solid, 95
color space, 82
color space of the human eye, 82
color systems

changing between RGB and CMY,
119

changing between RGB and XYZ,
110

changing between systems, 104, 133
CIE-Lab, 116
CIE-Luv, 116
CIE-RGB, 133
CIE-XYZ, 133
CMY, 429
CMYK, 430
comparison of RGB and XYZ, 108
complementary, 115
component video, 120
computational, 106, 132
definition, 103
device, 106, 117

Index 455

Focoltone, 132
HSL, 129
HSV, 422
interface, 106, 125
mHsL, 133
mHSV, 133
mRGB, 117
Munsell, 129
NTSC, 298
offset printing, 429
Ostwald, 131
Pantone, 131
perceptually uniform, 116
RGB of the monitor (mRGB), 117
spectral, 132
standard, 103, 106
Truematch, 132
uniform, 116
video component, 122
YUV, 298

colorimetry, 78
colorspecification systems, 126
comb function, 40
complementary color systems, 115
component video, 120
components

primary, 85
composite video systems, 124
compositing, 366

alpha-channel, 374
atop, 381
blue screen, 374
chroma key, 374
clear, 383
inside, 380
outside, 380
over, 378
set, 383
with bitmasks, 376
xor, 382

composition
background, 366
foreground, 366
with depth, 367

compression
by approximation, 350
by discretization, 351
by subbands, 353
by subsampling, 352

by transformation of the model, 352
irreversible, 350
lossless, 350
lossy, 350
reversible, 350

computational color systems, 132
computational systems, 106
computer graphics

definition, 1
history, 9
relation with other areas, 2
systems of color in, 106

computer vision, 3
continuous image, 137
continuous signal, 14, 18
contraction, 389
convolution, 33, 156

discrete, 47
discrete domain, 159
no domain discrete, 158
one-dimensional, 158
two-dimensional, 159
with symmetic mask, 161

coordinates
of chromaticity, 97

CORE, 9, 133
correction gamma, 152
cosine transform, 26
Costa, Bruno, VIII
cross rendering, 420
CRT device, 418
cube

of color, 128
cube RGB, 117
curve

Hilbert, 334
space-filling, 334

curves
Peano, 332, 334

Darsa, Lucia, VIII
data processing, 2
decoding, 14, 15
decomposable warp map, 404
delta

Dirac, 80, 88
Dirac function, 21

deterministic dithering, 315
device systems, 106

456 Index

diagram
of chromaticity, 97

diffeomorphism, 388
difference of gaussians, 184
digital camera, 426
digital halftone algorithms, 314
digital image, 135, 140
digital images, 139, 413
digital signal, 18
digital topology, 141
digital video color system, 123
Dirac delta, 80, 88
Dirac delta function, 21
discrete convolution, 47
discrete signal, 14
discretization, 14

amplitude, 413
bitmask, 371
de color, 293
of images, 139
of the alpha channel, 370
of the kernel of a filter, 157
of the opacity of the pixel, 370
spatial, 413
spectral, 413
time, 414

dispersed dithering, 319
display devices, 144
display models, 422
distribution

Gibbs, 310
spectral, 444

dithering, 298, 424
dot dispersion, 327
Bayer, 327
by random modulation, 317
cell, 325
cluster ordered, 429
clustered, 319
deterministic, 315
dispersed, 319
Floyd–Steinberg, 330
nonperiodic, 319
ordered, 320

clustered, 322
periodic, 319
point diffusion, 342
quantization and, 331
screen resolution, 325

statistic, 315
with Peano curves, 332

dithering cell, 320, 325
dithering matrix, 321
dominant wavelength, 125
dot pitch, 416
dots per inch, 416
Dreux, Marcelo, VIII
dual lattice, 143
dye, 77

edge enhancement, 179
electronic publishing, 426
ellipse

MacAdam, 116
encoded signals, 14
encoding, 14, 15

adaptive, 348
bit rate, 348
entropy, 347
Huffman, 349, 357
LZW, 357
run-length, 346, 357
uniform, 348

entropy, 347
equal-energy white, 446
equation

illumination, 449
Planck’s, 445

exact reconstruction, 196
exact representation, 28
expansion, 389
experiments

color matching, 90
eye

human
color space model of, 82

fast Fourier transform, 54
Figueiredo, Luiz Henrique de, VIII
filter

adaptative, 32
adaptive, 155
bandpass, 34
bandstop, 34
Bartlett, 169
binomial, 174
box, 166, 197, 200
classification, 150

