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PREFACE.

Ov)( ws OeXo/xev, dAA' a>s SvvdfiiOa.

The present volume is intended as a brief introduction

to mechanics for junior and senior students in colleges and

universities. It is based to a large extent on Ziwet's Theo-

retical Mechanics; but the applications to engineering are

omitted, and the analytical treatment has been broadened.

No knowledge of differential equations is presupposed, the

treatment of the occurring equations being fully explained.

It is believed that the book can readily be covered in a three-

hour course extending throughout a year. For a shorter

course, requiring half this time, the following selection may
be made: Chapters 1, 2, 3 (omitting Arts. 81-95), 4 (omitting

Arts. 114-150), 5 to 12 (omitting Arts. 244-268), 13 and 14

(omitting Arts. 340-355).

While more prominence has been given to the analytical

side of the subject, the more intuitive geometrical ideas are

generally made to precede the analysis. In doing this the

idea of the vector is freely used; but it has seemed best to

avoid the special methods and notations of vector analysis.

This has been done with re.uctance; the time has certainly

come for introducing these methods in the very elements of

mechanics. But this must be left to another opportunity.

That many important subjects had to be omitted is another

restriction arising from the nature and purpose of thi.s volume.

While the selection of topics has been considered most care-

fully it can hardly be expected to meet everybody's approval.

The aim has been not only to select material useful to the

beginning student of mathematics and physical science, but
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at the same time to give the reader a general view of the

science of mechanics as a whole, a broad enough foundation

for further study.

References to other works have been used sparingly. It

seemed hardly necessary to refer to such standard works as

those of Thomson and Tait, Routh, Schell, Appell, Kirch-

hoff, etc., which are found in any good college library. But

it did seem desirable to refer in a few cases to works where

fuller information can be found on subjects somewhat out

of the range of the ordinary text-book on mechanics. The

fourth volume of the Encyklopddie der mathematischen

Wissenschaften, especially the articles by P. Stackel, should

be consulted by the more advanced student.

Alexander Ziwet,

Peter Field.

University of Michigan,

February, 1912.



CONTENTS.

INTRODUCTION.
Page

1

PART I: KINEMATICS.

CHAPTER I: Rectilinear motion of a point.

1. Velocity and acceleration in rectilinear mo-

tion 3

2. Examples of rectilinear motion 10

CHAPTER II: Translation and rotation 21

CHAPTER III: Curvilinear motion of a point.

1. Relative velocity; composition and resolu-

tion of velocities 26

2. Velocity in curvilinear motion 30

3. Acceleration in curvilinear motion 35

4. Examples of curvilinear motion 42

(a) Constant acceleration 42

(5) The pendulum . 47

(c) Simple harmonic motion 54

(d) Compound harmonic motion 59

(e) "Wave motion 63

(/) Curvilinear compound harmonic mo-

tion 67

(g) Central motion 72

CHAPTER IV: Velocities in the rigid body.

1. Geometrical discussion 83

2. Analytical discussion 91

3. Plane motion 98

CHAPTER V: Accelerations in the rigid body 107

CHAPTER VI: Relative motion 117

vii



Vlll CONTENTS

PART II: STATICS.
Page

CHAPTER VII: Mass; density 120

CHAPTER VIII: Moments and centers of mass 124

CHAPTER IX: Momentum; force; energy 132

CHAPTER X: Statics of the particle 142

CHAPTER XI: Statics of the rigid body.

1. Concurrent forces 149

2. Parallel forces 151

3. Theory of couples 158

4. Complanar forces 165

5. The general system of forces 170

6. Constraints; friction 178

CHAPTER XII: Theory of attractive forces.

1. Attraction 187

2. The potential 196

3. Virtual work 201

PART III: KINETICS.

CHAPTER XIII: Motion of a free particle.

1. The equations of motion 207

2. Examples of rectilinear motion 217

3. Examples of curvilinear motion 229

CHAPTER XIV: Constrained motion of a particle.

1. Introduction 248

2. Motion on a fixed curve 250

3. Motion on a fixed surface 258

4. The method of indeterminate multipUers 259

5. Lagrange's equations of motion 263

CHAPTER XV : The equations of motion of a free rigid body 268

CHAPTER XVI: Moments of inertia and principal axes.

1. Introduction 280

2. ElUpsoids of inertia 287

3. Distribution of principal axes in space . . 297



CONTENTS IX

Page

CHAPTER XVII: Rigid body with a fixed axis 304

CHAPTER XVIII: Rigid body with a fixed point.

1. The general equations of motion 313

2. Motion without forces 320

3. Heavy symmetric top 327

CHAPTER XI X: Relative motion 335

CHAPTER XX: Motion of a system of particles.

1. Free system 346

2. Constrained system 348

3. Generalized co-ordinates; Lagrange's

equations of motion ; Hamilton's principle. 352

ANSWERS 361

INDEX 375





INTRODUCTION.

1. The science of mechanics can be regarded as an exten-

sion of geometry obtained b}' adjoining tlie ideas of time

and mass to tlie idea of space whicli is fundamental in

geometry. We are thus led to the study of motion and of

forces as the subject-matter of mechanics.

2. By adjoining the idea of time alone we obtain a pre-

liminary branch of mechanics, known as kinematics. It

develops the ideas of velocity and acceleration of geometrical

configurations without using the notion of mass.

3. The introduction of mass leads to numerous new ideas

such as momentum, force, energy. Owing to the importance

of forces in physics the mechanics of bodies possessing mass

is often called dynamics. It may be divided into statics

and kinetics.

Statics is the science of equilibrium; it considers the con-

ditions under which the action of forces produces no change

of motion. Thus, if force be regarded as a fundamental

concept, statics is independent of the idea of time.

Kinetics treats in the most general way the changes of

motion produced by forces.





PART I: KINEMATICS.

CHAPTER I.

RECTILINEAR MOTION OF A POINT.

1. Velocity and acceleration in rectilinear motion.

4. Consider the motion of a point P along a fixed straight

line (Fig. 1). If we take on this line an origin and a

definite positive sense, say toward the right from 0, the

"position of the point P on the line at any' time t can be as-

signed by its QO-ordinaie, or abscissa, OP = s, which may be

P

Fig. 1.

any real number. As P moves along the line its abscissa

s varies with the time; to every value of t (at least within a

certain interval of time) corresponds a certain value of s; in

other words, s is a function of /. We assume that s is a

continuous function of t; this implies that while P may
move arbitrarily, back and forth, along the line, it does not

make any jumps, suddenl}^ disappearing at one point and

reappearing at another; the path of P is connected.

5. The time-rate of change of the abscissa of P, i. e. the

^derivative of s, is called the velocity of the point P; it is

usually denoted by the letter v:

ds

'^df
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As the idea of velocity is fundamental in mechanics it may be well

to explain somewhat more in detail the genesis of this idea, the more so

as the process is typical and recurs frequently.

Let the point P move along the line, or any segment of the line,

always in the same sense and so that equal distances are always de-

scribed in e'qual times. Such a motion is called uniform, and the

quotient sjt of any distance OP = s described, divided by the corre-

sponding time t, is called the velocity of the uniform motion:

Suppose next that the point P does not move uniformly. The same

quotient, v = sjt, of any distance described, divided by the time used

in describing it, is now called the average, or mean, velocity for that

distance or time. This mean velocitj^ varies in general according to the

distance or time selected; it does not characterize the motion as a whole.

We can, however, attach a definite meaning to the expression velocity

at a given point or instant if we define it as follows.

Hf. s ->jAg

P'

Fig. 2.

Let s = OP (Fig. 2) be the abscissa of the moving point at the time

t, s + As = OP' its abscissa at the time t + A/, so that the distance

As is described by P in the time At; and let At be taken so small that

P moves always in the same sense as it describes the distance As. Then

As/At is the mean velocity for the distance As or time At. The Umit

approached by this quotient as At approaches zero.

,. As ds
V = lira- - = —

A/=o At dt

is called the velocity at the point P, or at the time i.

It is assumed that such a limit exists, i. e., that s is a differentiable

function of t.

The definition of velocity as the time-rate of change of the co-ordinate

s applies even in the case of uniform motion; for in this case we have as

stated above
s = vt,
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where ii is a constant, i. e. independent of t; hence

(Is

dt
= "

In non-uniform, or variable, motion the velocity v varies from point

to point and from time to time; it can be regarded as a function of the

distance s or of the time t.

It should be observed that in this whole discussion of velocity it is

not essential that the path be rectilinear, this assumption being made
only for the sake of simplicity. The discussion applies without change

when the point P describes a curve; the co-ordinate s then means the

arc of the cm've measured along the curve from some origin on the

curve, a definite sense of progression along the curve being taken as

positive.

6. Velocity l)eing defined as the quotient of distance by

time in uniform motion, and as the Hmit of such a quotient

in any motion, the unit of velocity is the unit of length

divided by the unit of time. Thus we speak of a velocity

of so many centimeters per second (cm./sec), or feet per

minute (ft./min.), or miles per hour (M./h.), etc.

Denoting the units of time, length, and velocity by T, L,

V, this is expressed symbolically by writing

V = ^ = LT-^

and saying that the dimensions of velocitj^ (V) are 1 in

length (L) and — 1 in time (T).

The reader is supposed to be familiar with the C.G.S.

(centimeter-gram-second) and F.P.S. (foot-pound-second)

systems of measurement. It will suffice to mention that the

second is the -g-g-iFo P^^t of the mean solar day which is the

average, for one year, of the time between two successive

passages of the sun across the meridian; and that the foot

is i of a yard, the American yard being defined (by act of
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Congress, 1866) as |f |f of a meter. We have therefore the

exact relations

ft. 1200
1 cm. = 0.3937 m., = oTT^,cm. 39.37

which give approximately:

Im. = 3.2808 ft., 1 ft. = 30.48 cm., 1 in. = 2.54 cm.

7. Exercises.

(1) Compare the following velocities by reducing all to ft./sec: (a)

man walking 4 M./h.; (b) horse trotting a mile in 2 min. 10 sec; (c)

train running 40 M./h.; (d) ship making 15 knots, a knot being a sea-

mile (= 6080 ft.) per hour; (e) sound in dry air at 0° C. 331.3 m./sec;

(/) sun moving in space 25 km. /sec; {g) light 3 X 10^" cm./sec

(2) Two men starting (in opposite sense) from the same point walk

around a block forming a rectangle of sides a, b; H their constant

velocities are Vi, V2, when and where will they meet?

(3) The mean distance of the sun being 923^ million miles, find

the velocity of light if it takes light 16 min. 42 sec. to cross the earth's

orbit: (a) in miles per second, (fe) in kilometers per hour.

(4) Two trains, one 250, the other 420 ft. ^ong, pass each other on

parallel tracks in opposite sense, with equal velocities. A passenger

in the shorter train observes that it takes the longer train just 6 sec. to

pass him. What is the velocity?

(5) What is the distance from J^ to 5 if a man walking 5 M./h. can

cover it in 10 min. less than one walking 3 M./h.?

(6) What is the answer to the preceding problem if both men start

from A at the same time and, when the one has reached B, the other is

7K miles behind him?

(7) Two ships start from the same port, the second an hour later

than the first. The velocity of the first is 16 knots, that of the second

14 knots. How many miles are they apart 3 hours after the first ship

started, the angle between their paths being 60°?

8. The definition of velocity

ds

enables lis to find the velocity when the co-ordinate s is



10.1 RECTILINEAR MOTION OF A POINT 7

given as a function of t. Conversely, when v is given as a

function of Tor of s (or of both s and t), the integration of the

same equation gives a relation between s and t which deter-

mines the position of the moving point at any time.

Thus, if V is given as a function of t, we find by integrating

the relation ds = vdt:

— So =
I

vdt,

where So is the position of the moving point at the time to,

the so-called initial position.

If v is given as a function of s, we find by integrating the

relation dt = ds/v:

J.s'o V

9. Exercises.

(1) Find the velocity when: (o) s = at + h, (h) s = af -\-ht -\- c,

(c) s = aVT, {d)s = avoakt, (r) s = aerf, (/) s = laic* + e-'), ig) « =

ia(2<3 + 3/2 + 1), (/i) s = a{C- - 1)=, {i) s = af-ii - 1), (j) s = a{l^ -

2W — 1), (A-) s = o//(l —'P). Taking a as a positive constant, discuss

the motion by determining when s and v have maxima or minima. The

nature of the motion will be best understood by skettihing in each case

the curve that represents s as a function of i, and then imagining this

curve projected on the axis of s. Analytically, the sign of the velocity

determines the sense of the motion; i. e. when v is > 0, s increases;

when V < 0, s decreases; when v — and dv/dt 4= 0, « has an extreme

value and the sense of the motion changes.

(2) Find the distance s in terms of I when: (a) v = vo + gl. (h)

Sot

V = a(t- - 4), (c) V = a scd^t, {d) ?; = - ^ _ ,
{c) v = ac«' ' /3 ; with

s "= So for / = 0.

(3) Find t as a function of s and s as a function of I when: (a) v =

V2gs, with s = so for i = 0; {h) v = Va^ -^', with s = when / = 0;.

(c) V = T/a2~+ .s2, with s = for / = 0.

10. In reciilinenr motion, the time-rate of change of the

velocity is called the acceleration; dcMioting it by the l(>tter j,
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we have

_ dv _ dH
-^ ~ dt~ dt-'

We are led to the idea of acceleration by a process of reasoning

strictly analogous to that followed in defining velocity (Ai't. 5). Among
non-uniform motions, the most simple kind is that in which the velocity

always increases (or always decreases) by equal amounts in equal times;

it is called uniformly accelerated motion. In this -kind of motion, the

quotient obtained by dividing the increase (or decrease) of the velocity

in any time by this time is called the acceleration of the uniformly ac-

celerated motion.

If the motion is not uniformly accelerated the same quotient is called

the average, or mean, acceleration for that time. Thus, if the velocity

is V at the time t when the moving point has the position P, and reaches

the value v + Aji at the subsequent time < + A/, when the point is at

P', the mean acceleration in the time A; (or distance PP' = As)#is

AvjAt. The limit of this quotient, as At approaches zero, i. e.

,. Av dv
•^ At=oAt dt

'

is called the acceleration at the time t (or at the distance s).

It follows that in uniformly accelerated motion the acceleration is

constant; and conversely, when the acceleration is constant, the motion

is uniformly accelerated.

11. A rectilinear motion is called accelerated whether the

velocity be increasing or decreasing. But sometimes the

term acceleration is used in a more restricted sense, as opposed

to retardation. The motion is then called accelerated or

retarded according as the absolute value of the velocity is

increasing or diminishing. This gives the criterion

d(v^) > ^ . dv^SO, ^.<..J,SO.

Thus the motion is accelerated (in the narrower sense) or

retarded according as vdv/dt is > or < 0; if dv'dt = while
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dhjdP 4= 0, the motion changes from being accelerated to

being retarded, or vice versa.

Acceleration being defined, for rectilinear motion, as the

quotient of velocity by time or as the limit of such a quotient,

the unit of acceleration J is the unit of velocity divided by

the unit of time. With the notation of Art. 6, this is ex-

pressed symbolically by writing

J = ^ = ^ ^ Lr-

hence the dimensions of acceleration are 1 in length and — 2

in time. Thus we speak of an acceleration of so many

centimeters per second per second (cm. /sec. ^).

12. Exercises.

(1) A point moving with constant acceleration gains at the rate of

30 M./h. in every minute. Express its acceleration in ft./sec.^.

(2) At a place where the acceleration of gravity is ^ = 9.810 m./sec.^,

what is the value of g in ft./sec.-?

(3) A railroad train, 10 min. after starting, attains a velocity of

45 M./li.; what is its average acceleration during these 10 min.?

(4) How does the acceleration of gravity which is about 32.2 ft./sec.^

compare with that of the train in Ex. (3)?

(5) Find the acceleration for the motions in Art. 9, Ex. (1); apply

the rule of Art. 11 to determine where each motion is accelerated or

retarded.

(6) Discuss in the same way the acceleration of the motions in Art.

9, Ex. (2) and (3).

13. A rectilinear motion is fully characterized if its

acceleration is given as a function of t, s, v, provided that the

initial conditions are also given, viz. the position and velocity

of the moving point at any instant.

For we then have
d^s
-^2= j(t,s,v), (1)
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where v = ds/dt, while j(t, s, v) is a given function. The

solution of this differential equation, which is called the

equation of motion, with the initial conditions s = So,

V = I'o for t = to, gives s as a function of t.

The solution of such a differential equation may be diffi-

cult; nor can any general rule of procedure be given. We
here confine ourselves to very simple cases, especially those

where the acceleration j is either a constant or a function

of s alone, these cases being most important.

2. Examples of rectilinear motion.

14. Uniformly Accelerated Motion. As in this case the

acceleration j is constant (see Art. 10), the equation of motion

(1)

d-s . dv

can readily be integrated:

V =jt-^ C.

To determine the constant of integration C, we must know

the value of the velocity at some particular instant. Thus,

\i V = vq when t = 0, we find Vq = C; hence, substituting

this value for C,

V - Vo = jt. (2)

This equation gives the velocity at any time t. Substi-

tuting ds/dt for V and integrating, we find s = Vot-\- ^jt^ + C,

where the constant of integration, C, must again be deter-

mined from given " initial conditions." Thus, if we know

that s = So when ^ — 0, we find So — C; hence

s — So ^ Vol -\- \jt~. (3)

This equation gives the space or distance passed over in

terms of the time.
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Eliminating j between (2) and (3), we obtain the relation

s — So = Hvo + v)t,

which shows that in uniformly accelerated motion the space can

be found as if it were described uniformly with the mean

velocity ^(vo + v).

15. To obtain the velocity in terms of the space, we
have only to eliminate t between (2) and (3) ; we find

Kv'-vo') =j{s-So). (4)

This relation can also be derived by eliminating dt between

the differential equations v = ds/dt, dvjdt = j, which gives

vdv = jds, and integrating. The same equation (4) is also

obtained directly from the fundamental equation of motion

d"s/dt- = j by a process very frequently used in mechanics,

viz. by multiplying both members of the equation by

ds/dt. This makes the left-hand member the exact deriv-

ative of ^{ds/dty or i^y-, and the integration can therefore

be performed.

16. The three equations (2), (3), (4) contain the complete

solution of the problem of uniformly accelerated motion. For

uniformly retarded motion, j is a negative number.

If the spaces be counted from the position of the moving

point at the time f = 0, we have Sq = 0, and the equations

become

V = Vo-\- jt, s = vd + ijt^, i{v^ - vo") =js.

If in addition the initial velocity Vo be zero, the point

starting from rest at the time t — 0, the equations reduce

to the following:

V = jt, s = ijt-, iv"^ = js.

17. The most important example of uniformly acceler-

ated motion is furnished by a body falling in vacuo near
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the earth's surface. Assuming that the body does not rotate

during its fall, its motion relative to the earth is a mere

translation, i. e. the velocities of all its points are equal and

parallel; and it is sufficient to consider the motion of any

one point of the body. It is known from observation and

experiment that under these circumstances the acceleration

of a falling body is constant at any given place and equal to

about 980 cm., or 32.2 ft., per second per second; the value of

this so-called acceleration of gravity is usually denoted by g.

In the exercises on falling bodies (Art. 19) we make through-

out the following simplifying assumptions: the falling body

does not rotate; the resistance of the air is neglected, or

the body falls in vacuo; the space fallen through is so small

that g may be regarded as constant; the earth is regarded

as fixed.

18. The velocity v acquired by a falling body after falling

from rest through a height h is found from the last equation

of Art. 16 as

V = V2gh.

This is usually called the velocity due to the height (or

head) h, while h = v'^/2g is called the height (or head) due

to the velocity v.

19. Exercises.

(1) A body falls from rest at a place where g = 32.2. Find (a)

the velocity at the end of the fourth second; (6) the space fallen through

in 4 seconds; (c) the space fallen through in the fifth second.

(2) A train, starting from the station, acquires a velocity of 30

M./h.: (a) in 8 min.; (b) in 2 miles; what was its acceleration (regarded

as constant)?

(3) Galileo, who first discovered the laws of falling bodies, ex-

pressed them in the following form: (a) The velocities acquired at

the end of the successive seconds increase as the natural numbers;

(6) the spaces described during the successive seconds increase as the
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odd numbers; (c) the spaces described from the beginning of the motion

to the end of the successive seconds increase as the squares of the natural

numbers. Prove these statements.

(4) A stone dropped into the vertical shaft of a mine is heard to

strike the bottom after I seconds; find the depth of the shaft, if the

velocity of sound be given = c. Assume < = 4 s., c = 332 meters,V

g = 980.
^

(5) A railroad train in approaching a station makes half a mile in

the first; 2,000 ft. in the second, minute of its retarded motion. If

the motion is uniformly retarded: (a) When will it stop? (6) What
is the retardation? (c) What was the initial velocity? (d) When
will the velocity be 4 miles an hour?

(6) A body being projected vertically upwards with an initial velocity

vo, (a) how long and (6) to what height will it rise? (c) When and

(d) with what velocity does it reach the starting-point?

(7) A bullet is shot vertically upwards with an initial velocity of

1200 ft. per second, (a) How high will it ascend? (b) What is its

velocity at the height of 16,000 ft.? (c) When will it reach the ground

again? ((/) With what velocity? (e) At what time is it 16,000 ft.

above the ground? Explain the meaning of the double sign in (e).

Use g = 32.

(8) With what velocitj^ must a ball be tlirown vertically upwards to

reach a height of 100 ft.?

(9) A body is dropped from a point J5 at a height AB = h above

the ground; at the same time another body is thrown vertically up-

ward from the point A, with an initial velocity ;'o. (a) When and

(b) where will they collide? (c) If they are to meet at the height ^h,

what must be the initial velocity?

(10) The barrel of a rifle is 30 in. long; the muzzle velocity is 1300 ft./

sec; if the motion in the baTcl bo uniformly acc(>lerated, what is the

acceleration and what tlie lime?

(11) If a stone dropped from a balloon while ascending at the rate

of 25 ft. /sec. reaches the ground in 6 seconds, what was the height of

the balloon when the stone was dropped?

(12) If the speed of a train increases uniformly after starting for 8

minutes while the train travels 2 miles, what is the velocity acquired?

(13) Two j)articles fall from rest from the same point, at a .short

interval of time r; find how far they will be apart when the first par-
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tide has fallen through a height h. Take e. g., h = 900 ft., t = ^^
second.

20. Acceleration inversely proportional to the square of

the distance, i. e. j = /x/s^ where ju is a constant (viz. the

acceleration at the distance s = 1) and s is the distance of

the moving point from a fixed point in the line of motion.

The differential equation (1) becomes in this case

the first integration is readily performed by multiplying both

members by ds/dt so as to make the left-hand member the

exact derivative of ^{dsjdtY or ^v"^. Thus we find

"r/.s

^v- /^-:+<^' («)

where the constant of integration, C, must be determined

from the so-called initial conditions of the problem. For

instance, if v = v^ when s = So, we have ^V(f = — fx/so + C;

hence, eliminating C between this relation and (6),

\S So )
K„=-.V) = -m(^^-^J. (7)

To perform the second integration solve this equation for

V and substitute dsldi for v.

di \j
'' + so

~
s

'

or putting Vo^ + 2/i/so = 2)u//i',

'^^^.
(8)-^4'j'

ds

dt "Mm' N/

Here the variables s and t can be separated, and we find if

5 = So for ^ =
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^==^j2'i.X J,-:^'^^-
(9)

To integrate put s — /x' = x"^. The result will be different

according to the signs of /jl, ix\ and v, which must be deter-

mined from the nature of the particular problem.

It is easily seen that the methods of integration used in

this problem apply whenever j is given as a function of s alone.

21. Whenever in nature we observe a motion not to remain uni-

form, we try to account for the change in the character of tlie motion

by imagining a special cause for such change. In rectiUnear motion,

the only change that can occur in the motion is a change in the velocity,

i. e., an acceleration (or retardation). It ia often convenient to have

a special name for this supposed cause producing acceleration or retarda-

tion; we call it force (attraction, repulsion, pressure, tension, friction,

resistance of a medium, elasticity, cohesion, etc.), and assume it to

be proportional to the acceleration A fuller discussion of the nature

of force and its relation to mass will be found in Arts. 171-188. The

present remark is only intended to make more intelligible the physical

meaning and application of the problems to be discussed in the follow-

ing articles.

22. It is an empirical fact that the acceleration of bodies falling in

vacuo on the earth's surface is constant only for distances from the

surface that are very small in comparison with the radius of the earth.

For larger distances the acceleration is found inversely proportional to

the square of the distance from the earth's center.

By a bold generalization Newton assumed this law to hold generally

between any two particles of matter, and this assumption has been

verified by subsequent observations. It can therefore be regarded

as a general law of nature that any particle of matter produces in every

other such particle, each particle being regarded as concentrated at a

point, an acceleration inversely proportional to the square of the distance

between these points. This is known as Neivton's law nf universal gravi-

tation, the acceleration being regarded as caused by a force of attraction

inherent in each particle of matter.

It is shown in the theory of attraction (Art. 253) that the attraction

of a spherical mass, such as the earth, on any particle outside the sphere
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is the same as if the mass of the sphere were concentrated at its center.

The acceleration produced by the earth on any particle outside it is

therefore inversely proportional to the square of the distance of the

particle from the center of the earth.

23. Let us now apply the general equations of Art. 20 to

the particular case of a body falling from a great height

towards the center of the earth, the

resistance of the air being neglected.

Let be the center of the earth

(Fig. 3), Pi a point on its surface, Po

the initial position of the moving

point at the time t = 0, P its posi-

tion at the time t; let OPi = R, OPo
= So, OP — s; and let g be the accel-

eration at P\,j the acceleration at P,

both in absolute value. Then, ac-

cording to Newton's law, j -.g = R- :s^.

This relation serves to determine the

value of the constant fx in (5) ; for since

the acceleration is to have the value g

when s = R we have

JL
R^ 9>

the minus sign being taken because the acceleration is

directed toward the origin 0. We have therefore
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the minus sign indicating that the acceleration tends to

diminish the distances counted from as origin.

The integration can now be performed as in Art. 20.

Multiplying by dsjdt and integrating, we find ^v- = gR^js

+ C. If the initial velocity be zero, we have y = Ofors = s^;

hence C = — gR^/so, and

„=_ffv^JI3=_KJ§ N^Z^. (11)\ S .So \ So \ s

Here again the minus sign before the radical is selected

since the velocity v is directed in the sense opposite to that

of the distance s.

Substituting ds/dt for v and separating the variables t and

s we have

dt = -i^^[o"a.| ds;
R\2g\so — s

hence, integrating as indicated at the end of Art. 20:

the constant of integration being zero since s = So for f = 0.

The last term can be slightly simplified by observing that

sin~i Vl — u~ = cos~Ht,

whence finally:

24. Exercises.

(1) Find the velocity with which the body arrives at the surface of

the earth if it be dropped from a height equal to the earth's radius, and

determine the time of falling through this heisrht. Take R = 4000

miles, g = 32.

3
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(2) Show that formula (11) reduces to v = V2gh (Art. 18) with

s = R'\i So — s = his small in comparison with R.

(3) Show that when so is large in comparison with R while s differs

but sUghtly from R, the formula; (11) and (12) reduce approximately

to

,— R , irsoi
^^ = - V 2o _, i = ----—

.

1 s 2V2g R

Hence find the final velocity and time of fall of a body falling to the

earth's surface (a) from an infinite distance; (6) from the moon (so =

mR).
(4) Derive the expressions for v and I corresponding to (11) and

(12) when the initial velocity is ro (toward the center).

(5) A particle is projected vertically upwards from the earth's sur-

face with an initial velocity v^. How far and how long will it rise?

(6) If, in (5), the initial velocity be ?'o = VgR^ how high and how
long will the particle rise? How long will it take the particle to rise

and fall back to the earth's surface?

25. Acceleration directly proportional to the distance, i. e

j = KS, where k is a constant.

The equation of motion

can be integrated by the method used in Art. 20. The result

of the second integration will again be different according to

the sign of k. We shall study here only a special case, re-

serving the general discussion of this law of acceleration until

later.

26. It is shown in the theory of attraction (Art. 251) that

the attraction of a spherical mass such as the earth on any

point within the mass produces an acceleration directed to

the center of the sphere and proportional to the distance

from this center. Thus, if we imagine a particle moving

along a diameter of the earth, say in a straight narrow tube
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passing through the center, we should have a ease of the

motion represented by equation (13).

To determine the value of k for our problem we notice

that at the earth's surface, that is, at the distance OPi = R
from the center (Fig. 4), the

acceleration must be g. If, there-

fore, j denote the numerical

value of the acceleration at any

distance OP = s(< R), we have

j : g = s : R, or j ^ gs/R. But

the acceleration tends to dimin-

ish the distance s, hence d^s/dt^

= — {glR)s. Denoting the posi-

tive constant g/R by /x^, the

equation of motion is

d s I n
= — /x-s, where /* = ^f

dt R (14)

Integrating as in Arts. 20 and 23, we find

If the particle starts from rest at the surface, we have v =

when s = R; hence = — ifi^R^ + C; and subtracting

this from the preceding equation, we find

V = -
IX V/e^ - s2, (15)

where the minus sign of the square root is selected because s

and V have opposite sense.

Writing dsjdt for v and separating the variables, we have

dt = -- ds

M ^jR^ - s2'

whence
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jx K

As, s = R when ^ = 0, we have = ^ cos~i 1 + C , or

C = 0. Solving for s, we find

s = R cosfxt. (16)

Differentiating, we obtain v in terms of t:

V = — fxR smut. (17)

27. The motion represented by equations (16) and (17)

belongs to the important class of simple harmonic motions

(see Arts. 71 sq.). The particle reaches the center when

s = 0, 1. e. when nt = -kI'I, or at the time t = 7r/2^t. At this

time the velocity has its maximum value. After passing

through the center the point moves on to the other end, P2,

of the diameter, reaches this point when s = — R, i. e. when

p.t = TV, or at the time t = tt/ijl. As the velocity then vanishes,

the moving point begins the same motion in the opposite

sense.

The time of performing one complete oscillation (back and

forth) is called the period of the simple harmonic motion;

it is evidently

T = 4-— = ~.
2/x /x

'

28. Exercises.

(1) Equation (14) is a differential equation whose general integral

is known to be of the form

s = Ci sirifit + C2 cosfit;

determine the constants Ci, C2 and deduce equations (16) and (17).

(2) Find the velocity at the center and the period, taking (7 = 32

and.i2 = 4000 miles.

(3) A point whose acceleration is proportional to its distance from

a fixed point O starts at the distance so from O with a velocity Va directed

away from O; how far will it go before returning?



CHAPTER II.

TRANSLATION AND ROTATION.

29. In kinematics, the term rigid body is used to denote a

figure of invariable size and shape, or an aggregate of points

whose distances from each other remain unchanged.

The position of a rigid body is given if the positions of any

three of its points, not in a straight Hne, are given; when

three such points are fixed the body is fixed.

The kinematics of rigid bodies will be discussed more fully

later on (Arts. 114-150); it will here suffice to mention two

particular types of motion of a rigid body: translation, and

rotation about a fixed axis.

30. The motion of a rigid body is called a translation when

all points of the body describe equal and parallel curves.

This will be the case if any three points of the body, not in a

straight line, describe equal and parallel curves. Owing to

the rigidity of the body, i. e. the invaria])ility of the mutual

distances of its points, the velocities and accelerations of all

points at any given instant must then be equal; thus, in

translation, the motion of the whole body is given by the motion

of any one of its points.

31. When a rigid body has two of its points fixed, the only

motion it can have is a rotation about tlu^ line joining the

fixed points as axis. Thus, in rotation about a fixed axis, all

points of the body excepting those on the axis describe arcs of

circles whose centers lie on the axis and whose planes are

perpendicular to the axis; all points on the axis are at rest.

The position of a rigid ])()dy wilh a fix(^d axis I is given by

21
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the position of any one of its points P, not on the axis. This

position is most conveniently assigned by tlie dihedral angle

6, made by the plane (/, P) of the body with a fixed plane

through I. If a definite sense of rotation about the axis is

assumed as positive, say the counter-clockwise sense as seen

from a marked end of the axis (Fig. 5),

the angle 6, expressed in radians, is a real

number and serves as co-ordinate to de-

termine the position of the body.

32. As the body turns about the axis

I in any way, the angle 6 varies with the

time; the co-ordinate d can be regarded

as a function of the time, just as in the

case of the rectihnear motion of a point

(and hence (Art. 30) also in the rectili-

near translation of a rigid body) the co-

ordinate s is a function of the time.

The rotation is called uniform if equal angles are always

described in equal times. In this case the quotient Ojt of

the angle 6 described in any time t, divided by this time, is

called the angular velocity, co, of the uniform rotation:

Fis. 5.

t

'

If, in particular, the time of a complete revolution be

denoted by T, we have for uniform rotation:

27r

In the applications, angular velocity is often measured by

the number of complete revolutions per unit of time. Thus,

if n be the number of revolutions per second, A^ that per

minute, we have*
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CO = ZTrn = —^ .

oU

33. When the rotation is not uniform, the quotient ob-

tained by dividing the angle of rotation by the time in which

it is described, gives the viean, or average, angular velocity for

that time.

The rate of change of the angle of rotation with the time

at any particular moment is called the angular velocity at

that moment:
(Id

The rate at which the angular velocity changes with the

time is called the angular acceleration; denoting it by a,

we have

"^ ~
dt

~
dt"

34. The most important special case of variable angular

velocity is that of uniformly accelerated (or retarded) rota-

tion when the angular acceleration is constant. The formulae

for this case have precisely the same form as those given in

Arts. 14-lG for uniformly accelerated rectilinear motion.

Denoting the constant linear acceleration by j, we have,

when the initial velocity is 0,

FOR translation:
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and when the initial velocities are Vo and coo, respectively:

FOR translation: for rotation:

V = Vo -}- jt, CO = too + Oct,

S = Vot-i- ijt\ = coo« + iar~,

iy- — ho^ = js; ico^ — iwo^ = ad.

35. Let a point P, whose perpendicular distance fronn the

axis of rotation is OP = r, rotate about the axis with the

angular velocity co = dd/dt. In the element of time, dt, it

will describe an element of arc ds = rdd = roodt. Its velocity

V = ds/dt (frequently called its linear velocity to distinguish

it from the angular velocity) is therefore related to the

angular velocity of rotation by the equation

V = cor.

The close analogy between rectilinear translation and

rotation about a fixed axis, which is not confined to uniform

or uniformly accelerated motion and arises from the fact

that in each of the two cases the position of the body is

determined by a single co-ordinate, can be illustrated by

laying off on the axis of rotation a length measuring the

angle of rotation. The rectilinear motion of the extremity

of this vector along the axis gives an exact representation

of the rotation.

36. Exercises.

(1) If a fly-wheel of 10 ft. diameter makes 30 revolutions per minute,

what is its angular velocity, and what is the linear velocity of a point

on its rim?

(2) Find the constant acceleration (such as the retardation caused

by a Prony brake) that would bring the fly-wheel in Ex. (1) to rest in

Js minute. How many revolutions does the fly-wheel make during its

retarded motion before it comes to rest?

(3) A wheel is running at a uniform speed of 32 turns a second when

a resistance begins to retard its motion uniformly at a rate of 8 radians
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per second, (a) How many turns will it make before stopping? (6) In

what time is it brought to rest?

(4) A wheel of 6 ft. diameter is making 50 rev./min. when thrown

out of gear. If it comes to rest in 4 minutes, find (a) the angular

retardation; (o) the linear velocity of a point on the rim at the be-

ginning of the retarded motion; (c) the same after two minutes.



CHAPTER III.

CURVILINEAR MOTION OF A POINT.

1. Relative velocity; composition and resolution

of velocities.

37. It is often convenient to think of the velocity of a

point not as a mere number, but as a vector, i. e. a segment

PQ of a straight line (Fig. 6), drawn from the point P in the

direction of motion and repre-
'

p
~^^ senting by its length the mag-

jp- Q
nitude of the velocity, by its

direction the direction of mo-

tion of P, and by an arrowhead the sense of the motion.

38. Consider a point P (Fig. 7) moving along a straight

line I with constant velocity Vr, while the line I moves in a

fixed plane with a con-

stant velocity Vb in a di-

rection making an angle

a with the line I. Then

the vector PQ = Vr is

called the relative veloc-

ity of P with respect to

I; the vector PS = Vb

may be called the body

velocitij, or the velocity of the body of reference (here the

hno I).

With respect to the fixed plane, the point P has not only

the velocity Vr, but it participates in the motion of I. Its

absolute velocihj v, i. e. its velocity with respect to the fixed

plane, is therefore represented in magnitude, direction, and

26
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sense by the vector PR, i. e. by the diagonal of the parallelo-

gram constructed on the vectors Vr and I'b. This vector

PR = y is called the resultant, or geometric sum, of the vectors

PQ = Vr and PS = v^.

It is easy to see that this result will hold even when the

motions are not uniform, provided we mean by Vr the instan-

taneous relative velocity of P and by Vb the simultaneous

velocity of that point of the body of reference with which P
happens to coincide at the instant.

We have thus the general proposition that the absolute

velocity v of a point P is the resultant, or geometric sum, of its

relative velocity Vr and the body velocity Vb-

39. The term " geometric sum," of the vectors Vr = PQ and

Vb = PS may be justified by observing that (Fig. 7) QR =

PS; hence the resultant PR = i; is obtained simply by adding

the vectors Vr and Vb geometrically, i. e. l^y drawing first the

vector PQ = Vr and then from its extremity Q the vector

QR = Vb.

Conversely, the relative velocity PQ = Vr is found by geo-

metrically subtracting the body velocity Vb from the absolute

velocity v; i. e. by drawing the vector PR = ?;,. and from its

extremity R the vector RQ equal and opposite to the vector

PS = Vh- This result can be interpreted as follows: In the

example of Art. 38 of a point moving with velocity Vr along

the line I while I moves with velocity Vb in a fixed plane, let us

superimpose the velocity — Vb, i. e. a velocity equal and

opposite to the body velocity, on the whole system, formed

by the line and the point; the line is thereby brought to rest

while the point will have the velocities v and — Vb whose

resultant is the relative velocity Vr. Hence the relative

velocity is found as the resultant of the absolute velocity and

the body velocity reversed.
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40. It is this idea of relative motion that leads to the so-

called parallelogram of velocities, i. e. to the proposition that

a point whose velocity is v = PR
(Fig. 8) can be regarded as pos-

sessing simultaneously any two

velocities, such as vt = PQ, v^.

= PS = QR, whose geometric

sum is i; = PR. For we can

always regard V\ as the relative

velocity of the point along the

line PQ and V2 as the body velocity, i. e. as the velocity of

the line PQ.

41. Finally, if in the example of Art. 38 we suppose the

plane tt in which the line I moves to have itself a velocity v„,

Fig. 8.

Fig. 9.

it is clear that the absolute velocity v of the point will be

the resultant, or geometric sum, of the three velocities v,-; Vb,

v„; i. e. it will be represented by ihe diagonal of the paral-

lelepiped that has the vectors Vr, Vh, v„ as adjacent edges. It

then follows that the velocity v = PR of a point (Fig. 9)

can be regarded as equivalent to any three simultaneous

velocities Vi = PQi, Vo = PQ2, Vs = PQ3, whose geometric
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sum is V = PR. This proposition is known as the paral-

lelepiped of velocities; Vi, Vo, vz are called the components of v.

The corresponding propositions for forces in statics will

be familiar to the student from elementary physics. But it

will be seen later that these propositions in statics are really

based on the more elementary propositions for velocities.

42. Exercises.

(1) The components of the velocity of a point are 5 and 3 ft./sec.

and enclose an angle of 135°; find the resultant in magnitude and

direction. Check the result by graphical construction.

(2) Find the components of a velocity of 10 ft./sec, along two

hnes inclined to it at 30° and 90°.

(3) A man jumps from a car at an angle of 60°, with a velocity of

9 ft. /sec. (relatively to the car). If the car is running 10 M./h., with

what velocity and in what direction does the man strike the ground?

(4) Two men, A and B, walking at the rate of 3 and 4 M./li., respec-

tively, cross each other at a rectangular street corner. Find the relative

velocity of A with respect to B in magnitude and direction.

(5) How must a man throw a stone from a train running 15 M./h,

to make it move 10 ft. /sec. at right angles to the track?

(6) The velocity of light being 300,000 km. /sec, the velocity of

the earth in its orbit 30 km./sec, determine approxunately the con-

stant of the aberration of the fixed stars.

(7) A man on a wheel, riding along the railroad track at the rate

of 9 M./h., observes that a train meeting him takes 3 sec to pass him,

while a train of equal length takes 5 sec. to overtake him. If the trains

have the same speed, what is it? What is the length of the train?

(8) A swimmer starting from a point A on one bank of a river

wishes to reach a certain point B on the opposite bank. The velocity

Vb of the current and the angle 6( < I^tt) made by AB with the current

being given, determine the least relative velocity v,- of the swimmer in

magnitude and direction.

(9) A straight line in a x'lane turns with constant angular velocity

w about one of its points O, while a point P, starting from 0, moves

along the line with constant velocity Vo. Determine the absolute path

of P and its absolute velocity v.
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Fig. 10.

(10) Show how to construct the tangent and normal to the spiral

of Archimedes, r = aB, where d = wt.

2. Velocity in curvilinear motion.

43. If on the curve described by the moving point we

select an origin Po, and take a definite sense of progression

T along the curve as positive,

the position P of the point

at any time t is given by the

arc PqP = s, which might

be regarded as the co-ordi-

nate of P (Fig. 10).

As s is a function of the

time t, its time-derivative

ds

'=dt

gives the magnitude of the velocity of the point at P, or at

the instant t, in its curvilinear motion (comp. Art. 5).

To incorporate in the definition of velocity the idea of

the varying direction of the motion, which at any instant t is

that of the tangent to the path, we lay off from P, on this

tangent, a segment PT oi length v = dsjdt, in the sense of

the motion, and define the vector PT as the velocity of the

point in its curvilinear motion (comp. Art. 37).

44. When the motion of the point P is referred to fixed

rectangular axes Ox, Oij, Oz, the co-ordinates x, y, z oi P
(Fig. 11) are functions of the time:

X = x{t), y = y(t), z = z{t).

Now the a:-co-ordinate of P is at the same time the co-

ordinate of the projection Px of P on the axis Ox on this axis.

As the point P moves in space, its projection Px moves
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along the axis Ox, and the velocity of Px in its rectilinear

motion is

dx
Vx =

dt'

Similarly the velocities of the projections Py, Pz of P on Oy,

Oz are

_ dy _dz

The rectilinear motions of P^, Py, Pz along the axes Ox,

Oy, Oz, respectively, fully determine the curvilinear motion

of P{x, y, z) in space.

45. On the other hand, the velocity-vector PT = v can,

by Art. 41, be resolved into its three components along the

Fig. 11.

axes; if the tangent to the path at P makes the angles a,

iS, 7 with Ox, Oy, Oz, respectively, these components are

V COSa, V COSjS, V COS7.

It is easy to show that these components of v are equal,

respectively, to the velocities dx/dt, dy/dt, dz/dt of the projections
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Px, Py, Pz of P on the axes. For we have, if As is the arc

described by P in the time A^

:

dx ,. Ax ,. Ax As ds— = lim -— = hm -— -.^ = cosa-r; = v cosa,
dt A<=o At At=o As At at

since at any ordinary point of the curve (i. e. at any point

at which the curve possesses a definite tangent) we have

A^^
Um -7— = coso:.

As

Similarly for dy/dt, dzldt.

We shall therefore henceforth denote by v-c, Vy, v^ not only

(as in Art. 44) the velocities of Px, Py> Pz, but also the

components of the velocity v along the axes Ox, Oy, Oz.

Thus we have:

dx ^ dy dz
Vx = V cosa = -rr , Vy = V cos/3 = 37 > ^^ = i' COS7 = ^t",

In the language of infinitesimals we may say that the

velocity is found by dividing the element of arc ds =

Vdx''- -\- dy- + dz~ by dt.

46. In polar co-ordinates OP = r, xOP = 9, yOQ = (Fig.

12), the rectangular components Vr, vg, v^ of the velocity v

along OP, at right angles to' OP in the plane xOP, and at

right angles to this plane are readily found from the last

remark in Art. 45, by observing that

ds'' = dr^ + {rdey + (r sin0 ^0)^,

whence
dr de n(^

'^ = Jt''' = 'dt'''='''''^dt'
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Fig. 12.

47. If the path of P is a plane curve we have in rectangular

cartesian co-ordinates

dx
^'~

dt'
^" ~ dt'

dy ds

V(l)
2 /d^J\^
^

^ dt

and in polar co- ordinates

dr do ds
"' = If

"'
"-'df " = di

dry idey
\dt

As the point P moves in the plane curve its radius vec-

tor OP sweeps out the polar area S of the curve, i. e. the

area bounded by any two radii vectores and the arc of the

curve between their ends. If AS be the increment of this

area in the time At, the limit of the ratio AS/At, as At ap-

proaches zero, is called the sectorial velocity dS/dt of the

point P (about the origin 0)

:

dS ,. AS
-7- = lim ^^ .

dt yt=o At

It follows from the well-known expression for the element

of polar area that in polar co-ordinates
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dS

dt
= i7-

dB

dt'

and in rectangular cartesian co-ordinates

dy dx\rf8 ^ ^ _^ _
dt ~ ' \^dt '^dt /'

48. Exercises.

(1) If the point P describos a circle of radius a about the origin 0,

with angular velocity CO, the linear velocity of P is /,' = oco (Art. 35); its

components along rectangular axes through the Drigin are ^Fig. 13):

Fig. 13.

Vx = aw cosCiTT -\- 6) = — aoi sin0 = — uy,

Vy = aoi sin(2 7r -\- 0) = ow cosO = wx.

Obtain these results by differentiating the equations of the circle

X = a cos^, y — a sinO with respect to the time.

(2) Show that the velocity of a point describing a cycloid passes

through the highest point of the generating circle.

(3) The ellipse being defined as the locus of a point such that the

sum of its distances from two fixed points is constant; show that the

normal bisects the angle between the focal radii n, r-i.

In bilinear co-ordinates the equation of the ellipse is simply

n + r-i = 2a.
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Differentiating with respect to t and denoting time-derivatives by dots,

we find

h + h = 0;

i. e. the rate of increase of one focal radius is equal to the rate of de-

crease of the other. Notice, however, that 7\ and h are not the com-

ponents of the velocity of the describing point P along the focal radii,

but the projections of this velocity on these radii. For, the velocity

voi P can be resolved : (a) into fi along ri and a component perpendicular

to n; (b) into r2 along r2 and a component perpendicular to rz. Both

resolutions arise from the sam'e vector v; hence perpendiculars erected

at the extremities of ri and h (laid off from- P along ri, n in the proper

sense) must meet at the extremity of v. As rz = — ri, v bisects the

angle between r\ (produced) and r2.

(4) Find a construction for the tangent to any conic given by

directrix, focus, and eccentricity.

(5) Derive the expressions for Vr and vq in Art. 46 by the method

of limits.

3. Acceleration in curvilinear motion.

49. As the moving point describes its path the velocity

vector V = PT (Art. 43) will in general vary both in mag-

nitude and in direction. To compare the velocities v = PT
at the time t and v' = P'T' at the time t -{- At (Fig. 14)

Fig. 14.

we must draw these vectors from the same origin, say from

the point P. Making PT" = P'T' = v', it appears that
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the vector v' can be obtained from the vector v by adding

to it geometrically the vector TT" which represents the

geometrical increment of the velocity in the time interval

This vector TT", divided by M, is the average accelera-

tion in the time M. As M approaches zero, the vector

TT" approaches zero; but its direction will in general ap-

proach a definite direction as a limit, and the ratio of its

length to M will approach a definite number as limit. A
vector (generally drawn from the point P) having this

limiting direction as its direction and a length

rp rplf

j = lim -—-—
'' st=o At

is defined as the acceleration of the moving point at P, or

at the time t.

It follows from this definition that the acceleration vector

lies in the osculating plane of the path at P, this plane

being the limiting position of the plane determined by

the tangent at P and any near point P' of the curve as

P' approaches P along the curve.

50. Acceleration being defined as a vector can be resolved

into components by the parallelogram or parallelepiped

rules (Arts. 40, 41).

Thus, in particular, the acceleration j, since it lies in the

osculating plane, can be resolved into a tangential component

jt along the tangent, and a normal component jn along the

principal normal at P, the principal normal being the inter-

section of the normal plane with the osculating plane.

If \p (Fig. 14) is the angle between the velocity and the

acceleration these components are

jt = j cos;/', jn = j sinr/'.
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51. If from any fixed point we draw vectors OQ equal

and parallel to the velocity vectors PT oi the moving jioint

P, the extremities Q lie on a curve called the hodograph

of the path of P] and it follows from Art. 49 that the accel-

eration vector of P is equal and parallel to the velocity vector

in the motion of Q along the hodograph. Hence the tangential

and normal components of the acceleration of P are equal,

respectively, to the components of the velocity' of Q along

the radius vector OQ and at right angles to it. Observing

that the acceleration lies in the osculating plane we have

therefore by Art. 47
. _ dv . _ dd
^' ~ dV ^''~''dt'

where d is the angle made by OQ, i. e. by the velocity vec-

tor at P, with any fixed direction in the osculating plane.

Now if ds be the element of arc of the path of P we have

(cbmp.* below. Art. 54)

^ - 1 ^
^

ds~ p'
'

• vr^^**V^

where p is.the radius of (first) curvature of the path at P; hence

. _ ddds _ v^

•^" ~ ^ dsdt ~ p'

Thus we have for the tangential acceleration ji and the

normal acceleration j„ of a moving point

. _ dv . _ v"^

^' ~
dt'

•^" " p-

52. When the rectangular cartesian co-ordinates of the
^

moving point are given as functions of the time,

X = x(t), y = y(t), z = z{t),

their first derivatives with respect to the time are on the
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one hand the velocities of the projections Px, Py, Pz of P
on the axes in their rectihnear motions, on the other the

components Vx, Vy, Vz of the velocity v = dsldt of P in its

ciirvilineap motion (Art. 44). Thus, using dots to denote

time-derivatives, we have

Vx = X, Vy = y V2 = z.

It will now be shown that the second lime-derivatives x, y, z

of a;, y, z, which are the accelerations of Px, Py, Pz in their

rectilinear motions, are at the same time the components jx, jy,

jz of the acceleration vector along the axes of co-ordinates.

53. We have
. _ dx _ dxds _ dx

dt ds dt ds
'

whence, differentiating with respect to /,

^ ~
dt^

" dt\7h) "Itds^^ds'^dt'^ds "^*^
ds2'

Writing down the corresponding expressions for y, z by

cyclic permutation of a;, ?/, z we find

:

. dx , „ d?-x

. dij
, „ dhi

y-'i + '-'d^

. dz ,
. dh

ds as^

Now if a, /3, 7 are the direction cosines of the velocity

vector we have

_ dx o _ dy _ dz
" ~ ds' '^ ~ ts' ^ ~ ds'

hence the first terms in the expressions found for x, ij, z are
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the components along the axes of a vector, parallel to the

velocity and of length v, i. e. of the tangential acceleration

i^Art. 51).

To see that the second terms are the components of the

normal acceleration j'„ = v'^jp (Art. 51) we have only to

remember that the direction cosines X, ix, v of the principal

normal of any curve are

^ (Px dry dh
^^'ds^'^^'ds^' ' = 'ds^'

a proof of this fact is supplied in Art. 54

Thus it appears that x, y, z are the components along the

axes of the total acceleration j of the moving point.

~r 54. To determine the (first) curvature 1/p and the direction cosines

X, fjL, V of the principal normal of any curve imagine the curve described

by a moving point P with constant velocity 1. The hodograph con-

structed at the origin of co-ordinates, is then a spherical curve, called

the spherical indicatrix, and the co-ordinates of the point Q of this

indicatrix, corresponding to the point P of the given curve are a, /3, y.

Hence, if ds' is the element of arc QQ' of the indicatrix corresponding

to the arc PP' — ds of the given curve, we have

^ _ (/« d dx_ _ d-x ds

ds' ds' ds ds- ds'

'

But as the radii vectores of the indicatrix are parallel to the tangents

of the given curve we have (Art. 51)

ds' ^ 1.

ds p'

hence
. d^x

'ds^'

and similar expressions for p, p.

55. When the path of P is a pla7ie curve we have as com-

ponents of the acceleration j along rectangular cartesian axes

in the plane of motion:
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df"

When polar co-ordinates r, 6 are used we may resolve the

acceleration j into a component jV along the radius vector

OP = r and a component je at right angles to r (Fig. 15).

Fig. 15.

They are found by projecting jx = x and jv = ^ on these

directions. Differentiating the relations x = r cos6, y =

r siiid twice with respect to t we find

X = r cos^— rd sin0,

y = r s\n9 + rd cos0,

X = (r - re^~) COS0 - (2fd + rd) sm9,

y = 0' - rd") sin0 + {2fd + rd) cosd.

These expressions show directly that

jr = r - rd^, je = 2rd + rd =
rdt

56. Exercises.

(1) Show that the velocity of a moving point is increasing, con-

stant, or diminishing according to the value of the angle f between v

and J (Fig. 14).

(2) Show that in plane motion the sectorial velocity (Art. 47) is

constant if je — 0, and vice versa.
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(3) Show that the normal component of the acceleration is the

product of the radius of curvature into the square of the angular velocity

about the center of curvature.

(4) If the acceleration of a point P be always directed to a fixed

point 0, show that the radius vector OP describes equal areas in equal

times.

(5) Show that in uniform circular motion the acceleration is directed

to the center and proportional to the radius.

(6) For motion in the circle x = a cos9, y = a sin0 find jx and jy, jr

and jg, jt and _/».

(7) A wheel rolls on a straight track; find the acceleration of any

point on its rim, and in particular that of its lowest and highest points.

(8) What is the hodograph (a) for any rectilinear motion? (6) for

any uniform motion? (c) for uniform circular motion? (d) What can

be said about the acceleration of any uniform motion?

(9) The spherical, or polar, co-ordinates of a point are the radius

vector r = OP (Fig. 16), the polar distance or colatitude d = xOP, and

Fig. 16.

the longitude <}> = yOQ. The cylindrical co-ordinates of the same point

are r' = RP = r sin0, <^ = jjOQ, x = QP = r cos0. Find the cylindrical

components of the acceleration (along PP, normal to xOP, and along

QP), and hence show that the spherical componenti^^long OP, per-

pendicular to OP in the plane xOP , and normal to xOr) arc jr = f —
rd^ — r(^2 gin20, jg = rd -\- 2rd + r^- sin» cos^, ./ 4,= r4> sine + 2f<^ sinfl

+ 2r(?<^ COS0.
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57. The fundamental problem of the kinematics of the

point consists in determining the motion of the point when

the acceleration is given. In cartesian co-ordinates this

requires the solution of the simultaneous differential equa-

tions

d~x _ . d-y _ . d-z _ .

dt^
~ ^" dt^

~ ^"^
dt^

~ ^"

jx, jy, jz being given functions of t, x, y, z, dx/dt, d.y/dt, dz/dt.

A first integration would give the components of the velocity

;

a second integration should give the co-ordinates x, y, z

as functions of the time, and hence also the path of the

moving point.

It may often be more convenient to use polar co-ordinates;

in the case of plane motion, we have then the equations at

the end of Art. 55, with jr and je as given functions of t, r, 6

and their first time-derivatives.

If the tangential and normal components of the accelera-

tion are given we can use the equations (Art. 51)

:

dv _ . v^ _ •

A number of simple illustrations will be found in the

following articles.

4. Examples of curvilinear motion.

(a) Constant acceleration.

58. Motion on a straight line under gravity. Let a point

P move along a line inclined at the angle 6 to the horizon,

under the acceleration g of gravity. The motion is rectilinear;

the component of the acceleration along the line is g sin9;

hence the motion is uniformly accelerated. The equations
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are the same as those for falhng bodies (Arts. 14, 15) except

that g is replaced by g sin0.

A particle placed on a smooth inchned plane will have this

motion if its initial velocity is zero or directed along the

greatest slope of the plane.

59. Exercises.

(1) Show that the final velocity is independent of the inclination;

in other words, in sliding down a smooth inclined plane a body acquires

the same velocity as in falling vertically througli the "lieight" of the

plane.

(2) Show that it takes a body twice as long to slide down a plane

of 30° inclination as it would take it to fall through the height of the

plane.

(3) At what angle 6 should the rafters of a roof of given span 2b be

inclined to make the water run off in the shortest time?

(4) Prove that the times of sliding from rest down the chords issuing

from the highest (or lowest) point of a vertical circle are equal.

(5) Show how to construct geometrically the line of quickest (or

slowest) descent from a given point: (a) to a given straight line, (b) to a

given circle, situated in the same vertical plane.

(6) Analytically, the line of quickest or slowest descent from a given

point to a curve in the same vertical plane is found by taking the

equation of the curve in polar co-ordinates, r = f{d), with the given

point as origin and the axis horizontal. The time of sliding down the

radius vector r is ; = i/2r/{(j s'm9). Show that this becomes a maximum
or minimum when tanO = f{d)/f'{d), according as/(0) + f"{e) is negative

or positive.

(7) Show that the line of quickest descent to a parabola from its

focus, the axis of the parabola being horizontal and its plane vertical,

is inclined at 60° to the horizon.

60. Free motion under gravity. The motion of a point,

when subject only to the constant acceleration of gravity is

necessarily in the vertical plane determined by the initial

velocity and the direction of gravity. Taking the hori-

zontal line in this plane through the initial position of the
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point as axis of x, and the vertical upwards as positive

axis of y (Fig. 17), the components of acceleration along

Fig. 17.

these axes are evidently and — g, so that the equations of

motion (Arts. 55, 57) are

d; = 0, ij = - g.

The first integration gives

X = ci, y = - gt {- Ci.

To determine the constants Ci, Ci we must know the initial

velocity in magnitude and direction. If the point starts

at the time from with a velocity ^o, inclined to the horizon

at an angle e, the angle of elevation, we have for t = 0:

X = Vo cose, y = Vo sine. Substituting these values we find

Ci = Vo cose, C2 = Vo sine, so that the velocity components

at any time t are

:

X = Vo cose, y = Vo sine — gt.

Integrating again we find

X = Vo cose-t, y = sine-^ — igf^,

the constants of integration being since x = and y =

for t = 0.
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These equations show that the horizontal projection of

the motion is uniform, while the vertical projection is uni-

formly accelerated, as is otherwise apparent from the nature

of the problem.

Eliminating t between the last two equations we find the

equation of the path

y = tane-o; - ^r— ^ -x"^,

2vo cos^e

which represents a parabola passing through the origin. To

find its vertex and latus rectum, divide by the coefficient of

x^ and rearrange:

X" sme cose -a;
= cos^e-w;

g y

completing the square in x, the equation can be written in

the form

[ X — ^^ sm2e = — cos-e
[ y — -^ sm-^e I

.

\ 2g / g V 2g J

The co-ordinates of the vertex are therefore a = (yoV26f)sin2e,

/3 = (yoV2{/)sin2e; the latus rectum 4a = {2vo'^lg)coQ^t; the

axis is vertical, and the directrix is a horizontal fine at the

distance a = (?'o^/2g) cos^e above the vertex.

61. Exercises.

(1) Show that the velocity at any time is w = Vv^'^ — 2gy.

(2) Prove that the velocity of the projectile is equal in magnitude

to the velocity that it would acquire by falling from the directrix: (a)

at the starting point, {h) at any point of the path (see Art. 18).

(3) Show that a body projected vertically upwards with the initial

velocity vo would just reach the common directrix of all the parabolas

described by bodies projected at different elevations e with the same

initial velocity !'o.

(4) The range of a projectile is the distance from the starting point

to the point where it strikes the grovmd. Show that on a horizontal

plane the range is i? = 2a = {vi?l(j) sin2€,
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(5) The lime of flight is the whole time from the beginning of the

motion to the instant when the projectile strikes the ground. It is

best found by considering the horizontal motion of the projectile

alone, which is uniform. Show that on a horizontal plane the time

of flight is T = i2vo/g) sine.

(6) Show that the time of flight and the range, on a plane through

the starting point incUned at an angle d to the horizon, are

™ 2!iosin(e — e) IT, 2ro^6in(e — 0)cose
Tq = — —- , and Re = — •

;:. •

(7) What elevation gives the greatest range on a horizontal plane?

(8) Show that on a plane rising at an angle d to the horizon, to

obtain the greatest range, the direction of the initial velocity should

bisect the angle between the plane and the vertical.

(9) A stone is dropped from a balloon which, at a height of 625 ft.,

is carried along by a horizontal air-current at the rate of 15 miles an

hour, (o) Where, (6) when, and (c) with what velocity will it reach

the ground?

(10) What must be the initial velocity ro of a projectile if, with an

elevation of 30°, it is to strike an object 100 ft. above the horizontal

plane of the starting point at a horizontal distance from the latter of

1200 ft?

(11) Whsit must be the elevation e to strike an object 100 ft. above

the horizontal plane of the starting point and 5000 ft. distant, if the

initial velocity be 1200 ft. per second?

(12) Show that to strike an object situated in the horizontal plane

of the starting point at a distance x from the latter, the elevation must

be € or 90° — e, where t = J sin"' (gx/vo^).

(13) The initial velocity Vo being given in magnitude and direction,

show how to construct the path graphically.

(14) The solution of Ex. (11) shows that a point that can be reached

with a given initial velocity can in general be reached by two different

elevations. Find the locus of the points that can be reached by only

one elevation, and show that it is the envelope of all the parabolas

that can be described with the same initial velocity (in one vertical

plane).

(15) If it bo known that the path of a point is a parabola and that
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the acceleration is parallel to its axis, show that the acceleration is

constant.

(16) Prove that a projectile whose elevation is 60° rises three times

as high as when its elevation is 30°, the magnitude of the initial velocity

being the same in each case.

(17) Construct the hodograph for the motion of Art. 60, taking the

focus as pole and drawing the radii vectores at right angles to the

velocities.

(IS) A stone slides down a roof sloping 30° to the horizon, through

a distance of 12 ft. If the lower edge of the roof be 50 ft. above the

ground, (o) when, (6) where, (c) with what velocity does the stone

strike the ground?

(19) If a golf ball be driven from the tee horizontally with initial

speed = 300 ft. /sec, where and when would it land on ground 16 ft.

below the tee if resistance of air and rotation of ball could be neglected?

(20) A man standing 15 ft. from a pole 150 ft. high aims at the top

of the pole. If the bullet just misses the top where will it strike the

ground if vo= 1000 ft./sec?

62. While the type of motion discussed in Art. 60 is commonly spoken

of as projectile moliori, it should be kept in mind that it takes no account

of the resistance of the air; it gives the motion of a projectile in vacuo.

Owing to the very high initial velocities of modern rifle bullets, the

range may be only about one tenth of what it would be according to

the formula? given above.

The study of the actual motion of a projectile in a resisting medium,

such as air, forms the subject of the science of ballistics. See for

instance C. Cranz, Lehrbuch der BalUstik, Vol. I, 2te Auflage, Leipzig,

Teubner, 1910.

(b) The pendulum.

63. The mathematical pendulum is a point constrained to

move in a vertical circle under the acceleration of gravity.

Let be the center (Fig. 18), A the lowest, and B the

highest point of the circle. The radius OA = I oi the circle

is called the length of the pendulum. Any position P of

the moving point is determined by the angle AOP = 6
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counted from the vertical radius OA in the positive (counter-

clockwise) sense of rotation.

If Pq be the initial position of the moving point at the

time t = 0, and 2^ AOPo = do, then the arc PoP = s de-

scribed in the time ^ is s =

^(^0 — d); hence v = ds/dt —

- Idd/dt,and dv/dt = - Id^d/dt^,

the negative sign indicating

that 6 diminishes as s and t

increase.

