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1. Introduction: Summary of elementary facts of QM

This paper collects and technically extends the lectures given by the author at the

“XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza,

August 31 - September 4, 2015. These lecture notes contain much more written

material than the lectures themselves.

A concise account of the basic structure of quantum mechanics and quantization

procedures has already been presented in [1] with several crucial examples. In the

rest of Section 1, we quickly review again some elementary facts and properties,

either of physical or mathematical nature, related to Quantum Mechanics, without

fully entering into the mathematical details.

Section 2 is instead devoted to present some technical definitions and results of
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spectral analysis in complex Hilbert spaces, especially the basic elements of spectral

theory, including the classic theorem about spectral decomposition of (generally

unbounded) selfadjoint operators and the so called measurable functional calculus.

A brief presentation of the three most important operator topologies for applications

in QM closes Section 2.

Within Section 3, the corpus of the lectures, we pass to analyse the mathemati-

cal structure of QM from a finer and advanced viewpoint, adopting the framework

based on orthomodular lattices’ theory. This approach permits one to justify some

basic assumptions of QM, like the mathematical nature of the observables repre-

sented by selfadjoint operators and the quantum states viewed as trace class op-

erators. QM is essentially a probability measure on the non-Boolean lattice L(H)

of elementary observables. A key tool of that analysis is the theorem by Gleason

characterising the notion probability measure on L(H) in terms of certain trace

class operators. We also discuss the structure of the algebra of observables in the

presence of superselection rules after having introduced the mathematical notion

of von Neumann algebra. The subsequent part of the third section is devoted to

present the idea of quantum symmetry, illustrated in terms of Wigner and Kadison

theorems. Some basic mathematical facts about groups of quantum symmetries are

introduced and discussed, especially in relation with the problem of their unitarisa-

tion. Bargmann’s condition is stated. The particular case of a strongly continuous

one-parameter unitary group will be analysed in some more detail, mentioning von

Neumann’s theorem and the celebrated Stone theorem, remarking its use to de-

scribe the time evolution of quantum systems. A quantum formulation of Noether

theorem ends this part. The last part of Section 3 aims to introduce some elemen-

tary results about continuous unitary representations of Lie groups, discussing in

particular a theorem by Nelson which proposes sufficient conditions for lifting a

(anti)selfadjoint representation of a Lie algebra to a unitary representation of the

unique simply connected Lie group associated to that Lie algebra.

The last section closes the paper focussing on elementary ideas and results of the

so called algebraic formulation of quantum theories. Many examples and exercises

(with solutions) accompany the theoretical text at every step.

1.1. Physical facts about Quantum Mechanics

Let us quickly review the most relevant and common features of quantum systems.

Next we will present a first elementary mathematical formulation which will be

improved in the rest of the lectures, introducing a suitable mathematical technology.

1.1.1. When a physical system is quantum

Loosely speaking, Quantum Mechanics is the physics of microscopic world (ele-

mentary particles, atoms, molecules). That realm is characterized by a universal

physical constant denoted by h and called Planck constant. A related constant

– nowadays much more used – is the reduced Planck constant, pronounced
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“h-bar”,

~ :=
h

2π
= 1.054571726× 10−34J · s .

The physical dimensions of h (or ~) are those of an action, i.e. energy × time. A

rough check on the appropriateness of a quantum physical description for a given

physical system is obtained by comparying the value of some characteristic action

of the system with ~. For a macroscopic pendulum (say, length ∼ 1m, mass ∼ 1kg

maximal speed ∼ 1ms−1), multiplying the period of oscillations and the maximal

kinetic energy, we obtain a typical action of ∼ 2Js >> h. In this case quantum

physics is expected to be largely inappropriate, exactly as we actually know from

our experience of every days. Conversely, referring to a hydrogen electron orbiting

around its proton, the first ionization energy multiplied with the orbital period of

the electron (computed using the classical formula with a value of the radius of the

order of 1 Å) produces a typical action of the order of h. Here quantum mechanics

is necessary.

1.1.2. General properties of quantum systems

Quantum Mechanics (QM) enjoys a triple of features which seem to be very far

from properties of Classical Mechanics (CM). These remarkable general properties

concern the physical quantities of physical systems. In QM physical quantities are

called observables.

(1) Randomness. When we perform a measurement of an observable of a quan-

tum system, the outcomes turn out to be stochastic: Performing measurements of

the same observable A on completely identical systems prepared in the same phys-

ical state, one generally obtains different results a, a′, a′′ . . ..

Referring to the standard interpretation of the formalism of QM (see [3] for a nice

up-to-date account on the various interpretations), the randomness of measure-

ment outcomes should not be considered as due to an incomplete knowledge of the

state of the system as it happens, for instance, in Classical Statistical Mechanics.

Randomness is not epistemic, but it is ontological. It is a fundamental property of

quantum systems.

On the other hand, QM permits one to compute the probability distribution of all

the outcomes of a given observable, once the state of the system is known.

Moreover, it is always possible to prepare a state ψa where a certain observable

A is defined and takes its value a. That is, repeated measurements of A give rise

to the same value a with probability 1. (Notice that we can perform simultaneous

measurements on identical systems all prepared in the state ψa, or we can perform

different subsequent measurements on the same system in the state ψa. In the sec-

ond case, these measurements have to be performed very close to each other in time

to prevent the state of the system from evolving in view of Schrödinger evolution

as said in (3) below.) Such states, where observable take definite values, cannot be

prepared for all observables simultaneously as discussed in (2) below.
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(2) Compatible and Incompatible Observables. The second noticeable

feature of QM is the existence of incompatible observables. Differently from CM,

there are physical quantities which cannot be measured simultaneously. There is no

physical instrument capable to do it. If an observable A is defined in a given state

ψ – i.e. it attains a precise value a with probability 1 in case of a measurement –

an observable B incompatible with A turns out to be not defined in the state ψ –

i.e., it generally attains several different values b, b′, b′′ . . ., none with probability 1,

in case of measurement. So, if we perform a measurement of B, we generally obtain

a spectrum of values described by a probabilistic distribution as preannounced in

(1) above.

Incompatibility is a symmetric property: A is incompatible with B if and only if B

is incompatible with A. However it is not transitive.

There are also compatible observables which, by definition, can be measured simul-

taneously. An example is the component x of the position of a particle and the

component y of the momentum of that particle, referring to a given inertial ref-

erence frame. A popular case of incompatible observables is a pair of canonically

conjugated observables [1] like the position X and the momentum P of a particle

both along the same fixed axis of a reference frame. In this case there is a lower

bound for the product of the standard deviations, resp. ∆Xψ, ∆Pψ, of the outcomes

of the measurements of these observables in a given state ψ (these measurement

has to be performed on different identical systems all prepared in the same state

ψ). This lower bound does not depend on the state and is encoded in the cele-

brated mathematical formula of the Heisenberg principle (a theorem in the modern

formulations):

∆Xψ∆Pψ ≥ ~/2 , (1)

where Planck constant shows up.

(3) Post measurement Collapse of the State. In QM, measurements gener-

ally change the state of the system and produce a post-measurement state from the

state on which the measurement is performed. (We are here referring to idealized

measurement procedures, since measurement procedures are very often destructive.)

If the measured state is ψ, immediately after the measurement of an observable A

obtaining the value a among a plethora of possible values a, a′, a′′, . . ., the state

changes to ψ′ generally different form ψ. In the new state ψ′, the distribution of

probabilities of the outcomes of A changes to 1 for the outcome a and 0 for all other

possible outcomes. A is therefore defined in ψ′.

When we perform repeated and alternated measurements of a pair of incompatible

observables, A, B, the outcomes disturb each other: If the first outcome of A is

a, after a measurement of B, a subsequent measurement of A produces a′ 6= a in

general. Conversely, if A and B are compatible, the outcomes of their subsequent

measurements do not disturb each other.

In CM there are measurements that, in practice, disturb and change the state of the

system. It is however possible to decrease the disturbance arbitrarily, and nullify it
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in ideal measurements. In QM it is not always possible as for instance witnessed by

(1).

In QM, there are two types of time evolution of the state of a system. One is the

usual one due to the dynamics and encoded in the famous Schrödinger equation

we shall see shortly. It is nothing but a quantum version of classical Hamiltonian

evolution [1]. The other is the sudden change of the state due to measurement pro-

cedure of an observable, outlined in (3): The collapse of the state (or wavefunction)

of the system.

The nature of the second type of evolution is still source of an animated debate

in the scientific community of physicists and philosophers of Science. There are

many attempts to reduce the collapse of the state to the standard time evolution

referring to the quantum evolution of the whole physical system, also including the

measurement apparatus and the environment (de-coherence processes) [3,12]. None

of these approaches seem to be completely satisfactory up to now.

Remark 1. Unless explicitly stated, we henceforth adopt a physical unit system

such that ~ = 1.

1.2. Elementary formalism for the finite dimensional case

To go on with this introduction, let us add some further technical details to the

presented picture to show how practically (1)-(3) have to be mathematically in-

terpreted (reversing the order of (2) and (3) for our convenience). The rest of the

paper is devoted to make technically precise, justify and widely develop these ideas

from a mathematically more advanced viewpoint than the one of [1].

To mathematically simplify this introductory discussion, throughout this section,

except for Sect 1.5, we assume that H denotes a finite dimensional complex vector

space equipped with a Hermitian scalar product, denoted by 〈·|·〉, where the linear

entry is the second one. With H as above, L(H) will denote the complex algebra

of operators A : H → H. We remind the reader that, if A ∈ L(H) with H finite

dimensional, the adjoint operator, A∗ ∈ L(H), is the unique linear operator such

that

〈A∗x|y〉 = 〈x|Ay〉 for all x, y ∈ H. (2)

A is said to be selfadjoint if A = A∗, so that, in particular

〈Ax|y〉 = 〈x|Ay〉 for all x, y ∈ H. (3)

Since 〈·|·〉 is linear in the second entry and antilinear in the first entry, we immedi-

ately have that all eigenvalues of a selfadjoint operator A are real.

Our assumptions on the mathematical description of quantum systems are the

following ones.

6



(1) A quantum mechanical system S is always associated to a complex vector space

H (here finite dimensional) equipped with a Hermitian scalar product 〈·|·〉;
(2) observables are pictured in terms of selfadjoint operators A on H;

(3) states are equivalence classes of unit vectors ψ ∈ H, where ψ ∼ ψ′ iff ψ = eiaψ′

for some a ∈ R.

Remark 2.

(a) It is clear that states are therefore one-to-one represented by all of the

elements of the complex projective space PH. The states we are considering within

this introductory section are called pure states. A more general notion of state,

already introduced in [1], will be discussed later.

(b) H is an elementary version of complex Hilbert space since it is automatically

complete it being finite dimensional.

(c) Since dim(H) < +∞, every self-adjoint operatorA ∈ L(H) admits a spectral

decomposition

A =
∑

a∈σ(A)

aP (A)
a , (4)

where σ(A) is the finite set of eigenvalues – which must be real as A is self-adjoint

– and P
(A)
a is the orthogonal projector onto the eigenspace associated to a. Notice

that PaPa′ = 0 if a 6= a′ as eigenvectors with different eigenvalue are orthogonal. �

Let us show how the mathematical assumptions (1)-(3) permit us to set the physi-

cal properties of quantum systems (1)-(3) into a mathematically nice form.

(1) Randomness: The eigenvalues of an observableA are physically interpreted

as the possible values of the outcomes of a measurement of A.

Given a state, represented by the unit vector ψ ∈ H, the probability to obtain

a ∈ σ(A) as an outcome when measuring A is

µ
(A)
ψ (a) := ||P (A)

a ψ||2 .
Going along with this interpretation, the expectation value of A ,when the state is

represented by ψ, turns out to be

〈A〉ψ :=
∑

a∈σ(A)

aµ
(A)
ψ (a) = 〈ψ|Aψ〉 .

So that the identity holds

〈A〉ψ = 〈ψ|Aψ〉 . (5)

Finally, the standard deviation ∆Aψ results to be

∆A2
ψ :=

∑

a∈σ(A)

(a− 〈A〉ψ)2µ(A)
ψ (a) = 〈ψ|A2ψ〉 − 〈ψ|Aψ〉2 . (6)

Remark 3.
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(a) Notice that the arbitrary phase affecting the unit vector ψ ∈ H (eiaψ and

ψ represent the same quantum state for every a ∈ R) is armless here.

(b) If A is an observable and f : R → R is given, f(A) is interpreted as an

observable whose values are f(a) if a ∈ σ(a): Taking (4) into account,

f(A) :=
∑

a∈σ(A)

f(a)P (A)
a . (7)

For polynomials f(x) =
∑n

k=0 akx
k, it results f(A) =

∑n
k=0 akA

k as expected.

The selfadjoint operator A2 can naturally be interpreted this way as the natural

observable whose values are a2 when a ∈ σ(A). For this reason, looking at the last

term in (6) and taking (5) into account,

∆A2
ψ = 〈A2〉ψ − 〈A〉2ψ . (8)

�

(3) Collapse of the state: If a is the outcome of the (idealized) measurement

of A when the state is represented by ψ, the new state immediately after the

measurement is represented by the unit vector

ψ′ :=
P

(A)
a ψ

||P (A)
a ψ||

. (9)

Remark 4. Obviously this formula does not make sense if µ
(A)
ψ (a) = 0 as expected.

Moreover the arbitrary phase affecting ψ does not lead to troubles, due to the lin-

earity of P
(A)
a .

(2) Compatible and Incompatible Observables: Two observables are com-

patible – i.e. they can be simultaneously measured – if and only if the associated

operators commute, that is

AB −BA = 0 .

Using the fact that H has finite dimension, one easily proves that the observables

A and B are compatible if and only if the associated spectral projectors commute

as well

P (A)
a P

(B)
b = P

(B)
b P (A)

a a ∈ σ(A) , b ∈ σ(B) .

In this case

||P (A)
a P

(B)
b ψ||2 = ||P (B)

b P (A)
a ψ||2

has the natural interpretation of the probability to obtain the outcomes a and b for

a simultaneous measurement of A and B. If instead A and B are incompatible, it

may happen that

||P (A)
a P

(B)
b ψ||2 6= ||P (B)

b P (A)
a ψ||2 .
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Sticking to the case of A and B incompatible, exploiting (9),

||P (A)
a P

(B)
b ψ||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P (A)
a

P
(B)
b ψ

||P (B)
b ψ||

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

||P (B)
b ψ||2 (10)

has the natural meaning of the probability of obtaining first b and next a in a

subsequent measurement of B and A.

Remark 5.

(a) Notice that, in general, we cannot interchange the rôle of A and B in

(10) because, in general, P
(A)
a P

(B)
b 6= P

(B)
b P

(A)
a if A and B are incompatible. The

measurement procedures “disturb each other” as already said.

(b) The interpretation of (10) as probability of subsequent measurements can

be given also if A and B are compatible. In this case, the probability of obtaining

first b and next a in a subsequent measurement of B and A is identical to the

probability of measuring a and b simultaneously and, in turn, it coincides with the

probability of obtaining first a and next b in a subsequent measurement of A and

B

(c) A is always compatible with itself. Moreover P
(A)
a P

(A)
a = P

(A)
a just due

to the definition of projector. This fact has the immediate consequence that if

we obtain a measuring A so that the state immediately after the measurement is

represented by ψa = ||P (A)
a ψ||−1ψ, it will remain ψa even after other subsequent

measurements of A and the outcome will result to be always a. Versions of this phe-

nomenon, especially regarding the decay of unstable particles, are experimentally

confirmed and it is called the quantum Zeno effect. �

Example 6. An electron admits a triple of observables, Sx, Sy, Sz, known as

the components of the spin. Very roughly speaking, the spin can be viewed as

the angular momentum of the particle referred to a reference frame always at rest

with the centre of the particle and carrying its axes parallelly to the ones of the

reference frame of the laboratory, where the electron moves. In view of its peculiar

properties, the spin cannot actually have a complete classical corresponding and

thus that interpretation is untenable. For instance, one cannot “stop” the spin of a

particle or change the constant value of S2 = S2
x+S

2
y+S

2
z : It is a given property of

the particle like the mass. The electron spin is described within an internal Hilbert

spaceHs, which has dimension 2. Identifying Hs with C2, the three spin observables

are defined in terms of the three Hermitian matrices (occasionally re-introducing

the constant ~)

Sx =
~

2
σx , Sy =

~

2
σy , Sz =

~

2
σz , (11)

where we have introduced the well known Pauli matrices,

σx =

[

0 1

1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0

0 −1

]

. (12)
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Notice that [Sa, Sb] 6= 0 if a 6= b so that the components of the spin are incompatible

observables. In fact one has

[Sx, Sy] = i~Sz

and this identity holds also cyclically permuting the three indices. These commuta-

tion relations are the same as for the observables Lx,Ly,Lz describing the angular

momentum referred to the laboratory system which have classical corresponding

(we shall return on these observables in example 157). So, differently from CM, the

observables describing the components of the angular momentum are incompatible,

they cannot be measured simultaneously. However the failure of the compatibility

is related to the appearance of ~ on the right-hand side of

[Lx, Ly] = i~Lz .

That number is extremely small if compared with macroscopic scales. This is the

ultimate reason why the incompatibility of Lx and Lz is negligible for macroscopic

systems.

Direct inspection proves that σ(Sa) = {±~/2}. Similarly σ(La) = {n~ | n ∈ Z}.
Therefore, differently from CM, the values of angular momentum components form

a discrete set of reals in QM. Again notice that the difference of two closest values

is extremely small if compared with typical values of the angular momentum of

macroscopic systems. This is the practical reason why this discreteness disappears

at macroscopic level. �

Just a few words about the time evolution and composite systems [1] are necessary

now, a wider discussion on the time evolution will take place later in this paper.

1.3. Time evolution

Among the class of observables of a quantum system described in a given iner-

tial reference frame, an observable H called the (quantum) Hamiltonian plays a

fundamental rôle. We are assuming here that the system interacts with a station-

ary environment. The one-parameter group of unitary operators associated to H

(exploiting (7) to explain the notation)

Ut := e−itH :=
∑

h∈σ(H)

e−ithP
(H)
h , t ∈ R (13)

describes the time evolution of quantum states as follows. If the state at time t = 0 is

represented by the unit vector ψ ∈ H, the state at the generic time t is represented

by the vector

ψt = Utψ .

Remark 7. Notice that ψt has norm 1 as necessary to describe states, since Ut is

norm preserving it being unitary. �
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Taking (13) into account, this identity is equivalent to

i
dψt
dt

= Hψt . (14)

Equation (14) is nothing but a form of the celebrated Schrödinger equation. If the

environment is not stationary, a more complicated description can be given where

H is replaced by a class of Hamiltonian (selfadjoint) operators parametrized in

time, H(t), with t ∈ R. This time dependence accounts for the time evolution of

the external system interacting with our quantum system. In that case, it is simply

assumed that the time evolution of states is again described by the equation above

where H is replaced by H(t):

i
dψt
dt

= H(t)ψt .

Again, this equation permits one to define a two-parameter groupoid of unitary

operators U(t2, t1), where t2, t1 ∈ R, such that

ψt2 = U(t2, t1)ψt1 , t2, t1 ∈ R .

The groupoid structure arises from the following identities: U(t, t) = I and

U(t3, t2)U(t2, t1) = U(t3, t2) and U(t2, t1)
−1 = U(t2, t1)

∗ = U(t1, t2).

Remark 8. In our elementary case where H is finite dimensional, Dyson’s formula

holds with the simple hypothesis that the map R ∋ t 7→ Ht ∈ L(H) is continuous

(adopting any topology compatible with the vector space structure of L(H)) [6]

U(t2, t1) =

+∞
∑

n=0

(−i)n
n!

∫ t2

t1

· · ·
∫ t2

t1

T [H(τ1) · · ·H(τn)] dτ1 · · · dτn .

Above, we define T [H(τ1) · · ·H(τn)] = H(τπ(1)) · · ·H(τπ(n)), where the bijective

function π : {1, . . . , n} → {1, . . . , n} is any permutation with τπ(1) ≥ · · · ≥ τπ(n). �

1.4. Composite systems

If a quantum system S is made of two parts, S1 and S2, respectively described in

the Hilbert spaces H1 and H2, it is assumed that the whole system is described in

the space H1 ⊗ H2 equipped with the unique Hermitian scalar product 〈·|·〉 such

that 〈ψ1⊗ψ2|φ1⊗φ2〉 = 〈ψ1|φ1〉1〈ψ2|φ2〉2 (in the infinite dimensional case H1⊗H2

is the Hilbert completion of the afore-mentioned algebraic tensor product).

If H1 ⊗ H2 is the space of a composite system S as before and A1 represents an

observable for the part S1, it is naturally identified with the selfadjoint operator

A1 ⊗ I2 defined in H1 ⊗ H2. A similar statement holds swapping 1 and 2. Notice

that σ(A1 ⊗ I2) = σ(A1) as one easily proves. (The result survives the extension to

the infinite dimensional case.)

Remark 9.

11



(a) Composite systems are in particular systems made of many (either identical

or not) particles. If we have a pair of particles respectively described in the Hilbert

space H1 and H2, the full system is described in H1⊗H2. Notice that the dimension

of the final space is the product of the dimension of the component spaces. In CM

the system would instead be described in a space of phases which is the Cartesian

product of the two spaces of phases. In that case the dimension would be the sum,

rather than the product, of the dimensions of the component spaces.

(b) H1⊗H2 contains the so-called entangled states. They are states represented

by vectors not factorized as ψ1⊗ψ2, but they are linear combinations of such vectors.

Suppose the whole state is represented by the entangled state

Ψ =
1√
2
(ψa ⊗ φ+ ψa′ ⊗ φ′) ,

where A1ψa = aψa and A1ψa′ = a′ψa′ for a certain observable A1 of the part S1

of the total system. Performing a measurement of A1 on S1, due to the collapse

of state phenomenon, we automatically act one the whole state and on the part

describing S2. As a matter of fact, up to normalization, the state of the full system

after the measurement of A1 will be ψa ⊗ φ if the outcome of A1 is a, or it will

be ψa′ ⊗ φ′ if the outcome of A1 is a′. It could happen that the two measurement

apparatuses, respectively measuring S1 and S2, are localized very far in the physical

space. Therefore acting on S1 by measuring A1, we “instantaneously” produce a

change of S2 which can be seen performing mesurements on it, even if the mea-

surement apparatus of S2 is very far from the one of S1. This seems to contradict

the fundamental relativistic postulate, the locality postulate, that there is a maxi-

mal speed, the one of light, for propagating physical information. After the famous

analysis of Bell, improving the original one by Einstein, Podolsky and Rosen, the

phenomenon has been experimentally observed. Locality is truly violated, but in a

such subtle way which does not allows superluminal propagation of physical infor-

mation. Non-locality of QM is nowadays widely accepted as a real and fundamental

feature of Nature [2,3]. �

Example 10. An electron also possesses an electric charge. That is another inter-

nal quantum observable, Q, with two values ±e, where e = 1.602176565× 10−19C

is the value elementary electrical charge. So there are two types of electrons. Proper

electrons, whose internal state of charge is an eigenvector of Q with eigenvalue −e
and positrons, whose internal state of charge is a eigenvector of Q with eigenvalue

e. The simplest version of the internal Hilbert space of the electrical charge is there-

fore Hc which
a, again, is isomorphic to C2. With this representation Q = eσ3. The

full Hilbert space of an electron must contain a factor Hs ⊗ Hc. Obviously this is

by no means sufficient to describe an electron, since we must introduce at least the

aAs we shall say later, in view of a superselection rule not all normalized vectors of Hc represent
(pure) states.
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observables describing the position of the particle in the physical space at rest with

a reference (inertial) frame. �

1.5. A first look to the infinite dimensional case, CCR and

quantization procedures

All the described formalism, barring technicalities we shall examine in the rest of

the paper, holds also for quantum systems whose complex vector space of the states

is infinite dimensional.

To extend the ideas treated in Sect. 1.2 to the general case, dropping the hypothesis

that H is finite dimensional, it seems to be natural to assume that H is complete

with respect to the norm associated to 〈·|·〉. In particular, completeness assures the

existence of spectral decompositions, generalizing (4) for instance when referring to

compact selfadjoint operators (e.g., see [6]). In other words, H is a complex Hilbert

space.

The most elementary example of a quantum system described in an infinite di-

mensional Hilbert space is a quantum particle whose position is along the axis

R. In this case [1], the Hilbert space is H := L2(R, dx), dx denoting the stan-

dard Lebesgue measure on R. States are still represented by elements of PH,

namely equivalence classes [ψ] of measurable functions ψ : R → C with unit norm,

||[ψ]|| =
∫

R
|ψ(x)|2dx = 1.

Remark 11. We therefore have here two quotient procedures. ψ and ψ′ define the

same element [ψ] of L2(R, dx) iff ψ(x)−ψ′(x) 6= 0 on a zero Lebesgue measure set.

Two unit vectors [ψ] and [φ] define the same state if [ψ] = eia[φ] for some a ∈ R. �

Notation 12. In the rest of the paper we adopt the standard convention of many

textbooks on functional analysis denoting by ψ, instead of [ψ], the elements of spaces

L2 and tacitly identifying pair of functions which are different on a zero measure

set. �

The functions ψ defining (up to zero-measure set and phases) states, are called

wavefunctions. There is a pair of fundamental observables describing our quantum

particle moving in R. One is the position observable. The corresponding selfadjoint

operator, denoted by X , is defined as follows

(Xψ)(x) := xψ(x) , x ∈ R , ψ ∈ L2(R, dx) .

The other observable is the one associated to the momentum and indicated by P .

Restoring ~ for the occasion, the momentum operator is

(Pψ)(x) := −i~dψ(x)
dx

, x ∈ R , ψ ∈ L2(R, dx) .

We immediately face several mathematical problems with these, actually quite

naive, definitions. Let us first focus on X . First of all, generally Xψ 6∈ L2(R, dx)

13



even if ψ ∈ L2(R, dx). To fix the problem, we can simply restrict the domain of X

to the linear subspace of L2(R, dx)

D(X) :=

{

ψ ∈ L2(R, dx)

∣

∣

∣

∣

∫

R

|xψ(x)|2dx < +∞
}

. (15)

Though it holds

〈Xψ|φ〉 = 〈ψ|Xφ〉 for all ψ, φ ∈ D(X), (16)

we cannot say that X is selfadjoint simply because we have not yet given the

definition of adjoint operator of an operator defined in a non-maximal domain in

an infinite dimensional Hilbert space. In this general case, the identity (2) does not

define a (unique) operator X∗ without further technical requirements. We just say

here, to comfort the reader, that X is truly selfadjoint with respect to a general

definition we shall give in the next section, when its domain is (15).

Like (3) in the finite dimensional case, the identity (16) implies that all eigenvalues

of X must be real if any. Unfortunately, for every fixed x0 ∈ R there is no ψ ∈
L2(R, dx) with Xψ = x0ψ and ψ 6= 0. (A function ψ satisfying Xψ = x0ψ must

also satisfy ψ(x) = 0 if x 6= x0, due to the definition of X . Hence ψ = 0, as an

element of L2(R, dx) just because {x0} has zero Lebesgue measure!) All that seems

to prevent the existence of a spectral decomposition of X like the one in (4), since

X does not admit eigenvectors in L2(R, dx) (and a fortiori in D(X)).

The definition of P suffers from similar troubles. The domain of P cannot be the

whole L2(R, dx) but should be restricted to a subset of (weakly) differentiable

functions with derivative in L2(R, dx). The simplest definition is

D(P ) :=

{

ψ ∈ L2(R, dx)

∣

∣

∣

∣

∣

∃w-
dψ(x)

dx
,

∫

R

∣

∣

∣

∣

w-
dψ(x)

dx

∣

∣

∣

∣

2

dx < +∞
}

. (17)

Above w-dψ(x)dx denotes the weak derivative of ψb. As a matter of fact D(P ) coin-

cides with the Sobolev space H1(R).

Again, without a precise definition of adjoint operator in an infinite dimensional

Hilbert space (with non-maximal domain) we cannot say anything more precise

about the selfadjointness of P with that domain. We say however that P turns out

to be selfadjoint with respect to the general definition we shall give in the next

section provided its domain is (17).

From the definition of the domain of P and passing to the Fourier-Plancherel trans-

form, one finds again (it is not so easy to see it)

〈Pψ|φ〉 = 〈ψ|Pφ〉 for all ψ, φ ∈ D(P ), (18)

so that, eigenvalues are real if exist. However P does not admit eigenvectors. The

naive eigenvectors with eigenvalue p ∈ R are functions proportional to the map

bf : R → C, defined up to zero-measure set, is the weak derivative of g ∈ L2(R, dx) if it holds∫
R
g dh
dx
dx = −

∫
R
fhdx for every h ∈ C∞

0 (R). If g is differentiable, its standard derivative coincide
with the weak one.
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R ∋ x 7→ eipx/~, which does not belong to L2(R, dx) nor D(P ). We will tackle all

these issues in the next section in a very general fashion.

We observe that the space of Schwartz functions, S(R) c satisfies

S(R) ⊂ D(X) ∩D(P )

and furthermore S(R) is dense in L2(R, dx) and invariant under X and P :

X(S(R)) ⊂ S(R) and P (S(R)) ⊂ S(R).

Remark 13. Though we shall not pursue this approach within these notes, we

stress that X admits a set of eigenvectors if we extend the domain of X to the

space S ′(R) of Schwartz distributions in a standard way: If T ∈ S ′(R),

〈X(T ), f〉 := 〈T,X(f)〉 for every f ∈ S(R).

With this extension, the eigenvectors in S ′(R) of X with eigenvalues x0 ∈ R are

the distributions cδ(x− x0) [1]. This class of eigenvectors can be exploited to build

a spectral decomposition of X similar to that in (4).

Similarly, P admits eigenvectors in S ′(R) with the same procedure. They are just

the above exponential functions. Again, this calss of eigenvectors can be used to

construct a spectral decomposition of P like the one in (4). The idea of this proce-

dure can be traced back to Dirac [4] and, in fact, something like ten years later it

gave rise to the rigorous theory of distributions by L. Schwartz. The modern formu-

lation of this approach to construct spectral decompositions of selfadjoint operators

was developed by Gelfand in terms of the so called rigged Hilbert spaces [5]. �

Referring to a quantum particle moving in Rn, whose Hilbert space is L2(Rn, dxn),

one can introduce observables Xk and Pk representing position and momentum

with respect to the k-th axis, k = 1, 2, . . . , n. These operators, which are defined

analogously to the case n = 1, have domains smaller than the full Hilbert space. We

do not write the form of these domain (where the operators turn out to be properly

selfadjoint referring to the general definition we shall state in the next section). We

just mention the fact that all these operators admit S(Rn) as common invariant

subspace included in their domains. Thereon

(Xkψ)(x) = xkψ(x) , (Pkψ)(x) = −i~∂ψ(x)
∂xk

, ψ ∈ S(Rn) (19)

and so

〈Xkψ|φ〉 = 〈ψ|Xkφ〉 , 〈Pkψ|φ〉 = 〈ψ|Pkφ〉 for all ψ, φ ∈ S(Rn), (20)

By direct inspection one easily proves that the canonical commutation relations

(CCR) hold when all the operators in the subsequent formulas are supposed to be

cS(Rn) is the vector space of the C∞ complex valued functions on Rn which, together with their
derivatives of all orders in every set of coordinate, decay faster than every negative integer power
of |x| for |x| → +∞.
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restricted to S(Rn)
[Xh, Pk] = i~δhkI , [Xh, Xk] = 0 , [Ph, Pk] = 0 . (21)

We have introduced the commutator [A,B] := AB −BA of the operators A and B

generally with different domains, defined on a subspace where both compositions

AB and BA makes sense, S(Rn) in the considered case. Assuming that (5) and

(8) are still valid for Xk and Pk referring to ψ ∈ S(Rn), (21) easily leads to the

Heisenberg uncertainty relations,

∆Xkψ∆Pkψ ≥ ~

2
, for ψ ∈ S(Rn) , ||ψ|| = 1 . (22)

Exercise 14. Prove inequality (22) assuming (5) and (8).