Index 457

convolution, 156
cutoff frequency, 188
deterministic, 150
discrete, 157
finite impulse response, 34, 156
FIR, 34, 156
function of transfer, 156
gaussian, 173
geometric, 423
highpass, 34
IIR, 34, 156
kernel of, 33, 156
laplacian, 176
linear, 32, 150, 156, 201
mask of, 158
morphological, 152
nonlinear, 150
of amplitude, 150, 151, 424
of dilation, 152
of erosion, 152
of the median, 151
of the mode, 151
of warping, 152
polynomial, 200
reconstruction, 204
reconstruction problems, 204
response of impulse, 155
separable, 156
signal, 32
spatially invariant, 32, 155, 156
statistic, 150, 151
topological, 150, 151
triangular, 169
unit gain, 189
warping, 388

filtering, 149
and reconstruction, 188
and computer graphics, 149
and mapping, 150
and postprocessing, 150
and visualization, 150
computational considerations, 162
examples, 166
extension of the domain, 162

filters
morphing, 387
warping, 387

finite Fourier transform, 53
finite impulse response, 156

finite impulse response filter, 34
finite representation, 28
Floyd–Steinberg algorithm, 330
Focoltone color system, 132
formats

image, 415
Fourier sampling, 30
Fourier transform, 24, 33
frame buffer, 414
frame grabber, 426
frequency

cutoff, 35, 188
leak, 204

frequency cutoff, 35
frequency of photon, 76
function

characteristic, 365
color matching, 87
color reconstruction, 86, 87
image, 137
of light-efficiency, 109
of point spread, 155
of transfer, 156
opacity, 368
physical reconstruction, 424
reconstruction, 105

of the CIE-XYZ system, 113
relative light-efficiency, 92
response of impulse, 155
spectral distribution, 79, 444
spectral response, 80
spread, 416
transfer, 34

gamma correction, 121, 418
gamut transformation, 420
gaussian, 202
gaussian filter, 173
gaussian pyramid, 355
GCR, 434
geometric resolution, 139, 415
Gibbs distribution, 310
GIF, 415
Gilchrist, Martin, VIII
Goldenstein, Siome, VIII
graphics devices

resolution, 416
Grassman laws, 98
Grassmann laws, 100

458 Index

gray component replacement, 434
grayscale images, 296

Hering color model, 91
high-frequency region, 34
highpass filter, 34
Hilbert curve, 334
histogram, 299

equalization, 304
homeomorphism, 388
homothety, 389
horizontal resolution, 138, 415
horizontal shear, 405
HSL system, 129
HSV system, 127
hue, 126

Iório, Valéria, VIII
illuminance, 448
illuminants

CIE, 446
standard, 446

illumination equation, 449
image

three-dimensional, 137
two-dimensional, 137
abstraction levels, 135, 136
algebra of, 184
aliasing, 211
analog-electronic, 413
arithmetic operations, 147
aspect ratio of, 414
bilevel, 140
binary operation, 148
bitmap, 140, 357
bitmask, 371
Boolean operators, 376
components, 140
compositing, 366
compression, 294, 357
connectivity, 142
continuous, 137, 138
continuous-continuous, 140
continuous-quantized, 140
cross-dissolving, 363
density of resolution, 139
digital, 139, 140, 413
discrete, 138
discrete-continuous, 140

discrete-quantized, 140
display, 294, 416
dissolving, 363
encoding, 345
filtering, 149
format

matrix, 138
functional model, 145
gamut, 140, 415
grayscale, 140
histogram, 299
local operation, 148
matrix representation, 414
mixing, 363
morphology, 152
multiscale representation, 356
operation, 147
optical, 413
pixel, 138
point operations, 148
quantization, 293
reconstruction, 211, 392
reconstruction of, 188
resampling, 392
resolution, 138
resolution density, 314
set of values of, 137
spatial model, 136
spectral band, 352
structures pyramid, 185
support of, 137
unary operation, 148

image color gamut, 137
image discretization, 139
image file format, 415
image formats, 415
image function, 137
image processing, 3
image system, 413
IMPA, VII
impulse response, 33
impulse signal, 16
interface systems, 106
interference between screens, 433
interpolation