Resolving the acceleration

of gravity, g, into its normal

and tangential components

g COS0, g sin^, and considering

that the former is without

effect owing to the condition

that the point is constrained

to move in a circle, we obtain the equation of motion in

the form dv/dt = g sin0, or

.d'9

Fig. 18.

mg

J^ + <, sine = 0. (1)

64. The first integration is readily performed by multiply-

ing the equation by dd/dt which makes the left-hand member

an exact derivative,

dt [l(^) "''"'^1'

hence integrating, we obtain

dd

dt
U — g COS0 = C,

or considering that v = — Idd/dt,
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^v^ — gl COS0 = CI.

To determine the constant C, the initial velocity Vq at the

time t = must be given. We then have i^o" — gl cos^o =

CI; hence
|y2 = ^^^2 _ gl COS0O + gl COS0

'vq"^ \ (2)

— I COS^o + I COS0
.2^

The right-hand member can readily be interpreted geo-

metrically; ^'o^/2gr is the height by falling through which the

point would acquire the initial velocity Va (see Art. 18);

I COS0 — I cos^o = OQ — OQq = QoQ, if Q, Qo are the pro-

jections of P, Po on the vertical AB. If we draw a hori-

zontal line MN at the height vo'^/2g above Po and if this

line intersect the vertical AB at R, we have for the velocity

V the expression:

h' = g-RQ.

If the initial velocity be zero, the equation would be

h' = g-QoQ.

At the points M, N where the horizontal line MN inter-

sects the circle the velocity becomes zero. The point can

therefore never rise above these points.

Now, according to the value of the initial velocity Vo, the

line AIN may intersect the circle in two real points M, N,

or touch it at B, or not meet it at all. In the first case the

point P performs oscillations, passing from its initial position

Po through A up to M, then falling back to A and rising to

A'', etc. In the third case P makes complete revolutions.

65. The second integration of the equation of motion

cannot be effected in finite terms, without introducing elliptic

functions. But for the case of most practical importance,

5
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viz. for very small values of 6, it is easy to obtain an ap-

proximate solution. In this case 6 can be substituted for

sin0, and the equation becomes:

or, putting g/l = m"

f = - "'»
^ (3)

This is a well known differential equation (compare Art.

26, eq. (14), and Art. 28, Ex. 1), whose general integral is

6 = Ci cos/if + C2 sin/jLt.

The constants Ci, Co can be determined from the initial

conditions for which we shall now take 6 = 60 and v =
when ^ = 0; this gives Ci = 60, Co = 0; hence

1

6 = 60 cosfj.t, t = - cos"^ —

.

The last equation gives with 6 = — 60 the time ti of one

swing or beat, that is, half the period:

^.-" = .rJl (4)
M \g

The time of a small oscillation or swing is thus seen to be

independent of the arc through which the pendulum swings;

in other words, for all small arcs the times of swing of the

same pendulum are very nearly the same; such oscillations

are therefore called isochronous.

66. The formula (4) shows that for a pendulum of given length h

the time of one swing /i varies for different places owing to the variation

of g. As h and 'i can be measured very accurately, the pendulum can

be used to determine g, the acceleration of gravity at any place; (4)

gives

:
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Now let lo be the length of a pendulum which beats seconds, i. e.,

makes just one swing per second; by (4) and (5) we find for the length

lo of such a seconds pendulum:

'o = ^2 = ry • (6)

The length k of the seconds pendulum is therefore found by measuring

the length h and the time of swing ti of any pendulum. This length k

is very nearly a meter; it varies sUghtly with g; thus, for points at the

sea level it varies from ^o = 99.103 cm. at the equator to lo — 99.610

at the poles.

If go be the value of g at sea level, i. e., at the distance R from the

center of the earth, gi the value of g at an elevation h above sea level

in the same latitude, it is known that

fir„ ^ {R + hY
gi R' '

Hence, if go be known, pendulum experiments might serve to find the

altitude of a place above sea level; but the observations would have

to be of very great accuracy.

67. Let n be the number of swings made by a pendulum of length

I in any time T so that h = T/n. Then, by (4),

T 7

If T and one of the three quantities n, I, g in this equation be re-

garded as constant, the small variations of the two others can be found

approximately by differentiation. For instance, if the daily number

of oscillations of a pendulum of constant length be observed at two

different places, T and I keep the same values while n and g vary by

small amounts, say An and Ag. Now the differentiation of (7) gives

or, dividing by (7)

:

T, TvVldg

-n^^''=--~2 gl

dn _ J
dg

n ~ g
'

We have therefore approximately, for small variations An, Ag:

^^i,^^. (8)
n ' g
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68. Exercises.

(1) Find the number of swings made in a second and in a day by
a pendulum 1 meter long, at a place where g = 980.5.

(2) Find the length of the seconds pendulimi at a place where g =
32.17.

(3) Find the value of gr at a place where a pendulum of length

3.249 ft. is found to make 86522 swings in 24 hours.

(4) A chandelier suspended from the ceiling is seen to make 20

swings a minute; find its distance from the ceiling.

(5) A pendulum of length 1 meter is carried from the equator

where g = 978.1 to another latitude; if it gains 100 swings a day

find the value of g there.

(6) Investigate whether the approximate formula (8) is sufficiently

accurate for Ex. (5).

(7) If the length of a pendulum be increased by a small amount

Al, show that the daily number of swings, n, will be diminished by

An so that approximately
An _ J

AZ

(8) A clock beating seconds is gaining 5 minutes a day; how much

should the pendulum bob be screwed up or down?

(9) A clock beating seconds at a place where g = 32.20 is carried

to a place where g = 32.15; how much will it gain or lose per day if

the length of the pendulum be not changed?

(10) A pendulum of length 100.18 cm. is foimd to beat 3585 times

per hour; find the elevation of the place if in the same latitude g =

981.02 at sea level.

69. When the oscillations of a pendulum are not so small

that the angle can be substituted for its sine, as was done in

Art. 65, an expression for the time h of one swing can be

obtained as follows.

We have by (2), Art. 64.

iw^ — ivo^ = gl{cosd — cos^o).

Let the time be counted from the instant when the moving

point has its highest position {N in Fig. 18), so that vo = 0.
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Substituting v = — Idd/dt and applying the formula cos6 =

1 — 2 sin^i^ we find

:

il(§Y = 2?(sin2i5o - sin^ie),

whence
. Pf dd

dt *i ĝ /sin^l-^o - sin^^^
'

Integrating from 9 = to 6 ^ do and multiplying by 2

we find for the time h of one swing:

I
r^« dd

h =
Vlig Jo Vsin^i^o — sin^^-^

*

As 6 cannot become greater than Oq we may put sini^ =

sini^o sin0, thus introducing a new variable <^ for which the

limits are and 7r/2. Differentiating the equation of substi-

tution, we have

i cos^O dd = sini^o cos0 d(f),

or, as cosi^ = VI — sin^i^o sm^^,

2 sini^o coS(/> dcj)

dd =
V 1 — sin'-i^o sinV

Substituting these values and putting for the sake of brevity

sini^o = K,

we find for the time ti of one swing:

d(j)

ti'Mg Jo Vl — K^ sin^^

The integral in this expression is called the complete elliptic

integral of the first species and is usually denoted by K. Its

value can be found from tables of elliptic integrals or by

expanding the argument into an infinite series by the binomial

theorem (since k sin0 is less than 1 ) , and then performing the



54 KINEMATICS [71.

integration. We have
1-3

(1 - K^ sin2</>)-J = 1 + i/c^sinV + —^ k' sinV +2-4
hence

^'-4b^(Xf--{m^--}
If H be the height of the initial point N{d = 6o) above the

lowest point A of the circle, we have

2 . ^1 . 1 — cos^o H
,^ = ,n,-^0o= = -^,

so that the expression for ti can be written in the form

70. Exercises.

(1) Show that /. = TT ;/r/^(l + Jj + To':ri + tgVjt + •
' ) if the

angle 20o of the swing is 120°.

(2) Show that as second approximation to the time of a small swmg
we have h = irVllffil + tV^o")-

(3) Find the time of oscillation of a pendulum whose length is 1

meter at a place where (j = 980.8, to four decimal places, the amplitude

Oa of the swing being 6°.

(4) Denoting bj^ /o the first approximation, irVl/g, to the time h

of one swing, the quotient (U — to)/io is called the correction for mnplilude.

Show that its value is 0.0005 for do = 5°.

(5) A pendulum hanging at rest is given an initial velocity vu Find

to what height hi it will rise.

(6) Discuss the pendulum problem in the particular case when MA''

(Fig. 18) touches the circle at B, that is when the initial velocity is

due to falling from the highest point of the circfle.

(c) Simple harmonic motion.

71. Simple harmonic motion is that kind of rectilinear

motion in which the acceleration is proportional to the dis-

tance of the moving point P from a fixed point in the
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line of motion and is always directed toward this fixed point

(Fig. 19).

An example of simple harmonic motion was discussed in

Arts. 26, 27. We now resume its study from a more general

point of view, owing to its great importance. It naturally

P
1

1 ^_—^_^
Pg .? Pi

*

Fig. 19.

leads to the study of certain important motions known as

coinpound harmonic, which may be curvilinear.

By definition, the differential equation of simple harmonic

motion is

X = — fi-X,

where ju is a constant, /x^ being evidently the absolute value

of the acceleration at the distance x = 1 from the origin 0.

The equation has the form of the pendulum equation (3),

Art. 65, except that 6 is replaced by x. Its general integral

is therefore

X = Ci coS)u/ + C2 smut.

Differentiating, we find the velocity

V = — CiM ^in/jLt + C2M cosnt.

If a: = a;o and i^ = i^o for i = we find Ci = Xo, C2 = Vq/ij.',

hence

X = Xo cosfit -\— sinut, v ^ — x^p. sin/xi + vo cosut.

72. The expression found for x can be given a more con-

venient form by observing that if we construct a right-angled

triangle (Fig. 20) with xo and Voffx as sides and call a its

hypotenuse, e its angle adjacent to Xo, we have
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Xo = a cose, — = a sine:

substituting these values we find

X = a cose cos/if + sine sinjui

= a cos(fjLt — e).

Hence, in simple harmonic motion we have

X = a cos(ixt — e), V = — ajx sin()uf — e),

where

=Jxo- +-T> ^ "= tan 1 -.

The motion is clearly periodic since both position and velocity

regain the same values when the angle jui — e is increased by

any integral multiple n of 2t, i. e. if the time t is increased by

n times 27r/ju. The time

J"

between any two successive equal stages of the motion is

called the period; the length a, which is evidently the

greatest distance on either side of the origin reached by the

point, is called the amplitude of the simple harmonic motion.

The angle fxt — e \s called the phase-angle, e the epoch-

angle of the motion.

The point oscillates between the positions Pi and P2 (Fig.

19) whose abscissas are =ta. It is at Pi (at elongation) at the

time ^0 = e//x (and also at the times to + n- 27r//x = (e + 2mr)jp) ;

it reaches the position at the time fi = (e +-2-7r)/ju, so that

the time of passing from Pi to is

The time of passing from to the other elongation P2 is
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easily shown to be equal to this; so that the time of one

swing (from Pi to P2) is

The backward motion from P2 to Pi takes place in the same

time so that the period, that is the time of a double (forward

and backward) swing, is, as shown above,

T = ^
73., An instructive illustration is obtained by observing that any

simple harmonic motion can he regarded as the 'projection of a uniform

circular motion on a diameter of the circle. In other words, it is the

apparent motion of a point describing a circle uniformly, as seen from

a point in the plane of the circle (at an infinite distance). For, let a

point Q (Fig. 21) describe a circle of radius a with constant angular

Fig. 21.

velocity w, say in the counterclockwise sense. If Qo is the position of

the point at the time i = 0, we have QoOQ = oil, so that the projection

of Q on the diameter OQa has, for the center O as origin, the abscissa
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a coswt. And if P be the projection of Q on a diameter OA making

with OQo the angle e, the abscissa of P will be

X = a cos{u}i — e).

Hence the motion of P is a simple harmonic motion for which the

acceleration at unit distance from is m^ = t^^-

74. Notice that the linear velocity v = ace oi Q has along OA the

component
Vz= X = —aw sin(co/ — e),

which is the velocity of P; and the acceleration of Q, j = ow^ along QO,

has along OA the component

jx = x = — aw^ cos(w/ — e) = — w^x,

which is the acceleration of P.

The projection of the uniform circular motion of Q on the diameter

OB, perpendicular to OA, gives also a simple harmonic motion, viz.

y = a sin(aj< — t) = a cos[co/ — (e + lir)\,

which merely differs by Itt in phase from the motion along OA.

The period of the simple harmonic motion of P along OA is (Art. 72)

:

T = litjix),

i. e., it is equal to the time in which Q makes one revolution on the

circle. The fact that this period depends only on the angular velocity

and not on the radius a, i. e. on the amplitude, is expressed by saying

that simple harmonic motions of the same ^ or w are isochronous.

If Q describes the circle p times per second so that P makes p com-

plete (forth and back) oscillations per second, we have w = 27rp, so that

T = 1/p;

i. e. the number of oscillations per second, the so-called frequency, is the

reciprocal of the period.

75. Exercises.

(1) Integrate the equation x = — \iH, by multiplying it by x, and

determine the constants of integration if x = xo, w = Vq for t = 0.

(2) Show that the period T can be expressed in the form li^V — x/x;

also find the velocity in terms of x.
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(d) Compound harmonic motion.

76. Apart from the initial conditions, a simple harmonic

motion is fully determined by its line I, its center 0, and its

period (or frequency) , which determines the constant fx. The

amplitude a and the phase e depend on the initial conditions

(see Art. 72).

Let a point P have a simple harmonic motion of period

T = 2t/ijl along a line I, about the center 0; and let the

line I have a motion of rectilinear translation in a fixed plane

TT (comp. Art. 38). If the motion of I is likewise a simple

harmonic motion, al^out as center, in a direction U, the

absolute motion of P in the plane tt is called a compound

harmonic motion. This is in general a curvilinear motion;

but it becomes rectilinear when the direction V is parallel to I.

We proceed to examine in some detail the most important

cases of this composition of two or more simple harmonic

motions, beginning with those cases in which the resultant

motion is rectilinear.

As, according to Hooke's law, the particles of elastic

bodies, after release from strain within the elastic limits,

perform small oscillations for which the acceleration is pro-

portional to the displacement from a middle position, the

motions under discussion find a wide application in the

theories of elasticity, sound, light, and electricity, and form

the basis of the general theory of wave motion in an elastic

medium.

77. Two simple harmonic motions in the same line, of equal

period T, hut differing in amplitude and phase, compound into

a single simple harmonic motion in the same line and of the

same period.

For, by Art. 72, the component displacements can be

written
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Xi = ai COs(co/ + ei), Xo = 02 COs(cof + €2),

and being in the same line they can be added algebraically,

giving the resultant displacement

X = Xi -\- X2 = Qi cos(coi + ei) + a2 COs(w^ + eo)

= (tti cosei + 02 COS62) coscof — (ai sinei + 02 sin€2) sinwi.

Putting (comp. Art. 72)

ai costi + «2 cose2 = a cose, ai sinei + 02 sineo = a sine,

we have
r--

X = a cose coscof — sine smut = a cos(coi + e),

where

a^ = (ai cosei + a2 cose2)^ + (oi sinei + 02 sine2)^

= ai^ + fl2" + 2aia2 cos(e£ — ei)

and
tti sine] + a2 sine2

tane =
ai cosei + Go cose2

78. A geometrical illustration of the preceding proposition is ob-

tained by considering the uniform circular motions corresponding to

the two simple harmonic motions (Fig. 22).

Fig. 22.

Drawing the radii OPi = oi, OP2 = (h so as to include an angle

equal to the difference of phase £2 — ei and completing the parallelo-

gram OP1PP2, it appears from the figure that the diagonal OP of this

parallelogram represents the resulting amplitude a.
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As PiP is equal and parallel to OP2, we have for the projections on

any axis Ox the relation OPx^, + OPx^ = OP , or Xi + 0:2 = x. If now

the axis Ox be drawn so as to make the angle xOPi equal to the epoch-

angle €1, and hence xOPi = €2, the angle xOP represents the epoch e

of the resulting motion.

We thus have a simple geometrical construction for the elements a,

e of the resulting motion from the elements ai, ei and a^, ez of the com-

ponent motions. As the period is the same for the two component

motions, the points Pi and P2 describe their respective circles with

equal angular velocity so that the parallelogram OP1PP2 does not

change its form in the course of the motion.

79. The construction given in the preceding article can be de-

scribed briefly by saying that two simple harmonic motions of equal

period in the same line are compounded by geometrically adding their

amplitudes, it being understood that the phase-angles determine the

directions in which the amplitudes are to be drawn. Analytically,

this appears of course directly from the formulse of Art. 77.

It follows at once that not only two, but any number of simple har-

monic motions, of equal period in the same line, can be compounded by

geometric addition of their amplitudes into a single simple harmonic mo-

tion in the same line and of the same period.

Conversely, any given simple harmonic motion can be resolved into

two or more components in the same line and of the same period.

80. Exercises.

(1) Find the resultant of three simple harmonic motions in the

same line, and all of period T = 12 seconds, the amplitudes being 5,

3, and 4 cm., and the phase dififerences 30° and 60°, respectively,

between the first and second, and the first and third motions.

(2) If in the proposition of Art. 77 the amplitudes are equal, ai = 02

= a, while the phase-angles differ by e2 — ei = 5, show that the re-

sulting motion has the amplitude 2a cos|5 and the phase-angle \5:

(a) directly, (6) from the formula; of Art. 77, (c) by the geometric

method of Art. 78.

(3) Find the resultant of two simple harmonic; motions in the same
line and of equal period when the amplitudes are equal and the phases

differ: (a) by an even multiple of w, (b) by an odd multiple of tt.

(4) Resolve a; = 10 cos{o)t + 45°) info two components in the same
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line with a phase difference of 30°, one of the components having the

epoch 0.

(5) Trace the curves representing the component motions as well as

the resultant motion in Ex. (1), taking the time as abscissa and the

displacement as ordinate.

(6) Show that the resultant of 7i simple harmonic motions of ec[ual

period T in the same line, viz.

Xi = Oi cos f *^i + «'
)

,

is the isochronous simple harmonic motion

X = o cos f "^ < 4- e
j,

where "

2^ai smei

o^ = f ^a; COSei
) + ( YL^^ ^i^^^'

) '
^ane

^aiCOSe;

81. The composition of two or more simple harmonic mo-

tions in the same line can readily be effected, even when the

components differ in period. But the resultant motion is in

general not simple har7nonic.

Thus, with two components

Xi = tti cos(coi^ + ei), X2 = a2 cos(co2^ + €2),

putting oo2t -{- eo — coit -{- (u2 — o:i)t -{- €2 = wit + ei -j- 8, say,

where 5 = (co2 — u)i)t -\- eo — ei is the difference of phase at

the time t, we have for the resulting motion

X = Xi -{- X2 = ai cos(a)ii + ei) + a2 COs(a;i^ + ei + 5)

;

= (oi + 02 cos8) cos(aji^ + ei) — 02 sinS sin(a)ii + ei),

or putting ai + 02 cos5 = a cose, 02 sin5 = a sine:

X = a COs(coi^ + ei + e),

where
02 sinS

Oi^ + a2- + 2aia2 cos5, tane
«! + 02 cos5'

5 = (coo — coi)^ -|- eo — ei.
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It can be shown that this represents a simple harmonic

motion only when C02 = ^ o}\.

The formulae can be interpreted geometrically by Fig. 22

as in Art. 78. But as in the present case the angle 5, and

consequently the quantities a and e in the expression for x,

vary with the time, the parallelogram OP1PP2 while having

constant sides has variable angles and changes its form in the

course of the motion.

(e) Wave motion.

82. To show the connection of the present subject with

the theory of wave motion, imagine a flexible cord AB oi

which one end B is fixed, while the other A is given a sudden

Fig. 23.

jerk or transverse motion from A to C and back through A
to D, etc. (Fig. 23). The displacement given to A will, so

to speak, run along the cord, travelling from A to B and

producing a wave, while any particular point of the cord
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has approximately a rectilinear motion at right angles to AB.

The figure exhibits the successive stages of the motion up to

the time when a complete wave A'K has been produced.

The distance A'K = \ is called the length of the wave.

Let T be the time in which the motion spreads from A' to

K, that is, the time of a complete vibration of the point A,

from A to C, back to D, and back again to A ; then

T

is called the velocity of propagation of the wave.

83. Suppose now that the vibration of ^ is a simple har-

monic motion, say y = a smcot. As the time of vibration

of A is T we must have w = 27r/T', and hence

27r
CO = — V .

X

If we assume that the vibrations of the successive points of

the cord differ from the motion of A only in phase, the dis-

placements of all points of the cord at any time t can be

represented by
y = a sm{wt — e),

where e varies from to 27r as we pass from A' to K.

If we further assume that the phase-angle e of any point

of the cord is proportional to the distance x of the point from

A' we have e = kx, or since e = 27r for x = X:

2t
e = -x.

Substituting the values of co and e we find

2x
y = a sm ^

(Vt - x) (9)

The assumptions here made can be regarded as roughly
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suggested by the experiment of Art. 82 or similar observa-

tions. The motion represented by the final equation (9) may

be called simple harmonic wave motion.

84. To understand the full meaning of the equation (9) it

should be observed that, as (in accordance with the assump-

tions of Art. 83) the quantities a, X, V are regarded as

constant, the displacement ?/ is a function of the two variables

t and X.

If t be given a particular value h, equation (9) represents

the displacements of all points of the cord at the time h.

The substitution for x oi x -\- n\, where n is any positive or

negative integer, changes the angle (2x/X) {Vt — x) by 2x71

and hence leaves y unchanged. This means that the dis-

placements of all points whose distances from A differ by

whole wave-lengths are the same; in other words, the state

of motion at any instant is given by a series of equal waves.

If, on the other hand, we assign a particular value Xi to x

and let t vary, the equation represents the rectilinear vibra-

tion of the point whose abscissa is Xi. By substituting for t

the value t + nT = t -^ nK/V, the angle (27r/X)(F^ - x) is

again changed by 2Tn, so that y remains unchanged. This

shows the periodicity of the motion of any point.

85. It may be well to state once more, and as briefly as possible,

the fundamental assumptions that underlie the important formula (9);

The idea of simple harmonic wave motion implies that the dis-

placement y should be a periodic function of x and t such as to fulfil

the following conditions: y must assume the same value (a) when x

is changed to x + nX, (h) when t is changed to t + nT, (c) when both

changes are made simultaneously; the constants X and T being con-

nected by the relation X = VT.
The condition {c) rociuires y to be of the form y = f{Vt — x); for

Vt — X remains unchanged when x is replaced by x + nX and at the

same time ^ by ^ + nT.

6
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A particular case of such a function is y = a sinc(T'/ — x). As

y should remain unchanged when t is replaced by I + T, we must

have c = 2ir/FT = 27r/X. Thus the function

y = a sin "";^ {Vt — x)

fulfils the three conditions (a), (b), (c).

Putting 2irxJ\ = — 6 we have

y = a sinl'^^ t +eY

The importance of this particular solution of our problem lies in

the fact that, according to Fourier's theorem, any single-valued periodic

function of period T can be expanded, between definite limits of the

variable, in a series of the form:

fit) = ao + ai sin (-^-t + eij + 02 sin f ^ 2/ -|- €2
j

+ Ui sin (-1, Zt + i3 ) +

.

As applied to the theory of wave motion this means that any wave

motion, however complex, can be regarded as made up of a series of

superposed simple harmonic wave motions of periods T, \T, \T, . . .,

or since T = X/V, of wave-lengths X, IX, |X, .... For, if the point

A (Fig. 23) be subjected simultaneously to more than one simple

harmonic motion, the displacements resulting from each can be added

algebraically, thus forming a compound wave which can readily be

traced by first tracing the component waves and then adding their

ordinates.

The motion due to the superposition of two or more simple harmonic

waves may be called compound harmonic irave motion.

86. Exercises.

(1) Trace the wave produced by the superposition of two simple

harmonic wave motions in the same line of equal amplitudes, the

periods being as 2 : 1, (a) when they do not differ in phase, (6) when

their epochs differ bj^ 7/16 of the period.

(2) In the problem of Art. 81, determine the maximum and mini-

mum of the resulting amplitude a and show that the number of maxima
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per second is equal to the difference of the number of vibrations per

second.

(f) Curvilinear compound harmonic motion.

87. An important and typical case is the motion of a point

P whose acceleration j is directed toward a fixed center
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along the axis Ox, about 0, while this axis itself has a simple

harmonic motion of the same period about along the axis

Oy.

Each of the two equations is readily integrated, and by

eliminating t it is found that the path is an ellipse, with

as center. See Arts. 298-302.

88. To corn-pound any number of simple harmonic motions not in the

same line observe that the projection of a simple harmonic motion on

any hne is again a simple harmonic motion of the same period and

phase and with an amplitude equal to the projection of the original

amplitude.

For the sake of simplicity we confine ourselves to the case of motions

in the same plane and with the same center 0. Projecting all the

simple harmonic motions on two rectangular axes Ox, Oy, we can, by

Arts. 77, 79, compound the components in each axis; it then only re-

mains to find the resultant of the two motions along Ox and Oy.

89. Just as in Arts. 77, 81, we must distinguish two cases: (o) When
the given motions have all the same period, and (6) when they have not.

In the former case, by Art. 77, the two components along Ox and

Oy will have equal periods, i. e. they will be of the form

X = a coscot, y = b cos(wt + 5).

The path of the resulting motion is obtained by eliminating t be-

tween these equations. We have

cosut cos5 — sinut sin6

^-cos5- Jl-^^
a \ a^

Writing this equation in the form

-?- C085 + f,
= sin^S, (10)

ab b^

11 cos^S / sinS \2
see that it represents an ellipse (since ^

^
'

1,2
~

2i,f
~

\ fT )
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is positive) whose center is at the origin. The resultant motion is

therefore called elliptic harmonic motion.

We have thus the general result that any number of simple harmonic

motions of the same -period and in the same plane, whatever may be their

directions, amplitudes, and phases, cornpoiutd into a single elliptic har-

monic motion.

90. A few particular cases may be noticed. The equation (10) will

represent a (double) straight line, and hence the elliptic vibration will

degenerate into a simple harmonic vibration, whenever sin^S = 0, i. e.

when 8 = nir, where n is a positive or negative integer. In this case

cos5 is + 1 or —1, and (10) reduces to

and to

'^ = 0, if 5 = 27mr,

- + ' = 0, if 5 = (2/« + 1)^.
a b

Thus two rectangular vibrations of the same period compound into

a simple harmonic vibration when they differ in phase by an integral

multiple of it, that is when one lags behind the other by half a wave-

length.

Again, the ellipse (10) reduces to a circle only when cosS = 0, i. e.

6 = {2m. + l)7r/2, and in addition a = b, the co-ordinates being as-

sumed orthogonal.

Thus two rectangular vibrations of equal period and amplitude com-

pound into a circular vibration if they differ in phase by 7r/2, i. e. if

one lags behind the other by a quarter of a wave-length.

This circular harmonic motion is evidently nothing but uniform

motion in a circle; and we have seen in Art. 73 that, conversely, uniform

circular motion can be resolved into two rectangular simple harmonic

vibrations of equal period and amplitude, but differing in phase by ir/2.

91. It remains to consider the case when the given simple harmonic

motions do not all have the same period. It follows from Art. 81

that in this case, if we again project the given motions on two rec-

tangular axes Ox, Oy, the resulting motions along Ox, Oy are in general

not simple harmonic.

The elimination of t between the expressions for x and y may present

difficulties. But, of course, the curve can always be traced by points,

graphically.
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We shall here consider only the case when the motions along Ox

and Oy are simple harmonic.

92. If two simple harmonic motions along the rectangular directions

Ox, Oy, viz.:

X = ai cos(wi< + ei), y = 02 cos(co2< + €2),

of different amplitudes, phases, and periods are to be compounded, the

resulting motion will be confined within a rectangle whose sides are

2ai, 2a;, since these are the maximum values of 2x and 2y.

The path of the moving point will be a closed curve only when the

quotient C02/C01 = Ti/T-, is a rational number, say = 7n/?i, where m
is prime to n. The x co-ordinate of the curve will have m maxima, the

y co-ordinate n, and the whole curve will be traversed after m vibrations

along Ox and n along Oy.

The formation of the resulting curve will best be understood from

the following example.

93. Let fli = a2 = a, «i = 0, €2 = 5, and let the ratio of the periods

be T1IT2 = 2/1. The equations of the component simple harmonic

vibrations are

X = a coswt, y = a cos(2a)i -\- 8).

Here it is easy to eliminate t. We have

y = a cos2co< cos5 — a sm2wt sinS

2 ' , — 1 ) cos5 — 2a - \1 — -
, sinS.

a^ J a \ a'

Hence the equation of the path is:

ay = (2z' — a^) cos5 — 2x Va- — x^ sinS.

If there be no difference of phase between the components, i. e. if

5=0, this reduces to the equation of a parabola:

x^ = ia(y -f- a).

For 5 = ir/2, the equation also assumes a simple form:

(j2y2 — 4^2 (a2 _ 2;2)_

94. It is instructive to trace the resulting curves for a given ratio

of periods and for a series of successive differences of phase {Lissajous's

Curves)

.

Thus in Fig. 25, the curve for TJTo = H, and for a phase differ-

ence 5 = is the heavily drawn curve, while the dotted curve repre-
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sents the path for the same ratio of the periods when the phase difference

is one-twelfth of the smaller period. The equations of the components

are for the heavy cm-ve

X = D cos /, y = o cos ~~.~ t,

and for the dotted curve

„ / 2x 27r V 2x
X = 6 cos ( ^ / + ^.^

1
, 2/

= 5 cos— /.

In tracing these curves, imagine the simple harmonic motions re-

placed by the corresponding uniform circular motions (Fig. 25).

E^
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The first point of the heavily drawn curve corresponds to < = 0,

that is X = Q, y = 5; this gives the upper right-hand corner of the

rectangle. The next point is the intersection of the vertical line through

D and the horizontal line through E, the arcs BD = 1/12 of the circle

over AB, and CE = 1/16 of that over AC being described in the same

time, so that the co-ordinates of the corresponding point are

a; = 6 cos
(^y '

12 )
" ^ ^^^

V"" ' 1 2)

'

2/ = 5co3("f:.^)=5eos(2..^).
Similarly the next point

X = 6 cos f 27r • ^ j , ?/ = 5 cos f 2jr •

y'Jv j

is found from the next two points of division on the circles, etc.

To construct the dotted curve, it is only necessary to begin on the

circle over AB with D as first point of division,

95. Exercises.

(1) With the data of Art. 94 construct the curves for phase differ •

ences of 2/12, 3/12, . . . 11/12 of the smaller period.

(2) Construct the curves (Art. 93)

X = a coscoi, y = a cos(2cof -|- 5)

for 5=0, 7r/4, 7r/2, 37r/4, TT, Bx/i, 3w/2, 77r/4, 27r.

(3) Trace the path of a point subjected to two circular vibrations

of the same amplitude, but differing in period: (a) when the sense is

the same; (b) when it is opposite.

(g) Central motion.

96. The motion of a point P is called central if the direction

of the acceleration always passes through a fixed point 0.

It will here be assumed, in addition, that the magnitude of

the acceleration is a function of the distance OP = r alone, say

i = f(r).

The fixed point is in this case usually regarded as the

seat of an attractive or repulsive force producing the accelera-

tion, and is therefore called the center of force.
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Harmonic motion as discussed in Art. 71 sq. is a special

case of central motion, viz. the case in which the acceleration

j is directly proportional to the distance from the fixed center

0, i. e. J{r) = )Lir; see Art. 87.

Another very important particular case is that of Newton's

law, i. e. f(r) — n/r-; this will be discussed below, Arts.

109-112.

97. Any central motion is fully determined if in addition

to the form of the function f(r) we know the " initial condi-

tions," say the initial distance OPo = ro (Fig. 26) and the

Fig. 26.

initial velocity Vo of the point at the time ^ = 0. As Vo must

be given both in magnitude and direction, the angle \po be-

tween ro and vo must be known.

It is evident, geometrically, that the motion is confined

to the plane determined by and Vo since the acceleration

always lies in this plane. Hence, any central motion, what-

ever may be the law of acceleration, is a plane motion.

98. Another fundamental property is that in any central

motion, whatever the law of acceleration, the sectorial velocity

is constant. This is most readily proved by taking the center

as origin for polar co-ordinates r, d. As by the definition

of central motion (Art. 96) the acceleration j is directed
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along the radius vector OP = r drawn from the center to

the moving point P, the component je of the acceleration,

at right angles to the radius vector, is always zero. We have

therefore by the l9.st of the equations of Art. 55

:

whence - -X

'

r'f = ^. (11)

where c is the constant of integration. By Art. 47 this

equation means that the sectorial velocity is constant and

equal to ic.

99. Let S be the sector PoOP described by the radius

vector r in the time t, so that dS = h'-dd is the elementary

sector described in the element of time dt. Then (11) can

be written

dS _ 1

_ dt ~ '''

whence integrating, since S = ior t = 0:

S = id.

This shows that the sector is proportional to the time in which

it is described, which is merely another way of stating that the

sectorial velocity is constant.

It can be shown conversely, by reversing the steps of the

above argument, that if in a plane motion the areas swept

out by the radius vector drawn from a fixed point of the plane

are proportional to the time, the acceleration must constantly

pass through that point

It is well known that Kepler had found by a careful exami-

nation of the observations available to him that the orbits

described by the planets are plane curves, and the sector described
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by the radius vector drawn from the sun to any planet is pro-

portional to the time in which it is described. This constitutes

Kepler's first law of planetary motion.

He concluded from it that the acceleration must constantly-

pass through the sun.

100. To express the value of the constant of integration c

in terms of the given initial conditions (Art. 97), i. e. by

means of ro, Vo, \l/o, observe that at any time t

^dd rdd ds . ,

c = r^-r- = r- -T- • TT — f smi/"?;;
dt ds at

hence at the time t = we have

c = voro sini/'o.

Denoting l^y po and p the perpendiculars let fall from

on Vo and v we have ro sim/^o = pa, r sinij/ = p; hence

c = poVo = pv,

i. e. the velocity at any tim£ is inversely proportional to its

distance from the center.

101. Let us now assume that the acceleration j of a central

motion is a given function, f(r), of the radius vector OP = r

drawn from the center to the moving point P. With

as origin, let x, y be the rectangular cartesian co-ordinates

of the moving point P, and r, d its polar co-ordinates, at any

time t. Then cos0 = xjr, m\Q = y/r are the direction cosines

of OP = r, and, therefore, those of the acceleration j, pro-

vided the sense of j be away from the center, i. e. provided the

force causing the acceleration be repulsive. In the case of

attraction, the direction cosines of j are of course — x/r, — y/r.

Thus the equations of motion are in the case of attraction

:

x=-f(r)f, y=^-f{r)f. (12)
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For repulsion, it would only be necessary to change the

sign of /(rj.

To integrate the equations (12) we cannot, in general, treat

each equation by itself; for, as r == '\x^ + y'^, each equation

contains three variables x, y, t. We must therefore try to

combine the equations so as to form integrable combinations.

102. Let us first multiply the equations (12) by y, x and

subtract; the right-hand member of the resulting equation is

zero, while the left-hand member is an exact derivative:

xy - yx ^-^{xy - yx) = 0.

Integrating we find xy — yx = c, or in polar co-ordinates

r^'d = c,

which is the equation (11) of Art. 98.

103. Next multiply the equations (12) by x, y and add;

the left-hand member of the resulting equation is

ix + yy = ^a^-^m=^h^;

the right-hand member becomes

-i^ixi + yy) = -^-y-^Ux' + y') -

The resulting equation

div^ = - f{r)dr (13)

gives

^2 _ ^,^2 = _ rf{r)dr', (14)

i. e. it determines the velocity as a function of r.
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104. The two methods of combining the differential equa-

tions of motion (12) used in Arts. 102 and 103 are known,

respectively, as the principle of areas and the jjrinciple of

kinetic energy and work. The former name explains itself

(see Arts. 98, 99). The latter is due to the fact (to be more

fully explained in kinetics) that if equation (14) be multiplied

liy the mass of the moving body, the left-hand member will

represent the increase in kinetic energy while the right-hand

member is the work of the central force.

Each of these methods of preparing the equations of motion

for integration consists merely in combining the equations so

as to obtain an exact derivative in the left-hand member of

the resulting equation. If by this combination the rights

hand member happens to vanish or to become likewise an

exact derivative, an integration can at once be performed.

This is the case in our problem.

105. The two equations (11) and (14), each of which was

found by a first integration, are called first integrals of the

equations of motion. By combining them and integrating

again, the equation of the path is found.

We have, by the last equation of Art. 46, for any curvilinear

motion

eliminating dd/dt by means of (11) we find for any central

motion:

\dtl ^ \dt

drV
, ,

de)-^'~

+ r=
ddr

+ (15)

Substituting this expression of v- in (14) we have the dif-

ferential equation of the path in which the variables are

separable. Shorter methods may occasionally suggest them-

selves in particular cases; see, for instance, Art. 110.
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106. To solve the converse problem, viz. to find the law of

acceleration when the path is known, we have only to sub-

stitute the expression (15) of v'^ in the equation (13).

In doing this it is found convenient to introduce instead

of r its reciprocal u — 1/r, so that

{fsr-4
and to change the r-derivative of h>' to a 0-derivative since

r, and hence u, is now a given function of 6. As du/dr =

.. . _ c^
J. 2 _ ^^^" ^^^ — 4j1^ ^^ ^^

•'^^^ ~ ~
dr^^' ~ ~

~dd dr~ ~
dd dudr

_ ,^dd d
^ ^ _ ^ ^dd / du d'hi du

^ "" dadd'^'^ ~ ^'''* dM\dddd'^ ""dd-

hence

Kr) = c^w^(^^ + t.). (16)

This important relation can also be obtained directly from

the equations of motion in polar co-ordinates which are

(see Art. 55)

f - rd^ = - f{r), ^ 4r(r4) = 0.

For, with r — 1/w we have since the second equation gives

(11):

dr c dr du .. dhi : . Su
' = de^^r^de^-'W '=-'de'^^ = -'''de-^'

substituting these values in the first equation we find (16).

107. Kepler in his second law had cstal)lished the empirical

fact that the orbits of the planets are ellipses, with the sun at

one of the foci.
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From this Newton concluded that the law of acceleration

must be that of the inverse square of the distance from the

sun. Our equation (16) enables us to draw this conclusion.

The polar equation of an ellipse referred to focus and major

axis is

r = -— -, I.e. u=Y + rCosd,
1 + e cos^ I I

where I = h^/a = a(l — e^); a, b being the semi-axes, I the

semi-latus rectum, and e the eccentricity. Hence

d~u e „ dhi
,

1
.

so that we find
p2, pi 1

108. The third law of Kepler, found by him likewise as an

empirical fact, asserts that the squares of the periodic times of

different -planets are as the cubes of the major axes of Iheir orbits.

From this fact Newton drew the conclusion that in the

law of acceleration,

the constant n has the same value for all the planets.

Our formulse show this as follows. Let T be the periodic

time of any planet, i. e. the time of describing an ellipse whose

semi-axes are a, b. Then, since the sector described in the

time T is the area irab of the whole ellipse, we have by Art. 99

-wab = icT.

Substituting in (17) the value of c found from this equation

we have
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Hence

is constant by Kepler's third law,

109. Planetary motion in its simplest form is that particular case

of aentral motion in which the acceleration is inversely proportional

to the square of the distance from the center so that

where m is a constant, viz., the acceleration at the distance r = 1

from 0.

The equations of motion (12) are in this case, with O as origin,

df= - ^r^' d^^ ~''r'y
(^^)

Combining these by the principle of energy (Arts. 103, 104), we find

Integrating the differential equation d^v- = — (jj.lr'^)dr we find

lj,2_^j,.2=if _if
. (19)

r ro

110. To find the equation of the path, or orbit, write the equations

(IS) in the form

X = — -„ cos9, ij = — „ sin9
r- r-

and eliminate r^ by means of (11):

X = - - cose -e, y = - - sine • d.
c c

Each of these equations can be integrated by itself:

X -V, = - :^ sine, ij - V, =^ (cose - 1), (20)

where vi, V2 are the components of the velocity when e = 0.



112.] CURVILINEAR MOTION OF A POINT 81

Multiplying by y, x, subtracting, and integrating, we find by Art.

102:

i~-Vi\x + Viy-\-c=-~{x cose + y amd) = ~ Vx^ + y"". (21)

111. The geometrical meaning of this equation is that the radius

vector r = Vx"^ + y~ drawn from the fixed point to the moving

point P is proportional to the distance of P from the fixed straight line

{j-^
- v^Yx + viy + c = Q. (22)

It represents, therefore, a conic section having O for a focus and the

line (22) for the corresponding directrix.

The character of the conic depends on the absolute value of the

ratio of the radius vector to the distance from the directrix; according

as this ratio

.S'(^ --)'+».'.

is < 1. = 1, or > 1, the conic will be an ellpise, a parabola, or a hyper-

bola. This criterion can be simplified. Multiplying by njc and

squaring, we have

or since v^ + vn} — vi and c = nvo sin>/'o = rav^:

t;o2^-''.1 (23)

112^ If polar co-ordinates be introduced in (21), the equation of

the orbit assumes the form

1 =M + fL^_ii')cos0--'6in5,
T & \ C C-' ) C

or putting {cv^ — ii)lc^ = C cosa, th/c = C sina,

1 = -^ + C cos(9 + a). (24)
r c^

This equation might have been obtained dhectly by integrating

(16), which in our case, with/(r-) = iJi/r-, reduces to

^^ 1 , 1 ^ M .

dm r^ r c^
'



82 KINEMATICS (113.

the general integral of this differential equation is of the focm (24),

C and a being the constants of integration.

Equation (24) represents a conic section referred to the focus as

origin and a line making an angle a. with the focal axis as polar axis.

113. Exercises.

(1) A point moves in a circle; if the acceleration be constant in direc-

tion, what is its magnitude?

(2) A point describes a circle; if the acceleration be constantly

directed towards the center, what is its magnitude?

(3) A point has a central acceleration proportional to the distance

from the center and directed away from the center; find the equation

of the path.

(4) A point P is subject to two accelerations, ^^ - 0\P directed

toward the fixed point 0\, and ^t^ o^P directed awaj^ from the fixed

point O2. Show that its path is a parabola.

(5) A point P describes an ellipse owing to a central acceleration

^(') = i"/^^ directed toward the focus S. Its initial velocity i^o makes

an angle yp^ with the initial radius vector Td. Determine the semi-axes

a, h of the ellipse in magnitude and position.

(6) Find the law of acceleration when the equation of the orbit is

j.n = 5''/(l 4- e cosnO), e being positive, and investigate the particular

cases n = I, n = 2, n = — 1, 71 = — 2.

(7) Find the law of the central acceleration directed to the origin

under whose action a point will describe the following curves: (a) the

spiral of Archimedes r = ad; (6) the hyperbolic spiral Or = a; (c) the

logarithmic or equiangular spiral r = ae"^; (d) the curve r = a cosnd.

(8) A point moves in a circle and has its acceleration directed

towards a point on the circumference. Find the law of acceleration.

(9) The acceleration of a point is perpendicular to a given plane and

inversely proportional to the cube of the distance from the plane.

Determine its motion.

(10) A point moves in a semi-ellipse with an acceleration perpen-

dicular to the axis joining the ends of the semi-ellipse. Determine

the law of acceleration and the velocity.



CHAPTER IV.

VELOCITIES IN THE RIGID BODY.

1. Geometrical discussion.

114. The velocities of the various points of a rigid body,

at any instant, are in general different, both in magnitude

and direction; i. e. they are different vectors; but they are

not independent of each other

In particular, it is clearly possible (i. e. compatible with

the rigidity of the body) that the velocities of all points, at

the given instant, are equal vectors. The instantaneous

state of motion of the body is then called a translation; it is

fully determined by the velocity vector of an}^ one point of

the body, and this is called the velocity of translatio7i, or

linear velocity, of the body. Comp. Art. 30.

The ideas of absolute and relative velocity and of composi-

tion and resolution of velocities apply to the velocity of trans-

lation of a rigid l^ody just as they apply to the linear velocity

of a point (comp. Arts. 38, 40, 41).

115. As the position of a rigid body is fully determined by

the positions of any three of its points, Oi, O2, O3, not in a

straight line, it is clear that if any three such points have

zero velocity at any instant, all points of the body must have

zero velocity at that instant. The body is then said to be

instantaneously at rest.

It may also be regarded as geometrically obvious that if

any two points 0^, O2 of a rigid body have zero velocity, all

points of the line I joining Oi and Oj must have zero velocity

and hence (unless all points of tlie ])ody have zero velocity)

83
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the velocity of every point P of the body is normal to the

plane {I, P) and proportional to the distance of P from I

(comp. Art. 31). The instantaneous state of motion of the

body is then called a rotation; the line I is called the instan-

taneous axis of rotation; and the common factor of propor-

tionality CO of the velocities is called the angular velocity.

It is convenient to think of the rotation as represented

geometrically by a vector of length w, laid off on the axis

of rotation /, in a sense such that the rotation appears counter-

clockwise as seen from the arrowhead of the vector (Fig. 5,

Art. 31). Such a vector confined to a definite straight line is

called a localized vector, or rotor. The rotor co fully char-

acterizes the instantaneous state of motion of the body since

the velocity of every point of the body can be found from it

as we shall see in Art. 118.

116. The instantaneous state of motion of a rigid body one

of whose points is fixed, if not a state of rest, is a rotation.

For, it can be shown that if one point of the body has

zero velocity there exists a line I through all of whose points

have zero velocity. An analytical proof is given in Art. 128.

Geometrically the proposition can be proved as follows.

Observe first that in any motion of a rigid line the velocities

of all points of the line must have equal projections on the line;

this follows directly from the rigidity of the line. Hence

if the velocity of any point of the line is normal to the line

or zero the velocities of all points of the line must be either

normal to the line or zero.

Now consider a rigid body of which one point has zero

velocity, and let Pi, P^ be any tw^o points of the body, not

in line with 0. The velocities of Pi, P2 must be normal to

OPi, OP2, respectively. If the velocity of either of these

points were zero, the line joining this point to would be
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the required axis of rotation. We assume therefore that

these velocities are both different from zero. We can also

assume that these velocities are not parallel; for if they

happened to be so we could replace one of the two points

by a point whose velocity is not parallel to those of Pj and P^]

otherwise the motion would be a translation which is im-

possible for a body with a fixed point.

It follows that the planes through Pi, Po, normal respec-

tively to the velocities of Pi, P2, must intersect in a line I

which of course passes through 0; this line I is the axis of

rotation. For, any point P of I must have a velocity normal

to PO, and at the same time normal to both PPi and PP2;

this means that the velocity of P is zero.

117. Composition of intersecting rotors. A rigid body C
may have, at a given instant, an angular velocity w, about

an axis li, while the body of reference B to which li belongs

rotates at the same instant with angular velocity C02 about

an axis h belonging to a fixed body A. We then say that,

with respect to A, the body C has the simultaneous angular

velocities wi about U and coo about h.

If the axes U, k intersect, say at 0, the instantaneous motion

of C with respect to A is a rotation about an axis I passing

through such that

sinlj. _ smlh _ sinZiZ2

002 COi CO

with an angular velocity

CO = VcOi^ + C02^ -|- 2c0lC02 COSZ1Z2.

This proposition, known as the parallelogram of angular

velocities, means simply that two simultaneous angular

velocities coi, coo, al)out intersecting axes h, k, are together



y
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0, — coyo;; and co, gives — ui,y,w,x, 0. Adding the components

having the same direction, we find

WijZ — co^y, Vy = oiz^ — <^xZ, v. <^xy (jOyX.

119. By Art. 115, the velocity y of P (Fig. 28) is normal to

the plane (I, P) and equal to wCP, where C is the foot of

the perpendicular let fall from P on

I. Putting OP - r, 4 COP = (/>, so

that CP = r sin</), we find

V = oor sin^.

This is numerically equal to the area

of the parallelogram constructed on

the vectors co and r.

In vector analysis the area of the

parallelogram of any two vectors a,

b is represented by a vector c, of

magnitude c ^ ah sin</) (<^ being the

angle between a and h), drawn at

right angles to both a and h, in such

a sense that a, h, c form a right-handed set. This vector

c is called the cross-product (vector product, external pro-

duct) of a and b and is denoted by aXb (read a cross b).

It then appears that the linear velocity v of P in our case

(Art. 118) is the cross-product of the angular velocity co into

the radius vector r of P:

V = oj X r.

If the components of a, h, c with respect to rectangular

axes are denoted l)y subscripts x, y, z, it is shown in vector

analysis that

Fig. 28.

tty&z — aj)y, Cy = O^bx — Oj):, C; = axb y — O -JOx-
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This means that the vector equation v = co X r is equivalent

to the last three equations of Art. 118.

120. The most general instantaneous state of motion of a

rigid body consists of a simidtaneous rotation and translation.

For, whatever the state of motion, if we impose on the whole

body a velocity of translation — u equal and opposite to the

linear velocity u of any one of its points 0, so as to reduce

the velocity of to zero, we have a body in a state of rotation

(Art. 116). Hence the state of motion of a rigid body can

always be regarded as consisting of a velocity of translation

u equal to the velocity of any one of its points 0, together

with an angular velocity co about an axis I through 0.

121. The composition of parallel rotors can be regarded

as a limiting case of that of intersecting rotors (Art. 117);

but it is best to prove

the corresponding form-

ulae directly. Angular ve-

locities about parallel

axes occur, in particular,

in the case of jplane mo-

tion of a rigid body (see Art. 132).

Consider a body turning with angular velocity oji about

an axis Zi (passing through the point Li, Fig. 29, at right

angles to the plane of this figure) and at the same time with

angular velocity co2 about an axis h (through L2) parallel to h.

Any point P of the body receives from wi a linear velocity

coiri perpendicular to LiP and from C02 a linear velocity co2r2

perpendicular to L^P; the resultant of these two is the total

velocity of P. The two components wiri and wor2 fall into

the same straight line only for points in the plane {hU), and

their resultant will be zero only for those points of this plane

which divide the distance between Zi and k in the inverse

Fig. 29.
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ratio of oji and co9. In other words, the points of zero velocity

lie on a straight line I, parallel to h and k, in the plane (hh),

so situated that if L be its intersection with L1L2, we have

0)1- LiL = 0^2' LLo.

.To find the angular velocity w of the rotation about I

consider a particular point, for instance Lo ; its linear velocity

being due entirely to wi about h is = ui-LiL^, but it can

also be regarded as clue to w about /; hence

OJy L1L2 = U-LLo-

These two relations give

1j\Li LtLi2 Lj\1j2

CO2 COi CO '

and as LiL + LL2 = L1L2, we also have

CO = COi + CO2.

Thus, the resultant of two angular velocities coi, C02 about

'parallel axes h, U is an angular velocity 00 equal to their algebraic

sum, CO = coi + C02, about a parallel axis I that divides the

distance between U^Uin the inverse ratio o/co] and C02. The only

exceptional case, viz. when coi + C02 = 0, is discussed in Art.

122.

Conversely, an angular velocity co about an axis I can always

be replaced by two angular velocities coi, C02 whose sum is equal

to oj and whose axes Zi, I2 are parallel to I and so selected that I

divides the distance between li, k inversely as coi is to C02.

122. The resulting axis lies between Li and Lo when the

components coi, coo have the same sense; when they are of

opposite sense, it lies without, on the side of the greater one

of these components.

If coi and C02 are equal and opposite, say coi = co, coj = -co,

the resulting axis would lie at infinity. Two such equal and
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opposite angular velocities about parallel axes are said to

form a rotor-couple; its effect on the rigid body is that of a

velocity of translation v = LiL^-co = p-u at right angles to

the plane of the axes. The distance of the rotors, L1L2

= p, is called the arm of the couple, and the product pco = v

its moment.

A velocity of translation v can therefore always be re-

placed by a rotor-couple of moment pw = v, whose axes

have the distance p and lie in a plane at right angles to v.

Again, an angular velocity co about an axis I can be re-

placed by an equal angular velocity co about a parallel

axis V at the distance p from I, in combination with a velocity

of translation v ^ oop at right angles to the plane deter-

mined by I and V.

It easily follows from these propositions that the resul-

tant of any number of velocities of translation v, v', • • •
,
yjor-

allel to the same plane, and any number of angular velocities

CO, cjo', • • • about axes perpendicular to this plane is always a

single angular velocity about an axis perpendicular to the plane

or a single velocity of translation parallel to the plane.

123. We are now prepared to represent in the most

simple form the most general state of motion of a rigid body.

We saw in Art. 120 that it can be represented by the linear

velocity u of any point of the body, together vvith an

angular velocity co about an axis I through 0.

Let us resolve ti into Wo along I and Ui at right angles to

I (Fig. 30). In the plane through I, perpendicular to Ui, we

can always (if Wi 4= 0) find a line ?o parallel to I at a distance p

from I such that 2^co = — Ui; this line U is called the central

axis.

If we apply to the body equal and opposite angular veloci-

ties CO, — CO about U, the body can be regarded as having
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I

the angular velocity co about ^o and the linear velocity Wo

along U; for, the rotor couple formed by co about I and — co

about la is, by Art. 122, equivalent to a velocity of trans-

lation pco equal and opposite to Wi

(comp. Art. 225).

The combination of an angular ve-

locity with a linear velocity along the

axis of rotation is called a twist, or in-

stantaneous screw motion. Thus, the

state of motion of a rigid body at any

instant is a twist about the central axis;

it may, in particular, reduce to a mere '^

rotation, or to a translation, or to a

state of instantaneous rest.

If, as in Art. 120, we select an ar-

bitrary point of the body as origin

of reduction, we obtain a rotor co

through and a vector u inclined to

CO at a certain angle. The rotors for different points are

always of the same magnitude, direction, and sense; but the

vectors u differ in general from point to point, or rather from

axis to axis. If the origin is taken on the central axis Zo,

u is parallel to U and has its least value, viz. Uq, the projec-

tion of u on Iq.

pu

Fig. 30.

2. Analytical discussion.

124. In studying the motion of a rigid body analytically

it is convenient to use two rectangular co-ordinate systems

(Fig. 31), one Oxijz fixed in space, the other OiXiyiZi fixed

in the body and moving with it. The co-ordinates Xi, yi,

Z\ of any point P of the body with respect to the moving

trihedral are then constant with respect to time, while the
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co-ordinates x, w, z of the same point P with respect to the

fixed trihedral are functions of the time. It is assumed

throughout that these functions possess first and second

derivatives with respect to t.

The position of the moving trihedral at any instant is

given by the co-ordinates a:o, 2/o, 2o of the origin Oi and by

z
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It is well known that the 9 direction cosines are connected

by 6 independent relations which can be written in either

one of the equivalent forms

Oi^ + bi^ + Ci^ = 1, 0203 + 6263 + C2C3 = 0,

02' + hoj + 02^ = L 0301 + 6361 + C3C1 = 0, (2)

03" + &3" + C3- = 1, aia2 + 6162 + C1C2 = 0.

or

«r + ^2" + 03- = 1, 61C1 + 62C2 + 63^3 = 0,

&r + 62' + 632 = 1, cioi + c^ao + C303 = 0, (2')

Ci^ + C2- -\- C3~ = 1, 0161 + O262 + 0363 =

The meaning of these equations readily appears from the

meaning of the angles involved. Thus, the first equation

expresses the fact that Oi, 61, Ci are the direction cosines of a

line, viz. the axis OiXi; the last equation expresses the per-

pendicularity of the axes Ox, Oy; and similarly for the others.

In mechanics, the two trihedrals are generally taken as

both right-handed (or both left-handed) so that they can

be brought to coincidence. It is known that then the deter-

minant of the direction cosines is = -]- 1 (and not — 1)

126. Differentiating the fundamental equations (1) with

respect to the time t, we find for the compofients of the velocity

of any point P of the rigid body alo7ig the fixed axes:

X = xo -\- (hX) + (hyi + (hZi,

y = yo + b^Xi + b-.yi + bsZi, (3)

i = io + CiXi -f c->yi -f- 6-32:1.

Notice m particular that if the motion of the body is a

translation, the direction cosines of the moving axes arc con-

stant so that di, • • • C3 arc zero; all points of the body have
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then the same velocity (i;o, yo, zq). Again if the point Oi

of the body is fixed, Xq, yo, Zq are zero, and the velocity com-

ponents are linear liomogeneous functions of Xi, yi, Zi.

127. The velocity of any point P of the bod}- relative to

the ijoint Oi has along the fixed axes the components:

X — ±0 = diXi + d2?/i + ('s^i,

y - yo = fei.Ti + JMji + 6321,

i — io = ciXi + c-iiji + i'zZi.

To find the components along the moving axes of this same

relative velocity of P we have only to project the components

along the fixed axes on the moving axes, which is readily done

by means of the scheme of direction cosines in Art. 124. The

resulting expressions

(aidi + 6161 + CiCi)xi + {aid2 + biL + CiCo)?/!

+ (aids + 61&3 + CiCsjZi,

(Oidi + 62^1 + C2Ci)xi + (0002 + 62^2 + c-2C2)yi

+ (fl2d3 + &2^3 + CoCs)^!,

(Osdl + fesi*! + C3Cl)Xl + (0302 + hh + CsCo)//!

+ («3d3 + bshs + CsCs)^!

can be simplified very much l)y means of the identities (2)

which give upon differentiation with respect to t:

difli + bihi + CiCi = 0,

0202 + ^2^2 + <^2C2 = 0,

d3a3 + hsbs + C3C3 = 0, .^^

d2a3 + 62^3 + C2C3 = — ,(o2d3 + hobs + C2C3),

dsOi + ^3^1 + (Vi = — («3di + bzbi + C3C1),

dia2 + ^1^2 + C1C2 = — (aid2 + 6162 + C1C2).

Denoting, for the sake of brevity, the left-hand members of

the last three equations by coi, un, 0^3 (we shall find very soon

that these are precisely the components along the moving
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axes of the rotor w) we find for the cotnjjonents along the

moving axes of the velocity of P relative to Oi, the simple ex-

pressions

iC'zZi — wziji, cosXi — wiZi, coiiji — 0022:1,

which agree (considering our present notation) with the

values found in Art. 118.

128. The locus of those points of the body whose velocity

relative to Oi is zero is given by

cooSi — CO32/1 = 0, cosXi — oji^i = 0, a)i2/i — co2a;i = 0,

i. e. by
Xi ^ yi ^ Zi

COi CO2 0)3

This is a straight line I through Oi whose direction cosines are

proportional to coi, W2, 003. Hence the motion of the body

relative to Oi is a rotation about the line I.

To see that ui, 0)2, C03 are the angular velocities about the

axes OiXi, Oiyi, OiZ\, respectively, take Oi as origin and the

line I as axis OiZi] then the velocity of any point in the Xiyi-

plane has the components — (^^yi, oo^Xi, 0; i. e. (Art. 48,

Ex. 1) W3 is the angular velocity about OiZi; similarly for coi,

Wo. Cornp. Art. 118. By Art. 117, the three angular velocities

coi, aj2, W3 about OiXi, Oiyi, OiZi are together equivalent to the

single angular velocity a? = Vcoi^ + C02- + cos^ about the line

through Oi whose direction cosines are proportional to coi,

C02, C03.

129. If, as in Art. 120, we denote by u the velocity of the

point Oi and l)y Wi, Vo, V3 its components along the moving

axes, we have for the components Vi, V2, Vz of the absolute

velocity of any point P (xi, 7/1, Z}) of the body along the moving

axes:
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Vi = Ui + U2Z1 — a)3?/i,

Vo = U2 -jr 0)3^:1 — wi2i^ . (5)

vz = lis + carji — 0:2X1;

or in vector notation

V = u -{- CO X r.

On the other hand, referring the motion to the fixed axes

Ox, Oy, Oz, let Xo, jjo, Zo be (as in Arts. 125, 126) the co-

ordinates with respect to these axes of any point 0] of the

body, and let coi, o)y, Uz be the components of oj along the

fixed axes; then the components of the absolute velocity of any

point P{x, y, z) of the body along the fixed axes are

X = Xo + coy{z - Zo) - o},{y - yo),

y = yo -\- o)z{x — Xo) — o)x{z — Zo),

i = io + ojx(.y — t/o) — o:y{x — Xo).

If in these formuljfi we put a; = 0, ?/ = 0, 2; = we obtain

the components Ux, Uy, Uz (along the fixed axes) of the velocity

of the origin 0, regarded as a point of the moving body, viz.

Ux = Xo — C0y2o + Oizyo,

Uy = yo — 0)zXo + WxZo,

Uz ^ Zo — coxyo + Wy.ro.

B}^ introducing these components in the preceding formula?

we obtain for the components of the velocity v of any point P
{x, y, z) of the body along the fixed axes the simple expressions

Vx = X = Ux -\- ooyZ — cjzy,

Vy — y = Uy + OJzX — COxZ, (6)

Vz. = Z = Uz + 0>xy — OJyX.

Thus the velocity v is the resultant of the velocity u of

{i. e. of that point of the rigid body which at the instant

considered happens to coincide wnth the fixed origin 0) and

of the linear velocity arising from the rotation of angular
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velocity co about the line through parallel to the instan-

taneous axis.

The equations (5) and (6) are of exactly the same form;

each of these sets of equations is equivalent to the vector

relation

V = u -]r uXr]

(5) arises by projecting on the moving axes, (6) by projecting

on the fixed axes.

130. We have seen (Art. 123) that the instantaneous state

of motion of a rigid bod}' is in general a twist about the

central axis (in the exceptional case of translation this line

lies at infinity). In the course of the motion the central

axis changes its position both in space {i. e. relatively to the

fixed trihedral Oxyz) and in the body (relatively to the moving

trihedral 0\Xiy\Z-^. If the motion is continuous, the succes-

sive positions of the central axis in space will be the generators

of a ruled surface S fixed in space; and the successive posi-

tions of the central axis in the body, i. e. the various lines

of the body which in the course of time become central axes,

will be the generators of a ruled surface Si, fixed in the

body and moving with it.

At any given instant these surfaces S and Si have the

central axis corresponding to this instant in common; it can

be shown that they are in contact along this common gen-

erator, so that the motion consists in a rotation about, and

a sliding along, this generator. Two particular cases, that

of the body with a fixed point and that of plane motion,

deserve special mention.

131. Body with a fixed point. As the fixed point has

zero velocity the central axis is the instantaneous axis at 0,

and the velocity of translation is zero. The surfaces S, Si

8
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are cones with as common vertex; and the motion can be

shown to consist in the roUing of »Si over *S., This motion

will be studied more fully in Chapter XVIII.

3. Plane motion.

132. If the velocities of all points of a rigid Vjody remain

parallel to a fixed plane, the motion of the body is fully

determined by the motion of the cross-section made by

the bodj^ in this plane. This case might he regarded as

the limiting case of the motion of a body with a fixed point

as this point is removed to infinity. But it is more in-

structive to study it directly.

Taking in the plane of the motion a set of fixed axes

Ox, Oy (Fig. 32) and a set of moving axes OiXi, Oiiji we have

Fig. 32.

if .To, i/o are the co-ordinates of Oi and d is the angle between

Ox and Oi^r.

X = Xq -\- Xi cos9 — iji sin0,

y = ijo + xi sin0 + 2/i cos^.

133. Differentiating with respect to t we find for the

components along the fixed axes of the velocity v of P{xi, yi)

(xi smd + yi cos^)^ = Xo — w{y — yo),

(7)

Xq

y = i/o -\- (xi COS0 — yi sin0)^ = 2/o + w(x — Xo),
(8)
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where w = d. The velocity of Oi has the components Xq,

i/o; the velocity of P relative to Oi has the components

— oo(y — yo), ui{x — Xo), i. e. it can be regarded as due to a

rotation of angular velocity co about Oi (Art. 48, Ex. 1).

The instantaneous motion of the plane section of the body

consists therefore of a translation of velocity u{xq, yo), equal

to the velocity of Oi, and a rotation about Oi of angular

velocity co = 6.

