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1 Introduction

There are several reasons to consider the combination of supersymmetry and gravitation. The
foremost is that if supersymmetry turns out to be realized at all in nature, then it must eventually
appear in the context of gravity. As is characteristic for supersymmetry, its presence is likely to
improve the quantum behavior of the theory, particularly interesting in the context of gravity, a
notoriously non-renormalizable theory. Indeed, in supergravity divergences are typically delayed
to higher loop orders, and to date it is still not ruled out that the maximally supersymmetric
extension of four-dimensional Einstein gravity might eventually be a finite theory of quantum
gravity — only recently very tempting indications in this direction have been unvealed. On the
other hand, an underlying supersymmetric extension of general relativity provides already many
interesting aspects for the theory itself, given by the intimate interplay of the two underlying
symmetries. For example, the possibility of defining and satisfying BPS bounds opens a link
to the treatment of solitons in general backgrounds. Last but not least of course, supergravity
theories arise as the low-energy limit of string theory compactifications.
These lecture notes can only cover some very selected aspects of the vast field of supergravity
theories. We shall begin with “minimal” supergravity, i.e. N = 1 supergravity in four space-time
dimensions, which is minimal in the sense that it is the smallest possible supersymmetric exten-
sion of Einstein’s theory of general relativity. Next, we will consider extended supersymmetry
(N > 1) in higher dimensions (D > 4), and try to understand the restrictions which supersym-
metry imposes on the possible construction of consistent supergravity theories. The third part
is devoted to studying Kaluza-Klein compactification of supergravity from higher space-time di-
mensions. On the one hand this turns out to be a useful method in itself to construct extended
supergravity theories in four dimensions, on the other hand it is an indispensable aspect in the
study of supergravities descending from string theories that typically live in higher-dimensional
spaces. Finally, we shall have a closer look at gauged supergravities, which are generically ob-
tained in the Kaluza-Klein compactification procedure (unfortunately we will not make it to
this last point . . . ).
There exist many introductions and reviews on the subject, of which we mention the following
articles:

• P. van Nieuwenhuizen [1] for a general introduction, and in particular for the N = 1 case,

• Y. Tanii [2], especially for theories with extended supersymmetry,

• M. Duff, B. Nilsson and C. Pope [3] for aspects of the Kaluza-Klein compactification,

• B. de Wit [4], especially for the gauged supergravities.
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2 N = 1 supergravity in D = 4 dimensions

2.1 General aspects

Let us recollect a few facts about the structure of globally supersymmetric theories. A super-
symmetry transformation changes bosonic into fermionic particles and vice versa. Denoting
bosonic particles by B and fermionic particles by F , the global transformation is schematically

δB = ε̄F , δF = ε∂B , (1)

where ε is the infinitesimal supersymmetry parameter, carrying spinor indices, and ∂ stands for
a space-time derivative. The commutator of two supersymmetry transformations hence amounts
to an operator which is proportional to the space-time derivative,

[δε1 , δε2 ]B ∝ (ε̄1γµε2) ∂µB ,

where µ labels space-time coordinates. From this we can immediately deduce the important fact
that a supersymmetric theory will necessarily be invariant under translations. This link between
supersymmetry and the Lorentz group is recorded in the algebra in form of the anticommutator
of two supersymmetry charges, which is schematically

{Q, Q̄} ∝ P . (2)

The first step towards a generalisation is now to allow the supersymmetry parameter to depend
on space-time coordinates, i.e. to consider local supersymmetry instead of the former global one.
Since this means that the system will be invariant under a larger class of symmetries, there will
be different restrictions on the form the theory can take. Making the symmetry local will again
lead to a transformation law of the form (1), as well as to a commutator involving a space-time
derivative, with the difference that this time both will have local parameters, schematically

δεB = ε̄(x)F , δεF = ε(x) ∂B ⇒ [δε1 , δε2 ]B = (ε̄1γµε2)(x) ∂µB . (3)

The right-hand side is written in a form to stress the difference to the global case: The commu-
tator of two infinitesimal supersymmetry transformations yields a space-time dependent vector
field (ε̄γµε)(x), which is an element of the infinitesimal version of the group of local diffeomor-
phisms on space-time. A locally supersymmetric theory will hence necessarily be diffeomorphism
invariant and thus requires to treat the space-time metric as a dynamical object. The simplest
theory which achieves this is Einstein’s general relativity which we shall consider in the fol-
lowing — although higher order curvature corrections may equally give rise to supersymmetric
extensions.
The candidate for the quantized particle of gravity, the graviton, is provided by the spin-2 state
appearing in the supergravity multiplets. Consider e.g. the supergravity multiplet in N = 2
supersymmetry, which contains a spin-2 state gµν giving rise to the graviton, together with a
vector-spinor of spin 3

2 denoted ψαµ , and a spin-1 gauge field Aµ. If supersymmetry is unbroken,
these states will be degenerate in mass. The fact that under extended supersymmetry bosonic
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fields of different spin join in a single multiplet is quite remarkable. It shows that from a
“supercovariant” point of view their respective interactions are truly unified: we may thus be
able to recover the way gravity works from our knowledge of gauge theory by exploiting the
underlying supersymmetric structure.

2.2 Gauging a global symmetry

In order to construct a theory of supergravity, we shall first address the general way to construct
a local symmetry from a global one. One way to do this is provided by the Noether method,
which we will briefly discuss.
Consider as an example a massless complex scalar field with Lagrangian density

L = ∂µφ∂
µφ̄ . (4)

This theory has a global U(1) symmetry, acting as a constant phase shift on the field φ :

φ(x) 7→ eiΛφ(x) . (5)

To construct a theory with local symmetry from this, we allow the phase to depend on the
space-time coordinate, Λ = Λ(x). Since an operation of type (5) is then no longer a symmetry
for the Lagrangian of type (4), we need to change the Lagrangian by introducing the covariant
derivative on the fiber bundle of a gauge field vector space over the space-time manifold,

Dµφ(x) ≡ ∂µφ(x)− iAµ(x)φ(x) . (6)

We then substitute this for the ordinary derivatives in (4). The resulting Lagrangian

L = DµφD
µφ̄ , (7)

is locally U(1) invariant. Adding a standard Maxwell term FµνF
µν to capture the dynamics of

the vector fields gives rise to a consistent U(1)-invariant theory.
We could proceed the very same way, starting from a model with global supersymmetry, e.g.
the WZ model, and turn the global symmetry into a local one. In the U(1) example, the
compensating gauge field introduced to correct the derivative was a helicity (or spin) 1 field Aµ.
In the supersymmetric case where the transformation parameter is itself a spinor, we hence
naively expect a spin-3

2 field ψαµ , carrying both a spinor and a vector index. This field is called the
“gravitino” and naturally arises in the supergravity multiplets. Gauging global supersymmetry
we would hence introduce supercovariant derivatives and a kinetic term for the gravitino field.
However, unlike the U(1) example, the construction does not stop here. We have seen in (3)
above, that a locally supersymmetric theory requires a dynamical metric, i.e. the Noether method
will furthermore give rise to coupling the entire model to gravity. In other words, the analogue
of “adding a standard Maxwell term FµνF

µν ” in the example above, here corresponds to adding
a kinetic term for the gravitino as well as for the gravity field, as only together they can be
supersymmetric.
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Rather than going through this lengthy procedure (which is possible!) we will restrict here
to a construction of the minimal supergravity theory in four dimensions, i.e. to the theory
describing only the graviton and the associated gravitino which together form the smallest
N = 1 supergravity multiplet. Our task shall be in the following to construct a theory with this
field content, such that by setting ψαµ ≡ 0 we find Einstein’s general relativity again. I.e. we will
have to work out the Lagrangian

L = LEH + L(ψ) , (8)

which consists of a part describing the graviton by the Einstein-Hilbert action, and another part
describing its coupling to the gravitino.

