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Preface

This monograph sums up studies performed in developing the
relativistic theory of gravity (RTG) and presented in refs. [3, 9,
38, 10, 5, 11, 6, 34, 12, 35, 36, 37, 31, 13]. Detailed references
to earlier works, that to a certain extent served as scaffolding
in the construction of RTG, are given in the monograph [10],
written together with prof. M. A. Mestvirishvili and published
in 1989. Therein, also, critical comments are presented con-
cerning general relativity theory (GRT), which still remain in
force. In order to facilitate reading in section 14 we provide
elements of tensor analysis and Riemannian geometry. As a
rule, we make use of the set of units in which G = c = h̄ = 1.
However, in the final expressions we restore the dependence
on the constants G, c, h̄. Throughout the book, Greek letters
assume values 0,1,2,3, while Latin letters assume —1,2,3.

The creation of this monograph advanced together with
the completion of studies of individual issues, so it inevitably
contains recurrences, especially concerning such issues that are
important for understanding the essence of both RTG and
GRT.

The hypothesis underlying RTG asserts that the gravita-
tional field, like all other physical fields, develops in Minkowski
space, while the source of this field is the conserved energy-
momentum tensor of matter, including the gravitational field
itself. This approach permits constructing, in a unique man-
ner, the theory of the gravitational field as a gauge theory.
Here, there arises an effective Riemannian space, which lit-
erally has a field nature. In GRT the space is considered to
be Riemannian owing to the presence of matter, so gravity is
considered a consequence of space–time exhibiting curvature.
The RTG gravitational field has spins 2 and 0 and represents a
physical field in the Faraday–Maxwell spirit. The complete set
of RTG equations follows directly from the least action prin-
ciple. Since all physical fields develop in Minkowski space, all
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fundamental principles of physics — the integral conservation
laws of energy–momentum and of angular momentum — are
strictly obeyed in RTG. In the theory the Mach principle is
realized: an inertial system is determined by the distribution
of matter. Unlike GRT, acceleration has an absolute sense.
Inertial and gravitational forces are separated, and they differ
in their nature. The theory, unlike GRT, provides a unique
explanation for all gravitational effects in the Solar system.
GRT does not comply with the equivalence principle,
does not explain the equality of the inert and active
gravitational masses, and gives no unique prediction
for gravitational effects. It does not contain the usual
conservation laws of energy–momentum and of angu-
lar momentum of matter.

It should be especially noted that the known post-New-
tonian approximation do satisfy the equivalence principle, do
provide a unique description of gravitational effects in the So-
lar system, and also establish the equality between the inertial
and active gravitational masses. However, it does not follow
uniquely from the GRT equations, since its derivation relies on
additional assumptions, that do not follow from the theory, i.e.
a departure occurs beyond the limits of GRT, which is based
on the gravitational field being represented as a physical field,
although this is not so in GRT. Therefore, this approxima-
tion cannot be considered a unique consequence of the GRT
equations. It has rather been guessed, then derived from the
theory, while, according to RTG, the post–Newtonian approx-
imation follows uniquely from equations of the theory. Thus,
the post–Newtonian approximation, previously applied for the
description of gravitational effects follows directly from our
theory. RTG introduces essential changes into the character
of the development of the Universe and into the collapse of
large masses.

Analysis of the development of a homogeneous and isotropic
Universe within RTG leads to the conclusion that the Universe
is infinite, and that it is “flat”. Its development proceeds cycli-
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cally from a certain maximum density down to a minimum and
so on. Thus, no pointlike Big Bang occurred in the past. There
existed a state of high density and high temperature at each
point in space.

According to RTG, the so-called cosmological “expansion”
of the Universe, observed by the red shift, is explained by
changes in the gravitational field, but not by relative motion
— galaxies escaping from each other, which actually does not
take place. Matter in the Universe is in a state of rest rela-
tive to an inertial coordinate system. The peculiar velocities
of galaxies relative to an inertial system arose owing to a cer-
tain structure of the inhomogeneity of the distribution of mat-
ter during the period, when the Universe became transparent.
This means that in the past the distance between galaxies was
never zero. The theory predicts the existence in the Universe
of a large hidden mass of “dark matter”. According to RGT,
“black holes” cannot exist: a collapsing star cannot disappear
beyond its gravitational radius. Objects with large masses can
exist, and they are characterized not only by mass, but also
by a distribution of matter density. Since, in accordance with
GRT, objects with masses exceeding three solar masses trans-
form, at the conclusive stage of their evolution, into “black
holes”, an object found to have a large mass is usually at-
tributed to “black holes”. Since RTG predictions concerning
the behaviour of large masses differ essentially from GRT pre-
dictions, observational data of greater detail are required for
testing the conclusions of theory. Thus, for example, in RTG
spherically symmetric accretion of matter onto a body of large
mass, that is at its conclusive stage of evolution (when the nu-
clear resources are exhausted), will be accompanied by a sig-
nificant release of energy owing to the fall of matter onto the
body’s surface, while in GRT the energy release in the case of
spherically symmetric accretion of matter onto a “black hole”
is extremely small, since the falling matter takes the energy
with it into the “black hole”. Observational data on such ob-
jects could answer the question whether “black holes” exist in
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Nature, or not. Field concepts of gravity necessarily require in-
troduction of the graviton rest mass, which can be determined
from observational data: the Hubble “constant” and the decel-
eration parameter q. According to the theory, the parameter
q can only be positive, at present, i.e. deceleration of “ex-
pansion” of the Universe takes place, instead of acceleration.
For this reason, the latest observational data on acceleration
of the “expansion” must be checked carefully, since the con-
clusions of theory concerning “deceleration” follow from the
general physical principles mentioned above.

I sincerely wish to thank my teacher acad. N.N. Bogolubov
who, during the hard years of searches and struggle, provided
spiritual support as well as valuable advice that stimulated the
research.

I am grateful to Providence for my wife Anna Nikolaevna,
who for over forty years was my support.

I am profoundly grateful to prof. M.A. Mestvirishvili for
many years of joint work on the construction of relativistic
theory of gravity.

I am grateful to acad. A.M. Baldin, acad. V.S. Vladimirov,
acad. V.G. Kadyshevsky, acad. A.N. Tavkhelidze for valuable
discussions.

I take advantage of the occasion to express my deep grati-
tude to professors S.S. Gershtein, V.I. Denisov, Yu.M. Losku-
tov, to associate professor A.A. Vlasov and Candidate of phy-
sics and mathematics Yu.V. Chugreev for common work and
for numerous discussions of the problems at issue. I am also
grateful to professors V.A. Petrov, N.E.Tyurin, A.A. Tyapkin
and O.A. Khrustalev for useful discussions.

I express profound gratitude to acad. A.M. Baldin, corre-
sponding member of RAS S.S. Gershtein and prof. M.A. Mest-
virishvili, who read the entire manuscript and made a number
of valuable advices and comments.

A.A. Logunov
April 2000



Introduction

Since construction of the relativistic theory of gravity (RTG) is
based on special relativity theory (SRT), we shall deal with the
latter in greater detail and in doing so we shall examine both
the approach of Henri Poincaré and that of Albert Einstein.
Such an analysis will permit a more profound comprehension
of the difference between these approaches and will make it
possible to formulate the essence of relativity theory.

In analyzing the Lorentz transformations, H. Poincaré sho-
wed that these transformations, together with all spatial ro-
tations, form a group that does not alter the equations of
electrodynamics. Richard Feynman wrote the following about
this: “Precisely Poincaré proposed investigating what could be
done with the equations without altering their form. It was
precisely his idea to pay attention to the symmetry properties
of the laws of physics” 1. H.Poincaré did not restrict himself to
studying electrodynamics; he discovered the equations of rel-
ativistic mechanics and extended the Lorentz transformations
to all the forces of Nature. Discovery of the group, termed
by H.Poincaré the Lorentz group, made it possible for him
to introduce four-dimensional space-time with an invariant
subsequently termed the interval

dσ2 = (dX0)2 − (dX1)2 − (dX2)2 − (dX3)2 . (α)

Precisely from the above it is absolutely clear that time and
spatial length are relative.

Later, a further development in this direction was made by
Herman Minkowski, who introduced the concepts of timelike
and spacelike intervals. Following H.Poincaré and H.Minkow-
ski exactly, the essence of relativity theory may be formulated
thus: all physical phenomena proceed in space–time,
the geometry of which is pseudo-Euclidean and is de-
termined by the interval (α). Here it is important to em-

1R.Feynman. The character of physical laws. M.:Mir, 1968, p.97.
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phasize, that the geometry of space-time reflects those
general dynamic properties, that represent just what
makes it universal. In four-dimensional space (Minkowski
space) one can adopt a quite arbitrary reference frame

Xν = f ν(xµ) ,

realizing a mutually unambiguous correspondence with a Ja-
cobian differing from zero. Determining the differentials

dXν =
∂f ν

∂xµ
dxµ ,

and substituting these expressions into (α) we find

dσ2 = γµν(x)dx
µdxν , where

γµν(x) = ǫσ
∂fσ

∂xµ
∂fσ

∂xν
, ǫσ = (1,−1,−1,−1) . (β)

It is quite evident that the transition undergone to an ar-
bitrary reference system did not lead us beyond the limits of
pseudo-Euclidean geometry. But hence it follows that non-
inertial reference systems can also be applied in SRT. The
forces of inertia arising in transition to an accelerated refer-
ence system are expressed in terms of the Christoffel symbols of
Minkowski space. The representation of SRT stemming from
the work of H.Poincaré and H.Minkowski was more general
and turned out to be extremely necessary for the construction
of SRT, since it permitted introduction of the metric tensor
γµν(x) of Minkowski space in arbitrary coordinates and thus
made it possible to introduce in a covariant manner the grav-
itational field, upon separation of the forces of inertia from
gravity.

From the point of view of history it must be noted that
in his earlier works 2, “The measurement of time” and “The

2H.Poincaré. The principle of relativity. M.:Atomizdat, 1973, pp.19,
33.
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present and future of mathematical physics”, H.Poincaré dis-
cussed in detail issues of the constancy of the velocity of light,
of the simultaneity of events at different points of space deter-
mined by the synchronization of clocks with the aid of a light
signal. Later, on the basis of the relativity principle, which he
formulated in 1904 for all physical phenomena, as well as on
the work published by H.Lorentz the same year, H.Poincaré
discovered a transformation group in 1905 and termed
it the Lorentz group. This permitted him to give the
following essentially accurate formulation of the rela-
tivity theory: the equations of physical processes must
be invariant relative to the Lorentz group. Precisely
such a formulation was given by A.Einstein in 1948: “With
the aid of the Lorentz transformations the special principle of
relativity can be formulated as follows: The laws of Nature are
invariant relative to the Lorentz transformation (i.e. a law
of Nature should not change if it is referred to a new inertial
reference frame with the aid of the Lorentz transformation for
x, y, z, t)” 3.

The existence of a group of coordinate-time transforma-
tions signifies that there exists an infinite set of equivalent
(inertial) reference frames related by the Lorentz transforma-
tions. From the invariance of equations it follows, in a trivial
manner, that physical equations in the reference frames x and
x′, related by the Lorentz transformations, are identical. But
this means that any phenomenon described both in x and x′

reference systems under identical conditions will yield identi-
cal results, i.e. the relativity principle is satisfied in a triv-
ial manner. Certain, even prominent, physicists understood
this with difficulty not even long ago, while others have not
even been able to. There is nothing strange in this fact, since
any study requires certain professionalism. What is surprising
is the following: they attempt to explain their incomprehen-

3Einstein A. Collection of scientific works, Moscow: Nauka, 1966,
vol.2, art.133, p.660.
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sion, or the difficulty they encountered in understanding, by
H.Poincaré allegedly “not having taken the decisive step”, “not
having gone to the end”. But these judgements, instead of the
level of the outstanding results achieved by H.Poincaré in rel-
ativity theory, characterize their own level of comprehension
of the problem.

Precisely for this reason W.Pauli wrote the following in
1955 in connection with the 50-th anniversary of relativity
theory: “Both Einstein and Poincaré relied on the preparatory
works performed by H.A.Lorentz, who was very close to the
final result, but was not able to take the last decisive step. In
the results, obtained by Einstein and Poincaré independently
of each other, being identical I see the profound meaning of the
harmony in the mathematical method and analysis performed
with the aid of thought experiments and based on the entire set
of data of physical experiments” 4.

Detailed investigation by H.Poincaré of the Lorentz group
invariants resulted in his discovery of the pseudo-Euclidean
geometry of space-time. Precisely on such a basis, he estab-
lished the four-dimensionality of physical quantities: force, ve-
locity, momentum, current. H.Poincaré’s first short work ap-
peared in the reports of the French Academy of sciences before
A.Einstein’s work was even submitted for publication. That
work contained an accurate and rigorous solution of the prob-
lem of electrodynamics of moving bodies, and at the same time
it extended the Lorentz transformations to all natural forces,
of whatever origin they might be. Very often many historians,
and, by the way, physicists, also, discuss priority issues. A very
good judgement concerning this issue is due to academicians
V.L.Ginzburg and Ya.B.Zel’dovich, who in 1967 wrote:“Thus,
no matter what a person has done himself, he cannot claim

4W.Pauli. Essays in physics. M.:Nauka, 1975, p.189.
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priority, if it later becomes known that the same result was
obtained earlier by others” 5.

A.Einstein proceeded toward relativity theory from an anal-
ysis of the concepts of simultaneity and of synchronization for
clocks at different points in space on the basis of the principle
of constancy of the velocity of light. ¡¡Each ray of light travels
in a reference frame at “rest” with a certain velocity V , inde-
pendently of whether this ray of light is emitted by a body at
rest or by a moving body.¿¿ But this point cannot be consid-
ered a principle, since it implies a certain choice of reference
frame, while a physical principle should clearly not depend
on the method of choosing the reference frame. In essence,
A.Einstein accurately followed the early works of H.Poincaré.
However, within such an approach it is impossible to arrive at
non-inertial reference frames, since in such reference frames it
is impossible to take advantage of clock synchronization, so the
notion of simultaneity loses sense, and, moreover, the velocity
of light cannot be considered constant.

In a reference frame undergoing acceleration the proper
time dτ , where

dσ2 = dτ 2 − sikdx
idxk, dτ =

γ0αdx
α

√
γ00

, sik = −γik +
γ0iγ0k

γ00

is not a complete differential, so the synchronization of clocks
at different points in space depends on the synchronization
path. This means that such a concept cannot be applied for
reference frames undergoing acceleration. It must be stressed
that the coordinates in expression (β) have no metric meaning,
on their own. Physically measurable quantities must be con-
structed with the aid of coordinates and the metric coefficients
γµν . But all this remained misunderstood for a long time in
SRT, since it was usual to adopt A.Einstein’s approach, in-
stead of the one of H.Poincaré and H.Minkowski. Thus, the

5V.L.Ginzburg, Ya.B.Zel’dovich. Familiar and unfamiliar Zel’dovich.
M.:Nauka, 1993, p.88.
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starting points introduced by A.Einstein were of an exclusively
limited and partial nature, even though they could create an
illusion of simplicity. It was precisely for this reason that even
in 1913 A.Einstein wrote: “In usual relativity theory only lin-
ear orthogonal transformations are permitted” 6. Or somewhat
later, in the same year, he writes: “In the original relativity
theory the independence of physical equations of the specific
choice of reference system is based on postulating the funda-
mental invariant ds2 =

∑

dx2
i , while now the issue consists

in constructing a theory (general relativity theory is implied –
A.L.), in which the role of the fundamental invariant is per-
formed by a linear element of the general form

ds2 =
∑

i,k

gikdx
idxk ” 7.

