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Chapter 1

Electromagnetic field
fundamentals

1.1 Introduction

This chapter starts with a brief review of Maxwell’s equations, which are the
fundamental laws that, together with the theory of electromagnetic behavior
of matter, explain on a macroscopic scale the properties of the electromagnetic
field, the relationships of this field with its sources, and its interaction with
matter. The reader is assumed to be familiar with these equations at least at an
undergraduate level. Next, after reviewing other fundamental topics such as con-
stitutive parameters and boundary conditions, we apply the energy-conservation
law to a bounded volume, limited by a surface S, inside of which there exists a
time-variable electromagnetic field. We shall see that when the energy balance
is formulated, there appears a term representing a flow of energy carried by the
electromagnetic field through the surface S that limits V . This term leads us
to the definition of Poynting’s vector. Similarly, when the law of conservation
of momentum is applied to the same region, we find that the electromagnetic
field also carries a momentum density, which can also be expressed in terms of
Poynting’s vector.

1.2 Review of Maxwell’s equations

The general theory of electromagnetic phenomena is based on Maxwell’s equa-
tions, which constitute a set of four coupled first-order vector partial-differential
equations relating the space and time changes of electric and magnetic fields to
their scalar source densities (divergence) and vector source densities (curl) 1 .

1According to the Helmholtz theorem a vector field �K is uniquely determined by its di-
vergence and curl if they are given throughout the entire space and if they approach zero at
infinity at least as 1/rn with n > 1. A proof of this theorem is given in Appendix ??

3



4 CHAPTER 1. ELECTROMAGNETIC FIELD FUNDAMENTALS

Maxwell’s equations are usually formulated in differential form (i.e., as relation-
ships between quantities at the same point in space and at the same instant in
time) or in integral form where, at a given instant, the relations of the fields
with their sources are considered over an extensive region of space. The two
formulations are related by the divergence (??) and Stokes’ (??) theorems.
For stationary media2, Maxwell’s equations in differential and integral forms

are:
Differential form of Maxwell’s equations

∇ · �D(�r, t) = ρ(�r, t) (Gauss’ law) (1.1a)

∇ · �B(�r, t) = 0 (Gauss’ law for magnetic fields) (1.1b)

∇× �E(�r, t) = −∂
�B(�r, t)

∂t
(Faraday’s law) (1.1c)

∇× �H(�r, t) = �J(�r, t) +
∂ �D(�r, t)

∂t
(Generalized Ampère’s law) (1.1d)

Integral form of Maxwell’s equationsI
S

�D(�r, t) · d�s = QT (t) (Gauss’ law) (1.2a)I
S

�B(�r, t) · d�s = 0 (Gauss’ law for magnetic fields) (1.2b)I
Γ

�E(�r, t) · d�l = −
Z
S

∂ �B(�r, t)

∂t
· d�s (Faraday’s law) (1.2c)I

Γ

�H(�r, t) · d�l =

Z
S

( �J(�r, t) +
∂ �D(�r, t)

∂t
) · d�s (Generalized Ampère’s law)

(1.2d)

Maxwell’s equations, involve only macroscopic electromagnetic fields and,
explicitly, only macroscopic densities of free-charge, ρ(�r, t), which are free to
move within the medium, giving rise to the free-current densities, �J(�r, t). The
effect of the macroscopic charges and current densities bound to the medium’s
molecules is implicitly included in the auxiliary magnitudes �D and �H which are
related to the electric and magnetic fields, �E and �B by the so-called constitutive
equations that describe the behavior of the medium (see Subsection 1.2.2). In
general, the quantities in these equations are arbitrary functions of the position
(�r) and time3 (t). The definitions and units of these quantities are

�E = electric field intensity (volts/meter; V m−1)

2 In a stationary medium all quantities are evaluated in a reference frame in which the ob-
server and all the surfaces and volumes are assumed to be at rest. Maxwell’s equations for
moving media can be considered in terms of the special theory of relativity, as shown in
chapter ??.

3Throughout the book, in most cases, in order to make the notation more concise, we will
not explicitly indicate the arguments, (�r, t), of the magnitudes unless we consider it convenient
to emphasize the dependence on any of the variables.



1.2. REVIEW OF MAXWELL’S EQUATIONS 5

�B = magnetic flux density (teslas4 or webers/square meter; T or Wb m−2)
�D = electric flux density (coulombs/square meter; C m−2)
�H = magnetic field intensity (amperes/meter; A m−1)
ρ = free electric charge density (coulombs/ cubic meter; C m−3)
QT = net free charge, in coulombs (C), inside any closed surface S
�J= free electric current density (amperes/square meter A m−2).
Three of Maxwell’s equations (1.1a), (1.1c), (1.1d), or their alternative inte-

gral formulations (1.2a), (1.2c), (1.2d), are normally known by the names of the
scientists who deduced them. For its similarity with (1.1a), equation (1.1b) is
usually termed the Gauss’ law for magnetic fields, for which the integral formu-
lation is given by (1.2b). These four equations as a whole are associated with
the name of Maxwell because he was responsible for completing them, adding
to Ampère’s original equation, ∇× �H(�r, t) = �J(�r, t), the displacement current
density term or, in short, the displacement current, ∂ �D/∂t, as an additional
vector source for the field �H. This term has the same dimensions as the free
current density but its nature is different because no free charge movement is
involved. Its inclusion in Maxwell’s equations is fundamental to predict the ex-
istence of electromagnetic waves which can propagate through empty space at
the constant velocity of light c. The concept of displacement current is also fun-
damental to deduce from (1.1d) the principle of charge conservation by means
of the continuity equation

∇ · �J = −∂ρ
∂t

(1.3)

or, in integral form, I
�J.d�s = −dQT

dt
(1.4)

With his equations, Maxwell validated the concept of "field" previously in-
troduced by Faraday to explain the remote interactions of charges and currents,
and showed not only that the electric and magnetic fields are interrelated but
also that they are in fact two aspects of a single concept, the electromagnetic
field.
The link between electromagnetism and mechanics is given by the empirical

Lorenz force equation, which gives the electromagnetic force density, �f (in N
m−3), acting on a volume charge density ρ moving at a velocity �u (in m s−1)
in a region where an electromagnetic field exists,

�f = ρ(�E + �u× �B) = ρ �E + �J × �B (1.5)

where �J = ρ�u is the current density in terms of the mean drift velocity of the
particles5 , which is independent of any random velocity due to collisions. The

4Given that the tesla is an excessivelly high magnitude to express the values of the magnetic
field usually found in practice, the cgs unit (gauss, G) is often used instead, 1T = 104G.

5 In general, when there is more than one type of particle the current density its defined
as �J = i ρi�ui where ρi and �ui represent the volume charge density and drift velocity of the
charges of class i.
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total force �F exerted on a volume of charge is calculated by integrating �f in this
volume. For a single particle with charge q the Lorentz force is

�F = q(�E + �u× �B) (1.6)

Maxwell’s equations together with Lorenz’s force constitute the basic mathe-
matical formulation of the physical laws that at a macroscopic level explain and
predict all the electromagnetic phenomena which basically comprise the remote
interaction of charges and currents taking place via the electric and/or magnetic
fields that they produce. From Eq. (1.6) the work done by an electromagnetic
field acting on a volume charge density ρ inside a volume dv during a time
interval dt is

dW = �f · �udtdv = ρ(�E + �u× �B) · �udtdv = ρ �E · �udtdv = �E · �Jdtdv (1.7)

This work is transformed into heat. The corresponding power density Pv (
Wm−3) that the electromagnetic field supplies to the charge distribution is

Pv =
dP

dv
=

dW

dtdv
= �E · �J (1.8)

This equation is known as the point form of Joule’s law.
In applications, Maxwell’s equations have to be complemented by appropri-

ate initial and boundary conditions. The initial conditions involve values or
derivatives of the fields at t = 0, while the boundary conditions involve the
values or derivatives of the fields on the boundary of the spatial region of inter-
est. Usually, we consider the initial conditions as a form of boundary conditions
and refer to the solution of Maxwell´s equations, with all these conditions, as a
boundary-value problem.
Next, we briefly describe the physical meaning of Maxwell’s equations.

1.2.1 Physical meaning of Maxwell’s equations

Gauss’ law, (1.1a) or (1.2a), is a direct mathematical consequence of Coulomb’s
law, which states that the interaction force between electric charges depends on
the distance, r, between them, as r−2. According to Gauss’ law, the divergence
of the vector field �D is the volume density of free electric charges which are
sources or sinks of the field �D, i.e. the lines of �D begin on positive charges
(ρ > 0) and end on negative charges (ρ < 0). In its integral form, Gauss’
law relates the flux of the vector �D through a closed surface S (which can be
imaginary; Fig. 1.1), to the total free charge within that surface.
Gauss’ law for magnetic fields, (1.1b) or (1.2b), states that the �B field does

not have scalar sources, i.e., it is divergenceless or solenoidal. This is because
no free magnetic charges or monopoles have been found in nature (see Section
2.5) which would be the magnetic analogues of electric charges for �E. Hence,
there are no sources or sinks where the field lines of �B start or finish, i.e., the
field lines of �B are closed. In its integral form, this indicates that the flux of
the �B field through any closed surface S is null.
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Γ

Figure 1.1: (a) Closed surface S bounding a volume V . (b) Open surface S bounded by the

closed loop Γ. The direction of the surface element d�S is given by the right-hand rule: the

thumb of the right hand is pointed in the direction of d�S and the fingertips give the sense of the

line integral over the contour Γ. ¡¡ ¡Atención: las d�S debe ser d�s

Faraday’s law, (1.1c) or (1.2c), establishes that a time-varying �B field pro-
duces a nonconservative electric field whose field lines are closed. In its integral
form, Faraday’s law states that the time variation of the magnetic flux (

R
�B ·d�s)

through any surface S bounded by an arbitrary closed loop Γ, (Fig. 1.1), in-
duces an electromotive force given by the integral of the tangential component
of the induced electric field around Γ. The line integration over the contour Γ
must be consistent with the direction of the surface vector d�s according to
the right-hand rule. The minus sign in (1.1c) and (1.2c) represents the feature
by which the induced electric field, when it acts on charges, would produce an
induced current that opposes the change in the magnetic flux (Lenz’s law).

Ampère’s generalized law, (1.1d) or (1.2d), constitutes another connection,
different from Faraday’s law, between �E and �B. It states that the vector sources
of the magnetic field may be free currents, �J, and/or displacement currents,
∂ �D/∂t. Thus, the displacement current performs, as a vector source of �H, a
similar role to that played by ∂ �B/∂t as a source of �E. In its integral form the
left-hand side of the generalized Ampere’s law equation represents the integral
of the magnetic field tangential component along an arbitrary closed loop Γ
and the right-hand side is the sum of the flux, through any surface S bounded
by a closed loop Γ (Fig. 1.1 ), of both currents: the free current �J and the
displacement current ∂ �D/∂t.
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1.2.2 Constitutive equations

Maxwell’s equations (1.1) can be written without using the artificial fields �D

and �H, as

∇ · �E(�r, t) =
ρall
ε0
(�r, t) (1.9a)

∇ · �B(�r, t) = 0 (1.9b)

∇× �E(�r, t) = −∂
�B(�r, t)

∂t
(1.9c)

∇× �B(�r, t) = μ0 �Jall(�r, t) + μ0ε0
∂ �E(�r, t)

∂t
(1.9d)

where ε0 = 10−9/(36π) (farad/meter; F m−1) and μ0 = 4π10
−7 (henry/meter;

H m−1) are two constants called electric permittivity and magnetic permeability
of free space, respectively. The subscript all indicates that all kinds of charges
(free and bound ) must be individually included in ρ and �J. These equations
are, within the limits of classical electromagnetic theory, absolutely general.
Nevertheless, in order to make it possible to study the interaction between an
electromagnetic field and a medium and to take into account the discrete nature
of matter, it is absolutely necessary to develop macroscopic models to extend
equations (??) and (??) and to obtain Maxwell’s macroscopic equations (1.1),
in which only macroscopic quantities are used and in which only the densi-
ties of free charges and currents explicitly appear as sources of the fields. To
this end, the atomic and molecular physical properties, which fluctuate greatly
over atomic distances, are averaged over microscopically large-volume elements,
∆v, so that these contain a large number of molecules but at the same time
are macroscopically small enough to represent accurate spatial dependence at a
macroscopic scale. As a result of this average, the properties of matter related
to atomic and molecular charges and currents are described by the macroscopic
parameters, electric permittivity ε, magnetic permeability μ, and electrical con-
ductivity σ. These parameters, called constitutive parameters, are in general
smoothed point functions. The derivation of the constitutive parameters of a
medium from its microscopic properties is, in general, an involved process that
may require complex models of molecules as well as quantum and statistical
theory to describe their collective behavior. Fortunately, in most of the practi-
cal situations, it is possible to achieve good results using simplified microscopic
models. Appendices ?? and ?? present a brief introduction to the microscopic
theory of electric and magnetic media, respectively.

To define the electric permittivity and describe the behaviour of the electric
field in the presence of matter, we must introduce a new macroscopic field
quantity, �P (C m−2), called electric polarization vector, such that

�D = ε0 �E + �P (1.10)
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and defined as the average dipole moment per unit volume

�P = lim
∆v→0

PN∆v
n=1 �pn
∆v

(1.11)

where N is the number of molecules per unit volume and the numerator is
the vector sum of the individual dipolar moments, �pn, of atoms and molecules
contained in a macroscopically infinitessimal volume ∆v. For many materials,
called linear isotropic media, �P can be considered colinear and proportional to
the electric field applied. Thus we have

�P = ε0χe �E (1.12)

where the dimensionless parameter χe, called the electric susceptibility of the
medium, describes the capability of a dielectric to be polarized. Expression
(1.10) can be written in a more compact form as

�D = (1 + χe)ε0 �E (1.13)

so that
�D = ε0εr �E = ε �E (1.14)

where
εr = 1 + χe (1.15)

and
ε = ε0εr (1.16)

are the relative permittivity and the permittivity of the medium, respectively.
To define the magnetic permeability and describe the behaviour of the mag-

netic field in the presence of magnetic materials, we must introduce another
new macroscopic field quantity, called magnetization vector �M (A m−1), such
that

�H =
�B

μ0
− �M (1.17)

where �M is defined, in a similar way to that of the electric polarization vector,
as the average magnetic dipole moment per unit volume

�M = lim
∆v→0

PN∆v
n=1 �mn

∆v
(1.18)

where N is the number of atomic current elements per unit volume and the
numerator is the vector sum of the individual magnetic moments, �mn contained
in a macroscopically infinitessimal volume ∆v.
In general, �M is a function of the history of �B or �H, which is expressed

by the hysteresis curve. Nevertheless, many magnetic media can be considered
isotropic and linear, such that

�M = χm �H (1.19)



10 CHAPTER 1. ELECTROMAGNETIC FIELD FUNDAMENTALS

where χm is the adimensional magnetic susceptibility magnitude, being negative
and small for diamagnets, positive and small for paramagnets, and positive and
large for ferromagnets. Thus

�B = (1 + χm)μ0 �H = μrμ0 �H = μ �H (1.20)

where
μr = (1 + χm) (1.21)

and
μ = μrμ0 (1.22)

are the relative magnetic permeability and the permeability of the medium,
respectively, which can reach very high values in magnetic materials such as
iron and nickel.
The concept of μr requires a careful definition when working with magnetic

materials with strong hysteresis, such as ferromagnetic media. The phenomenon
of hysteresis may also occur in certain dielectric materials called ferroelectric (see
Appendix ??).
In a vacuum, or free space, εr = 1; μr = 1, and therefore the fields vectors

�D and �E, as well as �B and �H, are related by

�D = ε0 �E (1.23a)
�B = μ0 �H (1.23b)

Very often the relation between an electric field and the conduction current
density �Jc that it generates is given, at any point of the conducting material,
by the phenomenological relation, called Ohm’s law

�Jc = σ �E (1.24)

so that �J is linearly related to �E trough the proportionality factor σ called the conductivity of the

medium. Conductivity is measured in siemens per meter (S m−1 ≡ Ω−1m−1) or mhos per
meter (mho m−1). Media in which (1.24) is valid are called ohmic media. A
typical example of ohmic media are metals where (1.24) holds in a wide range
of circumstances. However, in other materials, such as semiconductors, (1.24)
it may not be applicable. For most metals σ is a scalar with a magnitude that depends on

the temperature and that, at room temperature, has a very high value of the order of 107mho

m−1.Then very often metals are considered as perfect conductors with an infinite conductivity.

The relations between macroscopic quantities, (1.13), (1.20) and (1.24), are called constitutive

relations. Depending on the characteristics of the constitutive macroscopic parameters ε, μ and

σ, which are associated with the microscopic response of atoms and molecules in the medium, this
medium can classified as:

Nonhomogeneous or homogeneous: according to whether or not the constitutive parameter of

interest is a function of the position, ε = ε(�r), μ = μ(�r), or σ = σ(�r).
Anisotropic or isotropic: according to whether or not the response of the

medium depends on the orientation of the field. In isotropic media all the
magnitudes of interest are parallel, i.e., �E and �D; and/or �E and �Jc; and/or
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�B and �H. In anisotropic materials the constitutive parameter of interest is a
tensor (see Chapter ??)
Nonlinear or linear: according to whether or not the constitutive parameters

depend on the magnitude of the applied fields. For instance ε(E), μ(H) or σ(E)

en general función de �E y �B??

Time-invariant: if the constitutive parameters do not vary with time ε 6=
ε(t), μ 6= μ(t) or σ 6= σ(t)

Dispersive: according to whether or not, for time-harmonic fields, the con-
stitutive parameters depend on the frequency, ε = ε(ω), μ = μ(ω) or σ = σ(ω).
The materials in which these parameters are functions of the frequency are
called dispersive6.
Magnetic medium: if μ 6= μ0. Otherwise the medium is called nonmagnetic

because its only significant reaction to the electromagnetic field is polarization.
Fortunately, in many cases the medium in which the electromagnetic field ex-

ists can be considered homogeneous, linear and isotropic, time-invariant, nondis-
persive and nonmagnetic. Indeed, this assumption is not very restrictive since
many electromagnetic phenomena can be studied using this simplification. In
fact, even practical cases of the propagation of electromagnetic waves through
nonlinear media (semiconductors, ferrites, nonlinear crystals, etc.) are analysed
with linear models using the so-called small-signal approach. Most of this
book concerns homogeneous, linear, isotropic and nonmagnetic media, except
in Chapter ?? where anisotropic and magnetic materials (ferrites) are consid-
ered.
The effect of the properties of a medium on the macroscopic field can be

emphasized by expressing �E and �B in Maxwell’s equations (1.1a) and (1.1d) by
(1.10) and (1.17). Thus we have

∇ · �E =
ρall
ε0

=
1

ε0

³
ρ−∇ · �P

´
(1.25a)

∇× �B = μ0 �Jall + μ0ε0
∂ �E

∂t
= μ0( �J +

∂ �P

∂t
+∇× �M) + ε0μ0

∂ �E

∂t
(1.25b)

6Eqs (1.12), (1.19) and (1.24) are strictly valid only for nondispersive media Effectively, for
example, because of the dependence of the electric permittivity with frequency we generally have
�P (ω) = ε0χe(ω)

�E(ω). Thus, according to the convolution theorem, for arbitrary time dependence
this expression becomes

�P (t) = ε0
t

−∞
χe(t− t0)�E(t0)dt0

Similarly for magnetization and Ohms’ law we have

�M(t) =
t

−∞
χm(t− t0) �H(t0)dt0

�J(t) =
t

−∞
σ(t− t0)�E(t0)dt0

These expressions indicate that, as for any physical system, the response of the medium to an
applied field is not instantaneous.
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In (1.25a) we have explicitly as scalar sources of �E both the free charge ρ
and the polarization or bounded density of charge, −∇ · �P . Then in (1.9a) we
have

ρall = ρ−∇ · �P (1.26)

Similarly, in (1.25b), we have, explicitly as vector sources of �B, besides the free current density
�J ( which includes the conduction current density �Jc = σ �E), the polarization current
∂ �P/∂t (which results from the motion of the bounded charges in dielectrics), the
displacement current in the vacuum, ε0∂ �E/∂t and the magnetization current,
∇ × �M (which takes place when a non-uniformly magnetized medium exists).
Then in (1.9d) we have

�Jall(�r, t) = �J +
∂ �P

∂t
+∇× �M (1.27)

In the following we will assume that there is no magnetization current.

1.2.3 Boundary conditions

As is evident from (1.1a)-(1.1d) and (1.13), (1.20), (1.24), in general the fields
�E, �B, �D and �H are discontinuous at points where ε, μ and σ also are. Hence
the field vectors will be discontinuous at a boundary between two media with
different constitutive parameters.
The integral form of Maxwell’s equations can be used to determine the

relations, called boundary conditions, of the normal and tangential components
of the fields at the interface between two regions with different constitutive
parameters ε, μ and σ where surface density of sources may exist along the
boundary.
The boundary condition for �D can be calculated using a very thin, small pill-

box that crosses the interface of the two media, as shown in Fig. 1.2. Applying
the divergence theorem7 to (1.1a) we have

I
�D.d�s =

Z
Base 1

�D1.d�s+

Z
Curved surface

�D.d�s+

Z
Base 2

�D2.d�s =

Z
ρdv (1.28)

where �D1 denotes the value of �D in medium 1, and �D2 the value in medium
2. Since both bases of the pillbox can be made as small as we like, the total
outward flux of �D over them is (Dn1−Dn2)ds = (�D1− �D2)·n̂ds, where these Dn

are the normal components of �D, ds is the area of each base, and n̂ is the unit
normal drawn from medium 2 to medium 1. At the limit, by taking a shallow
enough pillbox, we can disregard the flux over the curved surface, whereupon
the sources of �D reduce to the density of surface free charge ρs on the interface

n̂ · (�D1 − �D2) = ρs (1.29)

7El teorema de la divergencia requiere que las propiedades del medio varíen de forma contínua,
pero puede suponerse una transición rápida pero contínua del medio 1 al 2
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Medium 1
n̂

Infinitesimal loopPilbox

dh

dln̂
Medium 2

dhMedium 1
n̂

Infinitesimal loopPilbox

dh

dln̂
Medium 2

dh

Figure 1.2: Derivation of boundary conditions at the interface of two media.
Pintar solo la n̂ hacia arriba y las d�s una Hcia arriba y la de abajo hacia abajo
Cuidado pilbox es con dos l

Hence the normal component of �D changes discontinously across the interface by
an amount equal to the free charge surface density ρs on the surface boundary.
Similarly the boundary condition for �B can be established using the Gauss’

law for magnetic fields (1.1b). Since the magnetic field is solenoidal, it follows
that the normal components of �B are continuous across the interface between
two media

n̂ · ( �B1 − �B2) = 0 (1.30)

The behavior of the tangential components of �E can be determined using
a infinitesimal rectangular loop at the interface which has sides of lengh dh,
normal to the interface, and sides of lengh dl parallel to it (Fig. 1.2). From
the integral form of the Faraday’s law, (1.2c) and defining t̂ as the unit tangent
vector parallel to the direction of integration on the upper side of the loop, we
have

(�E1 · t̂− �E2 · t̂)dl + contributions of sides dh

= −∂
�B

∂t
· d�s (1.31)

In the limit, as dh → 0, the area ds = dldh bounded by the loop approaches
zero and, since �B is finite, the flux of �B vanishes. Hence(�E1 − �E2) · t̂ = 0

and we conclude that the tangential components of �E are continuous across the
interface between two media. In terms of the normal n̂ to the boundary, this
can be written as

n̂× ( �E1 − �E2) = 0 (1.32)

Analogously, using the same infinitesimal rectangular loop, it can be deduced
from the generalized Ampère’s law, (1.2d), that

( �H1 · t̂− �H2 · t̂)dl + contributions of sides dh

= −
Ã
∂ �D

∂t
+ �J

!
· d�s (1.33)



14 CHAPTER 1. ELECTROMAGNETIC FIELD FUNDAMENTALS

where, since �D is finite, its flux vanishes. Nevertheless, the flux of the surface
current can have a non-zero value when the integration loop is reduced to zero,
if the conductivity σ of the medium 2, and consequently �Js, is infinite. This
requires the surface to be a perfect conductor. Thus

n̂× ( �H1 − �H2) = �Js (1.34)

the tangential component of �H is discontinuous by the amount of surface current
density �Js. For finite conductivity, the tangential magnetic field is continuous
across the boundary.
A summary of the boundary conditions, given in (1.35), are particularized

in (1.36) for the case when the medium 2 is a perfect conductor (σ2 →∞).
General boundary conditions

n̂× (�E1 − �E2) = 0 (1.35a)

n̂× ( �H1 − �H2) = �Js (1.35b)

n̂ · (�D1 − �D2) = ρs (1.35c)

n̂ · ( �B1 − �B2) = 0 (1.35d)

Boundary conditions when the medium 2 is a perfect conductor (σ2 →∞)

n̂× �E1 = 0 (1.36a)

n̂× �H1 = �Js (1.36b)

n̂ · �D1 = ρs (1.36c)

n̂ · �B1 = 0 (1.36d)

1.3 The conservation of energy. Poynting’s the-
orem

Poynting’s theorem represents the electromagnetic energy-conservation law. To
derive the theorem, let us calculate the divergence of the vector field �E× �H in a
homogeneous, linear and isotropic finite region V bounded by a closed surface S.
If we assume that V contains power sources (generators) generating currents
�J, then, from Maxwell’s equations (1.1c) and (1.1d), we get

∇ · (�E× �H) = �H ·∇× �E− �E ·∇× �H = − �H · ∂
�B

∂t
− �E · ∂

�D

∂t
− �E · (σ �E+ �J) (1.37)

where �J represents the source current density distribution which is the primary
origin of the electromagnetic fields8, while the induced conduction current den-
sity is written as �Jc = σ �E (1.24).

8The source current may be maintained by external power sources or generators (this current is
often called driven or impressed current).
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As the medium is assumed to be linear, the derivates with respect to time
can be written as

�E · ∂
�D

∂t
= ε �E · ∂

�E

∂t
=

∂

∂t

µ
1

2
εE2

¶
=

∂

∂t

µ
1

2
�E · �D

¶
(1.38a)

�H · ∂
�B

∂t
= μ �H · ∂

�H

∂t
=

∂

∂t

µ
1

2
μH2

¶
=

∂

∂t

µ
1

2
�B · �H

¶
(1.38b)

By introducing the equalities (1.38a) and (1.38b) into (1.37), integrating over
the volume V , applying the divergence theorem, and then rearranging terms,
we haveZ

V

�J · �Edv = − ∂

∂t

Z
V

1

2
(�E · �D+ �B · �H)dv−

Z
V

σE2dv−
I
S

(�E × �H) · d�s (1.39)

To interpret this result we accept that

Uev =
1

2
�D · �E (1.40)

and

Umv =
1

2
�B · �H (1.41)

represent, as a generalization of their expression for static fields, the instanta-
neous electric energy density, Uev, and magnetic energy density, Umv, stored in
the respective fields. Thus according to (1.8) the left side of (1.39) represents
the total electromagnetic power supplied by all the sources within the volume
V . Regarding the right side of (1.39), the first term represents the change rate
of the stored electromagnetic energy within the volume; the second term repre-
sents the dissipation rate of electromagnetic energy within the volume; and the
third term represents the flow of electromagnetic energy per second (power)
through the surface S that bounds volume V . Defining Poynting’s vector �P as

�P = �E × �H (W/m2) (1.42)

we can write I
S

(�E × �H) · d�s =
I
S

�P · d�s (1.43)

This equation represents the total flow of power passing through the closed sur-
face S and, consequently, we conclude that �P = �E × �H represents the power
passing through a unit area perpendicular to the direction of �P. This conclu-
sion may seem questionable because it could be argued that any vector with an
integral of zero over the closed surface S could be added to �P without affecting
the total flow. Nevertheless, this is a natural interpretation that does not con-
tradict any experience. Only when we try to particularize (1.39) to steady fields
do we find ambiguous results, because, in static, the location of the electric and
magnetic energy has no physical significance.
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Note that Eq. (1.39) was deduced by assuming a linear medium and that the
losses occur only through conduction currents. Otherwise the equation should
be modified to include other kinds of losses such as those due to hysteresis or
possible transformations of the electromagnetic energy into mechanical energy,
etc. When there are no sources within V , (1.39) represents an energy balance
of that flowing through S versus that stored and dissipated in V .