2.3 The vielbein formalism

We shall work in units where ~ = G = c = 1. The standard formulation of general relativity
includes the metric tensor gµν together with the Levi-Civita connection ∇µ, defining covariant
derivatives of tensors, as e.g. in the case of a vector field

∇µXν = ∂µXν − ΓλµνXλ , (9)

implying that ∇µXν transforms as a tensor under diffeomorphisms. Further requiring that the
metric is covariantly constant

∇λ gµν = 0 , (10)

defines the Christoffel symbols Γλµν as

Γλµν = 1
2g
λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) +Kλ

µν , (11)

where Kλ
µν is the so-called contorsion, defined in terms of a torsion tensor T λµν = T λ[µν] as

Kλ
µν = 1

2(Tνλµ + Tµ
λ
ν + T λµν). The torsion tensor is not fixed by the metricity condition (10)

and usually set to zero, which amounts to having symmetric Christoffel symbols Γλµν = Γλ(µν).
Supergravity in its simplest formulation however exhibits a nontrivial torsion bilinear in the
fermionic fields, as we shall see.
The Riemann tensor can be expressed in terms of the Christoffel symbols; it is given by

R ρ
µν σ = 2∂[µΓρν]σ + 2Γρ[µ|λΓλ|ν]σ , (12)

where A[µ|νB|σ] := 1
2(AµνBσ −AσνBν). From this one computes the Ricci tensor

Rµν = R ρ
ρµ ν ,

and the Ricci scalar
R = gµνRµν .

The Einstein-Hilbert action is given by the Lagrangian density

LEH = −1
4

√
|g|R , (13)
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where g denotes the determinant of the metric, and the field equations are the vacuum Einstein
equations

Rµν − 1
2Rgµν = 0 . (14)

In order to deal with spinors, whose transformation rules are difficult to generalise to curved
backgrounds, it is helpful to reformulate this theory in the so-called vielbein formalism. The idea
behind this is to consider a set of coordinates that is locally inertial, so that one can apply the
usual Lorentz behaviour of spinors, and to find a way to translate back to the original coordinate
frame. To be a bit more precise, let ya(x0;x), a = 0, . . . , 3, denote a coordinate frame that is
inertial at the space-time point x0. We shall call these the “Lorentz” coordinates. Then

e a
µ (x0) :=

∂ya(x0;x)
∂xµ

∣∣∣∣
x=x0

,

compose the so-called vielbein, or tetrad in our case where a takes four different values. Under
general coordinate transformations x 7→ x′, the vielbein transforms covariantly, i.e.

e′ aµ (x′) =
∂xν

∂x′µ
e a
ν (x) , (15)

while a Lorentz transformation ya 7→ y′a = ybΛ a
b leads to

e′ aµ (x) = e b
µ (x)Λ a

b . (16)

In particular, the space-time metric can be expressed as

gµν(x) = e a
µ (x)e b

ν (x) ηab ,

in terms of the Minkowski metric ηab = diag(1,−1,−1,−1). The vielbein e a
µ thus takes lower

Lorentz (or “flat”) indices a, b to lower indices in the coordinate basis (or “curved”) indices µ, ν.
Its inverse e µ

a performs the transformation in the other direction. As an example consider a
1-form with coordinates Xµ, for which

Xµ = e a
µ Xa , Xa = e µ

a Xµ .

On the other hand, contravariant indices are transformed as

Xµ = Xae µ
a , Xa = Xµe a

µ .

We can now introduce spinors ψα(x) in our theory, which transform as scalars under the general
space-time coordinate transformations, but in a spinor representation R of the local Lorentz
group:

ψ′α(x) = R(Λ(x))αβ ψβ(x) .

In addition, we can convert the constant γ matrices of the inertial frame into γ matrices in the
curved frame by the action of the vielbein:

γµ(x) = e a
µ (x)γa =⇒ {γµ, γν} = 2gµν .
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The choice of the locally inertial frame ya is of course only unique up to Lorentz transformations,
i.e. the tetrad is only defined up to a rotation in the Lorentz indices e a

µ 7→ e b
µ Λ a

b . The algebra
so(1, 3) of the local Lorentz transformation group SO(1, 3) is given by the generators Mab, which
are antisymmetric in their indices and satisfy the commutation relations

[Mab,Mcd] = 2ηa[cMd]b − 2ηb[cMd]a . (17)

The action of Mab on vectors is given by

MabX
c = 2δc[aXb] ,

while on spinors it is
Mabψ = 1

2γabψ ,

where γab stands for γ[aγb] and we have dropped the explicit spinor indices α, as we will usually
do from now on. On the other hand, the space-time metric gµν stays invariant under so(1, 3)
transformations, so that these will automatically preserve the Einstein-Hilbert action.
In order to couple matter to our theory, we will also need the Lorentz covariant derivatives.
They are defined by

Dµ ≡ ∂µ + 1
2ω

ab
µ Mab .

The ω ab
µ are a set of gauge fields; there is one for each generator of so(1, 3), correspondingly

they are antisymmetric in the Lorentz indices a, b. Together, they define an object called the
spin connection ω. It is determined by requiring that the tetrad is covariantly constant (the
so-called vielbein postulate):1

0 = Dµe
a
ν − Γλµνe

a
λ = ∂µe

a
ν + ω a

µ b e
b
ν − Γλµνe

a
λ .

An equivalent way to write this is

D[µe
a

ν] =
1
2
T aµν . (18)

This constitutes a set of algebraic equations for ω which has a unique solution expressing the
spin connection in terms of the vielbein and the torsion. For vanishing torsion, the equations
reduce to

D[µe
a

ν] = 0 , (19)

of which the solution is given by

ω ab
µ = ω ab

µ [e] =
1
2
ecµ

(
Ωabc − Ωbca − Ωcab

)
, (20)

where Ωabc = e µ
a e

ν
b (∂µeνc−∂νeµc) are the so-called objects of anholonomity. In the presence of

torsion, the solution of (18) is given by ω ab
µ = ω ab

µ [e] + Ka
µ
b, where the contorsion Ka

µ
b has

been expressed in terms of T aµν after equation (11) above. The spin connection ω also defines
a curvature tensor with coefficients

Rµν
ab[ω] = 2∂[µω

ab
ν] + 2ω ac

[µ ω
b

ν]c . (21)

1In our notation, here and in the following the covariant derivative Dµ = D(ω)µ always includes the spin

connection, but not the Christoffel symbols.
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It can be shown that this curvature is in fact nothing but the ordinary space-time curvature
where two space-time indices have been converted to Lorentz indices, i.e.

R ab
µν = R ρ

µν σ e
a
ρ ebσ .

2.4 The Palatini action

We shall now apply the vielbein formalism to the formulation of general relativity. This is done
by rewriting the Einstein-Hilbert Lagrangian (13) directly in terms of vielbein quantities:

LEH[e] = −1
4

√
|g|R = −1

4 |e| e
µ
a e

ν
b R

ab
µν . (22)

Note that |e| stands for the determinant of the tetrad on the right hand side, while on the
left hand side the argument e is a short hand notation to denote dependence of L on the full
tetrad e a

µ . The equations of motion for this Lagrangian are the Einstein equations (14). In the
vielbein formalism, these second order equations can be expressed quite nicely in terms of a set
of two equations of first order. This goes under the name of Palatini (or first order) formulation.
It is achieved by considering the spin connection ω to be a priori independent of the tetrad,
described by the Palatini Lagrangian

LP[e, ω] = −1
4 |e| e

µ
a e

ν
b R

ab
µν [ω] . (23)

There are now two field equations: The first one comes from the variation with respect to the
vielbein, δLP/δe, and the second from the variation with respect to the spin connection, δLP/δω.
Explicitly, the variation yields

δLP = −1
2
|e| (R a

µ − 1
2e

a
µ R) δe µ

a −
3
2
|e| (Dµe

a
ν ) e µ

[a e
ν
b e

ρ
c] δωρ

bc , (24)

as we show in appendix A. The second equation thus gives precisely (19) and is solved by by
(20). Upon inserting this solution ω = ω[e] into the first equation, we recover the Einstein
equations (14). In the classical theory, the Palatini formulation is hence equivalent to the
standard second order formulation of general relativity.
It is instructive to note that the relation LEH[e] = LP[e, ω]|ω=ω[e] between the Einstein-Hilbert
and the Palatini action provides a very simple way to also compute the variation of the former.
Namely

δLEH[e] =
(
δLP

δe a
µ

∣∣∣
ω=ω[e]

+
δLP

δωνbc

∣∣∣
ω=ω[e]

δων
bc

δe a
µ

)
δe a
µ . (25)

However, the second term vanishes identically, because δLP/δω is proportional to (19) and thus
zero for ω = ω[e]. I.e. the variation of LEH is simply given by the first term of (24) and thus
by Einstein’s equations (14). A similar observation will greatly facilitate the computation of a
supersymmetric extension of Einstein gravity in the following.

