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PREFACE

THE object of this book is to consider from an elementary

standpoint as many different types of wave motion as

possible. In almost every case the fundamental problem

is the same, since it consists in solving the standard equation

of wave motion ; the various applications differ chiefly

in the conditions imposed upon these solutidn.jj For this

reason it is desirable that the subject of waves should be

treated as one whole, rather than in several distinct parts ;

the present tendency is in this direction.

It is presupposed that the reader is familiar with the

elements of vector analysis, the simpler results of which

are freely quoted. In a sense this present volume may
be regarded as a sequel to Rutherford's Vector Methods,

published in this series^.

In a volume of this size, it is not possible to deal

thoroughly with any one branch of the subject : nor

indeed is this desirable in a book which is intended as

an introduction to the more specialised and elaborate

treatises necessary to the specialist. This book is intended

for University students covering a general course ofApplied

Mathematics or Natural Philosophy in the final year of

their honours degree. A few topics, such as elastic waves

in continuous media, or at the common boundary of two

media, and radiation from aerials, have unavoidably had

to be omitted for lack of space. The reader is referred to

any of the standard works on elasticity and wireless for

a discussion of these problems,
vii
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This book would not be complete without a reference

of gratitude to my friends Dr D. E. Rutherford and

Dr G. S. Rushbrooke, who have read the proofs, checked

most of the examples and contributed in no small way
to the clarity of my arguments. My thanks are also

offered to my wife for her share in the preparation of

the manuscript.
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CHAPTER I

THE EQUATION OF WAVE MOTION

1. We are all familiar with the idea of a wave
; thus,

when a pebble is dropped into a pond, water waves travel

radially outwards
;
when a piano is played, the wires

vibrate and sound waves spread through the room ;
when

a wireless station is transmitting, electric waves move

through the ether. These are all examples of wave motion,
and they have two important properties in common :

firstly, energy is propagated to distant points ; and

secondly, the disturbance travels through the medium
without giving the medium as a whole any permanent
displacement. Thus the ripples spread outwards over a

pond carrying energy with them, but as we can see by
watching the motion of a small floating body, the water

of the pond itself does not move with the waves. In the

following chapters we shall find that whatever the nature

of the medium which transmits the waves, whether it be

air, a stretched string, a liquid, an electric cable or the

ether, these two properties which are common to all these

types of wave motion, will enable us to relate them

together. They are all governed by a certain differential

equation, the Equation of Wave Motion (see 5), and
the mathematical part of each separate problem merely
consists in solving this equation with the right boundary
conditions, and then interpreting the solution appropriately.

2. Consider a disturbance
</>

which is propagated

along the x axis with velocity c. There is no need to

l A



2 WAVES

state explicitly what < refers to
;

it may be the elevation

of a water wave or the magnitude of a fluctuating electric

field. Then, since the disturbance is moving, <f>.will depend
on x and t. When t = 0, <f>

will be some function of x
which we may call f(x). f(x) is the wave profile, since

if we plot the disturbance
cf> against x, and "

photograph
"

the wave at t 0, the curve obtained will be < ~f(x).
If we suppose that the wave is propagated without change
of shape, then a photograph taken at a later time t will

be identical with that at t = 0, except that the wave

profile has moved a distance ct in the positive direction

of the x axis. If we took a new origin at the point x ct,

and let distances measured from this origin be called X,
so that x = X-\-ct, then the equation of the wave profile

referred to this new origin would be

Referred to the original fixed origin, this means that

<f>=f(x-ct) . . . . (1)

This equation is the most general expression of a wave

moving with constant velocity c and without change of

shape, along the positive direction of x. If the wave is

travelling in the negative direction its form is given by
(1) with the sign of c changed, i.e.

(2)

3. The simplest example of a wave of this kind is the

harmonic wave, in which the wave profile is a sine or

cosine curve. Thus if the wave profile at t = is

(<f>)t=o
= # cos mx,

then at time t
y
the displacement, or disturbance, is

= a cos m(xct) ... (3)

The maximum value of the disturbance, viz. a, is called

the amplitude. The wave profile repeats itself at regular
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distances 27r/m. This is known as the wavelength A.

Equation (3) could therefore be written

(f)
a cos ~(x~ ct) .... (4)

A

The time taken for one complete wave to pass any point
is called the period r of the wave. It follows from (4) that

2-rr

-^-(x--ct) must pass through a complete cycle of values
A

as t is increased by r. Thus

27TCTT = 277 '

i.e. r = A/c . . . (5)

The frequency n of the wave is the number of waves

passing a fixed observer in unit time. Clearly

n=l/r . . . . (6)

so that c = n\, .... (7)

and equation (4) may be written in either of the equivalent

forms,

</)
== a

cos27r{^ J
(8)

eft
= a cos

27rl^
nt\ ... (9)

Sometimes it is useful to introduce the wave number k,

which is the number of waves in unit distance. Then

*=1/A, .
-

(10)

and we may write equation (9)

(f)
= a cos 27r(kxnt) . . . (11)
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If wo compare two similar waves

<^ a cos 27r(kxnt),

we see that
</>%

is the same as <^ except that it is displaced
a distance e/27r&, i.e. eA/277. is called the phase of

<f>2

relative to
<f>v If e = 27r, 4?!, ... then the displacement

is exactly one, two, ... wavelengths, and we say that the

waves are in phase ;
if e = TT, STT, . . . then the two waves

are exactly out of phase.
Even if a wave is not a harmonic wave, but the wave

profile consists of a regularly repeating pattern, the

definitions of wavelength, period, frequency and wave
number still apply, and equations (5), (6), (7) and (10)

are still valid.

4. It is possible to generalise equation (1) to deal

with the case of plane waves in three dimensions. A
plane wave is one in which the disturbance is constant

over all points of a plane drawn perpendicular to the

direction of propagation. Such a plane is called a wave-

front, and the wavefront moves perpendicular to itself

with the velocity of propagation c. If the direction of

propagation is x : y : z = I : m : n, where Z, m, n are the

direction cosines of the normal to each wavefront, then the

equation of the wavefronts is

Ix -\-my-\-nz = const., . . . (12)

and at any moment t, <f>
is to be constant for all x, y, z

satisfying (12). It is clear that

<f)=^f{lx+my+nzct) . . . (13)

is a function which fulfils all these requirements and
therefore represents a plane wave travelling with velocity
c in the direction I : m : n without change of form.
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5. The expression (13) is a particular solution of the

equation of wave motion referred to on p. 1. Since

I, m, n are direction cosines, Z
2+m2

+i&
2 = 1, and it is

easily verified that
<f>

satisfies the differential equation
*

This is the equation of wave motion. j It is one of the

most important differential equations in the whole of

mathematics, since it represents all types of wave motion

in which the velocity is constant. The expressions in

(1), (2), (8), (9), (11) and (13) are all particular solutions

of this equation. We shall find, as we investigate different

types of wave motion ^subsequent chapters, that equation

(14) invariably appears, and it will be our task to select

the solution that is appropriate to our particular problem.
There are certain, types of solution that occur often, and
we shall discuss some of them in the rest of this chapter,
but before doing so, there is one important property of

the fundamental equation that must be explained.

6. The equation of wave motion is linear. That is

to say, (f>
and its differential coefficients never occur in

any form other than that of the first degree. Consequently,
if < x and

<f>2 are any two solutions of (14), a1<^1+a2<^2
is

also a solution, ax and 2 being two arbitrary constants.

This is an illustration of the principle of superposition,
which states that, when all the relevant equations are

linear, we may superpose any number of individual

solutions to form new functions which are themselves also

solutions. We shall often have occasion to do this.

A particular instance of this superposition, which is

important in many problems, comes by adding together
* This equation has a close resemblance to Laplace's Equation

which is discussed in Rutherford, Vector Methods, Chapter VII.

t Sometimes called the wave equation, but we do not use this

phrase to avoid confusion with modern wave mechanics.
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two harmonic waves going in different directions with the

same amplitude and velocity. Thus, with two waves

similar to (11) in opposite directions, we obtain

<f)
= a cos k

2n(kxnt)-\-a cos 2tr(Tcx-\-nt)

= 2a cos 2nkx cos 2irnt (15)

This is known as a stationary wave, to distinguish it from

the earlier progressive waves. It owes its name to the

fact that the wave profile does not move forward. In fact,

<f) always vanishes at the points for which cos 2irkx = 0,135
viz. x i~7> T7> db-r> These points are called the

4& 4& 4fc

nodes, and the intermediate points, where the amplitude
of

c/> (i.e. 2a cos 2irkx) is greatest, are called antinodes.

The distance between successive nodes, or successive

antinodes, is l/2k, which, by (10), is half a wavelength.

Using harmonic wave functions similar to (13), we find

stationary waves in three dimensions, given by

(f)
= a cos

~Y- (Ix+my+nzct) + a cos (lx-\-my+nz+ct)
A A

= 2a cos ~r- (Ix+my+nz) cos ct . . . (16)
A A

In this case < always vanishes on the planes Ix -\-my-\-nz

A 3A=
"-> db 9 >

and these are known as nodal planes.
4 4

7. We shall now obtain some special types of solution

of the equation of wave motion
;
we shall then be able to

apply them to specific problems in later chapters. We
may divide our solutions into two main types, representing

stationary and progressive waves.

We have already 'dealt with progressive waves in one

dimension. The equation to be solved is
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Its most general solution may be obtained by a

method due to JD'Alembert. We change to new variables

u = x ct, and v = x+ct. Then it is easily verified that

d<f>
d< ty ty d<(> 3<f>~- transforms to + , TT transforms to c +c

dx du dv dt du dv
o2 J

so that the equation becomes =
;
the most general

dudv

solution of this is

/ and g being arbitrary functions. In the original variables

this is

. . . (17)

The harmonic waves of 2 are special cases of this, in

which / and g are cosine functions. The waves / and g
travel with velocity c, in opposite directions.

In two dimensions the equation of wave motion is

c d

and the most general solution involving only plane
* waves

is
</>
= f(to+my ct) +g(lx+my+ct), . (19)

where, as before, / and g are arbitrary functions and

p+m* - 1.

In three dimensions the differential equation is

?V , ^.^ = i^ /9m
dx*^~dy*^ dz2 c* dt*

' '
l
"

;

and the most general solution involving only plane waves is

<f) ~f(lx+my+nz~ct)+g(lx+my+nz+ct) . (21)

in which l*+m*+ri* = 1.

*
Strictly these should be called line waves, since at any

moment < is constant along the lines Ix -}- }ny = const.
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There are, however, other solutions of progressive type,
not involving plane waves. For suppose that we transform

(20) to spherical polar coordinates r, 0, $* The equation
of wave motion becomes

o t 9 __ t\ on i
"" * on I '

(22)

If we are interested in solutions possessing spherical

symmetry (i.e. independent of 8 and
ifj)

we shall have to

solve the simpler equation

This may be written

1 82

showing (cf. eq. (17)) that it has solutions

^ =*f(r-ct)+g(r+ct),

f and g again being arbitrary functions. We see, therefore,

that there are progressive type solutions

<f>
= f(r~ct) + *g(r+ct) . . (24)

Let us now turn to solutions of stationary type. These

may all be obtained by the method known as the separation
of variables. In one dimension we have to solve

Let us try to find a solution of the form

= X(x)T(t),

* See e.g. Rutherford, p. 62, equation 20.
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X and T being functions of x and t respectively, whose

form is still to be discovered. Substituting this value of

</>
in the differential equation and dividing both sides

by X(x)T(t) we obtain

(25^X dx* c2T dt*
' ' * V ;

The left-hand side is independent of t, being only a function

of x, and the right-hand side is independent of x. Since the

two sides are identically equal, this implies that each is

independent both of a: and t, and must therefore be constant.

Putting this constant equal to p2
,
we find

X'+p^X^Q, T"+c2p2T = Q. . . (26)

These equations give, apart from arbitrary constants

~ cos m cos A ._,_.X =
. px ,

T = . opt . . (27)sm^ sin
* '

A typical solution therefore is a cos px cos cpt, in which

p is arbitrary. In this expression we could replace either

or both of the cosines by sines, and by the principle of

superposition the complete solution is the sum of any
number of terms of this kind with different values of p.

The constant p2 which we introduced, is known as

the separation constant. We were able to introduce it in

(25) because the variables x and t had been completely

separated from each other and were in fact on opposite sides

of the equation. There was no reason why the separation
constant should have had a negative value of p2

except
that this enabled us to obtain harmonic solutions (27).

If we had put each side of (25) equal to -\-p
2

, the solutions

would have been

X = ev* , T = e c&
. . . (28)

and our complete solution should therefore include terms

of both types (27) and (28). The same distinction between
the harmonic and exponential types of solution will occur

frequently.
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This method of separation of variables can be extended

to any number of dimensions. Thus in two dimensions a

typical solution of (18) is

,
cos cos cos

d> = . px . ay . ret , . . (29)^ sin^ sin sm '

in which p2jrq2 = f2
, p and # being allowed arbitrary

values. An alternative version of (29), in which one of

the functions is hyperbolic, is

= COS
pxe

G S
rct. . . (30)T sm^ sm '

in which p2
q
z r2 .

It is easy to see that there is a variety of forms similar

to (30) in which one or more of the functions is altered

from a harmonic to a hyperbolic or exponential term.

In three dimensions we have solutions of the same type,
two typical examples being

. COS COS COS COS , 0,0,0
* = sin

*
sin
W

Bin
"
Hm** ' * +<1 +* = *

^ e rz SC
, -p'-f+r* = ^ (32)

sin sin
x a

There are two other examples of solution in three

dimensions that we shall discuss. In the first case we put
x = r cos 0, y = r sin 0, and we use r, # and z as cylindrical

coordinates. The equation of wave motion becomes *

A solution can be found of the form

$ = B(r)@(6)Z(z)T(t), . . . (33)

* See Rutherford, p. 63.
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where, by the method of separation of variables, R, @, Z,

T satisfy the equations

_ o.
r dr r*

2 2 02 (VA\
jp

- -r- > n -p q . . (M)

The only difficult equation is the first, and this *
is just

Bessel's equation of order m, with solutions Jm(nr) and
Ym(nr). Jm is finite and Ym is infinite when r = 0, so

that we shall usually require only the Jm solutions. The
final form of is therefore

, Jm/ .cos n cos cos A /0_6 = (nr) . m6 . qz . cpt . . (35)1
Jr TO sin sm sin

If
(f>

is to be single valued, m must be an integer ;
but n,

q and p may be arbitrary provided that n2 = p*q2
.

Hyperbolic modifications of (35) are possible, similar in

all respects to (31) and (32).

Our final solution is one in spherical polar coordinates

r, Q, ifj.
The equation of wave motion (22) has a solution

sm

* See Ince, Integration of Ordinary Differential Equations, p. 127.
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ra, n and p are arbitrary constants, but if W(ifj) is to be

single valued, ra must be integral. The first two of these

equations present no difficulties. The 0-equation is the

generalised Legendre's Equation
* with solution

= Pn (cos 0),

and if & is to be finite everywhere, n must be a positive

integer. When m = and n is integral, Pn
m

(cos 9)

reduces to a polynomial in cos of degree n y
known

as the Legendre's polynomial Pn (cos 9). For other

integral values of m, Pn
m

(cos 9) is defined by the equation

A few values of Pn (cos 9) and Pn
m

(cos 9) are given

below, for small integral values of n and m. When m>n,
Pn

m
(cos 9) vanishes identically.

P (cos 9) - 1

P! (cos 0)
= cos

P2 (cos0) = i (3 cos2 01)
P3 (cos 0) = $ (5 cos3 0-3 cos 0)

P4 (cos 0) | (35 cos4 0-30 cos2
0+3)

P^ (cos 0)
= sin

Pa
1
(cos 0)

= 3 sin cos

P3
X
(cos 0) = I sin (5 cos2

0-1)
P2

2
(cos 0) = 3 sin2 0.

To solve the JS-equation put R(r) = r""1 /2
/S(r), and we

find that the equation for S(r) is just Bessel's equation

Therefore S(r) = e/
n+1/2(pr) or

* See Ince, Integration of Ordinary Differential Equations, p. 119,

for the case m = 0.
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Collecting the various terms, the complete solution, apart
from hyperbolic modifications, is seen to be

^ = f -1/8
+1/2

(:pr)p^(cos 6} mi/1 cpt. (36)
* n 4- 1/2

Slli felli

If ( has axial symmetry, we must only take functions

with ra = 0, and if it has spherical symmetry, terms with

m = n = 0. Now
'

J^(z) = \/(2/7rz) sin z, and also

Yl!2(z)
=

<\/(2ir/z) cos 2;, so that this becomes

A solution finite at the origin is obtained by omitting the

cos pr term.

8. We shall now gather together for future reference

the solutions obtained in the preceding pages,

Progressive -waves

1 dimension

<l>=f(x-ct)+g(x+ct) . . (17)

2 dimensions

d*<f> dty __
1 32

<f>

fa*
+

%~2
^

^ M*

<f> =f(lz+my-ct)+g(lx+my+ct), l
2+m* ^ 1 . (19)

3 dimensions

(21)

3 dimensions, spherical symmetry
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Stationary waves

1 dimension

2 dimensions

COS COS

sill &x sin

.

(f)

cos cos cos

sin Px sin ^ sin
'*

COS

3 dimensions

(27)

(28)

(29)

= rz

(30)

COS COS COS COS
TJ^ ^ *<*>

COS

sm *J sin sin

cosh
(31)

cos cos

Plane Polar Coordinates (r, 6)

r dr

Cylindrical polar coordinates (r, 9, z)

(32)

COS COS

sin sin
cn '

(35a)

i
Jw COS COS COS 22<>V ^ Ym (nr > sin

m^
sin ^sin^ n = p ~-q~

and other hyperbolic modifications.

Spherical Polar Coordinates (r, #, iff)

a2
^ 2 a<^ i

n+1 /2

i a2
<j

i a2
<^>

' ..9 ,
' Q /I 0/9 ^2 P)/2

(36)
. COS . COS

M
w

(cos C7) . mib . (

sin
^ sm
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Spherical symmetry

d*J> 2 3d) I d2
(h

'

,
cos cos

(37)

In solving problems, we shall more often require progressive

type solutions in cases where the variables x, y, z are allowed

an infinite range of values, and stationary type solutions

when their allowed range is finite.

9. There is an important modification of the equation
of wave motion which arises when friction, or some other

dissipative force, produces a damping. The damping effect

is usually allowed for (see e.g. Chapter II and elsewhere)
O I

by a term of the form k
9
which will arise when the

damping force is proportional to the velocity of the vibra-

tions. The revised form of the fundamental equation,
known as the equation of telegraphy, is

/-\2
i

If we omit the term ~~ this equation is the same as that

occurring in the flow of heat. If we put < ue~ Jct/2
)
we

obtain an equation for u of the form

(39)

Very often k is so small that we may neglect &2
,
and then

(39) is in the standard form which we have discussed in

8, and the solutions given there will apply. In such a

case the presence of the dissipative term is shown by a

decay factor e~ ktl2
. If this is written in the form e~ tft

,

then t (= 2/k) is called the modulus of decay. When
the term in fc

2 may not be neglected, we have to solve

(38) and the method of separation of variables usually
enables a satisfactory solution to be obtained without

much difficulty.
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There is an alternative solution to the equation of

telegraphy that is sometimes useful. Taking the case of

one dimension, and supposing that k is so small that

k2 may be neglected, we have shown that the solution of

(38) may be written in the form

ct), .... (40)

where / is any function. Since / is arbitrary, we can put
k

f(x-ct) = e'*!***' g(x-ct),

and g is now an arbitrary function. Substituting this in

(40) we get

ct)..... (41)

This expression resembles (40) except that the exponential
factor varies with x instead of with t.

10. Most of the waves with which we shall be

concerned in later chapters will be harmonic. This is

partly because, as we have seen in 8, harmonic functions

arise very naturally when we try to solve the equation of

wave motion
;

it is also due to the fact that by means of

a Fourier analysis, any function may be split into harmonic

components, and hence by the principle of superposition,

any wave may be regarded as the resultant of a set of

harmonic waves.

When dealing with progressive waves of harmonic type
there is one simplification that is often useful and which
is especially important in the electromagnetic theory of

light waves. We have seen in (11) that a progressive
harmonic wave in one dimension can be represented by
= a cos 2m(kxnt). If we allow for a phase e, it

will be written
<f>
= a cos {%rr(kxnt)-{-}. Now this

latter function may be regarded as the real part of the

complex quantity a e*(2flrtf -<)+}. It is most convenient

for our subsequent work if we choose the minus sign and
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also absorb the phase and the amplitude a into one

complex number A. We shall then write

< = A e^^-kx)
}
A = a e~ i

. . . (42)

This complex quantity is itself a solution of the equation
of wave motion, as can easily be seen by substitution, and

consequently both its real and imaginary parts are also

solutions. Since all our equations in
<j>

are linear, it is

possible to use (42) itself as a solution of the equation
of wave motion, instead of its real part. In any equation
in which

(f> appears to the first degree, we can, if we wish,

use the function (42) and assume that we always refer to

the real part, or we can just use (42) as it stands, without

reference to its real or imaginary parts. In such a case the

apparent amplitude A is usually complex, and since

A = a e~~ i
,
we can say that

|^4|
is the true amplitude,

and arg A is the true phase. The velocity, of course,

as given by (7) and (10), is n/k.

We can extend this representation of
<f>

to cover waves

travelling in the opposite direction by using in such a case

<f>
= A eW*+W..... (43)

There is obviously no reason why we should not extend

this to two or three dimensions. For instance, in three

dimensions

& A e27Ti{nt ~(pX+w +rzV
. . . (44)

would represent a harmonic wave with amplitude A
moving with velocity 7&/y'(#

2+g2+r2
) in the direction

x : y : z = p : q : r.

11. We shall conclude this chapter with an example.

Let us find a solution of ~ + -~ = -~ ~-~ such that <b
dx 2

dy
2 c2 dt2

^

vanishes on the lines # = 0, x = a, y = 0, y = b. Since
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the lines x 0, a, and y 0, b are nodal lines, our

solution must be of the stationary type. Referring to 8,

equation (29), we see that possible solutions are

. COS COS COS A , 0,0 9=
. px . qy . ret , where 0"+<r = r .r sin sin sm *- *

Since < is identically zero at x 0, and y = 0, we shall

have to take the sine rather than the cosine in the first

two factors. Further, since at x = a, </>
for all

values of /, therefore

sin pa 0.

Similarly, sin qb = 0.

Hence p = ?/wr/a, and # = ^77/6, m and n being integers.

A solution satisfying all the conditions is therefore

, . nrnx . mni cos

^ = sin
sm-gi- ^frt,

where r2 = 7r
2
(m

2
/a

2+n2
/6

2
)

.

The most general solution is the sum of an arbitrary
number of such terms, e.g.

sin -
{Cmn cos rct-\-Dmn sin re/}. (45)

m,n &

At = 0, this gives

. mrysm
,

rr r^
o
= 27rcDmn 8m sin .

By suitable choice of the constants Cmn and Dwn we can

make
(f>
and ^ have any chosen form at t = 0, The value

at any subsequent time is then given by (45).
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12. Examples

(1) Show that
(/>
= f(x cos Q-\-y sin. ct) represents a

wave in two dimensions, the direction of propagation making
an angle 6 with the axis of x.

(2) Show that
<f>
= a cos (Ix -\-my-ct) is a wave in two

dimensions and find its wavelength.

(3) What is the wavelength and velocity of the system of

plane waves
<f>

= a sin (Ax+By+CzDt) ?

(4) Show that three equivalent harmonic waves with 120

phase between each pair have zero sum.

(5) Show that
(/>

r~~ l t'2 cos %0f(r-j~ct) is a progressive type
wave in two dimensions, r and 6 being plane polar coordinates,
and / being an arbitrary function. By superposing two of

these waves in which / is a harmonic function, obtain a

stationary wave, and draw its nodal lines. Note that this is

not a single-valued function unless we put restrictions upon the

allowed range of 6.