Now, excluding the case of pure translation when

CO = 0, we can find in the plane, at any instant, a point C
of zero velocity, i. e., such that

X = Xo — u){y — ?/o) = 0, 7/ = 2/0 + o){x — Xo) = 0.

This point C, the intersection of the central axis with the

plane, is called the instantaneous center; its co-ordinates

X, y are evidently

X = Xo , y = yo-{ . (9)
CO CO

Hence, the instantaneous state of motion, in the case of 'plane

motion, is either a -pure translation or a pure rotation about

the instantaneous center.

It follows that (excepting the case of translation), at

any instant, the velocity of every point P is normal to

the radius vector CP and equal to co times CP. Conversely,

if the directions of motion of any two points Pi, P^ are known,

the instantaneous center C can in general be found as the

intersection of the perpendiculars through Pi, P^ to these

directions.

134. In ]-)lane motion the ruled surfaces aS, >Si (Art. 130)

are cylind(Ts. Instead of tlicse cylinders it suffices to

consider their curves of intersection, s, Si with the plane.

The curve s is called the j&xed, or space, centrode (path of
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the center); the curve Si which, as will be proved in Art.

135, rolls over s is called the moving, or body, centrode.

Thus any plane motion consists in the rolling of the body

centrode Sx over the space centrode s (except in the case of

translation). It is fully determined if, in addition to any

particular position of these centrodes, the angular velocity

0} is given as a function of the time.

The equation of the space centrode, referred to the fixed

axes, is found by eliminating t between the equations (9).

That of the body centrode, i. e. of the locus of those points

of the moving figure which in the course of the motion

become instantaneous centers, must be referred to the

moving axes OiXi, Oiyi. Substituting in (7) for x, y the

values (9) and solving for Xi, yi we find the co-ordinates

Xi, y\ of the instantaneous center with respect to the moving

axes:

Xi = —(xo sin0 — vo cos9),

1
(10)

yi = (.to COS0 + yo sin5)
;

CO

the elimination of t gives the body centrode.

135. To prove that, as stated in Art. 134, the body cen-

trode Si rolls over the space centrode s it suffices to show that

these curves have at the instantaneous center C not only a

common point but a common tangent ; in other words, that

the slopes m, m\ of s, si at C are equal. These slopes can

be found from the equations (9) and (10). From (9) we find

by differentiating with respect to /

:

y co.ro + i^'yo — <^Xqm = ~ = ' —
X — oiijo -j- co^^o + coyo

Without loss of generahty we may, at the instant considered,
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let the moving axes coincide with the fixed axes and take the

origin at the instantaneous center so that xo, yo, Xo, yo are

zero; we then find

:

•Tom = .

yo

From (10) we find similarly

co(xo COS0 + ijo sin0) + co-(— Xo miO + ijo cos6)

^ ^Ul = -co(.tocosg + yosme)
_

Xi co(xo sine — ijo COS0) + co'^{xo cos0 + tjo sin0) '

— 6}(xq sine — 2/0 cos^)

and, taking the axes as above, since io, ijo, Q are zero:

OCo

nil =
.

2/0

Hence w = Wi, i. e. the curves s, Si have a common tangent

at the instantaneous center.

It appears, moreover, that this tangent is norrnal to the

acceleration of the instantaneous center. Thus, in the case

of a circle rolling over a straight line, where s is the line, Si

the circle, the acceleration of the point of contact is normal

to the lino.

It should be observed that the equations (9) are the

parameter equations of the fixed centrodc, the parameter

lacing t; hence the ^-derivatives .f, y, used above in forming

m, are not the components of the velocity of the instantaneous

center as a point of the moving figure (these velocities are zero),

but those of the velocity, say w, with ivhich the instantaneous

center proceeds along the curve s. Similarly the quantities

Xi, yi, used in forming nii, are the components, along the

moving axes, of the same velocity w.

136. This velocity w with which the instantaneous center

C changes its position along the centrodes s, Si is connected
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by a simple relation with the angular velocity co and the

radii of curvature p, pi of s, Si at C, viz.

w p pi'

To prove this let C (Fig. 33) be the position of the instan-

taneous center at the time /, C its position in the fixed plane

Fig. 33.

and Ci its position in the moving figure at the time t -\- At.

Then, denoting by As, Asi the equal arcs CC\ CCi, we have

as definition of w

:

,. As ,. Asi
ic = hm— = lim -—

.

A<=o At A/=o At

On the other hand, if Ad is the angle through which any line

of the figure turns in the time A^ we have

,. A9 dd
CO = inn rr = 37 •

st=oAt at

The motion that takes place in the interval At carries the



137.] VELOCITIES IN THE RIGID BODY 103

point Ci to the position C and brings the normal to Si at Ci'

to coincidence with the normal to s at C; these normals

include therefore the angle Ad. Hence if A(y?, Atpi are the

angles that these normals make with the common normal

at C we have Ad = A(p — Acpi; dividing by As = Asi and

passing to the limit we find for the left-hand member

,. Ad ,. AdAt 0}

lim — = hm — — = -
,

At=o As st=o At As w

provided lim As/At = w is 4= 0. In the right-hand member,

the limits of AipjAs and A^fijAsi are clearly the curvatures

of s and Si at C; hence

CO ^ 1 _ 1^

w p pi
*

It is easily seen that this formula holds even when the

centers of curvature lie on opposite sides of the tangent,

provided we take pi then negative. The counterclockwise

sense of co is taken as positive, and id is taken positive if the

normal at C turns counterclockwise in passing to its new

position through C
137. Exercises.

(1) A plane figure moves in Us plane so that two of its points A, B
(Fig. 34) move along two perpendicular straight lines Ox, Oy.

By Art. 133, the instantaneous center C is found as the intersection

of the perpendiculars at A to Ox and at B to Oy. As yli? is of constant

length it follows readily that the space centrode is a circle of radius

AB = 2a about 0. As OC = AB it follows that the body centrode is a

circle of diameter OC = 2a. Hence the motion can also be brought

about by the rolling of a circle of radius a within a circle of twice this

radius. Taking the midpomt Oi oi AB as origin and OiA as axis OiXi

of the set of moving axes, and denoting by </> the angle BAO, we have

for the co-ordinates of any point P{x-i, y\) of the moving figure:

X = {a -\- Xi) cos</) + ?/i sm(/),

2/ = (o — xi) sin<^ + ?/i cos(/).
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Eliminating 4> we find as equation of the path of P, referred to the

fixed axes:

f yix - (g + Xi)yY , V ViV - (a - Xi)x V ^

[{a - XiY + yi2]x2 - 402/1X2/ + [(a + x^r- + 2/i=]2/- = (xi= + 2/i' - a')'-

This is an ellipse referred to its center. Show that Oi describes a circle,

and that every point on the circle about AB as diameter describes a

Fig. 34.

straight line through 0. Show that the velocity of P is w = [o- + xx"^

+ 2/1^ — 2a(x: cos2<^ + 2/1 An24i)]h4>; hence find the velocities of B and

Oi when A moves uniformly.

(2) A 'point A of the figure moves along a fixed straight line I ivhile a

line of the figure, U, containing the point A, alioays passes through a fixed

point B (Fig. 35).

The fixed point B may be regarded as the limit of a circle which the

line li is to touch. The instantaneous center is therefore the inter-

section C of the perpendiculars erected at .A to Z and at B ioli.

The fixed centrode is a parabola whose vertex is B. To prove this

take the fixed line7 as axis Oy, the perpendicular OB to it drawn through
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the fixed point B as axis Ox. Then, putting OBA = 4> and OB = a,

we have for C:
X = a -\- y tan</), y = a tan<^,

whence x — a = y^/a, or, with B as origin and parallel axes, y"^ = ax.

The proportion y/x — a/y also follows directly from the similar triangles

BDC and AOB.
The equation of the body centrode, for A as origin, AB as polar

axis, is r cos^^ = a, or in cartesian co-ordinates a^Cxi^ + yi^) = xi*.

Fig. 35.

The points of li are readily seen to describe conchoids; hence show

how to construct the normal at any point of a conchoid.

(3) A wheel rolls on a straight track ; find the direction of motion of

any point on its rim. What are the centrodes?

(4) Find the equations of the centrodes when a line h of a plane

figure always touches a fixed circle while a point A of li moves along

a fixed line /.

(5) Show that, in Ex. (4), the centrodes are parabolas when the

fixed circle touches the fixed line.

(6) Two straight lines h, U of a plane figure constantly pass each

through a fixed point d, O2; investigate the motion.

(7) Four straight rods are jointed so as to form a plane quadri-

lateral ABCD with invariable sides and variable angles. One side

AB being fixed, investigate the motion of the opposite side; construct

the centrodes graphically.

(8) A right angle moves so that one side always passes through a

fixed point A, while a point B on the other side, at the distance a from
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the vertex, moves along a fixed line from which the fixed point A has

the distance a; determine the centrodes.

(9) If the quadrilateral of Ex. (7) be a parallelogram show that any

point rigidly connected with the side opposite the fixed side describes

a circle.

(10) One point A of a plane figure describes a circle while another

point B moves on a straight line passing through the center of the

circle. Find the centrodes and the path of the midpoint of AB. Show

how to construct the velocity of B when that of A is known.

(11) Two points Pi, Pi of a plane figure move on two fixed circles

described with radii ri, ri about d, Oi\ show that the angular velocities

wi, W2 of 0\P\, O2P2 about Oi, O1 are inversely proportional to 0\M, O2M,

M being the point of intersection of O1O2 with PjPa-

(12) Given the magnitudes Vi, V2 of the velocities of two points Pi,

P2 of a plane figure, and the angle {ih, ih) formed by their directions;

find the instantaneous center C and the angular velocity w about C



CHAPTER V.

ACCELERATIONS IN THE RIGID BODY.

138. The components, along the fixed axes, of the acceleration

j of any point P(x, y, z) of a rigid body are found by dif-

ferentiating with respect to t the equations (3) of Art. 126;

this gives:

X = xo^ diXi + doyi + dzZi,

y = ijo i- Si^^i + hyi + h^Zi, (1)

z = Zn -{ CiXi + C2?/i + C3Z1.

But we obtain expressions that are more easily interpretable

by differentiating the equations (6) of Art. 129. The first

of these equations gives

X = ih + coyZ — w,y + CiyZ — o)zy,

or, replacing y, z by their values from (G), Art. 129,

X = ilx -{- OiyUz — (jizUy + OiyOixy — Wy"X — Wz"£ + C0zWx2

+ wj,2 - Cczy.

Adding and subtracting oix^x, observing that cox^ -\- coy"^ -\- oi^

= co^, and writing down the expressions for i) and x by cyclic

permutation we find

:

X = ilx -\- OJyllz — OizUy -\- Wxi'^xX + COy^/ 4" WjS)

— oi^x + (x>yZ — oizy,

y = Uy + O^zUx — COxUz + 0}y{oOxX + 0}yy + OizZ)

— whj -f dzX — ojxZ,

Z = Uz -\- UxUy — (Jiylix + Oiz{<JixX + CO y?/ + OizZ)

— u'^Z + Cixy — ^yX.

107
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The meaning of the various terms will best appear by con-

sidering some particijlar cases.

139. In the case of translation, the direction cosines of the

moving axes are constant, and hence (Art. 127) cox, coy, coz, w

are and remain zero. Hence the equations (2), as well as

(1), reduce to

X = Ux, ij = Uy, z = iiz,

as is otherwise obvious from the definition of translation,

Fig. 36.

140. In the case of rotation about a fixed axis (Fig. 36)

we can take this axis as Oz and let Oi coincide with 0, OiZi

with Oz. We then have

cox = 0, cJx = 0, rro = 0, Ux = 0, iix = 0,

OJy =0, <^y — 0, ?/0 = 0, Uy = 0, Uy = 0,

ojz = CO, cjj = CO, Zo — 0, Us = 0, iiz = 0;

hence the equations (2) reduce to

X = — ixp-x — CO?/, ij = — oihj + <j^x, z = (xP'Z w'-z 0. (3)
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The acceleration ;' of P is therefore parallel to the a:?/-plane

and can be regarded as consisting of two components. De-

noting by r the distance Va:^ -\- y"^ oi P from the fixed axis,

we have for one of these which is called the normal, or

centripetal, acceleration jn the components — wH, — w^?/,

along the fixed axes; it has therefore the magnitude

jn = wV

and the direction at right angles to the fixed axis, toward it.

The other acceleration, called the tangential acceleration jt,

has the components — wy, chx, 0; it is tangent to the circle

described by P, in the sense in which w increases, and of

magnitude
jt = <^r.

These results agree of course with what is known (Art. 56,

Ex. 6) about the acceleration of a point moving in a circle.

141. Let us now consider the important case of a rigid

body with a fixed point. Taking the fixed point as fixed

origin and letting the point Oi coincide with we have

Xo = 0, Ux = 0, Ux = 0,

yO = 0, Uy = 0, Uy = 0,

Zo = 0, ih = 0, u, = 0,

so that the formulae (2) of Art. 138 reduce to

X = o)x((^xX + Wyy + ojzz) — oo-x + 6)yZ — oi^y,

ij = oiy{(x)xX + Wyy + Uzz) — CO"!/ + (JizX — co^z, (4)

Z = Wz{wxX + O^yy + <JizZ) — iiTZ + (Jixy — OiyX.

The total acceleration j of P can here be regarded as con-

sisting of three partial accelerations. Denoting by r the

radius vector OP = Vx^ -\- y^ -\- z^ of P and by cp the angle

between r and the rotor oj, we have

iOxX + coyT/ + WjZ = a>r cos^.
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In vector analysis, the product ah cos^ of any two vectors

a, b into the cosine of the angle between them is called the

dot-product (scalar or internal product) of the vectors a and

h and is written briefly a b (read : a dot b) . If the rectangular

components of a vector are denoted by subscripts (as in

Art. 119) we have

a-6 = Uxbx + Oyby + 0^62.

Hence in our case

ajj-X + onylj + (jOzZ = oj-r.

Thus the first of the three partial accelerations, ja, has

along the fixed axes the components oj^wr costp, ccycor cos<p,

Wzoor cos<p; it is therefore represented by a vector of length

ja = co-r C0S9? whose direction is that of co, i. e. of the instan-

taneous axis.

The second partial acceleration jb has along the fixed axes

the components — co^x, — uihj, — op-z; it is therefore repre-

sented by a vector of length ji = co-r, along r, toward 0.

The third partial acceleration jc has along the fixed axes

the components 6:yZ — (h^y, (h^x — oi^z, (^xV — (J^yX. It is there-

fore, by Art. 119, the cross-product of the vectors co and r; i.e

it has the magnitude jc = wr sini/', ^p being the angle beween

0) and r, and it is perpendicular to both co and r, in a sense

such that CO, r, j,. form a right-handed set.

It should be noted that each of the three partial accelera-

tions ja, jb, jc is a vector independent of the co-ordinate

system, and such is of course the total acceleration j. It

follows that the components of j along the moving axes, if those

of CO are denoted by coi, coo, C03, will be

Xi = OOi(cOiXi + C02?/l + C03?l) — CoITi + COo^i — COgT/i,

iji = co2(cO]a:i + coov/i ^- cos^i) — co-?/i + cosXi — WiZi, (4')

Zi = C03(cOia:i + C027/1 + 0032:1) — CO-Zi + COi?/i — C02.'Cl.
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In vector notation we have

J = ja + jb + jc = (co-ri)co - wVi + ci X ri.

142. It is often convenient to combine the first two partial

accelerations ja and jb into a single acceleration / which is

then called the centripetal acceleration.

Now the vectors ja, jb both lie in the

plane {I, P) determined by the instanta-

neous axis I (through 0) and the point

P (Fig. 37) : ja = wV costp along the par-

allel to I through P, jb = toV along PO;

I makes with OP = r the angle 99 and ja =

coV coS(^ = jbCos<p; hence the resultant j'

of ja and jb is

j' = ja tanv? = jb siiiip = coV sin^

along the perpendicular PQ = r sin^ = r'

let fall from P on the instantaneous axis

I. Hence finally

This centripetal acceleration always exists

(since a body with a fixed point cannot

have a motion of translation for which w = 0) except forsthc

points on the instantaneous axis for which r' = 0.

143. The remaining partial acceleration jc exists only

when the rotor co varies, in magnitude or in direction or in

both.

Using the language of infinitesimals, suppose that the rotor

0) in the time-element dt receives the geometrical increment

do) = udt; the vector a> may be called the angular accelera-

tion of the body; its components along the fixed axes are

coj, (Jiy, w,. The body has therefore the infinitesimal angular

Fig. 37.
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velocities 6)xdt, dydt, 6i,dt about the axes Ox, Oy, Oz, respec-

tively. These produce at P(x, y, z) the infinitesimal linear

velocities 0, — CjjZcU, o^xydt; Uyzdt, 0, — oiyxdt; — Uzydt,

03zxdt, ; dividing by dt and collecting the terms we find the

accelerations

(hyZ — Ci^y, Oi^X — Wx2, 6ixy — (JiyX.

which are the components of jc-

144. Plane motion. Taking the plane of the motion as

rcy-plane we have to put co^ = 0, Wy = 0, co^ = co. d^ = 0,

Uy = 0, ojj = w, Uz = 0; Jig = in the equations (2) of Art.

138 so that we find

X = Ux — wUy — orX — CO?/,

i)
= Uy + coUx — CO-?/ — cox,

while 2 = 0. As Ux = Xo + ojyo, Uy = yo — ojXq and hence

Ux = Xq -\- on/o + co?/o, iiy = yo — wxo — wxo, we find as com-

ponents of the acceleration of P(x, y) along the fixed axes:

X = xo - co^ix - xo) - 6i{y - yo),

(5)
7j = i/o - co2(?/ - ?/o) + (^{x - Xo).

These equations are also obtained directly by differentiating

the components of the velocity in plane motion, (8), Art. 133,

which express that the instantaneous state of motion (unless

a translation, co = 0) can be regarded as a rotation of angular

velocity co about the instantaneous center (xo — 2/o/co, yo

+ io/co).

The equations (5) show that (excepting the case of transla-

tion when CO = 0, CO = 0) there exists at every instant a point /,

the center of acceleration, whose acceleration is zero; its

co-ordinates are

co^.fo — coj/o
, o}-yo + cbi'o .^s
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145. If this point I of zero acceleration be taken as origin

of the moving axes 0\Xi, Oiiji (Fig. 38), the components along

y
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jo = the acceleration of Oi,

ji = oj-r along POi,

jo = cjr at right angles to OiP,

where r = OiP.

Fig. 39.

147. If, in particular, we take as origin of the moving axes

the instantaneous center C and as axis OiXi the common

tangent of the centrodes (Fig. 40), the acceleration j of C

Fig. 40.

is normal to this tangent (Art. 135), and as CP is the normal

to the path of P (Art. 133), the normal and tangential com-
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ponents of the acceleration of P are:

Jn^ oi^r - 3-, Jt = <^r+j—, (7)

where r — CP. Hence the loci of the points having only

tangential and only normal acceleration are the circles:

o^Kxi' + yr) - hi = 0, w{xi^ + ^1^) + jxi = 0. (8)

Finally, it can be shown that the acceleration of the instan-

taneous center C is

j = uw,

where w is the velocity with which the instantaneous center

travels along the centrodes (Art. 135). For, just as in Art.

135, we find by differentiating the equation (9) of Art. 133

and putting io = 0, ?/o = that the components of w
along the fixed axes are

X ^
, 1/

=- -

.

CO CO

whence
^0 = — co.f, .t'o = ooy.

The acceleration of C is therefore

j = V.'Co^ + 2/0^ = <^ Vi" + y^ = om. (9)

148. Exercises.

(1) A wheel of radius a rolls on a straight track; find the center of

acceleration : (a) when the velocity v of the axis of the wheel is constant

;

(b) when the axis is uniformly accelerated, as when the wheel rolls

down an inclined plane.

(2) Find the locus of the points of equal tangential acceleration.

(3) Show that the components, along the axes Cxi, Cyi of Fig. 40,

of the acceleration of any point arej'i = — co^Xi — o:y\,ji = — co^^/i + wxi +
;; and hence the co-ordinates of I are — wj/(w< + 6r), co^j/Cw + w^).

Verify that these co-ordinates satisfy the equations (8) ; this shows that

the center of acceleration is the intersection (different from C) of the

circles (8).
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(4) Show that the resultant of j and cir in Fig. 40 is an acceleration

wr', perpendicular to r' = HP, where H, the center of angular acceleration,

is the intersection of the circle of no tangential acceleration (second of

the equations (8)) with the common tangent of the centrodes at C; it

lies at the distance CH = jjw from C. It follows that the acceleration

of any point P can be resolved into two components, uh along PC
and cor' normal to HP = r'.

(5) The first of the circles (8) is called the circle of inflections; why?

(6) Show that the diameter of the circle of inflections is the recip-

rocal of the difference of the curvatures of the centrodes at their point

of contact.

(7) Determine the locus of the points whose acceleration at any

instant is parallel: (a) to the common normal, (6) to the common tan-

gent, of the centrodes.



CHAPTER VI.

RELATIVE MOTION.

149. In studying the motion of a point P relatively to a

rigid body of reference B which is itself in motion we use,

just as in Art. 124, two rectangular trihedrals, one Oxyz

fixed in space, the other OiXiyiZi fixed in the body B and

moving with it. The absolute co-ordinates x, y, z oi P are

connected with its relative co-ordinates Xi, yi, Zi by the

relations (1), Art. 125; but now not only the absolute co-

ordinates X, y, z but also the relative co-ordinates Xi, yi, Zi

of P are functions of the time.

Hence, differentiating the equations (1), Art. 125, we find

for the components, along the fixed axes, of the absolute velocity

V of P:

X = xo -\- diXi + (ky^ + d^Zi + aiXi + aniji + as^i,

y = yo-\- hiXi + hojji + 632:1 + biXi + bojji + 63^1, (1)

i = io + ciXi + 62/1 + C3Z1 + CiXi + C2^i + csii.

If the point P were rigidly connected with the body B
the last three terms would be zero ; hence the first four terms

represent the components along the fixed axes of the so-called

body-velocity Vb, i. e. the velocity of that point of the rigid

body with which the point P happens to coincide at the

instant considered. This also follows from the equations

(3) of Art. 126.

As ±1, yi, Zi are the components along the moving axes of

the relative velocity Vr of P with respect to B, the last three

terms of (1) are the components along the fixed axes of this

117
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same velocity Vr (comp. the scheme of direction cosines in

Art. 124).

Thus the equations (1) are merely the analytical expression

of the vector equation

V = Vb -{- Vr',

i. e. the absolute velocity v of a point P is the geometric sum,

or resultant, of the body-velocity Vb and the relative velocity Vr',

comp. Art. 38.

150. Differentiating the equations (1) again with respect

to t we find the comjionents, along the fixed axes, of the absolute

acceleration j of P.

X = Xo-\- ciiXi + doyi + d^Zi + 2(oiii + (yji + Osii)

+ aj-i + a.2yi + a^z,,

y = yo-\- bxXi + 622/1 + 63^1 + 2(6i.ri + hill + 6321) ,^.

+ biXx + b^iji + 63^1,

z = Zo + CiXi + Mji + C3Z1 + 2(^i.ri + c.iji + f'3ii)

+ Cii-i + cMji + CiZi.

The first four terms on the right represent, by (1), Art. 138,

what we may call for the sake of brevity the body-acceleration

jb, i. e. the acceleration of that point of the body of reference

B with which the point P happens to coincide at the instant

considered. The last three terms are the components along

the fixed axes of the relative acceleration jr of P whose com-

ponents along the moving axes are Xi, iji, Zi, i. e. of the

acceleration of P relatively to the moving body B.

To interpret the middle terms, those with the factor 2,

observe that by comparing Arts. 119 and 127 it appears that

the velocity v of any point P of a rigid body wath a fixed

point 0, which is a vector of length v = cor sin^?, perpendicular

to the rotor w and the radius vector r = OP, has along the

fixed axes the components
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diXi + diiji + daZi, biXi + biUi + 63^1, CiXi + Ciiji + CiZi.

The vector that we wish to interpret has along the fixed

axes the components

di-2ii + d2-2?/i + d3-2ii, 6i-2ii + h2-2yi + 63'2ii,

ci-2xi + C2'2yi + C3-2ii;

it differs from the preceding vector merely in having Xi, iji, Zi

replaced by 2ii, 2?/i, 2ii. It represents therefore a vector

of length oi-2vr sin(aj, Vr), at right angles to the rotor co and

the relative velocity Vt{xi, yi, ii), drawn in a sense such

that CO, Vr, and this vector form a right-handed set. More

briefly we may say (Art. 119) that this acceleration jc, which

is called variously compound centripetal, complementary, or

acceleration of Coriolis, is twice the cross-product of the

angular velocity co of the body B and the relative velocity

Vr oi P:

jc = 2coX Vr.

Thus, the absolnte acceleration j of a point P whose motion

is referred to a moving body of reference B, is the geometric

sum of three accelerations, the body-acceleration jh, the com-

plementary acceleration jc, and the relative acceleration jr.'

(3) j = jh + jc + jr.

This proposition is known as the theorem of Coriolis. Appli-

cations will be given in Chap. XIX.



PART II: STATICS.

CHAPTER VII.

MASS; DENSITY.

151. Physical bodies are distinguished from geometrical

configurations by the property of possessing mass; and the

way in which this property affects their motions is studied

in that part of mechanics which is called dynamics.

We may think of the mass, or quantity of matter, in a

physical body as a certain indestructible content in the

portion of space occupied by the body. By the methods of

weighing explained in physics we can compare these con-

tents of different ])odies; and, taking the mass content of

some particular body as the standard unit we can express

the mass of every body by a single real number. We here

confine ourselves to so-called gravitational masses ; the num-

ber that expresses such a mass is always positive, and it

remains constant in whatever way the body may move.

The student must be warned not to confound mass with

weight. The weight of a body, as we shall see later, is the

force with which the body is attracted by the earth; it varies,

therefore, with the distance of the body from the earth's

center, and would vanish completely if the earth were sud-

denly annihilated; while the indestructibility of mass is the

first fundamental principle of chemistry and physics.

The modern developments in the theory of electricity

may, and probably will, lead to a better understanding of

120
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the intimate nature of mass or matter. But this would

hardly affect ordinary mechanics which will always retain

a wide range of applicability.

152. The unit of mass in the C.G.S. system (Art. 6) is

the gram, in the F.P.S. system the 'pound. The American

pound is defined (by act of Congress, 1866) as 2^.2^^t6 of ^

kilogram

:

1 lb. - 453.597 gm.,

1 gm. = 0.002 204 6 lb.

The three units of s-pace, time, and mass are called the

fundamental units of mechanics, because with the aid of these

three, the units of all other quantities occurring in mechanics

can be expressed. Thus we have seen how the units of

velocity and acceleration are based on those of space and

time, and we shall have many more illustrations in what

follows. Any unit that can be expressed mathematically

by means of one or more of the fundamental units is called

a derived unit.

153. A continuous mass of one, two, or three dimensions

is said to be homogeneous if the masses contained in any two

equal lengths, areas, or volumes (as the case may be) are

equal. The mass is then said to be distributed uniformly.

In all other cases the mass is said to be heterogeneous.

The whole mass ilf of a homogeneous body divided by
the space V it fills is called the density of the mass or body;

denoting density by p we have therefore

M
P = y ,

for homogeneous bodies. It follows from the definition of

homogeneity that the density of a homogeneous mass can
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also be found by dividing any portion Ailf of the whole mass

M by the space AV occupied by AM.

In a heterogeneous body, the quotient AM/AV is called

the average, or 'mean, density of the portion AM. The limit

of this average density as the space AV approaches zero

while always containing a certain point P is called the density

of the mass M at the point P:

,. AM dM
Ar=oAK dV

154. The unit of density is the density of a substance such that

the unit of volume contains tlie unit of mass. If the units of volume

and mass are selected arbitrarily, there need not of course necessarily

exist any physical substance having unit density exactly. Thus in

the F.P.S. system, unit density is the density of an ideal substance

one pound of which would just fill a cubic foot. As a cubic foot of

water has a mass of about 62H pounds, or 1000 ounces, the density

of water is about 623^ times the unit density.

The specific density, or specific gravity, of a substance, is the ratio

of its density to that qf water at 4° C. Let p be the density, pi the

specific density, M the mass, V the volume of a homogeneous mass,

then in British units

M = pV = 62.5pi7.

In the C.G.S. system, the unit of mass has been so selected as to

make the density of water equal to 1 very nearly; in other words,

the unit mass (1 gram) of water, at the temperature of 4° C, fills

one cubic centimeter.

In the metric system, then, there is no difference between density

and specific density or specific gravity.

155. We speak in mechanics not only of three-dimensional

material bodies, or volume masses, but also of material

surfaces, or surface masses, and of material lines, or linear

masses, one or two of the spatial dimensions being made to

approach zero while the mass content remains finite. Thus,

in a surface mass, sometimes called a shell, lamina, or mem-
brane, a finite mass content is assigned to every finite portion



156.] MASS; DENSITY 123

of a surface; in a linear mass, often designated as a rod, wire,

or chain, a finite mass content is assigned to every finite arc

of a curve.

If d(x is the area element of the surface a, ds the length

element of the curve s, the surface density p and the linear

density p" are defined (comp. Art. 153) by

P =
dM ,, _ dM
da ' ^ ~ ~di

156. Finally, letting all three dimensions of a physical

body approach zero, while the mass content may remain

finite, we arrive at the idea of the mass-point, or particle, viz.

a geometrical point to which a definite mass is assigned.

As a finite physical mass is always thought of as occupying

a finite space, the particle, or geometrical point endowed

with a finite mass, is a pure abstraction. The importance

of this conception lies not so much in its relation to the idea

that physical matter is ultimately an aggregation of such

points or centers possessing mass (molecules, atoms), but in

the fact that for certain purposes (viz. as far as translation

only is concerned) the motion of a physical solid is fully

determined by the motion of a certain point in it, called the

center of mass or centroid, the whole mass of the body being

regarded as concentrated at this point.



CHAPTER VIII.

MOMENTS AND CENTERS OF MASS.

157. The product of a mass m, concentrated at a point P,

into the distance of the point P from any given point, Hne,

or plane is called the moment of this mass with respect to the

point, line, or plane.

Thus, denoting by r, q, p the distance of the point P from

the point 0, the line I, and the plane tt, respectively, we have

for the moments of m with respect to 0, I, ir the expressions

mr, mq, m/p.

158. Let a system of n points, or particles, Pi, P2, • Pn

be given; let mi, mo, • • • w„ be their masses, and pi, p^, • -pn

their distances from a given plane tt. Then we call moment

of the system with respect to the plane tt the algebraic sum

Wipi + mnp2 + • • • + mnpn = 2?np,

the distances pi, Pi, • • Pn being taken with the same sign or

opposite signs according as they lie on the same side or on

opposite sides of the plane tt.

It is always possible to determine one and only one distance

p such that Xmp = Mp, where M = Sm = nii + ?W2 + • • •

+ Wn is the total mass of the system. If this distance p

should happen to be equal to zero, the moment of the system

would evidently vanish with respect to the plane tt.

159. Let us now refer the points P to a rectangular set of

axes and let x, y, z be their co-ordinates. Then we have for

the moments of the system with respect to the co-ordinate

planes yz, zx, xy, respectively:

124
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miXi + ^12X2 + • • • + ninXn = Smx = Mx,

mii/i, + moijo + • • • + mnyn = ^my = My,

niiZi + 'MnZo + • • • + ninZn = '^mz = AIz.

The point G whose co-ordinates are

_ _ I,mx _ _ I,my _ _ 'Emz

is called the center of mass, or the centroid, of the system.

The centroid is, therefore, defined as a point such that if

the whole mass M of the system he concentrated at this jjoint, its

moment with respect to any one of the co-ordinate planes is equal

to the moment of the system.

160. It is easy to see that this holds not only for the co-

ordinate planes but for any plane whatever. Jjct

ax -\- ^y -h yz - po =

be the equation of any plane in the normal form; p, pi,

P2, • • Pn, the distances of the points G, Pi, Po, Pn from

this plane. Then we wish to prove that ^mp = Mp.
Now

p = ax -\- ^ij -\- yz - Po, pi = axi + /3?/i + yZi - po, - -

;

hence
Iimj) = aXmx + jSSm?/ -|- yZmz — poEm

= M{ax + j8?7 + 72 - Po) - Mp.

The centroid can therefore ]>e defined as a point such that its

moment with respect to any plane is equal to that of the whole

system, with respect to the same plane.

It follows that the moment of the system vanishes for any
plane passing through the centroid.

161. In the case of a continuous mass, whether it be of

one, two, or three dimensions, the same reasoning will apply
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if we imagine the mass divided up into elements dM of one,

two, or three infinitesimal dimensions, respectively. The

summations indicated above by S will then become integra-

tions, so that the centroid of a continuous mass has the

co-ordinates

fxdM CydM fzdM
''''

JdM' y~ JdM' JdM'
^^^

According as the mass is of one, two, or three dimensions,

a single, double, or triple integration over the whole mass will

in general be required for the determination of the moments

fxdM, CydM, fzdM of the mass with respect to the co-

ordinate planes, as well as of the total mass JdM = M.

Thus, for a mass distributed along a line or a curve we

have, if ds be the line-element,

dM = p"ds,

where p" is the linear density (Art. 155); for a mass dis-

tributed over a surface-area we have, with da as a surface-

element,
dM = pda,

where p' is the surface (or areal) density; finally, for a mass

distributed throughout a volume whose element is rfr,

dM = pdT,

where p is the volume density.

If the mass be distributed along a straight line, the centroid

lies of course on this line, and one co-ordinate is sufficient to

determine the position of the centroid. In the case of a

plane area, the centroid lies in the plane and two co-ordinates

determine its position; we then speak of moments with re-

spect to lines, instead of planes.
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162. If the mass be homogeneous (Art. 153), i. e. if the density

p be constant, it will be noticed that p cancels from the numerator

and denominator in the equations (2), and does not enter into the

problem. Instead of speaking of a center of mass, we may then speak

of a center of arc, of area, of volume. The term ceniroid is, however,

to be preferred to center, the latter term having a recognized geometrical

meaning different from that of the former.

The geometrical center of a curve or surface is a point such that any

chord through it is bisected by the point; there are but few curves

and surfaces possessing a center.

The centroid (Art. 160) is a point such that, for any plane passing

through it, the moment of the system is equal to zero. Such a point

exists for every mass, volume, area, or arc. The centroid coincides,

of course, with the center, when such a center exists and the distri-

bution of mass is uniform.

163. As soon as p is given either as a constant or as a function

of the co-ordinates, the problem of determining the centroid of a con-

tinuous mass is merely a problem in integration. To simplify the

integrations, it is of importance to select the element in a convenient

way conformably to the nature of the particular problem.

Considerations of symmetry and other geometrical properties will

frequently make it possible to determine the centroid without rcsorling

to integration. Thus, in a homogeneous mass, any plane of symmetry,

or any axis of symmetry, must contain the centroid, since for such

a plane or line the sum of the moments is evidently zero.

It is to be observed that the whole discussion is entirely inde-

pendent of the physical nature of the masses rn which appear here

simply as numerical coefficients, or "weights," attached to the points.

Some of the masses might even be negative provided the total mass is

not zero.

It will be shown later that the center of gravity, as well as the center

of inertia, of a body coincides with its centroid.

164. In determining the centroid of a given system it will

often be found convenient to break the system up into a num-

ber of partial systems whose centroids are either known or

can be found more readily. The moment of the whole system

is obviously equal to the sum of the moments of the partial

systems.
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Thus let the given mass M be divided into k partial masses

Ml, • • • Mk so that M = Ml + • • -\- Mk] let G, Gi, - Gk

be the centroids of M, Mi, • • • Mk and p, pi, • • • pk their

distances from some fixed plane. Then we have

Mp = Mipi + • • • + Mkpk-

165. The particular case of two partial systems occurs most

frequently. We then have with reference to any plane

Mp = Mipi + M2P2, M ^ Mi-\~ M2.

Letting the plane coincide successively with each of the

three co-ordinate planes it will be seen that G must lie on

the line joining Gi, G2. Now taking the plane at right angles

to G1G2 through Gi we have

M-GiG = il/o-GA;

similarly for a plane through G2

M-GG2 = Mi-GiG2U
whence

ljri(j \J\J2 yjc^i

1^2
^ Wi ^ ~W ''

i. e. the centroid of the whole system divides the distance of the

centroids of the two partial systems in the inverse ratio of

their masses.

166. Exercises.

(1) Show that the centroid of two particles ?«i, '"2 divides their

distance in the inverse ratio of the masses by taking moments about

the centroid.

Find the centroid:

(2) Of three masses 5, 7, 23 on a line, the mass 7 lying midway

between 5 and 23.

(3) Of earth and moon, the moon's mass being 1/SO of that of the

earth and the distance of their centers 240,000 miles,

(4) Of three equal particles.
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(5) Of a circular arc, radius r, angle at center 2a; in particular, of

a semicircle.

(6) Of the arc of a parabola, if = 4aa;, from vertex to end of latus

rectum.

(7) Of one arch of the cycloid x = a(d — sinO), y = ail — cos0).

(8) Of half the cardioid r = a(l + cose).

(9) Of an arc of the common helix x = r cos0, y = r sin5, z = krd,

from 6 = to e = d.

(10) Of a circular arc AB, of angle AOB = a, whose density varies

as the length of the arc measured from A
(11) Show that the centroid of a triangular area is the intersection

of the medians.

(12) From a square ABCD of side a one corner EAF is cut off so

that AE = fa, AF = la; find the centroid of the remaining area.

(13) An isosceles right-angled triangle of sides a being cut out of

the area of its circumscribed circle, find the centroid of the remaining

area.

(14) Find the centroid of the surface area of a sphere between two

parallel planes, by observing that this area is equal to the surface area

of the circumscribed cylinder perpendicular to these planes.

(15) Show that for an area a, bounded by a curve y — fix), the

axis Ox and two ordinates, we have

X = I xydx, <T-y = I \ y'^dx;

and hence find the centroid: (a) of the area bounded by the parabola

2/2 = 4ax, the axis Ox and an ordinate; (5) of the area between the

curve y = sina; from a; = to .r = tt and the axis Ox
;

(c) of a quadrant

of an ellipse; (d) of the segment cut off from an ellipse by the chord

joining the extremities of the axes.

(16) Show that for the area a, bounded by a curve r = j{&) and two

of its radii vectores, we have

= l \ r3 cosedO, (7- y = t } r^ f-smBde.

(17) Find the centroid of the sector of a circle, radius r, angle at

center 2a.

(18) A bowl in the form of a licmisph(>r(! is closed l)y a circular lid

of a material whose density is three tinu>s that of the bowl. Find the

centroid.

10
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(19) The cissoid (2a — x)y^ = x^ can be represented by the equa-

tions X = 2a sin^, y = 2a sin^^/cos^, where d is the polar angle, 2a

the distance from cusp to asymptote. Show that the centroid of the

area between the curve and its asymptote divides the distance between

cusp and asymptote in the ratio 5:1.

(20) The centroid of a rectilinear segment of length I whose linear

density is proportional to the «th power of the distance from one end

is at the distance {n + 1)1/ (n + 2) from that end. Hence show that

(o) the centroid of a triangular area lies on the median at % the distance

from the vertex to the base; (b) the centroid of the surface area of a

cone or pyramid lies on the line joining the vertex to the centroid of the

base, at % the distance from the vertex to the base; (c) the centroid

of the volume of a cone or pyramid lies on the same line, at % the

distance from the vertex to the base.

(21) For a solid of revolution, generated by the revolution of the curve

y = f(x) about the axis of x and bounded by planes perpendicular to

the axis Ox, show that the centroids of the curved surface area a and

of the volume t are given by:

a-xa = 2w \
' xy 1^1 + w'^ dx, T Xt = IT \ xyHx.

(22) Find the centroid of the segment of a sphere between two

parallel planes; and hence (a) that of a segment of height A, cut off by

a plane; (b) that of a hemisphere; (c) that of a spherical sector of ver-

tical angle 2a.

(23) Find the centroid of the paraboloid of revolution of height h,

generated by the revolution of the parabola y~ = 4ax about its axis.

(24) The area bounded by the parabola y- = 4ax, the axis of x, and

the ordinate y = yi revolves about the tangent at the vertex. Find the

centroid of the solid of revolution so generated.

(25) The same area as in Ex. (6) revolves about the ordinate yi.

Find the centroid.

(26) Find the centroid of an octant of an ellipsoid

xVa^ + yy¥ + zVc^ = 1.

(27) The equations of the common cycloid referred to a cusp as

origin and the base as axis of x are x = a(d — sinO), y = a{l — cos^).

Find the centroid: (a) of the arc of the semi-cycloid {i. e. from cusp
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to vertex)
;

(b) of the plane area included between the semi-cycloid and

the base; (c) of the surface generated by the revolution of the semi-

cycloid about the base; (d) of the volume generated in the same case.

(28) Find the centroid of a solid hemisphere whose density varies

as the nth power of the distance from the center.



CHAPTER IX.

MOMENTUM ; FORCE ; ENERGY.

167. Let us consider a point moving with constant accelera-

tion from rest m a straiglit line. We know from Kinematics

(Art. 16) that its motion is determined by the eauations

V = jt, s = ^jr~, ^v'' - js, (1)

where s is the distance passed over in the time t, v the velocity,

and j the acceleration, at the time t.

If, now, for the single point we sul^stitute an m-tuple point,

i. e. if we endow our point with the mass ni, and thus make it

a, particle (see Art. 156), the equations (1) must be multiplied

by m, and we obtain

mv = mjt, ms = h^njt}, \mv'^ = mjs. (2)

The quantities mv, 7nj, iww" occurring in these equations

have received special names because they correspond to

certain physical conceptions of great importance.

168. The product mv of the mass m of a particle into its veloc-

ity V is called the momentum, or the quantity of motion, of the

particle.

In observing the behavior of a physical body in motion, we notice

that the effect it produces—for instance, when impinging' on another

body, or more generally, whenever its velocity is changed—depends

not only on its velocity, but also on its mass. FamiUar examples are

the following : a loaded railroad car is not so easily stopped as an empty

one; the destructive effect of a cannon-ball depends both on its velocity

and on its mass; the larger a fly-wheel, the more difficult is it to give it

a certain velocity; etc.

It is from experiences of this kind that the physical idea of mass is

derived.

132
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The fact that any change of motion in a physical body is affected by

its mass is sometimes ascribed to the so-called "inertia," or "force of

inertia," of matter, which means, however, nothing else but the property

of possessing mass.

169. Momentum, being by definition (Art. 168) the product of

mass and velocity, has for its dimensions (Art. 6),

MV = MLT-\

The unit of momentum is the momentum of the unit of mass having

the unit of velocity. Thus in the C.G.S. system the unit of momentum
is the momentum of a particle of 1 gram moving with a velocity of 1

cm. per second. In the F.P.S. system, the unit is the momentum of a

particle of 1 pound mass moving with a velocity of 1 ft. per second.

To find the relations between these two units, let there be x C.G.S.

units in the F.P.S. unit; then \

gm. cm. ., lb. ft.
X • = 1

;
sec. sec.

hence

^ Ib^ ft.

gm. ' cm.

'

or, by Art. 152 and Art. 6,

X = 13,825.7;

i. e. 1 F.P.S. unit of momentum = 13,825.7 C.G.S. units, and 1 C.G.S.

unit = 0.000072 33 F.P.S. units.

170. Exercises.

(1) What is the momentum of a cannon-ball weighing 200 lbs. when

moving with a velocity of 1500 ft. per second?

(2) With what velocity must a railroad-truck weighing 3 tons move

to have the same momentum as the cannon-ball in Ex. (1)?

(3) Determine the momentum of a one-ton ram after falling through

4 feet.

171. The 'product mj of the mass m of a particle into its

acceleration j is called force. Denoting it by F, we may
write our equations (2) in the form

mv = Ft, s = * t^, hnv'^ = Fs. (3)" m
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As long as the velocity of a particle of constant mass

remains constant, its momentum remains unchanged. If the

velocity changes uniformly from the value v at the time t

to v' at the time t', the corresponding change of momentum is

my' — mv = mji' — mjt = F{t' — t); (4)
hence

„ mv' — mv ,^.

Here the acceleration, and hence the force, was assumed

constant. If F be variable, we have in the limit as t' — i

approaches zero:

F=^ = m^. (6)
at at

Instead of defining force as the product of mass and

acceleration, we may therefore define it as the rate of change

of momenturyi with the time.

172. Integrating equation (6), we find

J^
Felt = mv' — mv. (7)

The 'product F(t' — t) of a constant force into the time t' — t

during which it acts, and in the case of a variable force, the

time-integral J Fdt, is called the impulse of the force during

this time.

It appears from the equations (4) and (7) that the impulse

of a force during a given time is equal to the change of momentum

during that time.

173. The idea of force is no doubt primarily derived from the sensa-

tion produced in a person by the exertion of his "muscular force."

Like the sensations of Hght, sound, heat, etc., the sensation of exerting

force is capable, in a rough way, of measurement. But the physiological

and psychological phenomena attending the exertion of muscular force

when analyzed more carefully are very complicated.
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In popular language the term "force" is applied in a great variety

of meanings. For scientific purposes it is of course necessary to attach

a single definite meaning to it.

It is customary in physics to speak of force as ^producing or generating

velocity, and to define force as the cause of acceleration. Thus obser-

vation shows that the velocity of a falling body increases during the

fall; the cause of the observed change in the velocity, i. e. of the ac-

celeration, is called the force of attraction, and is supposed to be exerted

by the earth. Again, a body falling in the air, or in some other medium,

is observed to increase its velocity less rapidly than a body falling

in vacuo; a force of resistance is therefore ascribed to the medium as the

cause of this change. In a similar way we speak of the expansive force

of steam, of electric and magnetic forces, etc., because it is convenient

to think of such agencies as producing changes of velocity.

Now, any change in the velocity v of a body of given mass m implies

a change in its momentum mv; and it is this change of momentum, or

rather the rate at which the momentum changes with the time, which

is of prime importance in all the applications of mechanics. It is there-

fore convenient to have a special name for this rate of change of mo-

mentum, and that is what is called force in mechanics.

Thus, in using this term "force," it is not intended to assert any-

thing as to the objective reality or actual nature of force and matter in

the popular acceptation of these terms. With the ultimate causes

science has nothing to do; it can observe only the phenomena them-

selves.

174. The definition of force (Art. 171) as the product of mass and

acceleration gives the dimensions of force as

F = MJ = MLT-^.

The tmit of force is therefore the force of a particle of unit mass

moving with unit acceleration.

Hence, in the C.G.S. system, it is the force of a particle of 1 gram

moving with an acceleration of 1 cm./sec.^. This unit force is called

a dyne.

The definition is sometimes expressed in a slightly different form.

We may say the dyne is the force which, acting on a gram uniformly

for one second, would generate in it a velocity of 1 cm./sec; or would

give it the C.G.S. unit of acceleration; or it is the force which, acting
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on any mass uniformly for one second, would produce in it the C.G.S.

unit of momentum.

That these various statements mean the same thing follows from

the fundamental formulae F = mj, v = jl, if F, m, t, v, j be expressed

in C.G.S. units.

In the F.P.S. system, the unit of force is the force of a mass of

1 lb. moving with an acceleration of 1 ft./sec.^. It is called the poundal.

175. To find the relation between these two units, let x be the

number of dynes in the poundal; then we have

gm. cm. ^ lb. ft.
X ;:

— = 1
860.-= sec.''

hence, just as in Art. 169, x = 13,825.7; i. e. 1 poundal = 13,825.7

dynes, and 1 dyne = 0.000 072 33 i)oundals.

176. Another system of measuring force, the so-called gravitation

(or engineering) system, is in very common use, and must be explained

here.

Among the forces of nature the most common is the force of gravity,

or the weight, i. e. the force with which any physical body is attracted

by the earth. As we have convenient and accurate appliances for

comparing the weights of different bodies at the same place, the idea

suggests itself of selecting as unit force the weight of a certain standard

mass.

In the metric gravitation system the weight of a kilogram has been

selected as unit force; in the British gravitation system the weight

of a pound is the unit force.

177. The system in which the units of time, length, and mass are

taken as fundamental, while the unit of force ( = mass times accelera-

tion) is regarded as a derived unit (Art. 175), is called the absolute or

scientific system, to distinguish it from the gravitation system (Art.

176) in which the units of time, length, and force are taken as funda-

mental, while the unit of mass (= force divided by acceleration) is a

derived unit.

As the weight of a body varies from place to place with the variation

of the acceleration of gravity g, the unit of force as defined in Art. 176

would not be constant. This difficulty can be avoided by defining the

unit of force as the weight of a kilogram or pound at some definite place,

say at London, or in latitude 45° at sea level. With this modification,
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the gravitation system desenves the name of an absolute system as much
as does the system in which mass is the thii-d fundamental unit.

The general equations of mechanics are of course independent of

the system of measurement adopted; they hold as well in the gravita-

tion as in the scientific or absolute system. In the present work the

language of the latter system is generally used in the text (not always

in the exercises). This system, since its introduction by Gauss and

Weber, has found general acceptance in scientific .work.

In statics where we are mainly concerned with the ratios of forces

and not with their absolute values it rarely makes any difference

which system is used provided all forces are expressed in the same

unit. And as elementary statics deals largely with the effects of gravity,

the gravitation system is often used in statical problems.

178. The numerical relation between the scientific and gravitation

measures of force is expressed by the equations

1 kilogram (force) = 1000 g dynes,

1 pound (force) = g poundals,

where g is about 981 in metric units, and about 32.2 in British units.

In most eases the more convenient values 980 and 32 may be used.

179. Exercises.

(1) What is the exact meaning of "a force of 10 tons"? Express

this force in poundals and in dynes.

(2) Reduce 2,000,000 dynes to British gravitation measure.

(3) Express a pressure of 2 lbs. per square inch in kilograms per

square centimeter.

(4) Show that a poundal is very nearly half an ounce, and a dyne

a little over a milligram, in gravitation measure.

180. The quantity \mv'^, i. e. half the product of the mass of

a particle into the square of its velocity, is called the kinetic

energy of the particle.

Let us consider again a particle of constant mass ?n moving

with a constant acceleration, and hence with a constant

force; let v be the velocity, s the space described, at the time i;

y', s' the corresponding values at the time t'. Then the last
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of the three fundamental equations (see Arts. 167 and 171)

gives

^v''~ - hnv- = F{s' - s); (8)

hence

F =
-,

—
. (9)

s — s

If F be variable, we have in the limit

F = —^^-^

—

- = mv ^ . (10)
as as

Force can therefore be defined as the rate at ivhich the

kinetic energy changes with the space. (Compare the end of

Art. 171.)

181. Integrating the last equation (10), we find

£'Fds = hnv'^ - hnv'-. (11)

The product F{s' — s) of a constant force F into the space

s' — s described in the direction of the force, and in the case

of a variable force, the space-integral f Fds, is called the

work of the force for this space.

The equations (8) and (11) show that the work of a force is

equal to the corresponding change of the kinetic energy.

We have here assumed that the force acts in the direction

of motion of the particle. A more general definition of work

including the above as a special case will be given later (Art.

261).

The ideas of energy and work have attained the highest

importance in mechanics and mathematical physics within

comparatively recent times. Their full discussion belongs

to Kinetics (see Part III).

182. According to their definitions, both momentum (Art.

168) and force (Art. 171) may be regarded mathematically
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as mere numerical multiples of velocity and acceleration,

respectively. They are therefore so-called vector-quantities;

i. e. a momentum as well as a force can be represented geo-

metrically by a segment of a straight line of definite length,

direction, and sense. Moreover, as they are referred to a

particular point, viz., to the point whose mass is in, the line

representing a momentum or a force must be drawn through

this point; the hne has therefore not only direction, but also

position; i. e. a momentum as well as a force is represented

geometrically hy a rotor (compare Art. 115).

It follows that concurrent forces, for instance, can be com-

pounded l^y geometrical addition, as will be explained more

fully in Chapter X.

On the other hand, kinetic energy and work are not vector-

quantities.

183. The ideas of momentum, force, energy, work, with the funda-

mental equations connecting them, as given in the preceding articles,

form, the groundwork of the whole science of theoretical dynamics.

The application of this science to the interpretation of natural phenom-

ena gives results in close agreement with observation and experiment.

It is therefore important to inquire what are the physical assumptions

and experimental data on which this application of dynamics is based.

These assumptions were formulated with remarkable clearness by

Sir Isaac Newton m his Philosophioe naturalis prindpia malhematica,

first published in 1687, and have since been known as Newton's laws

of motion. As these three axiomata sive leges motus, as Newton terms

them, are very often referred to and, at least bj^ English writers on

dynamics, are usually laid down as the foundation of the science, they

are given here in a literal translation:

I. Every body persists in its state of rest or of uniform motion along

a straight line, except in so far as it is compelled by impressed {i. e.

external) forces to change that state.

II. Change of motion is proportional to the impressed moving force

and takes place along the straight line in which that force acts.
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III. To every action there is an equal and contrary reaction; or,

the mutual actions of two bodies on one another are always equal and

directed in contrary senses.

184. Some explanation is necessary to understand correctly the

meaning of these laws. Indeed, Newton's laws should not be studied

by themselves; they become intelUgible only if taken in connection

with the definitions preceding them in the Prindpia, and with the ex-

planations and corollaries that Newton himself has appended to them.

The word 'body" must be taken to mean particle; the word "mo-

tion" in the second law means what is now called momentum.

All three laws imply the idea of force as the cause of any change of

momentum in a particle.

185. With this definition of force the first law, at least in the ordi-

nary form of statement, for a single particle, merely states that where

there is no cause there is no effect. While this law may appear super-

fluous to us, it was not so in the time of Newton. Kepler and Galileo,

less than a century before Newton, were the first to insist more or less

clearly on this so-called law of inertia, viz. that there is no intrinsic

power or tendency in moving matter to come to rest or to change its

motion in any way.

186. The second law gives as the measure of a constant force the

amount of momentum generated in a given time (see Art. 171); it

can be called the law of force. If force be defined as the cause of any

change of momentum, the second law follows naturally by assuming, as

is usually done, that the effect is proportional to the cause.

The first two laws may thus be regarded from the mathematical

point of view as nothing but a definition of force; but they are certainly

meant to emphasize the phj'sical fact that the assumed definition of

force is not arbitrary, but based on the characteristics of motion as

observed in nature.

In the corollaries to his laws Newton tries to show how the compo-

sition and resolution of forces by the parallelogram rule follows from

his definition. In deriving this result he tacitly assumes that the action

of any force on a particle takes place independentlj' of the action of

any other forces that may be acting on the particle at the same time,

a principle that would seem to deserve explicit statement. Some
writers on mechanics prefer to replace Newton's second law by this

principle of the independence of the action of forces.



187.] MOMENTUM; FORCE; ENERGY 141

187. The third law expresses the physical fact that in nature all

forces occur in pairs of equal and opposite forces. Two such equal and

opposite forces in the same line are often said to constitute a stress.

Newton's third law has therefore been called the law of stress.

This law, which was first clearly conceived in Newton's time, involves

what may be regarded as the second fundamental property of matter

or mass (the first being its indestructibility) ; viz. that any two particles

of matter determine in each other oppositely directed accelerations along

the line joining them.



CHAPTER X.

STATICS OF THE PARTICLE.

1.88. According to the definition of force (Arts. 171, 173),

a single force F acting on a particle of mass m produces ari

acceleration j such that F = mj; i. e. the vector F is m
times the vector j.

If two forces Fi, Fo act on the same particle, it is assumed

(Art. 186) that each acts as if the other were not present;

/ -z^ hence, if ju jo are the ac-

/ ^^
I

celerations which Fi, Fo

/
*

^-^^^^ / would produce separately,

•l^"^ j I then the combined effect of

J^
^

FJ Fi and Fo will be to produce

.^. an acceleration equal to the
Fig. 41.

,

^
.

resultant, or geometric sum,

i = Ji + J2, of the accelerations ji, j^; and this resultant ac-

celeration j can be produced by a single force R = mj (Fig.

41).

The combined effect of the two forces Fi, F2 acting on the

same particle m is thus the same as that of that single force

R which is the resultant, or geometric sum, of Fi and F2.

The two forces Fi, Fo are said to be equivalent to the single

force R; R\s called the resultant of Fi, Fo, which are called

components of R.

189. Thus, the resultant R of two forces Fi, F2 acting on

the same particle is found (Fig. 42) as the diagonal of the

parallelogram constructed with Fi. Fo as adjacent sides.

142
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Hence

R = VFi- + Fa^ + 2FiF2 cos^,

R
sin/3 sina sin0

where 6 is the angle between Fi and i^2, « that between J?

and Fi, /3 that between /^ and F-y.

This proposition is known as the parallelogram of forces.

It enables us to find the vector R when the vectors F], F^

are given; and conversely, to find Fi, F2 if, in addition to the

'3

Fig. 42

vector R, the directions of Fi, Fo (the angles a, /3) are given.

The latter operation is called resolving a force along given

directions.

To find 7^ when Fi, F2 are given it suffices (instead of con-

structing the whole parallelogram) to lay off (Fig. 43) 1 2,

equal to the vector Fi (in magnitude, direction, and sense),

and 2 3, equal to the vector F2; then 1 3 is the resultant R.

123 is called the triangle of forces.

190. Let any number 71 of forces Fi, F2, • • • F„ be applied

at the same point 0, i. e. act on the same particle at 0. By

Art. 189, we can find the resultant Ri of Fi and Fo, next the

resultant 7?2 of 7?i and F3, thvn the resultant R3 of Ro and

Fi, and so on. The resultant R of Rn-- and Fn is evidently

equivalent to the whole system Fi, F2, F3, • • • F„, and is
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called its resultant. It thus appears that a system consisting

of any niwiber of forces acting on the same particle is equivalent

to a single resultant.

It may of course happen that this resultant is zero. In

this case the system is said to be in equilibrium. The con-

dition of equilibrium of a system of forces acting on the same

particle is therefore:

R = 0.

The system of forces in this case produces no acceleration;

notice that equilibrium of the forces does not mean that the

particle is at rest. Under forces that are in equilibrium the

particle, if at rest, will remain at rest; if in motion, it will

continue to move uniformly in a straight line.

191. In practice, the process of finding the resultant

indicated in Art. 190 is inconvenient when the number of

forces is large. If the forces are given geometrically, as

Fig. 44.

vectors, we have only to add these vectors; and this can best

be done in a separate diagram, called the force polygon.

Thus, in Fig. 44, 1 2 is drawn equal and parallel to Fi, 2 3

equal and parallel to F., 3 4 to F3, 4 5 to F^, 5 6 to F^. The
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closing line of the force polygon, viz. 1 6 in the figilre, is

equal and parallel to the resultant R, which is therefore

obtained by drawing through the point of application of the

forces a line equal and parallel to 1 6.

The geometrical condition of equilibrium consists in the

closing of the force polygon, that is, in the coincidence of its

terminal point 6 with its initial point 1.

192. Analytically, a system of concurrent forces is reduced

to its rnost simple equivalent form, i. e. to its single resultant,

by resolving each force F into three components A^, Y, Z,

along three rectangular axes passing through the particle, or

point of application of the given forces. All components

lying in the direction of the same axis can then be added

algebraically, and the whole system of forces is found to

be equivalent to three rectangular forces SX, SF, SZ, which,

by the parallelogram law, can be replaced by a single resultant

7^ = V(2Ap + (SF)2 + (2Z)2.

The angles a, /S, 7 made by this resultant with the axes

are given by the relations

cosa _ cosjg _ C0S7 ^ 1^

SX ~ SF ~ SZ ~ R'

193. If the forces all lie in the same plane, only two axes

are required and we have

SF
R = V(2X)2 + (SF)2, tan0 = ^,

where 6 is the angle between the axis of X and R.

194. The condition of equilibrium (Art. 190) R = be-

comes, by Art. 192, {^Xy + (SF)^ + (SZ)^ = 0. As all

terms in the left-hand member are positive, their sum can

vanish only when each term is zero. The analytical conditions

11
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of the equilibrium of any mmiber of concurrent forces are

therefore

:

SX = 0, 2F = 0, SZ = 0.

195. The forces of nature receive various special names

according to the circumstances under which they occur.

Thus the weight of a mass has already been defined (Art.

176), as the force with which the mass is attracted by the

mass of tlie earth.

A string carrying a mass at one end and suspended from

a fixed point, is subjected to a certain tension. This means

that if the string were cut it would require the application

of a force along the line of the string to keep the weight in

equilibrium. This force, which may thus serve to replace

the action of the string, is called its tension.

When the surfaces of two physical bodies A, B are in

contact, a pressure may exist between them; that is, if one

of the bodies, say B, be removed, it may require the intro-

duction of a force to keep A in the same state of rest or

motion that it had before the removal of B. This force,

which acts along the common normal of the surfaces at the

point of contact if there is no friction, is called the resistance,

or reaction, of B, and a force equal and opposite to it is

called the pressure exerted by A on B. For the case of

friction see Arts. 237 sq.

[196. Exercises.

(1) Show that the resultant of two equal forces F including an angle

6 is 2F cos^O. Observe the variation of the resultant as 9 varies from

to tt; for what angle e is the resultant equal to F?

(2) Show that the resultant of two forces OA, OB is twice OC,

where C is the midpoint of A and B.

(3) Find the magnitude and direction of the resultant of two forces

of 12 and 20 lb., including an angle of 60°.
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(4) Find the resultant of 6 equal concurrent forces, each inclined

to the next at 45°.

(5) Show that the forces OA, OB, OC are in equilibrium if is the

centroid of the triangular area ABC.

(6) Show (by Art. 194) that if any number of concurrent forces are

in equilibrium, their point of concurrence is the centroid of their ex-

tremities.

(7) A mass m rests on a plane inclined to the horizon at an angle

6; it is kept in equilibrium: (a) by a force Pi parallel to the plane;

(b) by a horizontal force Pi] (c) by a force P? inclined to the horizon

at an angle 6 + a. Determine in each case the force P and the pres-

sure R on the plane.

(8) A weight W is suspended from two fixed points A, B hy means

of a string ACB, C being the point of the string where the weight W
is attached. If AC, BC be inclined to the vertical at angles a, §, find

the tensions in AC, BC: (a) analytically; {h) graphically.

(9) Show that the resultant R of three concurrent forces A, B, C in

the same plane is given by P^ = ^2 _[_ 52 ^ (72 _(_ 2BC cos{B, C) +
2CA cos(C, A) + 2AB cos(^, B).

(10) A weightless rod AC, hinged at one end A so as to be free to

turn in a vertical plane, is held in a horizontal position by means of the

chain BC, the point B lying vertically above A. If a weight W be

suspended at C, find the thrust P in ^C and the tension T of the chain.

Assume AC = 8 ft., AB = Q ft.

(11) In Ex. (10), suppose the rod AC, instead of being hinged at

A, to be set firmly into the wall in a horizontal position; and let the

chain fastened at B run at C over a smooth pulley and carry the weight

W. Find the tension of the chain and the magnitude and direction

of the pressure on the pulley at C.

(12) In "tacking against the wind," let W be the force of the wind;

a, ^ the angles made by the axis of the boat with the direction in which

the wind blows, and with the sail, respectively. Determine the force

that drives the boat forward and find for \\'hat position of the sail it

is greatest.

(1.3) A cylinder of weight W rests on two inclined planes whose inter-

section is horizontal and parallel to the axis of the cylinder. Find the

pressures on these planes.
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(14) Find the tensions in the string ABCD, fixed at A and D, and

carrying equal weights W at B and C, ii AD = c is horizontal, AB —

BC = CD, and the length of the string is 3L

(15) In the toggle-joint press two equal rods CA, CB are hinged

at C] a force F bisecting the angle 2a between the rods forces the

ends A, B apart. If A be fixed, find the pressure exerted at B at

right angles to F ii F = 100 lbs. and a = 15°, 30°, 45°, 60°, 75°, 90°.