2.5 The supersymmetric action

We now come back to the reason why we introduced the vielbein formalism, which was the
inclusion of spinor fields and in particular of the gravitino in our theory. While LEH (or LP) can
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be considered as the “kinetic term” for gravity, we should now add a kinetic term for the “gauge
field” ψαµ . Such a term has in fact been known since the 1940ies, when Rarita and Schwinger
published a proposition for the kinetic term of a spin-3

2 field [5]:

LRS = 1
2ε
µνρσψ̄µγνγ5Dρψσ . (26)

In general background, the Lorentz-covariant derivative already provides a non-trivial coupling
to gravity. Just adding LRS to the Einstein-Hilbert Lagrangian will however not yet yield
a supersymmetric theory. In order to guarantee supersymmetry, we must also allow further
interaction terms which contain higher powers of ψ. Our ansatz should thus be a Lagrangian of
the form

L[e, ψ] = LEH[e] + LRS[e, ψ] + Lψ4 [e, ψ] , (27)

where the last part only contains terms of order at least 4 in the gravitino. However, to determine
the actual form of L we must first understand how the fields transform under a supersymmetry
variation.
Our strategy shall be the following. We will first present the transformation laws for the fields
under a supersymmetry transformation, and verify them by checking the supersymmetry algebra
to lowest order in the fermions. After that, we shall come back to the Lagrangian (27) and
determine its precise form such that it is supersymmetric.
To lowest order in the fermions, the supersymmetry transformation laws of the vielbein and the
gravitino are given by

δεe
a
µ = −iε̄γaψµ ,

δεψµ = Dµε . (28)

At least heuristically, they seem of a good form, as the bosonic vielbein transforms into its
presumed superpartner according to (3), and as ψµ which is supposed to play the role of a
“gauge field of local supersymmetry” indeed transforms as Dµε, the derivative of the local
parameter. On the other hand, there seem to be other possibilities (like a contribution ε̄γµψ

a

in δεe
a
µ ) whose absence we should justify.

To establish the proposed transformations we will have to check that they satisfy the super-
symmetry algebra. In particular, the commutator of two such supersymmetry transformations
should give rise to a suitable combination of local symmetry transformations of the theory, in
a way similar to (3). Consider the commutator of two supersymmetry transformations on the
vielbein,

[δε1 , δε2 ]e a
µ = 2δ[ε1δε2]e

a
µ

= δε2(iε̄1γaψµ)− δε1(iε̄2γaψµ)

= iε̄1γ
aDµε2 − iε̄2γaDµε1

= i
2Dµ(ε̄2γaε1 − ε̄1γaε2)

= iDµ(ε̄2γaε1) ,
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where we have used the property χ̄γaξ = −ξ̄γaχ of Majorana spinors χ, ψ in the last line. In
order to understand this result, define the space-time vector field ξµ := iε̄2γ

µε1, such that

[δε1 , δε2 ]e a
µ = Dµ(ξνe a

ν )

= ξνDµe
a
ν + e a

ν ∂µξ
ν . (29)

In the last equation we have used that Dµ is the covariant derivative with respect to only the
Lorentz indices, which means that it operates as a mere space-time derivative on ξν . Taking
into account (19), we can exchange the lower indices in the first term of the last line in (29),
such that by writing out the covariant derivative we are finally left with

[δε1 , δε2 ]e a
µ = ξν∂νe

a
µ + e a

ν ∂µξ
ν︸ ︷︷ ︸

I

+ ξνω a
ν be

b
µ︸ ︷︷ ︸

II

. (30)

We recognise part I as being the infinitesimal action of a diffeomorphism on e a
µ , and part II as

an infinitesimal internal Lorentz transformation δΛe
a
µ with Λab = ξνω a

ν b. We have thus shown
that the transformations (28) close onto the vielbein as

[δε1 , δε2 ]e a
µ = δξ + δΛ , (31)

into a combination of local symmetries: diffeomorphism and Lorentz transformation.
Proceeding, we should next apply the commutator of two supersymmetries to the gravitino. This
however involves already fermionic terms of higher order (e.g. variation of the connection term in
Dµε2 in δ2ψµ gives rise to terms in (ε̄1ε2ψ) which are of the same fermion order as the variation
of possible higher order terms ψψε in δ2ψµ that we are neglecting for the moment). Furthermore,
it turns out that closure of the supersymmetry algebra on the fermionic fields will require these
fields to obey their first order equations of motion — meaning that the supersymmetry algebra
only closes on-shell. This involves the exact form of the Lagrangian, so let us first turn to the
Lagrangian; we shall come back to this point in a short comment in section 2.6.
We hence go back to the Lagrangian (27), and try to determine its constituents such that it
becomes supersymmetric. To do this, we will make use of a trick and formally include the
higher powers in the fermionic fields Lψ4 into the first two parts, without changing their general
form. This can be achieved by properly adapting the spin connection. Our starting point is the
Lagrangian

L0 ≡ LEH + LRS , (32)

which depends on the vielbein and the gravitino field. As we have done in the case of the Palatini
action, we may write this in the explicit form

L0[e, ψ, ω[e]] = − 1
4 |e| e

µ
a e

ν
b R

ab
µν [ω[e]] + 1

2ε
µνρσψ̄µγνγ5Dρψσ , (33)

with ω[e] from (20). Computing the variation of this Lagrangian under supersymmetry, we will
thus find schematically

δL0 =
δL0

δe

∣∣∣
ω=ω[e]

δe+
δL0

δψ

∣∣∣
ω=ω[e]

δψ +
δL0

δω

∣∣∣
ω=ω[e]

δω[e]
δe

δe . (34)
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It would greatly simplify the calculation, if we could drop the last term by the same argument
used at the end of section 2.4, using the fact that δL0/δω was identically zero for ω = ω[e].
Unfortunately, this is no longer true. As δL0/δω receives additional contributions from the
Rarita-Schwinger term, it follows that variation of L0 w.r.t. the spin connection gives rise to the
equation

D[µe
a

ν] = − i
2 ψ̄µγ

aψν , (35)

instead of (19). As we have seen for (18) above, the solution of (35) is given by the modified
spin connection

ω̂µ
ab = ω̂µ

ab[e, ψ] = ω ab
µ [e] +Ka

µ
b , with Ka

µ
b = −i(ψ̄[aγb]ψµ + 1

2 ψ̄
aγµψ

b) , (36)

which depends quadratically on the gravitino ψµ. Our ansatz for the supergravity Lagrangian
will thus be

L = L0[e, ψ, ω̂[e, ψ]] = − 1
4 |e| e

µ
a e

ν
b R

ab
µν [ω̂] + 1

2ε
µνρσψ̄µγνγ5D̂ρψσ , (37)

where ω̂ is given by (36). We also use the notation D̂ = D(ω̂) to indicate that the Lorentz
connection in this covariant derivative is built by ω̂. The Lagrangian (37) thus differs from (33)
by quartic terms in ψ. Correspondingly, we modify the supersymmetry transformation rules
(28) to

δεe
a
µ = −iε̄γaψµ ,

δεψµ = D̂µε , (38)

including additional cubic terms in the variation of the gravitino. We will now show that (37)
already gives the full supersymmetric Lagrangian to all orders in the fermions.
Schematically, the variation of (37) is given by

δL =
δL0

δe

∣∣∣
ω=ω̂[e,ψ]

δe+
δL0

δψ

∣∣∣
ω=ω̂[e,ψ]

δψ +
δL0

δω

∣∣∣
ω=ω̂[e,ψ]

(δω̂[e, ψ]
δe

δe+
δω̂[e, ψ]
δψ

δψ
)
, (39)

and now the entire last term vanishes, as δL0/δω is proportional to (35) and thus identically zero
for ω = ω̂[e, ψ]. We can thus in the following computation consistently neglect all contributions
due to explicit variation w.r.t. the spin connection.
Using (24), we find that variation of the Einstein-Hilbert term then gives rise to

δεLEH = −1
2 |e|

(
R̂ a
µ − 1

2e
a
µ R̂

)
(δεe µ

a )

= − i
2 |e|

(
R̂ a
µ − 1

2e
a
µ R̂

)
ε̄γµψa , (40)

where R̂µa = R[ω̂]µa denotes the Ricci tensor obtained by contracting the curvature (21) of the
modified spin connection ω̂.
On the other hand, varying L̂RS while again neglecting the terms from variation w.r.t. the spin
connection yields

δεLRS = δε(1
2ε
µνρσψ̄µγνγ5D̂ρψσ)

= 1
2ε
µνρσ

(
D̂µεγνγ5D̂ρψσ + ψ̄µγνγ5D̂ρD̂σε+ ψ̄µ (δεγν)γ5D̂ρψσ

)
.
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Since the Lagrangian has to stay invariant only up to a total derivative, we can shift the derivative
D̂µ in the first term to the right by partial integration. Hence