(6) By taking the special case of f(x) = g(x) = sin px in

equation (24), show that it reduces to the result of equation

(36) in which m n = 0. Use the relation

(7) Find a solution of ~4 + - = 0, such that <
=

dx2 c2 dt*

when t = oo, and
<j>

= when x = 0.

d 2
<I> 1 2

<

(8) Find a solution of
,-^

-
^ such that < = when

c)x c ot

x +00 or^= +00.

d*z d*z
(9) Solve the equation - = c2 -

given that z is never
ot ox

infinite for real values of x and t, and z = when x = 0, or

when t 0.

dV
(10) Solve

~
'-

given that F = when t ~ co and

when x = 0, and when x I.
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(11) x, y, z are given in terms of the three quantities

> *?? by the equations

x = a sinh sin
77
cos

y = a sinh sin
77

sin

z = a cosh cos
77

3V 3V ^V J 0VShow that the equation -
-f- 7 + ^ = - - is of the

dx2
dy

2 dz2 c 2 dt2

correct form for solution by the method of separation of

variables, when , 77,
are used as the independent variables.

Write down the subsidiary equations into which the whole

equation breaks down.

12. Show that the equation of telegraphy (38) in one

dimension has solutions of the form

where m and p are constants satisfying the equation

"[ANSWERS : 2. 2rr/(l* +m2
)* ; 3. A = 27r/(^.

2 + B* -f Ca
)*,

vel. = AD/27r; 7. ^L sin naje~cni ; 8. Ae~n(x+ct ^
; 9. ^ sin ^

sin cp^ ; 10. u4e~^8< sin px , p = *r/l , %ir/l 9 ; 11- Show
that ^ = const., 77

= const., const, form an orthogonal

system of coordinates, and transform y2
^ in terms of , 17, f

as in Rutherford, Vector Methods, 47. The result is

$ ~ X(g)Y(7))Z( > )T(t), where m, p and 7 are arbitrary con-

stants, and

sinh {
-- X + p2

sinh ^ cff dg smh2
f

_ sin ~ -- ^4-^23^2 Y = -g2 F,
- 2szn

77 d-t] dtj sin2
?/



CHAPTER II

WAVES ON STRINGS

13. In this chapter we shall discuss the transverse

vibrations of a heavy string of mass p per unit length. By
transverse vibrations we mean vibrations in which the

displacement of each particle of the string is in a direction

perpendicular to the length. When the displacement is

in the same direction as the string, we call the waves

longitudinal ;
these waves will be discussed in Chapter IV.

We shall neglect the effect of gravity ; in practice this

may be achieved by supposing that the whole motion takes

place on a smooth horizontal plane.
In order that a wave may travel along the string,

it is necessary that the string should be at least slightly
extensible ;

in our calculations, however, we shall assume
that the tension does not change appreciably from its

normal value F. The condition for this (see 14) is that

the wave disturbance is not too large.

Let us consider the motion of a small element of the

string PQ (fig. 1) of length ds. Suppose that in the

equilibrium state the string lies along the axis of x, and
that PQ is originally at PQQ . Let the displacement of

PQ from the x axis be denoted by y. Then we shall obtain

an equation for the motion of PQ in terms of the tension

and density of the string. The forces acting on this

element, when the string is vibrating, are merely the two
tensions F acting along the tangents at P and Q as shown
in the figure ;

let
if/
and

\fj-\-difs
be the angles made by these

two tangents with the x axis. We can easily write down
21
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the equation of motion of the element PQ in the y direction
;

for the resultant force acting parallel to the y axis is

F sin (\fj+d\ls)F sin $. Neglecting squares of small

quantities, this is F cos
ifj di/j.

The equation of motion is

therefore

F cos
i/j difj pds (1)

FIG. 1

Now tan

from (1)

=
,
so that

ooc

= 7~2 dx, and so,
ox

. (2)

f /%\ 2
1

~ l

But cos2 A ~ 4 1 -f-
1 -

J
I ,80 that if the displacements

I \&*y J
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small enough for us to neglect I -
1 compared with

unity, we may write (2) in the standard form for wave
motion *

(Chapter I, 5), viz.,

are

It follows from Chapter I, equation (17) that the general
solution of this equation may be put in the form

y=f(x-ct)+g(x+ct), ... (4)

/ and g being arbitrary functions. f(xct) represents a

progressive wave travelling in the positive direction of

the x axis with velocity c, and g(x-\-ct) represents a

progressive wave with the same velocity in the negative
direction of x. Thus waves of any shape can travel in

either direction with velocity c = -\/(F/p), and without

change of form. A more complete discussion, in which

we did not neglect terms of the second order, would show
us that the velocity was not quite independent of the

shape, and indeed, that the wave profile would change

slowly with the time. These corrections are difficult to

apply, and we shall be content with (4), which is, indeed,

an excellent approximation except where there is a sudden

"
kink

"
in y, in which case we cannot neglect I

14. Since the velocity of any point of the string is y,

we can soon determine the kinetic energy of vibration. It is

T =
Jj pfdx

.... (5)

* The student who is interested in geometry will be able to

prove that the two tensions at P and Q are equivalent to a single

force of magnitude FdsfR, where JR is the radius of curvature of

the string. This force acts perpendicularly to PQ. Putting

E = l + , and neglecting ,
we obtain (3).



24 WAVES

The potential energy F is found by considering the increase

of length of the element PQ. This element has increased

its length from dx to ds. We have therefore done an

amount of work F(dsdx). Summing for all the elements

of the string, we obtain the formula

V=
|V(<fo-efc)

=
lF

J J

r/%\ 2

=
J-F I I

J
dx, approximately. . (6)

The integrations in (5) and (6) are both taken over the

length of the string.

With a progressive wave y =f(xct), these equations

give

T =
J lf**(f')*dx

= W /(/')*
- (7)

(8)

Thus the kinetic and potential energies are equal. The
same result applies to the progressive wave y = g(x-\-ct) 9

but it does not, in general, apply to the stationary type
waves y f(xct) +g(x+ct).

We can now decide whether our initial assumption is

correct, that the tension remains effectively constant.

If the string is elastic, the change in tension will be pro-

portional to the change in length. We have seen in (6)

that the change in length of an element dx is -
I
-^

I dx.
2 \dxj

dy
Thus, provided that is of the first order of small

ox

quantities, the change of tension is of the second order,

and may safely be neglected. This assumption is equivalent
to asserting that the wave profile does not have any large
"
kinks," but has a relatively gradual variation with x.
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15. The functions / and g of (4) are arbitrary. But

they may be fixed by a knowledge of the initial conditions.

Thus, with a string of unlimited length, such that

^ =0 = </>(#), yt== Q
=

0(aj),* we must have, from (4),

Integrating this last equation we have

and so

The displacement at any subsequent time t is therefore

if i rx
~ ct i rx+ct }=

5 1 t(x-ct) + </>(x+ct)
- -

$(x)dx + -
i/,(x)dx \z

I
CJ CJ J

I fx + ct
}

-
t(x)dx\.

. . (9)
CJ x-ct J

16. The discussion above applies specifically to

strings of infinite length. Before we discuss strings of

finite length, we shall solve two problems of reflection

of waves from a discontinuity in the string. The first is

when two strings of different densities are joined together,

and the second is when a mass is concentrated at a point
of the string. In each case we shall find that an incident

wave gives rise to a reflected and a transmitted wave.

Consider first, then, the case of two semi-infinite

strings 1 and 2 joined at the origin (fig. 2). Let the

* This function \f/(x)
must be distinguished from the angle ^ in

13.
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densities of the two strings be p and p2 . Denote the dis-

placements in the two strings by y and y2 . Let us suppose
that a train of harmonic waves is incident from the negative
direction of x. When these waves meet the change of

wire, they will suffer partial reflection and partial trans-

mission. If we choose the exponential functions of 10

to represent each of these waves, we may write

where

=
2/incidcnt + 2/reflccted

==
^/transmitted

?/ .
__ A eZTTidl

^/incident -^-^

?V * i 7?
//reflected ^l

... . yJtransmitted ^2

(10)

(ii)

FIG. 2

A 1 is real, but ^4 2 and Bl may be complex. According to

10 equation (42), the arguments of A% and Sl will give
their phases relative to the incident wave. All three waves
in (11) must have the same frequency n, but since the

velocities in the two wires are different, they will have
different wavelengths 1/&X and l/&2 . The reflected wave

must, of course, have the same wavelength as the incident

wave. Since the velocities of the two types of wave are



WAVES ON STRINGS 27

n/k-L and n/k2 (Chapter I, equations (7) and (10)), and we
have shown in (3) that c2 = F/p, therefore

*lW = ft/ft .... (12)

In order to determine A 2 and Bl we use what are known
as the boundary conditions. These are the conditions

which must hold at the boundary point x 0. Since the two

strings are continuous, we must have y = y2 identically
for all values of t, and also the two slopes must be the same,

so that -~ = -~ for all t. If this latter condition were
ox ox

not satisfied, we should have a finite force acting on an
infinitesimal piece of wire at the common point, thus

giving it infinite acceleration. We shall often meet

boundary conditions in other parts of this book
;

their

precise form will depend of course upon the particular

problem under discussion. In the present case, the two

boundary conditions give

A 1+B1
= A

2 ,

27ri(kl
A l ~\-klBl )

= 27ri(k2
A

2 ).

These equations have a solution

_ *"" 2 *

A J/t I 1/t A J/> l_ T*"i A^I~| /I/O "^^1 i/i T'*/2

Since klt k2 and A 1 are real, this shows that B1 and A 2

are both real. A 2 is positive for all k and &2 ,
but jBj is

positive if Tc^>Tc^ and negative if k^k^ Thus the

transmitted wave is always in phase with the incident

wave, but the reflected wave is in phase only when the

incident wave is in the denser medium
;

otherwise it is

exactly out of phase.
The coefficient of reflection R is defined to be the

k k
ratio \BtlAi\ 9 i.e. 7^ r-

2
, which, by (12), we may write
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Similarly, the coefficient of transmission T is equal
to \A 2fA 1 1

,
i.e.

o. /^

. . . . (15)

17. A similar discussion can be given for the case of

a mass M concentrated at a point of the string. Let us

take the equilibrium position of the mass to be the origin

(fig. 3) and suppose that the string is identical on the two

sides. Then if the incident wave comes from the negative
side of the origin, we may write, just as in (10) and (11) :

2/1
=

2/incident + 2/reflected

2/2
==

2/transmitted

where

ttnddent

Reflected

2/transmitted

The boundary conditions are that for all values of t

(i) foiL-o = M*=o ....
(16)

(17)
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The first equation expresses the continuity of the string

and the second is the equation of motion of the mass M .

We can see this as follows : the net force on M is the

difference of the components of F on either side, so that

if
ifj^

and
if/2 are the angles made with the x axis, we have

~
a-.

L
~
_U=o

Since ^ and
ifj2 are small, we may put sin

*/r2
=

tan
i/r2
=

,
sin ^ =

,
and (18) is then obtained.

ox fix

Substituting from (16) into (17) and (18), and cancelling
the term e27rint

,
which is common to both sides, we find

= A,

Let us write Trn2M/kF = p . . . . (19)

A solution of the equations then gives

A, l+ip l+p*
' '

. . . (21)

A 2 I lip
A l l+ip

In this problem, unlike the last, Bt and A z are complex,
so that there are phase changes. These phases (according
to 10) are given by the arguments of (20) and (21).

They are therefore tan-1(p) and tan~1
( l/p) respectively.

The coefficient of reflection R is IBJA^, which equals

)

1/2
>
and the coefficient of transmission T is

i.e. l/(l+p
2
)

1/2
. If we write p = tan 0, where

then we find that the phase changes are

and 77/2+0, and also R = sin 0, T = cos 6.

18. The two problems in 16, 17 could be solved

quite easily by taking a real form for each of the waves



30 WAVES

instead of the complex forms (11) and (16). The student

is advised to solve these problems in this way, taking, for

example, in 17, the forms

^incident
= a

l cos %ir(nt kx)

^reflected
= bl GOS{2rrr(nt+kx)+}

2/transmiitcd
=

2 cos {^(nt-Jcx) +rj} . (22)

In most cases of progressive waves, however, the complex
form is the easier to handle

;
the reason for this is that

exponentials are simpler than harmonic functions, and
also the amplitude and phase are represented by one

complex quantity rather than by two separate terms.

19. So far we have been dealing with strings of

infinite length. When we deal with strings of finite length
it is easier to use stationary type waves instead of progres-
sive type. Let us now consider waves on a string of length

Z, fastened at the ends where x = 0, I. We have to find a

d2
y 1 32

y
solution of the equation (3), viz. -

, subject to
dx2 c* dt*

the boundary conditions T/ 0, at x 0, I, for all t.

Now by Chapter I, 8, we see that suitable solutions are

of the type
cos cos

sin ** sin
c^'

It is clear that the cosine term in x will not satisfy the

boundary condition at x = 0, and we may therefore write

the solution

y = sin px (a cos cpt-}-b sin cpt).

The constants a, b and p are arbitrary, but we have still

to make y = at x = 1. This implies that sin pi = 0,

i.e. pi = TT, 277, STT. . . . It follows that the solution is

. TTTX t TTTCt . T7TCt\
y = sin la cos ---

1- b sin r-
, r=^l,2,3, . . . (23)

I \ I IJ
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Each of the solutions (23) in which r may have any positive

integral value, is known as a normal mode of vibration.

The most general solution is the sum of any number of

terms similar to (23) and may therefore be written

. TTTX\ TTTCt . T7TCt\
y == Z sin

\
a r cos + br sin

\
. (24)

r l
\

i l }

The values of a
r
and br are determined from the initial

conditions
; thus, when t = 0,

ytssQ = S ar sin
'

. . . . (25)
r

T7TC . T7TX

yt=s{)
= E b r -ysm

... (26)

If we are told the initial velocity and shape of the string,

then each ar and br is found from (25) and (26), and hence

the full solution is obtained. We shall write down the

results for reference. If we suppose that when t = 0,

y = <f)(x) 9 y = *fj(x) 9
then the Fourier analysis represented

by (25) and (26) gives

2 C J

., . TTTX
ar
= ~

(f)(x)
sm dx

'Jo I

2 f
l

br MX) si

me J o

TTTY
sin ~dx . . (27)

In particular, if the string is released from rest when
t = 0, every br 0.

20. As an illustration of the theory of the last section,

let us consider the case of a plucked string of length I

released from rest when the midpoint is drawn aside

through a distance h (fig. 4). In accordance with (25)

and (26) we can assume that

t
TTTX met= L a sin -- cos r .
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When t = 0, this reduces to 2ar
sin

,
and the coefficients

r ^

ar have to be chosen so that this is identical with

y = ~x

2h
y= (l-x) ,

FIG. 4

TTTX
If we multiply both sides of the equation y = 27ar sin

by sin -y- ,
and integrate from x = to a: ?, as in the

I

method of Fourier analysis, all the terms except one will

disappear on the right-hand side, and we shall obtain

1 C
ll2 2h . TTTXj C l

2Jl
(1 . T7TX J-a

r
= x sin -y- dx+ -=- (lx) sin ax.

2 J o ^ ^ J 112,
I *

Sh . TTT
a = - sin when r is odd,22 2

Whence

= when r is even.

So the full solution, giving the value of y at all subsequent

times, is

Sh 1

;

Sin sin cos
21

(28)
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Thus the value of y is the result of superposing certain

normal modes with their appropriate amplitudes. These

are known as the partial amplitudes. The partial

amplitude of any selected normal mode (the rth for

example), is just the coefficient ar . In this example, ar

vanishes except when r is odd, and then ar is proportional
to 1/r

2
,
so that the amplitude of the higher modes is

relatively small.

21. The rth normal mode (23) has a frequency re/21.

Also, there are zero values of y (i.e. nodes) at the points
x = 0, Z/r, 21/r .... (r 1)1/r, I. If the string is plucked
with the finger lightly resting on the point l/r it will be

found that this mode of vibration is excited. With even

order vibrations (r even) the mid-point is a node, and with

odd order vibrations it is an antinode.

We can find the energy associated with this mode of

vibration most conveniently by rewriting (23) in the form

. . TTTX . ,__ x

y = A sin cos 4 + e
\

. . (29)
/

{
I

j

Here A is the amplitude and e is the phase. According
to (5) the kinetic energy is

T = P f dx = A* sin* + .. . (30)

Similarly, by (6) the potential energy is

V* fr&)*te^A^ + <. (31)
2 J o\dxj 4Z

\
I j

Now by (3) F/p = c2 ,
and so the two coefficients in (30)

and (31) are equal. The total energy of this vibration

is therefore



34 WAVES

The total energy is thus proportional to the square of the

amplitude and also to the square of the frequency. This

is a result that we shall often find as we investigate various

types of wave motion.

As a rule, however, there are several normal modes

present at the same time, and we can then write the dis-

placement (24) in the more convenient form

*
. TTTX (met

{
y = 2M r sin cos^ - + r

\.
. (33

r=i I
\

I }

A r is the amplitude, and cr is the phase, of the rth

normal mode. When we evaluate the kinetic energy
as in (30) we find that the

"
cross-terms

"
vanish, since

sin sin
-j-

dx = 0, if r ^ s. Consequently the total
I i

kinetic energy is just

rJ c

and in a precisely similar way tho total potential energy is

By addition we find that the total energy of vibration is

^2>M r*. . . . (34)

This formula is important. It shows that the total energy
is merely the sum of the energies obtained separately for

each normal mode. It is due to this simple fact, which
arises because there are no cross-terms involving A rA s ,

that the separate modes of vibration are called normal
modes. It should be observed that this result holds for

both the kinetic and potential energies separately as well

as for their sum.
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We have already seen that when a string vibrates more

than one mode is usually excited. The lowest frequency,
viz. c/2Z, is called the ground note, or fundamental, and

the others, with frequencies rc/2Z, are harmonics or over-

tones. The frequency of the fundamental varies directly

as the square root of the tension and inversely as the

length and square root of the density. This is known as

Mersenne's law. The tone, or quality, of a vibration is

governed by the proportion of energy in each of the

harmonics, and it is this that is characteristic of each

musical instrument. The tone must be carefully distin-

guished from the pitch, which is merely the frequency of

the fundamental.

We can use the results of (34) to determine the total

energy in each normal mode of the vibrating string which

we discussed in 20. According to (28) and (33) A 2n
= 0,

A A
8A 1

. (271+ 1)77 ^ ^ ^.and A 2n+l
= sin . Consequently, the

7T (^72~p~JL) Zi

total energy of the even modes is zero, and the energy
of the (2n+l)th mode is 16c2

/^>/(2^+l)
2
7r

2
/. Tlu's shows

us that the main part of the energy is associated with the

normal modes of low order. We can check these formulae

for the energies in this example quite easily. For the total

energy of the whole vibration is the sum of the energies of

each normal mode separately : i.e.

total energy = -~- 2

It is shown in books on algebra that the sum of the series

l/P+l/3
2
+l/5

2+ ... is772/8. Hence the total energy is

2c%2
p/, i.e. 2Fh2

/l.
But the string was drawn aside and

released from rest in the position of fig. 4, and at that

moment the whole energy was in the form of potential

energy. This potential energy is just F times the increase

in length, i.e. 2jF{(Z
2
/4+/&

2
)

1 /2
-Z/2}. A simple calculation

shows that if we neglect powers of h above the second,
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as we have already done in our formulation of the equation
of wave motion, this becomes 2Fh2

/l,
thus verifying our

earlier result.

This particular example corresponds quite closely to

the case of a violin string bowed at its mid-point. A listener

would thus hear not only the fundamental, but also a

variety of other frequencies, simply related to the funda-

mental numerically. This would not therefore be a pure

note, though the small amount of the higher harmonics

makes it much purer than that of many musical instru-

ments, particularly a piano.
If the string had been bowed at some other point than

its centre, the partial amplitudes would have been different,

and thus the tone would be changed. By choosing the

point properly any desired harmonic may be emphasised
or diminished, a fact well known to musicians.

22. We have seen in 21 that it is most convenient

to analyse the motion of a string of finite length in terms

of its normal modes. According to (33) the rth mode is

. . TTTX (met
, )

yr
= A r sin cos

j
+ er k

i
\

i }

We often write this

TTTX

yr
=

<f>r
sin ... (35)

The expressions (/>r
are known as the normal coordinates

for the string. There are an infinite number of these

coordinates, since there are an infinite number of degrees
of freedom in a vibrating string. The advantage of using
these coordinates can be seen from (30) and (31) ;

if the

displacement of the string is

y - S<{>r sin . . . (36)
r-l *
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then
T

41
(37)

The reason why we call
(f>r a normal coordinate is

now clear
;

for in .mechanics the normal coordinates

(?i> #2 $n are suitable combinations of the original
variables so that the kinetic and potential energies can be

written in the form

V - (38)

The similarity between (37) and (38) is obvious. Further,
it can be shown, though we shall not reproduce the analysis

here, that Lagrange's equations of motion apply with the

set of coordinates
<^r

in just the same way as with the

coordinates qr in ordinary mechanics.

23. We shall next discuss the normal modes of a

string of length I when a mass M is tied to its mid-point

(fig. 5). Now we have already seen in 21 that in the

FIG. 5

normal vibrations of an unloaded string the normal modes

of even order have a node at the mid-point. In such a
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vibration there is no motion at this point, and it is clearly

irrelevant whether there is or is not a mass concentrated

there. Accordingly, the normal modes of even order are

unaffected by the presence of the mass, and our discussion

will apply to the odd normal modes.

Just as in the calculations*' of 16, 17, in which there

was a discontinuity in the string, we shall have two

separate expressions yl and y2 valid in the regions 0^x^.1/2
and 1/2^x^1. It is obvious that the two expressions
must be such that y is symmetrical about the mid-point
of the string. yl must vanish at x and y2 at x = I.

Consequently, we may try the solutions

y^ = a sin px cos (cpt-\-e)

y2
= a sin p(lx) cos (cpt~\-) . . (39)

We have already satisfied the boundary condition yl
= y2

at x = 1/2. There is still the other boundary condition

which arises from the motion of M. Just as in (18) we

may write this

Substituting the values of y and y2 as given by (39) and

using the relation F c2p, we find

pi pi pi

The quantity pl/2 is therefore any one of the roots of the

equation x tan x = pl/M. Ifwe draw the curves y = tan x,

y = pl/Mx, we can see that these roots lie in the regions
to 7T/2, TT to 3?7/2, 2?r to 57T/2, etc. If we call the roots

xl9 x2 ... then the frequencies cp/27T become cxr/7rl. If M
is zero so that the string is unloaded, xr = (r+l/2)7r,
so the presence of M has the effect of decreasing the

frequencies of odd order.

If we write n for the frequency of a normal mode,
then, since n = cpj27r, it follows that (40) can be written
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in the form of an equation to determine n directly ; viz.,

x tan x = pljM, where x = (irl^n . . (41)

This equation is called the period equation. Its solutions

are the various permitted frequencies (and hence periods)
of the normal modes. Period equations occur very fre-

quently, especially when we have stationary type waves,
and we shall often meet them in later chapters. This

particular period equation is a transcendental equation
with an infinite number of roots, ^j

24. In the previous paragraphs we have assumed that

there was no frictional resistance, so that the vibrations were

undamped. In practice, however, the air does provide
a resistance to motion

;
this is roughly proportional to the

velocity. Let us therefore discuss the motion of a string
of length I fixed at its ends but subject to a resistance

proportional to the velocity. The fundamental equation
of wave motion (3) has to be supplemented by a term in

and it becomes
dt

ex* c*

A solution by the method of separation of variables (cf. 9)

is easily made, and we find

Since y is to vanish at tho two ends, we must have, as

before, sin pi = 0, and hence p = TTT/I, r = 1, 2, 3 ....