Solution. Using (5), (8) and the Cauchy-Schwarz inequality, one easily finds

(we omit the index k for simplicity),

∆Xψ∆Pψ = ||X ′ψ||||P ′ψ|| ≥ |〈X ′ψ|P ′ψ〉| .
where X ′ := X − 〈X〉ψI and P ′ := X − 〈X〉ψI. Next notice that

|〈X ′ψ|P ′ψ〉| ≥ |Im〈X ′ψ|P ′ψ〉| = 1

2
|〈X ′ψ|P ′ψ〉 − 〈P ′ψ|X ′ψ〉|

Taking advantage from (20) and the definitions of X ′ and P ′ and exploiting (21),

|〈X ′ψ|P ′ψ〉−〈P ′ψ|X ′ψ〉| = |〈ψ|(X ′P ′−P ′X ′)ψ〉| = |〈ψ|(XP −PX)ψ〉| = ~|〈ψ|ψ〉|
Since 〈ψ|ψ〉 = ||ψ||2 = 1 by hypotheses, (22) is proved. Obviously the open problem

is to justify the validity of (5) and (8) also in the infinite dimensional case. �

Another philosophically important consequence of the CCR (21) is that they re-

semble the classical canonical commutation relations of the Hamiltonian variables

qh and pk, referring to the standard Poisson brackets {·, ·}P ,
{qh, pk}P = δhk , {qh, qk}P = 0 , {ph, pk}P = 0 . (23)

as soon as one identifies (i~)−1[·, ·] with {·, ·}P . This fact, initially noticed by Dirac

[4], leads to the idea of “quantization” of a classical Hamiltonian theory [1].

One starts from a classical system described on a symplectic manifold (Γ, ω), for

instance Γ = R2n equipped with the standard symplectic form as ω and considers

the (real) Lie algebra (C∞(Γ,R), {·, ·}P ). To “quantize” the system one looks for

a map associating classical observables f ∈ C∞(Γ,R) to quantum observables Of ,

i.e. selfadjoint operators restrictedd to a common invariant domain S of a certain

Hilbert space H. (In case Γ = T ∗Q, H can be chosen as L2(Q, dµ) where µ is some

natural measure.) The map f 7→ Of is expected to satisfy a set of constraints. The

most important are listed here

dThe restriction should be such that it admits a unique selfadjoint extension. A sufficient require-
ment on S is that every Of is essentially selfadjoint thereon, notion we shall discuss in the next
section.
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(1) R-linearity;

(2) Oid = I|S ;
(3) O{f,g}P

= −i~[Of , Og]
(4) If (Γ, ω) is R2n equipped with the standard symplectic form, they must hold

Oxk
= Xk|S and Opk = Pk|S , k = 1, 2, . . . , n.

The penultimate requirement says that the map f 7→ Of transforms the real Lie

algebra (C∞(Γ,R), {·, ·}P ) into a real Lie algebra of operators whose Lie bracket is

i~[Of , Og]. A map fulfilling these constraints, in particular the third one, is possible

if f , g are both functions of only the q or the p coordinates separately or if they are

linear in them. But it is false already if we consider elementary physical systems

[1]. The ultimate reason of this obstructions due to the fact that the operators Pk,

Xk do not commute, contrary to the functions pk, q
k which do. The problem can

be solved, in the paradigm of the so-called Geometric Quantization[1], replacing

(C∞(Γ,R), {·, ·}P ) with a sub-Lie algebra (as large as possible). There are other

remarkable procedures of “quantization” in the literature, we shall not insist on

them any further here [1].

Example 15.

(a) The full Hilbert space of an electron is therefore given by the tensor product

L2(R3, d3x)⊗Hs ⊗Hc.

(b) Consider a particle in 3D with mass m, whose potential energy is a bounded-

below real function U ∈ C∞(R3) with polynomial growth. Classically, its Hamilto-

nian function reads

h :=

3
∑

k=1

p2k
2m

+ U(x) .

A brute force quantization procedure in L2(R3, d3x) consists of replacing every

classical object with corresponding operators. It may make sense at most when

there are no ordering ambiguities in translating functions like p2x, since classically

p2x = pxp = xp2, but these identities are false at quantum level. In our case these

problems do not arise so that

H :=

3
∑

k=1

P 2
k

2m
+ U , (24)

where (Uψ)(x) := U(x)ψ(x), could be accepted as first quantum model of the

Hamiltonian function of our system. The written operator is at least defined on

S(R3), where it satisfies 〈Hψ|φ〉 = 〈ψ|Hφ〉. The existence of selfadjoint extensions

is a delicate issue [6] we shall not address here. Taking (19) into account, always

on S(R3), one immediately finds

H := − ~2

2m
∆+ U ,
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where ∆ is the standard Laplace operator in R3. If we assume that the equation

describing the evolution of the quantum system is againe (14), in our case we find

the known form of the Schrödinger equation,

i~
dψt
dt

= − ~2

2m
∆ψt + Uψt ,

when ψτ ∈ S(R3) for τ varying in a neighborhood of t (this requirement may

be relaxed). Actually the meaning of the derivative on the left-hand side should be

specified. We only say here that it is computed with respect to the natural topology

of L2(R3, d3x). �

2. Observables in infinite dimensional Hilbert spaces: Spectral

Theory

The main goal of this section is to present a suitable mathematical theory, suffi-

cient to extend to the infinite dimensional case the mathematical formalism of QM

introduced in the previous section. As seen in Sect. 1.5, the main issue concerns

the fact that, in the infinite dimensional case, there are operators representing ob-

servables which do not have proper eigenvalues and eigenvectors, like X and P .

So, naive expansions as (4) cannot be literally extended to the general case. These

expansions, together with the interpretation of the eigenvalues as values attained

by the observable associated with a selfadjoint operator, play a crucial rôle in the

mathematical interpretation of the quantum phenomenology introduced in Sect.

1.1 and mathematically discussed in Sect. 1.2. In particular we need a precise def-

inition of selfadjoint operator and a result regarding a spectral decomposition in

the infinite dimensional case. These tools are basic elements of the so called spectral

theory in Hilbert spaces, literally invented by von Neumann in his famous book

[7] to give a rigorous form to Quantum Mechanics and successively developed by

various authors towards many different directions of pure and applied mathemat-

ics. The same notion of abstract Hilbert space, as nowadays known, was born in

the second chapter of that book, joining and elaborating previous mathematical

constructions by Hilbert and Riesz. The remaining part of this section is devoted

to introduce the reader to some basic elements of that formalism. Reference books

are, e.g., [8,6,9,10]

2.1. Classes of (especially unbounded) operators in Hilbert spaces

As is well known, a complex Hilbert space is a complex vector space,H, equipped

with a Hermitian scalar product 〈·|·〉 – for us the anti-linear entry being the left

one – and H is complete with respect to the norm ||x|| :=
√

〈x|x〉, x ∈ H.

eA factor ~ has to be added in front of the left-hand side of (14) if we deal with a unit system
where ~ 6= 1.
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In particular, just in view of positivity of the scalar product and regardless the

completeness property, the Cauchy-Schwarz inequality holds

|〈x|y〉| ≤ ||x|| ||y|| , x, y ∈ H .

Another elementary purely algebraic fact is the polar decomposition of the Her-

mitian scalar product (here, H is not necessarily complete)

4〈x|y〉 = ||x+ y||2 − ||x− y||2 − i||x+ iy||2 + i||x− iy||2 for of x, y ∈ H, (25)

which immediately implies the following elementary result.

Proposition 16. If H is a complex vector space with Hermintian scalar product

〈 | 〉, a linear map L : H → H which is an isometry – ||Lx|| = ||x|| if x ∈ H – also

preserves the scalar product – 〈Lx|Ly〉 = 〈x|y〉 for x, y ∈ H.

The converse proposition is obviously true.

We henceforth assume that the reader be familiar with the basic theory of normed,

Banach and Hilbert spaces and notions like Hilbertian basis (also called complete

orthonormal systems) and that their properties and use be well known [8,6]. We

only remind the reader the validity of an elementary though fundamental tecnical

result (e.g., see [8,6]):

Theorem 17 (Riesz’ lemma). Let H be a complex Hilbert space. φ : H → C is

linear and continuous if and only if has the form φ = 〈x| 〉 for some x ∈ H. The

vector x is uniquely determined by φ.

Our goal is to present some basic results of spectral analysis, useful in QM.

From now on, an operator A in H always means a linear map A : D(A) → H,

whose domain, D(A) ⊂ H, is a subspace of H. In particular, I always denotes the

identity operator defined on the whole space (D(I) = H)

I : H ∋ x 7→ x ∈ H .

If A is an operator in H, Ran(A) := {Ax | x ∈ D(A)} is the image or range of A.

Notation 18. If A and B are operators in H
A ⊂ B means that D(A) ⊂ D(B) and B|D(A) = A,

where |S is the standard “restriction to S” symbol. We also adopt usual conventions

regarding standard domains of combinations of operators A,B:

(i) D(AB) := {x ∈ D(B) | Bx ∈ D(A)}
(ii) D(A+B) := D(A) ∩D(B),

(ii) D(αA) = D(A) for α 6= 0. �

To go on, we define some abstract algebraic structures naturally arising in the space

of operators on a Hilbert space.

Definition 19. Let A be an associative complex algebra A.

(1) A is a Banach algebra if it is a Banach space such that ||ab|| ≤ ||a|| ||b|| for
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a, b ∈ A. An unital Banach algebra is a Banach algebra with unit multiplicative

element 11, satisfying ||11|| = 1.

(2) A is an (unital) ∗-algebra if it is an (unital) algebra equipped with an anti lin-

ear map A ∋ a 7→ a∗ ∈ A, called involution, such that (a∗)∗ = a and (ab)∗ = b∗a∗

for a, b ∈ A.

(3) A is a (unital) C∗-algebra if it is a (unital) Banach algebra A which is also a
∗-algebra and ||a∗a|| = ||a||2 for a ∈ A.

A ∗-homomorphism from the ∗-algebra A to the the ∗-algebra B is an algebra

homomorphism preserving the involutions (and the unities if both present). A bi-

jective ∗-homomorphism is called ∗-isomorphism. �

Exercise 20. Prove that 11∗ = 11 in a unital ∗-algebra and that ||a∗|| = ||a|| if
a ∈ A when A is a C∗-algebra.

Solution. From 11a = a11 = a and the definition of ∗, we immediately have

a∗11∗ = 11∗a∗ = a∗. Since (b∗)∗ = b, we have found that b11∗ = 11∗b = b for every

b ∈ A. Uniqueness of the unit implies 11∗ = 11. Regarding the second property,

||a||2 = ||a∗a|| ≤ ||a∗|| ||a|| so that ||a|| ≤ ||a∗||. Everywhere replacing a for a∗ and

using (a∗)∗, we also obtain ||a∗|| ≤ ||a||, so that ||a∗|| = ||a||. �

We remind the reader that a linear map A : X → Y , where X and Y are normed

complex vector spaces with resp. norms || · ||X and || · ||Y , is said to be bounded if

||Ax||Y ≤ b||x||X for some b ∈ [0,+∞) and all x ∈ X . (26)

As is well known [8,6], it turns out that: A is continuous if and only if it is bounded.

From now on B(H) denotes the set of bounded operators A : H → H. This set ac-

quires the structure of a unital Banach algebra: The complex vector space structure

is the standard one of operators, the associative algebra product is the composition

of operators with unit given by I, and the norm being the usual operator norm,

||A|| := sup
06=x∈H

||Ax||
||x|| .

This definition of ||A|| can be given also for an operator A : D(A) → H, if A is

bounded and D(A) ⊂ H but D(A) 6= H. It immediately arises that

||Ax|| ≤ ||A|| ||x|| if x ∈ D(A).

B(H) is also an unital C∗-algebra if we introduce the notion of adjoint of an opera-

tor. To this end we have the following general definition concerning also unbounded

operators defined on non-maximal domains.

Definition 21. Let A be a densely defined operator in the complex Hilbert space

H. Define the subspace of H,

D(A∗) := {y ∈ H | ∃zy ∈ H s.t. 〈y|Ax〉 = 〈zy|x〉 ∀x ∈ D(A)} .

The linear map A∗ : D(A∗) ∋ y 7→ zy is called the adjoint operator of A. �
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Remark 22.

(a) Above, zy is uniquely determined by y, since D(A∗) is dense. If both zy, z
′
y

satisfy 〈y|Ax〉 = 〈zy|x〉 and 〈y|Ax〉 = 〈z′y|x〉, then 〈zy − z′y|x〉 = 0 for every x ∈
D(A). Taking a sequence D(A) ∋ xn → zy − z′y, we conclude that ||zy − z′y|| = 0.

Thus zy = z′y. The fact that y 7→ zy is linear can immediately be checked.

(b) By construction, we immediately have that

〈A∗y|x〉 = 〈y|Ax〉 for x ∈ D(A) and y ∈ D(A∗)

and also

〈x|A∗y〉 = 〈Ax|y〉 for x ∈ D(A) and y ∈ D(A∗) ,

if taking the complex conjugation of the former identity. �

Exercise 23. Prove that D(A∗) can equivalently be defined as the set (subspace)

of y ∈ H such that the linear functional D(A) ∋ x 7→ 〈y|Ax〉 is continuous.

Solution. It is a simple application of Riesz’ lemma, after having uniquely

extended D(A) ∋ x 7→ 〈y|Ax〉 to a continuous linear functional defined on D(A) =

H by continuity. �

Remark 24.

(a) If A is densely defined and A ⊂ B then B∗ ⊂ A∗. The proof is elementary.

(b) If A ∈ B(H) then A∗ ∈ B(H) and (A∗)∗ = A. Moreover

||A∗||2 = ||A||2 = ||A∗A|| = ||AA∗|| .

(c) Directly from given definition of adjoint one has, for densely defined opera-

tors A,B on H,

A∗ +B∗ ⊂ (A+B)∗ and A∗B∗ ⊂ (BA)∗ .

Furthermore

A∗ +B∗ = (A+B)∗ and A∗B∗ = (BA)∗ , (27)

whenever B ∈ B(H) and A is densely defined.

(d) From (b) and the last statement in (c) in particular, it is clear that B(H)

is a unital C∗-algebra with involution B(H) ∋ A 7→ A∗ ∈ B(H). �

Definition 25 (∗-representation). If A is a (unital) ∗-algebra and H a Hilbert

space, a ∗-representation on H is a ∗-homomorphism π : A → B(H) referring to

the natural (unital) ∗-algebra structure of B(H). �

Exercise 26. Prove that A∗ ∈ B(H) if A ∈ B(H) and that, in this case (A∗)∗ =

A, ||A|| = ||A∗|| and ||A∗A|| = ||AA∗|| = ||A||2.
Solution. If A ∈ B(H), for every y ∈ H, the linear map H ∋ x 7→ 〈y|Ax〉

is continuous (|〈y|Ax〉| ≤ ||y|| ||Ax|| ≤ ||y|| ||A|| ||x||) therefore Theorem 17

proves that there exists a unique zy,A ∈ H with 〈y|Ax〉 = 〈zy,A|x〉 for all
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x, y ∈ H. The map H ∋ y 7→ zy,A is linear as consequence of the said unique-

ness and the antilinearity of the left entry of scalar product. The map H ∋
y 7→ zy,A fits the definition of A∗, so it coincides with A∗ and D(A∗) = H.

Since 〈A∗x|y〉 = 〈x|Ay〉 for x, y ∈ H implies (taking the complex conjugation)

〈y|A∗x〉 = 〈Ay|x〉 for x, y ∈ H, we have (A∗)∗ = A. To prove that A∗ is

bounded observe that ||A∗x||2 = 〈A∗x|A∗x〉 = 〈x|AA∗x〉 ≤ ||x|| ||A|| ||A∗x|| so
that ||A∗x|| ≤ ||A|| ||x|| and ||A∗|| ≤ ||A||. Using (A∗)∗ = A we have ||A∗|| = ||A||.
Regarding the last identity, it is evidently enough to prove that ||A∗A|| = ||A||2.
First of all ||A∗A|| ≤ ||A∗|| ||A|| = ||A||2, so that ||A∗A|| ≤ ||A||2. On the

other hand ||A||2 = (sup||x||=1 ||Ax||)2 = sup||x||=1 ||Ax||2 = sup||x||=1〈Ax|Ax〉 =

sup||x||=1〈x|A∗Ax〉 ≤ sup||x||=1 ||x||||A∗Ax|| = sup||x||=1 ||A∗Ax|| = ||A∗A||. We

have found that ||A∗A|| ≤ ||A||2 ≤ ||A∗A|| so that ||A∗A|| = ||A||2. �

Definition 27. Let A be an operator in the complex Hilbert space H.

(1) A is said to be closed if the graph of A, that is the set pairs (x,Ax) ⊂ H×H
with x ∈ D(A), is closed in the product topology of H×H.

(2) A is closable if it admits extensions in terms of closed operators. This is

equivalent to say that the closure of the graph of A is the graph of an operator,

denoted by A, and called the closure of A.

(3) If A is closable, a subspace S ⊂ D(A) is called core for A if A|S = A. �

Remark 28.

(a)Directly from the definition, A is closable if and only if there are no sequences

of elements xn ∈ D(A) such that xn → 0 and Axn 6→ 0 as n → +∞. In this case

D(A) is made of the elements x ∈ H such that xn → x and Axn → yx for some

sequences {xn}n∈N ⊂ D(A) and some yx ∈ D(A). In this case Ax = yx.

(b) As a consequence of (a) one has that, if A is closable, then aA+bI is closable

and aA+ bI = aA+ bI for every a, b ∈ C.

(c) Directly from the definition, A is closed if and only if D(A) ∋ xn → x ∈ H
and Axn → y ∈ H imply both x ∈ D(A) and y = Ax.

(d) If A is densely defined, A∗ is closed from the definition of adjoint operator

and (c) above. Moreover, a densely defined operator A is closable if and oly if D(A∗)

is dense. In this case A = (A∗)∗. For the proof see, e.g., [6].

The Hilbert space version of the closed graph theorem holds (e.g., see [6]). �

Theorem 29 (Closed graph Theorem). Let A : H → H be an operator, H
being a complex Hilbert space. A is closed if and only if A ∈ B(H).

Exercise 30. Prove that, if B ∈ B(H) and A is a closed operator in H such that

Ran(B) ⊂ D(A), then AB ∈ B(H).

Solution. AB is well defined by hypothesis and D(AB) = H. Exploiting (c) in

remark 28 and continuity of B, one easily finds that AB is closed as well. Theorem

29 finally proves that AB ∈ B(H). �

Definition 31. An operator A in the complex Hilbert space H is said to be
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(1) symmetric if it is densely defined and 〈Ax|y〉 = 〈x|Ay〉 for x, y ∈ D(A),

which is equivalent to say that A ⊂ A∗.

(2) selfadjoint if it is symmetric and A = A∗,

(3) essentially self-adjoint if it is symmetric and (A∗)∗ = A∗.

(4) unitary if A∗A = AA∗ = I,

(5) normal if it is closed, densely defined and AA∗ = A∗A. �

Remark 32.

(a) If A is unitary then A,A∗ ∈ B(H). Furthermore A : H → H is unitary if

and only if it is surjective and norm preserving. (See the exercises 35 below).

(b) A selfdjoint operator A does not admit proper symmetric extensions. (See

the exercises 37 below).

(c) A symmetric operator A is always closable because A ⊂ A∗ and A∗ is closed

((d) remark 28), moreover for that operator the following conditions are equivalent:

(i) (A∗)∗ = A∗ (A is essentially self adjoint),

(ii) A = A∗,

(iii) A = (A)∗.

If these conditions are valid, A = (A∗)∗ = A∗ is the unique selfadjoint extension of

A (e.g., see [6] and the exercises 37 below).

(d) Unitary and selfadjoint operators are cases of normal operators. �

Exercise 33. Let U : H → H be a unitary operator in the complex Hilbert space

H and A another operator in H. Prove that UAU∗ with domain U(D(A)) (resp.

U∗AU with domain U∗(D(A))) is symmetric, selfadjoint, essentially selfadjoint,

unitary, normal if A is respectively symmetric, selfadjoint, essentially selfadjoint,

unitary, normal.

Solution. Since U∗ is unitary when U is and (U∗)∗ = U , it is enough to

establish the thesis for UAU∗. First of all notice that D(UAU∗) = U(D(A)) is

dense if D(A) is dense since U is bijective and isometric and U(D(A)) = H if

D(A) = H because U is bijective. By direct inspection, applying the definition of

adjoint operator, one sees that (UAU∗)∗ = UA∗U∗ and D((UAU∗)∗) = U(D(A∗)).

Now, if A is symmetric A ⊂ A∗ which implies UAU∗ ⊂ UA∗U∗ = (UAU∗)∗

so that UAU∗ is symmetric as well. If A is selfadjoint A = A∗ which implies

UAU∗ = UA∗U∗ = (UAU∗)∗ so that UAU∗ is self adjoint as well. If A is es-

sentially self adjoint it is symmetric and (A∗)∗ = A∗, so that UAU∗ is sym-

metric and U(A∗)∗U∗ = UA∗U∗ that is (UA∗U∗)∗ = UA∗U∗ which means

((UAU∗)∗)∗ = (UAU∗)∗ so that UA∗U∗ is essentially selfadjoint. If A is unitary,

we have A∗A = AA∗ = I so that UA∗AU∗ = UAA∗U∗ = UU∗ which, since

U∗U = I = UU∗, is equivalent to UA∗U∗UAU∗ = UAU∗UA∗U∗ = U∗U = I, that

is (UA∗U∗)UAU∗ = (UAU∗)UA∗U∗ = I and thus UAU∗ is unitary as well. If A is

normal UAU∗ is normal too, with the same reasoning as in the unitary case. �

An elementary though important result, helping understand why in QM observables

are very often described by selfadjoint operators which are unbounded and defined
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in proper subspaces, is the following proposition (see (c) in remark 66).

Theorem 34 (Hellinger-Toepliz theorem). Let A be a self-adjoint operator in

the complex Hilbert space H. A is bounded if and only if D(A) = H (thus A ∈
B(H)).

Proof. As A = A∗ we have D(A∗) = H. Since A∗ is closed, Theorem 29 implies

the A∗(= A) is bounded. Conversely, if A = A∗ is bounded, since D(A) is dense,

we can continuously extend it to a bounded operator A1 : H → H. That extension,

by continuity, trivially satisfies 〈A1x|y〉 = 〈x|A1y〉 for all x, y ∈ H thus A1 is

symmetric. (b) in remark 32 implies A = A1.

Exercise 35.

(1) Prove that if A is unitary then A,A∗ ∈ B(H).

Solution. It holds D(A) = D(A∗) = D(I) = H and ||Ax||2 = 〈Ax|Ax〉 =

〈x|A∗Ax〉||x||2 if x ∈ H, so that ||A|| = 1. Due to (b) in remark 24, A∗ ∈ B(H). �

(2) Prove that A : H → H is unitary if and only if is surjective and norm preserving.

Solution. If A is unitary ((3) Def 31), it is evidently bijective, moreover as

D(A∗) = H ||Ax||2 = 〈Ax|Ax〉 = 〈x|A∗Ax〉 = 〈x|x〉 = ||x||2, so A is isometric If

A : H → H is isometric its norm is 1 and thus A ∈ B(H). Therefore A∗ ∈ B(H).

The condition ||Ax||2 = ||x||2 can be re-written 〈Ax|Ax〉 = 〈x|A∗Ax〉 = 〈x|x〉 and

thus 〈x|(A∗A − I)x〉 = 0 for x ∈ H. Using x = y ± z and x = y ± iz, the found

indentity implies 〈z|(A∗A − I)y〉 = 0 for all y, z ∈ H. Taking z = (A∗A − I)y, we

finally have ||(A∗A − I)y|| = 0 for all y ∈ H and thus A∗A = I. In particular A is

injective as it admits the left inverse A∗. Since A is also surjective, it is bijective

and thus its left inverse (A∗) is also a right inverse, that is AA∗ = I.

(3) Prove that, if A : H → H satisfies 〈x|Ax〉 ∈ R for all x ∈ H (and in particular

if A ≥ 0, which means 〈x|Ax〉 ≥ 0 for all x ∈ H), then A∗ = A and A ∈ B(H).

Solution. We have 〈x|Ax〉 = 〈x|Ax〉 = 〈Ax|x〉 = 〈x|A∗x〉 where, as D(A) = H,

the adjoint A∗ is well defined everywhere on H. Thus 〈x|(T − T ∗)x〉 = 0 for every

x ∈ H. Using there x = y ± z and x = y ± iz we obtain 〈y|(T − T ∗)z〉 = 0 for all

y, z ∈ H. Choosing y = (T −T ∗)z, we conclude that T = T ∗. Theorem 34 concludes

the proof. �

Example 36. The Fourier transform, F : S(Rn) → S(Rn), defined asf

(Ff)(k) := 1

(2π)n/2

∫

Rn

e−ik·xf(x)dnx (28)

(k · x being the standard Rn scalar product of k and x) is a bijective linear map

f In QM, adopting units with ~ 6= 1, k · x has to be replaced for k·x
~

and (2π)n/2 for (2π~)n/2.
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with inverse

(F−g)(x) :=
1

(2π)n/2

∫

Rn

eik·xg(k)dnk . (29)

Both F and F− preserve the scalar product (and thus the norm) of L2(Rn, dnx).

As a consequence (exercise), using the fact that S(Rn) is dense in L2(Rn, dnx), one

easily proves that F and F− uniquely continuously extend to unitary operators,

respectively, F̂ : L2(Rn, dnx) → L2(Rn, dnk) and F̂− : L2(Rn, dnk) → L2(Rn, dnx)

such that F̂∗ = F̂−1 = F̂−. F̂ is the Fourier-Plancherel (unitary) operator. �

Exercise 37.

(1) Prove that a selfadjoint operator A does not admit proper symmetric extensions.

Solution. Let B be a symmetric extension of A. A ⊂ B then B∗ ⊂ A∗ for (a)

in remark 24. As A = A∗ we have B∗ ⊂ A ⊂ B. Since B ⊂ B∗, we conclude that

A = B. �

(2) Prove that an essentially selfdjoint operator A admits a unique selfadjoint ex-

tension, and that this extension is A∗.

Solution. Let B be a selfadjoint extension of the essentially selfadjoint oper-

ator A, so that A ⊂ B. Therefore A∗ ⊃ B∗ = B and (A∗)∗ ⊂ B∗ = B. Since

A is essentially selfadjoint, we have found A∗ ⊂ B. Here A∗ is selfadjoint and B

is symmetric because selfadjoint. The previous exercise implies A∗ = B. That is,

every selfadjoint extension of A coincides with A∗. �

If A is a densely defined symmetric operator in the complex Hilbert space H, define

the deficiency indices, n± := dimH± (cardinal numbers in general) where H±

are the (closed) subspaces of the solutions of (A∗ ± iI)x± = 0 [8,6,9] .

Proposition 38. If A is a densely defined symmetric operator in the complex

Hilbert space H the following holds.

(a) A is essentially selfadjoint (thus it admits an unique selfadjoint extension) if

n± = 0, that is H± = {0}.
(b) A admits selfadjoint extensions if and only if n+ = n− and these extension are

labelled by means of n+ parameters.

Remark 39. An easy sufficient condition, due to von Neumann, for n+ = n− is

that CA ⊂ AC where C : H → H is a conjugation that is an isometric surjective

antilinearg map with CC = I [6].

Taking C as the standard conjugation of functions in L2(Rn, dnx), this result proves

in particular that all operators in QM of the Schördinger form as (24) admit self-

adjoint extensions when defined on dense domains. �

Exercise 40. Prove that a symmetric operator that admits a unique self-adjoint

extension is necessarily essentially selfadjoint.

gIn other words C(αx+ βy) = αCx+ βCy if α, β ∈ C and x, y ∈ H.
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Solution. By (b) of Proposition 38, n+ = n−. If n± 6= 0 there are many selfad-

joint extension. The only possibility for the uniqueness of the selfadjoint extension

is n± = 0. (a) of Proposition 38 implies that A is essentially selfadjoint. �

A very useful criterion to establish the essentially selfadjointness of a symmetric

operator is due to Nelson. It relies upon an important definition.

Definition 41. Let A be an operator in the complex Hilbert space H.

If ψ ∈ ∩n∈ND(An) satisfies

+∞
∑

n=0

tn

n!
||Anψ|| < +∞ for some t > 0,

then ψ is said to be an analytic vector of A. �

We can state Nelson’s criterion here [6].

Theorem 42 (Nelson’s essentially selfadjointness criterium). Let A be a

symmetric operator in the complex Hilbert space H, A is essentially selfadjoint if

D(A) contains a dense set D of analytic vectors (or – which is equivalent –a set D

of analytic vectors whose finite span dense in H).

The above equivalence is due to the fact that a finite linear combination of ana-

lytic vector is an analytic vector as well, the proof being elementary. We have the

following evident corollary.

Corollary 43. If A is a symmetric operator admitting a Hilbertian basis of eigen-

vectors in D(A), then A is essentially selfadjoint.

Example 44.

(1) For m ∈ {1, 2, . . . , n}, consider the operators X ′
m and X ′′

m in L2(Rn, dnx) with

dense domains D(X ′
m) = C∞

0 (Rn;C), D(X ′′
m) = S(Rn) for x ∈ Rn and, for ψ, φ in

the respective domains,

(X ′
mψ)(x) := xmψ(x) , (X ′′

mφ)(x) := xmφ(x) ,

where xmis the m-th component of x ∈ Rn. Both operators are symmetric but not

selfadjoint. They admit selfadjoint extensions because they commute with the stan-

dard complex conjugation of functions (see remark 39). It is furthermore possible

to prove that both operators are essentially selfadjoint as follows. First define the

k-axis position operator Xm in L2(Rn, dnx) with domain

D(Xm) :=

{

ψ ∈ L2(Rn, dnx)

∣

∣

∣

∣

∫

Rn

|xmψ(x)|2dkn
}

and

(Xmψ)(x) := xmψ(x) , x ∈ R
n . (30)

Just by applying the definition of adjoint one sees that X∗
m = Xm so that Xm is

selfdjoint [6]. Again applying the definition of adjoint, one sees that X ′
m

∗
= X ′′

m
∗
=
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X∗
m [6] where we know that the last one is selfadjoint: (X∗

m)∗ = (Xm)∗ = X∗
m. By

definition, X ′
m and X ′′

m are therefore essentially selfadjoint. By (c) in remark 32

X ′
m and X ′′

m admit a unique selfadjoint extension which must coincide with Xm

itself. We conclude that C∞
0 (Rn;C) and S(Rn) are cores (Def. 27) for the m-axis

position operator.

(2) For m ∈ {1, 2, . . . , n}, the k-axis momentum operator, Pm, is obtained from

the position operator using the Fourier-Plancherel unitary operator F̂ introduced

in example 36.

D(Pm) :=

{

ψ ∈ L2(Rn, dnx)

∣

∣

∣

∣

∫

Rn

|km(F̂ψ)(k)|2dnk
}

and

(Pmψ)(x) := (F̂∗KmF̂ψ)(x) , x ∈ R
n . (31)

AboveKm is them-axis position operator just written for functions (in L2(Rn, dnk))

whose variable, for pure convenience, is denoted by k instead of x. Since Km is

selfadjoint, Pm is selfadjoint as well, as established in exercise 33 as a consequence

of the fact that F̂ is unitary.

It is possible to give a more explicit form to Pm if restricting its domain. Taking

ψ ∈ C∞
0 (Rn;C) ⊂ S(Rn) or directly ψ ∈ S(Rn), F̂ reduces to the standard integral

Fourier transform (28) with inverse (29). Using these integral expressions we easily

obtain

(Pmψ)(x) = (F̂∗KmF̂ψ)(x) = −i ∂

∂xm
ψ(x) (32)

because in S(Rn), which is invariant under the Fourier (and inverse Fourier) integral

transformation,
∫

Rn

eik·xkm(Fψ)(k)dnk = −i ∂

∂xm

∫

Rn

e−ik·x(Fψ)(k)dnk .