A.Einstein wrote something similar in 1930: “In special rel-
ativity theory only such coordinate changes (transformations)
are allowed that provide for the quantity ds2 (a fundamental
invariant) in the new coordinates having the form of the sum
of square differentials of the new coordinates. Such transfor-
mations are called Lorentz transformations” 8.

Hence it is seen that the approach adopted by A.Einstein
did not lead him to the notion of space-time exhibiting a
pseudo-Euclidean geometry. A comparison of the approaches
of H.Poincaré and A.Einstein to the construction of SRT clearly
reveals H.Poincaré’s approach to be more profound and gen-
eral, since precisely H.Poincaré had defined the pseudo-Eu-
clidean structure of space-time. A.Einstein’s approach essen-
tially restricted the boundaries of SRT, but, since the exposi-
tion of SRT in the literature usually followed A.Einstein, SRT

6Einstein A. Collection of scientific works. Moscow: Nauka, 1965,
vol.1, art.21, p.232.

7Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.1, art.22,p.269.

8Einstein A. Collection of scientific works, Moscow: Nauka, 1966,
vol.2, art.95, p.281.
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was quite a long time considered valid only in inertial reference
systems. Minkowski space was then treated like a useful geo-
metric interpretation or like a mathematical formulation of the
principles of SRT within the approach of Einstein. Let us now
pass over to gravity. In 1905 H.Poincaré wrote: “... that forces
of whatever origin, for example, the forces of gravity, behave
in the case of uniform motion (or, if you wish, under Lorentz
transformations) precisely like electromagnetic forces” 9. This
is precisely the path we shall follow.

A.Einstein, having noticed the equality of inertial and grav-
itational masses, was convinced that the forces of inertia and
of gravity are related, since their action is independent of a
body’s mass. In 1913 he arrived at the conclusion that, if in
expression (α) “... we introduce new coordinates x1, x2, x3, x4,
with the aid of some arbitrary substitution, then the motion
of a point relative to the new reference frame will proceed in
accordance with the equation

δ{
∫

ds} = 0 ,

and
ds2 =

∑

µ,ν

gµνdx
µdxν .”

and he further pointed out: ¡¡The motion of a material point in
the new reference system is determined by the quantities gµν,
which in accordance with the preceding paragraphs should be
understood as the components of the gravitational field, as soon
as we decide to consider this new system to be “at rest”¿¿ 10.
Identifying in such a manner the metric field, obtained
from (α) with the aid of coordinate transformations,
and the gravitational field is without physical grounds,
since transformations of coordinates do not lead us
beyond the framework of pseudo-Euclidean geometry.

9H.Poincaré. Special relativity principle. M.:Atomizdat, 1973, p.152.
10Einstein A. Collection of scientific works, Moscow: Nauka, 1965,

vol.1, art.23, p.286.
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From our point of view, it is not permitted to consider such
a metric field as the gravitational field, since this contradicts
the very essence of the concept of a field as a physical reality.
Therefore, it is impossible to agree with the following reasoning
of A.Einstein: ¡¡The gravitational field “exists” with respect to
the system K ′ in the same sense as any other physical quantity
that can be defined in a certain reference system, even though
it does not exist in system K. There is nothing strange, here,
and it may be readily demonstrated by the following example
taken from classical mechanics. Nobody doubts the “reality”
of kinetic energy, since otherwise it would be necessary to re-
nounce energy in general. It is clear, however, that the kinetic
energy of bodies depends on the state of motion of the reference
system: by an appropriate choice of the latter it is evidently
possible to provide for the kinetic energy of uniform motion
of a certain body to assume, at a certain moment of time, a
given positive or zero value set beforehand. In the special case,
when all the masses have equal in value and equally oriented
velocities, it is possible by an appropriate choice of the refer-
ence system to make the total kinetic energy equal to zero. In
my opinion the analogy is complete¿¿ 11.

As we see, Einstein renounced the concept of a classical
field, such as the Faraday–Maxwell field possessing density of
energy-momentum, in relation to the gravitational field. Pre-
cisely this path led him up to the construction of GRT, to
gravitational energy not being localizable, to introduction of
the pseudotensor of the gravitational field. If the gravitational
field is considered as a physical field, then it, like all other
physical fields, is characterized by the energy-momentum ten-
sor tµν . If in some reference frame, for instance, K ′, there ex-
ists a gravitational field, this means that certain components
(or all of them) of the tensor tµν differ from zero. The tensor
tµν cannot be reduced to zero by a coordinate transformation,

11Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.1, art.46, p.620.
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i..e, if a gravitational field exists, then it represents a physical
reality, and it cannot be annihilated by a choice of reference
system. It is not correct to compare such a gravitational field
with kinetic energy, since the latter is not characterized by a
covariant quantity. It must be noted that such a comparison
is not admissible, also, in GRT, since the gravitational field in
this theory is characterized by the Riemann curvature tensor.
If it differs from zero, then the gravitational field exists, and
it cannot be annihilated by a choice of reference system, even
locally.

Accelerated reference systems have played an important
heuristic role in A.Einstein’s creative work, although they have
nothing to do with the essence of GRT. By identifying accel-
erated reference systems to the gravitational field, A.Einstein
came to perceive the metric space-time tensor as the principal
characteristic of the gravitational field. But the metric ten-
sor reflects both the natural properties of geometry and the
choice of reference system. In this way the possibility arises of
explaining the force of gravity kinematically, by reducing it to
the force of inertia. But in this case it is necessary to renounce
the gravitational field as a physical field. “Gravitational fields
(as A.Einstein wrote in 1918) may be set without introducing
tensions and energy density.” 12. But that is a serious loss,
and one cannot consent to it. However, as we shall further
see, this loss can be avoided in constructing RTG.

Surprisingly, even in 1933 A.Einstein wrote: ¡¡In special
Relativity theory — as shown by H.Minkowski — this metric
was quasi-Euclidean, i.e. the square “length” ds of a linear ele-
ment represented a certain quadratic function of the coordinate
differentials. If, on the other hand, new coordinates are intro-
duced with the aid of a linear transformation, then ds2 remains
a homogeneous function of the coordinate differentials, but the
coefficients of this function (gµν) will no longer be constant,

12Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.1, art.47, p.627.
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but certain functions of the coordinates. From a mathematical
point of view this means that the physical (four-dimensional)
space possesses a Riemannian metric¿¿ 13.

This is certainly wrong, since a pseudo-Euclidean metric
cannot be transformed into a Riemannian metric by transfor-
mation of the coordinates. But the main point, here, con-
sists in something else, namely, in that in this way, thanks to
his profound intuition, A.Einstein arrived at the necessity of
introducing precisely Riemannian space, since he considered
the metric tensor gµν of this space to describe gravity. This
was essentially how the tensor nature of gravity was revealed.
The unity of the Riemannian metric and gravity is the main
principle underlying general relativity theory. V.A.Fock wrote
about this principle: “... precisely this principle represents
the essence of Einstein’s theory of gravity” 14. From a general
point of view, however, the answer to the following question
still remains unclear: why is it necessary to relate gravity pre-
cisely to Riemannian space, and not to any other.

The introduction of Riemannian space permitted using the
scalar curvature R as the Lagrangian function and, with the
aid of the least action principle, to obtain the Hilbert–Einstein
equation. Thus, the construction of Einstein’s general relativ-
ity theory was completed. Here, as particularly stressed by
J.L.Synge: “In Einstein’s theory the presence or absence of a
gravitational field depends on whether the Riemann tensor dif-
fers from or equals to zero. This is an absolute property, which
is in no way related to the world line of any observer” 15.

In GRT, however, difficulties arose with the conservation
laws of energy-momentum and angular momentum. D.Hilbert
wrote in this connection: “... I claim that within general rel-

13Einstein A. Collection of scientific works, Moscow: Nauka, 1966,
vol.2, art.110, p.405.

14V.A.Fock. Theory of space, time and gravity. M.:Gostekhizdat,
1961, p.308.

15J.L.Synge. Relativity: the general theory. M.:Foreign literature
publishers, 1963, p.9.
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ativity theory, i.e. in the case of general invariance of the
Hamiltonian function, there definitely exist no energy equa-
tions ... corresponding to the energy equations in orthogonal-
invariant theories, I could even point to this circumstance as
a characteristic feature of general relativity theory” 16. All the
above is explained by the absence in Riemannian space of the
ten-parameter group of motion of space-time, so it is essen-
tially impossible to introduce energy-momentum and angular
momentum conservation laws, similar to those that hold valid
in any other physical theory.

Another feature peculiar to GRT, as compared to known
theories, consists in the presence of second-order derivatives
in the Lagrangian function R. About fifty years ago Nathan
Rosen demonstrated that if, together with the Riemannian
metric gµν one introduces the metric γµν of Minkowski space,
then it becomes possible to construct the scalar density of the
Lagrangian of the gravitational field, which will not contain
derivatives of orders higher than one. Thus, for example, he
constructed such a density of the Lagrangian which led to the
Hilbert-Einstein equations. Thus came into being the bimetric
formalism. However, such an approach immediately compli-
cated the problem of constructing a theory of gravity, since,
when using the tensors gµν and γµν , one can write out a large
number of scalar densities, and it is absolutely not clear which
scalar density must be chosen as the Lagrangian density for
constructing the theory of gravity. Although the GRT math-
ematical apparatus does permit introducing, instead of ordi-
nary derivatives, covariant derivatives of Minkowski space, the
metric γµν not being present in the Hilbert-Einstein equations
renders its utilization in GRT devoid of any physical meaning,
because the solutions for the metric gµν are independent of the
choice of γµν . It must be noted that substitution of covariant
derivatives for ordinary derivatives in Minkowski space leaves
the Hilbert-Einstein equations intact. This is explained by

16V.P.Vizgin. Relativistic theory of gravity. M.:Nauka, 1981, p.319.
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the fact that, if in Minkowski space one substitutes covariant
derivatives for ordinary ones in the Riemann curvature tensor,
it will not change. Such a substitution in the Riemann tensor
is nothing, but an identical transformation. Precisely for this
reason such a freedom in writing out the Riemann tensor can-
not be taken as an advantage within the framework of GRT,
since the metric tensor of Minkowski space does not enter into
the Hilbert-Einstein equations.

In constructing RTG, this freedom in writing the Riemann
tensor turns out to be extremely necessary. But in this case
the metric of Minkowski space enters into the equations of
the gravitational field, and the field itself is considered as a
physical field in Minkowski space. In GRT we only deal with
the metric of Riemannian space as the main characteristic of
gravity, in which both the features of geometry itself and the
choice of reference frame are reflected. When the gravitational
interaction is switched off, i.e. when the Riemann curvature
tensor equals zero, we arrive at Minkowski space. It is precisely
for this reason that in GRT the problem arises of satisfying
the equivalence principle, since it is impossible to determine
in which reference frame (inertial or accelerated) we happened
to be when the gravitational field was switched off.

The relativistic theory of gravity, presented in this work is
constructed as a field theory of the gravitational field within
the framework of special relativity theory. The starting point
is the hypothesis that the energy-momentum tensor — which
is a universal characteristic of matter — serves as the source of
gravity. The gravitational field is considered to be a universal
physical field with spins 2 and 0, owing to the action of which
the effective Riemannian space arises. This permits to find the
gauge group and to construct unambiguously the Lagrangian
density of the gravitational field. The set of equations of this
theory is generally covariant and form-invariant with respect
to the Lorentz group. Here, it is necessary in the theory to
introduce the graviton mass. The graviton mass essentially in-

20



fluences the evolution of the Universe and alters the character
of the gravitational collapse.

The goal of this work is a further development of the ideas
by H.Poincaré, H.Minkowski, A.Einstein, D.Hilbert, N.Rosen,
V.A.Fock, S.Gupta, V.Thirring, R.Feynman, S.Weinberg in
the domain of theory of relativity and gravity.



1. The geometry of space-time

In Chapter II, “Space and time”, of his book “Recent ideas”,
H.Poincaré wrote: “The principle of physical relativity may
serve for defining of space. It can be said to provide us with
a novel instrument for measurement. I shall explain. How
can a solid body serve for measuring or, to be more correct,
for constructing space? The point is the following: in trans-
ferring a solid body from one place to another we, thus, note
that it can be first applied to one figure, then to another, and
we conventionally agree to consider these figures equal to each
other. Geometry originated from this convention. Geometry is
nothing but a science of mutual interrelationships between such
transformations or, speaking in the mathematical language, a
science of the structure of the group formed by these transfor-
mations, i.e. of the group of motions of solid bodies.

Now, consider another group, the group of transformations
not altering our differential equations. We arrive at a new way
for defining the equality between two figures. We no longer
say: two figures are equal, if one and the same solid body can
be applied to both one and the other figures. We shall say: two
figures are equal, when one and the same mechanical system,
so distant from its neighbours that it may be considered iso-
lated, being first thus situated so its material points reproduce
the first figure, and then so they reproduce the second figure,
behaves in the second case precisely like in the first. Do these
two approaches differ in essence? No.

A solid body represents a mechanical system, just like any
other. The only difference between the previous and the new
definitions of space consists in that the latter is broader, since
it allows substitution of any mechanical system for the solid
body. Moreover, our new convention not only defines space,
but time, also. It provides us with an explanation of what are
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two equal time intervals or of what is represented by a time
interval twice as long as another” 17.

Precisely in this way, by discovering the group of transfor-
mations not altering the Maxwell–Lorentz equations, H.Poin-
caré introduced the notion of four-dimensional space-time ex-
hibiting pseudo-Euclidean geometry. This concept of geometry
was later developed by H.Minkowski.

We have chosen the pseudo-Euclidean geometry of space-
time as the basis of the relativistic theory of gravity presently
under development, since it is the fundamental Minkowski
space for all physical fields, including the gravitational field.
Minkowski space cannot be considered to exist a priori, since
it reflects the properties of matter and, hence, cannot be sep-
arated from it. Although formally, precisely owing to the
structure of space being independent of the form of matter,
it is sometimes dealt with abstractly, separately from mat-
ter. In Galilean coordinates of an inertial reference system in
Minkowski space, the interval that characterizes the structure
of geometry and that is an invariant by construction, has the
form

dσ2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 .

Here dxν represent differentials of the coordinates. In spite of
the fact that the interval dσ, as a geometric characteristic of
space-time, is independent of the choice of reference system,
which is due to its very construction, one can still encounter
in modern text-books on theoretical physics (see, for instance,
Ref. [4]) “proofs” of the interval being the same in all inertial
reference systems although it is an invariant and is indepen-
dent of the choice of reference system.

Even such an outstanding physicist as L.I.Mandelstam
wrote in his book [17]: “... special relativity theory cannot an-
swer the question, how a clock behaves when moving with ac-
celeration and why it slows down, because it does not deal with
reference systems moving with acceleration”. The incorrect as-

17H.Poincaré. On science. M.:Nauka, 1938, p.427.
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sertions in [27, 19, 20, 30] can be explained by Minkowski space
being considered by many people to be only some formal geo-
metrical interpretation of SRT within A.Einstein’s approach,
instead of a revelation of the geometry of space-time. The
issues of such limited concepts as the constancy of the speed
of light, the synchronization of clocks, the speed of light be-
ing independent of the motion of its source became the most
discussed topics. All this narrowed the scope of SRT and re-
tarded the understanding of its essence. And its essence
actually consists only in that the geometry of space-
time, in which all physical processes occur, is pseudo-
Euclidean.