The normal modes of vibration are therefore

y = A re~w sin
-y-

cos (_#+er )
. . (43)

where
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The exponential term erW represents a decaying amplitude
with modulus (see 9) equal to 2/k. The frequency

q/27T is slightly less than when there is no frictional resist-

ance. However, Jc is usually small, so that this decrease

in frequency is often so small that it may be neglected.

25. There is another interesting method of obtaining
the velocity of propagation of waves along a string, which

we shall now describe and which is known as the method

of reduction to a steady wave. Suppose that a wave is

moving from left to right in fig. 6 with velocity c. Then,

FIG. 6

if we superimpose on the whole motion a uniform velocity
c the wave profile itself will be reduced to rest, and

the string will everywhere be moving with velocity c,

keeping all the time to a fixed curve (the wave profile).

We are thus led to a different problem from our original
one

; for now the string is moving and the wave profile

is at rest, whereas originally the wave profile was moving
and the string as a whole was at rest. Consider the motion
of the small element PQ of length ds situated at the top
of the hump of a wave. If R is the radius of curvature at

this top point, and we suppose, as in 13, that the string
is almost inextensible, then the acceleration of the element

PQ is c2/R downwards. Consequently, the forces acting on
it must reduce to (c*/R) pds. But these forces are merely the

two tensions F at P and Q, and just as in 13 (especially
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note at foot of p. 23), they give a resultant Fds/R downwards.

Equating the two expressions, we have

This is, naturally, the same result as found before. The

disadvantage of this method is that it does not describe

in detail the propagation of the wave, nor does it deal

with stationary waves, so that we cannot use it to get
the equation of wave motion, etc. It is, however, very
useful if we are only concerned with the wave velocity,

and we shall see later that this simple artifice of reducing the

wave to rest can be used in other problems as well.

26. Examples

(
1

)
Find the velocity of waves along a string whoso density

is 4 gms. per cm. when stretched to a tension 90000 dynes.

(2) A string of unlimited length is pulled into a harmonic

shape y = a cos kx, and at time t = it is released. Show
that if F is the tension and p the density of the string, its

shape at any subsequent time t is y
~ a cos kx cos kct, where

c2 = F/p. Find the mean kinetic and potential energies per
unit length of string.

(3) Find the reflection coefficient for two strings which
are joined together and whose densities are 25 gms. per cm.

and 9 gms. per cm.

(4) An infinite string lies along the x axis. At t = that

part of it between x = a is given a transverse velocity
az x2

. Describe, with the help of equation (9) the subsequent
motion of the string, the velocity of wave motion being c.

(5) Investigate the same problem as in question (4) except
that the string is finite and of length 2a, fastened at the

points x = ia.

(6) What is the total energy of the various normal modes
in question (5) ? Verify, by smnmatioii over all the normal

modes, that this is equal to the initial kinetic energy.

(7) The two ends of a uniform stretched string are fastened

to light rings that can slide freely on two fixed parallel wires

a distance I apart. Find the normal modes of vibration.
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(8) A uniform string of length 3Z fastened at its ends, is

plucked a distance a at a point of trisection. It is then

released from rest. Find the energy in each of the normal

modes and verify that the sum is indeed equal to the work
done in plucking the string originally.

(9) Discuss fully the period equation (41) in 23. Show in

particular that successive values of x approximate to rrr,

and that a closer approximation is x = TTT -f- pl/Mrn.

(10) Show that the total energy of vibration (43) is

%plA r*e-
kt
{q*+ kq cos (qt+cr )

sin (#+ f,)+Jfca cos* (qt+cr)} 9

and hence prove that the rate of dissipation of energy is

%kplA r
2e~kt{2q sin (qt+cr)+k cos (qt+ r)}*.

(11) Two uniform wires of densities p L and p a and of equal

length are fastened together at one end and the other two ends

are tied to two fixed points a distance 21 apart. The tension

is F. Find the normal periods of vibration.

(12) The density of a stretched string is m/x*. The end-

points are at x = a, 2a, and the tension is F. Show that the

normal vibrations are given by the expression

y=A sin [6 log, WY'" *
pt '' '

Show that the period equation is 6 loge 2 = nir, n ~ 1, 2, ....

(13) A heavy uniform chain of length I hangs freely from
one end, and performs small lateral vibrations. Show that

the normal vibrations are given by the expression

y = A J (2p\/{x/g}) cos (pt+e),

where J represents Bessel's function ( 7) of order zero.

Deduce that the period equation is J^(2p^/{l/g})
= 0, x

being measured from the lower end.

[ANSWERS :

1. 150 cms./sec. ; 2. %Fa2k2
siu*kct, %Fa2k* cos2 kct ; 3. 1/4;

5. y = Sbr cos
^i^ sin

(I*>^, br = (-
Ct d

trirct
6. 8pa

5
/15; 7. y~ar cos cos I + r l ; 8. energy in rth

normal mode = sin2 -
; sum = 3c2a2

/>/4Z ; 11. 2n/p
4t7T T O

where c1 ta>n(pl/cl )
= c2 tan(pZ/ca ), c1

2 =j^T

/p1 , ca
2 = F/ p2 -]



CHAPTER III

WAVES IN MEMBRANES

27. The vibrations of a plane membrane stretched to a

uniform tension T may be discussed in a manner very
similar to that which we have used in Chapter II for

strings. When we say that the tension is T we mean that

if a line of unit length is drawn in the surface of the

membrane, then the material on one side of this line

TSx

TSy

exerts a force T on the material on the other side, and this

force is perpendicular to the line we have drawn. Let us

consider the vibrations of such a membrane
;
we shall

suppose that its thickness may be neglected. If its

equilibrium position is taken as the xy plane, then we are

concerned with displacements z(xy) perpendicular to this

plane. Consider a small rectangular element ABCD
(fig. 7) of sides Sx, y. When this is vibrating the forces

43
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on it are (a) two forces T$x perpendicular to AB and CD,
and (b) two forces "TSy perpendicular to AD and BC.
These four forces act in the four tangent planes through
the edges of the element. An argument precisely similar

to that used in Chapter IT, 13, shows that the forces (a)

d2z

give a resultant TSo: . 8y perpendicular to the plate.

Similarly, the forces (b) reduce to a force TSy . $x. Let
c/*c

the mass of the plate be p per unit area
; then, neglecting

gravity, its equation of motion is

c)
2z r)

2z f) z
T SxSy+J SxSy = pSxSy ,

dy
2 dx2 r

dt2

(8*z
<Pz\ __

8%

[dx
2

'dy
2
)

~~ P
~dt

2
'

This may be put in the standard form

L
^

n \

where c2 = "T/p .... (2)

Thus we have reduced our problem to the solution of the

standard equation of wave motion, and shown that the

velocity of waves along such membranes is c \S(l"/p).

28. Let us apply these equations to a discussion of the

transverse vibrations of a rectangular membrane ABCD
(fig. 8) of sides a and 6. Take AB and AD as axes of x

and y. Then we have to solve (1) subject to certain

boundary conditions. These are that z = at the boundary
of the membrane, for all t. With our problem this means
that z = when x = 0, x = a, y = 0, y = 6, independent
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of the time. The most suitable solution of the equation
of wave motion is that of 8, equation (29). It is

cos cos cos ,

z = . px . qy . ret
,

sin sin sin

If z is to vanish at x = 0, y = 0, we shall have to reject

the cosines in the first two factors. Further, if z vanishes

FIG. 8

at x = a, then sin pa 0, so that p = m7r/a, and similarly

q = nir/b, m and n being positive integers. Thus the

normal modes of vibration may be written

. . mrrx . mry
z = A sin sin - cos

a b
(3)

where

We may call this the (m, n) normal mode. Its frequency
is cr/27r, i.e.

62 (4)

If &>&, the fundamental vibration is the (1, 0) mode, for

which the frequency is c/2a. The overtones (4) are not

related in any simple numerical way to the fundamental,
and for this reason the sound of a vibrating plate, in

which as a rule several modes are excited together, is

much less musical to the ear than a string, where the

harmonics are all simply related to the fundamental.
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In the (m, n) mode of (3) there are nodal lines x = 0,

a/m, 2a/m, a, and y = 0, 6/w, 26/w, ... 6. On opposite
sides of any nodal line the displacement has opposite sign.

A few normal modes are shown in fig. 9, in which the

shaded parts are displaced oppositely to the unshaded.

(0,0) (1,0) (2,0)

(2,1) (2,2)

FIG. 9

(1,3)

The complete solution is the sum of any number of

terms siich as (3), with the constants chosen to give any
assigned shape when t 0. The method of choosing
these constants is very similar to that of 19, except that

there are now two variables x and y instead of one, and

consequently we have double integrations corresponding
to (27).

According to (4) the frequencies of vibration depend

upon the two variables m and n. As a result it may
happen that there are several different modes having the

same frequency. Thus, for a square plate, the (4, 7),

(7, 4), (1, 8) and (8, 1) modes have the same frequency ;

and for a plate for which a = 36, the (3, 3) and (9, 1)

modes have the same frequency. When we have two or

more modes with the same frequency, we call it a

degenerate case. It is clear that any linear combination

of these modes gives another vibration with the same

frequency.
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29. We can introduce normal coordinates as in the

case of a vibrating string (cf. 22). According to (3)

the full expression for z is

A / j ,
v

niry /K \
z = 27Amn cos (rct-\~ r )

sin sm -
. (5)

m,n
a b

We write this

'. . WITX . ft7n/
^ 270^ sm sin , . . (6)

mt n a u

where
</>mn are the normal coordinates. The kinetic

energy is

. . . (7)

and this is easily shown to be

T - 2 \ patymn ... (8)
m, n 8

The potential energy may be calculated in a manner
similar to 14. Referring to fig. 7 we see that in the

displacement to the bent position, the two tensions T8y
have done work T8y . (arcAB 8x). As in 14, this

reduces to approximately
- T I I 8x8y. The other two
2 \dxj

tensions TSo; have done work - T I
~-

I 8x8 u. The total
2 \dyj

potential energy is therefore

In the case of the rectangular membrane this reduces to

F = Z
\ p6cVVl (10)

m,n

It will be seen that T and F are both expressed in the form
of Chapter II, equation (38), typical of normal coordinates

in mechanical problems.
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30. With a circular membrane such as a drum of

radius a, we have to use plane polar coordinates r,9,

instead of Cartesians, and the solution of equation (1),

apart from an arbitrary amplitude, is given in 8,

equation (35a). It is

f*OS

z = Jm(nr) g
-

n m9 cos net.

We have neglected the Ym(nr) term since this is not finite

at r 0. If we choose the origin of 6 properly, this normal

mode may be written

z == Jm(nr) cos m9 cos net. . . (11)

If z is to be single-valued, m must be a positive integer.

The boundary condition at r = a is that for all values of

6 and t, Jm(na) cos m9 cos net equals zero, i.e., Jm(na) 0.

For any assigned value of m this equation has an infinite

number of real roots, each one of which determines a

corresponding value of n. These roots may be found

from tables of Bessel functions. If we call them nm , ly

n
m, 2>

n
m, fc> >

then the frequency of (11) is nc/27r,

i.e. cnm
^ fc/27r, and we may call it the (m, k) mode. The

allowed values of m are 0, 1, 2, ... and of k are 1, 2, 3, ... .

There are nodal lines which consist of circles and radii

vectores. Fig. 10 shows a few of these modes of vibration,

shaded parts being displaced in an opposite direction to

unshaded.

The nodal lines obtained in figs. 9 and 10 are known
as Chladni's figures. A full solution of a vibrating mem-
brane is obtained by superposing any number of these

normal modes, and if nodal lines exist at all, they will

not usually be of the simple patterns shown in these

figures. As in the case of the rectangular membrane so

also in the case of the circular membrane, the overtones

bear no simple numerical relation to the fundamental

frequency, and thus the sound of a drum is not very
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musical. A vibrating bell, however, is of very similar

type, but it can be shown,* that some of the more important
overtones bear a simple numerical relation to the funda-

mental
;

this would explain the pleasant sound of a well-

constructed bell. But it is a little difficult to see why
the ear so readily rejects some of the other overtones

(0,2) (2,2)

whose frequencies are not simply related to the fundamental.

A possible explanation )
is that the mode of striking may

be in some degree unfavourable to these discordant

frequencies. In any case, we can easily understand why
a bell whose shape differs slightly from the conventional,
will usually sound unpleasant.

* See Slater and Frank, Introduction to Theoretical Physics,
1933, p. 161.

t Lamb, Dynamical Theory of Sound (Arnold), 1910, p. 155.
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31. Examples

(1) Find two normal modes which are degenerate (28)
for a rectangular membrane of sides 6 and 3.

(2) Obtain expressions for the kinetic and potential

energies of a vibrating circular membrane. Perform the in-

tegrations over the ^-coordinate for the case of the normal mode

z = A Jm(nr) cos m6 cos net.

(3) A rectangular drum is 10 cm. X 20 cm. It is stretched

to a tension of 5 kgm., and its mass is 20 gm. What is the

fundamental frequency ?

(4) A square membrane bounded by x = 0, a and y = 0, a

is distorted into the shape z = A sin - sin- and then
a a

released. What is the resulting motion ?

(5) A rectangular membrane of sides a and b is stretched

unevenly so that the tension in the x direction is Tj_ and in

the y direction is T 2 . Show that the equation of motion is

d 2z 8 2z d2z
T-i +T 2

= p -. Show that this can be brought into
dx2

dy
2 dt2

the standard form by changing to now variables x/ VT~ ,

2//VT"
'

anc^ nence fiftd. the normal modes.

(6) Show that the number of normal modes for the

rectangular membrane of 28 whose frequency is less than N is

approximately equal to the area of a quadrant of the ellipse
vj2

/i2 A *

--
1

-- = =r N2
. Hence show that the number is roughly

a2 b2 T

[ANSWERS: 1. (2, 0) and (0, 1): in general (2m, n) and

(2n, m) ; 2. T = J7rpn
2c2^ 2 sin2 net f {Jm(nr)}*rdr,

J o

V =
%7T P 2

2A 2 cos2 net (* [n
2
{Jrn

/

(nr)}
2+m2

{
Jm(^)}2

/
r2 ] r dr

>

which becomes, after integration by parts

V = %7rpn
2c2A 2 cos2

nctj

a

{Jm(nr)}
2 rdr; 3. 175-1 ;

4. z = A sin (27rx/a) sin (^nyja) cos (^13-rTCt/a) ;

5. z A sin (mnx/a) sin (rnry/b) cos npt,



CHAPTER IV

LONGITUDINAL WAVES IN BARS AND SPRINGS

32. The vibrations which we have so far considered have
all been transverse, so that the displacement has been

perpendicular to the direction of wave propagation. We
must now consider longitudinal waves, in which the

displacement is in the same direction as the wave. Sup-

pose that AB (fig. 11) is a bar of uniform section and

P 1

Q
1

FIG. 11

mass p per unit length. The passage of a longitudinal
wave along the bar will be represented by the vibrations

of each element along the rod, instead of perpendicular
to it. Consider a small element PQ of length Sx, such
that AP = x, and let us calculate the forces on this element,
and hence its equation of motion, when it is dis-

placed to a new position P'Q''. If the displacement of

P to P' is f ,
then that of Q to Q' will be f+8f , so that

P'Q' = 8x+8. We must first evaluate the tension at

P' . We can do this by imagining Sx to shrink to zero.

51
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Then the infinitesimally small element around P' will be
in a state of tension T where, by Hooke's Law,

extension
Tp> A .

orig. length

= A Lim -

=
Ag (1)

Returning to the element P'Q', we see that its mass is the

same as that of PQ, i.e. px, and its acceleration is ~.
ut

Therefore

~*~'W
^ T^'~T^'

Thus the equation of motion for these longitudinal waves
reduces to the usual equation of wave motion

The velocity of waves along a rod is therefore \/(A//>),

a result similar in form to the velocity of transverse

oscillations of a string.

The full solution of (2) is soon found if we know the

boundary conditions.

(i) At a free end the tension must vanish, and thus,
r\>

from (1),
= 0, but the displacement will not, in general,

dx

vanish as well.

(ii) At a fixed end the displacement must vanish,

but the tension will not, in general, vanish also.
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33. If wo are interested in the free vibrations of a

bar of length Z, we shall use stationary type solutions of

(2) as in 8, equation (27). Thus

= (a cos px-\-b sin px) cos {cpt-^-e}.

If we take the origin at one end, then by (i) fig/dx has to

vanish at x = and x = I. This means that 6 = 0, and
sin pi = 0. i.e. pi mr, where n = 1, 2, ... . The free

modes are therefore described by the functions

co
l~T~

+e4 ' * (3)

This normal mode has frequency nc/2Z, so that the funda-

mental frequency is c/2Z, and the harmonics are simply
related to it. There are nodes in (3) at the points x = l/2n,

3l/2n, 5l/2n, .... (2nl)l/2n ;
and there are antinodes

( 6)

at x = 0, 2l/2n, 4Z/2/1 .... Z. From (1) it follows that

these positions are interchanged for the tension, nodes of

motion being antinodes of tension and vice versa. We
shall meet this phenomenon again in Chapter VI.

34. The case of a rod rigidly clamped at its two ends

is similarly solved. The boundary conditions are now
that | = at x 0, and at x = Z. The appropriate
solution of (2) is thus

. mrx (mrct
}

,sm - cos
\

- - +}-. . . (4)

This solution has the same form as that found in Chapter II,

19, for the transverse vibrations of a string.

35. We may introduce normal coordinates for these

vibrations, just as in 22 and 29. Taking, for

example, the case of 34, we should write

, , . nm
g = S n sin

, . . . (5)
w = l l

where . (nrrct
,

tn == an COS
-j

+
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The kinetic energy of the element PQ is |pS# . |
2

,
so

that the total kinetic energy is

fJ
... (6)

1

o n

The potential energy stored up in P'Q' is approximately

equal to one-half of the tension multiplied by the increase
1 P

in length : i.e. - A . S. Thus the total potential energy is

36. The results of 33, 34 for longitudinal vibrations

of a bar need slight revision if the bar is initially in a state

of tension. We shall discuss the vibrations of a bar of

natural length Z stretched to a length Z, so that its equili-

brium tension T is , ,

T =A J

-p .... (8)
^0

Referring to fig. 11, the unstretched length of P'Q' is not

Sx but -2$x, so that the tension at Pf
is not given by (1),

i

but by the modified relation

8x+$-
l

j
Sx

JP . = A Lim---
^To+' using (8). . (9)

The mass of PQ is p(l /l)8x where p refers to the unstretched

bar, so the equation of motion is
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We have again arrived at the standard equation of wave
motion

It follows that c = (Z// )c ,
where c is the velocity under

no permanent tension. Appropriate solutions of (10) are

soon seen to be

.. . UTTX (nrrct } , rt

| = an sin -y- cos J -r- + ew
}-

, tt=l,2 . . . (11)
I

^
J

The fundamental frequency is c/2l, which, from (10), can

be written c /2 . Thus with a given bar, the frequency is

independent of the amount of stretching.

The normal mode (11) has nodes where x = 0, l/n,

2l/n, . . ,1. A complete solution of (10) is obtained by
superposition of separate solutions of type (11).

37. We shall conclude this chapter with a discussion

of the vibrations of a spring suspended from its top end

and carrying a load M at its bottom end. When we

neglect the mass of the spring it is easy to show that

the lower mass M (fig. 12) executes Simple Harmonic
Motion in a vertical line. Let us, however, consider the

possible vibrations when we allow for the mass m of the

spring. Put m = pi, where p is the unstretched mass per
unit length and I is the unstretched length. We may
consider the spring in three stages. In stage (a) we have

the unstretched spring of length 1. The element PP' of

length Sx is at a distance x from the top point A. In stage

(6) we have the equilibrium position when the spring is

stretched due to its own weight and the load at the bottom.

The element PP' is now displaced to QQ'. P is displaced
a distance X downwards and P' a distance X+SX. Lastly,
in stage (c) we suppose that the spring is vibrating anc

the element QQ' is displaced to RR'. The displace!

ofQ and Q' from their equilibrium positions are f ar
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The new length EE' is therefore 8x+SJ?+S. The mass of

the element is the same as the mass of PP'
} viz. p8x, and

is of course the same in all three stages.

We are now in a position to determine the equation
of motion of EE' . The forces acting on it are its weight

A 1

(a)

unstretched
(6)

stretched

equilibrium

FIG. 12

stretched

vibrating

downwards and the two tensions at E and E'. The
tension TR may be found from Hooke's Law, by assuming
that 8x is made infinitesimally small. Then, as in 36,

= A.
extension

orig. length

A Lim
Sx

(12)
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So the equation of motion of RR' is

2

pSx - = resultant force downwardsr '

s , *== gp +
dx

Dividing by p&x and using (12), this becomes

a2
g A

This last equation must be satisfied by 0, since this is

merely the position of equilibrium (6) . So

.= 9 +
p

By subtraction we discover once more the standard equation
of wave motion

x c pm
This result is very similar to that of 36. However,
before we can solve (13) we must discuss the boundary
conditions. There are two of these. Firstly, when x = 0,

we must have = for all t. Secondly, when x = I,

(i.e. the position of the mass M
)
we must satisfy the law

of motion

Using (12), this becomes
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As before, this equation must be satisfied by = 0, since

this is just the equilibrium stage (6). Thus

So, by subtraction we obtain the final form of the second

boundary condition

A
(14)

The appropriate solution of (13) is

a sin px cos {pc+e}. . . (15)

This gives = when # = 0, and therefore satisfies the

first boundary condition. It also satisfies the other

boundary condition (14) if

plt&npl = mlM. . . . (16)

By plotting the curves y = tan x, y = (m/M)/x, we see

that there are solutions of (16) giving values of 2>Z in the

ranges to vr/2, TT to 37T/2, .... The solutions become

progressively nearer to nrr as n increases.

We are generally interested in the fundamental, or

lowest, frequency, since this represents the natural vibra-

tions of M at the end of the spring. The harmonics

represent standing waves in the spring itself, and may be

excited by gently stroking the spring downwards when in

stage (6). If m/M is small, the lowest root of (16) is

small ; writing pi = z, we may expand tan z and get

z(z+z
3
/3+...) =m/M.

Approximately
z2(l+z

2
/3) =m/M.

We may put z2 in the term in brackets equal to the first

order approximation z2 = m/M 9
and then we find for the

second order approximation

_mA_
. 1+m/BM'
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The period of the lowest frequency in (15) is 2-jTJpc, i.e.,

27rl/cz. Using the fact that c2 = A?/w, this becomes

277A/ 1
. If the mass of the spring m had been

' A

neglected we should have obtained the result 2?r\/(Of/A).
It thus appears that the effect of the mass of the spring
is equivalent, in a close approximation, to adding a mass
one-third as great to the bottom of the spring.

38. Examples
(1) Find the velocity of longitudinal waves along a bar

whose mass is 2-25 gms. per cm. and for which the modulus
is 9-0 . 1C10

dynes.

(2) Two semi-infinite bars are joined to form an infinite

rod. Their moduli are Aj and A 2 and the densities are p
and p 2 . Investigate the reflection coefficient (see 16) and
the phase change on reflection, when harmonic waves in the

first medium meet the join of the bars.

(3) Investigate the normal modes of a bar rigidly fastened

at one end and free to move longitudinally at the other.

(4) A uniform bar of length I is hanging freely from one

end. Show that the frequencies of the normal longitudinal
vibrations are (n-j-J) c/2Z, where c is the velocity of longi-
tudinal waves in the bar.

(5) The modulus of a spring is 7-2 . 103
dynes. Its mass

is 10 gms. and its unstretched length is 12 cms. A mass
40 gms. is hanging on the lowest point, and the top point is

fixed. Calculate to an accuracy of 1 per cent, the periods of

the lowest two vibrations.