1.4 Momentum of the electromagnetic field
As we have seen in the previous section, when we apply the law of conservation
of electromagnetic energy to a finite volume V bounded by a surface S, it is
necessary to include a term that, by means of the Poynting vector �P, takes
into account the flow of power through S. We shall now see that when an
electromagnetic field interacts with the charges and currents in V , it is also
necessary to consider a momentum associated with the electromagnetic field in
order to guarantee the conservation of momentum. To calculate this momentum,
we will begin by expressing, only in terms of the fields, the Lorentz force density,
(1.5), exerted by the electromagnetic field on the distribution of charges and
current, which we assume to be in free space. For this purpose, let us consider
Maxwell’s equations (1.1a) and (1.1d) to express ρ and �J as

ρ = ∇ · �D (1.44)

�J = ∇× �H − ∂ �D

∂t
(1.45)

so that

�f = ρ �E + �J × �B =
³
∇ · �D

´
�E − �B × (∇× �H) + �B × ∂ �D

∂t
(1.46)

which, taking into account that

�B × ∂ �D

∂t
= − ∂

∂t
(�D × �B) + �D × ∂ �B

∂t
=

− ∂

∂t
(�D × �B)− �D × (∇× �E) (1.47)

becomes

�f = (∇ · �D)�E − �B × (∇× �H)− ∂

∂t
(�D × �B)− �D × (∇× �E) (1.48)

By adding the term �H(∇ · �B) = 0 to this equality to make the final expres-
sions symmetrical, and by reordering, we can write the Lorentz force density
as

�f = �E(∇ · �D)− �D × (∇× �E) + �H∇ · �B − �B × (∇× �H)− ∂

∂t
(�D × �B) (1.49)
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The component α of Lorentz force density can be written, taking into account
the definition of the Poynting vector �P, as

fα = εo
∂

∂β

∙
EβEα −

1

2
δβαE

2

¸
+ μ0

∂

∂β

∙
HβHα −

1

2
δβαH

2

¸
− 1

c2
∂

∂t
Pα (1.50)

where δβα is the Kronecker delta (δβα = 1 if β = α and zero if β 6= α) and the
indices α, β = 1, 2, 3 correspond to the coordinates x, y, z, respectively, and we
have made use of the Einstein’s summation convention (i.e., the repetition of
an index automatically implies a summation over it). To obtain (1.50) we have
made use of the following equalities

�Eα∇ · �D − �D × (∇× �E)
¯̄̄
α

= εo
∂

∂β

∙
EβEα−

1

2
δβαE

2

¸
�Bα∇ · �B − �B × (∇× �H)

¯̄̄
α

= μ0
∂

∂β

∙
HβHα −

1

2
δβαH

2

¸
�D × �B

¯̄̄
α

=
Pα
c2

(1.51)

The first two summands in (1.50) constitute the α component of the diver-
gence of a tensor quantity, T em, such that

(∇ · T em)α =
∂T em

βα

∂β
(1.52)

where T em is a symmetric tensor, known as the Maxwell stress tensor, defined
by

T em
βα = εo

∙
EβEα−

1

2
δβαE

2

¸
+ μ0

∙
HβHα −

1

2
δβαH

2

¸
(1.53)

Therefore, from (1.50) and (1.52), we have

�f = ∇ · T em − 1

c2
∂ �P
∂t

(1.54)

with

∇ · T em =

∙
∂

∂x
,
∂

∂y
,
∂

∂z

¸⎡⎣ T em
xx T em

xy T em
xz

T em
yx T em

yy T em
yz

T em
zx T em

zy T em
zz

⎤⎦ (1.55)

The components of the electromagnetic tensor T em
βα can be written as

T em
βα = T e

βα + Tm
βα = DβEα −

1

2
δβαEγDγ +BβHα −

1

2
δβαHγBγ (1.56)

where Tm
βα and T e

βα represent, respectively, the electric and magnetic tensors
defined by

T e
βα = DβEα −

1

2
δβαEγDγ (1.57)

Tm
βα = BβHα −

1

2
δβαHγBγ (1.58)
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Integrating (1.50) over the volume V the total electromagnetic force �F ex-
erted on the volume is

�F =

Z
V

�fdv =

Z
V

(ρ �E + �J × �B)dv =

Z
S

�fsds−
1

c2
∂

∂t

Z
V

�Pdv (1.59)

where �fs is the force per unit of area on S

�fs = T em · n̂ (1.60)

and we have applied the theorem of divergence to the tensor T em i.e.Z
V

∇ · T emdv =

Z
S

T em · d�s =
Z
S

T em · n̂ ds =

Z
S

�fs ds (1.61)

Thus Z
S

�fsds = �F +
1

c2
∂

∂t

Z
V

�P dv (1.62)

Note that the term
1

c2
∂

∂t

Z
V

�Pdv (1.63)

is not null even in the absence of charges and currents. Since the only elec-
tromagnetic force possible due to the interaction of the field with charges and
currents is �F , the term (1.63) must represent another physical quantity with
the same dimensions as a force, i.e., the rate of momentum transmitted by
the electromagnetic field to the volume V . This is equivalent to associating a
momentum density �g with the electromagnetic field, given by 1/c2 times the
Poynting vector,

�g =
�P
c2

(1.64)

which propagates in the same direction as the flow of energy. Thus, Eq. 1.62
represents the formulation for the momentum conservation in the presence of
electromagnetic fields.
The momentum of an electromagnetic field, which can be determined ex-

perimentally, is inappreciable under normal conditions and its value is often
below the limits of the measurement error. However, in the domain of atomic
phenomena, the momentum of an electromagnetic field can be comparable to
that of particles, and plays a crucial role in all the processes of interaction with
matter. The transfer of momentum to a system of charges and currents implies
a reduction in the field momentum, and the loss of momentum by the system,
for example by radiation, leaves to an increase in the momentum of the field.

1.5 Time-harmonic electromagnetic fields
A particular case of great interest is one in which the sources vary sinusoidally
in time. In linear media the time-harmonic dependence of the sources gives rise
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to fields which, once having reached the steady state, also vary sinusoidally in
time. However, time-harmonic analysis is important not only because many
electromagnetic systems operate with signals that are practically harmonic, but
also because arbitrary periodic time functions can be expanded into Fourier
series of harmonic sinusoidal components while transient nonperiodic functions
can be expressed as Fourier integrals. Thus, since the Maxwell’s equations are
linear differential equations, the total fields can be synthesized from its Fourier
components.
Analytically, the time-harmonic variation is expressed using the complex

exponential notation based on Euler’s formula, where it is understood that the
physical fields are obtained by taking the real part, whereas their imaginary
part is discarded. For example, an electric field with time-harmonic dependence
given by cos(ωt+ ϕ), where ω is the angular frequency, is expressed as

�E = Re{~Eejωt} = 1

2
(~Eejωt + (~Eejωt)∗) = �E0 cos(ωt+ ϕ) (1.65)

where ~E is the complex phasor,

~E = �E0e
jϕ (1.66)

of amplitude E0 and phase ϕ, which will in general be a function of the angular
frequency and coordinates. The asterisk ∗ indicates the complex conjugate,
and Re {} represents the real part of what is in curly brackets.
Throughout the book, we will represent both complex phasor magnitudes

(either scalar or vector) by symbols in bold, e.g. ~E = ~E(�r, ω), and ρ =
ρ(�r, ω). In this way, time-dependent (real) quantities, which are represented by
mathematical symbols not in bold, such as �E = �E(�r, t), and ρ = ρ(�r, t), can be
distinguished from complex phasors which do not depend on time. In general,
as indicated, these complex phasors may depend on the angular frequency. The
real time-dependent quantity associated with a complex phasor is calculated, as
in (1.65), by multiplying it by ejωt and taking the real part.

1.5.1 Maxwell’s equations for time-harmonic fields

Assuming ejωt time dependence, we can get the phasor form or time-harmonic
form of Maxwell’s equations simply by changing the operator ∂/∂t to the factor
jω in (1.1a)-(1.2d) and eliminating the factor ejωt. Maxwell’s equations in
differential and integral forms for time-harmonic fields are given below.
Differential form of Maxwell’s equations for time-harmonic fields

∇ · ~D = ρ (Gauss’ law) (1.67a)

∇ · ~B = 0 (Gauss’ law for magnetic fields) (1.67b)

∇× ~E = −jω ~B (Faraday’s law) (1.67c)

∇× ~H = ~J + jω ~D (Generalized Ampère’s law) (1.67d)

Integral form of Maxwell’s equations for time harmonic fields
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I
S

~D · d�s = QT (Gauss’ law) (1.68a)I
S

~B · d�s = 0 (Gauss’ law for magnetic fields) (1.68b)I
Γ

~E · d�l = −jω
Z
S

~B · d�s (Faraday’s law) (1.68c)I
Γ

~H · d�l =

Z
S

( ~J + jω ~D) · d�s (Generalized Ampère’s law) (1.68d)

For time-harmonic fields, expressions (1.25a) and (1.25b) become

∇ · ~E =
ρall
ε0

=
1

ε0

³
ρ−∇ · ~P

´
(1.69a)

∇× ~B = jωε0μ0 ~E+ μ0 ~Jall = jωε0μ0 ~E + μ0( ~J + jω ~P +∇× ~M)

(1.69b)

1.5.2 Complex dielectric constant.

Over certain frequency ranges, due to the atomic and molecular processes in-
volved in the macroscopic response of a medium to an electromagnetic field,
there appear relatively strong damping forces that give rise to a delay between
the polarization vector �P and �E (a phase shift between ~P and ~E), and con-
sequently between �E and �D, and to a loss of electromagnetic energy as heat in
overcoming the damping forces (see Appendix ??). At the macroscopic level this effect
is analytically expressed by means of a complex permittivity, εc as

~D = εc ~E (1.70)

with

εc = ε0 − jε00 = ε0εcr (1.71)

where εcr
εcr = 1 + χce = ε0r − jε00r (1.72)

is the relative complex permittivity and χce = χ0cer−jχ00cer is the complex electric susceptibility.
In general both ε0 and ε00 present a strong frequency dependence and they
are closely related to one another by the Kramer-Kronig relations as is shown
in Appendix ??, where the dependence with the frequency of the dielectric
constant is studied.
Similar processes occur in magnetic and conducting media, and, within a

given frequency range, there may be a phase shift between ~E and ~Jc or between
~B and ~H which, at the macroscopic level, is reflected in the corresponding
complex constitutive parameters σc = σ0 − jσ00 and μc = μ0 − jμ00.
For a medium with complex permittivity, the complex phasor form of the

displacement current is

jω ~D = jωεc ~E = ωε00 ~E + jωε0 ~E (1.73a)
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Figure 1.3: Induced current density in the complex plane.

while the sum, of the displacement and conduction current, called total induced
current, ~J i, is

~J i = σ ~E + jωεc ~E = (σ + ωε00)~E + jωε0 ~E = ~Jd + ~Jr (1.74)

where ~Jd, called the dissipative current,

~Jd = (σ + ωε00)~E (1.75)

in phase with the electric field, is the real part of the induced current ~J i (Fig.
1.3) while ~Jr, called the reactive current,

~Jr = jωε0 ~E (1.76)

is the imaginary part of the induced current which is in phase quadrature with
the electric field. The dissipative current can be expressed in a more compact
form as

~Jd = σe ~E (1.77)

where σe is the effective or equivalent conductivity

σe = σ + ωε00 (1.78)

which includes the ohmic losses due to σ and the damping losses due to ωε00.
Thus the induced current, (1.74), can be written as

~J i = σe ~E + jωε0 ~E = σec ~E (1.79)

where σec is the complex effective conductivity, defined as

σec = σe + jωε0 (1.80)

Thus a medium with conductivity σec and null permittivity is formally equiva-
lent to one with conductivity and permittivity, σ and εc, respectively.
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On the other hand, the phase angle δd between the induced and reactive
currents, (Fig. 1.3), is called the loss or dissipative angle, and its tangent (i.e.,
the ratio of the dissipative and reactive currents) is called the loss tangent

tan δd =
σe
ωε0

(1.81)

and the induced current, (1.79), can be written in terms of the loss tangent as

~J i = σec ~E = jωε0(1− j
σe
ωε0

)~E = jωε0 (1− j tan δd) ~E = jωεec ~E (1.82)

where εec is defined as the effective complex permittivity

εec = ε0 (1− j tan δd) = ε0εer (1.83)

and
εer = (1− j tan δd)ε

0
r (1.84)

denotes the effective relative permittivity. Thus, according to (1.79) and (1.82), a medium

can be formally considered alternatively either as a medium of permittivity ε0 and effective con-
ductivity σe, or as a dielectric medium of effective permittivity εec or as a conducting medium of

effective conductivity σec. In summary, this possibilities are

Permittivity Conductivity
Original medium εc = ε0 − jε00 σ
Equivalent medium 1 ε0 σe = σ + ωε00

Equivalent medium 2 εec = ε0 − j(ε00 + σ
ω ) 0

Equivalent medium 3 0 σec = σ + ωε00 + jωε0

(1.85)
The loss tangent is equal to the inverse of the quality factor Q of the dielectric which is a

dimensionless quantity defined as

Q = ω
Maximun energy stored per unit volume
Time average power lost per unit volume

= ω
Wv

P 0dv
(1.86)

The average power dissipated per cycle and unit volume, P 0dv, due both to the
Joule effect and to that of dielectric polarization, is given, according to (1.8),
by

P 0dv =
1

T

Z T

0

�E · �Jidt =
1

T

Z T

0

�E0 cosωt · (σe �E0 cosωt+ ωε0 �E0 sinωt)dt

=
1

T

Z T

0

σeE
2
0 cos

2 ωtdt =
1

T

Z T

0

�E · �Jddt =
σeE

2
0

2

(1.87)
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where T = 2π/ω is the period of the signal. Note that only the dissipative part
of Ji contributes to the average power. Of this power, the part corresponding
to polarization losses is

1

T

Z T

0

ωε00E20 cos
2 ωtdt =

ωε00E20
2

(1.88)

The maximum electric field energy stored per unit of volume is

Wv =
1

2
ε0E20 (1.89)

Thus, dividing (1.89) by (1.87), we have

Q =
ωε0

σe
=

1

tan δd
(1.90)

Although both dimensionless quantities, Q and tan δd, can be used to define
the characteristics of a dielectric, we will use the loss tangent throughout this
book.
Depending on whether the reactive or the dissipative current is predominant

at the operating frequency, a medium is classified as a weakly lossy or a strongly
lossy medium respectively. Thus for weakly lossy media, usually called good
dielectrics or insulators, we have, ωε0 >> σe, so that

tan δd =
σe
ωε0

<< 1 (1.91)

Or, if σ = 0,

tan δd =
ε00

ε0
<< 1 (1.92)

If σe = 0 (i.e. tan δd = 0), the medium is termed a perfect or ideal dielectric,
in which case the reactive current coincides with the displacement current, and
the dielectric is characterized by a real permittivity ε.
If the medium is strongly lossy we have ωε0 << σe, so that

tan δd =
σe
ωε0

>> 1 (1.93)

which for good conductors where ε00 = 0; ε0 = ε simplifies to

tan δd =
σ

ωε
>> 1 (1.94)

being practically ε = ε0. If σ = ∞ (i.e. tan δd = ∞) the medium is termed a
perfect conductor.
For a homogeneous conducting medium where ε0 and σe do not depend on

the position, Gauss’ law (1.1a) and the continuity equation (1.3) can be writen
as

∇ · �E = ρ/ε0 (1.95)
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and

σe∇ · �E = −
∂ρ

∂t
(1.96)

respectively. Hence we have

σeρ

ε0
+

∂ρ

∂t
= 0 (1.97)

so that the expression for the decay of a charge distribution in a conductor is
given by

ρ = ρ0e
−(σe/ε0)t (1.98)

where ρ0 is the charge density at time t = 0. The characteristic time

τ =
ε0

σe
(1.99)

required for the charge at any point to decay to 1/e of its original value is called
the relaxation time.
For most metals τ = 10−14s, signifying that in good conductors the charge

distribution decays exponentially so quickly that it may be assumed that ρ = 0
at any time. In terms of the relaxation time, the loss tangent can be written as

tan δd =
σ

εω
= (τω)−1 (1.100)

Thus the classification of a medium as a good or poor conductor depends on
whether the relaxation time is short or long compared with the period of the
signal.

1.5.3 Boundary conditions for harmonic signals

For harmonic signals the boundary conditions of the normal and tangential
components of the fields at the interface between two regions with different
constitutive parameters ε, μ and σ, (1.35a)-(1.36d), become
General boundary conditions

n̂× (~E1 − ~E2) = 0 (1.101a)

n̂× ( ~H1 − ~H2) = ~Js (1.101b)

n̂ · ( ~D1 − ~D2) = ρs (1.101c)

n̂ · ( ~B1 − ~B2) = 0 (1.101d)

Boundary conditions when the medium 2 is a perfect conductor (σ2 →∞)

n̂× ~E1 = 0 (1.102a)

n̂× ~H1 = ~Js (1.102b)

n̂ · ~D1 = ρs. (1.102c)

n̂ · ~B1 = 0 (1.102d)
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1.5.4 Complex Poynting vector

In formulating the conservation-energy equation for time-harmonic fields, it is
convenient to find, first, the time-average Poynting vector over a period, i.e. the
time-average power passing through a unit area perpendicular to the direction
of �P. From (1.65) we have

�E = Re
n
~Eejωt

o
=
1

2

³
~Eejωt + (~Eejωt)∗

´
(1.103a)

�H = Re
n
~Hejωt

o
=
1

2

³
~Hejωt + ( ~Hejωt)∗

´
(1.103b)

Thus, the instantaneous Poynting vector (1.42) can be written as

�P = �E × �H = Re{~Eejωt} ×Re{ ~Hejωt}

=
1

2
Re{~E × ~H

∗
+ ~E × ~He2jωt} (1.104)

where we have made use of the general relation for any two complex vectors �A
and �B

Re{ ~A} ×Re{ ~B} =
1

2
( ~A+ ~A

∗
)× 1

2
( ~B + ~B

∗
)

=
1

4
( ~A× ~B

∗
+ ~A

∗ × ~B) +
1

4
( ~A× ~B + ~A

∗ × ~B
∗
)

=
1

4

³
~A× ~B

∗
+
³
~A× ~B

∗´∗´
+
1

4

³
~A× ~B +

³
~A× ~B

´∗´
=

1

2
Re{ ~A× ~B

∗
+ ~A× ~B} (1.105)

The time-average value of the instantaneous Poynting vector can be calcu-
lated integrating (1.104) over a period , i.e.,

�Pav =
1

T

Z T

0

�Pdt = 1

2T

Z T

0

Re{~E × ~H
∗
+ ~E × ~He2jωt}dt

=
1

2
Re{~E × ~H

∗
} = 1

2
Re{�Pc} (1.106)

since the time average of ~E × ~He2jωt vanishes. The magnitude

�Pc = ~E × ~H
∗

(1.107)

is termed the complex Poynting vector. Thus the time-average of the Poynting
vector is equal to one-half the real part of the complex Poynting vector
For a more complete view of the meaning of the complex Poynting vector,

let us again formulate Poynting’s theorem particularized for sources with time-
harmonic dependence. From Faraday’s law, (1.67c), and from Ampère’s general
law, (1.67d), in its conjugate complex form, we have

∇× ~E = −jωμ ~H (1.108a)

∇× ~H
∗
= −jωε~E∗ + ~J

∗
+ σ ~E

∗
(1.108b)
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where ~J
∗
represents the complex conjugate of the current supplied by the

sources. Performing a scalar multiplication of Eq. 1.108a by ~H
∗
and of Eq.

1.108b by ~E, and subtracting the results, we get

∇ ·
³
~E × ~H

∗´
= ~H

∗ ·∇× ~E − ~E ·∇× ~H
∗

= −jω
¡
μH2

0 − εE2
0

¢
− ~E · ( ~J

∗
+ σ ~E

∗
) (1.109)

where it has been taken into account that ~H · ~H∗ = H2
0 and ~E · ~E∗ = E20 ,

with H0 and E0 being the amplitude of the two harmonic fields. After dividing
(1.109) by 2 we get

∇ ·
µ
1

2
~E × ~H

∗
¶
= −2jω

µ
μ
H2
0

4
− ε

E20
4

¶
− σE20

2
− 1
2
~J
∗ · ~E (1.110)

The terms μH2
0/4 and εE

2
0/4 represent, respectively, the mean density of the

magnetic and electric energy, while σE20/2 is the the mean power transformed
into heat9 within V , since the mean value of the square of a sine or cosine
function is 1/2.
By multiplying Equation (1.110) by the volume element dv, integrating over

an arbitrary volume V and applying the divergence theorem, we obtain the
complex version of the Poynting theoremZ

V

1

2

³
~J
∗ · ~E

´
dv = −

Z
V

σE20
2

dv − 2jω
Z
V

µ
μ
H2
0

4
− ε

E20
4

¶
dv

−
Z
S

1

2

³
~E × ~H

∗´
· d�s (1.111)

which is the expression corresponding to (1.39) in complex notation and where
the first member represents the power supplied by external sources. By sepa-
rating the real and imaginary parts, we obtain the following two equalitiesZ

V

Re
1

2
( ~J
∗
· ~E)dv = −

Z
V

σE2
0

2
dv −

Z
S

Re
1

2
(~E × ~H

∗
) · d�s (1.112a)Z

V

Im
1

2
( ~J
∗ · ~E)dv = −2ω

Z
V

µ
μ
H2
0

4
− ε

E2
0

4

¶
dv −

Z
S

Im
1

2
(~E × ~H

∗
) · d�s

(1.112b)

The first member of (1.112a)

Pa =

Z
V

Re
1

2
( ~J
∗ · ~E)dv (1.113)

represents the active mean power supplied by all the sources within V . On the
right-hand side of (1.112a) the first integral, as commented above, gives the

9Expression (1.112b) can be easily extended to the case of lossy dielectric just substituting σ by
the equivalent conductivity σe defined in (1.78)and ε by ε0 defined in (1.71).
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power transformed into heat within V , while the surface integral represents the
mean flow of power through the surface S.
Regarding to expression (1.112b), the first member

Pr =

Z
V

Im

µ
1

2
~J
∗
· ~E
¶
dv (1.114)

is called the reactive power of the sources. On the right-hand side the first
summand is 2ω times the difference of the average energies stored in the
electric and magnetic fields, while the second represents the flow of reactive
power that is exchanged with the external medium through S. If the surface
integral in (1.112a) is non-zero, the external region is said to be an active charge
for the sources within V . Similarly, if the surface integral of Eq. (1.112b) is non-
zero, the external region is said to be a reactive charge for the sources within V .
In general, both of these surface integrals are non-zero and the external region
becomes both an active and a reactive charge for the sources.

1.6 On the solution of Maxwell’s equations
Despite their apparent simplicity, Maxwell’s equations are in general not easy
to solve. In fact, even in the most favorable situation of homogeneous, linear
and isotropic media, there are not many problems of interest that can be analyt-
ically solved except for those presenting a high degree of geometrical symmetry.
Moreover, the frequency range of scientific and technological interest can vary
by many orders of magnitude, expanding from frequency values of zero (or very
low) to roughly 1014 Hertz. The behavior and values of the constitutive para-
meters can change very significantly in this frequency. range. Conductivity, for
example, can vary from 0 to 107 S m−1. It is even possible to build artificial
materials, called metamaterials, which present electromagnetic properties that
are not found in nature. Examples of such as metamaterials are those char-
acterized with both negative permittivity (ε < 0) and negative permeability
(μ < 0). These media are called DNG (double-negative) metamaterials and,
owing to their unusual electromagnetic properties, they present many potential
technological applications.
Another important factor to study the interaction of an electromagnetic field

with an object is the electrical size of the body, i.e., the relationship between
the wavelength and the body size, which can also vary by several orders of mag-
nitude. All these circumstances make it in general necessary to use analytical,
semi-analytical or numerical methods appropriate to each situation. In partic-
ular, numerical methods are fundamental for simulating and solving complex
problems that do not admit analytical solutions. Today numerical methods
make up the so-called computational electromagnetics, which together, with ex-
perimental and theoretical or analytical electromagnetics, constitute the three
pillars supporting research in Electromagnetics. Of course, both the develop-
ment of analitycal, numerical or experimental tools, as well as the interpretation
of the results, require theoretical knowledge of electromagnetic phenomena
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Chapter 2

Fields created by a source
distribution: retarded
potentials

In this chapter, we introduce the scalar electric and magnetic vector potentials
as magnitudes that facilitate the calculation of the fields created by a bounded-
source distribution, paying special attention to the radiation field. Finally, we
extend Maxwell’s equations, in order to make them symmetric, by introducing
the concept of magnetic charges and currents.

2.1 Electromagnetic potentials

A basic problem in electromagnetism is that of finding the fields created for a
time-varying source distribution of finite size, which we assume to be in a non-
magnetic, lossless, homogeneous, time-invariant, linear and isotropic medium.
Figure 2.1 represents such a distribution, where, as usual, the coordinates asso-
ciated with source points, �J = �J(�r0, t0), ρ = ρ(�r0, t0), are designated by primes,
while those associated with field points or observation points P (�r, t) are without
primes. In the following, we will assume the medium surrounding the source
distribution to be free space, i.e. μ = μ0, ε = ε0, although of course all the re-
sulting formulas remain valid for media of constant permittivity and permeabil-
ity, provided that ε0 is replaced by εrε0 and μ by μrμ0. While the expressions
for the fields can be derived directly from their sources, the task can often be
facilitated by calculating first two auxiliary functions, the scalar electric poten-
tial Φ = Φ(�r, t) and the magnetic vector potential �A = �A(�r, t) (Fig. 2.2). Once
the potentials are obtained, it is a simple matter to calculate the fields from
them. In this section, we formulate the general expressions for these potentials.
Since, according to (1.1b), the divergence of the magnetic field �B is always

29
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zero, we can express it as the curl of an electromagnetic vector potential �A as

�B = ∇× �A (2.1)

Inserting this expression into (1.1c) we get

∇×
µ
�E +

∂

∂t
�A

¶
= 0 (2.2)

Since any vector with a zero curl can be expressed as the gradient of a scalar
function Φ, called the scalar potential, we can write

�E +
∂

∂t
�A = −∇Φ (2.3)

or

�E = −∇Φ− ∂ �A

∂t
(2.4)

where ∂ �A/∂t is the nonconservative part of the electric field with a non-vanishing
curl. When the vector potential �A is independent of time, expression (2.4)
reduces to the familiar �E(�r) = −∇Φ(�r).
According to the relations (2.1) and, (2.4) the fields �B and �E are completely

determined by the vector and scalar potentials �A and Φ. However, the fields
do not uniquely determine the potentials. For instance, it is clear that the
transformation

�A = �A0 +∇Ψ (2.5)

where Ψ = Ψ (�r, t) is any arbitrary, single-valued, continuously differentiable,
scalar function of position and time that vanishes at infinity, leaves �B unchanged

�B = ∇× �A = ∇× �A0 +∇×∇Ψ = ∇× �A0 (2.6)

Inserting (2.5) into (2.4), it follows that

�E = −∇
µ
Φ+

∂Ψ

∂t

¶
− ∂ �A0

∂t
(2.7)

so that the value of �E, obtained from �A0, also remains unchanged provided that
Φ is replaced by the scalar potential

Φ0 = Φ+
∂Ψ

∂t
(2.8)

Thus different sets of potentials �A and Φ give rise to the same set of fields1 �B
and �E. The joint transformation (2.5) and (2.8) leaves the electromagnetic field

1The liberty to select the value of �A is understandable taking into account that by (2.1) the
magnetic field fixes only ∇× �A. However, Helmholtz’s theorem posits that, to determine the
(spatial) behavior of �A completely, ∇. �A (which is still undetermined) must also be specified.
Thus, we can choose it in any way we consider suitable for facilitating the calculation of the
electromagnetic fields.
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invariant. The different forms of choosing the potentials �A and Φ leaving the
fields unchanged are called gauge transformations, and the function Ψ is called
the gauge function. The degree of freedom provided by the gauge transforma-
tions facilitates the calculation of the potentials and hence of the fields because,
once the potentials are known, the fields are easily derived by differentiation
from (2.1) and (2.4). An example of gauge transformation is the Lorenz gauge,
also called the Lorenz condition.