In an arbitrary reference system the interval assumes the
form

dσ2 = γµν(x)dx
µdxν ,

γµν(x) is the metric tensor of Minkowski space. We note that
one cannot, in principle, speak of the synchronization of clocks
or of the constancy of the speed of light in an non-inertial
reference system [7]. Most likely, precisely the lacking clarity
on the essence of SRT led A.Einstein to concluding: “that
within the framework of special relativity theory there is no
place for a satisfactory theory of gravity” 18. Free motion of a
test body in an arbitrary reference system takes place along a
geodesic line of Minkowski space:

DUν

dσ
=
dUν

dσ
+ γναβU

αUβ = 0 ,

where Uν =
dxν

dσ , γναβ(x) are Christoffel symbols defined by
the expression

γναβ(x) =
1

2
γνσ(∂αγβσ + ∂βγασ − ∂σγαβ) .

18Einstein A. Collection of scientific works. Moscow: Nauka, 1967,
vol.4, art.76, p.282.
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In 1921, in the article “Geometry and experiment”, A. Ein-
stein wrote: “The issue of whether this continuum has an Eu-
clidean, Riemannian or any other structure is a physical is-
sue, which can only be settled by experiment, and not an issue
of convention concerning a choice of simple expedience...” 19.
This is, naturally, correct. But there immediately arises a
question: what experiment? There may exist quite many ex-
perimental facts. Thus, for example, it is possible, in principle,
by studying the motion of light and of test bodies, to establish
unambiguously the geometry of space-time. Must a physical
theory be based on it? At first sight, the answer to this ques-
tion could be positive. And the issue would seem settled. Pre-
cisely such was the path that A.Einstein took in constructing
GRT. Test bodies and light move along geodesic lines of Rie-
mannian space-time. So he based the theory on Riemannian
space. However, the situation is much more complex. All types
of matter satisfy conservation laws of energy-momentum and
of angular momentum. Precisely these laws, that originated
from a generalization of numerous experimental data, charac-
terize the general dynamic properties of all forms of matter by
introducing universal characteristics permitting quantitative
description of the transformation of some forms of matter into
others. And all this also represents experimental facts, which
have become fundamental physical principles. What should
be done with them? If one follows A.Einstein and retains Rie-
mannian geometry as the basis, then they must be discarded.
That price would be too high. It is more natural to retain them
for all physical fields, including the gravitational field. But, in
this case, theory must, then, be based on Minkowski space,
i.e. on the pseudo-Euclidean geometry of space-time. We
have adopted precisely this approach, following H.Poincaré.
The fundamental principles of physics, that reflect the nu-
merous available experimental facts, indicate what geometry

19Einstein A. Collection of scientific works. Moscow: Nauka, 1965,
vol.2, art.61, p.87.
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of the space-time it is actually necessary to use as the ba-
sis of gravity theory. Thus, the issue of the structure of the
space-time geometry is actually a physical issue, that should
be resolved by experiment, and, from our point of view, the
structure of the geometry of space-time is not determined by
specific experimental data on the motion of test bodies and
of light, but by fundamental physical principles based on the
entire set of existing experimental facts. It is precisely here
that our initial premises for constructing the theory of gravity
differ completely from the ideas applied by A.Einstein as the
basis of GRT. But they are fully consistent with the ideas of
H.Poincaré.

We have chosen the pseudo-Euclidean geometry of space-
time as the basis of the relativistic theory of gravity, but that
certainly does not mean that the effective space will also be
pseudo-Euclidean. The influence of the gravitational field may
be expected to lead to a change in the effective space. We
shall deal with this issue in detail in the next section. The
metric of Minkowski space permits introducing the concepts
of standard length and time intervals, when no gravitational
field is present.



2. The energy-momentum tensor of

matter as the source of the

gravitational field

Owing to the existence in Minkowski space of the Poincaré ten-
parameter group of motion, there exist for any closed physical
system ten integrals of motion, i.e. the conservation laws of
energy-momentum and angular momentum hold valid. Any
physical field in Minkowski space is characterized by the den-
sity of the energy-momentum tensor tµν , which is a general
universal characteristic of all forms of matter that satisfies
both local and integral conservation laws. In an arbitrary ref-
erence system the local conservation law is written in the form

Dµt
µν = ∂µt

µν + γναβt
αβ = 0 .

Here tµν is the total conserved density of the energy-momentum
tensor for all the fields of matter; Dµ represents the covariant
derivative in Minkowski space. Here and further we shall al-
ways deal with the densities of scalar and tensor quantities
defined in accordance with the rule

φ̃ =
√−γφ , φ̃µν =

√−γφµν , γ = det(γµν) .

The introduction of densities is due to an invariant volume el-
ement in Minkowski space being determined by the expression

√−γd4x ,

while an invariant volume element in Riemannian space is
given by the expression

√
−gd4x , g = det(gµν) .

Therefore, the principle of least action assumes the form

δS = δ
∫

Ld4x = 0 ,
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where L is the scalar density of the Lagrangian of matter. In
deriving Euler’s equations with the aid of the principle of least
action we shall automatically have to deal precisely with the
variation of the Lagrangian density. According to D.Hilbert,
the density of the energy-momentum tensor tµν is expressed
via the scalar density of the Lagrangian L as follows:

tµν = −2
δL

δγµν
, (2.1)

where

δL

δγµν
=

∂L

∂γµν
− ∂σ

(

∂L

∂γµν,σ

)

, γµν,σ =
∂γµν
∂xσ

.

Owing to gravity being universal, it would be nat-
ural to assume the conserved density of the energy-
momentum tensor of all fields of matter, tµν, to be
the source of the gravitational field. Further, we shall
take advantage of the analogy with electrodynamics, in which
the conserved density of the charged vector current serves as
the source of the electromagnetic field, while the field itself is
described by the density of the vector potential Ãν :

Ãν = (φ̃, Ã) .

In the absence of gravity, Maxwell’s equations of electrody-
namics will have the following form in arbitrary coordinates:

γ αβDαDβÃ
ν + µ2Ãν = 4πjν ,

DνÃ
ν = 0 ,

Here, for generalization we have introduced the parameter µ,
which, in the system of units h̄ = c = 1 is the photon rest
mass.

Since we have decided to consider the conserved density of
the energy-momentum tµν to be the source of the gravitational
field, it is natural to consider the gravitational field a tensor
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field and to describe it by the density of the symmetric tensor
φ̃µν :

φ̃µν =
√−γφµν ,

and in complete analogy with Maxwell’s electrodynamics the
equations for the gravitational field can be written in the form

γ αβDαDβφ̃
µν +m2φ̃µν = λtµν , (2.2)

Dµφ̃
µν = 0 . (2.3)

Here λ is a certain constant which, in accordance with the
principle of correspondence to Newton’s law of gravity, should
be equal to 16π. Equation (2.3) excludes spins 1 and 0′, only
retaining those polarizational properties of the field, that cor-
respond to spins 2 and 0.

The density of the energy-momentum tensor of matter tµν

consists of the density of the energy-momentum tensor of the
gravitational field, tµνg , and of the energy-momentum tensor of
matter, tµνM . We understand matter to comprise all the fields
of matter, with the exception of the gravitational field,

tµν = tµνg + tµνM .

The interaction between the gravitational field and matter is
taken into account in the density of the energy-momentum
tensor of matter, tµνM .

Back in 1913 A.Einstein wrote [28]: “... the tensor of the
gravitational field ϑµν is the source of a field together with the
tensor of material systems Θµν. The energy of the gravita-
tional occupying a special position as compared with all other
forms of energy would result in inadmissible consequences”
[28]. We have adopted precisely this idea of A.Einstein as the
basis for constructing the relativistic theory of gravity (RTG).
In constructing general relativity theory (GRT) A.Einstein
was not successful, since instead of the energy-momentum ten-
sor of the gravitational field there arose in GRT the pseu-
dotensor of the gravitational field. All this happened because
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A.Einstein did not consider the gravitational field a physical
field (such as the Faraday–Maxwell field) in Minkowski space.
Precisely for this reason the equations of GRT do not con-
tain the metric of Minkowski space. From equations (2.2) it
follows that they will also be non-linear for the gravitational
field proper, since the density of the tensor tµνg is the source of
the gravitational field.

Equations (2.2) and (2.3), which we formally declared the
equations of gravity by analogy with electrodynamics, must
be derived from the principle of least action, since only in
this case we will have an explicit expression for the density
of the energy-momentum tensor of the gravitational field and
of the fields of matter. But, to this end it is necessary to
construct the density of the Lagrangian of matter and of the
gravitational field. Here it is extremely important to realize
this construction on the basis of general principles. Only in
this case one can speak of the theory of gravity. The initial
scalar density of the Lagrangian of matter may be written in
the form

L = Lg(γµν , φ̃
µν) + LM(γµν , φ̃

µν , φA) ,

here Lg is the density of the Lagrangian of the gravitational
field; LM is the density of the Lagrangian of the fields of mat-
ter; φA represents the fields of matter.

The equations for the gravitational field and the fields of
matter have, in accordance with the principle of least action,
the form

δL

δφ̃µν
= 0 , (2.4)

δLM
δφA

= 0 . (2.5)

Equations (2.4) differ from equations (2.2), first of all, in that
the variational derivative of the density of the Lagrangian
there is the derivative with respect to the field φ̃µν , while the
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variational derivative in equations (2.2) is, in agreement with
definition (2.1), taken from the density of the Lagrangian over
the metric γµν . For equations (2.4) to reduce to equations (2.2)
for any form of matter it is necessary to assume the tensor den-
sity φ̃µν to be always present in the density of the Lagrangian
together with the tensor density γ̃µν via some common density
g̃µν in the form

g̃µν = γ̃µν + φ̃µν , g̃µν =
√
−ggµν . (2.6)

Thus arises the effective Riemannian space with the
metric gµν(x). Since the gravitational field φ̃µν(x), like
all other physical fields in Minkowski space, can be
described within a sole coordinate map, it is evident
from expression (2.6) that the quantity g̃µν(x) can also
be fully defined in a sole coordinate map. For descrip-
tion of the effective Riemannian space due to the influence of
the gravitational field, no atlas of maps is required, which is
usually necessary for describing Riemannian space of the gen-
eral form. This means that our effective Riemannian space has
a simple topology. In GRT topology is not simple. Precisely
for this reason, GRT cannot, in principle, be constructed on
the basis of ideas considering gravity a physical gravitational
field in Minkowski space.

If condition (2.6) is taken into account, the density of the
Lagrangian L assumes the form

L = Lg(γµν , g̃
µν) + LM(γµν , g̃

µν , φA) .

It must be stressed that condition (2.6) permits substitut-
ing the variational derivative with respect to g̃µν for the vari-
ational derivative with respect to φ̃µν , and to express the vari-
ational derivative with respect to γµν through the variational
derivative with respect to g̃µν and the variational derivative
with respect to γµν entering explicitly into the Lagrangian L.
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Indeed,

δL

δφ̃µν
=

δL

δg̃µν
=0 , (2.7)

δL

δγµν
=

δ⋆L

δγµν
+

δL

δg̃αβ
· ∂g̃

αβ

∂γµν
. (2.8)

The derivation of the latter formula is presented in detail in
Appendix (A.17). The asterisk in formula (2.8) indicates the
variational derivative of the density of the Lagrangian with
respect to the metric γµν which is explicitly present in L. In
agreement with (2.1), formula (2.8) can be written in the form

tµν = −2
δL

δg̃αβ
· ∂g̃

αβ

∂γµν
− 2

δ⋆L

δγµν
.

Taking equation (2.7) into account in the above expression we
obtain

tµν = −2
δ⋆L

δγµν
. (2.9)

Comparing equations (2.9) and (2.2) we obtain the condition

− 2
δ⋆L

δγµν
=

1

16π
[γαβDαDβφ̃

µν +m2φ̃µν ] , (2.10)

which, in case it is fulfilled, makes it possible to derive the
equations of the gravitational field, (2.2) and (2.3), directly
from the principle of least action. Since the fields of matter
are not present in the right-hand side of (2.10), this means that
the variation in density of the Lagrangian of matter, LM , with
respect to the explicitly present metric γµν must be zero. For
no additional restrictions on the motion of matter determined
by equations (2.5) to arise, it hence follows directly that the
tensor γµν does not explicitly enter into the expression for the
density of the Lagrangian of matter LM . Expression (2.10)
then assumes the form

− 2
δ⋆Lg
δγµν

=
1

16π
[γαβDαDβφ̃

µν +m2φ̃µν ] . (2.11)
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Thus, everything reduces to finding the density of the La-
grangian of the gravitational field proper, Lg, which would
satisfy condition (2.11).

At the same time, from the previous arguments we arrive
at the important conclusion that the density of the Lagrangian
of matter, L, has the form

L = Lg(γµν , g̃
µν) + LM(g̃µν , φA) . (2.12)

Thus, from the requirement that the density of the
energy-momentum tensor of matter be the source of
the gravitational field it follows in a natural way that
the motion of matter should take place in effective Rie-
mannian space. This assertion has the character of a the-
orem. Hence it becomes clear, why Riemannian space arose,
instead of some other. Precisely this circumstance provides
us with the possibility of formulating, in section 3, the gauge
group, and then to construct the density of the Lagrangian
(4.24) satisfying condition (2.11), in accordance with (B.20).

An interesting picture arises consisting in that the motion
of matter in Minkowski space with the metric γµν under the
influence of the gravitational field φµν is identical to the motion
of matter in effective Riemannian space with the metric gµν ,
determined by expression (2.6). We term such interaction of
the gravitational field with matter the g e o m e t i z a t i o n
p r i n c i p l e. The geometrization principle is a consequence of
the initial assumption that a universal characteristic of matter
— the density of the energy-momentum tensor — serves as the
source of the gravitational field. Such a density structure of
the Lagrangian of matter indicates that a unique possibility
is realized for the gravitational field to be attached inside the
Lagrangian density of matter directly to the density of the
tensor γ̃µν .

The effective Riemannian space is literally of a field
origin, owing to the presence of the gravitational field.
Thus, the reason that the effective space is Riemannian, and
not any other, lies in the hypothesis that a universal conserved
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quantity — the density of the energy-momentum tensor —
is the source of gravity. We shall explain this fundamental
property of gravitational forces by comparing them with the
electromagnetic forces.