This way leads us to consider the operators P ′
m and P ′′

m in L2(Rn, dnx) with

D(P ′
m) = C∞

0 (Rn;C) , D(P ′′
m) = S(Rn)

and, for x ∈ Rn and ψ, φ in the respective domains,

(P ′
mψ)(x) := −i ∂

∂xm
ψ(x) , (P ′′

mφ)(x) := −i ∂

∂xm
φ(x) .

Both operators are symmetric as one can easily prove by integrating by parts, but

not selfadjoint. They admit selfadjoint extensions because they commute with the

conjugation (Cψ)(x) = ψ(−x) (see remark 39). It is furthermore possible to prove

that both operators are essentially self-adjoint by direct use of Proposition 38 [6].

However we already know that P ′′
m is essentially selfadjoint as it coincides with the

essentially selfadjoint operator F̂∗K ′′
mF̂ beacause S(Rn) is invariant under F̂ .

The unique selfadjoint extension of both operators turns out to be Pm. We conclude

that C∞
0 (Rn;C) and S(Rn) are cores for the m-axis momentum operator.
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With the given definitions of selfadjoint operators Xk and Pk, S(Rn) turns out to
be an invariant domain and thereon the CCR (21) hold rigorously.

As a final remark to conclude, we say that, if n = 1, D(P ) coincides to the already

introduced domain (17). In that domain P is nothing but the weak derivative times

the factor −i.
(3) The most elementary example of application of Nelson’s criterion is in

L2([0, 1], dx). Consider A = − d2

dx2 with dense domain D(A) given by the func-

tions in C∞([0, 1];C) such that ψ(0) = ψ(1) and dψ
dx (0) = dψ

dx (1). A is symmetric

thereon as it arises immediately by integration by parts, in particular its domain

is dense since it includes the Hilbert basis of exponentials ei2πnx, n ∈ Z, which are

eigenvectors of A. Thus A is also essentially selfadjoint on the above domain.

A more interesting case is the Hamiltonian operator of the harmonic oscil-

lator, H [1] obtained as follows. One starts by

H0 = − 1

2m

d2

dx2
+
mω2

2
x2

with D(H0) := S(R). Above, x2 is the multiplicative operator and m,ω > 0 are

constants. This operator is evidently symmetric on D(H0) and admits a Hilbert

basis of the Hermite functions ψn(x) [6] with corresponding eigenvalues ω(n+ 1
2 ).

So H0 is essentially selfadjoint on D(H0) and thus H := H0 = H∗
0 . �

2.2. Spectrum of an operator

Our goal is to extend (4) to a formula valid in the infinite dimensional case. As we

shall see shortly, passing to the infinite dimensional case, the sum is replaced by an

integral and σ(A) must be enlarged with respect to the pure set of eigenvalues of

A. This is because, as already noticed in the first section, there are operators which

should be decomposed with the prescription (4) but they do not have eigenvalues,

though they play a crucial rôle in QM.

Notation 45. If A : D(A) → H is injective, A−1 indicates its inverse when the

co-domain of A is restricted to Ran(A). In other words, A−1 : Ran(A) → D(A). �

The definition of spectrum of the operator A : D(A) → H extends the notion of set

of eigenvalues. The eigenvalues of A are the numbers λ ∈ C such that (A − λI)−1

does not exist. When passing to infinite dimensions, topological issues take place.

As a matter of fact, even if (A − λI)−1 exists, it may be bounded or unbounded

and its domain Ran(A − λI) may or may not be dense. These features permit us

to define a suitable extension of the notion of set of eigenvalues.

Definition 46. Let A be an operator in the complex Hilbert space H. The resol-

vent set of A is the subset of C,

ρ(A) := {λ ∈ C | (A− λI) is injective, Ran(A− λI) = H , (A− λI)−1is bounded}
The spectrum of A is the complement σ(A) := C \ ρ(A) and it is given by the

union of the following pairwise disjoint three parts:
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(i) the point-spectrum, σp(A), where A−λI not injective (σp(A) is the set of

eigenvalues of A),

(ii) the continuous spectrum, σc(A), where A−λI injective, Ran(A− λI) =

H and (A− λI)−1 not bounded,

(iii) the residual spectrum, σr(A), where A−λI injective and Ran(A− λI) 6=
H. �

Remark 47.

(a) It turns out that ρ(A) is always open, so that σ(A) is always closed [8,6,9].

(b) If A is closed and normal, in particular, if A is either selfadjoint or unitary),

σr(A) = ∅ (e.g., see [6]). Furthermore, if A is closed (if A ∈ B(H) in particular),

λ ∈ ρ(A) if and only if A− λI admits inverse in B(H) (see (2) in exercise 48).

(c) If A is selfadjoint, one finds σ(A) ⊂ R (see (1) in exercise 48).

(d) If A is unitary one finds σ(A) ⊂ T := {eia | a ∈ R} (e.g., see [6]).

(e) If U : H → H is unitary and A is any operator in the complex Hilbert space

H, just by applying the definition one finds σ(UAU∗) = σ(A) and in particular,

σp(UAU
∗) = σp(A) , σc(UAU

∗) = σc(A) , σr(UAU
∗) = σr(A) . (33)

The same result holds replacing U : H → H for U : H → H′ and U∗ for U−1, where

U is now a Hilbert space isomorphism (an isometric surjective linear map) and H′

another complex Hilbert space. �

Exercise 48.

(1) Prove that if A is a selfadjoint operator in the complex Hilbert space H then

(i) σ(A) ⊂ R,

(ii) σr(A) = ∅,

(iii) eigenvectors with different eigenvalues are orthogonal.

Solution. Let us begin with (i). Suppose λ = µ + iν, ν 6= 0 and let us prove

λ ∈ ρ(A). If x ∈ D(A),

〈(A− λI)x|(A − λI)x〉 = 〈(A− µI)x|(A − µI)x〉 + ν2〈x|x〉 + iν[〈Ax|x〉 − 〈x|Ax〉] .
The last summand vanishes for A is selfadjoint. Hence

||(A− λI)x|| ≥ |ν| ||x|| .
With a similar argument we obtain

||(A− λI)x|| ≥ |ν| ||x|| .
The operators A− λI and A− λI are injective, and ||(A − λI)−1|| ≤ |ν|−1, where

(A− λI)−1 : Ran(A− λI) → D(A). Notice

Ran(A− λI)
⊥
= [Ran(A− λI)]⊥ = Ker(A∗ − λI) = Ker(A− λI) = {0} ,

where the last equality makes use of the injectivity of A−λI. Summarising: A−λI
in injective, (A − λI)−1 bounded and Ran(A− λI)

⊥
= {0}, i.e. Ran(A − λI)

is dense in H; therefore λ ∈ ρ(A), by definition of resolvent set. Let us pass to
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(ii). Suppose λ ∈ σ(A), but λ 6∈ σp(A). Then A − λI must be one-to-one and

Ker(A− λI) = {0}. Since A = A∗ and λ ∈ R by (i), we have Ker(A∗ − λI) = {0},
so [Ran(A − λI)]⊥ = Ker(A∗ − λI) = {0} and Ran(A− λI) = H. Consequently

λ ∈ σc(A). Proving (iii) is easy: if λ 6= µ and Au = λu, Av = µv, then

(λ− µ)〈u|v〉 = 〈Au|v〉 − 〈u|Av〉 = 〈u|Av〉 − 〈u|Av〉 = 0 ;

from λ, µ ∈ R and A = A∗. But λ− µ 6= 0, so 〈u|v〉 = 0. �

(2) Let A : D(A) → H be a closed operator in H (in particular A ∈ B(H)). Prove

that λ ∈ ρ(A) if and only if A− λI admits an inverse which belongs to B(H).

Solution. If (A−λI)−1 ∈ B(H), it must be Ran(A− λI) = Ran(A−λI) = H
and (A − λI)−1 is bounded, so that λ ∈ ρ(A) by definition. Let us prove the

converse. Suppose that λ ∈ ρ(A). We know that (A − λI)−1 is defined on the

dense domain Ran(A − λI) and is bounded. To conclude, it is therefore enough

proving that y ∈ H implies y ∈ Ran(A − λI). To this end, notice that if y ∈
H = Ran(A− λI), then y = limn→+∞(A − λI)xn for some xn ∈ D(A − λI). The

sequence of xn converges. Indeed H is complete and {xn}n∈N is Cauchy as (1)

xn = (A − λI)−1yn, (2) ||xn − xm|| ≤ ||(A − λI)−1|| ||yn − ym||, and (3) yn → y.

To end the proof, we observe that, A− λI is closed since A is such ((b) in remark

28). It must consequently be ((c) in remark 28) x = limn→+∞ xn ∈ D(A− λI) and

y = (A− λI)x ∈ Ran(A− λI). �

Example 49. The m-axis position operator Xm in L2(Rn, dnx) introduced in (1)

of example 44 satisfies

σ(Xm) = σc(Xm) = R . (34)

The proof can be obtained as follows. First observe that σ(Xm) ⊂ R since the

operator is selfadjoint. However σp(Xm) = ∅ as observed in the first section and

σr(Xm) = ∅ because Xm is self-adjoint ((1) in exercise 48). Suppose that, for some

r ∈ R, (Xm−rI)−1 is bounded. If ψ ∈ D(Xm−rI) = D(Xm) with ||ψ|| = 1 we have

||ψ|| = ||(Xm− rI)−1(Xm− rI)ψ|| and thus ||ψ|| ≤ ||(Xm− rI)−1|| ||(Xm− rI)ψ||.
Therefore

||(Xm − rI)−1|| ≥ 1

||(Xm − rI)ψ||
For every fixed ǫ > 0, it is simply constructed ψ ∈ D(Xm) with ||ψ|| = 1 and

||(Xm−rI)ψ|| < ǫ. Therefore (Xm−rI)−1 cannot be bounded and thus r ∈ σc(Xm).

In view of (e) in remark 47, we also conclude that

σ(Pm) = σc(Pm) = R , (35)

just because the momentum operator Pm is related to the position one by means of

a unitary operator given by the Fourier-Plancherel operator F̂ as discussed in (2)

of example 44. �
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2.3. Spectral measures

Let us pass the the notion of orthogonal projector which will be later exploited to

state the spectral decomposition theorem.

Notation 50. If M ⊂ H, M⊥ := {y ∈ H | 〈y|x〉 = 0 ∀x ∈ M} denotes the

orthogonal of M . �

Evidently M⊥ is a closed subspace of H. ⊥ enjoys several nice properties (e.g. see

[8,6]), in particular,

span(M) = (M⊥)⊥ and H = span(M)⊕M⊥ (36)

where the bar denotes the topological closure and ⊕ the direct orthogonal sum.

From the definition of adjoint, one easily has for A : D(A) → H densely defined,

Ker(A∗−λI) = [Ran(A−λI)]⊥ and Ker(A−λI) ⊂ [Ran(A∗−λI)]⊥ ∀λ ∈ C

where the inclusion becomes an identity if A ∈ B(H).

Definition 51. Let H be a complex Hilbert space. P ∈ B(H) is called orthog-

onal projector when PP = P and P ∗ = P . L(H) denotes the set of orthogonal

projectors of H. �

We have the well known relation between orthogonal projectors and closed sub-

spaces [8,6]

Proposition 52. If P ∈ L(H), then P (H) is a closed subspace. If H0 ⊂ H is a

closed subspace, there exists exactly one P ∈ L(H) such that P (H) = H0. Finally,

I − P ∈ L(H) and it projects onto H⊥
0 (e.g., see [6]).

We can now state one of the most important definitions in spectral theory.

Definition 53. Let H be a complex Hilbert space and Σ(X) a σ-algebra overX . A

projector-valued measure (PVM) on X , P , is a map Σ(X) ∋ E 7→ PE ∈ L(H)

sucht that

(i) PX = I,

(ii) PEPF = PE∩F ,

(iii) If N ⊂ N and {Ek}k∈N ⊂ Σ(X) satisfies Ej ∩ Ek = ∅ for k 6= j, then
∑

j∈N

PEjx = P∪j∈NEjx for every x ∈ H.

(If N is infinite, the sum on the left hand side of (iii) is computed referring to the

topology of H) �

Remark 54.

(a) (i) and (iii) with N = {1, 2} imply that P∅ = 0 using E1 = X and E2 = ∅.

Next (ii) entails that PEPF = 0 if E∩F = ∅. An important consequence is that for

N infinite, the vector given by the sum on the left hand side of (iii) is independent
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from the chosen order because that vector is a sum of pairwise orthogonal vectors

PEjx.

(b) If x, y ∈ H, Σ(X) ∋ E 7→ 〈x|PEy〉 =: µ
(P )
xy (E) is a complex measure whose

(finite) total variation [8] will be denoted by |µ(P )
xy |. From the definition of µxy, we

immediately have:

(i) µ
(P )
xy (X) = 〈x|y〉,

(ii) µ
(P )
xx is always positive and finite and µ

(P )
xx (X) = ||x||2;

(iii) if s =
∑n
k=1 skχEk

is a simple function [8],
∫

X
sdµxy = 〈x|∑n

k=1 skPEk
y〉.

�

Example 55.

(1) The simplest example of PVM is related to a countable Hilbertian basis N in

a separable Hilbert space H. We can define Σ(N) as the class of all subsets of N

itself. Next, for E ∈ Σ(N) and z ∈ H we define

PEz :=
∑

x∈E

〈x|z〉x

and P∅ := 0. It is easy to prove that the class of all PE defined this way form

a PVM on N . (This definition can be also given if H is non-separable and N is

uncountable, since for every y ∈ H only an at most countable subset of elements

x ∈ E satisfy 〈x|y〉 6= 0). In particular µxy(E) = 〈x|PEy〉 =
∑

z∈E〈x|z〉〈z|y〉 and

µxx(E) =
∑

z∈E |〈x|z〉|2.
(2) A more complicated version of (1) consists of a PVM constructed out of a

orthogonal Hilbertian decomposition of a separable Hilbert space, H = ⊕n∈NHn,

where Hn ⊂ H is a closed subspace and Hn ⊥ Hm if n 6= m. Again defining Σ(N)

as the set of subsets of N, for E ∈ Σ(N) and z ∈ H we define

PEz :=
∑

x∈E

Qnz

where Qn is the orthogonal projector onto Hn (the reader can easily check that

the sum always converges using Bessel’s inequality). It is easy to prove that the

class of PEs defined this way form a PVM on N. In particular µxy(E) = 〈x|PEy〉 =
∑

n∈E〈x|Qny〉 and µxx(E) =
∑

n∈E ||Qnx||2.
(3) In L2(R, dx) a simple PVM, not related with a Hilbertian basis, is made as fol-

lows. To every E ∈ B(R), the Borel σ-algebra, associate the orthonormal projector

PE such that, if χE is the characteristic function of E – χE(x) = 0 if x 6∈ E

and χE(x) = 1 if x ∈ E –

(PEψ)(x) := χE(x)ψ(x) ∀ψ ∈ L2(R, dx) .

Moreover P∅ := 0. It is easy to prove that the collection of the PE is a PVM. In

particular µfg(E) = 〈f |PEg〉 =
∫

E f(x)g(x)dx and µff (E) =
∫

E |f(x)|2dx. �

We have the following fundamental result [8,6,9].
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Proposition 56. Let H be a complex Hilbert space and P : Σ(X) → L(H) a PVM.

If f : X → C is measurable, define

∆f :=

{

x ∈ H
∣

∣

∣

∣

∫

X

|f(λ)|2µ(P )
xx (λ) < +∞

}

.

∆f is a dense subspace of H and there is a unique operator
∫

X

f(λ)dP (λ) : ∆f → H (37)

such that
〈

x

∣

∣

∣

∣

∫

X

f(λ)dP (λ)y

〉

=

∫

X

f(λ)µ(P )
xy (λ) ∀x ∈ H , ∀y ∈ ∆f (38)

The operator in (37) turns out to be closed and normal. It finally satisfies
(
∫

X

f(λ) dP (λ)

)∗

=

∫

X

f(λ) dP (λ) (39)

and
∣

∣

∣

∣

∣

∣

∣

∣

∫

X

f(λ) dP (λ)x

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∫

X

|f(λ)|2dµ(P )
xx (λ) ∀x ∈ ∆f . (40)

Idea of the existence part of the Proof. The idea of the proof of existence of

the operator in (37) relies upon the validity of the inequality ((1) in exercises 58

below)

∫

X

|f(λ)| d|µ(P )
xy |(λ) ≤ ||x||

√

∫

X

|f(λ)|2dµ(P )
yy (λ) ∀y ∈ ∆f , ∀x ∈ H . (41)

This inequality also proves that f ∈ L2(X, dµ
(P )
yy ) implies f ∈ L1(X, d|µ(P )

xy |) for

x ∈ H, so that (38) makes sense. Since from the general measure theory
∣

∣

∣

∣

∫

X

f(λ) dµ(P )
xy (λ)

∣

∣

∣

∣

≤
∫

X

|f(λ)| d|µ(P )
xy |(λ) ,

(41) implies that H ∋ x 7→
∫

X f(λ)dµ
(P )
xy (λ) is continuous at x = 0. This map is also

anti-linear as follows from the definition of µx,y. An elementary use of Riesz’ lemma

proves that there exists a vector, indicated by
∫

X f(λ)dP (λ)y, satisfying (38). That

is the action of an operator on a vector y ∈ ∆f because ∆f ∋ y 7→
∫

X
f(λ)dµ

(P )
xy (λ)

is linear. �

Remark 57. Identity (40) gives ∆f a direct meaning in terms of boundedness of
∫

X
f(λ)dP (λ). Since µxx(X) = ||x||2 < +∞, (40) together with the definition of ∆f

immediately implies that: if f is bounded or, more weakly P -essentially boundedh

on X , then
∫

X

f(λ) dP (λ) ∈ B(H)

hAs usual, ||f ||
(P )
∞ is the infimum of positive reals r such that P ({x ∈ X | |f(x)| > r}) = 0.
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and
∣

∣

∣

∣

∣

∣

∣

∣

∫

X

f(λ) dP (λ)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||f ||(P )
∞ ≤ ||f ||∞ .

The P -essentially boundedness is also a necessary (not only sufficient) condition for
∫

X
f(λ) dP (λ) ∈ B(H) [8,6]. �

Exercise 58.

(1) Prove inequality (41).

Solution. Let x ∈ H and y ∈ ∆f . If s : X → C is a simple function and

h : X → C is the Radon-Nikodym derivative of µxy with respect to |µxy| so that

|h(x)| = 1 and µxy(E) =
∫

E hd|µxy| (see, e.g., [6]), we have for an increasing

sequence of simple functions zn → h pointwise, with |zn| ≤ |h−1| = 1, due to the

dominate convergence theorem,

∫

X

|s|d|µxy| =
∫

X

|s|h−1dµxy = lim
n→+∞

∫

X

|s|zndµxy = lim
n→+∞

〈

x

∣

∣

∣

∣

∣

Nn
∑

k=1

zn,kPEn,k
y

〉

.

In the last step we have made use of (iii)(b) in remark 54 for the simple function

|s|zn =
∑Nn

k=1 zn,kχEn,k
. Cauchy Schwartz inequality immediately yields

∫

X

|s|d|µxy| ≤ ||x|| lim
n→+∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nn
∑

k=1

zn,kPEn,k
y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ||x|| lim
n→+∞

√

∫

X

|szn|2dµyy ,

where we have used P ∗
En,k

PEn,k′
= PEn,k

PEn,k′
= δkk′PEn,k

since En,k ∩ En,k′ = ∅

for k 6= k′. Next observe that, as |szn|2 → |sh−1|2 = |s|2, dominate convergence

theorem leads to
∫

X

|s|d|µxy| ≤ ||x||
√

∫

X

|s|2dµyy .

Finally, replace s above for a sequence of simple functions |sn| → f ∈ L2(X, dµyy)

pointwise, with sn ≤ |sn+1| ≤ |f |. Monotone convergence theorem and dominate

convergence theorem, respectively applied to the left and right-hand side of the

found inequality, produce inequality (41).

(2) Prove that, with the hypotheses of Proposition 56, it holds
∫

X

χE(λ) dP (λ) = PE , if E ∈ Σ(X) (42)

and in particular
∫

X

1 dP (λ) = I . (43)

Solution. It is sufficient to prove (42) since we know that PX = I. To this end,

notice that, by direct inspection

〈x |PEy 〉 =
∫

X

χE(λ)µ
(P )
xy (λ) ∀x ∈ H , ∀y ∈ ∆χE = H .
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By the uniqueness property stated in Proposition 56 (42) holds. �

(3) Prove that if P a PVM on H and T is an operator in H with D(T ) = ∆f such

that

〈x |Tx〉 =
∫

X

f(λ)µ(P )
xx (λ) ∀x ∈ ∆f (44)

then

T =

∫

X

f(λ)dP (λ) .

Solution. From the definition of µxy we easily have (everywhere omitting (P )

for semplicity)

4µxy(E) = µx+y,x+y(E)− µx−y,x−y(E)− iµx+iy,x+iy(E) + iµx−iy,x−iy(E)

This identity implies that, if x, y ∈ ∆f ,

4

∫

X

fdµxy =

∫

X

fdµx+y,x+y−
∫

X

fdµx−y,x−y−i
∫

X

fdµx+iy.x+iy+i

∫

X

fdµx−iy,x−iy

Similarly, from the elementary properties of the scalar product, when x, y ∈ D(T )

4〈x|Ty〉 = 〈x+y|T (x+y)〉−〈x−y|T (x−y)〉−i〈x+iy|T (x+iy)〉+i〈x−iy|T (x−iy)〉.

It is then obvious that (44) implies

〈x |Ty 〉 =
∫

X

f(λ)µ(P )
xy (λ) ∀x, y ∈ ∆f ,

so that
〈

x

∣

∣

∣

∣

(

T −
∫

X

f(λ)dP (λ)

)

y

〉

= 0 ∀x, y ∈ ∆f

Since x varies in a dense set ∆f , Ty −
∫

X
f(λ)dP (λ)y = 0 for every y ∈ ∆f which

is the thesis. �

Example 59.

(1) Referring to the PVM in (2) of example 55, directly from the definition of
∫

X
f(λ)dP (λ) or exploiting (3) in exercises 58 we have that

∫

N

f(λ)dP (λ)z =
∑

n∈N

f(n)Qnz

for every f : N → C (which is necessarily measurable with our definition of Σ(N)).

Correspondingly, the domain of
∫

N f(λ)dP (λ) results to be

∆f :=

{

z ∈ H
∣

∣

∣

∣

∣

∑

n∈N

|f(n)|2||Qnz||2 < +∞
}
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We stress that we have found a direct generalization of the expansion (4) if the

operator A is now hopefully written as

Az =
∑

n∈N

nQnz .

We shall see below that it is the case.

(3) Referring to the PVM in (3) of example 55, directly from the definition of
∫

X f(λ)dP (λ) or exploiting (3) in exercises 58 we have that
(
∫

R

f(λ)dP (λ)ψ

)

(x) = f(x)ψ(x) , x ∈ R

Correspondingly, the domain of
∫

R
f(λ)dP (λ) results to be

∆f :=

{

ψ ∈ L2(R, dx)

∣

∣

∣

∣

∫

R

|f(x)|2|ψ(x)|2dx < +∞
}

�

2.4. Spectral Decomposition and Representation Theorems

We are in a position to state the fundamental result of the spectral theory of

selfadjoint operators, which extend the expansion (4) to an integral formula valid

also in the infinite dimensional case, and where the set of eigenvalues is replaced

by the full spectrum of the selfadjoint operator.

To state the theorem, we preventively notice that (39) implies that
∫

f(λ)dP (λ) is

selfadjoint if f is real: The idea of the theorem is to prove that every selfadjoint

operator can be written this way for a specific f and with respect to a PVM on R

associated with the operator itself.

Notation 60. From now on B(T ) denotes the Borel σ-algebra on the topological

space T . �

Theorem 61 (Spectral Decomposition Theorem for Selfadjoint Opera-

tors). Let A be a selfadjoint operator in the complex Hilbert space H.

(a) There is a unique PVM, P (A) : B(R) → L(H), such that

A =

∫

R

λdP (A)(λ) .

In particular D(A) = ∆id, where id : R ∋ λ 7→ λ.

(b) Defining the support of P (A), supp(P (A)), as the complement in R of the

union of all open sets O ⊂ C with P
(A)
O = 0 it results

supp(P (A)) = σ(A)

so that

P (A)(E) = P (A)(E ∩ σ(A)) , ∀E ∈ B(R) . (45)
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(c) λ ∈ σp(A) if and only if P (A)({λ}) 6= 0, this happens in particular if λ is

an isolated point of σ(A).

(d) λ ∈ σc(A) if and only if P (A)({λ}) = 0 but P (A)(E) 6= 0 if E ∋ λ is an

open set of R.

The proof can be found, e.g., in [8,6,9].

Remark 62. Theorem 61 is a particular case of a more general theorem (see [8,6]

and especially [9]) valid when A is a (densely defined closed) normal operator.

The general statement is identical, it is sufficient to replace everywhere R for C. A

particular case is the one of A unitary. In this case the statement can be rephrased

replacing everywhere R for T since it includes the spectrum of A in this case ((d)

remark 47). �

Notation 63. In view of the said theorem, and (b) in particular, if f : σ(A) → C

is measurable (with respect to the σ-algebra obtained by restricting B(R) to σ(A)),
we use the notation

f(A) :=

∫

σ(A)

f(λ)dP (A)(λ) :=

∫

R

g(λ)dP (A)(λ) =: g(A) . (46)

where g : R → C is the extension of f to the zero function outside σ(A) or any

other measurable function which coincides with f on supp(P (A)) = σ(A). Obviously

g(A) = g′(A) if g, g′ : R → C coincide in supp(P (A)) = σ(A). �

Exercise 64. Prove that if A is a selfdjoint operator in the complex Hilbert space

H, it holds A ≥ 0 – that is 〈x|Ax〉 ≥ 0 for every x ∈ D(A) – if and only if

σ(A) ⊂ [0,+∞).

Solution. Suppose that σ(A) ⊂ [0,+∞). If x ∈ D(A) we have 〈x|Ax〉 =
∫

σ(A) λdµx,x ≥ 0 in view of (38), the spectral decomposition theorem, since µx,x is

a positive measure ad σ(A) ∈ [0,+∞). To conclude, we prove that A ≥ 0 is false if

σ(A) includes negative elements. To this end assume that, conversely, σ(A) ∋ λ0 <

0. Using (c) and (d) of Theorem 61, one finds an interval [a, b] ⊂ σ(A) with [a, b] ⊂
(−∞, 0) and P

(A)
[a,b] 6= 0 (possibly a = b = λ0). If x ∈ P

(A)
[a,b](H) with x 6= 0, it holds

µxx(E) = 〈x|PEx〉 = 〈x|P ∗
[a,b]PExP[a,b]〉 = 〈x|P[a,b]PEP[a,b]x〉 = 〈x|P[a,b]∩Ex〉 = 0

if [a, b] ∩ E = ∅. Therefore, 〈x|Ax〉 =
∫

σ(A) λdµx,x =
∫

[a,b] λdµx,x ≤
∫

[a,b] bµx,x <

b||x||2 < 0. �

Example 65.

(1) Let us focus on the m-axis position operator Xm in L2(Rn, dnx) introduced in

(1) of example 44. We know that σ(Xm) = σc(Xm) = R from example 49. We are

interested in the PVM P (Xm) of Xm defined on R = σ(Xm). Let us fix m = 1 the

other cases are analogous. The PVM associated to X1 is

(P
(X1)
E ψ)(x) = χE×Rn−1(x)ψ(x) ψ ∈ L2(Rn, dnx) , (47)
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where E ∈ B(R) is here identified with a subset of the first factor of R×Rn−1 = Rn.

Indeed, indicating by P the right-hand side of (47), one easily verifies that ∆x1 =

D(X1) and
i

〈ψ|X1ψ〉 =
∫

R

λµ
(P )
ψ,ψ(λ) ∀ψ ∈ D(X1) = ∆x1

where µ
(P )
ψ,ψ(E) = 〈ψ|PEψ〉 =

∫

E×Rn−1 |ψ(x)|2dnx. (2) in exercise 55 proves that

X1 =
∫

R
λdP (λ) and thus (47) holds true.

(2) Considering the m-axis momentum operator Pm in L2(Rn, dnx) introduced in

(2) of example 44, taking (31) into account where F̂ (and thus F̂∗) is unitary, in

view of (i) in Proposition 73 we immediately have that the PVM of Pm is

Q
(Pm)
E := F̂∗P

(Km)
E F̂ .

Above Km is the operator Xm represented in L2(Rn, dnk) as in (1) of example 44.

(3) More complicated cases exist. Considering an operator of the form

H :=
1

2m
P 2 + U

where P is the momentum operator in L2(R, dx), m > 0 is a constant and U is

a real valued function on R used as multiplicative operator. If U = U1 + U2 with

U1 ∈ L2(R, dx) and U2 ∈ L∞(R, dx) real valued, and D(H) = C∞(R;C), H turns

out to be (trivially) symmetric but also essentially selfadjoint [6] as a consequence

of a well known result (Kato-Rellich’s theorem). The unique selfadjoint extension

H = (H∗)∗ of H physically represent the Hamiltonian operator of a quantum

particle living along R with a potential energy described by U . In this case, generally

speaking, σ(H) has both point and continuous part.
∫

σp(H)
λdP (H)(λ) has a form

like this
∫

σp(H)

λdP (H)(λ) =
∑

λ∈σp(H)

λPλ

where Pλ is the orthogonal projector onto the eigenspace of H with eigenvalue λ.

Conversely,
∫

σc(H)
λdP (H)(λ) has an expression much more complicated and, under

a unitary transform is similar to the integral decomposition of X . �

Remark 66.

(a) It is worth stressing that the notion (46) of a function of a selfadjoint

operator is just an extension of in the analogous notion introduced for the finite

dimensional case (7) and thus may be used in QM applications.

It is possible to prove that if f : σ(A) → R is continuous, then

σ(f(A)) = f(σ(A)) (48)

iMore generally
∫
R

∫
Rn−1 g(x1)|ψ(x)|

2dxdn−1x =
∫
R
g(x1)dµ

(P )
ψ,ψ(x1) is evidently valid for simple

functions and then it extends to generic measurable functions when both sides make sense in view
of, for instance, Lebesgue’s dominate convergence theorem for positive measures.
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where the bar denotes the closure and, if f : σ(A) → R is measurable,

σp(f(A)) ⊃ f(σp(A)) . (49)

More precise statements based on the notion of essential range can be found in [6].

It turns out that, for A selfadjoint and f : σ(A) → C measurable, z ∈ σ(f(A)) if

and only if P (A)(Ez) 6= 0 for some open set Ez ∋ z. Now z ∈ σ(f(A)) is in σp(f(A))

iff P (A)(f−1(z)) 6= 0 or it is in σc(f(A)) iff P
(A)(f−1(z)) = 0.

(b) It is fundamental to stress that in, QM, (48) permits us to adopt the stan-

dard operational approach on observables f(A) as the observable whose set of pos-

sible values is (the closure of) the set of reals f(a) where a is a possible value of

A.

(c) The following important fact holds

Proposition 67. A selfadjoint operator is bounded (and its domain coincide to the

whole H) if and only if σ(A) is bounded.

Proof. It essentially follows from (40) restricting the integration space to X =

σ(A). In fact, if σ(A) is bounded and thus compact it being closed, the continuous

function id : σ(A) ∋ λ → λ is bounded and (40) implies that A =
∫

σ(A)
iddP (A) is

bounded and the inequality holds

||A|| ≤ sup{|λ| | λ ∈ σ(A)} . (50)

In this case it also hold D(A) = ∆id = H.

If, conversely, σ(A) is not bounded, we can find a sequence λn ∈ σ(A) with |λn| →
∞ as n→ +∞. With the help of (c) and (d) in Theorem 61, it is easy to construct

vectors xn with ||xn|| 6= 0 and xn ∈ P
(A)
B(λn)

(H) where B(λn) := [λn − 1, λn + 1].