(6) Investigate the vertical vibrations of a spring of un-

stretched length 21 and mass 2m, supported at its top end
and carrying loads M at the mid-point and the bottom.

[ANSWEKS : 1. 2 km. per sec. ; 2. B =

/(r+i)wc \
( +4 : 6 "3. e = A r sin

v ' '

cos
|

v ' *'"
+er l ; 5. 1-690 sees.,

0-252 sees. ; 6. Period = 2ir/nc where k3
Skcotnl-}- cot

2 nl= 1,

k = Mln/m.]



CHAPTEB V

WAVES IN LIQUIDS*

39. In this chapter we shall discuss wave motion in

liquids. We shall assume that the liquid is incompressible,
with constant density p. This condition is very nearly
satisfied by most liquids, and the case of a compressible
fluid is dealt with in Chapter VI. We shall further assume
that the motion is irrotational. This is equivalent to

neglecting viscosity and assuming that all the motions

have started from rest due to the influence of natural

forces such as wind, gravity, or pressure of certain bound-

aries. If the motion is irrotational, wo may assume
the existence of a velocity potential <j>

if we desire it.

It will be convenient to summarise the formulae which
we shall need in this work.

(i) If the vector u j with components (u, v, w) J

represents the velocity of any part of the fluid, then from
the definition of

(f>

u = -\7<
== grad <f>,

. . (I)

so that in particular u = ~8<f>/dx, v =
d(f)/dy,

w = fy/dz.

(ii) On a fixed boundary the velocity has no normal

* Before reading this chapter the student is advised to read

Rutherford's Vector Methods, Chapter VI, from which several

results will be quoted.

f Using Clarendon type for vectors.

J Many writers use (uxuyuz ) for the velocity components. We
shall find (u, v, w) more convenient for our purposes. It is necessary,
however, to distinguish u, which is a vector representing the velocity
and u, which is just the x component of the velocity.

60
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component, and hence if 8/8 v denotes differentiation along
the normal

= ..... (2)

(iii) Since no liquid will be supposed to be created or

annihilated, the equation of continuity must express the

conservation of mass
;

it is

v-"r + ? + 7r-<> (3)
dx dy dz

Combining (1) and (3), we obtain Laplace's equation

- <

(iv) If H(x, y, z, t) is any property of a particle of the

flff

fluid, such as its velocity, pressure or density, then
Oli

is the variation of H at a particular point in space, and
T)TJ

- is the variation of H when we keep to the same particle
JJt

Dff
of fluid. is known as the total differential coefficient,

jLJt

and it can be shown * that

DH dH
,

-fjr
- ^T+Dt dt ,-*

DH OH dH
,

dH
,

dH ' ( }

{ Q - --L u- 4- v--U w-
Dt dt

^
dx 8y

^
8z

(v) If the external forces acting on unit mass of liquid

can be represented by a vector F, then the equation of

motion of the liquid may be expressed in vector form

Du 1

* See Rutherford, 66.
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In Cartesian form this is

8u 8u
,

3u 8u _ 1 dp /a .

+ U+V--+W-- =Fx---f, . (6)
dt dx % dz p ox

with two similar equations for v and w.

(vi) An important integral of the equations of motion

can be found in cases where the external force F has a

potential V, so that F = yF. The integral in question
is known as Bernoulli's Equation :

- + l* + v-jl
= c> <

7
>

p 2 dt

where C is an arbitrary function of the time. Now
according to (1), addition of a function of t to

<j>
does

not affect the velocity distribution given by <f> ;
it is often

convenient, therefore, to absorb C into the term ~- and
ot

(7) can then be written

A particular illustration of (8) which we shall require later

occurs at the surface of water waves
;

here the pressure
must equal the atmospheric pressure and is hence constant.

Thus at the surface of the waves (sometimes called the

free surface)

\
u2 + V -^ = constant. . . (9)

ct

40. We may divide the types of wave motion in

liquids into two groups ; the one group has been called

tidal waves,* and arises when the wavelength of the

oscillations is much greater than the depth of the liquid.
Another name for these waves is long waves in shallow
water. With waves of this type the vertical acceleration

* Lamb, Hydrodynamics, Chapter VIII.
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of the liquid is neglected in comparison with the horizontal

acceleration, and we shall be able to show that liquid

originally in a vertical plane remains in a vertical plane

throughout the vibrations
;

thus each plane of liquid
moves as a whole. The second group may be called

surface waves, and in these the disturbance does not

extend far below the surface. The vertical acceleration

is no longer negligible and the wavelength is much less

than the depth of the liquid. To this group belong most
wind waves and surface tension waves. We shall consider

the two types separately, though it will be recognised that

Tidal Waves represent an approximation and the results

for these waves may often be obtained from the formulse

of Surface Waves by introducing certain restrictions.

TIDAL WAVES

41. We shall deal with Tidal Waves first. Here we
assume that the vertical accelerations may be neglected.
One important result follows immediately. If we draw
the z axis vertically upwards (as we shall continue to do

throughout this chapter), then the equation of motion in

the z direction as given by (6), is

Dw 1 dp___ = __0____.

We are to neglect and thus
JLJt

dp =
gp, i.e. p = gpz -(- constant.

cz

Let us take our xy plane in the undisturbed free surface,

and write (#, y, t) for the elevation of the water above

the point (x, y, 0). Then, if the atmospheric pressure is

pQ ,
we must have p = pQ when z = . So the equation

for the pressure becomes

)- (10)
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We can put this value of p into the two equations of

horizontal motion, and we obtain

Du dt> Dv d

~Dt~~
~

g
dx

y

~Dt
= ~

g
dy

(11)

The right-hand sides of these equations are independent
of z, and we deduce therefore that in this type of motion
the horizontal acceleration is the same at all depths.

Consequently, as we stated earlier without proof, on still

water the velocity does not vary with the depth, and
the liquid moves as a whole, in such a way that particles

originally in a vertical plane, remain so, although this

vertical plane may move as a whole.

42. Let us now apply the results of the last section

to discuss tidal waves along a straight horizontal channel

whose depth is constant, but whose cross-section A varies

dx

FIG. 13

from place to place. We shall suppose that the waves
move in the x direction only (extension to two dimensions
will come later). Consider the liquid in a small volume

(fig. 13) bounded by the vertical planes x, x~\-dx at P
and Q. The liquid in the vertical plane through P is all

moving with the same horizontal velocity u(x) independent
of the depth. We can suppose that A varies sufficiently

slowly for us to neglect motion in the y direction. We
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have two equations with which to obtain the details of

the motion. The first is (11) and may be written

du
,

du du dt,+ u +w = -0^-.
dt dx 8z dx

Since u is independent of 2, = 0. Further, since we
oz

shall suppose that the velocity of any element of fluid

is small, we may neglect u which is of the second order,
ox

and rewrite this equation

dU --a 8 ^
(12)

8*
~ 9

te
(")

The second equation is the equation of continuity. Equa-
tion (3) is not convenient for this problem, but a suitable

equation can be found by considering the volume of liquid
between the planes at P and Q, in fig. 13. Let b(x) be the

breadth of the water surface at P. Then the area of the

plane P which is covered with water is [A -\~b]P ; therefore

the amount of liquid flowing into the volume per unit

time is [(A~}-b)u]p. Similarly, the amount flowing out

per unit time at Q is [(A +&)^]Q. The difference between

these is compensated by the rate at which the level is

rising inside the volume, and thus

Therefore

Since bQu, is of the second order of small quantities, we may
neglect this term and the equation of continuity becomes
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Eliminating u between (12) and (13) gives us the equation

In the case in which A is constant, this reduces to the

standard form

This is the familiar equation of wave motion in one

dimension, and we deduce that waves travel with velocity

^/(Ag/b). If the cross-section of the channel is rectangular,
so that A = bh, h being the depth,

c=V(fl*) .... (16)

With an unlimited channel, there are no boundary
conditions involving #, and to our degree of approximation
waves with any profile will travel in either direction.

With a limited channel, there will be boundary conditions.

Thus, if the ends are vertical, u = at each of them.

We may apply this to a rectangular basin of length I,

whose two ends are at x = 0, 1. Possible solutions of (15)

are given in 8, equation (27). They are

= (a cos px+f3 sin px) cos (cpt+e).

Then, using (13) and also the fact that A = bh, we find

8u cp ~= -=- (a Gospx+p sinpx) sin (cpt+e).
OX fl

Xi

u -
(a sin pxj3 cos px) sin (cpt+c).

ft

The boundary conditions u = at x = 0, Z, imply that

j8
= 0, and sin pi = 0. So

,
r == 1,2,3,... (17)
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It will be noticed that nodes of u and do not occur at

the same points.
The vertical velocity may be found from the general

form of the equation of continuity (3). Applied to our

case, this is

8u 8w _
T; h ~T~

== 0-
- ox GZ

Now u is independent of z and w = on the bottom of

the liquid where z h. Consequently, on integrating

dx

7rrarc TTTX
. /ryrc^ \

(z+A cos sin I -7- +*r f
Ih I \ I )

We may use this last equation to deduce under what
conditions our original assumption that the vertical

acceleration could be neglected, is valid. For the vertical

Dw . dw .

acceleration is effectively ,
i.e.

The maximum value of this is TrWaJZ2
,
and may be com-

pared with the maximum horizontal acceleration Trrc
2ar/lh.

The ratio of the two is rirh/1, i.e. 277-A/A, since, from (17)

A = 2l/r. We have therefore confirmed the condition

which we stated as typical of these long waves, viz. that

the vertical acceleration may be neglected if the wavelength
is much greater than the depth of water.

43. We shall now remove the restriction imposed in

the last section to waves in one dimension. Let us use

the same axes as before and consider the rate of flow of

liquid into a vertical prism bounded by the planes

x, x-\-dx, y, y+dy. In fig. 14, ABCD is the undisturbed

surface, EFGH is the bottom of the liquid, and PQES is

the moving surface at height (x } y) above ABCD. The
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rate of flow into the prism across the face PEHS is

[u(h+)dy]a ,
and the rate of flow out across RQFO is

The net result from these two planes is

FIG. 14

o

a gain {ufy-^Qftdxdy. Similarly, from the other two
c/x

o

vertical planes there is a gain
-

{v(h-{-^)}dxdy. The

total gain is balanced by the rising of the level inside the

prism, and thus

- ~{u(h+)}dxdy -
j^{v(h+)}dxdy

- ^ . dxdy.

As in 42, we may neglect terms such as ut, and vt, and

write the above equation of continuity

d(hu) d(hv) __ __a^
dx

~ +
~~dy ~8t

' (20)
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We have to combine this equation with the two equations
of motion (11), which yield, after neglecting square terms

in the velocities

8u dv d

Eliminating u and v gives us the standard equation

8

If h is constant (tank of constant depth) this becomes

This is the usual equation of wave motion in two dimensions

and shows that the velocity is \/(gh). If we are concerned

with waves in one dimension, so that is independent of

y (as in 42) we put = and retrieve (15).

We have therefore to solve the equation of wave
motion subject to the boundary conditions

(i) w = at z = h,

(ii)
= at a boundary parallel to the y axis, and

ox
o5*

at a boundary parallel to the x axis,
dy
f\Y r\

(iii) at any fixed boundary, where denotes
ov ov

differentiation along the normal to the boundary. This

latter condition, of which (ii) is a particular case, can be

seen as follows. If Ix -{-my = 1 is the fixed boundary,
then the component of the velocity perpendicular to this

line has to vanish. That is, lu -\-rnv = 0. By differentiating

partially with respect to t and using (21), the condition (iii)

is obtained.
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44. We shall apply these formulae to two cases
; first,

a rectangular tank, and, second, a circular one, both of

constant depth.

Rectangular tank. Let the sides be x = 0, a and y = 0, 6.

Then a suitable solution of (23) satisfying all the boundary
conditions (i) and (ii) would be

= A cos cos cos (rTTCt+e), . (24)
a b

where p = 0, 1, 2 ...
, gr
- 0, 1, 2, ... , and r2 = p*/a*+q*lb*.

This solution closelyresembles that fora vibrating membrane

in Chapter III, 28, and the nodal lines are of the same

general type. The student will recognise how closely the

solution (24) resembles a
"
choppy sea."

Circular tank. If the centre of the tank is origin and

its radius is a, then the boundary condition (iii) reduces to

r\Y

at r = a. Suitable solutions of (23) in polar
dr

coordinates have been given in Chapter I, equation (35a).

We have
= A cos mO Jm(nr) cos (cnt-\-e) . (25)

We have rejected the Ym solution since it is infinite at

r = 0, and we have chosen the zero of 6 so that there is

no term in sin m9. This expression satisfies all the condi-

tions except the boundary condition (iii) at r ~ a. This

requires that Jm'(na) 0. For a given value of m (which

must be integral) this condition determines an infinite

number of values of n, whose magnitudes may be found

from tables of Bessel Functions. The nodal lines are

concentric circles and radii from the origin, very similar

to those in fig. 10 for a vibrating membrane. The period
of this motion is 2?r/'en. \

45. It is possible to determine the actual paths of

individual particles in, many of these problems. Thus,
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referring to the rectangular tank of 42, the velocities

u and w are given by (18) and (19). We see that

w ~Trr(z-\-h) TTTX= cot 7.u I I

This quantity is independent of the time and thus any
particle of the liquid executes simple harmonic motion

along a line whose slope is given by the above value of

w/u. For particles at a fixed depth, this direction changes
from purely horizontal beneath the nodes to purely vertical

beneath the antinodes.

46. We shall conclude our discussion of tidal waves

by applying the method of reduction to a steady wave,

already described in 25, to the case of waves in a channel

of constant cross-section A and breadth of water-line b.

This is the problem of 42 with A constant. Let c be the

velocity of propagation of a wave profile. Then super-

impose a velocity ~c on the whole system, so that the

wave profile becomes stationary and the liquid flows under

it with mean velocity c. The actual velocity at any point
will differ from c since the cross-sectional area of the liquid
is not constant. This area is A-\-b,, and varies with .

Let the velocity be c~\-6 at sections where the elevation

is . Since no liquid is piling up, the volume of liquid

crossing any plane perpendicular to the direction of flow

is constant, i.e.

(A +&) (c +0) = constant = Ac. . (26)

Wo have still to use the fact that the pressure at the free

surface is always atmospheric. In Bcrnouilli's equation
at the free surface (9) we may put d</>/dt

= since the

motion is now steady motion
;

also V = g at the free

surface. So, neglecting squares of the vertical velocity,
this gives

= const. = |c
2

.
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Eliminating between this equation and (26), we have

i.e.

Whence

. _ . (27)l '

If is small, so that we may neglect compared with -4/6,

then this equation gives the same result as (16), viz.

c2 = gA/b. We can, however, deduce more than this

simple result. For if >0, the right-hand side of (27) is

greater than gA/b, and if <0, it is less than gA/b. Thus
an elevation travels slightly faster than a depression and

so it is impossible for a long wave to be propagated
without change of shape. Further, since the tops of waves
travel faster than the troughs, we have an explanation of

why waves break on the sea-shore when they reach shallow

water.

SURFACE WAVES

47. We now consider Surface Waves, in which the

restriction is removed that the wavelength is much greater
than the depth. In these waves the disturbance is only

appreciable over a finite depth of the liquid. We shall

solve this problem by means of the velocity potential </>.

<f>
must satisfy Laplace's equation (4) and at any fixed

boundary d<f>/dv
= 0, by (2). There are, however, two

other conditions imposed on
<j>

at the free surface. The
first arises from Bernoulli's equation (9). If the velocity
is so small that u2 may be neglected, and if the only
external forces are the external pressure and gravity, we
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may put u2 = and F = gr
in this equation, which

becomes

free surface

The second condition can be seen as follows. A particle

of fluid originally on the free surface will remain so always.
Now the equation of the free surface, where z = (#, y, t)

may be written

=
/(3, y, z, t)

=
(&, 2/, Q z.

Consequently, / is a function which is always zero for a

particle on the, free surface. We may therefore use (5)

with H put equal to /, and we find

A Df .

,
0f

^j^ == ^ + u^ +v -^~ w '

Dt dt dx 8y

Now from (28)
- = - -- I - I = --

TT- on the surface.
v }

dx g di \dx) g 8i

ftY

Thus ~- is a small quantity of order of magnitude not
ox

f\Y ?\Y

greater than u\ consequently u and v -, being of
ex cy

order of magnitude not greater than u2
, may be neglected.

We are left with the new boundary condition

% - w - - * (29)
dt
~ W ~~

8z
(M)

Combining (28) and (29) we obtain an alternative relation

We summarise the conditions satisfied by <f>
as follows :

(i) Laplace's equation y2
< = in the liquid . (2)

(ii) d<f>l&v
= on a fixed boundary ... (4)
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1 firh

(iii)
= - -? on the free surface . . . (28)

(7 d

oJ" o J

(iv)
= on the free surface . . . (29)

vt dz

(
v

)
.? + g,

f!r = on the free surface . . (30)
Gv 0%

Only two of the last three conditions are independent.

48. Let us apply these equations to the case of a

liquid of depth h in an infinitely long rectangular tank,

supposing that the motion takes place along the length
of the tank, which we take as the x direction. The axes

of x and y lie, as usual, in the undisturbed free surface.

Condition (i) above gives an equation which may be

solved by the method of separation of variables (see 7),

and if we want our solution to represent a progressive
wave with velocity c, a suitable form of the solution would

be

<f>
= (Ae

mz+ Be~mz
)
cos m(xct).

A, B, m and c are to be determined from the other condi-

tions (ii)-(v). At the bottom of the tank (ii) gives d</>/dz~0,
i.e. Ae~mh Bemh = 0. So Ae~mh = Bemh = W, say, and

hence

(/)
C cosh m(z-\-h) cos m(xct). . (31)

Condition (v) applies at the free surface where, if the

disturbance is not too large, we may put z =
;

after

some reduction it becomes

c2 = (g/m) tanh mh.

Since m = 27T/A, where A is the wavelength, we can write

this

. . . (32)
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Condition (iii) gives us the appropriate form of ;
it is

Y mcO .- cosh mft sin m(xct).
9

This expression becomes more convenient if we write a

for the amplitude of
; i.e., a =- cosh mh. Then

&

= a sin m(xct), .... (33)

gfl coshw(2+&) ,
.. /0 ,

xA = *--^ ! i cosm( c). . (34)me cosh mh

If the water is very deep so that tanh (27rA/A)
= 1, then

(32) becomes c2 0A/277, and if it is very shallow so

that tanh (2?r^/A)
=

27rh/X, we retrieve the formula of 42

for long waves in shallow water, viz. c2 = gh.

We have seen in Chapter I that stationary waves result

from superposition of two opposite progressive harmonic

waves. Thus we could have stationary waves analogous
to (33) and (34) defined by

= a sin mx cos met, .... (35)

. ga . . .__
6 =--- - sin mx sin met. . (36)me cosh mh

We could use these last two equations to discuss stationary
waves in a rectangular tank of finite length.

49. We shall now discuss surface waves in two dimen-

sions, considering two cases in particular.

Rectangular tank. With a rectangular tank bounded

by the planes x = 0, a and y = 0, 6, it is easily verified

that all the conditions of 47 are satisfied by

PTTX qiry= A cos- cos ~- cos ret ,

a o

. aA .A =- *-- v

cos ^L_ cos 1^! sm
rc cosh rA a b
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where

p = 1, 2, ...
; q = 1, 2, ....

;
r2 = 7r

2
(p

2
/a

2+ 2
/&

2
)
and

c2 = (gr/r) tanh r/L . . . (37)

Circular tank. Suppose that the tank is of radius a

and depth h. Then choosing the centre as origin and

using cylindrical polar coordinates r, 0, z, Laplace's equation

(cf. Chapter I, 7) becomes

$2
cA 1 dJ> 1 ffij) d^d)
'

.. 1- '
|

>
[

r ___ f\ /QC\

A suitable solution can be found from Chapter I, equation

(35a), which gives us a solution of the similar equation

in the form

. Jm cos cos
'
~ Ym ^

nr
' sin sin

In this equation let us make a change of variable, writing
ct = iz> where i

2 = 1. We then get Laplace's equation

(38) and its solutions are therefore

In our problem we must discard the Y solution as Ym (r)

is infinite when r 0. So, choosing our zero of 6 suitably,

we can write

< = Jm(nr) cos m9 (A cosh nz+B sinh nz).

At the bottom of the tank condition (ii) gives, as in 48,

A sinh rih = B cosh rih,, so that

</)
= (7 Jm(nr) cos m0 cosh n(z+A).

The constants m and w are not independent, since we
have to satisfy the boundary condition at r = a. This

gives Jm'(na)
= 0, so that for any selected m, r& is restricted
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to have one of a certain set of values, determined from

the roots of the above equation. The function C above

will involve the time, and in fact if we are interested in

waves whose frequency is /, we shall try C oc sin 2irft.

Putting C = D sin Sir/I, where D is now a constant

independent of r, 6, z or t, we have

$ = DJm(nr) cos m6 cosh n(z+h) sin 27rft. (39)

The boundary condition 47 (iii) now enables us to find
;

it is

-i Jm(nr) cos m9 cosh nh cos 2-rrft . (40)
t7

The remaining boundary condition 47 (iv) gives us the

period equation ;
it is

47T
2
/

2 D Jm(nr) cos m9 cosh nh sin 2^
-{-gnD Jm(nr) cos m# sinh n& sin 2rrft

= 0.

i.e. 4rr2/
2 ==

grn tanh TiA. . . . (41)

For waves with a selected value of m (which must be

integral) n is found and hence, from (41) / is found. We
conclude that only certain frequencies are allowed. Apart
from an arbitrary multiplying constant, the nature of the

waves is now completely determined.

50. In 48 we discussed the progressive wave motion

in an infinite straight channel. It is possible to determine

from (34) the actual paths of the particles of fluid in this

motion. For ifX
,
Z denote the displacements of a particle

whose mean position is (x, z) we have

8<h ga Goshm(z+h)X =
TT
= ---

r T-1
ex c cosh mh

84> qa
Z = - - = -

.

dz c cosn mh
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in which we have neglected terms of the second order of

small quantities. Thus

X = ------ cosra(x-~c),me2 cosh mh

gasmhm(z+h) .Z = *
_-.- L smm(x-ct).me 1 cosh mh

Eliminating t, we find for the required path

*

(42)^ '

These paths are ellipses in a vertical plane with a constant

distance (2ga/mc
z
)
sech mh between their foci. A similar

discussion could be given for the other types of wave
motion which we have solved in other paragraphs.

51 . The Kinetic and Potential energies of these waves

are easily determined. Thus, if we measure the P.E.

relative to the undisturbed state, then, since (#, y) is the

elevation, the mass of liquid standing above a base dA
in the xy plane is p dA. Its centre of mass is at a height

,
and thus the total P.E. is

4, .... (43)

the integral being taken over the undisturbed area of

surface. Likewise the K.E. of a small element is J pu
2
dr,

dr being the element of volume of the liquid, so that the

total K.E. is

... (44)

the integral being taken over the whole liquid, which may,
within our approximation, be taken to be the undisturbed

volume.

With the progressive waves of 48, and
<f>

are given
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by (33) and (34), and a simple integration shows that the

K.E. and P.E. in one wavelength (27r/m) are equal, and

per unit width of stream, have the value

..... (45)

In evaluating (44) it is often convenient to use Green's

Theorem in the form *

/W
\\dxj

l

The latter integral is taken over the surface S which

bounds the original volume, and d/dv represents differen-

tiation along the outward normal to this volume. Since

d</)/dv
= on a fixed boundary, some of the contributions

to T will generally vanish. Also, on the free surface, if

is small, we may put d0/dz instead of d(f)/dv.