In the case of a homogeneous magnetic field, a charged
particle in Minkowski space is known to undergo, due to the
Lorentz force, motion along a circle in the plane perpendicular
to the magnetic field. However, this motion is far from identi-
cal even for charged particles, if their charge-to-mass ratio dif-
fer. Moreover, there exist neutral particles, and their trajecto-
ries in a magnetic field are just straight lines. Therefore, owing
to the non-universal character of electromagnetic forces their
action cannot be reduced to the geometry of space-time. Gra-
vity is another issue. It is universal, any test bodies move along
identical trajectories given identical initial conditions. In this
case, owing to the hypothesis claiming the energy-momentum
tensor of matter to be the source of the gravitational field,
it turns out to be possible to describe these trajectories by
geodesic lines in the effective Riemannian space-time due to
the presence of the gravitational field in Minkowski space. In
those regions of space, where a whatever small gravitational
field is present, we have metric properties of space which up to
a high precision approach the actually observed properties of
pseudo-Euclidean space. On the other hand, when the gravi-
tational fields are strong, the metric properties of the effective
space become Riemannian. But in this case, also, the pseudo-
Euclidean geometry does not vanish without trace — it is ob-
servable and manifests itself in that the motion of bodies in
effective Riemannian space is not free by inertia, but proceeds
with acceleration with respect to pseudo-Euclidean space in
Galilean coordinates. Precisely for this reason, acceleration in
RTG, unlike GRT, has an absolute sense. Consequently, “Ein-
stein’s lift” cannot serve as an inertial reference frame. This is
manifested in that a charge at rest in “Einstein’s lift” will emit
electromagnetic waves. This physical phenomenon should also
testify in favour of the existence of Minkowski space. As we
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shall further see, the metric of Minkowski space can be defined
from studies of the distribution of matter and of the motion of
test bodies and light in effective Riemannian space. We shall
raise this issue again in section 7.

The equation of motion of matter does not include the met-
ric tensor γµν of Minkowski space. Minkowski space will only
influence the motion of matter by means of the metric tensor
gµν of Riemannian space, derived, as we shall further see, from
the equations of gravity, which contain the metric tensor γµν of
Minkowski space. Since the effective Riemannian metric arises
on the basis of the physical field given in Minkowski space,
hence it follows that effective Riemannian space has a simple
topology and is presented in a single map. If, for instance,
matter is concentrated in a region of the island-type, then in
Galilean coordinates of an inertial reference system the gra-
vitational field φ̃µν cannot decrease slower than 1/r, but this
circumstance imposes a strong restriction on the asymptotic
behaviour of the metric gµν of effective Riemannian geometry

gµν = ηµν + 0
(

1

r

)

, here ηµν = (1,−1,−1,−1) . (2.13)

If, on the other hand, one simply takes as the starting point
the Riemannian metric, without assuming it to have originated
from the action of a physical field, then such restrictions do
not arise, since the asymptotics of the metric gµν even depends
on the choice of three-dimensional space coordinates. Physical
quantity, however, in principle, cannot depend on the choice
of the three-dimensional space coordinates. RTG imposes no
restrictions on the choice of reference system. The reference
system may be arbitrary, if only it realizes a one-to-one cor-
respondence between all the points of the inertial reference
system in Minkowski space and provides for the following in-
equalities, necessary for introducing the concepts of time and
spatial length, to be satisfied:

γ00 > 0, dl2 = sikdx
i dxk > 0; i, k = 1, 2, 3,

35



where
sik = −γik +

γ0iγ0k

γ00
.

In our theory of gravity the geometrical characteristics of
Riemannian space arise as field quantities in Minkowski space,
and for this reason their transformational properties become
tensor properties, even if this was previously not so, from the
conventional point of view. Thus, for instance, the Christoffel
symbols, given as field quantities in Galilean coordinates of
Minkowski space become tensors of the third rank. In a similar
manner, ordinary derivatives of tensor quantities in Cartesian
coordinates of Minkowski space are also tensors.

The question may arise: why is no division of the metric,

like (2.6), performed in GRT by introduction of the concept of

gravitational field in Minkowski space? The Hilbert-Einstein

equations only contain the quantity gµν , so, consequently, it is

impossible to say unambiguously with the help of which metric

γµν of Minkowski space we should define, in accordance with

(2.6), the gravitational field. But the difficulty consists not

only in the above, but, also, in that the solutions of Hilbert-

Einstein equations are generally found not in one map, but in a

whole atlas of maps. Such solutions for gµν describe Rieman-

nian space with a complex topology, while the Riemannian

spaces, obtained by representation of the gravitational field in

Minkowski space, are described in a sole map and have a simple

topology. It is precisely for these reasons that field representa-

tions are not compatible with GRT, since they are extremely

rigorous. But this means that no field formulation of GRT in

Minkowski space can exist, in principle, no matter how much

someone and who might want this to happen. The apparatus

of Riemannian geometry is inclined towards the possibility of

introducing covariant derivatives in Minkowski space, which

36



we took advantage of in constructing RTG. But to implement

this, it was necessary to introduce the metric of Minkowski

space into the gravitational equations, and it, thus, turned

out to be possible to realize the functional relationship of the

metric of Riemannian space, gµν , with the metric of Minkowski

space, γµν . But this will be dealt with in detail in subsequent

sections.



3. The gauge group of

transformations

Since the density of the Lagrangian of matter has the form

LM (g̃µν, φA), (3.1)

it is easy to find the group of transformations, under which
the density of the Lagrangian of matter is only changed by
the divergence. To this end we shall take advantage of the
action

SM =
∫

LM (g̃µν, φA) d4x (3.2)

being invariant under infinitesimal transformations of coordi-
nates,

x′α = xα + ξα(x), (3.3)

where ξα is the four-vector of an infinitesimal displacement.
The field functions g̃µν , φA vary as follows under these trans-
formations of coordinates:

g̃′µν(x′) = g̃µν(x) + δξg̃
µν(x) + ξα(x)Dαg̃

µν(x),

φ′
A(x′) = φA(x) + δξφA(x) + ξα(x)DαφA(x),

(3.4)

where the expressions

δξg̃
µν(x) = g̃µαDαξ

ν(x) + g̃ναDαξ
µ(x) −Dα(ξ

αg̃µν),

δξφA(x) = −ξα(x)DαφA(x) + FB;α
A;β φB(x)Dαξ

β(x)
(3.5)

are Lie variations.
The operators δξ satisfy the conditions of Lie algebras, i.e.

the commutation relation

[δξ1 , δξ2 ](·) = δξ3 (·) (3.6)

and the Jacobi identity

[δξ1 , [δξ2 , δξ3 ]] + [δξ3 , [δξ1 , δξ2 ]] + [δξ2 , [δξ3 , δξ1 ]] = 0, (3.7)
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where

ξν3 = ξµ1Dµξ
ν
2 − ξµ2Dµξ

ν
1 = ξµ1 ∂µξ

ν
2 − ξµ2 ∂µξ

ν
1 .

For (3.6) to hold valid the following conditions must be satis-
fied:

FB;µ
A; ν FC;α

B; β − FB;α
A;β F

C;µ
B; ν = fµα; τ

νβ; σ F
C;σ
A; τ , (3.8)

where the structure constants f are

fµα; τ
νβ; σ = δµβδ

α
σ δ

τ
ν − δαν δ

µ
σδ

τ
β . (3.9)

It is readily verified that they satisfy the Jacobi equality

fαν; σβµ; τ f
τρ;ω
σε; δ + f νρ;σµε; τ f

τα;ω
σβ; δ + f ρα;σ

εβ; τ f τν;ωσµ; δ = 0 (3.10)

and have the property of antisymmetry,

fαν; ρβµ;σ = −f να; ρ
µβ; σ .

The variation of action under the coordinate transforma-
tion (3.3) equals zero:

δcS =
∫

Ω′

L′(x′) d4x′ −
∫

Ω

LM (x) d4x = 0. (3.11)

The first integral in (3.11) can be written in the form
∫

Ω′

L′
M (x′) d4x′ =

∫

Ω

J L′
M(x′) d4x,

where

J = det

(

∂x′α

∂ xβ

)

.

In the first order of ξα the determinant J equals

J = 1 + ∂αξ
α(x). (3.12)

Taking into account the expansion

L′
M(x′) = L′

M (x) + ξα(x)
∂LM
∂xα

,
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as well as (3.12), one can represent the expression for the vari-
ation in the form

δcSM =
∫

Ω

[δLM (x) + ∂α(ξ
αLM(x))] d4x = 0.

Owing to the integration volume Ω being arbitrary, we have
the identity

δ LM(x) = −∂α(ξα(x)LM(x)), (3.13)

where the Lie variation δLM is

δLM(x) =
∂LM
∂g̃µν

δg̃µν +
∂LM

∂(∂αg̃µν)
δ(∂αg̃

µν) +

+
∂LM
∂φA

δφA +
∂LM

∂(∂αφA)
δ(∂αφA). (3.14)

Hence, for instance, it follows that if the scalar density depends
only on g̃µν and its derivatives, it will vary under transforma-
tion (3.5) only by the divergence

δL(g̃µν(x)) = −∂α(ξα(x)L(g̃µν(x))), (3.13a)

where the Lie variation δL is

δL(g̃µν(x)) =
∂L

∂g̃µν
δg̃µν +

∂L

∂(∂αg̃µν)
δ(∂αg̃

µν)+

!+
∂L

∂(∂α∂β g̃µν)
δ(∂α∂β g̃

µν). (3.14a)

The Lie variations (3.5) were established within the con-
text of the coordinate transformations (3.3). But one may also
adopt another standpoint, in accordance with which transfor-
mations (3.5) can be considered gauge transformations. In this
case an arbitrary infinitesimal four-vector ξα(x) will already be
a gauge vector, but no longer the displacement vector of the
coordinates. To stress the difference between the gauge group
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and the group of coordinate transformations, we shall further
use the notation εα(x) for the group parameter and call the
transformation of field functions

g̃µν(x) → g̃µν(x) + δg̃µν(x),
(3.15)

φA(x) → φA(x) + δφA(x)

with the variations

δεg̃
µν(x) = g̃µαDαε

ν(x) + g̃ναDαε
µ(x) −Dα(ε

αg̃µν),
(3.16)

δεφA(x) = −εα(x)DαφA(x) + FB;α
A; β φB(x)Dα ε

β(x)

gauge transformations.
In full compliance with formulae (3.6) and (3.7), the op-

erators satisfy the same Lie algebra, i.e. the commutation
relation

[δε1 , δε2 ](·) = δε3(·) (3.17)

and the Jacobi identity

[δε1 , [δε2, δε3]] + [δε3, [δε1, δε2]] + [δε2 , [δε3 , δε1 ]] = 0. (3.18)

Like in the preceding case, we have

εν3 = εµ1Dµε
ν
2 − εµ2Dµε

ν
1 = εµ1∂µε

ν
2 − εµ2∂µε

ν
1.

The gauge group arose from the geometrized structure of
the scalar density of the Lagrangian of matter, LM(g̃µν , φA),
which owing to identity (3.13) only changes by the divergence
under gauge transformations (3.16). Thus, the geometrization
principle, which determined the universal character of the in-
teraction of matter and of the gravitational field, has provided
us with the possibility of formulating the non-commutative
infinite-dimensional gauge group (3.16).

The essential difference between the gauge and coordinate
transformations will manifest itself at the decisive point of the
theory in the course of construction of the scalar density of
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the Lagrangian of the gravitational field proper. The difference
arises owing to the metric tensor γµν not changing under gauge
transformation, and, consequently, owing to (2.6) we have

δεg̃
µν(x) = δεφ̃

µν(x).

From (3.16) the transformation for the field follows

δεφ̃
µν(x) = g̃µαDα ε

ν(x) + g̃ναDα ε
µ(x) −Dα(ε

α g̃µν),

but this transformation for the field differs essentially from its
transformation in the case of displacement of the coordinates:

δξ φ̃
µν(x) = φ̃µαDαξ

ν(x) + φ̃ναDαξ
µ(x) −Dα(ξ

α φ̃µν).

Under the gauge transformations (3.16) the equations of mo-
tion for matter do not change, because under any such trans-
formations the density of the Lagrangian of matter is altered
only by the divergence.



4. Density of the Lagrangian and

the equations of motion for the

gravitational field proper

It is known to be impossible, only using the sole tensor gµν , to
construct the scalar density of the Lagrangian of the gravita-
tional field proper with respect to arbitrary coordinate trans-
formations in the form of a quadratic form of derivatives of
order not exceeding the first. Therefore, such a density of the
Lagrangian will certainly contain the metric γµν together with
the metric gµν . But, since the metric γµν is not altered under
the gauge transformation (3.16), there, consequently, must be
imposed strong restrictions on the structure of the density of
the Lagrangian of the gravitational field proper for it to change
only by the divergence under this transformation. It is pre-
cisely here that there arises an essential difference between
gauge and coordinate transformations.

While coordinate transformations impose nearly no restric-
tions on the structure of the scalar density of the Lagrangian of
the gravitational field proper, gauge transformations will per-
mit us to find the density of the Lagrangian. A straightforward
general method for constructing the Lagrangian is presented
in the monograph [10].

Here we shall choose a more simple method for constructing
the Lagrangian. On the basis of (3.13a) we conclude that the
most simple scalar densities

√−g and R̃ =
√−gR, where R is

the scalar curvature of effective Riemannian space, vary as
follows under the gauge transformation (3.16):

√−g → √−g −Dν(ε
ν√−g), (4.1)

R̃ → R̃−Dν(ε
νR̃). (4.2)

The scalar density R̃ is expressed via the Christoffel symbols

Γλµν =
1

2
gλσ(∂µ gσν + ∂ν gσµ − ∂σ gµν) (4.3)
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as follows:

R̃ = −g̃µν(Γλµν Γσλσ − Γλµσ Γσνλ) − ∂ν(g̃
µν Γσµσ − g̃µσ Γνµσ). (4.4)

Since the Christoffel symbols are not tensor quantities, no
summand in (4.4) is a scalar density. However, if one intro-
duces the tensor quantities Gλ

µν

Gλ
µν =

1

2
gλσ(Dµgσν +Dνgσµ −Dσgµν), (4.5)

then the scalar density can be identically written in the form

R̃ = −g̃µν(Gλ
µν G

σ
λσ−Gλ

µσ G
σ
νλ)−Dν(g̃

µν Gσ
µσ−g̃µσ Gν

µσ). (4.6)

Note that under arbitrary coordinate transformations each
group of terms in (4.6) individually exhibits the same be-
haviour as scalar density. We see that the apparatus of Rie-
mannian geometry is inclined toward the introduction of co-
variant, instead of ordinary, derivatives in Minkowski space,
but the metric tensor γµν , used for determining the covariant
derivatives, is in no way fixed here.

With account of (4.1) and (4.2), the expression

λ1(R̃ +Dν Q
ν) + λ2

√
−g (4.7)

varies only by the divergence under arbitrary gauge transfor-
mations. Choosing the vector density Qν to be

Qν = g̃µν Gσ
µσ − g̃µσ Gν

µσ,

we exclude from the preceding expression terms containing
derivatives of orders higher, than the first, and obtain the
following density of the Lagrangian:

− λ1g̃
µν(Gλ

µν G
σ
λσ −Gλ

µσ G
σ
νλ) + λ2

√−g. (4.8)

Thus, we see that the requirement for the density of the
Lagrangian of the gravitational field proper to vary under the
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gauge transformation (3.16) only by the divergence, unam-
biguously determines the structure of the Lagrangian’s density
(4.8). But, if one restricts oneself only to considering this den-
sity, then the equations of the gravitational field will be gauge
invariant, while the metric of Minkowski space, γµν , will not be
present in the set of equations determined by the density of the
Lagrangian (4.8). Since within such an approach the metric of
Minkowski space disappears, the possibility of representing the
gravitational field as a physical field of the Faraday–Maxwell
type in Minkowski space disappears also.

In the case of the density of the Lagrangian (4.8), intro-
duction of the metric γµν with the aid of equations (2.3) will
not save the situation, since physical quantities — the inter-
val and the curvature tensor of Riemannian space, as well as
the tensor tµνg of the gravitational field — will depend on the
choice of gauge, which is inadmissible from a physical point of
view. Thus, for example,

δǫRµν = −RµσDνǫ
σ − RνσDµǫ

σ − ǫσDσRµν ,

δǫRµναβ = RσναβDµǫ
σ − RµσαβDνǫ

σ −
−RµνσβDαǫ

σ − RµνασDβǫ
σ − ǫσDσRµναβ .