(16) A stone weighing 800 lbs. hangs from a derrick by a chain 15

ft, long. If pulled 5 ft. away from the vertical by means of a hori-

zontal rope attached to it, what are the tensions of the chain and the

rope? What if pulled 9 ft. away?

(17) A rope 16 ft. long has its ends fastened to two points, 10 ft.

apart, at the same height above the ground; a weight W is suspended

from the rope by means of a ring free to slide along the rope. Find the

tension of the rope.

(18) A string with equal weights W attached to its ends is hung

over two smooth pegs A, B fixed in a vertical wall. Find the pressure

on the pegs: (o) when the line AB is horizontal; (b) when it is inclined

to the horizon at an angle d.



CHAPTER XI.

STATICS OF THE RIGID BODY.

197. A system of forces acting on a rigid body can, in

general, not be reduced to a single resultant, as is the case

for concurrent forces (Art. 190) ; in other words, there does

not always exist a single force having the same effect that

the system of forces has in changing the motion of the body.

Before discussing the general case it is best to consider

certain particular kinds of systems of forces, viz. concurrent,

parallel, and complanar systems.

Throughout the statics of the rigid body it is assumed that

the effect of a force is not changed if the force is transferred to

any other position on its line of action; in other words, a body

is called rigid if, and only if, it possesses this property.

Thus the ''point of application" of a force acting on a rigid

body is not an essential characteristic of the force; what

characterizes the force is its magnitude, line of action, and

sense. This is what is meant by saying that a force is a

localized vector or rotor (Art. 182).

1. Concurrent forces.

1Q8. In the case of concurrent forces there exists a single

resultant, viz. the geometric sum of the forces. If this

resultant happens to be zero, i. e. if the force polygon (Art.

191) closes, the forces are in equilibrium.

As the projection of a closed polygon on any line is zero,

it follows that the projection of the resultant on any liiie is

equal to the algebraic sum of the projections of its components.

149
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Thus, if the forces P, Q intersect at and have the re-

sultant R we find by projecting on any line I:

R cos(?, R) = P'cosil, P) -\-Q cos{l, Q).

Let the hne I be drawn through 0, in the plane of P and

Q, and let an arbitrary length OS = s (Fig. 45) be laid off

at right angles to / in the same

plane. Then, multiplying the

last equation by .s we find

R-scos(l,R) = P-scos(/, P)+
Q-scos(l,Q);

or since s cos(Z, R) = r,

s cos{l, P) =p, s cos{l, Q) ^ q

are the perpendiculars from S

to R,P,Q:

Rr = Pp + Qq.

Now the product of a force into its perpendicular distance

from a point is called the moment of the force about the

point; the product is taken with the positive or negative

sign according as the force tends to turn counterclockwise

or clockwise about the point. We have therefore proved

that the algebraic sum of the moments of any two intersect-

ing forces about anij point in their plane is equal to the moment

of their resultant about the same point.

This proposition is known as the theorem of moments,

or Varignon's theorem. It is readily extended to any

number of concurrent forces in the same plane. As a corollary

it follows that the sum of the moments of any such forces

about any point of their resultant is zero.

199. As the moment of a force represents twice the area

of the triangle having the force as base and the reference

Fig. 45.
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point as vertex, the theorem of moments can also be proved

by comparing areas. Thus, with the notation of Fig. 46

we have
SOR = SOQ + SQR + QOR,

I. e.

or smce

->R

R.r = Q-q+ P-ST+ PTU,

ST + TU = SU = p:

Rr = Qq + Pp.

It is often convenient to think of the moment Rr of a

force R about the point S as a vector drawn through S at

right angles to the plane deter-

mined by S and R. This is in

agreement with the representa-

tion of a parallelogram area by

such a vector, mentioned in Art.

119. Indeed, the moment Rr is

the cross-product of the radius

vector drawn from S to any point

of R into tlie force-vector R.

This representation is of special advantage when the

concurrent forces do not lie in the same plane. It can then

be shown that the moment of the resultant about any point

is equal to the geometric sum of the vectors representing

the moments of the components.

2. Parallel forces.

200. It will be proved in the next article that any two

parallel forces acting on a rigid body have a single resultant,

except when the two parallel forces are of equal magnitude

and opposite sense. In the latter case, the two equal and

opposite parallel forces are said to constitute a couple,

and no further reduction is possible.

FiR. 46.
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It follows readily that any system of parallel forces acting

on a rigid body can be reduced either to a single force or to a

single couple.

201. Resultant of two parallel forces. In the plane of

the given parallel forces P, Q, resolve P, at any point p of

its line of action, into any two components, say P' and F

(Fig. 47); and at the point q where F meets the line of Q,

Fig. 47.

resolve Q into two components F', Q', selecting for F' a

force equal and opposite to, and in the same line with, F.

The two equal and opposite forces F, F' in the same line

pq have no effect on the rigid body so that the given forces

P, Q are together equivalent to the two components P',

Q' alone. The lines of P' and Q' will in general intersect

at a point r and these forces can therefore be replaced by

a resultant R passing through r.

By placing the triangles pP'P and qF'Q together so that

their equal sides PP' and qF' coincide (as is done in Fig. 47,

on the right) it appears at once that the resultant of P' and
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Q' , and hence the resultant R of P and Q, is parallel to P and

Q and in magnitude equal to the algebraic sum of P and Q:

R^ P + Q.

In Fig. 47, the two given parallel forces P, Q were as-

sumed of the same sense. The construction applies, how-

ever, equally well to the case when they are of opposite sense.

The resultant R will then be found to lie not between P and

Q, but outside, on the side of the larger force. The con-

struction fails only when the two given forces are equal and

of opposite sense, since then the lines pP' and qQ' become

parallel. This exceptional case will be considered in Art. 208.

202. The theorem of moments for parallel forces. As the

forces R, P', Q' (Fig. 47) are concurrent the theorem of

moments (Art. 198) can be applied to these three forces.

Hence, taking moments about any point S of the plane of

P' and Q' and denoting the perpendiculars from S to the

forces by the corresponding small letters, we have*

Rr = P'p' + Q'q'.

Now P' can be regarded as the resultant of P and — F, and

Q' as the resultant of Q and — F' ; hence

P'p' = Pp - Ff, Q'q' =Qq- F'f;

substituting these values and remembering that F and F' are

equal and opposite and in the same line, we find

Rr = Pp + Qq;

i. e. the sum of the moments of two parallel forxes about any

point in their plane is equal to the moment of their resultant

about the sanUb point.

If, in particular, the point of reference be taken on the

resultant so that r = 0, we find

Pp = - Qq;
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i. e. the resultant of two 'parallel forces divides their distance

in the inverse ratio of the forces.

This proposition, well known from its application to the

lever, is often referred to as the principle of the lever.

203. It has been shown that two parallel forces P, Q acting

on a rigid body, provided they are not equal and of opposite

sense, have a resultant R = P -\- Q, parallel to P and Q, and

that its position in the rigid body can be found either ana-

lytically from the fact that R divides the distance between P
and Q in the inverse ratio of these forces, or geometrically

by the construction of Art. 201.

This geornetrical construction is best carried out in the

tollowing order (Fig. 48). The parallel forces P, Q being

._->0

Fig. 48.

given in position, begin by constructing the force polygon,

which here consists merely of a straight line on which the

forces P = 12, Q = 23 are laid off to scale ; the closing line,

1 3, gives the resultant in magnitude, direction, and sense;

it only remains to find its position, and for this it suffices to

find one point of its line of action.

Now, to resolve P and Q each into two components

(as is done in Art. 201) so that one component of P and
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one of Q are equal and opposite and in the same line, it is

only necessary to draw from an arbitrary point 0, called the

pole, the lines 1, 2, 3; then 1 0, 2 can be regarded

as components of P = 1 2, and 2 0, 3 as components of

Q = 23. Next construct the so-called funicular polygon by

drawing a hne I parallel to 1, intersecting P say at p;

through p a line II parallel to 2 meeting Q say at q; through

q a line III parallel to 3.

The intersection r of I and III is a point of the resultant R
as appears by comparing Figs. 48 and 47; Fig. 48 being the

same as Fig. 47, with the superfluous lines left out.

204. Analytically, the resultant of n parallel forces Fi,

F2, • • • Fn, whether in the same plane or not, can be found as

follows

:

The resultant of Fi and F2 is a force Fi + F2 situated in

the plane (Fi, F2), so that F^pi = F2P2 (Art. 202), where

Pi, P2 are the (perpendicular or oblique) distances of the

resultant from Fi and Fo, respectively. This resultant Fi

+ F2 can now be combined with Fz to form a resultant

Fi-\- F2 + Fz, whose distances from Fi + F2 and F3 in the

plane determined l^y these two forces are as Fz is to Fi + F2.

This process can be continued until all forces have been

combined; the final resultant is

Pi + 7^2 + • • • + Pn.

Amj number of parallel forces are, therefore, equivalent to a

single resultant equal to their algebraic sum, provided this sum

does not vanish.

205. To find the position of this resultant analytically, let

the points of application of the forces Pi, P2, • • • Fn be

(xi, yi, Zi), (x2, y2, Z2), • • • (xn, Vn, Zn) The point of applica-

tion of the resultant Pi -f Po of Pi and P2 may be taken so as
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to divide the distance of the points of application of Fi and

F<2, in the ratio F^jFi; hence, denoting its co-ordinates by

x', y', z' , we have Fi{x' — Xi) = F^ix^ — x'), or

(Fi + F~^x' = F,x, + F2X2,

and similarly for 7/ and z\

The force Fi + F2 coml)ines with F3 to form a resultant

F1+ F2+F3, whose point of apphcation {x",y" , z") is given Iw

(Fi + F2 + F3)x" = Fixi + F2X2 + Fszs,

with similar expressions for y", z"

.

Proceeding in this way, we find for the point of application

{x, y, z) of the resultant of all the given forces

(Fi + F2 + • • • + Fn)x = F,xr + F,Xo + • • • + F„a'„,

with corresponding equations for y and I. We may write

these equations in the form:

- _ ^^ - _ ^l]L - -^
^ ~ 2F ' ^ ~ SF ' ^ ~ ZF '

unless 2F = 0.

As these expressions for x, y, z are independent of the

direction of the parallel forces it follows that the same point

(x, y, z) would be found if the forces were all turned in any

way about their points of application, provided they remain

parallel. The point {x, y, z) is for this reason called the

center of the system of parallel forces. It is nothing but the

centroid of the points of application if these points are re-

garded as possessing masses equal to the magnitudes of the

forces.

206. Conditions of equilibrium. It follows from what pre-

cedes that Jor the equilibrium of a system, of 'parallel forces the

condition 2F — Q, or R = Q, though always necessary, is not

sufficient.
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Now, if the resultant R of the n parallel forces Fi, F2, • • F„

is zero, the resultant R' of the n — 1 forces Fi, F2, • • Fn-i

cannot be zero, and its point of application is found (by Art.

205) from x = (F^Xi + F2X2 -\- • • • + Fn-iXn-i) I{F , -\- F^ +
• • • Fn-i) and similar expressions for y and z. The whole

system of parallel forces is therefore equivalent to tl.e two

parallel forces R' and Fn- Two such forces can be in equi-

librium only when they lie in the same straight line; i. e. Fn

must lie in the same line with R' and must therefore pass

through the point (x, y, z), which is a point of R'.

The additional condition of equilibrium is, therefore,

X Xn y yn Z Zn

cosa cos/3 C0S7 '

where a, jS, 7 are the angles made by the direction of the

forces with the axes.

For practical application it is usually best to replace the

last condition l)y taking moments about a convenient point.

Thus, the analytical conditions of equilibrium can be written

in the form
SF = 0, Si^p = 0.

Graphically, to the former corresponds the closing of the

force-polygon, to the latter, in the case of complanar forces,

the closing of the funicular polygon.

207. Weight; center of gravity. The most important

special case of parallel forces is that of the force of gravity

which acts at any given place near the earth's surface in

approximately parallel lines on every particle of matter.

If g be the acceleration of gravity, the force of gravity on a

particle of mass m is

w = mg,

and is called the weight of the particle or of the mass m.
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For a system of particles of masses w-i, iih, • • • nin we have

W\ = '^niQ, W2 = rrhg, • • Wn — mnQ-

If the particles are rigidly connected, the resultant W of

these parallel forces,

W = Wi-\- 102+ + Wn = (wh + //?2 + • • • + mn)g = Mg,

where M is the mass of the system, is called the weight of the

system.

The center of the parallel forces of gravity of a system of

rigidly connected particles has, by Art. 205, the co-ordinates

'

_ _ Xmgx _ _ ^mgy _ _ If^nigz

~
'^mg ' ^ "

:^???g ' " 2/?ig
'

or since the constant g cancels,

_ _ 1,mx _ _ Zmy _ _ llmz

^^^m^' ^~~^i' ^~S^'
This point is called the center of gravity of the system,

and is evidently identical with the center of mass, or centroid

(see Art. 159).

For continuous masses the same formulse hold, except that

the summations become integrations.

The weight TF of a physical body of mass M is therefore a

vertical force passing through the centroid of its mass.

3. Theory of couples.

208. The construction given for the resultant of two par-

allel forces given in Arts. 201 and 203 fails if, and only if, the

given forces are equal and of opposite sense. In this case,

the lines pP' and qQ' in Fig. 47, and the lines I and III of the

funicular polygon (Fig. 48), become parallel, so that their

intersection r lies at infinity. The magnitude of the resultant

is of course zero.
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The combination of two equal and opposite parallel forces

{F, — F) acting on a rigid body is called a couple. A couple

is, therefore, not equivalent to a single force, although it might

be said to be equivalent to the limit of a force whose mag-

nitude approaches zero while its line of action is removed

to infinity.

The perpendicular distance AB = p (Fig. 49) of the forces

of the couple is called the arm, and the product Fp of the

force F into the arm p is

called the moment of the

couple. The moment, or B

the couple itself, is also —

F

called a torque.

Notice that the moment

of a couple is simply the

sum of the moments of its

forces about any point in

its plane.

If we imagine the

couple {F, p) to act upon an invariable plane figure in its

plane, and if the midpoint of its arm be a fixed point of

this figure, the couple will evidently tend to turn the

figure about this midpoint. (It is to be observed that it

is not true, in general, that a couple acting on a rigid body

produces rotation about an axis at right angles to its plane.)

A couple of the type {F, p) or {F'
,
p') (see Fig. 49) will tend

to rotate counterclockwise, while a couple of the type {F"
,
p")

tends to turn clockwise. Couples in the same plane, or

in parallel planes, are therefore distinguished as to their sense

and this sense is expressed by the algebraic sign attributed

to the moment. Thus, the moment of the couple {F, p) in

Fig. 49 is + Fp, that of the couple {F", p") is - F"p",

Fis. 49.
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-F

Fig. 50.

209. The effect of a couple is not changed by translation, i. c. by

moving its plane parallel to itself without rotating it.

Let AB = p (Fig. 50) be the arm

of the couple {F, p) in its original

position, and A'B' the same arm in a

new position i:)arallel to the original

one in the same plane, or in any par-

allel plane. By introducing at each

end of the new arm A'B' two oppo-

site forces F, — F, each equal and

parallel to the original forces F, the

given S3'stem is not changed. But

the two equal and parallel forces F
at A and B' form a resultant 2F at the midpoint of the diagonal

AB' of the parallelogram ABB'A'. Similarly, the two forces — F at

B and A' are together equivalent to a resultant — 2F at the same point

O. These two resultant forces, being equal and opposite and acting in

the same line, are together equivalent to zero. Hence the whole sys-

tem reduces to the force F at

A' and the force — i^ at B'

,

which form, therefore, a

couple equivalent to the orig-

inal couple at AB.

210. The effect of a couple

is not changed by rotation in

its plane.

Let AB (Fig 51) be the

arm of the couple in the orig-

inal position, C its midpoint,

and let the arm be turned

about C into the position

A'B'. Applying again at A',

B' equal and opposite forces

each equal to F, the forces - F aAA' and F at A will form a resultant

acting along CD, while F at B' and - F &i B give an equal and oppo-

site resultant along CE. These two resultant forces destroy each other

and leave nothing but the couple formed by Fat yl'and - F at B'

which is therefore equivalent to the original couple,
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Any other displacement of the couple m its plane, or to a parallel

plane, can be effected by a translation combined with a rotation in

its plane about the midpoint of its arm. The effect of a couple is therefore

not changed by any displacement in its plane or to a parallel plane.

211. The effect of a couple is not

changed if its force F and its arm j)

he changed simultaneously in any ivay, p'

provided their product Fp remain the

same. ^

Let AB = p) be the original arm '

(Fig. 52), F the original force of the

B C

-F

F

A'

-F'

couple; and let A'B' — p' be the new

arm. The introduction of two equal '
-p- rn

and opposite forces F' at A' , and also

at B', will not change the given system F, — F. Now, selecting for

F' a magnitude such that F'jj' = Fp, the force F at A and the force

- F' at A' combine (Arts. 201, 203) to form a parallel resultant

through C, the midpoint of the arm, since for this point F ^p +
{- F') Ip' = 0. Similarly, - F at B and F' at B' give a resultant of

the same magnitude, in the same line through C, but of opposite sense.

These two resultant forces thus destroying each other, there remains

only the couple formed by F' at A' and — F' at B', for which

Fp = F'p'.

212. It results from the last three articles that the only essen-

tial characteristics of a couple are: (a) the numerical value of the

moment; (6) the sense, or direction of rotation; and (c) what has been

called the "aspect" of its plane, i. e. the direction of any normal to

this plane.

It is to be noticed that the plane of the two forces forming the

couple is not an essential characteristic of the couple; just as the

point of application of a force is not an essential characteristic of the

force (see Art. 197); provided, of course, that the couple (or force) is

acting on a rigid body.

Now the three characteristics enumerated above can all be indi-

cated by a vector which can therefore serve as the geometrical repre-

sentative of the couple. Thus, the couple formed by the forces F,

— F (Fig. 53), whose perpendicular distance is p, is represented by

the vector AB = Fp laid off on any normal to the plane of the couple,

12
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The sense is indicated by drawing the vector toward that side of the

plane from which the couple is seen to rotate counterclockwise.

We shall call this geometrical representative AB oi the couple simply

the vector of the couple. It is sometimes called its niomcnl, or its axis,

or its axial moment.

213. As was pointed out in Art. 208, a couple can be regarded as

the limit of a force whose magnitude approaches zero while its line of

action is removed to infinity. Similarly, in kinematics an angular

velocity whose magnitude tends to zero while its axis is removed in-

definitely becomes in the limit a velocity of translation.

Fig. .53.

Just as, in kinematics (see Art. 122), two equal and opposite angular

velocities about parallel axes produce a velocity of translation, so in

statics two equal and opposite forces along parallel lines form a new

kind of quantity called a couple.

It should, however, be noticed that while angular velocities and

forces are represented by rotors, i. e. by vectors confined to definite

lines, velocities of translation and couples have for their geometrical

representatives vectors not confined to particular lines.

It is due to this analogy between the two fundamental conceptions

that a certain dualism exists between the theories of statics and kine-

matics, so that a large portion of the theory of kinematics of a rigid

body might be made directly available for statics by simply substituting

for angular velocity and velocity of translation the corresponding ideas

of force and couple.
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214. It is easily seen how, by means of Arts. 209-211, any

number of couples acting on a rigid body can be reduced to a

single resultant couple. It can also be proved without much
difficulty that the vector of the resultant couple is the geo-

metric sum of the vectors of the given couples; in other words,

vectors reyreseiiting couples acting on the same rigid body are

combined by the parallelograin law.

In the particular case when the couples all lie in parallel

planes, or in the same plane, their vectors may be taken in

the same line and can, therefore, be added algebraically.

Generally, the resultant of any number of couples is a single

couple whose vector is the

geometric sum of the vectors

of the given couples.

Conversely, a couple can

be resolved into components

by resolving its vector into

components.

215. To combine a single

force P with a couple {F,p)

lying in the same plane it

is only necessary to place

the couple in its plane in

such a position (Fig. 54)

that one of its forces, say — F, shall lie in the same line and in

opposite sense with the single force P, and to transform the

couple {F, p) into a couple (P, p'), by Art. 211, so that Fp =

Pp'. The original force P and the force— P of the transformed

couple destroying each other at A, there remains only the

other force P, at A', of the transformed couple, that is, a

force parallel and equal to the original single force P, at

the distance

i



1G4 STATICS [216.

from it.

Hence, a couple and a single force in the same plane are

together equivalent to a single force equal and parallel to, and of

the same sense with, the given force, but at a distance from it

which is found by dividing the moment of the couple by the

single force.

Conversely, a single force P applied at a point A of a rigid

body can always be replaced by an equal and parallel force P
of the same sense, applied at any other point A' of the same

body, in combination with the couple formed by P at A and — P
at A'.

This follows at once by applying at A' two equal and

opposite forces each equal and parallel to P.

216. The proposition of Art. 215 applies even when the

force lies in a plane parallel to that of the couple, since the

couple can be transferred to any parallel plane without chang-

ing its effect.

If the single force intersects the plane of the couple, it

can be resolved into two components, one lying in the plane

of the couple, while the other is at right angles to this plane.

On the former component the couple has, according to Art.

215, the effect of transferring it to a parallel line. We thus

obtain two non-intersecting, or skew, forces at right angles to

each other.

Let P be the given force, and let it make the angle a with

the plane of the given couple, whose force is F and whose arm

is p. Then P sina is the component at right angles to the

plane of the couple, while P cosa combined with the couple

whose moment is Fp is equivalent to a force P cosa in the

plane of the couple; this force P cosa is parallel to the pro-
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jection of P on the plane, and has the distance Fp/P cosa

from this projection.

Hence, in the most general case, the combination of a single

force and a couple can be replaced by the combination of two

single forces crossing each other {without meeting) at right

angles; it can be reduced to a single force only when the force

is parallel to the plane of the couple.

4. Complanar forces.

217. If the forces acting on a rigid body all lie in the same

plane, i. e. if the forces are complanar, the system can be

reduced to a single force and a single couple by applying the

last proposition of Art. 215. For, selecting an arbitrary

point of the plane as point of reference, we can replace

each force F of the system by an equal force F applied at

0, together with a couple Fp, whose arm p is the perpen-

dicular from to the line of action of the given force F at P.

We thus obtain, in the plane, a number of concurrent forces

at which are equivalent to a single resultant R, passing

through and equal to the geometric sum of the given forces

;

and in addition a numl)er of couples in the same plane which

give a single resultant couple, say H = llFp.

Notice that the moment H of the resultant couple is

simply the sum of the moments about of all the given

forces.

It follows that the conditions of equilibrium are:

7^ = 0, // = 0;

i. e. a system of complanar forces is in equilibrium if, and only

if, (a) its resultant is zero, and (h) the algebraic sum of the

moments of all its forces is zero about any point in its plane.

218. By Art. 217, a system of complanar forces reduces,

for any point of reference in its plane, to a force R and a
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couple H. But as these lie in the same plane, it follows from

the first proposition of Art. 215 that they can be reduced to

a single resultant R (unless R = 0). The distance r of this

smgle resultant from is such that Rr = — H; i. e. r =
— H/R. The line of action of this single resultant is called

the central axis of the system.

Thus, a system of complanar forces can always be reduced

either to a single force i2 or to a single couple H.

219. For a purelj^ analytical reduction of a plane system of

forces the system is referred to rectangular axes Ox, Oy,

arbitrarily assumed in the plane (Fig. 55). Every force F is

).Y

-X

^X
X /

-Y

Fig.

resolved at its point of application P (x, y) into two com-

ponents X, Y
,
parallel to the axes, so that

X = F cosa, Y = F sina,

a being the angle made by F with the axis Ox. At the origin

two equal and opposite forces X, — X are applied along

Ox, and two equal and opposite forces Y, — Y along Oy.

Thus, X at P is equivalent to X at together with the

couple formed by X at P and — X at 0; the moment of
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this couple is evidently — yX. Similarly, F at P is re-

placed by F at together with a couple whose moment is xY.

The force P at P is therefore equivalent to the two forces

X, F at together with a couple whose moment is xY — yX.

Proceeding in the same way with every given force, we
obtain a number of forces X along Ox whose algebraic sum
we call 2X, and a number of forces F along Oy which give

2F. These two rectangular forces form the resultant

n = -V(SZ)2 + (2F)2

whose direction is given by
SF

tana=^^^,

where a is the angle between Ox and R.

In addition to this, we obtain a number of couples xY
— yX whose algebraic sum forms the resulting couple

H = SCtF - yX).

The whole system is thus found equivalent to a resultant

force R together with a resultant couple H in the same plane

with R The conditions of equilihrimn R = 0, H = (Art.

217) can therefore be expressed analytically by the three

equations

SX = 0, SF = 0, Z(xY - yX) = 0.

220. If R be not zero, R and H can be reduced to a single

resultant R' equal and parallel to R at the distance — H/R
from it (see Art. 218). The equation of the line of this single

resultant R', i. e. the central axis of the system of forces, is

found by considering that it makes the angle a with the axis

of X and that its distance from the origin is

H/R = ^{xY - 7/X)/V(:CX)2+ (SF)2.
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Hence its equation is

^SF - Tj-SZ - 2(xY - yX) = 0.

If i2 = 0, the system is equivalent to the couple

H = i:(xY - 7jX).

If H itself be also zero, the system is in equilibrium.

221. Exercises.

(1) A homogeneous straight rod AB = 21 (Fig. 56) of iveight W rests

with one end A on a smooth horizontal plane AH, and with the point

E{AE = e) on a cylindrical support, the axis of the cijlinder being at

right angles to the vertical plane coritaining the rod. Determine what

horizontal force F must be applied at a given point F of the rod {AF = f > e)

to keep the rod in equilibrium irhen inclined to the horizon at an angle 6.

The rod exerts a certain unknown pressure on each of the supports

at A and E, in the direction of the normals to the surfaces of contact,

provided there be no friction, as is here assumed. The supports may
therefore be imagined removed if forces A, E, equal and opposite to

these pressures, be introduced; these forces A, E are called the reactions

of the supports. The rod itself is here regarded as a straight line; its

weight W is applied at its middle point C.

Taking A as origin and AH as axis of x, the resolution of the forces

gives

•Z.X = F - E sine = 0, (1)

sy = A -w + E cose = 0.

Taking moments about A, we find

E e -W -l cos(9 - F f sine = 0.

(2)

(3)
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Eliminating F from (1) and (3), we have

hence from (2),

and finally from (1),

_lcosd_
^

e -f sin20 ^ '

\ e — f sm-0 /

jj, _ I sin^ cos9 ^~
e -f sm20

(2) A weightless rod AB of length I can tm-n freely about one end

A in a vertical plane. A weight W is suspended from a point C of

the rod; AC = c. A cord BD attached to the end B of the rod holds

it in equilibrium in a horizontal position, the angle ABD being a = 150°.

Find the tension T of the cord and the resulting pressure A on the

hinge at A.

(3) A cylinder of length 21 and radius r rests with the point A of

the circumference of its lower base on a horizontal plane and with the

point B of the circumference of its upper base against a vertical wall.

The vertical plane through the axis of the cylinder contains the points

A, B and is perpendicular to the intersection of the vertical wall with

the horizontal plane. If there be no friction at A, B, what horizontal

force F applied at A will keep the cylinder in equilibrium? When
is this force /^ = 0?

(4) A weightless rod AB rests without friction on two planes inclined

to the horizon at angles a, p, and carries a weight W at the point D.

The intersection C of these planes is horizontal and normal to the

vertical plane through AB. Find the inclination e of AB to the horizon

and the pressures at A and B.

(5) A weightless rod AB = I can revolve in a vertical plane about

a hinge at A; its other end B leans against a smooth vertical wall

whose distance from A \s AD = a. At the distance AC == c from A
a weight W is suspended. Find the horizontal thrust A^ at A and the

normal pressures Ay and B aX A and B.

(6) The same as (5) except that at B the rod rests on a smooth hori-

zontal cylinder whose axis is at right angles to the vertical plane through

AB. In which of the two problems is the horizontal thrust A at A least?
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5. The general system of forces.

222. To reduce any system of forces acting on a rigid body

to its most simple form the same methods are used as for

complanar forces (comp. Art. 217)

Selecting as origin any point rigidly connected with the

body, let two equal and opposite forces F ,
— i^ be applied at

0, for every one of the given forces F. The effect of the

given system of forces on the body is not changed by the

introduction of these forces at 0. But we may now regard

the given force F acting at its point of application P as

replaced by the equal and parallel force F at 0, in combination

with the couple formed by the original force F at P and the

fcroe — i^ at 0. All the forces of the given system are thus

transferred to a common point of application 0, and these

forces at can be replaced by a single resultant* R, passing

through and represented in magnitude and direction by the

geometric sum of the forces. In addition to this resultant R,

we obtain as many couples {F, — F) as there were forces

given; and their resultant is found by geometrically adding

the vectors of the couples (Art. 214).

Thus the given system of forces is seen to be equivalent to

a resultant R in combination with a couple whose vector

we shall call H; in other words, it has been proved that any

system of forces acting on a rigid body can be reduced to a

single resultant force in combincdion with a single resultant

couple.

It follows at once that the geometrical conditions of

equilibrium are*

R = 0, H =

223. Of the two geometrical elements representing a general

system of forces, viz. the rotor R and the vector H, the for-
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mer being merely the geometric sum of the forces, is inde-

pendent of the point of reference 0, while the vector H is

in general different for different points of reference.

If the elements R, H for a point are given, those for

any other point 0' can readily be found. It suffices to apply

at 0' equal and opposite forces R and — R. We then have

R at 0' , and two couples, viz. the couple whose vector is H
and the couple formed by 7^ at and — RaXO'; the resultant

of the vectors of these two couples is the vector H' corre-

sponding to 0'. Here, as well as in the following articles,

it is assumed that R ^ 0; when R = Q the system reduces

to a couple, the same whatever the point of reference.

If the new point of reference 0' had been selected on

the line I of the original resultant, no new couple would have

been introduced, and H would not have been changed. But

whenever the new point of reference 0' is taken on a line V

different from I, the vector of the resultant couple H is

changed.

By increasing the distance r between I and V the moment

Rr of the additional couple is increased. The effect of com-

bining this additional couple Rr with H is, in general, to

vary both the magnitude of the resulting vector H' and the

angle ^ it makes with the direction of the resultant R. It

can be shown that the line V of the new resultant can always

be selected so as to reduce the angle </> to zero. The line ?o

for which </> = 0, i. e. for which the vector H of the resultant

couple is parallel to the resultant force R, is called the central

axis of the given system of forces. We proceed to show how
it can l)c found (comp. Art. 123).

224. Let the vector H be resolved at into a component

Ho = H coscf) along I, and a component Hi = H sin<^, at
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right angles to I (Fig. 57). In the plane passing through I

at right angles to Hi, it is always possible to find a line lo

parallel to Z at a distance ro from I, such as to make Rro =

-Hi.
The line Zo so determined is the central axis. For, if this

line be taken as the line cf the resultant R, the additional

Ht-

Fig. 57. Fig. 58.

couple Rro destroys the component Hi, so that the resulting

couple ^0 has its vector parallel to R.

As the direction of the vector H is always changed in

passing from line to line, there can be but one central axis for

a given system of forces.

It appears from the construction of the central axis given

above, that the vector of the resulting couple for this

axis Zo is Ho = H cos0; it is, therefore, less than for any
other line.

It is mstructive to observe how the vector H increases and

changes its direction as we pass from the central axis Zo to

any parallel line I.
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The transformation from lo to I requires the introduction of

a couple whose vector Rro (Fig. 58) is at right angles to the

plane {U, I) and combines with Hq to form the resulting

couple H for I. As the distance ro of I from Zo is increased,

both the magnitude of H and the angle it makes with I

increase, the angle 4> approaching ^-tt as ro becomes infinite.

225. It is evident that since Ho = H cos0, the product

RH COS0 is a constant quantity for a given system of forces.

It may be called an invariant of the system.

If the elements of reduction for the central axis R, Ho
be given, those for any parallel line I at the distance ro from

the central axis are determined by the equations

H^ = Ho' + RW, tancp = --

.

no

To sum up the results of the preceding articles, it has been

shown that any system of forces acting on a rigid body can be

reduced, in an infinite number of ways, to a resultant R in

combination with a couple H. For all these reductions the

magnitude, direction, and sense of the resultant R are the

same, but the vector H of the couple changes according to

the position assumed for the line of R. There is one, and

only one, position of R, called the central axis of the system,

for which the vector H is parallel to R and has at the same

time its least value, Ho] this value Ho is equal to the projec-

tion of any other vectorH on the direction of the resultant R.

226. While, in general, a system of forces cannot be reduced

to a single resultant, it can always be reduced to two non-

intersecting forces. This easily follows by considering the

system reduced to its resultant R and resulting couple H
for any point (Fig. 59). Let F, — F be the forces, p the

arm of the couple H, and place this couple so that one of the
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forces, say — F, intersects R at 0. Then, if R and — F be

replaced by their resultant F' , the given system of forces is

evidently equivalent to the two non-intersecting forces F, F'

(compare Art. 216).

The two forces F, F' determine a tetrahedron OABC; and

it can be shown that the volume of this tetrahedron is constant

and equal to one sixth of the invariant of the system (Art. 225).

The proof readily appears from Fig. 59. The volume of the

tetrahedron OABC is evidently one half of the volume of the

quadrangular pyramid whose vertex is C and whose base is

the parallelogram ODAB. The area of this parallelogram is

Fp = // ; and the altitude of the pyramid is = 7^ cos0, being

equal to the perpendicular let fall from the extremity of R
on the plane of the couple; hence the volume of the tetra-

hedron
= IRH COS0 = iRHo.

227. To effect the reduction of a given system offorces analyt-

ically, it is usually best to refer the forces F and their points

of application P to a rectangular system of co-ordinates Ox,

Oy, Oz (Fig. 60). Let x, y, z be the co-ordinates of P and

X, Y, Z the components of F parallel to the axes.
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To transfer these components to and at the same time

to introduce only couples whose vectors are parallel to the

axes, we proceed in two steps. Thus to transfer, say X, we

introduce at P' , the foot of the perpendicular let fall from P
on the plane zx, two equal and opposite forces X, — X; and

we do the same thing at 0. Then the single force X at P is

replaced by the force A' at in combination with the two

couples formed by X at P, — X at P' , and X at P', — X

Fig. 60.

at 0. The vector of the former couple is parallel to Oz,

its moment is — yX; the negative sign being used because

for a person looking on the plane of the couple from the

positive side of the axis Oz the couple rotates clockwise. The

vector of the latter couple is parallel to Oij, and its moment is

zX.

The transfer of Y to the origin requires the introduction

of two couples, — zY having its vector parallel to Ox and xY

having its vector parallel to Oz.

Finally, transferring Z to O, we have to introduce the

couples — xZ with a vector parallel to Oij, and yZ with a

vector parallel to Ox.
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Thus each force F is replaced by three forces, X, Y, Z along

the axes of co-ordinates and applied at 0, in combination

with three couples whose vectors are yZ — zY parallel to

Ox, zX — xZ parallel to Otj, xY — yX parallel to Oz.

228. If this be done for every force of the given system

and the components having the same direction be added, the

system will be found equivalent to the three rectangular

forces

SX, ZY, ZZ,

applied at 0, together with the three couples

Z{yZ-zY), i:{zX-xZ), Z{xY-yX),

whose vectors are at right angles.

The three forces can now be replaced by a single resultant

R = V(2ZF+l2F)2TT2Z)2,

whose direction is determined by the angles a, /3, 7 which it

makes with the axes Ox, Oy, Oz:

SX ^27 SZ
COSa = -^ , COS/S = —^, COS7 = -^.

In the same way the three couples can be replaced by a

single resulting couple whose moment is

H = V[S(?/Z - zY)Y + [S(2X - xZ)Y + [Z{xY - yX)]\

229. Since R~, as well as H"-, is thus found as the sum of

three squares, each of these quantities can vanish only if

the three squares composing it vanish separately. The con-

ditions of equilibrium of a rigid body (Art. 222) are therefore

expressed analytically by the following six equations:

2X = 0, 27 = 0, 2Z = 0,

2(2/Z - zY) = 0, 2(zX - xZ) = 0, 2(x7 - yX) = 0.
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As the system of co-ordinates can be selected arbitrarily, the

meaning of the first three equations is that the sum of the

components of all the forces along any three lines not parallel

to the same plane must vanish. The last three equations

express that the sum of the moments of all the forces about

any three axes not parallel to the same plane must also

vanish.

The moment of a force about an axis must be understood as

meaning the moment of its projection on a plane at right

angles to the axis with respect to the point of intersection

of the axis with the plane. This definition is in accordance

with the somewhat vague notion of the moment of a force as

representing its " turning effect." For, if we regard the force

as acting on a rigid body with a fixed axis, the force can be re-

solved into two components, one parallel, the other perpen-

dicular, to the axis; the former component evidently does

not contribute to the turning effect which is, therefore,

measured l^y the moment of the latter alone.

230. The equations of the central axis (Art. 223) can be

found by a transformation of co-ordinates.

Let the system be reduced for any point to its resultant R,

whose rectangular components we denote by

A = 2X, B = ^Y, C = 2Z,

and to the vector H of its resulting couple with the com-

ponents

L = 2(7/Z - zY), M = 2(2X - xZ), N = 2(a;7 - yX).

If a point 0' whose co-ordinates are ^, rj, f be taken as new

point of reference and the co-ordinates of any point with

respect to parallel axes through 0' be denoted by x', y', z',

we have x = ^-\-x',y = 'n-[-y',z = ^-\-z'. Substituting

these values, we find

13
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L = 2[(7, + y')Z - (r + z') Y] = v^Z - ^ZY + :c(^'Z - z'Y)

= r,C - ^B^ L',

where L' is the .r-component of the couple H' resulting for

0' as point of reference. Similar expressions hold for M and

A''. The components of H' are therefore

U = L-7iC + ^B, M' = M - fA + ^C, N' =^N-^B+7]A;

and its direction cosines are

H" ^ ~ ^" " 7 //'

The central axis being defined (Art. 223) as that line for

which the vector of the resulting couple is parallel to the

direction of the resultant, the point 0'{^, t], ^) will lie on the

central axis if the direction cosines of H' are equal to those

of R, viz. to a = A/R, 13 =^ B/R, y = C/R. Hence the

equations of the central axis are

L' ^ ilf' ^ N^

A ~ B C '

that is,

L-r]C -\-^B ^ M - rA + ^C _ N - ^B -{-yA

A B C

6. Constraints; friction.

231. It has been shown in Art. 229 that the number of the

conditions of equilibrium is six, for a rigid body that is

perfectly free. This number will be diminished whenever

the body is subject to conditions restricting its possible

motions. Such conditions, or constraints, may be of various

kinds; the body may have a fixed point, or a fixed axis, or

one of its points may be constrained to move along a given

curve or to remain on a given surface, etc.
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Now a free -point is said to have three degrees of freedom

because its position is determined by three co-ordinates. One

conditional equation between its co-ordinates restricts the

point to the surface represented by that equation; it has

then one constraint and two degrees of freedom. Two con-

ditions restrict the point to a curve, viz. the intersection of

the two surfaces represented by the two equations of con-

dition; the point then has two constraints and one degree of

freedom.

The position of a rigid body is determined by the position

of any three of its points, not in a Hne, i. e. by nine co-ordi-

nates between which, however, there exist three conditions,

expressing the constancy of the distances of the three points.

A free rigid body has therefore six degrees of freedom, since six

independent quantities determine its position.

The most general instantaneous state of motion that a free

rigid body can have is a twist, or screw-motion (Art 123),

consisting of an angular velocity about a certain axis and a

linear velocity along this axis; each of these velocities has

three components along the rectangular axes, and these six

components can be regarded as the six independent possible

motions of the body, on account of which it is said to have

six degrees of freedom.

Equilibrium will exist only when these six possible motions

are prevented; hence there must be six conditions of equi-

librium.

232. We proceed to consider some forms of constraint

and the corresponding changes in the equations of equi-

Hbrium.

It is often convenient in dynamics to replace such re-

straining conditions by forces, usually called reactions.

Whenever it is possible to introduce such forces having the



180 STATICS [233.

same effect as the given conditions, the body may be re-

garded as free, and the general equations of equihbrium

can be apphed.

233. Rigid Body with a Fixed Point. A body that is free to turn

about a fixed point A can be regarded as free if tlie reaction A of this

point be introduced and combined with the other forces acting on the

body.

Let Ax, Ay, Azhe the components of A; then, taking the fixed point

A as origin, the six equations of equihbrium (Art. 229) are

ZX +Ax = 0,
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equilibrium of the constrained body; the first five determine Ax, Bx,

Ay, By, Az + Bz. The two 2-components cannot be found separately,

since they act in the same straight line.

Hence, a rigid body having a fixed axis is in equilibrium if the sum

of the moments of all the forces vanishes for the fixed axis.

235. If, in the preceding article, the axis be not absolutely fixed,

but only fixed in direction so that the body can rotate about the axis

and also slide along it, we have evidently

Az = 0, Bz = 0;

hence, by the third equation of equilibrium.

2Z = 0,

as an additional condition of equilibrium.

The body has in this case two degrees of freedom.

236. Rigid Body with a Fixed Plane. A body constrained to slide

on a fixed plane (that is, to move so that the paths of all its points

lie in parallel planes) has three degrees of freedom. At every point of

contact between the body and the plane, the latter exerts a reaction. As

all these reactions are parallel, they are equivalent to a single resultant

N. Taking the fixed plane as the plane xy, N will be parallel to the

axis of z; hence, if o, b, be the co-ordinates of its point of application,

the six equations of equilibrium are

2X = 0, Si' = 0, XZ + N = 0,

•ZiyZ - zY) +bN = 0, i:(zX - xZ) - aN = 0,

Z{xY - ijX) = 0.

The third, fourth, and fifth equations determine the reaction N
and the co-ordinates a, b of its point of apjjlication. The three other

equations are the actual conditions of equilibrium; they agree, of course,

with the three conditions of equilibrium of a plane system as found in

Art. 219.

If there be not more than three points of contact (or supports)

between the body and the fixed plane, the reactions of these points

can be found separately. Let Ai, A2, A3 be the three points of contact;

Ni, N2, Ns the required reactions; ai, b^, «•>, b^, az, bs the co-ordinates

of Ai, Ai, As; then A^" must be resolved into three parallel forces passing

through these points, and the conditions are
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Ni + N2 + N3 = N,

UiNi + a^Ni + a3A'"3 = aN

,

biNi + b2N2 + hsNs = bN.

These three equations always determine A'^i, N^, N3. For if the

determinant of the coefficients of Ni, N2, Ns vanished,

1 1 1

cti a2 as

bi bi bs

= 0,

the three points Ai, A2, A3 would lie in a straight line, and hence the

body would not be properly constrained.

The reactions become indeterminate whenever there are more than

three points of contact.

237. Friction. The reaction between two surfaces in

contact has so far been regarded as directed along the -com-

mon normal of the surfaces (Art. 195). If this is true the

surfaces are said to be perfectly smooth.

The surfaces of physical bodies are rough, i. e. they pre-

sent small elevations and depressions; when two such sur-

faces are " in contact " the projections of one will more

or less enter into depressions of the other; the greater the

normal pressure between the surfaces, the more will this

be the case. Hence when a tangential force acting on one

of the bodies tends to slide its surface over that of the other

body, a resistance will be developed whose magnitude

must depend on the roughness of the surfaces and on the

normal pressure between them. This resistance is called

the force of sliding friction, or simply the friction.

The study of friction belongs properly to applied mechan-

ics, and will here only be touched upon very briefly.

238. Imagine a body resting with a plane surface on a

horizontal plane. Let a small horizontal force P be applied

at its centroid (which is supposed to be situated so low that
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the body is not overturned), and let the force P be gradu-

ally increased until motion ensues. At any instant before

motion sets in, the friction is equal to the value of P at

that instant. The value of P at the moment when motion

just begins is equal and opposite to the frictional resistance

F between the surfaces at this moment, and this resist-

ance is called the limiting static friction.

Careful experiments with dry solids in contact have

shown this force to be subject to the following laws:

(1) The magnitude of the limiting friction F hears a con-

stant ratio to the normal pressure N between the surfaces in

contact; that is

F = fj^N,

where /i is a constant depending on the condition and nature

of the surfaces in contact. This constant which must be

determined experimentally for different substances and

surface conditions is called the coeflEicient of static friction.

It is in general a proper fraction; for jDerfectly smooth sur-

faces ;u = 0.

(2) For a given normal pressure the limiting static friction,

and hence the coefficient of static friction, is independent of

the area of contact, provided the pressure be not so great as to

produce cutting or crushing.

239. The frictional resistance between two surfaces in

relative motion is called kinetic friction. It is subject, in

addition to the two laws just mentioned, to the third law:

(3) For moderate velocities, kinetic friction is nearly inde-

pendent of the velocities of the bodies in contact.

The coefficient of static friction is somewhat greater than

that of kinetic friction. A slight jarring will often reduce

the coefficient from its static to its kinetic value.
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It must not be forgotten that these so-called laws of

friction are experimental laws, and therefore true only ap-

proximately and within the limits of the experiments from

which they were deduced. When the relative velocity of

the surfaces in contact is high, or when, as is usually the

case in machinery, a lubricating material is introduced

between the two surfaces, the frictional resistance is found

to depend on a number of other circumstances, such as the

temperature, the form of the surfaces, the velocity, the

nature of the lubricator, etc. Indeed, when the supply of

the lubricant is sufficient, the two solid surfaces are kept

by it out of actual contact; the coefficient of friction in

this case varies w4th the pressure, area of contact, velocity,

and temperature.

240. Consider again a body resting on a horizontal plane (Fig. 62)

and acted upon by a horizontal force P just large enough to equal the

limiting friction F. The normal

reaction N of the plane is equal and

opposite to the weight W. The

body is thus in equilibrium under

the action of the two pairs of equal

and opposite forces; but motion will

ensue as soon as P is increased. If

P be decreased, F will decrease at

the same rate, so that the equilib-

rium remains undisturbed.

The force of friction F can be combined with the normal reaction

A'' to form a resultant,

R VF^ + m = VP^ + TF2,

which represents the total reaction of the horizontal plane.

If 4, be the angle between N and R when F has its limiting value

F = fxN (Art. 238), we have, since tan^ = F/N,

tan0 = M-
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The angle ^ thus furnishes a graphical representation for the coefficient

of friction /x; it is called the angle of friction.

241. If the plane be not horizontal, but incHned to the horizon at

an angle d, the weight W of the body (regarded as a particle) resting

on the plane can be resolved into

a component W sin9 along the

plane, and a component W cos9

perpendicular to it (Fig 63).

Hence, if no other forces act on

the body it will be in equilibrium,

provided the component W sin9

be not greater than the hmiting

friction F = nW cos9. The limit-

ing condition of equilibrium is

therefore.

ixW cosO = W sin0, or n = tan9; Fig. 63.

in other words, if the angle be gradually increased, the body will not

sUde down the plane until d > <l>. This furnishes an experimental

method of determining the angle of friction <j), which on this account

is sometimes called the angle of repose.

242. A particle P (Fig. 64) will be in equilibrium on any rough

surface, if the total reaction of the surface, i. e. the resultant R of the

normal reaction A'^ and the

friction F, is equal and op-

posite to the resultant R' of

all the other forces acting on

the particle.

The limiting value of the

angle between N and R is <j)

so that the particle can be in

equilibrium only if the result-

ant R' makes with the normal

an angle <0. Hence, if about

the normal FN as axis, and

with P as vertex, a cone be described whose vertical angle is 2(^, the con-

dition of equilibrium is that R' must lie within this cone. The cone is

called the cone of friction.

Fig. 64.
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243. Exercises.

(1) A weight W is to be hauled along a horizontal plane, the coeffi-

cient of friction being fi = tan </>. Determine the required tractive force

P if it is to act at an inclination a to the horizon, and show that this

force is least when a. = 4>.

(2) A particle ot weight W is in equilibrium on a rough plane in-

clined to the horizon at an angle d, under the action of a force /-* parallel

to the plane along its greatest slope. Determine P: (a) when > 0,

(6) when B = 4>, (c) when < (j>, <j> = tan'^/u being the angle of friction.

(3) Solve Ex. (2) (o) graphically by means of the friction angle

and determine what part of P is required to overcome friction.

(4) A body weighing 240 pounds is pulled up a plane inclined at

45°, by means of a rope. If m = li, find the tension of the rope.

What portion of it is due to friction?

(5) A homogeneous straight rod AB = 21 of weight W rests with

one end A on a horizontal floor, with the other end B against a vertical

wall whose plane is at right angles to the vertical plane of the rod.

If there be friction of angle 4> at both ends, determine the limiting

position of equilibrium.

(6) A straight homogeneous rod AB =21, of weight W, rests with

the lower end A on a rough horizontal plane and with the point C
{AC = c) on a smooth cylindrical support. The rod is in equilibrium

when inclined at a given angle 6 to the horizon ; determine the coefficient

of friction at A and the reactions at A and C.

(7) If in Ex. (6) there be friction both at A and C, the friction angle

<^ being the same, find the position of equilibrium and the reactions

at A and C.

(8) A solid homogeneous hemisphere is placed with its curved surface

on a rough inclined plane; investigate the conditions of equilibrium.



CHAPTER XII.

THEORY OF ATTRACTIVE FORCES.

1. Attraction.

244. Among the various kinds of forces introduced in

physics for describing and interpreting natural phenomena,

forces of attraction and repulsion occupy a most prominent

place.

According to Newton's law (the law of universal or

cosmical gravitation, the " law of nature ") every particle

of matter attracts every other such particle with a force

proportional to the masses and inversely proportional to

the square of the distance of the particles, and this force

acts along the line joining the particles.

Thus, if m, m' are the masses of the particles, r their dis-

tance, and K a constant, the force with which m attracts

m' and fn' attracts in is

^ 7nm'
F = K- 2 .

Each particle is here regarded as a mass concentrated at a

point; otherwise we could not speak of the distance of the

particles and of the line joining them (comp. Art. 156).

As the distance r approaches zero, the magnitude of the

force F becomes infinite and its direction indeterminate.

245. In the theory of gravitation, the masses m, m' are

essentially positive. The constant k, called the constant

of gravitation, evidently represents the force with which

two particles, each of mass 1 , attract each other when at the

187
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distance 1. It is a physical constant to be determined by

experiment, and its numerical value depends on the units

of measurement adopted for mass, length, and time.

What can be directly observed is of course not the force

itself, but the acceleration it produces. Dividing the force

F (Art. 244) by the mass m of the attracted particle on

which it acts we have the acceleration j produced by the

force with which m' attracts m at the distance r from rn:

m'

246. It will be shown later (Art. 253) that the attraction of a homo-

geneous sphere at any external point is the same as if the mass of the

sphere were concentrated at its center. Hence if m' be the mass of

the earth (here regarded as a homogeneous sphere) the acceleration it

produces in any mass m concentrated at a point P above its surface,

at the distance OP = r from the center 0, is j = Km'/r^. Now for

points near the earth's surface this acceleration is known from experi-

ments; it is the acceleration ^ of a body falling in vacuo (apart from

the slight effect due to the earth's rotation, see Arts. 334, 461). Hence,

taking the radius of the earth as r = 6.37 X 10« cm., its mean density

as p = 5K, and g = 980 cm./sec.^, we find in C.G.S. units

K = 6.7 X 10-8.

This, then, is the force in dynes with which two masses, of 1 gram each,

would attract each other if concentrated at two points 1 cm. apart.

Conversely, the mean density of the earth can be found with con-

siderable accuracy by a direct experimental determination of the attrac-

tion of gravitation between two given masses at a given distance.

247. Exercises.

(1) With r = 3960 miles, g = 32 ft. /sec. 2, p = 5H, show that the

attraction between two masses of 1 lb. each, at a distance of 1 ft., is

equal to the weight of 0.33 X lO-i" lb.

(2) In astronomy and in the general theory of attraction it is con-

venient to take the unit of mass so that k = 1. Show that this astro-

nomical unit of mass, i. e. the mass which acting on an equal mass at

unit distance would produce unit acceleration, is = l//c.
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(3) Show that k = 1 if, with the ordinary unit of mass, the unit of

time be taken as 3862 sec. This has been called the "natural hour."

248. If more than two particles are given the forces of

attraction exerted on any one of the particles, m, being con-

current are equivalent to a single resultant. This resultant,

divided by the mass m of the attracted particle, is called the

attraction at the point P where m is situated.

If, instead of a finite number of particles, any continuously

distributed masses of one, two, or three dimensions (Art.

155) are given they can be resolved into elements which in

the limit can be regarded as particles. The first problem in

the theory of attraction consists in determining the attraction

at any point, due to any given masses.

Notice that the ''attraction at any point," as thus defined,

has the dimensions of an acceleration and not of a force.

Let P(x, y, z) be the attracted point of mass 1, dm' an

element of the attracting masses at Q{x'
,

y' , z'), PQ = r

the distance of these points; then the attraction at P due

to dm' is Kdm'/r^, and if a, |3, y are its direction cosines, its

components are Kadm'/r^, K^dm'/r^, Kydm'/r^. Hence the

attraction A at P, due to all the given masses, has the rec-

tangular components:

X /adm' ,, rfidm' „ rydm'

with r^ = {x' — xy -\- {y' — y)~ + {z' — z)-, the integrations

extending over all the masses. The attraction A itself and

its direction cosines I, m, n are:

X Y ZA^ ^X'- + Y^ + Z\ I =~, m==-r, n= , .
' A ' A ' A

It is in general most convenient to take the attracted point

P as origin so that r"^ = x'"^ + y'- + z'-
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249. If the point P were situated within the attracting

masses, l/r^ would become infinite within the hmits of integra-

tion; hence a special investigation would be necessary to

determine whether the integrals representing A", Y, Z have

a meaning. It can be shown without difficulty in the case

of three-dimensional masses that the integrals have a meaning

and represent the attraction even at an internal point P.

But for the sake of simplicity, we here confine ourselves to

the external field. In other words, we assume, when nothing

is said to the contrary, that P is an external 'point, i. e. a

point such that a sphere can be described about it such as not

to contain within it any portion of the attracting matter

(except the unit mass at P itself).

250. The problem of attraction can be generalized in

various ways. Thus, in electricity and magnetism, we have

to consider both positive and negative masses, and the force

may be a repulsion as well as an attraction. The force be-

tween two electric charges as well as that between two

magnetic poles follows Newton's law (Art. 244); i. e. the

force is directly proportional to the charges, or pole-strengths,

and inversely proportional to the square of the distance.

But the constant k has a very different value. It is cus-

tomary to select the units of electric charge and magnetic

pole-strength so that /c = 1.

It is sometimes necessary to consider forces that do not fol-

low Newton's law of the distance. Indeed, Newtonian attrac-

tion is merely a particular case of the more general type of force

F = Kmm'fir),

viz. the case when/(r) = 1/r^.

251. Spherical shell. The attraction due to a mass spread uniformly

over a sphere is zero at any point within the sphere, while at any outside

point it is the same as if the mass were concentrated at the center.
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Geometrical method, (a) Attraction at an inside point. Let C be

the center, a the radius of the sphere (Fig. 65). A cone of vertex P
and solid angle dw {i. e. cutting

out an area element dw on the

sphere of radius 1 about P as cen-

ter) cuts out on the given sphere

a surface element da at Q and a

surface element da' at Q'. It wUl

be shown that the mass elements

on these surface elements produce

equal and opposite attractions at

P. As the whole sphere can thus

be divided into pairs of elements

whose attractions at P balance it

follows that the attraction at P is

zero.

Put PQ = r, PQ' = r'\ on the sphere of radius r about P the cone

cuts out an element r-c/co at Q, and we have evidently da = r^dw/cosCQP;

hence if the surface density is p', the mass on da is p'r'^dw/cosCQP, and

the attraction at P due to this mass is up'dw/cosCQP. In the same

way we find that the mass on da' at Q' produces at P the attraction

Fig. 66.

Kp'du/cosCQ'P. As for the sphere the angles CQP and CQ'P are equal,

the attractions are equal.

(6) Attraction at an outside point. Let P' (Fig. 66) be the point
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inverse to P with respect to the given sphere, i. e. the point P' on CP
such that if CP = p, CP' = p', we have

pp' = a^.

The extremities Q, Q' of any cliord tlirough P' determine with C, P, P'

two pairs of similar triangles: CQP' and CPQ, CQ'P' and CPQ'; for,

each pair has the angle at C in common and the sides including the

equal angles proportional owing to the relations pp' = a^, CQ = CQ'

= a. It follows that 2^ CQP' = CPQ, 2^ CQ'P' = CPQ'; hence, as the

triangle QCQ' is isosceles, the line CP bisects the angle QPQ'.

With the aid of these geometrical properties it can be shown that

equal attractions are produced at P by the masses on the elements

da at Q and da' at Q', cut out by a cone of solid angle dw with vertex

at the point P' inverse to P. For the mass elements at Q, Q' we have

as in the case (a)

:

, r-dci
, , , , ,

r'-dwdm=pda=p ^^^^Q^, dm =pdcr =p -^^^jq^, ,

where r = P'Q, r' = P'Q'. Hence the corresponding attractions at

P are:

Kp'rHoi Kp'r"^do}

PQ^ cosCQP' ' PQ'2 cosCQ'P"

and these are equal, since for the sphere ^ CQP' = CQ'P', and the

similar triangles give

r a ^' _ i?

PQ~ p' W ~
P'

As shown above; these attractions make equal angles with PC', hence

their components along this line are equal while their components at

right angles to CP are equal and opposite. The two elements da at Q
and da' at Q' produce therefore together at P an attraction along PC
equal to

2/cp'rt^dw

V'

The coefficient of dw is constant; the summation over the unit sphere

gives J"dw = 2ir, since a double cone was used. Hence the total

attraction at P is

A A lO^ "*'

P' p^
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where m' = 47rp'a- is the whole mass on the sphere. This shows that

the attraction is the same as if this mass were concentrated at the center

of the sphere.

(c) AttracHon at a poinl on the

sphere. If the point P approaches

the surface from within the attrac-

tion remains constantly zero; if

P approaches the surface from

without the attraction approaches

the limit Km'/a'^ = iwKp'. At a

point P on the sphere (Fig. 67)

the attraction can be shown to be

A = 27r/cp'.

For, the mass on da at Q is p'da = Fig. 67

p'r^du/cosCQP; its attraction at P
is = Kp'dcj/cosCQP, and as the angles at P and Q are equal, the projection

of tliis attraction on PC is Kp'doi. As P lies on the surface, f doi = 2-k;

hence the total attraction is = I-kkp .

The attraction exerted by the whole mass on the mass element p'da

situated at P is of course = 2i^Kp''^d<j.

252. Analytical method. Whether P lies inside or outside the sphere

we take P as origin, PC as polar axii?, and put PQ = r, ^ PCQ = </>,

Fig. 6S.

Q being any point of the sphere (Fig. 68), and as before CP = p,

CQ = a. As mass element take the mass p' 2x0 sin<^ • ad(t>, contained

between the plane through Q at right angles to PC and an infinitely near

parallel plane. The attraction produced at P by this element is

directed along PC and

14
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, „ . , cosCPQ „ , „ . J p — a coscf)= 2TrKp a- sm<l>a<l> ^— = ^ttkt) a- sin<^a0 • ^
,

where
J.2 = q2 _j_ p'i _ 2ap co.s</),

and hence
rdr = ap &in0 d</).

Substituting for asin^ r/0 and ooos</> their expressions from these

relations we find for the attraction of the ring element at P:

, a p^ — a- + r'^ J
TTKp' — • dr.

(a) For an inside point P we have p < a, and the limits of integration

for r are from a — p to a + p. Hence the resultant attraction at P is

A = TTKp' -
I I

—
, + 1 I f/r = TT/v'p' , I +r) =0.

p2 J„-p \ r- J p' \ r J.,-p

For an outside point P we have p > a and the limits are from p — a

to p + a; hence

, a / a- — p-
,

\?'+«
, , d? vn'

A = TTKp' ,
— +r) = iTTKp' - , = K -Yp^ \ r Jp-a p^ p^

253. From the results of Arts. 251, 252, it readily follows that the

attraction due to a homogeneous solid shell (mass between twoconcentric

spheres) is zero within the hollow of the shell, while at an outside point

it is the same as if the mass were concentrated at the center. It suffices

to resolve the shell into concentric shells of infinitesimal thickness da

and put p'da = p, the volume density.

In particular, for a homogeneous solid sphere of radius a and volume

density p the attraction at the distance p > a from the center is

. ?n' 4 , o3

p^ 6 p^

254. Exercises,

(1) Show that the results of Art. 253 hold for a solid shell whose

density is any function of the distance from the center.

(2) By Art. 252, the attraction due to a mass distributed uniformly

over a sphere when considered as a fimction of p has a point of dis-

continuity; illustrate this by a sketch.

(3) Prove that the attraction at the center due to a mass distributed

uniformly along a circular arc of angle la and radius a is = 2/cp" sina/a;

show that a mass equal to that of the chord, if it had the same density



254.1 THEORY OF ATTRACTIVE FORCES 195

p", placed at the midpoint of the arc, would produce the same attraction

at the center.

(4) Prove that the attraction of a homogeneous rectilinear segment

A1A2, at a point P whose perpendicular distance PO from A1A2 makes

the angles di, 62 with PAi, PA2, bisects the angle A1PA2 and has the

value 2kp" sins (^2 — 6i)/p. Show that the arc of the circle of radius

PO = p about P, bounded by PAi and PA2, if of the same density,

produces at P the same attraction.

(5) Show that in any plane through A1A2 the confocal hyperbolas

having A1A2 as foci are the lines of force in the field of the rectilinear

segment; i. e. they have the property that the attraction at any point

P is tangent to the hyperbola through P.

(6) Show that for a homogeneous rod of infinite length the attraction

at any point is normal to the rod and inversely proportional to the

distance from the rod. Hence show that the attraction due to a

homogeneous circular cylinder, of radius a and infinite length, at any

point P at the distance PC = p > a from the axis, is = 2irKpa-/p.

(7) Prove that the attraction due to a mass spread uniformly over

the area of a circle of radius a, at a point P on the axis of the circle, at

the distance PC = p from the center C, is = 2irKp'il — p/Va^ + P')-

(8) Two parallel homogeneous straight rods of equal density p" are

placed so that the line joining their midpoints is at right angles to each;

if their lengths are 2a, 25, and their distance is c, find their mutual attrac-

tion, i. e. the force required to hold them apart.

(9) Show that the attraction exerted by a homogeneous right circular

cone of vertical angle 2a and height h, at the vertex, is = 2irKph{l —

cosa). Show that the same expression holds for a frustum of height h

and angle 2a.

(10) Two equal circular disks, of radius a, are placed at right angles

to the line joining their centers whose distance is c. If one attracts

while the other repels, determine the resultant force at a point P on

the line of the centers, at a distance p from the nearer center. Wliat

becomes of this force when c is indefinitely diminished?

(11) Show that the attraction of a homogeneous solid hemisphere

at a point on its edge is = f^Kpa i/tt^ + 4, and that it is inclined to

the base at an angle of about 32J^°.
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2. The potential.

255. As shown in Art. 248, the determination of the at-

traction, due to given masses, at any particular point P is a

mere problem of integration. The next problem that pre-

sents itself in the theory of attraction is to express the

attraction A as a function of the point P, or rather the com-

ponents X, Y,Z oi A as functions of the co-ordinates x, y, z

of P, and to study the nature of these functions. The solu-

tion of this problem is greatly facilitated by observing that

there exists a function C/, known as the potential of the given

masses, which has the property that the comyonents of A are

its first partial derivatives

:

dUdU
dy'

Z =
dz

A function having this property may exist for forces that

are not Newtonian attractions; it is then called a force-

function. Forces for which a force-function exists are called

conservative forces.