2.1.1 Lorenz gauge

Inserting (2.1) and (2.4) into the generalized Ampère’s law, (1.1d), and Gauss’
law, (1.1a), using (??) and rearranging terms, we get two, coupled, second-order
partial-differential equations

μ0ε0
∂2 �A

∂t2
−∇2 �A = μ0 �J −∇

∙
∇ · �A+ μ0ε0

∂Φ

∂t

¸
(2.9a)

μ0ε0
∂2Φ

∂t2
−∇2Φ =

ρ

ε0
+

∂

∂t

∙
∇ · �A+ μ0ε0

∂Φ

∂t

¸
(2.9b)

These equations could be considerably simplified if we could force (without
changing the fields) the potentials to satisfy the auxiliary relation

∇ · �A+ μ0ε0
∂Φ
∂t = 0 (2.10)

called the Lorenz gauge (or Lorenz condition)2. Fortunately, as we will show
below, we can always take advantage of the freedom in choosing the potentials
so that they fulfil the Lorenz condition and consequently simplify Eqs (2.9) to
the inhomogeneous Helmholtz wave equations

μ0ε0
∂2 �A

∂t2
−∇2 �A = μ0 �J (2.11a)

μ0ε0
∂2Φ

∂t2
−∇2Φ =

ρ

ε0
(2.11b)

The advantage of having applied the Lorenz condition is that the equations
(2.11) for the potentials are uncoupled and each one depends on only one type
of source. This makes it easier to calculate the potentials than the fields (see
Section ??).
It remains to be shown that it is always possible to force the potentials to

satisfy the Lorenz condition (2.10). To this end, let us consider two potentials,
�A0 and Φ0, which fulfil Equations (??) and (??) and check whether it is possible

2A very interesting property of the Lorenz condition is that, as shown in (??), it is covariant, i.e.,
if it holds in one particular inertial frame then it automatically holds in all other inertial frames.
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to select them so that they satisfy equations (2.11). By inserting (2.5) and (2.8)
into (2.9) and by rearranging, we get

∇2 �A0 − μ0ε0
∂2 �A0

∂t2
= −μ0 �J +∇

µ
∇ · �A0 +∇2Ψ+ μ0ε0

∂Φ0

∂t
− μ0ε0

∂2Ψ

∂t2

¶
(2.12a)

∇2Φ0 − μ0ε0
∂2Φ0

∂t2
= − ρ

ε0
− ∂

∂t

µ
∇ · �A0 +∇2Ψ+ μ0ε0

∂Φ0

∂t
− μ0ε0

∂2Ψ

∂t2

¶
(2.12b)

and, given that the scalar functionΨ is arbitrary, we can choose it as the solution
to the differential equation

∇2Ψ− μ0ε0
∂2Ψ

∂t2
= −∇ · �A0 − μ0ε0

∂Φ0

∂t
(2.13)

Thus (2.12a) and (2.12b) become (2.11a) and (2.11b), respectively, meaning
that �A0 and Φ0 fulfil the Lorenz condition.
Expressions (2.11a) and (2.11b) are the inhomogeneous wave equations for

the potentials, and their solutions, which are provided in the next section, rep-
resent waves propagating at the velocity c = 1/

√
μ0ε0 ' 3× 108m/s of light in

free space. They take the form

∇2 �A− 1

c2
∂2 �A

∂t2
= ¤ �A = −μ0 �J (2.14a)

∇2Φ− 1

c2
∂2Φ

∂t2
= ¤Φ = − ρ

ε0
(2.14b)

where the symbol ¤ represents the D’Alembertian operator defined by

¤ ≡ ∇2 − 1

c2
∂2

∂t2
(2.15)

The Lorenz gauge (2.10) for harmonic fields simplifies to

∇ · ~A+ jω

c2
Φ = 0 (2.16)

such that

Φ =
jc2∇ · ~A

ω
(2.17)

while (2.14a) and (2.14b) simplify to

∇2 ~A+ ω2

c2
~A = −μ0 ~J (2.18a)

∇2Φ+ ω2

c2
Φ = − ρ

ε0
(2.18b)



34CHAPTER 2. FIELDS CREATEDBYA SOURCEDISTRIBUTION: RETARDED POTENTIAL

In addition to Lorenz’s gauge, other gauge conditions may sometimes be
useful. For instance, in quantum field theory, where the potentials are used to
describe the interaction of the charges with the electromagnetic field instead of
being used to calculate the fields, it is useful to use Coulomb’s gauge, in which
∇ · �A = 0. By taking the divergence of (2.4) and the curl of (2.1), and taking
into account the generalized Ampère’s law and Gauss’ law , we can easily see
that with Coulomb’s gauge the expressions for the potential wave equations are

∇2Φ = − ρ

ε0
(2.19)

∇2 �A− 1

c2
∂2 �A

∂t2
− 1

c2
∇∂Φ

∂t
= −μ0 �J (2.20)

As can be seen from (2.19), in Coulomb’s gauge the scalar potential is deter-
mined by the instantaneous value of the charge distribution, using an equation
similar to Poisson’s expression in electrostatics. The vector potential, however,
is considerably more difficult to calculate. According (2.19), a time change in ρ
implies an instantaneous change in Φ. This fact denotes the non-physical nature
of Φ since real physical magnitudes can change only after a delay determined
by the propagation time between the perturbation and the measurement point.
In this book we will use only the Lorenz condition, but it should be made

clear that the �E and �H fields calculated from the potentials with the Coulomb
or Lorenz gauges must be identical.
The complete solutions of the inhomogeneous wave equations for the poten-

tials (2.14) are linear combinations of the particular solutions and of the general
solutions for the corresponding homogeneous wave equations. The next section
is devoted to finding these particular solutions, which express the potentials in
terms of integrals over the source distributions �J and ρ.

2.2 Solution of the inhomogeneous wave equa-
tion for potentials

Let us now calculate the expression of the potentials created by an arbitrary
bounded source distribution (charges and currents) in an unbounded homoge-
neous, time-invariant, linear and isotropic medium of conductivity zero that
we assume to be free space (Fig. 2.1). From (2.14) we see that the scalar po-
tential Φ as well as each of the three components Ai, (i = 1, 2, 3), of the vector
potential �A satisfy inhomogeneous scalar wave equations with the general form

¤Ψ(�r, t) = ∇2Ψ(�r, t)− 1

c2
∂2Ψ(�r, t)

∂t2
= −g (�r, t) (2.21)

where the operator ¤ acts on the coordinates r, t of the field point, while the
sources coordinates are r0, t0.
To facilitate the solution of this equation, we can use, owing to the linearity

of the problem, the superposition principle and consider a source distribution



2.2. SOLUTIONOF THE INHOMOGENEOUSWAVE EQUATION FOR POTENTIALS35

g (�r, t) as constructed from a sum of weighted space-time Dirac delta function
sources, i.e.,

g (�r, t) =

Z t

t0=−∞

Z
V 0

g (�r 0, t0) δ(�r − �r 0)δ(t− t0)dv0dt0 (2.22)

where V 0 is a volume containing all the sources. Thus, (2.21) can be solved in
two steps, using Green’s method in the time domain, as follows.
a) The first step is to calculate the response, G(�r,�r 0, t, t0), generated by the

space-time Dirac δ−function source, δ(�r−�r 0)δ(t−t0), located at position �r 0 and
applied at time t0 which obeys the inhomogeneous wave equation

¤G(�r, �r 0, t, t0) = ∇2G(�r,�r 0, t, t0)− 1

c2
∂2G(�r, �r 0, t, t0)

∂t2
= −δ(�r − �r 0)δ(t− t0)

(2.23)
and satisfies the boundary conditions of the problem. The function G(�r, �r 0, t, t0)
is called Green’s free-space function, which, because of the homogeneity of the
space, must be a spherical wave centred at position �r 0 at time t0. This function
depends on the relative distance, R = |�r − �r 0|, between the point source and
the observation or field point and on the time difference τ = t − t0. Thus
G(�r,�r 0, t, t0) = G(R, τ) and (2.23) can be written, using spherical coordinates,
as

¤G(R, τ) = 1

R

∂2 (RG)

∂R2
− 1

c2
∂2G

∂τ2
= −δ(�R)δ(τ) (2.24)

where, (??),

∇2G =
1

R

∂2 (RG)

∂R2
(2.25a)

∂2G

∂τ2
=

∂2G

∂t2
(2.25b)

b) The second step is to find Ψ(�r, t) from Green’s function. Owing to the
linearity of the problem and, from (2.22), if the solution of (2.23) is G, then the
solution of (2.21) is 3

Ψ =

Z t

t0=−∞

Z
V 0

g (�r 0, t0)G(R, τ)dv0dt0. (2.26)

Because G fulfils the boundary conditions, so too does Ψ(�r, t).
To find the Green’s function let us consider first a general point R 6= 0 such

that equation (2.24) simplifies to

¤G(R, τ) = 1

R

∂2 (RG)

∂R2
− 1

c2
∂2G

∂τ2
= 0. (2.27)

Multiplying this equation by R and defining G0 = RG we have the homogeneous
wave equation

∂2G0

∂R2
− 1

c2
∂2G0

∂τ2
= 0 (2.28)

3Note that Eq. (2.27) represents the spatial and temporal convolution of g(r, t) and G(r, t)
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The general solution of the above expression, as can be verified by direct sub-
stitution, is

G0(R, τ) = f(τ −R/c) + h(τ +R/c) (2.29)

where f(τ −R/c) and h(τ +R/c) are two arbitrary functions of their respective
arguments and they represent waves propagating along R in the positive and
negative directions, respectively. Therefore

G(R, τ) =
f(τ −R/c)

R
+

h(τ +R/c)

R
(2.30)

The potential that results from substituting Green’s function h(τ + R/c)/R in
(2.26) is termed the advanced potential and is a function of the value of the
sources at the future observation instant. This advanced potential is clearly
not consistent with our ideas about causality, according to which the potential
at (t, �r) can depend only on sources at earlier times. Thus, in (2.30) we must
consider only the retarded f(τ −R/c)/R solution as physically meaningful.
To determine f(τ −R/c)/R, we integrate the differential equation (2.23) in

a very small volume around the singular point R = 0. Thus, taking into account
that for R→ 0 the function G behaves as f(τ)/R, we haveZ

V 0

µ
∇2G(R, τ)− 1

c2
∂2G(R, τ)

∂τ2

¶
R→0

dv0 (2.31)

=

Z
V 0

µ
∇2
µ
f(τ)

R

¶
− 1

c2
∂2

∂τ2

µ
f(τ)

R

¶¶
dv0 (2.32)

= −
Z
V 0

δ(�r − �r 0)δ(τ)dv0 = −δ(τ) (2.33)

or, since ∇2 (1/R) = −4πδ(R) and dv0 = 4πR2dR,

−
Z
V 0
4πf(τ)δ(R)dv0 +

4π

c2

Z
V 0

R
∂2f(τ)

∂τ2
dR = −δ(τ) (2.34)

As R→ 0, the second integral can be eliminated and therefore

f(τ) =
δ(τ)

4π
(2.35)

As the function f depends on τ −R/c and f(τ) = f(τ −R/c)|R=0, we have

f(τ −R/c) =
δ(τ −R/c)

4π
(2.36)

and the solution of (2.24) is given by

G(R, τ) =
δ(τ −R/c)

4πR
=

δ(t− t0 −R/c)

4πR
(2.37)
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This is Green’s time-dependent retarded function, which takes into account the
time needed for the electromagnetic perturbation to reach the observation point
from the point source. Substituting this function in (2.26), we have

Ψ(�r, t) =

Z t

t0=−∞

Z
V 0

g (�r 0, t0)
δ(τ −R/c)

4πR
dv0dt0. (2.38)

and, integrating in t0, we finally find that, under the assumption of causality,
the solution of the inhomogeneous wave equation for potentials is given by

Ψ(�r, t) =
1

4π

Z
V 0

g (�r 0, t−R/c)

R
dv0 =

1

4π

Z
V 0

[g]

R
dv0. (2.39)

where

[g] = g(�r 0, t− R

c
) = g(�r 0, t0) (2.40)

is the value of the source densities evaluated at the retarded times t0 = t−R/c,
which in general are different for each source point, R/c being the delay time
due to the finite propagation velocity of the electromagnetic perturbations. In
the following the physical magnitudes evaluated in retarded times are shown in
brackets.
By analogy with (2.39) the solutions to the inhomogeneous equations for the

potentials are

Φ (�r, t) =
1

4πε0

Z
V 0

[ρ]

R
dv0 (2.41a)

�A (�r, t) =
μ0
4π

Z
V 0

[ �J ]

R
dv0 (2.41b)

where the bracket symbol [ ] indicates that the enclosed magnitude must be
evaluated at the retarded time t0 = t−R/c. That is

[ρ] = ρ(�r 0, t0) = ρ(�r 0, t−R/c) (2.42)

[ �J ] = �J(�r 0, t0) = �J(�r 0, t−R/c) (2.43)

are the charge and current densities, respectively, evaluated in the retarded
times t0.
Expressions (2.41a) and (2.41b), which are called retarded potentials, in-

dicate that the potentials created by a distribution at the field point P are
determined, at a given time t, by the values of the the charge and current den-
sities at the source points evaluated at previous times t0, which generally differ
for each source poin. It is easy to check that these potentials, together with the
continuity equation, verify Lorenz’s condition (2.10).
It should be noted that (2.39) is a particular solution of (2.21), to which a

complementary solution of the homogeneous wave equation ¤Ψ(�r, t) = 0 can
be added in order to arrive at other possible solutions of (2.39). Thus, other
conditions must be imposed to ensure that the only possible solution of (2.21)
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is (2.39). These conditions, establishing the uniqueness of (2.39), can be found
in Appendix ??.
For sources with time-harmonic dependence

ρ(�r 0, t) = Re
©
ρ(r0)ejωt)

ª
(2.44)

�J(�r 0, t) = Re{ ~J(�r 0)ejωt} (2.45)

the expressions of the retarded potentials Φ and �A simplify to

�A(�r, t) =
μo
4π
Re

½Z
V 0

1

R
~J(�r 0)ejω(t−

R
c )dv0

¾
= Re{ ~A(�r)ejωt} (2.46a)

Φ(�r, t) =
1

4πεo
Re

½Z
V 0

1

R
ρ(�r 0)ejω(t−

R
c )dv0

¾
= Re

©
Φ(�r)ejωt

ª
(2.46b)

where

~A(�r) =
μo
4π

Z
V 0

1

R
~J(�r 0)e−jkRdv0 (2.47a)

Φ(�r) =
1

4πεo

Z
V 0

1

R
ρ(�r 0)e−jkRdv0 (2.47b)

where k = ω/c = 2π/λ is the wavenumber in the unbounded medium and λ is
the wavelength in the medium. For harmonic signals the time delay R/c, when
multiplied by ω, becomes a phase shift given by kR.

2.3 Electromagnetic fields from a bounded source
distribution

The fields created by a bounded source distribution (charges and currents in
free space) of arbitrary time dependence can be determined by inserting (2.41a)
and (2.41b) into (2.1) and (2.4). Next, we find the expression for the magnetic
field first and for the electric field afterwards4.

Magnetic field

Starting from the equation

�B = ∇× �A =
μo
4π

Z
V 0
∇× [

�J ]

R
dv0 (2.48)

and transforming the integrand by the vector analysis formulas (??) and (??)
of Appendix ??, with Ψ = 1/R and �A = �J , we can directly find the magnetic
field equation

�B(�r, t) =
μo
4π

Z
V 0

⎛⎝ [ �J ]× �R

R3
+
1

c

h
∂ �J
∂t

i
× �R

R2

⎞⎠ dv0 (2.49)

4An alternative way of obtaining the electromagnetic fields is indicated in Section ??.
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where [ �J ] is the retarded current density at the source point �r 0 and
h
∂ �J/∂t

i
=

∂[ �J ]/∂t0 = ∂[ �J ]/∂t is its time derivative at the instant t0 = t−R/c.
Expression (2.49) can be written as the sum of the two components �B =

�Bbs + �Brad, which are defined below.
The Biot-Savart term, �Bbs:

�Bbs =
μo
4π

Z
V 0

[ �J ]× �R

R3
dv0 (2.50)

which is formally analogous to the Biot-Savart expression of magnetostatics,
although here with the sources evaluated at the retarded times. As this term
decreases with 1/R2, its contribution is appreciable only at short distances.
The radiation term, �Brad:

�Brad =
μo
4πc

Z
V 0

h
∂ �J
∂t

i
× �R

R2
dv0 (2.51)

which depends on 1/R, and consequently its contribution to the magnetic field
predominates at long distances from the sources.
At the static limit, when the sources do not change with time (i.e., for a

stationary current distribution) equation (2.49) simplifies to the Biot-Savart
expression of magnetostatics

�Bbs =
μo
4π

Z
V 0

�J × �R

R3
dv0 (2.52)

Electric field

From (2.4) and (2.41) we see that

�E = − 1

4πε0

Z
V 0
∇ [ρ]

R
dv0 − μ0

4π

Z
V 0

∂

∂t

[ �J ]

R
dv0 (2.53)

Taking into account that ∂/∂t0 = ∂/∂t and that ∇Ψ (R) = (dΨ/dR)∇R we
have

∇ [ρ]
R

= [ρ]∇ 1
R
+
1

R
∇ [ρ] = [ρ]

Ã
−

�R

R3

!
+

�R

R2
∂ [ρ]

∂R
(2.54a)

∂ [ρ]

∂R
=

∂ [ρ]

∂t0
dt0

dR
=

∙
∂ρ

∂t

¸µ
−1
c

¶
(2.54b)

∇ [ρ]
R

= [ρ]

Ã
−

�R

R3

!
−

�R

cR2

∙
∂ρ

∂t

¸
(2.54c)
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which, when substituted in (2.53), and taking into account the continuity equa-
tion ∇ · �J = −∂ρ/∂t, gives

�E(�r, t) =
1

4πε0

Z
V 0

⎛⎝ [ρ] �R
R3
− 1

c2

h
∂ �J
∂t

i
R
−

�R

R2c

h
∇0 · �J

i⎞⎠ dv0 (2.55)

To get the exact form of the radiation term, which depends on the distance as
1/R, we need to transform the integrand of this expression by developing ∇0 · [ �J ]
as5

[∇0 · �J ] = ∇0 · [ �J ]−
�R·[∂ �J∂t ]
cR

(2.56)

thus we can rewrite the third term on the right-hand side of (2.55) as

−
Z
V 0

�R

R2c

h
∇0 · �J

i
dv0 = −

Z
V 0

�R

R2c
∇0 · [ �J ]dv0 +

Z
V 0

³h
∂ �J
∂t

i
· �R
´
�R

c2R3
dv0 (2.57)

The calculation of the first term on the right-hand side can be facilitated by
calculating just one component, for example the x component

−
Z
V 0

Rx

R2c
∇0 · [ �J ]dv0 =

Z
V 0

[ �J ]

c
·∇0Rx

R2
dv0 −

Z
V 0
∇0 ·

µ
Rx

R2c
[ �J ]

¶
dv0

=

Z
V 0

[ �J ]

c
·∇0Rx

R2
dv0

=

Z
V 0

[ �J ]

R2c
·∇0Rxdv

0 +

Z
V 0

Rx
[ �J ]

c
·∇0 1

R2
dv0

=

Z
V 0

⎛⎝− [Jx]
cR2

+
2
³
[ �J ] · �R

´
Rx

cR4

⎞⎠ dv0 (2.58)

where we have used (??), applied the divergence theorem, and integrated over
an external surface that encloses the sources in which [ �J ] = 0. Therefore,
generalizing to three dimensions and inserting the result in (2.55), we get

4πεo �E =

Z
V 0

[ρ] �R

R3
dv0 +

Z
V 0

⎛⎝2
³
[ �J ] · �R

´
�R− [ �J ]

³
�R · �R

´
cR4

⎞⎠ dv0 +

+
1

c2

Z
V 0

³h
∂ �J
∂t

i
× �R

´
× �R

R3
dv0 (2.59)

5∇0 · [ �J ] = (∇0 · �J)t0 + ∂[�J]
∂t0 ·∇

0t0 = (∇0 · �J)t0 − ∂[�J]
∂t0 ·∇t

0 = (∇0 · �J)t0 +
�R
cR
· ∂[�J]
∂t0

Thus

(∇0 · �J)t0 = [∇0 · �J ] = ∇0 · [ �J ]−
�R· ∂[

�J]

∂t0
cR
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which can be expressed as the sum of the three components �E = �Ec+ �Ei+ �Erad,
which are defined below.
Coulomb’s term, �Ec,

�Ec =
1

4πεo

Z
V 0

[ρ] �R

R3
dv0 (2.60)

This term is similar to the static Coulomb’s expression except concerning the
time delay.
Induction term, �Ei,

�Ei =
1

4πεo

Z
V 0

⎛⎝2
³
[ �J ] · �R

´
�R

cR4
− [ �J ]

cR2

⎞⎠ dv0 (2.61)

Because of their dependence on 1/R2, the contribution to the field of the terms
(2.60) and (2.61) decrease quickly with distance.
Radiation term, �Erad,

�Erad =
1

4πεoc2

Z
V 0

³h
∂ �J
∂t

i
× �R

´
× �R

R3
dv0 =

μ0
4π

Z
V 0

³h
∂ �J
∂t

i
× �R

´
× �R

R3
dv0

(2.62)

This term, which depends on 1/R, is the electric field component that predom-
inates for long distances. Together with (2.51), this component is of interest in
radiation phenomena (see next subsection) .
At the static limit, expression (2.59) simplifies to Coulomb’s expression of

electrostatics

�E =
1

4πεo

Z
V 0

ρ�R

R3
dv0 (2.63)

Alternatively, the electric field can be expressed only in terms of the current
density, by using the continuity equation. In fact, from (2.56) we have

[ρ] = −
Z t

−∞
[∇0 · �J ]dt0 = −

Z t

−∞

Ã
∇0 · [ �J ]−

�R·[∂ �J∂t ]
cR

!
dt0 (2.64)

Inserting (2.64) into (2.59) and operating in a similar way to (2.58), we obtain
another alternative expression for the electric field created by a bounded source
distribution

�E =
1

4πεo

Z
V 0

Z t

−∞

⎛⎝3
³
[ �J ] · �R

´
�R

R5
− [

�J ]

R3

⎞⎠ dt0dv0

+
1

4πεo

Z
V 0

⎛⎝3
³
[ �J ] · �R

´
�R

cR4
− [ �J ]

cR2

⎞⎠ dv0

+
1

4πεo

1

c2

Z
V 0

³h
∂ �J
∂t

i
× �R

´
× �R

R3
dv0 (2.65)
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Fields created by a time-harmonic source distribution

For time-harmonic dependence of the sources, the field expressions (2.4) and
(2.1) simplify to

~B = ∇× ~A (2.66a)
~E = −∇Φ− jω ~A (2.66b)

and equation (2.49) for the magnetic field becomes

~B =
μo
4π

Z
V 0
( ~J × �R)

µ
1

R3
+

jk

R2

¶
e−jkRdv0

while the different expressions for the electric field, (2.55), (2.59) and (2.65)
become, respectively,

~E =
1

4πεo

Z
V 0

ρ e−jkR �R

R3
dv0 +

jk

4πεo

Z
V 0

Ã
ρ �R

R
−
~J(�r 0)

c

!
e−jkR

R
dv0 (2.68a)

~E =
1

4πεo

Z
V 0

ρ�R

R3
e−jkRdv0 +

1

4πεo

Z
V 0

⎛⎝2
³
~J · �R

´
�R

cR4
−

~J

cR2

⎞⎠ e−jkRdv0 +

+
jk

4πεoc

Z
V 0

³
~J × �R

´
× �R

R3
e−jkRdv0 (2.68b)

~E =
j

4πωεo

Z
V 0

⎛⎝ ~J

R3
−
3
³
~J · �R

´
�R

R5

⎞⎠ e−jkRdv0 +

1

4πεo

Z
V 0

⎛⎝3
³
~J · �R

´
�R

cR4
−

~J

cR2

⎞⎠ e−jkRdv0 +

+
jk

4πεoc

Z
V 0

³
~J × �R

´
× �R

R3
e−jkRdv0 (2.68c)

and the radiation fields (2.51) and (2.62) become

~B =
jωμo
4πc

Z
V 0

~J × �R

R2
e−jkRdv0 (2.69a)

~E =
jωμo
4π

Z
V 0

³
~J × �R

´
× �R

R3
e−jkRdv0 (2.69b)
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2.3.1 Radiation fields

Examining the total fields (2.49) and (2.65) generated by a bounded distribution
of sources with arbitrary time dependence, we find that in general the near-zone
terms, which depend on 1/Rn (n > 1), are negligible compared to the radiation
terms, (2.51) and (2.62), which depend on 1/R, when the condition

R >> c

¯̄̄
[ �J ]
¯̄̄

¯̄̄
d[ �J ]/dt

¯̄̄ (2.70)

is fulfilled for any of the infinitesimal volume elements into which the source can
be subdivided. For time-harmonic fields, this condition becomes

R >> λ (2.71)

Hence, the radiation term predominates when distances from the sources
are great compared to any wave-length involved. The zone where the radiation
fields predominate can be called by several names: far zone, wave zone and
Fraunhofer zone. Note that the far zone is farther away from the sources at
lower time dependence (i.e., at lower frequencies) and there is no far zone at the
static limit.
Let us select the reference origin close to or within the source distribution,

(Fig. 2.1). If the field point is far away from any source point such that r >> r0,
or equivalently r >> l, where l is the largest dimension of the source distribu-
tion, then it is possible to make some general approximations in the expressions
(2.51) and (2.62) which greatly simplify the calculations. To confirm this, let
us write R in Fig. 2.1 as

R = |�r − �r 0| =
¡
r2 − 2�r · �r 0 + r02

¢1/2
(2.72)

Since the reference origin is close to or within the source distribution, we can
calculate the radiation fields at distances r >> r0 by expanding the binomial
(2.72) as a series in powers of the small parameter r0/r and take only the linear
terms of the expansion

R = r

µ
1− 2�r · �r

0

r2
+

r02

r2

¶1/2
= r − �r · �r 0

r
+ ... ' r − �r 0 · r̂ = r − r 0 cos θ

(2.73)

where θ is the angle between r̂ and �r0. This approximation is equivalent to
considering that, far away from the sources, r and R become parallel.
Thus, as r0/r << 1, in the expressions (2.51) and (2.62), we can make the

approximation
R ' r (2.74)

in the denominator. This is equivalent to ignoring, in the modulus of the con-
tribution of each source point to the total field, the difference in the distance
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travelled by the signal. Thus (2.70) becomes

r >> c

¯̄̄
[ �J ]
¯̄̄

¯̄̄
d[ �J ]/dt

¯̄̄ (2.75)

and (2.71) becomes
r >> λ (2.76)

In the retarded time, t0 = t − R/c, the approximation (2.74) is not valid
because the sources can be very sensitive to small changes in the delay time
R/c. Thus, for the delay time, at distances r >> r 0 we need to keep at least
the two linear terms of the expansion (2.73). Therefore

t0 = t− R

c
= t− r

c
+

�r 0 · r̂
c

= t00 +
r 0 cos θ

c
(2.77)

where t00 = t− r/c.
Therefore, from (2.77), the retarded time has two components. One, r/c, is

the time needed for the electromagnetic field to reach the field point from the
origin of the coordinates. The other, �r 0 · r̂/c, represents the time necessary for
the propagation of the electromagnetic perturbation within the geometric limits
of the source distribution. This term, given that the largest dimension of the
source distribution is l, (Fig. 2.1), has a magnitude of

�r 0 · r̂/c ∼ l/c << r/c (2.78)

Hence, using the approximations (2.74) and (2.77) the integrands of the
radiation fields (2.51) and (2.62) simplify to

�Brad =
μo
4πcr

Z
V 0

∂ �J(�r 0, t00 +
�r 0·r̂
c )

∂t
× r̂dv0 (2.79a)

�Erad =
1

4πεoc2r

Z
V 0

Ã
∂ �J(�r 0, t00 +

�r 0·r̂
c )

∂t
× r̂

!
× r̂dv0 (2.79b)

or, for time-harmonic dependence,

~Erad =
jωμo
4πr

Z
V 0

³
~J × r̂

´
× r̂ e−jkRdv0 (2.80a)

~Brad =
jωμo
4πcr

Z
V 0

~J × r̂ e−jkRdv0 =
jkηo
4πcr

Z
V 0

~J × r̂ e−jkRdv0 (2.80b)

A comparison of Eqs. (2.79a) and (2.79b), shows that the radiation fields
are perpendicular to each other and to the direction of propagation. They are
related by

�E = η0 �H × r̂ (2.81)
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where the ratio η0 is defined as

η0 =
E

H
= (μo/εo)

1
2 = 120π Ω (2.82)

and is called the intrinsic impedance of free space.