δεLRS = 1
2ε
µνρσ

(
ψ̄µγνγ5D̂[ρD̂σ]ε− ε̄γνγ5D̂[µD̂ρ]ψσ − ε̄(D̂[µγν])γ5D̂ρψσ + ψ̄µ (δεγν)γ5D̂ρψσ

)
+ (total derivatives) , (41)

where we have used the possibility to antisymmetrise in various indices in the bracket, as they
are contracted with the totally antisymmetric ε tensor density. In the third term in the bracket,
the covariant derivative of the gamma matrix D̂[µγν] = γa D̂[µe

a
ν] is quadratic in the fermions

due to (35). Together with the two fermionic fields ε̄ and ψ, this term is thus at least quartic in
the fermions. Likewise, the last term in (41) is at least quartic in the fermions. Denoting these
two quartic terms by δ(4)

ε LRS and making use of [D̂µ, D̂ν ]ψ = 1
4R̂

ab
µν γabψ, we find

δεLRS = − 1
16ε

µνρσ
(
−ε̄γνγ5γabψµ + ψ̄µγνγ5γabε

)
R̂ ab
ρσ + δ(4)

ε LRS , (42)

where we have relabeled a few of the indices in the first terms. We observe that

γνγ5γab = γνγabγ5

= γνabγ5 + 2eν[aγb]γ5 ,

and since γνab = ie d
ν εdabcγ

cγ5 and (γ5)2 = 11, we have

γνγ5γab = ie d
ν εdabcγ

c + 2eν[aγb]γ5 .

Plugging this back into the variation (42) and keeping in mind that ε̄γcψ = −ψ̄γcε for Majorana
spinors, we are thus led to

δεLRS = − i
8e

d
ν ε

νµρσεdabc ε̄γ
cψµ R̂

ab
ρσ + δ(4)

ε LRS − 1
8ε
µνρσ(−ε̄eν[aγb]γ5ψµ + ψ̄µeν[aγb]γ5ε)R̂ ab

ρσ .

Since we also have ε̄γ5γaψ = ψ̄γ5γaε for Majorana spinors, the last two terms in this expression
mutually cancel. If we furthermore make use of the identity e d

ν ε
νµρσεdabc = −6|e|e[a

µeb
ρec]

σ, we
finally obtain

δεLRS = − i
8e

d
ν ε

νµρσεdabc ε̄γ
cψµ R̂

ab
ρσ = 6i

8 |e|e[a
µeb

ρec]
σ(ε̄γcψµ)R̂ ab

ρσ + δ(4)
ε LRS

= 3i
4 |e|(ε̄γ

[σψµ)R̂ µρ]
ρσ + δ(4)

ε LRS

= i
2 |e|(ε̄γ

µψa)
(
R̂ a
µ − 1

2e
a
µ R̂

)
+ δ(4)

ε LRS .

The first term precisely cancels the variation of the Einstein-Hilbert part (40).
We have thus shown that up to total derivatives the variation of the full Lagrangian L from (27)
reduces to the last two terms of (41)

δεL = δ(4)
ε LRS = 1

2ε
µνρσ

(
−ε̄(D̂[µγν])γ5D̂ρψσ + ψ̄µ (δεγν)γ5D̂ρψσ

)
, (43)

quartic in the fermions. With (35) we find

δ(4)
ε LRS = i

2ε
µνρσ

(
1
2(ψ̄µγaψν)(ε̄γaγ5D̂ρψσ)− (ψ̄µ γaγ5D̂ρψσ)(ε̄γaψν)

)
. (44)
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A priori, the form of the two terms is rather different. In order to bring them into the same
form, we will need some so-called Fierz identities:

χ)(λ̄ = −1
4(λ̄χ)I − 1

4(λ̄γ5χ)γ5 − 1
4(λ̄γaχ)γa + 1

4(λ̄γaγ5χ)γaγ5 + 1
8(λ̄γabχ)γab , (45)

where the l.h.s. is to be understood as a matrix to be contracted with further spinors from
the left and the right. (The easiest way to prove this identity is to note that the 16 matrices
{I, γ5, γ

a, γaγ5, γ
ab} ≡ B form a basis of the 4× 4 matrices which is orthogonal with respect to

Tr(AB).) Applying (45) to the second term of (44) (with χ = D̂ρψσ and λ̄ = ε̄), and noting
that due to the symmetry properties of Majorana spinors the bilinear ψ̄[µΓψν] for Γ ∈ B is
non-vanishing only for Γ = γa and Γ = γab, we find

− i
2ε
µνρσ (ψ̄µ γaγ5D̂ρψσ)(ε̄γaψν) = − i

4ε
µνρσ (ψ̄µ γaγ5γbγ5γ

aψν)(ε̄γbγ5D̂ρψσ)

− i
8ε
µνρσ (ψ̄µ γaγ5γbcγ5γ

aψν)(ε̄γbcγ5D̂ρψσ) .

Using that γaγbγa = −2γb and γaγbcγ
a = 0, the second term vanishes while the first term

precisely cancels the first term of (44). Together, we have thus shown that the Lagrangian (37)
is invariant up to total derivatives under the supersymetry transformations (38). It constitutes
the sought-after minimal supersymmetric extension of Einstein gravity in four dimensions.

2.6 Results

Let us collect and complete our results, and simplify the notation. The full supersymmetric
Lagrangian is given by L = L0[e, ψ, ω̂[e, ψ]] from (37). By properly adapting the spin connec-
tion ω̂ we got rid of all explicit quartic fermion interaction terms. Equation (35) corresponds
precisely to the equation δL0/δω̂ = 0 and is identically solved by ω̂ given in equation (36) as
(schematically)

ω̂ = ω̂[e, ψ] = ω[e] +K ,

depending on the tetrad and the gravitino. Equivalently, the full Lagrangian L can be brought
into the form (27) in which the first terms depend on the standard spin connection ω[e], and
the quartic interaction terms are explicit. They can in fact be retrieved rather conveniently by
formally expanding L0[e, ψ, ω] around ω = ω̂. Since L0 is no more than quadratic in ω, this
expansion stops after two terms; we find (again schematically)

L0[e, ψ, ω] = L0[e, ψ, ω]
∣∣∣∣
ω=ω̂

−K δL0[e, ω, ψ]
δω

∣∣∣∣
ω=ω̂

+
1
2
K2 δ

δω

δ

δω
L0[e, ω, ψ]

∣∣∣∣
ω=ω̂

.

Now the term linear in K vanishes, because δL0/δω = 0 at ω = ω̂, as we have already used
above. Moreover, the first term on the right-hand side is precisely the full supersymmetric
Lagrangian (37). The last term finally has only contributions from the ωω term in the curva-
ture Rµνab[ω] in the Einstein-Hilbert term. Together, this yields for the full supersymmetric
Lagrangian

L = L0[e, ψ, ω[e]]− 1
4 |e|

(
K ac
a K b

b c +KabcKcab

)
, (46)
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where Kabc given in (36) explicitly describes the quartic fermion interactions. One can see that
the fermions are subject to an interaction of current-current type.
Let us mention two more things before we conclude this chapter. The first one is that with the
full supersymmetry rules (38)

δεe
a
µ =−iε̄γaψµ ,

δεψµ = D̂µε ,
(47)

containing cubic fermion terms in the variation of the gravitino, the computation of the super-
symmetry algebra leading to (31) needs to be revisited. Extending our previous calculation, the
commutator of two supersymmetry transformations on the tetrad can be shown to be

[δε1 , δε2 ]e a
µ = D̂µ(ξνe a

ν )

= ξν∂νe a
µ + e a

ν ∂µξ
ν + ξν ω̂ a

ν be
b
µ + iξνψ̄νγ

aψµ ,

for ξµ = iε̄2γ
µε1 as in (30), where the last term is due to the non-vanishing torsion (35).

