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PREFACE

THE object of this book is to consider from an elementary
standpoint as many different types of wave motion as
possible. In almost every case the fundamental problem
is the same, since it consists in solving the standard equation
of wave motion ; the various applications differ chiefly
in the conditions imposed upon these solutions.# For this
reason it is desirable that the subject of waves should be
treated as one whole, rather than in several distinct parts ;
the present tendency is in this direction.

It is presupposed that the reader is familiar with the
elements of vector analysis, the simpler results of which
are freely quoted. In a sense this present volume may
be regarded as a sequel to Rutherford’s Vector Metiwds
published in this series.

In a volume of this size, it is not possible to deal
thoroughly with any one branch of the subject: nor
indeed is this desirable in a book which is intended as
an introduction to the more specialised and elaborate
treatises necessary to the specialist: This book is intended
for University students covering & general course of Applied
Mathematics or Natural Philosophy in the final year of
their honours degree. A few topics, such as elastic waves
in continuous media, or at the common boundary of two
media, and radiation-from aerials, have unavoidably had
to be omitted for lack of space. The reader is referred to
any of the standard works on elasticity and wireless for

a discussion of these problems.
vii



viii PREFACE

This book would not be complete without a reference
of gratitude to my friends Dr D. E. Rutherford and
Dr G. 8. Rushbrooke, who have read the proofs, checked
most of the examples and contributed in no small way
to the clarity of my arguments. My thanks are also
offered to my wife for her share in the preparation of
the manusoript.

C. A . C

Janhary 1941.
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CHAPTER I

THE EQUATION OF WAVE MOTION

§ 1. We are all familiar with the idea of a wave; thus,
when a pebble is dropped into a pond, water waves travel
radially outwards; when a piano is played, the wires
vibrate and sound waves spread through the room ; when
a wireless station is transmitting, electric waves move
through the ether. These are all examples of wave motion,
and they have two important properties in common :
firstly, energy is propagated to distant points; and
secondly, the disturbance travels through the medium
without giving the medium as a whole any permanent
displacement. Thus the ripples spread outwards over a
pond carrying energy with them, but as we can see by
watching the motion of a small floating body, the water
of the pond itself does not move with the waves. In the
following chapters we shall find that whatever the nature
of the medium which transmits the waves, whether it be
air, a stretched string, a liquid, an electric cable or the
ether, these two properties which are common to all these
types of wave motion, will enable us to relate them
together. They are all governed by a ccrtain differential
equation, the Equation of Wave Motion (see §5), and
the mathematical part of each separate problem merely
consists in solving this equation with the right boundary
conditions, and then interpreting the solution appropriately.

§2. Consider a disturbance ¢ which is propagated
along the z axis with velocity c. There is no need to
1 A



2 WAVES

state explicitly what ¢ refers to ; it may be the elevation
of a water wave or the magnitude of a fluctuating electric
field. Then, since the disturbance is moving, ¢ will depend
on z and {&. When ¢ =0, ¢ will be some function of x
which we may call f(z). f(x) is the wave profile, since
if we plot the disturbance ¢ against x, and * photograph ”
the wave at ¢t = 0, the curve obtained will be ¢ = f(x).
If we suppose that the wave is propagated without change
of shape, then a photograph taken at a later time ¢ will
be identical with that at ¢ = 0, except that the wave
profile has moved a distance ¢t in the positive direction
of the x axis. If we took a new origin at the point 2 = ¢,
and let distances measured from this origin be called X,
so that * = X +-ct, then tho equation of the wave profile
referred to this new origin would be

¢ = f(X).
Referred to the original fixed origin, this means that
¢ = flx—ct) e (1)

This equation is the most general expression of a wave
moving with constant velocity ¢ and without change of
shape, along the positive direction of z. If the wave is
travelling in the negative direction its form is given by
(1) with the sign of ¢ changed, i.e.

d=fletet)y. . . . . (2
§ 3. The simplest example of a wave of this kind is the

harmonic wave, in which the wave profile is a sine or
cosine curve. Thus if the wave profile at ¢ = 0 is

(¢)t=0 = @ CO8S mx,
then at time ¢, the displacement, or disturbance, is
p=acosmxz—ct) . . . (3)

The maximum value of the disturbance, viz. a, is called
the amplitude. The wave profile repeats itself at regular
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distances 2m/m. This is known as the wavelength A.
Equation (3) could therefore be written

$ = a cos g;—T(x—ct) N )

The time taken for one complete wave to pass any point
is called the period 7'of the wave. It follows from (4) that

2
%T(x—ct) must pass through a complete cycle of values
as ¢ is increased by 7. Thus

2mer
—_—— = 27,

A

ie. r=XNe . . . . (5

The frequency n of the wave is the number of waves
passing a fixed observer in unit time. Clearly

n=1/r . . . . (6)
so that c=mnA . . . . (7

and equation (4) may be written in either of the equivalent
forms,

x t
¢ = a cos 2”(7\ — ;) . . . (8)
¢ = a cos 217(§ — nt) . . . 9

Sometimes it is useful to introduce the wave number £,
which is the number of waves in unit distance. Then

E=1Xx, ... . . . . (10
and we may write equation (9)

¢ = acos 2m(ke—nt) . . . (11)
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If we compare two similar waves

¢, = a cos 2n(kx—ni),
¢y = a cos{2m(kx—nt)+e},

we see that ¢, is the same as ¢, except that it is displaced
a distance €/27k, i.e. ed/27. € is called the phase of ¢,
relative to ¢,. If € = 2m, 4, ... then the displacement
is exactly one, two, ... wavelengths, and we say that the
waves are in phase ; if € =, 3w, ... then the two waves
are exactly out of phase.

Even if a wave is not a harmonic wave, but the wave
profile consists of a regularly repeating pattern, the
definitions of wavelength, period, frequency and wave
number still apply, and equations (5), (6), (7) and (10)
are still valid.

§ 4. It is possible to generalise equation (1) to deal
with the case of plane waves in three dimensions. A
plane wave is one in which the disturbance is constant
over all points of a plane drawn perpendicular to the
direction of propagation. Such a plane is called a wave-
front, and the wavefront moves perpendicular to itself
with the velocity of propagation ¢. If the direction of
propagation is x : y : z =1 :m : n, where I, m, n are the
direction cosines of the normal to each wavefront, then the
equation of the wavefronts is

le+my—+mnz = const., . . . (12)

and at any moment ¢, ¢ is to be constant for all x, y, 2
satisfying (12). It is clear that

¢ = flla+my+nz—et) . . . (13)

is a function which fulfils all these requirements and
therefore represents a plane wave travelling with velocity
¢ in the direction [ : m : n without change of form.
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§ 5. The expression (13) is a particular solution of the
equation of wave motion referred to on p. 1. Since
l, m, n arc dircction cosines, I24+m2-+n2 =1, and it is
easily verified that ¢ satisfies the differential equation *

2p 24 2p_ 1%

2 —_— =
Vg = 82:2 oy® 022 o (14)

This is the equation ‘of wave motion.t It is one of the
most important differential equations in the whole of
mathematics, since it represents all types of wave motion
in which the velocity is constant. The expressions in
(1), (2), (8), (9), (11) and (13) are all particular solutions
of this equation. We shall find, as we investigate different
types of wave motion in subsequent chapters, that equation
(14) invariably appears, and it will be our task to select
the solution that is appropriate to our particular problem.
There are certain types of solution that occur often, and
we shall discuss some of them in the rest of this chapter,
but before doing so, there is one important property of
the fundamental equation that must be explained.

§ 6. The cquation of wave motion is linear. That is
to say, ¢ and its differential coefficients never occur in
any form other than that of the first degree. Consequently,
if ¢, and ¢, are any two solutions of (14), a,¢,+asd, is
also a solution, @, and a, being two arbitrary constants.
This is an illustration of the principle of superposition,
which states that, when all the relevant equations are
linear, we may superpose any number of individual
solutions to form new functions which are themselves also
solutions. We shall often have occasion to do this.

A particular instance of this superposition, which is
important in many problems, corhes by adding together

* This equation has a close resemblance to Laplace’s Equation
which is discussed in Rutherford, Vector Methods, Chapter VII.

t+ Sometimes called the wave equation, but we do not use this
phrase to avoid confusion with modern wave mechanics.
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two harmonic waves going in different directions with the
same amplitude and velocity. Thus, with two waves
similar to (11) in opposite directions, we obtain

¢ = a cos 2n(kx—nt)+a cos 2m(kr+-nt)
= 2a cos 27kx cos 2mnt . . . .. (18)

This is known as a stationary wave, to distinguish it from
the earlier progressive waves. It owes its name to the
fact that the wave profile does not move forward. In fact,
¢ always vanishes at the points for which cos 27kx = 0,

) 1 3 5 .
viz. x = j:@, ;tﬂc, iéfl&’ .... These points are called the

nodes, and the intermediate points, where the amplitude
of ¢ (i.e. 2a cos 2mkx) is greatest, are called antinodes.
The distance between successive nodes, or successive
antinodes, is 1/2k, which, by (10), is half a wavelength.

Using harmonic wave functions similar to (13), we find
stationary waves in three dimensions, given by

¢ = a cos ?;—T (le+my-+nz—ct) 4 a cos 2_;1 (la-+ my +mnz+-ct)

= 2a cos 27” (lx+my—+mnz) cos 2%7 ct . . . (16)

In this case ¢ always vanishes on the planes lx+my+nz
_ 2,
B

, ..., and these are known as nodal planes.
§ 7. We shall now obtain some special types of solution
of the equation of wave motion ; we shall then be able to
apply them to specific problems in later chapters. We
may divide our solutions into two main types, representing
stationary and progressive waves.
We have alrcady ‘dealt with progressive waves in one
dimension. The equation to be solved is
&*p 1%
o 2 a2’
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Its most general solution may be obtained by a
method due to D’Alembert. We change to new variables
u = x—ct, and v = xr+ct. Then it is easily verified that

o 0
095 transforms to &—;—’z —5%) , 8? transforms to —c%i%—cg-f
0%

so that the equation becomes P 0; the most general
: v

solution of this is
¢ = f(u)+g(v
f and g being arbitrary functions. In the original variables
this is
¢ = flx—ct) 4- g(x+-ct) N ¢ )
The harmonic waves of §2 are special cases of this, in
which f and ¢ are cosine functions. The waves f and ¢

travel with velocity ¢, in opposite directions.
In two dimensions the equation of wave motion is

o 2 1% 18)

ox? ' oy o
and the most general solution involving only plane* waves
is ¢ = flet+my—ct) 4 gle+my-+ct), . (19)

where, as before, f and g are arbitrary functions and
BP4m? = 1.
In three dimensions the differential equation is

P b P 1% .
8x2+_+8z2 car (20)

and the most general solution involving only plane waves is
¢ = f(le+my+nz—ct) +-g(lx+my-+nz+-ct) . (21)
in which I24-m2+4+n? = 1.

* Strictly these should be called line waves, since at any
moment ¢ is constant along the lines lz + Iny = const.
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There are, however, other solutions of progressive type,
not involving plane waves. For suppose that we transform
(20) to spherical polar coordinates 7, 8, .* The equation
of wave motion becomes

¢ 28 1 @ 2 1 2 13
e trar T mmeéb( n999 +rzsin305;lﬁ_ o’

(22)
If we are interested in solutions possessing spherical
symmetry (i.e. independent of § and ) we shall have to
solve the simpler equation

¢ 20 1% 3)

o T ror o o

This may be written
0? 1 o2
'6—;2(7'95) = @372‘(7‘45%
showing (cf. eq. (17)) that it has solutions

r¢ = f(r—ct) + g(r+ct),

f and g again being arbitrary functions. We see, therefore,
that there are progressive type solutions

¢ = ~flr—ct) + - g(r+ct) . . (24)

Let us now turn to solutions of stationary type. These
may all be obtained by the method known as the separation
of variables. In one dimension we have to solve

¢ 1%

ozt ¢ o’
Let us try to find a solution of the form
¢ = X()T'(t),

* See e.g. Rutherford, p. 62, equation 20.
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X and 7T being functions of x and ¢ respectively, whose
form is still to be discovered. Substituting this value of
¢ in the differential equation and dividing both sides
by X(x)T(t) we obtain
1 a?X 1 d*T

. X2 —erae - - B
The left-hand side is independent of ¢, being only a function
of z, and the right-hand side is independent of x. Since the
two sides are identically equal, this implies that each is
independent both of x and ¢, and must thercfore be constant.
Putting this constant cqual to —p?, we find

X" 4p2X =0, T"+c2p*T = 0. . . (26)

These equations give, apart from arbitrary constants
S

CcOos CO:!
X = sin P% T= sin cpt . . (27)
A typical solution therefore is @ cos px cos cpt, in which
p is arbitrary. In this expression we could replace either
or both of the cosines by sines, and by the principle of
superposition the complete solution is the sum of any
number of terms of this kind with different values of p.
The constant —p? which we introduced, is known as
the separation constant. We were able to introduce it in
(25) because the variables x and ¢ had been completely
separated from each other and were in fact on opposite sides
of the equation. There was no reason why the separation
constant should have had a negative value of —p? except
that this enabled us to obtain harmonic solutions (27).
If we had put each side of (25) equal to +p?, the solutions
would have been
X =etP® T =kt | (28)

and our complete solution should therefore include terms
of both types (27) and (28). The same distinction between
the harmonic and exponential types of solution will occur
frequently.
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This method of separation of variables can be extended
to any number of dimensions. Thus in two dimensions a
typical solution of (18) is
COS COS oS
= n?

sin P7 sin v sin reb, - ) (29)

in which p?*+4¢® =12, p and g being allowed arbitrary
valucs. An alternative version of (29), in which one of
the functions is hyperbolic, is

¢ =

in which p?—¢? == »%.

It is easy to see that there is a variety of forms similar
to (30) in which onc or more of the functions is altered
from a harmonic to a hyperbolic or exponential term.

In three dimensions we have solutions of the same type,
two typical examples being

cos px etW 908 et . . (30)
sin sin

COS COS  COS COs . .
= . px . qy . rz . sct 24q2-+r2 = s (31
¢ sin p sin £ sin " sin g (31)
cosh gy COS cCOS 9 2.0 2 (o
¢ = ainh PP G T i 5> PPt =g (32)

There are two other examples of solution in three
dimensions that we shall discuss. In the first case we put
x =7 cos 0, y = rsin @, and we use r, # and z as cylindrical
coordinates. The equation of wave motion becomes *

2o leg 1 g 1%
o T rer ' r2o02 ' 022 ¢ o

A solution can be found of the form

¢ =RMNOOZETWH, . . . (33)

* See Rutherford, p. 63.
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where, by the method of separation of variables, R, 0, Z,
T satisfy the equations -

d*R  1dR m?

—_— —— 2 J—
dr? + r dr R+ k=0,
2,
d*Z
PR
2T
%t—z = —cp*T, n*=p>—¢q>* . . (34)

The only difficult cquation is the first, and this * is just
Bessel’s equation of order m, with solutions J,,(nr) and
Y (nr). J,, is finite and Y,, is infinite when » = 0, so
that we shall usually require only the J,, solutions. The
final form of ¢ is therefore

Im coS ,COS  COS

= Y., (nr) sin”™ sin?® sin opt - - (35)

If ¢ is to be single valued, m must be an integer ; but »,

q and p may be arbitrary provided that n? = p2—q2.

Hyperbolic modifications of (35) are possible, similar in
all respects to (31) and (32).

Our final solution is one in spherical polar coordinates

r, 8, . The equation of wave motion (22) has a solution

R(r) © (0) ¥ () T(1), where

aTr dzlp_ .
W———CpT,W——m'{ﬂ
1 d de ( mzl
maa(“*’de)ﬂ M+l = G g)®
d*R 2dR n(n+1) .
dr? +;E‘—+{ 2 }R~0'

* See Ince, Integration of Ordinary Differential Equations, p. 127.
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m, n and’ p are arbitrary constants, but if ¥(y) is to be
single valued, m must be integral. The first two of these
equations present no difficulties. The f-equation is the
generalised Legendre’s Equation * with solution

O(6) = P,™ (cos 0),

and if @ is to be finite everywhere, n must be a positive
integer. When m =0 and n» is integral, P,™ (cos 0)
reduces to a polynomial in cos § of degree n, known
as the Legendre’s polynomial P, (cos 6). For other
integral values of m, P,™ (cos ) is defined by the equation

o dam
P,™(cos ) = sin Bm{Pn(cos 0)}.

(co

A few values of P, (cos ) and P,™ (cos 0) are given
below, for small integral values of n and m. When m>n,
P,™ (cos §) vanishes identically.

Py (cosf) =1

P, (cos ) = cos @

P, (cos 0) = } (3 cos?f—1)

P, (cos 0) = } (5 cos® 0--3 cos 0)

P, (cos §) = } (35 cost §—30 cos? 0+3)
Pl (cos0) = sin 6

Pyl (cos @) = 3 sin 6 cos

Py (cos 6) = % sin 6 (5 cos? —1)

P2 (cos ) = 3sin? 0.

To solve the R-equation put R(r) = r1/28(r), and we
find that the equation for S(r) is just Bessel’s equation

8 1d8 [, (n+3 o
O A L }S*"'

Therefore 8(r) = Jprya(pr) or Y piye(pr).

* See Ince, Integration of Ordinary Differential Equations, p. 119,
for the case m = 0.
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Collecting the various terms, the complete solution, apart
from hyperbolic modifications, is seen to be

J cos , COS

— =12 n+1/2 m
d=r Yoo (pr)P,,™(cos ) sin my sin
If ¢ has axial symmetry, we must only take functions
with m = 0, and if it has spherical symmetry, terms with
m=mn=0. Now Jyz) = 4/(2/m2) sin 2z, and also
Yy9(2) = — 4/(2m[2) cos 2, so that this becomes

cos _ Cos
¢ = (1/r) G PT gipy P .. (37

A solution finite at the origin is obtained by omitting the
cos pr term.

cpt. (36)

§ 8. We shall now gather together for future reference
the solutions obtained in the preceding pages.

Progressive waves

1 dimension
o _ 10
ox? c? o2
¢ = flx—ct) +g(x+-ct) . . (17)
2 dimensions
o 2P 1 &2
ot G o
¢ = flx+my—ct)+-g(le-+my+ct), BP4m2 =1 .  (19)
3 dimensions
2y p  2p 1o
¢ = fle+-my+nz—ct) +g(lx+my+nz+ct), B+m?+n2=1
21
3 dimensions, spherical symmetry &

2 206 124 , 1 1
T 2k’ ﬁb—‘;f(r*c':)‘*‘;g("‘*‘d) . (24)
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Stationary waves

1 dimension

. . cos  Cos
?zi)“_ l(ﬁ ¢:sinp”vsin cpt . (27)

ox? c? o ¢ = elrr gxent . (28)
2 dimensions cos  cos
2__ 2
¢ = sin 27 sin QJ sin rct pitgi=r
o, 1 @
2 2 T 2 o2

ox oy c® ot ¢ = ;3101? pueiu C)IT ret, gt — 1*
(30)

3 dimensions COsS  COS COS  COS
¢ = sin 2% sin 2¥ sin 7? sin sct,
o P A O G @ tr=s . (31)
ox? " oyt | ot c*or®’ cosh gy 08 008
‘75 sinh P* € sin 7% gin 5%
—pP—@*4ri=s* . (32)

Plane Polar Coordinates (r, 6)

o2 1@ 1 02 1¢2 J cos cos

?iﬁé 1 '.é'_(_é: p _? » b=y, () gy 0 gy, et

or ror Vi 00 c? ot m sin s
(35a)

Cylindrical polar coordinates (r, 6, 2)
g lop 1% @4 1%
o ror 12002 822 croe’
I cos ,COS  COS R
¢ = Y, ") gin M Gy 92 g ©PE nP= pP—q  (35b)
and other hyperbolic modifications.

Spherical Polar Coordinates (r, 0, )
2 204 1 6 (. o 1 &g 1%
o Ty rasinea_f)(smeﬁ) +rzsln206¢2 TR’

Co8s COS

ms m cpt . (36)

J
—12 Inrie
b=r y (pr)P,™ (cos 9) .

n+1/2 sin
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Spherical symmetry

2 204 1% cos  cos )
wra ewr PN g gwt o 6D

In solving problems, we shall more often require progressive
type solutions in cases where the variables z, ¥, z are allowed
an infinite range of values, and stationary type solutions
when their allowed range is finite.

§ 9. There is an important modification of the equation
of wave motion which arises when friction, or some other
dissipative force, produces a damping. The damping effect
is usually allowed for (see e.g. Chapter IT and elsewherc)
o
53
damping force is proportional to the velocity of the vibra-
tions. The revised form of the fundamental equation,
known as the equation of telegraphy, is

by a term of the form k-=, which will arise when the

1 (% . od)
2 = — L 4 kL1, . .
Vi cgwt2+ 7 | (38)
2
If we omit the term

g this equation is the same as that
occurring in the flow of heat. If we put ¢ = ue 72 we
obtain an equation for « of the form
o )

Vu_&{m 4Lu .o . (39)
Very often £ is so small that we may neglect k2, and then
(39) is in the standard form which we have discussed in
§ 8, and the solutions given there will apply. In such a
case the presence of the dissipative term is shown by a
decay factor e~#/2, If this is written in the form e—tb,
then t,(= 2/k) is called the modulus of decay. When
the term in k% may not be neglected, we have to solve
(38) and the method of scparation of variables usually
enables a satisfactory solution to be obtained without
much difficulty.
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There is an alternative solution to the equation of
telegraphy that is sometimes useful. Taking the case of
one dimension, and supposing that k is go small that
k2 may be neglected, we have shown that the solution of
(38) may be written in the form

¢p=e"2fx—ct), . . . . (40)
where f is any function. Since f is arbitrary, we can put

k
fa—et) = ¢ 27 gz—a),
and ¢ is now an arbitrary function. Substituting this in
(40) we get
p=e®gx—ct). . . . . (4])

This expression resembles (40) except that the exponential
factor varies with x instead of with &.

§ 10. Most of the waves with which we shall be
concerned in later chapters will be harmonic. This is
partly because, as we have seen in § 8, harmonic functions
arise very naturally when we try to solve the equation of
wave motion ; it is also due to the fact that by means of
a Fourier analysis, any function may be split into harmonic
components, and hence by the principle of superposition,
any wave may be regarded as the resultant of a set of
harmonic waves.

When dealing with progressive waves of harmonic type
there is one simplification that is often useful and which
is especially important in the electromagnetic theory of
light waves. We have seen in (11) that a progressive
harmonic wave in one dimension can be represented by
¢ =a cos 2x(kx—nt). If we allow for a phase e, it
will be written ¢ =a cos {2w(kx—nt)+e}. Now this
latter function may be regarded as the real part of the
complex quantity @ e+i2mkz—nt)+e} Tt is most convenient
for our subsequent work if we choose the minus sign and
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also absorb the phase ¢ and the amplitude @ into one
complex number A. We shall then write

$=A min—k) A _qgeic . . (42)

This complex quantity is itself a solution of the equation
of wave motion, as can easily be seen by substitution, and
consequently both its real and 1magmary parts are also
solutions. Since all our equations in ¢ are linear, it is
possible to use (42) itself as a solution of the equation
of wave motion, instead of its real part. In any equation
in which ¢ appears to the first degree, we can, if we wish,
use the function (42) and assume that we always refer to
the real part, or we can just use (42) as it stands, without
reference to its real or imaginary parts. In such a case the
apparent amplitude 4 is usually complex, and since
A =ae~i, we can say that |4| is the true amplitude,
and —arg A is the true phase. The velocity, of course,
as given by (7) and (10), is n/k.

We can extend this representation of ¢ to cover waves
travelling in the opposite direction by using in such a case

¢ = A emitntk | (43)

There is obviously no reason why we should not extend
this to two or three dimensions. For instance, in three

dimensions
¢ = A mitn—ztatry | (44)

would represent a harmonic wave with amplitude 4
moving with velocity n/+/(p*+¢%+7?) in the direction
Xxiy:z=p:iq:r.
§ 11. We shall conclude this chapter with an example.
2 2
Let us find a solution of qS 0 ¢ such that ¢

8 y? ¢ op
vanishes on the lines x = () z=a, J =0, y = b. Since
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the lines x =0, a, and y =0, b are nodal lines, our
solution must be of the stationary type. Referring to § 8,
equation (29), we see that possible solutions are

. 2 €08, O oL 2 .2
= sinP% gin ¥ gin T > where p*g* = 7%
Since ¢ is identically zero at x = 0, and y = 0, we shall
have to take the sine rather than the cosine in the first
two factors. Further, since at z=a, ¢ =0 for all
values of y, therefore

sin pa = 0.
Similarly, sin ¢b = 0.

Hence p = mnja, and q¢ = nn/b, m and n being integers.
A solution satisfying all the conditions is thercfore
nmy cos

L ;
== 8 —_— 8 —_— .
] in — 5 sin 7o

where r? = 7*(m?/a®+n?/b?).

The most gencral solution is the sum of an arbitrary
number of such terms, e.g.

¢ = Z' sin -536 sin nzl {C i cOs rct+D,,,,, sin rct}. (45)

At t = 0, this gives
nary

marx
[fli—o = 2C,,8in — sin -+

[¢limg = ZrcDpy, sin 272 sin Y,
a b
By suitable choice of the constants C,,, and D, we can

make ¢ and ¢ have any chosen form at ¢ = 0, The value
at any subsequent time is then given by (45).
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§ 12. Examples

(1) Show that ¢ == f(x cos §+y sin §—ct) represents a
wave in two dimensions, the dircction of propagation making
an angle § with the axis of x.