According to Poynting’s theorem the total radiated energy passing through
the unit area perpendicular to the direction of the vector �Erad × �Hrad is given
by

Z t

−∞
�Praddt =

Z t

−∞
(�Erad × �Hrad)dt (2.83)

and the total flow of power passing through the closed surface S situated in the
far-field zone is

Z t

−∞

Z
S

�Prad · d�sdt =
Z t

−∞

Z
S

(�Erad × �Hrad) · d�sdt (2.84)

In summary, the assumptions involved in using (2.79) and (2.80) to calculate
the radiation fields created by a bounded source distribution in the far-field zone
are:

a) r >> (c |[J ]| / |d[J ]/dt|) or, equivalently, r >> λ for any wavelength of
the radiation spectrum which allows us to neglect 1/r2 terms.

b) r >> l , where l is the largest dimension of the source distribution which
allows us to make the approximations (2.74) and (2.77).

2.3.2 Fields created by an infinitesimal current element

The simplest case of a bounded source distribution is that of an infinitesimal
current element i(t), which is assumed to be oriented on the z axis (Fig. 2.3)
and to have arbitrary time dependence. This current is mathematically defined,
in terms of the Dirac delta function, as

�J(�r, t) = i(t)δ(x0)δ(y0)ẑ − ∆z
2

< z0 <
∆z

2
(2.85)

The fields of this current element can be easily calculated by substituting (2.85)
in (2.49) and (2.65). Thus, we have



46CHAPTER 2. FIELDS CREATEDBYA SOURCEDISTRIBUTION: RETARDED POTENTIAL

z

/ 2zΔ

θ

( )i t
/ 2z−Δ

y

x

Eθ

Hϕ

r̂

z

/ 2zΔ

θ

( )i t
/ 2z−Δ

y

x

Eθ

Hϕ

r̂

Figure 2.3: Infinitesimal current element solo campos de radiacion ¡ ¡¡falta la r del
radio vector del punto campo

Fields created by an infinitesimal current element with arbitrary-time
dependence:

�H(�r, t) =
∆z

4π

µ
1

cr

d [i]

dt
+
[i]

r2

¶
(ẑ × r̂) =

∆z

4π

µ
1

cr

d [i]

dt
+
[i]

r2

¶
sin θ ϕ̂ (2.86a)

�E(�r, t) =
∆z

4πεo

µ
1

r3

Z t

−∞
[i] dt+

[i]

cr2

¶
(3 (ẑ · r̂) r̂ − ẑ) +

∆z

4πεo

1

c2r

d [i]

dt
(r̂ × (r̂ × ẑ)) =

∆z

4πεo

µ
1

r3

Z t

−∞
[i] dt+

[i]

cr2

¶
(2 cos θ r̂ + sin θθ̂ ) +

∆z

4πεo

1

c2r

d [i]

dt
sin θθ̂ (2.86b)

where [i] = i(t− r/c).

For time-harmonic dependence of the current element, i = Re
©
Iejωt

ª
, equa-

tions (2.86a) and (2.86b) simplify to



2.3. ELECTROMAGNETIC FIELDS FROMABOUNDED SOURCEDISTRIBUTION47

Figure 2.4: Radiation field separates from the source and propagates to infinity
Dibujar el dipolo. Note that there is not radiation in the direction in which the
current element is pointing. pp 259 del panofsky :-Como puede verse en la figura
las lineas de campo de raciación representa una familia de lazos, atravezados
por las líneas de campo magnético, que se propagan hacia el infinito ( i.e. waves
see chapter tal)

Fields created by an infinitesimal current element with time-harmonic
dependence:

~H(�r) =
I∆z

4π
jk

µ
1 +

1

jkr

¶
e−jkr

r
sin θ ϕ̂ (2.87a)

~E(�r) =
I∆z

4π
jkη0

Ã
1 +

1

jkr
− 1

(kr)2

!
e−jkr

r
sin θ θ̂ +

I∆z

2π
jkη0

Ã
1

jkr
− 1

(kr)
2

!
e−jkr

r
cos θ r̂ (2.87b)

These expressions can be also derived directly from the vector potential (2.41b),
which in this case simplifies to

�A = ẑ
μ0
4π

Z ∆z
2

−∆z2

[i]

r
dz0 ' ẑ

[i]μ0
4πr

∆z (2.88)

Thus, the magnetic field is given by6
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�H =
1

μ0
∇× �A =

1

μ0
∇× (Aẑ) = 1

μ0
(∇A× ẑ +A(∇× ẑ)) =

1

μ0
∇A× ẑ

(2.89)

where we have applied the vector identity (??) and taken into account that the
curl of a constant vector is zero. Hence, using spherical coordinates, we get

�H =
1

μ0
∇A× ẑ =

∆z

4π

∂

∂r

µ
[i]

r

¶
r̂ × ẑ

=
∆z

4π

µ
− 1
cr

d [i]

dt
− [i]

r2

¶
r̂ × ẑ =

∆z

4π

µ
1

cr

d [i]

dt
+
[i]

r2

¶
sin θϕ̂

(2.90)

which of course coincides with (2.86a).
The electric field (2.86b) can be calculated from (2.90), taking into account

that from (1.1d), in source-free regions, we have7

�E(�r, t) =
1

ε0

Z t

−∞
∇× �H(�r, t) dt (2.93)

From the relation between the charge and current, i(t) = dq(t)/dt, we have

i4 z =
dq

dt
4 z =

dp

dt
= ṗ (2.94)

where p = q 4 z is the dipole moment of a time-varying electric dipole8, the
so-called Hertzian dipole, formed by two point charges with values of +q(t)

6 For a given vector field �A, the field lines are defined by the condition that, at any point,
the line element d�l and the field are parallel i.e. d�l × �A = 0. For the field created by a current
element, from Eqs (2.87a), the magnetic field has only ϕ̂ component and consequently their field
lines are closed around the Z axis. The radiation electric field has θ̂ and r̂ components, although
the radiation electric field has only θ̂ component which becomes null in the region θ→ 0. Then in
this region predominates the Er = �E · r̂ component and consequently the electric field lines close(
see Fig 2.4) as would be expected from Maxwell’s equations since, outside the sources, there only
exist curl sources.

7 Note that once calculed �H = 1/μ0∇× �A we can obtain �E using (1.1d) or (1.67d) and taking
into account that, in source-free regions, we have

�E =
1

ε0
∇× �H dt = c ∇× (∇× �A) dt (2.91)

or

�E =
1

jε0ω
∇× �H =

1

jk
∇× (∇× �A) (2.92)

for arbitrary or harmonic time dependence respectively. Thus we do not need necessarily to
calculate Φ to obtain the fields.

8The time varying electric dipole is defined as two time varying charges of opposite magnitude
±q(t) separated by a constant distance ∆z much less than the field point r. The dipole moment
�p(t) is given by the magnitude of the charge times the distance ∆z between them and the defined
direction is toward the positive charge i.e. �p(t) = q(t)∆z.. Alternatively it would be possible to
model the oscillating dipole as two constant point charges of opposite sign separated by oscillat-
ing distance ∆z(t). However, the fields created for such accelerated charges need from the theory
developed in Chapter ??.
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and −q(t) and the dot indicates differentiation with respect to time. Thus the
time-varying current element is equivalent to

i(t) =
1

4z

dp

dt
(2.95)

or, for time-harmonic dependence,

I =
jωp

4z
(2.96)

Introducing (2.95) into (2.86a) and (2.86b), and (2.96) into (2.87a) and (2.87b),
we get the field created by an infinitesimal current element (hertzian dipole) in
terms of its dipole moment as:

Fields created by a Hertzian dipole with arbitrary-time dependence:

�H =
1

4πr

µ
[ṗ]

r
+
[p̈]

c

¶
sin θϕ̂ (2.97a)

�E =
1

4πrε0

µ
[p]

r2
+
[ṗ]

rc
+
[p̈]

c2

¶
sin θθ̂ +

1

2πrεo

µ
[p]

r2
+
[ṗ]

rc

¶
cos θr̂ (2.97b)

Fields created by a Hertzian dipole with time-harmonic dependence:

~H =
jωp

4π

µ
1

r
+ jk

¶
e−jkr

r
sin θϕ̂ (2.98a)

~E =
p

4πε0

µ
1

r2
+

jk

r
− k2

¶
e−jkr

r
sin θθ̂ +

p

2πεo

µ
1

r2
+

jk

r

¶
e−jkr

r
cos θr̂ (2.98b)

The radiation fields created by an infinitesimal current element can be ex-
pressed, from (2.86a) to (2.87b), in terms of its current amplitude or of its
equivalent dipolar moment.

Radiation fields created by an infinitesimal current element:

For arbitrary-time dependence

�Hrad =
∆z

4π

1

cr

d [i]

dt
sin θϕ̂ (2.99a)

�Erad =
∆z

4πεo

1

c2r

d [i]

dt
sin θθ̂ (2.99b)
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For time-harmonic dependence

~Hrad =
I∆z

4π
jk

e−jkr

r
sin θϕ̂ (2.100a)

~Erad =
I∆z

4π
jkη0

e−jkr

r
sin θθ̂ (2.100b)

and from (2.97a) to (2.98b), we have the radiation fields in terms of its equivalent
Hertzian dipole:

Radiation fields created by an electric dipole:

For arbitrary-time dependence

�Hrad =
1

4πr

[p̈]

c
sin θϕ̂ (2.101a)

�Erad =
1

4πrε0

[p̈]

c2
sin θθ̂ (2.101b)

For time-harmonic dependence

~Hrad = −ωpk
4π

e−jkr

r
sin θϕ̂ (2.102a)

~Erad =
−pk2
4πε0

e−jkr

r
sin θθ̂ (2.102b)

More details about this elemental radiators and how they can be physical
approximated are given in subsubsection ?? of chapter ??.

2.3.3 Far-zone approximations for the potentials

The general expressions (2.49) and (2.59) for the fields due to an arbitrary
source distribution of finite size are of theoretical and sometimes of practical
interest. However, except for the case of the infinitesimal current element, it
is much easier to calculate the fields created by a given source distribution via
the potentials, as indicated in Fig. 2.2. This can be seen simply by comparing
the complexity of the expressions for these fields, (2.49) and (2.59), with those
for the potentials (2.41a) and (2.41b). Because of the vector product in the
integrand of (2.51) and (2.62), this argument continues being true even when
we are interested only in the radiation fields. In the far zone, we can make the
approximations (2.74) and (2.77) for the potentials. Hence, the integrands of
the retarded potentials (2.41) simplify to

Φ (�r, t) =
1

4πε0

Z
V 0

ρ(�r 0, t0)

R
dv0 ' 1

4πε0r

Z
V 0

ρ(�r 0, t00 +
�r 0 · r̂
c
)dv0

(2.103a)

�A (�r, t) =
μ0
4π

Z
V 0

�J(�r 0, t0)

R
dv0 ' μ0

4πr

Z
V 0

�J(�r 0, t00 +
�r 0 · r̂
c
)dv0 (2.103b)
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The magnetic field can now be calculated from (2.1), using (??), as

�B = ∇× �A =
μ0
4π

Z
V 0
∇×

�J(�r 0, t00 +
�r 0·r̂
c )

r
dv0

=
μ0
4π

Z
V 0

∇× �J(�r 0, t00 +
�r 0·r̂
c )

r
dv0 − μ0

4π

Z
V 0

�J(�r 0, t00 +
�r 0 · r̂
c
)×∇1

r
dv0

(2.104)

where, if we are interested only in the radiation field, the second term can be
ignored since it depends on 1/r2, and therefore

�H =
∇× �A

μ0
=
1

4π

Z
V 0

∇× �J(�r 0, t00 +
�r 0·r̂
c )

r
dv0 (2.105)

Furthermore, from (??), we have ∇× �J (Ψ) = ∇Ψ×d �J/dΨ with Ψ = t00+�r
0 ·r̂/c.

Thus, it follows that

∇× �J(�r 0, t00 +
�r 0 · r̂
c
) = −∇r

c
×

∂ �J(�r 0, t00 +
�r 0·r̂
c )

∂t

= − r̂
c
×

∂ �J(�r 0, t00 +
�r 0·r̂
c )

∂t
(2.106)

and therefore

�H = − 1

μ0c
r̂ × ∂ �A

∂t
(2.107)

which, as would be expected, leads to (2.79a). If the time variations of the
sources are harmonic the expressions (2.103a) , (2.103b) and (2.107) become

Φ =
1

4πε0r
e−jkr

Z
V 0
ρ(�r 0)ej

�k·�r 0dv0 (2.108a)

~A =
μ0
4πr

e−jkr
Z
V 0

~J(�r 0)ej
�k·�r 0dv0 (2.108b)

~H = − jω

μ0c
r̂ × ~A (2.108c)

The radiation electric field can be calculated from (2.107) or (2.108c) simply
using (2.81).

2.4 Multipole expansion for potentials
In many cases, such as the study of most antennas, in order to calculate the
radiation fields, we cannot make any approximation concerning the potentials
other than those assumed above. For example, we need to carry out the integra-
tion in (2.103b) or (2.108b) in order to calculate the vector potential. However,
if we assume that the charge distribution does not change appreciably over time
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l/c, we may expand the integrands of (2.103) in a Taylor series about t00 in terms
of the parameter �r 0 · r̂/c. For example, for the vector potential, we have

�J(�r 0, t00 +
�r 0 · r̂
c
) = �J(�r 0, t00) +

∂ �J(�r 0, t0)

∂t0

¯̄̄̄
¯
t0=t00

�r 0 · r̂
c

+ ... (2.109)

where we have omitted higher-order terms in �r 0·r̂/c. Thus after inserting (2.109)
in (2.103b), we can write �A as the power-series expansion

�A ' �A1 + �A2 + ... =

μ0
4πr

Z
V 0

�J(�r 0, t00)dv
0 +

μ0
4πcr

Z
V 0

∂ �J(�r 0, t0)

∂t0

¯̄̄̄
¯
t0=t00

�r 0 · r̂dv0 + ...

(2.110)

Therefore the first two terms of the expansion (2.110), �A1 and �A2, are given by

�A1 =
μ0
4πr

Z
V 0

�J(�r 0, t00)dv
0 (2.111a)

�A2 =
μ0
4πcr

Z
V 0

∂ �J(�r 0, t0)

∂t0

¯̄̄̄
¯
t0=t00

�r 0 · r̂dv0

=
μ0
4πcr

Z
V 0

∂

∂t0
�J(�r 0, t0)�r 0 · r̂dv0

¯̄̄̄
t0=t00

(2.111b)

If the time dependence of the sources is sinusoidal the condition that the source
distribution does not change appreciably over time l/c is equivalent to assuming
that l/c << T (where T is the period of the signal) or equivalently l/λ << 1,
i.e., that the dimension of wavelength is much greater than that of the source
distribution

λ >> l (2.112)

In this case, we can perform the series expansion

ej
�k·�r 0 = ejkr̂·�r

0
≈ 1 + jkr̂ · �r 0 − 1

2
k2(r̂ · �r 0)2 + ... (2.113)

which, after substituting in (2.108b), leads to

~A = ~A1 + ~A2 + ... (2.114)

where

~A1 =
μ0
4π

e−jkr

r

Z
V 0

~J(r0)dv0 (2.115a)

~A2 = jk
μ0
4π

e−jkr

r

Z
V 0

~J(r0)r̂ · �r 0dv0 (2.115b)
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which are the Fourier transforms of (2.111a) and (2.111b), respectively.
Of course, there are analogous expressions for the terms of Φ

Φ = Φ1 +Φ2 + ...

=
1

4πε0r

Z
V 0

ρ(�r 0, t00)dv
0 +

1

4πε0cr

Z
V 0

∂ρ(�r 0, t0)

∂t0

¯̄̄̄
t0=t00

�r 0 · r̂dv0 + ...

(2.116)

where

Φ1 =
1

4πε0r

Z
V 0

ρ(�r 0, t00)dv
0 (2.117a)

Φ2 =
1

4πε0cr

Z
V 0

∂ρ(�r 0, t0)

∂t0

¯̄̄̄
t0=t00

�r 0 · r̂dv0 (2.117b)

Note that, since the contribution of each point source to the integral in
(2.117a) is evaluated at the same time t00, this integral represents the total
charge of the source distribution. Thus, if the net charge of the distribution is
zero, we have Φ1 = 0. If the net charge is not zero, the constant, the electrostatic
potential Φ1 created by that charge depends on r−2 and consequently it does
not contribute to the radiation.
The expansion (2.110) allows us to decompose the electromagnetic field

created by a time-varying source distribution of finite dimension in terms of
elementary time-varying source distributions, called electric and magnetic mul-
tipoles, located at the origin. This is similar to the well-known multipolar ex-
pansion of the electrostatics (or magnetostatics) to decompose the field created
by a stationary source distribution of charge (or current) in terms of electric (or
magnetic) multipoles. However, now the original distribution is time-varying
and produces both electric and magnetic fields. Thus, as result of the expan-
sion, we will obtain both, electric and magnetic multipoles. To verify this, we
next analyze the first two terms, (2.111a) and (2.111b), of (2.110).

2.4.1 Electric dipolar radiation

The evaluation of the term (2.111a) of the power-series expansion of �A can be
facilitated by calculating just one component of

R
V 0

�J(�r 0, t00)dv
0, for example the

x componentZ
V 0

Jx(�r
0, t00)dv

0 =

Z
V 0

�J(�r 0, t00) · x̂dv0 =
Z
V 0

�J(�r 0, t00) ·∇0x0dv0

=

Z
V 0
∇0 ·

³
x0 �J(�r 0, t00)

´
dv0 −

Z
V 0

x0∇0 · �J(�r 0, t00)dv0

= −
Z
V 0

x0∇0 · �J(�r 0, t00)dv0 (2.118)

since Z
V 0
∇0 ·

³
x0 �J(�r 0, t00)

´
dv0 = 0 (2.119)
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as can be seen by applying the divergence theorem and by integrating over
an external surface, where �J(�r 0, t00) = 0, that encloses the sources. Therefore,
generalizing to three dimensions we haveZ

V 0

�J(�r 0, t00)dv
0 = −

Z
V 0

�r 0∇0 · �J(�r 0, t00)dv0 (2.120)

and using the equation of continuity

∇0 · �J(�r 0, t00) = −
∂ρ(�r 0, t00)

∂t
(2.121)

we get Z
V 0

�J(�r 0, t00)dv
0 =

Z
V 0

�r 0
∂ρ(�r 0, t00)

∂t
dv0 (2.122)

which, when substituted in (2.111a), gives

�A1 =
μ0
4πr

Z
V 0

�r 0
∂ρ(�r 0, t00)

∂t
dv0 =

μ0
4πr

∂

∂t

Z
V 0

�r 0ρ(�r 0, t00)dv
0 (2.123)

The integral
R
V 0 �r

0ρ(�r 0, t00)dv
0 is by definition the electric dipole moment, [�p],

evaluated at the retarded time t00, of the time-varying source distribution, i.e.,

[�p] =

Z
V 0

�r 0ρ(�r 0, t00)dv
0 =

Z
V 0

�r 0ρ(�r 0, t− r

c
)dv0 (2.124)

Thus we have

�A1 =
μ0
4πr

∂[�p]

∂t
=

μ0
·
[�p]

4πr
(2.125)

The magnetic radiation field, from (2.107), is given by

�Hrad = −
r̂ × [

··
�p]

4πrc
=
[
··
p] sin θ

4πrc
ϕ̂ (2.126)

where we have assumed the direction of �p parallel to the polar z axis. This
expression, as might be expected, coincides with the radiation term, (2.101a),
of (2.97a). From (2.126), the electric radiation field, given by (2.101b), can
be obtained using (2.81). Of course the corresponding expressions for time-
harmonic fields are given by (2.102a) and (2.102b). Therefore, in a preliminary
approximation, the original source distribution can be replaced by an electric
dipole located at the origin of coordinates.



2.4. MULTIPOLE EXPANSION FOR POTENTIALS 55

2.4.2 Magnetic dipolar radiation

The analysis of the term (2.111b), can be facilitated by expressing the integrand
as follows

�J(�r 0, t00)(r̂ · �r 0) =
1

2

³
�J(�r 0, t00)(�r

0 · r̂)− �r 0
³
�J(�r 0, t00) · r̂

´´
+
1

2

³
�J(�r 0, t00)(�r

0 · r̂) + �r 0
³
�J(�r 0, t00) · r̂

´´
=

1

2
r̂ ×

³
�J(�r 0, t00)× �r 0

´
+
1

2

³
�J(�r 0, t00)(r̂ · �r 0) + �r 0

³
�J(�r 0, t00) · r̂

´´
(2.127)

Then, substituting in �A2, we get

�A2 = �A2m + �A2q (2.128)

where
�A2m =

μ0
8πcr

Z
V 0

∂

∂t
r̂ ×

³
�J(�r 0, t00)× �r 0

´
dv0 (2.129)

and

�A2q =
μ0
8πcr

∂

∂t

Z
V 0

³
�J(�r 0, t00)(r̂ · �r 0) + �r 0

³
�J(�r 0, t00) · r̂

´´
dv0 (2.130)

The integral (2.129) can be written as

�A2m =
μ0
4πcr

∂[�m]

∂t
× r̂ (2.131)

where

[�m] =

Z
V 0

�r 0 × �J(�r 0, t00)

2
dv0 (2.132)

is by definition the magnetic dipolar moment about O, evaluated at the retarded
time t00, of the source distribution. Thus, under the assumption that �m = mẑ,
the magnetic radiation field given by (2.107) is

�Hrad =
1

4πc2r
r̂ × (r̂ × [

··
�m]) =

1

4πr

[
··
m]

c2
sin θθ̂ (2.133)

From (2.81) the electric radiation field is given by

�Erad = −
μ0
4πr

[
··
m]

c
sin θϕ̂ (2.134)

For time-harmonic dependence, we have

~Hrad =
−k2m sin θ

4πr
e−jkr θ̂ (2.135)
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and
~Erad =

k2m sin θ

4πr
η0e
−jkrϕ̂ (2.136)

where

~m =

Z
V 0

�r 0 × ~J(r0)

2
dv0 (2.137)

These expressions are similar to (2.101a)-(2.102b), which were obtained for
the electric field of the radiation of the electric dipole. In fact, as we will see
in the next section, there exists a duality in the analysis of the electric and
magnetic dipoles.
In the particular case of a current loop of radius a , Fig. ??, for which the

current i does not change appreciably over time a/c (or equivalently a << λ for
any frequency involved), (2.132), becomes

�m = i

Z
Γ

�r 0 × d�l

2
= i�S (2.138)

where Γ is the countour of loop and �S is the vector area of the surface subtended
by the contour Γ. In this expression, �Jdv has been changed to id�l. The surface
vector �S is directed normal to the loop according to the right-hand rule for
the direction of the current in the loop. Thus, for the circular current loop, the
radiation fields (2.133)-(2.136), can be written, for arbitrary time dependence,
as

�Hrad =
S

4πr

[
··
i]

c2
sin θθ̂ (2.139a)

�Erad = −μ0S
4πr

[
··
i]

c
sin θϕ̂ (2.139b)

where i is evaluated at t00. These equations, for time-harmonic dependence
become

~Hrad =
−k2IS sin θ

4πr
e−jkrθ̂ (2.140a)

Erad =
k2IS sin θ

4πr
η0e
−jkrϕ̂ (2.140b)

It should be mentioned that the magnetic moment is important only when
there exists no radiation of the electric moment of the system. Otherwise the
one due to the magnetic moment may be ignored. Effectively, comparing Eqs.
(2.101b) and (2.134), and using Ep and Em to indicate the amplitudes of the
electric radiation fields from an electric and a magnetic dipole, respectively, we
have

Eprad

Emrad

=
cp̈

m̈
(2.141)
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Figure 2.5: Poner �m = i�S , poner i en vez de I y el contour Γ. A circular loop of

current in the x-y plane y dibujar campos como en el elemento de corriente. Hacer el dibujo igual

que el del electrico

or for time-harmonic variation with both dipoles oscillating at the same fre-
quency,

Eprad

Emrad

=
cp0
m0

(2.142)

Since from (2.137) we have

�m0 =

Z
V 0

�r 0 × �J0
2

dv0 =
1

2

Z
V 0

ρ0�r
0 × �udv0 (2.143a)

�p0 =

Z
V 0

ρ0�r
0dv0 (2.143b)

and consequently
m0 ∼ up0 (2.144)

where u is the velocity of motion of the charges. Thus from (2.142) we have, for
u << c,

Eprad >> Emrad
(2.145)

i.e., the magnetic dipolar radiation may be ignored in comparison with the
electric dipolar radiation.