52. We shall next calculate the rate at which energy
is transmitted in one of these surface waves. We can

Q
dz

P

FIG. 15

illustrate the method by considering the problem discussed

in 48, i.e. progressive waves in a rectangular tank of

depth h. Let AA' (fig. 15) be an imaginary plane fixed

in the liquid perpendicular to the direction of wave
* See Rutherford, Chapter VI, p. 66 (ii).
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propagation. We shall calculate the rate at which the

liquid on the left of AA' is doing work upon the liquid on

the right. This will represent the rate at which the energy
is being transmitted. Suppose that the tank is of unit

width and consider that part of AA' which lies between

the two lines z, z+dz (shown as PQ in the figure). At
all points of this area the pressure is p, and the velocity
is u. The rate at which work is being done is therefore

f
pudz. Thus the total rate is I pudz. We use Bernouilli's

J -h

equation (8) to give us p ;
since u2 may be neglected,

and F = gz, therefore

p =

Now, according to (1) u = d(f>/dx and from (34),

ga .

6 =--- - cosm(x-ct).
me cosh mh

Putting these various values in the required integral we
obtain

f ga cosh m(z+h)
Binm(xct) --- -

(pQ gpz)dz
J ~h c coshwA r

/ A f P0
2a 2

(x ct)

J ^ h c

2 /Bin2 m(

This expression fluctuates with the time, and we are

concerned with its mean value. The mean value of

sin m(xct) is zero, and of sin2 m(xct) is J. Thus the

mean rate at which work is being done is

/0

sech2 m& cosh2
m(z -\-Ti)dz.

After some reduction this becomes

%gpa?c (I + 2mh cosech 2mh).
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In terms of the wavelength A = 27r/m, this is

1

^Jl+ ^eosech^l . . (46)
4

I
A A

J

Now from (45) we see that the total energy with a stream

of unit width is %gpa
2
per unit length. Thus the velocity

of energy flow is

C ( , . 4:7Th , 4:7Th} /Am ^

_|l
+
_cosech_|

. . (47)

We shall see in a later chapter that this velocity is an

important quantity known as the Group Velocity.

53. In the preceding paragraphs we have assumed
that surface tension could be neglected. However, with

short waves this is not satisfactory and we must now

investigate the effect of allowing for it. When we say
that the surface tension is T, we mean that if a line of

unit length is drawn in the surface of the liquid, then

the liquid on one side of this line exerts a pull on the

liquid on the other side, of magnitude T. Thus the effect

of Surface Tension is similar to that of a membrane

everywhere stretched to a tension T (as in Chapter III,

27), placed on the surface of the liquid. We showed in

Chapter III that when the membrane was bent there was
a downward force per unit area approximately equal to

f

T -i

\
g

Thus in fig. 16, the pressure p1 just inside
cy

the liquid does not equal the atmospheric pressure
but rather

(48)

The reader who is familiar with hydrostatics will

recognise that the excess pressure inside a stretched film

(as in a soap bubble) is ^(l/E^+l/B^), where R and B2

are the radii of curvature in any pair of perpendicular
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planes through the normal to the surface. We may put
El
= d^/dx* and E2

= d2 /%2 to the first order of

small quantities, and then (48) follows immediately.

Thus, instead of making p = pQ at the free surface of

fd* 32
)

the liquid, the correct condition is that p -j-~H + -
n r

(dx
z

cy*)
is constant and equal to pQ . We may combine this with

Bernoulli's equation (9), in which we neglect u2 and put
V = gz. Then the new boundary condition which replaces
47 (iii) is

(49)
p x y

We still have the boundary condition 47 (iv) holding,
since this is not affected fey any sudden change in pressure
at the surface. By combining (29) and (49) we find the

new condition that replaces 47 (v). It is

8z p

We may collect these formulae together ; thus, with surface

tension

(i) y2^ = o in the body of the liquid . . (4)

(ii) 3<f>/dv
= en all fixed boundaries . . (2)

Qt T f P2^* Q"* }"^\

(m) - ^ + ~ + = on the free surface

(49)

(iv) d/dt = d<j>ldz
on the free surface . . (29)

(
y

)
- + ~-^+^l ^ on the free
3tz dz p \dx* dy*\ 3z ^^^ ^ y J surface . (50)

Only two of the last three equations are independent.
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54. Waves of the kind in which surface tension is

important are known as capillary waves. We shall

discuss one case which will illustrate the conditions (i)-(v).

Let us consider progressive type waves on an unlimited

sheet of water of depth h, assuming that the motion takes

place exclusively in the direction of x. Then, by analogy
with (31) we shall try

C cosh m(z-\-Ji) cos m(xct). . . (51)

This satisfies (i)
and

(ii), (iv^ ffives the form of
,
which is

= (C/c) sinh mh sin m(x >cl). . . (52)

We have only one more condition to satisfy ;
if we choose

(v) this gives

m2c2(7 cosh mil cos m(xct)~{-mCg sinh mh cos m(xct)

H m3
(7 sinh mh cos m(xct) = 0,

P

i.e. c2 = (g/m-}-Tm/p) taiih mh. . . . (53)

Tliis equation is really the modified version of (32) when
allowance is made for the surface tension

;
if T = 0, it

reduces to (32).

When h is large, tanh. mh = 1, and ifwe writem = 277/A,

we have

'-+ <.

The curve of c against A is shown in fig. 17, from which

it can be seen that there is a minimum velocity which

occurs when A2
^Tr^T/gp. Waves shorter than this, in

which surface tension is dominant, are called ripples, and
it is seen that for any velocity greater than the minimum
there are two possible types of progressive wave, one of

which is a ripple. The minimum velocity is
(4</T//>)

1/4
,

and if, as in water, T = 75, p 1*00 and g = 981 c.g.s.

units, this critical velocity is about 23 cms. per sec., and
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the critical wavelength is about 17 cms. Curves of c against

A for other values of the depth h are very similar to fig. 17.

FIG. 17

55. Examples

(1) Find the Potential and Kinetic energies for tidal

waves in a tank of length I, using the notation of 42.

(2) Find the velocity of any particle of liquid in the

problem of tidal waves in a circular tank of radius a ( 44).
Show that when m = in (25), particles originally on a vertical

cylinder of radius r coaxial with the tank, remain on a coaxial

cylinder whose radius fluctuates ; find an expression for the

amplitude of oscillation of this radius in terms of r.

(3) Tidal waves are occurring in a square tank of depth h
and side a. Find the normal modes, and calculate the Kinetic
and Potential energies for each of them. Show that when
more than one such mode is present, the total energy is just
the sum of the separate energies of each normal mode.

(4) What are the paths of the particles of the fluid in the

preceding question ?

(5) A channel of unit width is of depth h, where h = kx,
k being a constant. Show that tidal waves are possible with

frequency p/27r, for which

f
= AJQ(ax

ll2
) cos pt,



WAVES IN LIQUIDS 85

where a2 = 4p
z
/kg, and JQ is BesseFs function of order zero.

It is known that the distance between successive zeros of

J (x) tends to TT when x is large. Hence show that the wave-

length of these stationary waves increases with increasing
values of x (This is the problem of a shelving beach.)

(6) At the end of a shallow tank, we have x = 0, and the

depth of water h is h h xzm . Also the breadth of the tank
b is given by 6 = b x n

. Show that tidal waves of frequency

p/2ir are possible, for which

= AxuJQ(rx
s
) cos pt,

where

s ~ 1 m, a2 = p2
/gho, r = a/s, 2u l 2m~n arid q = | u/s |.

Use the fact that Jm(x) satisfies the equation

d*J 1 dJ / m2\
__

dx2 xdx \ x*\dx

(7) Prove directly from the conditions (i)-(v) in 47
without using the results of 48 that the velocity of surface

waves in a rectangular channel of infinite depth is ^(gXjZn).

(8) Find the paths of particles of fluid in the case of surface

waves on an infinitely deep circular tank of radius a.

(9) A tank of depth h is in the form of a sector of a circle

of radius a and angle 72. What are the allowed normal modes
for surface waves ?

(10) If X, Y, Z denotes the displacement of a particle of

fluid from its mean position x, y, z in a rectangular tank of

sides a and b when surface waves given by equation (37) are

occurring, prove that the path of the particle is the straight line

d WTTX b Qirij 1
cot X = cot ^-^ Y = - coth r(z+h) Z.

PIT a qir b r

(11) Show that in surface waves on a cylindrical tank of

radius a and depth h, the energies given by the normal modes

(39) are

V = J~J- cosWnh cosz
2<rrft

Jm2
(nr) r dr, and

Jo
i ra

T = -
n?rpD

2 sin2
27r/ cosh nh siiih nh I Jm2

(nr) r dr.
2 Jo
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Use the fact that the total energy must be independent of the

time to deduce from this that the period equation is

47T2/
2 = gn tarih nh.

(12) Show that when we use cylindrical polar coordinates

to describe the capillary waves of 53, the pressure condition

at the free surface 53 (iii) is

-
dt p (dr* r'dr ?-

2 d0a
J

Use this result to show that waves of this nature on a

circular basin of infinite depth are described by

<f>

= C Jm(nr) cos mB enz cos 2irft,

m ,

2-nf

where Jm'(na) = and 4?r
2
/

2 = gn +~Tn
3
/p.

(13) Show that capillary waves on a rectangular basin of

sides a, b and depth h are given by
cosh r(z-{-h) mrrx niryA ~ A -

:

- cos- cos -^ cos ZTrft,smh rh a b

v rA mirx n-ny .

4 = cos- cos - - sin 2<nft,
ATTJ a o

where m = 0, 1, 2, ... ; w = 0, 1, 2 ...
;
ra = 7r

2
(m

2
/a

2 +n2
/6

2
),

and the period equation is

47T
2
/

2 = (gr+Tr
3
//)) tanh rh.

Verify, that when n = 0, this is equivalent to the result of

54, equation (53).

[ANSWERS :

(r-nct

\ ir-jTct \

~Y + *r 1, i ffpfar* Sin8 I

-y-
+ r 1

;

(2) radial vol. is (gA/c) cos m6 Jm'(nr) sin (cnt + t), trans-

verse velocity is (gAm/cnr) sin m^ Jm (nr )
Bin (cn^ ~f~ e),

(gA/c) J '(nr) ; (3) J = A cos (p-nxfa) cos (qiry/a) cos (met/a),
sin2 (rnctja), P.E. = -

cos2
(t-Trttf/a) ; (4)

= tan cot ; (8) X : F : Z =
r g a a

nrJm'(nr) : mJm(nr) tan m^ : nr Jm(nr) ; (9) Same as in

a. (39)-(41) except that m =
5A;/2, where k = 0, 1, 2----]



CHAPTER VI

SOUND WAVES

56. Throughout Chapter V we assumed that the liquid
was incompressible. Ail important class of problems is

that of waves in a compressible fluid, such as a gas. In

this chapter we shall discuss such waves, of which sound
waves are particular examples. The passage of a sound

wave through a gas is accompanied by oscillatory motion
of particles of the gas in the direction of wave propagation.
These waves are therefore longitudinal. Since the density

p is not constant, but varies with the pressure p, we require
to know the relation between p and p. If the compressions
and rarefactions that compose the wave succeed each other

so slowly that the temperature remains constant (an
isothermal change) this relation is p kp. But normally
this is not the case and no flow of heat, which would be

needed to preserve the temperature constant, is possible ;

in such cases (adiabatic changes)

P = W, (i)

where Jc and y are constants depending on the particular

gas used. We shall use (1) when it is required, rather

than the isothermal relation.

57. There are several problems in the propagation
of sound waves that can be solved without using the

apparatus of velocity potential <f>
in the form in which

we used it in Chapter V, 47-54
;
we shall therefore

discuss some of these before giving the general development
of the subject.

87
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Our first problem is that of waves along a uniform

straight tube, or pipe, and we shall be able to solve this

problem in a manner closely akin to that of Chapter IV,

32, where wo discussed the longitudinal vibrations of a

rod. We can suppose that the motion of the gas particles

is entirely in the direction of the tube, and that the velocity
and displacement are the same for all points of the same
cross-section.

Suppose for convenience that the tube is of unit cross-

sectional area, and let us consider the motion of that

part of the gas originally confined between parallel planes
at P and Q a distance Ax apart (fig. 18). The plane P

p Q

dx
I

+ d|
P' Q

1

FIG. 18

is distant x from some fixed origin in the tube. During
the vibration let PQ move to P'Q', in which P is displaced
a distance from its mean position, and Q a distance

g+dg. The length P'Q' is therefore dx+dg. We shall

find the equation of motion of the gas at P'Q' . For this

purpose we shall require to know its mass and the

pressure at its two ends. Its mass is the same as the

mass of the undisturbed element PQ, viz. p dx, where p
is the normal average density. To get the pressure at P'

we imagine the element dx to shrink to zero
; this gives

the local density p, from which, by (1), we calculate the

pressure. We have

p = Lim Pdtx/(dx+dg) = PJl - ^V
dx-^o \ cx)

(2)
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if we may neglect powers of d/dx higher than the first.

The quantity (p p )//>
w^ often occur in this chapter ;

it is called the condensation s. Thus

s= -dfldx, p = Po(l+s). . . (3)

The net force acting on the element P'Q' is p t p /9
and

hence the equation of motion is

We may rewrite (4) in the form

8^__dp8p_ dp8*t
po dt*~ dpte-

p(
>dpdx*

ilom (2) '

It appears then that satisfies the familiar equation of

wave motion

g-^.'-** <>

This equation shows that waves of any shape will be

transmitted in either direction with velocity \/(dp/dp).
In the case of ordinary air at C., using (1) as the relation

between p and p, we find that the velocity is c = 332

metres per sec., which agrees with experiment. Newton,
who made this calculation originally, took the isothermal

relation between p and p and, naturally, obtained an
incorrect value for the velocity of sound.

A more accurate calculation of the equation of motion
can be made, in which powers of d$/dx are not neglected,
as follows. From (2) we have the accurate result

p = p = KT-
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So, now using (4) in which no approximations have been

made,

Equation (5) is found from (6) by neglecting 8g/dx compared
with unity. A complete solution of (6) is, however, beyond
the scope of this book. It is easy to see that, since (6)

is not in the standard form of a wave equation, the velocity
of transmission depends upon the frequency, and hence

that a wave is not, in general, transmitted without change
of shape.

58. We must now discuss the boundary conditions.

With an infinite tube, of course, there are no such condi-

tions, but with a tube rigidly closed at x = XQ ,
we must

have = at x XQ ,
since at a fixed boundary the gas

particles cannot move.

Another common type of boundary condition occurs

when a tube has one or more ends open to the atmosphere.
At this end, the pressure must have the normal atmospheric

value, and thus, from (1) and (2), dg/dx = 0.

To summarise :

02 I 02

(i) ^ =
-Qp

in the tube, and c2 = dp/dp . (5)

(ii)
= at a closed end (7)

Pt

(iii)
~- = s = at an open end. ... (8)
c/x

59. We shall apply these equations to find the normal
modes of vibration of gas in a tube of length L These

waves will iiaturally be of stationary type.

(a) Closed at both ends x = 0, 1. This problem is the

same mathematically, as the transverse vibrations of a
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string of length Z, fixed at its ends (cf. Chapter II, 19).

Conditions (i) and (ii) of 58 give for the normal modes

.. . . TTTX (rirct 1

f - 4, am -T- cos
{

+ f| ,
r = 1, 2, .... (9)

(6) Closed atx = 0, opera aZ # = Z (a
"
stopped tube ").

Here conditions (ii) and (iii) give = at x 0, and
r\

= at a; = I. The normal modes are
dx

\

"^
I i r\ i 9 nn\

'\'

'

2/ Z

W
"(V '"2; Z +*rj>r-U,l,Z,...

l">)

(c) Opera 6o/fc eratfo # = 0, Z. We have to satisfy
the boundary condition (iii) d/dx = at x = 0, Z. So
the normal modes are

r *//* ^

r = l,2,... (11)

In each case the full solution would be the superposition
of any number of terms of the appropriate type with

different r. The fundamental frequencies in the three

cases are 2l/c, 4-l/c, and 2Z/c respectively. The harmonics

bear a simple numerical relationship to the fundamental,
which explains the pleasant sound of an organ pipe.

60. We shall now solve a more complicated problem.
We are to find the normal modes of a tube of unit sectional

area, closed at one end by a rigid boundary and at the

FIG. 19

other by a mass M free to move along the tube. Let

the fixed boundary be taken as x 0, and the normal

equilibrium position of the moveable mass be at x I
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(fig. 19). Then we have to solve the standard equation
of wave motion with the boundary conditions that when
x = 0, (ii) gives = 0, and that when x I the excess

pressure inside, ppQ ,
must be responsible for the

acceleration of the mass M. This implies that

d2

PPQ =
M-Qp

when x = I-

The first condition is satisfied by the function

= A sin nx cos (nct-\-e) . . . (12)

To satisfy the second condition, we observe that

p-Po - (dp/dp)(p-p )
= -~c*Pod/dx, from (3).

So this condition becomes

M
i*

= -*' **='

Using (12) this gives, after a little reduction,

ril tan ril = IpJM.

The allowed values of n are the roots of this equation.
There is an infinite number of them, and when M = 0, so

that the tube is effectively open to the air at one end,

we obtain equation (10) ;
when M oo, so that the tube

is closed at each end, we obtain equation (9).

61. So far we have developed our solutions in terms

of
,
the displacement of any particle of the gas from its

mean position. It is possible, however, to use the method
of the velocity potential <f>. Many of the conditions which

(f>
must satisfy are the same as in Chapter V, but a few

of them are changed to allow for the variation in density.
It is convenient to gather these various formulae together
first.

(i) If the motion is irrotational, as we shall assume,

u =
V</>, (cf. Chapter V, equation (1)) .

(13)
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(ii) At any fixed boundary, dfydv = (cf. Chapter V,

equation (2)y....... (14)

(iii) The equation of Continuity (cf. Chapter V, equation

(3)) is slightly altered, and it is
*

(iv) The equations of motion are unchanged ; if F is

the external force on unit mass, in vector form,

they are

Du 1

j~ = F-- yp (cf. Chapter V, equation (6)) . (16)
JL/Z p

(v) In cases where the external forces have a potential

F, we obtain Bernouillfs equation (cf. ChapterV,

equation (8))

+ -|u
2+F - = const. . . (17)

p ct

in which we have absorbed an arbitrary function of the

time into the term
8(f>/dt (cf. Chapter V, equation (8)).

62. In sound waves we may neglect all external

forces except such as occur at boundaries, and thus we
may put F = in (17). Also we may suppose that the

velocities are small and neglect u2 in this equation. With
these approximations Bernouilli's equation becomes

dp dcf> = const.
p ct

We can simplify the first term
;

for = I -f- ] ,

J P J \dp' P
and if the variations in density are small, dp/dp may be

* Rutherford, 67.
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taken as constant, and equal to c2 as in (5). Thus

Cdp Cdp= c2 M- = c*loge p = C2{log,(l+s)+log,p }. So
J p J p

-P = c
2
s+const., if s is small. If we absorb this constant

P
in <, then Bernouilli's equation takes its final form

Laplace's equation for
<f>

does not hold because of the

changed equation of continuity. But if u, v, w and s

are small, (15) can be written in a simpler form by the

aid of (13) ; viz.,

This is effectively the same as

|
= v* - - - do)

Now let us eliminate s between (18) and (19), and
we shall find the standard equation of wave motion

w-ig . - .
<

This shows that c is indeed the velocity of wave propaga-
tion, but before we can use this technique for solving

problems, we must first obtain the boundary conditions

for
(/>.

At a fixed boundary, by (ii) d(f)/dv
= 0. At an

open end of a tube, the pressure must be atmospheric,
and hence s = 0. Thus, from (18),

8^/0* = (21)

This completes the development of the method of the

velocity potential, and we can choose in any particular

problem whether we solve by means of the displacement
| or the potential <. It is possible to pass from one to

the other, since from (3) and (18)
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63. We shall illustrate these equations by solving the

problem of stationary waves in a tube of length I, closed

at one end (x 0) and open at the other (x = I).
This

is the problem already dealt with in 59 (6), and with

,, , , . . , , . c &<(> 1 &<$>the same notation, we require a solution of ~ = _rH
dx* c2 dt2

subject to the conditions

d<j>/dx
= at x = 0,

It is easily seen that

<f)
= a cos mx cos (cmt-\-e)

satisfies all these conditions provided that cos ml = 0,

i.e. ml 77/2, 877/2, .... (r+l/2)7r/2 .... So the normal
modes are

and from this expression all the other properties of these

waves may easily be obtained. The student is advised

to treat the problems of 59 (a) and (c) in a similar manner.

64. Our next application of the equations of 62

will be to problems where there is spherical symmetry
about the origin. The fundamental equation of wave
motion then becomes (see Chapter I, equation (23))

a2
^ 2 ty __

i d^
~3r^

+
r Or c2 ~dt?

'

with solutions of progressive type

< = lf(r-ct)+lg(r+ct).

There are solutions of stationary type (see Chapter I,

equation (37))
cos cos

<A = (l/r) . mr . cmt.r v ; ; sm sin
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If the gas is contained inside a fixed sphere of radius a,

then we must have
</>

finite when r = 0, and dcf>/dr
=

when r = a. This means that

with the condition

tan ma = ma .... (23)

This period equation has an infinite number of roots which

approximate to ma = (n+l/tyn when n is large. So for

its higher frequencies the system behaves very like a

uniform pipe of length a open at one end and closed at

the other.

This analysis would evidently equally well apply to

describe waves in a conical pipe.

65. We shall now calculate the energy in a sound
r i

wave. The Kinetic energy is clearly
-
p u

2^F, where

dV is an element of volume. In terms of the velocity

potential this may be written

^ (24)

The last expression follows from Green's theorem just as

in Chapter V, 51, and the surface integral is taken over

the boundary of the gas. There is also Potential energy
because each small volume of gas is compressed or rarified,

and work is stored up in the process. To calculate it,

consider a small volume F ,
which during the passage

of a wave is changed to Fx . If s is the corresponding
value of the condensation, then from (3), we have, to the

first degree in s
l9

F^FoU-^) . . . (25)

Further, suppose that during the process of compression,
F and s are simultaneous intermediary values, Then we
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can write the work done in compressing the volume from
'

f
Fl

F to F! in the form I p dV. But, just as in (25),
J Fo

V = F (l s), and henco

dV = -VQ ds.

We may also write p pQ+(dp/dp)(pp )

Thus the potential energy may be written

r*i

rJ o

This is the contribution to the P.E. which arises from the

volume F . The total P.E. may be found by integration.
The first term will vanish in this process since it merely
represents the total change in volume of the gas, which
we may suppose to be zero. We conclude, therefore, that

(26)

f i
the Potential Energy is - c2p s2dV ...

It can easily be shown that with a progressive wave
the K.E. and P.E. are equal ;

this does not hold for

stationary waves, for which their sum remains constant.

66. We conclude this chapter with a discussion of

the propagation of waves along a pipe whose cross-sectional

area A varies along its length. Our discussion is similar

in many respects to the analysis in 57.

Consider the pipe shown in fig. 20, and let us measure
distances x along the central line. It will be approximately
true to say that the velocity u is constant across any
section perpendicular to the x axis. Suppose that the

gas originally confined between the two planes P, Q at

G
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distances x, x+dx is displaced during the passage of a

wave, to P'Q', the displacement of P being | and of Q
being g+dg. Consider the motion of a small prism of gas

FIG. 20

such as that shaded in the figure ;
its equation of motion

may be found as in 57, and it is

PO "ol? ~oT
dt* dx (27)

We must therefore find the pressure in terms of . This

may be obtained from the equation of continuity, which
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expresses the fact that the mass of gas in P'Q' is the same
as that in PQ. Thus, if p is the density,

pQA(x) dx = p A(x

Neglecting small quantities, this yields

\ dx A dx)

Therefore

Eliminating p between (27) and (28) we find

8'*__zp2e_. 1/I1
P W~ dp dx

~ c PQ dx [A dx

where, as usual, c2 = .

dp

So the equation of motion is

In the case in which A is constant this reduces to the former

equation (5). An important example when A is not

constant is the so-called exponential horn used on the

best acoustic gramophones ; here the tube is approximately

symmetrical about its central line and the area varies with

the distance according to the law A = A Q eZax
,
where a and

A are constants.