(2) Show that ¢ = a cos (lx+my—ct) is a wave in two
dimensions and find its wavelength.

(3) What is the wavelength and velocity of the system of
plane waves ¢ = a sin (Ax+By+Cz—Dt) ?

(4) Show that three equivalent harmonic waves with 120°
phaso between cach pair have zero sum.

(5) Show that ¢ = r~1/2 cos 46 f(r ---ct) is a progressive type
wavo in two dimensions, r and 6 being plane polar coordinates,
and f being an arbitrary function. By superposing two of
these waves in which f is a harmonic function, obtain a
stationary wave, and draw its nodal lines. Note that this s
not a single-valued function unless we put restrictions upon the
allowed range of 6.

(6) By taking the special case of f(x) = g(x) = sin pz in
equation (24), show that it reduces to the result of equation
(36) in whichm = n = 0. Use the relation

{92 )
Jyp®) = \/(;;:) sin x.

(7) Find & solution of 22 + L 2% _ o such that ¢ = 0
m solution O — - — — = U, such a =
! Gat o or hat ¢

when ¢ = co, and ¢ = 0 when & = 0.

o 10%

(8) Find a solution of Py ey such that ¢ = 0 when
2 = 400 ort = -4 00.
Solve tl ion 2% — 2% given that 2 i
(9) Solve the equation = o given that z is never

infinito for real values of # and ¢, and z = 0 when 2 = 0, or
when ¢t = 0.

v v

(10) Solve — = — given that V = 0 when ¢ = o and
ox? ot

when z = 0, and when z = [.
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(11) =, y, z are given in terms of the three quantities
¢, 9, { by the equations

x = a sinh £ sin 5 cos {

Yy = a sinh ¢ sin 5 sin

2 = a cosh ¢ cos 7

. 0% 0% 0% 1 0% .

Show that the equation o + o -+ e B of the
correct form for solution by the method of soparation of
variables, when ¢, 5, { are used as the independent variablos.
Write down the subsidiary equations into which the whole
equation breaks down.

12. Show that the equation of telegraphy (38) in one
dimension has solutions of the form
cos cos
¢ = sin 7% sirslpf’ oIz,
where m and p are constants satisfying the equation
Pt = mPcE—}R2.

‘[ANsWERS: 2. 2n[(B+m?)t; 3. X = 2=/(4%+ B2+ C?)},
vel. = AD[27; 7. A sin nxe—ont; 8. Ae~m=ted); 9. A sin px
sin cpt; 10. Ae=?% sin px, p ==[l, 2=[l, . .; 11. Show
that ¢ = const., 5 = const., { = const. form an orthogonal
system of coordinates, and transform V2¢ in terms of ¢, 9, {
as in Rutherford, Vector Methods, § 47. The result is
¢ = X(&)Y(n)Z({)T(t), where m, p and ¢ are arbitrary con-
stants, and

1 d ax m?
— g i, 2 ginh? — o2
sinhfdfsmhfdf o 2§X—{—p sinh?¢ X = ¢?X,
d dy m?
— & - 24in 2 — a2
Sin 7 a7 sin 7 @y~ sinty Y +plsin?y ¥ q*Y,
. 2 2 2,2
$Z _ g ¢T _ PP,

dz? dt? a?



OHAPTER II
WAVES ON STRINGS

§ 13. In this chapter we shall discuss the transverse
vibrations of a heavy string of mass p per unit length. By
transverse vibrations we mean vibrations in which the
displacement of each particle of the string is in a direction
perpendicular to the length. When the displacement is
in the same direction as the string, we call the waves
longitudinal ; these waves will be discussed in Chapter IV.
We shall neglect the effect of gravity; in practice this
may be achieved by supposing that the whole motion takes
place on a smooth horizontal plane.

In order that a wave may travel along the string,
it is necessary that the string should be at least slightly
extensible ; in our calculations, however, we shall assume
that the tension does not change appreciably from its
normal value ¥. The condition for this (see § 14) is that
the wave disturbance is not too large.

Let us consider the motion of a small element of the
string PQ (fig. 1) of length ds. Suppose that in the
equilibrium state the string lies along the axis of x, and
that PQ is originally at PyQ, Let the displacement of
PQ from the z axis be denoted by y. Then we shall obtain
an equation for the motion of PQ in terms of the tension
and density of the string. The forces acting on this
element, when the string is vibrating, are merely the two
tensions F acting along the tangents at P and @ as shown
in the figure ; let iy and s+di be the angles made by these
two tangents with the x axis. We can easily write down

21
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the equation of motion of the element PQ in the y direction;;
for the resultant force acting parallel to the y axis is
F sin (f+dyp)—F sin . Neglecting squares of small

quantities, this is ¥ cos ¢y diy. The equation of motion is
therefore

Feosypdyp = ds 3t2 N

?/

) Q
Fia. 1

N
x

7
Now tan ¢ = Z, so that sec?fdy = 6 dz and so,
from il)

%y ox

. 3 b
p"tz FCOSl/J %

= F cos%) a%’; . 1)

2) —1
But cos?) = { 1+ (2—%) } , 80 that if the displaccments
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. o2
are small enough for us to neglect a_y compared with
X

unity, we may write (2) in the standard form for wave
motion * (Chapter I, § 5), viz.,

Py 13y
o2 o’

It follows from Chapter I, equation (17) that the general
solution of this cquation may be put in the form

y = fle—ct)+getet), . . . (@)

f and g being arbitrary functions. f(x—ct) represents a
progressive wave travelling in the positive direction of
the « axis with velocity ¢, and g(z-ct) represents a
progressive wave with the same velocity in the negative
direction of x. Thus waves of any shape can travel in
either direction with velocity ¢ = 4/(F/p), and without
change of form. A more complete discussion, in which
we did not neglect terms of the second order, would show
us that the velocity was not quite independent of the
shape, and indeed, that the wave profile would change
slowly with the time. These corrections are difficult to
apply, and we shall be content with (4), which is, indeed,
an excellent approximation except where there is a sudden

where ¢2 = F/p . . (3)

. oy\2
“kink ” in y, in which case we cannot neglect ( é?yv ) .

§ 14. Since the velocity of any point of the string is y,
we can soon determine the kinetic energy of vibration. It is

T=(tpprde . . . . )

* The student who is interested in geometry will be able to
prove that the two tensions at P and @ are equivalent to a single
force of magnitude Fds/R, where R is the radius of curvature of
the string. This force acts perpendicularly to PQ. Putting

e d negl (37/)2 btain (3
={1 }/ xa,an neglecting 5% we obtain (3),
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The potential energy V is found by considering the increase
of length of the element Pg. This element has increased
its length from dx to ds. We have therefore done an
amount of work F(ds—dz). Summing for all the elements
of the string, we obtain the formula

0 2
v = [ras-an = [# 131+ (2)) 1)
= iF f(aJ) dx, approximately. . (6)

The integrations in (5) and (6) are both taken over the
length of the string.
With a progressive wave y = f(x—ct), these equations
give
T = 3pe(fydz = 4F [(fyde . . (1)
V=1F[(frde . . . .. (8

Thus the kinetic and potential energies are equal. The
same result applies to the progressive wave y = g(x--ct),
but it does not, in general, apply to the stationary type
waves y = f(x—ct)+g(x+ct).

We can now decide whether our initial assumption is
correct, that the tension remains effectively constant.
If the string is elastic, the change in tension will be pro-
portional to the change in length. We have seen in (6)

2
that the change in length of an element dx is % (%) dz.

Thus, provided that g:—Z is of the first order of small

quantities, the change of tension is of the second order,
and may safely be neglected. This assumption is equivalent
to asserting that the wave profile does not have any large
‘ kinks,” but has a relatively gradual variation with .
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§ 15. The functions f and ¢ of (4) are arbitrary. But
they may be fixed by a knowledge of the initial conditions.
Thus, with a string of unlimited length, such that
Yimo = (@), Y=o = P(x),* we must have, from (4),

f(@) +g(x ¢(x
—c f'(x)+cg'(z) = ().

Integrating this last equation we have

— f(a) + gla) = (L)o) f *pa)i

o) lfsb(. e,
J
| 4 |
1 + (/1 d.v
The displacement at any subsequent time ¢ is therefore

1 1 [zt 1 [eta )
Y = 5 dlx—ct) + d(x-tct) — Ef Jl(w)de + ?;f Plx)da

1 1 [ztet
=é{¢(x——ot)+¢(x+ct)+5f _tsb(x)dx}. L

and so

f@) =

g@) =

DO i DO

§ 16. The discussion above applies specifically to
strings of infinite length. Before we discuss strings of
finite length, we shall solve two problems of reflection
of waves from a discontinuity in the string. The first is
when two strings of different densities are joined together,
and the second is when a mass is concentrated at a point
of the string. In each case we shall find that an incident
wave gives rise to a reflected and a transmitted wave.

Consider first, then, the case of two semi-infinite
strings 1 and 2 joined at the origin (fig. 2). Let the

* This function y(x) must be distinguished from the angle y in
§ 13.
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densities of the two strings be p, and p,. Denote the dis-
placements in the two strings by ¥, and y,. Let us suppose
that a train of harmonic waves is incident from the negative
direction of . When these waves meet the change of
wire, they will suffer partial reflection and partial trans-
mission. If we choose the exponential functions of § 10
to represent each of these waves, we may write

Y1 = Yincident + Yreficeted

Y2 = Ytransmitted . . ( 10)
where

’ Yincident = 4 1‘32 W?,(nt ;lklx)

Yreflected = Blein.(m +ki@)
Yeransmittea = A 2e_m(nt — k) . . (11)

W N
A h
N
o 7
Fic. 2

A, is real, but 4, and B; may be complex. According to
§ 10 cquation (42), the arguments of A4, and B; will give
their phases relative to the incident wave. All three waves
in (11) must have the same frequency =, but since the
velocities in the two wires are different, they will have
different wavelengths 1/k; and 1/k,. The reflected wave
must, of course, have the same wavelength as the incident
wave. Since the velocities of the two types of wave are
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nlky and n/k, (Chapter I, equations (7) and (10)), and we
have shown in (3) that ¢ = F/p, therefore

ky?[ks® = pafpy . . . - (12)

In order to determine 4, and B, we use what are known

as thc boundary conditions. These are the conditions

which must hold at the boundary point x = 0. Since the two

strings are continuous, we must have y, = y, identically

for all values of ¢, and also the two slopes must be the same,

%,

0
go that — = Y2 for all ¢. If this latter condition were
ox ox

not satisfied, we should have a finite force acting on an
infinitesimal piece of wire at the common point, thus
giving it infinite acceleration. We shall often meet
boundary conditions in other parts of this book ; their
precise form will depend of course upon the particular
problem under discussion. In the present case, the two
boundary conditions give
Ay +B, = A,

2mi(—k Ay -+ By) = 2mi(—kod,).
These equations have a solution

By ky—ky, A, 2k,

A, kytky T Ay kytk,
Since k,, k, and 4, are real, this shows that B, and A4,
are both real. A, is positive for all &, and k,, but B, is
positive if k;>k,, and negative if k;<<k,. Thus the
transmitted wave is always in phase with the incident
wave, but the reflected wave is in phase only when the
incident wave is in the denser medium ; otherwise it is
exactly out of phase.

The coefficient of reflection R is defined to be the

ratio |B,/4,|, i.e.

(13)

, which, by (12), we may write

ky—Fk,
Iy,
\/PJ —/ps

4
Veirves (14)
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Similarly, the coefficient of transmission 7' is equal
to |4,/4,], i.e.

N 1)
Vp1+Vpe

§ 17. A similar discussion can be given for the case of
a mass M concentrated at a point of the string. Let us
take the equilibrium position of the mass to be the origin
(fig. 3) and suppose that the string is identical on the two

N

y FA

(o]
Fia. 3

gides. Then if the incident wave comes from the negative
side of the origin, we may write, just as in (10) and (11) :

Y1 = Yincident 1 Yreflected
Y2 = Ytransmitted
where

Yincident = A1e2m(nt—kx)

Yreflected = Ble2m(nt +ka)

Ytransmitted = 4 262”i(m ~k) . . (16)

The boundary conditions are that for all values of ¢
(1) [11le=0 = [Walz=0 N ¥4

. dy, Oy, %y,
Al e G— — = zki [——
(if) [ax L7272 PR ot |0 (18)
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The first cquation expresses the continuity of the string
and the second is the equation of motion of the mass M.
We can see this as follows: the net force on M is the
difference of the components of F on either side, so that
if ¢; and i, are the angles made with the x axis, we have

% . :
M [_6722]75=0 = F (sin s, —sin ).

Since ¢, and i, are small, we may put sin i, =

0 . .
tan i, = % , 8in ¢y = %‘73, and (18) is then obtained.

Substituting from (16) into (17) and (I8), and cancelling
the term €27 which is common to both sides, we find

A,+B, = 4,,
2mikF(A,—A,+B,) = 4n*n?M A4,.
Let us write an?!M|kF = p . . . . (19)
A solution of the equations then gives
B, —ip _ —p—ip
— = _ - 20
4, 14-ip 1+4-p? (20)
4, _ 1 I—ip @

A, 14ip  1-4p2

In this problem, unlike the last, B, and 4, are complex,
so that there are phase changes. These phases (according
to §10) are given by the arguments of (20) and (21).
They are therefore tan~l(p) and tan—'(—1/p) respectively.
The coefficient of reflection R is |B;/4,|, which equals
p/(14+p)t2, and the coefficient of transmission 7' is
|4,/4,], ie. 1/(1+4+p*)t2. If we write p = tan 6, where
0<<0<m/2, then we find that the phase changes are 6
and 7/24-6, and also R = sin 8, T' = cos 6.

§ 18. The two problems in §§ 16, 17 could be solved
quite easily by taking a real form for each of the waves
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instead of the complex forms (11) and (16). The student
is advised to solve these problems in this way, taking, for
example, in § 17, the forms

Yincident = @ COS 2m(nt — k)
Yrefiected ™ bl cos {277(nt+kx) +€}
Ytransmittea = Qg €08 {2 (nt—kx) +-n} . (22)

In most cases of progressive waves, however, the complex
form is the casier to handle ; the reason for this is that
exponentials are simpler than harmonic functions, and
also the amplitude and phase are represented by one
complex quantity rather than by two separate terms.

§ 19. So far we have been dealing with strings of
infinite length. When we deal with strings of finite length
it is easier to use stationary type waves instead of progres-
sive type. Let us now consider waves on a string of length
1, fastened at the ends where x = 0, I. 'We have to find a
solution of the equation (3), viz _83_/ = }— 8_231

' T o et o
the boundary conditions y =0, at =20, I, for all t.
Now by Chapter I, § 8, we sce that suitable solutions are
of the type

subject to

cos cos ;
sin P¥ gin P

It is clear that the cosine term in x will not satisfy the
boundary condition at z = 0, and we may therefore write
the solution

y = sin px (@ cos cpt-+b sin cpt).

The constants a, b and p are arbitrary, but we have still

to make y = 0 at x =1[. This implies that sin pl =0,

ie. pl =, 27, 3n. . . . It follows that the solution is
rmct

Y = sinrfl—zc (a cos tz;—t -+ b sin ——l—) , r=123,. .. (23)
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Each of the solutions (23) in which » may have any positive
integral value, is known as a normal mode of vibration.
The most general solution is the sum of any number of
terms similar to (23) and may therefore be written
. t

Yy = Z’sm ] {a, cos — +b sm?} . (24)
The values of @, and b, are determined from the initial
conditions ; thus, when ¢ = 0,

Yoo = = a, sin’ll” R )
r
Yooy = Zb, l %sin ’—"lf .. @20

If we are told the initial velocity and shape of the string,
then each a, and b, is found from (25) and (26), and hence
the full solution is obtained. We shall write down the
results for reference. If we suppose that when ¢ =0,
y = ¢(x), ¥ = (z), then the Fourier analysis represented
by (25) and (26) gives

2 !
a, = - f é(x) sin@dx

b, = i f () sin o d?c . . (27)

In particular, if the string is released from rest when
t =0, every b, = 0.

§ 20. As an illustration of the theory of the last section,
let us consider the case of a plucked string of length I
released from rest when the midpoint is drawn aside
through a distance b (fig. 4). In accordance with (25)
and (26) we can assume that

L rarct

0
y=2a,sinTcos—l—.
r=1
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When ¢ = 0, this reduces to 2, sin 7:7;—96, and the coefficients
T
a, have to be chosen so that this is identical with
y = QThx , 0<e <<yl
Yy = 2—l’—L(l—x) , dl<a<l.
y
h
o T v ’
Fic. 4
If we multiply both sides of the equation y = Za, sin rv-r_izc
T
. rmx . .
by sin ——, and integrate from x = 0 to =1, as in the

l

method of Fourier analysis, all the terms except one will
disappear on the right-hand side, and we shall obtain

l 22n . rox L 2h . rTX

50 = fo ~ *sin sz+fl/2 T (I—=x) sin —- dx.
Whence 8h . rw .

e when 7 is odd,
= 0 when 7 is even.
So the full solution, giving the value of ¥ at all subsequent
times, is
8 g 1 . (2n+1)7m . Cnd-D)mxe  (2n+-1)mct
y=n @t e T 8Ty
(28)
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Thus the value of y is the result of superposing certain
normal modes with their appropriate amplitudes. These
are known as the partial amplitudes. The partial
amplitude of any seclected normal mode (the rth for
example), is just the coefficient a,. In this example, a,
vanishes except when r is odd, and then a, is proportional
to 1/r?, so that the amplitude of the higher modes is
relatively small.

§ 21. The rth normal mode (23) has a frequency rc/2l.
Also, there are zero values of y (i.e. nodes) at the points
z=0, lr, 2l/r.... (r—1)l/r, I. If the string is plucked
with the finger lightly resting on the point I/r it will be
found that this mode of vibration is excited. With even
order vibrations (r even) the mid-point is a node, and with
odd order vibrations it is an antinode.

We can find the energy associated with this mode of
vibration most conveniently by rewriting (23) in the form

y = Asin T {rfrct +e€ } . . (29)

Here 4 is the amplitude and € is the phase. According
to () the kinetic energy is

l 20202
T:%pjoyzdxzﬂ(;;pAzsill2{7%—q‘|‘€}‘ . (30)
Similarly, by (6) the potential encrgy is
oy R, [rmct }
V_Q f (6x) dr = Y] A2 cos l—l-+€ . (31

Now by (3) F/p = c?, and so the two coefficients in (30)
and (31) are equal. The total energy of this vibration
is therefore

ncrtp
41

D ¢ )
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The total energy is thus proportional to the square of the
amplitude and also to the square of the frequency. This
is a result that we shall often find as we investigate various
types of wave motion.

As a rule, however, there are several normal modes
present at the same time, and we can then write the dis-
placement (24) in the more convenient form

T ct
ZA sm—l—co {T—z—— +e,} . (33)
r=1
A, is the amplitude, and ¢, is the phase, of the rth
normal mode. When we evaluate the kinetic energy
as in (30) we find that the “ cross-terms ’’ vanish, since

!
J sin r—? sin %7-9—6 dx = 0,if r £ s. Consequently the total
0
kinetic energy is just

202
e p 2'r24 2 gin? Jrrrct -+ e,},

|

and in a precisely similar way the total potenti&l energy is

J wct

m:F
24 2
i 2rtd.2 ¢ + e,’

By addition we find that the total encrgy of vibration is

22
N
This formula is important. It shows that the total energy
is merely the sum of the energies obtained separately for
each normal mode. It is due to this simple fact, which
arises because there are no cross-terms involving A4,4,,
that the separate modes of vibration are called normal
modes. It should be observed that this result holds for
both the kinetic and potential energies separately as well
as for their sum.
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We have already secn that when a string vibrates more
than one mode is usually excited. The lowest frequency,
viz. ¢/2l, is called the ground note, or fundamental, and
the others, with frequencics r¢/2l, are harmonics or over-
tones. The frequency of the fundamental varies directly
as the square root of the tension and inversely as the
length and square root of the density. This is known as
Mersenne’s law. The tone, or quality, of a vibration is
governed by the proportion of energy in each of the
harmonics, and it is this that is characteristic of each
musical instrument. The tone must be carefully distin-
guished from the pitch, which is merely the frequency of
the fundamental.

We can use the results of (34) to determine the total
energy in each normal mode of the vibrating string which
we discussed in § 20. According to (28) and (33) 4,, = 0,
8h 1 . (2n4-1)m
— sin
7 2nt1) 2
total energy of the even modes is zero, and the energy
of the (2rn+1)th mode is 16¢%k%p/(2n-+1)?m%. This shows
us that the main part of the energy is associated with the
normal modes of low order. We can check these formule
for the energies in this example quite easily. For the total
energy of the whole vibration is the sum of the energies of
each normal mode scparately : i.e

16¢%h%p 1
L (2n+1)2.

and A2n+1 =

Consequently, the

total energy =

It is shown in books on algebra that the sum of the series
1/124-1/32+1/56%+ ... is #2/8. Hence the total energy is
2c2h2p/[l, i.e. 2Fh?[l. But the string was drawn aside and
released from rest in the position of fig. 4, and at that
moment the whole energy was in the form of potential
energy. This potential energy is just F times the increase
in length, i.e. 2F{(I?/4-+R%)1/2—]/2}. A simple calculation
shows that if we neglect powers of 2 above the second,
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as we have already done in our formulation of the equation
of wave motion, this becomes 2Fh?/l, thus verifying our
earlier result.

This particular example corresponds quite closely to
the casc of a violin string bowed at its mid-point. A listener
would thus hear not only the fundamental, but also a
variety of other frequencies, simply related to the funda-
mental numerically. This would not therefore be a pure
note, though the small amount of the higher harmonics
makes it much purer than that of many musical instru-
ments, particularly a piano.

If the string had been bowed at some other point than
its centre, the partial amplitudes would have been different,
and thus the tone would be changed. By choosing the
point properly any desired harmonic may be emphasised
or diminished, a fact well known to musicians.

§ 22. We have seen in § 21 that it is most convenient
to analyse the motion of a string of finite length in terms
of its normal modes. According to (33) the rth mode is

y, = A, sin rl cos j'rwct + e,}*
We often write this
Y, = ¢, sin 7—1;—1‘ . . . (35)

The expressions ¢, are known as the normal coordinates
for the string. There are an infinite number of these
coordinates, since there are an infinite number of degrees
of freedom in a vibrating string. The advantage of using
these coordinates can be seen from (30) and (31); if the
displacement of the string is

y = X¢,sin - - - . (36)
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then

1 .
= - l 2
T =7 P2,

2
V= °”22¢, o (37)

The reason why we call ¢, a normal coordinate is
now clear; for in mechanics the normal coordinates
¢1» 92 -.- 9, are suitable combinations of the original
variables so that the kinetic and potential encrgies can be
written in the form

T = ay® +agfs* +agds®+ . .
V = b1gy® +b:0:° +bsgs®+ . . . . . (38)

The similarity between (37) and (38) is obvious. Further,
it can be shown, though we shall not reproduce the analysis
here, that Lagrange’s equations of motion apply with the
set of coordinates ¢, in just the same way as with the
coordinates ¢, in ordinary mechanics.

§ 23. We shall next discuss the normal modes of a
string of length ! when a mass M is tied to its mid-point
(fig. 5). Now we have alrcady scen in § 21 that in the

Y
© M ©
> X
o 14 4
Fia. 5

normal vibrations of an unloaded string the normal modes
of even order have a node at the mid-point. In such a
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vibration there is no motion at this point, and it is clearly
irrelevant whether there is or is not a mass concentrated
there. Accordingly, the normal modes of even order are
unaffected by the presence of the mass, and our discussion
will apply to the odd normal modes.

Just as in the calculations’ of §§ 16, 17, in which there
was a discontinuity in the string, we shall have two
separate expressions y; and y, valid in the regions 0 <Cax<l/2
and 1/2<x<{l. It is obvious that the two expressions
must be such that y is symmetrical about the mid-point
of the string. %, must vanish at © =0 and y, at x = L.
Consequently, we may try the solutions

Yy = a sin px cos (cpt-+e)
Y, = a sin p(l—zx) cos (cpt+e) . . (39)

We have already satisfied the boundary condition ¥, = y,
at x =1/2. There is still the other boundary condition
which arises from the motion of M. Just as in (18) we
may write this

N
Or 0% Jy_y2 o |y—yye

Substituting the values of y; and y, as given by (39) and
using the relation F = c2p, we find
%ltan%l = % = const. . . (40)
The quantity pl/2 is therefore any one of the roots of the
equation x tan x = pl/M. Ifwe draw the curves y = tan z,
y = pl/Mz, we can see that these roots lie in the regions
0 to w/2, = to 3m/2, 2 to bm/2, ete. If we call the roots
%y, %, ... then the frequencies cp/2m become cx,/mwl. If M
is zero so that the string is unloaded, z, = (r+1/2)m,
so the presence of M has the effect of decreasing the
frequencies of odd order.
If we write n for the frequency of a normal mode,
then, since n = ¢p/2m, it follows that (40) can be written
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in the form of an equation to determine » directly ; viz.,
x tan x = pl/M, where x = (nljc)n . . (41)

This equation is called the period equation. Its solutions
are the various permitted frequencies (and hence periods)
of the normal modes. Period equations occur very fre-
quently, especially when we have stationary type waves,
and we shall often meet them in later chapters. This
particular period equation is a transcendental equation
with an infinite number of roots.