2.4.3 Electric quadrupole radiation

The second term, �A2q, of �A2 in (2.130), is associated with the electric quadru-
pole radiation, but to see this we must transform it further. To this end let us
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consider the x component of the first summand of the integral
R
V 0

³
�J(�r 0, t00)r̂ · �r 0

´
dv0

i.e. Z
V 0

r̂ · �r 0
³
�J(�r 0, t00) · x̂0

´
dv0 =

Z
V 0

r̂ · �r 0
³
�J(�r 0, t00) ·∇0x0

´
dv0

=

Z
V 0
∇0 ·

³
x0 (r̂ · �r 0) �J(�r 0, t00)

´
dv0 −

Z
V 0

x0∇0 ·
³
(r̂ · �r 0) �J(�r 0, t00)

´
dv0

(2.146)

where the first integral is null, as can be seen using the divergence theorem to
convert the volume integral in a surface integral with the surface of integration
outside of the source distribution. ThusZ

V 0
r̂ · �r 0

³
�J(�r 0, t00) · x̂0

´
dv0 = −

Z
V 0

x0∇0 ·
³
(r̂ · �r 0) �J(�r 0, t00)

´
dv0

= −
Z
V 0

x0∇0 (r̂ · �r 0) · �J(�r 0, t00)dv0

−
Z
V 0

x0 (r̂ · �r 0)∇0 · �J(�r 0, t00)dv0

(2.147)

but

∇0 (r̂ · �r 0) = r̂ (2.148a)

∇0 · �J(�r 0, t00) = −∂ρ(�r
0, t00)

∂t
(2.148b)

therefore Z
V 0

�Jx(�r
0, t00)r̂ · �r 0dv0

= −
Z
V 0

x0
³
�J(�r 0, t00) · r̂

´
dv0 +

Z
V 0

x0 (r̂ · �r 0) ∂ρ(�r
0, t00)

∂t
dv0 (2.149)

Generalizing to three dimensionsZ
V 0

�J(�r 0, t00) (r̂ · �r 0) dv0 = −
Z
V 0

�r 0
³
�J(�r 0, t00) · r̂

´
dv0+

Z
V 0

�r 0 (r̂ · �r 0)·∂ρ(�r
0, t00)

∂t
dv0

(2.150)
and therefore, substituting in (2.130), we have

�A2q =
μ0
8πcr

∂2

∂t2

Z
V 0

�r 0 (r̂ · �r 0) ρ(�r 0, t00)dv0 (2.151)

The magnetic radiation field, given by (2.107), is

�H2qrad = −
1

8πc2r
r̂ × ∂3

∂t3

Z
V 0

�r 0 (r̂ · �r 0) ρ(�r 0, t00)dv0 (2.152)
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The above expression can be written in a more useful form by adding the
term r̂r02ρ(�r 0, t00) to the integrand

�H2qrad = −
1

24πc2r
r̂ × ∂3

∂t3

Z
V 0

¡
3�r0 (r̂ · �r 0)− r̂r02

¢
ρ(�r 0, t00)dv

0 (2.153)

Note that, since r̂ × r̂r02 = 0, the added term do no affect to the value of the
integral. The advantage of including this term is that, now, the integrand can
be written as the product of a second rank tensor Q, called electric quadrupole-
moment tensor of the source distribution, and the vector r̂Z

V 0

¡
3�r0 (r̂ · �r 0)− r̂r02

¢
ρ(�r 0, t00)dv

0 = [Q]r̂ (2.154)

The elements of [Q] are

[Qαβ] =

Z
V 0

¡
3x0αx

0
β − r02δαβ

¢
ρ(�r 0, t00)dv

0 (2.155)

and [Q]r̂ is a vector with componentsX
α

[Qαβ ]r̂β (2.156)

Therefore the radiation magnetic field from a varying electric quadrupole is
given by

�H2qrad = −
1

24πc2r
r̂ × ∂3[Q]r̂

∂t3
= − 1

24πc2r
r̂ × [

...
Q]r̂ (2.157)

or, for, time-harmonic dependence,

~H2qrad =
jck3

24πr
ej(ωt−kr)r̂ ×Qr̂ (2.158)

The radiation electric field can be calculated as usual by (2.81). It can be
shown that quadrupole radiation fields are of the same order as the magnetic
dipole moment and thus much less than that corresponding to the Hertzian
dipole (Ejercicio)..

Of course, if we continued analyzing other terms in the expansion tal, we
would find other multipole moments, such as magnetic quadrupole radiation,
electric octupole radiation, etc. However, for this, other more complex mathe-
matical methods provide the results more systematically.

2.5 Maxwell’s symmetric equations
It can be observed from (1.1a)-(1.1d) that Maxwell’s equations present a certain
symmetry that, except in free space and with no source terms, is not complete
because of the absence of magnetic charges and currents. Indeed, despite many
experimental attempts, no free magnetic charges or monopoles have been found
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in nature nor, therefore, would magnetic currents be created9. Nevertheless,
from a purely theoretical standpoint, nothing prevents us from assuming the
existence of magnetic monopoles; therefore, to complete Maxwell’s equations
we must add the necessary magnetic source terms in order to achieve com-
plete symmetry between electric and magnetic quantities. To this end, we can
reformulate Faraday’s law (1.1c) and Gauss’ law for magnetic fields (1.1b) by in-
troducing, on their right-hand side, hypothetical magnetic current densities �Jm
(V m−2) and magnetic charge densities ρm (Wb/m

3), respectively, as additional
source terms. With these new quantities included, we can rewrite Maxwell’s
equations for the case that both, electric as well as magnetic sources, exist in
free space, in the following completely symmetric manner:
Differential form of Maxwell’s symmetric equations

∇ · �D = ρ (2.159a)

∇ · �B = ρm (2.159b)

∇× �E = − �Jm − μ0
∂ �H

∂t
(2.159c)

∇× �H = �J + ε0
∂ �E

∂t
(2.159d)

Integral form of Maxwell’s symmetric equationsI
S

�D · d�s = QT (2.160a)I
S

�B · d�s = Qm (2.160b)I
Γ

�E · d�l = −
Z
S

�Jm · d�s−
∂

∂t

Z
S

�B · d�s (2.160c)I
Γ

�H · d�l =

Z
S

�J · d�s+ ∂

∂t

Z
S

�D · d�s (2.160d)

It should be emphasized that the symmetrization of Maxwell’s equations
is a powerful mathematical tool which greatly facilitates the solution of many
practical problems such as the radiation and scattering from aperture antennas
or permeable bodies.
Taking the divergence of (2.159c) and using (2.159b)

∇ ·∇× �E = −∇ · �Jm −
∂∇ · �B
∂t

= 0 (2.161)

9 It should be emphasized that, although there is no experimental evidence for the existence of
magnetic charges, such existence does not violate any known principle of physics. In fact, from a
purely theoretical viewpoint, Dirac showed [P.A.M. Dirac, Proc Roy. Soc.Lond. A133, 60 (1931)]
that the existence of magnetic monopoles with magnetic charge g would explain the quantization
of the electric charge e. We refer to the magnetically charged particles as magnetic monopoles or
simply monopoles.



2.5. MAXWELL’S SYMMETRIC EQUATIONS 61

we get the equation of continuity

∇ · �Jm = −
∂ρm
∂t

(2.162)

which expresses the conservation of magnetic monopoles and has the same form
as that for the electric charges (1.3).
In linear media, we can apply the superposition principle and split each one

of the field quantities, �E, �D, �H and �B, into the sum of two components

�D = �De + �Dm = ε0

³
�Ee + �Em

´
= ε0 �E (2.163a)

�B = �Be + �Bm = μ0

³
�He + �Hm

´
= μ0 �H (2.163b)

where the quantities with the e subscript depend only on the “true” electric
sources ρ and �J while the quantities with the m subscript depend only on the
“hypothetical” magnetic sources ρm and �Jm. In this way, we divide Maxwell’s
equations into two groups corresponding to the field components associated with
the electrical and magnetic sources, respectively; that is

∇ · �De = ρ (2.164a)

∇ · �Be = 0 (2.164b)

∇× �Ee = −μ0
∂ �He

∂t
(2.164c)

∇× �He = �J + ε0
∂ �Ee

∂t
(2.164d)

∇ · �Dm = 0 (2.165a)

∇ · �Bm = ρm (2.165b)

∇× �Em = − �Jm − μ0
∂ �Hm

∂t
(2.165c)

∇× �Hm = ε0
∂ �Em

∂t
(2.165d)

Note that the sum of each expression (2.164), added to its equivalent (2.165),
gives (2.159) and that the set (2.164) coincides with the conventional Maxwell’s
equations (2.159), and that Eqs. (2.164) are formally identical to Eqs. (1.1a)-
(1.1d) and therefore can be solved as in the previous sections by means of the
scalar and vector potentials Φ and �A. Thus, from (2.4) and (2.1), we have

�Be = ∇× �A (2.166)

�Ee = −∇Φ− ∂ �A

∂t
(2.167)
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where

∇ · �A+ μ0ε0
∂Φ

∂t
= 0 (2.168)

and where �A and Φ fulfil the wave equations (2.14a) and (2.14b)

∇2 �A− μ0ε0
∂2 �A

∂t2
= −μ0 �J (2.169)

∇2Φ− μ0ε0
∂2Φ

∂t2
= − ρ

ε0
(2.170)

the solutions to which are the retarded potentials (2.41a) and (2.41b)

Φ =
1

4πε0

Z
V 0

[ρ]

R
dv0 (2.171)

�A =
μ0
4π

Z
V 0

[ �J ]

R
dv0 (2.172)

The fields created by the magnetic sources ρm and �Jm can be deduced by ob-
serving that equations (2.164) are transformed into (2.165) and vice versa with
the simultaneous replacement of the following quantities, called duals

�Ee dual of �Hm

�He dual of − �Em

ε0 dual of μ0
μ0 dual of ε0
ρ dual of ρm
�J dual of �Jm

(2.173)

The fields �Ee and �He associated with the electric sources can be calculated
from the magnetic vector potential �A and the electric scalar potential Φ by
means of (2.171) and (2.172). To calculate the fields �Hm and �Em we can use the
same formalism defining two new potentials, termed ”electric vector potential”
�F and ”magnetic scalar potential” ψ, such that

�A dual of �F
Φ dual of ψ

(2.174)

Hence

ψ =
1

4πμ0

Z
V 0

[ρm]

R
dv0 (2.175)

�F =
ε0
4π

Z
V 0

[ �Jm]

R
dv0 (2.176)

which are the dual expressions of (2.171) and (2.172).
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By substituting the magnitudes in the first column of (2.173 and 2.174) for
their duals in the equations from (2.166) to (2.172) we get

�Dm = εo �Em = −∇× �F (2.177a)

�Hm = −∇ψ − ∂ �F

∂t
(2.177b)

∇ · �F + μ0ε0
∂ψ

∂t
= 0 (2.177c)

in which ψ and �F satisfy wave equations that are analogous to (2.169) and
(2.170):

∇2 �F − μ0ε0
∂2 �F

∂t2
= −ε0 �Jm (2.178)

∇2ψ − μ0ε0
∂2ψ

∂t2
= −ρm

μ0
(2.179)

Thus, by the superposition principle, if both current densities �J and �Jm exist
simultaneously in a region of free space, the total field �E produced at any point
is the sum of �Ee and �Em given by (2.167) and (2.177a). Hence

�E = �Ee + �Em = −∇Φ−
∂ �A

∂t
− 1

ε0
∇× �F =

1

c2
∇
Z
∇ · �Adt− ∂ �A

∂t
− 1

ε0
∇× �F (2.180)

where Lorenz gauge Eq. (2.10) has been used to express �E in terms of �A and
�F .
The total field �H is determined analogously from (2.166) and (2.177b)

�H = �He + �Hm = −∇ψ −
∂ �F

∂t
+
1

μ0
∇× �A (2.181)

In practice, it is not necessary to use the latter expression, because once �E
has been calculated using (2.180), by substituting the result in (2.159c), with
�Jm = 0 we obtain �H.

2.5.1 Boundary conditions

It is easy to show, ejercicio, that the boundary conditions corresponding to Maxwell’s
symmetric equations are a logical extension of (1.35); that is,

n̂ ·
³
�D1 − �D2

´
= ρs (2.182a)

n̂ ·
³
�B1 − �B2

´
= ρsm (2.182b)

n̂×
³
�E1 − �E2

´
= − �Jsm (2.182c)

n̂×
³
�H1 − �H2

´
= �Js (2.182d)
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in which n̂ is the normal unit vector that goes from region 2 to region 1. Equa-
tions (2.182b) and (2.182c) show the additional effects of the imaginary sur-
face magnetic charges and currents, ρsm and �Jsm, at the interface. According
to (2.182c) and (2.182d), the tangential components of the fields on a real or
imaginary surface S can be written in terms of surface distributions of electric
currents

n̂× �H
¯̄̄
S
= �Js (2.183)

and magnetic ones

− n̂× �E
¯̄̄
S
= �Jsm (2.184)

2.5.2 Harmonic variations

For harmonic variations, the symmetric equations (2.159) simplify to

∇ · ~D = ρ (2.185a)

∇ · ~B = ρm (2.185b)

∇× ~E = − ~Jm − jμ0ω ~H (2.185c)

∇× ~H = ~J + jε0ω ~E (2.185d)

and the wave equations for the magnetic scalar potential ψ, the electric vector
potential �F , and the Lorenz relations are

∇2ψ + ω2μ0ε0ψ = −ρm
μ0

(2.186a)

∇2 ~F + ω2μ0ε0 ~F = −ε0 ~Jm (2.186b)

ψ =
j∇ · ~F
ωε0μ0

(2.186c)

with the solutions to (2.186a) and (2.186b) being

ψ =
1

4πμ0

Z
V 0

ρme
−jkR

R
dv0 (2.187)

~F =
ε0
4π

Z
V 0

~Jme−jkR

R
dv0 (2.188)

The total field ~E produced at any point is the sum of ~Ee and ~Em, and is
given by

~E = ~Ee + ~Em = −j
c2

ω
∇
³
∇ · ~A

´
− jω ~A− 1

ε0
∇× ~F (2.189)

while for the total field ~H we have

~H = −j c
2

ω
∇
³
∇ · ~F

´
− jω ~F +

1

μ0
∇× ~A. (2.190)

where �A is given by (2.47a).
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2.5.3 Fields created by an infinitesimal magnetic current
element

From (2.86a) and (2.86b), using the dual equations (2.173), we deduce that the
fields generated by an infinitesimal magnetic current element,

�Jm(�r, t) = im(t)δ(x
0)δ(y0)ẑ − ∆z

2
< z0 <

∆z

2
(2.191)

are given by, (Fig. 2.6),

�E = −∆z
4π

µ
1

cr

d [im]

dt
+
[im]

r2

¶
sin θ ϕ̂ (2.192a)

�H =
∆z

4πμo

µ
1

r3

Z t

−∞
[im] dt+

[im]

cr2

¶
(2 cos θ r̂ + sin θθ̂ ) +

∆z

4πμo

1

c2r

d [im]

dt
sin θθ̂

(2.192b)

or, for time-harmonic variation

~E = −∆zIm
4π

jk

µ
1 +

1

jkr

¶
e−jkr

r
sin θ ϕ̂ (2.193a)

~H =
Im∆z

4π
jωε0

µ
1 +

1

jkr
− 1

k2r2

¶
e−jkr

r
sin θθ̂ +

Im∆z

2π
jωε0

µ
− 1

k2r2
+

1

jkr

¶
e−jkr

r
cos θr̂

(2.193b)

Comparing the radiation terms of these equations to (2.139a)-(2.140b), we find
that

im∆z = μ0S
di

dt
(2.194)

or for time-harmonic dependence.

Im∆z = jωμ0IS (2.195)

2.6 Theorem of uniqueness

Whenever we have to resolve a differential equation, it is desirable to know
the conditions that must be fulfilled in order to state that a unique solution is
possible. In our context, this means to seek the conditions for which we can state
that there exists a single electromagnetic field that satisfies, simultaneously,
Maxwell’s equations and the given boundary conditions.
Next, we establish these conditions for non-harmonic and time-harmonic

electromagnetic fields.
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Figure 2.6: solo los campos de radiacion se representan”’

2.6.1 Non-harmonic electromagnetic field

A non-harmonic electromagnetic field that varies in a linear region V bounded
by a surface S is uniquely determined from an initial time, t = t0, if the following
are known:
i) The values of the sources at each point and at each time for every t > t0

within the region.
ii) The values of the electromagnetic field (�E and �H) at each point of V at

the initial time t = t0.
iii) The tangential components of the electric field �E or of the magnetic field

�H on the entire the surface S for all t > t0, or, alternatively, the tangential
components of the electric field �E in any part of S and of the magnetic field
�H in the remaining part of S, for all t > t0.

Proof

This theorem can be proven by a reduction to absurdity— that is, by showing
that to assume the opposite of what is postulated would lead to a contradiction.
Let us assume that having defined the three above conditions within a volume
V , there exist two different electromagnetic fields, (�E1 and �H1) and ( �E2 and
�H2), respectively, which are solutions to the problem. Given the linearity of
Maxwell’s equations, any linear combination of these two solutions must in itself
be a solution. In particular, the difference between the two aforementioned
fields, i.e. the field defined by ( �E0 = �E1 − �E2 and �H 0 = �H1 − �H2), must also
be a solution to the problem. Given that, from the hypothesis, the sources are
the same for the fields ( �E1 and �H1) and ( �E2 and �H2), the field (�E0, �H 0) is
source-free in V. Thus, if we apply the Poynting theorem (1.39) to ( �E0, �H 0), we
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get

0 =
∂

∂t

Z
V

1

2
(�E0 · �D0 + �B0 · �H 0)dv +

Z
V

σE02dv +

I
S

(�E0 × �H 0) · d�s (2.196)

It is straightforward to show that if the tangential components of the electric
field �E and/or of the magnetic field �H are uniquely determined on surface S,
the final term in (2.196) is null. By integrating this expression with respect to
the time from t0 to t and, taking into account that the initial values for t = t0
are defined for all V , we find that

0 =

Z
V

1

2
(�E0 · �D0 + �B0 · �H 0)dv +

Z t

t0

µZ
V

σE02dv

¶
dt (2.197)

As both of the terms on the second member in (2.197) are positive, this
equality can be fulfilled only when both �E0 and �H 0 are null (i.e. when �E1 = �E2
and �H1 = �H2), which is what we set out to prove.

2.6.2 Time-harmonic fields

In the case of harmonic variations, the uniqueness theorem states that a field
in a lossy (σ 6= 0) 10 region is uniquely determined by the sources within the
region together with the tangential components of the electric field �E or of
the magnetic field �H on S, or, alternatively, the tangential components of the
electric field �E in any part of S and of the magnetic field �H in the remaining
part of S.

Proof By a reasoning similar to that used for the above case, but using the
expression (1.111), we get

0 =

Z
V

σE020
2

dv + 2jω

Z
V

µ
μH 02

0

4
− εE020

4

¶
dv (2.198)

By making the real and the imaginary parts equal to zero, we see that these
two equalities imply that H 0

0 and E00 are both equal to zero only if σ 6= 0. This
is why we started from the premise that the medium occupying the volume has
a conductivity that may be arbitrarily small but which is non-zero at all points.
The field in a lossless region can be considered the limit to the lossy case when
such losses tend to zero.

10The reason why we need the extra condition of the space to be lossy for time-harmonic
signals is that, by definition, a pure harmonic signal has an infinite duration.
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Chapter 3

??Electromagnetic waves

In chapter 2 the fields created by a bounded time-variyng source distribution
were calculated and in particular we found that the radiation field propagates
energy far away from the sources. Of all the possible solutions for the wave
equation, we will examine primarily the properties of their plane-wave solutions,
i.e., waves for which the wave-front are planes1. Plane waves constitute a good
approximation to actual waves in many situations because at sufficiently large
distances from the sources, in a sufficiently small region, any wave front can be
treated as a plane wave. For example, a great deal of optics is founded on the
plane-wave approximation and, similarly, in radiocommunications the radiated
field at sufficient distance from the antenna can be considered to be a plane
wave. Moreover, it is possible to demostrate that, in general, an electromagnetic field can puede
descomponerse como suma lineal de ondas planas ( see Appendix ?? ) In this Chapter we consider

this kind of waves in a linear homogeneous isotropic medium libre de fuentes. Then incidencia

normal y oblicua. Ondas esféricas , desarrollo en ondas planas?

Harmonic..Electromagnetic waves are not limited in wavelength and in fact cover the spec-

trum from gamma rays (wavelengths of ¿¿¿¿ ¿¿ 10-12 cm???????) through X-rays, visible light,

microwaves, and radio waves, to long waves (hundreds of kilometers long).

3.1 Wave equation

For time-varying electromagnetic fields it is possible to combine Maxwell’s equa-
tions to eliminate one of the fields, �H or �E, to obtain two uncoupled second-order
differential equations, one in �E and the other in �H, known as wave equations.
To formulate these wave equations, let us consider a non-magnetic (μ = μ0),
homogeneous, linear and isotropic region where, in general, source terms �J and
ρ may exist. Taking the curl of (1.1c) and using the vector relation (??) we

1Wave-front is defined as a surface that, at any time t, is orthogonal to the propagation
vector n̂ at all the points on the surface.
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have

∇×∇× �E = ∇(∇ · �E)−∇2 �E = −∂∇×
�B

∂t

= −μ0
∂

∂t
( �Jc + �J +

∂ �D

∂t
)⇒

∇2 �E = ∇(∇ · �E) + μ0
∂

∂t
( �Jc + �J +

∂ �D

∂t
)

=
1

ε
∇ρ+ μ0σ

∂ �E

∂t
+ μ0

∂ �J

∂t
+ μ0ε

∂2 �E

∂t2

(3.1)

where �J and �Jc are the source and induced conduction density of the currents,
respectively. Thus, rearranging terms, we get

∇2 �E − μ0σ
∂ �E

∂t
− μ0ε

∂2 �E

∂t2
=
∇ρ
ε
+ μ0

∂ �J

∂t
(3.2)

which is known as the inhomogeneous vector-wave equation for the electric field.
A similar equation can be written for the magnetic field �H by taking the

curl of (1.1d),

∇2 �H − μ0σ
∂ �H

∂t
− μ0ε

∂2 �H

∂t2
= −∇× �J (3.3)

For a lossless media (3.2) and (3.3) reduce to

∇2 �E − μ0ε
∂2 �E

∂t2
=

1

ε
∇ρ+ μ0

∂ �J

∂t
(3.4a)

∇2 �H − μ0ε
∂2 �H

∂t2
= −∇× �J (3.4b)

These Eqs are analogous to the inhomogeneous wave equation for the vector
potential (2.14a), and consequently their solutions take the form of the retarded
vector potential given by Eq. (2.41b), i.e.

�E (�r, t) = − 1

4πε

Z
V 0

∇ [ρ] + 1
c2

h
∂ �J
∂t

i
R

dv0 (3.5a)

�H (�r, t) =
1

4π

Z
V 0

∇×
h
�J
i

R
dv0 (3.5b)

from which, by means of straightforward operations, we can obtain the expres-
sions (2.49) and (2.55) for the fields created by a bounded distribution of finite
densities of charges and currents with arbitrary space and time dependence.
In source-free regions ( �J = 0; ρ = 0, except the charge and current densi-

ties induced by the presence of the fields, which are expressed in terms of the
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constitutive parameters) the equations (3.2) and (3.3) simplify to

∇2 �E − μ0ε
∂2 �E

∂t2
− μ0σ

∂ �E

∂t
= 0 (3.6a)

∇2 �H − μ0ε
∂2 �H

∂t2
− μ0σ

∂ �H

∂t
= 0 (3.6b)

which are the homogeneous wave equations that determine the propagation of
the fields �E and �H in a sourceless homogeneous, linear and isotropic medium.
The solutions to these wave equations must be compatible with Maxwell’s equa-
tions and the coefficients of the solutions must be derived from the boundary
conditions.
Uniform plane waves are defined as waves with a field amplitude that, at

any instant, is the same at all points of the wave-front plane. Thus, the field
amplitude depends only on the distance ξ from the origin to the plane (fig.6.1).
Therefore, if n̂ = �ξ/ξ is the unit vector that is normal to the plane, the del
operator ∇ becomes ∇ = ∂/∂ξ n̂ and Maxwell’s equations simplify to

n̂ · ∂
�D

∂ξ
= 0 (3.7a)

n̂ · ∂
�B

∂ξ
= 0 (3.7b)

n̂× ∂ �E

∂ξ
= −∂

�B

∂t
(3.7c)

n̂× ∂ �H

∂ξ
= σ �E +

∂ �D

∂t
(3.7d)

and the wave equations become

∂2 �E

∂ξ2
− μ0ε

∂2 �E

∂t2
− μ0σ

∂ �E

∂t
= 0 (3.8a)

∂2 �H

∂ξ2
− μ0ε

∂2 �H

∂t2
− μ0σ

∂ �H

∂t
= 0 (3.8b)

These equations, which describe the propagation of plane waves in a homoge-
neous conducting medium, are called the “telegrapher’s equations”. For nondis-
sipative media, for example the free space, these equations simplify to

∂2 �E

∂ξ2
− μ0ε0

∂2 �E

∂t2
=

∂2 �E

∂ξ2
− 1

c2
∂2 �E

∂t2
= 0 (3.9a)

∂2 �H

∂ξ2
− μ0ε0

∂2 �H

∂t2
=

∂2 �H

∂ξ2
− 1

c2
∂2 �H

∂t2
= 0 (3.9b)
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3.2 Harmonic waves
For time-harmonic fields, when the medium presents a conductivity σ and, at
the operating frequency, a complex dielectric constant, εc = ε0 − jε00,(1.71), the
wave equation (3.6a) can be written as a time-independent wave equation

∇2 ~E − jωμ0σ ~E + μ0ω
2εc ~E = ∇2 ~E − jωμ0σe ~E + μ0ω

2ε0 ~E

= ∇2 ~E + ω2μ0ε
0 (1− j tan δd) ~E

= (∇2 + ω2μ0εec)~E = 0 (3.10)

where σe = σ+ωε00, tan δd = σe/ωε
0, and εec = ε0(1−j tan δd), are the effective

conductivity, the loss tangent and the effective complex permittivity defined
in (1.78), (1.81), and (1.83) respectively.
According to Subsection (??), depending on the characteristics of the medium,

the values of the term j tan δd in Eq. (3.10) may range from << 1 (zero for a
perfect dielectric or lossless medium) to >> 1 (infinite for a perfect conductor).
In a highly conductive medium tan δd >> 1 and 1 − j tan δd ' −j tan δd, and
thus Eq. (3.10) becomes the so-called time-independent diffusion equation for
the electric field ~E

∇2 ~E − jωμ0σ ~E = 0 (3.11)

which is of the same type as the one that determines the propagation of heat by
conduction or by diffusion. As commented in Subsection (??), for most metals
the relaxation time τ is 10−14s, which is a low value compared with the period
for all frequencies lower than the optical ones. Thus, since tan δd = (τω)−1, the
diffusion equation is adequate for metals at all these frequencies.
Equation (3.10) can be written more concisely as

∇2 ~E − γ2 ~E = 0 (3.12)

where γ is in general a complex quantity called the complex propagation con-
stant, which, from (3.10) and (3.12), is given by

−γ2 = ω2μ0(εc − j
σ

ω
)

= ω2μ0(ε
0 − j(ε

00
+

σ

ω
))

= ω2μ0ε
0 (1− j tan δd) = k2 (1− j tan δd) = ω2μ0εec

(3.13)

where
k = ω

p
μoε

0 (3.14)

is the wavenumber corresponding to an unbounded lossless medium with a real
dielectric constant ε0.
Analogously, for the magnetic field, we have

∇2 ~H − γ2 ~H = 0 (3.15)
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3.2.1 Uniform plane harmonic waves

For uniform plane waves, we have ∇2 = ∂2/∂2ξ and Eqs. (3.12) and (3.15)
simplify to

∂2 ~E

∂ξ2
− γ2 ~E = 0 (3.16a)

∂2 ~H

∂ξ2
− γ2 ~H = 0 (3.16b)

The complex propagation constant γ is usually written as2

γ = jk (1− j tan δd)
1/2

= α+ jβ (3.17)

where the imaginary part, β, is termed the phase constant, whereas the real
part, α, is called the attenuation constant of the wave. Thus, from, (3.13) and
(3.17), we can easily calculate the explicit expressions for β and α

β = ω

µ
μ0ε

0

2

¶ 1
2 h
(1 + tan2 δd)

1/2 + 1
i1/2

=
ω
p
μoε

0
√
2

Ãr
1 +

³ σe
ωε0

´2
+ 1

!1/2

=
k√
2

Ãr
1 +

³ σe
ωε0

´2
+ 1

!1/2
(3.18a)

α = ω

µ
μ0ε

0

2

¶ 1
2 h
(1 + tan2 δd)

1/2 − 1
i1/2

=
ω
p
μoε

0
√
2

Ãr
1 +

³ σe
ωε0

´2
− 1
!1/2

=
k√
2

Ãr
1 +

³ σe
ωε0

´2
− 1
!1/2

(3.18b)

The dimensions of α and β are m−1 and they are referred to as neper and
radian, respectively, to indicate their attenuative and phase meanings in wave
expressions. For lossless media we have σe = 0, α = 0 and the phase constant
becomes γ = jβ = j k.