To retain the concept of a field in Minkowski space and
to exclude the above ambiguity it is necessary to add, in the
density of the Lagrangian of the gravitational field, a term vi-
olating the gauge group. It is precisely here that there arises
an essentially new way, which for a long time evaded being
revealed. At first sight, it may seem that a significant arbi-
trariness should arise here, since the group can be violated in
extremely diverse ways. However, it turns out not to be so,
because our physical requirement, concerning the polarization
properties of the gravitational field which is a field of spins 2
and 0, imposed by equations (2.3), results in the term violat-
ing the group (3.16) being necessarily chosen so as to make
equations (2.3) a consequence of the set of equations of the
gravitational field and of fields of matter, since only in this
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case we have no over-determined set of differential equations
arising. To this end we introduce into the scalar density of the
Lagrangian of the gravitational field a term of the form

γµν g̃
µν , (4.9)

which, given conditions (2.3), also varies under transforma-
tions (3.16) by the divergence, but only on the class of vectors
satisfying the condition

gµνDµDνε
σ(x) = 0. (4.10)

In electrodynamics a nearly analogous situation occurs with
the photon rest mass differing from zero. With account of
(4.8)-(4.9) the general scalar density of the Lagrangian has
the form:

Lg = −λ1g̃
µν(Gλ

µν G
σ
λσ −Gλ

µσ G
σ
νλ) +

+λ2

√
−g + λ3 γµν g̃

µν + λ4

√
−γ. (4.11)

We have introduced the last constant term in (4.11) in order
to use it for reducing to zero the density of the Lagrangian
in absence of the gravitational field. The narrowing of the
class of gauge vectors due to introduction of the term (4.9)
automatically results in equations (2.3) being a consequence
of the equations of the gravitational field. We shall further
verify this directly.

In accordance with the principle of least action, the equa-
tions for the gravitational field proper are of the form

δLg
δg̃µν

= λ1Rµν +
1

2
λ2 gµν + λ3 γµν = 0, (4.12)

here
δLg
δg̃µν

=
∂Lg
∂g̃µν

− ∂σ

(

∂L

∂(∂σ g̃µν)

)

,

where we write the Ricci tensor Rµν in the form

Rµν = DλG
λ
µν −DµG

λ
νλ +Gσ

µν G
λ
σλ −Gσ

µλG
λ
νσ. (4.13)
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Since in absence of the gravitational field equations (4.12) must
be satisfied identically, hence follows

λ2 = − 2 λ3. (4.14)

Let us now find the density of the energy-momentum for
the gravitational field in Minkowski space

t µν
g = −2

δLg
δ γµν

2
√−γ(γµαγνβ − 1

2
γµνγαβ)

δLg
δg̃αβ

+

+ λ1 J
µν − 2λ3 g̃

µν − λ4 γ̃
µν , (4.15)

where

Jµν = DαDβ(γ
αµg̃βν + γαν g̃βµ − γαβ g̃µν − γµν g̃αβ). (4.16)

(see Appendix (B.19)). If the dynamic equations (4.12) are
taken into account in expression (4.15), then we obtain equa-
tions for the gravitational field proper in the form

λ1 J
µν − 2 λ3g̃

µν − λ4 γ̃
µν = tµνg . (4.17)

For this equation to be satisfied identically in the absence of
the gravitational field, it is necessary to set

λ4 = −2 λ3. (4.18)

Since the equality
Dµ t

µν
g = 0, (4.19)

always holds valid for the gravitational field proper, from equa-
tion (4.17) it follows that

Dµ g̃
µν = 0. (4.20)

Thus, equations (2.3) determining the polarization states
of the field follow directly from equations (4.17). With account
of equations (4.20), one can write the field equations (4.17) in
the form

γαβ DαDβ φ̃
µν − λ4

λ1

φ̃µν = − 1

λ1

tµνg . (4.21)
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In Galilean coordinates this equation has the simple form

φ̃µν − λ4

λ1
φ̃µν = − 1

λ1
tµνg . (4.22)

It is natural to consider the numerical factor −λ4

λ1
= m2 to rep-

resent the square graviton mass and to set the value of −1/λ1

equal to 16π, in accordance with the equivalence principle.
Thus, all the unknown constants present in the density of the
Lagrangian have been defined:

λ1 = − 1

16π
, λ2 = λ4 = −2 λ3 =

m2

16 π
. (4.23)

The constructed scalar density of the Lagrangian of the
gravitational field proper will have the form

Lg=
1

16 π
g̃µν(Gλ

µν G
σ
λσ −Gλ

µσG
σ
νλ) −

− m2

16 π

(

1

2
γµν g̃

µν −
√
−g −

√
−γ

)

. (4.24)

The corresponding to it dynamic equations for the gravita-
tional field proper can be written down in the form

Jµν −m2 φ̃µν = −16π tµνg , (4.25)

or

Rµν − m2

2
(gµν − gµαgνβγαβ) = 0. (4.26)

These equations impose significant limits on the class of gauge
transformations, retaining only the trivial ones satisfying the
Killing conditions in Minkowski space. Such transformations
are a consequence of Lorentz invariance and are present in any
theory.

The density of the Lagrangian constructed above leads to
equations (4.26) from which it follows that equations (4.20)
are their consequence, and, therefore, outside matter we shall
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have ten equations for ten unknown field functions. The un-
known field functions φ0α are readily expressed with the aid of
equations (4.20) via the field functions φik, where the indices
i and k run through the values 1, 2, 3.

Thus, the structure of the mass term violating the gauge
group in the density of the Lagrangian of the gravitational
field proper is unambiguously determined by the polarization
properties of the gravitational field. The field approach to
gravity, that declares the energy-momentum tensor of
all matter to be the source of the field, necessarily
requires introduction of the graviton rest mass in the
theory.



5. Equations of motion for the

gravitational field and for matter

The total density of the Lagrangian of matter and of the grav-
itational field is

L = Lg + LM (g̃µν , φA), (5.1)

where Lg is determined by expression (4.24).
On the basis of (5.1) we shall obtain, with the aid of the

least action principle, the complete set of equations for matter
and for the gravitational field:

δL

δg̃µν
= 0, (5.2)

δLM
δφA

= 0. (5.3)

Since in the case of an arbitrary infinitesimal variation of the
coordinates the variation of the action, δcSM , is zero,

δcSM = δc

∫

LM (g̃µν, φA) d4x = 0,

it is hence possible to obtain an identity (see Appendix (C.16))
in the form

gµν∇λT
λν = −Dν

(

δLM
δφA

FB; ν
A;µ φB(x)

)

− δLM
δφA

Dµ φA(x). (5.4)

Here T λν = −2 δLM

δgλν
is the density of the tensor of matter in

Riemannian space; ∇λ is the covariant derivative in this space
with the metric gλν . From identity (5.4) it follows that, if
the equations of motion of matter (5.3) are satisfied, then the
following equation occurs:

∇λ T
λν = 0. (5.5)
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When the number of equations (5.3) for matter equals four,
the equivalent equations (5.5) may be used, instead. Since we
shall further only deal with such equations for matter, we shall
always make use of the equations for matter in the form (5.5).
Thus, the complete set of equations for matter and for the
gravitational field will have the form

δL

δg̃µν
= 0 , (5.6)

∇λ T
λν = 0. (5.7)

Matter will be described by velocity ~v, the density of matter
ρ, and pressure p. The gravitational field will be determined
by ten components of the tensor φµν .

Thus, we have 15 unknowns. For determining them it is
necessary to add to the 14 equations (5.6),(5.7) the equation of
state for matter. If the relations (see Appendices B∗.18,B∗.19)

δLg
δg̃µν

= − 1

16 π
Rµν +

m2

32 π
(gµν − γµν), (5.8)

δLM
δg̃µν

=
1

2
√−g

(

Tµν −
1

2
gµν T

)

, (5.9)

are taken into account, then the set of equations (5.6), (5.7)
may be represented as

(

Rµν − 1

2
gµνR

)

+
m2

2

[

gµν + (gµαgνβ−

−1

2
gµνgαβ) γαβ

]

=
8 π√−g T

µν , (5.10)

∇λ T
λν = 0. (5.11)

Owing to the Bianchi identity

∇µ(R
µν − 1

2
gµν R) = 0
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from equations (5.10) we have

m2√−g(gµαgνβ − 1

2
gµνgαβ)∇µ γαβ = 16 π∇µ T

µν . (5.12)

Taking into account expression

∇µ γαβ = −Gσ
µα γσβ −Gσ

µβ γσα, (5.13)

where Gσ
µα is defined by formula (4.5), we find

(gµαgνβ − 1

2
gµνgαβ)∇µ γαβ =

= γµλg
µν(Dσ g

σλ +Gβ
αβ g

αλ), (5.14)

but since (see formulae (B∗.20))
√−g(Dσ g

σλ +Gβ
αβ g

αλ) = Dσ g̃
λσ, (5.15)

expression (5.14) assumes the form

√−g(gµαgνβ − 1

2
gµνgαβ)∇µ γαβ = γµλ g

µν Dσ g̃
λσ. (5.16)

With the aid of (5.16) expression (5.12) can be represented in
the form

m2γµλ g
µνDσg̃

λσ = 16π∇µ T
µν .

This expression can be rewritten in the form

m2Dσg̃
λσ = 16 π γλν∇µ T

µ
ν . (5.17)

With the aid of this relation, equation (5.11) can be replaced
by the equation

Dσg̃
νσ = 0. (5.18)

Therefore, the set of equations (5.10), (5.11) is reduced to the
set of gravitational equations in the form

(

Rµν − 1

2
gµνR

)

+
m2

2

[

gµν + (gµαgνβ−

−1

2
gµν gαβ)γαβ

]

=
8 π√−g T

µν , (5.19)

Dµ g̃
µν = 0. (5.20)
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These equations are universally covariant with respect to
arbitrary transformations of coordinates and form-invariant
only with respect to such transformations of coordinates that
leave the Minkowski metric γµν(x) form-invariant. Hence, for
instance, it follows that in any inertial (Galilean) reference sys-
tem phenomena are described by identical equations. Equa-
tions involving the graviton mass had arisen previously; how-
ever, owing to misunderstanding of the fundamental fact that
special relativity theory is also valid in non-inertial reference
systems, they were not considered seriously, since they were
not universally covariant. Usually, following A.Einstein, the
metric ηαβ = (1,−1,−1,−1) was considered to be a tensor
only with respect to the Lorentz transformations. But, actu-
ally, the metric of Minkowski space, γµν(x), is a tensor with
respect to arbitrary transformations of coordinates. The set of
equations (5.19) and (5.20) is hyperbolic. In the case of static
problems, it is elliptic. By adding the equation of state to the
set of equations (5.19) and (5.20) we obtain a complete set
of equations for determining the unknown physical quantities
gµν , ~v, ρ, p for one or another formulations of the problem.

A concrete inertial Galilean reference system is singled out
by formulation of the actual physical problem (by the initial
and boundary conditions). The descriptions of a given formu-
lated physical problem in different inertial (Galilean) reference
systems are different, naturally, but this does not contradict
the relativity principle. If one introduces the tensor

Nµν = Rµν − m2

2
[gµν − gµαgνβγαβ], N = Nµνgµν ,

then the set of equations (5.19) and (5.20) can be written in
the form

Nµν − 1

2
gµνN =

8 π√−g T
µν , (5.19a)

Dµ g̃
µν = 0. (5.20a)
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It may also be represented in the form

Nµν =
8 π√−g (T µν − 1

2
gµν T ), (5.21)

Dµg̃
µν = 0, (5.22)

or

Nµν =
8 π√−g (Tµν −

1

2
gµν T ), (5.21a)

Dµg̃
µν = 0. (5.22a)

It must be especially stressed that both sets of equations
(5.21) and (5.22) contain the metric tensor of Minkowski space.

Transformations of coordinates, which leave the metric of
Minkowski space form-invariant, relate physically equivalent
reference systems. The most simple of these are inertial refer-
ence systems. For this reason, possible gauge transformations
satisfying the Killing conditions

Dµεν +Dνεµ = 0,

do not remove us from the class of physically equivalent refer-
ence systems.

Let us deal with this issue in more detail. To this end we
write the equation of RTG, (5.21) and (5.22), in the expanded
form:

R µν(x) − m2

2
[gµν(x) − gµαgνβγαβ(x)] =

= 8π
[

T µν(x) − 1

2
gµνT (x)

]

, (5.23)

Dµg̃
µν = 0. (5.24)

Consider that, given appropriate conditions of the problem,
these equations have the solution gµν(x) in Galilean coordi-
nates x in an inertial reference system, when the distribution
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of matter is T µν(x). In another inertial reference system, in
Galilean coordinates x′ satisfying the condition

x′ν = xν + ǫν(x),
(5.25)

Dµǫν +Dνǫµ = 0.

We obtain with the aid of tensor transformations the following:

R ′µν(x′) − m2

2
[g′µν(x′) − g′µαg′νβγαβ(x

′)] =

= 8π
[

T ′µν(x′) − 1

2
g′µνT ′(x′)

]

. (5.26)

Since equations (5.23) are form-invariant with respect to
the Lorentz transformations, we can return to the initial vari-
ables x:

R ′µν(x) − m2

2
[g′µν(x) − g′µαg′νβγαβ(x)] =

= 8π
[

T ′µν(x) − 1

2
g′µνT ′(x)

]

(5.27)

Hence it is clear that the solution g′µν(x) does not correspond
to the distribution of matter T µν(x), but to another distribu-
tion T ′µν(x). The quantity g′µν(x) in equations (5.27) is

g′µν(x) = gµν(x) + δǫg
µν , (5.28)

where

δǫg
µν = gµλDλǫ

ν + gνλDλǫ
µ − ǫλDλg

µν . (5.29)

In the case of transformations (5.25) we have

R′µν(x) = Rµν(x) + δǫR
µν ,

T ′µν(x) = T µν(x) + δǫT
µν , (5.30)

T ′(x) = T (x) + δǫT.
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Here

δǫR
µν = RµλDλǫ

ν +RνλDλǫ
µ − ǫλDλR

µν ,

δǫT
µν = T µλDλǫ

ν + T νλDλǫ
µ − ǫλDλT

µν , (5.31)

δǫT = −ǫλDλT = −ǫλ∂λT.

We obtained expression (5.27) with the aid of the coordi-
nate transformations (5.25), but identical equations are also
obtained in the case of the gauge transformation (5.29) with
the vectors ǫλ satisfying condition (5.25). Thus, gauge trans-
formations result in the metric field g′µν(x) in the case of
matter exhibiting the distribution T ′µν(x). Although we con-
sidered the transition from one inertial reference system in
Galilean coordinates to another, our formulae (5.25), (5.31)
are of a general nature, they are valid, also, for a noniner-
tial reference system in Minkowski space. The same situation
occurs in electrodynamics.

In GRT the situation is completely different, since owing
to the Hilbert–Einstein equations being form-invariant with
respect to arbitrary transformations of coordinates, there ex-
ist, for one and the same distribution of matter, T µν(x), any
amount of metrics gµν(x), g

′
µν(x)... satisfying the equations. It

is precisely for this reason that in GRT there arises an ambi-
guity in the description of gravitational phenomena.