(40) implies

||Axn||2 ≥ ||xn||2 inf
z∈B(λn)

|id(z)|2

Since infz∈B(λn) |id(z)|2 → +∞, we have that ||Axn||/||xn|| is not bounded and A,

in turn, cannot be bounded. In this case, since A = A∗, Theorem 34 entails that

D(A) is strictly included in H.

It is possible to prove [6] that (50) can be turned into an identity when A ∈ B(H)

also if A is not selfadjoint but only normal

||A|| = sup{|λ| | λ ∈ σ(A)} , (51)

This is the well known spectral radius formula, the spectral radius of A ∈ B(H)

being, by definition, the number in the right hand side.

(d) The result stated in (c) explains the reason why observables A in QM are

very often represented by unbounded selfadjoint operators. σ(A) is the set of values

of the observable A. When, as it happens very often, that observable is allowed

to take arbitrarily large values (think of X or P ), it cannot be represented by a

bounded selfadjoint operator just because its spectrum is not bounded.

39



(e) If P is a PVM on R and f : R → C is measurable, we can always write
∫

R

f(λ)dP (λ) = f(A)

where we have introduced the selfadjoint operator A obtained as

A =

∫

R

id(λ)dP (λ) , (52)

due to (39) and where id : R ∋ λ → λ. Evidently P (A) = P due to the uniqueness

part of the spectral theorem. This fact leads to the conclusion that, in a complex

Hilbert space H, all the PVM over R are one-to-one associated to all selfadjoint

operators in H.

(f) An element λ ∈ σc(A) is not an eigenvalue of A. However there is the

following known result arising from (d) in Theorem 61 [6] which proves that we can

have approximated eigenvalues with arbitrary precision: With the said hypotheses,

for every ǫ > 0 there is xǫ ∈ D(A) such that

||Axǫ − λxǫ|| < ǫ , but ||xǫ|| = 1.

(g) If A is selfadjoint and U unitary, UAU∗, with D(UAU∗) = U(D(A)), is

selfadjoint as well (exercise 33). It is very simple to prove that the PVM of UAU∗

is noting but UP (A)U∗. �

The next theorem we state here concerns a general explicit form of the integral

decomposition f(A) =
∫

σ(A)
f(λ)dP (A)(λ). As a matter of facts, up to multiplicity,

one can always reduce to a multiplicative operator in a L2 space, as it happens for

the position operator X . Again, this theorem can be restated for generally normal

operators.

Theorem 68 (Spectral Representation Theorem for Selfadjoint Opera-

tors). Let A be a selfadjoint operator in the complex Hilbert space H. The follow-

ing facts hold.

(a) H may be decomposed a Hilbert sumj H = ⊕a∈SHa, whose summands Ha are

closed and orthogonal. Moreover:

(i) for any a ∈ S,

A(Ha ∩D(A)) ⊂ Ha

and, more generally, for any measurable f : σ(A) → C,

f(A)(Ha ∩D(f(A))) ⊂ Ha

(ii) for any a ∈ S there exist a unique finite positive Borel measure µa on

σ(A) ⊂ R, and a surjective isometric operator Ua : Ha → L2(σ(A), µa), such that:

Uaf(A)|HaU
−1
a = f ·

jS is countable, at most, if H is separable.
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for any measurable f : σ(A) → C, where f · is the point-wise multiplication by f on

L2(σ(A), µa).

(b) If supp{µa}a∈S is the complementary set to the numbers λ ∈ R for which there

exists an open set Oλ ⊂ R with Oλ ∋ λ, µa(Oλ) = 0 for any a ∈ S, then

σ(A) = supp{µa}a∈S .

Remark 69. Notice that the theorem encompasses the case of an operator A in H
with σ(A) = σp(A). Suppose in particular that every eigenspace is one-dimensional

and the whole Hilbert space is separable. Let σ(A) = σp(A) = {λn |n ∈ N}. In this

case

A =
∑

n∈N

λn〈xn| 〉xn ,

where xλ is a unit eigenvector with eigenvalue λn. Consider the σ-algebra on σ(A)

made of all subsets and define µ(E) := number of elements of E ⊂ σ(E). In this

case H is isomorphic to L2(σ(A), µ) and the isomorphism is U : H ∋ x 7→ ψx ∈
L2(σ(A), µ) with ψx(n) := 〈xn|x〉 if n ∈ N. With this surjective isometry, trivially

Uf(A)U−1 = U

∫

σ(A)

f(λ)dP (A)(λ)U−1 = U
∑

n∈N

f(λn)〈xn| 〉xnU−1 = f · .

If all eigenspaces have dimension 2, exactly two copies of L2(σ(A), µ) are sufficient

to improve the construction. If the dimension depends on the eigenspace, the con-

struction can be rebuilt exploiting many copies of different L2(Sk, µk), where the

Sk are suitable (not necessarily disjoint) subsets of σ(A) and µk the measure which

counts the elements of Sk. �

The last tool we introduce is the notion of joint spectral measure. Everything is

stated in the following theorem [6].

Theorem 70 (Joint spectral measure). Consider selfadjoint operators

A1, A2, . . . , An in the complex separable Hilbert space H. Suppose that the spectral

measures of those operators pairwise commute:

P
(Ak)
Ek

P
(Ah)
Eh

= P
(Ah)
Eh

P
(Ak)
Ek

∀k, h ∈ {1, . . . , n} , ∀Ek, Eh ∈ B(R) .
There is a unique PVM , P (A1×···×An), on Rn such that

P (A1×···×An)(E1 × · · · × En) = P
(A1)
E1

· · ·P (An)
En

, ∀E1, . . . , En ∈ B(R) .
For every f : R → C measurable, it holds

∫

Rn

f(xk)dP
(A1×···×An)(x) = f(Ak) , k = 1, . . . , n (53)

where x = (x1, . . . , xk, . . . , xn).

Definition 71. Referring to Theorem 70, the PVM P (A1×···×An) is called the joint

spectral measure of A1, A2, . . . , An and its support supp(P (A1×···×An)), i.e. the

41



complement in Rn to the largest open set A with PA = 0, is called the joint

spectrum of A1, A2, . . . , An. �

Example 72. The simplest example is provided by considering the n position op-

eratorsXm in L2(Rn, dnx). It should be clear that the n spectral measures commute

because P
(Xk)
E , for E ∈ B(R), is the multiplicative operator for χR×···×R×E×R×···×R

the factor E staying in the k-th position among the n Cartesian factors. In this

case the joint spectrum of the n operators Xm coincides with Rn itself.

A completely analogous discussion holds for the n momentum operators Pk, since

they are related to the position ones by means of the unitary Fourier-Plancherel

operator as already seen several times. Again the joint spectrum of the n operators

Pm coincides with R
n itself. �

2.5. Mesurable functional calculus

The following proposition states some useful properties of f(A), where A is self-

adjoint and f : R → C is Borel measurable. These properties define the so called

measurable functional calculus. We suppose here that A = A∗, but the statements

can be reformulated for normal operators [6].

Proposition 73. Let A be a selfadjoint operator in the complex Hilbert space H,

f, g : σ(A) → C measurable functions, f · g and f + g respectively denote the point-

wise product and the point-wise sum of functions. The following facts hold.

(a) f(A) =
∑n

k=0 akA
k where the right-hand side is defined in its standard do-

main D(An) when f(λ) =
∑n
k=0 akλ

k with an 6= 0.

(b) f(A) = P (A)(E) if f = χE the characteristic function of E ∈ B(σ(A));

(c) f(A)∗ = f(A) where the bar denotes the complex conjugation;

(d) f(A) + g(A) ⊂ (f + g)(A) and D(f(A) + g(A)) ⊂ ∆f ∩∆g

(the symbol “ ⊂′′ can be replaced by “ =′′ if and only if ∆f+g = ∆f ∩∆g) ,

(e) f(A)f(B) ⊂ (f · g)(A) and D(f(A)f(B)) = ∆f ·g ∩∆g

(the symbol “ ⊂′′ can be replaced by “ =′′ if and only if ∆f ·g ⊂ ∆g) ,

(f) f(A)∗f(A) = |f |2(A) so that D(f(A)∗f(A)) = ∆|f |2 ,

(g) 〈x|f(A)x〉 ≥ 0 for x ∈ ∆f if f ≥ 0.

(h) ||f(A)x||2 =
∫

σ(A) |f(λ)|2dµxx(λ), if x ∈ ∆f .
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In particular, if f is bounded or P (A)-essentially boundedk on σ(A), f(A) ∈ B(H)

and

||f(A)|| ≤ ||f ||P (A)

∞ ≤ ||f ||∞ .

(i) If U : H → H is unitary, Uf(A)U∗ = f(UAU∗) and, in particular,

D(f(UAU∗)) = UD(f(A)) = U(∆f ).

(j) If φ : R → R is measurable, then B(R) ∋ E 7→ P ′(E) := P (A)(φ−1(E)) is a

PVM on R. Introducing the selfadjoint operator

A′ =

∫

R

λ′dP ′(λ′)

such that P (A′) = P ′, we have

A′ = φ(A) .

Moreover, if f : R → C is measurable,

f(A′) = (f ◦ φ)(A) and ∆′
f = ∆f◦φ .

2.6. Elementary formalism for the infinite dimensional case

To complete the discussion in the introduction, let us show how practically the phys-

ical hypotheses on quantum systems (1)-(3) have to be mathematically interpreted

(again reversing the order of (2) and (3) for our convenience) in the general case of

infinite dimensional Hilbert spaces. Our general assumptions on the mathematical

description of quantum systems are the following ones.

(1) A quantum mechanical system S is always associated to complex Hilbert space

H, finite or infinite dimensional;

(2) observables are pictured in terms of (generally unbounded) self-adjoint opera-

tors A in H,

(3) states are of equivalence classes of unit vectors ψ ∈ H, where ψ ∼ ψ′ iff ψ =

eiaψ′ for some a ∈ R.

Let us show how the mathematical assumptions (1)-(3) permit us to set the physi-

cal properties of quantum systems (1)-(3) of Section 1.1.2 into mathematically nice

form in the general case of an infinite dimesional Hilbet space H.

(1) Randomness: The Borel subset E ⊂ σ(A), represents the outcomes of

measurement procedures of the observable associated with the selfadjoint operator

A. (In case of continuous spectrum the outcome of a measurement is at least an

interval in view of the experimental errors.) Given a state represented by the unit

kRemark 57.
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vector ψ ∈ H, the probability to obtain E ⊂ σ(A) as an outcome when measuring

A is

µ
(P (A))
ψ,ψ (E) := ||P (A)

E ψ||2 ,

where we have used the PVM P (A) of the operator A.

Going along with this interpretation, the expectation value, 〈A〉ψ , of A when the

state is represented by the unit vector ψ ∈ H, turns out to be

〈A〉ψ :=

∫

σ(A)

λ dµ
(P (A))
ψ,ψ (λ) . (54)

This identity makes sense provided id : σ(A) ∋ λ→ λ belongs to L1(σ(A), µ
(P (A))
ψ,ψ )

(which is equivalent to say that ψ ∈ ∆|id|1/2 and, in turn, that ψ ∈ D(|A|1/2)),
otherwise the expectation value is not defined.

Since

L2(σ(A), µ
(P (A))
ψ,ψ ) ⊂ L1(σ(A), µ

(P (A))
ψ,ψ )

because µ
(P (A))
ψ,ψ is finite, we have the popular identity arising from (38),

〈A〉ψ = 〈ψ|Aψ〉 if ψ ∈ D(A) . (55)

The associated standard deviation, ∆Aψ , results to be

∆A2
ψ :=

∫

σ(A)

(λ − 〈A〉ψ)2 dµ(P (A))
ψ,ψ (λ) . (56)

This definition makes sense provided id ∈ L2(σ(A), µ
(P (A))
ψ,ψ ) (which is equivalent to

say that ψ ∈ ∆id and, in turn, that ψ ∈ D(A)).

As before, the functional calculus permits us to write the other popular identity

∆A2
ψ = 〈ψ|A2ψ〉 − 〈ψ|Aψ〉2 if ψ ∈ D(A2) ⊂ D(A) . (57)

We stress that now, Heisenberg inequalities, as established in exercise 14, are now

completely justified as the reader can easily check.

(3) Collapse of the state: If the Borel set E ⊂ σ(A) is the outcome of the

(idealized) measurement of A, when the state is represented by the unit vector

ψ ∈ H, the new state immediately after the measurement is represented by the

unit vector

ψ′ :=
P

(A)
E ψ

||P (A)
E ψ||

. (58)

Remark 74. Obviously this formula does not make sense if µ
(P (A))
ψ,ψ (E) = 0 as

expected. Moreover the arbitrary phase affecting ψ does not give rise to troubles

due to the linearity of P
(A)
E . �
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(2) Compatible and Incompatible Observables: Two observables A, B

are compatible – i.e. they can be simultaneously measured – if and only if their

spectral measures commute which means

P
(A)
E P

(B)
F = P

(B)
F P

(A)
E , E ∈ B(σ(A)) , F ∈ B(σ(B)) . (59)

In this case

||P (A)
E P

(B)
F ψ||2 = ||P (B)

F P
(A)
E ψ||2 = ||P (A,B)

E×F ψ||2

where P (A,B) is the joint spectral measure ofA and B, has the natural interpretation

of the probability to obtain the outcomes E and F for a simultaneous measurement

of A and B. If instead A and B are incompatible it may happen that

||P (A)
E P

(B)
F ψ||2 6= ||P (B)

F P
(A)
E ψ||2 .

Sticking to the case of A and B incompatible, exploiting (58),

||P (A)
E P

(B)
F ψ||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P
(A)
E

P
(B)
F ψ

||P (B)
F ψ||

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

||P (B)
F ψ||2 (60)

has the natural meaning of the probability of obtaining first F and next E in a

subsequent measurement of B and A.

Remark 75.

(a) It is worth stressing that the notion of probability we are using here can-

not be a classical notion because of the presence of incompatible observables. The

theory of conditional probability cannot follows the standard rules. The probability

µψ(EA|FB), that (in a state defined by a unit vector ψ) a certain observable A

takes the value EA when the observable B has the value FB , cannot be computed

by the standard procedure

µψ(EA|FB) =
µψ(EA AND FB)

µψ(FB)

if A and B are incompatible, just because, in general, nothing exists which can be

interpreted as the event “EA AND FB” if P
(A)
E and P

(B)
F do not commute! The

correct formula is

µψ(EA|FB) =
〈ψ|P (B)

F P
(A)
E P

(B)
F ψ〉

||P (B)
F ψ||2

which leads to well known different properties with respect to the classical theory,

the so called combination of “probability amplitudes” in particular. As a matter of

fact, up to now we do not have a clear notion of (quantum) probability. This issue

will be clarified in the next section.

(b) The reason to pass from operators to their spectral measures in defining

compatible observables is that, if A ad B are selfadjoint and defined on different

domains, AB = BA does not make sense in general. Moreover it is possible to find

counterexamples (due to Nelson) where commutativity of A and B on common
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dense invariant subspaces does not implies that their spectral measures commute.

However, from general results again due to Nelson, one has the following nice result

(see exercise 156).

Proposition 76. If selfadjoint operators, A and B, in a complex Hilbert space H
commute on a common dense invariant domain D where A2 + B2 is essentially

selfadjoint, then the spectral measures of A and B commute.

The following result, much easier to prove, is also true [6].

Proposition 77. Let A, B be selfadjoint operators in the complex Hilbert space H.

If B ∈ B(H) the following facts are equivalent,

(i) the spectral measures of A and B commute (i.e. (59) holds),

(ii) BA ⊂ AB ,

(iii) Bf(A) ⊂ f(A)B, if f : σ(A) → R is Borel measurable ,

(iv) P
(A)
E B = BP

(A)
E if E ∈ B(σ(A)) ,

Another useful result toward the converse direction [6] is the following.

Proposition 78. Let A, B be selfadjoint operators in the complex Hilbert space H
such that their spectral measures commute. The following facts hold.

(a) ABx = BAx if x ∈ D(AB) ∩D(BA) .

(b) 〈Ax|By〉 = 〈Bx|Ay〉 if x, y ∈ D(A) ∩D(B).

�

2.7. Technical Interemezzo: Three Operator Topologies

In QM there are at least 7 relevant topologies [13] which enter the game discussing

sequences of operators, here we limit ourselves to quickly illustrate the three most

important ones. We assume thatH is a complex Hilbert space though the illustrated

examples may be extended to more general context with some re-adaptation.

(a) The strongest topology is the uniform operator topology in B(H): It is

the topology induced by the operator norm || || defined in (27).

As a consequence of the definition of this topology, a sequence of elements An ∈
B(H) is said to uniformly converge toA ∈ B(H) when ||An−A|| → 0 for n→ +∞.

We already know that B(H) is a Banach algebra with respect to that norm and

also a C∗ algebra.

(b) If L(D;H) with D ⊂ H a subspace, denotes the complex vector space of the

operators A : D → H, the strong operator topology on L(D;H) is the topology

induced by the seminorms px with x ∈ D and px(A) := ||Ax|| if A ∈ L(D;H).

As a consequence of the definition of this topology, a sequence of elements An ∈
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L(D;H) is said to strongly converge to A ∈ L(D;H) when ||(An − A)x|| → 0 for

n→ +∞ for every x ∈ D.

It should be evident that, if we restrict ourselves to work in B(H), the uniform

operator topology is stronger than the strong operator topology.

(c) The weak operator topology on L(D;H) is the topology induced by the

seminorms px,y with x ∈ H, y ∈ D and px,y(A) := |〈x|Ay〉| if A ∈ L(D;H).

As a consequence of the definition of this topology, a sequence of elements An ∈
L(D;H) is said to weakly converge to A ∈ L(D;H) when |〈x|(An−A)y〉|| → 0 for

n→ +∞ for every x ∈ H and y ∈ D.

It should be evident that, the strong operator topology is stronger than the weak

operator topology.

Example 79.

(1) If f : R → C is Borel measurable, and A a selfadjoint operator in H, consider

the sets

Rn := {r ∈ R | |f(r)| < n} for n ∈ N .

It is clear that χRnf → f pointwise as n → +∞ and that |χRnf |2 ≤ |f |2. As a

consequence restricting the operators on the left hand side to ∆f ,

∫

σ(A)

χRnfdP
(A)

∣

∣

∣

∣

∣

∆f

→ f(A) strongly, for n→ +∞,

as an immediate consequence of Lebesgue’s dominate convergence theorem and the

first part of (h) in Proposition 73.

(2) If in the previous example f is bounded on σ(A), and fn → f uniformly on

σ(A), (or P -essentially uniformly ||f − fn||(P
(A))

∞ → 0 for n→ +∞) then

fn(A) → f(A) uniformly, as n→ +∞,

again for the (second part of (h) in Proposition 73. �

Exercise 80. Prove that a selfadjoint operator A in the complex Hlbert H admits

a dense set of analytic vectors in its domain.

Solution. Consider the class of functions fn = χ[−n,n] where n ∈ N. As in (1) of

example 79, we have ψn := fn(A)ψ =
∫

[−n,n]
1dP (A)ψ →

∫

R
1dP (A)ψ = P

(A)
R

ψ = ψ

for n → +∞. Therefore the set D := {ψn | ψ ∈ H , n ∈ N} is dense in H. The

elements of D are analytic vectors for A as we go to prove. Clearly ψn ∈ D(Ak)

since µ
(P (A))
ψn,ψn

(E) = µ
(P (A))
ψ,ψ (E ∩ [−n, n]) as immediate consequence of the defini-

tion of the measure µ
(P )
x,y , therefore

∫

R
|λk|2dµ(P (A))

ψn,ψn
(λ) =

∫

[−n,n]
|λ|2kdµ(P (A))

ψ,ψ (λ) ≤
∫

[−n,n]
|n|2kdµ(P (A))

ψ,ψ (λ) ≤ |n|2k
∫

R
dµ

(P (A))
ψ,ψ (λ) = |n|2k||ψ||2 < +∞. Similarly

||Akψn||2 = 〈Akψn|Akψn〉 = 〈ψn|A2kψn〉 =
∫

R
λ2kdµ

(P (A))
ψn,ψn

(λ) ≤ |n|2k||ψ||2. We

conclude that
∑+∞
k=0

(it)k

k! ||Akψn|| conveges for every t ∈ C as it is dominated by

the series
∑+∞
k=0

|t|k

k! |n|2k||ψ||2 = e|t| |n|
2 ||ψ||2. �
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3. More Fundamental Quantum Structures

The question we want to answer now is the following:

Is there anything more fundamental behind the phenomenological facts (1), (2), and

(3) discussed in the first section and their formalization presented in Sect. 2.6?

An appealing attempt to answer that question and justify the formalism based

on the spectral theory is due to von Neumann [7] (and subsequently extended by

Birkhoff and von Neumann). This section is devoted to quickly review an elementary

part of those ideas, adding however several more modern results (see also [11] for a

similar approach).

3.1. The Boolean logic of CM

Consider a classical Hamiltonian system described in symplectic manifold (Γ, ω),

where ω =
∑n
k=1 dq

k ∧ dpk in any system of local symplectic coordinates

q1, . . . , qn, p1, . . . , pn. The state of the system at time t is a point s ∈ Γ, in local

coordinates s ≡ (q1, . . . , qn, p1, . . . , pn), whose evolution R ∋ t 7→ s(t) is a solution

of the Hamiltonian equation of motion. Always in local symplectic coordinates, they

read

dqk

dt
=
∂H(t, q, p)

∂pk
, k = 1, . . . , n (61)

dpk
dt

= −∂H(t, q, p)

∂qk
:, k = 1, . . . , n , (62)

H being the Hamiltonian function of the system, depending on the (inertial) ref-

erence frame. Every physical elementary property, E, that the system may possess

at a certain time t, i.e., which can be true or false at that time, can be identified

with a subset E ⊂ Γ. The property is true if s ∈ E and it is not if s 6∈ E. From this

point of view, the standard set theory operations ∩, ∪, ⊂, ¬ (where ¬E := Γ \ E
from now on is the complement operation) have a logical interpretation:

(i) E ∩ F corresponds to the property “E AND F”,

(ii) E ∪ F corresponds to the property “E OR F”,

(iii) ¬E corresponds to the property “NOT F”,

(iv) E ⊂ F means “E IMPLIES F”.

In this context:

(v) Γ is the property which is always true

(vi) ∅ is the property which is always false.

This identification is possible because, as is well known, the logical operations have

the same algebraic structure of the set theory operations.

As soon as we admit the possibility to construct statements including countably
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infinite number of disjunctions or conjunctions, we can enlarge our interpretation

towards the abstract measure theory, interpreting the states as probability Dirac

measures supported on a single point. To this end we first restrict the class of

possible elementary properties to the Borel σ-algebra of Γ, B(Γ). For various reasons
this class of sets seems to be sufficiently large to describe physics (in particular B(Γ)
includes the preimages of measurable sets under continuous functions). A state at

time t, s ∈ Γ, can be viewed as a Dirac measure, δs, supported on s itself. If

E ∈ B(Γ), δs(E) = 0 if s 6∈ E or δs(E) = 1 if s ∈ E.

If we do not have a perfect knowledge of the system, as for instance it happens in

statistical mechanics, the state at time t, µ, is a proper probability measure on B(Γ)
which now, is allowed to attain all values of [0, 1]. If E ∈ B(Γ) is an elementary

property of the physical system, µ(E) denotes the probability that the property E

is true for the system at time t.

Remark 81. The evolution equation of µ, in statistical mechanics is given by the

well-known Liouville’s equation associate with the Hamiltonian flow. In that case

µ is proportional to the natural symplectic volume measure of Γ, Ω = ω ∧ · · · ∧ ω
(n-times, where 2n = dim(Γ)). In fact we have µ = ρΩ, where the non-negative

function ρ is the so-called Liouville density satisfying the famous Liouville’s equa-

tion. In symplectic local coordinates that equation reads

∂ρ(t, q, p)

∂t
+

n
∑

k=1

(

∂ρ

∂qk
∂H

∂pk
− ∂ρ

∂pk

∂H

∂qk

)

= 0 .

We shall not deal any further with this equation in this paper. �

More complicated classical quantities of the system can be described by Borel mea-

surable functions f : Γ → R. Measurability is a good requirement as it permits one

to perform physical operations like computing, for instance, the expectation value

(at a given time) when the state is µ:

〈f〉µ =

∫

Γ

fµ .

Also elementary properties can be pictured by measurable functions, in fact they

are one-to-one identified with all the Borel measurable functions g : Γ → {0, 1}.
The Borel set Eg associated to g is g−1({1}) and in fact g = χEg .

A generic physical quantity, a measurable function f : Γ → R, is completely de-

termined by the class of Borel sets (elementary properties) E
(f)
B := f−1(B) where

B ∈ B(R). The meaning of E
(f)
B is

E
(f)
B = “the value of f belongs to B” (63)

It is possible to prove [6] that the map B(R) ∋ B 7→ E
(f)
B permits one to reconstruct

the function f . The sets E
(f)
B := f−1(B) form a σ-algebra as well and the class of

sets E
(f)
B satisfies the following elementary properties when B ranges in B(R).

(Fi) E
(f)
R

= Γ,
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(Fii) E
(f)
B ∩E(f)

C = E
(f)
B∩C ,

(Fiii) If N ⊂ N and {Bk}k∈N ⊂ B(R) satisfies Bj ∩Bk = ∅ if k 6= j, then

∪j∈NE(f)
Bj

= E
(f)
∪j∈NBj

.

These conditions just say that B(R) ∋ B 7→ E
(f)
B is a homomorpism of σ-

algebras.

For future convenience we observe that our model of classical elementary properties

can be also viewed as another mathematical structure, when referring to the notion

of lattice.

Definition 82. A partially ordered set (X,≥) is a lattice when, for any a, b ∈ X,

(a) sup{a, b} exists, denoted a ∨ b (sometimes called ‘join’);

(b) inf{a, b} exists, written a ∧ b (sometimes ‘meet’).

(The partially ordered set is not required to be totally ordered.) �

Remark 83.

(a) In our considered concrete case X = B(R) and ≥ is nothing but ⊃ and thus

∨ means ∪ and ∧ has the meaning of ∩.
(b) In the general case ∨ and ∧ turn out to be separately associative, therefore

it make sense to write a1 ∨ · · · ∨ an and a1 ∧ · · · ∧ an in a lattice. Moreover they are

also separately commutative so

a1 ∨ · · · ∨ an = aπ(1) ∨ · · · ∨ aπ(n) and a1 ∧ · · · ∧ an = aπ(1) ∧ · · · ∧ aπ(n)

for every permutation π : {1, . . . , n} → {1, . . . , n}. �

Definition 84. A lattice (X,≥) is said to be:

(a) distributive if ∨ and ∧ distribute over one another: for any a, b, c ∈ X,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) , a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ;

(b) bounded if it admits a minimum 0 and a maximum 1 (sometimes called ‘bot-

tom’ and ‘top’);

(c) orthocomplemented if bounded and equipped with a mapping X ∋ a 7→ ¬a,
where ¬a is the orthogonal complement of a, such that:

(i) a ∨ ¬a = 1 for any a ∈ X,

(ii) a ∧ ¬a = 0 for any a ∈ X,

(iii) ¬(¬a) = a for any a ∈ X,

(iv) a ≥ b implies ¬b ≥ ¬a for any a, b ∈ X;

(d) σ-complete, if every countable set {an}n∈N ⊂ X admits least upper bound

∨n∈Nan.

A lattice with properties (a), (b) and (c) is called a Boolean algebra. A Boolean

algebra satisfying (d) is a Boolean σ-algebra. �
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Definition 85. If X, Y are lattices, a map h : X → Y is a (lattice) homomor-

phism when

h(a ∨X b) = h(a) ∨Y h(b) , h(a ∧X b) = h(a) ∧Y h(b) , a, b ∈ X

(with the obvious notations.) If X and Y are bounded, a homomorphism h is further

required to satisfy

h(0X) = 0Y , h(1X) = 1Y .

If X and Y are orthocomplemented, a homomorphism h also satisfies

h(¬Xa) = ¬Y h(x) .
If X, Y are σ-complete, h further fulfills

h(∨n∈Nan) = ∨n∈Nh(an) , if {an}n∈N ⊂ X .

In all cases (bounded, orthocomplemented, σ-complete lattices, Boolean (σ-

)algebras) if h is bijective it is called isomorphism of the relative structures.

It is clear that, just because it is a concrete σ-algebra, the lattice of the elementary

properties of a classical system is a lattice which is distributive, bounded (here 0 = ∅

and 1 = Γ), orthocomplemented (the orthocomplement being the complement with

respect to Γ) and σ-complete. Moreover, as the reader can easily prove, the above

map, B(R) ∋ B 7→ E
(f)
B , is also a homomorphism of Boolean σ-algebras.

Remark 86. Given an abstract Boolean σ-algebra X , does there exist a concrete

σ-algebra of sets that is isomorphic to the previous one? In this respect the following

general result holds, known as Loomis-Sikorski theorem.l This guarantees that every

Boolean σ-algebra is isomorphic to a quotient Boolean σ-algebra Σ/N , where Σ is

a concrete σ-algebra of sets over a measurable space and N ⊂ Σ is closed under

countable unions; moreover, ∅ ∈ N and for any A ∈ Σ with A ⊂ N ∈ N , then

A ∈ N . The equivalence relation is A ∼ B iff A∪B\(A∩B) ∈ N , for any A,B ∈ Σ.

It is easy to see the coset space Σ/N inherits the structure of Boolean σ-algebra

from Σ with respect to the (well-defined) partial order relation [A] ≥ [B] if A ⊃ B,

A,B ∈ Σ. �

3.2. The non-Boolean Logic of QM, the reason why observables

are selfadjoint operators.

It is evident that the classical like picture illustrated in Sect. 3.1 is untenable if

referring to quantum systems. The deep reason is that there are pair of elementary

properties E,F of quantum systems which are incompatible. Here an elementary

property is an observable which, if measured by means of a corresponding experi-

mental apparatus, can only attain two values: 0 if it is false or 1 if it is true. For

lSikorski S.: On the representation of Boolean algebras as field of sets. Fund. Math. 35, 247-256
(1948).
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instance, E = “the component Sx of the electron is ~/2” and F = “the component

Sy of the electron is ~/2”. There is no physical instrument capable to establish if

E AND F is true or false. We conclude that some of elementary observables of

quantum systems cannot be logically combined by the standard operation of the

logic. The model of Borel σ-algebra seems not to be appropriate for quantum sys-

tems. However one could try to use some form of lattice structure different form

the classical one. The fundamental ideas by von Neumann were the following pair.

(vN1) Given a quantum system, there is a complex separable Hilbert space

H such that the elementary observables – the ones which only assume values

in {0, 1} – are one-to-one represented by all the elements of L(H), the orthogonal

projectors in B(H).

(vN2) Two elementary observables P , Q are compatible if and only if they

commute as projectors.

Remark 87.

(a) As we shall see later (vN1) has to be changed for those quantum systems

which admit superselection rules. For the moment we stick to the above version of

(vN1).

(b) The technical requirement of separability will play a crucial role in several

places. �

Let us analyse the reasons for von Neumann’s postulates. First of all we observe

that L(H) is in fact a lattice if one remembers the relation between orthogonal

projectors and closed subspaces stated in Proposition 52.

Notation 88. Refferring to Proposition 52, if P,Q ∈ L(H), we write P ≥ Q if and

only if P (H) ⊃ Q(H). �

P (H) ⊃ Q(H) is equivalent to PQ = Q. Indeed, if P (H) ⊃ Q(H) then there is a

Hilbert basis of P (H) NP = NQ ∪ N ′
Q where NQ ia a Hilbert basis of Q(H) and

N ′
Q of Q(H)⊥P , the notion of orthogonal being referred to the Hilbert space P (H).

From Q =
∑

z∈NQ
〈z|·〉z and P = Q+

∑

z∈N ′

Q
〈z|·〉z we have PQ = Q. The converse

implication is obvious.