2Recordemos que los valores del factor de atenuación, tal como se han calculado, vienen
expresados en nepers/metro y que multiplicados por 80868 se convierten en dB/m.
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Equations (3.16) have solutions of the form ~Eeγξ and ~Heγξ so that the
instantaneous values for the fields are given by wave equations

�E = Re{~Ee(jωt−γξ)} = Re{~Ee(jωt−�γ·�r)} = Re{~Ee−αξej(ωt−βξ)}
(3.19a)

�H = Re{ ~He(jωt−γξ)} = Re{ ~He(jωt−�γ·�r)} = Re{ ~He−αξej(ωt−βξ)}
(3.19b)

where the so-called complex propagation vector �γ = γn̂ (with module γ and
direction of the unit vector n̂ normal to the wave-front planes) has been in-
troduced and �r is the position of any point on the wave-front plane so that
n̂ · �r = ξ.
Equations (3.19) represent waves traveling at a speed given by the phase

velocity vp
vp =

ω

β
(3.20)

which in general, as β is given by (3.18a), depends on the frequency (dispersive
media).
The penetration factor δ is defined as

δ =
1

α
(3.21)

This is the distance at which, due to the attenuation α, the field module de-
creases from an initial given value to 1/e of this value.
From (3.7) the following equalities may be deduced

�γ · ~E = 0 (3.22a)

�γ · ~H = 0 (3.22b)

�γ × ~E = jμ0ω ~H (3.22c)

�γ × ~H = −jεecω ~E (3.22d)

From these equations, we see that ~E, ~H and n̂ are perpendicular to one
another and that they form a right-handed system in the order ~E, ~H, n̂. For this
reason these waves are often referred to as transverse electromagnetic (TEM)
waves. The magnitudes of ~E, ~H are related by

H =
E

ηc
=

γE

jωμ0
(3.23)

where the quantity ηc, known as the complex characteristic impedance of the
medium, is given, taking into account (3.13) and (3.17), by

ηc =
E

H
=

jωμ0
γ

=

µ
μ0
εec

¶1/2
=

ωμ0
α2 + β2

(β + jα) =| ηc | ejθ (3.24)
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Thus, its module and phase is given by

|ηc| =

¡μ0
ε0

¢1/2
[1 + ( σeωε0 )

2]1/4
(3.25a)

θ = tan−1
α

β
=
1

2
tan−1

σe
ε0ω

=
δd
2

(3.25b)

Therefore, in general there is a phase shift θ between ~E and ~H.

3.2.2 Propagation in lossless media

By particularizing the above expressions for a lossless medium where, ε0 = ε =
εrε0, ε00 = 0, and σ = 0, we thus have tan δd = 0; γ = jk; and �γ = �k = k n̂, and
consequently equations (3.12) and (3.15) simplify to

∇2 ~H + k2 ~H = 0 (3.26a)

∇2 ~E + k2 ~E = 0 (3.26b)

and the complex characteristic impedance of the medium, (3.25), simplifies to

ηc = η =
³μ0
ε

´1/2
=

µ
μ0
ε0εr

¶1/2
=

η0

ε
1/2
r

=
120π

ε
1/2
r

θ = 0 (3.27)

so that the impedance is real and constant. In particular, when the medium is
free space, η simplifies to the impedance of free space

η = η0 =

µ
μ0
ε0

¶1/2
= 120π (3.28)

Consequently, in unbounded lossless media, there is no phase shift between ~E
and ~H and the attenuation is null (α = 0). Thus γ = jk and δ = ∞ and Eqs
(3.22) simplify to

�k · ~E = 0 (3.29a)
�k · ~H = 0 (3.29b)
�k × ~E = μ0ω ~H (3.29c)
�k × ~H = −jεω ~E (3.29d)

3.2.3 Propagation in good dielectrics or insulators

In a good dielectric (see Subsection ??) the reactive current predominates on
the dissipative current and according to (1.91), tan δd = σe/ωε

0 << 1. In this
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ξξ

Figure 3.3: Cuidado¡¡¡ estan normalizada a η0 possitive ξ traveling fields of a uniform plane in

dissipative medium

ξξ

Figure 3.4: Uniform plane wave propagating in the +ξ direction in a lossless medium
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case, we can develop the complex propagation constant (3.17) to get

γ = jk (1− j tan δd)
1/2 = jω (μ0ε

0)
1/2
µ
1− j tan δd

2
+
tan2 δd
8

+ ..

¶
'

jω (μ0ε
0)
1/2
µ
1− j tan δd

2

¶
(3.30)

and therefore

α ' ω (μ0ε
0)1/2 tan δd
2

=
σe
2

³μ0
ε0

´1/2
(3.31a)

β ' k = ω (μ0ε
0)
1/2 (3.31b)

Thus the propagation velocity can be approximated by

ω

β
' 1

(μ0ε
0)1/2

(3.32)

From (3.31a) it can be seen that α is small and therefore so is the wave atten-
uation. Moreover, since σe/ωε0 << 1, the intrinsic impedance of the medium
(3.25) is usually simplified to

ηc ' η =
³μ0
ε0

´1/2
(3.33a)

θ = 0 (3.33b)

3.2.4 Propagation in good conductors

For a good conductor (see Subsection ??) the dissipative current predominates
on the reactive current and according to (1.94), tan δd = σ/ωε >> 1. In this
case, from (1.93) and (3.13) we have

γ = jk (1− j tan δd)
1/2 ' jk (−j tan δd)1/2 = jk

³ σ

2εω
(1− j) (1− j)

´1/2
= (1 + j)

³μ0σω
2

´1/2
(3.34)

and consequently from (3.17),

α = β =
³μ0σω

2

´1/2
(3.35)

Thus the electric field from (3.19a), simplifies to

�E = Re{~Ee−ξ/δej(ωt−ξ/δ)} (3.36)

where δ

δ =
1

α
=

µ
2

μ0ωσ

¶1/2
(3.37)
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is the penetration factor (3.21) particularized by a good conductor. Thus, for
good conductors, the penetration factor δ has a very low value which decreases
as the frequency increases. Thus the fields are confined within a very short
distance from the surface of the conductor. For a perfect conductor, σ → ∞
and δ = 0. Furthermore, the dielectric constant and the complex impedance
are reduced to

εec = ε

µ
1− jσ

ωε

¶
' −j σ

ω
(3.38)

and, respectively

ηc =

µ
μ0
εec

¶1/2
=
³
−j μ0ω

σ

´1/2
= (1 + j)

³μ0ω
2σ

´1/2
= (1 + j)

ωμ0δ

2

(3.39)

Thus the phase shift between �E and �H is 45o.

3.2.5 Surface resistance

Let us consider an area element perpendicular to the direction of propagation ξ.
Since the wave amplitudes of �E and �H decrease exponentially according to the
factor e−αξ, the complex Poynting vector (1.107), and consequently the mean
power per unit of area, (1.106), attenuates along the direction of propagation
by the factor e−2αξ. Therefore

�Pav =
1

2
Re{~E × ~H

∗
} = �Pav(0)e−2αξ (3.40)

where �Pav(0) is the mean power per unit area at ξ = 0. Thus the total power
per unit area transmitted by the wave to the medium along the distance ξ = l
is given by

dP

ds
= �Pav(0)− �Pav(l) = �Pav(0)(1− e−2αl) (3.41)

This can be also calculated, according to (1.87), as

dP

ds
=

σe
2

ÃZ l

0

(E20e
−2αξ)dξ

!
=

σeE
2
0

4α
(1− e−2αl) (3.42)

This expression for l =∞, or for a distance l such that the magnitude of the
fields becomes negligible, simplifies to

dP

ds
=

σeE
2
0

4α
=
1

2
Re{η−1c }E20 =

1

2
Re{ηc}H2

0 = (3.43)

since
Re{η−1c } = σe

2α
(3.44)
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For a good conductor, expression (3.43) simplifies, from (3.39), to

dP

ds
=

H2
0

2

³μ0ω
2σ

´1/2
=
1

2
RsH

2
0 (3.45)

where Rs is the so-called surface resistance

Rs =
³μ0ω
2σ

´ 1
2

=
1

σδ
(3.46)

and δ is the penetration factor given by (3.37).

3.3 Group velocity
So far, we have considered the ideal case of a plane harmonic wave, i.e. one
in which the wave number and the frequency are fixed. When this type of
wave propagates through a dispersive medium, the propagation velocity (phase
velocity) of a harmonic wave depends on its frequency. In practice, the ideal
situation of a pure harmonic wave which extends to infinity both backward
and forward in time never arises and, moreover, such a wave could not carry
information. What in fact happens is that a transmitter emits a given signal
f(ξ, t) for a finite period of time that, according to Fourier’s theorem, can be
expanded into a continuous spectrum of amplitudes Aω such that

f(ξ, t) =

Z ∞
−∞

Aωe
j(ωt−βξ)dω (3.47)

When the signal propagates through a dispersive medium, i.e. a medium
where the phase velocity depends on the frequency, each spectral component
travels at a different velocity and, as a consequence, the signal will deform as
it propagates. When, as commonly occurs in practice, the spectrum of the
signal is narrow 3and the transmission medium is only slightly dispersive, then
a single velocity, termed the group velocity, may be assigned to the signal which
is usually known as a wave group or wave package. The velocity with which
the envelope or energy of the wave group propagates in the medium is called
group velocity. To calculate this, let us consider a wave group centered on a
frequency ω0 such that Aω ' 0 except for ω = ω0 ±4ω/2 (Fig. 7.4). Under
these conditions, Eq. (3.47) simplifies to

f(ξ, t) =

Z
4ω

Aωe
j(ωt−βξ)dω (3.48)

extended to the values of ω in which Aω 6= 0. Given that β = β (ω), it can be
developed into a Taylor series around the frequency ω0

β (ω) = β (ω0) +
∂β

∂ω

¯̄̄̄
ω0

(ω − ω0) +
∂2β

∂ω2

¯̄̄̄
ω0

(ω − ω0)
2

2
(3.49)

3 Note that a concentration of the field in space does not imply a concentration in the frequency
spectrum, but just the opposite, in accordance with the scale change property of the Fourier transform,
which indicates that an inverse relation exists between the duration of a signal and its bandwidth.
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If the dispersive medium is such that the dependence of the phase velocity vp
on the frequency is so slowly that we can consider (as a good approximation)
that there exists a linear relation between β and ω, then (3.49) simplifies to

β (ω) = β0 +
∂β

∂ω

¯̄̄̄
ω0

(ω − ω0) (3.50)

where β0 = β (ω0).
By substituting (3.50) in (3.48) we get

f(ξ, t) = e
j ∂β

∂ω |ω0ω0ξ−β0ξ
Z
4ω

Aωe
jω t− ∂β

∂ω |ω0ξ dω (3.51)

which, taking into account (3.48), can be written as a function of f(0, t) in the
following way

f(ξ, t) = f

Ã
0, t− ∂β

∂ω

¯̄̄̄
ω0

ξ

!
e
j ∂β

∂ω |ω0ω0ξ−β0ξ (3.52)

This means that, at a point ξ, the signal has the same amplitude as at the origin
after a time t = ∂β/∂ω|ω0 ξ and a phase shift given by ∂β/∂ω|ω0 ω0ξ − β0ξ.
Consequently, the velocity at which the signal, and thus its associated energy,
propagates is

vg =
dξ

dt
=

dω

dβ

¯̄̄̄
ω0

=
d

dβ
(vpβ)

¯̄̄̄
ω0

= vp + β
dvp
dβ

¯̄̄̄
ω0

= vp − λ
dvp
dλ

¯̄̄̄
ω0

=
1

dβ/dω

¯̄̄̄
ω0

(3.53)

If the phase velocity varies slowly with the frequency, then a pulse may
travel through a dispersive medium a certain distance without a significant
change. If this condition is not satisfied and the medium is very dispersive
the shape of signal changes rapidly and the concept of group velocity is not
longer valid. The sign of dvp/dω determines whether vg is greater or less than
vp. If the phase velocity vp increases with the frequency, it is termed normal
dispersion. On the contrary, when vp decreases with the frequency, it is termed
anomalous dispersion. In an ideal dielectric where vp 6= vp(β), so that all the
wavelengths propagate at the same velocity vp = vg, the signal propagates
without deformation.

3.4 Polarization
As the wave equation is a linear differential equation, it fulfils the superposition
principle and any sum of solutions is also a solution of the differential equation.
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In particular, let us consider the sum of two plane waves propagating in direction
z (one with the electric field lying along the x axis and the other along the
y axis) at identical frequencies but, in general, with different amplitudes (a
and b) and phases (δ1 and δ2), respectively. Each of these waves, because the
direction of their electric field does not change with time, is said to be linearly
polarized, one in the x direction and the other in the y direction. However,
in an electromagnetic wave the direction of the electric field generally changes
and traces out an ellipse as the wave propagates4. To see this, let us consider
the total time-varying electric field, which is sum of the two linearly polarized
waves, given by

~E(z, t) = (aejδ1 x̂+ bejδ2 ŷ)ej(ωt−kz) (3.54)

Let us determine the time evolution in a plane z = cte of the electric field
vector resulting from the composition of these two plane waves. We will assume
a homogeneous, isotropic, lossless medium (although the effects of losses as an
exponential factor common to all the field components do not influence the
polarization).
At the plane z = 0, for example, we have

Ex = a cos(ωt+ δ1) (3.55a)

Ey = b cos(ωt+ δ2) (3.55b)

Ez = 0 (3.55c)

Using the trigonometric identity for the sum of two angles, solving for cosωt
and sinωt in terms of a and b, defining δ = δ1 − δ2 as the relative phase
difference between the two components and after some simplifications based on
simply trigonometric identities, we find

E2x
a2
+

E2y
b2
− 2ExEy

ab
cos δ = sin2 δ (3.56)

which is the equation of an ellipse with its major axis tilted depending on the
value of δ. This means that at a plane z = cte, as the time goes on, the electric
field delineates an ellipse or, equivalently, that the electric field delineates an
elliptical helix in the direction of propagation. The resulting polarization is

referred to as elliptical polarization. The angular velocity of the vector
→
Et = Ex

x̂+Ey ŷ is given by

·
ϕ =

dϕ

dt
=

d

dt
(tan−1

Ey

Ex
) =

Ex

·
Ey −Ey

·
Ex

|Et|2
(3.57)

where ϕ is ..........
The sense of rotation together with the direction of propagation define left-

handed polarized versus right-handed polarized waves, according to the right-
hand rule: the thumb of the right hand is pointed in the direction of propagation.

4 In a unpolarized wave, the vector �E is subject to random changes of amplitud and phase
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Thus, if the fingertips are curling in the direction of the rotation of the electric
field, the wave is right-handed polarized, and in the contrary case the wave is
left polarized.
Particular cases occur depending on the values of a, b, δ, and the polarization

ellipse may degenerate into a centred ellipse, a circle or a straight line.
When a 6= b and δ = mπ/2, with m = ±1,±3,±5, .. the polarization ellipse

(3.56) becomes a centred ellipse with the major and minor axis oriented along
the x, y directions, i.e.

E2x
a2
+

E2y
b2
= 1 (3.58)

If a = b, then
E2
x +E2y = a2 (3.59)

which is the equation of a circumference.
When δ = ±mπ, with m being an integer, the equation (3.56) becomes∙

Ex

a
± Ey

b

¸2
= 0 (3.60)

which represents the equation of a straight line

Ey = ∓
b

a
Ex (3.61)

intersecting the origin. The wave is then linearly polarized and the components
of �E are

Ex = a cos(ωt− kz) (3.62a)

Ey = b cos(ωt− kz ±mπ) (3.62b)

The angle of the slope with the x axis is

tanϕ = tan
Ey

Ex
= (−1)m b

a
(3.63)
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Chapter 4

Reflection and refraction of
plane waves

In the previous chapter, we studied the characteristics of harmonic plane waves,
and now consider what happens when such waves reach the interface (assumed
to be plane and indefinite) separating two linear, nonmagnetic, homogeneous
and isotropic dielectrics having different electromagnetic characteristics. The
change in the constitutive parameters, as the wave passes from one medium to
the other, is assumed to take place in an electrically very narrow region with
a thickness much less than λ. In general, when a wave propagating through
a medium strikes the interface (incident wave), part of its energy is reflected
and propagates through the same medium (reflected wave), while another part
is transmitted to the second medium (transmitted, or refracted wave). The
characteristics of reflected and transmitted waves can be calculated from those of
the incident wave by forcing the total field on the interface to fulfil the boundary
conditions. We will consider first the simplest case of normal incidence, i.e.
when the interface is perpendicular to the propagation direction of the wave, 1 .
and then the more general case of oblique incidence. This study has extensive
applications in optics where the interface of many optical devices, such as lenses
and fiber-optic transmission lines, has a radius of curvature much larger than
the wavelength of the incident wave. Thus the interface can be considered quite
accurately as a plane interface. In the following, with no loss of generality, we
will assume the interface to be parallel to the xy plane.

1La incidencia normal tiene muchas analogías con la líneas de transmisión que se estudiarán en
el capítulo Tal

85
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Figure 4.1: Poner los vectores de pynting P El subindice de campo electrico
incidente ponerlo mejor

4.1 Normal incidence.

4.1.1 General case: interface between two lossy media

normally incident from a lossy media, characterized by the parameters μ0, ε1 =
ε01− jε001 , σ1 to the surface of another one with different constitutive parameters
μ0, ε2 = ε02 − jε002 , σ2
Considering two semi-indefinite lossy media that are separated by the plane

z = 0, see figure 4.1, let us assume that a harmonic plane wave propagates
through the first medium in the positive sense of the z axis with the electric field
parallel to the x axis. The wave impinges with normal incidence on this plane.
Due to the discontinuity of the constitutive parameters, μ = μ0, εci = ε0i − jε00i ,
and σi where subindex i (i = 1, 2) refers to medium 1 or 2, part of the wave
is propagated through medium 2 and part is reflected back through medium
1. Therefore, the total field in medium 1 (where z < 0) and medium 2 (where
z > 0) is given by

Medium 1

Ex1 = Ei
x1e
−α1ze−jβ1z +Er

x1e
α1zejβ1z = Ei

x1e
−γ1z +Er

x1e
γ1z

(4.1a)

Hy1 =
Ei
x1

ηc1
e−α1ze−jβ1z − E

r
x1

ηc1
eα1zejβ1z =

Ei
x1

ηc1
e−γ1z − E

r
x1

ηc1
eγ1z

(4.1b)

Medium 2

Ex2 = Et
x2e
−α2ze−jβ2z = Et

x2e
−γ2z (4.1c)

Hy2 =
Et
x2

ηc2
e−α2ze−jβ2z =

Et
x2

ηc2
e−γ2z (4.1d)
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The ¿¿¿superindices?? i, r, and t indicate the incident wave (medium 1), the reflected wave
(medium 1) and the transmitted wave (medium 2), respectively. The minus sign for the
reflected wave of the magnetic field is associated with the fact that the Poynting
vector of the reflected wave propagates in the −ẑ direction. In these expressions,
ηci =

p
μ0/εeci represents the impedance (3.24) of medium i while γi is the

complex propagation factor (3.17),

γi = αi + jβi (4.2)

where αi and βi are the attenuation and propagation constants (3.18a)and
(3.18b), respectively

βi =
ω
p
μoε

0
i√

2

∙q
1 + (σe/ωε0i) + 1

¸1/2
(4.3)

αi =
ω
p
μoε

0
i√

2

∙q
1 + (σe/ωε0i)− 1

¸1/2
(4.4)

The time dependence of the fields is achieved by adding the factor ejωt to (4.1).
For each instant of time, by imposing the boundary conditions in the plane z = 0 (2.182b)

onto the tangential components of �E and �H,

�E1t = �E2t (4.5a)
�H1t = �H2t (4.5b)

we obtain

ωi = ωt = ωr = ω (4.6a)

Er
x1 = ΓL E

i
x1 (4.6b)

Et
x2 = TLE

i
x1 = (1 + ΓL)E

i
x1 (4.6c)

Hr
y1 = −ΓLHi

y1 (4.6d)

Ht
y2 =

ηc1
ηc2

TLH
i
y1 (4.6e)

where ΓL is the reflection coefficient in the plane z = 0 defined by

ΓL =
ηc2 − ηc1
ηc2 + ηc1

= |ΓL| ejΦL (4.7)

and TL is the transmission coefficient in the same plane, defined by

TL =
2ηc2

ηc2 + ηc1
(4.8a)

TL = 1 + ΓL = |TL| ejΨL (4.8b)

If there is an impedance adaptation (ηc2 = ηc1) then there is no reflected
wave, and so all the incident energy is absorbed by the second medium.



88 CHAPTER 4. REFLECTION AND REFRACTION OF PLANE WAVES

From (4.1a) and (4.6b), the total electric field in the first medium can be
expressed as

Ex1 = Ei
x1e
−α1ze−jβ1z(1 + ΓLe

2α1ze2jβ1z) (4.9)

= Ei
x1e
−α1ze−jβ1z(1 + Γ(z)) = Ei

x1e
−γ1z(1 + Γ(z)) (4.10)

where Γ(z), defined as
Γ(z) = ΓLe

2α1ze2jβ1z (4.11)

is the reflection coefficient in the plane z = z. Similarly, for the magnetic field,
we have

Hy1 =
Ei
x1

ηc1
e−γ1z(1− Γ(z)) (4.12)

The impedance associated with the total field at a coordinate point z in the
first medium is defined as

ηinp(z) =
Ex1

Hy1

¯̄̄̄
z

= ηc1
1 + Γ(z)

1− Γ(z) = ηc1
ηc2 − ηc1 tanh(γ1z)

ηc1 − ηc2 tanh(γ1z)
(4.13)

The impedance ηinp(z) is continuous through the interface, because the tan-
gential components Ex1 and Hy1 are similarly continuous, while the reflection
coefficient Γ is discontinuous.

4.1.2 Perfect/Lossy dielectric interface

In the particular case in which the first dielectric is perfect, i.e. lossless (σ1 = 0
and ε001 = 0, ε1 = ε01, γ1 = jk1), the characteristic impedances reduce to

η1 =

r
μ0
ε1

(4.14)

and the coefficient of reflection (4.7) at the interface (z = 0) becomes

ΓL =
1−

q
εec2
ε1

1 +
q

εec2
ε1

(4.15)

Since σ1 = 0 and ε001 = 0, it follows that α1 = 0 and therefore

Ex1 = E
i
x1e
−jk1z(1 + ΓLe

2jk1z) = Ei
x1e
−jk1z(1 + Γ(z)) (4.16)

and

Hy1 =
Ei
x1

η1
e−jk1z(1− Γ(z)) (4.17)

where

Γ(z) = ΓLe
2jk1z (4.18)

The input impedance (4.13) simplifies to

ηinp(z) = η1
ηc2 − η1 tan(k1z)

η1 − ηc2 tan(k1z)
(4.19)
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4.1.3 Perfect dielectric/Perfect conductor interface

Another particular case arises when the second medium is a perfect conductor
(η2 = 0) and therefore TL = 0 and ΓL = −1. Then the fields in the first medium
are

Ex1 = Ei
x1e
−jk1z ¡1− e2jk1z

¢
= Ei

x1

¡
e−jk1z − ejk1z

¢
= −2jEi

x1 sin (k1z)(4.20a)

Hy1 =
Ei
x1

η1

¡
e−jk1z + ejk1z

¢
= 2

Ei
x1

η1
cos (k1z) (4.20b)

4.1.4 Standing waves

It is well known that two waves with the same frequency that are propagating in
opposite directions interfere and form what are termed standing (or stationary)
waves. To examine this concept, let us first consider the case in which the
first medium is lossless, and then analyse the case in which the first medium is
dissipative.

a) Lossless case

For the first medium, the expression of the total electric field is,

Ex1 = Ei
x1e
−jk1z +Er

x1e
jk1z = (1 + ΓL)E

i
x1e
−jk1z + ΓLE

i
x1(e

jk1z − e−jk1z)

= TLE
i
x1e
−jk1z + |ΓL|Ei

x1(e
j(ΦL+k1z) − ej(ΦL−k1z))

= |TL|Ei
x1e

j(ΨL−k1z) + 2 |ΓL|Ei
x1 sin(k1z) e

j(ΦL+π/2) (4.21)

By including the time dependence, and assuming an initial phase ϕ = 0, we
obtain the following expression for the total field

Ex1(z, t) = |TL|Ei
0x1 cos(ωt− k1z +ΨL)− 2 |ΓL|Ei

0x1 sin(k1z) sin(ωt+ΦL)
(4.22)

where the first summand of the second member corresponds to a wave that is
propagating, while the second summand represents a standing wave, i.e., one in
which the mean energy transported by the wave is null. The amplitude of the
propagating wave is determined by the coefficient of transmission, while that of
the standing wave depends on the coefficient of reflection. The envelope of the
equation (4.22) is termed the diagram of the standing wave. If the coefficient
of transmission T is null (which occurs when the second medium is a perfect
conductor) the wave of the first medium becomes a pure standing wave.
From (4.16) and (4.17) the magnitudes of the fields are

E0x1 = Ei
0x1 |1 + Γ(z)| (4.23a)

H0y1 =
1

η1
Ei
0x1 |1− Γ(z)| (4.23b)
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The maximum values of E0x1 (the minima of H0y1) are given by

E0x1(z)max = Ei
0x1 +Er

0x1 (4.24)

at the coordinate points

zmax = −
ΦL + 2nπ

2k1
n = 0, 1, ... (4.25)

and the minimum values of E0x (the maxima of H0y), assuming Ei
0x1 > Er

0x1,
are given by

E0x(z)min = Ei
0x1 −Er

0x1 (4.26)

at the points

zmin = −
ΦL + (2n+ 1)π

2k1
; n = 0, 1, ... (4.27)

Ratio of the standing wave

The relation between the maximum and minimum values of the diagram of the
standing wave is called the ratio of the standing wave, and is described by

SWR =
E0x1(z)max
E0x1(z)min

=
Ei
0x1 +Er

0x1

Ei
0x1 −Er

0x1

=
1 + |Γ(z)|
1− |Γ(z)| =

1 + |ΓL|
1− |ΓL|

(4.28)

Its value ranges from 1 (no reflected wave) to infinity (pure standing wave), i.e.

1 ≤ SWR ≤ ∞ (4.29)

b) Lossy case

In this case, the expression of the total electric field in the first medium is

Ex1(z) = Ei
x1e
−α1ze−jβ1z +Er

x1e
α1zejβ1z = Ei

x1(e
−γ1z + ΓLe

γ1z)

= TLE
i
x1e
−γ1z + ΓLE

i
x1(e

γ1z − e−γ1z) (4.30)

and, by including the time dependence, we get

Ex1(z, t) = |TL|Ei
0x1e

−α1z cos(ωt− β1z +ΨL) +

2 |ΓL|Ei
0x1 sinh(γ1z) cos(ωt+ΦL) (4.31)

In these media, it makes no sense to define the SWR parameter because the
maxima and minima are not constant.
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4.1.5 Measures of impedances

Assuming that the first medium is lossless, from (4.27) the first field minimum
occurs at φL+2k1zmin = π. Consequently, we can determine the phase angle φL,
assuming that k1 is known and that zmin is determined experimentally (by using
an appropriate device to detect the first field minimum). If k1is not known, it
can be calculated from the distance between two consecutive minima.
The value of |ΓL| can be found from the ratio between the maximum and

minimum field values E0x1max/E0x1min = SWR = (1 + |ΓL|)/(1− |ΓL|).
Note that if the incident wave has an amplitude of one, then |ΓL| is identical

to Er
0 and thus we need to measure only this amplitude. Thus η2 is determined

from this information and from expression (4.7).