If one imagines that it is possible to perform experimental
measurements of the characteristics of Riemannian space and
of the motion of matter with whatever high precision, then
it would be possible, on the basis of equations (5.21a) and
(5.22a), to determine the metric of Minkowski space and to
find Galilean (inertial) reference systems. Thus, Minkowski
space is observable, in principle.

The existence of Minkowski space is reflected in the con-
servation laws, and, therefore, testing their validity in physical
phenomena serves at the same time for testing the structure
of space-time.

It must be especially noted that both sets of equations
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(5.19) and (5.20) contain the metric tensor of Minkowski space.
The presence of the cosmological term in the equations of GRT
is known not to be obligatory, and this issue is still being dis-
cussed. The presence of the cosmological term in the equations
of gravity is obligatory in RTG. However, the cosmological
term in equations (5.19) arises in combination with the term
related to the metric γµν of Minkowski space, and with the
same constant factor equal to a half of the square graviton
mass. The presence in equations (5.19) of the term connected
with the metric γµν significantly alters the character of the
collapse and development of the Universe. In accordance with
equations (5.19), in absence of matter and of the gravitational
field, the metric of the space becomes the Minkowski metric,
and it coincides exactly with the one previously chosen in for-
mulating the physical problem. If the metric of Minkowski
space were absent in the equations of the gravitational field,
then it would be absolutely unclear, in which reference system
of Minkowski space we would happen to be in the absence of
matter and of the gravitational field.

The graviton mass is essential for this theory, since only its
introduction permits construction of the theory of gravity in
Minkowski space. The graviton mass violates the gauge group
or, in other words, it removes the degeneracy. Therefore, one
cannot exclude the possibility of the graviton mass tending
toward zero in the final results, when gravitational effects are
studied. However, the theory with a graviton mass and the
theory involving violation of the gauge group [8] (with the
graviton mass subsequently tending toward zero) are essen-
tially different theories. Thus, for example, while in the first
theory the Universe is homogeneous and isotropic, no such
Universe can exist in the second one.

Let us now touch upon the equivalence principle. Any
physical theory must comply with the equivalence principle.
Gravitational interactions alter the equations of motion of
matter. The requirement imposed by the equivalence prin-
ciple reduces to the requirement that, when the gravitational
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interaction is switched off, i.e. when the Riemann curvature
tensor turns to zero, these equations of motion become or-
dinary equations of motion of SRT in the chosen reference
system.

In formulating the physical problem in RTG we choose a
certain reference system with the metric tensor of Minkowski
space, γµν(x). In RTG, the equation of motion of matter in
effective Riemannian space with the metric tensor gµν(x), de-
termined by the equations of the gravitational field (5.19) and
(5.20), has the form

∇µT
µν(x) = 0. (σ)

For example, we shall take dustlike matter with the energy-
momentum tensor T µν equal to

T µν(x) = ρUµUν , Uν =
dxν

ds
,

ds is the interval in Riemannian space.
On the basis of equations (σ), using the expression for T µν ,

we find the equation for the geodesic line in Riemannian space,

dUν

ds
+ Γναβ(x)U

αUβ = 0.

When the gravitational interaction is switched off, i.e. when
the Riemann curvature tensor turns to zero, from the equa-
tions of the gravitational field (5.19) and (5.20) it follows that
the Riemannian metric gµν(x) transforms into the previously
chosen metric of Minkowski space, γµν(x). In this case the
equation of motion of matter (σ) assumes the form

Dµt
µν(x) = 0. (λ)

Here the energy-momentum tensor tµν(x) is

tµν(x) = ρuµuν , uν =
dxν

dσ
,
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dσ is the interval in Minkowski space.
On the basis of (λ), using the expression for tµν , we find

the equations for the geodesic line in Minkowski space,

duν

dσ
+ γναβu

αuβ = 0,

i.e., we have arrived at the ordinary equations for the free
motion of particles in SRT in the previously chosen reference
system with the metric tensor γµν(x). Thus, the equation of
motion of matter in a gravitational field in the chosen refer-
ence system automatically transforms, when the gravitational
interaction is switched off, i.e., when the Riemann curvature
tensor turns to zero, into the equation of motion of matter in
Minkowski space in the same reference system with the metric
tensor γµν(x), i.e., the equivalence principle is obeyed. This
assertion in RTG is of a general character, since when the Rie-
mann tensor turns to zero the density of the Lagrangian of
matter in the gravitational field, LM (g̃µν ,ΦA), transforms into
the ordinary SRT density of the Lagrangian, LM (γ̃µν ,ΦA), in
the chosen reference system.

In GRT the equation of motion of matter also has the form
(σ). But, since the Hilbert–Einstein equations do not contain
the metric tensor of Minkowski space, then when the gravita-
tional interaction is switched off, i.e., the Riemann curvature
tensor turns to zero, it is impossible to say in which reference
system (inertial or accelerated) of Minkowski space we happen
to be, and therefore it is impossible to determine which equa-
tion of motion of matter in Minkowski space we will obtain
when the gravitational interaction is switched off. Precisely
for this reason, the equivalence principle cannot be complied
with in GRT within the framework of this theory. Usually
such correspondence in GRT is achieved precisely within the
field approach, when a weak gravitational field is considered to
be a physical field in Minkowski space in Galilean coordinates.
Thus, GRT is made to include what it essentially does not con-
tain, since, as A. Einstein wrote, “gravitational fields can be
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given without introducing tensions and energy density” 20, so
no existence of any physical field in GRT can even be spoken
of.

In conclusion, we note that RTG revives all those concepts
(inertial reference system, the law of inertia, acceleration rela-
tive to space, the conservation laws of energy-momentum and
of angular momentum), which occurred in classical Newtonian
mechanics and in special relativity theory, and which had to
be renounced by A. Einstein in constructing GRT.

In 1955 A.Einstein wrote: ¡¡A significant achievement of
general relativity theory consists in that it rids physics of the
necessity of introducing the “inertial system” (or “inertial sys-
tems”)¿¿ 21. From our point of view, the fields of inertia and of
gravity cannot be identified with each other even locally, since
they are of totally different natures. While the former can be
removed by a choice of the reference system, no choice what-
ever of the reference system can remove the fields of gravity.
Regrettably, this circumstance is not understood by many per-
sons, since they do not apprehend that “in Einstein’s theory”,
as especially stressed by J.L.Synge, “the existence or absence
of a gravitational field depends on whether the Riemann cur-
vature tensor differs from or equals zero” 22.

20Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.1, art.47, p.627.

21Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.2, art.146, p.854.

22J.L.Synge. Relativity: the general theory. M.:Foreign literature
publishers, 1963, p.9.



6. The causality principle in RTG

RTG was constructed within the framework of SRT, like the
theories of other physical fields. According to SRT, any motion
of a pointlike test body (including the graviton) always takes
place within the causality light cone of Minkowski space. Con-
sequently, non-inertial reference systems, realized by test bod-
ies, must also be inside the causality cone of pseudo-Euclidean
space-time. This fact determines the entire class of possible
non-inertial reference systems. Local equality between the
three-dimensional force of inertia and gravity in the case of
action on a material pointlike body will occur, if the light cone
of the effective Riemannian space does not go beyond the lim-
its of the causality light cone of Minkowski space. Only in
this case can the three-dimensional force of the gravitational
field acting on the test body be locally compensated by transi-
tion to the admissible non-inertial reference system, connected
with this body.

If the light cone of the effective Riemannian space were to
reach beyond the causality light cone of Minkowski space, this
would mean that for such a “gravitational field” no admissible
non-inertial reference system exists, within which this “force
field” could be compensated in the case of action on a material
pointlike body. In other words, local compensation of the
3-force of gravity by the force of inertia is possible only when
the gravitational field, acting as a physical field on particles,
does not lead their world lines outside the causality cone of
pseudo-Euclidean space-time. This condition should be con-
sidered the causality principle permitting selection of solutions
of the set of equations (5.19) and (5.20) having physical sense
and corresponding to the gravitational fields.

The causality principle is not satisfied automatically. There
is nothing unusual in this fact, since both in electrodynamics,
and in other physical theories, as well, the causality condi-
tion for matter in the form dσ2 = γµνdx

µdxν ≥ 0 is always
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added (but not always noted) to the main equations, which
actually provides for it being impossible for any form of mat-
ter to undergo motion with velocities exceeding the speed of
light. In our case it is necessary to take into account that
the gravitational interaction enters into the coefficients of the
second-order derivatives in the field equations, i.e. there arises
an effective geometry of space-time. This feature is only pe-
culiar to the gravitational field. The interaction of all other
known physical fields usually does not involve the second-order
derivatives of the field equations, and therefore does not alter
the initial pseudo-Euclidean geometry of space-time.

We shall now present an analytical formulation of the ca-
usality principle in RTG. Since in RTG the motion of matter
under the action of the gravitational field in pseudo-Euclidean
space-time is equivalent to the motion of matter in the corre-
sponding effective Riemannian space-time, we must for events
(world lines of particles and of light) related by causality, on
the one hand, have the condition

d s2 = gµν dx
µ dxν ≥ 0, (6.1)

and, on the other hand, the following inequality must hold
valid for such events:

dσ2 = γµν dx
µ dxν ≥ 0. (6.2)

The following condition is valid for the chosen reference system
realized by physical bodies:

γ00 > 0. (6.3)

We single out in expression (6.2) the time- and spacelike parts:

d σ2 =
(√

γ00 dt+
γ0 i dx

i

√
γ00

)2

− si k dx
i dxk, (6.4)

here the Latin indices i, k run through the values 1, 2, 3;

si k = − γi k +
γ0 iγ0 k

γ00
, (6.5)
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si k is the metric tensor of three-dimensional space in four-
dimensional pseudo-Euclidean space-time. The square spatial
distance is determined by the expression

d l2 = si k dx
i dxk. (6.6)

Now we represent the velocity vi = dxi

dt
as vi = vei, where

v is the absolute value of the velocity and ei is an arbitrary
unit vector in three-dimensional space,

si ke
i ek = 1. (6.7)

In absence of the gravitational field the velocity of light in the
chosen reference system is readily determined from expression
(6.4) by setting it equal to zero:

(√
γ00 dt+

γ0i dx
i

√
γ00

)2

= si k dx
i dxk.

Hence, we find

v =
√
γ00/

(

1 − γ0i e
i

√
γ00

)

. (6.8)

Thus, an arbitrary four-dimensional isotropic vector in Min-
kowski space, uν , is

uν = (1, v ei). (6.9)

For both conditions (6.1), (6.2) to be satisfied simultane-
ously, it is necessary and sufficient that for any isotropic vector

γµν u
µ uν = 0 (6.10)

the causality condition

gµν u
µ uν ≤ 0, (6.11)

hold valid, which precisely indicates that the light cone of the
effective Riemannian space does not go beyond the causality
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light cone of pseudo-Euclidean space-time. The causality con-
dition may be written in the following form:

gµν v
µ vν = 0, (6.10a)

γµνv
µ vν ≥ 0. (6.11a)

In GRT, physical meaning is also attributed to such solu-
tions of the Hilbert-Einstein equations, which satisfy the in-
equality

g < 0,

as well as the requirement known as the energodominance con-
dition, which is formulated as follows. For any timelike vector
Kν the inequality

T µν KµKν ≥ 0,

must be valid, and the quantity T µν Kν must form, for the
given vector Kν , a non-spacelike vector.

In our theory, such solutions of equations (5.21a) and (5.22a)
have physical meaning, which, besides these requirements, must
also satisfy the causality condition (6.10a) and (6.11a). The
latter can be written, on the basis of equation (5.21a), in the
following form:

Rµν K
µKν ≤ 8 π√−g (Tµν −

1

2
gµν T )KµKν +

+
m2

2
gµν K

µKν . (6.12)

If the density of the energy-momentum tensor is taken in the
form:

Tµν =
√−g[(ρ+ p)UµUν − pgµν ],

then on the basis of (5.21a) it is possible to establish between
the interval of Minkowski space, dσ, and the interval of the
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effective Riemannian space, ds, the following relationship:

m2

2
dσ2 = ds2[4π(ρ+ 3p) +

m2

2
− RµνU

µUν ],

here Uµ =
dxµ

ds
.

Owing to the causality principle the inequality

RµνU
µUν < 4π(ρ+ 3p) +

m2

2
,

which is a special case of inequality (6.12), or

√−gRµν v
µvν ≤ 8 πTµνv

µvν (6.12a)

must hold valid.
Let us now consider the motion of a test body under the in-

fluence of gravity in GRT and RTG. In 1918 A. Einstein gave
the following formulation of the equivalence principle: “In-
ertia and gravity are identical; hence and from the results of
special relativity theory it inevitably follows that the symmetric
≪fundamental tensor≫ gµν determines the metric properties
of space, of the motion of bodies due to inertia in it, and,
also, the influence of gravity” 23. Identifying in GRT the grav-
itational field and the metric tensor gµν of Riemannian space
permits, by an appropriate choice of the reference system, to
equate to zero all the components of the Christoffel symbol at
all points of an arbitrary non-selfintersecting line. Precisely
for this reason, motion along a geodesic line in GRT is con-
sidered free. But, in this case, the choice of reference system
cannot remove the gravitational field in GRT, also, because
the motion of two close material pointlike bodies will not be
free due to the existence of the curvature tensor, which can
never be equated to zero by a choice of reference system owing
to its tensor properties.

23Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.1, art.45, p.613.
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The gravitational field in RTG is a physical field in the
spirit of Faraday–Maxwell, so the gravitational force is de-
scribed by a four-vector, and, consequently, the forces of iner-
tia can be made to compensate the three-dimensional part of
the force of gravity by a choice of reference system only if con-
ditions (6.10) and (6.11) are satisfied. Now, the motion of a
material pointlike body in the gravitational field can never be
free. This is especially evident, if the equation of the geodesic
line is written in the form [41]

DUν

dσ
= −Gρ

αβU
αUβ(δνρ − UνUρ).

Here

dσ2 = γµνdx
µdxν , Uν =

dxν

dσ
.

Free motion in Minkowski space is described by the equa-
tion:

DUν

dσ
=
dUν

dσ
+ γνµλU

µUλ = 0,

γνµλ are the Christoffel symbols of Minkowski space. We see
that motion along a geodesic line of Riemannian space is the
motion of a test body under the action of the force F ν :

F ν = −Gρ
αβU

αUβ(δνρ − UνUρ),

and this force is a four-vector. If the test body were charged,
it would emit electromagnetic waves, since it moves with ac-
celeration.

In SRT there exists an essential difference between the
forces of inertia and physical forces. The forces of inertia can
always be made equal to zero by a simple choice of reference
system, while essentially no choice of reference system can turn
physical forces into zero, since they are of a vector nature in
Minkowski space. Since in RTG all forces, including gravi-
tational forces, are of a vector nature, this means that they
cannot be equated to zero by a choice of reference system. A
choice of reference system can only make the force of inertia
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compensate a three-dimensional force, acting on a material
pointlike body, the force being of any nature, including gravi-
tational. In GRT, as noted by J.L.Synge [23], “... the concept
of the force of gravity does not exist, since gravitational prop-
erties are organically present in the structure of space-time
and are manifested in the curvature of space-time, i.e. in that
the Riemann tensor Rijkm differs from zero.” Precisely in this
connection, J.L.Synge wrote: “According to the famous leg-
end, Newton was inspired to create his theory of gravity, when
he once observed an apple falling from the branch of a tree,
and those who study Newtonian physics even now are ready
to claim that the acceleration (980 cm/s2) of a falling apple
is due to the gravitational field. In accordance with relativity
theory (GRT is intended — A.L.), this point of view is com-
pletely erroneous. We shall undertake a thorough investigation
of this problem and verify that the gravitational field (i.e., the
Riemann tensor) actually plays an extremely insignificant role
in the phenomenon of a falling apple, while the acceleration
980 cm/s2 is really due to the curvature of the world line of
the tree’s branch.”