As preannounced, it turns out that (L(H),≥) is a lattice and, in particular, it enjoys

the following properties (e.g., see [6]) whose proof is direct.

Proposition 89. Let H be a complex separable Hilbert space and, if P ∈ L(H),

define ¬P := I − P (the orthogonal projector onto P (H)⊥). With this definition,

(L(H),≥,¬) turns out to be bounded, orthocomplemented, σ-complete lattice which

is not distributive if dim(H) ≥ 2.

More precisely,
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(i) P ∨Q is the orthogonal projector onto P (H) +Q(H).

The analogue holds for a countable set {Pn}n∈N ⊂ P(H), ∨n∈NPn is the orthogonal

projector onto +n∈NPn(H).

(ii) P ∧Q is the orthogonal projector on P (H) ∩Q(H).

The analogue holds for a countable set {Pn}n∈N ⊂ P(H), ∧n∈NPn is the orthogonal

projector onto ∩n∈NPn(H).

(iii) The bottom and the top are respectively 0 and I.

Referring to (i) and (ii), it turns out that

∨n∈NPn = lim
k→+∞

∨n≤kPn and ∧n∈N Pn = lim
k→+∞

∧n≤kPn

with respect to the strong operator topology.

Remark 90. The fact that the distributive property does not hold is evident from

the following elementary counterexample in C2 (so that it is valid for every di-

mension > 1). Let {e1, e2} be the standard basis of C2 and define the subspaces

H1 := span(e1), H2 := span(e2), H3 := span(e1 + e2). Finally P1, P2, P3 respec-

tively denote the orthogonal projectors onto these spaces. By direct inspection one

sees that P1 ∧ (P2 ∨ P3) = P1 ∧ I = P1 and (P1 ∧ P2) ∨ (P1 ∧ P3) = 0 ∨ 0 = 0, so

that P1 ∧ (P2 ∨ P3) 6= (P1 ∧ P2) ∨ (P1 ∧ P3). �

The crucial observation is that, nevertheless (L(H),≥,¬) includes lots of Boolean

σ algebras, and precisely the maximal sets of pairwise compatible projectors [6].

Proposition 91. Let H be a complex separable Hilbert space and consider the

lattice (L(H),≥,¬). If L0 ⊂ L(H) is a maximal subset of pairwise commuting

elements, then L0 contains 0, I is ¬-closed and, if equipped with the restriction of

the lattice structure of (L(H),≥,¬), turns out to be a Boolean σ-algebra.

In particular, if P,Q ∈ L0,

(i) P ∨Q = P +Q− PQ ,

(ii) P ∧Q = PQ.

Proof. L0 includes both 0 and I because L0 is maximally commutative. Having (i)

and (ii), due to (iii) in proposition 89, the sup and the inf of a sequence of projectors

of L0 commute with the elements of L0, maximality implies that they belong to L0.

Finally (i) and (ii) prove by direct inspection that ∨ and ∧ are mutually distributive.

Let us prove (ii) and (i) to conclude. If PQ = QP , PQ is an orthogonal projector

and PQ(H) = QP (H) ⊂ P (H) ∩ Q(H). On the other hand, if x ∈ P (H) ∩ Q(H)

then Px = x and x = Qx so that PQx = x and thus P (H) ∩ Q(H) ⊂ PQ(H)

and (ii) holds. To prove (i) observe that < P (H), Q(H) >
⊥

= P (H)⊥ ∩ Q(H)⊥.

Using (ii), this can be rephrased as I − P ∨ Q = (I − P )(I − Q) which entails (i)

immediately. �

Remark 92.
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(a) Every set of pairwise commuting orthogonal projectors can be completed

to a maximal set as an elementary application of Zorn’s lemma. However, since the

commutativity property is not transitive, there are many possible maximal subsets

of pairwise commuting elements in L(H) with non-empty intersection.

(b) As a consequence of the stated proposition, the symbols ∨, ∧ and ¬ have

the same properties in L0 as the corresponding symbols of classical logic OR, AND

and NOT . Moreover P ≥ Q can be interpreted as “Q IMPLIES P”.

(c) There were and are many attempts to interpret ∨ and ∧ as connectives of a

new non-distributive logic when dealing with the whole L(H): a quantum logic. The

first noticeable proposal was due to Birkhoff and von Neumann [14]. Nowadays there

are lots of quantum logics [15,16] all regarded with suspicion by physicists. Indeed,

the most difficult issue is the physical operational interpretation of these connectives

taking into account the fact that they put together incompatible propositions, which

cannot be measured simultaneously. An interesting interpretative attempt, due to

Jauch, relies upon a result by von Neumann (e.g., [6])

(P ∧Q)x = lim
n→+∞

(PQ)nx for every P,Q ∈ L(H) and x ∈ H.

Notice that the result holds in particular if P and Q do not commute, so they

are incompatible elementary observables. The right hand side of the identity above

can be interpreted as the consecutive and alternated measurement of an infinite

sequence of elementary observables P and Q. As

||(P ∧Q)x||2 = lim
n→+∞

||(PQ)nx||2 for every P,Q ∈ L(H) and x ∈ H,

the probabilty that P ∧Q is true for a state represented by the unit vector x ∈ H
is the probabilty that the infinite sequence of consecutive alternated measurements

of P and Q produce is true at each step. �

We are in a position to clarify why, in this context, observables are PVMs. Exactly

as in CM, an observable A is a collection of elementary observables {PE}E∈B(R)

labelled on the Borel sets E of R. Exactly as for classical quantities, (63) we can

say that the meaning of PE is

PE = “the value of the observable belongs to E” (64)

We expect that all those elementary observables are pairwise compatible and that

they satisfy the same properties (Fi)-(Fiii) as for classical quantities. We can com-

plete {PE}E∈B(R) to a maximal set of compatible elementary observables. Taking

Proposition 91 into account (Fi)-(Fiii) translate into

(i) PR = I,

(ii) PEPF = PE∩F ,

(iii) If N ⊂ N and {Ek}k∈N ⊂ B(R) satisfies Ej ∩ Ek = ∅ for k 6= j, then
∑

j∈N

PEjx = P∪j∈NEjx for every x ∈ H.

54



(The presence of x is due to the fact that the convergence of the series if N is infinite

is in the strong operator topology as declared in the last statement of Proposition

89.) In other words we have just found Definition 53, specialized to PVM on R:

Observables in QM are PVM over R!

We know that all PVM over R are one-to-one associated to all selfadjoint operators

in view of the results presented in the previous section (see (e) in remark 66).

We conclude that, adopting von Neumann’s framework, in QM observables are

naturally described by selfadjoint operators, whose spectra coincide with the set of

values attained by the observables.

3.3. Recovering the Hilbert space structure

A reasonable question to ask is whether there are better reasons for choosing to

describe quantum systems via a lattice of orthogonal projectors, other than the kill-

off argument “it works”. To tackle the problem we start by listing special properties

of the lattice of orthogonal projectors, whose proof is elementary.

Theorem 93. The bounded, orthocomplemented, σ-complete lattice L(H) of Propo-

sitions 89 and 91 satisfies these additional properties:

(i) separability (for H separable): if {Pa}a∈A ⊂ L(H) satisfies PiPj = 0, i 6= j,

then A is at most countable;

(ii) atomicity and atomisticity: there exist elements in A ∈ L(H)\{0}, called
atoms, for which 0 ≤ P ≤ A implies P = 0 or P = A; for any P ∈ L(H) \ {0}
there exists an atom A with A ≤ P (L(H) is then called atomic); For every

P ∈ L(H) \ {0}, P is the sup of the set of atoms A ≤ P (L(H) is then called

atomistic);

(iii) orthomodularity: P ≤ Q implies Q = P ∨ ((¬P ) ∧Q);

(iv) covering property: if A,P ∈ L(H), with A an atom, satisfy A ∧ P = 0,

then (1) P ≤ A ∨ P with P 6= A ∨ P , and (2) P ≤ Q ≤ A ∨ P implies Q = P or

Q = A ∨ P ;
(v) irreducibility: only 0 and I commute with every element of L(H).

The orthogonal projectors onto one-dimensional spaces are the only atoms of L(H).

Irreducibility can easily be proved observing that if P ∈ L(H) commutes with

all projectors along one-dimensional subspaces, Px = λxx for every x ∈ H. Thus

P (x + y) = λx+y(x + y) but also Px+ Py = λxx + λyy and thus (λx − λx+y)x =

(λx+y − λy)y, which entails λx = λy if x ⊥ y. If N ⊂ H is a Hilbert basis,

Pz =
∑

x∈N〈x|z〉λx = λz for some fixed λ ∈ C. Since P = P ∗ = PP , we conclude

that either λ = 0 or λ = 1, i.e., either P = 0 or P = I, as wanted. Orthomodularity

is a weaker version of distributivity of ∨ with respect to ∧ that we know to be

untenable in P(H).

Actually each of the listed properties admits a physical operational interpretation

(e.g. see [15].) So, based on the experimental evidence of quantum systems, we could

try to prove, in the absence of any Hilbert space, that elementary propositions with
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experimental outcome in {0, 1} form a poset. More precisely, we could attempt to

find a bounded, orthocomplemented σ-complete lattice that verifies conditions (i)–

(v) above, and then prove this lattice is described by the orthogonal projectors of

a Hilbert space.

The partial order relation of elementary propositions can be defined in various ways.

But it will always correspond to the logical implication, in some way or another.

Starting from [17] a number of approaches (either of essentially physical nature, or

of formal character) have been developed to this end: in particular, those making

use of the notion of (quantum) state, which we will see in a short while for the

concrete case of propositions represented by orthogonal projectors. The object of

the theory is now [17] the pair (O,S), where O is the class of observables and S
the one of states. The elementary propositions form a subclass L of O equipped

with a natural poset structure (L,≤) (also satisfying a weaker version of some of

the conditions (i)–(v)). A state s ∈ S, in particular, defines the probability ms(P )

that P is true for every P ∈ L [17]. As a matter of fact, if P,Q ∈ L, P ≤ Q means

by definition that the probability ms(P ) ≤ ms(Q) for every state s ∈ S. More

difficult is to justify that the poset thus obtained is a lattice, i.e. that it admits a

greatest lower bound P ∨ Q and a least upper bound P ∧Q for every P,Q. There

are several proposals, very different in nature, to introduce this lattice structure

(see [15] and [16] for a general treatise) and make the physical meaning explicit in

terms of measurement outcome. See Aerts in [16] for an abstract but operational

viewpoint and [15, §21.1] for a summary on several possible ways to introduce the

lattice structure on the partially ordered set of abstract elementary propositions L.
If we accept the lattice structure on elementary propositions of a quantum sys-

tem, then we may define the operation of orthocomplementation by the familiar

logical/physical negation. Compatible propositions can then be defined in terms of

commuting propositions, i.e. commuting elements of a orthocomplemented lattice

as follows.

Definition 94. Let (L,≥,¬) an orthocomplemented lattice. Two elements a, b ∈ L
are said to be:

orthogonal written a ⊥ b, if ¬a ≥ b (or equivalently ¬b ≥ a);

commuting, if a = c1 ∨ c3 and b = c2 ∨ c3 with ci ⊥ cj if i 6= j. �

These notions of orthogonality and compatibility make sense beacuse, a posteriori,

they turn out to be the usual ones when propositions are interpreted via projectors.

As the reader may easily prove, two elements P,Q ∈ L(H) are orthogonal in accor-

dance with Definition 94 if and only if PQ = QP = 0 (in other words they project

onto mutually orthogonal subspaces), and commute in accordance with Definition

94 if and only if PQ = QP . (If P = P1 + P3 and Q = P2 + P3 where the or-

thogonal projectors satisfy Pi ⊥ Pj = 0 for i 6= j, we trivially have PQ = QP . If

conversely, PQ = QP , the said decomposition arises for P3 := PQ, P1 := P (I−Q),

P2 := Q(I − P ).)

Now fully-fledged with an orthocomplemented lattice and the notion of compati-
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ble propositions, we can attach a physical meaning (an interpretation backed by

experimental evidence) to the requests that the lattice be orthocomplemented, com-

plete, atomistic, irreducible and that it have the covering property [15]. Under these

hypotheses and assuming there exist at least 4 pairwise-orthogonal atoms, Piron

([18,19], [15, §21], Aerts in [16]) used projective geometry techniques to show that

the lattice of quantum propositions can be canonically identified with the closed (in

a generalised sense) subsets of a generalised Hilbert space of sorts. In the latter: (a)

the field is replaced by a division ring (usually not commutative) equipped with an

involution, and (b) there exists a certain non-singular Hermitian form associated

with the involution. It has been conjectured by many people (see [15]) that if the

lattice is also orthomodular and separable, the division ring can only be picked

among R,C or H (quaternion algebra). More recently Solèrm, Hollandn and Aerts–

van Steirteghemo have found sufficient hypotheses, in terms of the existence of

infinite orthogonal systems, for this to happen. Under these hypotheses, if the ring

is R or C, we obtain precisely the lattice of orthogonal projectors of the separable

Hilbert space. In the case of H, one gets a similar generalised structure. In all these

arguments the assumption of irreducibility is not really crucial: if property (v) fails,

the lattice can be split into irreducible sublattices [20,15]. Physically-speaking this

situation is natural in the presence of superselection rules, of which more soon.

It is worth stressing that the covering property in Theorem 93 is a crucial prop-

erty. Indeed there are other lattices relevant in physics verifying all the remaining

properties in the afore-mentioned theorem. Remarkably the family of the so-called

causally closed sets in a general spacetime satisfies all the said properties but the

covering onep. This obstruction prevents one from endowing a spacetime with a

natural (generalized) Hilbert space structure, while it suggests some ideas towards

a formulation of quantum gravity.

3.4. States as measures on L(H): Gleason’s Theorem

Let us introduce an important family of operators. This family will plays a decisive

rôle in the issue concerning a possible justification of the fact that quantum states

are elements of the projective space PH.

mSolèr, M. P.: Characterization of Hilbert spaces by orthomodular spaces. Communications in
Algebra, 23, 219-243 (1995).
nHolland, S.S.: Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bulletin of the
American Mathematical Society, 32, 205-234, (1995).
oAerts, D., van Steirteghem B.: Quantum Axiomatics and a theorem of M.P. Solér. International
Journal of Theoretical Physics. 39, 497-502, (2000).
pSee H. Casini, The logic of causally closed spacetime subsets, Class.Quant.Grav. 19, 2002, 6389-
6404
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3.4.1. Trace class operators

Definition 95. If H is a complex Hilbert space, B1(H) ⊂ B(H) denotes the set

of trace class or nuclear operators, i.e. the operators T ∈ B(H) satisfying
∑

z∈N

〈z||T |z〉 < +∞ (65)

for some Hilbertian basis N ∈ H and where |T | :=
√
T ∗T defined via functional

calculus. �

Remark 96. Notice that. above, T ∗T is selfadjoint and σ(T ∗T ) ∈ [0,+∞) because

of exercise 64 so that
√
T ∗T is well defined as a function of T ∗T . �

Trace class operators enjoy several remarkable properties [6]. Here we only mention

the ones relevant for these lecture notes.

Proposition 97. Let H a complex Hilbert space, B1(H) satisfy the following prop-

erties.

(a) If T ∈ B1(H) and N ⊂ H is any Hilbertian basis, then (65) holds and thus

||T ||1 :=
∑

z∈N

〈z||T |z〉

is well defined.

(b) B1(H) is a subspace of B(H) which is moreover a two-sided ∗-ideal, namely

(i) AT, TA ∈ B1(H) if T ∈ B1(H) and A ∈ B(H),

(ii) T ∗ ∈ B1(H) if T ∈ B1(H).

(c) || ||1 is a norm on B1(H) making it a Banach space and satisfying

(i) ||TA||1 ≤ ||A|| ||T ||1 and ||AT ||1 ≤ ||A|| ||T ||1 if T ∈ B1(H) and A ∈ B(H),

(ii) ||T ||1 = ||T ∗||1 if T ∈ B1(H).

(d) If T ∈ B1(H), the trace of T ,

tr T :=
∑

z∈N

〈z|Tz〉 ∈ C

is well defined, does not depend on the choice of the Hilbertian basis N and the sum

converges absolutely (so can be arbitrarily re-ordered).

Remark 98.

(1) Obviously we have tr |T | = ||T ||1 if T ∈ B1(H).

(2) The trace just possesses the properties one expects from the finite dimen-

sional case. In particular, [6],

(i) it is linear on B1(H),

(ii) tr T ∗ = tr T if T ∈ B1(H),

(iii) the trace satisfies the cyclic property,

tr(T1 · · ·Tn) = tr(Tπ(1) · · ·Tπ(n)) (66)
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if at least one of the Tk belongs to B1(H), the remaining ones are in B(H), and

π : {1, . . . , n} → {1, . . . , n} is a cyclic permutation. �

The trace of T ∈ B1(H) can computed on a basis of eigenvectors in view of the

following further result [6]. Actually (d) and (e) easily follow from (a),(b),(c), (d),

and the spectral theory previously developed.

Proposition 99. Let H a complex Hilbert space and T ∗ = T ∈ B1(H). The fol-

lowing facts hold.

(a) σ(T ) \ {0} = σp(T ) \ {0}. If 0 ∈ σ(T ) it may be either the unique element of

σc(T ) or an element of σp(T ).

(b) Every eigenspace Hλ has finite dimension dλ provided λ 6= 0.

(c) σp(T ) is made of at most countable number of reals such that

(i) 0 is unique possible accumulation point,

(ii) ||T || = maxλ∈σp(T ) |λ|.
(d) There is a Hilbert basis of eigenvectors {xλ,a}λ∈σp(T ),a=1,2,...,dλ (d0 may be

infinite) and

tr(T ) =
∑

λ∈σp(T )

dλλ ,

where the sum converges absolutely (and thus can be arbitrarily re-ordered).

(e) Referring to the basis presented in (d), the spectral decomposition of T reads

T =
∑

λ∈σp(T )

λPλ

where Pλ =
∑

a=1,2,...,dλ
〈xλ,s| 〉xλ,a and the sum is computed in the strong operator

topology and can be re-ordered arbitarily. The convergence holds in the uniform

topology too if the set of eigenspaces are suitably ordered in the count.

Corollary 100. tr : B1(H) → C is continuous with respect to the norm || ||1
because |trT | ≤ tr|T | = ||T ||1 if T ∈ B1(H).

Proof. If T ∈ B(H), we have the polar decomposition T = U |T | (see, e.g., [6])
where U ∈ B(H) is isometric on Ker(T )⊥ and Ker(U) = Ker(T ) = Ker(|T |) so

that, in particular ||U || ≤ 1. Let N be a Hilbertian basis of H made of eigenvectors

of |T | (it exists for the previous theorem since |T | is trace class). We have

|tr T | =
∣

∣

∣

∣

∣

∑

u∈N

〈u|U |T |u〉
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

u∈N

〈u|Uu〉λu
∣

∣

∣

∣

∣

≤
∑

u∈N

|λu| |〈u|Uu〉| .

Next observe that |λu| = λu because |T | ≥ 0 and |〈u|Uu〉| ≤ ||u|| ||Uu|| ≤ 1||Uu|| ≤
||u|| = 1 and thus, |tr T | ≤∑u∈N λu =

∑

u∈N 〈u||T |u〉 = tr|T | = ||T ||1.
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3.4.2. The notion of quantum state and the crucial theorem by Gleason

As commented in (a) in remark 75, the probabilistic interpretation of quantum

states is not well defined because there is no a true probability measure in view of

the fact that there are incompatible observables. The idea is to re-define the notion

of probability in the bounded, orthocomplemented, σ-complete lattice like L(H)

instead of on a σ-algebra. Exactly as in CM, where the generic states are probability

measures on Boolean lattice B(Γ) of the elementary properties of the system (Sect.

3.1), we can think of states of a quantum system as σ-additive probability measures

over the non-Boolean lattice of the elementary observables L(H).

Definition 101. Let H be a complex Hilbert space. A quantum state in H is a

map ρ : L(H) → [0, 1] such that the following requirements are satisfied.

(1) ρ(I) = 1 .

(2) If {Pn}n∈N ⊂ L(H), for N at most countable satisfies Pk(H) ⊥ Ph(H) when

h 6= k for h, k ∈ N , then

ρ(∨k∈NPk) =
∑

k∈N

ρ(Pk) . (67)

The set of the states in H will be denoted by S(H). �

Remark 102.

(a) The condition Pk(H) ⊥ Ph(H) is obviously equivalent to PkPh = 0. Since

(taking the adjoint) we also obtain PhPk = 0 = PkPh, we conclude that we are

dealing with pairwise compatible elementary observables. Therefore Proposition 91

permits us to equivalently re-write the σ-additivity (2) as follows.

(2) If {Pn}n∈N ⊂ L(H), for N at most countable satisfies PkPh = 0 when h 6= k

for h, k ∈ N , then

ρ

(

∑

k∈N

Pk

)

=
∑

k∈N

ρ(Pk) , (68)

the sum on the left hand side being computed with respect to the strong operator

topology if N is infinite.

(b) Requirement (2), taking (1) into account implies ρ(0) = 0.

(c) Quantum states do exist. It is immediately proved that, in fact, ψ ∈ H with

||ψ|| = 1 defines a quantum state ρψ as

ρψ(P ) = 〈ψ|Pψ〉 P ∈ L(H) . (69)

This is in nice agreement with what we already know and proves that these types

of quantum states are one-to-one with the elements of PH as well known.

However these states do not exhaust S(H). In fact, it immediately arises from

Definition 101 that the set of the states is convex: If ρ1, . . . , ρn ∈ S(H) then
∑n

j=1 pkρk ∈ S(H) if pk ≥ 0 and
∑n

k=1 pk = 1. These convex combinations of

states generally do not have the form ρψ.
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(d) Restricting ourselves to a maximal set L0 of pairwise commuting projectors,

which in view of Proposition 91 has the abstract structure of a σ-algebra, a quan-

tum state ρ reduces thereon to a standard probability measure. In this sense the

“quantum probability” we are considering extends the classical notion. Differences

show up just when one deals with conditional probability involving incompatible

elementary observables. �

An interesting case of (c) in the remark above is a convex combination of states

induced by unit vectors as in (69), where 〈ψk|ψh〉 = δhk,

ρ =

n
∑

k=1

pkρψk
.

By direct inspection, completing the finite orthonormal system {ψk}k=1,...,n to a

full Hilbertian basis of H, one quickly proves that, defining

T =

n
∑

k=1

pk〈ψk| 〉ψk (70)

ρ(P ) can be computed as

ρ(P ) = tr(TP ) P ∈ L(H)

In particular it turns out that T is in B1(H), satisfies T ≥ 0 (so it is selfadjoint

for (3) in exercise 35) and tr T = 1. As a matter of fact, (70) is just the spectral

decomposition of T , whose spectrum is {pk}k=1,...,n. This result is general [6]

Proposition 103. Let H be a complex Hilbert space and let T ∈ B1(H) satisfy

T ≥ 0 and Tr T = 1, then the map

ρT : L(H) ∋ P 7→ tr(TP )

is well defined and ρT ∈ S(H).

The very remarkable fact is that these operators exhaust S(H) if H is separable

with dimension 6= 2, as established by Gleason in a celebrated theorem we restate

re-adapting it to these lecture notes (see [6] for a the original statement and [21]

for a general treatise on the subject).

Theorem 104 (Gleason’s Theorem). Let H be a complex Hilbert space of finite

dimension 6= 2, or infinite-dimensional and separable. If ρ ∈ S(H) there exists a

unique operator T ∈ B1(H) with T ≥ 0 and tr T = 1 such that tr(TP ) = ρ(P ) for

every P ∈ L(H).

Concerning the existence of T , Gleason’s proof works for real Hilbert spaces too.

If the Hilbert space is complex, the operator T associated to ρ is unique for the

following reason. Any other T ′ of trace class such that ρ(P ) = tr(T ′P ) for any

P ∈ L(H) must also satisfy 〈x|(T − T ′)x〉 = 0 for any x ∈ H. If x = 0 this

is clear, while if x 6= 0 we may complete the vector x/||x|| to a basis, in which
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tr((T − T ′)Px) = 0 reads ||x||−2〈x|(T − T ′)x〉 = 0, where Px is the projector onto

span(x). By (3) in exercise 35, we obtain T − T ′ = 0q.

Remark 105.

(a) Imposing dimH 6= 2 is mandatory, a well known counterexample can be

found, e.g. in [6].

(b) Particles with spin 1/2, like electrons, admit a Hilbert space – in which the

observable spin is defined – of dimension 2. The same occurs to the Hilbert space

in which the polarisation of light is described (cf. helicity of photons). When these

systems are described in full, however, for instance including degrees of freedom

relative to position or momentum, they are representable on a separable Hilbert

space of infinite dimension.

(c) Gleason’s characterization of states has an important consequence known

asthe Kochen-Specker theorem. It proves that in QM there are no states assigning

probability 1 to some elementary observables and 0 to the remaining ones, differ-

ently to what happens in CM.

Theorem 106 (Kochen-Specker Theorem). Let H be a complex Hilbert space

of finite dimension 6= 2, or infinite-dimensional and separable. There is no quantum

state ρ : L(H) → [0, 1], in the sense of Def. 101, such that ρ(L(H)) = {0, 1}

Proof. Define S := {x ∈ H | ||x|| = 1} endowed with the topology induced by H,

and let T ∈ B1(H) be the representative of ρ using Gleason’s theorem. The map

fρ : S ∋ x 7→ 〈x|Tx〉 = ρ(〈x| 〉x) ∈ C is continuous because T is bounded. We have

fρ(S) ⊂ {0, 1}, where {0, 1} is equipped with the topology induced by C. Since S is

connected its image must be connected also. So either fρ(S) = {0} or fρ(S) = {1}.
In the first case T = 0 which is impossible because trT = 1, in the second case

trT 6= 2 which is similarly impossible.

This negative result produces no-go theorems in some attempts to explain QM in

terms of CM introducing hidden variables [3]. �

Remark 107. In view of Proposition 103 and Theorem 104, assuming that H has

finite dimension or is separable, we henceforth identify S(H) with the subset of

B1(H) of positive operators with unit trace. We simply disregard the states in H
with dimension 2 which are not of this form especially taking (b) in remark 105

into account. �

We are in a position to state some definitions of interest for physicists, especially the

distinction between pure and mixed states, so we proceed to analyse the structure of

qIn a real Hilbert space 〈x|Ax〉 = 0 for all x does not imply A = 0. Think of real anti symmetric
matrices in Rn equipped with the standard scalar product.
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the space of the states. To this end, we remind the reader that, if C is a convex set in

a vector space, e ∈ C is called extreme if it cannot be written as e = λx+(1−λ)y,
with λ ∈ (0, 1), x, y ∈ C \ {e}.
We have the following simple result whose proof can be found in [6].

Proposition 108. Let H be a complex separable Hilbert space.

(a) S(H) is a convex closed subset in B1(H) whose extreme points are those of the

form: ρψ := 〈ψ| 〉ψ for every vector ψ ∈ H with ||ψ|| = 1. (This sets up a bijection

between extreme states and elements of PH.)

(b) A state ρ ∈ S(H) is extreme if and only if ρρ = ρ. (All the elements of S(H)

however satisfy 〈x|ρρx〉 ≤ 〈x|ρx〉 for all x ∈ H.)

(c) Any state ρ ∈ S(H) is a linear combination of extreme states, including infi-

nite combinations in the strong operator topology. In particular there is always a

decomposition

ρ =
∑

φ∈N

pφ〈φ| 〉φ,

where N is an eigenvector basis for ρ, pφ ∈ [0, 1] for any φ ∈ N , and
∑

φ∈N

pφ = 1 .

The stated proposition allows us to introduce some notions and terminology relevant

in physics. First of all, extreme elements in S(H) are usually called pure states

by physicists. We shall denote their set is denoted Sp(H). Non-extreme states are

instead called mixed states, mixtures or non-pure states. If

ψ =
∑

i∈I

aiφi ,

with I finite or countable (and the series converges in the topology of H in the

second case), where the vectors φi ∈ H are all non-null and 0 6= ai ∈ C, physi-

cists say that the state 〈ψ| 〉ψ is called an coherent superposition of the states

〈φi| 〉φi/||φi||2.
The possibility of creating pure states by non-trivial combinations of vectors associ-

ated to other pure states is called, in the jargon of QM, superposition principle

of (pure) states

There is however another type of superposition of states. If ρ ∈ S(H) satisfies:

ρ =
∑

i∈I

piρi

with I finite, ρi ∈ S(H), 0 6= pi ∈ [0, 1] for any i ∈ I, and
∑

i pi = 1, the state ρ is

called incoherent superposition of states ρi (possibly pure).

If ψ, φ ∈ H satisfy ||ψ|| = ||φ|| = 1 the following terminology is very popular: The

complex number 〈ψ|φ〉 is the transition amplitude or probability amplitude

of the state 〈φ| 〉φ on the state 〈ψ| 〉ψ, moreover the non-negative real number

|〈ψ|φ〉|2 is the transition probability of the state 〈φ| 〉φ on the state 〈ψ| 〉ψ.
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We make some comments about these notions. Consider the pure state ρψ ∈ Sp(H),

written ρψ = 〈ψ| 〉ψ for some ψ ∈ H with ||ψ|| = 1. What we want to empha-

sise is that this pure state is also an orthogonal projector Pψ := 〈ψ| 〉ψ, so it

must correspond to an elementary observable of the system (an atom using the

terminology of Theorem 93). The näıve and natural interpretationr of that ob-

servable is this: “the system’s state is the pure state given by the vector ψ”. We

can therefore interpret the square modulus of the transition amplitude 〈φ|ψ〉 as

follows. If ||φ|| = ||ψ|| = 1, as the definition of transition amplitude imposes,

tr(ρψPφ) = |〈φ|ψ〉|2, where ρψ := 〈ψ| 〉ψ and Pφ = 〈φ| 〉φ. Using (4) we con-

clude:

|〈φ|ψ〉|2 is the probability that the state, given (at time t) by the vector ψ, following

a measurement (at time t) on the system becomes determined by φ.

Notice |〈φ|ψ〉|2 = |〈ψ|φ〉|2, so the probability transition of the state determined by

ψ on the state determined by φ coincides with the analogous probability where the

vectors are swapped. This fact is, a priori, highly non-evident in physics.

Since we have introduced a new notion of state the axiom concerning the collapse

of the state (Sect. 2.6) must be improved in order to encompass all states of S(H).

The standard formulation of QM assumes the following axiom (introduced by von

Neumann and generalised by Lüders) about what occurs to the physical system,

in state ρ ∈ S(H) at time t, when subjected to the measurement of an elementary

observable P ∈ L(H), if the latter is true (so in particular tr(ρP ) > 0, prior to the

measurement). We are referring to non-destructive testing, also known as indirect

measurement or first-kind measurement, where the physical system examined (typ-

ically a particle) is not absorbed/annihilated by the instrument. They are idealised

versions of the actual processes used in labs, and only in part they can be modelled

in such a way.

Collapse of the state revisited. If the quantum system is in state ρ ∈ S(H)

at time t and proposition P ∈ L(H) is true after a measurement at time t, the

system’s state immediately afterwards is:

ρP :=
PρP

tr(ρP )
.

In particular, if ρ is pure and determined by the unit vector ψ, the state immediately

after measurement is still pure, and determined by:

ψP =
Pψ

||Pψ|| .

Obviously, in either case ρP and ψP define states. In the former, in fact, ρP is

rWe cannot but notice how this interpretation muddles the semantic and syntactic levels. Although
this could be problematic in a formulation within formal logic, the use physicists make of the
interpretation eschews the issue.
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positive of trace class, with unit trace, while in the latter ||ψP || = 1.

Remark 109.