§ 24. In the previous paragraphs we have assumed that
there was no frictional resistance, so that the vibrations were
undamped. In practice, however, the air does provide
a resistance to motion ; this is roughly proportional to the
velocity. Let us therefore discuss the motion of a string
of length [ fixed at its ends but subject to a resistance
proportional to the velocity. The fundamental equation
of wave motion (3) has to be supplemented by a term in

?_2_/ and it becomes

&y 1 (&% . oyl
87”5{5? al 42)

A solution by the method of separation of variables (cf. § 9)
is easily made, and we find

y = Ae~ ¥ gin pr cos (V/ (c*p>—k2/4)t +¢).
Since y is to vanish at the two ends, we must have, as

before, sin pl = 0, and hence p=rafl, r=1, 2, 3....
The normal modes of vibration are therefore

y = A,e ttgin WTx cos (gt+e,) . . (43)
where
,"277.202 kZ

¢== 7
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The exponential term e~ represents a decaying amplitude
with modulus (see §9) equal to 2/k. The frequency
g/2m is slightly less than when there is no frictional resist-
ance. However, k is usually small, so that this decrcasc
in frequency is often so small that it may be neglected.

§ 25, There is another interesting method of obtaining
the velocity of propagation of waves along a string, which
we shall now describe and which is known as the method
of reduction to a steady wave. Suppose that a wave is
moving from left to right in fig. 6 with velocity ¢. Then,

Fia. 6

if we superimpose on the whole motion a uniform velocity
—c the wave profile itself will be reduced to rest, and
the string will everywhere be moving with velocity c,
keeping all the time to a fixed curve (the wave profile).
We are thus led to a different problem from our original
one ; for now the string is moving and the wave profile
is at rest, whereas originally the wave profile was moving
and the string as a whole was at rest. Consider the motion
of the small element PQ of length ds situated at the top
of the hump of a wave. If R is the radius of curvature at
this top point, and we suppose, as in § 13, that the string
is almost inextensible, then the acceleration of the element
PQ is ¢*/R downwards. Consequently, the forces acting on
it must reduce to (¢?/R) pds. But these forces are merely the
two tensions F' at P and @, and just as in § 13 (especially
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note at foot of p. 23), they give a resultant Fds/RE downwards.
Equating the two expressions, we have

ds
R’
This is, naturally, the same result as found before. The
disadvantage of this method is that it does not describe
in detail the propagation of the wave, nor does it deal
with stationary waves, so that we cannot use it to get
the equation of wave motion, ete. It is, however, very
useful if we are only concerned with the wave velocity,
and we shall see later that this simple artifice of reducing the
wave to rest can be used in other problems as well.

2
%Bds = F—, ie. ¢ = Flp.

§ 26. Examples

(1) Find the velocity of waves along a string whose density
is 4 gms. per em. when stretched to a tension 90000 dynes.

(2) A string of unlimited length is pulled into a harmonic
shape ¥ = a cos kwx, and at time ¢ = 0 it is relcased. Show
that if F' is the tension and p the density of the string, its
shape at any subsequent time ¢ is ¥ = a cos kx cos ket, where
¢ = F/p. Find the mean kinotic and potential energies per
unit length of string.

(3) Find tho reflection coefficient for two strings which
are joined together and whose densities are 25 gms. per cm.
and 9 gms. per cm.

(4) An infinite string lics along the 2 axis. At ¢ = 0 that
part of it between x == 4- @ is given a transverse velocity
a®—a2. Describe, with the help of equation (9) the subsequent
motion of the string, the velocity of wave motion being c.

(5) Invostigate the same problem as in question (4) except
that the string is finite and of length 2a, fastened at the
points x = +-a.

(6) What is the total cnergy of the various normal modes
in question (5) ? Verify, by swmmation ovor all the normal
modes, that this is equal to the initial kinetic energy.

(7) The two ends of a uniform stretched string are fastened
to light rings that can slide freely on two fixed parallel wires
a distance ! apart. Find the normal modes of vibration.
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(8) A uniform string of length 3! fastened at its ends, is
plucked a distance o at a point of trisection. It is then
released from rest. Find the energy in each of the normal
modes and verify that the sum is indeed equal to the work
done in plucking the string originally.

(9) Discuss fully the period equation (41) in § 23. Show in
particular that successive values of a approximate to rm,
and that a closer approximation is @ = ra+ pl/ Mra.

(10) Show that the total energy of vibration (43) is

1pl4 2 *t{q?+ kg cos (gt+e,) sin (¢t+¢,) +152 cos® (qt+¢,)},
and hence prove that the rate of dissipation of cnergy is
3k plA 2e*{2q sin (qt+¢,)+k cos (gt+-¢,)}2.

(11) Two uniform wires of densitics p, and p, and of equal
length are fastened together at onc end and the other two ends
are tied to two fixed points a distance 2! apart. Tho tension
is . Find the normal periods of vibration.

(12) The density of a stretched string is m/xz?. The end-
points are at x = a, 2a, and the tension is ¥. Show that the
normal vibrations arc given by the expression

vz mp? 1
y = A sin [0 log, (x/a)](z) :’ﬁ pt, where 62 = —% ~7
Show that the period equation is 6 log, 2 = nm,n = 1,2, ... .

(13) A heavy uniform chain of length ! hangs freely from
onc end, and porforms small lateral vibrations. Show that
the normal vibrations are given by the expression

y = A Jo(2py/{z]g)) cos (pt-+e),
where J, represents Bessel’s function (§ 7) of order zero.

Deduce that the period equation is Jy(2p+/{l/g}) = 0, =

being measured from the lower end.

[ANSWERS :
1. 150 cms.[sec.; 2. }Fa?k?sinket, $Fa®k?cos?ket ; 3. 1/4;

r Jf) ™ sin (’+:) T by = (—1)4a|(r4-B)mtcs

5. y = Xb, cos

1]
6. 8pa’/15; 7. y:a,cos’lza—:cos (1:1;—(‘{—5,.); 8. energy in rth

27c%ap . 7
—lerzzf sin? Eﬂ; sum = 3c?a?p/4l; 11. 2=/p

where ¢, tan (plfc;) = --c, tan (pl/cy), ¢;2=F/[p;, ¢ = F[p,.]

normal modo =



CHAPTER III
WAVES IN MEMBRANES

§ 27. The vibrations of a plane membrane stretched to a
uniform tension T may be discussed in a manner very
similar to that which we have used in Chapter IT for
strings. When we say that the tension is T we mean that
if a line of unit length is drawn in the surface of the
membrane, then the material on one side of this line

Téx

Tox
Fia. 7
exerts a force T on the material on the other side, and this
force is perpendicular to the line we have drawn. Let us
consider the vibrations of such a membrane; we shall
suppose that its thickness may be neglected. If its
equilibrium position is taken as the zy plane, then we are
concerned with displacements z(xy) perpendicular to this
plane. Consider a small rectangular element ABCD
(fig. 7) of sides 8z, 8y. When this is vibrating the forces
48
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on it are (a) two forces Tdx perpendicular to AB and CD,
and (b) two forces Tdy perpendicular to AD and BC.
These four forces act in the four tangent planes through
the edges of the element. An argument precisely similar
to that used in Chapter IT, § 13, shows that the forces (@)

. % .
give a resultant Téx . a—;z 3y perpendicular to the plate.

2.
Similarly, the forces (b) reduce to a force Ty . g—; dxz. Let

the mass of the plate be p per unit area ; then, neglecting
gravity, its cquation of motion is

0% 0% 0%z
T o dxdy+T o dxdy = pdxdy p

2’
io T 0% i 0% . 0%
- ot T o T Paee

This may be put in the standard form

Pz Pz 102 (1
o2 oy e’ T )
where =Tl . . . . (2

Thus we have reduced our problem to the solution of the
standard equation of wave motion, and shown that the
velocity of waves along such membranes is ¢ = 4/(T/p).

§ 28. Let us apply these equations to a discussion of the
transverse vibrations of a rectangular membrane ABCD
(fig. 8) of sides @ and b. Take AB and AD as axes of x
and . Then we have to solve (1) subject to certain
boundary conditions. These are that z = 0 at the boundary
of the membrane, for all &. With our problem this means
that 2z = 0 when ¢ = 0, x = @, y = 0, y = b, independent
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of the time. The most suitable solution of the equation
of wave motion is that of § 8, equation (29). It is

Cco8 CcoSs cOo8
2= . pT . qy

. . ret, p?+q? =i
sin® " sin* sin » PP

If z is to vanish at © = 0, y = 0, we shall have to reject
the cosines in the first two factors. Further, if 2z vanishes

A B
-
> X

b

Fia. 8

at = a, then sin pa = 0, so that p = mn/a, and similarly
q = nw/b, m and n being positive integers. Thus the
normal modes of vibration may be written

z = A sin @g—f sin "_Z-’Z cos (ret+e), . )

where r2 = (m2/a?+n2/b2)n2.

We may call this the (m, n) normal mode. Its frequency

is cr/2m, i.e.
m?  nA\ T
WG we -

If a>b, the fundamental vibration is the (1, 0) mode, for
which the frequency is ¢/2a. The overtones (4) are not
related in any simple numerical way to the fundamental,
and for this reason the sound of a vibrating plate, in
which as a rule several modes arc excited together, is
much less musical to the ear than a string, where the
harmonics are all simply related to the fundamental.
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In the (m, n) mode of (3) there are nodal lines x = 0,
ajm, 2ajm, ..... a, and y = 0, b/n, 2b/n, ... b. On opposite
sides of any nodal line the displacement has opposite sign.
A few normal modes are shown in fig. 9, in which the
shaded parts are displaced oppositely to the unshaded.

(0,0) (1,0) (2,0

/A A
@,n .2) (1.3)

Fic. 9

The complete solution is the sum of any number of
terms such as (3), with the constants chosen to give any
assigned shape when ¢=0. The method of choosing
these constants is very similar to that of § 19, except that
therc are now two variables « and y instead of one, and
consequently we have double integrations corresponding
to (27).

According to (4) the frequencies of vibration depend
upon the two variables m and n. As a result it may
happen that there are several different modes having the
same frequency. Thus, for a square plate, the (4, 7),
(7, 4), (1, 8) and (8, 1) modes have the same frequency ;
and for a plate for which a = 3b, the (3, 3) and (9, 1)
modes have the same frequency. When we have two or
more modes with the same frequency, we call it a
degenerate case. It is clear that any linear combination
of these modes gives another vibration with the same
frequency.
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§29. We can introduce normal coordinates as in the
casc of a vibrating string (cf. §22). According to (3)
the full expression for z is

= Y A,,, cos (rct+¢,) sin i Y (5)
m,n a b
We write this
2 = Z';;Smn smmea smzt%g, . . (6)

myn

where ¢,,, are the normal coordinates. The kinetic

energy is
2
ff (8Z)dxdy, L.

and this is easily shown to be

T =3Il . . . ()

m, h 3

The potential energy may be calculated in a manner
similar to § 14. Referring to fig. 7 we sec that in the
displacement to the bent position, the two tensions Ty
have done work T3y . (arc AB—8x). As in §14, this

reduces to apprommately T ( ) 3xdy. The other two

tensions Tdx have done work QT (%) dxdy. The total

potential energy is therefore

[

In the casc of the rectangular membrane this reduces to
1
V=2 3 paber2p? . . . (10)
m,n

It will be seen that 7" and V are both expressed in the form
of Chapter II, equation (38), typical of normal coordinates
in mechanical problems.



48 WAVES

§30. With a circular membrane such as a drum of
radius @, we have to use plane polar coordinates r,0,
instead of Cartesians, and the solution of equation (1),
apart from an arbitrary amplitude, is given in § 8,
equation (35a). It is

co8

z = Jp(nr) g, mb cos nct.

We have neglected the Y, (nr) term since this is not finite
at r = 0. If we choose the origin of  properly, this normal
mode may be written

2z = J ,(nr) cos mf cos nct. . . (1)

If 2z is to be single-valued, m must be a positive integer.
The boundary condition at r = a is that for all values of
0 and ¢, J ,,(na) cos mf cos nct equals zero, 1i.e., J,(na) = 0.
For any assigned value of m this equation has an infinite
number of real roots, each one of which determines a
corresponding value of n. These roots may be found
from tables of Bessel functions. If we call them =, ,,
Ny, 95 oo+ M, g - - -, then the frequency of (11) is nc/2m,
i.e. cng, /27, and we may call it the (m, k) mode. The
allowed values of m are 0, 1,2, ... andof kare 1,2, 3, ....
There are nodal lines which consist of circles and radii
vectores. Fig. 10 shows a few of these modes of vibration,
shaded parts being displaced in an opposite direction to
unshaded.

The nodal lines obtained in figs. 9 and 10 are known
as Chladni’s figures. A full solution of a vibrating mem-
brane is obtained by superposing any number of these
normal modes, and if nodal lines exist at all, they will
not usually be of the simple patterns shown in these
figures. As in the case of the rectangular membrane so
also in the case of the circular membrane, the overtones
bear no simple numerical rclation to the fundamental
frequency, and thus the sound of a drum is not very
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musical. A vibrating bell, however, is of very similar
type, but it can be shown.* that some of the more important
overtones bear a simple numerical relation to the funda-
mental ; this would explain the pleasant sound of a well-
constructed bell. But it is a little difficult to see why
the car so readily rejects some of the other overtones

.,hH

(0,2)

whose frequencies are not simply related to the fundamental.
A possible explanation + is that the mode of striking may
be in some degree unfavourable to these discordant
frequencies. In any case, we can easily understand why
a bell whose shape differs slightly from the conventional,
will usually sound unpleasant.

* See Slater and Frank, Introduction to Theoretical Physics,
1933, p. 161.
t Lamb, Dynamical Theory of Sound (Arnold), 1910, p. 155.

D
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§ 31. Examples

(1) Find two normal modes which are degenerate (§ 28)
for a rectangular membranoc of sides 6 and 3.

(2) Obtain expressions for the kinetic and potential
energies of a vibrating circular membrane. Perform the in-
togrations over tho §-coordinate for the case of the normal mode

z = A J,,(nr) cos mf cos nct.

(3) A rectangular drum is 10 em. X 20 em. It is stretched
to a tension of 5 kgm., and its mass is 20 gm. What is the
fundamental frequency ?

(4) A square membrane bounded by z = 0,aand y = 0, @

37y

2
is distorted into the shape z = A4 sin 222 sin 2 and then
a

releascd. What is the resulting motion ?

(6) A rectangular membranc of sides @ and b is stretched
unevenly so that tho tension in the x direction is T, and in
the y direction is T,. Show that the equation of motion is
T 0% 0%z

152 Tle = P
the standard form by changing to now variables / \/'T1 ,
Y[/ T, and hence find the normal modes.

(6) Show that the number of normal modes for the
rectangular membrane of § 28 whose frequoency is less than N is
approximately equal to the area of a quadrant of the ellipse

2 2 4
ac_a +‘Z—Z = -TL.) N2, Hence show that the number is roughly
o

rrpasz/T.

Show that this can be brought into

[ANswErs: 1. (2, 0) and (0, 1): in general (2m, n) and
(2n, m) ; 2. T = §mpn2c2A? sin® nctfz {Imlnr)}2rdr,

V = §mp:2A? cos? nctfz [T (nr)}2+m2{J p(nr)}2[r?] r dr,
which becomeﬁs, after intogration by parts
= }7pn?c?A? cos? nctja {Tm(nr)rdr; 3. 175-1;

A sin (27x/a) sxn(3m//(1)cos(\/l31rct/a
A sin (mmx/a) sin (nmy/b) cos npt,
pPp = m?T,[a?+-nT,/b%.]

4. 2 =
5. z =



CHAPTER IV

LONGITUDINAL WAVES IN BARS AND SPRINGS

§ 32. The vibrations which we have so far considered have
all been transverse, so that the displacement has been
perpendicular to the direction of wave propagation. We
must now consider longitudinal waves, in which the
displacement is in the same direction as the wave. Sup-
pose that AB (fig. 11) is a bar of uniform section and

Al X+ ¢ l §x+6¢ | ]B
PI Ql
F1a. 11

mass p per unit length. The passage of a longitudinal
wave along the bar will be represented by the vibrations
of each element along the rod, instead of perpendicular
to it. Consider a small element PQ of length 8z, such
that AP = «, and let us calculate the forces on this element,
and hence its equation of motion, when it is dis-
placed to a new position P'Q’. If the displacement of
P to P’ is £, then that of Q to @ will be £-1-8£, so that
P'Q =dx+06f. We must first evaluate the tension at
P’. We can do this by imagining 8z to shrink to zero.
51
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Then the infinitesimally small element around P’ will be
in a state of tension T where, by Hooke’s Law,
extension
" orig. length
— ALim Sx-6&—dx
S5—0 ox
0§
A %e

Tp' -

(1)

Returning to the clement P'Q’, we see that its mass is the
. T
same as that of PQ, i.e. pdx, and its acceleration is E)é
Thercfore
2¢
pr . W = TQ' -—TP'

oT 02
= é—x-&r = Aa——xz&c, by (1).
Thus the equation of motion for these longitudinal waves
reduces to the usual equation of wave motion

0? 1 o2
é-—xi = ;52":’-: , wherec2 = Ap . . (2
The velocity of waves along a rod is therefore +/(A/p),
a result similar in form to the velocity of transverse
oscillations of a string.

The full solution of (2) is soon found if we know the
boundary conditions.

(i) At a free end the tension must vanish, and thus,

from (1), gg: 0, but the displacement will not, in general,

vanish as well.
(ii) At a fixed end the displacement ¢ must vanish,
but the tension will not, in general, vanish also.
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§33. If wo are interested in the free vibrations of a
bar of length I, we shall use stationary type solutions of
(2) as in § 8, equation (27). Thus

& = (a cos pr+b sin px) cos {cpt-+-€}.
If we take the origin at one end, then by (i) 9¢/0x has to
vanish at * = 0 and = l. This means that b =0, and

sin pl = 0. ie. pl = nm, where n =1, 2, .... The free
modes are therefore described by the functions
4
& =a, cosmlT o {nﬂc—{— } . . (3

This normal mode has frequency nc/2l, so that the funda-
mental frequency is ¢/2l, and the harmonics are simply
related to it. There are nodes in (3) at the points x = [/2n,
3l/2n, 52n, .... (2n—1)l/2n ; and there arc antinodes (§ 6)
at =0, 212n, 412n .... I. From (1) it follows that
these positions are interchanged for the tension, nodes of
motion being antinodes of tension and vice versa. We
shall meet this phenomenon again in Chapter VI.

§ 34. The casc of a rod rigidly clamped at its two ends
is similarly solved. The boundary conditions are now
that £ =0 at =0, and at x=1{. The appropriate
solution of (2) is thus

¢
¢ =a, sin,,i? cos {7&7;_0 —{—e.,,}». . . @)
This solution has the same form as that found in Chapter II,
§ 19, for the transverse vibrations of a string.

§35. We may introduce normal coordinates for these
vibrations, just as in §§ 22 and 29. Taking, for
example, the case of § 34, we should write

& = {’%sm’i’l—r—a—: . .. (®

b = a,,cos{—l— —1—e,,}-.

where
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The kinetic energy of the element PQ is }pdx &2, so
that the total kinetic energy is

1 . .
f 01}pfzdz=§i~pl¢"2 N )]

The potential energy stored up in P'Q’ is approximately
equal to one-half of the tension multiplied by the increase
1 8§

in length : i.e. é .8¢. Thus the total potential energy is
8§ . 7r2n c? T NAc®p
J (ax) = f 1 .2 - - (D

§ 36. The results of §§ 33, 34 for 10ngitudinal vibrations
of a bar need slight revision if the bar is initially in a state
of tension. We shall discuss the vibrations of a bar of
natural length [, stretched to a length I, so that its equili-
brium tension T, is

-1
T0=)\l~l—°. . ) . (8)

0
Referring to fig. 11, the unstretched length of P'Q" is not

oz but l—;’Bx, so that the tension at P’ is not given by (1),
but by the modified relation

8x+8f—-—

TI" = A Lim l
dx—>0 %BZ

. Al o¢ .
= To+ —l; 5, using (8). . (9)

The mass of PQ is p(ly/!)dx where p refers to the unstretched
bar, so the equation of motion is

%€ oT
p(lo/l)Sx aé‘ = TQ’ -_ TP' = a 8%
_Ae f dx from (9).

la
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We have again arrlved at the standard equation of wave
motion
o2¢ 1 o2¢
(:);2 = 8—2 a—tz‘ , 2= Alz/Ploz . . (10)
It follows that ¢ = (I/ly)c,, where ¢, is the velocity under
no permanent tensmn Appropriate solutions of (10) are
soon seen to be

¢ = ansin1—“{—x cos«{nﬂTd—}— en} ,m=1,2 ... (11)

The fundamental frequency is ¢/2l, which, from (10), can
be written cy/2l,. Thus with a given bar, the frequency is
independent of the amount of stretching.

The normal mode (11) has nodes where z =0, I/n,
2l/n,...l. A complete solution of (10) is obtained by
superposition of separate solutions of type (11).

§ 37. We shall conclude this chapter with a discussion
of the vibrations of a spring suspended from its top end
and carrying a load M at its bottom end. When we
neglect the mass of the spring it is easy to show that
the lower mass M (fig. 12) executes Simple Harmonic
Motion in a vertical line. Let us, however, consider the
possible vibrations when we allow for the mass m of the
spring. Put m = pl, where p is the unstretched mass per
unit length and ! is the unstretched length. We may
consider the spring in three stages. In stage (¢) we have
the unstretched spring of length I. The element PP’ of
length 8z is at a distance  from the top point 4. In stage
(b) we have the equilibrium position when the spring is
stretched duc to its own weight and the load at the bottom.
The element PP’ is now displaced to @Q’. P is displaced
a distance X downwards and P’ a distance X +8X. Lastly,
in stage (c) we suppose that the spring is vibrating an
the element QQ’ is displaced to RR’. The displ%

of @ and @’ from their equilibrium positions are ¢ a
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The new length RR’is therefore §z+8X +38¢. The mass of
the element is the same as the mass of PP’, viz. pdx, and
is of course the same in all three stages.

We arc now in a position to determine the equation
of motion of RR’. The forces acting on it are its weight

A 8 C

x+X+E

Sx+8X+4 f
M
CI
(a) (b) ()
unstretched stretched stretched
equilibrium vibrating

Fre. 12

downwards and the two tensions at B and R’. The
tension Tz may be found from Hooke’s Law, by assuming
that 8z is made infinitesimally small. Then, as in § 36,
extension
" orig. length
— A Lim (346X 4-8¢) —bx
dz—0 o
oX 0
= A ( + 6) . . . . (12)

ox | o

Te = A
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So the equation of motion of RR’ is

azg

= resultant force downwards

= gpde +Tp — Ty,
aT
= gpdx + 5 dz.

Dividing by pdx and using (12), this becomes

%€ A[RX 2
o g+—(6x2 +()x5)

This last equation must be satisfied by ¢ = 0, since this is
merely the position of equilibrium (b). So
A 02X

+;—)8x3'

By subtraction we discover once more the standard equation
of wave motion

et 1e¢ AN

e Ty m - - 1

This result is very similar to that of §36. However,
before we can solve (13) we must discuss the boundary
conditions. There are two of these. Firstly, when « = 0,
we must have £ =0 for all ¢ Secondly, when z =1,
(i.e. the position of the mass M) we must satisfy the law

of motion
o2¢
M[WL =My~ (They

Using (12), this becomes

) mowle 2l
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As before, this equation must be satisfied by £ = 0, since
this is just the equilibrium stage (b). Thus

o oagex
Mo |

So, by subtraction we obtain the final form of the second
boundary condition

28 AJoé '
A
The appropriate solution of (13) is
¢ = asin px cos {pct-+e}. . . (15)

This gives ¢ = 0 when « = 0, and therefore satisfies the
first boundary condition. It also satisfies the other
boundary condition (14) if

pltan pl =m/M. . . . (16)
By plotting the curves y = tanx, y = (m/M)/x, we see
that there are solutions of (16) giving values of pl in the
ranges 0 to =/2, = to 3w/2, .... The solutions become
progressively nearer to nm as n increases.

We are generally interested in the fundamental, or
lowest, frequency, since this represents the natural vibra-
tions of M at the end of the spring. The harmonics
represent standing waves in the spring itself, and may be
excited by gently stroking the spring downwards when in
stage (b). If m/M is small, the lowest root of (16) is
small ; writing pl = z, we may expand tan z and get

2(z+2%/3+...) =m[/M.
Approximately
22(1+22/3) = m/M.

We may put 2% in the term in brackets equal to the first
order approximation z? = m/M, and then we find for the
second order approximation

R m|M

22 = e,

- 14+m/3M
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The period of the lowest frequency in (15) is 2m/pe, i.e.,
2mljcz. Using the fact that ¢® = Aljm, this becomes

277\/l—(M—_;%1n—). If the mass of the spring m had been

neglected we should have obtained the result 274/(IM/]).
It thus appears that the effect of the mass of the spring
is equivalent, in a close approximation, to adding a mass
one-third as great to the bottom of the spring.

§ 38. Examples

(1) Find the velocity of longitudinal waves along a bar
whose mass is 2-25 gms. per em. and for which the modulus
is 9-0. 10 dynes.

(2) Two semi-infinite bars are joined to form an infinite
rod. Their moduli are A; and A, and the densities are p,
and p,. Investigate the reflection cocfficient (sce § 16) and
tho phase change on reflection, when harmonic waves in the
first medium meet the join of the bars.

(3) Investigate the normal modes of a bar rigidly fastened
at one end and free to move longitudinally at the other.