According to RTG, the gravitational field is a physical field,
and therefore, unlike the case of GRT, it fully retains the con-
cept of the force of gravity. Precisely owing to the force of
gravity does the free fall of bodies occur, i.e., everything pro-
ceeds like in Newtonian physics. Moreover, all gravitational
effects in the Solar system (the displacement of the perihelion
of Mercury, the deflection of light by the Sun, the time de-
lay of a radiosignal, the precession of a gyroscope) are caused
precisely by the action of the force of gravity, but not by the
curvature tensor of space-time, which in the Solar system is
quite small.

The local identity between inertia and gravity was seen by
Einstein as the main reason for the inertial and gravitational
masses to be equal to each other. However, in our opinion, as
it can be seen from equations (2.2), the reason for this equality
lies in that the source of the gravitational field is the conversed
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total density of the tensor of matter and of the gravitational
field. Precisely for this reason, the inertial and gravitational
masses being equal to each other does not require the forces
of gravity and of inertia to be locally identical.



7. Mach’s principle

In formulating the laws of mechanics Newton introduced the
notion of absolute space, which always remains the same and
is motionless. He defined the acceleration of a body precisely
with respect to this space. This acceleration had an absolute
character. The introduction of such an abstraction as abso-
lute space turned out to be extremely fruitful. Hence, for
instance, arose the concepts of inertial reference systems in
the entire space, the relativity principle for mechanical pro-
cesses, and the idea came into being of states of motion, that
are physically singled out. In this connection Einstein wrote
the following in 1923: “Reference systems that are in such
states of motion are characterized by the laws of Nature for-
mulated in these coordinates assuming the most simple form.”
And further: ¡¡...according to classical mechanics there exists
“relativity of velocity”, but not “relativity of acceleration”¿¿ 24.

Thus in theory was the notion established of inertial refer-
ence systems, in which material pointlike bodies, not subject to
the action of forces, do not experience acceleration and remain
at rest or in their state of uniform motion along a straight line.
However, Newton’s absolute space or inertial reference system
were actually introduced a priori, without any relation to the
character of the distribution of matter in the Universe.

Mach displayed much courage in seriously criticizing the
main points of Newton’s mechanics. He later wrote that he
succeeded in publishing his ideas with difficulty. Although
Mach did not construct any physical theory free of the dis-
advantages he himself pointed out, he greatly influenced the
development of physical theory. He drew the attention of sci-
entists to the analysis of the main physical concepts.

We shall quote some statements made by Mach [18], which
in the literature have been termed the “Mach principle”. “No

24Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.2, art.70, p.122.
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one can say anything about absolute space and absolute mo-
tion, this is only something that can be imagined and is not
observable in experiments”. And further: “Instead of referring
a moving body to space (to some reference system), we shall
directly consider its relation to b o d i e s of the world, only
by which it is possible to d e f i n e a reference system. ...even
in the most simple case, when we apparently consider the in-
teraction between only t w o masses, it is i m p o s s i b l e
to become distracted from the rest of the world. ... If a body
revolves with respect to the sky of motionless stars, then there
arise centrifugal forces, while if it revolves round a n o t h e r
body, instead of the sky of motionless stares, no centrifugal
forces will arise. I have nothing against calling the first rev-
olution a b s o l u t e, if only one does not forget that this
signifies nothing but revolution r e l a t i v e to the sky of
motionless stars.”

Therefore Mach wrote: “...there is no necessity for relating
the Law of inertia to some special absolute space. The most
natural approach of a true naturalist is the following: first to
consider the law of inertia as quite an approximate law, then
to establish its relationship in space to the motionless sky of
stars, ...and then one should expect corrections or some devel-
opment of our knowledge on the basis of further experiments.
Not long ago Lange published a critical article, in which he
exposes how it would be possible, in accordance with his prin-
ciples, to introduce a n e w reference system, if the ordinary
rough reference to the motionless starry sky were to become no
longer suitable owing to more precise astronomical observa-
tions. There exists no difference between the opinion of Lange
and my own relative to the t h e o r e t i c a l formal value
of Lange’s conclusions, namely, that at present the motionless
starry sky is the only p r a c t i c a l l y suitable reference
system, and, also, relative to the method of defining a new
reference system by gradually introducing corrections.” [18].
Further, Mach quotes S. Neumann:“Since all motions must
be referred to the reference system alpha (the reference sys-
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tem of inertia), it evidently represents an indirect relationship
between all the processes taking place in the Universe, and,
consequently, it contains, so to say, a universal law which is
just as mysterious as it is complex”. In this connection Mach
notes: “I think anyone will agree with this” [18].

From Mach’s statements it is obvious that, since the issue
concerns the law of inertia, in accordance with which, following
Newton, “...each individual body, being left to itself, retains its
state of rest or uniform motion along a straight line...”, there
naturally arises the question of inertial reference systems and
of their relations to the distribution of matter. Mach and his
contemporaries quite clearly understood that such a relation
should exist in Nature. Precisely this meaning will further be
attributed to the concept of “Mach’s principle”.

Mach wrote: “Although I think that at the beginning as-
tronomical observations will necessitate only very insignificant
corrections, I anyhow do think it possible that the law of iner-
tia in the simple form given it by Newton plays for us, human
beings, only a limited and transient role.” [18]. As we shall
further see, Mach did not turn out to be right, here. Mach did
not give a mathematical formulation of his idea, and there-
fore very often diverse authors attribute to Mach’s principle
diverse meanings. We shall try, here, to retain the meaning,
attributed to it by Mach himself.

Poincaré, and later Einstein, generalized the relativity prin-
ciple to all physical phenomena. Poincaré’s formulation [40]
goes as follows: “...the relativity principle, according to which
the laws governing physical phenomena should be identical for
an observer at rest and for an observer undergoing uniform
motion along a straight line, so we have and can have no
method for determining whether we are undergoing similar
motion or not.” Application of this principle to electromag-
netic phenomena led Poincaré, and then Minkowski, to the
discovery of the pseudo-Euclidean geometry of space-time and
thus even more reinforced the hypothesis of inertial reference
systems existing throughout the entire space. Such reference
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systems are physically singled out, and therefore acceleration
relative to them has an absolute sense.

In general relativity theory (GRT) no inertial reference sys-
tems exist in all space. Einstein wrote about this in 1929:
“The starting point of theory is the assertion that there ex-
ists no singled out state of motion, i.e. not only velocity, but
acceleration has no absolute sense” 25.

Mach’s principle, in his own formulation, turned out not
to have any use. It must, however, be noted that the ideas of
inertial reference systems throughout the space have quite a
weighty basis, since, for instance, in passing from a reference
system bound to the Earth to a reference system bound to the
Sun and, then, further to the Metagalaxy we approach, with
an increasing precision, the inertial reference system. There-
fore, there are no reasons for renouncing such an important
concept as the concept of an inertial reference system. On
the other hand, the existence of the fundamental conserva-
tion laws of energy-momentum and of angular momentum also
leads with necessity to the existence of inertial reference sys-
tems in the entire space. The pseudo-Euclidean geometry of
space reflects the general dynamic properties of matter and
at the same time introduces inertial reference systems. Al-
though the pseudo-Euclidean geometry of space-time resulted
from studies of matter, and therefore cannot be separated from
it, nevertheless, it is possible to speak of Minkowski space in
the absence of matter. However, like earlier in Newtonian me-
chanics, in special relativity theory no answer exists to the
question of how inertial reference systems are related to the
distribution of matter in the Universe.

The discovery of the pseudo-Euclidean geometry of space
and time permitted considering not only inertial, but accelera-
ted reference systems, also, from a unique standpoint. A large
difference was revealed between the forces of inertia and forces

25Einstein A. Collection of scientific works, Moscow: Nauka, 1966,
vol.2, art.92, p.264.

72



caused by physical fields. It consists in that the forces of inertia
can always be equated to zero by choosing an appropriate ref-
erence system, while forces caused by physical fields cannot,
in principle, be made equal to zero by a choice of reference
system, since they are of a vector nature in four-dimensional
space-time. Since the gravitational field in RTG is a physical
field in the spirit of Faraday-Maxwell, forces caused by such a
field cannot be equated to zero by a choice of reference system.

Owing to the gravitational field having a rest mass, the
main equations of RTG, (5.19) and (5.20), contain, together
with the Riemannian metric, the metric tensor of Minkowski
space, also, but this means that, in principle, the metric of this
space can be expressed via the geometric characteristics of the
effective Riemannian space and, also, via quantities charac-
terizing the distribution of matter in the Universe. This is
readily done by passing in equations (5.19) from contravariant
to covariant quantities. In this way we obtain

m2

2
γµν(x) =

8 π√−g (Tµν −
1

2
gµν T ) −Rµν +

m2

2
gµν . (7.1)

Hence, we see that in the right-hand side of the equations
there occur only geometric characteristics of the effective Rie-
mannian space and quantities determining the distribution of
matter in this space.

Experimental investigation of the motion of particles, and
of light, in Riemannian space, in principle, allows to find the
metric tensor of Minkowski space and, consequently, to con-
struct an inertial reference system, also. Thus, RTG con-
structed within the framework of special relativity theory per-
mits to establish the relation between an inertial reference sys-
tem and the distribution matter. For this reason, motion rel-
ative to space is motion relative to matter in the Universe.
The existence of an inertial reference system, determined by
the the distribution of matter, makes acceleration absolute.
We see that the special relativity principle is of general signif-
icance, independent of the form of matter.
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The requirements of this principle in the case of the grav-
itational field are expressed by the condition that equations
(5.19) and (5.20) be form-invariant relative to the Lorentz
group. Lorentz form-invariance of physical equations remains
a most important physical principle in constructing a theory,
since precisely this principle provides the possibility of intro-
ducing universal characteristics for all forms of matter.

A. Einstein wrote in his work of 1950: “...should one not fi-
nally try to retain the concept of an inertial system, renouncing
all attempts at explaining the fundamental feature of gravita-
tional phenomena, which manifests itself in Newton’s system
as the equivalence of inert and gravitating masses?” 26. The
concept of an inertial system is retained in RTG, and at the
same time it is shown that the equivalence of inert and grav-
itating masses is a direct consequence of the hypothesis that
the conserved density of the energy-momentum tensor of mat-
ter is the source of the gravitational field. Thus, the equality
between inert and gravitating masses in no way contradicts the
existence of an inertial reference system. Moreover, these con-
ditions organically complement each other and underlie RTG.

Contrary to our conclusion, A.Einstein gave the following
answer to his own question: “Who believes in the compre-
hensibility of Nature should answer — no.” The existence of
inertial reference systems permits resolving Mach’s paradox,
since only in this case can one speak of acceleration relative
to space. V.A.Fock wrote in this connection: ¡¡As to Mach’s
paradox, it is known to be based on the consideration of a rotat-
ing liquid, having the shape of an ellipsoid, and of a spherical
body that does not rotate. The paradox arises, here, only if the
concept “rotation relative to space” is considered to be sense-
less; then, indeed, both bodies (the rotating one and the one not
rotating) are apparently equivalent, and it becomes incompre-
hensible why one of them is spherical and the other one is not.

26Einstein A. Collection of scientific works, Moscow: Nauka, 1966,
vol.2, art.137, p.724.
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But the paradox vanishes as soon as we acknowledge the legit-
imacy of the concept of “acceleration relative to space”¿¿ 27.

Mach’s ideas profoundly influenced Einstein’s views on gra-
vity during the construction of general relativity theory. Ein-
stein wrote in one of his works: “Mach’s principle: the G-field
is fully determined by the masses of bodies.” But this statement
turns out to be not valid in GRT, since there exist solutions
in the absence of matter, also. Attempts at eliminating this
circumstance by introduction of the λ-term did not lead to
the desired result. It turned out to be that equations with the
λ-term also have solutions differing from zero in the absence
of matter. We see that Einstein attached a totally different
meaning to the concept of “Mach’s principle”. But within
such an interpretation, also, no place was found in GRT for
Mach’s principle.

Is there any place in RTG for Mach’s principle as formu-
lated by Einstein? Unlike GRT, in this theory spacelike sur-
faces are present throughout the entire space (global Cauchy
surfaces), owing to the causality principle. And if no matter
is present on one of such surfaces, then the requirement of en-
ergodominance imposed on the tensor of matter will result in
matter always being absent [26]. It will be shown in section
10 that a gravitational field cannot arise without matter.

Only solutions of the set of inhomogeneous gravitational
equations have a physical sense, when matter exists in some
part of space or throughout the entire space. This means that
the gravitational field and the effective Riemannian space in
the actual Universe could not arise without the matter that
produced them. Solution of the equations for the metric of
effective Riemannian space in the absence of matter can, for
example, be considered a limit case of the solution obtained for
a homogeneous and isotropic distribution of matter in space,
as the density of matter tends subsequently toward zero. We

27V.A.Fock. Theory of space, time and gravity. M.:Gostekhizdat,
1961, p.499.

75



see that Mach’s principle, even as formulated by Einstein, is
realized in relativistic theory of gravity.

There exists, however, an essential difference between the
understanding of the G-field in our theory and in GRT. Ein-
stein understood the G-field to be the Riemannian metric,
while in our opinion the gravitational field is a physical field.
Such a field is present in the Riemannian metric together with
the plane metric, and therefore the metric does not vanish in
the absence of matter and of the gravitational field, but re-
mains the metric of Minkowski space.

In the literature there also exist other formulations of Mach’s
principle, differing in meaning from the ideas of both Mach and
Einstein, but since, in our opinion, these formulations are not
sufficiently clear, we have not dealt with them. Since gravita-
tional forces in RTG are due to a physical field of the Faraday–
Maxwell type, any common unique essence of the forces of
inertia and of gravity is, in principle, out of the question.

Sometimes the essence of Mach’s principle is seen to con-
sist in that the forces of inertia are determined, allegedly in
compliance with this principle, by interaction with matter in
the Universe. From a field standpoint such a principle cannot
exist in Nature. The point is that, although inertial reference
systems, as we have seen above, are related to the distribution
of matter in the Universe, forces of inertia do not result from
the interaction with matter in the Universe, because any influ-
ence of matter can only be exerted via physical fields, but this
means that the forces produced by these fields, owing to their
vector nature, cannot be made equal to zero by a choice of ref-
erence system. Thus, forces of inertia are directly determined
not by physical fields, but by a rigorously defined structure of
geometry and by the choice of reference system.

The pseudo-Euclidean geometry of space–time, which re-
flects dynamic properties common to all forms of matter, on
the one hand confirmed the hypothetical existence of inertial
reference systems, and on the other hand revealed that forces
of inertia, arising under an appropriate choice of reference sys-
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tem, are expressed via the Christoffel symbols of Minkowski
space. Therefore, they are independent of the nature of the
body. All this became clear when it was shown that special
relativity theory is applicable not only in inertial reference
systems, but also in non-inertial (accelerated) systems.