(a) Measuring a property of a physical quantity goes through the interaction

between the system and an instrument (supposed to be macroscopic and obeying

the laws of classical physics). Quantum Mechanics, in its standard formulation,

does not establish what a measuring instrument is, it only says they exist; nor

is it capable of describing the interaction of instrument and quantum system set

out in the von Neumann Lüders’ postulate quoted above. Several viewpoints and

conjectures exist on how to complete the physical description of the measuring

process; these are called, in the slang of QM, collapse, or reduction, of the

state or of the wavefunction (see [6] for references).

(b) Measuring instruments are commonly employed to prepare a system in a

certain pure state. Theoretically-speaking the preparation of a pure state is carried

out like this. A finite collection of compatible propositions P1, . . . , Pn is chosen so

that the projection subspace of P1 ∧ · · · ∧ Pn = P1 · · ·Pn is one-dimensional. In

other words P1 · · ·Pn = (ψ| )ψ for some vector with ||ψ|| = 1. The existence of

such propositions is seen in practically all quantum systems used in experiments.

(From a theoretical point of view these are atomic propositions) Then propositions

Pi are simultaneously measured on several identical copies of the physical system of

concern (e.g., electrons), whose initial states, though, are unknown. If for one system

the measurements of all propositions are successful, the post-measurement state is

determined by the vector ψ, and the system was prepared in that particular pure

state.

Normally each projector Pi belongs to the PVM P (A) of an observable Ai whose

spectrum is made of isolated points (thus a pure point spectrum) and Pi = P
(A)
{λi}

with λi ∈ σp(Ai).

(c) Let us finally explain how to practically obtain non-pure states from pure

ones. Consider q1 identical copies of system S prepared in the pure state associated

to ψ1, q2 copies of S prepared in the pure state associated to ψ2 and so on, up to ψn.

If we mix these states each one will be in the non-pure state: ρ =
∑n

i=1 pi〈ψi| 〉ψi ,
where pi := qi/

∑n
i=1 qi. In general, 〈ψi|ψj〉 is not zero if i 6= j, so the above expres-

sion for ρ is not the decomposition with respect to an eigenvector basis for ρ. This

procedure hints at the existence of two different types of probability, one intrinsic

and due to the quantum nature of state ψi, the other epistemic, and encoded in

the probability pi. But this is not true: once a non-pure state has been created, as

above, there is no way, within QM, to distinguish the states forming the mixture.

For example, the same ρ could have been obtained mixing other pure states than

those determined by the ψi. In particular, one could have used those in the decom-

position of ρ into a basis of its eigenvectors. For physics, no kind of measurement

would distinguish the two mixtures. �
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Another delicate point is that, dealing with mixed states, definitions (54) and (56)

for, respectively the expectation value 〈A〉ψ and the standard deviation ∆Aψ of an

observable A referred to the pure state 〈ψ| 〉ψ with ||ψ|| = 1 are no longer valid. We

just say that extended natural definitions can be stated referring to the probability

measure associated to both the mixed state ρ ∈ B1(H) (with ρ ≥ 0 and tr ρ = 1)

and the observable,

µ(A)
ρ : B(R) ∋ E 7→ tr(ρP

(A)
E ) .

We refer the reader to [6] for a technical discussion on these topics.

3.5. von Neumann algebra of observables, superselection rules

The aim of this section is to focus on the class of observables of a quantum system,

described in the complex Hilbert space H, exploiting some elementary results of

the theory of von Neuman algebras. Up to now, we have tacitly supposed that all

selfadjoint operators in H represent observables, all orthogonal projectors represent

elementary observables, all normalized vectors represent pure states. This is not the

case in physics due to the presence of the so-called superselection rules. Within the

Hilbert space approach the modern tool to deal with this notion is the mathematical

structure of a von Neumann algebra. For this reason we spend the initial part of

this section to introduce this mathematical tool.

3.5.1. von Neumann algebras

Before we introduce it, let us define first the commutant of an operator algebra and

state an important preliminary theorem. If M ⊂ B(H) is a subset in the algebra of

bounded operators on the complex Hilbert space B(H), the commutant of M is:

M′ := {T ∈ B(H) | TA−AT = 0 for any A ∈ M} . (71)

If M is closed under the adjoint operation (i.e. A∗ ∈ M if A ∈ M) the commutant

M′ is certaintly a ∗-algebra with unit. In general: M′
1 ⊂ M′

2 if M2 ⊂ M1 and

M ⊂ (M′)′, which imply M′ = ((M′)′)′. Hence we cannot reach beyond the second

commutant by iteration.

The continuity of the product of operators in the uniform topology says that the

commutant M′ is closed in the uniform topology, so if M is closed under the adjoint

operation, its commutant M′ is a C∗-algebra (C∗-subalgebra) in B(H).

M′ has other pivotal topological properties in this general setup. It is easy to prove

that M′ is both strongly and weakly closed. This holds, despite the product of

operators is not continuous with respect to the strong operator topology, because

separate continuity in each variable is sufficient.

In the sequel we shall adopt the standard convention used for von Neumann algebras

and write M′′ in place of (M′)′ etc. The next crucial result is due to von Neumann

(see e.g. [6]).

Theorem 110 (von Neumann’s double commutant theorem). If H is a
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complex Hilbert space and A a unital ∗-subalgebra in B(H), the following statements

are equivalent.

(a) A = A′′.

(b) A is weakly closed.

(c) A is strongly closed.

At this juncture we are ready to define von Neumann algebras.

Definition 111. Let H be a complex Hilbert space. A von Neumann algebra

in B(H) is a ∗-subalgebra of B(H), with unit, that satisfies any of the equivalent

properties appearing in von Neumann’s theorem 110. �

In particular M′ is a von Neumann algebra provided M is a ∗-closed subset of

B(H), because (M′)′′ = M′ as we saw above. Note how, by construction, a von

Neumann algebra in B(H) is a C∗-algebra with unit, or better, a C∗-subalgebra

with unit of B(H).

It is not hard to see that the intersection of von Neumann algebras is a von Neu-

mann algebra. If M ⊂ B(H) is closed under the adjoint operation, M′′ turns out to

be the smallest (set-theoretically) von Neumann algebra containing M as a subset

[13]. Thus M′′ is called the von Neumann algebra generated by M.

Since in QM it is natural to deal with unbounded selfadjoint operators, the definition

of commutant is extended to the case of a set of generally unbounded selfadjoint

operators, exploiting the fact that these operators admit spectral measures made

of bounded operators.

Definition 112. If N is a set of (generally unbounded) selfadjoint operators in the

complex Hilbert space H, the commutant N′ of N, is defined as the commutant

in the sense of (71) of the set of all the spectral measures P (A) of every A ∈ N.

The von Neuman algebra N′′ generated by N is defined as (N′)′, where the external

prime is the one of definition (71). �

Remark 113. Notice that, if the selfadjoint operators are all bounded, N′ ob-

tained this way coincides with the one already defined in (71) as a consequence of

of (ii) and (iv) of Proposition 77 (for a bounded selfadjoint operator A). Thus N′ is

well-defined and gives rises to a von Neumann algebra because the set of spectral

measures is ∗-closed. N′′ is a von Neumann algebra too for the same reason. �

We are in a position to state a technically important result which concerns both

the spectral theory and the notion of von Neumann algebra [6].

Proposition 114. Let N = {A1, . . . , An} be a finite collection of self-adjoint op-

erators in the separable Hilbert space H whose spectral measures commute. The von

Neumann algebra N′′ coincides with the collection of operators

f(A1, . . . , An) :=

∫

supp(P (A))

f(x1, . . . , xn)dP
(A) ,

67



with f : supp(P (A)) → C measurable and bounded.

3.5.2. Lattices of von Neumann algebras

To conclude this elementary mathematical survey, we will say some words about

von Neumann algebras and their associated lattices of orthogonal projectors.

Consider a von Neumann algebra R on the complex Hilbert space H. It is easy

to prove that the set LR(H) ⊂ R of the orthogonal projectors included in R

form a lattice, which is bounded by 0 and I, orthocomplemented with respect to

the orthocomplementation operation of L(H) and σ-complete (because this notion

involves only the strong topology ((iii) in Proposition 89) and R is closed with

respect to that topology in view of Theorem 110. Moreover LR(H) is orthomodular,

and separable like the whole L(H), assuming that H is separable. It is interesting

to note that, as expected, LR(H) contains all information about R itself since the

following result holds.

Proposition 115. Let R be a von Neumann algebra on the complex Hilbert space

H and consider the lattice LR(H) ⊂ R of the orthogonal projectors in R. then the

equality LR(H)′′ = R holds.

Proof. Since LR(H) ⊂ R, we have LR(H)′ ⊃ R′ and LR(H)′′ ⊂ R′′ = R. Let us

prove the other inclusion. A ∈ R can always be decomposed as a linear combination

of two self adjoint operators of R, A+A∗ and i(A−A∗). So we can restrict ourselves

to the case of A∗ = A ∈ R, proving that A ∈ LR(H)′′ if A ∈ R. The PVM of A

belongs to R because of (ii) and (iv) of Proposition 77: P (A) commutes with every

bounded operator B which commutes with A. So P (A) commutes, in particular,

with the elements of R′ because R ∋ A. We conclude that every P
(A)
E ∈ R′′ = R.

Finally, there is a sequence of simple functions sn uniformly converging to id in

a compact [−a, a] ⊃ σ(A) (e.g, see [6]). By construction
∫

σ(A)
sndP

(A) ∈ LR(H)′′

because it is a linear combination of elements of P (A) and LR(H)′′ is a linear space.

Finally
∫

σ(A)
sndP

(A) → A for n → +∞ uniformly, and thus strongly, as seen in

(2) of example 79. Since LR(H)′′ is closed with respect to the strong topology, we

must have A ∈ LR(H)′′, proving that LR(H) ⊃ R as wanted.

3.5.3. General algebra of observables and its centre

Let us pass to physics and we apply these notions and results. Relaxing the hy-

pothesis that all selfadjoint operators in the separable Hilbert space H associated

to a quantum system represent observables, there are many reasons to assume that

the observables of a quantum system are represented (in the sense we are going to

illustrate) by the selfadjoint elements of an algebra of von Neumann, we hereafter

indicated by R, called the von Neumann algebra of observables (though only

the selfadjoint elements are observables). Including non-selfadjoint elements B ∈ R
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is armless, as they can always be one-to-one decomposed into a pair of selfadjoint

elements

B = B1 + iB2 =
1

2
(B +B∗) + i

1

2i
(B −B∗) .

The fact that the elements of R are bounded does not seem a physical problem.

If A = A∗ is unbounded and represents an observable it does not belong to R.

Nevertheless the associated class of bounded selfadjoint operators {An}n∈N where

An :=

∫

[−n,n]∩σ(A)

λdP (A)(λ) ,

embodies the same information as A itself. An is bounded due to Proposition 67

because the support of its spectral measures is included in [−n, n]. Physically speak-

ing, we can say that An is nothing but the observable A when it is measured with an

instrument unable to produce outcomes larger than [−n, n]. All real measurement

instruments are similarly limited. We can safely assume that every An belongs to

R. Mathematically speaking, the whole (unbounded) observable A is recovered as

the limit in the strong operator topology A = limn→+∞An ((1) in examples 79).

Moreover the union of the spectral measures of all the An is that of A. Finally the

spectral measure of A belongs to R since the spectral measure of every An ∈ R

does, as has been established in the proof of Proposition 115 above.

Within this framework the orthogonal projectors P ∈ R represent all elemen-

tary observables of the system. The lattice of these projectors, LR(H), encom-

pass the amount of information about observables as established Proposition 115.

As said above LR(H) ⊂ R is bounded, orthocomplemented, σ-complete, ortho-

modular and separable like the whole L(H) (assuming that H is separable) but

there is no guarantee for the validity of the other properties listed in Theorem 93.

The natural question is whether R is ∗-isomorphic to B(H1) for a suitable com-

plex Hilbert space H1, which would automatically imply that also the remaining

properties were true. In particular there would exist atomic elements in LR(H)

and the covering property would be satisfied. A necessary condition is that, ex-

actly as it happens for B(H1), there are no non-trivial elements in R ∩ R′, since

B(H1) ∩B(H1)
′ = B(H1)

′ = {cI}c∈C.

Definition 116. A von Neumann algebra R is a factor when its centre, the subset

R∩R′ of elements commuting with the whole algebra, is trivial: R∩R′ = {cI}c∈C.

�

Remark 117. It is possible to prove that a von Neumann algebra is always a di-

rect sum or a direct integral of factors. Therefore factors play a crucial role. The

classification of factors, started by von Neumann and Murray, is one of the key

chapters in the theory of operator algebras, and has enormous consequences in the

algebraic theory of quantum fields. The factors isomorphic to B(H1) for some com-

plex Hilbert space H1, are called of type I. These factors admit atoms, fulfil the
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covering property (orthomodularity and irreducibility are always true). Regarding

separability, it depends on separability of H1 and requires a finer classification in

factors of type In where n is a cardinal number. There are however factors of type

II and III which do not admit atoms and are not important in elementary QM. �

The centre of the von Neumann algebra of observables enters the physical theory

in a nice way. A common situation dealing with quantum systems is the existence

of a maximal set of compatible observables, i.e. a finite maximal class A =

{A1, . . . , An} of pairwise compatible observables. The notion of maximality here

means that, if a (bounded) selfadjoint operator commutes with all the observables

in A, then it is a function of them. In perticular it is an observable as well. In

view of proposition 114 the existence of a maximal set of compatibel observables is

equivalent to say that there is a finite set of observables A such that A′ = A′′. We

have the following important consequence

Proposition 118. If a quantum physical system admits a maximal set of compati-

bel observables, then the commutant R′ of the von Neumann algebra of observables

R is Abelian and coincides with the center of R.

Proof. As the spectral measures of each A ∈ A belong to R, it must be (i) A′′ ⊂ R.

Since A′ = A′′, (i) yields A′ ⊂ R and thus, taking the commutant, (ii) A′′ ⊃ R′.

Comparing (i) and (ii) we have R′ ⊂ R. In other words R′ = R′ ∩R. In particular,

R′ must be Abelian.

Example 119.

(1) Considering a quantum particle without spin and referring to the rest space R3

of an inertial reference frame, H = L2(R3, d3x). A maximal set of compatible ob-

servables is the set of the three position operators A1 = {X1, X2, X3} or the the set

of the three momenta operators A2 = {P1, P2, P3}. R is the von Neumann algebra

generated by A1 ∪A2. It is possible to prove that the commutant (which coincides

with the centre) of this von Neumann algebra is trivial (as it includes a unitary

irreducible representation of the Weyl-Heisenberg group) so that R = B(H) (see

also Theorem 158).

(2) If adding the spin space (for instance dealing with an electron “without

charge”), we have H = L2(R3, d3x) ⊗ C2. Referring to (11) a maximal set of com-

patible observables is, for instance, A1 = {X1 ⊗ I,X2 ⊗ I,X3 ⊗ I, I ⊗ Sz}, another
is A2 = {P1 ⊗ I, P2 ⊗ I, P3 ⊗ I, I ⊗ Sx}. As before (A1 ∪A2)

′′ is the von Neumann

algebra of observables of the system (changing the component of the spin passing

from A1 to A2 is crucial for this result). Also in this case, it turns out that the com-

mutant of the von Neumann algebra of observables is trivial yielding R = B(H).

�
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3.5.4. Superselection charges and coherent sectors

We must have accumulated enough formalism to successfully investigate the struc-

ture of the Hilbert space (always supposed to be separable) and the algebra of

the observables when not all selfadjoint operators represent observables and not

all orthogonal projectors are intepreted as elementary observables. Re-adapting the

approach by Wightman [22] to our framework, we make two assumptions generally

describing the so called superselection rules for QM formulated in a (separable)

Hilbert space where R denotes the von Neumann algebra of observables.

(SS1) There is a maximal set of compatible observables in R, so that R′ =

R′ ∩R.

(SS2) R′ ∩ R contains a finite class of observables Q = {Q1, . . . , Qn}, with
σ(Qk) = σp(Qk), k = 1, 2, . . . , n, generating the centre: Q′′ ⊃ R′ ∩R.

(If the Qk are unbounded, Q ⊂ R′∩R means that the PVM of the Qj are included

in R′ ∩R.)

The Qk are called superselection charges.

As the reader can easily prove, the joint spectral measure P (Q) in Rn has support

given exactly by ×nk=1σp(Qk) and, if E ⊂ Rn,

P
(Q)
E =

∑

(q1,...,qn)∈×n
k=1σp(Qk)∩E

P
(Q1)
{q1}

· · ·P (Qn)
{qn} (72)

We have the following remarkable result where we occasionally adopt the notation

q := (q1, . . . , qn) and σ(Q) := ×nk=1σp(Qk).

Proposition 120. Let H be a complex separable Hilbert and suppose that the von

Neumann algebra R in H satisfies (SS1) and (SS2). The following facts hold.

(a) H admits the following direct decomposition into closed pairwise orthogonal

subspaces, called superselection sectors or coherent sectors,

H =
⊕

q∈σ(Q)

Hq (73)

where

Hq := P (Q)
q H .

and each Hq is invariant and irreducible under R.

(b) An analogous direct decomposition occurs for R.

R =
⊕

q∈σ(Q)

Rq (74)

where

Rq :=
{

A|Hq

∣

∣ A ∈ R
}
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is a von Neumann algebra on Hq considered as Hilbert space in its own right.

Finally,

Rq = B(Hq)

(c) Each map

R ∋ A 7→ A|Hq
∈ Rq

is a ∗-algebra representation of R (Def.25). Representations associated with differ-

ent values of q are (unfithful and) unitarily inequivalent: In other words there is no

isometric surjective map U : Hq → Hq′ such that

UA|Hq
U−1 = A|Hq′

when q 6= q′

Proof. (a) Since P
(Q)
q P

(Q)
s = 0 if q 6= s and

∑

q∈σp(Q) P
(Q)
q = I, H decomposes as

in (73). Since P
(Q)
q belongs to the centre of R, the subspaces of the decomposition

are invariant under the action of each element of R. Let us pass to the irreducibility.

If P ∈ R′ ∩ R is an orthogonal projector it must be a function of the Qk by

hypotheses: P =
∫

Rn f(x)dP
(Q)(x) since P = PP ≥ 0 and P = P ∗, exploiting

the measurable functional calculus, we easily find that f(x) = χE(x) for some

E ⊂ supp(P (Q)). In other words P is an element of the joint PVM of Q: that

PVM exhausts all orthogonal projectors in R′ ∩ R. Now, if {0} 6= K ⊂ Hs is an

invariant closed subspace for R, its orthogonal projector PK must commute with R,

so it must belong to the centre for (SS2) and thus it belongs to P (Q) for (SS1) and,

more precisely it must be of the form PK = P
(Q)
s because PK ≤ P

(Q)
s by hypothesis,

but there are no projectors smaller that P
(Q)
s in the PVM of Q. So K = Hs.

(b) Rq :=
{

A|Hq

∣

∣ A ∈ R
}

is a von Neumann algebra onHs considered as a Hilbert

space in its own right as it arises by direct inspection. (74) holds by definition. Since

Hq is irreducible for Rq, we have Rs = R′′
s = B(Hs). Each map R ∋ A 7→ A|Hq

∈
Rq is a representation of ∗-algebras as follows by direct check. If q 6= q′ –for instance

q1 6= q′1– there is no isometric surjective map U : Hq → Hq′ such that

UA|Hq
U−1 = A|Hq′

If such an operator existed one would have, contrarily to our hypothesis q1 6= q′1,

q1IHq′
= UQ1|Hq

U−1 = Q1|Hq′
= q′1IHq′

so that q1 = q′1.

We have found that, in the presence of superselection charges, the Hilbert space

decomposes into pairwise orthogonal subspaces which are invariant and irreducible

with respect to the algebra of the observables, giving rise to inequivalent represen-

tations of the algebra itself. Restricting ourselves to each such subspace, QM takes

its standard form as all orthogonal projectors are representatives of elementary ob-

servables, differently from what happens in the whole Hilbert space where there are

orthogonal projectors which cannot represent observables: These are the projectors

72



which do not commute with P (Q).

There are several superselection structures as the one pointed out in physics. The

three most known are of very different nature: The superselection structure of the

electric charge, the superselection structure of integer/semi integers values of the

angular momentum, and the one related to the mass in non-relativistic physics, i.e.,

Bargmann’s superselection rule.

Example 121. The electric charge is the typical example of superselction charge.

For instance, referring to an electron, its Hilbert space is L2(R3, d3x)⊗Hs⊗He. The

space of the electric charge is He = C2 and therein Q = eσz (see (12)). Many other

observables could exist in He in principle, but the elecrtic charge superselection rule

imposes that the only possible observables are functions of σz . The centre of the

algebra of observables is I ⊗ I ⊗ f(σ3) for every function f : σ(σz) = {1, 1} → C.

We have the decomposition in coherent sectors

H = (L2(R3, d3x)⊗Hs ⊗H+)
⊕

(L2(R3, d3x)⊗Hs ⊗H−) ,

where H± are respectively the eigenspaces of Q with eigenvalue ±e. �

Remark 122.

(a) A fundamental requirement is that the superselection charges have punctual

spectrum. If instead R ∩ R′ includes an operator A with a continuous part in its

spectrum (A may also be the strong limit on D(A) of a sequence of elements in

R∩R′), the established proposition does not hold. H cannot be decomposed into a

direct sum of closed subspaces. In this case it decomposes into a direct integral and

we find a much more complicated structure whose physical meaning seems dubious.

(b) The represntationsR ∋ A 7→ A|Hq
∈ Rq are not faithful (injective), because

both I and P
(Q)
s have the same image under the representation.

(c) The discussed picture is not the most general one though we only deal with

it in these notes. There are quantum physical systems such that their R′ is not

Abelian (think of chromodynamics where R′ includes a faithful representation of

SU(3)) so that the centre of R does not contain the full information about R′.

In this case, the non-Abelian group of the unitary operators in R′ is called the

gauge group of the theory. The existence of a gauge group is compatible with

the presence of superselection rules which are completely described by the centre

R′ ∩R. The only difference is that now Rq = B(Hq) cannot be possible for every

coherent subspace otherwise we would have R′ = R ∩R′.

�

3.5.5. States in the presence of superselection rules

Let us come to the problem to characterize the states when a superselection struc-

ture is assumed on a complex separable Hilbert space H in accordance with (SS1)

and (SS2). In principle we can extend Definition 101 already given for the case of
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R with trivial centre. As usual LR(H) indicates the lattice of orthogonal projectors

in R, which we know to be bounded by 0 and I, orthocomplemented, σ-complete,

orthomodular and separable, but not atomic and it does not satisfy the covering

property in general. The atoms are one-dimensional projectors exactly as pure sates,

so we may expect some difference at that level when R 6= B(H).

Definition 123. Let H be a complex separable Hilbert space. A quantum state

in H, for a quantum sistem with von Neumann algebra of observables R, is a map

ρ : LR(H) → [0, 1] such that the following requirement are satisfied.

(1) ρ(I) = 1 .

(2) If {Qn}n∈N ⊂ LR(H), for N at most countable satisfies Qk ∧Qh = 0 when

h, k ∈ N , then

ρ(∨k∈NQk) =
∑

k∈N

ρ(Qk) . (75)

The set of the states will be denoted by SR(H). �

If there is a superselection structure we have the decompositions we re-write down

into a simpler version,

H =
⊕

k∈K

Hk , R =
⊕

k∈K

Rk , Rk = B(Hk) , k ∈ K (76)

where K is some finite or countable set. The lattice LR(H), as a consequence of

(75), decomposes as (the notation should be obvious)

LR(H) =
∨

k∈K

LRk
(Hk) =

∨

k∈K

L(Hk) (77)

where

LRk
(Hk)

∧

LRh
(Hh) = {0} if k 6= h .

In other words Q ∈ LR(H) can uniquely be written as Q = +k∈KQk where Qk ∈
L(B(Hk)). In fact Qk = PkQk, where Pk is the orthogonal projector onto Hk.

In this framework, it is possible to readapt Gleason’s result simply observing that

a state ρ on LR(H) as above defines a state ρk on LRk
(Hk) = L(Hk) by

ρk(P ) :=
1

ρ(Pk)
ρ(P ) , P ∈ L(Hk) .

If dim(Hk) 6= 2 we can exploit Gleason’s theorem.

Theorem 124. Let H be a complex separable Hilbert space and assume that the

von Neumann algebra R in H satisfies (SS1) and (SS2), so that the decomposition

(76) in coherent sectors is valid where we suppose dimHk 6= 2 for every k ∈ K.

The following facts hold.

(a) If T ∈ B1(H) satisfies T ≥ 0 and tr T = 1 then

ρT : LR(H) ∋ P 7→ tr(TP )
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is an elemeont of SR(H) that is a state on LR(H).

(b) For ρ ∈ SR(H) there is a T ∈ B1(H) satisfies T ≥ 0 and tr T = 1 such that

ρ = ρT .

(c) If T1, T2 ∈ B1(H) satisfy same hypotheses as T in (a), then ρT1 = ρT2 is valid

if and only if PkT1Pk = PkT2Pk for all k ∈ K, Pk being the orthogonal projector

onto Hk.

(d) A unit vector ψ ∈ H defines a pure state only if belongs to a coherent sector.

More precisely, a state ρ ∈ SR(H) is pure, that is extremal, if and only if there is

k0 ∈ K, ψ ∈ Hk0 with ||ψ|| = 1 such that

ρ(P ) = 0 if P ∈ L(Hk), k 6= k0 and ρ(P ) = 〈ψ|Pψ〉 if P ∈ L(Hk0)

Proof. (a) is obvious from Proposition 103, as restricting a state ρ on L(H) to

LR(H) we still obtain a state as one can immediately verify. Let us prove (b).

Evidently, every ρ|L(Hk) is a positive measure with 0 ≤ ρ(Pk) ≤ 1. We can apply

Gleason’s theorem finding Tk ∈ B(Hk) with Tk ≥ 0 and Tr Tk = ρ(Pk) such that

ρ(Q) = tr(TkQ) if Q ∈ L(Hk). Notice also that ||Tk|| ≤ ρ(Pk) because

||Tk|| = sup
λ∈σp(Tk)

|λ| = sup
λ∈σp(Tk)

λ ≤
∑

λ∈σp(Tk)

dλλ = Tr Tk = ρ(Pk) .

If Q ∈ LR(H), Q =
∑

k Qk, where Qk := PkQ ∈ L(Hk), QkQh = 0 if k 6= h and

thus, by σ-additivity,

ρ(Q) =
∑

k

ρ(Qk) =
∑

k

tr(TkQk)

since Hk ⊥ Hh, this identity can be rewritten as

ρ(Q) = tr(TQ)

provided T := ⊕kTk ∈ B1(H). It is clear that T ∈ B(H) because, if x ∈ H and

||x|| = 1 then, as x =
∑

k xk with xk ∈ Hk, ||Tx|| ≤
∑

k ||Tk|| ||xk|| ≤
∑

k ||Tk||1 ≤
∑

k ρ(Pk) = 1. In particular ||T || ≤ 1. T ≥ 0 because each Tk ≥ 0. Hence |T | =√
T ∗T =

√
TT = T via functional calculus, and also |Tk| = Tk. Moreover, using the

spectral decomposition of T , whose PVM commutes with each Pk, one easily has

|T | = ⊕k|Tk| = ⊕kTk. The condition

1 = ρ(I) =
∑

k

ρ(Pk) =
∑

k

tr(TkPk) =
∑

k

tr(|Tk|Pk)

is equivalent to say that tr |T | = 1 using a Hilbertian basis of H made of the union

of bases in each Hk. We have obtained, as wanted, that T ∈ B1(H), T ≥ 0, trT = 1

and ρ(Q) = tr(TQ) for all Q ∈ LR(H).

(c) The proof straightforwardly follows form LRk
(Hk) = L(B(Hk)) because Rk =

B(Hk) and, evidently, ρT1 = ρT2 if and only if ρT1 |L(B(Hk)) = ρT2 |L(B(Hk)) for all

k ∈ K. Regarding (d) it is clear that if ρ encompasses more than one component

ρ|L(Hk) 6= 0 cannot be extremal because is, by construction, a convex combination

of other states which vanishes in some of the given coherent subspace. Therefore

75



only states such that only one restriction ρ|L(Hk0
) does not vanish may be extremal.

Now (a) of Proposition 108 implies that, among these states, the extremal ones are

precisely those of the form said in (d) of the thesis.

Remark 125.

(a) Take ψ =
∑

k∈K ckψk where the ψk ∈ Hk are unit vectors and also suppose that

||ψ||2 =
∑

k |ck|2 = 1. This vector induces a state ρψ on R by means of the standard

procedure (which is nothing but the trace procedure with respect to Tψ := 〈ψ| 〉ψ!)

ρψ(P ) = 〈ψ|Pψ〉 P ∈ LR(H) .

In this case however, since PPk = PkP and ψk = Pkψk we have

ρψ(P ) =
∑

k

∑

h

ckch〈ψk|PkPPhψk〉 =
∑

k

∑

h

ckch〈ψk|PPkPhψk〉

=
∑

k

∑

h

ckch〈ψ|PPkψ〉δkh =
∑

k

|ck|2〈ψk|Pψk〉 = tr(T ′
ψP )

where

T ′
ψ =

∑

k∈K

|ck|2〈ψk| 〉ψk

We conclude that the apparent pure state ψ and the mixed state T ′
ψ cannot be

distinguished, just because the algebraR is too small to make a difference. Actually

they define the same state at all and this is an elementary case of (c) in the above

theorem with T1 = 〈ψ| 〉ψ and T2 = T ′
ψ.

This discussion, in the language of physicist is often stated as follows:

No coherent superpositions ψ =
∑

k∈K ckψk of pure states ψk ∈ Hk of different

coherent sectors are possible, only incoherent superpositions
∑

k∈K |ck|2〈ψk| 〉ψk
are allowed.

(b) It should be clear that the one-to-one correspondence between pure states and

atomic elementary observables (one-dimensional projectors) here does not work.

Consequently, notions like probability amplitude must be handled with great care.

In general, however, everything goes right if staying in a fixed superselection sector

Hk where the said correspondence exists. �

3.6. Quantum Symmetries: unitary projective representations

The notion of symmetry in QM is quite abstract. Actually there are three distinct

ideas, respectively by Wigner, Kadison and Segal [23]. Here we focus on the first pair

only. Physically speaking, a symmetry is an active transformation on the quantum

system changing its state. It is supposed that this transformation preserves some

properties of the physical system and here we have to distinguish between the two

afore-mentioned cases. However in both cases the transformation is required to be

reversible (injective) and to cover (surjective) the space of the states. Symmetries
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are supposed to mathematically describe some concrete transformation acting on

the physical system. Sometimes their action, in practice, can be cancelled simply

changing the reference frame. This is not the general case however, even if this class

of symmetries plays a relevant role in physics.

3.6.1. Wigner and Kadison theorems, groups of symmetries

Consider a quantum system described in the complex Hilbert space H with dimen-

sion 6= 2, separable whenever infinite dimensional. We assume that either H is the

whole Hilbert space in the absence of superselection charges or it denotes a single

coherent sector. Let S(H) and Sp(H) respectively indicate the convex body of the

quantum states and the set of pure states, referred to the sector H if it is the case.

Definition 126. If H is a complex Hilbert space with dimension 6= 2, separable if

infinite dimensional, we have the following definitions.

(a) A Wigner symmetry is a bijective map

sW : Sp(H) ∋ 〈ψ| 〉ψ → 〈ψ′| 〉ψ′ ∈ Sp(H)

which preserves the probabilties of transition. In other words

|〈ψ1|ψ2〉|2 = |〈ψ′
1|ψ′

2〉|2 if ψ1 , ψ2 ∈ H with ||ψ1|| = ||ψ2|| = 1 .

(b) A Kadison symmetry is a bijective map

sK : S(H) ∋ ρ→ ρ′ ∈ S(H)

which preserves the convex structure of the space of the states. In other words

(pρ1 + qρ2)
′ = pρ′1 + qρ′2 if ρ1, ρ2 ∈ S(H) and p, q ≥ 0 with p+ q = 1.

�

We observe that the first definition is well-posed even if unit vectors define pure

states just up to a phase, as the reader can immediately prove, because transition

probabilities are not affected by that ambiguity.