With this form of A, (29) reduces to
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A solution is possible by the method of separation of

variables (see 7). We soon find

where ml and m2 are given by a\/(a2 n2
). In most

exponential horns ri2 is considerably larger than a2 in the

range of audible frequencies, so that m1 and mz may be

written a^in. Thus

+*>} . . (30)

The first term represents a wave going outwards and the

second a wave coming inwards. We conclude from this

that waves can be sent outwards along the horn with a

velocity c which is approximately independent of the

frequency, and with an attenuation factor e~ax which is

also independent of the frequency. It is this double

independence which allows good reproduction of whatever
waves are generated at the narrow end of the horn, and
which is responsible for this choice of shape in the best

gramophones. Other forms of A will not, in general, give
rise to the same behaviour.

67. Examples

(1) Use the method of 58 to investigate sound waves
in a closed rectangular box of sides a l9 a 2 and a3 . Show
that the number of such waves for which the frequency is less

than n is approximately equal to one-eighth of the volume
of the quadric x^/a^+y^/a^+z2/^ = 4n2

/c
2

. Hence show
that this number is approximately 47m3a 1a 2a3/3c

3
.

(2) Investigate the reflection and transmission of a train

of harmonic waves in a uniform straight tube at a point
where a smooth piston of mass M just fits into the tube and
is free to move.

(3) Show that the kinetic and potential energies of a plane
progressive wave are equal.

(4) Show that the kinetic and potential energies of

stationary waves in a rectangular box have a constant sum.

(5) Find an equation for the normal modes of a gas which
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is confined between two rigid concentric spheres of radii

a and b.

(6) Show that a closer approximation to the roots of

equation (23) is ma = (n+ l/2)7r l/{(n-fl/2)ff}.

(7) Find numerically the fundamental frequency of a
conical pipe of radius 1 metre open at its wide end.

(8) The cross-sectional area of a closed tube varies with the

distance along its central line according to the law A = A Qx
n

.

Show that if its two ends are x = 0, and x = I, then standing
waves can exist in the tube for which the displacement is

given by the formula

f = x^l
~n^Jm(qx/c) cos {qct+ c},

where m ~ (n-f l)/2 and Jm(ql/c)
= 0.

Use the fact that Jm(x) satisfies the equation

<PJ I dJ

[ANSWERS: 2. reflection coefft. =
{

transmission coefft. = {l+^^V^Po2
}"

1 ^2
> ^ period = Sir/

where (abp*-{-I) sin p(ba) ~ p(b a) cos p(b+a) ; 7. 166.]



CHAPTER VII

ELECTRIC WAVES *

68. Before we discuss the propagation of electric waves,
we shall summarise the most important equations that we
shall require. These are known as Max-well's equations.
Let the vectors E (components Ex ,

Ev ,
Ez )

and H (com-

ponents Hx , Hy , Hy) denote the electric and magnetic
field strengths. These are defined | as the forces on a

unit charge or pole respectively when placed inside a

small needle-shaped cavity, the direction of the cavity

being the same as the direction in which we wish to measure
the component of E or H. We shall suppose that all our

media are isotropic with no ferromagnetism or permanent
polarisation ; thus, if we write e for the dielectric constant,
and

fj,
for the permeability, then the related vectors,

viz. the magnetic induction B and the dielectric dis-

placement D are given by the equations B = /zH, D = eE.

Further, let j (components jx , jy , jz )
denote the current

density vector, and p the charge density. Then, if we
measure j, B and H in electromagnetic units, E and D
in electrostatic units, writing c for the ratio between the

two sets of units,}; Maxwell's equations may be summarised
in vector form as follows :

div D = 47rp (1)

div B = (2)

* Before reading this chapter, the student is advised to

familiarise himself with the equations of electromagnetism, as

found in text books such as those by Jeans, Pidduck, or

Abraham -Becker .

f See, e.g., Abraham-Becker, Chapters IV, VII.

J This system is known as the Mixed System. If we had used

entirely e.s.u., or entirely e.m.u., the powers of c would have been
different. Particular care is required in discussing the units in

(3) and (7). In this chapter c will always denote the ratio of the
two sets of units.

102
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curlH
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(3)

D = cE ..... (5)

B r^ pM...... (6)

To these equations wo must add the relation between j

and E. If a is the conductivity, which is the inverse of

the specific resistance, this relation is

J
= orE ..... (7)

For conductors a is large, and for insulators it is small.

The above equations have been written in vector form
;

until the student has acquired familiarity with the use of

the vector notation and operation, he is advised to verify

the various calculations of this chapter, using the equations
in Cartesian form as well as vector form. This will soon

show how much simpler the vector treatment is, in nearly

every case. If we wish to write these equations in their

full Cartesian form, we have to remember that

__
dDx dDy

dx dy
+ - and that

dz

(orr

) ZJ 3T7 ^ U 3 II 3TJ \
Ctlz Vtly VFLx Cflz Oily Cl2x\

dy dz
'

dz dx dx dy /

The preceding equations then become

dx dy

L-.*E*.
dy dz

dHx dHz

dx

ldDx }

c ct

1 dDs

d_E,'

dz

dE2

dx dy

c dt

idBs

(4')
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Dx = EX ,
Dy
= EV ,DZ = E, . . (5

7

)

Bx = nHx ,
By
=

fjiHy ,
Bz = fjiHz . . (6')

jx = o^ , jy = <7^ , j,
= aEz . . (7')

Equations (l)-(4) are sometimes called Maxwell's

Equations and equations (5)- (7) constitutive relations.

Simple physical bases can easily be given for (l)-(4).

Thus, (1) represents Gauss' Theorem, and follows from the

law of force between two charges ; (2) represents the fact

that isolated magnetic poles cannot be obtained
; (3) is

Ampfere's Rule that the work done in carrying a unit pole
round a closed circuit equals 4rr times the total current

enclosed in the circuit ; part of this current is the conduc-

tion current j and part is Maxwell's displacement current

1 3D
---~-

; (4) is Lenz's law of induction.
4:7TC Ot

These seven equations represent the basis of our

subsequent work. They need to be supplemented by a

statement of the boundary conditions that hold at a change
of medium. If suffix n denotes the component normal to

the boundary of the two media, and suffix s denotes the

component in any direction in the boundary plane, then

on passing from the one medium to the other

Dn ,
Bn ,

Es and Ha are continuous . . (8)

In cases where there is a current sheet (i.e. a finite

current flowing in an indefinitely thin surface layer) some
of these conditions need modification, but we shall not

discuss any such cases in this chapter.
There are two other important results that we shall

use. First, we may suppose that the electromagnetic
field stores energy, and the density of this energy per unit

volume of the medium is

. . . (9)

Second, there is a vector, known as the Poynting
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vector, which is concerned with the rate at which energy
is flowing. This vector/ whose magnitude and direction

are given by

(E X H), . . . . (10)

represents the amount of energy which flows in unit time

across unit area drawn perpendicular to it. E and H are

generally rapidly varying quantities and in such cases it is

the mean value of (10) that has physical significance.

69. We shall first deal with non-conducting media,
such as glass, so that we may put a = in (7) ;

we suppose
that the medium is homogeneous, i.e. and

p, are constants.

If, as usually happens, there is no residual charge, we may
also put p = in (1), and with these simplifications,

Maxwell's equations may be written

div E ==
,
div H = 0, -\

ITTur H = --
c dt

ir. ITT e
lcurl E = -

, curl H = --
c dtj

These equations lead immediately to the standard equation
of wave motion, for we know * that

curl curl H = grad div H y2H.

Consequently, from the fourth of the equations in (11),

we find

, ,. o,,. . as a .

grad div H \7
2H = - curl = --- curl E.6 v

c dt cdt

Substituting for div H and curl E, we discover the standard

equation

<>

*
Rutherford, Vector Methods, p. 59, equation (10).
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EliminatingH instead of E we find the same equation for E :

According to our discussion of this equation in Chapter I,

this shows that waves can be propagated in such a medium,
and that their velocity is c/y^cju,). In free space, where

e =
ju,
= 1, this velocity is just c. Now c, which was

defined as the ratio of the two sets of electrical units,

has the dimensions of a velocity, and its magnitude can

be obtained experimentally; it is approximately 2*998 . 1010

cms. per sec. But it is known that the velocity of light

in free space has exactly this same value. We are thus

led to the conviction that light waves are electromagnetic
in nature, a view that has subsequently received complete
verification. X-rays, y-rays, ultra-violet waves, infra-red

waves and wireless waves are also electromagnetic, and
differ only in the order of magnitude of their wavelengths.
We shall be able to show later, in 71, that these waves

are transverse.

In non-conducting dielectric media, like glass, e is not

equal to unity ; also
JJL depends on the frequency of the

waves, but for light waves in the visible region we may
put fj,

= 1. The velocity of light is therefore c/\/e. Now
in a medium whose refractive index is K, it is known

experimentally that the velocity of light is c/K. Hence,
if our original assumptions are valid, = K2

. This is

known as Maxwell's relation. It holds good for many
substances, but fails because it does not take sufficiently

detailed account of the atomic structure of the dielectric.

It applies better for long waves (low frequency) than for

short waves (high frequency).

70. A somewhat different discussion of (11) can be

given in terms of the electric and magnetic potentials.

Since div H = 0, it follows that we can write

H = curl A, .... (14)
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where A is a vector yet to be determined. This equation
does not define A completely, since if

t/r
is any scalar,

curl (A+grad $) curl A. Thus A is undefined to the

extent of addition of the gradient of any scalar, and we

may accordingly impose one further condition upon it.

r\Tir

If H curl A, and curl E = -
,
it follows, by

c ct

elimination of H, that

Integrating,

where
(j>

is any arbitrary function,

i.e. E=-grad^- . . (15)

In cases where there is no variation with the time, this

becomes E = grad </>, showing that
<f>

is the analogue
of the electrostatic potential.

Eliminating H from the relations H = curl A,

curl H = --
,
and using (15) to eliminate E, we find

c ct

Let us now introduce the extra allowed condition upon A,
and write

g
/

divA+-^-0 . . . (16)
c ct

Then A satisfies the standard equation of wave motion

<"
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Further, taking the divergence of (15), we obtain, by (16)

Thus
<f>

also satisfies the standard equation

**-? " 8>

A similar analysis can be carried through when p and j

are not put equal to zero, and wo find

H = curl A .... (14')

~
. . (15')

-. . . (16')
c dt

<f)
and A are known as the electric potential and magnetic

or vector potential respectively. It is open to our

choice whether we solve problems in terms of A and
<f>,

or of E and H. The relations (14') -(18') enable us to pass
from the one system to the other. The boundary condi-

tions for
<f>

and A may easily be obtained from (8), but

since we shall always adopt the E, H type of solution,

which is usually the simpler, there is no need to write

them down here.

There is one other general deduction that can be made
here. If we use (3), (5) and (7) we can write, for

homogeneous media,

curlH = 47TcrE -)
---

.

c dt
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Taking the divergence of each side, and noting, from (1),

that div E = 47r/>/e,
we find

it

Thus, on integration,

p = /) e~^, where 6 = e/47rcrc . . (19)

6 is called the time of relaxation. It follows from (19)

that any original distribution of charge decays exponentially
at a rate quite independent of any other electromagnetic
disturbances that may be taking place simultaneously,
and it justifies us in putting p = in most of our

problems. With metals such as copper, 6 is of the order

of 10~13 sees., and is beyond measurement
;

but with

dielectrics such as water is large enough to be deter-

mined experimentally.

71. We next discuss plane waves in a uniform non-

conducting medium, and show that they are of transverse

type, E and H being perpendicular to the direction of

propagation. Let us consider plane waves travelling with

velocity V in a direction I, ra, n. Then E and H must be

functions of a new variable

u ES Ix+my+nzVt . . . (20)

When we say that a vector such as E is a function of u,

we mean that each of its three components separately
is a function of u, though the three functions need not

be the same. Consider the fourth equation of (11). Its

^-component (see (3')) is

en, _ afly __ as*

~dy dz
~

c dt
*
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If dashes denote differentiation with respect to u, this is

mHz'~nHy
f = ~~~

/

Integrating with respect to u, this becomes

- -E
y

^

in which we have put the constant of integration equal

to zero, since we are concerned with fluctuating fields

whose mean value is zero. There are two similar equations

to the above, for Ey and Eg ,
and we may write them as

one vector equation. If we let n denote the unit vector

in the direction of propagation, so that n =
(I, m, n), we

have

nxH- - E (21)
c

Exactly similar treatment is possible for the third equation

of (11) ;
we get

c

Equation (21) shows that E is perpendicular to n and H,
and (22) shows that H is perpendicular to n and E. In

other words, both E and H are perpendicular to the direc-

tion of propagation, so that the waves are transverse, and

in addition, E and H are themselves perpendicular, E,

H and n forming a right-handed set of axes. If we
eliminate H from (21) and (22) and use the fact that

n x [n x E] = (n . E)n (n . n)E = E,

since n is perpendicular to E and n is a unit vector, we
discover that F2 = c2

/e/>t, showing again that the velocity

of these waves is indeed c/\/(eju.).

It is worth while writing down the particular cases of

(21) and (22) that correspond to plane harmonic waves
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in the direction of the z axis, and with the E vector in the

x or y directions. The solutions are

J0 = Ha = -V(*lriMip(t
~ zlV)

Ey
= aeW-W Hy

= (23)

E9 = Hz = 0.

Ex =
Ey =:0 Hy

= 4V(*//*)6e
''x'~ z/7)

(24)

E8 ==Q H2
= 0.

In accordance with 10, a and b may be complex, the

arguments giving the two phases. It is the general
convention * to call the plane containing H and n the

plane of polarisation. Thus (23) is a wave polarised
in the xz plane, and (24) a wave polarised in. the yz plane.

By the principle of superposition ( 6) we may superpose
solutions of types (23) and (24). If the two phases are

different, we obtain elliptically polarised light, in which
the end-point of the vector E describes an ellipse in the

xy plane. If the phases are the same, we obtain plane
polarised light, polarised in the plane y/x b/a. If

the phases differ by ?r/2, and the amplitudes are equal,
we obtain circularly polarised light, which, in real form,

may be written

Ex ^=a cos p(tz/V) Hx = V(e/j^) a sin Pttz/V)
Ey
= a sin p(tz/V) Hy

= +Vr

( //*)
a cos P(t*IV)

Ez = Hz = 0. (25)

The end-points of the vectors E and H each describe

circles in the xy plane.
In all three cases (23) -(25), when we are dealing with

free space (e
===

/z
=

1) the magnitudes of E and H are

equal.

72. By the use of (10) we can easily write down the

rate at which energy is transmitted in these waves. Thus,

* To which, unfortunately, not all writers conform.
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(CdP
I \

0, 0, TIA/ /

This vector is in the direction of the positive z-axis, showing
that energy is propagated with the waves. According to

(9), the total energy per unit volume is

877
1 ' r J

477

From these two expressions we can deduce the velocity

with which the energy flows
;

for this velocity is merely
the ratio of the total flow across unit area in unit time

divided by the energy per unit volume. This is c/v'fc/x),

so that the energy flows with the same velocity as the

wave. This does not hold with all types of wave
motion

;
an exception has already occurred in liquids

(52).
When we calculate the Poynting Vector for the waves

(23) and (24), we must remember that ExH is not a

linear function and consequently (see 10) we must choose

either the real or the imaginary parts of E and H. Taking,
for example, the real part of (23), the Poynting Vector

lies in the z direction, with magnitude

c
'

4^

This is a fluctuating quantity whose mean value with

ca2
/e

respect to the time is A/ The energy density, from
877 \

jj,

0?
(9), is cos2jp( z/F), with a corresponding mean value

ea2/877. Once again the velocity of transmission of energy

is -r-A/ r =
c/-v/(eu), which is the same as the

077 V jU,
077

wave velocity.
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73. We shall next discuss the reflection and refraction

of plane harmonic light waves. This reflection will be

supposed to take place at a plane surface separating two

non-conducting dielectric media whose refractive indices are

KI and K2 . Since we may put ^ =
{JL2 1, the velocities

in the two media are c/K^ cjK^. In fig. 21 let Oz be the

FIG. 21

direction of the common normal to the two media, and let

AO, OB, OC be the directions of the incident, reflected

and refracted (or transmitted) waves. We have not yet
shown that these all lie in a plane ;

let us suppose that

they make angles 0, 0' and
<f>

with the z axis, OA being
in the plane of the paper, and let us take the plane of

incidence (i.e. the plane containing OA and Oz) to be the

xz plane. The y axis is then perpendicular to the plane
of the paper.
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Since the angle of incidence is 0, then as in (20), each

of the three components of E and H will be proportional to

gip{ct KI(X sin 6 -f z cos 0)}

Let the reflected and transmitted rays move in directions

(Il9
mv n

)
and (12 ,

w2 ,
n2) respectively. Then the corres-

ponding components of E and H for these rays will be

proportional to

Thus, considering the Ex components, we may write the

incident, reflected and transmitted values

A$&& ~Ri(% sin -f z cos 6)} ^ eip{ft
- Ki(l& -fm\y+ n^)} an(J

eip{ct
-Ez (lsx +may +n^

These functions all satisfy the standard equation of wave
motion and they have the same frequency, a condition

which is necessary from the very nature of the problem.
We shall first show that the reflected and transmitted

waves lie in the plane of incidence. This follows from the

boundary condition (8) that Ex must be continuous on the

plane z 0, i.e. for all x, y, t,

This identity is only possible if the indices of all three

terms are identical : i.e.

ctKiX sin 9 = ct K^^x-^-m^) ~ ct K2 (l2x-{~m2y).

Thus #! sin = K^ =
= Klm1

= K2m2
.

The second of these relations shows that m = m2
= 0,

so that the reflected and transmitted rays OB, OG lie in

the plane of incidence xOz. The first relation shows that

Zx sin 0, i.e. that the angle of reflection 0' is equal to

the angle of incidence 0, and also that

KI sin = KZ sin < . . . (26)
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This well-known relationship between the angles of

incidence and refraction is known as Snell's law.

Our discussion so far has merely concerned itself with

directions, and we must now pass to the amplitudes of

the waves. There are two main cases to consider, according
as the incident light is polarised in the plane of incidence,

or perpendicular to it.

Incident light polarised in the plane of incidence. The
incident ray AO has its magnetic vector in the xz plane,
directed perpendicular to AO. To express this vector in

terms of x, y, z it is convenient to use intermediary axes

> ??> (see fig- 22, where
7?

is not shown, however, as it

FIG. 22

is parallel to Oy and perpendicular to the plane of the

paper). is in the direction of propagation, and is in

the plane of incidence. Referred to these new axes, H
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lies entirely in the direction, and E in the
77

direction.

We may use (23) and write

J0f
=

JSff
=

, Jff,,
= ateW*-*^

H
r) ==H^==0 ) H^ = -K^e^-K^.

Now = x sin 6-{-z cos 0, and so it follows that :

incident wave

Ex
=

,
Hx
= -#!% COS 9 eM*

E ale
ip^ct

~~ :K^xaln ^ +zco&^
, H

Ez
=

, #z = #!% sm 0e ?'^~^

Similar analysis for the reflected and refracted waves

enables us to write

reflected wave

Ex
=

, fls = #A COS eMrf-tfiteBinfl-scosfl)^

y
3= &ie

&**- *<* sin ^ -^os 19)}
}
Hy
= Q,

Ez
=

, #2
- EA sin e^W-

refracted wave

Ex = , #3. = ^2 cos < e^^

JB
y
= a^cf-^^sin^-fzcos^)} ?

Hy
= 0,

Ez
=

,
#z
= #2

a
2 sin <^

e*2^c

We may write the boundary conditions in the form that

Ex ,
Ey ,

K2
Ey, Hx> Hy and Hz are continuous at z = 0.

These six conditions reduce to two independent relations,

which we may take to be those due to Ey and Hx :

K-fl^ cos 0+K^ cos = K2a% cos
<f>.

Thus

KI cos 6+E"2 cos K1 cos 0~K2 cos ^
~~

2^ cos ^
'

Using Snell's law (26) in the form Kl : K2
= sin ^ : sin 0,

this gives

a"_
am(6-<f>) 2 sin ^ cos 6'
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Equation (27) gives the ratio of the reflected and refracted

amplitudes. Ifmedium 2 is denser than medium 1
, K2>K1?

so that 6>(f>, and thus bl/al is negative ; so there is a

phase change of 77 in the electric field when reflection takes

place in the lighter medium. There is no phase change on
reflection in a denser medium, nor in the refracted wave.

Incident light polarised perpendicular to the plane of
incidence. A similar discussion can be given when the

incident light is polarised perpendicular to the plane of

incidence
;
in this case the roles of E and H are practically

interchanged, Hy for example being the only non-vanishing

component of H. It is not necessary to repeat the analysis
in full. With the same notation for the amplitudes of the

incident, reflected and refracted waves, we have

(2g)
_ ._

sin 29+ sin
2</>

sin 20 sin
2<f>

4 cos 9 sin
</>

'

If reflection takes place in the lighter medium, 7 1

9>(f>, and there is no phase change in E at reflection
;

if K^>K^ then there is a phase change of TT.

It follows from (28) that the reflected ray vanishes if

sin 29 = sin 2<. Since 9 ^ ^, this implies that
9-\-</) 77/2,

and then Snell's law gives

Kl sin 9 = K% sin
</>
= K2 cos 0,

So
tan 9 = K^Ki = V(*a/*i) - - (29)

With this angle of incidence, known as Brewster's angle,
there is no reflected ray.

In general, of course, the incident light is composed of

waves polarised in all possible directions. Equations (27)

and (28) show that if the original amplitudes in the two

main directions are equal, the reflected amplitudes will

not be equal, so that the light becomes partly polarised

on reflection. When the angle of incidence is given by

(29) it is completely polarised on reflection. This angle is

therefore sometimes known as the polarising angle.
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74. An interesting possibility arises in the discussion

of 73, which gives rise to the phenomenon known as

total or internal reflection. It arises when reflection

takes place in the denser medium so that <>#. If we

suppose 9 to be steadily increased from zero, then
<f>

also

increases and when sin 6 = K^K^ , <f>
=

rr/2. If 6 is

increased beyond this critical value, <f>
is imaginary.

There is nothing to disturb us in this fact provided that

we interpret the analysis of 73 correctly, for we never

had occasion to suppose that the coefficients were real.

We can easily make the necessary adjustment in this

case. Take for simplicity the case of incident light

polarised in the plane of incidence. Then the incident

and reflected waves are just as in our previous calculations.

The refracted wave has the same form also, but in the

exponential term, K2 sin
c/>
= Kl sin 0, and is therefore

real, whereas

KZ cos < = <S(K2*-KJ sin2

and is imaginary, since we are supposing that internal

reflection is taking place and therefore Kt sin 6>KZ . We
may therefore write K2 cos

<f>
=

-j-iq, where q is real.

Thus the refracted wave has the form

J5J
__ a e

= a

For reasons of finiteness at infinity, we have to choose

the negative sign, so that it appears that the wave is

attenuated as it proceeds into the less dense medium.
For normal light waves it appears that the penetration
is only a few wavelengths, and this justifies the title

of total reflection. The decay factor is

e -pqz __ e -p^(KSm\*e-K&Z f

This factor increases with the frequency so that light of

great frequency hardly penetrates at all. In actual

physical problems, the refractive index does not change
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from Kl to K2 abruptly, as we have imagined ; however,
Drude has shown that if we suppose that there is a thin
surface layer, of thickness approximately equal to one
atomic diameter, in which the change takes place smoothly,
the results of this and the preceding paragraphs are hardly
affected .