256. Let us consider the most simple case of Newtonian

attraction, viz. the field generated by a single particle m',

situated at Q (Fig. 69). The attraction at P(x, y, z), due
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to m' at Q,{x\ y', z') is A = kvi' Ir"^, where r'^ = {x — x'Y +
{y — y'Y -{- iz — z'y. As this attraction has the sense

from P toward Q, its direction cosines are — {x — x')lr,

— {y — y')l'>'j
— (2 — z')lr; hence the rectangular components

of the attraction are

:

X =- Kill' ^^', Y =- Km' '^^, Z =- km' ^^.

It is easily verified that these expressions are the partial

derivatives with respect to x, y, z of one and the same func-

tion, viz.

r

this then is the potential of a single particle m'.

257. Notice that this function is one-valued and con-

tinuous throughout the whole of space, except at Q where it

has a simple pole {i. e. U becomes infinite like 1/r for r = 0),

and that it vanishes at infinity. The same properties hold for

all derivatives of U except that Q becomes a pole of higher

order.

For the projection of the attraction A on any direction s

we have

. _ ydx ydy ydz __ dU dx dU dy dU dz _ dU
_

ds ds ds dx ds dy ds dz ds ds '

i. e. the s-component of A is the s-dcrivative of U.

For the second x-derivative of U we have since dr/dx =

(x — x')/r:

§^ _dX _ _ ,
/ 1 X - x' dr\

dx^ dx \r^ r* dx/

,ri 3(x - x'y
i

and similarly:
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For masses of finite density and not extending to infinity

it is not diflacult to show that the function U has a single

definite finite value at every point P external (and even

internal) to the given masses and that it is a continuous

function of x, y, z.

As in Art. 257 it can be shown that, at any external point,

U satisfies Laplace's equation

d^U , d^U dHJ

dx^ dy- dz~

259. The potential is a scalar point-function; i. e. it is not

a vector, but its value at any point is given by a single real

number.

The locus of those points at which the potential U has a

constant value c, i. e. the surface

U = c,

is called an equipotential surface (level, or equilibrium, sur-

face) .

As the first derivatives of U with respect to x, y, z are on

the one hand equal to the components of the attraction

while, on the other, they are proportional to the direction

cosines of the normal to the surface U = c, it follows that

the attraction A at any external point P is normal to the equi-

potential surface passing through P.

In the language of vector analysis, the attraction A is the

gradient of the potential U.

The orthogonal trajectories of the family of equipotential

surfaces U = c are called lines of force since each of these

curves has the property that the tangent at any one of its

points has the direction of the attraction at that point. The
differential equations of the lines of force are evidently
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1 lid dx _ dy _ dz

dx dy dz
260. Exercises.

(1) For a mass spread uniformly over the surface of a sphere prove

that, witliin the sphere, the potential is zero while, outside the sphere,

it is the same as if the mass were concentrated at the center. Hence

deduce the corresponding results for a homogeneous solid spherical

shell.

(2) A mass is distributed uniformly along the arc of a parabola

bounded by the latus rectum 4a; show that at the focus the potential

is = 3.5245 Kp" and the attraction is = 1.8856 Kp"la.

(3) Find the potential due to a homogeneous circular plate, of

radius a, at a point P of its axis, at the distance x from the plate.

(4) Determine the equipotential surfaces for a straight homogeneous

rod; comp. Art. 254, Ex. 4 and 5.

(5) For a mass distributed uniformly along the circumference, of a

circle, determine the potential at any point in the plane of the circle,

and show that at a distance from the center equal to % the radius it is

= 7.2418 Kp".

(6) Show that a force-function exists when the resultant force is con-

stant in magnitude and direction.

(7) Find the force-function in the case of a free particle moving

under the action of the constant force of gravity (projectile in vacuo);

determine the equipotential surfaces.

(8) Show the existence of a force-function when the direction of the

resultant force is constantly perpendicular to a fixed plane, say the

a;y-plane, and its magnitude is a given function /(z) of the distance z

from the plane.

(9) Find the force-function, the equipotential surfaces, and the

kinetic energy when the force is a function /(r) of the perpendicular

distance r from a fixed line, and is directed towards this line at right

angles to it.

(10) Show the existence of a force-function for a central force, i. e. a

force passing through a fixed point (.xo, yo, zo), if the force is a function

of the distance r from this point. What are the level surfaces?

(11) Show that a force-function exists when a particle moves under

the action of any number of such central forces as in Ex. (10).
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3. Virtual work.

261. The importance of the potential in the theory of

attraction and of the force-function for any conservative

forces (Art. 255) is largely due to their connection with the

idea of work.

The work W of a constant force F in a rectilinear displaces^

ment s of its point of application is defined as the product

of the projection oi F on s into s:

W = Fs cosi/',
"'""^

where
\f/

is the angle l^etween the vectors F and s. In other

words, work is the dot-product (Art. 141) of force and dis-

placement :

W = F-s.

Thus, e. g. when a body of weight F = mg slides down the

greatest slope of a smooth plane inclined at the angle 6 to

the horizon, through a distance s, the work of the vertical

force F is

Fs cos(^7r - e) = Fs sin0 = Fh,

where h = s smd is the vertical height through which the

body has descended.

It follows from the theory of projection (Art. 198) that

the work of a force is the sum of the works of its components.

Hence, if X, Y, Z are the rectangular components of F,

X, y, z those of s, we have (comp. Art. 141)

W = Xx-^ Yxj + Zz.

262. Work is not a vector, but a scalar quantity (Art.

259). If, in the definition of Art. 261, we take for ^p the lesser

of the two angles made by the vectors F and s, the work is

positive or negative according as i/' is < or > ^r

The dimensions of work are evidently ML'^T~^.
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The unit of work is the work of a unit force (poundal,

dyne) through a unit distance (foot, centimeter). Tlie unit

of work in the F.P.S. system is called the foot-poundal ; in

the C.G.S. system, the erg. Thus, the erg is the amount of

work done by a force of one dyne acting through a distance

of one centimeter. These are the scientific units.

In the gravitation system where the pound, or the kilogram

is taken as unit of force, the British unit of work is the foot-

pound, while in the metric system it is customary to use the

kilogram-meter as unit.

263. The numerical relations between these units are obtained as

follows. Let X be the number of ergs in the foot-poundal, then (comp.

Art. 175),
em. cm.2 ^ lb. ft.^

sec.^ sec.2

hence
lb / ft V

a; = i^ .
(

'^-
) = 4.2141 X 10^;

gm. Vcm./

i. e. 1 foot-poundal = 4.2141 X 10^ ergs, and 1 erg = 2.3730 X IQ-^

foot-poundals.

Again, let x be the number of kilogram-meters in 1 foot-pound,

then
X kg. m. = 1 ft. lb.,

hence

^ ^ Ik ft.
^oi3g257

kg. m.

i. e. 1 foot-pound = 0.138 257 kilogram-meters.

Finally, 1 foot-pound = g foot-poundals (Art. 179); hence 1 foot-

pound = 1.356 X 10^ ergs, and 1 erg = 7.3730 X 10~^ foot-pounds, if

g = 981.

264. Exercises.

(1) A joule being defined as 10^ ergs, show that 1 foot-pound =

1.356 joules, and that 1 joule is about 3/4 foot-pound.

(2) Show that a kilogram-meter is nearly 10^ ergs.

(3) "WTiat is the work done against gravity in raising 300 lbs. through

a height of 25 ft. : (a) in foot-pounds, (5) in ergs?
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(4) Find the work done against friction in moving a car weighing

3 tons through a distance of 50 yards on a level road, the coefficient

of friction being 0.02.

(5) A mass of 12 lbs. slides down a smooth plane inclined at an

angle of 30° to the horizon, through a distance of 25 ft.; what is the

work done by gravity?

265. The work of a variable force i^ in a very small dis-

placement PP' = 8s is defined (like that of a constant force

in any displacement, Art. 261) as the product of 5s into the

projection F cosi^ of F (at P) on 8s:

8W ^ F cos^ 8s = F-8s = X8x + Y8y + Z8z.

This expression is often called the virtual work of F in

the virtual displacement 5s, the term virtual and the letter 5

meaning that the displacement is arbitrary and not neces-

sarily the actual displacement along the path of the particle.

But it should be carefully observed that even if the dis-

placement 5s were taken along the actual path we do not in

general have in the limit

dW „ ,—^ = /< cos;/';
as

i. e. the s-component of the force is not necessarily an exact

derivative.

The work done by the variable force F as the particle

on which it acts is moved along an arbitrary curve from Po

to any position P is written

W = lim SP cosiA 5s = ^F cos;/' ds = fV • ds
hs=Q 'JPo '^Po

= S^{Xdx + Ydy + Zdz).

This integral can in general not be evaluated unless the path

of the particle from Po to P is known; and it has in general
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different values for different paths between these points.

But we have seen (Arts. 257, 258) that for a particle m
in a field of Newtonian attraction the component of the

resultant attraction in any direction s is the s-derivative of

the potential: As = dU/ds. Hence, multiplying by m, we

have in this case for the virtual work:

""''"' 8W = mAs8s = mdU.

It follows that the work done on the particle m by the New-

tonian attraction, as it is moved from Pq to P along any

path, is

ui H "^ = mfl'sU = m{U - Uo),

where Uo is the value of U at Pq. Hence the work of attrac-

tion is independent of the -path; it is m times the difference of

'potential at P and Pq] it is zero in any closed- path.

• More generally, whenever the force F is conservative (Art.

255) so that it possesses a one-valued force-function, i. e. a

function U{x, y, z) such that dU/dx, dll/dy, dU/dz are the

rectangular components of F, the projection of F on any

direction s will be the s-derivative of U, and hence the work

of F is independent of the path.

266. For a particle in equilibrium, since the resultant force

F is zero, it follows that the virtual work bW = F cos;/' bs is

zero whatever the displacement 5s. And conversely, if the

virtual work is zero whatever 5s, or more exactly, if the

virtual work is small of an order higher than that of 5s for

every sufficiently small 5s, the resultant force F must be zero,

i. e. the particle is in equilibrium.

The virtual work is zero for every 5s if it is zero for any

three non-complanar displacements.

. 'Using rectangular co-ordinates we have 8W = X8x -{-
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Ydy + Z8z; hence 8W = when X = 0, F = 0, Z = 0;

and conversely, if 8W = for a virtual, i. e. arbitrary, dis-

placement, we have owing to the independence of 8x, 8y, 8z'.

m = 0.

The proposition that the vanishing of the virtual work (apart

from terms of a higher order) is a necessary and sufficient

condition of equilibrium for a particle is known as the principle

of virtual work for the particle.

267. In the particular case of a particle in a field of con-

servative forces whose force-furiction is U, the condition of

equilibrium assumes the form

ds

for any ds • or, with reference to rectangular axes

:

dx dy dz

Now these are necessary conditions for a maximum or

minimum of U. Hence the positions of equilibrium of a

particle under conservative forces are found by determining

the maxima and minima of the force-function or potential.

It can be shown that a minimum of U corresponds to

stable, a maximum to unstable, equilibrium.

268. The principle of virtual work, proved above only for

the single free particle, has a far wider field of application. It

can be shown that for any system of particles or rigid bodies,

subject to any constraints, expressible by equations (not in-

equalities) a7ul not involving friction, the vanishing of the virtual

work (apart from terms of higher order) for any displacement

compatible with the constraints is a necessary and sufficient

condition of equilibrium.
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If in the expression of the virtual work 8W = F cosi/' 8s

we replace 8s by {8s/8t)8t we can regard 8s/8t as a velocity.

This is the reason why the principle of virtual work is often

called the principle of virtual velocities.



PART III: KINETICS.

CHAPTER XIII.

MOTION OF A FREE PARTICLE.

1. The equations of motion.

269. Let a particle of mass m be acted upon by any number

of forces; as these forces are concurrent they are equivalent

to a single resultant R (Art. 190). The definition of force

(Art. 171) then gives for the acceleration j the fundamental

equation of motion

mi = R. (1)

The mass m being regarded as a positive constant the equa-

tion shows that the vectors j and R have the same direction

and sense.

The vector equation (1) assumes various forms according

to the method selected for resolving j and R into components.

If the motion be referred to fixed rectangular axes, (1) is

replaced by the three equations (Art. 53)

:

mx = X, my = Y, mz = Z, (2)

X, Y, Z being the components of R along Ox, Oy, Oz.

If polar co-ordinates r, 6, cp are used we have (Art. 56,

Ex. 9)

:

m(r — rd^ — r mi'^d (f"^)
= Rr,

m(rB + 2fd - r sin0 cos0 <p^) = Re, (3)

m(r sin0 ip -\- 2 sin0 f<p + 2r cosd d<p) = R^,

207
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where Rr, Re, R<t> are the components of R along the radius

vector, at right angles to the radius vector in the meridian

plane, and at right angles to this plane.

Finally, resolving along the tangent, normal, and bi-

normal to the path we have (Art. 51)

:

mv = ms = Rt, m — = i?„, — Rb. (4)
P

In the case of plane motion the equations (2), (3), (4)

reduce to the first two, with ^ = in (3); in the case of

rectilinear motion the first equation of (2) or (4) suffices.

270. If the components X, Y, Z were given as functions

of the time t alone, each of the three equations (2) could be

integrated separately. In general, however, these com-

ponents will be functions of the co-ordinates, and perhaps

also of the velocity and of the time. No general rules can

be given for integrating the equations in this case. By com-

bining the equations (2) in such a way as to produce exact

derivatives in the resulting equation, it is sometimes possible

to effect an integration. Two methods of this kind have

been indicated for the case of two dimensions in a particular

example in Kinematics, Arts. 102-104. We now proceed to

study these principles from a more general point of view, and

to point out the physical meaning of the expressions involved.

271. The Principle of Kinetic Energy and Work. Let us

combine the equations of motion (2) by multiplying them

by X, y, z, respectively, and then adding. As xx is the time

derivative of ^x-, the left-hand member of the resulting

equation will be the ^-derivative of ^m{x- -\- ij^ -\- z^) = ^ww^,

i. e. of the kinetic energy of the particle (Art. 181). We find

therefore

j^^mv'- = Xx+ Yy + Zz.
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Hence, integrating from any point Po of the path where

z; = i^o to any point P we obtain

:

^mv^ - ^vo' = fl^iXdx + Ydy + Zdz). (5)

The left-hand member represents the increase in the kinetic

energy of the particle; the right-hand member represents

the work done by the resultant force R, since its work is

equal to the sum of the works of its components X, Y, Z
(Art. 261). Equation (5) states, therefore, that the amount

hij which the kinetic energy increases, as the particle passes from

Po to P, is equal to the work done by the resultant force R on

the particlt.

272. The principle of kinetic energy and work can also be

deduced from the former of the two equations (4). Multiply-

ing this equation by w = dsjdt, we have

dihrnv"^) T^ ds „ ,ds

hence, integrating as in Art. 271:

^iv^ — ^Vo^ =
J R cosi/' ds, (5')

where \p is the angle made by the force R with the tangent

to the path.

The integrand in (5) or (5'), i- e. the expression

R cofi\p ds = R-ds = Xdx + Ydy + Zdz,

is called the elementary work. It is the value of the virtual

work (Art. 265) when the displacement 5s is taken infini-

tesimal and along the actual path.

As explained in Art. 265, the evaluation of the work

integral in general requires a knowledge of the path. As in

many problems the path is not known ])eforehand, but is

15
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one of the things to be determined, it is very important to

notice that in the case of conservative forces (Art. 255) the

work integral has a value independent of the path (Art. 265).

In this case, denoting the force-function, or potential, by U,

we have

f^iXdx + Ydy + Zdz) = f^^dU = U - Uo,

so that the equation (5) or (5') becomes

^nv" — ^Vq^ = U — Uo- (6)

Hence in the case of conservative forces the principle of

kinetic energy and work at once gives a first integral of the

equations of motion.

273. The negative of the force-function, say

V= -U,

is called the potential energy. If this quantity be intro-

duced and the kinetic energy be denoted by T, the equation

(6) assumes the form

T+V=To+ Vo, (6')

which expresses the principle of the conservation of energy

for a particle: the total energy, i. e. the sum of the kinetic and

potential energies, remains constant throughout the motion ij

the forces are conservative. In other words, whatever is gained

in kinetic energy is lost in potential energy, and vice versa.

274. The physical idea to which the term potential energy is due

can perhaps best be explained by considering the Newtonian attraction

between two particles m, m'. We think of the attracting particle to'

as generating a field. ^\Tierever in this field a particle m be placed

(say, Nvath zero velocity), it will become subject to the attraction A of m'

and move toward m' with increasing velocity, thus acquiring kinetic

energy; at the same time the force A does an amount of work on ni which

is exactly equivalent to the kinetic energy gained by m. It follows that,
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the farther away from m' the particle m is placed, initially, the greater

will be the amount of work that m' can do upon it. It is this "poten-

tiality" for doing work, due to the distance of m from m', which is

denoted as energy of -position, or potential energy. The equation (6),

or the equation (6') which differs from (6) merely in notation, shows

that what the particle m in moving toward m' gains in kinetic energy it

loses in potential energy so that the sum of kinetic and potential energy

always remains constant.

275. The conditions for the existence of a force-function

are (Art. 255)

:

X = ^J1 Y = ^^ Z ^ —
dx '

djj
'

dz
'

Differentiating the second equation with respect to z, the

third with respect to y we find

dY _ dnj_ dZ _ dHJ_

dz dzdy ' dy dydz
'

whence dY/dz = dZ/dy. Proceeding in the same way with

the other two pairs of equations we find

:

dY _dZ dZ _ dX dX _ dY_

dz dy' dx dz ' dy dx
'

These relations which are necessary and sufficient for the

existence of a force-function U furnish a simple criterion for

recognizing whether the given forces are conservative.

276. The principle of the conservation of energy, i. e.

of the constancy of the sum of kinetic and potential energy,

has been proved mathematically in the preceding articles

for a very particular case, viz. for the motion of a particle

under conservative forces.

By a generalization as bold and far-reaching as was New-
ton's extension of the property of mutual attraction to

all matter (Art. 244), modern physics has been led to the

assumption that .work and energy are quantities which can
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never he destroyed, but can be transformed in a variety of

ways. This assumption, the general principle of the con-

servation of energy, while fully borne out so far by the

results deduced from it, is of course not capable of math-

ematical proof. Indeed, it may be said that in defining

the various forms of energy, such as heat, chemical energy,

radio-activity, etc., the definitions are so formulated as to

conform to this principle; it has always been found possible

to do this. The general principle of the conservation of

energy cannot be fully discussed here, since this would

require a study of all the forms of energy known to physics.

277. In its application to machines, the principle states that the

total work W suppUed to a machine in a given time by the agent, or

motor, driving it (such as animal force, the expansive force of steam,

the pressure of the wind, the impact of water, etc.) is equal to the sum

of the useful work Wv, done by the machine in the same time and the

so-called lost, or wasteful, work Wu- spent in overcoming friction and

other passive resistances of the machine:

W = Wu + Wu:

While W and Wu can be determined with considerable accuracy,

it is difficult to determine Ww directly with equal precision; but it is

found that the more accurately in any given machine Ww is determined,

the more nearly will the above equation be found satisfied. This

serves as a verification of the principle of the conservation of energy in

its application to machines. The ratio W„/W of the useful work to

the total work is called the efficiency of the machine. The term

modulus is sometimes used for efficiency.

278. The time-rate at ivhich irork is performed by a force has received

a special name, power or activity. The source from which the force

for doing useful work is derived is commonly called the agent, or motor;

and it is customary to speak of the power of an agent, this meaning

the rate at which the agent is capable of supphang work.

The dimensions of power are evidently ML-T~^. Tlie unit of power

is the power of an agent that does unit work in unit time. Hence,
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in the scientific system, it is the power of an agent doing one erg per

second in the C.G.S. system, and one foot-poundal per second in the

F.P.S. system. As, however, the idea of power is of importance mainly

in engineering practice, power is usually measm'ed in gravitation units.

In this case, the unit of power is the power of an agent doing one foot-

pound per second in the F.P.S. system, and one kilogram-meter in the

metric system.

A larger unit is frequently found more convenient. For this reason,

the name horse-power (H.P.) is given to the power of doing .550 foot-

pounds of work per second, or 550 X 60 = 33,000 foot-pounds per

minute.

279. The principle of angular momentum or of areas.

By multiplying the first of the equations of motion (2),

Art. 269, by y, the second by x, and then subtracting the

first from tiie second we obtain the equation

m{xij — yx) = xY — yX,

or since the left-hand member is the time-derivative of

m{xy — yx):

jm^xy — yx) = xY — yX.

Here the right-hand member is the moment of the resultant

force R about the axis Oz (Art. 229) while, on the left, the

quantity x • my — y • mx is the moment about the same axis

of the inomentum mv whose components are mx, my, mz

(Art. 168). This moment of momentum m{xy — yx) is

also called angular momentum.

As any line might have been chosen as axis Oz, our equa-

tion expresses the proposition: In the motion of a ^article,

the time-rate of change of the angular momentum about any

line is equal to the moment of the resultant force about the same

line.

Applying this result to each of the axes of reference we find

:
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-^^miyz - zy) = yZ - zY,

m{zx — xz) = zX — xZf

m(xy — yx) = xY — yX.

(8)

These equations express the principle of angular momentum

or of areas.

280. To interpret these equations geometrically consider

first the right-hand members which are the moments of

the resultant force R about the axes. The vector PA = R
(Fig. 70) forms with the origin a triangle whose area is

Fig. 70.

ome-half the moment of R about 0; let us represent this

moment, which is the cross-product of the radius vector

OP = r and the force-vector PA = R, hj a vector H per-

pendicular to the plane of the triangle OPA (comp. Arts.

199 and 119):

H = rXR,
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the length of this vector H being equal to twice the area OPA.
The projection of the triangle OPA on the a;y-plane has

the area ^{xY — yX) since the vertices of this projection

have the co-ordinates (0, 0), {x, y), and {x-\- X, y -{- Y)-

hence the right-hand members of (8) are the components

Hjc, Hy, Hz of the vector H.

Next consider in the same way the momentum-vector

mv = PB; it forms with a triangle OPB whose area is

one-half the moment of momentum about 0. We can

represent this moment of momentum, or angular momentum,

by a vector h, perpendicular to the plane OPB, and of a

length equal to twice the area of the triangle OPB; the

vector h is then the cross-product of r = OP and mv = PB :

h = r X mv.

The components of angular momentum m(yz — zy),

m(zx — xz), m(xy — yx) are the components hx, hy, hz

of the vector h.

The equations (8) can therefore be written in the form

dT-^- rfT-^- df^^" ^^^

and these equations can be combined into the single vector

equation

dh „

which means that the geometrical increment of the vector

h, divided by A^, gives in the limit the vector H; i. e. the

(geometrical) time-rate of change of the angular-momentum

vector is equal to the moment-vector of the residtant force.

281. If instead of the momentum-vector mv we consider

the velocity-vector v, its moment about would be repre-

sented by the vector {l/m)h, whose components are yz — zy,
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zx — xz, xy — yx. These quantities are (Art. 47) equal to

twice the- sectorial velocities about the axes while the vector

{\/ni)h represents twice the sectorial velocity of the particle

about 0. This explains the name principle of areas.

282. If, in particular, the resultant force R is central, i. e.

such as to pass always through a fixed point, then, for this

point as origin, the right-hand members of the equations (8)

are zero, and we find at once the first integrals of the equa-

tions of motion (2)

:

m{yz — zy) = hi, m{zx — xz) =h2, m(xy — yx) = h, (9)

where hi, ho, hs are constants.

Thus, in the motion of a particle in the field of a central

force, the angular momentum, and hence the sectorial veloc-

ity, about any axis through the center is constant.

If the resultant force always intersects a fixed line, the

angular momentum, and hence the sectorial velocity, about

this line as axis remains constant.

These propositions are often referred to as the principle of

the conservation of angular momentum or of areas.

It may be noted that the equations (9), multiplied by

X, y, z and added give,

hix + h^iy + hzz = 0;

this shows that the particle moves in a plane passing through

the center of force, as is otherwise evident.

283. Exercise.

In the case of plane motion, if the plane be taken as the xy-plane,

the principle of areas is expressed by the third of the equations (8). If

the perpendicular from the origin to the tangent at P be denoted by p
(comp. Art. 100), this equation can be written in the form d{mpv)/dt =

xY ~ yX. Show that the two terms mpdv/dt and mvdp/dt of the left-

hand member represent the moments of the tangential and normal

components of the resultant force R, respectively.
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2. Examples of rectilinear motion.

284. Free Oscillations. As an example of rectilinear mo-

tion consider the motion of a particle of mass m under a force

directly proportional to the distance OP = s of the particle

from a fixed point 0. If the force is attractive, i. e. directed

toward the point and if the initial velocity passes through

or is zero so that the motion is rectilinear, the single

equation of motion is

m's = — MK^s, (10)

and the motion (see Arts. 26, 27, 71) is a simple harmonic

oscillation or vibration about the point as center. This

point 0, at which the force R ^ — ynn^s is zero, is therefore

a position of ecjuilibrium for the particle.

The potential energy V due to the force R = — mKrs is, by

Art. 273,

F = —
I
Rds = mK~

I
sds = ^vikts'^ + C.

Hence the principle of the conservation of energy gives

y2 _j_ ^2^2 = const.

If the initial velocity be zero for s = So, we have

y = =f: /C V.S'o" — s^.

285. As in the applications the moving particle m is generally subject

to the constant force of gravity, it is important to notice that the intro-

duction of a constant force F along the line of motion does not essentially

change the character of the motion. For, the equation of motion

ms = — m.K^s -\- F = — niK^ { s — „]

reduces, with s — FlmK^ = x, to

mx = — niK^x,

which agrees in form with (10). The only change in the results is that



218 KINETICS [286.

the center of the oscillations, i. e. the position of equilibrium of the

particle m, is not the point 0, but a point at the distance e = F/mK^

from 0.

286. Forces proportional to a distance, or length, are directly ob-

served in the stretching of so-called elastic materials. Thus, a homo-

geneous straight steel wire when suspended vertically from one end

and weighted at the other end is found to stretch; and careful measure-

ments have shown that the extension, or change of length, is directly

proportional to the weight apphed (the weight of the wire itself being

assumed, for the sake of simplicity, as very small in comparison with

the load applied). Conversely, the tension, or elastic stress, of the wire

is proportional to the extension produced. INIoreover, when the weight

is removed the wire is found to contract to its original length.

This physical law, known as Hooke's law of clastic stress, holds only

within certain limits. If the weight exceeds a certain limiting value, the

extension is no longer proportional to the weight, and after removing

the weight, the wire does not regain its original length, but is found to

have acquired a permanent set, or lengthening; it is said in this case

that the elastic limits ha,ve been exceeded.

Materials for which Hooke's law holds exactly witliin certain limits

of tension and extension are called perfectly elastic. Strictly speaking,

such materials probably do not exist; but many materials follow Hooke's

law very closely within proper limits. Thus, elastic strings, such as

rubber bands, and spiral steel springs show these phenomena very

clearly on account of the large extensions allowable within the elastic

limits.

287. The elastic constant mn.^. Let an elastic string whose natural

length is I assume the length I + x when the tension is F, so that accord-

ing to Hooke's law,

F = - mn^x.

To determine the factor of proportionaHty ?nK^ for a given string, we

may observe the length h assumed by the string under a known ten-

sion, e. g. the tension— mig produced by suspending a given mass nii

from the string (the weight of the string itself being neglected).

We then have
— mig = — rnK^ili — l),

whence



289.] MOTION OF A FREE PARTICLE 219

and

288. Let the same string be placed on a smooth horizontal table,

one end being fixed at a point (Fig. 71), while a particle of mass m is

|<- j^-aji ^
oU 1

W/MZ/ymMSm

Fig. 7L

attached to the other end. Stretch the string to a length OPo = i + Xo

(within the limits of elasticity) and let go; the particle m. will move
under the action of the tension F alone, its weight being balanced by
the reaction of the table. The equation of motion is

vix = — ^ X,

the distance QP = x being counted from the point Q at the distance

OQ = I from the fixed point 0, Putting again (Art. 287)

\mih - '

and integrating, we find

X = Ci coskI + C2 smd,
whence

V = X = — KCi sind + kCz coskL

As X = Xo and v = ior t = 0, we have Ci = xo, ct = 0; hence

X = Xo cosd, V = —KXo sind.

It should be noticed that these equations hold only as long as the

string is actually stretched, i. e. as long as x > 0. The subsequent

motion is, however, easily determined from the velocity for x = 0.

289. It was assumed, in the preceding article, that the particle m is

let go from its initial position Po with zero velocity. This can be

brought about by pulling the particle from Q to Po with a gradually

increasing force which at any point P is just equal and opposite to the
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corresponding elastic tension, or stress, P = friK^x. The work thus done

against the tension, i. e. in stretching or straining the string, is stored in

the particle m as potential energy, or strain energy, V. To find ita

amount, observe that, as the particle 7n is pulled through the short dis-

tance A.r, the work of the force is = 7«AAx; this being the potential

energy AV gained in the distance Ax, we have AT = wk^xAx; hence

Vo = I niK-xdz = Ijuk-xo'.
fJ

Thus, in the initial position Po the particle m possesses this potential

energy, but no kinetic energy. During its motion from Po to Q, the

particle gains kinetic energy and loses potential energy. At any inter-

mediate point P, for which QP = x, the kinetic energy is T = Imv^,

while the potential energy is V = im/c^x^. By the principle of the con-

servation of energy (Art. 273), the sum of these two quantities, the

so-called total energy, E, remains constant as long as no other forces

besides the elastic stress act on the particle:

^mv- + huK-x^ = const.

The value of the constant is = hnK-xo', since this is the total energy

at Po; hence,
I'- + K-X- = K-Xlf.

(Comp. Art. 284). This relation also follows from the values of x and

V given in Art. 2SS, upon eliminating /.

When the particle arrives at the position of equilibrium Q, the

potential, or strain, energy has been consumed, having been converted

completely into kinetic energy.

290. Exercises.

(1) In the problem of Art. 2SS let the string be a rubber band whose

natural length of 1 ft. is increased 3 in. when a weight of 4 oz. is suspended

from it; determine the motion of a 1-oz. particle attached to one end,

the band being initially stretched to a length of 1)^ ft.; find (a) the

greatest tension of the band, (b) the greatest velocitj^ of the particle,

(c) the period, (d) the work done by the tension in a quarter oscillation.

(2) Discuss the effect of friction, of coefficient fi, in the problem of

Art. 28<S.

(3) The length OQ = Z of an elastic string is increased to OQi = h =
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I + e a a. mass wi is suspended from its lower end, the upper end

being fixed (Fig. 72). The mass m is pulled down to the distance

QiFo = Xo from the position of equilibrium Qi and then released. Prove

the following results: With Qi as origin the equation of

motion of ?)i is

X = — K^x, where k =-«(?-
\e

whence
X = Xo coskI, V = — KXo siuKt.

If Xo < e, the tension never vanishes, and m performs

isochronous oscillations of period 2irVe/g, the period be-

ing the same as for the small oscillations of a pendulum

of length e. If xo > e, the tension vanishes for x =
— e, i. e. at Q; the velocity at this point is vi =

— kV xa' — e^, and the particle rises to the height

h = (xo^ — e2)/2e above Q. The total time of one up pj^. 72
and down motion is

2V^g[hTr + sin-Ke/xo) + Vjxo/c)^ - 1].

(4) How is the motion of Ex. (3) modified if the elastic string be

replaced by a spiral spring suspended vertically from one end? Assume

the resistance of the spring to compression equal to its resistance to

extension.

(5) The particle in Ex. (3) is let fall from a height h above Q; deter-

mine the greatest extension of the string.

(6) An elastic string whose natural length is I is suspended from a

fixed point. A mass nii attached to its lower end stretches it to a length

h; another mass m2 stretches it to a length h. If both these masses be

attached and then the mass ???2 be cut off, what will be the motion of

nil?

(7) If a straight smooth hole be bored through the earth, connecting

any two points A, B on the surface, in what time would a particle slide

from A to B? The attraction in the interior is directly proportional

to the distance from the center of the earth.

291. Resistance of a Medium. It is known from obser-

vation that the velocity y of a rigid body moving in a liquid

or gas is continually diminished, the medium apparently exert-
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ing on the body a retarding force which is called the resistance

of the medium. This force F is found to be roughly propor-

tional to the density p of the medium, the greatest cross-

section A of the body (at right angles to the velocity v), and

generally, at least for large'*velocities, to the square of the

velocity v.

F = kpAv"",

where A; is a coefficient depending on the shape and physical

condition of the surface of the body.

This expression for the resistance F can be made plausible by the

following consideration. As the body moves through the medium,

say with constant velocity v, it imparts this velocity to the particles

of the medium it meets. The portion of the medium so affected in the

unit of time can be regarded as a cylinder of cross-section A and length

V, and hence of mass pAv. To increase the velocity of this mass from

to f in the unit of time requires, by equation (5) of Art. 171, a force

pAv

V

. „^— = pAi^.

The retarding force of the medium must be equal and opposite to this

force multiplied by a coefficient k to take into account various disturbing

influences.

For small velocities, however, the resistance can be assumed pro-

portional to the velocity, F = kv, the coefficient k to be determined by

experiment.

The above consideration is only a very rough approximation. Thus

the particles of the medium are not simply given the velocity v in the

direction of motion; they are partly pushed aside and move in curves

backwards, causing often whirls or eddies alongside and behind the

body. If the medium is a gas, it is compressed in front, and rarefied

behind the body; indeed, when the velocity is great (greater than that

of sound in the gas), a vacuum will be formed behind the body. More-

over, a layer of the medium adheres to and moves with the body, thus

increasing the cross-section. It is therefore often found necessary to

assume a more general expression for the resistance; and this isj in

ballistics, generally written in the form

F = KpAv'^fiv).
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The careful experiments that have been made to determine the re-

sistance offered by the air to the motion of projectiles have shown that

for velocities up to about 250 meters per second, as well as for velocities

above 420 m./sec, J{v) can be regarded as constant, i. e. the resistance

is proportional to the square of the velocity. But for velocities between

250 and 420 m./sec, i. e. in the vicinity of the velocity of sound in air

(330-340 m./sec), the law of resistance is more complicated.

292. Falling Body in Resisting Medium. Assuming the

resistance proportional to the square of the velocity, the

equation of motion for a body falling (without rotating) in a

medium of constant density is

d^s dv , „

at at

where A; is a positive constant. To simplify the resulting

formulae, put

g

then the separation of the variables v and t gives

gdv

g^ — jjL^v^

whence

2m g - tJ-v

the constant of integration being zero if the initial velocity

is zero. Solving for v, we have

V = -
of*' n

^^ = — tanhjui.

Writing dsjdt for v and integrating again, we find, since s =

for t = 0,

s = ~ log h (e*^' + e"*^') = , log coshyuf.
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The relation between v and s can be obtained by eliminating

t between the expressions for v and s, or more conveniently

by eliminating / from the original differential equation by

means of the relation

dv _ dvds _ dv

dt ds dt ds

This gives

whence, with y = for s = 0,

s = -% log 9 9 2
•

2m- g- - fi-v^

293. Exercises.

(1) Show that, as t increases, the motion considered in Art. 292

approaches more and more a state of uniform motion without ever

reaching it.

(2) Determine the motion of a body projected vertically upward in

the air with given initial velocity vo, the resistance of the air being pro-

portional to the square of the velocity.

(3) In iTx. (2) find the whole time of ascent and the height reached

by the particle.

(4) Show that, owing to the resistance of the air, a body projected

vertically upward returns to the starting point with a velocity less than

the initial velocity of projection.

(5) A ball, 6 in. in diameter, falls from a height of 300 ft.; find

how much its final velocity is diminished by the resistance of the air, if

k = 0.0C090.

(6) Determine the rectilinear motion of a body in a medium whose

resistance is proportional to the velocity, when no other forces act on it.

(7) A body falls from rest in a medium whose resistance is propor-

tional to the velocity; find v and s in terms of t, v in terms of s.

294. Damped Oscillations. Let a particle of mass m be

attracted by a fixed center 0, with a force proportional to

the distance from 0, and move in a medium w^hose resistance
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is proportional to the velocity. If the initial velocity be

directed through (or be zero) , the motion will be rectilinear,

and the equation of motion is

(P'S
m-r;;, = — mK}s — mkv,

or, putting k = 2X,

f + 2x*; + .=. = o. rii)

This is a homogeneous linear differential equation of the

second order with constant coefficients, which can be in-

tegrated by a well-known process. The roots of the auxiliary

equation,

- X± VX2 - k\

are real or imaginary according as X > k, or X < k. The

limiting cases X = k, X = 0, /c = 0, also deserve special men-

tion.

(a) If X > K, the roots are real and different, and as X is

positive, both roots are negative; denoting them by — a and

— 6, so that a and h are positive constants, and b > a, the

general solution is

S = CiC""' + €26"''^.

As the force has a finite value at the center 0, we can take

s = 0, V ^ vo ior t = as initial conditions. This gives

s = T-^°- -- (e-°' - e-^'). V = T^^^^ (he-"" - ae""').
b — a b — a

The velocity reduces to zero at the time

h = r log--
b — a a

16
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As a and b are positive and b > a, s has always the sign of

i'o, i' e. the particle remains always on the same side of 0;

it reaches its elongation at the time ti, for which v vanishes,

and then approaches the point asymptotically.

Hence, in this case, the damping effect of the medium is

sufficiently great to prevent actual oscillations. Such mo-

tions are sometimes called aperiodic.

(6) If X = K, the roots are real and equal, viz. = — X,

and the general solution is

s = (ci + C2t)e~^.

With s = 0,v =^ voiov t = 0, we find

s = wote"^', V = i'o(l - X^e-'^'.

The velocity vanishes for ti = 1/X, and then only. The

nature of the motion is essentially the same as in the previous

case.

(c) If X < K, the roots are complex, say = — « ± ^i, where

a and /3 are positive constants. The general solution

s = e~"'(ci coS(8i + Co sinjS^)

gives with s = 0, v = Vq for ^ = 0:

s = ^e-«' sin/3^, v = -^ e-"'(/3 cos^t - a sin^t).

Here v vanishes whenever tan/3^ = (3/a = V(k/X)^ ~ 1; s

vanishes (i. e. the particle passes through 0) whenever / is an

integral multiple of 7r//3; s has an infinite number of maxima

and minima whose absolute values rapidly diminish.

The resistance of the medium, while not sufficient to ex-

tinguish the oscillations, continuall}^ shortens their amplitude

;

this is the typical case of damped oscillations.

(d) If X = 0, the roots are purely imaginary, viz. = ± ki.

In this case, the second term in equation (11) is zero; there
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is no damping effect, and we have the case of free oscillations

(see Arts. 284-290).

(e) If K = 0, one of the roots is zero, the other is = — 2 X.

The attracting (or elastic) force being zero, we have the case

of Ex. (6), Art. 293.

295. As shown in Arts. 273, 274, the principle of the conservation

of energy holds for the free oscillations of a particle (under a force pro-

portional to the distance). In the case of damped oscillations (Art. 294),

this principle, in the restricted sense in which it has been proved so far,

is not applicable, the resistance of the medium not being given as a

function of the distance s. The total energy E = T + V oi the particle,

or rather the energy stored in the system formed by the spring with

the particle attached (in the example used above), diminishes in the

course of time because the spring has to do work against the resistance

of the medium, thus transferring part of its energy to the medium

(setting it in motion, heating it, etc.). Thus, in a generalized meaning,

the principle of the conservation of energy can be said to hold for the

larger system, formed by the spring, together with the medium (see

Art. 276).

The rate at which the total energy E diminishes with the time is

here proportional to the square of the velocity

:

d^ o ^ 2.-^ = - 2?ttXz;2;

for, substituting for E its value E = T + V = imv^ + Imk'^s'^ (Art.

289) and reducing, we find the equation of motion (11).

The space-rate of change of the total energy E is proportional to

the velocity, and is nothing else but the resistance of the medium

:

-r- = — 2 m\v,
ds

for we have
dE ^ dE^ds ^ dE
dt ds dt ds

296. Forced Oscillations. In the case of free simple har-

monic oscillations, while the force regarded as a function of
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the distance s is directly proportional to s, the same force

regarded as a function of the time is of the form

R = — mK~So coskI,

since s = So cosk^. Conversely, a particle acted upon by a

single force R = mk cosjit, or R = mk shifxt, directed toward

a fixed center 0, will, if the initial velocity passes through 0,

have a simple harmonic motion.

Suppose that such a force in the line of motion be super-

imposed in the case of Art. 294 so that the equation of motion

becomes
cPs

''i ^7^ = ~ mii~s — 2m\v -\- mk cos/jLt,

dr
or

g + 2X
'J^
+ K^s = A; sin/zf. (12)

The particle is then said to be subject io forced oscillations.

For a particle suspended from a spiral spring this could be

realized by subjecting the point of suspension to a vertical

simple harmonic motion of amplitude k and period 27r/ju.

The non-homogeneous linear differential equation (12) with

constant coefficients can be integrated by well-known

methods.

297. Exercises.

(1) With/x = 2, ^0 = 4, sketch the curves representing s as a function

of t in the five cases of Art. 294; take (a) X = 3, (6) X = 2, (c) \ = H,

(e) X = 2.

(2) Compare the cases (c) and (d) of Art. 294; show that the os-

cillations in a resisting medium are isochronous, but of greater period

than in vacuo. The ratio of the amplitude at any time to the initial

amplitude is called the dam-ping ratio; show that the logarithm of this

ratio, the so-called logarithmic decrement, is proportional to the time.

(3) Derive the equation of motion in the case of free oscillations

from the principle of the conservation of energy.
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(4) Integrate and discuss the equation s -\- k^s = a sinjui; show that

the amphtude of the forced oscillation becomes very large if the periods

of the free and forced oscillations are nearly equal. Discuss the limiting

case when fx = k.

(5) Integrate (12), assuming a particular integral of the form

c cosul + c' siufjil and determining the constants c, c' by substituting

this expression in (12). Discuss the result,

3. Examples of curvilinear motion.

298. Central Forces. The motion of a particle in the field

of a central force has been studied in Kinematics, under

central motion, Arts. 96-113. It will here suffice to add

certain further developments that are best expressed in

dynamical terms.

299. Force Proportional to the Distance : f(r) = /cV. The equations

of motion (2) are in this case

the upper sign holding for attraction, the lower for repulsion. Their

solution is very simple, because each equation can be integrated sepa-

rately. We find, in the case of attraction,

X = Ci cosK< + a-z sind, y = bi cosk< + 62 siuKt,

and in the case of repulsion,

X = aiC' + 026-"^', y = bie'^' + hiC-"*;

di, Oi, 61, hi, being the constants of integration.

To find the equation of the orbit, it is only necessary to eliminate

t in each case.

In the case of attraction, this elimination can be performed by solving

for cosd, sinx/, squaring and adding. The result is

{aiy — bixy + {aiy — bnx)"^ = (aJh — aihi)-,

and this represents an ellipse, since

(fli^ + a22)(6,2 + 62=) - {aA + aMY = (aA - aA)'

is always positive. The center of the ellipse is at the origin, and the

lines aiy = b\x, aiy = box are a pair of conjugate diameters.
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In the case of repulsion, solve for c' and e-'^', and multiply. The
resulting equation,

(ciy — bix)(b2X — aoy) = (0162 — a2&i)-,

represents a hj'perbola whose asymptotes are the lines aiy = bix,

a^y = 62X.

300. It is worthy of notice that the more general problem of the

motion of a particle attracted by any ymmbcr of fixed centers, icith forces

directly proportional to the distances from these centers, can be reduced

to the problem of Art. 299.

Let X, y, z be the co-ordinates of the particle, r, its distance from the

center 0,-; x,, yi,Zi the co-ordinates of Oi] and Krri the acceleration

produced by 0,. Then the x-component of the resultant acceleration is

= — S/v-rr; .

^ ~—
' = - 2K-.2(.r — x.) = - x^Kr + Sk-.^x;;

and similar expressions obtain for the y and z components. Hence,

the equations of motion are

X = — x'S.Kr + ^Ki-Xi, y = — y'^Ki^- + 'ZK^yi, z = - z'^kC- + 'Zki'^zu

As the right-hand members are linear in x, y, z, there is one, and only

one, point at which the resultant acceleration is zero. Denoting its

co-ordinates by x, y, z, we have

The form of these equations shows that this point of zero acceleration

which is sometimes called the mean center is the centroid of the centers

of force, if these centers be regarded as containing masses equal to kj^.

It is evidently a fixed point.

By introducing the co-ordinates of the mean center, we can reduce

the equations of motion to the simple form

X = -k2(x - x), y = - K'^iy - y), 2 = - K^iz - z),

where k- = Skj-. Finally, taking the mean center as origin, we have

X = — K^x, ij
= — K-y, 2 = — K^z.

It thus appears that the motion of the particle is the same as if there rvere

only a single center of force, viz., the mean center (x, y, z), attracting loith

a force proportional to the distance from this center.



302.] MOTION OF A FREE PARTICLE 231

The plane of the orbit is, of course, determined by the mean center

and the initial velocity.

301. It is easy to see that most of the considerations of Art. 300

apply even when some or all of the centers repel the particle with forces

proportional to the distance. It may, however, happen in this case that

the mean center lies at infinity, in which case, of course, it can not be

taken as origin.

Simple geometrical considerations can also be used to solve such

problems. Thus, in the case of two attractive centers Oi, Oi (Fig. 73)

of equal intensity k^, the forces can

evidently be represented by the dis-

tances POi = ri, POi = Ti of the

particle P from the centers. Their

resultant is therefore = 2P0, if

denotes the point midway between

OiandO-; and this resultant always
--n~--

passes through this fixed point 0,

and is proporlional to the distance -p. „„

PO from this point.

302. Exercises.

(1) Determine the constants of integration in Art. 299, if xo, 2/0 are

the co-ordinates of the particle at the time I. = and Vi, V2 the com-
ponents of its velocity Vo at the same time. The equation of the orbit

will assume the form

K~{xuy - yox)- + {ivj - VixY = (w2 - rjaihY

for attraction, and

nKxoy - VaxY - {viy - Vixy = - {xaih - yoviy

for repulsion.

(2) Show that the semi-diameter conjugate to the initial radius

vector has the length Vu/k, where Vu- = fi^ -f- V2^. As any point of the

orbit can be regarded as initial point, it follows that the velocity at any

'point is proportional to the parallel diameter of the orbit.

(3) Find what the initial velocity must be to make the orbit a circle

in the case of attraction, and an equilateral hyperbola in the case of

repulsion.

(4) The initial radius vector ro and the initial velocity Vo being given

geometrically, show how to construct the axes of the orbit described
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under the action of a central force (of given intensity k^) proportional

to the distance from the origin.

(5) A particle describes an ellipse under the action of a central

force proportional to the distance; show that the eccentric angle is

proportional to the time, and find the corresponding relation for a

hyperbolic orbit.

(6) A particle of mass m describes a conic under the action of a

central force F = =F mK-r. Show that the sectorial velocity is ic =

},Kah, a and h being the semi-axes of the conic.

(7) In Ex. (6) show that the time of revolution is' T = 2wIk, if the

conic is an ellipse.

(8) A particle describes a conic under the action of a force whose

direction passes through the center of the conic. Show that the force

is proportional to the distance from the center.

(9) A particle is acted upon by two central forces of the same

intensity (k^), each proportional to the distance from a fixed center.

Determine the orbit: (a) when both forces are attractive; (6) when

both are repulsive; (c) when one is an attraction, the other a repulsion.

(10) A particle of mass m is attracted by two centers 0\, O2 of equal

mass m' and repelled by a third center O3, whose mass is m" = 2m'.

If the forces are all directly proportional to the respective distances,

determine and construct the orbit.

(11) When a particle moves in an ellipse under a force directed

towards the center, find the time of moving from the end of the major

axis to a point whose polar angle is d.

(12) Prove that if, in the problem of Art. 301, the intensities of Oi and

O2 are ki, k2, the resultant attraction F passes through the centroid G
of two masses ki k2, placed at Oi, O2, and that F = {ki + k2)PG.

(13) In Art. 299, in the case of attraction, the component motions are

evidently simple harmonic oscillations. Show that the equation of the

path can be put in the form (comp. Art. 89)

x^ 2xy . ^ ,
y^—

,

r sm5 + r, = cos^S.
a' ab W

(14) Show that the total energy of a particle of mass m describing an

ellipse of semi-axes a, b under a force ninh directed to the center is
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303. Force Inversely Proportional to the Square of the

Distance : /(r) = ^/j"' (Newton's law).

It has been shown in Kinematics (Arts. 99-108) how this

law of acceleration can be deduced from Kepler's laws of

planetary motion. From Kepler's first law Newton con-

cluded that the acceleration of a planet (regarded as a point

of mass 7n) is constantly directed towards the sun; from

the second he found that this acceleration is inversely pro-

portional to the square of the distance. The motion of a

planet can therefore be explained on the hypothesis of an

attractive force,

^ = ^^^2*

issuing from the sun

The value of n, which represents the acceleration at unit

distance or the so-called intensity of the force, was found to

be (Art. 108; or below, Art. 315)

M = 4x2—;

and as, according to Kepler's third law, the quantity a^/T"^

has the same value for all the planets, Newton inferred that

the intensity of the attracting force is the same for all

planets; in other words, that it is one and the same central

force that keeps the different planets in their orbits.

304. It was further shown by Newton and Halley that the

motions of the comets are due to the same attractive force.

The orbits of the comets are generally ellipses of great eccen-

tricity, with the sun at one of the foci. As a comet is within

range of observation only while in that portion of its path

which lies nearest to the sun, a portion of a parabola, with the

same focus and vertex, can be substituted for this portion of

the elliptic orbit, as a first approximation.
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It is also found from observation that the motions of the

moons or satelhtes around the planets follow very nearly

Kepler's laws. A planet can therefore be regarded as at-

tracting each of its satellites with a force proportional to the

mass of the satellite and inversely proportional to the square

of the distance.

305. All these facts led Newton to suspect that the force of

terrestrial gravitation, as observed in the case of falling bodies

on the earth's surface, might be the same as the force that

keeps the moon in its orbit around the earth. This inference

could easily be tested, since the acceleration g of falling bodies

as well as the moon's distance and time of revolution were

known.

Let m be the mass of the moon, a the major semi-axis of its orbit, T
the time of revolution, r the tUstance between the centers of earth and

moon; then the earth's attraction on the moon is (Art. 303)

a'
F = Airhn ^— ,

or, since the eccentricity of the moon's orbit is so small that the orbit

can be regarded as nearly circular, F = Air-ma/T-. On the other hand,

the attraction exerted by the earth on a mass m on its surface, i. e.

at the distance R = 3963 miles from the center, is F' = mg. Now,

if these forces are actually in the inverse ratio of the squares of the

distances, we must have
F' ^ a?

F ~ I^'

or, since the distance of the moon is nearly = QOR, F' = GO^F. Sub-

stituting the above values of F and F', we find

A 2
60^-R

With R = 3963 miles, T = 27'' 7" 43'", this gives g = 32.0, a value

which agrees sufficiently with the observed value of g, considering the

rough degree of approximation used.
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306. In this way Newton was finally led to his law of

universal gravitation, which asserts that every particle of mass

m attracts every other particle of mass m' with a force

„ mm'

where r is the distance of the particles and k a constant, viz.

the acceleration produced by a unit of mass in a unit of mass

at unit distance (see Arts. 245, 246).

The best test of this hypothesis as an actual law of physical

nature is found in the close agreement of the results of

theoretical astronomy based on this law with the observed

celestial phenomena.

307. Taking Newton's law as a basis, let us now turn to

the converse prol)lem of determining the 7notion of a particle

acted 7ipon by a single central force for which f{r) = fi/r'^

(problem of planetary motion).

It has been shown in Kinematics (Arts. 109-112) that if

the force be attractive, the particle will describe a conic section

with one of the foci at the center of force, the conic being an

ellipse, parabola, or hyperbola, according as

Vo' = ^. (13)^ To

If the force be repulsive, the same reasoning will apply,

except that
fj,

is then a negative quantity. The orbit is,

therefore, in this case always hyperbolic; the branch of the

hyperbola that forms the orbit must evidently turn its convex

side towards the focus at which the center of force is situated,

since the force always lies on the concave side of the path.

308. To exhibit fully the determination of tlie constants and the

dependence of the nature of the orbit on the initial conditions, a solution

somewhat different from that given in Kinematics will here be given for

the problem of planetary motion in its simplest form.
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With /(r) = M/r^, the equation of kinetic energy and work (5)

Art. 271, gives (comp. (19), Art. 109)

' r^ r To

or, if the constant of integration be denoted briefly by h and u = 1/r be

introduced,

1^2 = 2u,u + /i, where /i = v^? • (14)

Substituting this expression for v- in the equation (15), Art. 105, we

find the differential equation of the orbit in the form

^^^y + u^ = \,{2y.u + h), (15)
(

(^)'-(»-;)'+';:+'

To integrate, we introduce a new variable u' by putting

u , 1

1^^ h

the resulting equation,

( '^ )
= 1 _ ,i'2 or dB =±

,

.

\ dd J >/ 1 - u'2

has the general integral

— a = =F cos-' a', or u' = cos (9 — a),

where a is the constant of integration. The orbit has, therefore, the

equation

^ =-. + ^!-,+^cos{8-a), (16)
r c- y c* c^

which agrees with the equation (24) given in Kinematics, Art. 112,

excepting the different notation used for the constants.

309. The equation (16) represents a conic section referred to its

focus as origin. The general focal equation of a conic is

~ =\+l cos(0 - a), (17)

where I is the semi-latus rectum, or parameter, e the eccentricity, and

a the angle made with the polar axis by the line joining the focus to the

nearest vertex.
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In a planetary orbit (Fig. 74), the sun S being at one of the foci, the

nearest vertex A is called the perihelion, the other vertex A' the aphelion,

and the angle d — a made by any radius vector SP = r with the peri-

helion distance SA is called the true anomaly.

Fig. 74.

Comparing equations (17) and (IG), we find, for the determination of

the constants:

I c2
'

I ^ c*'^ c^
'

hence,

l^'\ e=Jl+^, (18)

or, solving for c and h,

c2 - 1
C = 'SiJd, h = IX

I

(19)

310. The expression for the eccentricity e in (IS) determines fhe

nature of the conic; the orbit is an ellipse, parabola, or hyperbola,

according as e = 1; hence, by (18), according as the constant h of the

equation of kinetic energy is negative, zero, or positive. Owing to the

value of h given in (14), this criterion agrees with the form (13), Art.

307.

It should be observed that it follows from (13) that the nature of the

conic is independent of the direction of the initial velocity.

The criterion (13) can be given the following interpretation. Con-
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sider a particle attracted by a fixed center according to Newton's

law. If it move in a straight line passing through the center, the

principle of kinetic energy gives for its velocity, at the distance r,

- 2. r-^ -V- = vo"^ — 2{i. \ '^ = ^ -{- vo' —

hence, if it start from rest at an infinite distance from the center, it

would acquire the velocity V 2iJ.ir at the distance r. The criterion (13)

is therefore equivalent to saying that the orbit is an ellipse, a parabola,

or a hyperbola, according as the velocity at any point is less than, equal

to, or greater than the velocity which the particle would have acquired at

that point by falling towards the center from infinity.

311. For a central conic, whose axes are 2a, 2b, we have I = b-Ja.

e = V a^ =F ¥/a (the upper sign relating to the ellipse, the lower to the

hyperbola), so that the equations (19) reduce to the following:

c=6>, h = =f^. (20)
V a a

The latter relation, with the value of h from (14), gives for the major

or focal semi-axis a

:

±^=?--^^; (21)
a ro fi

while the former, with the value of c as given in Art. 100, determines

the minor or transverse axis b :

b = c\j = ?v'o sini/'o \/ • (22)a/ = rovo siniAo \/
'

312. The magnitudes of the axes having thus been found, their

directions can be determined by a simple construction which furnishes

the second focus.

In the ellipse, the focal radii have a constant sum = 2a, and lie on

the same side of the tangent, making equal angles with it. In the

hyperbola, they have a constant difference = 2a, and lie on opposite

sides of the tangent.

Hence, determining the point 0" (Fig. 75), which is symmetrical

to the center of force O with respect to the initial velocity, and drawing

the line PoO", we have only to lay off on this line from Po a length

PoO' = ± {2a — ro) ; then 0' is the second focus, which for an elliptic
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orbit must be taken with O on the same side of the tangent PoT", and for

a hyperbolic orbit on the opposite side.

Fig. 75.

313. For a parabola, since c = 1, we find, from (19),

, „ , c^ Vo~ro^ sinVo
(23)

The axis of the parabola is redtlily found by remembering that the

perpendicular let fall from the focus on the tangent bisects the tangent

(i. e. the segment of the tangent between the point of contact and the

axis). Hence, if Or (Fig. 76) be the

perpendicular let fall from the center

on the velocity vo, it is only neces-

sary to make TT' = P^T, and T' will

be a point of the axis. Moreover, the

perpendicular let fall from T on OT' will

meet the axis at the vertex A of the para-

bola, so that OA = ^l.

314. The relation (21), which must

evidently hold at any point of the or-

bit, can be written in the form Fig. 76.

^^Oh)' (24)

the upper sign relating to the ellipse, the lower to the hyperbola, while

for the parabola, the second term in the parenthesis vanishes (since

a = oo).

This convenient expression for the velocity in terms of the radius

vector might have been derived directly from the fundamental relation

(Art. 100) V = c/p, the first of the equations (19), c^ = fil, and the
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geometrical properties of the conic sections {r :^r' = 2a, pp' = ¥,

p'r = pr', where r, r' are the focal radii, and p, p' the perpendiculars

let fall from the foci on the tangent). The proof is left to the student.

315. Time. In the case of an elliptic orbit, the time 7" of a complete

revolution, usually called the periodic time, is found by remembering

that the sectorial velocity is constant and = ^c, whence

_ 2Trab

c '

or, by (20),

T = 2xV'"'=?^. (25)
\ /J, n

The constant _

^ = \,

which evidently represents the mean angular velocity about the center

in one revolution, is called the mean motion of the planet. It should

be noticed that it depends not only on the intensity of the force, but

also on the major axis of the orbit, while in the case of a force directly

proportional to the distance the periodic time is independent of the

size of the orbit (see Art. 302, Ex. 7).

The periodic time T and the major axis a of a planetary orbit deter-

mine the intensity n of the force:

M=47r^^3, (26)

whence

F = mJ{r)=mt^ = Ai^^m^^, (27)

where m is the mass of the planet.

316. To find generally the time t in terms of B or r, it is best to intro-

duce the eccentric angle ^ of the elUpse as a new variable, and to express

/, r, and 6 in terms of <j>. In astronomy, the polar angle 6 is known as

the true anomaly, and the eccentric angle <j> as the eccentric anomaly.

The relation of the eccentric angle ^ to the polar co-ordinates r,

will appear from Fig. 77, in which P is the position of the planet at the

time t, P' the corresponding point on the circumscribed circle, i^AOP =

6 the true anomaly, and ^ACP' = </> the eccentric anomaly. The

focal equation of the ellipse

^ I ^ ail - e2)

1 + e cos9 1 + e COS0
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gives r -{ er cos^ = a — ae-; and the figure shows that r cos0 = a cos</)

— ae; hence
r = a(l — e COS0), or a — r = ae cos(p. (28)

Equating this value of r to that given by the polar equation of the

ellipse, we have

1 — e cos<P
1 -e2

or COS0 = cos<^ — e

1 + e cos9' "' ""
I — e COS0

'

A more symmetrical form can be given to this relation by computing

1 — cosO = 2 sm-^0 = (1 + e) .—
1 — e cos^

'

1 + C089 = 2 cos2^0 =:(1 - e) ,^ ^ ^"^"^
;

1 — e cos^

whence, by division,

tanie = -v/- tani0.
\ 1 — e

(29)

317. To find t in terms of r, we have only to substitute in (24) for

v^ its value (Art. 105), and to integrate the resulting differential equation

Fig. 77.

(I) +
r- r a

As, by (20), Art. 311, c^ = iJ.b~/a = ^0(1 — c^), this equation becomes

Kt)'=:i°"'-(«-^"'

d<

rdr

A/x /aV — (a — r)2'

17
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The integration is easily performed by introducing the eccentric

angle
<t> as variable by means of (28) ; this gives

dl = \ a(l — c cos<^)d<p.

If the time be counted from the perihelion passage of the planet, we

have t = when r = a — ae, i. e. when = 0; hence, putting y n/a^

= H, as in Art. 315, we find

nt = 4> — e sin<^. (30)

This relation is known as Kepler's equation; the quantity nt is called

the mean anomaly.

318. Kepler's equation (30) can be derived directly by considering

that the ellipse APA' (Fig. 77) can be regarded as the projection of

the circle AP'A', after turning this circle about AA' through an angle

= cos~^ (b/a). For it follows that the elliptic sector AOP is to the

circular sector AOP' as b is to a. Now, for the circular sector we have

AOP' = ACP' - OCP' = W-<j, - lae a sin<^ = ^0^(0 - e sin0);

hence, the elliptic sector described in the time t is

AOP = - AOP' = lab (0 - e sin0).
a

The sectorial velocity being constant by Kepler's first law, we have

AOP ^TTob.

1 T'
hence,

T
t ^ -(<j> - e sm0),

and this agrees with (30) since, by (25), 2Tr/T = n.

319. Kepler's equation (30) gives the time as a function of 0; by

means of (28), it establishes the relation between t and r; b}' means

of (29), it connects t with 0. It is, however, a transcendental equation

and cannot be solved for in a finite form.

For orbits with a small eccentricity e, an approximate solution can

be obtained by writing the equation in the form

4> = nt -\- e sin</),

and substituting under the sine for 4> its approximate value nt'.
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4>=^ nt -{- e sinnl. (31)

This amounts to neglecting terms containing powers of e above the

first power.

Substituting this vakie of 4> in (28), we have with the same approxi-

mation
r = a{l — e cosnt). (32)

To find d in terms of t, we have from the equation of the eHipse,

r = a(l — t-)(l 4- e cos0)~i = a(l — e cos9), neglecting again terms in

e^; hence, r'^ =0^(1 — 2e cos9). Substituting this value in the equa-

tion of areas, r^dd = cdt = V fj.a{l — e'^)dl, we find

(1 - 2e cosd)dd = J-^ dl = ndt)

whence, by integration, since = for i = 0,

d — 2e sin& = nt,

or finally,

d = nt + 2c shmt. (33)

Thus we have in (31), (32), (33) approximate expressions for (j),

r, and 9 directly in terms of the time. The quantity 2e sinnt, by which

the true anomaly d exceeds the mean anomaly nt, is called the equation

of the center.

320. Exercises.

(1) A particle is attracted by a fixed center according to Newton's

law. What must be the initial velocity if the orbit is to be circular?

(2) A number of particles are projected, from the same point in

the field of a force following Newton's law, with the same velocity, but

in different directions. Show that the periodic times are the same for

all the particles.

(3) The mean distance of Mars from the sun being 1.5237 times

that of the earth, what is the time of revolution of Mars about the sun?

(4) A particle describes a conic under the action of a central force

following Newton's law; if the intensity ^ of the force be suddenly

changed to ju', what is the effect on the orbit?

(.'i) In Ex. (4), if the original orbit was a parabola and the intensity

be doubled, what is the new orbit?

(G) Regarding the moon's orbit about the earth as circular, what

would it become: (a) if the earth's mass were suddenly doubled? (h) if

it were reduced to one half?
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(7) In Ex. (4), determine the effect on the major semi-axis (or "mean

distance") a and on the periodic time T, of a small change in the

intensity m of the force.

(8) If the mass M of the sun be suddenly increased by Mjn, n being

very large, while the earth is at the end of the minor axis of its orbit,

what would be the effect on the earth's mean distance and on the

period of revolution T ?

(9) Find the equation of the hodograph of planetary motion,

derive from it the expression for the velocity in terms of the radius

vector, and show that the velocity is a maximum in perihelion and a

minimum in aphelion.

(10) Show that the greatest velocity of a planet in its orbit about the

sun is to its least velocity as 1 + e is to 1 — e; and find this ratio for

the earth, whose orbit has the eccentricity e = 0.016 771 2.