Again, the result is given by a combination of local transformations; the first two terms being
an infinitesimal diffeomorphism, the third term an internal Lorentz transformation (now with
Λab = ξν ω̂ a

ν b), while the last term represents an additional supersymmetry transformation with
parameter ε = −ξνψν . If on the other hand one applies the commutator of supersymmetry
transformations on the gravitino, one will find that the only way to interpret the result as a
combination of local transformations involves the application of the equations of motion of the
gravitino, i.e. the supersymmetry algebra closes only on-shell (some details for the computation
can be found in [2]). This is a generic feature of supersymmetric theories.
Finally, a remark concerning nomenclature: the straightforward although very tedious way to
prove supersymmetry of the full Lagrangian would amount to starting from its explicit form (46)
and check its invariance under (47) including lengthy terms up to order ψ5 due to the explicit
dependence of the spin connection on the tetrad. Historically, this is how four-dimensional
supergravity was first constructed by Freedman, van Nieuwenhuizen and Ferrara in 1976 [6].
Nowadays, this is referred to as the “second order” formalism. Soon after, Deser and Zumino
proved supersymmetry by using an analogue of the Palatini formalism, treating the spin con-
nection as an independent field. This “first order” formalism simplifies the computation but
requires to find the correct supersymmetry transformation law for the independent spin connec-
tion. The method outlined in these lectures is the most common used these days and goes under
the name of the “1.5th order formalism”. It combines features of both of the older approaches.
Morally, we stay second order in the sense that only tetrad and gravitino are independent fields
in the Lagrangian. From the first order formalism we borrow however the observation that the
equation obtained by formal variation of the Lagrangian δL/δω̂ vanishes identically for ω = ω̂.
As we have seen, this greatly simplifies the computation of the higher order fermion terms.
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3 Extended supergravity in D = 4 dimensions

3.1 Matter couplings in N = 1 supergravity

In the last chapter, we have discussed how to construct minimal N = 1 supergravity in D = 4
dimensions, i.e. how to construct the supersymmetric couplings for the N = 1 supergravity
multiplet (gµν , ψαµ). The aim of this section is to sketch how we can implement further matter in
N = 1 supergravity (for details see [8, 9]). Besides the supergravity multiplet, we may consider
chiral multiplets (φi, χi), consisting of two spin-1/2 fermions χi and a complex spin-0 scalar φi

for each i, and vector multiplets (χM , AMµ ) containing one spin-1 gauge field AMµ and two spin-
1/2 fermions χM for each M . Both are representations of the N = 1 supersymmetry algebra
and contain four degrees of freedom.
In the following we just discuss the couplings of the bosonic sector, i.e. the interactions of the
metric gµν , the scalar fields φi and the (abelian) gauge fields AMµ . Restricting the dynamics
to two-derivative terms, these couplings are rather constrained by diffeomorphism and gauge
invariance which allows for the following terms:

• the gravitational sector, described by the Einstein-Hilbert term

LEH = −1
4
|e|R , (48)

which was extensively discussed in the last chapter.

• the scalar sector

Lscalar = −1
2
|e| gµν ∂µφj∂νφkGjk(φi)− |e|V(φi) , (49)

where Gjk(φi) is the metric on the scalar target space and V(φi) is a scalar potential.

• the vector sector

Lvector = −1
4
|e| gµρgνσ FMµνFNρσ IMN (φi)− 1

4
εµνρσFMµνF

N
ρσ RMN (φi) , (50)

described by a standard Maxwell term and a topological term (which does not depend on
the metric) in terms of the abelian field strength FMµν ≡ ∂µA

M
ν − ∂νAMµ . The matrices

IMN (φi) and RMN (φi) may depend on the scalar fields. If RMN is constant, the second
term is a total derivative and can be considered as a generalisation of the usual instanton
term.

The “data” that need to be specified in order to fix the bosonic Lagrangian thus are the scalar
dependent matrices Gjk(φi), IMN (φi), and RMN (φi), and the potential V(φi). The fermionic
couplings of the Lagrangian are then entirely determined by supersymmetry, without any free-
dom left. In turn, the bosonic data cannot be chosen arbitrarily, but are constrained by su-
persymmetry, i.e. by demanding that the bosonic Lagrangian LEH + Lscalar + Lvector can be
completed by fermionic couplings to a Lagrangian invariant under local supersymmetry. With-
out going into any details, we just state that this requires the scalar target space to be a Kähler
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λ −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

N = 2 1 2 1 sugra
1 2 1 vector

1 2 1 hyper

N = 4 1 4 6 4 1 sugra
1 4 6 4 1 vector

N = 8 1 8 28 56 70 56 28 8 1 sugra

Table 1: The various multiplets for N = 2, 4, 8 supersymmetry. λ denotes the helicity of the
states, i.e. their charge under the SO(2) little group in D = 4 dimensions.

manifold, and the combination NMN ≡ RMN + i IMN to be a holomorphic function of the
complex scalar fields φi. We refer to [8, 9] for details. There are more complicated versions of
the theory, in which the gauge group is non-abelian and part of the scalar fields may be charged
under the gauge group, this can be accommodated by introducing proper covariant derivatives
in (49) and replacing (50) by the corresponding Yang-Mills terms [10]. These theories, in which
the scalar potential is generically non-vanishing are referred to as gauged supergravities.
Within extended supergravity, which will be briefly discussed in the next section, the generic
structure of the Lagrangian remains the same. However, the conditions on Gjk(φi), IMN (φi),
and RMN (φi) are much more restrictive.

3.2 Extended supergravity in D = 4 dimensions

In the last section we have discussed the couplings of chiral and vector multiplets to minimal
N = 1 supergravity. In principle, there is another N = 1 multiplet that one may consider,
the so-called gravitino multiplet which consists of a spin-3

2 field ψµ and a spin-1 field Aµ. Its
coupling is slightly more subtle due to a simple reason: just as the two degrees of freedom of the
massless vector are described by a standard U(1) gauge theory, the additional massless gravitino
must be described by introducing yet another local supersymmetry. In other words, coupling
the gravitino multiplet to the N = 1 supergravity multiplet gives rise to a theory, which has
two local supersymmetries and is thus referred to as N = 2 supergravity [11]. Accordingly,
multiplets now organize under the N = 2 supersymmetry algebra in D = 4 dimensions. The
N = 2 supergravity multiplet comprises the two N = 1 multiplets mentioned above and thus
includes one spin-2 field, two spin-3

2 fields and a spin-1 field Aµ. Analogously to the discussion
of the last section, this theory may be enlarged by further coupling matter in N = 2 multiplets.
Upon coupling more gravitino multiplets one arrives at theories with larger extended supersym-
metry, whose structures and field contents are more and more constrained. The particle content
of the most common multiplets with extended supersymmetry (N = 2, 4, 8) are summarized in
table 1
In addition there are multiplets for other values of N, for example involving N = 5 or N = 6
supercharges. We restrict the discussion to N ≤ 8 multiplets since representations of super-
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symmetry algebras with N > 8 supercharges contain states with helicities larger than two. No
consistent interacting theories involving a finite number of such fields are known.
As mentioned above, the constraints on supergravity theories with extended supersymmetry are
very severe. For example, the scalar target space of N = 4 supergravity has to be of the form

SO(6, n)
SO(6)× SO(n)

× SL(2)
SO(2)

, (51)

with some positive integer n. The dimension of this manifold is 6n + 2 and thus coincides
with the number of scalar fields expected for n vector multiplets and one supergravity multiplet
(including the CPT conjugated multiplet) with N = 4 supercharges.
The (ungauged) N = 8 supergravity in D = 4 dimensions is unique and its field content can
only consist of a single supergravity multiplet. The corresponding scalar target space is given
by the coset-space2

E7(7)

SU(8)
. (52)

Because of dim E7(7) = 133 and dim SU(8) = 63, the target space dimension is 70 in agreement
with the number of scalars in the theory. The construction of the N = 8 supergravity is not
easy with the toolkit provided up to now. However, it can rather straightforwardly be derived
from eleven-dimensional supergravity [12] compactified on a seven-dimensional torus T 7, as was
originally done by Cremmer and Julia [13]. In order to follow this route, it is important to
understand the construction of supergravity theories in higher dimensions and their dimensional
reduction which we shall discuss in the following.

4 Extended supergravity in higher Dimensions

The motivation to study supergravity theories in dimensions D > 4, and their dimensional
reduction is two-fold. On the one hand supergravity appears as the low energy effective action
for fundamental theories such as string theories, which generically live in higher dimensions.
In this top-down approach one has to consider the dimensional reduction of these theories in
order to derive from the fundamental theories a meaningful four-dimensional theories supposed
to describe our universe. On the other hand from a purely four-dimensional point of view,
the dimensional reduction of higher-dimensional supergravities can be considered as a powerful
technique in order to construct extended D = 4 supergravity theories. This is usually referred
to as a bottom-up approach.