bilinear, 202
ISO, 1, 357
isometry, 389
isotropic scaling map, 389

Index 459

jnd metric, 116
JPEG, 123, 357

K-D tree, 311
kernel of a filter, 33

laplacian pyramid, 354
laser printer, 418
lattice, 37

vertice of, 37
laws

of Grassman, 100
of Grassmann, 98

Levy, Silvio, VIII
light filter, 77
light-efficiency function, 109
lightness, 117
limit

fundamental encoding, 348
Nyquist, 43

line
achromatic, 98
of zero luminance, 96
purple, 107

line art, 417, 426
linear representation, 28
lookup table, 418
lossless encoding, 15
lossy encoding, 15
low-frequency region, 34
lowpass

filter, 34
lowpass filter, 34
lpi (lines per inch), 325
lumen, 447
luminance, 91–94, 126, 298, 448

and brightness, 126
of an image, 148
of the system CIE-RGB, 108

luminance overflow, 421
luminous flux, 447
luminous intensity, 447
LZW, 357

MacAdam ellipse, 116
Mach bands, 297
map

color, 95
maps

isotropic scaling, 389
proportional scaling, 389
tone, 417

mask
definition, 158
of the filter box, 167
of the gaussian filter, 173
of the laplacian filter, 177
one-dimensional Bartlett, 170
two-dimensional Bartlett, 171

matrix
dithering, 321

matrix representation of a digital image,
414

maximum norm, 142
Maxwell plane, 96
Maxwell triangle, 96, 117
median, 304
metamerism

of color, 98
metamerism of color, 81
metric

jnd, 116
perceptual, 116, 299

mHSL color system, 133
mixing images, 363
model

of the color space of the human eye,
82

moiré pattern, 208, 209, 433
monitor RGB system, 117
monochrome images, 428
morphing, 387, 407

animation, 411
morphing transmformations, 408
morphology, 152

dilation, 152, 153
element structural, 152
erosion, 152

MPEG, 123, 357
multimedia, 121
multiplication of signals, 32
Munsell system, 129

ninomial filter, 174
norm

maximum, 142
of the sum, 142

normalized coordinates of color, 86

460 Index

Nyquist limit, 43

OCR, 426
offset printing, 417, 427
opacity function, 368
operation on signals, 32
operations with images

binary, 148
definition, 147
local, 148
point, 148
unary, 148

optical character recognition, 426
optical image, 413
ordered dithering, 320
Ostwald color system, 131
overflow

luminance, 421
overlaying, 367

Pantone Color Matching System, 131
Pantone color system, 131
partition of unity, 362
pattern

moiré, 208
patterns

moiré, 209
moiré, 433

PCX, 415
Peano curves, 332, 334
perceptual metric, 16, 116
perceptually congruent subsets, 441
perceptually uniform color systems, 116
PhotoCD, 415
photometry, 78, 439
photons, 76
Photoshop (Adobe software), 436
phototypesetters, 427
physical universe of color, 76
pigment, 78
pixel, 138

aspect ratio of, 414
density of, 416
depth, 141
dpi, 416
geometry, 372, 415
opacity, 141
shape, 142
shape of, 144

size, 416
pixel enumeration, 333
Planck’s constant, 76
Planck’s equation, 76, 445
plane

of chrominance, 96
of Maxwell, 96

point
achromatic

of color, 98
point diffusion, 342
point sampling, 28, 35, 194
point spread function, 155
populosity algorithm, 303
primaries

change of, 104
primary basis, 83
primary color, 83
primary components, 83, 85
primary components of color, 85
printers, 427
process color, 431
Projeto Portinari, 343
proportional scaling map, 389
pseudometric, 17
pulse signal, 20
purity, 126
purple line, 107
pyramid

gaussian, 355
laplacian, 354

quantization, 18, 138, 424
N -bit, 293
adaptive, 301
and perception, 296
average quantization error, 315
block, 294
by direct selection, 303
by recursive subdivision, 303
by relaxation, 309, 311
cell, 295
codebook, 293
contour, 296
dithering, 298, 428
dithering and, 331
error, 299
histogram equalization, 304
level, 295