Though the definitions are evidently of different nature, they lead to the same

mathematical object, as established in a pair of famous characterization theorems

we quote into a unique statement. We need a preliminary definition.

Definition 127. Let H a complex Hilbert space. A map U : H → H is said to be

an antiunitary operator if it is surjective, isometric and U(ax+by) = aUx+bUy

when x, y ∈ H and a, b ∈ C. �

We come to the celebrated theorem. The last statement is obvious, the difficult

parts are (a) and (b) (see, e.g.,[6]).

Theorem 128 (Wigner and Kadison theorems). Let H be a complex Hilbert

space with dimension 6= 2, separable if infinite dimensional. The following facts

hold.
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(a) For every Wigner symmetry sW there is an operator U : H → H, which can be

either unitary or anti unitary (depending on sw) such that

sw : 〈ψ| 〉ψ → 〈Uψ| 〉Uψ , ∀〈ψ| 〉ψ ∈ Sp(H) . (78)

U and U ′ are associated to the same sW if and only if U ′ = eiaU for a ∈ R.

(b) For every Kadison symmetry sK there is an operator U : H → H, which can

be either unitary or anti unitary (depending on sK) such that

sw : ρ→ UρU−1 , ∀ρ ∈ S(H) . (79)

U and U ′ are associated to the same sK if and only if U ′ = eiaU for a ∈ R.

(c) U : H → H, either unitary or antiunitary, simultaneously defines a Wigner

and a Kadison symmetry by means of (78) and (79) respectively.

Remark 129.

(a) It is worth stressing that the Kadison notion of symmetry is an extension of

the Wigner one, after the result above. In fact, a Kadison symmetry ρ 7→ UρU−1

restricted to one-dimensional projectors preserves the probability transitions, as

immediately follows from the identity |〈ψ|φ〉|2 = tr(ρψρφ) and the cyclic property

of the trace, where we use the notation ρχ = 〈χ| 〉χ. In particular we can use the

same operator U to represent also the found Wigner symmetry.

(b) If superselection rules are present, in general quantum symmetries are de-

scribed in a similar way with unitary or antiunitary operators acting in a single

coherent sector or also swapping different sectors [6]. �

If a unitary or antiunitary operator V represents a symmetry s, it has an action on

observables, too. If A is an observable (a selfadjoint operator on H), we define the

transformed observable along the action of s as

s∗(A) := V AV −1 . (80)

Obviously D(s∗(A)) = V (D(A)). It is evident that this definition is not affected by

the ambiguity of the arbitrary phase in the choice of V when s is given.

According with (i) in Proposition 73 the spectral measure of s∗(A) is

P
(s∗(A))
E = V P

(A)
E V −1 = s∗(P

(A)
E )

as expected.

The meaning of s∗(A) should be evident: The probability that the observable s∗(A)

produces the outcome E when the state is s(ρ) (namely tr(P
(s∗(A))
E s(ρ))) is the same

as the probability that the observable A produces the outcome E when the state

is ρ (that is tr(P
(A)
E ρ)). Changing simultaneously and coherently observables and

states nothing changes. Indeed

tr(P
(s∗(A))
E s(ρ)) = tr(V P

(A)
E V −1V ρV −1) = tr(V P

(A)
E ρV −1)

= tr(P
(A)
E ρV −1V ) = tr(P

(A)
E ρ) .
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Example 130.

(1) Fixing an inertial reference frame, the pure state of a quantum particle is

defined, up to phases, as a unit norm element ψ of L2(R3, d3x), where R3 stands

for the rest three space of the reference frame. The group of isometries IO(3) of

R3 equipped with the standard Euclidean structure acts on states by means of

symmetries the sense of Wigner and Kadison. If (R, t) : x 7→ Rx+ t is the action of

the generic element of IO(3), where R ∈ O(3) and t ∈ R3, the associated quantum

(Wigner) symmetry s(R,t)(〈ψ| 〉ψ) = 〈U(R,t)ψ| 〉U(R,t)ψ is completely fixed by the

unitary operators U(R,t). They are defined as

(U(R,t)ψ)(x) := ψ((R, t)−1x) , x ∈ R
3 , ψ ∈ L2(R3, d3x) , ||ψ|| = 1 .

The fact that the Lebesgue measure is invariant under IO(3) immediately proves

that U(R,t) is unitary. It is furthermore easy to prove that, with the given definition

U(I,0) = I , U(R,t)U(R′,t′) = U(R,t)◦(R′,t′) , ∀(R, t), (R′, t′) ∈ IO(3) . (81)

(2) The so called time reversal transformation classically corresponds to invert the

sign of all the velocities of the physical system. It is possible to prove [6] (see also

(3) in exercise 148 below) that, in QM and for systems whose energy is bounded

below but not above, the time reversal symmetry cannot be represented by unitary

transformations, but only antiunitary. In the most elementary situation as in (1),

the time reversal is defined by means of the anti unitary operator

(Tψ)(x) := ψ(x) , x ∈ R
3 , ψ ∈ L2(R3, d3x) , ||ψ|| = 1 .

(3) According to the example in (1), let us focus on the subgroup of IO(3) of

displacements along x1 parametrized by u ∈ R,

R
3 ∋ x 7→ x+ ue1 ,

where e1 denotes the unit vector in R3 along x1. For every value of the parameter

u, we indicate by su the corresponding (Wigner) quantum symmetry, su(〈ψ| 〉ψ) =
〈Uuψ| 〉Uuψ with

(Uuψ)(x) = ψ(x − ue1) , u ∈ R ,

The action of this symmetry on the observable Xk turns out to be

s∗u(Xk) = UuXkU
−1
u = Xk + uδk1I , u ∈ R .

�

3.6.2. Groups of quantum symmetries

As in (1) in the example above, very often in physics one deals with groups of

symmetries. In other words, there is a certain group G, with unit element e and

group product ·, and one associates each element g ∈ G to a symmetry sg (if
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Kadison or Wigner is immaterial here, in view of the above discussion). In turn, sg
is associated to an operator Ug, unitary or antiunitary.

Remark 131. In the rest of this section, we assume that all the Ug are unitary. �

It would be nice to fix these operators Ug in order that the map G ∋ g 7→ Ug be a

unitary representation of G on H, that is

Ue = I , UgUg′ = Ug·g′ g, g′ ∈ G (82)

The identities (81) found in (1) in example 130 shows that it is possible at least in

certain cases. In general the requirement (82) does not hold. What we know is that

Ug·g′ equals UgUg′ just up to phases:

UgUg′U
−1
g·g′ = ω(g, g′)I with ω(g, g′) ∈ U(1) for all g, g′ ∈ G. (83)

For g = e this identity gives in particular

Ue = ω(e, e)I . (84)

The numbers ω(g, g′) are called multipliers. They cannot be completely arbitrary,

indeed associativity of composition of operators (Ug1Ug2)Ug3 = Ug1(Ug2Ug3) yields

the identity

ω(g1, g2)ω(g1 · g2, g3) = ω(g1, g2 · g3)ω(g2, g3) , g1, g2, g3 ∈ G (85)

which also implies

ω(g, e) = ω(e, g) = ω(g′, e) , ω(g, g−1) = ω(g−1, g) , g, g′ ∈ G . (86)

Definition 132. If G is a group, a map G ∋ g 7→ Ug – where the Ug are uni-

tary operators in the complex Hilbert space H – is named a unitary projective

representation of G on H if (83) holds (so that also (84) and (85) are valid).

Moreover,

(i) two unitary projective representation G ∋ g 7→ Ug and G ∋ g 7→ U ′
g are said

to be equivalent if U ′
g = χgUg, where χg ∈ U(1) for every g ∈ G. That is the same

as requiring that there are numbers χh ∈ U(1), if h ∈ G, such that

ω′(g, g′) =
χg·g′

χgχg′
ω(g, g′) ∀g, g′ ∈ G (87)

with obvious notation;

(ii) a unitary projective representation with ω(e, e) = ω(g, e) = ω(e, g) = 1 for

every g ∈ G is said to be normalized. �

Remark 133.

(a) It is easily proved that every unitary projective representation is always

equivalent to a normalized representation.
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(b) It is clear that two projective unitary representations are equivalent if and

only if they are made of the same Wigner (or Kadison) symmetries.

(c) In case of superselection rules, continuous symmetries representing a con-

nected topological group do not swap different coherent sectors when acting on pure

states [6].

(d) One may wonder if it is possible to construct a group representation

G ∋ g 7→ Vg where the operators Vg may be both unitary or antiunitary. If ev-

ery g ∈ G can be written as g = h · h for some h depending on g – and this is the

case if G is a connected Lie group – all the operators Ug must be unitary because

Ug = UhUh is necessarily linear no matter if Uh is linear or anti linear. The presence

of arbitrary phases does not change the result. �

Given a unitary projective representation, a technical problem is to check if it is

equivalent to a unitary representation, because unitary representations are much

simpler to handle. This is a difficult problem [11,6] which is tackled especially when

G is a topological group (or Lie group) and the representation satisfies the following

natural continuity property

Definition 134. A unitary projective representation of the topological group G,

G ∋ g 7→ Ug on the Hilbert space H is said to be continuous if the map

G ∋ g 7→ |〈ψ|Ugφ〉|

is continuous for every ψ, φ ∈ H. �

The notion of continuity defined above is natural as it regards continuity of prob-

ability transitions. A well known co-homological condition assuring that a unitary

projective representation of Lie groups is equivalent to a unitary one is due to

Bargmann [24,6].

Theorem 135 (Bargmann’s criterion). Let G be a connected and simply con-

nected (real finite dimensional) Lie group with Lie algebra g. Every continuous

unitary projective representation of G in a complex Hilbert space is equivalent to a

strongly continuous unitary representation of G if, for every bilinear antisymmetric

map Θ : g× g → R such that

Θ([u, v], w) + Θ([v, w], u) + Θ([w, u], v) = 0 , ∀u, v, w ∈ g

there is a linear map α : g → R such that Θ(u, v) = α([u, v]), for all u, v ∈ g.

Remark 136. The condition is equivalent to require that the second cohomology

group H2(G,R) is trivial. SU(2) for instance satisfies the requirement. �

However, non-unitarisable unitary projective representations do exist and one has

to deal with them. There is nevertheless a way to circumvent the technical problem.
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Given a unitary projective representation G ∋ g 7→ Ug with multiplicators ω, let us

put on U(1)×G the group structure arising by the product ◦

(χ, g) ◦ (χ′, g′) = (χχ′ω(g, g′), g · g′)

and indicate by Ĝω the obtained group. The map

Ĝω ∋ (χ, g) 7→ χUg =: V(χ,g)

is a unitary representation of Ĝω. If the initial representation is normalized, Ĝω is

said to be a central extension of G by means of U(1) [11,6]. Indeed, the elements

(χ, e), χ ∈ U(1), commute with all the elements of Ĝω and thus they belong to the

centre of the group.

Remark 137. These types of unitary representations of central extensions play a

remarkable role in physics. Sometimes Ĝω with a particular choice for ω is seen as

the true group of symmetries at quantum level, when G is the classical group of

symmetries. There is a very important case. If G is the Galileian group – the group

of transformations between inertial reference frames in classical physics, viewed as

active transformations – as clarified by Bargmann [6] the only physically relevant

unitary projective representations in QM are just the ones which are not equivalent

to unitary representations! The multiplicators embody the information about the

mass of the system. This phenomenon gives also rise to a famous superselection

structure in the Hilbert space of quantum systems admitting the Galileian group

as a symmetry group, known as Bargmann’s superselection rule [6]. �

To conclude we just state a technically important result [6] which introduces the

one-parameter strongly continuous unitary groups as crucial tool in QM.

Theorem 138. Let γ : R ∋ r 7→ Ur be a continuous unitary projective repre-

sentation of the additive topological group R on the complex Hilbert space H. The

following facts hold.

(a) γ is equivalent to a strongly continuous unitary representation R ∋ r 7→ Vr of

the same topological additive group on H.

(b) A strongly continuous unitary representation R ∋ r 7→ V ′
r is equivalent to γ if

and only if

V ′
r = eicrVr

for some constant c ∈ R and all r ∈ R.

The above unitary representation can also be defined as strongly continuous one-

parameter unitary group.

Definition 139. If H is a Hilbert space, V : R ∋ r 7→ Vr ∈ B(H), such that

(i) Vr is unitary for every r ∈ R
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(ii) VrVs = Vr+s for all r, s ∈ R,

is called one-parameter unitary group. It is called strongly continuous one-

parameter unitary group if in addition to (i) and (ii) we also have

(iii) V is continuous referring to the strong operator topology. In other words

Vrψ → Vr0ψ for r → r0 and every r0 ∈ R and ψ ∈ H. �

Remark 140.

(a) It is evident that, in view of the group structure, a one-parameter uni-

tary group R ∋ r 7→ Vr ∈ B(H) is strongly continuous if and only if is strongly

continuous for r = 0.

(b) It is a bit less evident but true that a one-parameter unitary group R ∋ r 7→
Vr ∈ B(H) is strongly continuous if and only if it is weakly continuous at r = 0.

Indeed, if V is weakly continuous at r = 0, for every ψ ∈ H, we have

||Urψ−ψ||2 = ||Urψ||2+||ψ||2−〈ψ|Urψ〉−〈Urψ|ψ〉 = 2||ψ||2−〈ψ|Urψ〉−〈Urψ|ψ〉 → 0

for r → 0. �

3.6.3. One-parameter strongly continuous unitary groups: von Neumann and

Stone theorems

Theorem 138 establishes that, dealing with continuous unitary projective represen-

tation of the additive topological group R, one can always reduce to work with

proper strongly continuous one-parameter unitary groups. So, for instance, the ac-

tion on a quantum system of rotations around an axis can always described by

means of strongly continuous one-parameter unitary groups. There is a couple of

technical results of very different nature which are very useful in QM. The former

is due to von Neumann [6] and proves that the one-parameter unitary group which

are not strongly continuous are not so many in separable Hilbert spaces.

Theorem 141. If H is a separable complex Hilbert space and V : R ∋ r 7→ Vr ∈
B(H) is a one parameter unitary group, it is strongly continuous if and only if the

maps R ∋ r 7→ 〈ψ|Urφ〉 are Borel measurable for all ψ, φ ∈ H.

The second proposition we quote [6] is a celebrated result due to Stone (and later

extend to the famous Hille-Yosida theorem in Banach spaces). We start by noticing

that, if A is a selfadjoint operator in a Hilbert space, Ut := eitA, for t ∈ R, defines

a strongly continuous one-parameter unitary group as one easily proves using the

functional calculus. The result is remarkably reversible.

Theorem 142 (Stone theorem). Let R ∋ t 7→ Ut ∈ B(H) be a strongly contin-

uous one-parameter unitary group in the complex Hilbert space H. The following

facts hold.

(a) There exists a unique selfadjoint operator, called the generator of the group,

A : D(A) → H in H, such that

Ut = e−itA , t ∈ R . (88)
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(b) The generator is determined as

Aψ = i lim
t→0

1

t
(Ut − I)ψ (89)

and D(A) is made of the vectors ψ ∈ H such that the right hand side of (89) exists

in H.

(c) Ut(D(A)) ⊂ D(A) for all t ∈ R and

AUtψ = UtAψ if ψ ∈ D(A) and t ∈ R.

Remark 143.

(a) For a selfadjoint operator A, the expansion

e−itAψ =

+∞
∑

n=0

(−it)n
n!

Anψ

generally does not work for ψ ∈ D(A). It works in two cases however: (i) if ψ is

an analytic vector of A (Def. 41 and this result is due to Nelson), (ii) if A ∈ B(H)

which is equivalent to say that D(A) = H. In the latter case, one more strongly

finds e−itA =
∑+∞

n=0
(−it)n

n! An, referring to the uniform operator topology. [6].

(b) One parameter unitary group generated by selfadjoint operators can be used

to check if the associated observables are compatible in view of the following nice

result [6].

Proposition 144. If A and B are selfadjoint operators in the complex Hilbert

space H, the identity holds

e−itAe−isB = e−isBe−itA ∀t, s ∈ R

if and only if the spectral measures of A and B commute. �

3.6.4. Time evolution, Heisenberg picture and quantum Noether theorem

Consider a quantum system described in the Hilbert space H when an inertial refer-

ence frame is fixed. Suppose that, physically speaking, the system is either isolated

or interacts with some external stationary environment. With these hypotheses,

the time evolution of states is axiomatically described by a continuous symmetry,

more precisely, by a continuous one-parameter group of unitary projective operators

R ∋ t 7→ Vt. In view of Theorems 138 and 142, this group is equivalent to a strongly

continuous one-parameter group of unitary operators R ∋ t 7→ Ut and, up to ad-

ditive constant, there is a unique selfadjoint operator H , called the Hamiltonian

operator such that (notice the sign in front of the exponent)

Ut = e−itH , t ∈ R . (90)

The observable represented by H is usually identified with the energy of the system

in the considered reference frame.

Within this picture, if ρ ∈ S(H) is the state of the system at t = 0, as usual
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described by a positive trace-class operator with unit trace, the state at time t is

ρt = UtρU
−1
t . If the initial state is pure and represented by the unit vector ψ ∈ H,

the state at time t is ψt := Utψ. In this case, if ψ ∈ D(H) we have that ψt ∈ D(H)

for every t ∈ R in view of (c) in Theorem 142 and furthermore, for (b) of the same

theorem

− iHψt =
dψt
dt

. (91)

where the derivative is computed wit respect to the topology of H. One recognises

in Eq. (91) the general form of Schödinger equation.

Remark 145. It is possible to study quantum systems interacting with some ex-

ternal system which is not stationary. In this case the Hamiltonian observable de-

pends parametrically on time as already introduced in remark 8. In these cases a

Schrödinger equation is assumed to describe the time evolution of the system giving

rise to a groupoid of unitary operators [6]. We shall not enter into the details of

this technical issue here. �

Adopting the above discussed framework, observables do not evolve and states do.

This framework is called Schrödinger picture. There is however another approach

to describe time evolution calledHeisenberg picture. In this representation states

do not evolve in time but observables do. If A is an observable at t = 0, its evolution

at time t is the observable

At := U−1
t AUt .

Obviously D(At) = U−1
t (D(A)) = U−t(D(A)) = U∗

t (D(A)). According with (i) in

Proposition 73 the spectral measure of At is

P
(At)
E = U−1

t P
(A)
E Ut

as expected. The probability that, at time t, the observable A produces the outcome

E when the state is ρ at t = 0, can equivalently be computed both using the

standard picture, where states evolve as tr(P
(A)
E ρt), or Heisenberg picture where

observables do obtaining tr(P
(At)
E ρ). Indeed

tr(P
(A)
E ρt) = tr(P

(A)
E U−1

t ρUt) = tr(UtP
(A)
E U−1

t ρ) = tr(P
(At)
E ρ) .

The two pictures are completely equivalent to describe physics. Heisenberg picture

permits to give the following important definition

Definition 146. In the complex Hilbert space H equipped with a strongly contin-

uous unitary one-parameter group representing the time evolution R ∋ t 7→ Ut, an

observable represented by the selfadjoint operator A is said to be a constant of

motion with respect to U , if At = A0.

The meaning of the definition should be clear: Even if the state evolve, the probabil-

ity to obtain an outcome E, measuring a constant of motion A, remains stationary.
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Also expectation values and standard deviations do not change in time.

We are now in a position to state the equivalent of the Noether theorem in QM.

Theorem 147 (Noether quantum theorem). Consider a quantum system de-

scribed in the complex Hilbert space H equipped with a strongly continuous unitary

one-parameter group representing the time evolution R ∋ t 7→ Ut. If A is an ob-

servable represented by a (generally unbounded) selfadjoint operator A in H, the

following facts are equivalent.

(a) A is a constant of motion: At = A0 for all t ∈ R.

(b) The one-parameter group of symmetries generated by A, R ∋ s 7→ e−isA is

a group of dynamical symmetries: It commutes with time evolution

e−isAUt = Ute
−isA for all s, t ∈ R . (92)

In particular transforms evolutions of pure states into evolutions of (other) pure

states, i.e., e−isA Utψ = Ut e
−isAψ.

(c) The action on observables (80) of the one-parameter group of symmetries

generated by A, R ∋ s 7→ eisA leaves H invariant. That is

e−isAHeisA = H , for all s ∈ R .

Proof. Suppose that (a) holds. By definition U−1
t AUt = A. By (i) in Proposition 73

we have that U−1
t e−isAUt = e−isA which is equivalent to (b). If (b) is true, we have

that e−isAe−itHeisA = e−itH . Here an almost direct application of Stone theorem

yields e−isAHeisA = H . Finally suppose that (c) is valid. Again (i) in Proposition

73 produces e−isAUte
isA = Ut which can be rearranged into U−1

t e−isAUt = e−isA.

Finally Stone theorem leads to U−1
t AUt = A which is (a), concluding the proof.

Remark 148.

(a) In physics textbooks the above statements are almost always stated using

time derivatives and commutators. This is useless and involves many subtle troubles

with domains of the involved operators.

(b) The theorem can be extended to observables A(t) parametrically depending

on time already in the Schrödinger picture [6]. In this case (a) and (b) are equivalent

too. With this more general situation, (92) in (b) has to be re-written as

e−isA(t)Ut = Ute
−isA(0) for all s, t ∈ R

and Heisenberg evolution considered in (a) encompasses both time dependences

At = U−1
t A(t)Ut .

At this juncture, (c) can similarly be stated but, exactly as it happens in Hamilto-

nian classical mechanics, it has a more complicated interpretation [6].

An example is the generator of the boost one-parameter subgroup along the axis n

of transformations of the Galileian group R
3 ∋ x 7→ x+ tvn ∈ R

3, where the speed
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v ∈ R is the parameter of the group. The generator is [6] the unique self adjoint

extension of

Kn(t) =
3
∑

j=1

nj(mXj |D − tPj |D) , (93)

the constantm > 0 denoting the mass of the system and D being the G̊ading or the

Nelson domain of the representation of (central extension of the) Galileian group

as we will discuss later.

(c) In QM there are symmetries described by operators which are simultane-

ously selfadjoint and unitary, so they are also observables and can be measured. The

parity is one of them: (Pψ)(x) := ψ(−x) for a particle described in L2(R3, d3x).

These are constants of motion (U−1
t PUt = P) if and only if they are dynamical

symmetries (PUt = PUt). This phenomenon has no classical corresponding.

(d) The time reversal symmetry, when described by an anti unitary operator

T is supposed to satisfy: THT−1 = H . However, since it is antilinear gives rise to

the identity (exercise) Te−itHT−1 = e−itTHT
−1

, so that TUt = U−tT as physically

expected. There is no conserved quantity associated with this operator because it

is not selfadjoint.

Exercise 149.

(1) Prove that if the Hamiltonian observable does not depend on time is a constant

of motion.

Solution. In this case the time translation is described by Ut = eitH and triv-

ially it commute with Us. Noether theorem implies the thesis �

(2) Prove that for the free particle in R
3 the momentum along x1 is a constant of

motion as consequence of translational invariance along that axis. Assume that the

unitary group representing translations along x1 is Uu with (Uuψ)(x) = ψ(x− ue1)

if ψ ∈ L2(R3, d3x).

Solution. The Hamiltonian is H = 1
2m

∑3
j=1 P

2
j . It commutes with the one-

parameter unitary group describing displacements along x1, because as one can

prove the said groups is generated by P1 itself: Uu := e−iuP1 . Theorem 147 yields

the thesis. �

(3) Prove that if σ(H) is bounded below but not above, the time reversal symmetry

cannot be unitary.

Solution. We look for an operator, unitary or antiunitary such that TUt =

U−tT for all t ∈ R. If the operator is unitary, the said identity easily implies

THT−1 = −H and therefore, with obvious notation, σ(THT−1) = −σ(H). (e) in

remark 47 immediately yields σ(H) = −σ(H) which is false if σ(H) is bounded

below but not above. �
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3.6.5. Strongly continuous unitary representations of Lie groups, Nelson

theorem

Topological and Lie groups are intensively used in QM [24]. More precisely they are

studied in terms of their strongly continuous unitary representations. The reason

to consider strongly continuous representations is that they immediately induce

continuous representations of the group in terms of quantum symmetries (Def.

134). In the rest of the section we consider only the case of a real Lie group, G,

whose Lie algebra is indicated by g endowed with the Lie bracket or commutator

{ , }.

Definition 150. If G is a Lie group, a strongly continuous unitary rep-

resentation of G over the complex Hilbert space H is a group homomorphism

G ∋ g 7→ Ug ∈ B(H) such that every Ug is unitary and Ug → Ug0 , in the strong

operator topology, if g → g0. �

We leave to the reader the elementary proof that strong continuity is equivalent to

strong continuity at the unit element of the group and in turn, this is equivalent to

weak continuity at the unit element of the group.

A fundamental technical fact is that the said unitary representations are associated

with representations of the Lie algebra of the group in terms of (anti)selfadjoint

operators. These operators are often physically interpreted as constants of motion

(generally parametrically depending on time) when the Hamiltonian of the system

belongs to the representation of the Lie algebra. We want to study this relation

between the representation of the group on the one hand and the representation

of the Lie algebra on the other hand. First of all we define the said operators

representing the Lie algebra.

Definition 151. Let G be a real Lie group and consider a strongly continuous

unitary representation U of G over the complex Hilbert space H.

If A ∈ g let R ∋ t 7→ exp(tA) ∈ G be the generated one-parameter Lie subgroup.

The self-adjoint generator associated with A

A : D(A) → H

is the generator of the strongly continuous one-parameter unitary group

R ∋ t 7→ Uexp{tA} = e−isA

in the sense of Theorem 142. �

The expected result is that these generators (with a factor −i) define a representa-

tion of the Lie algebra of the group. The utmost reason is that they are associated

to the unitary one-parameter subgroups exactly as the elements of the Lie algebra

are associated to the Lie one-parameter subgroups. In particular we expect that the

Lie parenthesis correspond to the commutator of operators. The technical problem

is that the generators A may have different domains. Thus we look for a common
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invariant (because the commutator must be defined thereon) domain, where all

them can be defined. This domain should embody all the amount of information

about the operators A themselves, disregarding the fact that they are defined in

larger domains. In other words we would like that the domain be a core ((3) in Def.

27) for each generator. There are several candidates for this space, one of the most

appealing is the se called G̊arding space.

Definition 152. Let G be a (finite-dimensional real) Lie group and consider a

strongly continuous unitary representation U of G over the complex Hilbert space

H. If f ∈ C∞
0 (G;C) and x ∈ H, define

x[f ] :=

∫

G

f(g)Ugx dg (94)

where dg denotes the Haar measure over G and the integration is defined in a

weak sense exploiting Riesz’ lemma: Since the map H ∋ x 7→
∫

G
f(g)〈y|Ugx〉dg is

continuous (the proof being elementary), x[f ] is the unique vector in H such that

〈y|x[f ]〉 =
∫

G

f(g)〈y|Ugx〉dg , ∀y ∈ H .

The complex span of all vectors x[f ] ∈ H with f ∈ C∞
0 (G;C) and x ∈ H is called

G̊arding space of the representation and is denoted by D
(U)
G . �

The subspace D
(U)
G enjoys very remarkable properties we state in the next theorem.

In the following Lg : C∞
0 (G;C) → C∞

0 (G;C) denotes the standard left-action of

g ∈ G on complex valued smooth compactly supported functions defined on G:

(Lgf)(h) := f(g−1h) ∀h ∈ G , (95)

and, if A ∈ g, XA : C∞
0 (G;C) → C∞

0 (G;C) is the smooth vector field over G (a

smooth differential operator) defined as:

(XA(f)) (g) := lim
t→0

f (exp{−tA}g)− f(g)

t
∀g ∈ G . (96)

so that that map

g ∋ A 7→ XA (97)

defines a representation of g in terms of vector fields (differential operators) on

C∞
0 (G;C). We conclude with the following theorem [24], establishing that the

G̊arding space has all the expected properties.

Theorem 153. Referring to Definitions 151 and 152, the G̊arding space D
(U)
G sat-

isfies the following properties.

(a) D
(U)
G is dense in H.
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(b) If g ∈ G, then Ug(D
(U)
G ) ⊂ D

(U)
G . More precisely, if f ∈ C∞

0 (G), x ∈ H,

g ∈ G, it holds

Ugx[f ] = x[Lgf ] . (98)

(c) If A ∈ g, then D
(U)
G ⊂ D(A) and furthermore A(D

(U)
G ) ⊂ D

(U)
G . More

precisely

− iAx[f ] = x[XA(f)] (99)

(d) The map

g ∋ A 7→ −iA|
D

(U)
G

=: U(A) (100)

is a Lie algebra representation in terms of anti symmetric operators defined on the

common dense invariant domain D
(U)
G . In particular if { , } is the Lie commutator

of g we have:

[U(A), U(A′)] = U({A,A′}) if A,A′ ∈ g.

(e) D
(U)
G is a core for every selfadjoint generator A with A ∈ g, that is

A = A|
D

(U)
G

, ∀A ∈ g . (101)

Now we tackle the inverse problem: We suppose to have a certain representation of

a Lie algebra g in terms of symmetric operators defined in common invariant do-

main of a complex Hilbert space H. We are interested in lifting this representation

to a whole strongly continuous representation of the unique simply connected Lie

group G admitting g as Lie algebra. This is a much more difficult problem solved

by Nelson.

Given a strongly continuous representation U af a (real) Lie group G, there is

another space D
(U)
N with similar features to D

(U)
G . Introduced by Nelson [24], it

turns out to be more useful than the G̊arding space to recover the representation

U by exponentiating the Lie algebra representation.

By definition D
(U)
N consists of vectors ψ ∈ H such that G ∋ g 7→ Ugψ is analytic in

g, i.e. expansible in power series in (real) analytic coordinates around every point

of G. The elements of D
(U)
N are called analytic vectors of the representation

U and D
(U)
N is the space of analytic vectors of the representation U . It turns

out that D
(U)
N is invariant for every Ug, g ∈ G.

A remarkable relationship exists between analytic vectors in D
(U)
N and analytic

vectors according to Definition 41. Nelson proved the following important result

[24], which implies that D
(U)
N is dense in H, as we said, because analytic vectors

for a self-adjoint operator are dense (exercise 80). An operator is introduced, called

Nelson operator, that sometimes has to do with the Casimir operators [24] of the

represented group.

Proposition 154. Let G be a (finite dimensional real) Lie group and G ∋ g 7→
Ug a strongly continuous unitary representation on the Hilbert space H. Take
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A1, . . . ,An ∈ g a basis and define Nelson’s operator on D
(U)
G by

∆ :=

n
∑

k=1

U(Ak)
2 ,

where the U(Ak) are, as before, the selfadjoint generators Ak restricted to the

G̊arding domain D
(U)
G . Then

(a) ∆ is essentially selfadjoint on D
(U)
G .

(b) Every analytic vector of the selfadjoint operator ∆ is analytic an element of

D
(U)
N , in particular D

(U)
N is dense.

(c) Every vector in D
(U)
N is analytic for every self-adjoint operator U(Ak), which

is thus essentially selfadjoint in D
(U)
N by Nelson’s criterion.

We finally state the well-known theorem of Nelson that enables to associate rep-

resentations of the only simply connected Lie group with a given Lie algebra to

representations of that Lie algebra.

Theorem 155 (Nelson theorem). Consider a real n-dimensional Lie algebra V

of operators −iS – with each S symmetric on the Hilbert space H, defined on a

common invariant subspace D dense in H and V -invariant – with the usual com-

mutator of operators as Lie bracket.

Let −iS1, · · · ,−iSn ∈ V be a basis of V and define Nelson’s operator with domain

D:

∆ :=

n
∑

k=1

S2
k .

If ∆ is essentially self-adjoint, there exists a strongly continuous unitary represen-

tation

GV ∋ g 7→ Ug

on H, of the unique simply connected Lie group GV with Lie algebra V .

U is completely determined by the fact that the closures S, for every −iS ∈ V , are

the selfadjoint generators of the representation of the one-parameter subgroups of

GV in the sense of Def. 151.