4.1 Spinors in higher dimensions

In order to discuss extended supergravities we have to know the possible types of spinors in higher
space-time dimensions, see e.g. [14] for a reference. In this section we consider D-dimensional
Minkowski space-time with signature η = diag(+1,−1, . . . ,−1). The spinorial representation of

2By E7(7) we denote here a particular real form of the complex exceptional group E7, whose compact part is

given by SU(8).
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the Lorentz group can be obtained from a representation of the D-dimensional Clifford algebra
associated with the metric ηab. The generators of this algebra, called Gamma matrices Γa, satisfy
the anticommutation relations

{Γa,Γb} = 2 ηab1 . (53)

The spinorial representation of the D-dimensional Lorentz algebra SO(1, D − 1) can then be
constructed using antisymmetric products of gamma matrices; it is straightforward to verify
that the Clifford algebra (53) implies that the generators

Mab ≡
1
2

Γab, Γab = Γ[aΓb] , (54)

satisy the Lorentz algebra (17). Finite Lorentz transformations are given by exponentiation

R(Λ) = exp
(

1
2

ΛabMab

)
.

It can be shown that in even dimensions, the Clifford algebra has a unique (up to similarity trans-
formations) irreducible representation CD which has 2[D/2] complex dimensions. Its elements are
referred to as Dirac spinors. An explicit construction can be given recursively: denoting by γj
the Gamma-matrices in (D − 2)-dimensional space-time, the ensemble

i

(
0 γj

−γj 0

)
, i

(
0 1

1 0

)
, i

(
1 0
0 −1

)
, (55)

satisfies the algebra (53) in D-dimensional space-time.
An important object is the following combination of Gamma matrices

Γ̄ = i
D
2

+1Γ0Γ1 · · ·ΓD−1 , (56)

which generalizes the γ5 in D = 4 dimensions. The Clifford algebra implies that it satisfies
relations

{ Γ̄,Γa} = 0 , Γ̄2 = − 1 . (57)

This has two important consequences:

• The ensemble (Γ̄,Γa) of matrices defines a representation of the Clifford algebra in D + 1
dimensions. This shows that in also odd dimensions, the Clifford algebra (53) has an irre-
ducible representation CD+1 ≡ CD of 2[D/2] complex dimensions. In fact, in odd dimensions
there are two inequivalent representations CD+1, C′D+1 of the Clifford algebra, related by
Γ̄ → −Γ̄, Γa → −Γa, which can not be achieved by a similarity transformation. Via (54)
this defines a (unique and irreducible) 2[D/2]-dimensional representation of the Lorentz
group in odd dimensions.

• In even dimensions, the operator Γ̄ commutes with all generators of the Lorentz algebra:
[Γ̄,Mab] = 0. This implies that as a representation of the Lorentz algebra, the represen-
tation CD is reducible and may be decomposed into its irreducible parts by virtue of the
projectors

P± ≡ 1
2

(
1± i Γ̄

)
. (58)
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The corresponding 2[D/2]−1-dimensional chiral spinors are called Weyl spinors.

Let us now consider the reality properties of the spinors. It follows from (53) that also the
complex conjugated Gamma matrices Γ?a fulfill the same Clifford Algebra

{Γ?a,Γ?b} = 2ηab1 .

Because of the uniqueness of the representations of the Clifford algebra discussed above, this
implies that Γ?a has to be related to Γa (up to a sign) by a similarity transformation

±Γ?a = B± ΓaB−1
± .

This suggests to impose on the spinors on of the following reality conditions

ψ? = B−ψ; and ψ? = B+ψ ,

which are referred to as Majorana and pseudo-Majorana, respectively. Obviously, these condi-
tions only make sense provided that

B±B?± = 1 ,

which only holds in certain space-time dimensions. A closer analysis shows that (pseudo) Ma-
jorana spinors exits in dimensions D ≡ 0, 1, 2, 3, 4 mod 8. They possess half of the degrees of
freedom of a Dirac spinor.
In even dimensions, we may further ask if these reality conditions are compatible with the chiral
split (58) into Weyl spinors. It turns out that this is only the case in dimensions D ≡ 2 mod 8.
All possible types of spinors in D ≤ 11 dimensional Minkowski space-time are given in table 2.
Based on these structures, supergravity theories can be constructed in dimensions D ≤ 11. The
highest-dimensional supergravity theory is the unique eleven-dimensional theory, constructed
1978 by Cremmer, Julia and Scherk [12], which we shall discuss in some more detail now.

4.2 Eleven-dimensional supergravity

The highest-dimensional supergravity theory lives in eleven space-time dimensions and was
constructed by Cremmer, Julia and Scherk [12]. Its field content is given by the lowest massless
representation of the supersymmetry algebra (2). For massless states which fulfill PµPµ = 0 we
can set without loss of generality P0 = P10 and all other components to zero. The supersymmetry
algebra then turns into

{Qα, Q†β} = 2Pµ
(
ΓµΓ0

)
αβ

= 2P0

(
1 + Γ10Γ0

)
αβ
, (59)

where the Qα are the 32 independent real supercharges in D = 11 dimensional Minkowski space-
time. As the r.h.s. of (59) describes a projector of half-maximal rank in spinor space, it follows
that only 16 out of the 32 supercharges act non-trivially on massless states and satisfy the Clifford
algebra (53). From the discussion of the previous section, we then know that there is a 28 = 256-
dimensional irreducible representation C16 of this algebra which then gives the field content of
the eleven-dimensional theory. Under SO(16), this representation decomposes into 128s + 128c
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D W M pM MW dimension (real)

2 × × × × 1
3 × 2
4 × × 4
5 8
6 × 8
7 16
8 × × 16
9 × 16

10 × × × × 16
11 × 32

Table 2: Possible types of spinors in D-dimensional Minkowski space-time. Weyl, Majorana,
pseudo-Majorana and Majorana-Weyl are denoted by W, M, pM and MW respectively.

chiral spinors (58). It is important to stress that in contrast to the discussion of the last section,
the 16 here has no meaning as a number of space-time dimensions, but just denotes the number
of supercharges; we are just exploiting the fact, that the same abstract algebra (53) appears in a
rather different context again. In order to find the space-time interpretation of the 256 physical
states, we note that the 16 supercharges form the physical degrees of freedom of a space-time
spinor in eleven dimensions, i.e. they build an irreducible 16-dimensional representation of the
little group SO(9) under which massless states are organized in eleven dimensions.
We thus consider the embedding SO(9) ⊂ SO(16) of the little group into SO(16), under which
the relevant representations decompose as [17]

16 → 16 ,

128s → 44 ⊕ 84 ,

128c → 128 . (60)

What is the meaning of these SO(9) representations? Recall, that a massless vector in eleven
dimensions has 9 degrees of freedom and transforms in the fundamental representation of SO(9).
The 44 corresponds to the symmetric traceless product of two vectors: these are the degrees
of freedom of a massless spin-2 field, the graviton. The 84 on the other hand describes the
three-fold completely antisymmetric tensor product of vectors:

(
9
3

)
= 84 . The bosonic field

content of eleven-dimensional supergravity thus is given by the metric gµν and a totally anti-
symmetric three-form field Aµνρ. The fermionic field content of the theory is the irreducible
128 of SO(9) which is the Gamma-traceless vector-spinor 9 ∗ 16 − 16 = 128. Accordingly, this
describes the degrees of freedom of a massless spin-3/2 field, the gravitino. The full eleven-
dimensional supergravity multiplet thus is given by (gµν , ψµ, Aµνρ). A similar argument shows
why supergravity theories do not exist beyond eleven dimensions: repeating the same analysis
for say a twelve-dimensional space-time yields a minimal field content that includes fields with
spin larger than two. No consistent interacting theory for such fields can be constructed.
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The action of eleven-dimensional supergravity is given by the eleven-dimensional analogue of (46)

L0[e, ψ] = −1
4
|e|R− 1

4
|e|ψ̄µΓµνρDνψρ , (61)

supplemented by a kinetic, a topological term and a fermionic interaction term for the three-form
field Aµνρ

LA[A, e, ψ] = − 1
96
|e|FµνρσFµνρσ −

√
2

6912
εκλµνρστυξζω Fκλµν Fρστυ Aξζω

−
√

2
384
|e|
(
ψ̄ρΓκλµνρσψσ + 12 ψ̄κΓλµψν

)
Fκλµν , (62)

with the abelian field strength Fµνρσ = 4∂[µAνρσ], and quartic fermion terms. Most other
supergravities can be obtained by Kaluza-Klein reduction from this theory.