Index 461

local quantization error, 315
median cut, 305, 310
noise, 299
nonuniform, 301
optimal, 308
populosity, 303
por relaxation stochastic, 310
scalar, 293
two-level, 294, 317
unidimensional, 293
uniform, 300
value, 295
vector, 294

radian, 440
radiant energy, 439
radiometry, 439
random modulation, 317
reconstruction, 14, 196

and aliasing, 211
and moiré, 208
exact, 19
ideal, 19
problems of, 204
truncation error, 199

reconstruction function, 105
reconstruction functions

of the CIE-XYZ system, 113
region

high frequency, 34
low frequency, 34

relative light-efficiency function, 92
representation, 27

exact, 28
finite, 28
linear, 28
matrix, 157
space, 28

representation of color, 80, 81
resampling, 392
resolution

color, 139, 415
density, 314
density of, 139
depth, 139
dots per inch (dpi), 139, 314
geometric, 139, 415
horizontal, 138, 415
lines per inch, 325

lpi (lines per inch), 325
of color, 132
pixels per inch (ppi), 139, 314
screen, 325
spatial, 138, 415
vertical, 138, 415

resolution density, 139
response of impulse, 155
RGB cube, 117
Riemann sum, 88
ringing, 200
Roma, Paulo, VIII
rotation in two steps, 406

sample, 36
sampling, 18

analytic, 195
area, 31
Fourier, 30
of area, 194, 195
point, 28, 35, 194
resampling, 392
supersampling, 194
uniform, 37

sawtooth signal, 24
scaling, 389
scanner, 426
separable warp map, 404
sha function, 40
Shannon basis, 44, 199, 202
Shannon–Whittaker sampling theorem,

44
Shannon–Whittaker theorem, 54

extension, 44
Shannon-Whittaker theorem, 352
shear

horizontal, 405
vertical, 405

SIGGRAPH, 9
signal

analog, 18
bandlimited, 34, 191
continuous, 14, 18
digital, 18
discrete, 14
encoded, 14
impulse, 16
model functional, 15
pulse, 20

462 Index

sawtooth, 24
spatial model, 19
spectral model, 19
stochastic model, 15

signal filter, 32
signal representation, 27
signal space, 15
signals

addition of, 32
multiplication of, 32
operation on, 32

Sketchpad, 8
solid angle, 440
SONY, 123
space domain, 19
space-filling curve, 332, 334
spatial discretization, 413
spatial resolution, 138, 415
spatially invariant filter, 32
specification by coordinates, 126
specification by samples, 127
spectral band, 352
spectral color space, 80
spectral color systems, 132
spectral discretization, 413
spectral distribution, 79
spectral distribution function, 79, 444
spectral response function, 80
spectrum

spectral color, 79
spectral color space, 80
spectral distribution, 79
spectrophotometer, 79
visible range, 76

spike train, 40
spot color, 431
spread function, 416, 424
standard color systems, 103
standard illuminants, 446
standard systems, 106
statistic dithering, 315
steradian, 442
subsets

perceptually congruent, 441
sum

Riemann, 88
sum norm, 142
supersampling, 145, 194
support, 21

of the image, 137
systems

color management, 127
color specification, 126
HSV, 127

talbot, 447
test light color, 90
Theorem

source coding, 348
theorem

central limit, 172, 202
sampling, 214
Shannon–Whittaker, 44, 54

extension, 44
Shannon-Whittaker, 188, 191, 199,

214
TIFF, 415
time discretization, 414
time domain, 19
tone map, 417
transfer function, 34
transform, 33

cosine, 26
definition, 148
fast Fourier, 54, 149
Fourier, 24, 33
Fourier finite, 53
of Fourier, 156
wavelet, 26
window Fourier, 26

transformation
n-parameter families of, 409
direct, 401
gamut, 420
in two steps, 406
inverse, 403
morphing, 408
of gamut, 152
rotation, 406
separable, 404

triangle
Maxwell, 117
of chromaticity, 126
of Maxwell, 96

Truematch color system, 132

UCR, 434
uncertainty principle, 27

Index 463

undercolor removal, 434
uniform color systems, 116
uniform metric, 17
uniform sampling, 37
unrealizable color, 421

velocity of photon, 76
vertex of the lattice, 37
vertical resolution, 138, 415
vertical shear, 405
video camera, 426
video component systems, 122
video monitor, 416, 418
Visgueiro, Solange, VII
visible color, 95
visible spectrum, 76
visual acuity, 314
visual modeling, 3

warp map
decomposable, 404
separable, 404

warping
in the discrete domain, 391
in two steps, 406

morphing, 407
separable, 404
transformation

direct, 401
inverse, 403

zoom, 395
warping filter, 388
warping filters, 387
wavelength, 76
wavelet transform, 26
white

equal-energy, 446
window Fourier transform, 26
workstations, 426

Young-Helmholtz color model, 88, 91

zero luminance
line of, 96

zoom-in
bilinear interpolation, 397
with box filter, 395
with the Bartlett (triangular) filter,

396
zoom-out, 398

Plate 1. Chromaticity diagram of the CIE-XYZ system (see page 114).