75. In our previous calculations we have assumed
that the medium was non-conducting, so that we could

put a 0. When we remove this restriction, keeping
always to homogeneous media, equations (l)-(7) give us

div E = 0,

div H = 0,

curl H = 47TC7E+- ,

c dt

, LJL rH
curl E = ~~*~

.

c 'dt

Now curl curl E = grad div E y 2E = y2
E, so that

dt c dt c dt c* dt2
'

Ua2E 477(7LldE
V2

E=-|^ + -/- . . (30)

A similar equation holds for H. Equation (30) is the
well-known equation of telegraphy (see 9). The first

term on the right-hand side may be called the displacement
I )T\

term, since it arises from the displacement current --
477-c dt

and the second is the conduction term, since it arises from
the conduction current j. If we are dealing with waves
whose frequency is p/2-rr, E will be proportional to e***

;

the ratio of these two terms is therefore ep/47rccr. Since

e is generally of the order of unity, this means that if

pl^TT is much greater than ccr, only the displacement term
matters (this is the case of light waves in a non-conducting
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dielectric) ; but if p/2?r is much less than cor, only the

conduction term matters (this is the case of long waves
in a good metallic conductor). In the intermediate region
both terms must bo retained. With most metals, ifp<107

we can neglect the first term, and if >>1015 we can neglect
the second term.

Let us discuss the solutions of (30) which apply to

plane harmonic waves propagated in the z direction, such

that only Ex and Hy are non-vanishing (as in (24)). We
may suppose that each of these components is pro-

portional to

eW-rt .... (31)

where pfZir is the frequency and q is still to be determined.

This expression satisfies the equation (30) if

q is therefore complex, and we may write it

q = a-ifi,
where

The "
velocity

"
of (31) is l/q ; but we have seen in 73

that in a medium of refractive index K the velocity is
c/JfiT.

So the effective refractive index is cq which is complex.

Complex refractive indices occur quite frequently and are

associated with absorption of the waves
; for, combining

(31) and (33) we have the result that Ex and Hv are

proportional to

e -ppzeip(t-) m . t (34)

This shows that a plane wave cannot be propagated in

such a medium without absorption. The decay factor may
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be written e~kz where k pp. k is called the absorbtion
coefficient. In the case where 4wac/p is small compared
with unity (the case of most metals), k is approximately
equal to 27rcr\/(iJL/). Now the wavelength in (34) is

A = 27T/ap, so that in one wavelength the amplitude

decays by a factor e
, approximately ^^a^P AS

we are making the assumption that ccr/ep is small, the

decay is gradual, and can only be noticed after many
wavelengths. The distance travelled before the amplitude
is reduced to l/e times its original value is l/k, which is

of the same order as a.

The velocity of propagation of (34) is I/a, and thus

varies with the frequency. With our usual approximation
that ccr/ep is small, this velocity is

l/2rroc\

We can show that in waves of this character E and H
are out of phase with each other. For if, in accordance

with (31), we write

then the y-component of the vector relation

i*. P *
curl E = ^

,

c dt

gives us the connection between a and b. It is

8EX
___ p dHy

~dz
~~ "~~

c ~dT
'

i.e. qa = ^ 6 . . . . (36)
c

Thus b/a is equal to (c///,)g. Now q is complex and hence

there is a phase difference between E9 and Hv equal to

the argument of q. This is tan~1
(j3/a), and with the same

approximation as in (35), this is just tan~1(27ro
i

c/e^>), which

is effectively 27rac/p.
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76. It is interesting to discuss in more detail the

case in which the conductivity is so great that we may
completely neglect the displacement term in (30). Let

us consider the case of a beam of light falling normally
on an infinite metallic conductor bounded by the plane
z 0. Let us suppose (fig. 23) that the incident waves

FREE SPACE METAL

FIQ. 23

come from the negative direction of z, in free space, for

which e =
fju
= 1, and are polarised in the yz plane. Then,

according to (24) they are defined by :

incident wave

Ex = a
l e^- 2/c>

, Hv
= al e^-^.

reflected wave

Ex = b
l eW+*M , Hv

= -
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In the metal itself we may write, according to (31) and (36),

Ex = a2 e^(t~^
,
H y

-= -
q a2 e^-^.

These values will satisfy the equation of telegraphy (30)

in which we have neglected the displacement term, if

02 _
pc

where y
2 =

Sira^/pc. Thus

= y(i-)....... (37)

Inside the metal, E and H have a 7r/4 phase difference,

since, as we have shown in (36), this phase difference is

merely the argument of q.

The boundary conditions are that Ex and Hy are

continuous at z = 0. This gives two equations

Hence
<>

_*
^
2

Since g is complex, all three electric vectors have phase
differences. The ratio R of reflected to incident energy
is !&!/&! |

2
,
which reduces to

(cy-/*)
2 +

In the case of non-ferromagnetic metals, cy is much larger

than
JLC,

so that approximately
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This formula has been checked excellently by the experi-
ments of Hagen and Rubens, using wavelengths in the

region of 10~5 cms.

It is an easy matter to generalise these results to apply
to the case when we include both the displacement and
conduction terms in (30).

We can use (38) to calculate the loss of energy in the

metal. If we consider unit area of the surface of the metal,
the rate of arrival of energy is given by the Poynting Vector.

This is \a1 |

2
. Similarly the rate of reflection of energy is

oTT

So the rate of dissipation is
-j

| a^ |

2
-|
bl |

2
\ .

STT 877

This must be the same as the Joule heat loss. In our

units, this loss is ccrE 2
per unit volume per unit time.

If we take the mean value of Ex
2 in the metal, it is an

,00

easy matter to show that I ccrEx
2dz is indeed exactly

J o

equal to this rate of dissipation.

77. When the radiation falls on the metal of 76, it

exerts a pressure. We may calculate this, if we use the

experimental law that when a current j is in the presence
of a magnetic field H there is a force

JLCJ
XH acting on

it. In our problem, there is, in the metal, an alternating
field E, and a corresponding current aE. The force on the

current is therefore ju,aE x H, and this force, being perpen-
dicular to E and H, lies in the z direction. The force on
the charges that compose the current is transmitted by
them to the metal as a whole. Now both E and H are

proportional to e~pYe (see equation 37) so that the force

falls off according to the relation e~~2pYz . To calculate the

total force on unit area of the metal surface, we must

integrate juaExH from z = to z = oo. ExHisa
fluctuating quantity, and so we shall have to take its mean
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value with respect to the time. The pressure is then

c f30

1- Kl 2

P J o z

.e.

Using (38) this may be expressed in the form

78. There is another application of the theory of

76 which is important. Suppose that we have a straight
wire of circular section, and a rapidly alternating e.m.f.

is applied at its two ends. We have seen in 76 that

with an infinite sheet of metal the current falls off as we

penetrate the metal according to the law e~pYz . If py
is small, there is little diminution as we go down a distance

equal to the radius of the wire, and clearly the current

will be almost constant for all parts of any section (see,

however, question (12) in 79). But if py is large, then

the current will bo carried mainly near the surface of the

wire, and it will not make a great deal of difference whether

the metal is infinite in extent, as we supposed in 76, or

whether it has a cross-section in the form of a circle
;

in

this case the current density falls off approximately

according to the law e~pYf as we go down a distance r

from the surface. This phenomenon is known as the

skin effect
;

it is more pronounced at very high frequencies.

We could of course solve the problem of the wire quite

rigorously, using cylindrical polar coordinates. The
formulae are rather complicated, but the result is

essentially the same.

79. Examples

(1) Prove the equations (17') and (18') in 70.

(2) Find the value of H when Ex = E
y
= 0, and Ez =

A cos nx cos net . It is given that H = when t 0, and also

6 = ^=1, p = cr = 0. Show that there is no mean flux of

energy in this problem.



126 WAVES

(3) Prove the equation (28) in 73 for reflection and
refraction of light polarised perpendicular to the plane of

incidence.

(4) Show that the polarising angle is less than the critical

angle for internal reflection. Calculate the two values if

KI - 6, K 2
= 1.

(5) Show that the reflection coefficient from glass to air at

normal incidence is the same as from air to glass, but that

the two phase changes are different.

(6) Light falls normally on the plane face which separates
two media K! , K2 . Show that a fraction R of the energy is

reflected, and T is transmitted, whore

R = /

\Kt+Kt

Hence prove that if light falls normally on a slab of dielectric,

bounded by two parallel faces, the total fraction of energy

reflected is ^ -T-, and transmitted is r o

l *
. It is

necessary to take account of the multiple reflections that take

place at each boundary.
(7) Light passes normally through the two parallel faces

of a piece of plate glass, for which K = 1-5. Find the fraction

of incident energy transmitted, taking account of reflection

at the faces.

(8) Show that when internal reflection ( 74) is taking

place, there is a phase change in the reflected beam. Evaluate

this numerically for the case of a beam falling at an angle
of 60 to the normal when K l

= 1*6, K2
= 1, the light being

polarised in the plane of incidence.

(9) Show that if we assume
/A
= 1, then the reflection

coefficient with metals (76) may be written in the form
R = 1 2/V(c<7/i>), where v is the frequency. If a is 1-6 . 107

(in our mixed units), calculate R for A = 10~3 cms. and
A = 10-* cms.

(10) A current flows in a straight wire whose cross-section

is a circle of radius a. The conduction current j depends
only on r the radial distance from the centre of the wire,

and the time t. Assuming that the displacement current

can be neglected, prove that H is directed perpendicular to the
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radius vector. If j(r, t) and H(r, t) represent the magnitudes
of j and H, prove that

^ iTT \ 4 ' ty 1
L<J 3H

(rLr) = 47rn ,
=

dr
v ' J '

dr c ct

(11) Use the results of question (10) to prove that
j"

satisfies

the differential equation

1 d I dj\ 4m7/z dj

r dr \ dr/ c dt
'

Show also that H satisfies the equation

12 tT 1 n ~ET TT A 1 TJTGH J. (JJLL JLJ. TrTTLtO" ufl

Use the method of separation of variables to prove that

there is a solution of the ^-equation of the form j =/(r)e^,
where

dz
f I df

dr2 r dr

Hence show that / is a combination of Bessel functions of

order zero and complex argument.
(12) If a (in question (1 1)) is small, show that an approximate

solution of the current equation is j = A(l -\-iar* Ja
2r4)e^,

where A is a constant. Hence show that the total current

fluctuates between iJ", where, neglecting powers of a above
the second, J = 7Ta2u4(l-j-a

4a2
/24). Use this result to show

that the heat developed in unit length of the wire in unit

time is
o (l+aV/12). (Questions (10), (11) arid (12)

are the problem of the skin effect at low frequencies.)

[ ANSWERS : 2. Hx Ht
=

, Hy A sin nx sin net ;

4. 9 28', 9 36' ; 7. 12/13 of the incident energy is trans-

mitted; 8. 100 20'; 9, 0-984,0-950.]



CHAPTER VIII

GENERAL CONSIDERATIONS

80. The speed at which waves travel in a medium is

usually independent of the velocity of the source ; thus, if a

pebble is thrown into a pond with a horizontal velocity, the

waves travel radially outwards from the centre of disturb-

ance in the form of concentric circles, with a speed which is

independent of the velocity of the pebble that caused them.

When we have a moving source, sending out waves

continuously as it moves, the velocity of the waves is

often unchanged,* but the wavelength and frequency, as

noted by a stationary observer, may be altered.

Thus, consider a source of waves moving towards an

observer with velocity u. Then, since the source is moving,

ntX

A1 B 1

FIG. 24

(a) Waves when source is stationary.

(b) Waves when source is moving.

the waves which are between the source and the observer

will be crowded into a smaller distance than if the source

had been at rest. This is shown in fig. 24, where the waves
are drawn both for a stationary and a moving source. If

the frequency is n, then in time t the source emits nt waves.
* It is changed slightly when there is dispersion ,*

see 83.

128
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If the source had been at rest, these waves would have

occupied a length AB. But due to its motion the source

has covered a distance ut, and hence these nt waves are

compressed into a length A'B', where ABA'B' = ut.

Thus
ntXntX' = ut,

i.e. A' = X-ufn = A(l w/c), .... (1)

if c is the wave velocity. If the corresponding frequencies
measured by the fixed observer are n and n', then, since

n\ = c = n'X' >
therefore

' = ^- . . . . (2)

If the source is moving towards the observer the frequency
is increased ; if it moves away from him, the frequency is

decreased. This explains the sudden change of pitch
noticed by a stationary observer when a motor-car passes
him. The actual change in this case is from hc/(c u) to

nc/(c+u), so that

Arc = 2ncu/(c*--u*). ... (3)

This phenomenon of the change of frequency when a source

is moving is known as the Doppler effect. It applies

equally well if the observer is moving instead of the source,

or if both are moving.
For, consider the case of the observer moving with

velocity v away from the source, which is supposed to be

at rest. Let us superimpose upon the whole motion,

observer, source and waves, a velocity v. We shall

then have a situation in which the observer is at rest,

the source has a velocity v y
and the waves travel with

a speed cv. We may apply equation (2) which will then

give the appropriate frequency as registered bythe observer
;

if this is n*, then

n(c-v) n(c-v)- --- - (4)
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To deal with the case in which both source and observer

are moving, with velocities u and v respectively, in the

same direction, we superimpose again a velocity v upon
the whole motion. Then in the new problem 3

the observer

is at rest, the source has a velocity uv, and the waves

travel with velocity c v. Again, we may apply (2) and

if the frequency registered by the observer is n'"
9
we have

(cv) (uv) cu (5)

These considerations are of importance in acoustic and

optical problems ;
it is not difficult to extend them to

deal with cases in which the various velocities are not in

the same line, but we shall not discuss such problems here.

81. We have shown in Chapter I, 6 that we may
superpose any number of separate solutions of the wave

equation. Suppose that we have two harmonic solutions

(Chapter I, equation (11)) with equal amplitudes and nearly

equal frequencies. Then the total disturbance is

(f)

= a cos 27r(k1x--n1 t)-\-a cos

[2 2 J [2 2

The first cosine factor represents a wave very similar to

the original waves, whose frequency and wavelength are

the average of the two initial values, and which moves

with a velocity
^ ~. This is practically the same as the

velocity of the original waves, and is indeed exactly the

same if %/ij = 7i
2/&2 - But ^e second cosine factor, which

changes much more slowly both with respect to x and t,

may be regarded as a varying amplitude. Thus, for the

resultant of the two original waves, we have a wave of

approximately the same wavelength and frequency, but

with an amplitude that changes both with time and distance.
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We may represent this graphically, as in fig. 25. The
outer solid profile is the curve

y = 2a cos 2* x- -
2 *.

The other profile curve is the reflection of this in the x

axis. The actual disturbance
(f>

lies between these two

boundaries, cutting the axis of x at regular intervals,

and touching alternately the upper and lower profile

curves. If the velocities of the two component waves
are the same, so that n^fk^ = n^k^ then the wave system
shown in fig. 25 moves steadily forward without change

FIG. 25

of shape. The case when njk^ is not equal to n2/kz is

dealt with in 83.

Suppose that refers to sound waves. Then we shall

hear a resultant wave whose frequency is the mean of

the two original frequencies, but whose intensity fluctuates

with a frequency twice that of the solid profile curve.

This fluctuating intensity is known as beats
;

its frequency,
which is known as the beat frequency, is just nl

^n
29

that is, the difference of the component frequencies. We
can detect beats very easily with a piano slightly out of

tune, or with two equal tuning-forks on the prongs of

one of which we have put a little sealing wax to decrease

its frequency. Determination of the beat frequency
between a standard tuning-fork and an unknown frequency
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is one of the best methods of determining the unknown

frequency. Beats of low frequency are unpleasant to

the ear.

82. There is another phenomenon closely related to

beats. Let us suppose that we have a harmonic wave

<f>
= A cos 27r(nt fcr), with amplitude A and frequency n.

Suppose further that the amplitude A is made to vary
with the time in such a way that A = a-\-b cos 2irpt.

This is known as amplitude modulation. The result is

<f>
= (a+6 cos %7rpt) cos 27r(ntkx)

= acos27r(n kx)

+~-|cos 27r[(n+p)t kx] + cos

The effect of modulating, or varying, the amplitude, is to

introduce two new frequencies as well as the original one ;

these new frequencies np are known as combination
tones.

83. If the velocities of 81 are not the same (n^k^
not equal to n2/k2), then the profile curves in fig. 25 move
with a speed (nl n2)/(kl k2) ) which is different from that

of the more rapidly oscillating part, whose speed is

(n1+n2)l(k1+k2). In other words, the individual waves
in fig. 25 advance through the profile, gradually increasing
and then decreasing their amplitude, as they give place to

other succeeding waves. This explains why, on the sea-

shore, a wave which looks very large when it is some
distance away from the shore, gradually reduces in height
as it moves in, and may even disappear before it is

sufficiently close to break.

This situation arises whenever the velocity of the

waves, i.e. their wave velocity F, is not constant, but

depends on the frequency. This phenomenon is known
as dispersion. We deduce that in a dispersive system
the only wave profile that can be transmitted without
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change of shape is a single harmonic wave train ; any
other wave profile, which may be analysed into two or

more harmonic wave trains, will change as it is propagated.
The actual velocity of the profile curves hi fig. 25 is known
as the group velocity U. We see from (6) that if the

two components are not very different, F = n/k, and

U = (% Wa)/^ fca)
== dn/dk. . . (7)

In terms of the wavelength A, we have k = I/A, so that

We could equally well write this

dk dk dk dX

We have already met several cases in which the wave

velocity depends on the frequency ;
we shall calculate

the group velocity for three of them.

Surface waves on a liquid of depth h :

The analysis of Chapter V, equation (32) shows that the

velocity of surface waves on a liquid of depth h is given by

According to (9) therefore, the group velocity is F \dVjd\,

TT 1 Tr f\ ,

^Trft , &nh}
i.e.

2 I T"
C

~A~ I

'

When h is small, the two velocities are almost the same,

but when h is large, U = F/2, so that the group velocity

for deep sea waves is one-half of the wave velocity.

Equation (10) is the same as the expression obtained hi

52, equation (47), for the rate of transmission of energy
in these surface waves. Thus the energy is transmitted

with the group velocity.
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Electric waves in a dielectric medium :

The analysis in Chapter VII, 69, shows that the wave

velocity in a dielectric medium is given by
F 2 = c a

//A.

We may put fju
= 1 for waves in the visible region. Now

the dielectric constant 6 is not independent of the frequency,
and so F depends on A. The group velocity follows from

(9) ;
it is

<>

In most regions, especially when A is long, e decreases

with A so that U is less than F. For certain wavelengths,

however, particularly those in the neighbourhood of a

natural frequency of the atoms of the dielectric, there is

anomalous dispersion, and U may exceed F. When A
is large, we have the approximate formula

It then appears from (11) that

Electric waves in a conducting medium :

The analysis in Chapter VII, 76, shows that the electric

vector is propagated with an exponential term eip^~^z
\

1 pc
where y

2 =
27rcrfJi/pc.

Thus F 2 = = ~
. According

y2

27T0y/.

to (7), the group velocity is

77 _ dP _ fa~~

d(py)

~

If we suppose that a and
JJL

remain constant for all

frequencies, then this reduces to

U = 2/y
= 2V. . . . (12)
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The group velocity here is actually greater than the wave

velocity.

84. We shall now extend this discussion of group

velocity to deal with the case of more than two component
waves. We shall suppose that the wave profile is split

up into an infinite number of harmonic waves of the type

e2m(kx-fU) 9 .... (13)

in which the wave number k has all possible values
; we

can suppose that the wave velocity depends on the

frequency, so that n is a function of k. If the amplitude
of the component wave (13) is a(k) per unit range of k,

then the full disturbance is

(, t)
=

I
a(k) . eW**-nt)dk .

k - -00

This collection of superposed waves is known as a wave

packet. The most interesting wave packets are those in

which the amplitude is largest for a certain value of &,

say & ,
and is vanishingly small if k~kQ is large. Then

the component waves mostly resemble e27r^k x~ not\ and
there are not many waves which differ greatly from this.

We shall discuss in detail the case in which

a(k)=A e-^*-*')'. . . . (15)

This is known as a Gaussian wave packet, after the

mathematician Gauss, who used the exponential function

(15) in many of his investigations of other problems.

A, a and kQ are, of course, constants for any one packet.
Let us first determine the shape of the wave profile at

t = 0. The integral in (14) is much simplified because

the term in n disappears. In fact,

0) =
J
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On account of the term e~ a(k~k^, the only range of k

which contributes significantly to this integral lies around

fc
;

since when & & l/Va ^is term becomes er\ and
for larger values of kk it becomes rapidly smaller, this

range of k is of order of magnitude A& l/\/a.
[n order to evaluate the integral, we use the result *

4, (17)

This enables us to integrate at once, and we find that

ITT
fL/T f\\ A I ajT*z*/cr p27rikoX (1R\
Y'V*</ j "/ *-* A / t-* O . \JHJI

V a

The term e27n'^ represents a harmonic wave, whose

wavelength A = l/& ,
and the other factors give a varying

mplitude A J- e~^^G . If we take the real part of (18),

FIG. 26

>(#, 0) has the general shape shown in fig. 26. The outer

urves in this figure are the two Gaussian curves

nd
</>(%, Q) oscillates between them. Our wave packet

*
Gillespie, Integration, p. 88.
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(14) represents, at t = 0, one large pulse containing several

oscillations. If we define a half-width, as the value of x

that reduces the amplitude to l/e times its maximum
value, then the half-width of this pulse is (\/cr)/7T.

At later times, >0, we have to integrate (14) as it

stands. To do this we require a detailed knowledge of n
as a function of k. If we expand according to Taylor's

theorem, we can write

n = nQ+a(k-kQ)+p(k-kQ)*j2+...
where

a = (dn/dk) , j3
= (d*nldk

z
) , ..... (19)

As a rule the first two terms are the most important, and
if we neglect succeeding terms, we may integrate, using

(17). The result is

+ 00

= ft)

When t 0, it is seen that this does reduce to (18), thus

providing a check upon our calculations. The last term
in (20) shows that the individual waves move with a

wave velocity n /kQt but their boundary amplitude is given

by the first part of the expression, viz. A ^- e~ 7rl(

Now this expression is exactly the same as in (18), drawn
in fig. 26, except that it is displaced a distance at to the

right. We conclude, therefore, that the group as a whole

moves with velocity a = (dn/dk)Q,
but that individual

waves within the group have the wave velocity n /& .

The velocity of the group as a whole is just what we have

previously called the group velocity (7).

If we take one more term in (19) and integrate to

obtain
</>(%, t) we find that

<f>
has the same form as in (20)
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except that a is replaced by or -\-7rj3it.
The effect of this

is twofold ;
in the first place it introduces a variable

phase into the term e27ri ^k x ~ nQt\ and in the second place it

changes the exponential term in the boundary amplitude
curve to the form

This is still a Gaussian curve, but its half-width is increased

t0
{(<j*+ir*p*P)l<m*}

ll*
. . . . (21)

We notice therefore that the wave packet moves with

the wave velocity ft /& ,
and group velocity (dn/dk)^

spreading out as it goes in such a way that its half-width

at time t is given by (21).

The importance of the group velocity lies mainly in

the fact that in most problems where dispersion occurs,

the group velocity is the velocity with which the energy
is propagated. We have already met this in previous

paragraphs.

85. We shall next give a general discussion of the

standard equation of wave motion y2
^ ~

,
in which

C Ov

c is constant. We shall show that the value of
</>

at any
point P (which may, without loss of generality be taken

to be the origin) may be obtained from a knowledge of
of o /

the values of <t,
~~ and -~ on any given closed surface S,
dn dt

which may or may not surround P ; the values of
cf>
and

its derivatives on S have to be associated with times

which differ somewhat from the time at which wo wish

to determine
<f>P .