4.3 Kaluza-Klein supergravity

Kaluza’s and Klein’s observation that electromagnetism can be considered as part of a five-
dimensional gravity theory, where the fifth dimension is curled up, is one of most striking ideas
of modern physics. Later investigations generalized this idea to a space-time with more than
five dimensions and to non-abelian gauge theories.3 Kaluza-Klein theories do not only form
an interesting approach to unify gravity and (non-)abelian gauge theories. For example, they
are also useful to generate consistent supergravity theories by dimensional reduction of D = 11
dimensional supergravity (for a review see [3]).

Reduction of pure gravity

Dimensional reduction of gravity can be performed most conveniently by using the vielbein
formalism, see e.g. [16]. We will apply this procedure to reduce pure gravity in an (D + n)-
dimensional space-time on an n-dimensional torus Tn down to D dimensions. In the following,
capital Latin letters will be used for the (D+n)-dimensional space-time whereas the indices of the
D-dimensional space-time and of the n circles will be denoted by small Greek and Latin letters
respectively. For curved (flat) indices letters of the middle (beginning) of the corresponding
alphabet will be taken. The notation is summarized in table 3. We will denote the coordinates
of the D-dimensional space-time and of the n-torus by xµ and ym, respectively.
In ordinary dimensional reduction, all fields are taken to be independent of the coordinates ym

of the n-torus. More precisely, this corresponds to a normal mode expansion of the fields

Φ(x, y) =
∑

k1,...,kn∈Z
ϕk1k2...kn(x) e2πik1y1/R1 e2πik2y2/R2 . . . e2πiknyn/Rn , (63)

on an n-torus with radii R1, . . .Rn, and the dropping of all fields ϕk1k2...kn(x) for (k1k2 . . . kn) 6=
(00 . . . 0), which become infinitely heavy if the size of the n-torus is shrunk to zero.4

3In fact, O. Klein himself came close to discovering non-abelian Yang-Mills theories by studying higher-

dimensional gravity, see [15] for a historical account.
4In general, one has to be careful when truncating the action by setting some fields to specific values (say zero).
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curved indices (manifold) flat indices (tangent space)

(D + n)-dim. space-time M,N = 0, . . . , D + n− 1 A,B = 0, . . . , D + n− 1

D dim. space-time µ, ν = 0, . . . , D − 1 α, β = 0, . . . , D − 1

n circles (Tn) m = 1, . . . , n a, b = 1, . . . , n

Table 3: Use of indices in the reduction of (D + n)-dimensional gravity on an n-torus Tn.

For pure gravity, the fields are the various components of the vielbein E A
M of the (D + n)-

dimensional space-time, which will depend only on the coordinates xµ of the D-dimensional
space-time. The local Lorentz invariance in (D + n) dimensions can be used to bring the
vielbein into a triangular form

E A
M =

(
E α
µ E a

µ

0 E a
m

)
, (64)

which breaks the SO(1, D+n− 1) down to SO(1, D− 1)×SO(n). It turns out to be convenient
to further parametrize (64) as

E A
M =

(
ρκ e α

µ ρ1/n V a
m B m

µ

0 ρ1/n V a
m

)
, (65)

with a constant κ and a matrix V a
m ∈ SL(n) of unit determinant, such that ρ = detE a

m .
Plugging (65) into the (D + n)-dimensional Einstein-Hilbert action, one finds

L(D+n)
EH −→ −1

4
|e| ρ1+(D−2)κR(D) + . . . , (66)

where R(D) is the Ricci scalar computed from the D-dimensional vielbein eµ
α. This shows

that upon choosing κ = − 1
D−2 , the Einstein-Hilbert term of the the reduced theory takes the

standard form.
What about the remaining terms in (66)..? In principle, they could be derived straightforwardly
by plugging (65) into the (D + n)-dimensional Einstein-Hilbert action and working out the
separate terms. Rather than going through that rather lengthy exercise, we will deduce the form
of the result by mere symmetry arguments. From a D-dimensional point of view, the components
of the (D+n)-dimensional vielbein correspond to a vielbein e α

µ (graviton), to n vector fields B n
µ

and to a set of scalar fields ρ, V a
m . In addition, the D-dimensional theory inherits a number of

symmetries from its higher-dimensional ancestor. Namely, with the vielbein (65) transforming
under infinitesimal diffeomorphisms as (cf. (15))

δEM
A = ξN∂NEM

A + EN
A ∂M ξN , (67)

Some constraints, which arise by truncating the equations of motion of the full theory, might not be reproduced

by the truncated action. As a result one might find a Lagrangian which admits solutions that can not be lifted

to solutions of the original theory. Truncation to the zero-modes of (63) on the other hand is always consistent

on the level of the action.
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it is straightforward to verify that x-dependent diffeomorphisms of the type ξµ(x) generate D-
dimensional diffeomorphisms on the fields eµα, Bµn, ρ, and Vm

a. On the other hand, under
x-dependent diffeomorphisms of the type ξm(x), the fields Bµn transform as

δB m
µ = ∂µζ

m(x) , (68)

whereas the graviton and the scalar fields are left inert. This shows that the resulting theory is
an abelian U(1)n gauge theory with gauge fields B m

µ and none of the matter charged under the
gauge group. Accordingly, the vector fields will only couple with a standard Maxwell term.
Furthermore, diffeomorphisms of the type ξm(y) = gmn y

n, linear in the compactified coordi-
nates ym, are also compatible with the truncation (64) and induce a global symmetry SL(n)
acting on the matter fields as

δV a
m = gnmV

a
n , δB m

µ = − gmnB n
µ , (69)

where we have taken the matrix gmn to be traceless gmm ≡ 0. The trace part of the transfor-
mation is somewhat more subtle, as due to the parametrization (65) it also acts non-trivially on
the D-dimensional vielbein and has to be accompanied by a Weyl rescaling in order to yield a
proper off-shell symmetry of the theory

δρ = n (D − 2) ρ , δB m
µ = − (D + n− 2)B m

µ . (70)

Finally, local Lorentz invariance is also a symmetry of the theory. As mentioned above, the upper
triangular form (64) of the vielbein breaks SO(1, D + n − 1) down to SO(1, D − 1) × SO(n),
of which the first factor acts as D-dimensional Lorentz transformation on eµ

α, and the second
factor acts as an additional local symmetry on V a

m

δV a
m = V b

m Λ a
b , Λ ∈ so(n) . (71)

This shows that not all scalar fields are physical. For example we could fix the symmetry (71)
by putting V a

m into (upper) triangular form. Consequently the number of physical scalars is
given by 1

2n(n+ 1) rather than n2.

To summarize, the reduction of (D + n)-dimensional gravity on an n-torus gives rise to a D-
dimensional theory of gravity coupled to n abelian U(1) vector fields and 1

2n(n+ 1) scalars. In
addition, the theory possesses a global GL(n) symmetry (69), (70). The vector field coupling in
(66) is completely determined by all these symmetries up to a global factor and given by

Lvector = − 1
16
|e| ρ2/n+2/(D−2) Vm

aVn
b δab F

m
µν F

µν n , (72)

with the abelian field strength Fmµν = ∂µB
m
ν − ∂νB

m
µ . Indeed this is confirmed by explicit

computation.
The coupling of the scalar fields is slightly more complicated. Recall from the above, that the
scalar fields parametrize a matrix Vma ∈ SL(n) transforming under global SL(n) and local SO(n)
as

δV = gV + V Λ(x) g ∈ SL(n)global , Λ ∈ SO(n)local . (73)

This turns out to be a generic structure in extended supergravity theories: the scalar fields are
described by a non-compact coset-space σ-model G/K = SL(n)/SO(n).
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Coset-space σ-model G/K

The scalar fields, which appear in extended supergravity theories, are typically described by
G/K non-linear coset-space σ-models, where G is a noncompact Lie group and K is its maximal
compact subgroup. Explicitly, the scalar fields are most conveniently represented by a G-valued
field V (x) subject to the action

V (x) → GV (x)K(x) , G ∈ G , K(x) ∈ K , (74)

under global G and local K transformations. Because of the local K invariance, we can get rid
of dim K degrees of freedom. The number of degrees of freedom in the scalar sector is therefore
given by

dim(G/K) = dim G− dim K .

The action is constructed in terms of the G-invariant currents

Jµ = V (x)−1∂µV (x) ∈ g , (75)

where g is the Lie algebra of the Lie group G. We decompose g into the Lie algebra of K,
denoted by k, and its orthogonal complement p (orthogonal w.r.t. the Cartan-Killing form)

g = k⊕ p .