In particular, the symmetric operators S are essentially selfadjoint on D, their

closure being selfadjoint.

Exercise 156. Let A,B be selfadjoint operators in the complex Hilbert space H
with a common invariant dense domain D where they are symmetric and commute.

Prove that if A2 +B2 is essentially self adjoint on D, then the spectral measures of

A and B commute.

Solution. Apply Nelson’s theorem observing that A,B define the Lie algebra

of the additive Abelian Lie group R2 and that D is a core for A and B, because

they are essentially selfadjoint therein again by Nelson theorem. �

Example 157.
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(1) Exploiting spherical polar coordinates, the Hilbert space L2(R3, d3x) can be

factorised as L2([0,+∞), r2dr) ⊗ L2(S2, dΩ), where dΩ is the natural rotationally

invariant Borel measure on the sphere S2 with unit radius in R3, with
∫

S2
1dΩ = 4π.

In particular a Hilbertian basis of L2(R3, d3x) is therefore made of the products

ψn(r)Y
l
m(θ, φ) where {ψn}n∈N is any Hilbertian basis in L2([0,+∞), r2dr) and

{Y lm | l = 0, 1, 2, . . . ,m = 0,±1,±2, . . . ± l} is the standard Hilbertian basis of

spherical harmonics of L2(S2, dΩ) [24]. Since the function Y lm are smooth on S2, it

is possible to arrange the basis of ψn made of compactly supported smooth functions

whose derivatives in 0 vanish at every order, in order that R3 ∋ x 7→ (ψn · Y lm)(x)

are elements of C∞(Rn;C) (and therefore also of S(R3)). Now consider the three

symmetric operators defined on the common dense invariant domain S(R3)

Lk =

3
∑

i,j=1

ǫkijXiPj |S(R3)

where ǫijk is completely antisymmetric in ijk and ǫ123 = 1. By direct inspection

one sees that

[−iLk,−iLh] =
3
∑

r=1

ǫkhr(−iLr)

so that the finite real span of the operators iLk is a representation of the Lie

algebra of the simply connected real Lie group SU(2) (the universal covering of

SO(3)). Define the Nelson operator L2 := −∑3
k=1 L2

k on S(R3). Obviously this is

a symmetric operator. A well known computation proves that

L2 ψn(r)Y
l
m = l(l + 1) ψn(r)Y

l
m .

We conclude that L2 admits a Hilbertian basis of eigenvectors. Corollary 43 implies

that L2 is essentially self adjoint. Therefore we can apply Theorem 155 concluding

that there exists a strongly continuous unitary representation SU(2) ∋ M 7→ UM
of SU(2) (actually it can be proved to be also of SO(3)). The three selfadjoint

operators Lk := Lk are the generators of the one-parameter of rotations around the

corresponding three orthogonal Cartesian axes xk, k = 1, 2, 3. The one-parameter

subgroup of rotations around the generic unit vector n, with components nk, admits

the selfadjoint generator Ln =
∑3

k=1 nkLk. The observable Ln has the physical

meaning of the n-component of the angular momentum of the particle described in

L2(R3, d3x). It turns out that, for ψ ∈ L2(R3, d3x),

(UMψ)(x) = ψ(π(M)−1x) , M ∈ SU(2) , x ∈ R
3 (102)

where π : SU(2) → SO(3) is the standard covering map. (102) is the action of the

rotation group on pure states in terms of quantum symmetries. This representation

is, in fact, a subrepresentation of the unitary representation of IO(3) already found

in (1) of example 130.

(2) Given a quantum system, a quite general situation is the one where the quantum

symmetries of the systems are described by a strongly continuous representation
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V : G ∋ g 7→ Vg on the Hilbert space H of the system, and the time evolution is

the representation of a one-parameter Lie subgroup with generator H ∈ g. So that

Vexp(tH) = e−itH =: Ut .

This is the case, for instance, of relativistic quantum particles, where G is the spe-

cial orthochronous Lorentz group, SO(1, 3)+, (or its universal covering SL(2,C)).

Describing non-relativistic quantum particles, the relevant group G is an U(1) cen-

tral extension of the universal covering of the (connected orthochronous) Galileian

group.

In this situation, every element of g determines a constant of motion. Actually there

are two cases.

(i) If A ∈ g and {H,A} = 0, then the Lie subgroups exp(tH) and exp(sA) com-

mute as, for example, follows from Baker-Campbell-Hausdorff formula (see [24,6],

for instance). Consequently A is a constant of motion because Vexp(tH) = e−itH and

Vexp(sA) = e−isA commute as well and Theorem 147 is valid. In this case e−isA de-

fines a dynamical symmetry in accordance with the afore-mentioned theorem. This

picture applies in particular, referring to a free particle, to A = Jn, the observable

describing total angular momentum along the unit vector n computed in an inertial

reference frame.

(ii) A bit more complicated is the case of A ∈ g with {H,A} 6= 0. However, even

in this case A defines a constant of motion in terms of selfadjont operators (observ-

ables) belonging to the representation of the Lie algebra of G. The difference with

respect to the previous case is that, now, the constant of motion parametrically de-

pend on time. We therefore have a class of observables {A(t)}t∈R in the Schrödinger

picture, in accordance with (b) in remark 148, such that At := U−1
t A(t)Ut are the

corresponding observables in the Heisenber picture. The equation stating that we

have a constant of motion is therefore At = A0.

Exploiting the natural action of the Lie one-parameters subgroups on g, let us define

the time parametrised class of elements of the Lie algebra

A(t) := exp(tH)A exp(−tH) ∈ g , t ∈ R .

If {Ak}k=1,...,n is a basis of g, it must consequently hold

A(t) =

n
∑

k=1

ak(t)Ak (103)

for some real-valued smooth functions ak = ak(t). By construction, the correspond-

ing class of selfadjoint generators A(t), t ∈ R, define a parametrically time depen-

dent constant of motion. Indeed, since (exercise)

exp(s exp(tH)A exp(−tH)) = exp(tH) exp(sA) exp(−tH) ,

we have

−iA(t) = d

ds
|s=0Vexp(tH)A exp(−tH) =

d

ds
|s=0Vexp(tH) exp(sA) exp(−tH)
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=
d

ds
|s=0Vexp(tH)Vexp(sA)Vexp(−tH) = −iUtAU−1

t

Therefore

At = U−1
t A(t)Ut = U−1

t UtAU
−1
t Ut = A = A0 .

In view of Theorem 153, as the map g ∋ A 7→ A|
D

(V )
G

is a Lie algebra isomorphism,

we can recast (103) for selfadjoint generators

A(t)|
D

(V )
G

=

n
∑

k=1

ak(t)Ak|D(V )
G

(104)

(where D
(V )
G may be replaced by D

(V )
N as the reader can easily establish, taking

advantage of Proposition 154 and Theorem 155). Since D
(V )
G (resp. D

(V )
N ) is a core

for A(t), it also hold

A(t) =

n
∑

k=1

ak(t)Ak|D(V )
G

, (105)

the bar denoting the closure of an operator as usual. (The same is true replacing

D
(V )
G for D

(V )
N .) An important case, both for the non-relativistic and the relativistic

case is the selfadjoint generator Kn(t) associated with the boost transformation

along the unit vector n ∈ R3, the rest space of the inertial reference frame where

the boost transformation is viewed as an active transformation. In fact, referring

to the Lie generators of (a U(1) central extension of the universal covering of the

connected orthochronous) Galileian group, we have {h, kn} = −pn 6= 0, where pn
is the generator of spatial translations along n, corresponding to the observable

momentum along the same axis when passing to selfadjoint generators. The non-

relativistic expression of Kn(t), for a single particle, appears in (93). For a more

extended discussion on the non-relativistic case see [6]. A pretty complete discussion

including the relativistic case is contained in [24]. �

3.6.6. Selfadjoint version of Stone - von Neumann - Mackey Theorem

A remarkable consequence of Nelson’s theorem is a selfadjoint operator version

of Stone-von Neumann theorem usually formulated in terms of unitary operators

[1,6], proving that the CCRs always give rise to the standard representation in

L2(Rn, dnx). We state and prove this version of the theorem, adding a last state-

ment which is the selfadjoint version of Mackey completion to Stone von Neumann

statement [6].

Theorem 158 (Stone - von Neumann - Mackey Theorem). Let H be a

complex Hilbert space and suppose that there are 2n selfadjoint operators in H we

indicate with Q1, . . . , Qn and M1, . . . ,Mn such the following requirements are valid.
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(1) There is a common dense invariant subspace D ⊂ H where the CCRs hold

[Qh,Mk]ψ = i~δhkψ, [Qh, Qk]ψ = 0, [Mh,Mk]ψ = 0 ψ ∈ D, h, k = 1, . . . , n.

(106)

(2) The representation is irreducible, in the sense that there is no closed sub-

space K ⊂ H such that Qk(K ∩ D(Qk)) ⊂ K and Mk(K ∩ D(Mk)) ⊂ K for

k = 1, . . . , n.

(3) The operator
∑n

k=1Q
2
k|D +M2

k |D is essentially self adjoint.

Under these conditions, there is a Hilbert space isomorphism, that is a surjective

isometric map, U : H → L2(Rn, dnx) such that

UQkU
−1 = Xk and UMkU

−1 = Pk k = 1, . . . , n (107)

where Xk and Pk respectively are the standard position (30) and momentum (31)

selfadjoint operators in L2(Rn, dnx). In particular H results to be separable.

If (1), (2) and (3) are valid with the exception that the representation is not

reducible, then H decomposes into an orthogonal Hilbertian sum H = ⊕r∈RHk

where R is finite or countable if H is separable, the Hr ⊂ H are closed subspaces

with

Qk(Hr ∩D(Qk)) ⊂ Hr and Mk(Hr ∩D(Mk)) ⊂ Hr

for all r ∈ R, k = 1, . . . , n and the restrictions of all the Qk and Mk to each Hr

satisfy (107) for suitable surjective isometric maps Ur : Hr → L2(Rn, dnx)

Proof. If (1) holds, the restrictions to D of the selfadjoint operators Qk, Mk de-

fine symmetric operators (since they are selfadjoint and D is dense and included

in their domains), also their powers are symmetric since D is invariant. If also

(2) is valid, in view of Nelson theorem (since evidently the symmetric operator

I|2D +
∑n

k=1Q
2
k|D +M2

k |D is essentially selfadjoint if
∑n

k=1Q
2
k|D +M2

k |D is), there

is a strongly continuous unitary representation W ∋ g 7→ Vg ∈ B(H) of the sim-

ply connected 2n + 1-dimensional Lie group W whose Lie algebra is defined by

(106) (correspondingly re-stated for the operators −iI,−iQk,−iMk) together with

[−iQh,−iI] = [−iMk,−iI] = 0, where the operator −iI restricted to D is the

remaining Lie generator. W is the Weyl-Heisenberg group [6]. The selfadjoint gen-

erators of this representation are just the operators Qk and Pk (and I), since they

coincide with the closure of their restrictions to D, because they are selfadjoint (so

they admit unique selfadjoint extensions) and D is a core. If furthermore the Lie

algebra representation is irreducible, the unitary representation is irreducible, too:

If K were an invariant subspace for the unitary operators, Stone theorem would

imply that K be also invariant under the selfadjoint generators of the one param-

eter Lie subgroups associated to each Qk and Pk. This is impossible if the Lie

algebra representation is irreducible as we are assuming. The standard version of

Stone-von Neumann theorem [6] implies that there is isometric surgective operator
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U : H → L2(Rn, dnx) such that W ∋ g 7→ UVgU
−1 ∈ B(L2(Rn, dnx)) is the stan-

dard unitary representation of the group W in L2(Rn, dnx) genernated by Xk and

Pk (and I) [6]. Again, Stone theorem immediately yields (107). The last statement

easily follows from the standard form of Mackey’s theorem completing Stone-von

Neumann result [6].

Remark 159.

(a) The result a posteriori gives, in particular, a strong justification of the

requirement that the Hilbert space of an elementary quantum system, like a particle,

must be separable.

(b) Physical Hamiltonian operators have spectrum bounded from below to avoid

thermodynamical instability. This fact prevents the definition of a “time operator”

canonically conjugated with H following the standard way. This result is sometime

quoted as Pauli theorem. As a consequence, the meaning of Heisenberg relations

∆E∆T ≥ ~/2 is different from the meaning of the analogous relations for posi-

tion and momentum. It is however possible to define a sort of time osservable just

extending the notion of PVM to the notion of POVM (positive valued operator

measure) [1,6]. POVMs are exploited to describe concrete physical phenomena re-

lated to measurement procedures, especially in quantum information theory [30,31].

�

Corollary 160. If the Hamiltonian operator σ(H) of a quantum system is bounded

below, there is no selfadjoint operator (time operator) T satisfying the standard CCR

with H and the hypotheses (1), (2), (3) of Theorem 158.

Proof. The couple H,T should be mapped to a corresponding couple X,P in

L2(R, dx), or a direct sum of such spaces, by means of a Hilbert space isomorphism.

In all cases the spectrum of H should therefore be identical to the one of X , namely

is R. This fact is false by hypotheses.

4. Just few words about the Algebraic Approach

The fundamental theorem 3.6.6 of Stone-von Neumann and Mackey is stated in the

jargon of theoretical physics as follows:

“all irreducible representations of the CCRs with a finite, and fixed, number of de-

grees of freedom are unitarily equivalent,”.

The expression unitarily equivalent refers to the existence of the Hilbert-space iso-

morphism U , and the finite number of degrees of freedom is the dimension of the

Lie algebra spanned by the generators I,Xk, Pk.

What happens then in infinite dimensions? This is the case when dealing with quan-

tum fields, where the 2n+1 generators I,Xk, Pk (k = 1, 2, . . . , n), are replaced by a

continuum of generators, the so-called field operators at fixed time and the conju-

gated momentum at fixed time: I,Φ(f),Π(g) which are smeared by arbitrary

functions f, g ∈ C∞
0 (R3). Here R

3 is the rest space of a given reference frame in
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the spacetime. Those field operators satisfy commutation relations similar to the

ones of Xk and Pk (e.g., see [26,27,28]). Then the Stone–von Neumann theorem no

longer holds. In this case, theoretical physicists would say that

“there exist irreducible non-equivalent CCR representations with an infinite number

of degrees of freedom”.

What happens in this situation, in practice, is that one finds two isomorphic ∗-

algebras of field operators, the one generated by Φ(f),Π(g) in the Hilbert space

H and the other generated by Φ′(f),Π′(g) in the Hilbert space H′ that admit no

Hilbert space isomorphism U : H′ → H satisfying:

UΦ′(f) U−1 = Φ(f) , UΠ′(g) U−1 = Π(g) for any pair f, g ∈ C∞
0 (R3).

Pairs of this kind are called (unitarily) non-equivalent. Jumping from the finite-

dimensional case to the infinite-dimensional one corresponds to passing from Quan-

tum Mechanics to Quantum Field Theory (possibly relativistic, and on curved

spacetime [28]). The presence of non-equivalent representations of one single phys-

ical system shows that a formulation in a fixed Hilbert space is fully inadequate,

a least because it insists on a fixed Hilbert space, whereas the physical system is

characterized by a more abstract object: An algebra of observables which may be

represented in different Hilbert spaces in terms of operators. These representations

are not unitarily equivalent and none can be considered more fundamental than the

remaining ones. We must abandon the structure of Hilbert space in order to lay the

foundations of quantum theories in broader generality.

This programme has been widely developed (see e.g., [13,25,26,27]), starting from

the pioneering work of von Neumann himself, and is nowadays called algebraic

formulation of quantum (field) theories. Within this framework it was possible to

formalise, for example, field theories in curves spacetime in relationship to the

quantum phenomenology of black-hole thermodynamics.

4.1. Algebraic formulation

The algebraic formulation prescinds, anyway, from the nature of the quantum sys-

tem and may be stated for systems with finitely many degrees of freedom as well

[25]. The new viewpoint relies upon two assumptions [26,27,25,29,6].

AA1. A physical system S is described by its observables, viewed now as selfad-

joint elements in a certain C∗-algebra A with unit 11 associated to S.

AA2. An algebraic state on AS is a linear functional ω : AS → C such that:

ω(a∗a) ≥ 0 ∀ a ∈ AS , ω(11) = 1 ,

that is, positive and normalised to 1.

We have to stress that A is not seen as a concrete C∗-algebra of operators (a von

Neumann algebra for instance) on a given Hilbert space, but remains an abstract
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C∗-algebra. Physically, ω(a) is the expectation value of the observable a ∈ A in

state ω.

Remark 161.

(a) A is usually called the algebra of observables of S though, properly speaking,

the observables are the selfadjoint elements of A only.

(b) Differently form the Hilbert space formulation, the algebraic approach can

be adopted to describe both classical and quantum systems. The two cases are distin-

guished on the base of commutativity of the algebra of observables AS : A commu-

tative algebra is assumed to describe a classical system whereas a non-commutative

one is supposed to be associated with a quantum systems.

(c) The notion of spectrum of an element a of a C∗-algebra A, with unit

element 11, is defined analogously to the operatorial case [6]. σ(a) := C\ρ(a) where
we have introduced the resolvent set:

ρ(a) := {λ ∈ C | ∃(a− λ11)−1 ∈ A} .

When applied to the elements of B(H), this definition coincides with the one provi-

ously discussed for operators in view of (2) in exercise 48. It turns out that if

a∗a = aa∗, namely a ∈ A is normal, then

||a|| = sup
λ∈σ(a)

|λ| .

The right hand side of the above identity is called spectral radius of a. If a is not

normal, a∗a is selfadjoint and thus normal in any cases. Therefore the C∗-property

of the norm ||a||2 = ||a∗a|| permits us to write down ||a|| in terms of the spectrum

of a∗a. As the spectrum is a completely algebraic property, we conclude that it is

impossible to change the norm of a C∗-algebra preserving the C∗-algebra property

of the new norm. A unital ∗-algebra admits at most one C∗-norm.

(d) Unital C∗-algebras are very rigid structures. In particular, every ∗-
homomorphism π : A → B (which is a pure algebraic notion) between two unital

C∗-algebras is necessarily [6] norm decresing (||π(a)|| ≤ ||a||) thus continuous. Its

image, π(A), is a C∗-subalgebra of B. Finally π is injective if and ony if it is isomet-

ric. The spectra satisfy a certain permanence property [6], with obvious meaning

of the symbols

σB(π(a)) = σπ(A)(a) ⊂ σA(a) , ∀a ∈ A ,

where the last inclusion becomes and equality if π is injective. �

The most evident a posteriori justification of the algebraic approach lies in its

powerfulness [26]. However there have been a host of attempts to account for as-

sumptions AA1 and AA2 and their physical meaning in full generality (see the

study of [32], [27] and [25,29] and especially the work of I. E. Segal [33] based on

so-called Jordan algebras). Yet none seems to be definitive [34].

An evident difference with respect to the standard QM, where states are measures
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on the lattice of elementary propositions, is that we have now a complete identifica-

tion of the notion of state with that of expectation value. This identification would

be natural within the Hilbert space formulation, where the class of observables in-

cludes the elementary ones, represented by orthogonal projectors, and correspond-

ing to “Yes-No” statements. The expectation value of such an observable coincides

with the probability that the outcome of the measurement is “Yes”. The set of

all those probabilities defines, in fact, a quantum state of the system as we know.

However, the analogues of these elementary propositions generally do not belong

to the C∗-algebra of observables in the algebraic formulation. Nevertheless, this is

not an insurmountable obstruction. Referring to a completely general physical sys-

tem and following [27], the most general notion of state, ω, is the assignment of all

probabilities, w
(A)
ω (a), that the outcome of the measurement of the observable A is

a, for all observables A and all of values a. On the other hand, it is known [25] that

all experimental information on the measurement of an observable A in the state ω

– the probabilities w
(A)
ω (a) in particular – is recorded in the expectation values of

the polynomials of A. Here, we should think of p(A) as the observable whose values

are the values p(a) for all values a of A. This characterization of an observable is

theoretically supported by the various solutions to the moment problem in proba-

bility measure theory. To adopt this paradigm we have thus to assume that the set

of observables must include at least all real polynomials p(A) whenever it contains

the observable A. This is in agreement with the much stronger requirement AA1.

4.1.1. The GNS reconstruction theorem

The set of algebraic states on AS is a convex subset in the dual A′
S of AS: if ω1 and

ω2 are positive and normalised linear functionals, ω = λω1 + (1 − λ)ω2 is clearly

still the same for any λ ∈ [0, 1].

Hence, just as we saw for the standard formulation, we can define pure algebraic

states as extreme elements of the convex body.

Definition 162. An algebraic state ω : A → C on the C∗-algebra with unit A is

called a pure algebraic state if it is extreme in the set of algebraic states. An

algebraic state that is not pure is called mixed. �

Surprisingly, most of the entire abstract apparatus introduced, given by a C∗-

algebra and a set of states, admits elementary Hilbert space representations when

a reference algebraic state is fixed. This is by virtue of a famous procedure that

Gelfand, Najmark and Segal came up with, and that we prepare to present [26,27,

25,6].

Theorem 163 (GNS reconstruction theorem). Let A be a C∗-algebra with

unit 11 and ω : A → C a positive linear functional with ω(11) = 1. Then the following

holds.

(a) There exist a triple (Hω, πω,Ψω), where Hω is a Hilbert space, the map πω :

A → B(Hω) a A-representation over Hω and Ψω ∈ Hω, such that:
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(i) Ψω is cyclic for πω. In other words, πω(A)Ψω is dense in Hω,

(ii) 〈Ψω|πω(a)Ψω〉 = ω(a) for every a ∈ A.

(b) If (H, π,Ψ) satisfies (i) and (ii), there exists a unitary operator U : Hω → H
such that Ψ = UΨω and π(a) = Uπω(a)U

−1 for any a ∈ A.

Remark 164. The GNS representation πω : A → B(Hω) is a ∗-homomorphism

and thus (c) in remark 161 applies. In particular πω is norm decreasing and contin-

uous. Moreover, again referring to the same remark, if πω is faithful – i.e., injective

– it is isometric and preserves the spactra of the elements. If a ∈ A is selfadjoint

πω(a) is a selfadjoint operator and its spectrum has the well-known quantum mean-

ing. This meaning, in view of the property of permanence of the spectrum, can

be directly attributed to the spectrum of a ∈ A: If a ∈ A represents an abstract

observable, σ(a) is the set of the possible values attained by a. �

As we initially said, it turns out that different algebraic states ω, ω′ give generally

rise to unitarily inequivalent GNS representations (Hω, πω ,Ψω) and (Hω′ , πω′ ,Ψω′):

There is no isometric surjective operator U : Hω′ → Hω such that

Uπω′(a)U−1 = πω(a) ∀a ∈ A .

The fact that one may simultaneously deal with all these inequivalent representa-

tions is a representation of the power of the algebraic approach with respect to the

Hilbert space framework.

However one may also focus on states referred to a fixed GNS representation. If

ω is an algebraic state on A, every statistical operator on the Hilbert space of a

GNS representation of ω – i.e. every positive, trace-class operator with unit trace

T ∈ B1(Hω) – determines an algebraic state

A ∋ a 7→ tr (Tπω(a)) ,

evidently. This is true, in particular, for Φ ∈ Hω with ||Φ||ω = 1, in which case the

above definition reduces to

A ∋ a 7→ 〈Φ|πω(a)Φ〉ω .

Definition 165. If ω is an algebraic state on the C∗-algebra with unit A, every

algebraic state on A obtained either from a density operator or a unit vector, in

a GNS representation of ω, is called normal state of ω. Their set Fol(ω) is the

folium of the algebraic state ω. �

Note that in order to determine Fol(ω) one can use a fixed GNS representation of

ω. In fact, as the GNS representation of ω varies, normal states do not change, as

implied by part (b) of the GNS theorem.
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4.1.2. Pure states and irreducible representations

To conclude we would like to explain how pure states are characterised in the

algebraic framework. To this end we have the following simple result (e.g., see

[26,27,25,6].

Theorem 166 (Characterisation of pure algebraic states). Let ω be an al-

gebraic state on the C∗-algebra with unit A and (Hω , πω,Ψω) a corresponding GNS

triple. Then ω is pure if and only if πω is irreducible.

The algebraic notion of pure state is in nice agreement with the Hilbert space

formulation result where pure states are represented by unit vectors (in the absence

of superselection rules). Indeed we have the following proposition which make a

comparison between the two notions.

Proposition 167. Let ω be a pure state on the C∗-algebra with unit A and Φ ∈ Hω

a unit vector. Then

(a) the functional

A ∋ a 7→ 〈Φ|πω(a)Φ〉ω ,
defines a pure algebraic state and (Hω , πω,Φ) is a GNS triple for it. In that case,

GNS representations of algebraic states given by non-zero vectors in Hω are all

unitarily equivalent.

(b) Unit vectors Φ,Φ′ ∈ Hω give the same (pure) algebraic state if and only if

Φ = cΦ′ for some c ∈ C, |c| = 1, i.e. if and only if Φ and Φ′ belong to the same

ray.

The correspondence pure (algebraic) states vs. state vectors, automatic in the stan-

dard formulation, holds in Hilbert spaces of GNS representations of pure algebraic

states, but in general not for mixed algebraic states. The following exercise focusses

on this apparent problem.

Exercise 168. Consider, in the standard (not algebraic) formulation, a physical

system described on the Hilbert space H and a mixed state ρ ∈ S(H). The map

ωρ : B(H) ∋ A 7→ tr(ρA) defines an algebraic state on the C∗-algebra B(H).

By the GNS theorem, there exist another Hilbert space Hρ, a representation πρ :

B(H) → B(Hρ) an unit vector Ψρ ∈ Hρ such that

tr(ρA) = 〈Ψρ|πρ(A)Ψρ〉
for A ∈ B(H). Thus it seems that the initial mixed state has been transformed into

a pure state! How is this fact explained?

Solution. There is no transformtion from mixed to pure state because the mixed

state is represented by a vector, Ψρ, in a different Hilbert space, Hρ. Moreover,

there is no Hilbert space isomorphism U : H → Hρ with UAU−1 = πρ(A), so that

U−1Ψρ ∈ H. In fact, the representation B(H) ∋ A 7→ A ∈ B(H) is irreducible,

whereas πρ cannot be irreducible (as it would be if U existed), because the state
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ρ is not an extreme point in the space of non-algebraic states, and so it cannot be

extreme in the larger space of algebraic states. �
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[9] K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, 2012
[10] G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, Vol. 118 (Springer-

Verlag, New York, 1989);
[11] V.S. Varadarajan, Geometry of Quantum Theory, Second Edition, Springer, Berlin

(2007)
[12] Ph. Blanchard, D. Giulini D., E. Joos, C. Kiefer, I.-O. Stamatescu (Eds.): Decoher-

ence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics.
Springer-Verlag, Berlin, (2000)

[13] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics

(Vol I and II, Second Edition). Springer, Berlin (2002)
[14] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math.

(2) 37(4) (1936) 823843;
[15] E.G. Beltrametti, G. Cassinelli, The logic of quantum mechanics. Encyclopedia of

Mathematics and its Applications, vol. 15, Addison-Wesley, Reading, Mass., (1981)
[16] K. Engesser, D. M. Gabbay, D. Lehmann (Eds), Handbook of Quantum Logic and

Quantum Structures. Elsevier, Amsterdam (2009)
[17] G. Mackey, The Mathematical Foundations of Quantum Mechanics. Benjamin, New

York (1963)
[18] C. Piron, Axiomatique Quantique Helv. Phys. Acta 37 439-468 (1964)
[19] J.M., Jauch and C. Piron, On the structure of quantal proposition system Helv. Phys.

Acta 42, 842 (1969)
[20] J.M., Jauch, Foundations of Quantum Mechanics Addison-Wesley Publishing Com-

pany, Reading USA, (1978)

102

http://plato.stanford.edu/


[21] A. Dvurecenskij, Gleasons theorem and its applications. Kluwer academic publishers,
Dordrecht (1992)

[22] A. S. Wightman, Superselection rules; old and new Nuovo Cimento B 110, 751-769,
(1995)

[23] B. Simon, Quantum dynamics: From automorphism to Hamiltonian. Studies in Math-
ematical Physics, Essays in Honor of Valentine Bargmann (ed. E.H. Lieb, B. Simon
and A.S. Wightman), Princeton University Press, Princeton, 327-349 (1976)

[24] A.O. Barut, R. Raczka, Theory of group representations and applications, World
Scientific, 1984

[25] F. Strocchi, An Introduction To The Mathematical Structure Of Quantum Mechanics:

A Short Course For Mathematicians, F. Strocchi. World Scientific, Singapore (2005)
[26] R. Haag, Local Quantum Physics (Second Revised and Enlarged Edition). Springer,

Berlin (1996)
[27] H. Araki,Mathematical Theory of Quantum Fields. Oxford University Press, Oxford,

(2009)
[28] I. Khavkine, V. Moretti, Algebraic QFT in Curved Spacetime and quasifree Hadamard

states: an introduction. Advances in Algebraic Quantum Field Theory by Springer 2015
(Eds R. Brunetti, C. Dappiaggi, K. Fredenhagen, and J.Yngvason)

[29] F. Strocchi, The Physical Principles of Quantum Mechanics. European Physics Jour-
nal Plus 127, 12 (2012)

[30] P. Busch, Quantum states and generalized observables: a simple proof of Gleason’s

theorem. Physical Review Letters 91, 120403 (2003)
[31] P. Busch, M. Grabowski, P.J. Lahti, Operational Quantum Physics. Springer, Berlin

(1995)
[32] G.G, Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory.

Wiley-Interscience, New York (1972)
[33] I. Segal, Postulates for general quantum mechanics, Annals of Mathematics (2), 48,

930-948 (1947)
[34] R.F., Streater, Lost Causes in and beyond Physics, Springer-Verlag, Berlin (2007)

103


	1 Introduction: Summary of elementary facts of QM
	1.1 Physical facts about Quantum Mechanics
	1.1.1 When a physical system is quantum
	1.1.2 General properties of quantum systems

	1.2 Elementary formalism for the finite dimensional case
	1.3 Time evolution
	1.4 Composite systems
	1.5 A first look to the infinite dimensional case, CCR and quantization procedures

	2 Observables in infinite dimensional Hilbert spaces: Spectral Theory
	2.1 Classes of (especially unbounded) operators in Hilbert spaces
	2.2 Spectrum of an operator
	2.3 Spectral measures
	2.4 Spectral Decomposition and Representation Theorems
	2.5 Mesurable functional calculus
	2.6 Elementary formalism for the infinite dimensional case
	2.7 Technical Interemezzo: Three Operator Topologies

	3 More Fundamental Quantum Structures
	3.1 The Boolean logic of CM
	3.2 The non-Boolean Logic of QM, the reason why observables are selfadjoint operators.
	3.3 Recovering the Hilbert space structure
	3.4 States as measures on L(H): Gleason's Theorem
	3.4.1 Trace class operators
	3.4.2 The notion of quantum state and the crucial theorem by Gleason

	3.5 von Neumann algebra of observables, superselection rules
	3.5.1 von Neumann algebras
	3.5.2 Lattices of von Neumann algebras
	3.5.3 General algebra of observables and its centre
	3.5.4 Superselection charges and coherent sectors
	3.5.5 States in the presence of superselection rules

	3.6 Quantum Symmetries: unitary projective representations
	3.6.1 Wigner and Kadison theorems, groups of symmetries
	3.6.2 Groups of quantum symmetries
	3.6.3 One-parameter strongly continuous unitary groups: von Neumann and Stone theorems
	3.6.4 Time evolution, Heisenberg picture and quantum Noether theorem
	3.6.5 Strongly continuous unitary representations of Lie groups, Nelson theorem
	3.6.6 Selfadjoint version of Stone - von Neumann - Mackey Theorem


	4 Just few words about the Algebraic Approach
	4.1 Algebraic formulation
	4.1.1 The GNS reconstruction theorem
	4.1.2 Pure states and irreducible representations