Plate 2. Colors in the additive RGB system (left) and their complements (right)
(see page 116).

Plate 3. Digital color image quantized at 24 bits (see page 302).

Plate 4. Uniform quantization at eight bits (left) and four bits (right) (see page 302).

Plate 5. Populosity algorithm: result of quantization at eight bits (left) and four
bits (right) (see page 303).

Plate 6. Median cut algorithm: result of quantization at eight bits (left) and four
bits (right) (see page 307).

Plate 7. Quantization from 24 to 8 bits, without dithering (left) and with Floyd–
Steinberg dithering (right) (see page 332).

Plate 8. Superimposing a syn-
thetic image on a photograph
(see page 366).

Plate 9. Blue screen and alpha channel (see page 374).

Plate 10. Morphing animation sequence (see page 411).

Plate 11. Reproduction of a color image
(see page 430).

Plate 12. CMYK components of the image of Figure 16.10 (see page 431).

Plate 13. Enlargement of an offset-printed image. (see page 432).

	Cover Page

	Title Page

	Preface
	Contents

	Introduction

	Introduction
	Computer Graphics
	Abstraction Paradigms
	About This Book
	Comments and References

	Signal Theory

	Signal Theory
	Abstraction Paradigms
	Levels of Abstraction

	Mathematical Models for Signals
	Approximation of Signals
	Functional Models and Abstraction Levels
	The Spatial Model
	The Frequency Model

	Linear Representation of Signals
	Existence of Exact Representations

	Operations on Signals
	Filters
	Transforms
	Filtering and Frequencies

	Sampling Theory
	Uniform Point Sampling
	Point Sampling and the Fourier Transform
	The Sampling Theorem
	Extensions of the Sampling Theorem

	Operations in the Discrete Domain
	Discrete Convolution
	The Discrete Fourier Transform

	The Inverse Discrete Transform
	Properties of the DFT

	The Discrete Transform on the Interval [0,A]
	Matrix Representation of the DFT
	The Fast Fourier Transform
	Finite Transform
	Comments and References

	Random Processes

	Random Processes
	Random Variables
	Stochastic Processes
	Point Processes
	Homogeneous Processes with Independence
	Inhomogeneity and/or Dependence

	Comments and References

	Fundamentals of Color

	Fundamentals of Color
	Paradigms in the Study of Color
	The Physical Universe of Color
	Color Formation
	Photometry and Colorimetry

	The Mathematical Universe of Color
	The Representation Universe of Color
	Color Sampling
	Color Reconstruction
	Computation of Primary Components

	CIE-RGB Representation
	Color Matching Experiments

	Luminance and Chrominance
	The Color Solid
	Chromaticity Space

	Grassmann's Laws
	Comments and References

	Color Systems

	Color Systems
	Preliminary Notions
	Changing Between Color Systems
	Color Systems and Computer Graphics
	Standard Color Systems
	The CIE-RGB Standard
	The CIE-XYZ Standard
	Changing Between the CIE-RGB and CIE-XYZSystems
	Complementary Color Systems
	Uniform Color Systems

	Device Color Systems
	The Monitor RGB System
	Monitor-Complementary Systems
	Component Video Systems
	Composite Video Systems

	Color Interface Systems
	The HSV System
	The HSL System
	The Munsell System
	The Pantone System

	Computational Color Systems
	Color Transformations
	Comments and References

	Digital Images

	Digital Images
	Abstraction Paradigms for Images
	The Spatial Model
	Continuous Images
	Image Representation
	Digital Images
	Digital Topology
	Pixel Shape

	Comments and References

	Operations on Images

	Operations on Images
	Arithmetic Operations
	Filters
	Classification
	Morphological Filters
	Spatially Invariant Filters

	Spatially Invariant Linear Filters
	Discrete Filters
	Extending the Domain of the Image

	Examples of Linear Filters
	Edge Enhancement Operations
	Laplacian Addition
	Unsharp Masking
	Difference of Gaussians

	Comments and References

	Sampling and Reconstruction

	Sampling and Reconstruction
	Sampling
	Time-Domain Viewpoint
	Frequency-Domain Viewpoint