Let us analyse <j>
into components with different

frequencies ;
each component itself must satisfy the

equation of wave motion, and by the principle of super-

position, which holds when c is constant, we can add the
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various components together to obtain the full solution.

Let us consider first that part of
</>
which is of frequency

p ;
we may write it in the form

t(x, y, z) e<** 9
. . . (22)

where k = Z-npIc (23)

i/j
is the space part of the disturbance, and it satisfies the

Poisson equation

(v*+*')lA = 0. . . . (24)

This last equation may be solved by using Green's theorem.*

This theorem states that if
ifj1

and
t/r2

are any two functions,

and S is any closed surface, which may consist of two or

more parts, such that
i/^

and 2 have no singularities inside

it, then

(25)

The volume integral on the left-hand side is taken over

the whole volume bounded by S, and d/dn denotes

differentiation along the outward normal to dS.

FIG. 27

In this equation ^1 and
i/r2

are arbitrary, so we may
/? tfcf

put I/TJ, equal to
i/j 9

the solution of (24), and
?/r2
=

,

* See Rutherford, p. 65, equation (29).
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r being measured radially from the origin P. We take

the volume through which we integrate to be the whole

volume contained between the given closed surface 8

(fig. 27) and a small sphere 2 around the origin. We
have to exclude the origin because

*Jj2
becomes infinite at

that point. Fig. 27 is drawn for the case of P within S j

the analysis holds just as well ifP lies outside S.

Now it can easily be verified that V2
<//2 ~& 2

<A2>

so that the left-hand side of (25) becomes I ^2(\7
2+& 2

)0 dr,

and this vanishes, since (V
2+& 2

)*A by (24). The

right-hand side of (25) consists of two parts, representing

integrations over $ and 2. On 2 the outward normal

is directed towards P and hence this part of the full

expression is

When we make the radius of Z tend to 0, only one term

remains ; it is

where da) is an element of solid angle round P. Taking
the limit as r tends to zero, this gives us a contribution

4:7TiftP . Equation (25) may therefore be written

r(e-*d<lt .
ijcr

3 /1\
,

.
7
.e^~ J--r e-' fcr

(
- 1 +tM-

J\rdn r
8n\rJ

Y
r

_

dS.

Since by definition
<f>
=

\jj(xyz)e
ikct

9 we can write this

last equation in the form

. . . (26)
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where

eik(ct-r)X = _4 e <rf-r>l A\
dn V

dn\r)r

= A B +C, say.

We may rewrite X in a simpler form ;
for on account of

the time variation of <, iff
eik(ct

~r} is the same as <, taken,

not at time t
y but at time tr/c. If we write this symboli-

r\ /T \

cally [6]t-ric> ^en # = ^- I- 1 [<l-r/c- I11 a similar way,
(77i \7y

. 1 r^l i ^ 1 0P f^l i. rA = I I ,
and O = I I , wnere, lor

r l^n\t-rlc cr dn L lt-r/c

example,
~ means that we evaluate dc/>/dn as a

L^n]t-r{c
function of x, y y z, t and then replace t by tr/c. We
call tr/c the retarded time. We have therefore proved
that

1 f
</>P
= -

\ X dS, where

So far we have been dealing with waves of one definite

frequency. But there is nothing in (27) which depends

upon the frequency, and hence, by summation over all

the components for each frequency present in our complete

wave, we obtain a result exactly the same as (27) but

without the restriction to a single frequency.
This theorem, which is due to Kirchhoff, is of great

theoretical importance ; for it implies (a) that the value

of < may be regarded as the sum of contributions X/far
from each element of area of S ; this may be called the

law of addition of small elements, and is familiar in a

slightly different form in optics as Huygen's Principle ;

and (6) that the contribution of dS depends on the value

01
<f>,

not at time t t but at time trfc. Now r/c is the
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time that a signal would take to get from dS to the point

P, so that the contribution made by dS depends not on

the present value of
<f>

at dS, but on its value at that

particular previous moment when it was necessary for a

signal to leave dS in order that it should just have arrived

at P. This is the justification for the title of retarded

time, and for this reason also, [^>]^_ r/c
is Sometimes known

as a retarded potential.
It is not difficult to verify that we could have obtained

a solution exactly similar to the above, but involving

t-\-r/c instead of tr/c ;
we should have taken

if/2
in the

previous work to be - instead of- . In this way

we should have obtained advanced potentials, [0]j +r/c ,

and advanced times, instead of retarded potentials and
retarded times. More generally, too, we could have

superposed the two types of solution, but we shall not

discuss this matter further.

In the case in which c = oo, so that signals have an
infinite velocity, the fundamental equation reduces to

Laplace's equation,* y2
^ = 0, and the question of time

variation does not arise. Our equation (27) reduces to

the standard solution for problems of electrostatics.

86. We shall apply this theory to the case of a source

sending out spherical harmonic waves, and we shall

take S to be a closed surface surrounding the point P
at which we want to calculate <, as shown in fig. 28.

Consider a small element of dS at Q ;
the outward normal

makes angles Ol and with QO and PQ, and these two
distances are r

x and r. The value of
</>

at Q is given by
the form appropriate to a spherical wave (see Chapter I,

equation (24)) :

a
(j)Q
= - cos m(&r^ . . (28)

ri

* See Rutherford, p. 67, equation (33).
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Thus = ~ cos 0.
em >!_

fl m .
. 1

a cos t/t -I cosm(c rt ) smm(a r.) V.

(r^ rx J

Now A = 277/m, so that if rx is much greater than A, which

FIG." 28

will almost always happen in practical problems, we may
put

~dn

ma cos 0, .

sm m ici r \
^

Also

and

f - = -Acos^
a^ \r/

amc

The retarded values are easily found, and in fact, from (27),

ma cos 9, .v c.i^

_j Cos 9 cosm(ci~-[r+r1]) cos 9 sin ra(c [r+r,]).
r2n cr rn
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We may neglect the second term on the right if r is much

greater than A, and so

ma .

*

/n .X = (cos 0+cos X) smm(d [r+rj) . (29)
i

Combining (29) with (26) it follows that

1 fraa
<hp = I (cos 6 + cos cM sin m(ct[r -\-rJ\dS

477-J rrx

= r (cos 6 -f- cos 0j) sinm(c^ [r+rj])^ . (30)
2AJ rri

If, instead of a spherical wave, we had had a plane
wave coming from the direction of 0, we should write

rx now being measured from some plane perpendicular to

OQ, and (30) would be changed to

<hp = -^ I

-
(cos + cos 0J sin m(ct[r+rl])dS. (31)

2A J r

We may interpret (30) and (31) as follows. The effect

at P is the same as if each element dS sends out a wave
- -4 /cos 0+cos 0A

of amplitude y-
I \dS, A beuig the amplitude

of the incident wave at dS
; further, these waves are

a quarter of a period in advance of the incident wave,
as is shown by the term sin w(c [r-f-fi]) instead of

cQ$m(ct rx).
~

(cos 0+cos gj {s called the inclination
2

factor and if, as often happens, only small values of

and t occur significantly, it has the value unity. This

interpretation of (30) and (31) is known as Fresnel's

principle.
The presence of this inclination factor removes a

difficulty which was inherent in Huygen's principle ; this
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principle is usually stated in the form that each element

of a wave-front emits wavelets in all directions, and these

combine to form the observed progressive wave-front. In

such a statement there is nothing to show why the wave
does not progress backwards as well as forwards, since

the wavelets should combine equally in either direction.

The explanation is, of course, that for points behind the

wave-front cos 6 is negative with a value either exactly
or approximately equal to cos 6l9 and so the inclination

factor is small. Each wavelet is therefore propagated
almost entirely in the forward direction.

Now let us suppose that some screens are introduced,
and that they cover part of the surface of S. If we assume
that the distribution of

<f>
at any point Q near the screens

is the same as it would have been if the screens were not

present, we have merely to integrate (30) or (31) over

those parts of S which are not covered. This approxi-

mation, which is known as St Venant's principle, is not

rigorously correct, for there will be distortions in the

value of
(f)Q extending over several wavelengths from the

edges of each screen. It is, however, an excellent approxi-
mation for most optical problems, where A is small ;

indeed (30) and (31) form the basis of the whole theory
of the diffraction of light. With sound waves, on the other

hand, in which A is often of the same order of magnitude
as the size of the screen, it is only roughly correct.

87. We conclude this discussion with an example of

the analysis summarised in (31). Consider an infinite

screen (fig. 29) which we may take to be the xy plane.
A small part of this screen (large compared with the wave-

length of the waves but small compared with other distances

involved) is cut away, leaving a hole through which waves

may pass. We suppose that a set of plane harmonic waves
is travelling in the positive z direction, and falls on the

screen
;
we want to find the resulting disturbance at a

point P behind the screen.

K
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In accordance with 86 we take the surface S to be

the infinite xy plane, completed by the infinite hemisphere
on the positive side of the xy plane. We may divide the

P (x, y, z)

Fia. 29

contributions to (31) into three parts. The first part
arises from the aperture, the second part arises from the

rest of the screen, and the third part arises from the

hemisphere.
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If the incident harmonic waves are represented by
= a cos m(ct z) this first contribution amounts to

a Cl

2Aj ;
(1+ cos 6) smm(ctr)d8.

We have put 9
l
= in this expression since the waves

fall normally on to the xy plane. We shall only be con-

cerned here with points P which lie behind, or nearly

behind, the aperture, so that we may also put cos 0=1
without loss of accuracy. This contribution is then

T - smm(ctr)dS . . (32)

The second part, which comes from the remainder of

the xy plane, vanishes, since no waves penetrate the

screen and thus there are no secondary waves starting there.

The third part, from the infinite hemisphere, also

vanishes, because the only waves that can reach this part
of $ are those that came from the aperture, and when
these waves reach the hemisphere their inclination factor

is zero. Thus (32) is in actual fact the only non-zero con-

tribution and we may write

- -s
Aj r

mim(ctr)d8 . . (33)

Let P be the point (.E, y, z) and consider the contribution

to (33) that arises from a small element of the aperture at

Q (, ??, 0). If OP = /, and QP = r, we have

77

2
. . (34)

Let us make the assumption that the aperture is so small

that |
2 and

17
2 may be neglected. Then to this approxi-

mation (34) shows us that

K2
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So

J

Again without loss of accuracy, to the approximation to

which we are working, we may put l/r I//, and then

we obtain

</>P
= A sin {m(ct /)+},

where

A* = <7
2+ 2

,
tan e = S/C,

and

c(x, y) = ^> I
c

s^(z+^?)d<fy,

. . (35)

Once we know the shape of the aperture it is an easy
matter to evaluate these integrals. Thus, if we consider

the case of a rectangular aperture bounded by the lines

= a, T?
=

j3,
we soon verify that 8 = 0, and that

-Fa

=
Xf J J

C S

A?

___
^ ^ ^

A/ px py

where j9
=

2?r/A/. If we are dealing with light waves,
then the intensity is proportional to O2 and the diffraction

pattern thus observed in the plane z = / consists of a

grill network, with zero intensity corresponding to the

values of x and y satisfying either sin pax = 0, or

sin pfty = 0.

The theory of this paragraph is known as Fraunhofer
Diffraction Theory.
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88. We conclude this chapter with a discussion of

the equation

-... (37)

where p is some given function of x, y y
z and t. When p =

this is the standard equation of wave motion, whose solution

was discussed in 85. Equation (37) has already occurred

in the propagation of electric waves when charges were

present (Chapter VIII, equations (17') and (18')). We
may solve this equation in a manner very similar to that

used in 85. Thus, suppose that p(x, y, z, t) is expressed
in the form of a Fourier series with respect to t, viz.,

p(*,y,*> t)
= Zak(x, y, z)e

ikct
. . . (38)

k

There may be a finite, or an infinite, number of different

values of &, and instead of a summation over discrete

values of k we could, if we desired, include also an integra-
tion over a continuous range of values. We shall discuss

here the case of discrete values of k ; the student will

easily adapt our method of solution to deal with a

continuum.

Suppose that <^(#, y, z, t) is itself analysed into com-

ponents similar to (38), and let us write, similarly to (22),

t(x, y, z, t)
= 2fa(x, y, z)e*** . . . (39)

k

the values of k being the same as in (38). If we substitute

(38) and (39) into (37), and then equate coefficients of

eikct ,
we obtain an equation for

\f/k . It is

This equation may be solved just as in 85. Using
Green's theorem as in (25), we put ^ =

*l*k(x 9 y, z),

e -ikr

^a
.-

1 taking H and 8 to be the same as in fig. 27.



150 WAVES

With these values, it is easily seen that the left-hand side

of (25) no longer vanishes, but has the value

y> ^-ttr,*-
t t e (41)

the integral being taken over the space between S and S.

The right-hand side may be treated exactly as in 85,

and gives two terms, one due to integration over
,
and

the other to integration over S. The first of these is

yp9 ZP )
.... (42)

The second may be calculated just as on p. 140. Gathering
the various terms together, we obtain

_|
I J JL* ihke~

ikr I- 1 -\-ikdfk \dS . (43)
477 J (

r dn dn\r/ r dn]

Combining (38), (39) and (43) we can soon verify that our

solution can be written in the form

^(^p? UP* ZP) = t "~ r!c
dr-{-- X d8, . . (44)

J J

where X is defined by (27). This solution reduces to (27)

in the case where p = 0, while it reduces to the well-known

solution of electrostatics in the case where c = oo.

We have now obtained the required solution of (37).

Often, however, there will be conditions imposed by the

physical nature of our problem that allow us to simplify

(44). Thus, if p(x, y, z, t) is finite in extent, and has only
had non-zero values for a finite time t>tQ) we can make
X = by taking 8 to be the sphere at infinity. 'This

follows because X is measured at the retarded time trjc,
and if r is large enough, we shall have tr/c<tQ ,

so that
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[(/>]t~ric
and its derivatives will be identically zero on 8.

In such a case we have the simple result

%^r, . . . (45)

the integration being taken over the whole of space.
Retarded potentials calculated in this way are very

important in the Classical theory of electrons.

89. Examples

(1) Aii observer who is at rest notices that the frequency
of a car appears to drop from 272 to 256 per second as the

car passes him. Show that the speed of the car is

approximately 20 m.p.h. How fast must he travel in the

direction of the car for the apparent frequency to rise to

280 per second, and what would it drop to in that case ?

(2) Show that in the Dopplor effect, when the source and
observer are not moving in the same direction, the formula)

of 80 are valid to give the various changes in frequency,

provided that u and v denote, not the actual velocities, but
the components of the two velocities along the direction in

which the waves reach the observer.

(3) The amplitude A of a harmonic wave A cos 27r(nt kx)
is modulated so that A a-\~b cos 2?rpt-{-c cos2

2irpt. Show
that combination tones of frequencies np, n2p appear,
and calculate their partial amplitudes.

(4) The dielectric constant of a certain gas varies with the

wavelength according to the law e = A-\-B/\
2 (7A2 , where

A, B and C are constants. Show that the group velocity U
of electromagnetic waves is given in. terms of the wave velocity
V by the formula

(5) In a region of anomalous dispersion ( 83) the dielectric

AA2

constant obeys the approximate law e = 1-f- . A more
A AQ
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j4A2
(A

2_A 2
)

accurate expression is e = 1 H--- - - ~
, where A, B and

(A AQ ) -j-x>A

A are constants. Find the group velocity of electric waves
in these two cases.

(6) Calculate the group velocity for ripples on an infinitely

deep lake.
( 55, equation (54).)

(7) Investigate the motion of a wavepacket ( 84) for

which the amplitude a is given in terms of the wave number k

by the relation

a(k) = 1 if
\k-kfl <kt

otherwise,

k and kl being constants. Assume that only the first two
terms of the Taylor expansion of n in terms of k are required.
Show that at time t the disturbance is

=
TT(X at)

where a = (dn/dk) . Verify that the wavepacket moves as

a whole with the velocity a.

(8) Show that when dS is normal to the incident light

( 86), the inclination factor is- . Plot this function
2i

against 6, and thus show that each little element dS of a

wave gives zero amplitude immediately behind the direction

of wave motion. Using the fact that the energy is proportional
to the square of the amplitude of

<f> t
show that each small

element sends out 7/8 of its energy forwards in front of the

wave, and only 1/8 backwards.

(9) A plane wave falls normally on a small circular

aperture of radius b. Discuss the pattern observed at a large
distance / behind the aperture. Show that with the formulae

of 87, if the incident wave is ^ = a cos m(ct z), then

S = 0, and if P is the point (x, 0, /), then

C I \/(^
2 "~ 2

) cos Pfdg where p =

= p f cos (pb cos 0) sin2 dO.
A/ Jo
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Expand cos (pb cos 0) in a power series in cos 0, and hence
show that--~

A/ \

where & = pb/2 = nbx/Xf. Since the system is symmetrical
around the z axis, this gives the disturbance at any point
in the plane z =/. It can be shown that the infinite series

is in fact a Bessel function of order unity. It gives rise to

diffraction rings of diminishing intensity for large values of x.

(10) The total charge q on a conducting sphere of radius a
is made to vary so that q = 47ra2

cr, where a = for <0, and
a = cr sin pt for t>0. Show that if = ^ = 1, (

70 eq. (18'))

the electric potential ^ at a distance E from the centre of the

sphere is given by

ct<Ra, (f>
= 0,

Ra<ct<R+a 9 </>
= -^^{lcosp(t --

#/t i \ c

47racor ?a / JR\
R+a<ct, <f>

= - -sin siiipU-- ).

p,R c \ c/

[ANSWERS : 1. c/34, where c = vel. of sound, 248-5 ;

3. a+c, 6/2, c/4;

i, A7 ivwhere v = wave v oclty;

6. U - JF.]
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waves in, 51-59

Basins, tides in, 66, 70, 74-76

Beats, 131

frequency, 131

Bell, vibrations of, 49

Boundary conditions, 1, 27, 30,

38, 52, 69, 73, 82, 90, 94
Brewster's angle, 117

Capillary waves, 81-84
Chladni's figures, 48

Circularly polarised light, 111

Combination tones, 132

Compressible fluid, 87

Condensation, 89

Conductivity, 103
Conical pipe, sound waves in, 96
Constant of separation, 9
Constitutive relations, 104

Coordinates, normal, 36, 47, 53

D'Alembert, 7

Damping, 15, 39

Decay, modulus of, 15

Degenerate vibrations, 46
Dielectric displacement, 102
Diffraction of light, 145

theory, Fraunhofer, 148

Dispersion, 132

anomalous, 134
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Displacement current, Maxwell's,
104, 119, 122

Doppler effect, 129

Drude, 119

Electric and magnetic field

strengths, 102

waves, 102-127

Elliptically polarised light, 111

Energy, kinetic, 23, 33, 47, 54,

78, 96
loss of, 124

potential, 24, 33, 47, 54, 78, 96
rate transmitted, 79, 111, 133

Equation of telegraphy, 15
wave motion, 1-20, 5
wave motion, complex solu-

tions, 16-17

Exponential horn, 99

Field strengths, electric and
magnetic, 102

Fraunhofer diffraction theory,
148

Free surface, 62, 82

Frequency, 3
Fresnol's principle, 144

Fundamental, 35, 49, 58, 91

Gaussian wave packet, 135
Gauss' theorem, 104
General considerations, 128-151
Ground note, 35

Group velocity, 81, 133, 135,
137, 138

Hagen and Rubens, 124
Half-width, 137
Harmonic wave, 2, 16-17

Horn, 96, 99

Huygen's Principle, 141, 144

Inclination factor, 144

Incompressible liquid, 60
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Index, refractive, 106, 118

Induction, magnetic, 102

Intensity, 148
Internal or total reflection, 118

Isothermal, 87

Joule heat, 124

Kinetic energy in bars, f>4

liquids, 78

membranes, 47

sound, 96

strings, 23, 33

Kirchhoff, 141

Lenz's law of induction, 104

Light, velocity of, 106

Liquids, waves in, 60-86

Longitudinal waves, 21

in bars and springs, 51-59, 87

Long waves in shallow water, 62
Lowest frequency, 35

Magnetic and electric tield

strengths, 102
Maxwell's displacement current,

104, 119, 122

equations, 102

relation, 106

Membranes, waves in, 43-50
Mersenne's law, 35

Mode, normal, 30, 33, 35, 37,

39, 45, 48, 55, 91, 95

Modulation, amplitude, 132
Modulus of decay, 15

Nodal planes, 6

Nodes, 6

Non-conducting media, 105
Normal coordinates, 36, 47, 53
Normal modes in bars, 55

circular membranes, 48

rectangular membranes, 48
sound waves in pipes, 91, 95

strings, 30-33, 35, 37, 39

Observer, moving, 129

Organ pipe, 91

Overtones, 35, 49

Packet, wave, 135
Partial amplitudes, 33
Paths of particles, 70, 77

Period, 3

equation, 39, 77, 96
Phase, 4, 16, 17

Pipes, sound waves in, 90-96
Pitch, 35
Plane of polarisation, 1 1 1

polarised light, 111

nodal, 6

wave, 4

Polarisation, piano of. 111

Polarising angle, 1 1 7

Potential, advanced, 112

electric, 106, 108

energy in bars, 54

oiiorgy in liquids, 78

energy in rnembraiio;, 47

onergy in sound, 96

energy in strings, 24, 33

magnetic or vector, 106, 108
retarded, 142, 151

velocity, 60, 72, 87, 92

Poyiiting vector, 104, 112, 124
Pressure, radiation, 124

Principle of superposition, 5, 130,

135, 138

Profile, wave, 2

Progressive waves, 6, 13, 23, 26,

28, 30, 40, 66, 71, 74, 77,

83, 95, 100, 109-125

Reduction to a steady wave, 40,
71

Reflection coefficient, 27, 117,
123

of light waves, 113
total or internal, 118

Refraction of light waves, 113
Refractive index, 106, 118

complex, 120

Relaxation, time of, 109

Resistance, specific, 103
Retarded potential, 142, 151

time, 141

Ripples, 83

Screen, 145, 146

Separation constant, 9

Skin effect, 125
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Snell's law, 115

Sound, velocity of, 89

waves, 87-101

Source, moving, 128

Springs and bars, longitudinal
waves in, 51-59

vibration of, 55

Stationary waves, 6, 32, 38, 45,

48, 53, 75, 95

Strings, normal modes, 3 1

waves on, 21-42
St Venant's Principle, 145

Superposition, principle of, 5,

130, 135, 138

Surface, free, 62, 82

tension, 63, 81

waves in liquids, 63, 72-81

Telegraphy, equation of, 15, 119
Tidal waves, 62, 63-72
Time of relaxation, 109

Tone, 35

combination, 132
Total or internal reflection, 118
Transmission coefficient, 28, 1 17,

123
Transverse waves, 21, 44, 109

Vector, Poynting, 104, 112, 124

Velocity, group, 81, 133, 135,

137, 138
of light, 106

Velocity, of sound, 89

potential, 60, 72, 87, 92

wave, 132
Vibrations, degenerate, 46

Wave, capillary, 81-84

electric, 102-127

harmonic, 2, 16-17
in bars and springs, 51-59
in liquids, 60-86
in membranes, 43-50

long, in shallow wa-ter, 62

longitudinal, 21, 51-59, 87

motion, equation of, 1-20, <

number, 3

on strings, 21-42

packet, 135

plane, 4

profile, 2

progressive,
30, 40,

'

45, 4S,

6, 13, 23, 26, 28,

71, 74, 77, 83,

95, 100, 109-125
reduction to a steady, 40, 7 1

sound, 87-101

stationary, 6, 32,

53, 75/95
surface, 63, 72-81

tidal, 62, 63-72

transverse, 21, 44,

velocity, 132
Wave-front, 4

Wavelength. 3
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