4.2 Multilayer structures
Let us now consider the normal incidence of an electromagnetic wave on a
structure in which there are more than two media separated by parallel planes.
To simplify the analysis, we consider the case of three lossless dielectrics, as
shown in Fig. tal. The generalization to more media, including the possibility
of losses, is straightforward. Clearly, for a wave that is propagating to the right
in medium 2, the problem is analogous to the two-layer cases discussed above.
Therefore, the coefficient of reflection in the z = 0 plane is

Γ23 =
η3 − η2
η3 + η2

= Γ(z = 0) (4.32)

where subindex 23 refers to the surface that separates medium 2 from medium
3. Particularizing (4.13) for z = −l we have the load impedance ηL

ηL = ηinp(z = −l) = η2
1 + Γ23e

−2jkl

1− Γ23e−2jkl
(4.33)

Taking into account that ηinp(z) is continuous at an interface, the coefficient
of reflection (4.7) at z = −l, becomes

ΓL = Γ(z = −l) =
ηL − η1
ηL + η1

by introducing (4.33) into this equation and then operating, we get

ΓL =
Γ12 + Γ23e

−2jkl

1 + Γ12Γ23e−2jkl
(4.34)

where

Γij =
ηj − ηi
ηj + ηi

(4.35)

Thus, for an electromagnetic wave with an amplitude of one, impinging
normally from the first medium onto the structure, the amplitude of the reflected
wave is given by (4.34)
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Quarter-wave layer

For a quarter-wave layer, l = λ/4 (e−2jkl = −1), equation (4.34) becomes

Γ =
Γ12 − Γ23
1− Γ12Γ23

(4.36)

Thus, to transmit the incident energy completely (adaptation of impedance),
the coefficient of reflection must be null, and so

Γ12 − Γ23 = 0 (4.37)

Taking into account equation (4.35) we have

η2 =
√
η1η3 (4.38)

as a condition for impedance adaptation to exist.

Half-wave layer

For a half-wave layer, i.e. l = λ/2 (e−2jkl = 1), expression (4.34) is reduced to

Γ =
Γ12 + Γ23
1 + Γ12Γ23

(4.39)

For impedance adaptation to exist, the following must be fulfilled

Γ12 + Γ23 = 0 (4.40)

By replacing the coefficients by the values given in (4.35), we have

(η3 = η1) (4.41)

and thus ΓL = 0 irrespectively of η2. Thus any material with a thickness of λ/2
is adapted so long as the impedances of media 1 and 3 are the same.

4.2.1 Stationary and transitory regimes

The above analyses are valid for monochromatic waves in a stationary regime. It
should be noted that such a regime is the limit of a transitory process involving
multiple reflected and transmitted waves within media 1 and 2. To illustrate
this limit process, let us consider the normal incidence of a wave that impinges
upon a structure formed of three perfect dielectrics, as shown in Fig. tal. From
the process of multiple reflections and transmissions, we find that in medium 1
a reflected field is given by

Er
x1 = Ei

0x1(Γ12 + T12Γ23T21e
−2jk2d + T12Γ

2
23Γ21T21e

−4jk2d

+T12Γ
3
23Γ

2
21T21e

−6jk2d + ...) (4.42)
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Observing the second member, we can see that the summands following
the first one constitute a geometric progression of common ratio Γ21Γ23e−2jk2d.
Thus the coefficient of reflection can be written as

ΓL = Γ12 +
T12Γ23T21e

−2jk2d

1− Γ23Γ21e−2jk2d
(4.43)

which, taking into account the equalities

Γ21 = −Γ12 (4.44)

T12 = 1 + Γ12 (4.45)

T21 = 1− Γ12 (4.46)

is reduced to equation (4.34).

4.3 Oblique incidence
As a more general case than the normal incidence, let us now consider the
oblique incidence of a plane wave on a plane interface separating two media. In
general, in medium 1 there exists an incident and a reflected wave, while the
transmitted (also called refracted) wave is in medium 2. To study the oblique
incidence we will use the geometry shown in Fig.??, where the waves have been
represented, as usual, by arrows (called rays) in the direction of propagation.
These rays are perpendicular to the equiphase planes (wavefronts). The oblique
incident has extensive applications in optics where the interface of many optical
devices, such as lenses and fiber optic waveguides, has a radius of curvature
much larger than the wavelength of the incident wave. Thus the interface can
be considered very approximately as a plane interface.

In principle, we make no assumption that the three rays are coplanar, al-
though they are shown as such in Fig Tal. The plane of incidence is defined
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by vector �γi and by the z axis. Let us assume that �γi is in the plane y = 0
and forms an angle θi with the z axis. In the general case of two lossy media,
the electric fields of the incident, reflected, and refracted waves can be written,
respectively, as

�Ei = Re{�Ei
0e
(jωit−�γi·�r)} (4.47a)

�Er = Re{�Er
0e
(jωrt−�γr·�r)} (4.47b)

�Et = Re{�Et
0e
(jωtt−�γt·�r)} (4.47c)

In z = 0, the tangential component of the electric field must be continuous,
and thus we have

�Ei
x + �Er

x = �Et
x (4.48)

so that

Re{ �Ei
0xe

(jωit−�γi·�r)}+Re{ �Er
0xe

(jωrt−�γr·�r)} = Re{ �Et
0xe

(jωtt−�γt·�r)} (4.49)

A similar relation must be fulfilled between the components of the fields with
respect to the y axis. These conditions can be satisfied only if

ωi = ωt = ωr = ω (4.50)

and
�γi · �r = �γr · �r = �γt · �r (4.51)

Since γi lies on the y = 0 plane, from (4.51) it follows that γry = γty = 0,
signifying that the reflected and refracted waves are coplanar with the incident
wave. Thus we have

�γi · �r =
Nc1ω

c
[x sin θi + z cos θi] (4.52a)

�γr · �r =
Nc1ω

c
[x sin θr + z cos θr] (4.52b)

�γt · �r =
Nc2ω

c
[x sin θt + z cos θt] (4.52c)

where Nc is the complex index of refraction of the medium, such that

γ =
Ncω

c
(4.53)

By substituting (4.52) in (4.49), and by making the coefficients of x equal,
we get

θi = θr = θ (4.54a)

Nc1 sin θ = Nc2 sin θt (4.54b)

These equations, together with the coplanarity of the rays, constitute Snell’s
laws.
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For lossless media Eq. (4.54b) simplifies to

N1 sin θ = N2 sin θt (4.55)

where
Ni =

c

vpi
= (μriεri)

1
2 (4.56)

or, for nonmagnetic media,
Ni = (εri)

1
2 (4.57)

Next we study the relations between the amplitudes of the incident, trans-
mitted and reflected waves by making use of the boundary conditions at the
interface between the two media. For this we will assume lossless media al-
though the generalization to lossy media is straightforward2. Let us analyze

the problem in two stages, firstly where the electric field ~E
i
oscillates in the

incidence plane, and then where it oscillates perpendicularly to the same plane.
Any other case can be considered a superposition of these two situations.

4.4 Incident wave with the electric field con-
tained in the plane of incidence

From the continuity of the tangential components of �E and �H (Eqs. (4.5a) and
(4.5b), we obtain (Fig. 9.2)

Ei
k cos θ +E

r
k cos θ −Et

k cos θt = 0 (4.58a)

1

η1
(Ei

k −Er
k)−

1

η2
Et
k = 0 (4.58b)

where the subindex k indicates that the physical magnitude in question lies in
the incidence plane and

~E
i

k = �Ei
0ke
−j�ki·�r (4.59a)

~E
r

k = �Er
0ke
−j�kr·�r (4.59b)

From (4.58) we find that

Γk =
Er
k

Ei
k
=

η2 cos θt − η1 cos θ

η2 cos θt + η1 cos θ
(4.60a)

τk =
Et
k

Ei
k
=

2η2 cos θ

η2 cos θt + η1 cos θ
(4.60b)

Where Γk and τk are the coefficients of reflection and transmisison, respectively.
If medium 2 is a perfect conductor (η2 = 0) then Γk = −1.
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Figure 4.3: cuidado con superindices y subindices...

¿¿¿For lossless non-magnetic materials ?? (μ1 = μ2 = μ0) such that cuidado notacion de vel

fase.

N12 =
η2
η1
=

v2
v1
=

N1

N2
=
sin θt
sin θ

(4.61)

with N12 being the ratio of the indices of refraction of medium 1 and medium 2, expressions
(4.60a) and (4.60b) are reduced to

Er
k

Ei
k

=
tan (θt − θ)

tan (θt + θ)
(4.62a)

Et
k

Ei
k

=
2 sin θt cos θ

sin (θt + θ) cos (θt − θ)
(4.62b)

The total electric field ~E
1

k in medium 1 is given by

~E
1

k = ~E
i

k + ~E
r

k (4.63)

where

~E
i

k = Ei
k cos θx̂−Ei

k sin θẑ (4.64a)

~E
r

k = Er
k cos θx̂+E

r
k sin θẑ (4.64b)

Thus we have

~E
1

k = cos θ
³
Ei
0ke
−j�ki·�r +Er

0ke
−j�kr·�r

´
x̂+ sin θ

³
Er
0ke
−j�kr·�r −Ei

0ke
−j�ki·�r

´
ẑ

(4.65)
2 If the medium is lossy, we must replace {η, jk} by (ηc, γ)
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that is,

E1
kx = Ei

0k cos θ
³
e−j

�ki·�r + Γke
−j�kr·�r

´
(4.66a)

E1
kz = Ei

0k sin θ
³
Γke
−j�kr·�r − e−j

�ki·�r
´

(4.66b)

Taking into account that

�kr · �r = −krz cos θ + krx sin θ (4.67a)
�ki · �r = kiz cos θ + kix sin θ (4.67b)

and by substituting these equations in (4.66), we find that

E1
kx = Ei

0ke
−jki(x sin θ+z cos θ)

³
1 + Γke

2jkiz cos θ
´
cos θ (4.68a)

E1
kz = −Ei

0ke
−jki(x sin θ+z cos θ)

³
1− Γke2jk

iz cos θ
´
sin θ (4.68b)

When the time factor ejωt is introduced, the term e(jωt−jk
ix sin θ) represents

a wave that is propagating in the direction of the x axis, while the term³
e−jk

iz cos θ + Γke
jkiz cos θ

´
ejωt (4.69)

¿¿¿¿ ¿¿¿¿ ¿¿From (4.68a) or the corresponding one from (4.68b) gives us the
superposition of two waves that are propagating with respect to the z axis, but
in opposite directions. In other words, a stationary wave overlies a traveling
one such that the energy that is transported in direction z, from medium 1 to
medium 2, is transported by the traveling wave.????. For the case of a perfect
conductor, Γk = −1 and there exits only a standing wave along the z axis.

The total magnetic field ~H
1

⊥ in medium 1 is

~H
1

⊥ = �Hi
0⊥e
−j�ki·�r + �Hr

0⊥e
−j�kr·�r =

1

η1

³
Ei
0ke
−j�ki·�r −Er

0ke
−j�kr·�r

´
ŷ =

�Hi
0⊥e
−jki(x sin θ+z cos θ)

³
1− Γke2jk

iz cos θ
´

(4.70)

where the symbol ⊥ indicates that the magnitude in question is perpendicular
to the incidence plane
In the case of a perfect conductor, it is straightforward to show that there is

no energy flow towards z, but there there is towards x, as the mean time value
of Poynting’s vector towards z is zero.



98 CHAPTER 4. REFLECTION AND REFRACTION OF PLANE WAVES

iE
r rE

r

tE
r

tH
r

rH
r

iH
r

θ θ
in̂

rn̂

tn̂

tθ

iE
r rE

r

tE
r

tH
r

rH
r

iH
r

θ θ
in̂

rn̂

tn̂

tθ

Figure 4.4: cuidado el reflejado tiene mal el sentido del campo electrico

4.5 Wave incident with the electric field perpen-
dicular to the plane of incidence

As above, the continuity equations are used for the tangential components of �E
and �H and thus (Fig.9.3):

~E
i

⊥ + ~E
r

⊥ = ~E
t

⊥ (4.71)

~E
i

⊥ − ~E
r

⊥
η1

cos θ =
~E
t

⊥
η2

cos θt (4.72)

where the subindex ⊥ indicates that the physical magnitude in question corre-
sponds to the case in which the electric field of the incident wave is perpendicular
to the plane of incidence.
By resolving the two Eqs. (4.70) and (4.71), we get

Γ⊥ =
Er
⊥

Ei
⊥
=

η2 cos θ − η1 cos θt
η2 cos θ + η1 cos θt

(4.73a)

τ⊥ =
Et
⊥

Ei
⊥
=

2η2 cos θ

η2 cos θ + η1 cos θt
(4.73b)

where the parameters Γ⊥ = Er
⊥/E

i
⊥and τ⊥ = Et

⊥/E
i
⊥ are the coefficients of

reflection and transmission, respectively.
For lossless non-magnetic materials, Eqs. (4.73) are transformed into

Er
⊥

Ei
⊥

=
sin (θt − θ)

sin (θt + θ)
(4.74a)

Et
⊥

Ei
⊥

=
2 sin θt cos θ

sin (θt + θ)
(4.74b)
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By operating in a similar way to that described for the case of �Ei
k, we arrive

at the following for the total electric and magnetic fields in a lossy medium 1

~E
1

⊥ = Ei
0⊥e
−jkix sin θ

³
e−jk

iz cos θ + Γ⊥e
jkiz cos θ

´
ŷ (4.75a)

~H
1

k =
Ei
0⊥
η1

cos θ
³
e−j

�ki·�r − Γ⊥e−j
�kr·�r

´
x̂

−E
i
0⊥
η1

sin θ
³
e−j

�ki·�r + Γ⊥e
−j�kr·�r

´
ẑ (4.75b)

As in the case of ~Ek, the field behaves as a travelling wave towards x and
as a travelling wave overlying a standing one towards z. The formulas (4.62)
and (4.74) are known as Fresnel’s formulas, which give the relations between
the amplitudes and phase of the incident, reflected, and tranmitted waves.
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Chapter 5

Electromagnetic
wave-guiding structures:
Waveguides and
transmission lines

5.1 Introduction

There are many engineering applications in which it is necessary to use devices
to confine the propagation of the electromagnetic waves in order to transmit
electromagnetic energy from one point to another with a minimum of interfer-
ence, radiation, and heat losses. Although such transmission systems can take
many different forms, a common characteristic is that they are uniform. That
is, their cross-sectional geometry and constitutive parameters do not change in
the direction of the wave propagation z for wavelengths numerous enough to
make border effects negligible. In general, any device used to transmit con-
fined electromagnetic waves can be considered a waveguide; however, when the
transmission device contains two or more separate conductors the term "trans-
mission line" is generally used instead of "waveguide". Figure (5.1) shows the
cross-sectional shape of some guiding transmission systems: two-wire trans-
mission lines; coaxial transmission lines formed by two concentric conductors
separated by a dielectric; two hollow (or dielectric-filled) metal tubes of rectan-
gular and circular cross section (i.e. a rectangular and a circular waveguide);
two planar transmission lines (the stripline and microstrip); and two dielectric
(without conducting parts) waveguides: the circular dielectric waveguide (or
homogeneous dielectric rod) and the optical fiber.
In hollow conducting pipes waves propagate within the tube, whereas in

transmission lines formed by two or more conductors, the waves propagate
in the dielectric medium between the conductors. In homogeneous dielectric

101
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waveguides the field decays exponentially away from the dielectric in the trans-
verse plane, and consequently the electromagnetic waves are confined mainly
within the dielectric medium. Optical fibers, used mostly at optical wavelengths,
consist of a cylindrical core surrounded by a cladding and are usually circular
in cross section. The light is essentially confined to the core (which has a larger
refractive index than the cladding) by total internal reflection as it propagates
along the fiber and the wave is confined without need of any conducting walls.
The choice of a specific transmission system depends on the application

and should take into account aspects such as frequency range, losses, power-
transmission capacity, and production costs. For example, the two-wire trans-
mission lines, which are usually covered by polyethylene, are relatively inexpen-
sive to manufacture, but radiation losses (mainly at discontinuities and bends)
make them inefficient for transferring electromagnetic energy farther than the
lower range of microwaves. Coaxial lines and hollow metal pipe waveguides are
more efficient than two-wire lines for transferring electromagnetic energy be-
cause the fields are completely confined by the conductors. For the transmission
of large amounts of power at high frequencies, waveguides are the most appro-
priate means. In a coaxial cable, significant wave attenuation occurs at high
frequencies because of the large current densities carried by the central conduc-
tor, which has a relatively small surface area. On the other hand, waveguides are
intrinsically dispersive and consequently incapable of transmitting large band-
width signals without distortion. However, coaxial lines can guide signals of
much higher bandwidths than waveguides can.
As shown in the next chapter, the dimension of the cross section of a

waveguide is related to the wavelength of the guided wave. Thus, for very low-
frequency waveguides the cross section would be too large and thus impractical
for frequencies lower than 1 GHz. On the other hand, at optical frequencies
the size of a metal waveguide must be too small (in the range of the μm) and,
moreover, at these frequencies the study of the interaction of the electromagnetic
field with the metal walls requires of quantum mechanical theory.
As a result of the development in solid-state microwave and millimeter tech-

nology, planar transmission lines are used instead of waveguides in many ap-
plications because these lines are inexpensive, compact, and simple to match
solid-state devices using printed-circuit technology. Planar lines allow different
configurations, usually including a dielectric substrate material with a ground
plane and one or more conducting strips on the upper surface. The most com-
monly used of these are striplines and microstrips, which are briefly described
in Section ??.
The field configurations that can be supported for any guiding structure

must satisfy Maxwell’s equations and the corresponding boundary conditions.
The different field distributions that satisfy this requirement are termed modes.
Although the electromagnetic field distribution in ideal guiding transmission
systems (composed of perfect conductors separated by a lossless dielectric).can
be expressed as a superposition of plane waves, the study of the propagation is
greatly simplified when we seek other kinds of solutions called transverse mag-
netic (TM) modes, transverse electric (TE) modes, or transverse electromagnetic
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Figure 5.1: Examples of waveguides and transmission systems: (1) Two wire
transmission line (2) Coaxial transmission line (3) Rectangular waveguide (4)
Circular waveguide (5) Stripline (6) Microstrip (7) Circular dielectric waveguide
(8) Optical fiver cable.

(TEM) modes. These terms indicate that, in the direction of propagation, the
TM modes have no magnetic field component, the TE modes have no electric
field component, and the TEM modes have neither electric nor magnetic field
components. In practice, these modes form a complete set of orthogonal func-
tions and, hence, any propagating electromagnetic field in the guiding structure
can be expressed as a linear combination of these modes. As discussed below,
there are two important properties that distinguish TEM from TE and TM
modes:
1) TM and TE modes have a cutoff frequency below which they cannot

propagate, which depends on the cross-sectional dimension of the guiding struc-
ture.
2) TEM modes cannot exist within a waveguide formed a single perfect

conducting pipe while transmission lines can in general support TE, TM and
TEM modes.
In this chapter, we present some general aspects of the propagation of time-

harmonic electromagnetic waves in guiding systems formed by perfect con-
ductors and only one homogeneous lossless dielectric in which the guided field
propagates. Nevertheless, the results can serve as a basis for structures in which
the cross-section contains more than one dielectric medium. The effect of lossy
media is analyzed in the final section. The study of some specific geometries is
left for the next chapter.

5.2 General relations between field components

Let us assume that a time-harmonic wave propagates along the z-axis, in the
+z direction, in a lossless guiding transmission system. Thus the dependence
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on z and time t is given by the factor ej(ωt−βgz)and the fields are of the general
form

Re

(
�E0e

j(ωt−βgz)

�H0e
j(ωt−βgz)

)
= Re

½
~Eejωt

~Hejωt

¾
(5.76)

where ~E = �E0e
−jβgzand ~H = �H0e

−jβgz and βg is the wavenumber of the
guided wave. Because the geometry and constitutive parameters do not change
along the z-axis, �E0 and �H0 are functions only of the transverse coordinates.
To determine ~E and ~H, we will first show that it is possible to express

their transverse components, ~Et and ~Ht, in terms of their z-components, ~Ez

and ~Hz. For this, we divide the three dimensional Laplacian operator ∇2 in the
homogeneous Helmholtz wave equations (3.26) into two parts. One part, ∂2/∂z2,
acts only on the axial coordinate, z, and the other, ∇2t , on the transverse ones
only1, i.e.

∇2 = ∂2

∂z2
+∇2t (5.77)

Since ∂/∂z ≡ −jβg, the wave equations can be written as

¡
∇2 + k2

¢½ ~E
~H

¾
=
¡
∇2t + h2

¢½ ~E
~H

¾
= 0 (5.78)

where
h2 = k2 − β2g (5.79)

and k = ω(με)
1
2 is the wavenumber for the wave propagating in an unbounded

medium of the matter which fills the transmission system. By particularizing
(5.78) for the z field component, we have

¡
∇2t + h2

¢½Ez

Hz

¾
= 0 (5.80)

This equation, when solved together with the boundary conditions of a given
structure, has solutions for an infinite but discrete number, m, of characteristic
values (eigenvalues) hm, i.e.¡

∇2t + h2m
¢½Ezm

Hzm

¾
= 0 (5.81)

where
h2m = k2 − β2gm (5.82)

with Ezm, or Hzm being the corresponding functions characteristic (eigen-
functions) which satisfy the equations (5.81) and the corresponding boundary
conditions, which are determined by the geometry of the system.

1For example in Cartesian coordinates we have ∇ = ∇t + ẑ ∂
∂z

where ∇t =
∂
∂x

x̂ + ∂
∂y

ŷ so

that ∇2t = ∂2

∂x2
+ ∂2

∂y2
.
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Now we are going to demonstrate that, once equation (5.80) has been solved,
we can obtain ~Et or ~Ht from Ez and Hz. From Maxwell’s equations (1.67c)
and (1.67d), in a sourceless region, we have

∇× ~E = −jωμ ~H (5.83a)

∇× ~H = jωε~E (5.83b)

The transverse components of these equations can be written as

(∇× ~E)t = ∇t × ~Ez +∇z × ~Et = −jωμ ~Ht (5.84a)

(∇× ~H)t = ∇t × ~Hz +∇z × ~Ht = jωε~Et (5.84b)

Thus, as ~Ez and ~Hz are assumed to be known, we have a system of two equa-
tions and two unknowns, ~Et and ~Ht, the solutions to which are

~Ht =
j
h2

³
ωε∇t × ~Ez − βg∇tHz

´
(5.85a)

~Et = − j
h2

³
ωμ∇t × ~Hz + βg∇tEz

´
(5.85b)

According to (5.85), once the z components of the fields are known, the trans-
verse components can also be calculated. Moreover, in ideal guiding ¿¿struc-
tures?? , we can express any field propagating in the homogeneous guiding
transmission structure as a linear superposition of TE, TM and TEM waves or
modes. Clearly, it is not possible to find specific expressions for the field dis-
tribution of any of these modes without previously knowing the geometry and
characteristics of the transmission system. However, as shown below, we can
study some of their general characteristics.

5.2.1 Transverse magnetic (TM) modes

Let us first consider TM modes so that Hz = 0 in (5.85). Thus we have

~Et = −
jβg
h2 ∇tEz = ∇t

1
h2

∂Ez

∂z = ∇tΦTM (5.86a)

~Ht =
jωε
h2 ∇t × ~Ez = − jωε

h2 ẑ ×∇tEz =
ωε
βg
ẑ × ~Et =

1
ZTM

ẑ × ~Et

(5.86b)

where we have defined the scalar potential for the TM modes, ΦTM , as

ΦTM = 1
h2

∂Ez

∂z (5.87)

To obtain (5.86b), we have used the equality ∇t× ~Ez = −ẑ×∇tEz and defined
the frequency-dependent quantity ZTM , as

ZTM =
βg
ωε =

ηβg
k (5.88)
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where η = (μ/ε)
1
2 is the intrinsic impedance of the dielectric that fills the trans-

mission system. The quantity ZTM , which has the dimensions of impedance, is
called the wave impedance for the TM modes. From (5.86b), we can see that
~Et, ~Ht, and ẑ form a right-handed system when the wave propagates in the
z-positive direction.
Thus, from (5.86a), in TM modes, ~Et can be written as the gradient of a

scalar function ΦTM . This result could have been obtained by simple reasoning
from Faraday’s law (5.83a), taking into account that, since ~H has only trans-
verse components the same is true for ∇× ~E. Therefore, from Stokes’ theorem,
we have Z

S

(∇× ~E) · ẑds =
I
Γ

~E · d�l = 0 (5.89)

where S is a transverse surface normal to the z axis. But Ez cannot contribute
to the line integral because the integration path Γ lies on the transverse plane.
Therefore I

Γ

~E · d�l =
I
Γ

~Et · d�l = 0 (5.90)

which implies that �Et is conservative and, therefore, can be written as the
gradient of a scalar function ΦTM .

5.2.2 Transverse electric (TE) modes

For TE modes, from equations (5.85), with Ez = 0, we have

~Ht = −
jβg
h2 ∇tHz = ∇t

1
h2

∂Hz

∂z = ∇tΦTE (5.91a)

~Et = − jωμ
h2 ∇t × ~Hz =

jωμ
h2 ẑ ×∇tHz = −ωμ

βg
ẑ × ~Ht = −ZTE ẑ × ~Ht

(5.91b)

where
ΦTE =

1
h2

∂Hz

∂z (5.92)

is the scalar potential for TE waves and

ZTE =
ωμ
βg
= ηk

βg
(5.93)

is the wave impedance for the TE mode. From (5.91b) we can see that ~Et, ~Ht,
and ẑ form a right-handed system when the wave propagates in the z-positive
direction.
The fact that, according to (5.91a), ~Ht can be expressed as the gradient of

the scalar function ΦTE can be explained by Ampere’s law, (5.83b), following a
reasoning similar to that used in the case of TE modes.
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5.2.3 Transverse electromagnetic (TEM) modes

For TEM modes, since Ez = 0 and Hz = 0, substituting these values in (5.85),
we can get no null or trivial solutions only if h = 0. Consequently, from (5.79),
for TEM modes, we have

β2g = k2 = ω2με (5.94)

This means that a TEM mode in a transmission system has the same propa-
gation constant as a uniform plane wave traveling in the unbounded dielectric
between the conductors. Since h = 0 and ~E = ~Et and ~H = ~Ht, (5.78) reduces
to

∇2t ~E = ∇2t ~Et = 0 (5.95a)

∇2t ~H = ∇2t ~Ht = 0 (5.95b)

Thus the distribution of the electric and magnetic fields on a transverse
plane satisfies the same bidimensional Laplace’s equation as for the static fields.
This means that, for TEM modes, on a transverse plane, �E is conservative, and
derivable from a scalar function Φ by means of the gradient function, i.e.