(4) A uniform bar of length ! is hanging freely from ono
end. Show that the frequencies of the normal longitudinal
vibrations are (n-+3%) ¢/2l, where ¢ is tho velocity of longi-
tudinal waves in the bar.

(5) The modulus of a spring is 7-2.10% dynes. Its mass
is 10 gms. and its unstretched length is 12 cms. A mass
40 gms. is hanging on the lowest point, and the top point is
fixed. Calculate to an accuracy of 1 per cent. the periods of
the lowest two vibrations.

(6) Investigate the vertical vibrations of a spring of un-
stretched length 2/ and mass 2m, supported at its top end
and carrying loads M at the mid-point and the bottom.

\/(/\1 Pl)"‘\/()\zpz) .
\/(/\1P1)+\/(/\2Pz) ’
—{—e,J ; 5. 1:690 secs.,

0-252 secs. ; 6. Poriod = 2n/nc where k2—3kcotnl-+cot?nl=1,
k = Min/m.]

[ANswERS: 1. 2 km. per sec.; 2. R =

3. ¢t=A,sin (r+lé)nx cos {(H—;})"Ct




CHAPTER V
WAVES IN LIQUIDS *

§39. In this chapter we shall discuss wave motion in
liquids. 'We shall assume that the liquid is incompressible,
with constant density p. This condition is very nearly
satisfied by most liquids, and the case of a compressible
fluid is dealt with in Chapter VI. We shall further assume
that the motion is irrotational. This is equivalent to
neglecting viscosity and assuming that all the motions
have started from rest due to the influence of natural
forces such as wind, gravity, or pressurc of certain bound-
aries. If the motion is irrotational, we may assume
the existence of a velocity potential ¢ if we desire it.
It will be convenient to summarise the formulse which
we shall need in this work.

(i) If the vector u{ with components (u, v, w)}
represents the velocity of any part of the fluid, then from
the definition of ¢

u=—-yp=—gradg, . . (]
so that in particular w = —o0¢/dxr, v = —o¢/dy,

w = —0¢|0z.
(ii) On a fixed boundary the velocity has no normal

* Before reading this chapter the student is advised to read
Rutherford’s Vector Methods, Chapter VI, from which several
results will be quoted.

1 Using Clarendon type for vectors.

1 Many writers use (uzu,u;) for the velocity components. We
shall find (u, v, w) more convenient for our purposes. It is necessary,
however, to distinguish u, which is a vector representing the velocity
and «, which is just the x component of the velocity.

60
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component, and hence if 8/0v denotes differentiation along
the normal .
oplov =0. . . . . (@

(iii) Since no liquid will be supposed to be created or
annihilated, the equation of continuity must express the
conservation of mass ; it is

vou=otZ 3o . . (3

Combining (1) and (3), we obtain Laplace’s equation

0% 02 0?

ox? 02%
(iv) If H(x, v, 2, t) is any property of a particle of the
fluid, such as its velocity, pressure or density, then %IZI
ils; };he variation of H at a particular point in space, and

B is the variation of H when we keep to the same particle

of fluid. % is known as the total differential coefficient,

and it can be shown * that

I—z—f—lz?f!+u.vH

Dt ot (5)
. DH _oH oH oH_  oH
L.e. Dt ot ox oy £

(v) If the external forces acting on unit mass of liquid
can be represented by a vector F, then the equation of
motion of the liquid may be expressed in vector form

Du 1
. —F ——yp.
i VP

* See Rutherford, § 66.
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In Cartesian form this is
ou ou ou ou 1op
— — — — =F,—-—=, . 6
s T e ey T T S ©)
with two similar equations for v and w.

(vi) An important integral of the equations of motion
can be found in cases where the external force F has a
potential V, so that F = —yV. The integral in question
is known as Bernouilli’s Equation :

Pty 2 _g 7
p+2u%Vat—, S ()
where C is an arbitrary function of the time. Now
according to (1), addition of a function of ¢ to ¢ does
not affect the velocity distribution given by ¢ ; it is often

0
convenient, therefore, to absorb C into the term g and

(7) can then be written

1 0
€+§u2—|—V~——aif = const. . . (8)
A particular illustration of (8) which we shall require later
occurs at the surface of water waves; here the pressure
must equal the atmospheric pressure and is hence constant.
Thus at the surface of the waves (sometimes called the
free surface)
1 o
~u? _— T = . .
3 +V 3t constant. (9)
§40. We may divide the types of wave motion in
liquids into two groups; the one group has been called
tidal waves,* and arises when the wavelength of the
oscillations is much greater than the depth of the liquid.
Another name for these waves is long waves in shallow
water. With waves of this type the vertical acceleration

* Lamb, Hydrodynamics, Chapter VIII.
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of the liquid is neglected in comparison with the horizontal
acceleration, and we shall be able to show that liquid
originally in a vertical plane remains in a vertical plane
throughout the vibrations; thus each planc of liquid
moves as a whole. The second group may be called
surface waves, and in these the disturbance does not
extend far below the surface. The vertical acceleration
is no longer negligible and the wavelength is much less
than the depth of the liquid. To this group belong most
wind waves and surface tension waves. We shall consider
the two types separately, though it will be recognised that
Tidal Waves represent an approximation and the results
for these waves may often be obtained from the formule
of Surface Waves by introducing certain restrictions.

TIDAL WAVES

§41. We shall deal with Tidal Waves first. Here we
assume that the vertical accelerations may be neglected.
One important result follows immediately. If we draw
the z axis vertically upwards (as we shall continue to do
throughout this chapter), then the equation of motion in
the z direction as given by (6), is

Dw 1op

Dt

p oz
D,
We are to neglect Buzj and thus

ap

= = —gp, i.c. p = —gpz -} constant.

Let us take our ay plane in the undisturbed free surface,
and write {(z, y, t) for the elevation of the water above
the point (z, y, 0). Then, if the atmospheric pressure is
Py, We must have p = py when z = {. So the equation
for the pressure becomes

p=pot+gp—2). . . . (10)
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We can put this value of p into the two equations of
horizontal motion, and we obtain
Dy o Dw ot

The right-hand sides of these equations are independent
of 2z, and we deduce therefore that in this type of motion
the horizontal acceleration is the same at all depths.
Consequently, as we stated earlier without proof, on still
water the velocity does not vary with the depth, and
the liquid moves as a whole, in such a way that particles
originally in a vertical plane, remain so, although this
vertical plane may move as a whole.

§42. Let us now apply the results of the last section
to discuss tidal waves along a straight horizontal channel
whose depth is constant, but whose cross-section A varies

ZA

o/—\C\\
x deQ\

%
x

Fia. 13

from place to place. We shall suppose that the waves
move in the x direction only (extension to two dimensions
will come later). Consider the liquid in a small volume
(fig. 13) bounded by the vertical planes x, x+dzx at P
and @. The liquid in the vertical plane through P is all
moving with the same horizontal velocity u(x) independent
of the depth. We can suppose that 4 varies sufficiently
slowly for us to neglect motion in the y direction. We
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have two equations with which to obtain the details of
the motion. The first is (11) and may be written

ou ou ou a¢
7 wt % T Y
ou

Since # is independent of z, 5 = 0. Further, since we

shall suppose that the velocity of any element of fluid
0

is small, we may neglect u a—;b which is of the second order,

and rewrite this equation

ou ot

i g p . . . (12)
The second equation is the ecquation of continuity. Equa-
tion (3) is not convenient for this problem, but a suitable
equation can be found by considering the volume of liquid
between the planes at P and @, in fig. 13. Let b(x) be the
breadth of the water surface at P. Then the area of the
plane P which is covered with water is [4+b(]p ; therefore
the amount of liquid flowing into the volume per unit
time is [(4+b8)u]p. Similarly, the amount flowing out
per unit time at Q is [(4 +bl)ulg. The difference between
these is compensated by the rate at which the level is
rising inside the volume, and thus

[(A+b2)ul, — [(A+bEulg = bz

Therefore

0 ot
— 5 (A+blu} = b=
Since blu is of the second order of small quantities, we may
neglect this term and the equation of continuity becomes

of

=bz (13)

0
™ (Aw)
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Eliminating « between (12) and (13) gives us the equation

e o [, oL
ba—tz_a—x( gax) L (14)

In the case in which A4 is constant, this reduces to the
standard form

L 10%

ox® ¢ o2’
This is the familiar equation of wave motion in one
dimension, and we deduce that waves travel with velocity
1/ (Ag/b). If the cross-section of the channel is rectangular,
so that A4 = bh, A being the depth, )

=A/(gh) . . . . (16)

With an unlimited channel, there are no boundary
conditions involving z, and to our degree of approximation
waves with any profile will travel in either direction.
With a limited channel, there will be boundary conditions.
Thus, if the ends are vertical, = 0 at each of them.

We may apply this to a rectangular basin of length I,
whose two ends are at x = 0, 1. Possible solutions of (15)
are given in § 8, equation (27). They are

{ = (a cos px+P sin px) cos (cpt-+e).
Then, using (13) and also the fact that 4 = bk, we find

ou cp . .
w7 (a cos px-+-f8 sin px) sin (cpt-|-¢).

c® = Ag/b . . (15)

u = %(a sin pz—p cos px) sin (cpt-e).

The boundary conditions u = 0 at x = 0, [, imply that
B=0,and sin pl =0. So

Czarcos_l_ fl’i+e},r:1,2,3,... (17)
u:%’;—csmﬁ;—xs' {7:77—“—1»5} . . (18)
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It will be noticed that nodes of » and { do not occur at
the same points. ’

The vertical velocity may be found from the general
form of the equation of continuity (3). Applied to our
case, this is

ou  ow

S o
Now u is independent of z and w = 0 on the bottom of
the liquid where z = —h. Consequently, on integrating

rox , [rmct

ou —mra,c
w= -—(z—l—h)a—w: 7 (2-+h) cos 7 sin| —{-e,}. (19)
We may use this last equation to deduce under what
conditions our original assumption that the vertical
acceleration could be neglected, is valid. For the vertical

. Dw, . ow
acceleration _ﬁ? is effectively };—: , Le.

20202 A
— '"___rl;&a' (2-t-h) cos le’f cos {7% +€r}'

The maximum value of this is 7%r%c2a,/l?, and may be com-
pared with the maximum horizontal acceleration wrc2a,[lh.
The ratio of the two is rmh/l, i.e. 27h/A, since, from (17)
A=2l/r. We have therefore confirmed the condition
which we stated as typical of these long waves, viz. that
the vertical acceleration may be neglected if the wavelength
is much greater than tho depth of water.

§43. We shall now remove the restriction imposed in
the last section to waves in one dimension. Let us use
the same axes as before and consider the rate of flow of
liquid into a vertical prism bounded by the planes
z, x+dz, y, y+dy. In fig. 14, ABCD is the undisturbed
surface, EFGH is the bottom of the liquid, and PQRS is
the moving surface at height { (z, y) above ABCD. The
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rate of flow into the prism across the face PEHS is
[u(h+{)dy)s, and the rate of flow out across RQFG is
[u(h+0)dylesge. The net result from these two planes is

Q
P
s/ R
A B
D (¢
E F
H G

Fic. 14

a gain — é%{u(h—}{)}dxdy. Similarly, from the other two

vertical planes there is a gain — 582—/ {v(h+{)}dady. The

total gain is balanced by the rising of the level inside the
prism, and thus
0 0 oL
— 5 (b +-D))dady — a—y{v(h+l)}dxdy = 5 - dxdy.
As in §42, we may neglect terms such as u{ and »{ and
write the above equation of continuity

g(@i@ L) 2
X

T = - (20)



WAVES IN LIQUIDS 69

We have to combine this equation with the two equations
of motion (11), which yield, after neglecting square terms
in the velocities

ow % o aL

W= w="93 - - @
Eliminating » and v gives us the standard equation
2
2 (%) L 2 (h28) 2128 g
ox \ ox oy \ oy g o2

If & is constant (tank of constant depth) this becomes
L 0 1%

- = 2 = . .
i T aw O (23)

This is the usual equation of wave motion in two dimensions
and shows that the velocity is 4/(gh). If we are concerned

with waves in one dimension, so that { is independent of
2

0 .
y (as in § 42) we put é—fz = 0 and retrieve (15).

We have therefore to solve the equation of wave
motion subject to the boundary conditions

(i) w =0atz= —nh,
(ii) -Z—i = 0 at a boundary parallel to the y axis, and
2—5 = 0 at a boundary parallel to the x axis,

0 0
(1ii) 8£ = 0 at any fixed boundary, where 3 denotes
v v

differentiation along the normal to the boundary. This
latter condition, of which (ii) is a particular case, can be
seen as follows. If lx+my =1 is the fixed boundary,
then the component of the velocity perpendicular to this
line has to vanish. That is, lu-+mv = 0. By differentiating
partially with respect to ¢ and using (21), the condition (iii)
is obtained.
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§ 44. Wo shall apply these formule to two cases ; first,
a rectangular tank, and, second, a circular one, both of
constant depth.

Rectangular tank.—Let the sides be x = 0, and y = 0, b.

Then a suitable solution of (23) satisfying all the boundary
conditions (i) and (ii) would be

(= A cos 27X " q Y cos (rmet-+-€), . (24)

where p=0,1,2...,¢=0,1,2, ..., and r* = p*/a®+¢*/b%.

This solution closely resembles that fora vibrating membrane
in Chapter ITI, §28, and the nodal lines are of the same
general type. The student will recognise how closely the
solution (24) resembles a “ choppy sea.”

Circular tank.—If the centre of the tank is origin and
its radius is a, then the boundary condition (iii) reduces to

0

6_5 =0 at r=a. Suitable solutions of (23) in polar
coordinates have been given in Chapter I, equation (35a).
We have

{ = A cos ml J ,(nr) cos (cnt--¢) . (25)

We have rejected the Y, solution since it is infinite at
r =0, and we have chosen the zero of 6 so that there is
no term in sin mf. This expression satisfies all the condi-
tions except the boundary condition (iii) at r = a. This
requires that J,,'(na) = 0. For a given value of m (which
must be integral) this condition determines an infinite
number of values of n, whose magnitudes may be found
from tables of Bessel Functions. The nodal lines are
concentric circles and radii from the origin, very similar
to those in fig. 10 for a vibrating membrane. The period
of this motion is 27/cn. \

§45. It is possible to determine the actual paths of
individual particles in many of these problems. Thus,
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referring to the rectangular tank of §42, the velocities
u and w are given by (18) and (19). We sce that

w_ et e

U l l
This quantity is independent of the time and thus any
particle of the liquid exccutes simple harmonic motion
along a line whose slope is given by the above value of
w/u. For particles at a fixed depth, this direction changes
from purely horizontal bencath the nodes to purely vertical
beneath the antinodes.

§46. We shall conclude our discussion of tidal waves
by applying the method of reduction to a steady wave,
already described in § 25, to the case of waves in a channel
of constant cross-section A and breadth of water-line b.
This is the problem of § 42 with A constant. Let ¢ be the
velocity of propagation of a wave profile. Then super-
impose a velocity —c¢ on the whole system, so that the
wave profile becomes stationary and the liquid flows under
it with mean velocity ¢. The actual velocity at any point
will differ from ¢ since the cross-scctional area of the liquid
is not constant. This area is 4-4-b{, and varies with (.
Let the velocity be ¢c-8 at sections where the elevation
is {. Since no liquid is piling up, the volume of liquid
crossing any plane perpendicular to the dircction of flow
is constant, i.e.

(A +b8)(c+0) = constant = Ac. . (26)

We have still to use the fact that the pressure at the free
surface is always atmospheric. In Bernouilli’s equation
at the free surface (9) we may put &¢/ot = O since the
motion is now steady motion; also V = g{ at the frec
surface. So, neglecting squares of the vertical velocity,
this gives

3(c+0)2 49 = const. = ic?.
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Eliminating § between this equation and (26), we have
Azc?

o T

2t = {1 gy = ot ]

Whence

ie.

29 (A+bL)?

= = =
b 241bL

(27)
If { is small, so that we may neglect { compared with A/b,
then this equation gives the same result as (16), viz.
¢ = gA[b. We can, however, deduce more than this
simple result. For if {>0, the right-hand side of (27) is
greater than gA/b, and if {<O0, it is less than gA/b. Thus
an elevation travels slightly faster than a depression and
8o it is impossible for a long wave to be propagated
without change of shape. Further, since the tops of waves
travel faster than the troughs, we have an explanation of
why waves break on the sea-shore when they reach shallow
water.

SURFACE WAVES

§47. We now consider Surface Waves, in which the
restriction is removed that the wavelength is much greater
than the depth. In these waves the disturbance is only
appreciable over a finite depth of the liquid. We shall
solve this problem by means of the velocity potential ¢.
¢ must satisfy Laplace’s equation (4) and at any fixed
boundary &¢/dv = 0, by (2). There are, however, two
other conditions imposed on ¢ at the free surface. The
first arises from Bernouilli’s equation (9). If the velocity
is so small that u?® may be neglected, and if the only
external forces are the external pressure and gravity, we
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may put u2=0 and V =g{ in this equation, which

becomes
o
SHE

] ) (28)
ot free surface

The second condition can be seen as follows. A particle
of fluid originally on the free surface will remain so always.
Now the equation of the free surface, where z = {(z, y, t)
may be written

0 =f(x’ y} z, t) = ;(x’ ?, t)_‘—z'
Consequently, f is a function which is always zero for a

particle on the free surface. We may therefore use (5)
with H put equal to f, and we find

O S
Dt 6t cy
l_: 120 oy  1lou
Now from (28) 5 ;i ( P — @ on the surface.

Thus g—i is a small quantity of order of magnitude not

greater than % ; consequently uz—i and vgz—i, being of
order of magnitude not greater than u?, may be neglected.

We are left with the new boundary condition

ol od
Combining (28) and (29) we obtain an alternative relation
0? 0
i +g—"S =0 . . . (30

ot? oz

We summarise the conditions satisfied by ¢ as follows :
(i) Laplace’s equation y2¢ = 0 in the liquid .  (2)
ii) 9¢/0v = O on a fixed boundary . . . (4)



74 WAVES

(i) ¢ = (l; %f on the free surface . . . (28)

oL o

(iv) i on the free surface . . . (29)
*b 9

(v) o2 T95, = 0 on the free surface . . (30)

Only two of the last three conditions are independent.

§48. Let us apply these equations to the case of a
liquid of depth % in an infinitely long rectangular tank,
supposing that the motion takes place along the length
of the tank, which we take as the x direction. The axes
of z and y lie, as usual, in the undisturbed free surface.
Condition (i) above gives an equation which may be
solved by the method of separation of variables (sec § 7),
and if we want our solution to represent a progressive
wave with velocity ¢, a suitable form of the solution would
be

¢ = (de™ -+ Be~™2) cos m(x—ct).

4, B, m and ¢ are to be determined from the other condi-
tions (ii)-(v). At the bottom of the tank (ii) gives d¢/0z=0,
ie. Ademh—Bemh —= 0. So Ae ™ = Be™* = 1(, say, and
hence

¢ = C cosh m(z+h) cos m(x—ct). . (31)

Condition (v) applies at the free surface where, if the
disturbance is not too large, we may put z =0, after
some reduction it becomes

¢? = (g/m) tanh mh.

Since m = 27/), where A is the wavelength, we can write
this
gA 27h

c? = é;tanh T . . . (32)
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Condition (iii) gives us the appropriate form of {; itis

{ = m—;—C cosh mh sin m(x—ct).

This expression becomes more convenient if we write a

for the amplitude of ; i.e.,a = ”l;—q cosh mh. Then

{ = a sin m(x—ct), .. .. (33
6 — ga cosh m(z-+h)
" mec  coshmh

If the water is very deep so that tanh (2mh/A) = 1, then
(32) becomes c¢? = gA/27, and if it is very shallow so
that tanh (2wh/A) = 2m7h/], we retrieve the formula of § 42
for long waves in shallow water, viz. ¢ = gh.

We have scen in Chapter I that stationary waves result
from superposition of two opposite progressive harmonic

waves. Thus we could have stationary waves analogous
to (33) and (34) defined by

{ = a sin mx cos mct, .. (35)

cos m(x—ct). . (34)

h -h
¢ = 7%; % sin mx sinmct. . (36)
We could use these last two cquations to discuss stationary

waves in a rectangular tank of finite length.

§ 49. We shall now discuss surface waves in two dimen-
sions, considering two cases in particular.

Rectangular tank.—With a rectangular tank bounded
by the planes x = 0, @ and y = 0, b, it is easily verified
that all the conditions of § 47 are satisfied by

qary

TTL
{=A cos 222 cos s cos rct ,
' a

__ g4 cosh r(z+h) pwx qmy .
¢ = s ooshh - C08, cos - sin ret
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where
p=12, ..;¢=1,2,..; r = 7¥p?/a®+¢*/b?) and
c2 = (g/r) tanh rh. S 70

Circular tank.—Suppose that the tank is of radius e
and depth A. Then choosing the centre as origin and
using cylindrical polar coordinates 7, 6, z, Laplace’s equation
(ef. Chapter I, § 7) becomes

2p 1op 10% 0%
e Trar Trha e =0 - 8

A suitable solution can be found from Chapter I, equation

(35a), which gives us a solution of the similar equation

¢ Lop 104 124

o T ror " rrogr o

in the form

+

I cos . CoS
¢ = Y, () gin mb gin "t
In this equation let us make a change of variable, writing
¢t = 1z, where 12 = —1. We then get Laplace’s equation
(38) and its solutions are therefore

h
b= 7o) G0 gz = 01,2,

In our problem we must discard the Y solution as Y, (r)
is infinite when r = 0. So, choosing our zero of ¢ suitably,
we can write
¢ = J (nr) cos mf (A cosh nz+B sinh nz).
At the bottom of the tank condition (ii) gives, as in § 48,
A sinh nh = B cosh nh, so that
¢ = C J ,(nr) cos mf cosh n(z-+h).

The constants m and n are not independent, since we
have to satisfy the boundary condition at r» = a. This
gives J,,'(na) = 0, so that for any selected m, n is restricted
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to have one of a certain set of values, determined from
the roots of the above equation. The function C above
will involve the time, and in fact if we are interested in
waves whose frequency is f, we shall try C o sin 2xft.
Putting C = D sin 2xnft, where D is now a constant
independent of r, 8, z or ¢, we have

¢ = DJ ,(nr) cos mb cosh n(z-+k) sin 2xft. (39)

The boundary condition § 47 (iii) now enables us to find {;
it is

{ = ?ﬂg—Df J m(nr) cos mf cosh nh cos 2nft . (40)

The remaining boundary condition §47 (iv) gives us the
period equation ; it is

—472f2 D J ,(nr) cos mb cosh nh sin 27ft
+gnD J,,(nr) cos mf sinh nk sin 2xft = 0.
ie. dn*f?=gntanhnh. . . . (41)

For waves with a selected value of m (which must be
integral) n is found and hence, from (41) f is found. We
conclude that only certain frequencies are allowed. Apart
from an arbitrary multiplying constant, the nature of the
waves is now completely determined.

§50. In § 48 we discussed the progressive wave motion
in an infinite straight channel. It is possible to determine
from (34) the actual paths of the particles of fluid in this
motion. For if X, Z denote the displacements of a particle
whose mean position is (z, z) we have

op  ga coshm(z+h)

X=- ox ¢ cosh mh sin m(z—of),

Z — ___a_f —_ _gg/ W_—_M cosm(x-—ct),
o0z ¢ coshmh
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in which we have neglected terms of the sccond order of
small quantities. Thus

_ga cosh m(z+h) '
X = me® coshmh m(z—et),
7 = gw sin m(z—ct).

" mc? cosh mh
Eliminating ¢, we find for the required path
Xz 72 g2a?

cosh2m(z k) + sinhm(z+h)  m* cosh®mh’ (42)

These paths are cllipses in a vertical plane with a constant
distance (2ga/mc?) sech mh between their foci. A similar
discussion could be given for the other types of wave
motion which we have solved in other paragraphs.

§ 51. The Kinetic and Potential encrgies of these waves
arc easily determined. Thus, if we measure the P.E.
relative to the undisturbed state, then, since {(z, y) is the
elevation, the mass of liquid standing above a base d4
in the ay planc is p{ dA4. Its centre of mass is at a height
3¢, and thus the total P.E. is

f%gpgsz, N V)

the integral being taken over the undisturbed area of
surface. Likewise the K.E. of a small element is § pu? dr,
d7 being the element of volume of the liquid, so that the
total K.E. is

T= f%pu%l‘r, . . . (44)

the integral being taken over the whole liquid, which may,
within our approximation, be taken to be the undisturbed
volume.

With the progressive waves of § 48, { and ¢ are given
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by (33) and (34), and a simple integration shows that the
K.E. and P.E. in one wavelength (27/m) are equal, and
per unit width of strcam, have the value

gpa®x . . . . . (4H)

In evaluating (44) it is often convenient to use Green’s
Theorem in the form *

T (3 (2 - ot

The latter integral is taken over the surface S which
bounds the original volume, and 8/dv represents differen-
tiation along the outward normal to this volume. Since
9¢/0v = 0 on a fixed boundary, some of the contributions
to 7' will gencrally vanish. Also, on the free surface, if
{ is small, we may put d¢/0z instead of d¢/dv.

§ 52. We shall next calculate the rate at which encrgy
is transmitted in one of these surface waves. We can

z

O ol — .