Accordingly, the current Jµ = V (x)−1∂µV (x) can be decomposed into

V (x)−1∂µV (x) ≡ Qµ(x) + Pµ(x) ,

with Qµ(x) ∈ k and Pµ(x) ∈ p. While Qµ and Pµ are invariant under rigid G transformations,
their transformation under local K transformations is given by

Qµ → K(x)−1Qµ(x)K(x) +K(x)−1∂µK(x) , (76)

Pµ → K(x)−1Pµ(x)K(x). (77)

Consequently, the simplest action that is invariant under Gglobal ×Klocal is given by

Lscalar = −1
4
|e|TrPµ Pµ . (78)

This is the coset-space σ-model action and appears as a very generic structure in supergravity.
Comparing (73) to (74) one deduces that dimensional reduction of pure gravity yields a scalar
sector described by a G/K = SL(n)/SO(n) coset-space σ-model (78). More precisely, the dila-
ton ρ completes the target space to the coset-space σ-model G/K = GL(n)/SO(n). The final
result for the full D-dimensional action (66) is

L = −1
4
|e|R(D) −

1
16
|e| ρ2/n+2/(D−2) Vm

aVn
b δab F

m
µν F

µν n

− 1
4
|e|TrPµPµ −

D + n− 2
4n (D − 2)

|e| ρ−2 ∂µρ ∂
µρ . (79)
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Reduction of other fields

So far we only have considered the dimensional reduction of pure gravity. But as we have
seen above, eleven-dimensional supergravity also contains an antisymmetric 3-form field AKMN .

Dimensional reduction of this field is straightforward: in D = 11 − n dimensions it gives rise
to one 3-form field Aµνρ, to n 2-form fields Aµνm,

(
n
2

)
vectors Aµmn, and to

(
n
3

)
scalars Amnp.

By an analysis similar to the above, one can derive the resulting D-dimensional action which
extends (79). In particular, the full scalar sector is in general given by a larger coset space
G/K ⊃ GL(n)/SO(n). A detailed discussion of the full reduction and the appearance of these
larger coset spaces in maximal supergravity can e.g. be found in [18].

4.4 N = 8 supergravity in D = 4 dimensions

Let us finally sketch (some elements of) the construction of the maximally supersymmetric
supergravity theory in D = 4 dimensions. Its field content is the N = 8 supergravity multiplet
given in table 1. Historically, this theory was constructed by dimensional reduction of the
eleven-dimensional supergravity on a serven-torus T 7 [13].
As discussed in section 4.3, the reduction of pure gravity from eleven dimensions down to D = 4
dimensions yields one graviton gµν , seven abelian vector fields B n

µ , n = 1, . . . , 7, and 1 + 27
scalar fields, parametrizing the coset space GL(7)/SO(7). The dimensional reduction of the
antisymmetric 3-form to D = 4 dimensions give rise to one 3-form field, seven 2-form fields,(

7
2

)
= 21 vectors and additional

(
7
3

)
= 35 scalar fields. A priori, the field content thus looks quite

different from the supergravity multiplet of table 1. This is where the last ingredient enters the
game: in D dimensions, massless antisymmetric p-form fields have a dual description as massless
(D − p− 2)-forms

massless p− form field onshell←→ massless (D − p− 2)-form field . (80)

This is a consequence of the fact that both are described by the same irreducible representation(
D−2
p

)
=
(
D−2
D−p−2

)
under the little group SO(1, D − 1) and can be seen explicitly on the level of

the linearized equations of motion: Let A be the p-form with abelian field strength F = dA.
The linearized equations of motion and the Bianchi-identity are given by

d ? F = 0 , dF = 0 , (81)

respectively. In terms of the dual field strength, G ≡ ?F these two equations formally exchange
their role. The new Bianchi-identity dG = 0 states that G can be written locally as G = dB,
where B is the dual (D − p − 2) form. The dynamics of A can thus equivalently be described
in terms of the field B. It turns out that this duality extends to the full nonlinear equations of
motion. Applying this duality to D = 4 dimensions, we deduce that the the seven two-forms
can be dualized into zero-forms (scalar fields), while the three-form is non-propagating and can
be set to zero. Together, we thus obtain the field content

1 graviton,
7+21 = 28 vectors,

1+27+35+7 = 70 scalars.
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which reproduces the N = 8 supergravity multiplet. The full action can be found by performing
the dimensional reduction of the eleven-dimensional action (61), (62), we refer to [13, 18] for
details. In particular, the full scalar target space is described by the 70-dimensional coset space

G/K =
E7(7)

SU(8)
⊃ GL7

SO(7)
. (82)

In fact, the story continues: having set the four-dimensional three-form field to zero is a con-
sistent truncation but strictly speaking not necessary. Its field equations only imply that the
field strength is constant and may be set to an arbitrary value, thereby giving a one-parameter
deformation of the maximally supersymmetric theory [19]. A closer analysis shows that this
deformation parameter in fact is not a singlet under the global symmetry group E7(7) but only
one component of an irreducible 912-dimensional representation [20]. Switching on other pa-
rameters within this representation leads to different maximally supersymmetric theories which
generically have non-abelian gauge groups and matter charged under the gauge group; these
deformations are the so-called gauged supergravities and may correspond to more complicated
compactifications in the presence of background fluxes and/or geometric fluxes (see [21] for an
introduction). In particular, these theories include the compactification of eleven-dimensional
supergravity on a seven-sphere S7 which gives rise to a four-dimensional theory with compact
non-abelian gauge group SO(8) [22].

Appendix

A Variation of the Palatini action

Consider the Palatini action (23),

LP[e, ω] = −1
4 |e| e

µ
a e

ν
b R

ab
µν [ω] , (83)

where |e| on the right-hand side denotes the determinant of the tetrad. It can be recast in the
form

LP [e, ω] = 1
16ε

µνρσεabcde
c
ρ e

d
σ R

ab
µν [ω] (84)

To see this, first note that
εabcdεefcd = −4δ[a

[e δ
b]
f ] , (85)

where one can determine the numerical factor by tracing over the index pairs (a, e) and (b, f),
on both sides. 5 The tensor density eµνρσ is obtained from eabcd by

εµνρσ = εabcde µ
a e

ν
b e

ρ
c e

σ
d |e| , (86)

where the determinant shows up since we are dealing with a tensor density rather than with a
tensor (as a consequence εµνρσ is just a number). Plugging (86) into (84) and making use of

5Our conventions are ε0123 = −1 = −ε0123, η = diag(+1,−1,−1,−1).
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(85) readily yields (83).
We shall now vary the Palatini action in the form (84) with respect to the spin connection.
Since ω only shows up in the expression for the Riemann tensor, we are interested in δR ab

µν ,
for which we have

δR ab
µν = 2D[µδω

ab
ν] .

The covariant derivative must actually arise in this expression, since according to (21), δR ab
µν

starts with the non-covariant term 2∂[µδω
ab

ν] , followed by a term of the form “ ω · δω ”, which
must complete the non-covariant first part in order to yield a covariant quantity in total. We
therefore find

δLP = 1
16ε

µνρσεabcde
c
ρ e

d
σ 2Dµδω

ab
ν ,

where we dropped the antisymmetric bracket since εµνρσ already takes care of the antisymmetri-
sation. Integration by parts leads us to

δLP = −1
4ε
µνρσεabcde

c
ρ

(
Dµe

d
σ

)
δω ab

ν ,

where we made use of the antisymmetrisation by the ε tensor densities again. Using the identity
εµνρσεabcdeρ

c = −6|e|e[a
µeb

νed]
σ (which follows in complete analogy to (86)), we find

δLP = −3
2 |e|

(
Dµe

d
ν

)
e[a

µeb
νed]

σ δω ab
σ .

On the other hand, variation of the Palatini action w.r.t. the tetrad gives rise to

δLP = −1
4R

ab
µν [ω] δ(|e| e µ

a e
ν
b )

= −1
4 |e|R

ab
µν [ω] (2e µ

a δe ν
b − e µ

a e
ν
b (e c

ρ δe ρ
c ))

= −1
2 |e|R

b
ν [ω] (δνµδ

a
b − 1

2e
ν
b e

a
µ ) δe µ

a = − 1
2 |e| (R

a
µ [ω] − 1

2e
a
µ R) δe µ

a , (87)

where we have used that δ(detA) = (detA) Tr[A−1δA] for any matrix A. Together, we arrive
at (24) for the variation of the Palatini action.
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