~E = −∇Φ (5.96)

Hence, the electric field distribution in the cross-sectional plane has the same
spatial dependence as the electrostatic field created by static charges located on
the conductors of the transmission system. Consequently, a TEM mode cannot
exist within a waveguide formed by a single perfect conducting tube of any
cross section since no electrostatic field can exist within a sourcesless region
completely enclosed by a conductor. When two or more separated conductors
exist, as for example in coaxial, two-wire or stripline transmission lines, TEM
waves can be propagated along the dielectric separating the conductors.
It is straightforward from (5.84b) that

~Et = −ZTEM ẑ × ~Ht = −ηẑ × ~Ht (5.97)

where ZTEM

ZTEM = η =
³μ
ε

´ 1
2

(5.98)

is the wave impedance for the TEM mode, which coincides with the character-
istic impedance η of the dielectric that fills the transmission system. cuidado en lo de lineas: usar

o no negritas..?-Now we will demonstrate that, for TEM modes, Maxwell’s equations can be
used to derive a pair of coupled differential equations which enable us to study
the propagation of these modes in transmission lines as voltage and current
waves (instead of electromagnetic waves), using elemental circuit theory.
From (5.96), according to the fundamental property of the gradient, in

the transverse plane the line integral of the electric field is path independent
and consequently voltage V and potential difference Φ2 −Φ1 will be the same.
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Then for TEM waves (using, without loss of generality, Cartesian coordinates)
we have

V = Φ(2)−Φ(1) = −
Z
l

�Et.d�l = −
Z
l

Exdx+Eydy (5.99)

where Φ(2) and Φ(1) are the values of the scalar function Φ at the the con-
ductors 1 and 2 and where l is any line that joins the equipotential transverse
sections of these conductors (fig.5.2). Deriving with respect to z and taking into
account Faraday’s law, (1.1c), particularized for the source-free region, outside
the conductors, we get

∂V

∂z
= −

Z
l

∂Ex

∂z
dx+

∂Ey

∂z
dy = − ∂

∂t

Z
l

−Bydx+Bxdy (5.100)

Note that
R
l
−Bydx + Bxdy is the magnetic flux through the area swept,

along a unit of length in the direction z, by the line l joining the conducting
surfaces. This flux can be expressed by using the magnetostatic definition of
coefficient L of self-inductance per unit of length, as the product LI. Therefore
we have

∂V

∂z
= −L∂I

∂t
(5.101)

On the other hand, from Ampere’s law, (1.1d), for the source-free dielectric
region, we have

I =

I
Γ

�Ht.d�l =

I
Γ

Hxdx+Hydy (5.102)



5.2. GENERAL RELATIONS BETWEEN FIELD COMPONENTS 109

R L

C G

R L

C G

Figure 5.3:

where Γ is a closed path around one of the wires (see Fig. 5.2). Deriving with
respect to z, we have

∂I

∂z
=

I
∂Hx

∂z
dx+

∂Hy

∂z
dy = − ∂

∂t

I
Γ

Dxdy −Dydx (5.103)

where, in a similar way as above, −Dydy +Dxdx represents the flow of vector
�D per unit length in the direction z. Using the magnetostatic definition of
capacitance C per unit length, this flux can be expressed as the product CV .
Thus we have

∂I

∂z
= −C∂V

∂t
(5.104)

Note that, from (5.99) and (5.102), V and I must have the same z dependence
as �E and �H, respectively. Thus, V and I are also traveling waves.
In summary, according (5.101) and (5.104) we have

∂Φ
∂z = −L

∂I
∂t (5.105a)

∂I
∂z = −C

∂V
∂t (5.105b)

which are the coupled differential equations that voltage and current satisfy at
any z cross section of an ideal line composed of perfect conductors separated
by a lossless dielectric. Equations (5.105) are called ideal "transmission line
equations". The use of these equations to study the propagation of TEM
waves in transmission lines is considered in Chapter ??.

5.2.4 Boundary conditions for TE and TM modes on per-
fectly conducting walls

For a guiding transmission system with perfectly conducting walls, the general
boundary conditions on the walls require that the tangential component ~ET of
~E and the normal component Hn of ~H be null, i.e.

~ET = n̂× ~E = 0 (5.106a)

Hn = n̂ · ~H = 0 (5.106b)
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where n̂ is the unit vector normal to the conducting walls. However, for TM
and TE modes, as shown below, these conditions can be simplified and reduced
to equivalent ones which are expressed only in terms of the z component of the
fields. For example for TM modes, the requirement that

Ez = 0 (5.107)

on the perfectly conducting guide walls suffices to ensure that Eqs. (5.106) are
fulfilled. From (5.86a) and the gradient properties, we can see that ~Et is normal
to the lines where Ez = cte and, therefore, to the boundary of the conductor,
since it represents a line with Ez = 0. Given that ~Et and ~Ht are perpendicular
to each other, the magnetic field is tangential to the conductor and thus Ez = 0
is equivalent to Eqs. (5.106).
For TE modes, the necessary and sufficient condition to ensure that Eqs.

(5.106) are fulfilled is that the normal derivative of Hz be null on the perfect
conducting parts of the guiding structure. That is

∂Hz

∂n
= ∇Hz · n̂ = (∇t +∇z)Hz · n̂ = 0 (5.108)

where we have divided ∇ into its transverse and axial components. Taking into
account (5.91a), we see that

∇tHz · n̂ = ~Ht · n̂ = 0 (5.109a)

which means that ~Ht is tangencial to the conductor and therefore, due to the
perpendicularity of the fields, we have

n̂× ~Et = 0 (5.110)

In summary, the necessary and sufficient boundary conditions on the perfect
conducting walls of the propagation system are

Boundary conditions on the perfect conducting walls

For TM modes
Ez = 0

(5.111a)

For TE modes
∂Hz

∂n = 0
(5.111b)

5.3 Cutoff frequency

From (5.76) and (5.79) we see that, for propagation to exist, βg must be real,
and consequently,

k2 > h2 (5.112)
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For this reason, βc, defined as

βc = h =
2π

λc
(5.113)

is called the cutoff wavenumber, and λc is the cutoff wavelength. Thus, from
Eq. (5.79), we have

β2g = k2 − β2c (5.114)

and, consequently
1

λ2g
=
1

λ2
− 1

λ2c
(5.115)

where λ is the wavelength of a plane wave in the unbounded lossless dielectric
medium filling the ( ¡ ¡better guiding structure¡¡ ¡) waveguide, and λg is that of
the wave in the guide. Thus we have

k =
2π

λ
; βc =

2π

λc
; βg =

2π

λg
(5.116)

The cutoff frequency fc is defined2 as

fc =
ωc
2π
=

βc
2π
√
με
=

vpβc
2π

(5.117)

where vp = ω/k is the phase velocity in the unbounded medium filling the (
¡¡better guiding structure¡¡¡) waveguide. Thus, from (5.79), the wavenumber βg
can be expressed in terms of fc, as

βg = k

s
1−

µ
fc
f

¶2
(5.118)

and the corresponding wavelength λg in the ( ¡¡better guiding structure¡ ¡¡)
guide is

λg =
2π

βg
=

λr
1−

³
fc
f

´2 (5.119)

which is greater than λ. According to (5.118) the wavenumber is imaginary for
modes with frequencies below the cutoff frequency fc, i.e. f < fc (or λ > λc ).
These modes, called evanescent modes, are attenuated and cannot propagate along the guide. Thus,

( ¡¡better guiding structure¡¡¡) waveguides behave as high-pass fi lters for the TE and TM modes since

they cannot transmit any of these modes for which the wavelengths, in the unbounded medium fi lling

the ( ¡¡better guiding structure¡¡¡) waveguide, exceed the value of the cutoff wavelength.

2 For a guiding transmission system with more than one dielectric the cutoff frequency can be
defined in a different manner than (5.117). See for example Section ??.
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In terms of the cutoff frequency, the expressions of the wave impedances for
the TM and TE modes (5.88) and (5.93) for ZTM and ZTE become, respectively

ZTM = η

s
1−

µ
fc
f

¶2
(5.120a)

ZTE =
ηr

1−
³
fc
f

´2 (5.120b)

From (5.120a) and (5.120b), we can see that ZTM < η and ZTE > η and they
become imaginary below the cutoff frequency. Thus, for f < fc, the waveguide
behaves, in this respect, as a reactive impedance.
From (5.79), we obtain the dispersion relation

ω =
¡
ω2c + v2pβ

2
g

¢1/2
(5.121)

which is analogous to that obtained in (??) for the transverse electromagnetic
waves in a nonmagnetized plasma. The plot of the phase constant as a func-
tion of the frequency ω (dispersion diagram) is shown in Figure 5.2.3. The
transversal broken line corresponds to ωc = 0, i.e. to an unbounded lossless,
nondispersive medium in which the wave propagates at the phase velocity vp
regardless of its frequency. The solid-line curve represents Eq. (5.121) and
shows that the waveguide is very dispersive close to the cutoff frequency ωc. For
frequencies ω >> ωc such that their wavelengths are much smaller than the
transversal ( ¡¡better guiding structure¡ ¡¡) waveguide dimensions, the walls do
not affect the propagation and the velocity tends to vp.

JV: texto Dispersion diagram. Es la figura de plasmas. ver tb pp 444 del Jonk

The group velocity, vgg, within the guide is given by

vgg =
dω

dβg
= vp

s
1−

µ
fc
f

¶2
(5.122)
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which is smaller than the phase velocity vp in the unbounded medium. The
phase velocity within the waveguide( ¡ ¡better guiding structure¡¡ ¡), vpg, is
given by

vpg =
ω

βg
= fλg =

vpr
1−

³
fc
f

´2 (5.123)

which is always higher than that in the unbounded medium and is frequency
dependent. Hence single conductor ( ¡¡better guiding structure¡¡¡) waveguides
are dispersive transmission systems. Note that

vpg · vgg = v2p (5.124)

For TEM modes, from (5.94), we have βg = k which is real and independent
of the frequency. Thus, all frequencies propagate along a lossless transmission
line at the same phase velocity vp as that of the unbounded homogeneous di-
electric filling the waveguide and there is no cutoff frequency.

5.4 Attenuation in guiding structures

For a propagating mode an attenuation constant α, owing to energy dissipation within the
waveguide, can arise from losses in the non-perfect conducting walls (αc) and
in the non-perfect dielectric filling the waveguide (αd). Thus, the attenuation
constant α consists of two parts α = αd + αc. Dielectric losses are generally
negligible when ( ¡¡better guiding structure¡ ¡¡) waveguides are filled with air,
which has a lower dielectric loss than do conventional dielectrics.
hay que decir TE y TM y TEM..

First, we analyze the losses for TE and TM due to a non-perfect dielectric
and afterward the ones due to non-perfect walls. In any case, as generally occurs
in practice, these losses are assumed to be very small.

5.4.1 TE and TM modes.

Dielectric Losses

When the dielectric filling the waveguide is lossy the attenuation can be easily
taken into account if in the expressions obtained for ideal dielectrics the real
propagation constants k and βg are replaced by −jγ and −jγg, respectively,
where γ = α + jβ and γg = αd + jβg are the complex propagation constants
in the unbounded dielectric filling the waveguide and in the waveguide, respec-
tively. Then, from equations (3.17), (5.79) and (5.113), we have

k2(1− j tan δd) = −γ2 = −γ2g + β2c (5.125)
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Using the above expressions for γ and γg and neglecting the term α2d, because the
attenuation constant αd is very small, we find

β2c = k2 − β2g (5.126a)

αd =
k2

2βg
tan δd =

βg
2 + β2c
2βg

tan δd (5.126b)

Thus, the attenuation factor is proportional to the loss tangent, tan δd, of the dielectric fi ll-
ing the waveguide. On the other hand, (5.126a) coincides with Eq. (5.114) for
waveguides with ideal dielectric, and consequently the phase constant (and thus
the wavelength) remains practically the same as those for a lossless waveguide.
The dependence of the attenuation factor αd on the frequency (assuming a range
of frequencies in which the permittivity of the dielectric remain unchanged) can
be deduced by substituting the expressions of tan δd and βg, given by (1.91)
and (5.118), respectively, in (5.126b). Thus we get

αd =
σeη

2(1−(fc/f)2)
1/2 (5.127)

where η is the intrinsic impedance of the dielectric given in (3.33a) and σe is its
effective or equivalent conductivity (1.78). From (5.127) we can see that αd becomes very
high at frequencies close to the cutoff value, then decreases to a minimum value,
and afterwards increases with the frequency, becoming almost proportional to
it.

Wall losses

When the conductivity is finite the tangential magnetic field induces currents
which are not restricted to the surface and, according to Ohm’s law, are asso-
ciated with a tangential electric field (i.e. �J = σ �E = n̂× �H) in the walls. The
vector product of the fields �E and �H at the surface of the walls represents a
flux of power directed towards the inner of the wall. This power coincides with
the dissipation in the conductor caused by the Joule effect and is subtracted
from the mode that propagates along the waveguide. As a consequence, the
amplitude of the electric and magnetic fields of the mode are attenuated accord-
ing to e−αcz, where αc is the attenuation constant due to wall losses. We can
determine the value of αc for a given propagating mode by taking into account
that the time-average power Pav transmitted through the cross-section S of the
guiding transmission system is

Pav =

Z
S

�Pav · d�s =
1

2

Z
S

Re(~Et × ~H
∗
t ) · d�s (5.128)

Since, due to the losses, the amplitude of the field wave varies according to
e−αcz, then, Pav will vary according to e−2αcz. Moreover, the law of energy
conservation requires that the rate of the decrease of Pav with distance along
the transmission system equals the time-average power loss on the surface of the
walls per unit length, P 0d, in the direction of propagation. Therefore, we have
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P 0d = −
dPav
dz

= 2αcPav (5.129)

and thus

αc =
P 0d
2Pav

(5.130)

If ~H is the ¿¿magnetic?? field existing near the walls, the time-average power
dissipated per unit of length in the walls is given, according to (3.45), by

P 0d =
1

2
Rs

Z
Γ

H2
0dl =

1

2
Rs

Z
Γ

~H · ~H∗dl (5.131)

where Rs is the surface resistance given by (3.46) and Γ is the cross-sectional
contour of the non-perfect conducting walls. Thus the coefficient of attenuation
of the n-th TE or TM mode is found to be

αc =
Rs Γ

�H· �H∗dl
4

S
�Pav·d�s

=
Rs Γ

�H· �H∗dl
2

S
Re(�Et× �H

∗
t )·d�s

(5.132)

This equation will be applied in next chapter to the calculation losses for TE and TM modes in

waveguides. In strict terms, the modes we have found assuming perfect conducting
walls are no longer valid since non-perfect conducting walls represent a change
in the boundary conditions because in this case the tangential component of
the electric field is not null. However, if the losses are small, we can make an
approximate analysis (known in Mathematical Physics as "first order perturbation method")
by assuming that the field configurations or modes in the waveguide coincide
with those found for ideal-wall ( ¡¡better guiding structure¡ ¡¡) waveguides.

5.4.2 TEM modes

The coupled differential equations (5.105) for ideal transmission lines can be easily extended to lines

with a non perfect of dielectric (constitutive parameters ε, μ, σ) separating the perfect conductors.
In this case, at any z cross-section of the line, an additional current increment
∆I leaves ..
assuming that the dielectric has a conductivity σ such that

∆I = gV (5.133)

in which g deno tes the conductance .....
pp 487 del Jonk: the series and shunt low-parameters r and g...

∂Φ

∂z
= −L∂I

∂t
(5.134a)

∂I

∂z
= −C ∂V

∂t
− gV (5.134b)
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Chapter 6

Some types of waveguides
and transmission lines

6.1 Introduction

In the previous chapter we examined some general properties of the propagation modes that may

exist in an ideal guiding transmission system which has no sources and is constituted by perfect

conductors and one ideal homogeneous dielectric. Specific expressions for such modes can be deter-

mined only when the particular geometry of the guide is given. In this chapter we will first analyze

in some detail the homogeneously fi lled rectangular and circular metallic waveguides. After this,

as a simple example of non homogeneous guiding structure in which the electromagnetic field prop-

agates in more than one dielectric, we will study the dielectric slab waveguide. Then, we will give

some basic ideas on propagation in strip and microstrip lines. Finally, we will consider cavity res-

onators which are basically constituted by a dielectric region totally enclosed by conducting walls.

This region, when excited by an electromagnetic field, presents resonance with a very high-quality

factor Q. In particular, we will study the common simple cases of rectangular and circular cavity

resonators.

6.2 Rectangular waveguide

Figure 6.1 shows a rectangular waveguide of sides a and b, with a > b, and homogeneously

fi lled with a perfect dielectric. Following the theory developed in the previous chapter, in order to

calculate the TE and TM modes that can propagate in this waveguide, we start by solving the wave

equation for the longitudinal components z of the field with the corresponding boundary conditions
determined by the geometry of the system. The transverse components are then calculated from

these longitudinal ones.

With axis chosen as shown in the figure, the expressions for the fields in (5.76), take the form

~E = �E0(x, y)e
−jβgz (6.135a)

~H = �H0(x, y)e
−jβgz (6.135b)

117
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Figure 6.1: Rectangular waveguide of width a and height b Rellenar en negro.

Next, we are going to find the expression for these fields, first for TM modes and afterwards for the

TE modes.

6.2.1 TM modes in rectangular waveguides

For the TM modes, the differential equation (5.80) for

Ez = E0z(x, y)e
−jβgz (6.136)

can be solved by using the standard method of separation of variables in rectangular
Cartesian coordinates. For this, we assume, for E0z, solutions in the form of the
product

E0z(x, y) = X(x)Y (y) (6.137)

in which X(x) and Y (y) are, respectively, functions only of x and y.
By substituting (6.137) in (5.80) and dividing by E0z, we get

1

X

d2X

dx2
+
1

Y

d2Y

dy2
+ h2 = 0 (6.138)

As each summand depends on a different variable, it should be verified that

1

X

d2X

dx2
= −h2x (6.139a)

1

Y

d2Y

dy2
= −h2y (6.139b)

h2 = β2c = h2x + h2y (6.139c)

where we have substituted, according to (5.113), h by the cutoff wavenumber
βc and where hx and hy are the separation constants to be determined from
the boundary condition (5.111a) at the guide walls. This boundary condition
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for the geometry of Figure 6.1 implies

E0z = 0 at

⎧⎪⎪⎨⎪⎪⎩
x =

½
0
a

y =

½
0
b

(6.140)

The solution of the Eqs. (6.139a) and (6.139b) are, respectively,

X = C1 sinhxx+ C2 coshxx (6.141a)

Y = C3 sinhyy + C4 coshyy (6.141b)

where the Ci coefficients are arbitrary constants to be determined from bound-
ary conditions. Therefore the general solution (6.137) for E0z takes the form

E0z = (C1 sinhxx+ C2 coshxx) (C3 sinhyy + C4 coshyy) (6.142)

From the boundary conditions (6.140), we find that C2 = C4 = 0 and

hx =
πm

a
(6.143a)

hy =
πn

b
(6.143b)

and thus, from (6.139c),

β2c =
¡
πm
a

¢2
+
¡
πn
b

¢2
(6.144)

where m and n are integers. The different solutions achieved by giving values to m and n are

termed TMmn modes and each set of values of m and n indicates a specific mode. Thus, from

(6.136), (6.142) and (6.143), for TMmn modes, we have

Ez = Amne
−jβgz sin

πm

a
x sin

πn

b
y (6.145)

where the product of the constants C1 and C3 has been replaced by a new
constant Amn.
Once we know the longitudinal component Ez, we can calculate the trans-

verse components ~Et by means of (5.86a) and then, by using (5.86b), which
implies that

ZTM =
Ex

Hy
= −Ey

Hx
(6.146)

we can obtain ~Ht. As a result, we get the following general expressions for the
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components of the TM modes in a rectangular waveguide

TMmn modes in rectangular waveguides

(Ez)TMmn
= Amne

−jβgz sin πm
a x sin πn

b y

(~Et)TMmn =
³
−jAmn

βg
β2c

πm
a e−jβgz cos πma x sin πn

b y
´
x̂−³

jAmn
βg
β2c

πn
b e
−jβgz sin πm

a x cos πnb y
´
ŷ

( ~Ht)TMmn
=
³
jAmnη

−1 k
β2c

πn
b e
−jβgz sin πm

a x cos πnb y
´
x̂−³

jAmnη
−1 k

β2c

πm
a e−jβgz cos πma x sin πn

b y
´
ŷ

(6.147)

6.2.2 TE modes in rectangular waveguides

To analyze the TE modes, we can follow a procedure similar to that used for
the TM modes but now solving for Hz and imposing the boundary condition
(5.111b), ∂Hz/∂n = 0, on the guide walls. This, for the geometry of Figure
6.1, implies that

∂Hz

∂x
= 0 at

½
x = 0
x = a

∂Hz

∂y
= 0 at

½
y = 0
y = b

(6.148)

Then, using (5.91a) and (5.91b), and after steps analogous to those followed for
TM modes, we get

TEmn modes in rectangular waveguides

(Hz)TEmn
= Bmne

−jβgz cos πma x cos πnb y

( ~Ht)TEmn =
³
jBmn

βg
β2c

πm
a e−jβgz sin πm

a x cos πnb y
´
x̂+³

jBmn
βg
β2c

πn
b e
−jβgz cos πma x sin πn

b y
´
ŷ

(~Et)TEmn =
³
jBmnη

k
β2c

πn
b e−jβgz cos πma x sin πn

b y
´
x̂−³

jBmnη
k
β2c

πm
a e−jβgz sin πm

a x cos πnb y
´
ŷ

(6.149)

Note that, for both, TMmn and TEmn modes, the subindexesm and n, indicate the num-
ber of half-wave variations of the field in the x and y directions, respectively.dedidir si subindexes or

subindices. For a TMmn mode withm or n equal to zero, from (6.145), we have (Ez)TE00 = 0

and consequently, from Eqs (6.147), (~Et)TE00 = 0 and ( ~Ht)TE00 = 0. Hence,
there is no TM mode in which m or n is equal to zero. This was to be expected
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because a TM wave with Ez = 0 would degenerate to become a TEM wave
which, as we saw in Subsection 5.2.3, cannot propagate within a waveguide.
For TEmn modes, it is easy to see from (6.149) that either m or n may be

equal to zero but not both at the same time, since in this case the expression
of (Hz)TEmn in (6.149) reduces to

(Hz)TE00 = B00e
−jβgz (6.150)

while ( �Ht)TE00 = 0 and �E = (�Et)TE00 = 0, such that only (Hz)TE00 exists.
This field does not fulfil Maxwell’s equations, since a time-varying field �H
should generate an electric field �E. Therefore the TE00 mode cannot exist.

Cutoff frequencies in a rectangular waveguide

From (5.117), (6.139c), and (6.143), we see that the cutoff frequency for either
a TEmn or a TMmn mode is given by

(fc)mn =
vp
2

∙³m
a

´2
+
³n
b

´2¸ 12
(6.151)

where vp is the phase propagation velocity of the wave in the unbounded
medium filling the waveguide. The wavelength and wavenumber in the waveguide
are given, respectively, by

(λc)mn =
2h¡

m
a

¢2
+
¡
n
b

¢2i 12 (6.152a)

(βg)mn =

∙
k2 −

³mπ

a

´2
−
³nπ

b

´2¸ 12
(6.152b)

From (6.151) we see that the cutoff frequency of the modes depends on
the dimensions of the cross-section of the waveguide. Values of the cutoff
wavelengths and frequencies for several modes are

(λc)TE10 = 2a; (fc)TE10 =
vp
2a

(6.153a)

(λc)TE01 = 2b; (fc)TE01 =
vp
2b

(6.153b)

(λc)TE20 = a; (fc)TE20 =
vp
a

(6.153c)

(λc)TE11 = (λc)TM11
=

2ab

(a2 + b2)
1
2

; (fc)TE11 = (fc)TM11
=

vp
¡
a2 + b2

¢ 1
2

2ab

(6.153d)

Note that if a = b the cutoff frequencies of TE10 and TE01 and the two modes
are equal except for a rotation of π/2.
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Figure 6.2: Rectangular waveguide: ratio of the cutoff frequency of several modes to that of the
TE10 mode as a function of a/b. mas grande las letras de las coordenadas

The dominant TE10 mode

In practice, we usually wish to have only the mode which has the lowest cutoff
frequency (¿¿called fundamental or dominant mode??) propagating through
the guide. Thus, in the case of a rectangular waveguide, if a > b, such that
(fc)TE10 < (fc)TE01 , the waveguide is usually designed so that only the TE10
mode can be propagated. The cutoff frequency of the dominant TE10 mode is
selected by means of the dimension a. The ratio of the cutoff frequency of each
mode to that of the TE10 mode as a function of a/b is plotted in Figure 6.2. We
see that the separation of the cutoff frequencies for different modes is larger for
higher values of the ratio of the a and b dimensions Note that if a ' 2b, then
the cutoff frequencies of the modes TE01 and TE20 are nearly the same and in
the frequency range v/2a < f < v/2b only the TE10 mode can be propagated.
Moreover, if a > 2b, then (fc)TE20 < (fc)TE01 . As we will see in the next Section,
losses due to non-perfectly conducting walls increase as b decreases. Thus, to
have the greatest frequency range in which only the TE10 mode can propagate
and, at the same time, to have the smallest losses possible, we usually choose
the dimensions of the guide such that a ' 2b. Under this condition, only TE10
modes will propagate in the frequency range (fc)TE10 < f < 2(fc)TE10 . For the
dominant TE10 mode the general expressions (6.149) simplify to those given in
(6.154) where the constant B10 has been replaced by H0.
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Rectangular TE10 mode

βc =
π
a

fc =
vp
2a

βg =
q
k2 −

¡
π
a

¢2
Hz = H0e

−jβgz cos πax

Hx = jH0
βga

π e−jβgz sin π
ax

Hy = 0

Ez = 0

Ex = 0

Ey = −jH0
ωμa
π e−jβgz sin π

ax

(6.154)

6.2.3 Attenuation in rectangular waveguides

Losses due to a non-perfect dielectric filling the waveguide and to non-perfect
conducting walls can be calculated using the expressions (5.127) and (5.132),
respectively. For a given mode, to obtain the attenuation due to dielectric
losses, we simply need to use, in the formula (5.127), the value of the cutoff
frequency of the mode, given by (6.151), and the values of the constitutive
parameters of the dielectric at the work frequency. However, to find the the
attenuation constant αc due to wall losses for any TE or TM mode, though
not complicated, is quite laborious. Here, to illustrate the procedure, we will
consider the particular case of the dominant TE10 mode

Attenuation of the TE10 mode For the TE10 mode, the integrals of the
formula (5.132) can be calculated from the general expressions for the field
components (6.154). Thus, for the denominator, we have

PTE10 =

Z
S

(�Pav)TE10 · d�s = −
1

2

Z b

0

Z a

0

(EyH
∗
x)TE10 dxdy =µ

aH0

2π

¶2
ωμabβg (6.155)

Regarding the integral of the numerator in (5.132), because in the dominant
mode TE10 in a rectangular waveguide the magnetic field �H has only Hx and
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Hz components, this integral takes the formZ
Γ

~H · ~H∗dl = 2
(Z a

0

³
|Hx|2 + |Hz|2

´
dx+

Z b

0

³
|Hx|2 + |Hz|2

´
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)
(6.156)

Using the expressions of Hx and Hz given in (6.154) and by operating, we obtain

Z
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0

"
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2
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1 +

β2g
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!
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#
= 2H2

0

"
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µ
f

fc

¶2
+ b

#
(6.157)

where the last expression is obtained from (5.118). By substituting (6.155) and
(6.157) in (5.132) and after operating, we finally obtain the following expression
for the attenuation factor (αc)TE10

(αc)TE10 =
Rs 1+ 2b

a (
fc
f )

2

ηb 1−( fcf )
2
= 1
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μπf
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2
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³
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f

´2¸
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(6.158)
Following a similar analysis,we can show that the general expresions for the

attenuation constant αc due to wall losses for any TEmn mode is

(αc)TEmn =
2Rsbηr
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(6.159)

where
δ0n =

n
1 q=0
2 q 6=0 (6.160)

While for TMmn mode is

αcTMmn
=

2Rs

bη

r
1−

³
fcmn

f

´2 ( ba)3m2 + n2

m2
¡
b
a

¢2
+ n2

(6.161)

These expressions show the dependence of the attenuation on the frequency. Reedactar: ¿ ¡¡Com-

puted values of αc for a few TEmn and TMmn modes are given in Figure 6.3In practice, surfaces

imperfections, the value of αc may be greater than the theoretical values. This effect can be reduced
using well polished walls.
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Figure 6.3: Atenuacion en guias rectangulares: a commom characteristic It
tends to infinite when f is close to the cutoff frequency, decreases toward an
optimum frequency (minimum value of αc) an then increases almost linearly
with f