L a0

Fia. 15

illustrate the method by considering the problem discussed

in §48, i.e. progressive waves in a rectangular tank of

depth k. Let AA’ (fig. 15) be an imaginary plane fixed

in the liquid perpendicular to the direction of wave
* See Rutherford, Chapter VI, p. 66 (ii).
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propagation. We shall calculate the rate at which the
liquid on the left of 44" is doing work upon the liquid on
the right. This will represent the rate at which the energy
is being transmitted. Suppose that the tank is of unit
width and consider that part of 44’ which lies between
the two lines 2, z+dz {shown as PQ in the figure). At
all points of this area the pressure is p, and the velocity

is w. The rate at which work is being done is therefore
0

pudz. Thus the total rate isf pudz. We use Bernouilli’s
—h

equation (8) to give us p; since u? may be neglected,

and V = gz, therefore

o
P = Potp—, —9p2

Now, according to (1) u = —0d¢/0x and from (34),

__ga coshm(z-+h)
¢ " mec  coshmh cos m(z—cf).

Putting these various values in the required integral we
obtain

0
sin m(m—ct)f 9e coshm(z+A)

_nc¢ coshmh (po—gp2)dz

0 pg2a? coshZm(z-h)
- € cosh?mh

dz.

+ sin? m(x——ct)f

This expression fluctuates with the time, and we are
concerned with its mean value. The mean value of
sin m(x—ct) is zero, and of sin?m(x—ct) is 4. Thus the
mean rate at which work is being done is

2,2 0
%a— scch? mhf cosh? m(z-+h)dz.
—h

After some reduction this becomes

19patc (1 + 2mh cosech 2mh).
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In terms of the wavelength A = 27/m, this is

igpa% {1 +- -'—}-l' cosech 4——}}-"}
Now from (45) we see that the total energy with a stream
of unit width is %gpa? per unit length. Thus the velocity
of encrgy flow is

(46)

{1—}—%& cos Vchéz:\—h} . . (47)

We shall see in a later chapter that this vclocity is an
important quantity known as the Group Velocity.

§53. In the preceding paragraphs we have assumed
that surface tension could be neglected. However, with
short waves this is not satisfactory and we must now
investigate the effect of allowing for it. - When we say
that the surface tension is T, we mean that if a line of
unit length is drawn in the surface of the liquid, then
the liquid on one side of this line exerts a pull on the
liquid on the other side, of magnitude T. Thus the effect
of Surface Tension is similar to that of a membrane
everywhere stretched to a tension T (as in Chapter III,
§ 27), placed on the surface of the liquid. We showed in
Chapter IIT that when the membrane was bent there was
a downward force per unit area approximately equal to

i Thus in fig. 16, th, iust insid,
—-T é—x_§+—2 . us in fig. 16, the pressure p, just inside

oy
the liquid does not equal the atmospheric pressure p,,
but rather
L ¥
Py = Po—T {é—xz + 5?72} (48)

The reader who is familiar with hydrostatics will

recognise that the excess pressure inside a stretched film

(as in a soap bubble) is 1/R1+1/R2) where R; and R,

are the radii of curvature in any pair of perpendmular
F
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planes through the normal to the surface. We may put
R, = —02[/ox? and R, = —0%(/oy* to the first order of
small quantities, and then (48) follows immediately.

Fic. 16
Thus, instead of making p = p, at the free surface of

‘) 82
the liquid, the correct condition is that p—}—T{ i + 8;}
is constant and equal to p,. We may combine this with
Bernouilli’s equation (9), in which we necgleet u? and put
V = gz. Then the new boundary condition which replaces

§ 47 (iii) is

o2 a2
P HS o =0 . @

We still have the boundary condition § 47 (iv) holding,
since this is not affected by any sudden change in pressure
at the surface. By combining (29) and (49) we find the
new condition that replaces § 47 (v). Itis

0% op T o? op

5{;‘*‘95;“;‘{555‘}‘ y} =0 . (60)
We may collect these formulse together ; thus, with surface
tension

V% = 0 in the body of the liquid . 4)
(ii) 0¢/@v = O on all fixed boundaries . . (2)
0 0%
(iii) _4’ —gt + o + = i = 0 on the free surface
oa? oy?
(49)
(iv) otjot = —3<ﬁ/3z on the free surface . . (29)

(v) 82__95+ga_<j>“1{_63+6y}3¢_ 0 on the free

2 2
ar "o plow % surface . (50)
Only two of the last three equations are independent.
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§54. Waves of the kind in which surface tension is
important are known 'as capillary waves. We shall
discuss one case which will illustrate the conditions (i)-(v).
Let us consider progressive type waves on an unlimited
sheet of water of depth A, assuming that the motion takes
place exclusively in the direction of . Then, by analogy
with (31) we shall try

¢ = C cosh m(z+-h) cos m(x—ct). . . (51)
This satisfies (i) and (ii). (iv) gives the form of {, which is
== (C/c) sinh mh sin m(x—ct). . . (52)

We have only one more condition to satisfy ; if we choose
(v) this gives

—m2c2C cosh mh cos m(x—ct)-+mCy sinh mh cos m(x—ct)

+ Im”C sinh mh cosm(x—ct) = 0,
p

ie. ¢* = (g/m+Tm/p) tanhmh. . . . (53)

This equation is really the modified version of (32) when
allowance is made for the surface tension; if T =0, it
reduces to (32).

When & is large, tanh mh = 1, and if we write m = 2z/A,
we have
g A 2aT
—— 2—77 "X;;"o

2

(64)

The curve of ¢ against A is shown in fig. 17, from which
it can be secen that there is a minimum velocity which
occurs when A? = 47%T/gp. Waves shorter than this, in
which surface tension is dominant, are called ripples, and
it is seen that for any velocity greater than the minimum
there are two possible types of progressive wave, one of
which is a ripple. The minimum velocity is (49T/p)'/4,
and if, as in water, T =75, p = 100 and g = 981 c.g.s.
units, this critical velocity is about 23 cms. per sec., and
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the critical wavelength is about 17 cms. Curves of ¢ against
A for other values of the depth & are very similar to fig. 17.

A

v
>

Fia. 17

§ 65. Examples

(1) Find the Potential and Kinetic energies for tidal
waves in a tank of length /, using the notation of § 42.

(2) Find the velocity of any particle of liquid in the
problem of tidal waves in a circular tank of radius a (§ 44).
Show that when m = 0in (25), particles originally on a vertical
cylinder of radius r coaxial with the tank, remain on a coaxial
cylinder whose radius fluctuates ; find an expression for the
amplitude of oscillation of this radius in terms of ».

(3) Tidal waves are occurring in a square tank of depth h
and side a. Find the normal modes, and calculate the Kinetic
and Potential energies for each of them. Show that when
more than one such mode is present, the total cnergy is just .
the sum of the separate energies of each normal mode.

(4) What are the paths of the particles of the fluid in the
preceding question ?

(6) A channel of unit width is of depth h, where h = kz,
k being a constant. Show that tidal waves are possible with
frequency p/2s, for which

¢ = AJy(ax/2) cos pt,
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where a? = 4p?/kg, and J, is Bessel’s function of order zero.
It is known that the distance between successive zeros of
Jo(x) tends to # when z is large. Hence show that the wave-
length of these stationary waves increases with increasing
values of x (This is the problem of a shelving beach.)

(6) At the end of a shallow tank, we have x = 0, and the
depth of water h is b = hyz*™. Also the breadth of the tank
b is given by b = byx™. Show that tidal waves of frequency
p/27 are possible, for which

{ = Ax¥J (rxz?) cos pt,
where

s = 1—m, a® = p*lghg, r = afs, 2u = 1—2m—n and ¢ = |u/s |.

Use the fact that J,,(x) satisfies the equation

dxJ 1dJ m?
d;ﬁm*'(l";z)*’ =0

(7) Prove directly from the conditions (i)-(v) in § 47
without using the results of § 48 that the velocity of surface
waves in a rectangular channel of infinite depth is 1/(gA/27).

(8) Find the paths of particles of fluid in the case of surface
waves on an infinitely deep circular tank of radius a.

(9) A tank of depth A& is in the form of a sector of a circle
of radius a and angle 72°. 'What are the allowed normal modes
for surface waves ?

(10) If X, Y, Z denotes the displacement of a particle of
fluid from its mean position x, y, z in a rectangular tank of
sides @ and b when surfaco waves given by equation (37) aro
occurring, prove that the path of the particle is the straight line

b 1
il cot@ = — cot iy Y = —coth r(z+h) Z.
pw a qm b r
(11) Show that in surface waves on a cylindrical tank of
radius @ and depth A, the energies given by the normal modes
(39) are
2 3D2 2 a
V = __‘n____f_p cosh?nh cos227rftj J p2(nr) r dr, and
0

1 a
T = 3 nwpD? sin?*2xft cosh nh sinh nhf I 2(nr) r dr.
0
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Use the fact that the total cnergy must be independent of the
time to deduce from this that the period equation is
47%f* = gn tanh nh.

(12) Show that when we use cylindrical polar coordinates
to describe the capillary waves of § 53, the pressure condition
at the frce surface § 53 (iii) is

845 T f()2§ 1:'){ 1 82§]

okt < p Lo tra 2O |

Use this result to show that waves of this nature on a
circular basin of infinite depth are described by

$=0CJ (m') cos mb e"* cos 2xuft,

0.

{ = j J m(nr) cos m sin 2xft,
where I/ (na) = 0 and 47%f% = gn+Tn?/p.

(13) Show that capillary waves on a rectangular basin of
sides a, b and depth A are given by

cosh r(z-+h) mmx nwy
= A ————— 5 — S — S 2 i
¢ sinh rh cos b cos Zaft,
rA mnx nwy
= R —_ 27ft
4 o f 08 —— cos — sin 2xft,

wherom =0, 1, 2, ...; n =0, 1, 2 ...; 72 = n%(m?/a® +n?/b2),
and the period equation is
4m2f2 = (gr+Tr3/p) tanh rh.

Verify, that when n = 0, this i3 cquivalent to the result of
§ 54, equation (53).

[ANSWERS :

rmet ract

(1) % gpla,® cos? —%‘i + e,), } g9pla,? sin? (llc~ 4 e,) ;
(2) radial vel. is —(gA/c) cos m8 J,'(nr) sin (cnt + ¢), trans-
verse velocity is (gAm/enr) sin mb J,(nr) sin (cnt + €),

(gdfec) Jo'(nr); (3) L = A cos (pnz/a) cos (gmy[a) cos (rxct/a),
2= p? 4 ¢%; K.E.=1} gpA2? sin? (rnctfa), P.E.=1}% gpA®a?

X

cos? (rmetfa); (4) 5 =2 tan 27 cot I7Y; (8) X:V:Z =
Y q a a

nrd ' (nr) : —md ,(nr) tan mb :nr J,(nr); (9) Same as in

egns. (39)-(41) except that m = 5k/2, where k=0, 1, 2....]



CHAPTER VI

SOUND WAVES

§ 56. Throughout Chapter V we assumed that the liquid
was incompressible. An important class of problems is
that of waves in a compressible fluid, such as a gas. In
this chapter we shall discuss such waves, of which sound
waves are particular examples. The passage of a sound
wave through a gas is accompanied by oscillatory motion
of particles of the gas in the direction of wave propagation.
These waves are therefore longitudinal. Since the density
p is not constant, but varies with the pressure p, we require
to know the relation between p and p.  If the compressions
and rarefactions that compose the wave succeed each other
so slowly that the temperature remains constant (an
isothermal change) this relation is p = kp. But normally
this is not the case and no flow of heat, which would be
needed to preserve the temperature constant, is possible ;
in such cases (adiabatic changes)

p=kp?, . . . . . (1)

where k and y are constants depending on the particular
gas used. We shall use (1) when it is required, rather
than the isothermal relation.

§ 57. There are scveral problems in the propagation
of sound waves that can be solved without using the
apparatus of velocity potential ¢ in the form in which
we used it in Chapter V, §§47-54; we shall therefore
discuss some of these before giving the general development
of the subject.

87
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Our first problem is that of waves along a uniform
straight tube, or pipe, and we shall be able to solve this
problem in a manner closely akin to that of Chapter IV,
§32, where wo discussed the longitudinal vibrations of a
rod. We can suppose that the motion of the gas particles
is entirely in the direction of the tube, and that the velocity
and displacement are the same for all points of the same
cross-section.

Suppose for convenience that the tube is of unit cross-
sectional area, and let us consider the motion of that
part of the gas originally confined between parallel planes
at P and @ a distance dx apart (fig. 18). The plane P

P Q
X dx
X+£ f;;
Pl QI
F1a. 18

is distant z from some fixed origin in the tube. During
the vibration let PQ move to P'Q’, in which P is displaced
a distance ¢ from its mean position, and @ a distance
£4dé. The length P'Q" is therefore dx-+dfé. We shall
find the equation of motion of the gas at P'Q’. For this
purpose we shall require to know its mass and the
pressure at its two ends. Its mass is the same as the
mass of the undisturbed element P@, viz. pygdx, where p,
is the normal average density. To get the pressure at P’
we imagine the element dr to shrink to zero; this gives
the local density p, from which, by (1), we calculate the
pressure. We have

p = Lim pyda/(dz-+dg) — po(l _ i—f) @)
da->-0 z
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if we may neglect powers of 9f/0x higher than the first.

The quantity (p—p,)/pe Will often occur in this chapter ;
it is called the condensation s. Thus

s= —0tlox, p=polt+s). . . (3)
The net force acting on the element P'Q)’ is Dp =Py and
hence the equation of motion is

% __9%
Pz = Pp —Pq = — g
. *f _ _op
ie. Pogp = ~ 57 . . . (4)
We may rewrite (4) in the form
¢ dp odp _ dp 02¢
Pogp = dp or °dpa_x_2 from (2).

It appears then that ¢ satisfies the familiar equation of
wave motion

»E 10%
T agp C=dldp . (B)

This equation shows that waves of any shape will be
transmitted in either direction with velocity +/(dp/dp).
In the case of ordinary air at 0° C., using (1) as the relation
between p and p, we find that the velocity is ¢ = 332
metres per sec., which agrees with experiment. Newton,
who made this calculation originally, took the isothermal
relation between p» and p and, naturally, obtained an
incorrect value for the velocity of sound.

A more accurate calculation of the equation of motion
can be made, in which powers of 9£/dx are not neglected,
as follows. From (2) we have the accurate result

o¢\"
= y = —_—
p = kp kPoy/ (1+ M) .
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So, now using (4) in which no approximations have been
made,

26 ykpy ¢
Pogp = ( 3§)y+1 2a?
14 =
ox
2 2
ie. eE_yp 1 &

o’ po {1+0&/oxyr 1 ox?

Equation (5) is found from (6) by neglecting 8¢/0x compared
with unity. A complete solution of (6) is, however, beyond
the scope of this book. It is easy to sce that, since (6)
is not in the standard form of a wave equation, the velocity
of transmission depends upon the frequency, and hence
that a wave is not, in general, transmitted without change
of shape.

§58. We must now discuss the boundary conditions.
With an infinite tube, of course, there are no such condi-
tions, but with a tube rigidly closed at x = z,, we must
have £ = 0 at & = w,, since at a fixed boundary the gas
particles cannot move.

Another common type of boundary condition occurs
when a tube has one or more ends open to the atmosphere.
At this end, the pressure must have the normal atmospheric
value, and thus, from (1) and (2), 8¢/0x = 0.

To summarise :

. O 12% .

(i) 6_:10% X in the tube, and ¢ = dp/dp . )
(it) £=0ataclosedend. . . . . (7)
(iil) — g:—'i =s8=0at an openend. . . . (8)

§ 59. We shall apply these equations to find the normal
modes of vibration of gas in a tube of length I. These
waves will naturally be of stationary type.

(@) Closed at both ends x = 0, 1.—This problem is the
same mathematically, as the transverse vibrations of a
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string of length I, fixed at its ends (cf. Chapter II, § 19).
Conditions (i) and (ii) of § 58 give for the normal modes

l

(b) Closed atx = 0, open at x = I (a “ stopped tube »*).—
Here conditions (ii) and (iii) give ¢ =0 at z =0, and
0¢

P 0 at © = 1. The normal modes are

&= A,sin@cos {7:7—-;ff+er},r=1,2,.... 9)

£=A,sin (r+1) chos {(r+ 1) et —+—5,}, r=0,1,2,... (10)
2) 1 2) 1
(c) Open at both ends x = 0, .—We have to satisfy
the boundary condition (iii) 0£/0x = 0 at z =0, I. So
the normal modes are

£ = 4,05 " cos {'Z’z"_t 4-6,}, r=1,2.. (1)

In each case the full solution would be the superposition
of any number of terms of the appropriate type with
different 7. The fundamental frequencies in the three
cages are 2l/c, 4l/c, and 2l/c respectively. The harmonics
bear a simple numerical relationship to the fundamental,
which explains the pleasant sound of an organ pipe.

§ 60. We shall now solve a more complicated problem.
We are to find the normal modes of a tube of unit sectional
area, closed at one end by a rigid boundary and at the

Fia. 19

other by a mass M free to move along the tube. Let
the fixed boundary be taken as x = 0, and the normal
equilibrium position of the moveable mass be at x =1
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(fig. 19). Then we have to solve the standard equation
of wave motion with the boundary conditions that when
z =0, (ii) gives £ = 0, and that when z =1 the excess
pressure inside, p—p, must be responsible for the
acceleration of the mass M. This implies that

2
P—Po = M—a——‘f when x = [.

ot?
The first condition is satisfied by the function
&= Asinnxcos (nett+e) . . . (12)

To satisfy the second condition, we observe that
P—py = (dp/dp)(p—py) = —C*py0€/ox, from (3).
So this condition becomes

0% 23
M i —c2p, P at r=l.

x
Using (12) this gives, after a little reduction,
nl tan nl = lpy/M.

The allowed values of n are the roots of this equation.
There is an infinite number of them, and when M = 0, so
that the tube is effectively open to the air at one end,
we obtain equation (10) ; when M = oo, so that the tube
is closed at each end, we obtain equation (9).

§61. So far we have developed our solutions in terms
of £, the displacement of any particle of the gas from its
mean position. It is possible, however, to use the method
of the velocity potential ¢. Many of the conditions which
¢ must satisfy are the same as in Chapter V, but a few
of them are changed to allow for the variation in density.
It is convenient to gather these various formule together
first.

(i) If the motion is irrotational, as we shall assume,
u = —vy¢, (cf. Chapter V, equation (1)) . 13y
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(ii) At any fixed boundary, 64{)/611 =0 (cf. Chapter V,
equation (2)y. . . .. (19)

(iii) The equation of Continuity (cf. Chapter V, equation
(3)) is slightly altered, and it is *

a'°+V pu =0,

. op 0 0 .
Le. = + P (pu) + oy (pv) + 5; (pw) =0 . (15)

(iv) The equations of motion are unchanged; if F is
the external force on unit mass, in vector form,
they are

Du 1

ST F—-yp (cf Chapter V, equation (6)). (16)
P

(v) In cases where the external forces have a potential
V, we obtain Bernouilli’s equation (cf. ChapterV,
equation (8))

f@ + %u2+V_a—¢ = const. . . (17)
p ot

in which we have absorbed an arbitrary function of the
time into the term d¢/ot (cf. Chapter V, equation (8)).

§62. In sound waves we may neglect all external
forces except such as occur at boundaries, and thus we
may put V =0 in (17). Also we may supposec that the
velocities are small and neglect u? in this equation. With
these approximations Bernouilli’s equation becomes

dp “¢

— —— = const.

We can simplify the first term ; for J‘dp J‘((lp ) dp R

and if the variations in density are small, dp/dp may be
* Rutherford, § 67.
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taken as constant, and equal to ¢? as in (5). Thus

J\d‘?f) = GzJ‘d—f = c?log, p = c*{log,(14-s)--log, po}. So

d ) .
P c%s-}-const., if s is small. If we absorb this constant

in ¢, then Bernouilli’s equation takes its final form
cts—oplot =0 . . . (18)
Laplace’s equation for ¢ does not hold because of the
changed equation of continuity. But if u, », w and s
are small, (15) can be written in a simpler form by the
aid of (13) ; viz.,
po0s/Ot—py*h = 0.
This is effectively the same as
5 = Vi (19)
7=V . . .
Now let us climinate s between (18) and (19), and
we shall find the standard equation of wave motion
1 0%
2 — . T
Vi = i . . . (20)

This shows that ¢ is indeed the velocity of wave propaga-
tion, but before we can use this technique for solving
problems, we must first obtain the boundary conditions
for ¢. At a fixed boundary, by (i) d¢/ov = 0. At an
open end of a tube, the pressure must be atmospheric,
and hence s = 0. Thus, from (18),
edlot=0. . . . . (2
This completes the development of the method of the
velocity potential, and we can choose in any particular
problem whether we solve by means of the displacement
¢ or the potential ¢. It is possible to pass from one to
the other, since from (3) and (18)

o _ 194

ox T oetat

(22)
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§63. We shall illustrate these equations by solving the
problem of stationary waves in a tube of length I, closed
at one end (x == 0) and open at the other (x =1[). This
is the problem alrcady dealt with in §59 (b), and with

2 2
the same notation, we require a solution of Qif _ 1o
ox*  c* o2

subject to the conditions

odjox = 0 at x =0,

opjot = 0 at x = 1.
It is casily seen that

¢ = a cos mx cos (cmt-+te)

satisfies all these conditions provided that cos ml = 0,
ie. ml==/2, 3n/2, ... (r+1/2)7/2 .... So the normal
modes are

1\ 7z 1\ met
¢ = a,cos <r+ ;2) 7 cos {(H— 5) 7 ‘*‘fr},

and from this expression all the other properties of these
waves may easily be obtained. The student is advised
to treat the problems of § 59 (a) and (c) in a similar manner.

§64. Our next application of the equations of §62
will be to problems where there is spherical symmetry
about the origin. The fundamental equation of wave
motion then becomes (see Chapter I, equation (23))

2o 2010
ort ' ror ¢ o’

with solutions of progressive type
1 1
$ = -flr—ct) + - glr-+ci).

There are solutions of stationary type (see Chapter I,
equation (37))

cos  cos
¢ = (1)) . mr . cmi.
sin  sin
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If the gas is contained inside a fixed sphere of radius a,
then we must have ¢ finite when r = 0, and d¢/or =0
when r = a. This means that

¢ = f:— sin mr cos (cmit-+e¢),

with the condition
tanma =ma . . . . (23)

This period equation has an infinite number of roots which
approximate to ma = (n-+1/2)r when n is large. So for
its higher frequencies the system behaves very like a
uniform pipe of length ¢ open at one end and closed at
the other.

This analysis would evidently equally well apply to
describe waves in a conical pipe.

§65. We shall now calculate the energy in a sound
1
wave. The Kinetic energy is clearly 3 poudV, where

dV is an element of volume. In terms of the velocity
potential this may be written

[3piwdrar = = So[dgar + a9 5L as . cu

The last expression follows from Green’s theorem just as
in Chapter V, § 51, and the surface integral is taken over
the boundary of the gas. There is also Potential energy
because each small volume of gas is compressed or rarified,
and work is stored up in the process. To calculate it,
consider a small volume V,, which during the passage
of a wave is changed to V,. If s, is the corresponding
value of the condensation, then from (3), we have, to the
first degree in s,

V= Vol—s) .. . (2p)

Further, suppose that during the process of compression,
V and s are simultaneous intermediary values. Then we
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can write the work done in compressing the volume from
Vo to V, in the form ;fV1p dV. But, just as in (25),
V = V4(1—s), and hence "

aV = —V,ds.

We may also write p = po+(dp/dp)(p —pq)
= Po+C?pys-

Thus the potential energy may be written

8

f (Pot+Cpes) Vs = oV 81136200V g5

0

= po(Vo—V1)-+1c%0oV 5,2

This is the contribution to the P.E. which arises from the
volumo V,. The total P.E. may be found by integration.
The first term will vanish in this process since it merely
represents the total change in volume of the gas, which
we may suppose to be zero. We conclude, therefore, that

the Potential Energy isf % cpsdV . . . . (26)

It can easily be shown that with a progressive wave
the K.E. and P.E. are equal; this does not hold for
stationary waves, for which their sum remains constant.

§66. We conclude this chapter with a discussion of
the propagation of waves along a pipe whose cross-sectional
area A varies along its length. Our discussion is similar
in many respects to the analysis in § 57.

Consider the pipe shown in fig. 20, and let us measure
distances x along the central line. It will be approximately
true to say that the velocity w is constant across any
section perpendicular to the = axis. Suppose that the
gas originally confined between the two planes P, Q at

G
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distances z, z-}dz is displaced during the passage of a
wave, to P'Q’, the displacement of P being £ and of @
being £-+d¢. Consider the motion of a small prism of gas

Fic. 20

such as that shaded in the figure ; its equation of motion
may be found as in § 57, and it is

o op
Po a_tz = é_._’z . . . (27)

We must therefore find the pressure in terms of £&. This
may be obtained from the equation of continuity, which
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expresses the fact that the mass of gas in P'Q’ is the same
as that in PQ. Thus, if p is the density,

pod(@) 4z = p A(-+8) . {dn-+dE),
o, poA(@) = p{A(fo%‘-g}{ug—j}.
Negleoting small quantitics, this yiclds
Po = P{l‘i‘if— + é%}

Therefore

B ¢ foA\ 1o

Eliminating p between (27) and (28) we find

#¢  dpdp  , 2(1 8
P°W_~?i—b5i—cp°%[25;‘n(‘45) ;
where, as usual, 2= @ .
dp

So the cquation of motion is

eE L, (1o L0

= =% {A Fye (Af)J» . . . (29
In the case in which 4 is constant this reduces to the former
cquation (5). An important example when 4 is not
constant is the so-called exponential horn used on the
best acoustic gramophones ; here the tube is approximately
symmetrical about its central line and the area varies with
the distance according to the law 4 = A4, €?®, where a and
A, are constants.