(11) Find the time exactly as a function of 0, for a parabolic orbit.

(12) The latus rectum passing through the sun divides the earth's

orbit into two different parts; in what time are these described if the

whole time is 365K days?

(13) Show that the path of a projectile in vacuo is an ellipse, parabola,

or hyperbola, according as Vts = 36,800 ft. per second ( = 7 miles

per second, nearly). One of the foci lies at the center of the earth,

and the ordinary assumption that the path is parabolic means that this

center can be regarded as infinitely distant. Show also that the path

becomes circular for v^ = 5 miles per second, nearly.

321. The Problem of Two Bodies. In the preceding discussion of

the motion of a particle under the action of a central force, it has been

assumed that the center of force is fixed. In the applications of the

theory of central forces this assumption is in general not satisfied.

Thus, in considering the motion of a planet around the sun, the force

of attraction is, according to Newton's law of universal gravitation (Art.

306), regarded as due to the presence of a mass M at the center (sun),

and of a mass m at the attracted point (planet); and the action between

these two masses is a mutual action, being of the nature of a stress, i. e.

consisting of two equal and opposite forces, each equal to

„ mM
F = K .

Hence, the mass m of the planet attracts the mass M of the sun with



323.] MOTION OF A FREE PARTICLE 245

precisely the same force with which the mass M of the sun attracts the

mass m of the planet. The attraction affects, therefore, the motions of

both bodies.

322. The accelerations produced by the two forces are, of course,

not equal. Indeed, the acceleration F/m = kM/t'', produced in the

planet by the sun, is very much greater than the acceleration F/M
= Kin/r'^, produced by the planet in the sun; for the mass of even the

largest planet (Jupiter) is less than one thousandth of that of the sun.

The assumption of a fixed center can therefore be regarded as a first

approximation in the problem of the motion of a planet about the sun.

In the case of the earth and moon, the difference of the masses is

not so great, the mass of the moon being nearly one eightieth of that

of the earth.

It can be shown, however, that the results deduced on the assumption

of a fixed center can, by a simple modification, be made available for

the solution of the general -problem of the motions of two particles of

masses m., M, subject to no forces besides their mutual attraction. In

astronomy, this is called the problem of two bodies. In the solution

below we assume the attraction to follow Newton's law of the inverse

square of the distance. It will be convenient to speak of the two

particles, or bodies, as planet (m) and sun (ilf).

323. With regard to any fixed system of rectangular axes, let x, y, z

be the co-ordinates of the planet (m), at the time t; x', y', z' those of

the sun {M), at the same time; so that for their distance r we have

r2 = (x - x'Y + {y - y'Y + (2 - z')\

Then the equations of motion of the planet are

mx = F •^-^— , mij = F-^-—-, mz = F - ^
~
-

, (1)

while the equations of motion of the sun are

Mx' = F .
^^^^-

, Mij' = F y~-y'
, Mz' = F ^^—

. (2)

By adding the corresponding equations of the two sets, we find

d^ d- (/'*

^^2
(mx + Mx') = 0, ^^, {my + My') = 0, ^^piz + Mz') = 0.

If it be remembered that the centroid of the two masses m, M has the

co-ordinates
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_ _ mx + Mx ' ^ _niy + My' _ _ mz + Mz'

it appears that these equations can be written in the form

^ = -^ = - = 0-
dt^ ' dfi ' dp '

in words: the acccleralion of the common centroid of planet and sun is

zero; i. e. this centroid moves with constant velocity in a straight line.

324. The integration of the equations (1) would give the absolute

path of the planet. But the constants could not be determined, because

the absolute initial position and velocity of the planet are, of course, not

known. The same holds for the absolute path of the sun. All we can

do is to determine the relative motion, and we proceed to find the

motion of the planet relative to the sun.

Taking the sun's center as new origin for parallel axes, we have for

the co-ordinates f, i?,
i' of the planet in this new system,

^ = X - x', V = y - y', t = z — z'.

Now, dividing the equations (1) by m, the equations (2) by Rf, and sub-

tracting the equations of set (2) from the corresponding equations of

set (1), we find for the relative acceleration of the planet

V M + m ^ M + m V -. il/ + w f ,„,
k = — K , V = ~ K ,

, s'
= - K ^— •

-"
. (3)

The form of these equations shows that the relative motion of the planet

with respect to the sun is the same as if the sun ivere fixed and contained

the 7nass M -\- m. Thus the problem is reduced to that of a fixed center,

the only modification being that the mass of the center M should be

increased by that of the attracted particle ?n.

325. This result can also be obtained by the following simple con-

.sideration. The relative motion of the planet with respect to the sun

would obviously not be altered if geometrically equal accelerations were

applied to both. Let us, therefore, subject each body to an additional

acceleration equal and opposite to the actual acceleration of the sun

(whose components are obtained by dividing the equations (2) by M).

Then the sun will be reduced to equilibrium, while the resulting accel-

eration of the planet, which is its relative acceleration with respect to

the sun, will evidently be the sum of the acceleration exerted on it by
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the sun and the acceleration exerted on the sun by the planet. This

is just the result expressed by the equations (3).

326. It can here only be mentioned in passing that, while the problem

of two bodies thus leads to equations that can easily be integrated,

the problem of three bodies is one of exceeding difficulty, and has been

solved only in a few very special cases. Much less has it been possible

to integrate the 3 n equations of the problem of n bodies.

327. According to the equations (3), the first and second laws of

Kepler can be said to hold for the relative motion of a planet about the

sun (or of a satellite about its primary). The third law of Kepler

requires some modification, since the intensity of the center ^ should

not be kM, but k{M + m). We have, by (26), Art. 315,

M= k{M + ?n) = 47r2,^;

in other words, the quotient a'/T^ is not independent of the mass m
of the planet.

Thus, if mi, ra-i be the masses of two planets, Oi, ao the major semi-

axes of their orbits, and Ti, T^ their periodic times, we have

OiVTii _ M + m, ^ 1 + mi/M

This quotient is approximately equal to 1 if M is very large in com-

parison with both nil and /«2; hence, for the orbits of the planets

about the sun, Kepler's third law is very nearly true.



CHAPTER XIV.

CONSTRAINED MOTION OF A PARTICLE.J

1. Introduction.

328. A free particle is said to have three degrees of freedom

(Art. 231) since three co-ordinates are required to determine

its position, and each of these co-ordinates can vary inde-

pendently of the other two.

If the co-ordinates of a moving particle are subjected to

one condition, say

<p{^, y, ^) = 0, (1)

the particle is said to have one constraint and only two de-

grees of freedom. It can then only move on the surface (1),

and its position on this surface can be assigned by two co-

ordinates (such as latitude and longitude on a sphere).

If the co-ordinates are subjected to two conditions, say

ifix, 7j, z) = 0, \P(x, y, z) = 0, (2)

the particle has two constraints and but one degree of

freedom. It can only move along the curve of intersection

of the two surfaces (2), and its position on this curve can be

assigned by a single co-ordinate (such as the arc of the curve).

Three such conditions would in general prevent the particle

entirely from moving.

The surface or curve to which a particle is constrained

may vary its position or even its shape in the course of the

motion. The equations (1) and (2) would then contain t as

a fourth independent variable. We shall, however, in general

assume that the surface or curve is fixed.

248
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329. A particle constrained to a surface can be regarded as

the limit of a small piece of matter confined between two.

very near impenetrable surfaces. The constraint to a curve

can be imagined as due to a narrow tube having the shape

of the curve, or by imagining the particle as a bead sliding

along a wire.

In these cases the constraint is complete. But it is easy

to imagine incomplete, i. e. partial or one-sided, constraints

of various kinds. Thus the rails compel a train to follow a

definite curve, but they do not prevent it from being hfted

off the track; a stone attached to a cord and swung around

by the hand is not completely constrained to the surface of a

sphere, but only prevented from passing outside of the sphere.

While complete constraints are generally expressed by

equations, one-sided constraints can be expressed by in-

equalities. Thus, for the stone, the condition is that its

distance r from the hand cannot become greater than the

length I of the cord : r ^l. As soon, however, as r becomes

less than I, the constraining action ceases and the stone

becomes free. For this reason it is in general sufficient to

consider constraining equations; but the nature of the con-

straint, whether complete or partial, must be taken into

account to determine when and where the constraint ceases

to exist.

330. It is often convenient to replace the constraining

conditions by introducing certain forces, called reactions of

the constraining surface or curve (comp. Art. 232). Thus,

in the case of the stone attached to the cord, we may imagine

the cord cut and its tension introduced, to make the stone

free.

If the constraints are thus replaced by the correspbnding

reactions, these unknown forces must be combined with the
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given forces, and then the equations of motion of a free

particle can be used. Thus, let X, Y, Z be the components

of the resultant given force F, X', Y', Z' those of the resultant

reaction F'; then the equations of motion are

mx = X -\- X', my = Y + Y', mz = Z i- Z' . (3)

In many applied problems the determination of these

unknown reactions is more important than that of the actual

motion. The term Kiiietostatics has recently been proposed

for this branch of mechanics.

2. Motion on a fixed curve.

331. Let us resolve the given force F and the constraining

force F' each into a tangential component Ft, F/ and a com-

ponent Fn, Fn in the normal plane. The normal component

Fn of the constraint is generally denoted by A'^ and called

the normal reaction of the curve ; a force — N, equal and op-

posite to it, represents the normal pressure exerted by the

particle on the curve. The tangential component F/ of the

constraint exists only if the curve is " rough," i. e. offers

frictional resistance; denoting the coefficient of friction by

M we have (Art. 238) Ft' = fiN.

Hence the equations of motion are:

mi) = Ft - nN, m—= res • (F„, N). (4)
P

The former of these equations determines the actual motion

along the given curve. The latter states that the forces

Fn and N in the normal plane must have a resultant along

the principal normal, toward the center of curvature, of

magnitude mv^/p ; this resultant is called the centripetal force.

A force — mv^lp, equal and opposite to this resultant, is
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called centrifugal force; it should be noticed that this is a

force exerted not on the moving particle, but hy it.

332. By the second of the equations (4), the centripetal

force, mv^/p, is the resultant of the given normal force F„

and the normal reaction N of the curve; see Fig. 78 whose

plane is the normal plane of the curve, P being the position

of the particle and C the center of curvature.

It follows that the pressure on the curve, — N, is the resultant

of the given normal force Fn and the centrifugal force — mv^/p.

If in particular the given force Fn is zero, or at least negli-

gible, as is often the case, the pressure on the curve is equal

to the centrifugal force.

333. Denoting by Nx, Ny, N^ the components of the

normal reaction N and observing that the frictional resist-

ance fxN is directed along the curve opposite to the sense of

the motion we find that the equations (3) here assume the

form

mx = X -\- Nx — M-^;p>

my= Y + Ny-^Nf^, (5)

dz
mz = Z -\- Nz — p.N -T-,

ds

where N"" = N,^ -\- Ny"" + A^.^ ^nd NM + Nydy + N,dz
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= since N is normal to the path. In addition, we have of

course the equations (2) of the curve.

Multiplying the equations (5) by dx, dy, dz and adding

we find the equation of kinetic energy and work

dilmv^) = Xdx + Ydij + Zdz - fiNds.

This relation might have been written down directly by con-

sidering that for a displacement ds along the fixed curve the

normal reaction N does no work, while the work of friction

is — fxNds.

If there be no friction (fi = 0) it follows from the last

equation, or from the first of the equations (4), that the

velocity is independent of the reaction of the curve.

334. Exercises.

(1) A mass of 2 lbs. attached to a cord, 3 ft. long, is swung in a

circle. Neglecting gravity, find the tension in pounds: (a) when the

mass makes one revolution per second; {b) when it makes S revolutions

per second, (c) If the cord cannot stand a tension of more than 300

lbs., what is the greatest allowable number of revolutions?

(2) A plummet is suspended from the roof of a railroad car; how
much will it be deflected from the vertical when the train is running

45 miles an hour in a curve of 300 yards radius?

(3) A body on the surface of the earth partakes of the earth's daily

rotation on its axis. The constraint holding it in its circular path is due

to the attractive force of the earth. Taking the earth's equatorial radius

as 3963 miles, show that the centripetal acceleration of a particle at the

equator is about ^ ft. per second, or about j^-^ of the actually observed

acceleration g = 32.09 of a body falling in vacuo.

(4) If the earth were at rest, what would be the acceleration of a

body falling in vacuo at the equator?

(5) Show that if the velocity of the earth's rotation were over

17 times as large as it actually is, the force of gravity would not be

sufficient to detain a body near the surface at the equator (comp. Ex.

(13), Art. 320).

(6) Show that in latitude <f> the acceleration of a falling body, if
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B

the earth were at rest, would hegi = g + j cos-(p, where g is the observed

acceleration of a falling body on the rotating earth and j the centripetal

acceleration at the equator. Thus, in latitude = 45°, g = 980.6 cm.

;

hence gi = 982.3.

(7) Owing to the earth's rotation on its axis the direction of a

plumb-line does not pass through the center of the earth, even when

the earth, as here assumed, is regarded as a homogeneous sphere.

Determine the angle S of the deviation in latitude <P; in what latitude

is 8 greatest?

(8) A chandelier weighing 80 lbs. is suspended from the coiling

of a hall by means of a chain 12 ft. long whose weight is neglected.

By how much is the tension of

the chain increased if it be set

swinging so that the velocity at

the lowest point is 6 ft. per sec-

ond?

335. A particle of mass ?n sub-

ject to gravity alone is constrained

to move in a vertical circle of ra-

dius I. If there be no friction

on the curve and the constraint

be produced by a weightless rod

or cord joining the particle to

the center of the circle, we have

the problem of the simple mathe-

matical pendulum.

n/^
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imv^ = 777g{l cos9 + h),

where h = Vo^/2g — I cos^o is a constant. If the horizontal line MN,
drawn at the height vo'^j2g above the initial point Po, intersect the

vertical diameter AB at R, it appears from the figure that h = RO.

336. Taking R as origin and the axis of z vertically downwards^

we have RQ = 2 = I cos9 + h; hence the force-function U has the

simple expression
U = nigz]

and the velocity v = V2gz is seen to become zero when the particle

reaches the horizontal line MN.
For the further treatment of the problem, three cases must be

distinguished according as this line of zero-velocity MA'' intersects

the circle, touches it, or does not meet it at all; i. e. according as

h= l,OT ~ = 21 cosH^o.

337. The second of the equations (4), Art. 331, serves to determine

the reaction N of the circle, or the pressiu-e — N on the circle. We have

m
J

= — »ig cosO + A'',

whence

A^ — 7nl , + 9 cos9 j .

Substituting for v^ its value from Art. 335, we find

N = vig( 2
J
+ 3 cosd ) .

The pressiu-e on the curve has therefore its greatest value when = 0,

i. e. at the lowest point A. It becomes zero for I cosOi = — ^h,

which is easily constructed.

338. If the constraint be complete as for a bead sliding along a

circular wire, or a small ball moving within a tube, the pressure merely

changes sign at the point 9 = 9i. But if the constraint be one-sided,

the particle may at this point leave the circle. The one-sided constraint

may be such that OP ^ /, as when the particle runs in a groove cut

on the inside of a ring, or when it is joined to the center by a cord; in

this case the particle may leave the circle at some point of its upper half.

Again, the one-sided constraint may be such that OP ^ I, as when
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the particle runs in a groove cut on the rim of a disk; in this case the

particle can of course only move on the upper half of the circle.

339. Exercises.

(1) For Oo = 60°, I = 1 ft., ^0 = 9 ft. per second, show that the par-

ticle will leave the circle very nearly at the point di = 120°, if the con-

straint be such that OP ^ I (Art. 338).

(2) For vo = 10 ft. per second, everything else being as in Ex. (1)

show that the particle will leave the circle at the point di = 134^°,

nearly.

(3) A particle, subject to gravity and constrained to the inside of

a vertical circle {OP ^ I), makes complete revolutions. Show that it

cannot leave the circle at any point, if th > I; and that it will leave

the circle at the point for wliich cosO = — ^h/l, if §/i < I.

(4) A particle subject to gravity moves on the outside of a vertical

circle; determine where it will leave the circle: (a) if MN (Fig. 79)

intersects the circle; (h) if MN touches the circle; (c) if MN does not

meet the circle.

(5) A particle subject to gravity is compelled to move on any

vertical curve z = fix) without friction. Show that the velocity at

any point is ?; = V2gz (comp. Art. 336) if the horizontal axis of x be

taken at a height above the initial point equal to the "height due to

the initial velocity," i. e. Vo^/2g.

(6) A particle slides on the outside of a smooth vertical circle,

starting from rest at the highest point of the circle. Find where it

will meet the horizontal plane through the lowest point of the circle.

340. If for a particle constrained to a curve, under given

forces, the time of reaching any particular point is the

same from whatever point of the curve the particle starts

with zero velocity, the curve is called a tautochrone for the

given forces, and the point is called the point of tauto-

chronism.

In a vertical plane, if gravity is the only force, a cycloid

with vertical axis can be shown to be a tautochrone, with

the vertex as point of tautochronism. This will even be

true if the curve be rough, or if the particle be subj-ect to a
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resistance proportional to the velocity in the direction of

motion; but, for the sake of simplicity, we exclude these

complications. .

The problem of determining a tautochrone for given forces

(if such a curve exists) is rather different in nature from the

ordinary problems of mechanics inasmuch as it is here

required to find a curve, on which motions of a certain kind

may take place. Indeed, it is a generalization of the problem

of the tautochrone that led Abel to the first solution of an

integral equation.*

341. With respect to a horizontal axis Ox and a vertical

axis Oz through the point of tautochronism, the principle of

kinetic energy and work (comp. Art. 339, Ex. 5) gives for the

velocity

v'^ = 2g{h - z),

where h is the ordinate of the starting point P. Counting

the arc s from we have dsjcit = — V2g(/i — z), whence

the time of motion from P to :

^ " ~
J.=/. V2sf(/i - z)

^
^2g X

ds

VT-

If we put s = f{z) and hence ds = f{z)dz, the problem re-

quires the determination of the function f{z) for which the

integral has a value independent oi h. To make the limits

independent of h let us put z = hy; we then find

t =
1 r'rihy)hdy_ 1 r' ri^y

This integral will be independent of h if j'Qiy) -yjhy is

*See M. BocHER, Integral equations, Cambridge, University Press,

1909, p. 6.
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independent of h; and as this expression is symmetric in h

and y, it will then be also independent of z. We can therefore

put

whence

solving for dx we find (comp. Art. 20)

:

X = I -^ dz = -^z^K — z) + K- sin~i .*l- .

This is the equation of a cycloid with as vertex and Oz as

axis. Putting z = k sin^i^, we find the equations of the

cycloid in the form

X = ^K{e + sin^), z = ^k(1 - cos9),

so that K is the diameter of the generating circle.

For the time we find

:

^ _ i-^ r dy

"ViX 4y - y'' ^'2g*

342. Exercises.

(1) For a heavy particle moving witliout friction on a cycloid with

vertical axis, x = a(d -\- sin9), z = a(l — cos^), show tliat the equation

of motion is s = — gs/4:a, s being the arc counted from the vertex.

Hence, if ?> = for s = so, s = Sa cos Vgl^a t, which shows that the

time of reaching the lowest point is independent of so.

(2) The involute of a cycloid being an equal cycloid, with its vertex

at the cusp, its cusp on the axis, of the original cycloid, the particle

in Ex. (1) can be constrained to the cycloid by means of a cord of

length 2a, attached to the cusp of the involute, and wrapping itself

on a cylinder erected on the involute as base {cydoidal pouhdutii).

Show that, if the particle starts from rest at the cusp of the original

cycloid, the tension of the cord is twice the normal component of the

weight of the particle.

18
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(3) Prove that it is not possible to construct a tautochrone (for

gravity) from P to with as point of tautochronism unless the slope

of OA is in absolute value < 2/7r.

343. The cycloid (with vertical axis) has another remarkable prop-

erty; it is the brachistochrone, or cui've of quickest descent, for a

particle subject to gravity. More definitely: two points Pi, P2 being

given we may inquire to what curve in their vertical plane must a

heavy particle be constrained to reach in the shortest time the lower

point P2 if it starts from Pi with a given velocity.

As the time is given by a definite integral the problem requires the

determination of that curve z = fix) for which this integral becomes a

minimum. This problem has given rise to the invention of the calculus

of variations.

As the problem can hardly be solved satisfactorily without using

the methods of this calculus we merely state that the required curve is

the cycloid through the two points, without cusp between them and

with vertical axis.*

3. Motion on a fixed surface.

344. The equations of motion of a particle constrained to

a surface do not differ in form from tlie equations (5), Art.

333, for a particle constrained to a curve. The normal
reaction

being normal to the given surface (p(x, y, z) = 0, we have

dip dip dip

dx dy dz

A comparatively simple problem is that of the conical or

spherical pendulum, i. e. of a particle subject to gravity and

constrained to the surface of a sphere. But even this

problem can not be treated without introducing elliptic

integrals.

*See O. BoLZA, Variationsrechnung, Leipzig, Teubner, 1909, p. 207.
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4. The method of indetermmate multipliers.

345. The following brief discussion of the equations of

motion of a constrained particle is not so much intended to

furnish methods for solving particular problems, but rather

as a preparation for, and an introduction to, the general

methods of mechanics of systems of particles subject to

conditions.

For this reason we shall here assume the absence of friction

on the constraining surface or curve; but, on the other hand,

it is desirable to generalize by assuming that the constraints

are variable, that is, that the conditional equations (1) and

(2), Art. 328, contain the time t explicitly.

346. D'Alembert's Principle. The ordinary equations of

motion of a free particle,

mx = A^, my — Y, mz — Z, (6)

where X, Y, Z are the components of the resultant R of the

given forces, mejiely express the equality of this force R,

as a vector, to the mass-acceleration mj, which is sometimes

called the effective Jorce. It follows that // the reversed effective

force — mj, or its components — mx, — my, — m'z, he combined

with the given forces we have a system in equilibrium at the

given instant. This is the fundamental idea of d'Alembert's

principle, as it is now generally used.

Owing to this idea we can apply to kinetic problems the

statical conditions of equilibrium. Thus, in the case of

the free particle, the conditions of equilibrium of the forces

X, Y, Z, — mx, — my, — mz are

X — mx = 0, Y — mij = 0, Z — mz — 0,

and thus the equations of motion arc found.

But the conditions of equilibrium can also be expressed
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by means of the principle of virtual work. By Art. 266, the

necessary and sufficient condition of equiUbrium of the

particle under the forces — 77ix. — mij, — m'z, X, Y , Z is that

(- mx + X)bx + (- vtij + r)5?/ + (- mz + Z)52 = (7)

for any virtual displacement bs{bx, by, 8z). Owing to the

independence of 8x, dy, 8z, their coefficients must vanish

separately, and we find again the equations (6). In other

words, the single equation (7) is equivalent to the three

equations (6).

347. One constraint. If the particle is subject to the

condition or constraint

ifix, y, z, 0=0, (8)

it must throughout its motion remain on the surface repre-

sented by this equation. To apply d'Alembert's prin-

ciple let the particle be subjected to a virtual displacement

ds. If this displacement be selected along the position of

the surface at the time t, the work of the reaction (which

is normal to the surface (8), and hence to 8s, since we assume

that there is no friction) will be zero. Hence the equation

of motion is the same as for a free particle, viz. (7). But

the displacement 5s must be along the surface (8), or as

we shall say, compatible vrith the constraint. This requires

that 8x, 8y, 8z be selected so as to satisfy the relation

<Px8x + <p^8y + ^^8z = 0, (9)

where the partial derivatives ^i, (py, (p^ of ip with respect to

x, y, z are calculated regarding t as constant since we want

a displacement along the position of the surface (8) at the

time t.

The equations (7) and (9) constitute the equations of

motion of the particle on the surface (8). By means of
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(9) one of the component displacements 8x, by, bz can be

eliminated between the two equations; the remaining two

displacements being arbitrary, the two equations of motion

are found by equating to zero the coefficients of these two

chsplacements.

348. To perform this elimination systematically the

method of indeterminate multi-pliers may be used as follows.

Multiplying the conditional equation (9) by an indeter-

minate multiplier X and adding the resulting equation to

(7) we find:

(— mx -\- X -\r \(px)8x + (— 7ny -\- Y + '^<Py)8y

+ (- VIZ + Z + \<p,)8z = 0.

The arbitrary multiplier X can be selected so as to make

the coefficient of any one of the three displacements vanish;

the other two displacements being arliitrary, their coeffici-

ents must also vanish. Hence the last equation is equiva-

lent to the three equations,

inx = X -\- X<px, my = Y + X^j,, mz = Z -\- X^^, (10)

which, in connection with the given condition (8), are suf-

ficient to determine x, y, z, and X as functions of t.

349. By comparing (10) with (3), Art. 330, it appears

that

A = \ipxy 1 = ^fy} Z = \(Pzj

so that the normal reaction is

N = Xi/<^/-+ <p/-+ <p^ (11)

If we combine the equations (10) by the principle of

kinetic energy and work, we find

dihnv"^) = Xdx + Ydy + Zdz -\- \{(pxdx + ^ydy + <pdz).
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Here the elementary work which constitutes the right-

hand member contains in general terms depending on the

reaction. This is due to the fact that the displacement

ds{dx, dy, dz) here used is along the moving or variable

surface (8), and not along its position at the time t.

If the surface (8) be fixed we have of course (p^dx + (pjjdy

+ ^zdz = so that the equation reduces to

d{hnv'') = Xdx + Ydy + Zdz.

In the general case, since ifxdx + tpydy -\- ipzdz -\- cptdt = 0,

the equation of kinetic energy and work can be written

di^mv^) = Xdx + Ydy + Zdz - X^ptdt. (12)

350. Two constraints. If the particle be subject to two

conditions

ip{x, y, z, t) = 0, 4^(x, y, z, t) = (13)

it will move along the curve of intersection of the surfaces

represented by these equations.

For a displacement 8s along the position of this curve

at the time t the work of the reaction is again zero so that

the general equation (7) holds for such a displacement.

To obtain such a displacement we must subject its compo-

nents 8x, 8y, 8z to the conditions

(pjx + (py8y + (p,8z = 0, \px8x + \py8y + \p,8z = 0. (14)

Between the three equations (7) and (14) two of the dis-

placements 8x, 8y, 8z can be eliminated, and the coefficient

of the third equated to zero gives the equation of motion

along the curve (13).

351. To perform this elimination in a systematic way,

multiply (14) by indeterminate multipliers X, n and add

to (7). In the resulting equation
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(— mx + X + Xv7x + )U'/'x)5x + (- my + F + X.^^ + ix^py)by

+ (- mz + Z + X<^, + ^x^p,)bz =

the arbitrary multipliers X, /x can be selected so that the

coefScients of two of the displacements bx, by, bz vanish;

and then the coefficient of the third must also vanish. Thus

we find the three equations of motion,

mx =X -\- \(p^ + /xi/'x, my = Y + \^y + /x^/'^,,

mz = Z + X<^, + ix^„
^^^^

which, together with the conditions (13), are sufficient to

determine x, y, z, \, jjl as functions of t.

5. Lagrange's equations of motion.

352. Generalized Co-ordinates. To determine the posi-

tion of a point P in space we may use, instead of the cartesian

co-ordinates x, y, z, a large variety of other systems of co-

ordinates, e. g. polar or spherical, cylindrical (Art. 56, Ex. 9),

elliptic (Arts. 408, 411) co-ordinates, etc. Indeed, any three

linearly independent functions of x, y, z, say

gi = qi{x, y, z), go = qo(x, y, z), qz = Qzix, y, z),

can be taken as such generalized, or lagrangian, co-ordinates

of P, at least within a certain region of space. Each of these

functions equated to a constant represents a surface, and

the point P(x, y, z) is determined as intersection of the three

surfaces.

Solving these equations for x, y, z we find x, y, z as functions

of gi) g2, g3- For the sake of generality we shall assume that

X, y, z. are given as functions of gi, go, ga, and of the time t:

X = x(q^,go,q3,t), y = y{q\, q^, qz, t) , z = z(q^,q2,qz,t), (16)
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SO that the new system of co-ordinates is a moving or variable

system.

By using such generalized co-ordinates and introducing the

kinetic energy T and its derivatives the equations of motion

of a particle with or without constraints can be put into a

remarkably compact form which was first devised by La-

grange for the general equations of motion of a system of n

particles (comp. Chap. XX).

353. Free Particle. By multiplying the ordinary equa-

tions of motion

mx = X, my = Y, mz = Z

hy dx/dqi, dy/dqi, dz/dqi and adding we find

/ .. dx , .. dy
,

.. dz\ ^dx
, ^^ dy

,
„ dzmix— + y^~ + 2;r~ =X- VY^ +^J"-

\ dqi ''dqi dqi / dqi dqi dqi

The right-hand member we shall denote briefly by Qii

dqi dqi dqi

this Qi may be called the generalized force corresponding to

the co-ordinate gi (comp. Art. 354).

The main point lies in the transformation of the left-hand

member. Consider the first term in the parenthesis; by the

formula for the differentiation of a product we have the

identity q^ d / . dx\ . dx
* dqi dt \ dqi) dqi

Treating the other two terms in the same way we find that

our equation can be written:

d ( . dx
, . dy , . dz

dt \ dqi -^ dqi dqi

/ . dx , . dy
,

. dz , „ .._v-mix^ +y-^ +z--) =Qi, (17)
V dqi -"dqi dqi'
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where the second term is evidently the gi-derivative of the

kinetic energy
T = iw(x2 ^ ^^2 ^ ^2)_

To interpret the first term observe that the equations (16)

give

dx . , dx . , dx .

hence, if we regard i as a function of gi, 52, 93, qi, Qi, qz, t, we
have

dx _ dx dx _ dx dx _ dx

dqi dqi^ dq-i 5^2' dqz dqs'

Similar relations hold of course for y and z. We can therefore

in the first term of (17) replace 5a:/6gi, dy/dqi, dz/dqi hydx/dqi,

dij jdqi, dz Idqi; and then it appears that this term is equal to

the time-derivative of the gi-derivative of T. Thus (17)

becomes
d dj^ _dT ^
dt dqi dqi

By multiplying the ordinary equations of motion by the

derivatives of x, y, z with respect to 52 and ^3 we obtain two

similar equations. Thus Lagrange's equations of motion for

. a free particle are

:

dtdqi dqi ^'' ~dtdq2 dq^
^'' dt dqz dqs ^" ^ ^

354. If there exists a force-function U for the forces X, Y,

Z, I. e. if

^_dU y _djl dU
^ ~ dx' dy' ^ dz'

we have
^dJJd^ dJJ^y dJUdz^^dU

^' ~ dx dqi ^ dy dqi
"^

dz dqi dqi
'
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and similarly

_dU _dU

In this case one of the three equations (18) can be replaced

by the equation of kinetic energy and work

T = U -\-h,

where h is a constant.

355. Constrained particle. In the case of one constraint,

<p{x, ij, z, t) = 0,

the position of the particle on this surface is determined by

two co-ordinates qi, 52; and by applying the process of Art.

353 to the equations (10), Art. 348, we find the two equations

of motion

ddT dT ^ ddT dT „ ,,„,.

dtdqi dqi dtdqo dq-^

For, the coefficients of X in the right-hand members, viz.

dx dy dz dx dy dz

dqi dqi dqi dq-z dq-i dq^

are zero since the particle moves on the surface <p = 0.

Similarly, in the case of two constraints,

ip{x, y, z, t) = 0, yp{x, y, z, t) = 0,

the position of the particle on the curve represented by these

equations is determined by a single co-ordinate q, and the

equation of motion is

ddT dT _
dtJi'dq;-^- ^^^^

It is obtained from the equations (15), Art. 351, by the

process of Art. 353. The coefficient of X, viz.
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dx dy dz

vanishes since it is proportional to the cosine of the angle

made at the instant considered by the tangent to the con-

straining curve with the normal to the surface ^ = 0;

similarly for the coefficient of n.

The equations (18'), (18") are sometimes distinguished

from the equations (10), (15) as Lagrange's equations of the

second kind, the forms (10), (15) being also due to Lagrange.



CHAPTER XV.

THE EQUATIONS OF MOTION OF A FREE RIGID BODY.

356. In kinetics it is convenient to think of a rigid body

primarily as a finite number of particles (Art, 156) connected

by a rigid framework without mass. The rigidity then con-

sists on the one hand, in the invariability of the distances

of the particles, on the other in the assumption (Art. 197)

that a force applied to the rigid body, i. e. to any one of the

particles, can be imagined applied at any point of its line

of action.

357. Consider any one particle m of the body and let it be

cut loose from the other particles; that is, let the members of

the framework that attach it to the body be replaced by

tensions or pressures. These internal forces, together w^th

the external forces that may happen to be applied at our

particle, will have a resultant F. The equation of motion of

this particle is therefore

mj = F,

or, resolving along fixed rectangular axes,

mx = X, my = Y, mz = Z. (1)

Notice particularly that the components X, Y, Z oi F
contain not only the given external, but also the unknown

internal, forces.

358. Such a set of three equations can be written down for

each particle; hence, if the body consists of n particles, there

would be in all 3n equations.

The number of conditions expressing the invariability of

the distances between n particles is 2>n — 6. For if there

268
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were but 3 particles, the number of independent conditions

would evidently be 3; for every additional particle, 3 ad-

ditional conditions are required. Hence, the total number

of conditions is 3 + 3(n — 3) — Sn — 6.

It follows that if a rigid body be subject to no other con-

straining conditions, the number of its equations of motion

must be Sn — (3n — 6) =6. Hence, a free rigid body has six

independent equations of motion (comp. Art. 231). 'h .

'< '• '''

359. The six equations of motion of the rigid body can be

obtained as follows.

Imagine the equations (1) written down for every particle,

and add the corresponding equations. This gives the first

3 of the 6 equations of motion:

^mx = 2X, Zmij = 2 7, llmz = 2Z. (2)

It is important to notice that the internal reactions be-

tween the particles which make the body rigid occur in pairs

of equal and opposite forces, and form, therefore, a system

which is in equilibrium by itself. This may be regarded as

an assumption which should be included in the definition of

the rigid body. Hence, while these internal forces enter into

the equations (1), they do not appear in the equations (2).

The right-hand members of these equations (2) represent

therefore the components Rx, Ry, Rz of the resultant R of

all the external forces acting on the body. The left-hand

members can be written in the form d{I,mx)/dt, d{'Zmij)ldt,

d{'Zmz)/dt: these are the time-derivatives of the sums of the

linear momenta of all the particles parallel to the axes. The

equations (2) can therefore be written in the form

^Xmx^Rx, ~i:my = Ry, ^^^^^mz = R,. (2')

The axes of co-ordinates are arbitrary. Hence, if we agree to
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call linear momentum of the body in any direction the algebraic

sum of the linear momenta of all the particles in that direc-

tion, the equations (2') express the proposition that the rate

at which the linear mofnentum of a rigid body in any direction

changes with the time is equal to the sum of the comyonents of

all the external forces in that direction.

360. Let us now combine the second and third of the

equations (1) by multiplying the former by z, the latter by y,

and subtracting the former from the latter. If this be done

for each particle, and the resulting equations be added, we

find I,m{yz — zij) = '^{ijZ — zY). Similarly, we can pro-

ceed with the third and first, and with the first and second

of the equations (1). The result is:

^m{yz - zij) = Z(yZ - zY), ^m(zx - xz) = Z{zX - xZ),

^ni{xij - yx) = Z{xY - yX). (3)

Here again the internal forces disappear in the summation,

so that the right-hand members are the components Hx, Hy,

Hz, of the vector H of the resultant couple, found by reducing

all the external forces for the origin of co-ordinates. The

left-hand members are the components of the resultant couple

of the effective forces for the same origin.

We can also say that the right-hand members are the sums

of the moments of the external forces about the co-ordinate

axes (Art. 229), while the left-hand members represent the

moments of the effective forces about the same axes. The

latter quantities are exact derivatives, as shown in Art. 279.

The equations (3) can therefore be written in the form

y. 'Lm{yz - zy) = Hx, ^J^mizx - xz) = Hy,

d
^^'^

-^^^mixy -yx) = H^.



362.] EQUATIONS OF MOTION OF RIGID BODY 271

As explained in Art. 279, the quantity m{yz — zy) is called

the angular momentum (or the moment of momentum) of the

particle m about the axis of x. We shall now agree to call

the quantity I,m{yz — zy) the angular momentu7n of the body

about the axis of x, just as Hmx is the linear momentum of

the body along this axis; and similarly for the other axes.

The meaning of the equations (3') can then be stated as

follows: The rate at ivhich the angular ynomentum of a rigid

body about any axis changes with the time is equal to the sum

of the moments of all the external forces about this line.

The equations (2) and (3), or (2') and (3'), are the six

equations of motion of the rigid body. The three equations

(2) or (2') may be called the equations of linear momentum,

while (3) or (3') are the equations of angular momentum.

361. If, as in Art. 280, we imagine the angular momentum
of each particle represented by a vector drawn from the

origin of co-ordinates, the geometric sum, or resultant, of

these vectors is a vector h which represents the angular

momentum of the body about the origin; and its components

hx, hy, hz along the axes are tlie angular momenta 1,7n{yz —

zy), 'Zim{zx — xz), ^m{xy — yx) of the body about these

axes. The equations (3') can then be written in the simple

form
afix -rj any jj anz jj /o//\

d^
== ^- 7it^ ^^-

^dt
^ ^" ^^ ^

and these equations are together equivalent to the single

vector equation
dh _ „
dt

~

362. The equations of linear momentum, (2) or (2'), admit

of a further simplification, owing to the fundamental property
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of the centroid. By Art. 159, the co-ordinates x, y, z of the

^centroid satisfy the relations

Mx = llmx, My = 2m2/, Mz = ^mz,

where M = ^m is the whole mass of the body. Differentiat-

ing these equations, we find

Mx = Imx, My = limy, Mz = 2mi,

and
Mx = Smx, My = 2my, Mz = ^mz,

where x, y, z are the components of the velocity v, and x, y, z

those of the acceleration j, of the centroid.

The equations (2) or (2') can therefore be reduced to the

form

Mx = j,Mx = R., Mi) =
J.
My = Ry,

M2 = -Mz = Rz,
at

whence

Mj= -^.Mv = R;

i. e. if the whole mass of the body be regarded as concentrated

at the centroid, the effective force of the centroid, or the

time-rate of change of its momentum, is equal to the resultant

of all the external forces. It follows that the centroid of a

rigid body moves as if it contained the whole mass, and all the

external forces were applied at this point parallel to their

original directions.

363. If, in particular, the resultant R vanish (while there

may be a couple H acting on the body), we have by (2")

j = 0; hence v = const.; i. e. if the residtant force he zero

the centroid moves uniforinly in a straight line.
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This proposition, which can also be expressed by saying

that ii R = 0, the momentum Mv of the centroid remains

constant, or, using the form (2') of the equations of motion,

that the hnear momentum of the body in any direction is

constant, is known as the principle of the conservation of

linear momentum, or the principle of the conservation of

the motion of the centroid.

364. Let us next consider the equations of angular momen-
tum, (3) or (3'). To introduce the properties of the centroid,

let us put X — X =
^, y — y = r], z — z = ^, so that ^, 77, f

are the co-ordinates of the point (x, y, z) with respect to

parallel axes through the centroid. The substitution of

X =^ X -\- ^, y = y -\- V, z = z -{- ^ and their derivatives in

the expression yz — zy gives

yz - zij = yz - zy -\- ijt - zi] + -nz - ty + r]t - ^v.

To form 'Zm(yz — zy) we must multiply by m and sum

throughout the body; in this summation, y, z, y, z are constant

and by the property of the centroid, '^mt] = 0, 2m^ = 0,

Sm^ = 0, 2mf = 0. Hence we find

'Emiyz - zy) = 2m (17^ -fTJ) + M(;yz - zy).

The second term in the right-hand member is the angular

momentum of the centroid about the axis of x (the whole mass

M of the body being regarded as concentrated at this point),

while the first term is the angular momentum of the body

(in its motion relatively to the centroid) about a parallel to

the axis of x, drawn through the centroid.

Similar relations hold for the angular momenta about the

axes of y and z; and as these axes are arbitrary, we conclude

that the angular momentum of a rigid body about any li7ie is

equal to its angular momentum about a parallel through the

19
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centroid plus the angular momentum of the centroid about the

former line.

365. Differentiating the above expression, we find

-^^m{yz - zy) = -^^^^Mvt - ^v) + M(yz - zy).

The first of the equations (3') can therefore be written

^2m(7?f - In) + Miyl - ztj) = H..

Now, if at any time t the centroid were taken as origin, so

that y = 0, z =0, this equation would reduce to the form

J-2m(7?f -N) = H.,

which is entirely independent of the co-ordinates of the cen-

troid. On the other hand, wherever the origin is taken, if

the centroid were a fixed point, the same equation would

be obtained.

Similar considerations apply of course to the other two

equations (3')- It follows that the motion of a rigid body

relative to the centroid is the same as if the centroid were fixed.

366. If, in particular, the resultant couple H be zero for

any particular origin (which will be the case not only when

all external forces are zero, but whenever the directions of

all the forces pass through the point 0), the equations (3')

can be integrated and give

i:m{yz - zy) = d, i:m{z± - xz) = Ci, ...

Zm(xy - yx) = C^,

where d, d, C3 are constants of integration. Hence, if the

external forces pass through a fixed point, the angidar momentum

of the body about any line through this point is constant; if there

are no external forces, the angular momentum is constant for
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amj line whatever. This is the principle of the conservation

of angular momentum.

367. Taking the equations of angular momentum in the

form (3") we find when // = 0;

/ix = Ci, hy = Cs, h = C^, (4')

and hence the vector h (Fig. 70, Art. 280) remains constant

in magnitude and direction. The term principle of the con-

servation of areas which is often used instead of principle of

the conservation of angular momentum is less appropriate.

In the case of the single particle, where hx = m(yz — zy),

etc., the vector of angular momentum h is simply 2m times

the vector representing the sectorial velocity; but in the case

of the rigid body, to form the vector of angular momentum h

we have to multiply the sectorial velocity of each particle

by twice its mass and add these " weighted" sectorial velocities

geometrically.

In the study of the motion of the rigid body with a fixed point

where the vector h is of primary importance it has l)ecn

called the impulse, or impulse-vector. Our principle then

means that whenever for any point the resultant couple H is

zero the impulse remains a constant vector:

h = C.

The direction of h is then called the invariable direction; the

plane through 0, perpendicular to h,

Cix + Coy + Csz = 0,

is called Laplace's invariable plane.

368. Returning to the general case of the motion of a rigid

body under any forces, we may say that the propositions at

the end of Arts. 362 and 3G5 cstal^lish the principle of the

independence of the motions of translation and rotation. Ac-
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cording to these propositions the problem of the motion of a

rigid body resolves itself into two problems; that of the mo-

tion of the centroid and that of the motion of the body about

its centroid. The former reduces by Art. 362 to the problem

of the motion of a particle, viz. the centroid of the body, with

a mass M equal to that of the body, acted upon by all the

given external forces transferred parallel to themselves to the

centroid.

The latter problem, that of the motion of the bod}^ about

its centroid, is, by Art. 365, the same as the problem of the

motion of a rigid body about a fixed point. This important

problem is discussed in Chap. XVIII; its solution depends

on the equations (3), (3'), or (3")-

369. If the equation of motion (1), Art. 357, of the par-

ticle m be multiplied by the components dx, dy, dz of the

actual displacement ds of this particle, we find upon adding

the equations for all the particles

^m{xdx + ijdy + zdz) = ^(Xdx + Ydy -{- Zdz),

where the right-hand member represents the elementary

work of the external forces since that of the internal forces is

zero. The left-hand member, just as in the case of the

single particle (Art. 271), is the exact differential of the

kinetic energy

T = 'Ehnv^ = i:hn{x^ -f 7J~ + i')

of the body. Hence, integrating, say from t = to t = t,

we find the relation

T - To = ^hnv^ - Simvo^* = C^iXdx -f Ydy -f Zdz),

where the right-hand member represents the work done by

the external forces on the body during the time t. This



371.] EQUATIONS OF MOTION OF A RIGID BODY 277

equation expresses the principle of kinetic energy and work,

for a free rigid body: in any motion of the body, the increase

of the kinetic energy is equal to the work done by the external

forces.

370. By introducing the co-ordinates of the centroid,

i. e. by putting x ^ x -{- ^, y = y -\- v, z = z -\- ^, as in

Art. 364, the expression for the kinetic energy assumes the

form (since Sm| = 0, 2m^ = 0, I,nit = 0)

:

T = 7:hn(x' + y' + -z') + ^hn{t~ + ^- + f')

where v is the velocity of the centroid and u the relative

velocity of any particle m with respect to the centroid.

Thus, it appears that the kinetic energy of a free rigid body

consists of two 'parts, one of which is the kinetic energy of the

centroid (the whole masss being regarded as concentrated

at this point), ivhile the other may be called the relative kinetic

energy with respect to the centroid.

371. By the same substitution the right-hand member of

the first equation of Art. 369, i. e. the elementary work

Ii(Xdx + Ydy + Zdz), resolves itself into the two parts

{dx^X + dy^Y + dz^Z) + 2(Xd^ + Ydv + Zd^).

The first parenthesis contains the work that would be done

by all the external forces if they were applied at the centroid

;

it is therefore equal to the change in the kinetic energy of

the centroid, that is, to d{^Mv^). The equation of kinetic

energy reduces, therefore, to the following

dXiimu'') = 2(Xd^ + Ydr] + Zd^);

in other words, the principle of kinetic energy holds for the

relative motion with respect to the centroid.
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372. Impulses. The equations determining the effect

of a system of impulses on a rigid body are readily obtained

from the general equations of motion (2) and (3). We shall

denote the impulse of a force F by F. It will be remembered

that the impulse F oi a, force F is its time integral (Art. 172)

;

i. e.

F = j^' fdt.

We confine ourselves to the case when t' — t is very small

and F very large, in which case the action of the impulsive

force F is measured by its impulse F.

If all the forces acting on a rigid body are of this nature,

and the impulses of X, Y, Z during the short interval

t' — t be denoted by X, Y, Z, the integration of the equa-

tions (2) from t = t to t = t' gives

Sm(a;' - x) = 2X, ^m (ij' - t/) = 2 Y, ^m (i'- i) = 2Z, (5)

where x, y, z denote the velocities of the particle ?n at the

time t just before the impulse, and x', y' , z' those at the

time t' just after the action of the impulse.

Similarly the equations (3) give

^m[y{i' - i) - z{y' - ?/)] = ^{yZ - zY),

2m[2(i' - x) - x{z' - z)\ = Z{zX - xZ), (6)

Xmixiy' -y)- y(x' - x)] = Z{xY - yX).

373. In detcrmiming the effect on a rigid body of a system

of such impulses, any ordinary forces acting on the body at

the same time are neglected because the changes of velocity

produced by them during the very short time t' — t are

small in comparison with the changes of velocity x' — i,

y' — y, z' — z produced by the impulses. If the impulse

F of an impulsive forceF be defined as the limit of the integral
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r'Fdt when t' — t approaches zero and F approaches infinity,

it is strictly true that the effect of ordinary forces can be

neglected when impulsive forces act on the body.

If the rigid body be originally at rest, it will be convenient

to denote by x, y, z the components of the velocity of the

particle tn just after the action of the impulses. We may

also denote by R the resultant of all the impulses, by H the

resultant impulsive couple for the reduction to the origin

of co-ordinates, and mark the components of R and H by

subscripts, as in the case of forces. With these notations the

effect of a system of impulses on a body at rest is given by

the equations

'Zmx = Rjr, ^my = Ry, ^mz = R^, (5')

I,'m(yz— zi/) = Hx, ^m{zx— xz) = Hy, Zm{xij— yx) = H,. (6')

In the equations (5') we have, of course, Xmx = Mx, I,77iy

— My, l^mz = Mz, where x, y, z are the components of the

velocity of the centroid, and M is the mass of the body; i. e.

the momentum of the centroid is equal to the resultant impulse.

The meaning of the equations (6') can be stated by saying

that the angular momentum of the body about any axis is equal

to the moment of all the impulses about the same axis.



CHAPTER XVI.

MOMENTS OF INERTIA AND PRINCIPAL AXES.

1. Introduction.

374. As will be shown in Chapters XVII and XVIII, the

rotation of a rigid body about any axis depends not only on

the forces acting on the body, but also on the way in which

the mass is distributed throughout the body. This distribu-

tion of mass is characterized by the position of the centroid

and by that of certain lines in the body called principal axes.

It has been shown in Art. 159 that the centroid of a system

of particles is found by determining the moments, or more

precisely, the moinents of the first order, 'Emx, Zmy, 'Zmz, of

the system with respect to the co-ordinate planes, i. e. the

sums of all mass-particles m each multipUed l^y its distance

from the co-ordinate plane.

The principal axes of a sj'stem of particles can be found by

determining the moments of the second order, 'Lmx'^, '^my^,

Iimz^, llmyz, Xmzx, 'Zmxy of the system with respect to the

same planes. We proceed, therefore, to study the theory of

such moments.

375. If in a rigid body the mass m of each particle be multi-

plied by the square of its distance r from a given point, plane,

or line, the sum

Zmr~ = niiri~ + nur2~ + • • •
,

extended over the whole body, is called the quadratic moment,

or, more commonly, the moment of inertia of the body for

that point, plane, or line.

280



377.] MOMENTS OF INERTIA AND PRINCIPAL AXES 281

If the body is not composed of discrete particles, but forms

a continuous mass of one, two, or three dimensions, this mass

can be resolved into elements of mass dm, and the sum Smr^

becomes a single, double, or triple integral J r'^dm.

Expressions of the form Zmvir^, or J riVodm, where ri, r2 are

the distances of m or of dm from two planes (usually at right

angles), are called moments of deviation or products of inertia.

376. The determination of the moment of inertia of a con-

tinuous mass is a mere prol^lem of integration; the methods

are similar to those for finding the moments of mass of the

first order required for determining centroids, the only dif-

ference being that each element of mass must be multiplied

by the square, instead of the first power, of the distance.

A moment of inertia is not a directed c^uantity ; it is not a

vector, but a scalar; indeed, it is a positive ciuantity, provided

the masses are all positive, as we shall here assume.

If the mass is homogeneous, the density appears merely as

a constant factor; as the density in this case can be regarded

as =1, it is customary to speak of moments of inertia of

volumes, areas, and lines.

The moment of inertia of any number of bodies ot masses

for any given point, plane, or line is obviously the sum of the

moments of inertia of the separate bodies or masses for the

same point, plane, or line.

377. The moment of inertia Xmr"^ of any body whose mass

is M = Sm can always be expressed in the form

2mr2 = M-ro-,

where Vo is a length called the radius of inertia, arm of inertia,

or radius of gyration. This length ro is evidently a kind of

average value of the distances r, its value being intermediate

between the greatest r' and least r" of these distances r. For
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we have Swr'^ = Smr^ = 'Lmr"'^, or, since Swr'^ = Mr'^,

Xmr^ = Mro\ ^mr"^ = Mr'"",

r' ^ ro = r".

378. As an example, let us determine the moment of inertia of a

homogeneous rectilinear segment (straight rod or wire of constant cross-

section and density) for its middle point (or what amounts to the same

thing, for a line or plane through this point at right angles to the seg-

ment).

Let I be the length of the rod (Fig. 80), its middle point, p" its

density {i. e. the mass of unit length), x the distance OP of any element

J dm = p"dx from the middle

Jt i +H ^ point. Observing that the

xp- QQ moment of inertia for O of the

whole rod AB \s the sum of the

moments of inertia of the halves AO and OB, and that the moments

of inertia of these halves are equal, we have, for the moment of inertia

/ of AB,

I = 2£^x^.p"dx = ^p'%

and for the radius of inertia ro, since the whole mass is M = p" I,

379. Exercises.

Determine the radius of inertia in the following cases. When
nothing is said to the contrary, the masses are supposed to be homo-

geneous.

(1) Segment of straight line of length I, for perpendicular through

one end.

(2) Rectangular area of length I and width h: (a) for the side h;

(6) for the side I; (c) for a line through the centroid parallel to the

side h; (d) for a line through the centroid parallel to the side I.

(3) Triangular area of base b and height h, for a line through the

vertex parallel to the base.

(4) Square of side a, for a diagonal.

(5) Regular hexagon of side a, for a diagonal.

(6) Right cylinder or prism of height h, for the plane bisecting the

height at right angles.
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(7) Segment of straight line of length I, for one end, when the density

is proportional to the nth power of the distance from this end. Deduce
from this: (c) the result of Ex. (1); (6) that of Ex. (3); (c) the radius

of inertia of a homogeneous pyramid or cone (right or oblique) of height

h, for a plane tlxrough the vertex parallel to the base.

(8) Circular area (plate, disk, lamina) of radius a, for any diameter.

(9) Circular line (wire) of radius a, for a diameter.

(10) Solid sphere, for a diametral plane.

(11) Solid ellipsoid, for the three principal planes.

(12) Area of ring bounded by concentric circles of radii ai, aj, for a

diameter.

380. The moment of inertia of any mass AI for a point can

easily be found if the moments of inertia of the same mass

are known for any hne passing through

the point, and for the plane through the

I point perpendicular to the line. Let

(Fig. 81) be the point, / the line, tt the

plane; r, q, p the perpendicular dis-

tances of any particle of mass m from

0, I, T, respectively. Then we have,

evidently, r^ = g^ + p~. Hence, multi-

Fig. 81. plying by m, and summing over the

whole mass M,

^mr"^ = Hmq^ + '^mp'^; (1)

or, putting ^mr- = Mro~, '^rnq'^ = Mq^-, 1,mp^ = Mpo"^, where

^0, qo, Po are the radii of inertia for 0, I, tt,

To' = qo' + Po'. (10

381. The moment of inertia of any mass M for a line is

equal to the sum of the moments of inertia of the same mass

for any two rectangular planes passing through the line.

Thus, in particular, the moment of inertia for the axis of x in

a rectangular system of co-ordinates is equal to the sum of
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the moments of inertia for the 2a:-plane and x?/-plane. This

follows at once by considering that the square of the distance

of any point from the line is equal to the sum of the squares

of the distances of the same point from the two planes. Thus,

if q be the distance of any point {x, y, z) from the axis of x,

we have g^ = y"^ -\- z-; whence

Zmq- = '^my- -\- Zmz"^.

382. It follows, from the last article, that the moment of

inertia I^ of a plane area, for any line perpendicular to its

plane, is

if ly, Iz are the moments of inertia of the area for any two

rectangular lines in the plane through

the foot of the perpendicular line.

383. The problem of finding the mo-

ment of inertia of a given inass for a

line I', when it is ktiown for a parallel

line I, is of great importance.

Let Smg^ be the moment of inertia

of the given mass for the line I (Fig.

82), Smg'2 that for a parallel line V at

the distance d from I. The distances

q,
q' of any particle m from I, V form with d a triangle which

gives the relation

g'2 = g2 _|. fp _ 2qd cos{q, d).

Multiplying by m, and summing over the whole mass M, we

find

Zmq'~ = 2?ng2 + Md^ - 2d1mq cos(g, d).

Now the figure shows that the product q cos(q, d) in the

last term is the distance p of the particle ?n from a plane

Fig. S2.
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through I at right angles to the plane determined by / and V.

We have, therefore,

Zmq'^ = i:mq^ + Aid'- - 2d'Emp, . (2)

where the last term contains the moment of the first order

Zm/j = Mjj of the given massM for the plane just mentioned.

If, in particular, this plane contains the centroid G of the

mass M, we have I,mp = 0, so that the formula reduces to

2mg'2 = ^mq^ -j. Md\ (3)

Introducing the radii of inertia 50', Qo, this can be written

go'- = go- + d'\ (3')

384. Similar considerations hold for the moments of inertia

Zmp"^, Zmp'^ with respect to two parallel planes tt, t' at the

distance d from each other. We have, in this case, p' =

p — d; hence,

2wp'2 = v^p2 _|_ ]^f^2 _ 2cZ2mp, (4)

and if the plane x contain the centroid G,

385. Of special importance is the case in which one of the

lines (or planes), say Z(x), contains the centroid. The for-

mulae (3), (3'), and (5) hold in this case; and if we agree to

designate any line (plane) passing through the centroid as a

centroidal line (plane), our proposition can be expressed as

follows : The moment of inertia for any line (plane) is found

from the moment of inertia for the parallel centroidal line {plane)

by adding to the latter the product Md^ of the whole mass into

the square of the distance of the lines (planes).

It will be noticed that of all parallel fines (planes) the

centroidal line (plane) has the least moment of inertia.
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386. Exercises.

Determine the radius of inertia of the following homogeneous masses

:

(1) Rectangular plate of length I and width h, for a centroidal line

perpendicular to its plane.

(2) Area of equilateral triangle of side a: (a) for a centroidal line

parallel to the base; (b) for an altitude; (c) for a centroidal line per-

pendicular to its plane.

(3) Circular disk of radius a: (a) for a tangent; (6) for a line through

the center perpendicular to the plane of the disk
;

(c) for a perpendicular

to its plane through a point in the circumference.

(4) Solid sphere, for a diameter.

(5) Area of ring bounded by concentric circles of radii ai, 02, for a

line through the center perpendicular to the plane of the ring.

(6) Right circular cylinder, of radius a and height h: (a) for its

axis; (6) for a generating line; (c) for a centroidal line in the middle

cross-section.

(7) By Ex. (3) (6), the moment of inertia of the area of a circle of

radius a, for its axis {i. e. the perpendicular to its plane, passing through

the center), is / = ^iraK Differentiating with respect to a, we find:

-7- = 2-ira^ = 2ira a? ;da

hence, approximately for small Aa:

A7 = 27ra'Ao = 2iraAa • a^.

This is the moment of inertia of the thin ring, of thickness Ao, for its

axis. (Comp. Ex. (5).)

If the constant surface density (Art. 155) of the circle be p', we have

/ = \p'Tra*\ hence
A/ = 27rap'Aa • a^,

where p'Aa is the linear density p" of the ring.

(8) Apply the method of Ex. (7) to derive from Ex. (4) the moment

of inertia of a thin spherical shell, of radius a and thickness Ao, for a

diameter.

(9) Area of ellipse: (a) for the major axis; (6) for the minor axis;

(c) for the perpendicular to its plane through the center.

(10) Solid ellipsoid, for each of the three axes.

(11) Wire bent into an equilateral triangle of side a, for a centroidal

line at right angles to the plane of the triangle.
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(12) Paraboloid of revolution, bounded by the plane through the

focus at right angles to the axis, for the axis.

(13) Anchor-ring, produced by the revolution of a circle of radius a

about a line in its plane at the distance h{> a) from the center, for the

axis of revolution.

2. Ellipsoids of inertia.

387. The moments of inertia of a given mass for the dif-

ferent hnes of space are not independent of each other.

Several examples of this have already been given. It has

been shown, in particular (Art. 383), that if the moment of

inertia be knov/n for any line, it can be found for any parallel

line. It follows that if the moments be known for all lines

through any given point, the moments for all lines of space

can be found. We now proceed to study the relations be-

tween the moments of inertia for all the lines passing through

any given point 0.

Let X, y, z be the co-ordinates of any particle m of the mass;

and let us denote hy A, B, C the moments of inertia of M for

the axes of x, y, z; by A', B', C those for the planes ijz, zx, xy;

by D, E, F the products of inertia (Art. 375) for the co-

ordinate planes; i. e. let us put

A = Zm(?/2 + z^), A' = 2mx% D = 2myz,

B = -Emiz^ + a;2), B' = l^imf, E = Zmzx, (6)

C = 2m(a;2 + ij^), C = Sms^, F = ^mxy.

388. These nine quantities are not independent of each

other. We have evidently

A = B' + C\ B = C + A', C = A' + B';

hence, solving for A', B' , C,

A'^UB-\-C-A), B'=UC+A-B), C'=^A-^B-C).

The moment of inertia for the origin is

Swr2=Sm(a;2+ 1/2+22) = A'-j- B'-\- C = i{A -\- B-\-C). (7)
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389. The moment of inertia I for any line through can

be expressed by means of the six quantities A, B,C, D, E, F;

and the moment of inertia /' for any plane through can be

expressed by means of A', B', C, D, E, F.

Let TT (Fig. 83) be any plane passing through 0; Z its nor-

mal; a, /3, 7 the direction cosines of I; and, as before (Art.

380), p, q, r the distances of

any point {x, y, z) of the given

mass from tt, I, and 0, re-

spectively. Then, projecting

the closed polygon formed by

r, X, \j, z on the line I, we have

p = ax + /3?/ + 72;

hence, squaring, multiplying

by w, and summing over the

Fig. 83.

whole mass, we find

+ 2l3y'^myz + 2yaZmzx + 2a^'Emxy,

or, with the notations (6),

r = A'a'- + B'I3- + CY- + 2Z)/37 + 2jE'7a + 2Fa/3. (8)

Thus the moment of inertia for any j)lane through the origin

is expressed as a homogeneous quadratic function of the direction

cosines of the normal of the plane.

390. The moment of inertia I = llinq^ for the line I can

now be found from equation (1), Art. 380, by substituting for

I,7nr'^ and Zmj)^ their values from (7) and (8)

:

I = i:mr^ - 7' - A' + B' + C - I'

= A'(l-a'-)-\-B'{l-(3'-)-\rC'{l-y'-)-2D^y-2Eya-2Fa^,

or, since a- + /3- + 7- = 1,
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I = A'(^' + 7') + B'W + a^) + C'(a2 + iS^)

= a'-iB' + C) + fi\C' + A') + 7-(A' + 5')

- 2D^y - 2Eya - 2Fa^;

hence, finally, applying the relations of Art. 388,

I = Aa''^ 5/32 + (7^2 _ 27)^^ _ 2Eya - 2F«/3. (9)

The moment of inertia for amj line through the origin is,

therefore, also a homoge^ieous quadratic function of the direction

cosines of the line.

391. These results suggest a geometrical interpretation.

Imagine an arbitrary length OP = p laid off from the origin

on the line I whose direction cosines are a, /3, 7; the co-

ordinates of the extremity P of this length will be a: = pa,

y = p^, z = py. Now, if equation (9) be multiplied by p^,

it assumes the form

Ax^ + By^ + Cz^ - 2Dyz - 2Ezx - 2Fxy = pU,

which represents a quadric surface provided that p be selected

for the different lines through so as to make p^/ constant,

say p2/ = K^. Hence,?/ on every line I through the origin a

length OP = p = kJ -^ I he laid off, i. e. a length inversely pro-

portional to the square root of the moment of inertia I for this

line I, the points P will lie on the quadric surface

Ax^ + By^ + C22 - 2Dyz - 2Ezx - 2Fxy = k\

The constant k^ may be selected arbitrarily; to preserve

the homogeneity of the equation it will l^e convenient to

take it in the form k^ = Me*, where e is an arl)itrary length.

392. As moments of inertia are essentially positive quan-

tities, the radii vectores of the surface

Ax^ + By^- + C22 - 2Dyz - 2Ezx - 2Fxy = Me* (10)
20



290 KINETICS [393.

are all real, and the surface is an ellipsoid. It is called the

ellipsoid of inertia, or the momental ellipsoid, of the point 0.

This point is the center; the axes of the ellipsoid are called

the principal axes at the point 0; and the moments of inertia

for these axes are called the principal 7noments of inertia at the

point 0. Among these there will evidently be the greatest

and least of all the moments of the point 0, the greatest

moment corresponding to the shortest, the least to the longest

axis of the ellipsoid.

It may be observed that, owing to the relations of Art. 388,

which show that the sum of any two of the quantities A, B,C
is always greater than the third, not every ellipsoid can be

regarded as the momental ellipsoid of some mass. An ellip-

soid can be a momental ellipsoid only when a triangle can be

constructed of the reciprocals of the squares of its semi-axes.