	Reconstruction
	Frequency Domain Viewpoint
	Time-Domain Viewpoint

	Aliasing
	Aliasing in Computer-Generated Images

	Reconstruction Problems
	Reconstruction Using a Box Filter
	Analysis of Reconstruction Problems

	Some Classical Reconstruction Filters
	A Study of Reconstruction Problems
	Reconstructing After Aliasing
	A Case Study
	Comments and References

	Multiscale Analysis and Wavelets

	Multiscale Analysis and Wavelets
	The Wavelet Transform
	Inverse of the Wavelet Transform
	Image of the Wavelet Transform
	Filtering and the Wavelet Transform

	The Discrete Wavelet Transform
	Function Representation

	Multiresolution Representation
	Scale Spaces
	Multiresolution Representation
	A Pause to Think

	Multiresolution Representation and Wavelets
	A Pause... to See the Wavescape
	Two Scale Relation

	The Fast Wavelet Transform
	Multiresolution Representation and Recursion
	Two-Scale Relations and Inner Products

	Wavelet Decomposition and Reconstruction
	Decomposition
	Reconstruction

	The Fast Wavelet Transform Algorithm
	Forward Transform
	Inverse Transform
	Complexity Analysis of the Algorithm
	Boundary Conditions

	Images and 2D-Wavelets
	Tensor Product Extension
	The 2D Algorithm

	Comments and References

	Probabilistic Image Models

	Probabilistic Image Models
	Image Formation
	Observed Data
	Histograms and Estimation
	Correlated Observations
	Filtering
	Classes
	Comments and References

	Color Quantization

	Color Quantization
	Quantization Cells
	Quantization and Perception
	Overview of the Quantization Process

	Quantization Error
	Color Frequency Histograms

	Uniform and Adaptive Quantization
	Color Map Quantization
	Test Images

	Adaptive Quantization Methods
	Quantization by Direct Selection
	Quantization by Recursive Subdivision

	Optimization Methods for Quantization
	Optimal One-Dimensional Quantization
	Optimal Quantization by Relaxation
	Optimal Quantization by Simulated Annealing

	Comments and References

	Digital Halftoning

	Digital Halftoning
	Dithering
	Dithering by Random Modulation
	A Classification of Dithering Algorithms

	Periodic Dithering
	Clustered Ordered Dithering
	Dot Dispersion Ordered Dithering

	Pattern Dithering
	Nonperiodic Dithering
	The Floyd--Steinberg Algorithm
	Dithering with Space-Filling Curves

	Comments and References

	Image Compression

	Image Compression
	Image Encoding
	Image Compression
	Compression by Image Model
	Compression by Image Representation

	Compression and Multiscale Analysis
	Two-Channel Encoding
	Multiscale Representation of an Image

	Comments and References

	Combining Images

	Combining Images
	Preliminaries
	Combining Images Algebraically
	Mixing Images

	Combining Images by Decomposing the Domain
	Partitions of Unity and Decompositions
	Image Compositing

	Combining Images in the Discrete Domain
	The Opacity Function
	Discretization and Opacity Function

	Computation of the Opacity Function
	Compositing in the Discrete Domain
	Compositing Using the Alpha Channel
	Compositing Using Bitmasks

	Compositing Operations
	The Overlay Operator
	The Inside Operator
	The Outside Operator
	The Atop Operator
	The Xor Operator
	The Clear Operator
	The Set Operator

	Comments and References

	Warping and Morphing

	Warping and Morphing
	Warping Filters
	Warping in the Continuous Domain
	Expansions and Contractions

	Warping in the Discrete Domain
	Resampling

	Some Examples
	Zooming

	Warping in Practice
	Approximating the Pixel Geometry
	Warping Using the Direct Map
	Warping Using the Inverse Map
	Decomposable Transformations

	Morphing
	Continuous Families of Transformations
	Comments and References

	Image Systems

	Image Systems
	Image Characteristics
	Matrix Representation of a Digital Image
	Pixel Geometry

	Image Display
	Support Media
	Tone Maps
	Calibration

	Cross Rendering
	Gamut Transformations

	Color Correction
	Luminance Overflow
	Unrealizable Colors

	Display Models
	Physical Reconstruction Function

	Electronic Publishing Systems
	Offset Printing

	Comments and References

	Appendix: Radiometry and Photometry

	Appendix: Radiometry and Photometry
	Radiometry
	Radiometric Magnitudes
	Spectral Distribution

	Photometric Variables
	Comments and References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