With this form of 4, (29) reduces to

% c? jazf 2—5}

+2a

ot? | a2
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A solution is possible by the method of separation of
variables (see § 7). We soon find

¢ = ¢“M{B,em™% Bye™7},

where m, and m, are given by —a4-+/(a?—n?). In most
exponential horns n? is considerably larger than a? in the
range of audible frequencies, so that m,; and m, may be
written —a-+4-¢n. Thus

f — e—ax{Blein(ciaz) +B2ein(ct+z)} . . (30)

The first term represents a wave going outwards and the
second a wave coming inwards. We conclude from this
that waves can be sent outwards along the horn with a
velocity ¢ which is approximately independent of the
frequency, and with an attenuation factor e~¢* which is
also independent of the frequency. It is this double
independence which allows good rcproduction of whatever
waves are generated at the narrow end of the horn, and
which is responsible for this choice of shape in the best
gramophones. Other forms of 4 will not, in general, give
rise to the same behaviour.

§ 67. Examples

(1) Use the method of § 58 to investigate sound waves
in a closed rectangular box of sides a,, @, and a;. Show
that the number of such waves for which the frequency is less
than n is approximately equal to one-cighth of the volume
of the quadric 2%/a,24y%/a,2+2%/a,® = 4n?/c®. Hence show
that this number is approximately 4nna,a,a,/3c3.

(2) Investigate the reflection and transmission of a train
of harmonic waves in a uniform straight tube at a point
where a smooth piston of mass M just fits into the tube and
is free to move.

(3) Show that the kinetic and potential energies of a plane
progressive wave are equal.

(4) Show that the kinetic and potential energies of
stationary waves in a rectangular box have a constant sum.

(5) Find an equation for the normal modes of a gas which
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is confined between two rigid concentric spheres of radii
a and b. .

(6) Show that a closer approximation to the roots of
equation (23) is ma = (n+1/2)7r—1/{(n+1/2)x}.

(7) Find numerically the fundamental frequency of a
conical pipe of radius 1 metre open at its wide end.

(8) The cross-sectional area of a closed tube varies with the
distance along its central line according to the law 4 = Ayx™.
Show that if its two ends are # = 0, and x = [, then standing
waves can exist in the tube for which the displacement is
given by the formula

¢ = al-m12J, (gz/c) cos {gqct+e},

whero m = (n+1)/2 and J,(gl/c) = 0.
Use the fact that J,,(x) satisfies the equation
aJ 1dJ

m2
wteat(1-m)7 =0
[ANswERs : 2. reflection coefft. = {1--4pg2/M2n2}—1/2,
transmission cocfft. = {1+M2n?[4p2}~1/2; 5. period = 2x/pc,
where (abp?+-1) sin p(b—a) = p(b—a) cos p(b+a); 7. 166.]



CHAPTER VIl
ELECTRIC WAVES *

§ 68. Before we discuss the propagation of electric waves,
we shall summarise the most important equations that we
shall require. These arc known as Maxwell's equations.
Let the vectors E (components E,, £, E,) and H (com-
ponents H;, H,, H,) denote the electric and magnetic
field strengths. These are defined { as the forces on a
unit charge or pole respcctively when placed inside a
small needle-shaped cavity, the dircction of the cavity
being the same as the direction in which we wish to measure
the component of E or H. We shall suppose that all our
media are isotropic with no ferromagnetism or permancnt
polarisation ; thus, if we write ¢ for the dielectric constant,
and p for the permeability, then the related vectors,
viz. the magnetic induction B and the dielectric dis-
placement D are given by the equations B = pH, D = €E.
Further, let j (components js, j,, j.) denote the current
density vector, and p the charge density. Then, if we
measure j, B and H in electromagnetic units, E and D
in electrostatic units, writing ¢ for the ratio between the
two sets of units,} Maxwell’s equations may be summarised
in vector form as follows :
div D = 4mp . . . . . (1)
divB=20. . . . . . (2)

* Before reading this chapter, the student is advised to
familiarise himself with the equations of electromagnetism, as
found in text books such as those by Jeans, Pidduck, or
Abrahara-Becker.

1 See, e.g., Abraham-Becker, Chapters IV, VII.

i This system is known as the Mixed System. If we had used
entirely e.s.u., or entirely e.m.u., the powers of ¢ would have been
different. Particular care is required in discussing the units in

(3) and (7). In this chapter ¢ will always denote the ratio of the
two sets of units.

102
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10D

curl H = 4mj+ i e 3)

’ " 1¢B
E=—-2 . . . . @
curl S5 4)
D =¢E Y )]

To these equations we must add the relation between j
and E. If ¢ is the conductivity, which is the inverse of
the specific resistance, this relation is

j=oBE . . . . . O

For conductors ¢ is large, and for insulators it is small.
The above equations have been written in vector form ;
until the student has acquired familiarity with the use of
the vector notation and operation, he is advised to verify
the various calculations of this chapter, using the equations
in Cartesian form as well as vector form. This will soon
show how much simpler the vector treatment is, in nearly
every case. If we wish to write these equations in their
full Cartesian form, we have to remember that
L oDy oD, 0D,
divD=y.D = T + o + % and that
¢H, ©H, ¢éH, ¢0H, ¢H, BHx)

IH=yxH= |22 %5
our v (8y oz’ oz ox ' ow oy

The preceding equations then become

S ieam ) Ze T Too @)
¢H, oHy . . 10D B 0B, _ 10B
oy 0z Pl ot dy o c ot
oH, 0H, 10D oK, OF, 10B
Tt m Y T w s e
¢H, @oH, 12D, o, oE, 1B,
R AR o
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D,=¢E, ,D,=€k, ,D,=¢bE, . . (8"
By = uH,,B,=puH,,B, = pH, . . (8"
jo =08y, jy=0B, , jo=aB, . . (7

Equations (1)-(4) are sometimes called Maxwell’s
Equations and equations (5)-(7) constitutive relations.
Simple physical bases can easily be given for (1)-(4).
Thus, (1) represents Gauss’ Theorem, and follows from the
law of force between two charges; (2) represents the fact
that isolated magnetic poles cannot be obtained; (3) is
Ampére’s Rule that the work done in carrying a unit pole
round a closed circuit equals 47 times the total current
enclosed in the circuit ; part of this current is the conduc-
tion current j and part is Maxwell’s displacement current

1 oD
dme ot ’

These seven equations represent the basis of our
subsequent work. They need to be supplemented by a
statement of the boundary conditions that hold at a change
of medium. If suffix » denotes the component normal to
the boundary of the two media, and suffix s denotes the
component in any direction in the boundary plane, then
on passing from the one medium to the other

(4) is Lenz’s law of induction.

D,, B,, B, and H, are continuous . . (8

In cases where there is a current sheet (i.e. a finite
current flowing in an indefinitely thin surface layer) some
of these conditions need modification, but we shall not
discuss any such cases in this chapter.

There are two other important results that we shall
use. First, we may suppose that the electromagnetic
field stores energy, and the density of this energy per unit
volume of the medium is

1
SlEEy . . )

Second, there is a vector, known as the Poynting
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vector, which is concerned with the rate at which energy
is flowing. This vector, whose magnitude and direction
are given by

c

o ExH, . . . . (0

represents the amount of energy which flows in unit time
across unit area drawn perpendicular to it. E and H are
generally rapidly varying quantities and in such cases it is
the mean value of (10) that has physical significance.

§69. We shall first deal with non-conducting media,
such as glass, so that we may put o = 0in (7) ; we suppose
that the medium is homogeneous, i.e. € and p are constants.
If, as usually happens, there is no residual charge, we may
also put p=0 in (1), and with these simplifications,
Maxwell’s equations may be written

divE=0,divH =0,

H
curl E = —Ea—— curlH:Ea—EJ
c ot

c o’
These equations lead immediately to the standard cquation
of wave motion, for we know * that

(11)

ourl curl H = grad div H—y?H.

Consequently, from the fourth of the equations in (11),
we find

€ /B €0
iv H—y?H = - curl — = - — :
grad div \v p curl % ol curl E

Substituting for div H and curl E, we discover the standard
equation

€u 0°H
c? ot?

VH = (12)

* Rutherford, Vector Methods, p. 69, equation (10).
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Eliminating H instead of E we find the same equation for E:

eu O°E
T oo
According to our discussion of this equation in Chapter I,
this shows that waves can be propagated in such a medium,
and that their velocity is ¢/4/(en). In free space, where
€ = p =1, this velocity is just c. Now ¢, which was
defined as the ratio of the two scts of electrical units,
has the dimensions of a velocity, and its magnitude can
be obtained experimentally; it is approximately 2-998 . 1010
cms. per sec. But it is known that the velocity of light
in free space has exactly this same value. We are thus
led to the conviction that light waves are electromagnetic
in nature, a view that has subsequently received complete
verification. X-rays, y-rays, ultra-violet waves, infra-red
waves and wireless waves are also electromagnctic, and
differ only in the order of magnitude of their wavelengths.
We shall be able to show later, in § 71, that these waves
are transverse.

In non-conducting dielectric media, like glass, € is not
equal to unity ; also u depends on the frequency of the
waves, but for light waves in the visible region we may
put u = 1. The velocity of light is therefore ¢/4/e. Now
in a medium whose refractive index is K, it is known
experimentally that the velocity of light is ¢/K. Hence,
if our original assumptions are valid, e = K2 This is
known as Maxwell’s relation. It holds good for many
substances, but fails because it does not take sufficiently
detailed account of the atomic structure of the dielectric.
It applies better for long waves (low frequency) than for
short waves (high frequency).

2

(13)

§ 70. A somewhat different discussion of (11) can be
given in terms of the electric and magnetic potentials.
Since div H = 0, it follows that we can write

H = curl A, . .. (14)
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where A is a vector yet to be determined. This equation
does not define A completely, since if i is any scalar,
curl (A+grad ¢) = curl A. Thus A is undefined to the
extent of addition of the gradient of any scalar, and we
may accordingly impose one further condition upon it.
H

If H=curl A, and curl E = — %%Z , it follows, by

elimination of H, that

A
curlJ'EH—l"La ] = 0.

ot |
Integrating,
1% OA
= — grad
c ot grad ¢,
where ¢ is any arbitrary function,
A
ie. E= —grad¢— = %t— . . (15)

In cases where there is no variation with the time, this
becomes E = —grad ¢, showing that ¢ is the analogue
of the electrostatic potential.

Eliminating H from the relations H = curl A,

0E
curl H = %—a—t-, and using (15) to eliminate E, we find

. € b _ ped’A
d divA—y2A = ——grad = .
grad div \v; serd = — 5 o
. € A . € 0
L. A = Al - T},
ie v, = + grad {dIV + p at}
Let us now introduce the extra allowed condition upon A,
and write 95
div A—}— =0 . . . (16)

Then A satisfies the standard equ&tion of wave motion

ep 02A
A = - — . . .
\% 2 a7 (17)
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Further, taking the divergence of (15), we obtain, by (16)

—divE= —y%— " Cdiva— —grgq LTI
0=div E= —y?% - 6tdlvA_— Vi + iR
Thus ¢ also satisfics the standard equation

82
Vz‘ﬁ:%ég' N )|

A similar analysis can be carried through when p and j
are not put equal to zero, and we find

H = curlA . . . . (14
E = —grad qﬂ—g%i—: . . (15)
0 = divA+Zaa—(f. .. (18)
VA = %2’5%2;—‘ —4n . . Q7)
v = LT6_ e as)

¢ and A are known as the electric potential and magnetic
or vector potential respectively. It is open to our
choice whether we solve problems in terms of A and ¢,
or of E and H. The relations (14’)-(18’) enable us to pass
from the one system to the other. The boundary condi-
tions for ¢ and A may easily be obtained from (8), but
since we shall always adopt the E, H type of solution,
which is usually the simpler, there is no need to write
them down here.

There is one other general deduction that can be made
here. If we use (3), (6) and (7) we can write, for
homogeneous media,

curl H = 4n¢E +53—E.
c ot
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Taking the divergence of each side, and noting, from (1),
that div E = 4wp/e, we find

€op
- +4mop = 0.
Thus, on integration,
p = poe~ "0, where 0 = ¢/dmoc . . (19)

0 is called the time of relaxation. It follows from (19)
that any original distribution of charge decays exponentially
at a rate quite independent of any other electromagnetic
disturbances that may be taking place simultancously,
and it justifies us in putting p=0 in most of our
problems. With metals such as copper, 8 is of the order
of 10713 gecs.,, and is beyond measurement; but with
dielectrics such as water @ is large cnough to be deter-
mined cxperimentally.

§ 71. We next discuss plane waves in a uniform non-
conducting medium, and show that they are of transverse
type, E and H being perpendicular to the direction of
propagation. Let us consider plane waves travelling with
velocity V in a direction I, m, n. Then E and H must be
functions of a new variable

w=le+my+nz—Vt . . . (20)

When we say that a vector such as E is a function of «,
we mean that each of its three components separately
is a function of w, though the three functions need not
be the same. Consider the fourth equation of (11). Its
2-component (see (3')) is

oH, oH, e?k,
dy oz cat '
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If dashes denote differentiation with respect to u, this is

LY
mH,—nH, = — €~c— B, .
Integrating with respect to u, this becomes
14
mH,—nH, = — Ec— E,,

in which we have put the constant of integration equal
to zero, since we are concerned with fluctuating fields
whose mean value is zero. There are two similar equations
to the above, for £, and E,, and we may write them as
one vector equation. If we let n denote the unit vector
in the direction of propagation, so that n = (I, m, n), we
have

nxnz—fcl/E. R 1 )

Exactly similar treatment is possible for the third equation
of (11) ; we get

nXE:"-‘ng (22

Equation (21) shows that E is perpendicular to n and H,
and (22) shows that H is perpendicular to n and E. In
other words, both E and H are perpendicular to the direc-
tion of propagation, so that the waves are transverse, and
in addition, E and H are themselves perpendicular, E,
H and n forming a right-handed set of axes. If we
eliminate H from (21) and (22) and use the fact that

nX[nXE]=@n.En—m@n.n)E = —E,

since n is perpendicular to E and n is a unit vector, we
discover that V2 = c?/eu, showing again that the velocity
of these waves is indeed ¢/4/(ep).

It is worth while writing down the particular cases of
(21) and (22) that correspond to plane harmonic waves
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in the direction of the z axis,
The solutions are

x or y directions.

and with the E vector in the

B, =0 H, = —/(e]p)acnt=21V)

B, = ag?t==V) H,=0 (23)
E, =0 H, =0.

B, = bgrt—2V) H,=0

Ev =0 Ha/ = +\/(6/#)beil'(t~z/y) (24)
E, =0 H, = 0.

In accordance with §10, a

and b may be complex, the

arguments giving the two phases. It is the general
convention * to call the plane containing H and n the
plane of polarisation. Thus (23) is a wave polarised
in the xz plane, and (24) a wave polarised in the yz plane.
By the principle of superposition (§6) we may superpose
solutions of types (23) and (24). If the two phases are
different, we obtain elliptically polarised light, in which
the end-point of the vector E describes an cllipse in the
xy plane. If the phases are the same, we obtain plane
polarised light, polariscd in the plane y/x = —bfa. If
the phases differ by /2, and the amplitudes are equal,
we obtain circularly polarised light, which, in real form,
may be written

Ey=acos pt—2/V) Hy= —4/(e/n) asin p(t—z/V)
E,=asinpit—z/V) H,= +4+/(e/p) a cos p(t—z/V)
E, =0 H, = 0. (25)

The end-points of the vectors E and H each describe
circles in the xy plane.

In all three cases (23)-(25), when we are dealing with
free space (¢ = p = 1) the magnitudes of E and H are

equal.

§ 72. By the use of (10) we can easily write down the
rate at which energy is transmitted in these waves. Thus,

* To which, unfortunately, not all writers conform.
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2
with (25) the Poynting Vector is simply (0, 0, %\/ 5)

This vector is in the direction of the positive z-axis, showing
that energy is propagated with the waves. According to
(9), the total energy per unit volume is

1 1
— {eE2? 2 gl
SW{GE +uH?} I

From these two expressions we can deduce the velocity
with which the energy flows; for this velocity is merely
the ratio of the total flow across unit area in unit time
divided by the energy per unit volume. This is ¢/4/(eu),
go that the energy flows with the same velocity as the
wave. This does not hold with all types of wave
motion; an exception has already occurred in liquids
(§ 52).

When we calculate the Poynting Vector for the waves

(23) and (24), we must remember that f— EXH is not a
7

linear function and consequently (see § 10) we must choose
either the real or the imaginary parts of E and H. Taking,
for example, the real part of (23), the Poynting Vector
lies in the z direction, with magnitude

\/6— -c—azcos2 12
p 4 ")

This is a fluctuating quantity whose mean value with

2
respect to the time is 081\/ <. The energy density, from
7V

. €a? . .
(9), is % cos’p(t—z/V), with a corresponding mean value
ea’/8w. Once again the velocity of transmission of energy

. ca? a?
is —~/£+€§7—T= c/+/(ep), which is the same as the
wave velocity.
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§ 73. We shall next discuss the reflection and refraction
of plane harmonic light waves. This reflection will be
supposed to take place at a plane surface separating two
non-conducting dielectric media whose refractive indices are
K, and K,. Since we may put u, = u, = 1, the velocities
in the two media are ¢/K,, ¢/K,. In fig. 21 let Oz be the

@A\@

Fia. 21

direction of the common normal to the two media, and let
A0, OB, OC be the directions of the incident, reflected
and refracted (or transmitted) waves. We have not yet
shown that these all lie in a plane ; let us suppose that
they make angles 0, 8 and ¢ with the z axis, O4 being
in the plane of the paper, and let us take the plane of
incidence (i.e. the plane containing 04 and 0z) to be the
xz plane. The y axis is then perpendicular to the plane
of the paper.

H
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Since the angle of incidence is 8, then as in (20), each
of the three components of E and H will be proportional to

giplct—E,(z sin 6+z cos 0)}

Let the reflected and transmitted rays move in directions
(4, my, my) and (I, my, my) respectively. Then the corres-
ponding components of E and H for these rays will be
proportional to

eip{ﬂt — K (L +myy +n,2)} and e”:p(d — Ky(l +may +1m2)}

Thus, considering the £, components, we may write the
incident, reflected and transmitted values
Al —Ka(wsinf+zcos0)) | A owlct—Eilhwtmy+ma)}  and
A2eip{ct — Ey(Lz +may +m2)},

These functions all satisfy the standard equation of wave
motion and they have the same frequency, a condition
which is necessary from the very nature of the problem.

We shall first show that the reflected and transmitted
waves lie in the plane of incidence. This follows from the
boundary condition (8) that £, must be continuous on the
plane z =0, i.e. for all z, y, ¢,

Aeip(ct—Ezsin6) | Aleip{ct —Ki(hz+my)} — 4 2eip{ct — Byl +may))

This identity is only possible if the indices of all three
terms are identical : i.e.

ct—K,x sin 0 = ct—K, (l,x+m,y) = ct—K,(lyz-+myy).
Thus K, sin 0 = K l, = K,l,,
0 = Kym, = Kym,.
The second of these relations shows that m; = m, = 0,
so that the reflected and transmitted rays OB, OC lie in
the plane of incidence xOz. The first relation shows that

l, =sin 0, ie. that the angle of reflection 6’ is equal to
the angle of incidence 8, and also that

Kisinf=K,sing . . . (26)
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This well-known relationship between the angles of
incidence and refraction is known as Snell’s law.

Our discussion so far has merely concerned itself with
directions, and we must now pass to the amplitudes of
the waves. There are two main cases to consider, according
as the incident light is polarised in the plane of incidence,
or perpendicular to it.

Incident light polarised in the plane of incidence.—The
incident ray AO has its magnetic vector in the xz plane,
directed perpendicular to 40. To express this vector in
terms of x, ¥, z it is convenicnt to use intermediary axes
£, m, £ (see fig. 22, where 7 is not shown, however, as it

AN

///////////////>

Fig. 22

is parallel to Oy and perpendicular to the plane of the
paper). { is in the direction of propagation, and £ is in
the plane of incidence. Referred to these new axes, H
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lies entirely in the & direction, and E in the 7 dircction.
We may use (23) and write
Et = By = 0, By = a,e?C= K,
Hy=H;=0,H; = —Ka,dPt= %9,
Now { = x sin 0+z cos 0, and so it follows that :
incident wave

Ea: =0, Hx — ——Kﬂ’q cos B eip(ct—K,(zsin0+zcos 0)} ,

Ey — aleip(ct—K‘(z sin 842z cos 0)} , Hy = 0,

E, =0, H,= K, sin 0 oivict— Ky(zsin §+zcos 0)}
Similar analysis for the reflected and refracted waves
enables us to write
reflected wave

E,=0, H,= Kb cosf giplet—Ey(@sin f—zcos )}

— bleip{ct—K,(xsin()—zcos@)} , Hy = 0,

E,=0, H,= Kb, sinf gip{ct — Ky(@sinf—zcos )} .
refracted wave

E,=0, H,= —K,,cos ¢ eiplct—Kiasing+zcos )} |

E’y — azeip{ct—K,(xsln¢+zcos¢)} , H” = 0,

E,=0, H,= Ky,sin ¢ eplct—EKizsing+zcos )},

We may write the boundary conditions in the form that
E,, B, K?E, H,, H, and H, are continuous at z = 0.
These six conditions reduce to two independent relations,
which we may take to be those due to &, and H,, :

1+4by = ay,
—K,a, cos 04K b, cos § = —K,a, cos ¢.
Thus
a, _ by )
K,cos0+Kycos¢p K cos0—K,cosd 2K, cos0"
Using Snell’s law (26) in the form K, : K, = sin ¢ : sin 6,
this gives

a, by a,

sin (0+¢) —sin(0—¢) 2sin $cosf’

(27)
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Equation (27) gives the ratio of the reflected and refracted
amplitudes. If medium 2 is denser than medium 1, K,>K,,
so that 0>¢, and thus b,/a, is negative; so there is a
phase change of « in the electric field when reflection takes
place in the lighter medium. There is no phase change on
reflection in a denser medium, nor in the refracted wave.

Incident light polarised perpendicular to the plane of
incidence.—A similar discussion can be given when the
incident light is polarised perpendicular to the plane of
incidence ; in this case the rdles of E and H are practically
interchanged, H, for example being the only non-vanishing
component of H. It is not necessary to repeat the analysis
in full. With the same notation for the amplitudes of the
incident, reflected and refracted waves, we have

ay b1 . Ay

8in 20+ sin 2¢ ~ sin 20— sin 2¢ 4 cos Osin g’
If reflection takes place in the lighter medium, K,<K,,
0>¢, and there is no phase change in E at reflection ;
if K,>K, then there is a phase change of .

It follows from (28) that the reflected ray vanishes if
sin 20 = sin 2¢. Since 6 # ¢, this implies that +¢ = 7/2,
and then Snell’s law gives

K, sin § = K, sin ¢ = K, cos 0,

(28)

So
tan @ = KK, = v/(e;Je;) . . (29)

With this angle of incidence, known as Brewster’s angle,
there is no reflected ray.

In general, of course, the incident light is composed of
waves polarised in all possible directions. Equations (27)
and (28) show that if the original amplitudes in the two
main directions are equal, the reflected amplitudes will
not be equal, so that the light becomes partly polarised
on reflection. When the angle of incidence is given by
(29) it is completely polarised on reflection. This angle is
therefore sometimes known as the polarising angle.
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§ 74. An interesting possibility arises in the discussion
of § 73, which gives rise to the phenomenon known as
total or internal reflection. It arises when reflection
takes place in the denser medium so that ¢>0. If we
suppose 8 to be steadily increased from zero, then ¢ also
increases and when sin 0 = K,/K,, ¢=m=/2. If 0 is
increased beyond this critical value, ¢ is imaginary.
There is nothing to disturb us in this fact provided that
we interpret the analysis of § 73 corrcctly, for we never
had occasion to suppose that the coefficients were real.
We can easily make the necessary adjustment in this
case. Take for simplicity the case of incident light
polarised in the plane of incidence. Then the incident
and reflected waves are just as in our previous calculations.
The refracted wave has the same form also, but in the
exponential term, K, sin ¢ = K, sin 0, and is therefore
real, whereas

K, cos ¢ = 4/(K2—K,? sin? ¢) = +/(K,2—K,2 sin? ),

and is imaginary, since we are supposing that internal
reflection is taking place and therefore K, sin §>K,. We
may therefore write K, cos ¢ = -ig, where ¢ is real.
Thus the refracted wave has the form

Ev _ azeip(ct— K, sinf z :+-igz)
= aye 4 pgzpip(ct— K, sinfl 7).

For reasons of finitencss at infinity, we have to choose
the negative sign, so that it appears that the wave is
attenuated as it proceeds into the less dense medium.
For normal light waves it appears that the penctration
is only a few wavelengths, and this justifies the title
of total reflection. The decay factor is

e—P — o—D/ (K sin’a——K,')z_
This factor increases with the frequency so that light of

great frequency hardly penetrates at all. In actual
physical problems, the refractive index does not change
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from K, to K, abruptly, as we have imagined ; however,
Drude has shown that if we suppose that there is a thin
surface laycr, of thickness approximately equal to one
atomic diameter, in which the change takes place smoothly,

the results of this and the preceding paragraphs are hardly
affected.