393. If the axes of the ellipsoid (10) be taken as axes of

co-ordinates, the equation assumes the form

hx^ + hy- + hz- = Me\ (11)

where 7i, h, I3 are the principal moments at the point 0.

By Art. 391 we have p^ = k'-/I = Me\fl; hence 7 = Me*/p\

If, therefore, equation (11) be divided by p-, the following

simple expression is obtained for finding the moment of

inertia, I, for a line whose direction cosines referred to the

principal axes are a, /3, 7:

I = /la^ +W + hy^- (12)

394. To make use of this form for 7, the principal axes at the point

0, i. e. the axes of the momental ellipsoid (10), must be known. The

determination of the axes of an ellipsoid whose equation referred to

the center is given is a well-known problem of analytic geometry. It can

be solved by considering that the semi-axes are those radii vectores of

the surface that are normal to it. The direction cosines of the normal
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of any surface F{x, y, z) =0 are proportional to the partial derivatives

dFjdx, dF/dy, dF/dz. If, therefore, the radius vector p is a semi-axis,

its direction-cosines a, /3, y must be proportional to the partial deriv-

atives of the left-hand member of (10); i. e. we must have

Ax - Fy - Ez ^ - Fx + By - Dz ^ - Ex - Dy + Cz

a
"

fi 7
'

or dividing the numerators by p,

Aa - F0 - Ey ^ - Fa + B0 - Dy ^ - Ea - D0 + Cy
a ^ y

'

Denoting the common value of these fractions by / we have

al = Aa - Fp - Ey, /3/ = - Fa + Bfi - Dy, yl = - Ea - Dff+Cy]

multiplying these equations by a, p, y and adding we find

I = Aa'^ + Bff^ + Cy^ - 2D^y - 2Eya - 2Fa/3,

which, compared with (9), shows that / is the moment of inertia for

the axis (a, /3, y). To obtain it in terms oi A,B, C, D, E, F, we write

the preceding three equations in the form

(/ - A)a + F^ + Ey =0,

Fa + {I - B)p + Dy =0, (13)

Ea+ D^+ {I - C)y = 0,

whence, eliminating a, /3, y, we find / determined by the cubic equation

I - A, F, E

F,I - B, D

E, D,I -C
= 0. (14)

The roots of this cubic are the three principal moments I\, 12, h of

the point 0. The direction cosines of the principal axes are then found

by substituting successively I\, h, h in (13) and solving for a, /8, y.

In general, the three principal moments of inertia I], h, h at a point

O are different. If, however, two of them are equal, saj' h = h, the

momental ellipsoid becomes an ellipsoid of revolution about the third,

/i, as axis; and it follows that the moments of inertia for all lines

through O in the plane of the two equal axes are equal.

If I\ = h = I3, the ellipsoid becomes a sphere, and the moments of

inertia are the same for all lines passing through 0.
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395. If the equation of the momental elhpsoid at a point be of the

form Ax'' + B^f + Cz^ — 2Dyz = Ale*, i. e. if the two conditions

E = Xmzx =0, F = i:mxy =

be fulfilled, the axis of x coincides with one of the three axes of the

ellipsoid, the surface being symmetrical with respect to the yz-plane.

Hence, if the coriditions E = 0, F = are satisfied, the axis of x is a

'principal axis at the origin. The converse is evidently also true; i. e.

if a line is a principal axis at one of its points, then, for this point as

origin and the line as axis of x, the conditions 'Zmzx = 0, I^mxy =

must be satisfied.

It is easy to see that if a Une be a principal axis at one of its points,

say 0, it will in general not be a principal axis at any other one of its

points. For, taking the line as axis of x and as origin, we have

Hjtizx = 0, '^mxy = 0. If now for a point 0' on this line at the dis-

tance a from the line is likewise a principal axis, the conditions

2??iz(x — a) = 0, Zm{x — a)y =

must be fulfilled. These reduce to

2m2 = 0, "Liny = 0,

and show that the line must pass through the centroid. And as for a

centroidal line these conditions are satisfied independently of the value

of a, it appears that a centroidal principal axis is a principal axis at every

one of its points. Hence, a line cannot be principal axis at more than

one of its points unless it pass through the centroid; in the latter case it is

a principal axis at every one of its points.

396. All those lines passing through a given point for which the

moments of inertia have the same value I can be shown to form a cone

of the second order whose principal diameters coincide with the axes of

the momental ellipsoid at 0. This is called an equimomental cone.

Its equation is obtained by regarding / as constant in equation (12)

and introducing rectangular co-ordinates. Multiplying (12) by a"^ +
/3^ + 7^ = 1, we find

(7i - IW + ih - 1)0' + (h - IW = 0;

and multiplying by p-, we obtain the equation of the equimomental cone

in the form
(7i - I)x' + {h - I)y- + (/3 - 7)2^ = 0. (15)
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397. A slightly different form of the equations (11), (12), (15) is

often more convenient ; it is obtained by introducing the three principal

radii of inertia gi, q^, qz defined by the relations

/i = Mgi2, h = Mq2^, h = Mq^"^.

The equation (11) of the momental ellipsoid at the point then as-

sumes the form
qi^x^ + 92^ + gaV = 64. (11')

The expression of the radius of inertia q for any line (a, /3, y) through

becomes
g2 = ^^2^2 + g,2^2 + 532^2. (12')

Dividing (11') by the square of the radius vector, p^, and comparing

with (12'), we find

q = ~
, p = -~, (16)

P 9

as is otherwise apparent from the fundamental property of the momen-

tal ellipsoid (Art. 391).

The equation of the equimomental cone for all whose generators the

radius of inertia has the value q is obtained from (15) in the form

(5,2 _ 52)3.2 + (5^2 _ g2)y + (532 _ ^2)^2 = 0. (15')

This cone meets any one of the momental ellipsoids (11') in points

whose radii vectores p are all equal; and if we select the arbitrary con-

stant e equal to the radius of inertia q of the generators of the equi-

momental cone, it follows from (16) that p = q. This particular

ellipsoid has the equation

7i-x2 ^ 5,2,^2 _|_ 532^2 = qi^

and its intersection with the equimomental cone (15') lies on the sphere

a;2 _[_ 2/2 _|_ 22 = qi^

In other words, the equimomental cone (15') passes through the sphero-

conic in which the ellipsoid meets the sphere. Multiplying the equa-

tion of the sphere by q^ and subtracting it 'from the equation of the

ellipsoid wc obtain the equation (15') of the cone.

The semi-axes of the ellipsoid are q^/qi, q-jq^, q^/qs. If we assume

h > h > h, and hence qi > qi > qz, q must be ^q^/qs and =5V<Zi

As long as q is less than the middle somi-axis q'^/qi of the ellipsoid, the
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axis of the cone coincides with the axis of x; but when q > (fjqi, the

axis of 2 is the axis of the cone. For q = q^jq^, i. e. q = q2, the cone

(15') degenerates into the pair of planes (gi^ — q2^)x'^ — {q^^ — qz^)z^ = 0.

These are the planes of the central circular (or cyclic) sections of the

elUpsoid; they divide the elUpsoid into four wedges, of which one pair

contains all the equimomental cones whose axes coincide with the

greatest axis of the ellipsoid, while the other pair contains all those

whose axes lie along the least axis of the ellipsoid.

398. There is another ellipsoid closely connected with the theory

of principal axes; it is obtained from the momental elUpsoid by the

process of reciprocation.

About any point (Fig. 84) as center let us describe a sphere

of radius e, and construct for every point P its polar plane tt with

regard to the sphere. If P describe any

surface, the plane -k will envelop another

surface which is called the -polar reciprocal

of the former surface with regard to the

sphere.

Let Q be the intersection of OP
with TT, and put OP = p, OQ = q; then

it appears from the figure that

pq = t' (16)

Fig. 84.

the ellipsoid

399. It is easy to see that the polar

reciprocal of the momental ellipsoid (11')

with respect to the sphere of radius e is

+
q^^

1. (17)

To prove this it is only necessary to show that the relation (16) is

fulfilled for p as radius vector of (11'), and q as perpendicular to the

tangent plane of (17). Now this tangent plane has the equation

4x + -^7 + ;f,-Z = l;
q-^ q^ qr

hence we have for the direction cosines a, /3, y and for the length q

of the perpendicular to the tangent plane
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7

xlqi^ ylqi^ z/q^' [x'^/q.i + y'i/q^t + 22/^34]^'

These relations give qia = {x/qi)q, q^^ = {ylqi)q, qzy = {z/q3)q, whence

qM' + 92^/32 + 532^2 =
C^ +^ + ^\ g2 = g2. (18)
\ qr q-r q^ J

For the radius vector pof (11') whose direction cosines a, /3, 7 are the

same as those of q, we have by (11')-

q-^oi^ + 52-/32 _|_ ^32^2

Hence p^(^ = e^; and this is what we wished to prove.

400. The surface (17) has variously been called the ellipsoid of gyra-

tion, the ellipsoid of inertia, the reciprocal ellipsoid. We shall adopt

the last name. The semi-ax. s of this ellipsoid are equal to the princi-

pal radii of inertia at the point 0. The directions of its axes coincide

with. those of the momental ellipsoid; but the greatest axis of the former

coincides with the least of the latter, and vice versa.

By comparing the equations (12') and (IS) it will be seen that q is

the radius of inertia of the line {a, 0, 7) on which it Ues. Thus, while

the radius vector OP = p of the momental ellipsoid is inversely propor-

tional to the radius of inertia, i. e. p — e-/q, the reciprocal ellipsoid gives

the radius of inertia q for a line as the segment cut off on this line by the

perpendicrdar tangent plane.

401. We are now prepared to determine the moment of inertia for

any line in space. Let us construct at the centroid G of the given

mass or body both the momental ellipsoid and its polar reciprocal.

The former is usually called the central ellipsoid of the body; the latter

we may call the fundamental ellipsoid of the body. As soon as this

fundamental ellipsoid

^ -4_ '/ j_ ii = 1

51' q2' 33^

is known, the moment of inertia of the body for any line whatever can

readily be found. For, by Art. 400, the radius of inertia q for any line

lo passing through the centroid is equal to the segment OQ cut off on

the line Iq by the perpendicular tangent plane of the fundamental

ellipsoid; and for any line I not passing through the centroid, the

square of the radius of inertia can be deterininod by first finding the
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square of the radius of inertia for the parallel centroidal line k, and

then, by Art. 385, adding to it the square of the distance d of the

centroid from the line I.

402. In the problem of determining the ellipsoids of inertia for a

given body at any point, considerations of symmetry are of great

assistance.

Suppose a given mass to have a plane of symmetry; then taking

this plane as the ?/z-plane, and a perpendicular to it as the axis of

X, there must be, for every particle of mass m, whose co-ordinates are

X, y, z, another particle of equal mass m, whose co-ordinates are — x, y,

z. It follows that the two products of inertia Smzx and Smxi/ both

vanish, whatever the position of the other two co-ordinate planes.

Hence, any perpendicular to the plane of symmetry is a principal axis

at its point of intersection with this plane.

Let the mass have two planes of symmetry at right angles to each

other; then taking one as ?/z-plane, the other as zx-plane, and hence

their intersection as axis of x, it is evident that all three products of

inertia vanish,

S?n?/z = 0, 'Lmzx = 0, 'Zmxy = 0,

wherever the origin be taken on the intersection of the two planes.

Hence, for any point on this intersection, the principal axes are the

line of intersection of the two planes of symmetry, and the two per-

pendiculars to it, drawn in each plane.

If there be three planes of symmetry, their point of intersection

is the centroid, and their lines of intersection are the principal axes

at the centroid.

403. Exercises.

Determine the principal axes and radii at the centroid, the central

and fundamental ellipsoids, and show how to find the moment of inertia

for any line, in the following Exercises (1), (2), (3).

(1) Rectangular parallelepiped, the edges being 2a, 26, 2c. Find

also the moments of inertia for the edges and diagonals, and specialize

for the cube.

(2) Ellipsoid of semi-axes a, b, c. Determine also the radius of

inertia for a parallel I to the shortest axis passing through the extremity

of the longest axis.

(3.) Right circular cone of height h and radius of base a. Find
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first the principal moments at the vertex; then transfer to the centroid.

(4) Determine the momental eUipsoid and the principal axes at a

vertex of a cube whose edge is a.

(5) Determine the radius of inertia of a tliin wire bent into a circle,

for a line through the center incUned at an angle a to the plane of the

circle.

(6) A peg-top is composed of a cone of height H and radius a, and

a hemispherical cap of the same radius. The pointed end, to a distance

h from the vertex of the cone, is made of a material three times as heavy

as the rest. Find the moment of inertia for the axis of rotation;

specialize for h = a = \H.

(7) Show that the principal axes at any point P, situated on one of

the principal axes of a body, are parallel to the centroidal principal axes,

and find their moments of inertia.

(8) For a given body of mass M find the points {spherical -points of

inertia) at which the momental ellipsoid reduces to a sphere.

(9) Determine a homogeneous ellipsoid having the same mass as a

given body, and such that its moment of inertia for every line shall be

the same as that of the given body.

(10) For a given body M, whose centroidal principal radii are qi, qi,

qs, determine three homogeneous straight rods intersecting at right

angles, of such lengths 2a, 26, 2c, and such linear density p", that they

have the same mass and the same moment of inertia (for any line) as

the given body.

3. Distribution of principal axes in space.

404. It has been shown in the preceding articles how the principal

axes can be determined at any particular point. The distribution of

the principal axes throughout space and their position at the different

points is brought out very graphically by means of the theory of con-

focal quadrics. It can be shown that the directions of the principal

axes at any point are those of the principal diameters of the tangent

cone drawn from this point as vertex to the fundamental ellipsoid; or,

what amounts to the same thing, thoy are the directions of the normals

of the three quadric surfaces passing through the point and confocal

to the fundamental ellipsoid.

In order to explain and prove these propositions it will be necessary

to give a short sketch of the theory of confocal conies and quadrics.
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405. Two conic sections are said to be confocal when they have the

same foci. The directions of the axes of all conies having the same

two points S, S' as foci must evidently coincide, and the equation of

such conies can be written in the form

where X is an arbitrary parameter. For, whatever value may be as-

signed in this equation to X, the distance of the center from either

focus will always be i^a^ + X - (6^ + X) = Va^ - ¥; it is therefore

constant.

406. The individual curves of the whole system of confocal conies

represented by (19) are obtained by giving to X any particular value

between — oo and + oo; thus we may speak of the conic X of the

system.

For X = we have the so-called fundamental conic x^/a^ + y'^/b- = 1

;

this is an ellipse. To fix the ideas let us assume a > b. For all values

of X > — b^, i. e. as long as — 6^ < x < oo, the conies (19) are ellipses,

beginning with the rectilinear segment SS' (which may be regarded as

a degenerated ellipse X = — 6^ whose minor axis is 0), expanding gradu-

ally, passing through the fundamental elhpse X = 0, and finally verging

into a circle of infinite radius for X = oo.

It is thus geometrically evident that through every point in the plane

will pass one, and only one, of these ellipses.

407. Let us next consider what the equation (19) represents when X

is algebraically less than — 6^. The values of X that are < — a^ give

imaginary curves, and are of no importance for our purpose. But as

long as — a^ < X < — 6^, the curves are hyperbolas. The curve X =

— b^ may now be regarded as a degenerated hj^perbola collapsed into the

two rays issuing in opposite directions from S and S' along the line SS'.

The degenerated ellipse together with this degenerated hyperbola thus

represents the whole axis of x.

As X decreases, the hyperbola expands, and finally, for X = — a^,

verges into the axis of y, which may be regarded as another degenerated

hj'perbola.

The system of confocal hyperbolas is thus seen to cover likewise the

whole plane so that one, and only one, hjTjerbola of the system passes

through every point of the plane.
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408. The fact that every point of the plane has one ellipse and one

hyperbola of the confocal system (19) passing through it, enables us to

regard the two values of the parameter X that determine these two

curves as co-ordinates of the point; they are called elliptic co-ordinates.

If X, y be the rectangular cartesian co-ordinates of the point, its elliptic

co-ordinates Xi, X2 are found as the roots of the equation (19) which

is quadratic in X. Conversely, to transform from elliptic to cartesian

co-ordinates, that is, to express x and y in terms of Xi and X2, we have

only to solve for x and y the two equations

"^^
_L

y"^

= 1
3:^

I

y'^ ^ ,

a2 + Xi 62 ^- Xi ' 02^X26^ + X2

The two confocal conies that pass through the same point P intersect

at right angles. For, the tangent to the ellipse at P bisects the exterior

angle at P in the triangle SPS', while the tangent to the hyperbola

bisects the interior angle at the same point; in other words, the tangent

to one curve is normal to the other, and vice versa. The elliptic system

of co-ordinates is, therefore, an orthogonal system; the infinitesimal

elements dXi dX2 into which the two series of confocal conies (19)

divide the plane are rectangular, though curvilinear.

409. These considerations are easily extended to space of three

dimensions. An ellipsoid

-, + r, + ^ = 1, where a > b > c,
a^ b- c^

has six real foci in its principal planes; two, Si, Si', in the xy-plane, on

the axis of x, at a distance OSi = Va^ — ¥ from the center 0; two,

S2, S-i, in the yz-plane, on the axis of y, at the distance OS2 = Vb^ — (?

from the center; and two, Si, S3', in the 2x-plane, on the axis of x, at

the distance 0^3 = Va^ — & from the center. It should be noticed

that, since 6 > c, we have OSi > OSi] i. e. Si, Si' lie between S3, &' on

the axis of x.

The same holds for hyperboloids.

Two quadric surfaces are said to be confocal when their principal

sections are confocal conies. Now this will be the case for two quadric

surfaces whose semi-axes are Oi, bi, Ci, and 02, 62, C2, if the directions of

their axes coincide and if

Oi' — 61^ = a-r — bi^, br — cr = bi^ — d^, Oi^ — Ci^ = a^^ — c-^.
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Writing these conditions in the form

ai — ar = b^- — bi^ = c^ — c-c, say = X,

we find ai = a^ + X, bi = b{' + X, ci = c^ + X. Hence the equation

^2 i;2 yl

+t^ + :t^=1. (20)
a'- + X 62_^ X c2 + X

where X is a variable parameter, represents a system of oonfocal quadric

surfaces.

410. As long as X is algebraically greater than — c-, the equation

(20) represents ellipsoids. For X = — c^ the surface collapses mto the

interior area of the ellipse in the x?/-plane whose vertices are the foci

Si, &>! and aSs, &z . For as X approaches the hmit — & , the three semi-

axes of (20) approach the limits V a^ — c^, VV^ — c^, 0, respectively.

This limiting ellipse is called the focal ellipse. Its foci are the points

Si, Si', since a? - c" - {V- - c^) = a? - b\

When X is algebraically < — c-, but > — a^, the equation (20) repre-

sents hyperboloids; for values of X < — a- it is not satisfied by any real

points. As long as — 6- < X < — c-, the surfaces are hyperboloids of

one sheet. The limiting surface X = — c- now represents the exterior

area of the focal ellipse in the rv-plane. The limiting In^perboloid of

one sheet for X = — 6^ is the area in the 2x-plane bounded by the hyper-

bola whose vertices are Si, Si', and whose foci are Ss, S3'. This is called

the focal hyperbola.

Finally, when — a^ < X < — b-, the surfaces are hj'perboloids of two

sheets, the limiting hyperboloid X = — a^ collapsing into the ?/2-plane.

411. It appears from these geometrical considerations, that there

are passing through every point of space three surfaces confocal to the

fundamental ellipsoid i^/a^ + y'^/b^ + z^/c"^ = 1 and to each other, viz.:

an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two sheets.

This can also be shown analytically, as there is no difficulty in proving

that the equation (20) has three real roots, say Xi, X2, X3, for every set

of real values of x, y, z, and that these roots are confined between such

limits as to give the three surfaces just mentioned.

The quantities Xi, X2, X3 can therefore be taken as co-ordinates of the

point {x, y, z); and these elliptic co-ordinates of the point are, geomet-

rically, the parameters of the three quadric surfaces passing through

the point and confocal to the fundamental ellipsoid ; while, analytically,
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they are the three roots of the cubic (20). To express x, y, z in terms

of the elhptic co-ordinates, it is only necessary to solve for x, y, z the

three equations obtained by substituting in (20) successively Xi, X2, Xs

for X.

412. The geometrical meaning of the parameter X will appear by

considering two parallel tangent planes tto and tta (on the same side of

the origin), the former (tto) tangent to the fundamental ellipsoid

x^la? + 2/^/6^ + z-jc^ = 1, the latter (tta) tangent to any confocal surface

X or x^lia? + X) + y'^Hh'^ + X) + z^l{c^ + X) = 1. The perpendiculars

go, ^A, let fall from the origin on these tangent planes tto, tta, are given

by the relations (the proof being the same as in Art. 399)

go= = o?a^ + 6^/3^ + c'y^ (21)

qK2 = (^2 + x)a2 + (62 + X)/32 + (c^ + \)y\ (22)

where a, /3, 7 are the direction cosines of the common normal of the

planes tto, tta. Subtracting (21) from (22), we find, since a- + /S^ + y^

= 1,

^A- — go- = X; (23)

i. €. the parameter X of any one of the confocal surfaces (20) is equal to

the difference of the squares of the perpendiculars let fall from the common

center on any tangent plane to the surface X, and on the parallel tayigenl

plane to the ftmdamental ellipsoid X = 0.

413. Let us now apply these results to the question of the distribu-

tion of the principal axes throughout space.

We take the centroid G of the given body as origin, and select as

fundamental ellipsoid of our confocal system the polar reciprocal of the

central ellipsoid, i. e. the ellipsoid (17) formed for the centroid, for

which the name "fundamental ellipsoid of the body" was introduced in

Art. 401. Its equation is

qi'
^ 92^ ^93^ '

if ?i, ?2, qs are the principal radii of inertia of the body.

The radius of inertia go for any centroidal lino In can be constructed

(Art. 400) by laying a tangent plane to this ellipsoid perpendicular to

the line k; if this line meets the tangent plane at Qo (Fig. 85), then
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Qo = GQo. Analytically, if a, /3, 7 be the direction cosines of lo, go is

given by formula (21) or (12')-

To find the radius of inertia q for a line I, parallel to lo, and passing

through any point P, we lay through P a plane tta, perpendicular to I,

and a parallel plane wo, tangent to the fundamental ellipsoid; let Qk,

Fig. 85.

Qo be the intersections of these planes with the centroidal line k. Then,

putting GQo = qo, GQk = q\, GP = r, PQ\ = d, we have, by Art. 385,

q^ = qa' + d?.

The figure gives the relation d^ = r^ — q\^, which, in combination with

(23) reduces the expression for the radius of inertia for the line I to

the simple form
g2 = r2 - X. (24)

414. The value of r^ — X, and hence the value of q, remains the same

for the perpendiculars to all planes through P, tangent to the same

quadric surface X: these perpendiculars form, therefore, an equimo-

mental cone at P. By varying X we thus obtain all the equimomental

cones at P. The principal diameters of all these cones coincide in

direction, since they coincide with the directions of the principal axes

of the momental ellipsoid at P (see Art. 396) ; but they also coincide with

the principal diameters of the cones enveloped by the tangent planes tta.

It thus appears that the principal axes at the point P coincide in direction



414.] MOMENTS OF INERTIA AND PRINCIPAL AXES 303

with the principal diameters of the tangent cone from P as vertex to the

fundamental ellipsoid x^jq^ + y'^lq-^ + zV?3^ = 1-

Instead of the fundamental ellipsoid, we might have used any

quadric surface X confocal to it. In particular, we may select the con-

focal surfaces Xi, X2, X3 that pa s through P. For each of these the cone

of the tangent planes collapses into a plane, viz. the tangent plane to

the surface at P, while the cone of the perpendiculars reduces to a single

line, viz. the normal to the surface at P. Thus we find that the prin-

cipal axes at amj point P coincide in direction with the normals to the

three quadric sinfaces, confocal to the fundamental ellipsoid and passing

through P.

For the magnitudes of the principal radii qx, qy, qz, at P, we evidently

have
qi = 7-2 _

y^^^ q2 = j-l — X2, 5^2 = j-2 — Xj.



CHAPTER XVII.

RIGID BODY WITH A FIXED AXIS.

415. A rigid body with a fixed axis has but one degree of

freedom. Its motion is fully determined by the motion of

any one of its points (not situated on the axis), and any such

point must move in a circle about the axis. Any particular

position of the body is, therefore, determined by a single

variable, or co-ordinate, such as the angle of rotation. Just

as the equilibrium of such a body depends on a single con-

dition (see Art. 234), so its motion is given by a single

equation.

This equation is obtained at once by " taking moments

about the fixed axis." For, according to the proposition of

angular momentum (Art. 360), the time-rate of change of

angular momentum about any axis is equal to the moment

of the external forces about this axis. Hence, denoting this

moment by H and taking the fixed axis as axis of z, we have

as equation of motion the last of the equations (3'), Art. 360,

viz.,

— 2w(x?/ - yx) = H. (1)

416. The angular momentum, 1,m{xy — yx), about the fixed

axis can be reduced to a more simple form. For rotation of

angular velocity co about the 2-axis we have (Art. 48, Ex. 1)

X = — coy, y = o)X, so that

'2m{xy — yx) = (jo1,ni{x'^ + y'') = w'Smr^ = /co.

304
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where r is the distance of the particle m from the axis and

/ = Swr^ the moment of inertia of the body for this axis.

This expression for the angular momentum can be derived

without reference to any co-ordinate system. For evidently

mcor is the linear momentum of the particle m, mcor^ is its

moment, i. e. the angular momentum of the particle, about

the axis; andZwiwr- = uZmr- = /co is the angular momentum
of the body about the axis.

It thus appears that, just as in translation the linear mo-

mentum of a body is the product of its mass into its linear

velocity, so in the case of rotation the angular momentum

of the body about the axis of rotation is the product of its moment

of inertia (for this axis) into the angular velocity.

As regards the right-hand member of equation (1), the

reactions of the axis need not be taken into account in forming

the moment H; for as these reactions meet the axis, their

moments about this axis are zero.

417. Substituting 7co for Xm(xy — yx) in equation (1), and

observing that the moment of inertia I about a fixed axis

remains constant, we find the equation of motion in the form

/1 = H; (2)

^. e. for rotation about a fixed axis the product of the moment of

inertia for this axis into the angular acceleration equals the

moment of the external forces about this axis; just as, in the case

of rectilinear translation, the product of the mass of the body

into the linear acceleration equals the resultant force R along

the line of motion:
dv

m-TT = K.
dt

And just as the latter equation may serve to determine

21
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experimentally the mass of a body by observing the accelera-

tion produced in it by a given force R, e. g. the force of

gravity (as in the gravitation system, Art. 177), so the former

equation, (2), may serve to determine experimentally the

moment of inertia of a body about a line I, by observing the

angular acceleration produced in the body when rotating

about I under given forces.

418. For the kinetic energy of a body rotating with angular

velocity co about any axis we have

T = '^hnv^ = Hhnoi^r^ = i/w^, (3)

an expression which is again similar in form to that for the

kinetic energy of a body in translation, viz. T = ^mv-.

When the axis is fixed so that I is constant, the equation

of motion (2) , multiplied by co and integrated, say from t =

to t = t, gives the relation

i/co2 - i/coo^ = £'Ho}dt, (4)

which expresses the principle of khietic energy and work.

419. As an example consider the compound pendulum, i. e.

a rigid body with a fixed horizontal axis and subject to gravity

alone. If OG = h is the distance of the centroid G from the

fixed axis and 6 the angle made by OG with the vertical

plane through the axis we have H = Mgh sin5. Denoting

by q the radius of inertia about the centroidal axis through G
parallel to the fixed axis so that the moment of inertia about

the fixed axis is = M{q- + h^), we find the equation of

motion (2) in the form

q' + h
sine. (5)

Comparing this with the equation of motion of the simple
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pendulum (Arts. 63, 335), 6 = — (g/l) sin^, it appears that

the motion of a compound pendulum is the same as that of a

simple pendulum of length

l-h + ^j. (6)

This is called the length of the equivalent simple pendulum.

The foot of the perpendicular let fall from the centroid

G on the fixed axis is called the center of suspension. If on the

line OG a length OC = I be laid off, the point C is called the

center of oscillation. It appears, from (6), that G lies between

and C.

The relation (6) can be written in the form

h(l - h) = cf, or OG-GC = const.

As this relation is not altered by interchanging and C, it

follows that the centers of oscillation and suspension are inter-

changeable; i. e. the period of a compound pendulum remains

the same if it be made to swing about a parallel axis through

the center of oscillation.

420. Exercises.

(1) A pendulum, formed of a cylindrical rod of radius a and length

L, swings about a diameter of one of the bases. Find the time of a

small oscillation.

(2) A cube, whose edge is a, swings as a pendulum about an edge.

Find the length of the equivalent simple pendulum.

(3) A circular disk of radius r revolves uniformly about its axis,

making 100 rev./min. What is its kinetic energy?

(4) A homogeneous straight rod of length I is hinged at one end so

as to turn freely in a vertical plane. If it be dropped from a horizontal

position, with what angular velocity does it pass through the ^
vertical

position? (Equate the kinetic energy to the work of gravity.)

(5) A homogeneous plate whoso shape is that of the segment of a

parabola bounded by the curve and its latus rectum swings about the
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latus rectum which is horizontal. Find the length of the equivalent

simple pendulum.

(6) When q is given while I and h vary, the equation (6) represents

a hyperbola whose asymptotes are the axis of I and the bisector of the

angle between the (positive) axes of h and I. Show that Imia = 2q for

h = q; also that I, and hence the period of oscillation, can be made very

large by taking h either very large or very small. The latter case occurs

for a ship whose mclacenter (which plays the part of the point of suspen-

sion) Ues very near its centroid.

(7) A homogeneous circular disk, 1 ft. in diameter and weighing

25 lbs., is making 240 rev./min. when left to itseK. Determine the

constant tangential force applied to its rim that would bring it to rest

in 1 min.

421. While a single equation determines the motion of a

body with a fixed axis, the other five equations of motion of a

rigid body must be used to determine the reactions.

The axis will be fixed if any two of

its points A, 5 are fixed. The reac-

tion of the fixed point A can be re-

solved into three components Ax, Ay,

Az, that of B into B^, By, B^. By
introducing these reactions the body

becomes free; and the system com-

posed of these reactions, of the exter-

nal forces, and of the reversed effec-

tive forces must be in equilibrium.

We take the axis of rotation as axis

of z (Fig. 86) so that the z-co-ordinates

of the particles are constant, and hence i = 0, S = 0; and

we put OA = a, OB = h. Then the six equations of mo-

tion are (see Art. 359 (2) and Art. 360 (3)):

^mx = SX+ ^. + B„

Zmij = 37 -\- Ay+ By,

Fig. 86.
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= SZ -\- A, -\- B,,

— 'Zmzij = i:(yZ - zY) - aAy - hBy,

llmzx = l^izX — xZ) + a^^ + bB^,

'Zm{xy — yx) = 2(xF — yX).

422. It remains to introduce into these equations the values

for X, y. As the motion is a pure rotation, we have (see Art.

48, Ex. 1) X = — ooy, y = oox; hence, x = — 6:y — oi^x,

y = 6)x — co^y. Summing over the whole body, we find

2mf = — (jiZmy — w-^mx = — Mioy — Mw'^x,

Xmij = (li^mx — w'^^my = Miox — Mco^y,

where x, y are the co-ordinates of the centroid; and

- ^mzij = — ooliffizx + co^'^niyz = — E6: + -Dco^,

l^mzx = — ulimyz — co^lmzx = — Du — Eo:"^,

Xm{xij — yx) = coSrwo:" — (xr^mxy + os'^my^ + co-Zmxy = Co),

where C = 1,m(x- -{- y-), D = Zmyz, E = l^mzx are the no-

tations introduced in Art. 387.

With these values the equations of motion assume the form

:

- MxiJ" - MyCi = SX + A, -1- B^,

- Myo)"- + Mx(h = 1:Y + Ay+ By,

= 2Z + ^. + B,,

Dco2 - E(h = i:OjZ - zY) - aAy - hBy, ^
'

- Eoi"- - Z)w - ^{zX - xZ) + aA, + hB„

C(h = Z(xY - yX).

423. The last equation is identical with equation (2), Art.

417.

The components of the reactions along the axis of rotation

occur only in the third equation and can therefore not be

found separately. The longitudinal pressure on the axis is

= - A.- B, = 2Z.
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The remaining four equations are sufficient to determine

^x> -^Vl ^x, ijy

The total stress to which the axis is subject, instead of

being represented l)y the two forces, at A and B, can be

reduced for the origin to a force and a couple. The equa-

tions (7) give for the components of the force

- A,- B, - SX + Mxco2 + My6i,

- Ay - By ^ ^Y + Myoi'' - Ma-w, (8)

- A, - B, = SZ.

This force consists of the resultant of the external forces,

E = V(SX)2 + (SF)2 + (SZ)^

and two forces in the a;?/-plane which form the reversed effec-

tive force of the centroid; for Mxcji^ and Myw- give as re-

sultant the centrifugal force Mco^V^^ + y~ = Mw-f, directed

from the origin towards the projection of the centroid on the

a;?/-plane, while Myic, — Mx<l} form the tangential resultant

ilfcof, perpendicular to the plane through axis and centroid.

The couple has a component in the ^2-plane, and one in the

zx-plane, viz.:

aAy + bBy = ^{yZ - 2F) - Dco^ + E'ci,

- aA, - hB, = Z{zX - zZ) + iJw^ + Deb,
^^

while the component in the rr?/-plane is zero. The resultant

couple lies, therefore, in a plane passing through the axis of

rotation.

424. In the particular case lohen no forces X, Y, Z are

acting on the body, the last of the equations (7), or equation

(2), shows that the angular velocity co remains constant. The

stress on the axis of rotation will, however, exist; and the

axis will in general tend to change both its direction, owing

to the couple (9), and its position, owing to the force (8).
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If the axis be not fixed as a whole, but only one of its

points, the origin, be fixed, the force (8) is taken up by the

fixed point, while the couple (9) will change the direction

of the axis. Now this couple vanishes if, in addition to

the absence of external forces, the conditions

D = Zmyz = 0, E = Zmzx = (10)

are fulfilled. In this case the body would continue to rotate

about the axis of z even if this axis were not fixed, provided

that the origin is a fixed point. A line having this property

is called a permanent axis of rotation.

As the meaning of the conditions (10) is that the axis of

z is a principal axis of inertia at the origin (see Art. 395), we

have the proposition that if a rigid body with a fixed point,

not acted wpon by any forces, begin to rotate about one of the

principal axes at this jjoint, it will continue to rotate uni-

formly about the same axis. In other words the principal

axes at any point are always, and are the only, permanent

axes of rotation. This can be regarded as the dynamical

definition of principal axes.

425. It appears from the equations (8) that the position of

the axis of rotation will remain the same if, in addition to the

absence of external forces, the conditions

x = 0, 7j = (11)

be fulfilled ; for in this case the components of the force (8) all

vanish. If, moreover, the axis of rotation be a principal

axis, the rotation will continue to take place about the same

line even when the body has no fixed point.

The conditions (11) moan that the centroid lies on the

axis of 2; and it is known (Art. 395) that a centroidal principal

axis is a principal axis at every one of its points. The axis
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of z must therefore be a principal axis of the body, i. e. a

principal axis at the centroid. We have thus the proposi-

tion: // a free rigid body, not acted upon by any forces, begin

to rotate about one of its centroidal principal axes, it will con-

tinue to rotate uniformly about the same line.



CHAPTER XVIII.

RIGID BODY WITH A FIXED POINT.

1. The general equations of motion.

426. If the fixed point be taken as origin and the reac-

tion at be denoted by A (as in Art. 233) the equations of

motion (2), (3) of Arts. 359, 360 become:

2mi: = SX+^x, 2m?/ = SF+Aj,, Sw2= 2Z + A„ (1)

Sm(y3 - zy) = ZiyZ - zY), i:m{zx - xz) = 2(2X - xZ),

Xmixy - yx) = i:{xY - yX). (2)

The equations (1) merely serve to determine the reaction

A, while the equations (2) determine the motion. There

should be three such equations because a rigid body with a

fixed point has three degrees of freedom (Art. 233)

Kinematically, the instantaneous state of motion is a

rotation about an axis through and is given by the rotor

CO (Arts. 116, 128). The course of the motion consists of

the rolling of the cone of body axes over the cone of space

axes (Art. 131).

Dynamically, the instantaneous state of motion of the

body is given by the impulse-vector h (Art. 367) which is the

resultant of the angular momenta of all the particles con-

stituting the body, or (Arts. 372, 373) the vector of that

impulsive couple which, acting on the body at rest, would

impart to it its instantaneous state of motion, i. e. would

produce instantaneously the rotor cj. The given external

forces reduce to a resultant R through 0, which is taken

313
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up by the fixed point and does not affect the motion, and

a couple, of vector H, whose components are the right-

hand members of (2). Writing these eciuations in the form

(3") of Art. 361, viz.

dt
^^'

dt ^" dt
^^' ^^^

we see that the time-rate of change of the vector h is geometric-

ally equal to the vector H.

The main ciuestion is the relation between the vectors co

and h.

427. Now for the angular momentum about the axis

Ox we have since x = ooyZ — w.y, y = WzX — w^z, z = co^y

- coyx (Art. 118):

hx = 2w(?/i — zy) = a)xS??i(?/- + z^) — Oylmxy — w.'^mzx,

or, with the notation of Art. 387, hjc = Ao)^ — Fcoy — Eo^z.

Determining hy, h- in the same w^ay we find:

hx = Acox — Fcoy — Ewz,

hy = — Fu)x -\- Boiy — Dcaz, (3)

hz = — Ewx — DcOy + CcOz.

These equations enable us to find the vector h Avhcn co is

given, and vice versa. The relation between these vectors

which are evidently in general not parallel appears from the

equation of the momental ellipsoid, (10), Art. 392. If we

select the arbitrary constant e so that this ellipsoid passes

through the extremity of the rotor co, that is so that

AcOx" + Bcoy^ + Cwr - 27)ajyCO, - 2Ec^zC^x - 2FwxOiy = iWe^

it appears that hx, hy, hz are one half the partial deriva-

tives of the left-hand member of this equation, and hence
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the vector h is normal to the tangent plane to the momental

ellipsoid at the extremity of w; in other words, the plane of

the impulsive couple h is conjugate to the direction of co with

respect to the momental ellipsoid.

428. For the kinetic energy we have if r is the distance

of the particle m from the instantaneous axis co:

T = i:hnv~ = i/w", (4)

where / = w//ir- is the moment of inertia of the body aljout

the instantaneous axis. Now if a, ^, y are the direction

cosines of this axis, i. e. of the rotor oo, we have by (9),

Art. 390,

I = Aa"- -\- /^^2 + c^". _ oD^y _ 2Eya - 2/'«/3;

multiplying by tco^ we find

It follows by (3) that

7
dT dT dT ,.,

doox aoiy oiOz

Multiplying (3) by w^:, oiy, co^ and adding we find

hxo^x + hyWy + hzWz — 2T, (7)

which means that the kinetic energy is one half the dot-product

h • w of the vectors h and co.

429. All these relations become far more simple if we take

as axes of co-ordinates the principal axes at 0; but it must

be kept in mind that these are rnoving axes. Distinguishing,

as in Kinematics, components along moving axes by the

subscripts 1, 2, 3 instead of x, y, z, and (Unioting the principal

moments of inertia at by /i, h, h (Art. 393) we have

by (3)
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hi = /icoi, /i2 = I2OJ2, hi = /3CO3. (8)

These equations show that if the vector of an impulsive

couple is parallel to a principal axis at 0, it produces an

angular velocity about this axis; it follows from the equations

(3) that the condition is not only sufficient but necessary.

Comp. Art. 424.

For the kinetic energy we have by (12), Art. 393:

= i(/iCOi^ + /2CO22 + Jscoa^)

Substituting for 7i, h, h, or for coi, C02, cos their values from

(8) we find

= hicoi + hoc^o + hzws (9)

^hl }i2^ Jil_

Ii h'^ h '

430. Euler's Equations. It appears from the equations

(2') that the impulse h which, by (3) or (8), determines co and

hence the instantaneous state of motion of the body, varies

in the course of the motion, under the action of the external

forces both in magnitude and in direction, and also both rela-

tively to the body and relatively to the fixed trihedral of axes.

It is generally found most convenient to determine first

the variation of the vector h relatively to the moving axes,

and then to determine the motion of the trihedral of the

moving axes with respect to the fixed axes. The former

of these problems is solved by Euler's equations (Art. 432)

while the latter can be solved with the aid of Euler's angles

(Art. 434) or any other suitable parameters.

431. Euler's equations are essentially the equations (2')
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when referred to the principal axes at 0; they express the

geometrical relation dhjdt — H.

The variation of the vector h (drawn from 0) depends on

the motion of its extremity whose co-ordinates are h^, hy, hz

with respect to the fixed axes, and hi, hi, hs with respect to

the moving axes (for the present, not necessarily the principal

axes). The absolute velocity (/t^, hy, h^) of the extremity of

h can be resolved into its relative velocity ih], h-i, A3) and the

body-velocity co X h (Arts. 118, 119, 129) whose components

along the moving axes are wo/is — cojin, coshi — cojis, coi/^o —

ojo/ii. The equations (2') referred to any moving axes fixed

in the body become therefore

-^r + oo^h — usho = Hi,

— -f Ojjli — (jOih = H2, (10)

-17 -f C01/12 — C02/11 = ^3;

or briefly, in vector form : h -\- uXh = H
432. If, in particular, we take as moving axes the principal

axes at 0, the equations (10), owing to the relations (8),

reduce to the following:

Il<j^l + (^3 — /2)W2C03 = H], /oWo + (/l — 73)C03C01 = Ho,

/3CO3 + (^2 — /l)wia!2 = H3, (11)

which are known as Euler's equations of motion of a rigid

body with a fixed point. Their integration gives coi, C02, ws,

and hence w, as functions of the time t.

433. Analytically, the equations (10) can be derived from the equa-

tions (2), Art. 426, or rather from the corresponding equations for fixed

axes coinciding at the instant considered with the moving axes, viz.

:
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S7re(2/i2i - 2i^i) = Hi, S?n(2ix-i - XiZi) = H2, Sm {xiyi — yai) = Hz,

by introducing for Xi, iji, zi their values from (4'), Art. 141.

We thus find for Xm{yiZi — Ziyi):

m(o:i'^7nxiyi + oiiEmy^ + us'StnyiZi) — d^'^mijiZi

— co2(cow?H2iXi + ui^myiZi + wsStozi^) + w^ZmyiZi

+ ojiS?h(2/i^ + 2i^) — ui'LviXiyi — wsS/ziZiXi,

or with the notation of Art. 387:

oii{Fui + Ca)2 + Dois) — oJiiEo^i + Duo + ZJws) + Aui — F6j2 — Eio3

— W2(

—

Ed}] — Z)c02 + Ccos) — C03( — FcOl -{- BiOo — Dui) -{- Awi — Foil — Ecili

= wohs — coaho -\-
dhi

Hi

by (3), Art. 427. The relations (3) hold of course for mo\'ing axes as

well as for fixed axes. But for the fixed axes the coefficients of u>x, coy, uz,

i. e. the moments and products of inertia for the fixed axes, are not

constant, while for the mo\'ing axes the coefficients of wi, 002, W3 are

constant.

434. The position of the moving trihedral at any instant

with respect to the fixed trihedral can be assigned bj^ three

angles as follows. Let

X, Y, Z (Fig. 87) be the

intersections of the fixed

axes, Xi, Fi, Zi those of

the moving axes Avith

the sphere of radius I de-

scribed about the fixed

point 0; and let N be.

the intersection with the

same sphere of the nodal

line, or line of nodes, i. e.

the line in which the
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determine the relative position of one trihedral with respect

to the other. If the moving trihedral be initially coincident

with the fixed trihedral it can be carried into any other position

in three steps: (a) turn the trihedral XiYiZi, when coinci-

dent with XYZ, about OZ counterclockwise until OXi coin-

cides with the assumed positive sense of the nodal line ON,

and call the angle of this rotation xp; (6) in the new posi-

tion turn XiFiZi counterclockwise about ON until the plane

XiOYi falls into its final position, the angle of this rotation

is 6; (c) finally turn XiYiZi about OZi counterclockwise

through an angle ^ until OXi reaches its final position.

435. The rotor co can evidently be resolved along the axes

ON, OZi, OZ into the components 6, <p, xj/; hence the sum

of the projections of these components 6, <jp, xp on OXi must

be equal to coi; similarly for co2, C03. As Fig. 87 shows, the

direction cosines of ON, OZy, OZ with respect to the moving

trihedral are

Z,

Hence
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P = COi COStp — CO2 SlUip,

<p = — ui sintp cotO — C02 cos(p cot0 + C03,

)/' = COi SlUip CSC0 + CO2 COS^ CSC0.

(12')

2. Motion without forces.

436. Let a rigid bod}- with a fixed point be given an

initial angular velocity about an axis through 0, and let the

resultant couple H of the

^ / external forces be zero. By-

Art. 427, the initial position

of the bod}^ i. e. of its mo-

mental ellipsoid, together

with the initial axis of rota-

tion, determines the initial

direction of the impulse h,

this direction being perpen-

dicular to the tangent plane

to the ellipsoid at the point

P where it is met by the
Fig. 88.

instantaneous axis (Fig. 88).

As H is zero, it follows from (2'), Art. 426, that h is constant

in magnitude and direction. Moreover, by (9), Art. 429,

the kinetic energy T is constant. Finally, it can be shown

that the perpendicular 5 let fall from on the tangent plane

at P is constant.

To prove this let

Iixi^ 4- hyi^ + hz,^ 1

be the equation of the momental ellipsoid referred to the

principal axes so that the tangent plane at P (^, 77, f) has

the equation

IiXi^ + hyiV + hzit = 1-



438.1 RIGID BODY WITH A FIXED POINT 321

If p be the radius vector OP of P we have

^ = ^ = ^ =^.
OJl Oi2 W3 OJ

Hence

by (8), Art. 429. On the other hand, as P lies on the elHpsoid

we have

Ii^ + W + h^^ = 1, i' e. 4 (^I'^i' + ^2052^ + /3C032) = 1.
CO

By (9), Art. 429, this shows that p/co = 1/ Af2T. Hence

1 = -i=
5 V2r'

and as both h and T are constant, 5 is constant.

From the relation between the directions of 00 and h and

the constancy of h and 5 it follows that the motion of the

body consists in the rolling of its momental ellipsoid over a

fixed tangent plane.

437. The points where the instantaneous axis meets the

momental ellipsoid form a curve, fixed in the body and moving

with it, which is called the polhode (path of the pole P).

The intersections of the instantaneous axis with the fixed

tangent plane form another curve, called the herpolhode,

which is fixed in space. The cones projecting these curves

from are known as Poinsofs rolling cones, the polhodal

cono rolling over the fixed hcrpolhodal cone.

438. The equations of the polhode as the locus of those

points of the momental ellipsoid whose tangent plane has the

22
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constant distance 8 from are evidently

/i.Tr + hrji' +hzi' = 1, h'x^' + hV + hW = ~T'0"

?'. e. the polhode is the intersection of the momenta 1 ellipsoid

with a coaxial elUpsoid. Multiplying the second equation

by 5^ and sul)tracting the rei-ult from tlie first equation we

ol)tain the equation of the -poniodal cone

7i(l - /i5-).fi2 + /o(l - /o5-')7/i2 + 73(1 - 735^-)2i2 = 0.

If we take the notation so that /i > 72 > 73 this cone is

real if and only if

For 5" = 1/73, the polhode reduces to a point, viz. the ex-

tremity of the longest axis of the momental ellipsoid. As 5^

diminishes, the polhode is first an oval about this longest axis.

When 5- = 1/72, the polhoclal cone degenerates into a pair of

planes and the polhode l^ecomes an ellipse. When 5^ lies

between 1/72 and l/7i the polhode is an oval about the

shortest axis, and it contracts to the extremity of this axis

for 52 = 1//,.

For values of 5^ very close to 1/72 the motion can, in a

certain sense, be called unstable since a slight disturbance

might change the polhodal cone from a cone about the longest

to a cone about the shortest axis, or vice versa.

439. The herpolhode is a plane curve; but it is in general

not closed. The radius vector OP = p (Fig. 88), if not con-

stant, has a greatest and a least value in the course of the

motion, and the same is true of its projection QP on the

fixed plane. Hence the herpolhode lies between two con-

centric circles. When p is constant these circles coincide
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and the herpolhode coincides with them. It can be shown

that the herpolhode has no points of inflection.

440. The invariable line describes a cone in the moving

body. Its equation may be found from the reciprocal

ellipsoid

^ ,y^ i^A = ^

whose radius vector in the direction 5 is 1/5 (Arts. 398, 399),

and hence constant. The cone must pass through the inter-

section of the reciprocal ellipsoid and the sphere

0"

Hence its equation is

h) ''-+{''- h) '"'- + {'"-
b '-'- '

441. When H = Eider's equations (11), Art. 432, are

/iCOi = (/o — l2)W2W-i, I'i<^2 = (h — /OcOgOJl,

ho:-6 = (/i — /2)C01W2.

Multiplying by coi, coo, ws and adding we find

~ i(/ia;:2 + /2coo2 + /3C032) = Q;

hence, by (9), Art. 429,

/icoi2 + 1,0,/ + I,o:./~ = 2T = const. (14)

This is the integral of kinetic energy and work.

Multiplying (13) by /iwi, /2CO2, ho^z and adding we find

similarly Ijy (3)

:

/rwr + /2"a32" + L^ws^ = li^ = const., (15)

which is the integral of angular momentum.
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As, moreover,

wi^ + ^-i" + ^z' = w^, (16)

we can solve (14), (15), (16) for coi^, t02-, wa^. Introducing the

new constants a, /3, 7 by putting

2T{l2 + 73) -h^ = hha\ 2T{h + 7i) -h^ = IzL^\

2T{h + h) - h^ = Iihy\
we find

"^' =
(/i - mh - h)

^"'
"

"'^'

^^^1
(^2_„2)^ (17)

(/2 - /3)(/l - U)

o 7i/2 . 2 ON
-3- = (7, _ /3)(/2 _ 73) (- - T^)-

Hence, if Ji > /o > /a we have w^ > a^, co^ < iS^, co^ > 72.

442. To find the time, multiply the equations (13) by coi//i,

W2//2, (jiz.Hz and add:

(/l - /2)(/ l - /3)(/2 - /s)
«(-2W ) = 7—}^^: W1CO2CO3;

-1 li2^3

substituting for coi, 0)9, ws their values (17) we find:

V V(C02 - «2)(^2 _ ^2) (^2 _ ^2)

The positive or negative sign must be used according as d{w^)

is positive or negative.

As t is given by an elhptic integral, co^ is a periodic function

of the time.

443. If, in particular, the momental ellipsoid at is an

ellipsoid of revolution, say if /i = lo, the results assume a very

simple form. Euler's equations (13) reduce to

Wi = XcOoWS, ^2 = — XcOsCOi, CO3 = 0, (18)
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where

The angular velocity cos about the third axis Ozi (which is not

necessarily an axis of symmetry for the mass of the whole

body) is therefore constant:

C03 = n.

The first two equations (18) give coiwi + C02W2 = 0, whence

toi^ + co2^ = const. = rn}.

It follows that

CO = l/cor + 0)2^ + COs^ = Vm- + 71^

is constant although coi and C02 vary.

The inclination of the instantaneous axis to the principal

axes Oxi, Oyi varies, but its inclination to the third principal

axis Ozi is constant, viz. cos~^(co.-i/a)). This means that the

polhodal cone is a cone of revolution about Ozi and the

polhode is a circle. The herpolhode is therefore Hkewise a

circle (Art. 439). As the two circular cones are in contact

along the instantaneous axis, this axis lies in the same plane

with the impulse h and the axis Ozi.

444. To find coi, 0^2 separately, differentiate the first equa-

tion (18) with respect to t and substitute for cj^ its value from

the second:

0)1 + X^n^coi = 0;

hence
Oil = k sin(Xn^ + e),

where k, e are the constants of integration. The fir^ equa-

tion (18) then gives

012 = z- Oil = k cos(Xnf + e).
Kn
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As coi^ + C02- = 7)1^ (Art. 443) it appears that k = m.

Hence

coi = 7nsin(\nt + e), C02 = wz cos(\nt + e), C03 = ?i. (19)

445. To determine the position of the body with respect

to fixed axes through let the invarialilc direction of h be

taken as axis Oz. The direction cosines of h given in Art.

435 give

hi = 1 10)1 = h smO sinv?, ho= 12(^2= h sin0 cos^,

hs = hooi = h cos^.

It follows that

COS0 = ~T- = const., tan^ = — = tan(XwY. + e):

hence <p = \nt + e and 6 = 0, (p = \n = const.

Finally, the third of the equations (12), Art. 435, gives

,
_n -\n _ (1 - \)h _ Ji

'^
co"s^

~ h ~ Ii'

whence x}/ = (h'Ii)t + \po-

Thus if we resolve w along the oblique axes ON, OZi, OZ
(Art. 435) into d, <p, yp (see Fig. 87), we have (? = while <p and

^ are constant. The motion of the body consists therefore

in the rotation of constant angular velocity <p = \n about

OZi, together witli the turning of this axis OZi with constant

angular velocity \}/ = hITi about the axis OZ, the angle 6 =

ZOZi between these axes remaining constant. Such a motion

is called a regular precession; the nodal hne OA^ (Fig. 87)

is said to precess with the velocity of -precession ^; OZ is the

axis of precession.

If, in particular, the momental ellipsoid at is a sphere,

so that 1 1 = I2 and hence X = 0, we have ^ = 0; hence the
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whole motion consists of the rotation of angular velocity xp

about the fixed axis OZ. This was to be expected; for, as a

principal axis, OZ is a permanent axis of rotation (Art. 424).

3. Heavy symmetric top.

446. A rigid body with a fixed point is often spoken of as

a top although the ordinary children's top has no fixed point

but has merely one of its points approximately confined to a

plane or other surface.

If the momental ellipsoid at the fixed point is an ellipsoid

of revolution, say about Ozi, so that 7i = h, and the centroid

G of the body lies on Ozi, say at the distance OG = k from 0,

the body is called a symmetric top. If, moreover, the only

force acting on the body (besides the reaction at 0) is the

weight W of the body we have the heavy symmetric top.

If k were zero we should have the case of Arts. 443-445.

If /c 4= but the initial angular velocity be zero, the body

would swing like a compound pendulum in a vertical plane.

With proper initial conditions the heavy symmetric top may
move like a (compound) spherical pendulum with Ii = h
at 0. But in speaking of the motion of the heavy symmetric

top it is generally understood that the initial angular velocity

is large and takes place al)out an axis not differing very much

from the axis Ozy. To explain what is here meant by large

observe that if in the course of the motion the centroid G
rises or descends through a vertical distance z the work of

gravity, ± Wz, changes the kinetic energy of the top.

Now this variation in the kinetic energy can never amount to

more than 2Wk. Hence if k is reasonably small and the

initial angular velocity large, the initial kinetic energy will not

he affected very much by the changes due to the rise and fall

of the centroid G. It is especially cases of this kind that we
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have in mind when speaking of the phenomena of the top.

The general equations of Arts. 447, 448, however, do not

imply any such restricting assumptions.

447. Taking the fixed axis Oz vertical and positive up-

ward and the moving axis Ozi along the third principal axis

at 0, we find Euler's equations (11) in the form

Zicoi + {h — /i)w2W3 = Wk smd coscp,

Iiuio + (/i — Izjoiiuz = — Wk sin0 sin<p,

/sojs = 0, C03 = const. = n.

The integral of kinetic energy and work is

/icoi^ + /icoo2 _^ 73^32 = 2Wk{coQdo - COS0) 4- 2 To,

Gq and To being the initial values of the angle zOzi = 6 and

the kinetic energy T.

The angular momentum about the axis Oz being constant

we have

7icoi sin9 sincp + 7,co2 sin0 cos^ + I^n cos0 = const. = hz.

If coi and C02 be replaced by their values (12), Arts. 435, the

two first integrals l^ecome

7i(^2 _^ ^2pij-^20) = 2WA-(cos0o - cos9) - 73n2 + 27^0,

Iii/ sin-0 = — 73W COS0 + h/,

eliminating i/- we have for the determination of 6:

IP = 2TT^A:(cos0o - cos0) - 73^2 + 27^0 - ^JhJZ^'^^^Jl
^

1 1 sm u

or introducing cos9 = u as new variable

:

Having found u from this equation we have for \l/

:
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. _ h^ — IzTlU

and then (p can be found from the third equation (12) which

gives
1 hz — hnu

448. To discuss the equation for u let us put

/i[2Tf/b(Mo - w) + 27^0 - Iin'\{l - ii~) - {h - h^iuy = /{u)

so that

Iiu = ± ^lf{u).

As /( — 1) < 0, /('Wo) > (because initially u is real),

/(I) < 0, /(oo) > 0, the cubic /(w) has three real roots,

say Ui, U2, Us, such that

— I < Ui < Uq < ih < '^ < Ua < oo.

For the time we have

^ - " y^wk j
du

V(w — Ui){u — Uo){u — Us)

the plus or minus sign being used according as du is positive

or negative. As u = cos0 must lie between — 1 and + 1

it oscillates between its least value Ui and its greatest value

u^; i. e. the axis Ozi oscillates between its greatest inclina-

tion di and its least inclination do to Oz.

449. Suppose, in particular, that the body is initially

given a spin about the third principal axis OZi so that

wi = 0, C02 = for t = 0. We may take the axes of refer-

ence so that (p = and ^i- = for ^ = 0. We then have

since hz is constant

:

hz = hn COS0O,

and
f{u) = (wo - u)[2IiWk(l - u'-) - /3-n2(^/,o - w)].
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When Uo < u < 1, f{u) is clearly negative; it is therefore

U2 which is equal to Uo- Hence, at the beginning of the

motion u diminishes; in other words, do is the minimum

inclination of the axis OZi to the vertical OZ.

450. The centroid G descril^es a spherical curve; its pro-

jection on the horizontal A"F-plane lies between the circles

of radii k^il — Wi^ and k-yjl — u^^ about 0. The co-ordinates

X, y of the projection of the centroid on the A^F-plane are

X = k^ll — u^ sim^, y = — k^l — u^ cos^.

To determine the direction in which the curve approaches

the bounding circles let us determine the angle /x between the

radius vector p and the tangent to the curve. We have

p Vl — U" 1 — u^ d^p
tan u. = -,— = =t = =F J-

.

^P d r 5
u du

Now by Arts. 447 and 449

d\p . I371U0 — u

du Ii 1 — u^
'

hence

, hnuo — u
tan u = =F ~r^ :—

.

il uu

As Iiu = ± V/(w) (Art. 448) we find

, ^ Uo — u IzU Vwo — u
tan n = Izii

u V/(m) u ^j2WkIi{u — Wi) {u — Us)

This shows that tan fi becomes infinite for u = Ui and zero

for ti = Uo = u^. The curve meets therefore the inner

circle at right angles (with a cusp) and touches the outer

bounding circle. It is in general not a closed curve.
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451. The expressions for 9, ip, \p as functions of i assume

a simple form if we suppose the initial angular velocity n

about OZi to be very large (Art. 446). In this case the

equation (Art. 449)

fiu) = (mo - u)[2IiWkil - u'~) - Mi-(wo - w)] =

has its root Wi nearly equal to Wo so that the angle 6 differs

but little from ^o- Hence if we put 6 = do -\- v, v will be

small. This gives cos9 = cos^o — v sin^o, i- e.

COS0O — COS0 . . • ra \ \ • n \ a
V = .--- , sm0 = sm(»o -r v) = sm^o + v cos^o-

smpo

Substituting these values in the equation for 6 (Art. 447)

we find

Zi^^^ = 2Wkhv sin^o - h-if^ l'T'^'\.^ ,

(sm0o + V cos^o)

or neglecting the term v cos^o in comparison with sin^o:

lid = ^I2WkIlV sindo - hVv^

As 6 = V we find upon integration

7i • ,v , Wkli sin^o
t = -^— versm ^ -

, where a = zr-r—;:—

,

Un a U^n^
and hence

6 = Oo + V = 00 -^ a (l - cos -p A = eo-\-2a sin^^ t.

The variation v in the value of 9 is called the nutation;

it is periodic, of period 2TrIi/hn.

452. By Arts. 447 and 449,

» _ hn cos^o — COS0 _ IsU j'_

/i sin^^ 1 1 sin^o

'

where (Art. 451)
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p = a { 1 — cos ^^ t

Hence, integrating and observing that \{/ = ior t = 0:

,
hna , a . I^n ^

iism^o sm^o /i

Thus the first term of \p increases uniformly with the time,

while the second is periodic. The angular velocity
\l/ is the

velocity of precession (Art. 445).

453. For <p we have by Art. 447:

hncosOo — eosd .. 1371

(p = n ,— ,-— cot5 = n :^v cot^o
1 1 svnd 1 1

/sn / Iz7i= n —
J

-cot^o (' \\ — cos-Y^t

hence

(p = in — j~a cot^u \t -\- a cot^o sin—^— t.

454. Let us finally inquire into the conditions under which

the top while spinning about its axis OZi may keep its inclina-

tion d = ZOZi to the vertical constant. A motion of this

kind is often spoken of as stable, or steady.

As 6 is to be constant we find from Art. 447 that the velocity

of precession,

hz — hn cos9
\j/ = •

1 1 sin-d

remains constant, say = i/'o; and similarl}' the velocity

<p = n — \p cos9

remains constant, say = <po. The motion is therefore a

regular precession (Art. 445).
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The angular velocity co, at any instant, has the components

<Po along OZi (Fig. 89) and i/'o along OZ; let us resolve it along

OZi and the perpendicular OPi to OZi in the plane ZOZi;

the components will be ^o + '/'o cosO along OZi and rpo smd

Fig. 89.

along OPi. As the moment of inertia about OZi is h and

that about any perpendicular to OZi is /i, the angular mo-

mentum about OZi is h{<PQ + 'Ao cos0), while that about OPi

is /iiAo sin0. Hence the angular momenta about OZ and the

perpendicular OP to OZ in the plane ZOZi are

hi^Po + '/'o COS0) COS0 + /i^Z-o sin2(?,

-^^3(^0 + ^0 cos^) sin0 — /I'/'o sin^ cos0.

The former component is constant; the latter, about OP,

receives in the element of time the increment

[h(<Po + ^0 COS0) smd — Ii\po m\d cos(9](i/'o + <Po cosd)df.

If the motion is to be steady this increment must just

equal the angular momentum about OP imparted to the

body by the force of gravity in the time element, i. e. to

Wk sin0 dt. Hence the condition

[73(<^o+'/'o COS0) fi\nd— I li/o smO cosd](\j/o-{- (fo cosd) = Wk smd.
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This requires either sin0 = which would mean that the

axis of the top is vertical, or

1/3(^0 + '/'o coiid) — Ii\po cos^KiAo + (Pq COS0) = Wk.

For given values of <po and i/o this condition can in general

be satisfied ])y two different values of cos0 since the equation

is quadratic in cos0.

For a further study of the motion of tops and gyroscopes

the following works may be consulted: H. Crabtree, An
elementary treatment of the theory of spinning tops and

gyroscopic motion, London, Longmans, 1909; A. G. Webster,

The dynamics of particles, etc., Leipzig, Teubner, 1904;

F. Klein und A. Sommerfeld, L^eber die Theorie des Kreisels,

Leipzig, Teubner, 1897-1910.



CHAPTER XIX.

RELATIVE MOTION.

455. We shall here consider only the motion of a particle

relatively to a rigid body B having a given motion with

respect to fixed axes. By the theorem of Coriolis (Art. 150),

the absolute acceleration j of the particle is the resultant of

the body acceleration jb, the complementary acceleration

jc = 2coVr cos(a;, Vr), and the relative acceleration jV:

J = jb + jc + jr.

If 771 is the mass of the particle, F the resultant of the given

forces acting upon it, its equation of motion is 7nj — F.

Hence, multiplying the equation of Coriolis by m and putting

— mjb = Fb, — mjc = Fc,

we find

mjr = F + Fb -;- F,.

This vector equation gives by projection on the moving axes

OiXi, Oiiji, OiZi, rigidly connected with the body of reference

B:
mxi = X + Xb + Xc,

mij^ = F + Yb + Yc, (1)

m'zi = Z + Zb -\- Zc.

Here X, Y, Z are the components, along the moving

axes, of the resultant F of all the given forces acting on the

particle. Xh Yb, Zb, are the components, along tiic same

axes, of Fb = — mib, where m is the mass of the particle and

^6 the acceleration of that point of the body B with which

335
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the particle happens to coincide at the instant considered;

Fb may be called the body-force. Xc, Yc, Zc are the com-

ponents of the complementary force Fc — — mjc, where jc is

a vector of length 2coVr sin(a;, v^), at right angles both to the

rotor CO of the body B and to the relative velocity Vr of the

particle with respect to B.

Hence we may say that the equations of the relative motion

of the particle m, i. e. of its motion as it would appear to an

observer moving with the body of reference B, are formed

like the equations of absolute motio7i, except that to the given

forces acting on the particle must be added the body-force and

the complementary force.

456. It may be noted that the body-force Fb = — mjb

vanishes only when the point of B with which the particle

coincides moves uniformly in a straight line, and that

Fc = — 2mwVr sin(co, Vr) vanishes:

(a) when w = 0, i. e. when the body B has a motion of

translation;

(6) when Vr = 0, i. c. when the particle is in relative rest;

(c) when sinfoj, y,) = 0, i. e. when the relative velocity Vr

of the particle is parallel to the rotor co, i. e. to the instan-

taneous axis of B.
The principle of kinetic energy and work gives

hnvy^-hnv,'' = rUX + Xb)dx, + {Y + Yb)dy, + {Z+Zb)dzr]

since the work of the complementary force Fc which by

definition is normal to the velocity iv is always zero.

457. Motion and rest relatively to a body B rotating uniformly about

a fixed axis.

If P (Fig. 90) be that point of B at which the particle m is situated

at the time t, OP = r its distance from the fixed axis (through 0), the

acceleration of P is jb = — wV. Hence Ft = mwh is directed along

OP away from the axis; i. e. the body force Fj is in this case what is

commonly called the centrifugal force.
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//, in particular, the particle is absolutely at rest, its relative velocity

Vr, i. e. the velocity which it appears to have to an observer at P moving

with the body B, is equal and opposite to the velocity % = wr of the

point Poi B. As regards the accelerations, observe that jt = — coV and,
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If the particle starts from rest at (or rather from a point very

near to 0) we find

hence

2u)^ sin^a

g cosa
1 2

-Ci — 62 — ^

Jf_C0Sa^ /„i„ smat silia-ty^

For the projection of the path on the horizontal plane we have

P = sinof, 6 = cot; hence the projection of the absolute path on the

horizontal plane is

which represents a spiral.

459. Motion of a -particle relative to the earth, near its surface.

The earth's motion of translation (which is not uniform) need not

be considered since the forces affecting it act on the particle just as

Fiff. 92.

they do on the earth and hence do not affect the relative motion.

The earth can therefore be regarded as rotating uniformly about a

fixed axis; the slight variation of direction of the axis may be neglected.

The angular velocity of the earth is

27r
" = ^a^c^T~^ = 0.000 072 92 rad./sec,

86 164.1 '

the sidereal day having 86 164.1 sec. of mean time.
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The body-force is simply the centrifugal force (Art. 458) mco^r =

mco^R coS(^, where R is the earth's radius and <{> the latitude.

In most problems of relative motion near the earth's surface the

introduction of this centrifugal force is unnecessary. This is best

seen by considering a particle at relative rest, say the bob of a pendulum

hanging at rest (Fig. 92). Let P be the bob, S the point of suspension,

the earth's center, OP = R the earth's radius, r = R cos^ the radius

of the parallel in latitude </>.

As Vr = 0, the complementary force is zero; hence the only forces

to be considered are the centrifugal force mu^r, the tension of the rod

along PS, and the earth's attraction which is directed along PO if

Fig. 93.

we regard the earth as composed of homogeneous spherical layers.

Hence the tension of the rod must balance the resultant of the cen-

trifugal force and the attraction. But this resultant is due precisely

to the actually observed acceleration g of falling bodies since this in-

cludes the combined effect of centrifugal force and attraction.

The complementary force, — 2ma}Vr sina, where a is the angle between

the relative velocity v,- and the earth's axis (northward) is at right angles

to the plane of the angle a. We take the earth's center O as origin of
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the fixed axes and Oz toward the north (Fig. 93); the origin of the

moving axes at any point P (in latitude 0) on the earth's surface,

Fzi vertical, Px\ tangent to the meridian southward, and hence Py\

tangent to the parallel eastward.

We then have: .

cji = CO cos(7r — <^) = — CO cos<^, C02 = 0, cos = CO sin<^.

Hence the components of the complementary acceleration jc are

2(co2ii — co3?/i) = — 2co2/i sin0,

2(co3.ri — coiii) = 2oo(.ri sine/) + Zi cost^),

2(a)i7/i — C02.ri) = — 2coi/i COS0.

The components of the comijlementary force Fc along the moving axes

are therefore:

Xc = 2mcoyi sin<^,

Yc = — 2mw{zi cos</) + xi sin0),

Zc = 2mco?/i cos(j>.

460. Relative ynotion of a heavy particle on a smooth horizontal plane.

The centrifugal force being taken into account by using the observed

value of g (Art. 461) the equations of the relative motion are

N
ii = 2co32/i, 2/1

= 2(coi2i — cos.ri), Zi = -- — g - 2coi?/i,m

where N is the normal {i. e. vertical) reaction of the plane. As Zi

and ii are constantly zero, the equations reduce to

xi = 2co3?/i, yi = - 2CO3X1, N = mig + 2coi?/i),

where coi = — co cos</), C03 = co s{n4>. The third equation determines N
as soon as 2/1 has been found from the first two. The principle of

kinetic energy and work gives

iCii^ + 2/1^) = const.

Hence the relative or apparent velocity Vr is constant.

Assuming the particle to start from the origin P we find by integrating

each of the two equations by itself:

.fi = .To + 2co32/i, 2/1=2/0— 2aj3Xi;

as -fr + 2/1" = I'r^ = I'u" = i'o" + 2/0^ we find as equation of the path:
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\ 2a)3 J V 2a;3 / VScoj /

a circle tangent to the initial velocity in the horizontal plane. The

center C (Fig. 94) lies on the perpendicular to vo tlirough P, to the

right of an observer at P looking in the direction of vo, in the northern

hemisphere, i. e. for positive (j>, to the left in the southern hemisphere.

Thus the particle deidates to the right in the 7iorthern, to the left in the

southern hemisphere.

The radius of the circle is very large since w is very small. Thus,

for (p = 30° we have for this radius

Vo

2a;3
= " = 13700 Ik

461. Particle falling from rest in vacuo. The equations of motion are

the same as in Art. 400 except that N = 0:

.fi = 20)3^/1, 7/1 = 2cjiii — 2co3.ri, zi = — g — 2myi.

If the starting point be taken as origin, the initial conditions are

Xo = 0, ?/o = 0, zo = 0, i-o = 0, 2/0 = 0, 2o = 0;

hence the first integrals are

i-i = 2a)3?/i, 7/1 = - 20)3X1 + 2wiZi, 2i = — gt — 2wi?/i.
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The method of successive approximations gives the first approxi-

mation
±1 =0, 2/1=0, ii = — gt,

whence
Xi =0, 2/1=0, 2i = — hgt^.

Substituting these values in the expressions for the velocities we find

the second approximation

i'l = 0, 7/1 = go: COS0 • /-, 2i = — gt,

whence
Xi =0, iji = Igw cos(j> • t^, Zi = — \gl^.

The third approximation gives

Xi = J^w^ COS0 sin</) . /^, ?/i = Jgrco cos^ • t^,

Zi = — IgC- + Jfifw- cosV f4.

These formula show not only an easterly, but also a southerly deviation

;

the latter is however proportional to co^ while the former is proportional

to CO. The last value for z shows that the earth's rotation slightly

diminishes the vertical distance fallen through in a given time.

462. The eastern deviation of a falling body and the deviation to

the right of a projectile (in the northern hemisphere) would furnish

an experimental proof of the rotation of the earth if they could be

clearly observed. Experiments on falling bodies, with this purpose in

view, have been made repeatedly in the last century and even earlier;

and the mean results of certain attempts of this kind are often quoted

as confirming the theory. But an examination of the individual results

shows these so widely discrepant that no reliance can be placed on their

mean. In the case of projectiles, such as rifle bullets, the phenomenon

is masked completely by the very much larger deviation arising from

the rotation of the projectile and the resistance of the air.

For this reason Foucault's pendulum experiment, first made in

1851, and since often repeated with good success, is of particular

interest. On a fixed earth, a pendulum set swinging in a vertical plane

would continue to swing in the same plane; on the rotating earth, the

plane in which the pendulum swings, remaining fixed in space, must

apparently, i. e. relatively to the earth, turn about the vertical through

the point of suspension, in the sense opposite to that of the earth's

rotation, with the angular velocity to sin</), where co is the angular velocity

of the earth and </> the latitude of the place of observation.
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463. Foucault's pendulum. It will be convenient to take the point

of suspension as origin, the axis Ozi vertically downward, Oxi

tangent to the meridian northward, and hence Oyi tangent to the

parallel eastward. The forces acting on the bob are its weight mg,

the tension N of the suspending wire, and the complementary force

Fc whose components are, since coi = co cosqi, C03 = — co sin^

:

Xc = — 2muiyi siuij), Yc = 2??Jco(.ri sin</> + Zi cos4>), Zc = — 2mco?/i cos0.

If I = Vxi^ + 2/1^ + 2i^ is the length of the wire the equations of motion

are:

Nxi ^ . .

Xi = r ~ 2,mh smrf),

Vi = V + 2coXi sin0 + 2coZi cos<A,
7n L

Nzi _ . ^ ,

ml

with the condition P = .rr + yr + Zi^.

The general integration of these equations would present serious

difficulties. But for small oscillations we have

\ P ) 2 V' 8 V i^ /

As .Ti, y\, ii, yi, .fi, iji, are small, say of the first order, zi and Zi will be

small of the second order; for we have zr = P — xr — yi^,ZiZi = — XiXi

— T/iT/i, ZiZi + zi- = — XiJt). — yiiji — Xi^ — 2/1^, whence

zi = - (xixi + yiiji + ir + yi^ + Zi-)
Zi.

= (xi.f 1 + y\lh + .fi^ + 2/1=) r {xih + yi2/i)*.
Zi 2i'

We take therefore as first approximation zi = 0, Zi = Z so that the third

equation of motion reduces to

A'' = m{g — 2a)?/i cos</)).

Substituting this value in the first two equations and neglecting terms

of the second order we find if we write w' for w sin0:

X, + 2co'2/, +\x,= 0, 7/, - 2a;'.r, +
'J

7/1 = 0.
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Multiplying by yi, Xi and subtracting we have

Xiyi — yiXi = 2co'(xi.ri + 2/12/1),

that is:

^^
(a:i2/i - 2/1X1) = w'

^^
(zr + 2/i^).

Hence, integrating and putting Xi = r cosO, yi = r sinfl:

r'~d = co'r= + C.

If r = 0, d = for « = we have C = so that

0= co',

and hence
e = do + co'L

This means that the apparent motion consists of the rotation of

the plane in which the pendulum swings about the vertical with the

constant angular velocity co' = co sin0. The plane makes one complete

revolution in the time T = 27r/a) sin</).

464. In theoretical mechanics the motion of any particle, rigid

body, or variable system is referred ultimately to a reference sj'stem

(co-ordinate trihedral) which is regarded as fixed. In applying mechanics

to the study of physical phenomena we meet with the difficulty that in

nature no absolutely fixed object is to be found. For motions in the

vicinity of any particular point on the earth's surface we regard the

earth as fixed. In astronomy, the motions of the planets are referred

to the sun as if it were a fixed center; and the motion of the solar

system is referred to the fixed stars. But it is well known that even

the so-called fixed stars have their proper motions. Thus in all these

cases we are merely dealing with relative motions.

465. It should be observed that the differential equations of motion

of a particle are the same whether the reference system is at rest or

has a rectilinear uniform translation. In other words, these differential

equations admit such a translation. For, if for x, y, z we substitute

xi -f Vit, 2/1 + vit, Z\ + vzt, where i'\, V2, Vi are the constant components

of the velocity of translation, we have x = X\, ij = iji, z = 'z\.

466. Other difficulties in the fundamental concepts of mechanics

concern the idea of time.

All our measurements of time are based ultimately on the assumption

that the earth's rotation is strictly uniform. That this assumption,
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which can not be verified directly, must be true to a very high degree

of approximation inay be inferred from the agreement of astronomical

predictions with actual occurrences.

Another question, and one that has been much discussed in recent

years, arises from the difficulty of defining the simultaneity of two

events occurring at places in motion relatively to the observer or

observed by persons in motion relative to each other. Consider an

observer at P at different distances from the points A, B. If the times

it takes light to travel the distances AP and BP are h and ti, then

flashes of light occurring simultaneously at A and B will appear to the

observer to happen at different times, the difference being \ii — h\.

Again, if the observer is in motion, e. g. moving toward A with

velocity v, a flash given at A when the observer is at P will appear to

him to happen at a time AP/{V + v) after it actually occurred (F being

the velocity of light). Thus the statement that two events are simul-

taneous does not have a definite meaning unless the position and motion

of the observer are known.

In mechanics we deal ordinarily wdth velocities which are very small

in comparison with the velocity of light. By regarding the velocity

of light as infinite, the difficulty would disappear. In the electron

theory where the moving electron has a velocity comparable with that

of light the idea becomes of importance.



CHAPTER XX.

MOTION OF A SYSTEM OF PARTICLES.

I. Free system.

467. A system consisting of any finite number of particles

is called free if the co-ordinates of the particles are subject

to no conditions, whether these be expressed by equations

or inequalities. The forces acting on any one of the particles

are distinguished as internal or external according as they are

exerted by the other particles of the system or proceed from

sources outside' of the system.

Examples of such systems we have on the one hand in

celestial mechanics, the most simple case being the problem of

two bodies (Arts. 321-327), on the other in the kinetic theory

of gases where the particles are the molecules of the gas.

468. Let X, Y, Z be the rectangular components of the

resultant of all the external and internal forces acting on any

one of the n particles; m the mass and x, y, z the co-ordinates

of the particle; then the equations of motion of this particle

are

mx = X, mij = Y, mz = Z. (1)

There are 3 such equations for each particle and hence 3n

for the whole system; they express the equilibrium of the

external, internal, and reversed effective forces.

If we assume that the internal forces occur only in pairs

of equal and opposite forces between the particles, depending

only on the mutual positions and not on the velocities of the

particles, almost all the results developed in Chapter XV for

346
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the system of particles constituting a rigid body will hold

for the free system, except that we have now 3n, instead of

merely six, equations.

469. D'Alombert's principle is expressed by the equation

2(-wi;+ X) 8x-\-'^{-viy-\- Y) 5?/+2(-m2+Z) 52 = 0, (2)

in which 8x, by, 8z are the components of an arbitrary dis-

placement 8s of the particle m. As the 3/1 virtual displace-

ments are independent of each other this equation (2) is

equivalent to the Sn equations (1).

If this equation be written in the form

2m(x8x + ij8y + z8z) = S(X5a; + Y8y + Z8z) (2')

the right-hand member will contain only the external forces

owing to the assumption (Art. 468) concerning the internal

forces.

As there are no constraints or conditions we may select

for 8s the actual displacement ds of every particle; the equa-

tion

'Lm{xdx + ydy + zdz) = 2(Xrfrc -f Ydy -{- Zdz)

then gives upon integration the equation of kinetic energy and

work:

2hnv^ - :^hnvo^ = S Hxdx + Ydy -\- Zdz). (3)

If in particular, there exists a force function or potential U
for the forces X, Y, Z, the system is said to be conservative.

We then have
i:(Xdx + Ydy + Zdz) = dU,

so that (3) becomes in the usual notation (V = — U):

T + V ^ To+ Vo = const.;

this expresses the principle of the conservation of energy.
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470. A system of n particles possesses a centroid whose

co-ordinates x, y, z at any instant are given by the equations

Mx = Sma;, My = Sm?/, Mz = Sms;,

where M = 'Em. The principles of the conservation of linear

and angular momentum (Arts. 363, 366) are found to hold

just as for a rigid body.

Thus, in the case of the solar system, if the action of the

fixed stars be neglected, the centroid of the system must

move uniformly in a straight line and there exists an " in-

variable plane" (Art. 367).

2. Constrained system.

471. In the case of a system of particles subject to con-

straints or conditions, we may try to replace the conditions

by constraining forces or reactions after the introduction of

which the system can be treated as free. The equations

of motion of the particle m will then again have the form

(1), Art. 468; ])ut the right-hand members now contain the

unknown reactions. The principle of virtual work gives

d'Alembert's equation (2), Art. 469; and the virtual dis-

placement can often be selected so that the unknown con-

straining forces will do no work and hence will not appear

in equation (2). This constitutes the main advantage of

d'Alembert's principle.

472. Before proceeding it may be well to indicate here the con-

siderations by which d'Alembert himself (and, in more exact language,

Poisson) explained his celebrated principle.

Any particle m of the system is acted upon at any time t by two kinds

of forces, the given external and internal forces, whose resultant we

denote by F (Fig. 95), and the internal reactions and constraining

forces whose resultant we call F'. The resultant of F and F' must be

geometrically equal to the effective force mj, where j is the acceleration

of the particle at the time t.
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Now, if we introduce at m the equal and opposite forces mj, — mj,

the motion of the particle is not affected. But we can now replace F
and — mj by their resultant F"; and as F, F', — mj are in equilibrium,

so are the forces F' and F"; i. e. F" is equal and opposite to F'.

Fig. 95.

The figure shows that F can be resolved into the components mj

and F"; the former produces the actual change of motion of the particle

while the latter is consumed in overcoming the internal reactions and

constraints represented by F'. This component F" of F is therefore

called by d'Alembert the lost force. As F' + F" = at every particle

of the system, d'Alembert's principle can be expressed by saying that,

at every moment during the motion, the lost forces are in equilibrium

with the constraints of the srjstem.

If the constraints, instead of being expressed by means of forces, are

given by equations of condition we may express the same idea by

saying that, owing to the given conditions, the lost forces forin a system in

equilibrium.

473. We shall now assume that the constraints or condi-

tions to which the system is subject are expressed by means

of equations (the case of conditions expressed by inequalities

is excluded) between the co-ordinates x, y, z of the particles

and the time t; such systems are called holono7nic. If the

equations contained the velocities, the system would be

called non-holonomic.

A simple illustration of the difference between the two is

furnished by a sphere moving on a plane. The position of
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the sphere can be determined by the co-ordinates x, y of its

center and Euler's angles d, if, ^p (Art. 434). If the plane is

smooth the system is holonomic ; if it is so rough as to prevent

slipping, X, y, Q, <p, ^ are no longer independent, and the

system is therefore non-holonomic.

474. Let there l^e k conditions

<p{t,xuyi,zi,x->,---)=^, Kt,xi,yi,zi,xi,- )=(), ••• (4)

for a holonomic system of n particles. The number of inde-

pendent equations of motion will be 3n — A;.

For, these equations must express the equilibrium of the

given forces, together with the reversed effective forces, under

the given conditions; and for this equilibrium it is sufficient

that the virtual work should vanish for any displacement com-

patible with the conditions, the work of the reactions and con-

straining forces being zero for such virtual displacement. In

other words, in d'Alembert's equation (2), Art. 469, the

constraining forces clue to the conditions will not appear if

the displacements 5x, by, bz be so selected as to be compati-

ble with the k conditions (4) . Now this will be the case if

these displacements are made to satisfy the equations that

result from differentiating the conditions (4), viz.

l^{iP::bx+ipyby-\-<pzbz)=Q, ^{ypM-{-^yby+ypzbz)=0, ••• (5)

As in Art. 347, t is regarded as constant in this differentiation.

Indeed, when the conditions contain the time, a virtual dis-

placement is defined as one satisfying the conditions (5).

475. By means of the k equations (5), k of the 3n dis-

placements bx, by, bz can be eliminated from d'Alembert's

equation (2). The remaining 3n — k = m displacements

are arbitrary; their coefficients must therefore vanish sepa-

rately; equating them to zero we have the 2>n — k = m
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equations of motion of a system of n particles with k conditions.

To do this more systematically we may, as in Arts. 348,

351, use Lagrange's method of indeterminate multipliers:

adding the equations (5), multiplied by X, /x, • • •
, to d'Alem-

bert's equation (2), we obtain a single equation in which the

k multipliers X, n, • • • can be selected so as to make the

coefficients of k of the Sn displacements 8x, By, 8z vanish.

The remaining 3n — k displacements being arbitrary their

coefficients must likeAvise vanish. Hence the coefficients of

all the displacements must be equated to zero, and this gives

n sets of 3 equations of the type

7nx = X + X«^x + M'Ax + • • •
7

mi) = F + \^y + fxxlyy + • • •

, (6)

mz = Z -]- \ip^ + fjL\p; -\- • •
' .

These, together with the equations (4) , are sufficient to deter-

mine the 3n co-ordinates x, y, z and the k multipliers X, M; • • • •

It is apparent from the equations (6) that the constraining

force acting on the particle m has the components:

X' = \(p-c + ljL\pjc + • • •
,

Z' = \<Pz + M'/'^ + • • • .

476. If the conditions (4) do not contain the time the

actual displacements dx, dy, dz of the particles can be taken

as virtual displacements; and d'Alembert's equation then

gives the equation of kinetic energy and work

dlhnv^ = ^(Xdx -f Ydy -\- Zdz). (7)

This also follows from the equations (6) after multiplying

them by xdt, ydt, zdt and adding. For, the coeffici(>nts of X,

/i, • • • in the resulting equation, viz. '^X^i-x + ipyij -f- (pzz)dt,

'Li^iX -\- \pyy + \pzz)dt, • • • are zero as appears by differ-
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entiating the conditions (4) with respect to t. This means

that the constraining forces in this case do no work in the

actual displacement of the system, as they are all perpen-

dicular to the paths of the particles.

If, however, the conditions (4) contain the time explicitly,

their differentiation gives

so that instead of (7) we find:

d^imv^ = S(Xda; + Ydy + Zdz) - \<ptdt - ixxPtdt- • • • . (7')

477. If the conditions (4) do not contain the time and if,

moreover, a force-function U = — V exists for all the forces

we find as in Art. 469 the principle of the conservation of energy:

T+V = To+ Vo.

But, even if no force-function exists, the elementary work

'Z{Xdx -{- Ydy -{- Zdz) is a quantity independent of the co-

ordinate system, and J '^{Xdx -f- Ydy + Zdz) = W, say,

represents the work done by the external and internal forces

in the time t; we have therefore:

^hnv^ - Zhnvo'^ = W.

3. Generalized co-ordinates; Lagi'ange's equations

of motion; Hamilton's principle.

478. As shown in Art. 358, the number of conditions that

make a system of n particles invariable, i. e. make it a free

rigid body, is fc = 3n — 6. A free rigid body has therefore

3n — fc = 6 independent equations of motion.

A rigid body with a fixed axis (Art. 415) has but 1 degree

of freedom and 5 constraints; its motion is given by a single

equation.
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A rigid body that can turn about and also slide along a

fixed axis (Art. 235) has 4 constraints and 2 degrees of

freedom; it has 2 equations of motion, its position being

determined by 2 co-ordinates, say the angle 6 and the distance

X measured along the axis.

A rigid body with one fixed point (Art. 233) is an example

of an invariable system with 3 constraints and 3 degrees of

freedom. Three variables (such as Euler's angles 6, <p, i/',

Art. 434) are necessary and sufficient to determine a particular

position, and the number of independent equations of motion

is 3.

479. These considerations can be generalized so as to apply

to a general variable system of n particles with k holonomic

conditions. Such a system is said to have on — k ^ m
co-ordinates because it has 3n — /b = m independent equa-

tions of motion (Art. 474). In other words, in the place

of the 3/1 cartesian co-ordinates x, y, z of the n particles, sub-

ject to k conditional equations (4), we may introduce

Zn — k — m independent variables, say gi, • • • q^, which

are selected so as to satisfy the k conditions (4) identically.

These vairables are called the generalized, or lagrangian,

co-ordinates of the system (comp. Art. 352).

Suppose, for instance, that the system is subject to only

one condition, viz. that the point Pi of the system should

remain on the surface of the ellipsoid

_ a;i2 7/i2 2i2
^ = ^2"

I T2" + '
%
—1=0,

o/- b^ c^

If we select two new variables qu q^, connected with Xi, y\, Zi

by the equations

Xi = a cosgi, yi = h smqi cosqz, Zi = c singi sinqz,

24
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the condition v?
= is satisfied identically in the new co-

ordinates qi, 52- Hence, by introducing qi, q^ in the place

of xi, iji, Z\ the condition ^ = is eliminated from the

problem.

The motion of a system with m degrees of freedom in

ordinary three-dimensional space might be interpreted as

the motion of a free particle in a space of m dimensions.

480. The introduction of the generalized co-ordinates q\,

• • • gm of a system with m = Sn — fc degrees of freedom into

the equations of motion (G), Art. 475, is performed just as

the corresponding prol^lem in Arts. 353-355.

The cartesian co-ordinates x, y, z of any one of the n par-

ticles are given functions of gi, • • • q„i and of t so that

. _ dx . . . dx . dx

dqi
^

dqm dt

with similar expressions for y, z. Hence, on the one hand we
have if q denote any one of the co-ordinates qi, • qmi

(8)
dx dx
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dq -^"^Vdq^^dq ^ ' dq )

^ / . d dx
, . d dif , . d dz\

ST ^ I M ,
.ay

,
.az\ „ I .ax

,
.ay , .az\

hence
ddT ^ / ..dx ,..dy ...dz\ .dT .,„.

dt-e^
= '''^V'dq+ydq + '6q) + eq-

^^^^

Now multiplying the equations of motion (6) by dx/dq,

dy/dq, dz/dq and adding them throughout the whole system

we find

the coefficients of X, ju, • • • being all zero since, by hypothesis,

the new co-ordinates satisfy the conditions (4) identically.

The right-hand member of (11) will be denoted by Q
(comp. Art. 353) ; substituting for the loft-hand member its

value from (10) we find Lagrange's equations of motion:

ddT_dT_
dtdq dq

~^' ^^^^

As there is one such equation for each of the lagrangian co-

ordinates qi, • • • qm, their number is wi = 3n — k. They are

obtained from the type (12) by attaching successively the

subscripts 1 ,
• • • w to g, ^, and Q.

481. In the particular case of a conservative system, i. e.

when there exists a force-function U such that

2x=t-, ^y-f, sz=f,dx dy dz
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we have Q — dU/dq; the equations of motion then have the

form

This relation can be derived directly from the equation (10)

by ol:)serving that in any infinitesimal displacement the work

of the effective forces is equal to the increase of U (or decrease

of the potential energy V = — U). Now if we vary the

co-ordinate q alone by 8q, the variations of x, y, z are {dxldq)bq,

(dyldq)8q, {dz/dq)8q; hence the work of the effective forces

7nx, my, mz is

the first term in the right-hand member of (10) is therefore

= dU/dq, and this at once gives (12').

482. Finally, if we denote the function T -\- U, that is, the

difference T — F of kinetic and potential energy, by L:

L=T+U=T-V,
and observe that U is independent of the velocities so that

dL^dT
dq

~ dq'

the equations of motion can be written in the simple form

dtdq dq' ^ " ^

in which they depend on a single function. This function L
is called the kinetic potential (according to Helmholtz) or

the lagrangian function.
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483. To illustrate the use of Lagrange's equations let us derive the

equations of motion in polar co-ordinates.

In the case of plane motion we have

T = lm{f-^ + r292),

whence
dT . d dT .. dT
dr at dr dr

The left-hand member of (12) is therefore m{f — rO^). The right-hand

member Q is determined by observing that Qbq is the work of the

forces in the displacement bq. Hence in our case, if R is the resultant

force, Rr and Re its components along and at right angles to the radius

vector r (Art. 269), Qbr = Rrbr, i. e.Q = Rr. Hence the first equation

of motion is

7n{r — rg-) = R,-.

To find the second equation we have

BT „ dT ^

as Qbd is the work done on the particle when B varies by hQ, i. e. in the

displacement rhd at right angles to the radius vector, we have Qbd =

RgrSd; hence the second equation

mjir'^b) = rRe.

484. For polar co-ordinates r, 0, </> in three dimensions (Art. 269) we

have
T =

i
//?.('•- + r-b"- + r2sin26> -p^),

and we find:

vi\f — r(d- + S\D?d <p')\ = Rr,

m -r (r'^'d) — r- sm^ cosi9 <p- = rRe,

m J (r^ sin^^ <p) =r smO R^.

If there exists a force-function U the right-hand members are dU/Br,

dU/dd, dU/D^.

485. As another example consider the motion, in the vertical xtj-

plano of two particles P, P' (Fig. 96) of masses m, m', suspended by
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The last equation regarded as a quadratic in r- has real (the discriminant

being positive) and positive roots, say r- and rr. Corresponding to

these roots we have

e = A cosrt, (p = .„ cosrt,
g — f)j-2

'

e = Ax cosnt, <p = —
- cosri<.

g — oTi^

In the same way, by substituting

e = A sinrt, ^ = X.4 sinr^

we obtain the special solutions

A'ar''
e = A' sinrt, <p = , „ sinrt,

g — br^

A , , Ai'ar\~ .

6 = Ai snird, <p = , „ smri^
g - brr

The general solution is of course the sum of the four special solutions,

and the four constants are determined from the initial positions and

velocities of m and m'.

486. From Lagrange's equations (12), Art. 480, it is easy

to derive Hamilton's principle.

Let each of the m equations (12) be multiphed by the

infinitesimal displacement, or variation, 8q; let the equations

be added, multiplied l3y dt, and integrated from ^i to to:

The first term can be transformed by integration by parts;

as d(8q)/dt = 8(dq)/dt we have

If now the variations Sq be selected so as to vanish ])oth at the

time ^1 and at the time ^o, the first tern^ on the right vanishes

at both limits. Hence the equation (13) assumes the form
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As 2(^— 65 + ^^55) =57^ and ZQ8q = 8U for a con-

servative system and = 8W (the elementary work) for any

system, the equation reduces to the simple form

(Sr + 8W)dt = (14)

in the general case, and

5 f\T-\-U)dt = 0,or8 f \T-V)dt = 0, or 8 ]Ldt = Q\, (14')

Jti tJti fJti

for a conservative system.

487. Hamilton's principle consists in the proposition that

the equation (14) or (14') holds for any virtual displacements

of the system that are zero at the times ti and h.

'Ldt = 0,

the principle is often expressed briefly by saying that for the

actual motion the mean value of the kinetic j)otential L — T — V
in any time to — ti is a rninimmn as compared ivith other

motions between the same tivo configurations. More exactly

we can only say that the variation of this mean value, i, e.

of the integral
J^

'Ldt, is zero.

A more complete discussion of Hamilton's principle and

of the somewhat similar principle of least (or stationary)

action will be found in E. T. Whittaker, Analytical dynam-

ics, Cambridge, University Press, 1904.
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Art. 7.

(1) (a) 5.87; (b) 40.62; (c) 58.67; (d) 25.38; (e) 1086.9;

(/) 82,020; (g) 9.84 X lO^.

(2) t = 2{a + h)l{v, + V2).

(3) 184,200 M./sec.

(4) 35 M./h.

(5) i
(6) 18f.

(7) 10.4.

Art. 9.

(1) (a) a; {h) 2at+h; {c)iaf^; id)-ak smkt; (e)-ae-';

(/) ia(e'-0; (g) ai(^ + l); W 4a^(i2_i). (^) af(3f-2);

(j) 5af(i3_8). (^) a(l + ^^)/(l - tr~-

(2) (a)_^o_+ vo^ + ig^^; (&) So- 4:at + ^aP; (c)so + atmt;

(d) SoVl - r-; (e) So + (a/a)e3(e«' - 1).

(3) (a) s = So + vot -f- i{/^-; (6) s = a sint; (c) s =
ia(e' — e~0.

Art. 12.

(1) 0.73. (3) 0.11 ft./sec.2.

(2) 32.185. (4) Jig = 1/293.

(5) (a) 0; (h) 2a; (c) - a/4t^; {d) - ak^ coskt = - k^s',

(e) ae-' = s; (/) ia(e' + e"') = s; (gf) a{2t + 1);

(/i) 4a(3f2 _ 1). (^) 2a(3« - 1); (j) 20a(i3 - 2); ik)

2at(P + 3) /(I — Py.

(6) (a) g; (6) 2at; (c) 2a sin^/cos^^; (d) - so(l - ^'H;
(e) aae'"'"*"^.

Art. 19.

(1) (a) 128.8; (b) 257.6; (e) 144.9.

(2) 0.0917.

(4) h = c
6f -^/K^2f+'^(I

An approximate

value \s h = ^gcf^Hc + gO- For a direct numerical compu-

tation the method of successive approximatiojis can be used:

neglecting ti find /i approximately from h = i^//^ with ^ = 4;

361
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with this value of h find 1-2, hence the time ti, with which
correct A; etc. Result: h — 70.4 m.

(5) (a) 4f min.; (6) 0.18; (c) 49^; (d) 4 min. 4^ sec.

(6) (a) I'o/s'; (&) ii'oVS'; (c) 2t'o/6'; (^) - Wo.

(7) (a) 4J M.; (6) 645 ft./sec; (c) li min.; (d) 1200
ft./sec; (e) 17, 58 sec. (8) 80 ft./sec.

(9) (a) h/vo; (6) /i - ighVvo'; (c) a^.
(10) 338,000 ft./sec; jh sc. (12) 30 M./h.

(11) 426 ft. (13) I ft.

Art. 24.

(1) 5M./sec.; 34i min.

(3) (a) 7 M./sec; (b) 7 M./sec, 4 days 20i- hours.

(4) . = - V2gi^^f ^i,. where ^^-|- -|-

(a) If yo< ^l2^Jf, t=---iL=.\ Mkm-s)- ^so{km-So)

+ ^-7?(cos-^^-cos-^^|)];

(6) if.o=V2^Jf , ^ = iJ^4(so^-5^);
\ So ^ 9 ^

(c),f».>V2,«^-,(=^=[-fc2/^ log
V2yi2 L Vso + ^^2i^ + Vso

+ Vso(so + k'"R) - Ms + km)

(5) If ?^o < -^2gR the height above the earth's surface to

which the particle rises is /i = Vo^RI(2gR — vo^) and the time

of rising to this height is

R ( . 2gR . _, vo

2gR - Vo~ \ ^i2gR - v} ^l2gR /
'

if Vo = ^2gR, the time of rising to the distance s from, the

center is
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SR^i2g

and the particle does not return; if vo > ^2gR the time is

-S^gR L Vs + Vs + fc^ J

where /c''
—

Wo' - 2gR

'

(6) /t = 72, ^ = (1 + ^tt) V^ = 34f min.

Art. 28.

(2) V = ^JgR = 5 M./seC; T = 1 h. 25 min.

(3) Vso^ + (volixr.

Art. 36.

(1) tt; 15.7 ft./sec. (3) (a) 402; (b) 25.1 sec.

(2) 0.157 rad./sec.2; 5 rev.

(4) (a) 0.022 rad. /sec; (6) 15.7 ft./sec; 7.85 ft./sec.

Art. 42.

(l)-(5) Check graphically. (7) 36M./li.; 198 ft.

(6) 20". (8) Vr = Vb sine.

(9) Spiral of Archimedes r = (vo/w) d.

Art. 48.

(4) The projection of the velocity on the radius vector and
on the focal axis are in the constant ratio e of the focal radius

to the distance to the directrix. It follows that the tangent
meets the directrix at the same point as does the perpen-
dicular to the radius vector through the focus.

Art. 56.

(7) j2 = a"[2(l - COS0) ^' + 2 sin0 er- + 6'].

(8) (a) Straight line; (6) circle; (c) circle of radius v; (d)

it is normal.

(9) Tlie cylindrical components are

j\ = f' - rV", h = 2r'<p + r'^, jz = x,
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Avhere r' = r cos0. The spherical components are found by
projection:

> = ji sine + J3 cos^, je = ji cos^ - Ja sin0, j^ = >

Art. 59.

(3) 45°.

(5) Construct a vertical circle having the given point as

its highest point and touching (a) the straight line, (6) the

circle.

Art. 61.

(9) (a) 1374- ft. from the vertical of the starting point;

(6) 6i sec; (c) 201 ft./sec, at 6^° to the vertical.

(10) 227.5 ft./sec. (11) 4° 22' or 86° 48'.

(13) Let Oy = vo be the given initial velocity. On the

vertical through lay off 0T> = H = Vo'^!2g; then the hori-

zontal through jDis the chrectrix. Make 2^ VOF = 2^ DOF,
and lay ofiOF = OD = H; then F is the focus.

(14)" With VoV2g = H, the locus is a;^ = - 4:H(y - H),

a parabola. (17) A horizontal line.

(18) (a) 1.5 sec; (h) 25.1 ft. from the building; (c) 59.7

ft./sec, at 16i° to the vertical.

(19) 300 ft. from tee, in 1 see.

(20) At a distance of 6250 ft.

Art. 68.

(1) 0.99672; 86117. (4) 28.8 ft.

(2) 3.26 ft. (5) 980.4.

(3) 32.158.

(8) The pendulum should be lengthened by y^^ of its

length.

(9) It will lose 67 sec. /day. (10) About a mile.

Art. 70.

(3) 1.0038.

(5) Use the first formula of Art. 69.

(6) Determining the constant from 6 = r for v = we
have iw^ = 2gl cos^i^. Putting v — — Idd/dt and inte-

grating gives t = -yjl/g log tanj(7r -\- 6) if = for i = 0.
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Hence the bob approaches the highest point of the circle

asymptotically, i. e. without reaching it in any finite time.

Art. 75.

(1) X = Xq cosfxt + (volfj.) smfit.

{2) V = - |x^la^ - x\

Art. 80.

(1) X = 10.806 cosCiTT^ + 271°).

(2) X = 2a cosiS cos(cof + i5).

(3) (a) X = 2acoscof; (6) a; = 0, the case known in

physics as interference.

(4) xi= - 5.18 coswf, xo = 14.14 cosM + 30°).

Art. 113.

(1) a;^ + t/^ = a- being the circle, j = — ahi^jif where Vi

is the x-component of the initial velocity.

(2) WoVa.

(3) Let j = )uV; then, if (xo, v/o) is the initial position, I'l,

??2 the components of the initial velocity, the path is the

hyperbola

:

(i'2--/i-?/o-).c-+2(/x2xo2/o-i'i?'2) + 0'r-AtW)|/^=(y2a;o-?^iyo)^

,-. iJ. r. Voro sim/'o
, Vo^ sin2;/'o

(5) a = —
, 6 = , tana = ^- ^ .rj^

,^
t^ e t^ -\- Vo^ cos2i^o

where e^ = v^"^

.

To

(6) Put r = 1/m and determine d^u/dd"^ in terms of u alone:

fj~')i~= - u-\- (n - 1)(1 - e'~)q-^"u-^'"+' - (n - 2)g-"w-"+i.

Hence by (IG), Art. 100:

/(r) = c-iin - 1)(1 - e2)5-2"ir2"+' - (/i - 2)q-"u-"+^.

n = 1 gives an ellipse if e < 1, a parabola if e = 1, a hyper-
bola if e > 1, all referred to focus and focal axis; n = 2 gives

conies referred to their axes; n = — 1 gives pascalian lima-
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gons (cardioids for e = ±1); n = — 2 gives a lemniscate

if c - ± 1.

(7) (a) c2(2aV-5 + r-3); (6) cV-^; (c) c-(l + n2)r-3; {d)

c-[2?i"aV~^ + (1 — n^)r"^].

(8) Sa^cV-^.

(9) Ellipse, parabola, or hyperbola according as ju ^
2'2^I/o^, 2/0 being the initial distance from the plane, V2 the

component of the initial velocity normal to the plane.

(10)/(r) = --,^.
a^ y3

Art. 137.

(3) The direction of motion passes through the highest

point of the wheel.

(4) With the center of the given circle as origin and the
perpendicular to I through as axis of x, the fixed centrode

is y^ = ex =^ a -yjx^ + ?/'^ where a is the radius of the given
circle, c the distance of from I. With A as origin and h as

axis of X the body centrode h x^ = ay ^ c ^x'^ + y"^- The
upper sign corresponds to h sliding over the first and second
cjuadrants of the circle, the lower to h sliding over the third

and fourth quadrants. If c > a, the complete fixed centrode

has a node at with the tangents ay = ± Vc^ — a'^x. The
polar equations of the centrodes are r sin-0 = c cos0 + a and
r' cos'^9' = a sin0' + c. The body centrode for c > a is

(apart from position) the same curve as the fixed centrode
for a > c, and vice versa.

(5) •//- = 2a{x + ia).

(6) The fixed centrode is a circle passing through Oi, O2;

the body centrode is a circle of twice the radius of the fixed

centrode. The path of any point in the fixed plane is a
Pascal limagon; the points of the body centrode describe

cardioids.

(8) Two equal parabolas; the motion is the same as that

of Ex. (5).

(10) With as pole and OB as polar axis the equation of

the fixed centrode is r- cos-^ — 2ar cos-9 + a^ = P. With
as origin and OB as axis of x the equation is (x^ -j- a^
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— P) ^lx'^ + Z/^
= 2ax'^. The rationalized equation represents

the centrode of A5 when B moves not only on the positive but
also on the negative half of the axis of x. The equation of

the body centrode, with A as pole and A5 as polar axis,

AC ^ r', ^ BAG = 6', is found by observing that r =
r' -j- a, I sine' = OB sin0 = r cos6 smd whence

(a2 - P cos^e')^-'' - 2a/V sin^e' + l-iP - a^ cos0') = 0,

i. e.

, A -\- a cos^' , A — a cos0'
ri = I

——. T7 , r2 =1 -. -,

.

a + i cosO a — i com

These relations can be read off directly from the figure if

perpendiculars be dropped from on AB and from B on
AC. For the path of any point P whose body co-ordinates,

with A as origin and A5 as axis of x' , are x'
,
y' , we have

x = a cos^+rc' COS97+?/' sin^, y = a smd— x' sin^+?/' cos^?,

where 6 and ^ are connected by the relation ?/a = sin^/sinc^.

For the path of the midpoint oi AB we find x = a cos0 +
•2"^ coS(p, y = a sin0 — ^l shiip, whence x = -^a^ — 4?/- +
|- -sP- — 4?/^ which is of the fourth degree.

To find the velocity of B when that of A is given oljserve

that as the distance AB \^ invariable the projections of the

velocities of A and B owAB must be equal, whence va cos^ =
Va sin(0 + >p).

(12) Find first the velocity Vr of Po relative to Pi as the

resultant of -i^i and v^; hence w.

Art. 148.

(2) A Pascal lima^on.

(7) (a) co-x — CO?/ = 0; (b) 6:x — ory -]- J = 0.

Art. 166.

(2) Distance from midpoint = \^l, 21 being the distance

of 5 from 23.

(3) About 1000 M. below the earth's surface.

(5) X = r sina/a = rc/s, where c is the chord, s the arc;

for the semi-circle x = (2/7r)r.
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. ^ 31/2 - log(l + 1/2) ^ ^ ^^^^g
* 1/2 + log(l + 1/2)

Ot/2 — 1

y = ^ ^- '^ i—-^ a = 1.12907a.
^ l/2 + log(l + i/2)

(7) Tra, |a. (8) |a, fa.

(9) r sin^/9_, r(l - cose)/0, ^fcr sin^.

(10) 2a(Q! sino: -f cosa — 1)/q:^, 2a(sinQ: — a cosa)/a^.

(12) AV«, ?rV«.
(13) Distance from hypotenuse = 0.11a.

(15) (a) ix„ %y,; (b) ^t, ^t; (c) ^ a = 0.40531a, ^6;

(17) frsina/«. (18) \a.

(22) If a:i, X2 are the distances of the planes from the center

then a; - ,(a:i + x,)
^, _ ^^^^, ^ ^^^^ _^ ^^,^

(a) |(2a - /i)V(3a - /i); (6) fa; |a(l + cosa).

(23) f/i. (25) t\7/i.

(24) A2/1- (26) fa, §b, fc.

(27)(a) |a,|a; (6)'--p^a = 1.85374a, |a; (c) ffa;

, ,. 128 + 454 _ . . . - .__, n + 3
(^^

907r « == ^'^^^^^^ ^28) 2-(^-^) a.

Art. 170.

(1) 300,000 F.P.S. units. (3) 32.000 F.P.S. units.

(2) 50ft./sec.

Art. 179.

(1) 6.4 X 10^ poundals = 8.9 X 10^ dynes.

(2) 4.5 pounds. (3) 0.1406.

Art. 196.

(1) 9 = 120°. (3) 28, 39° 16'.

(4) 2F cos22|° = 1M8F,
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(7) (a) W sine, W cos0; (6) W tsmd, W seed; (c) W sin^ seca,

W cos(0 + a) seca.

(8) W siii)8/sin(a! + fi), W sinQ:/sin(a + /3).

(10) P = iW,T = iW-
(11) P = 2W cosJ(« + Itt) = 0.8945TF.

(12) P = W sm{a + j8)sin|S is greatest when the sail

bisects the angle between the wind and the direction of

motion.

(13) W sin/3/sin(Q: + /S), W sinQ;/sin(a: + /3).

(14) T = Wl/d, r = W{c - I) Id, where d^ = V - i(c - ly.

(15) 13.4, 28.9, 50, 86.6, 186.6, oo.

(16) 848, 282; 1000, 600. (17) 0.640T^.

(18) (a) 1.414Pr; (6) 2W cosi(i7r ± 6).

Art. 221.

(2) T = mW, A = Vm' - m + 1 W, where m = 2c//.

(3) F = i(cot0 - rll)W.

(4) tan^ = (a cota - h coti3)/(a + fc).

(b) A,=
^^

Tf, ^.= ( 1--^ lF,fi=-^TF.

Art. 243.

(1) P = TT sm(plcos{a — if).

(„)
sin(^^ri < P < sin(9i^

3=|a2sin«);
cos(p TF cosv? ' Ty

(c) if P act up the plane. p = sm(g+ (p) ^ if Pact down
COS(p

, , „ ^ sin(v? — d) „,
the plane, P <—^^ ^ W.

eos(p

(4) 226i, 56*-. (5) B = ^t - 2<p.

(6) fjL
= I sine cos0/(c - I cos^^).

(7) A = mW sin(0 — ^) cos^/sinv?, C = mTT cos0, tan2^
= m s\n20, where m = l/c.

(8) sin^^f.

25
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Art. 247.

(1) 33 X 10-12.

Art. 254.

(8) '^^—
[ Vc2 + (a -{-W - ^lc^+~(a:^^^l

r p -\- c p
(10) 2^Kp

[_ ^^2 + (p + c)2
~ VoH^ ; in the limit:

2ttkp'c

Art. 260.

(3) 2xKp'(Vx2 + a' - c).

(5) At the distance x from the center, if c is the radius of

the circle,

C/ = —

^

1^- o -^T^ . where k = 3-^——r .

a; + c Jo VI — K- smV ^{^c+ x)

(6) C/ = C2 + C. (7) U = mg(zo - z).

(9) U — — fj{r)dr; cqiiipotential surfaces r = c.

Art. 264.

(3) 7500, 101.7 X 109. (5) 150 ft.-lb.

(4) 18,000 ft.-lb.

Art. 290.

(1) (a) ilb.; (6) 11.3 ft. /sec; (c) 0.63 sec; {d) ift.-lb.

(4) If Xq < e nothing is changed; if Xo > e the particle

performs simple harmonic oscillations about (^
(5) The length I is increased to I -\- e -{- Ve(e + 2/i).

(7) 42 min. 35 sec.

Art. 293.

(2) The equation of motion s = i* = — g — kv'^ gives

with A; = /^^/jy:

_ g iJiVo cos/Lt^ — g sin/^f

jx/jLio smiJLt-\-g cos/zf

'
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1 , g -\- kvo'^

(4)
^-i= ^^
^0 -yjg -\- kvo^

(5) In vacuo v = 139 ft. /sec, in air v = 122 ft./sec.

(6) s = ^ (1 — e~^0> ^ = Voe~''^ = Vo — ks.
k

(7) 11 =
^ (1 - e-"),

k^¥ ^^g - kv

Art. 297.

(2) The logarithmic decrement is log e~^' = — Xf

.

(4) If fjL =^ K, s = Ci cosk/, + Co siiiKt + -^, , sin/x^; if
K- — fJL'^

fjL
= K, s — Ci cosd + Co sind + ^, sin/c^.

(5) The term due to the forced oscillation is

a

a/0c^^^2)2_^ 4X2^2
cosm(^ - h);

hence the oscillation lags behind the force by the phase
difference ixto; the amplitude is less than for undamped
oscillations. The free oscillations (if any) will rapidly die

out so that the motion soon approaches the state of motion
given by the above term.

Art. 302.

(2) The eciuation of the orbit given in Ex. (1) is satisfied

not only by Xo, ?/o, but also by Vi/k, v^/k; i. e. the orbit passes

not only through the initial position Po, but also through

the point Q(i>i/k, Vz/k) which is the extremity of the radius
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vector OQ = vqIk parallel to fo; OPq and OQ are the con-

jugate semi-diameters whose equations are Xoy = y^^,

V\y = VoX.

(4) The problem requires the construction of the axes of

a conic from a pair of conjugate diameters.

(5) Referring the orbit to its axes we have x = a cosd,

y = h smd for the ellipse and x = ^0(6"' + e"*') = a eoshd,

y = i&Ce"' — e""') = 6 sinh/c^ for the hyperbola.

(6) From the equations of Ex. (5) it follows that for the

ellipse tan0 = (6/a) tauK^ whence 6 = Kab/r-.

(8) Use the equations of the conic in terms of the eccentric

angle (p.

(9) (a) Ellipse; (6) hyperbola; (c) parabola.

(10) The parabola x— Xo=(vi/v2)iy— yo) — (2kc/v2^) (?/
— ?/o)S

where 2c is the distance of O3 from the point that bisects

O1O2; the midpoint between and O3 is taken as origin and
OO3 as axis of x.

(U) t = -tan-i^'^tan^]

Art. 320.

(I) Vo = ^fji/ro. (3) 687 days.

(4) As the velocity is not changed instantaneously we
have by (24), Art. 314:

2fjt, jj. 2iJ.' ij!

r. a r a
whence a' is found.

(5) An ellipse, with the end of its minor axis at the point
where the change takes place.

(6) (a) Ellipse with a = |r; (h) parabola.

(7) Differentiate (24), Art. 314, with respect to m and a.

(8) The periodic time T would be diminished by (2/n)r.

(9) r = Z/(l + e COS0) gives x, y as functions of 9: hence,

observing that r-^ = c, x = — {c/l) sin^, y = (c'l) (cosd + e).

The hodograph is therefore the circle x^ -\- {y — cejlY

= {cjiy, where c ^ -^fxl.

(10) 1.034 114.

(II) t = V2aVM(tani0 + i tan49).

(12) 178.73 and 186.52 days.
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Art. 334.

(1) (a) 7h lb.; (b) 480 lb.; (c) 6.4 rev./sec.

(2) 8i°.

(4) 32.20.

(7) tanS - Rco^simpcosip/ig - T^co^cosV) ;
44°57'.

(8)7ilb.

Art. 339.

(4) To count the angles from the highest point of the

circle put t — d = (p; then, putting h — I = h', where h'

is the height to which the velocity at the highest point is

due, we have N = — 3mg[coS(p — f(l + h'/l)]. The par-

ticle remains on the curve as long as cos^ > |(1 + h' /I)
;

distinguish the cases h' = 0.

(6) At the distance 1.4617a from the lowest point of the

circle if a is the radius.

Art. 379.

(c) tV^; (d) tVi^. (8) laK
(9) ha\
(10) w-
(11) ia\ \h\ \c\

(12) i(fli2 + a,^)

(2) (a) i
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2a, I = pf (62 + c2) ; for a diagonal / = 'i-M(b'-c' + c"a-

+ a%^)/{a^ + 6' + c2).

For the cube the fundamental ellipsoid becomes a sphere

of radius ^ VOa ; for an edge of the cube, q"^ = fa- ; for a
diagonal, q- = fa-.

(2) Central eUipsoid: (6^ + c^)^;" +(c- + a-)!]- -\-{a" + 62)22

= Se"; forZ, g2 = |(6a2 + 62).

(3) Take the vertex as origin, the axis of the cone as axis

of re; then I\ = y^Ma^; 7i', t. e. the moment of inertia for

the ^2-plane, = ^Mh^. As for a solid of revolution about the

axis oi X B' = C and B = C, we have I2 = I3 = Hi, and

h = h = // + i/i. Hence, h = h = p/(/r + ^a^).

At the centroid the squares of the principal radii are -y^ci^,

J?_(4(j2 _[_ /j2\

''(4) A = J5 = C = Wa^ D = E = F = IMa"; hence
momental ellipsoid: 4(a;2 _|_ ^2 _j_ 2,2) _ 3(^2 + 2a; + a;|/) =
6eVc^^; squares of principal radii: ^a^, \^a'^, Wa^.

(5) g2 = ia2(i + sin^a).

(6) / = TVpTTflKfa + ^ + 2}i^im ;
for /i = a = ii7,

(7)'i' = /i, i? = /2 + M.Ti^ C = /3 + M2;i2.

(8) The centroid may be such xi point; if the central ellip-

soid be an oblate spheroid, the two points on the axis of

revolution at the chstance ± V(/i — l2)/M from the centroid

are such points.

(9) The ellipsoid must have the same central ellipsoid as

the given body; its equation is x^/A' + if/B' + z^/C = 5/71f

,

where M is the mass and A', B', C' are the moments of inertia

for the principal planes of the body at the centroid.

(10) p" = M/N, where

N=^^l^[(q2'+q^'-ql')'+iq^'+q^'-qy'y'+{qi'+q2'-qz')'f.

M
«^ = f -77 (<?2- + Qs" - qi^), etc.

P

Art. 420.

(2) §V2a. (5) 4a.

(3) m(|7rr)2. (6) yV lb.
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Absolute acceleration, 119
system of units, 136
velocity, 26, 118

Acceleration, absolute, 119
, angular, 23
, center of, 112
, constant, 10-14, 42-43
directly proportional to dis-

tance, 18^20
in cartesian coordinates, 38
in curvilinear motion, 35-40
in polar coordinates, 40-42
in rectilinear motion, 7-9
in the rigid body, 107-116
inversely proportional to

square of distance, 14-18
of gravity, 12

, normal or centripetal, 36,

109, 111
, relative, 119
, tangential, 36, 109

Activity, 212
Amplitude, 56

, correction for, 54
Angle of friction, 185

of repose, 185
Angular acceleration, 23

momentum, 213-216, 270-
275, 279, 304-306, 313-315
velocity, 22-24

, components of, 87
Angular velocities, composition of

85-91
, parallelogram of, 85

Anomaly, eccentric, 240
, mean, 242
, true, 237, 240

Aperiodic motion, 226
Aphelion, 237
Areas, conservation of, 21G

, principle of, 77
Arm of couple, 159
Attraction, 187-200

Beat, 50
Brachistochrone, 258

Center, instantaneous, 99
of acceleration, 112
of angular acceleration, 116
of force, 72
of gravity, 127, 157-158
of inertia, 127
of mass, 125, 127

I
of oscillation, 307
of parallel forces, 156
of suspension, 307

Central axis, 90, 171
forces, 229-247
motion, 72-82

Centrifugal force, 251
Centripetal acceleration, 109, 111

force, 250
Centrodes, 99, 100
Centroid, 125, 158
Centroidal line or plane, 285
Circle of inflections, 116
Coefficient of friction, 183
Complanar forces, 165-169
Composition of angular velocities,

85-91
of complanar forces, 165-169
of concurrent forces, 142-145
of couples, 159-165
of intersecting rotors, 85-88
of parallel forces, 152-158
of parallel rotors, 88-91
of simple harmonic motions,
59-63
of velocit ies, 27-29

Compound harmonic mot ion,59-63
harmonic wave motion, 66
pendulum, 306

Concurrent forces, 142-145, 149-
151

Cone, cquimomental, 292
Cone of friction, 185
Confocal conies, 298-299

quadric surfaces, 299-301
Conservation of angular momen-

tum or areas, 216, 275, 348

of linear momentum, 273,
348

375
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Conservation of energy, 210, 212,

227, 347
Conservative forces, 196, 210, 355
Constant acceleration, 10-14, 42-

43
of gravitation, 187-188, 235

Constrained motion of a particle,

248-267
motion of a system, 348-360

Constraints, 178-182, 260-267,
348-360

Coriolis, theorem of, 119, 335
Couples, 151, 158-165
Cross-product, 85

D'Alembert's principle, 259, 347-
349

Damped oscillations, 224-227
Damping ratio, 228
Decrement, logarithmic, 228
Degrees of freedom, 179, 268-269,

352-354
Density, 121-123
Derived units, 121
Deviation, moment of, 281
Dimensions of acceleration, 9

of force, 135
of momentum, 133
of power, 212
of velocity, 5
of work, 201

Dot-product, 110
Dynamics, 1, 120
Dyne, 135

Eccentric anomalj^, 240
Effective force, 259
Efficiency of a machine, 212
Elevation, angle of, 44
Ellipsoid, central and fundamen-

tal, 295
, momental, 290
of gyration, 295
of inertia, 290, 295

, reciprocal, 295
Elliptic harmonic motion, 69
Energy, kinetic, 137

, potential, 210
, total, 210

Epoch-angle, 56
Equation of the center, 243
Equations of linear and angular

momentum, 269-271

Equilibrium, 144
of complanar forces, 165
of concurrent forces, 144-146
of general system of forces,

170, 176
of parallel forces, 156-157

Equimomental cone, 292
Equipotential surfaces, 199
Equivalent simple pendulum, 307
Erg, 202
Euler's angles, 318

equations of motion, 316-
317, 323

Focal ellipse and hyperbola, 300
Foot-pound, foot-poundal, 202
Force, 133

_

Force-fvmction, 196
Force-polj'gon, 144, 154
Forced oscillations, 227-229
Forces, central, 229-247

, centrifugal and centripetal,

250-251
, complanar, 165-169
, conservative, 196, 210, 355
, effective, 259
, general system of, 170-178
, parallel, 151-158

Free oscillations, 217-221
Freedom, degrees of, 179, 268-269,

352-354
Frequency, 58
Friction, 182-186
Friction angle, 185

cone, 185
Fundamental units, 121
Funicular polygon, 155

Generalized coordinates, 263,

352
Gradient, 199
Gravitation, constant of, 187-188,

235
, law of, 187

_

system of units, 136
Gyration, radius of, 281

Hamilton's principle, 359-360
Harmonic motion, 16-18, 52-70
Head or height due to velocity, 12

Heavy symmetric top, 327
Hcrpolhode, 321
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Heterogeneous mass, 121
Hodograph, 37
Holonomic, 349
Homogeneous mass, 121
Hooke's law of elastic stress, 218
Horse-power, 213

Impulse, 134, 275, 278-279
Indeterminate multipliers, 259-

263, 351
Inertia, 133

, ellipsoid of, 290, 295
, moment of, 280
, product of, 281
, radius of, 281
, spherical points of, 297

Instantaneous axis, 84
center, 99

Invariable direction and plane, 275
Invariant of system of forces, 173
Isochronous, 50

Kepler's equation, 242
laws, 75, 78, 79

Kinematics, 1, 3-119
Kinetic energy, 137

friction, 183
potential, 356

Kinetics, 1, 207-360
Kinetostatics, 250

Lagrange's equations of motion,
263, 352

Lagrangian coordinates, 263, 353
function, 356

Laplace's equation, 198
invariable plane, 275

Linear density, 123
mass, 122
momentum, 273, 348—— velocity, 24, 83, 87

Lines of force, 199
Lissajous's curves, 70-72
Logarithmic decrement, 228

Mass, 120-123
moment, 124

Mean anomaly, 242
motion, 240

Mechanics, 1

Method of indeterminate multi-
pliers, 259-203, 351

Moment of a couple, 159, 162
of a force about an axis, 177
of a force about a point, 150
of inertia, 280.

of mass, 124
of momentum, 213

Momental ellipsoid, 290
Momentum, 132

, angular, 213-216, 270-275,

279, 304-306, 313-315
, linear, 277, 348

Motion, mean, 240

Newton's laws of motion, 139-141
law of universal gravitation,

187
Normal acceleration, 36, 109

Oscillations, damped, 224-227
, forced, 227-229
, free, 217-221

Parallel forces, 151-158
Parallelogram of angular veloc-

ities, 85
of forces, 143
of linear velocities, 28

Particle, 123
Pendulum, compound, 306

, simple, 47-54, 253
PerUielion, 237
Period, 56
Periodic time, 79, 240
Permanent axes of rotation, 311
Phase, phase-angle, 56
Planetary motion, 80-82, 233-247
Polar reciprocal of momental

ellipsoid, 294-295
Polhode, 321
Potential, 196-200

energy, 210
Poundal, 136
Power, 212
Precession, 326
Principal axes, 290, 311

, distribution of, 297-303
Principle, d'Alembert's, 259, 347-

349
, Hamilton's, 359-360
of angular momentum or

of areas, 77, 213
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Principle of conservation of angu-
lar momentum or of areas,2 16,

275, 348
of conservation of energy,

210, 212, 227, 347
of conservation of linear

momentum, 273, 348
of independence of transla-

tion and rotation, 275
of kinetic energy and work,

77, 208
of virtual velocities, 206
of virtual work, 205

Problem of two bodies, 244-247
Products of inertia, 281

Quantity of motion, 132

Radius of inertia or of gyration,

281
Range of projectile, 45
Reactions, 179, 249, 308-312
Reciprocal ellipsoid, 295
Relative acceleration, 118, 335

motion, 117-119, 335-345
velocity, 26, 117 ,

Resistance of a medium, 221-224
Resultant force, 142

velocity, 27
Rigid body, 21, 149
Rotation, 21, 84
Rotor, 84, 139
Rotor-couple, 90

Scientific system of units, 136

Sci'ew motion, 91
Seconds pendulum, 51

Sectorial velocity, 33,_ 73
Simple harmonic motion, 54-58

harmonic wave motion, 65
mathematical pendulum, 47-

54, 253-255
Specific density, specific gravity,

122
Static friction, 183
Statics, 1, 120-206
Surface density, 123

mass, 122
Swing, 50

Tangential acceleration, 36, 109
Tautochrone, 255-258

Theorem of Coriolis, 119, 335
of moments, 150, 153
of Varignon, 150

Time of flight of projectile, 46
Top, 327
Torque, 159
Total energy, 210

reaction, 184
Translation, 21, S3, 108
Triangle of forces, 143
True anomaly, 237, 240
Twist, 91
Two bodies, problem of, 244-247

Uniformly accelerated motion, 10
-14, 23-25

Unit of acceleration, 9
of density, 122
of force, 135
of mass, 121

of momentum, 133
of power, 212
of velocity, 5
of work, 202

Units, fundamental and derived,

121
, systems of, 136

Universal gravitation, 187

Varignon's theorem, 150
Vector, 26
Velocity, 3

, absolute, 26, 118
, angular, 22-24, 84
, body-, 117
, linear, 24, 83, 87—^- of propagation of wave, 64
of rotation, 84
of translation, 83

, relative, 26, 117
, sectorial, 33, 73

Virtual displacement, 203
velocities, principle of, 206
work, 201, 203
work, principle of, 205

Wave length, 64
motion, 63-67

Weight, 157-158
Work, 201

, virtual, 203
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