§75. In our previous calculations we have assumed
that the medium was non-conducting, so that we could
put ¢ = 0. When we remove this restriction, keeping
always to homogeneous media, equations (1)-(7) give us

div E = 0,
div H = O,
0B
curl H = 47coE +S -,
¢ ot
CH
curl B = —# (—
¢ ot
Now curl curl E = grad div E—y2E = —y2E, so that
0H 0 dmop OB e O*E
=P oS Py = TR = OE
v ¢ ot c ot c ot c® a2’
. ew O® B 4mou 0B
.e. B =0 —=— . 0
e v c? 8t2+ c ot (30)

A similar equation holds for H. Equation (30) is the
well-known cquation of telegraphy (see §9). The first
term on the right-hand side may be called the displacement,

C . 1 ¢D
term, since it arises from the displacement current — —

4d7rec Ot
and the second is the conduction term, since it arises from

the conduction current j. If we are dealing with waves
whose frequency is p/27, E will be proportional to eit;
the ratio of these two terms is thercfore ep/4mco. Since
€ is gencrally of the order of unity, this means that if
/27 i3 much greater than co, only the displacement term
matters (this is the case of light waves in a non-conducting
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dielectric) ; but if p/27 is much less than co, only the
conduction term matters (this is the case of long waves
in a good metallic conductor). In the intermediate region
both terms must be retained. With most metals, if p<<107
we can neglect the first term, and if p>10® we can neglect
the second term.

Let us discuss the solutions of (30) which apply to
plane harmonic waves propagated in the z direction, such
that only E, and H, are non-vanishing (as in (24)). We
may suppose that each of these components is pro-
portional to

¢rt—a) . . . (31

where p/2m is the frequency and ¢ is still to be determined.
This expression satisfies the equation (30) if

¢ = %’_2" {1— 4:’;“ z} N & )
q is therefore complex, and we may write it
where 7=
=5 (- ()7
R

The * velocity ” of (31) is 1/g; but we have seen in § 73
that in a medium of refractive index K the velocity is ¢/K.
So the effective refractive index is cq which is complex.
Complex refractive indices occur quite frequently and are
associated with absorption of the waves; for, combining
(31) and (33) we have the result that E, and H, are
proportional to

e ~PBzgip(t—2) . . . (34)

This shows that a plane wave cannot be propagated in
such a medium without absorption. The decay factor may
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be written e~*% where k¥ = pf. kis called the absorbtion
coefficient. In the case where 4moc/ep is small compared
with unity (the case of most metals), k& is approximately
equal to 2moy/(ufe). Now the wavelength in (34) is
A = 27njap, so that in one wavelength the amplitude
decays by a factor e~ % approximately e~*7"0/P.  Ag
we are making the assumption that co/ep is small, the
decay is gradual, and can only be noticed after many
wavelengths. The distance travelled before the amplitude
is reduced to 1/e times its original value is 1/k, which is
of the same order as o.

The velocity of propagation of (34) is 1l/a, and thus
varies with the frequency. With our usual approximation
that co/ep is small, this velocity is

¢ [, 1({2moc\2)
a5y W

We can show that in waves of this character E and H
are out of phase with each other. For if, in accordance
with (31), we write

E, = a ¢?t-0),
H" =) eip(t~qz),

then the y-component of the vector relation

curl B = — & %I— R
c ot
gives us the connection between @ and b. It is
oE,, woH,
oz ¢ o’
ie. qa=’§b .. .. (38

Thus b/a is equal to (c/u)g. Now g is complex and hence
there is a phase difference between E, and H, equal to
the argument of g. This is tan~'(B/a), and with the same
approximation as in (35), thisis just tan-!(2moc/ep), which
is effectively 2mac/ep.
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§76. It is interesting to discuss in more detail the
case in which the conductivity is so great that we may
completely neglect the displacement term in (30). Let
us consider the case of a beam of light falling normally
on an infinite metallic conductor bounded by the plane
z=10. Let us suppose (fig. 23) that the incident waves

FREE SPACE METAL

€= p-1

_—

Fia. 23

come from the negative direction of z, in free space, for
which € = p = 1, and are polarised in the yz plane. Then,
according to (24) they are defined by :

incident wave

E, = a, eip(t—2z/c) , Hv = a; ein(t—zfe),

reflected wave
E, = b, gipittale) H, = —b, eipt+zje),
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In the metal itself we may write, according to (31) and (36),
E, = a, etP(t—qz)

c :
, H, = —qa,ePt-ao)
7

These values will satisfy the equation of telegraphy (30)
in which we have neglected the displacement term, if

@ = — 47;‘0#@, — o,
pc
where 9% = 2mop/pe. Thus
g=19yl=2). . . . . N 1))

Inside the mctal, E and H have a 7/4 phase difference,
since, as we have shown in (36), this phase difference is
merely the argument of q.

The boundary conditions are that E, and H, are
continuous at z = 0. This gives two cquations

a,+b; = a,,
c
a,—by = — qa,.
Hence
a by g
=3 - . . (38)

1+ 1-Y
p p
Since ¢ is complex, all three electric vectors have phase
differences. The ratio B of reflected to incident energy
is |by/a, |2, which reduces to
(cy—p)? + (cy)?
(ey+p)® + (cy)?

In the casc of non-ferromagnetic metals, ¢y is much larger
than p, so that approximately

R = 1—2-——/1’
ey
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This formula has been checked excellently by the experi-
ments of Hagen and Rubens, using wavelengths in the
region of 10-% cms.

It is an easy matter to generalise these results to apply
to the case when we include both the displacement and
conduction terms in (30).

We can use (38) to calculate the loss of energy in the
metal. Ifwe consider unit area of the surface of the metal,
the rate of arrival of energy is given by the Poynting Vector.

This is Si | @, |2 Similarly the rate of reflection of energy is
T

c e e e . C

P | b, |2 So the rate of dissipation is @_{] a, |2—|b, ]2}
This must be the same as the Joule heat loss. In our
units, this loss is coE? per unit volume per unit time.

If we take the mean value of E, 2 in the metal, it is an
oo

easy matter to show that f coE %z is indeed exactly
0

equal to this rate of dissipation.

§ 77. When the radiation falls on the metal of § 76, it
exerts a pressure. We may calculate this, if we use the
experimental law that when a current j is in the presence
of a magnetic field H there is a force ujx H acting on
it. In our problem, there is, in the metal, an alternating
field E, and a corresponding current ¢E. The force on the
current is therefore uoE X H, and this force, being perpen-
dicular to E and H, lies in the z direction. The force on
the charges that compose the current is transmitted by
them to the metal as a whole. Now both E and H are
proportional to e~?Y% (see equation 37) so that the force
falls off according to the relation e~2#Y2, To calculate the
total force on unit area of the metal surface, we must
integrate uoEXH from 2=0 to 2=0. EXH is a
fluctuating quantity, and so we shall have to take its mean
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value with respect to the time. The pressure is then

¢, *1
2 2| 22072
uo | as | fo 5 Ve dz,

ie. (co/dp) | ay |2.

Using (38) this may be expressed in the form
(cop?/p) | ay | ¥{(cy+p)2+(cy)?

§ 78. Thero is another application of the theory of
§ 76 which is important. Supposc that we have a straight
wire of circular section, and a rapidly alternating e.m.f.
is applied at its two ends. We have scen in § 76 that
with an infinite sheet of metal the current falls off as we
penetrate the metal according to the law e=?7z If py
is small, there is little diminution as we go down a distance
equal to the radius of the wire, and clearly the current
will be almost constant for all parts of any section (sce,
however, question (12) in § 79). But if py is large, then
the current will be carried mainly near the surface of the
wire, and it will not make a great deal of difference whether
the metal is infinite in extent, as we supposed in § 76, or
whether it has a cross-section in the form of a circle ; in
this case the current density falls off approximately
according to the law e~?¥" as we go down a distance r
from the surface. This phenomenon is known as the
skin effect ; it is more pronounced at very high frequencies.

We could of course solve the problem of the wire quite
rigorously, using cylindrical polar coordinates. The
formule are rather complicated, but the result is
essentially the same.

§79. Examples

(1) Provo the equations (17’) and (18’) in § 70.

(2) Find the value of H when E; = E, =0, and E, =
A cos nx cosnct. It is given that H = 0 when ¢ = 0, and also
e=pn=1 p=0=0. Show that there is no mean flux of
energy in this problem.
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(3) Prove the equation (28) in § 73 for reflection and
refraction of light polarised perpendicular to the plane of
incidence.

(4) Show that the polarising angle is less than the critical
angle for internal reflection. Calculate the two values if
K, =6,K,=1

(8) Show that tho reflection coefficient from glass to air at
normal incidence is the same as from air to glass, but that
the two phase changes are different.

(6) Light falls normally on the plane face which separates
two media K, , K,. Show that a fraction R of the energy is
reflected, and 7' is transmitted, whore

__(Kz—Kl)z o 4K K,
K,+K, (KK

’

Hence prove that if light falls normally on a slab of diolectrie,
bounded by two parallel faces, the total fraction of energy
(K,—K,)? . . 2K\ K
K—12+I{22, and transmitted is A—;———————lziKiz.
necessary to take account of the multiplo reflections that take
place at each boundary.

(7) Light passes normally through the two parallel faces
of a piece of plate glass, for which K = 1-5. Find the fraction
of incident cnergy transmitted, taking account of reflection
at the faces.

(8) Show that when internal reflection (§ 74) is taking
place, thero is a phase change in the reflected beam. Evaluate
this numerically for the casec of a bcam falling at an angle
of 60° to the normal when K,; = 16, K, == 1, the light being
polarised in the plane of incidence.

(9) Show that if we assume p = 1, then the reflection
coefficient with metals (§ 76) may be written in the form
R = 1—2/4/(ca/v), where v is the frequency. If o is 1:6.107
(in our mixed units), calculate R for A = 103 cms. and
A = 10~% cms.

(10) A current flows in a straight wire whose cross-scction
is a circle of radius @. The conduction curront j depends
only on 7 the radial distance from the centre of the wire,
and the time ¢{. Assuming that the displacement current
can be neglected, prove that H is directed perpendicular to the

reflected 1is It is
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radius vector. If j(r, t) and H(r, t) represent the magnitudos
of j and H, prove that -~

0 .97
— = 4 = .
P (Hr) ], r

(11) Use the results of question (10) to prove that j satisfies
the differential equation

10 (r aj) _ dmop Of
r or or] — ¢ o’
Show also that H satisfies the equation
#2H 10H H _ dwpo 0H

ot U ror 2 ¢ ot
Use thoe method of separation of wvariables to prove that
there is a solution of the j-equation of the form j = f(r)eit,
where

a¥f 1 df .

(E’E - :; a—): —4Laf= 0 s O = ﬂO‘},Lp/C.
Hence show that f is a combination of Besscl functions of
order zero and complex argument.

(12) If a (in question (11)) is small, show that an approximate
solution of the current cquation is j = A(1+iar®—}a2rt)eirt,
where A is a constant. Hence show that the total curront
fluctuates between -+J, where, neglecting powers of o above
tho second, J = na?A(1+4a*a?/24). Use this result to show
that the heat developed in unit length of the wire in unit

: (1+a%?/12). (Questions (10), (11) and (12)

¢ .ooed
ime is
2noa?

are the problem of the skin offect at low frequencies.)

[ANswERs: 2. H,=H,=0 , H,= —A sin nx sin nct;
4. 9° 28', 9° 36’; 7. 12/13 of the incident energy is trans-
mitted; 8. 100° 20"; 9, 0-984, 0-950.]



CHAPTER VIII
GENERAL CONSIDERATIONS

§ 80. The speed at which waves travel in a medium is
usually independent of the velocity of the source ; thus,if a
pebble is thrown into a pond with a horizontal velocity, the
waves travel radially outwards from the centre of disturb-
ance in the form of concentrie circles, with a speed which is
independent of the velocity of the pebble that caused them.

When we have a moving source, sending out waves
continuously as it moves, the velocity of the waves is
often unchanged,* but the wavelength and frequency, as
noted by a stationary observer, may be altered.

Thus, consider a source of waves moving towards an
observer with velocity . Then, since the source is moving,

nt)
N\ D\ \ (a)
Al TN 5
SOURCE ’ OBSERVER
—_—
ut L nt N
AN\ (b)
Alv W \J \J B'
Fia. 24

(a) Waves when source is stationary.
(b) Waves when source is moving.

the waves which are between the source and the observer
will be crowded into a smaller distance than if the source
had been at rest. This is shown in fig. 24, where the waves
are drawn both for a stationary and a moving source. If
the frequency is n, then in time ¢ the source emits nf waves.
* It is changed slightly when there is dispersion ; see § 83.
128
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If the source had been at rest, these waves would have
occupied a length AB. But due to its motion the source
has covered a distance wuf, and hence these nf waves are
compressed into a length A’B’, where AB—-A'B’ = wui.
Thus

nIA—nt\’ = ut,
ie. AN=2A—un=Al-ulc), . . . . (@)

if ¢ is the wave velocity. If the corresponding frequencies
measured by the fixed observer are n and =’, then, since
7A = ¢ = n'X’, therefore
, ne
n = b——-—u . . . . (2)
If the source is moving towards the observer the frequency
is increased ; if it moves away from him, the frequency is
decreased. This explains the sudden change of pitch
noticed by a stationary observer when a motor-car passes
him. The actual change in this case is from he/(c—wu) to
ne/(c+u), so that
An = 2ncuj(c?—u?. . . . (3)

This phenomenon of the change of frequency when a source
is moving is known as the Doppler effect. It applies
equally well if the observer is moving instead of the source,
or if both are moving.

For, consider the case of the observer moving with
velocity » away from the source, which is supposed to be
at rest. Let us superimpose upon the whole motion,
observer, source and waves, a velocity —v. We shall
then have a situation in which the observer is at rest,
the source has a velocity —wv, and the waves travel with
a speed c—v. We may apply equation (2) which will then
give the appropriate frequency as registered by the observer ;
if this is n”, then -

” n(c—v) n(c—v)

ey e AR
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To deal with the case in which both source and observer
are moving, with velocities # and v respectively, in the
same direction, we superimpose again a velocity —» upon
the whole motion. Then in the new problem, the observer
is at rest, the source has a velocity u—wv, and the waves
travel with velocity c—v. Again, we may apply (2) and

if the frequency registered by the observer is »'”', we have
n(c—v n(c—v

" — ( l) — ( : ) . (5)
(c—v) — (u—v) c—u

These considerations are of importance in acoustic and
optical problems; it is not difficult to extend them to
deal with cases in which the various velocities are not in
the same line, but we shall not discuss such problems here.

§81. We have shown in Chapter I, §6 that we may
superpose any number of separate solutions of the wave
equation. Suppose that we have two harmonic solutions
(Chapter I, equation (11)) with equal amplitudes and nearly
equal frequencies. Then the total disturbance is

& = a cos 2m(kx—nt)+a cos 2m(kyx—nyt)
ky+ky oyt [ky—F, g T t} (6)

_ ]
_2acos2w[—T z— 5 tj cos 2#‘{ 5 -3

The first cosine factor represents a wave very similar to
the original waves, whose frequency and wavelength arc
the average of the two initial values, and which moves

Ny +Ny
Fithy
velocity of the original waves, and is indeed exactly the
same if n,/k; = ny/k,. But the second cosine factor, which
changes much more slowly both with respect to « and ¢,
may be regarded as a varying amplitude. Thus, for the
resultant of the two original waves, we have a wave of
approximately the same wavelength and frequency, but
with an amplitude that changes both with time and distance.

with a velocity . This is practically the same as the
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We may represent this graphically, as in fig. 25. The
outer solid profile is the curve
,(kl_kz ny—7y ]

y.—:2acos27r[ 5 ¥ T tJ.

The other profile curve is the rcflection of this in the z
axis. The actual disturbance ¢ lies between these two
boundaries, cutting the axis of x at regular intervals,
and touching alternately the upper and lower profile
curves. If the velocities of the two component waves
are the same, so that n,/k; = n,/k,, then the wave system
shown in fig. 25 moves steadily forward without change

1A AN Al T

X

Fia. 25

of shape. The case when n,/k; is not equal to m,/k, is
dealt with in § 83.

Suppose that ¢ refers to sound waves. Then we shall
hear a resultant wave whose frequency is the mean of
the two original frequencies, but whose intensity fluctuates
with a frequency twice that of the solid profile curve.
This fluctuating intensity is known as beats ; its frequency,
which is known as the beat frequency, is just n,~mn,,
that is, the difference of the component frequencies. We
can detect beats very easily with a piano slightly out of
tune, or with two equal tuning-forks on the prongs of
once of which we have put a little sealing wax to decrease
its frequency. Determination of the beat frequency
between a standard tuning-fork and an unknown frequency
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is one of the best methods of determining the unknown
frequency. Beats of low frequency are unpleasant to
the ear.

§ 82. There is another phenomenon closely related to
beats. Let us suppose that we have a harmonic wave
¢ = A cos 2n(nt—kx), with amplitude 4 and frequency n.
Suppose further that the amplitude A is made to vary
with the time in such a way that 4 = a-}b cos 2mpt.
This is known as amplitude modulation. The result is

¢ = (a+b cos 2mpt) cos 2m(nt—kx)
= a cos 2m(nt—kzx)

+g{cos 2a[(n+p)t—kx] + cos 2n[(n——p)t——kx]}.

The effect of modulating, or varying, the amplitude, is to
introduce two new frequencies as well as the original one ;
these new frequencies n--p are known as combination
tones.

§ 83. If the velocities of §81 are not the same (n/k,
not equal to n,/k,), then the profile curves in fig. 25 move
with a speed (n,—n,)/(ky—k,;), which is different from that
of the more rapidly oscillating part, whose speed is
(ny+ny)/(ky+%,). In other words, the individual waves
in fig. 25 advance through the profile, gradually increasing
and then decreasing their amplitude, as they give place to
other succeeding waves. This explains why, on the sea-
shore, a wave which looks very large when it is some
distance away from the shore, gradually reduces in height
as it moves in, and may even disappear before it is
sufficiently close to break.

This situation arises whenever the velocity of the
waves, i.e. their wave velocity ¥, is not constant, but
depends on the frequency. This phenomenon is known
as dispersion. We deduce that in a dispersive system
the only wave profile that can be transmitted without
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change of shape is a single harmonic wave train; any
other wave profile, which may be analysed into two or
more harmonic wave trains, will change as it is propagated.
The actual velocity of the profile curves in fig. 25 is known
as the group velocity U. We see from (6) that if the
two components are not very different, V = n/k, and

U = (ny—ny)/(ky—ky) = dnfdk. . . (7)

In terms of the wavelength A, we have & = 1/A, so that

dn dn
= = — 22— . . .
) ¥ ®
We could equally well write this
_dn d(kV) _ av av

== =Vtho = V-Aﬁ- 9

We have already met several cases in which the wave
velocity depends on the frequency; we shall calculate
the group velocity for three of them.

Surface waves on a liquid of depth h :

The analysis of Chapter V, equation (32) shows that the
velocity of surface waves on a liquid of depth 4 is given by
gA 2mh

2 __ 9N o
| %4 2ﬂtanh X

According to (9) therefore, the group velocity is V—AdV/dA,

. 1 4rh 4nh

ie. U= 3 V{l—}— 3 cosech 3 } . (10)
When & is small, the two velocities are almost the same,
but when & is large, U = V/2, so that the group velocity
for deep sea waves is one-half of the wave velocity.
Equation (10) is the same as the expression obtained in
§ 52, equation (47), for the rate of transmission of energy
in these surface waves. Thus the energy is transmitted
with the group velocity.
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Electric waves in a dielectric medium :
The analysis in Chapter VII, § 69, shows that the wave
velocity in a dielectric medium is given by
V= c¥ep.
We may put u = 1 for waves in the visible region. Now

the dielectric constant e is not independent of the frequency,
and so V depends on A. The group velocity follows from

(9); it is
A e
U= V—{l+§-€§\} . . (1D

In most regions, especially when A is long, e decreases
with A so that U is less than V. For certain wavelengths,
however, particularly those in the neighbourhood of a
natural frequency of the atoms of the dieclectric, there is
anomalous dispersion, and U may exceed V. When A
is large, we have the approximate formula

€ = A+B/A2++C[)\
It then appears from (11) that
Ao
A+BIA2+ClAs
Electric waves in a conducting medium :

The analysis in Chapter VII, § 76, shows that the clectric
vector is propagated with an exponential term e?¢—72),

U=V

1 pe .
‘where y? = 2mouf/pc. Thus V2 = e = 2;_—(;,; . According
to (7), the group velocity is

1

dp
o d
dlpy) ~ y+p é%.

If we suppose that o and u remain constant for all
frequencies, then this reduces to

U=2/y=2V. . . . (12
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The group velocity here is actually greater than the wave
velocity. :

§ 84. We shall now extend this discussion of group
velocity to deal with the case of more than two component
waves. We shall suppose that the wave profile is split
up into an infinite number of harmonic waves of the type

ik —nt) . . . (13)

in which the wave number % has all possible values ; we
can supposc that the wave velocity depends on the
frequency, so that n is a function of £. If the amplitude
of tho component wave (13) is a(k) per unit range of %,
then the full disturbance is

k=w

bz, 1) = f a(k) . esmikz—ndy ., (14)
k= —w

This collection of superposed waves is known as a wave

packet. The most interesting wave packets are those in

which the amplitude is largest for a certain value of k,

say kg, and is vanishingly small if k—Fk, is large. Then

the component waves mostly resemble e2mikee—nd) and

there are not many waves which differ greatly from this.
We shall discuss in detail the case in which

a(k)=A e=® =k (15)

This is known as a Gaussian wave packet, after the
mathematician Gauss, who used the exponential function
(15) in many of his investigations of other problems.
A, o and k, are, of course, constants for any one packet.

Let us first determine the shape of the wave profile at
t=0. The integral in (14) is much simplified because
the term in » disappears. In fact,

)

$(z, 0) = f A e=0U—k)*  2mikz g,

-
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On account of the term e—%*—%)*' the only range of k
which contributes significantly to this integral lies around
ko ; since when k—k, = 1/4/c this term becomes e, and
for larger values of k—Fk, it becomes rapidly smaller, this
range of k is of order of magnitude Ak = 1/4/0.
[n order to evaluate the integral, we use the result *

+o +

at i 8,0
fe“”"”“’du — % fe_b(u bu+4b’)du
-0 -— a0
@ .o
= ¢ fe‘b”'d = Ee:—b . . (17)

— o0

Chis enables us to integrate at once, and we find that
$(@, 0) = A JY oo g2mika | (18)
g

The term e?7® represents a harmonic wave, whose
vavelength A = 1/k,, and the other factors give a varying

mplitude A ,\/ T ¢=mao,  If we take the real part of (18),
(o4

_—_——

Fi1a. 26

(z, 0) has the general shape shown in fig. 26. The outer
urves in this figure are the two Gaussian curves

— T -
Yy iA\/ae )

nd ¢(z,0) oscillates between them. Our wave packet
* Gillespie, Integration, p. 88.
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(14) represents, at ¢ = 0, one large pulse containing several
oscillations. If we define a half-width as the value of z
that reduces the amplitude to 1lfe times its maximum
value, then the half-width of this pulse is (1/0)/7.

At later times, ¢>>0, we have to integrate (14) as it
stands. To do this we require a detailed knowledge of n
as a function of k. If we expand according to Taylor’s
theorem, we can write

n = ngt+a(k—ko) +P(k—ky)2/2+...
o = (dnjdk)y , B = (d*n)dk?),, ... . . (19)

As a rule the first two terms are thc most important, and
if we neglect succeeding terms, we may integrate, using
(17). The result is
+00
¢(x’ t) — f A e"a(k“ko).ezﬂ'i{kz“t(”o+a(k—ku)))d’c

— 0

iy x/f e~mE-ae | mika—md_(20)
g

whero

When ¢ = 0, it is seen that this does reduce to (18), thus
providing a check upon our calculations. The last term
in (20) shows that the individual waves move with a
wave velocity ng/ky, but their boundary amplitude is given

by the first part of the expression, viz. 4 \/ T g-m@—anyo,
o

Now this expression is exactly the same as in (18), drawn
in fig. 26, except that it is displaced a distance at to the
right. We conclude, therefore, that the group as a whole
moves with velocity a = (dn/dk),, but that individual
waves within the group have the wave velocity ny/k,.
The velocity of the group as a whole is just what we have
previously called the group velocity (7).

If we take one more term in (19) and integrate to
obtain ¢(z, t) we find that ¢ has the same form as in (20)
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except that ¢ is replaced by o+mBit. The effect of this
is twofold; in the first place it introduces a variable
phase into the term e2m®z—nd) and in the second place it
changes the exponential term in the boundary amplitude
curve to the form

—m2o(r—at)?

¢xp o+
This is still a Gaussian curve, but its half-width is increased
to (2 +m2pu)fon?i2 . . . . (21)

We notice therefore that the wave packet moves with
the wave velocity no/ky,, and group velocity (dn/dk),,
spreading out as it goes in such a way that its half-width
at time ¢ is given by (21).

The importance of the group velocity lies mainly in
the fact that in most problems where dispersion occurs,
the group velocity is the velocity with which the encrgy
is propagated. We have already met this in previous
paragraphs.

§ 85. We shall next give a gencral discussion of the

0%
ct o’
¢ is constant. We shall show that the value of ¢ at any
point P (which may, without loss of generality be taken
to be the origin) may be obtained from a knowledge of

standard equation of wave motion y3p = in which

the values of ¢, %’: and %%S on any given closed surface S,
which may or may not surround P ; the values of ¢ and
its derivatives on S have to be associated with times
which differ somewhat from the timo at which we wish
to determine ¢p.

Let us analyse ¢ into components with different
frequencies ; each component itself must satisfy the
equation of wave motion, and by the principle of super-
position, which holds when ¢ is constant, we can add the



GENERAL CONSIDERATIONS 139

various components together to obtain the full solution.
Let us consider first that part of ¢ which is of frequency
p ; we may write it in the form

Yoy, 2) e, . L. (22)
where k=2qaplc. . . . . (23)
i is the space part of the disturbance, and it satisfies the
Poisson equation

(V2HEDYy =0. . . . (29)
This last equation may be solved by using Green’s theorem.*
This theorem states that if i, and i, are any two functions,
and § is any closed surface, which may consist of two or
more parts, such that i, and i, have no singularities inside
it, then

0
f{¢2V2¢1 i Vihotdr = ff¢20¢1 lf:}ds . (25)
The volume integral on the left-hand side is taken over

the whole volume bounded by 8, and 9/on denotes
differentiation along the outward normal to dS.

>

Fia. 27
In this equation ¥, and i, are arbitrary, so we may
i i o—ikr
put ¢, equal to s, the solution of (24), and s, = pa

* See Rutherford, p. 65, equation (29).
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r being measured radially from the origin P. We take
the volume through which we integrate to be the whole
volume contained between the given closed surface §
(fig. 27) and a small sphere X around the origin. We
have to exclude the origin because i, becomes infinite at
that point. Fig. 27 is drawn for the case of P within §;
the analysis holds just as well if P lies outside S.

Now it can easily be verified that 2, = —k2,,

so that the left-hand side of (25) becomes f Po(V2+E2) dr,

and this vanishes, since (y2+k%)y =0 by (24). The
right-hand side of (25) consists of two parts, representing
integrations over § and 2. On 2 the outward normal
is directed towards P and hence this part of the full
expression is

JI7 2 el

When we make the radius of 2 tend to 0, only one term
remains ; it is

e—zk kr .
— |4z = - ¢_— rde,

where dw is an element of solid angle round P. Taking
the limit as r tends to zero, this gives us a contribution
—4mpp. Equation (25) may therefore be written

tmgp = [[2O_ 0 (e_m)} ds

[r@n om\ r

[ i) )

r on

Since by definition ¢ = J(zyz)et*et, we can write this
last equation in the form

1
¢p=4—;fXdS ... (28
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where

giklci—r) 8¢: L o (1 . giklct—1) oy
T __ s etklet—r) __ | Z k —
r on be an(r)_H 4 r on’
= A — B +C, say.
We may rewrite X in a simpler form ; for on account of
the time variation of ¢, i ef¥(¢t-7) ig the same as ¢, taken,
not at time ¢, but at time t—r/c. If we write this symboli-

o (1 .
cally [qS],_,,c, then B = P (—) [#li—re- In a similar way,

A= 8<{>] , and C = 1 or [a(ﬁ] , where, for
on t—1/c 07' 6n ot t—r1lc

0
example, o means that we evaluate d¢/on as a
on t—r/e

function of z, y, 2z, t and then replace ¢ by t—rjc. We
call £—r/c the retarded time. We have therefore proved
that

¢p = 4—1TJ‘X dS, where

1[a¢ ] 1 or[od
- ;[%]t—r/c 8n( ) [(;S]' '/c cr an[at]t—r/c. (27)

So far we have been dealing with waves of one definite
frequency. But there is nothing in (27) which depends
upon the frequency, and hence, by summation over all
the components for each frequency present in our complete
wave, we obtain a result exactly the same as (27) but
without the restriction to a single frequency.

This theorem, which is due to Kirchhoff, is of great
theoretical importance ; for it implies (@) that the value
of ¢ may be regarded as the sum of contributions X/4rw
from each element of area of §; this may be called the
law of addition of small elements, and is familiar in a
slightly different form in optics as Huygen’s Principle ;

?i (b) that the contribution of dS depends on the value
¢, not at time ¢, but at time ¢—r/c. Now r/c is the
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time that a signal would take to get from dS to the point
P, so that the contribution made by dS depends not on
the present value of ¢ at dS, but on its value at that
particular previous moment when it was necessary for a
signal to leave dS in order that it should just have arrived
at P. This is the justification for the title of retarded
time, and for this reason also, [¢];—, is Sometimes known
as a retarded potential.

It is not difficult to verify that we could have obtained
a solution exactly similar to tho above, but involving
t+r/c instead of ¢—r/c; we should have taken i, in the

o Hikr o—ikr

previous work to be — instead of

In this way

we should have obtained advanced potentials, [¢];,
and advanced times, instead of retarded potentials and
retarded times. More gencrally, too, we could have
superposed the two types of solution, but we shall not
discuss this matter further.

In the case in which ¢ = oo, so that signals have an
infinite velocity, the fundamental equation reduces to
Laplace’s equation,* y%p = 0, and the question of time
variation does not arise. Our equation (27) reduces to
the standard solution for problems of electrostatics.

§ 86. We shall apply this theory to the case of a source
O sending out spherical harmonic waves, and we shall
take S to be a closed surface surrounding the point P
at which we want to calculate ¢, as shown in fig. 28.
Congider a small element of dS at @ ; the outward normal
makes angles 6, and § with QO and PQ, and these two
distances are 7, and r. The value of ¢ at @ is given by
the form appropriate to a spherical wave (see Chapter I,
equation (24)) :

bo = %cos m(ct—r;) .. (28)

* See Rutherford, p. 87, equation (33).
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n

on ory

Thus ?is = — CO8 01 .a_é

|

= 0 fl ™ s ¢
= a cos 0, t;l—z cos m(ct—ry) — —r—l sinm(c *ﬁ)j-

Now A = 27/m, so that if r; is much greater than A, which

Fia.” 28

will almost always happen in practical problems, we may
put

0 , cos 0

__é = — % sin m(ct___rl).

on 7y

o (1 1

Also P (;) = — 5008 6

o ame
and % sin m(ct—ry).
The retarded values are easily found, and in fact, from (27),

X =— @%& sin m(ct—[r+4])
1

d 1 amc .
+ 7, cos @ cos m(ct—[r-+7,]) - —a—cos 8 sin m(ct—[r+-r]).



144 WAVES

We may neglect the second term on the right if »; is much
greater than A, and so

= _77”:3 (cos B-Fcos 6,) sinm(ct—[r+r]) . (29)
1
Combining (29) with (26) it follows that

dp = — 4—17r ma (cos 8 + cos ;) sinm(ct—[r+r])dS

= 2)\[ 1 (cos 8 + cos 0,) sinm(ct—[r+-r])dS . (30)

If, instead of a spherical wave, we had had a plane
wave coming from the direction of O, we should write
$g = a cosm(ct—ry),

r, now being measured from some plane perpendicular to
0Q, and (30) would be changed to

¢p = za)\ 1 ~ (cos 0 + cos 8,) sin m(ci—[r +r])dS. (31)

We may interpret (30) and (31) as follows. The effect
at P is the same as if each element dS sends out a wave

% EESL—H.ZLMS)OZS, A being the amplitude

of the incident wave at dS; further, these waves are
a quarter of a period in advance of the incident wave,
as is shown by the term —sin m(ct—[r-+r,]) instead of

of amplitude

1
cos m(ct—r,). 3 (cos @+cos 6,) is called the inclination

factor and if, as often happens, only small values of 6
and 6, occur significantly, it has the value unity. This
interpretation of (30) and (31) is known as Fresnel's
principle.

The presence of this inclination factor removes a
difficulty which was inherent in Huygen’s principle ; this
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principle is usually stated in the form that each element
of a wave-front emits wavelets in all directions, and these
combine to form the observed progressive wave-front. In
such a statement there is nothing to show why the wave
does not progress backwards as well as forwards, since
the wavelets should combine equally in either direction.
The oxplanation is, of course, that for points behind the
wave-front cos 6 is negative with a value either exactly
or approximately equal to —cos 6,, and so the inclination
factor is small. Kach wavelet is therefore propagated
almost entirely in the forward direction.

Now let us suppose that some screens are introduced,
and that they cover part of the surface of 8. If we assume
that the distribution of ¢ at any point @ near the screens
is the same as it would have been if the sereens were not
present, we have merely to integrate (30) or (31) over
those parts of S which arc not covered. This approxi-
mation, which is known as St Venant’s principle, is not
rigorously correet, for there will be distortions in the
value of ¢g extending over several wavelengths from the
cdges of cach sereen. It is, however, an exccllent approxi-
mation for most optical problems, where A is small;
indeed (30) and (31) form the basis of the whole theory
of the diffraction of light. With sound waves, on the other
hand, in which A is often of the same order of magnitude
as the size of the screen, it is only roughly correct.

§ 87. We conclude this discussion with an example of
the analysis summarised in (31). Consider an infinite
screen (fig. 29) which we may take to be the xy plane.
A small part of this screen (large compared with the wave-
length of the waves but small compared with other distances
involved) is cut away, leaving a hole through which waves
may pass. We suppose that a set of plane harmonic waves
is travelling in the positive z direction, and falls on the
screen ; we want to find the resulting disturbance at a
point P behind the screen.

K
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In accordance with § 86 we take the surface S to be
the infinite xy plane, completed by the infinite hemisphere
on the positive side of the xy plane. We may divide the

z P (xY 2)

[

Q (47, 0)

Fi1a. 29

contributions to (31) into three parts. The first part
arises from the aperture, the second part arises from the
rest of the screen, and the third part arises from the
hemisphere.
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If the incident harmonic waves are represented by
¢ = a cos m(ct—z) this first contribution amounts to

a (1 .
— Z—Af; (1+ cos 8) sinm(ct—r)dS.

We have put 0; = 0 in this expression since the waves
fall normally on to the xy plane. We shall only be con-
cerned here with points P which lie behind, or nearly
behind, the aperture, so that we may also put cos § =1
without loss of accuracy. This contribution is then

a(l
— < | -si —7)dS . . 2
)\fr sin m(ct—r)dS (32)

The second part, which comes from the remainder of
the xy plane, vanishes, since no waves penetrate the
screen and thus there are no secondary waves starting there.

The third part, from the infinite hemisphere, also
vanishes, because the only waves that can reach this part
of § are those that came from the aperture, and when
these waves reach the hemisphere their inclination factor
is zero. Thus (32) is in actual fact the only non-zero con-
tribution and we may write

al
bp = —<  sin m(ct—r)dS . . (33)

Let P be the point (x, y, 2) and consider the contribution
to (33) that arises from a small clement of the aperture at
Q (£,7,0). IfOP = f, and QP = r, we have

f2 — x2+y2+z2,
r = (a—E)+(y—n)* 47
= f2—2xf —2yn+£249 . . (34)
Let us make the assumption that the aperture is so small
that £2 and %2 may be neglected. Then to this approxi-
mation (34) shows us that

r=f— x§-+im

7o
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So
ép = )\ 1 sm m(ct —f+ xi}-yn)ds,

Again without loss of accuracy, to the approximation to
which we are working, we may put 1/r = 1/f, and then
we obtain

¢p = — A sin {m(ct—f)+e},
where

A? = (C?4-82,tan e = S/C,

and

2
Ola ) = 5 f con 3 (o€ +ym)dg d,

. 2
St 9) = 7 [ 37 (et dn .. @)

Once we know the shape of the aperture it is an easy
maftter to evaluate these integrals. Thus, if we consider
the case of a rectangular aperture bounded by the lines
¢ = +a,n = +f8, we soon verify that § = 0, and that

+a +8

C = % f f cos %(x§+yn)dn a¢
—a —B
__4a sin pax sin pBy
Af pe py
where p = 2n/Af. If we are dealing with light waves,
then the intensity is proportional to C2? and the diffraction
pattern thus observed in the plane z = f consists of a
grill network, with zero intensity corresponding to the
values of z and y satisfying either sin paxz = 0, or
sin pBy = 0.
The theory of this paragraph is known as Fraunhofer
Diffraction Theory.

(36)
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§ 88. We conclude this chapter with a discussion of
the equation :
1 0%
8 == . D
Vi = & dmp, . . . . (37

where p is some given function of z, y, zand . Whenp =0
this is the standard equation of wave motion, whose solution
was discussed in § 85. Equation (37) has already occurred
in the propagation of electric waves when charges were
present (Chapter VIII, equations (17') and (18"). We
may solve this equation in a manner very similar to that
used in § 85. Thus, suppose that p(, ¥, 2, t) is expressed
in the form of a Fourier series with respect to ¢, viz.,

P(x’ Y, = t) = Z'a,k(x, Y, Z)eikd . . . (38)
k

There may be a finite, or an infinite, number of different
values of k, and instead of a summation over discrete
values of k& we could, if we desired, include also an integra-
tion over a continuous range of values. We shall discuss
here the case of discrete values of k£ ; the student will
easily adapt our method of solution to deal with a
continuum.

Suppose that ¢(z, y, z, ¢) is itself analysed into com-
ponents similar to (38), and let us write, similarly to (22),

b, ¥, 2, 1) = Dfylx, y, 2)e*t. . . (39)
3

the values of k£ being the same as in (38). If we substitute
(38) and (39) into (37), and then equate cocfficients of
e'ket, we obtain an equation for . It is

(V~2+k2)l/lL = ——~47rak . . . . (40)

This equation may be solved just as in §85. Using
Green’s theorem as in (25), we put P, = (2, ¥, 2),

—ikr
Py = -6-—7, taking 2' and § to be the same as in fig. 27.
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With these values, it is easily seen that the left-hand side
of (25) no longer vanishes, but has the value

_4nf“’~'(‘”’—1f“2_)e‘ik’df,- - - )

the integral being taken over the space between 2 and S.
The right-hand side may be treated cxactly as in § 85,
and gives two terms, one due to integration over X, and
the other to integration over S. The first of these is

—dmiy(xp, yp, 2p) . . . . (42)

The second may be calculated just as on p. 140. Gathering
the various terms together, we obtain

a(x, Yy, 2 .
P(@p, Yp, 2p) = f_’f(_’;_;_) o~k

ffe‘”" oy il () ik v ‘”}ds (43)

Combining (38), (39) and (43) we can soon verify that our
solution can be written in the form

—~r/e 1
$@p, Y 2p) = f [ﬁ]iﬁ'd”ﬂ;?r f Xds,. . (44)

where X is defined by (27). This solution reduces to (27)
in the case where p = 0, while it reduces to the well-known
solution of electrostatics in the case where ¢ = co.

We have now obtained the required solution of (37).
Often, however, there will be conditions imposed by the
physical nature of our problem that allow us to simplify
(44). Thus, if p(z, y, 2, ¢) is finite in extent, and has only
had non-zero values for a finite time ¢{>t,, we can make
X = 0 by taking S to be the sphere at infinity. “This
follows because X is measured at the retarded time t—r/c,
and if r is large enough, we shall have ¢—r/c<<t,, so that
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[¢];—». and its derivatives will be identically zero on §.
In such a casc we have the simple result

¢@p, yp, 2p) = f[ﬂ];_"’;’ch’ N 1)

the integration being taken over the whole of space.
Retarded potentials calculated in this way are very
important in the Classical theory of electrons.

§ 89. Examples

(1) An observer who is at rest notices that the frequency
of a car appears to drop from 272 to 256 per second as the
car passes him. Show that the speed of the car is
approximately 20 m.p.h. How fast must he travel in the
dircction of the car for the apparent frequency to rise to
280 per sccond, and what would it drop to in that case ?

(2) Show that in the Doppler effect, when the source and
observer are not moving in the same direction, the formula
of § 80 aro valid to give the various changes in frequency,
provided that » and » denote, not the actual velocities, but
the components of tho two velocities along the direction in
which the waves reach the observer.

(3) The amplitude A of & harmonic wave A4 cos 27(nt—kzx)
is modulated so that A = a-b cos 2#pt-t+c cos? 27pt. Show
that combination tones of frequencies n4-p, n4-2p appear,
and calculate their partial amplitudes.

(4) The diclectric constant of a certain gas varies with the
wavelength according to the law e = A +B/A*—CA?, whero
A, B and C arc constants. Show that the group velocity U
of electromagnetic waves is given in terms of the wave velocity
V by the formula

U e vV A —326'/\2 )
A+ )1\—2 —CX?

(5) In a region of anomalous dispersion (§ 83) the dielectric
AN?

)@_Aon'

constant obeys the approximate law ¢ = 14 A moro
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ANR(A2—2y2)
(AB _Auﬂ)ﬂ +BA2
Ao are constants. Find the group velocity of electric waves
in these two cases.

(6) Calculate the group velocity for ripples on an infinitely
deep lake. (§ 65, equation (54).)

(7) Investigate the motion of a wavepacket (§ 84) for
which the amplitude a is given in terms of the wave number &
by the relation

accurate expression is e = 14 ,where 4, B and

a(k) = 1if |[k—ky| <k,
= 0 otherwise,

ko and k%, being constants. Assume that only the first two

terms of the Taylor expansion of n in terms of k are required.

Show that at time ¢ the disturbance is

_ S 2r(@—atlba} ot —ng),
m(x—at)

b(z, )

where a = (dn/dk),. Verify that the wavepacket moves as
a whole with the velocity a.
(8) Show that when dS is normal to the incident light

1
(§ 86), the inclination factor is —+—2E-Of—0 . Plot this function

against 0, and thus show that each little element dS of a
wave gives zero amplitude immediately behind the direction
of wave motion. Using the fact that the energy is proportional
to the square of the amplitude of $, show that each small
element sends out 7/8 of its energy forwards in front of the
wave, and only 1/8 backwards.

(9) A plane wave falls normally on a small circular
aperture of radius . Discuss the pattern observed at a large
distance f behind the aperture. Show that with the formule
of §87, if the incident wave is ¢ = a cos m(ct—z), then
S = 0, and if P is the point (z, 0, f), then

+b
= ?gf V(02— ¢2) . cos p¢dE where p = 2mx/Af,
Af_b

4ab2 ™?
= _%fﬁ f cos (pb cos 0) sin2f dé.
0
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Expand cos (pb cos 0) in a power series in cos @, and hence

show that
mab? 1/k\2 1 /k%\2 1 k3?2
C=% A {1 2(5) +§(2z) 4(3!) +}

where k = pb/2 = #bx/A\f. Since the system is symmetrical
around the z axis, this gives tho disturbance at any point
in the plane z = f. It can be shown that the infinite series
is in fact a Bessel function of order unity. It gives rise to
diffraction rings of diminishing intensity for large values of z.

(10) The total charge ¢ on a conducting sphere of radius a
is made to vary so that ¢ = 4wa?s, where ¢ = 0 for ¢<0, and
o = gy sin pt for t>>0. Show thatif e = p = 1, (§ 70 eq. (18))
the electric potential ¢ at a distance R from the centre of the
sphere is given by

ct<R—a, ¢ =0,

2maca, [ R—a
R—a<o<R-+a, = ofy— (t_ )}
a<ct<R+a ¢ R \ cos p

dmaca, sin p sm (t )
PR P

[ANSWERS : 1. ¢/34, where ¢ = vel. of sound, 248:5;

R+a<ct, ¢ =

3. ate, b2, o/d; 5 V{l— ANN }
R : ' (A (A2 — A2+ AN J’

AX{BM —22(X2—22)%)
V{l 6{(/\2_)‘02)24_5)\2}2
6. U =3V.]

}, where V = wave velocity ;
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Adiabatic, 87
Advanced potentials, 142
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Ampére’s Rule, 104
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modulation, 132
Amplitudes, partial, 33
Anomalous dispersion, 134
Antinodes, 6

Bars and springs, longitudinal
waves in, 51-59

Basins, tides in, 66, 70, 74-76

Beats, 131 .

frequency, 131

Bell, vibrations of, 49

Boundary conditions, 1, 27, 30,
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Brewster’s angle, 117

Capillary waves, 81-84
Chladni’s figures, 48

Circularly polarised light, 111
Combination tones, 132
Compressible fluid, 87
Condensation, 89
Conductivity, 103

Conical pipe, sound waves in, 96
Constant of separation, 9
Constitutive relations, 104
Coordinates, normal, 36, 47, 53

D’Alembert, 7
Damping, 15, 39
Decay, modulus of, 15
Degenerate vibrations, 46
Dielectric displacement, 102
Diffraction of light, 145

theory, Fraunhofer, 148
Dispersion, 132

anomalous, 134
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Displacement current, Maxwell’s,
104, 119, 122
Doppler offect, 129
Drude, 119
Electric and magnetic field
strengths, 102
waves, 102-127
Elliptically polarised light, 111
Energy, kinetic, 23, 33, 47, 54,
78, 96
loss of, 124
potential, 24, 33, 47, 54, 78, 96
rato transmitted, 79, 111, 133
Equation of telegraphy, 15
wave motion, 1-20, 5
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Exponential horn, 99
Field strengths, electric and
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148
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Fresnol’s principle, 144
Fundamental, 35, 49, 58, 91

Gaussian wave packet, 135

Gauss’ theorem, 104
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Ground note, 35

Group velocity, 81, 133, 135,
137, 138

Hagen and Rubens, 124
Half-width, 137

Harmonic wave, 2, 16-17
Horn, 96, 99

Huygen’s Principle, 141, 144

Inclination factor, 144
Incompressible liquid, 60
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Index, refractive, 106, 118
Induction, magnetic, 102
Intensity, 148

Internal or total roflection, 118
Isothermal, 87

Joule heat, 124

Kinetic energy in bars, 54
liquids, 78
membranes, 47
sound, 96
strings, 23, 33
Kirchhoff, 141

Lenz’s law of induction, 104
Light, velocity of, 106
Liquids, waves in, 60-86
Longitudinal waves, 21
in bars and springs, 51-59, 87
Long waves in shallow water, 62
Lowest frequency, 35
Magnetic and electric field
strengths, 102
Maxwell’s displacement current,
104, 119, 122
equations, 102
relation, 106
Membranes, waves in, 43-30
Mersenne'’s law, 36
Mode, normal, 30, 33, 35, 37,
39, 45, 48, 55, 91, 95
Modulation, amplitude, 132
Modulus of decay, 15

Nodal planes, 6

Nodes, 6

Non-conducting media, 105

Normal coordinates, 36, 47, 53

Normal modes in bars, 56
oircular membranes, 48
rectangular membranes, 48
sound waves in pipes, 91, 95
strings, 30-33, 35, 37, 39

Observer, moving, 129
Organ pipe, 91
Overtones, 35, 49
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Packot, wave, 135
Partial amplitudes, 33
Paths of particles, 70, 77
Period, 3
equation, 39, 77, 96
Phase, 4, 16, 17
Pipes, sound waves in, 90-96
Pitch, 35
Plane of polarisation, 111
polarised light, 111
nodal, 6
wave, 4
Polarisation, plane of, 111
Polarising angle. 117
Potential, advanced,
electric, 106, 108
energy in bars, 54
onergy in liquids. 78
energy in membranes, 47
energy in sound, 96
onergy in strings, 24, 33
magnetic or vector, 106, 108
retarded, 142, 151
volocity, 60, 72, 87, 92
Poynting vector, 104, 112, 124
Pressure, vadiation, 124
Principle of superposition, 3, 130,
135, 138
Profile, wave, 2
Progressive waves, 6, 13, 23, 26,
28, 30, 40, 66, 71, 74, 77,
83, 95, 100, 109-125

142

Reduction to a steady wave, 40,
71
Reflection coefficient, 27, 117,
of light waves, 113
total or internal, 118
Refraction of light waves, 113
Refractive index, 106, 118
complex, 120
Relaxation, time of, 109
Resistance, specific, 103
Retarded potential, 142,
time, 141
Ripples, 83
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Screen, 145, 146
Separation constant, 9
Skin effect, 125
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Snell’s law, 115
Sound, velocity of, 89
waves, 87-101
Source, moving, 128
Springs and bars, longitudinal
waves in, 51-59
vibration of, 55
Stationary waves, 6, 32, 38, 45,
48, 53, 75, 95
Strings, normal modes, 31
waves on, 21-42
St Venant’s Principle, 145
Superposition, principle of, 5,
130, 135, 138
Surface, free, 62, 82
tension, 63, 81
waves in liquids, 63, 72-81

Telegraphy, equation of, 15, 119

Tidal waves, 62, 63-72

Time of relaxation, 109

Tone, 35

combination, 132

Total or internal reflection, 118

Transmnission coefficient, 28, 117,
123

Transverse waves, 21, 44, 109

Vector, Poynting, 104, 112, 124
Velocity, group, 81, 133, 135,
137, 138
of light, 106

INDEX

Velocity, of sound, 89
potential, 60, 72, 87, 92
wave, 132

Vibrations, degenerate, 46

Wave, capillary, 81-84
electric, 102-127
harmonie, 2, 16-17
in bars and springs, 51-59
in liquids, 60-86
in membranes, 43-50
long, in shallow water, 62
longitudinal, 21, 51-59, 87
motion, equation of, 1-20, 5
number, 3
on strings, 21-42
packet, 135
plane, 4
profile, 2
progressive, 6, 13, 23, 26, 28,
30, 40, 66, 71, 74, 77, 83,
95, 100, 109-125
reduction to a steady, 40, 71
sound, 87-101
stationary, 6, 32, 38, 40, 48,
53, 75, 95
surface, 63, 72-81
tidal, 62, 63-72
transverse, 21, 44, 109
velocity, 132
Wave-front, 4
Wavelength, 3
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