This made it possible to provide in Ref. [7] a more general
formulation of the relativity principle: “Whatever physical ref-
erence system (inertial or non-inertial we choose, it is always
possible to indicate an infinite set of such other reference sys-
tems, in which all physical phenomena proceed like in the ini-
tial reference system, so we have and can have no experimental
for determining precisely in which reference system of this in-
finite set we happen to be.” Mathematically this is expressed
as follows: consider the interval in a certain reference system
of Minkowski space to be

dσ2 = γµν(x)dx
µdxν ,

then there exists another reference system x′:

x′ν = f ν(x),

in which the interval assumes the form

dσ2 = γµν(x
′)dx′µdx′ν ,

where the metric coefficients γµν have the same functional form
as in the initial reference system. In this case it is said that the
metric is form-invariant relative to such transformations,
and all physical equations are also form-invariant, i.e.
they have the same form both in the primed and in the not
primed reference systems. The transformations of coordinates
that leave the metric form-invariant form a group. In the case
of Galilean coordinates in an inertial reference system these
are the usual Lorentz transformations.

In RTG there exists an essential difference between the
forces of inertia and the forces of gravity consisting in that
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as the distance from bodies increases, the gravitational field
becomes weaker, while the forces of inertia may become in-
definitely large, depending on the choice of reference system.
And only in an inertial reference system are they equal to zero.
Therefore, it is a mistake to consider forces of inertia insep-
arable from forces of gravity. In everyday life the difference
between them is nearly obvious.

The construction of RTG has permitted to establish the
relationship between an inertial reference system and the dis-
tribution of matter in the Universe and, thus, to understand
more profoundly the nature of forces of inertial and their differ-
ence from material forces. In our theory forces of inertia are
assigned the same role as the one they assume in any other
field theories.



8. Post-Newtonian approximation

The post-Newtonian approximation is quite sufficient for study-
ing gravitational effects in the Solar system. In this section
we shall construct this approximation. Technically, our con-
struction takes advantage of many results previously obtained
by V.A.Fock [24], and it turns out to be possible to further
simplify the method of deriving the post-Newtonian approxi-
mation.

We shall write the main equations of theory in the form
(see Appendix D)

γ̃αβDαDβΦ̃
ǫλ +m2√−γΦ̃ǫλ = −16πg(T ǫλM + τ ǫλg ), (8.1)

DλΦ̃
ǫλ = 0 . (8.2)

where T ǫλM is the energy-momentum tensor of matter; τ ǫλg is
the energy-momentum tensor of the gravitational field.

The expression for the energy-momentum tensor of the
gravitational field can be represented in the form

− 16πgτ ǫλg =
1

2
(g̃ǫαg̃λβ − 1

2
g̃ǫλg̃αβ)(g̃νσg̃τµ −

1

2
g̃τσg̃νµ)DαΦ̃

τσ ×

×DβΦ̃
µν + g̃αβ g̃τσDαΦ̃

ǫτDβΦ̃
λσ − g̃ǫβg̃τσDαΦ̃

λσDβΦ̃
ατ −

− g̃λαg̃τσDαΦ̃
βσDβΦ̃

ǫτ +
1

2
g̃ǫλg̃τσDαΦ̃

σβDβΦ̃
ατ +

+DαΦ̃
ǫβDβΦ̃

λα − Φ̃αβDαDβΦ̃
ǫλ −

−m2(
√−gg̃ǫλ −√−γΦ̃ǫλ + g̃ǫαg̃λβγαβ −

1

2
g̃ǫλg̃αβγαβ) . (8.3)

This expression is written in an arbitrary reference system in
Minkowski space. We shall further perform all computations
in the Galilean coordinates of the inertial reference system,

γµν = (1,−1,−1,−1) . (8.4)

In constructing the series of perturbation theory it is nat-
ural to apply as a small parameter such a quantity ǫ that

v ∼ ǫ, U ∼ ǫ2, Π ∼ ǫ2, p ∼ ǫ2 . (8.5)
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Here U is the Newtonian potential of the gravitational field;
Π is the specific internal energy of the body considered; p is
the specific pressure.
For the Solar system the parameter ǫ2 is of the order of

ǫ2 ∼ 10−6 . (8.6)

We shall use the expansions of the components of the den-
sity of the tensor:

g̃00 = 1+
(2)

Φ̃00+
(4)

Φ̃00 + ..., (8.7)

g̃0i =
(3)

Φ̃0i+
(5)

Φ̃0i + ..., (8.8)

g̃ik = γ̃ik+
(2)

Φ̃ik+
(4)

Φ̃ik + ... (8.9)

We shall adopt the ideal fluid model of matter, the energy-
momentum tensor of which has the form

T ǫλ = [p + ρ(1 + Π)]uǫuλ − pgǫλ, (8.10)

where ρ is the invariant density of an ideal fluid;
p is the specific isotropic pressure;
uλ is the velocity four-vector.

We shall now write the expansion in the small parameter
ǫ for the energy-momentum tensor of matter:

T 00
M =

(0)

T
00+

(2)

T
00 + ..., (8.11)

T 0i
M =

(1)

T
0i+

(3)

T
0i + ..., (8.12)

T ikM =
(2)

T
ik+

(4)

T
ik + ... (8.13)

In the Newtonian approximation, i.e., when we neglect the
forces of gravity, we have for the four-vector the following:

u0 = 1 + 0(ǫ2), ui = vi(1 + 0(ǫ2)) . (8.14)
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Substituting these expressions into (8.10) we find

(0)

T
00 = ρ,

(1)

T
0i = ρvi,

(0)

T
ik = 0 . (8.15)

In this approximation, on the basis of (5.7), we have

∂0ρ+ ∂i(ρv
i) = 0 . (8.16)

Hence it can be seen that in the Newtonian approximation
the total inert mass of a body is a conserved quantity:

M =
∫

ρd3x . (8.17)

On the basis of equations (8.1) we have in the Newtonian
approximation:

∆
(2)

Φ̃00 = −16πρ , (8.18)

∆
(3)

Φ̃0i = −16πρvi , (8.19)

∆
(2)

Φ̃ik = 0 . (8.20)

In an inertial reference system the mass of the graviton,
owing to its smallness, plays an insignificant role for effects in
the Solar system, and therefore in deriving equations (8.18) –
(8.20) we did not take it into account. But even in this case
its influence is manifested in that equations (8.2) have to exist
together with the set of equations (8.1). Such equations in
Galilean coordinates were also applied in V.A.Fock’s theory
of gravity, but unlike the case of RTG, they did not follow
from the least action principle, so it was not clear why pre-
cisely they had to be applied, instead of some other equations.
V.A. Fock chose them as coordinate conditions and applied
them in studying island systems. In RTG these equations
arise from the least action principle, and for this reason they
are universal. It is precisely owing to equations (8.2) that we
obtain a complete set of equations for determining physical
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quantities. It must be noted that in the general case of a non-
inertial reference system or in the case of strong gravitational
fields the term with the graviton mass m can no longer be
dropped. Thus, for example, even for a static body in the
region close to the Schwarzschild sphere the influence of the
graviton mass is very significant, so it can no longer be ne-
glected.

The solution of equations (8.18) – (8.20) has the form

(2)

Φ̃00 = 4U, U =
∫

ρ

|x− x′|d
3x′, (8.21)

(3)

Φ̃0i = −4V i, V i = −
∫

ρvi

|x− x′|d
3x′ , (8.22)

(2)

Φ̃ik = 0 . (8.23)

On the basis of equations (8.2) we have

∂0

(2)

Φ̃00 + ∂i

(3)

Φ̃0i = 0 . (8.24)

Substituting (8.21) and (8.22) we find

∂0U − ∂iV
i = 0 . (8.25)

Hence, it is evident that differentiation of the potential U with
respect to time increases the order of smallness in ǫ. We shall
take advantage of this circumstance in calculating the energy-
momentum tensor of the gravitational field, τ ǫλg . We note that
equation (8.25) is satisfied identically by virtue of equations
(8.16).

From (8.22) and (8.23) it follows that of all the density

components of the tensor Φ̃ǫλ only the component
(2)

Φ̃00, deter-
mined by expression (8.21), is seen to remain in the second
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approximation. Precisely this circumstance significantly sim-
plifies the method of finding the post-Newtonian approxima-
tion, when at each stage of the construction we make use of
the densities of tensor quantities.

Making use of (8.21) – (8.23) with a precision up to the
second order inclusively we obtain

√−gg00 = 1 + 4U,
√−gg11 =

=
√−gg22 =

√−gg33 = −1 . (8.26)

Hence, we have
−g = 1 + 4U , (8.26a)

consequently,

g00 = 1 − 2U, g11 = g22 = g33 = −(1 + 2U) . (8.27)

We see from (8.26) that in the Newtonian approximation,
when it suffices to consider only one component of the density
of the tensor of matter, T 00, the gravitational field is described,
as it was expected, by only a sole component Φ̃00, while the
metric tensor gµν has in this approximation, also, several com-
ponents, in accordance with (8.27). Working with the field
components Φ̃µν , instead of the metric tensor gµν , significantly
simplifies the entire computational process of constructing the
post-Newtonian approximation. Precisely for this reason, in-
troduction of the density of the tensor of the gravitational field
Φ̃µν is important not only from a general theoretical point of
view, but from a practical standpoint, also. Thus, the metric
tensor of the effective Riemannian space is

g00 = 1 − 2U, g0i = 4γikV
k, gik = γik(1 + 2U) . (8.28)

From expression (8.21) for U it follows that the inert mass
(8.17) is equal to the active gravitational mass. In RTG, as we
have seen, this equality arose because the energy-momentum
tensor is the source of the gravitational field.
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We shall now proceed to construct the next approximation
for the component of the metric tensor g00. For this purpose we
shall find the contribution of the energy-momentum tensor of
the gravitational field. Since in expression (8.3) it is necessary

under the derivative sign to take into account only
(2)

Φ̃ 00, the
first term in (8.3) will give a contribution equal to

2(gradU)2, (8.29)

while the second term contributes

− 16(gradU)2. (8.30)

The contribution from all the remaining terms in this approx-
imation will be zero. Discarded are also the terms with time
derivatives of the potential U , since, owing to (8.25), they are
also all of a higher order of smallness in ǫ. From (8.29) and
(8.30) we have

− 16πgτ 00
g = −14(gradU)2 . (8.31)

Making use of (8.31), equation (8.1) for component Φ̃00 in this
approximation assumes the form

∆
(4)

Φ̃00 = 16πgT 00 + 14(gradU)2 + 4∂2
0U . (8.32)

Since on the basis of (8.28) the interval equals the following in
the second order in ǫ:

ds = dt(1 − U +
1

2
viv

i) , (8.33)

we hence obtain

u0 =
dt

ds
= 1 + U − 1

2
viv

i . (8.34)

Substituting this expression into (8.10) we find

(2)

T
00 = ρ[2U + Π − viv

i] . (8.35)
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On the basis of (8.26a) and (8.35) we obtain from equations
(8.32) the following:

∆
(4)

Φ̃00 = −96πρU + 16πρviv
i +

+14(gradU)2 − 16πρΠ + 4∂2
0U . (8.36)

Now we shall take advantage of the obvious identity

(gradU)2 =
1

2
∆U2 − U∆U . (8.37)

But, since
∆U = −4πρ , (8.38)

then equation (8.36), upon utilization of (8.37) and (8.38),
assumes the form

∆(
(4)

Φ̃00 − 7U2) = 16πρviv
i− 40πρU − 16πρΠ + 4∂2

0U . (8.39)

Hence, we have

(4)

Φ̃00 = 7U2 +4Φ1 +10Φ2 +4Φ3−
1

π
∂2

0

∫

U

|x− x′|d
3x′ , (8.40)

where

Φ1 = −
∫ ρviv

i

|x− x′|d
3x′, ,Φ2 =

∫ ρU

|x− x′|d
3x′,

Φ3 =
∫

ρΠ

|x− x′|d
3x′.

(8.41)

Thus, in the post-Newtonian approximation we find:

g̃00 = 1 + 4U + 7U2 + 4Φ1 + 10Φ2 +

+ 4Φ3 −
1

π
∂2

0

∫

U

|x− x′|d
3x′. (8.42)
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We now have to find the determinant of g in the post-Newtonian
approximation. To this end we represent g̃ik in the form:

g̃ik = γ̃ik+
(4)

Φ̃ik. (8.43)

It must be especially underlined that calculation of the deter-
minant of g is most readily performed if one takes advantage
for this purpose of the tensor density g̃µν and takes into ac-
count that

g = det(g̃µν) = det(gµν) . (8.44)

From (8.42) and (8.43) we find

√−g = 1 + 2U +
3

2
U2 + 2Φ1 + 5Φ2 +

+2Φ3 −
1

2
Φ − 1

2π
∂2

0

∫

U

|x− x′|d
3x′. (8.45)

Here

Φ =
(4)

Φ̃11+
(4)

Φ̃22+
(4)

Φ̃33. (8.46)

Since in the considered approximation g00g
00 = 1, from ex-

pressions (8.42) and (8.45) we obtain

g00 = 1 − 2U +
5

2
U2 − 2Φ1 − 5Φ2 −

−2Φ3 −
1

2
Φ +

1

2π
∂2

0

∫

U

|x− x′|d
3x′. (8.47)

For determining g00 we need to calculate the quantity Φ. Since
Φ, in accordance with (8.46), was derived by summation, it is
possible to make use of equation (8.1) and by summation to
obtain directly equations for function Φ.

From expression (8.3) by summation we derive from the
first term the following expression:

− 16πgτ iig = −2(gradU)2. (8.48)
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All the remaining terms present in expression (8.3) give no
contribution in this approximation. With the aid of expression
(8.10) for the energy-momentum tensor we find

− 16πg
(2)

T̃ ii = −16πρviv
i + 48πp . (8.49)

Taking into account (8.48) and (8.49), we write the equation
for Φ as follows:

∆Φ = 16πρviv
i − 48πp+ 2(gradU)2. (8.50)

Taking advantage of identity (8.37) and of equation (8.38) we
obtain

∆(Φ − U2) = 16πρviv
i + 8πρU − 48πp . (8.51)

Hence, we find

Φ = U2 + 4Φ1 − 2Φ2 + 12Φ4, (8.52)

where
Φ4 =

∫ p

|x− x′|d
3x′.

Substituting expression (8.52) into (8.47) we have

g00 = 1 − 2U + 2U2 − 4Φ1 − 4Φ2 −

−2Φ3 − 6Φ4 +
1

2π
∂2

0

∫ U

|x− x′|d
3x′. (8.53)

Making use of the identity

1

2π

∫

U

|x− x′|d
3x′ = −

∫

ρ|x− x′|d3x′,

we write expression (8.53) as

g00 = 1 − 2U + 2U2 − 4Φ1 − 4Φ2 −
− 2Φ3 − 6Φ4 − ∂2

0

∫

ρ|x− x′|d3x′. (8.54)
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The solutions (8.54) and (8.28) are calculated in an iner-
tial reference system in Galilean coordinates. The effective
Riemannian metric that arises is due to the presence of the
gravitational field, while the forces of inertia are totally ex-
cluded. It is quite obvious that these solutions retain their
functional form in the Galilean coordinates of any inertial ref-
erence system. Since all physical quantities are independent
of transformations of the time variable, then if the following
transformation is applied:

x′0 = x0 + η0(x), x′i = xi , (8.55)

the metric coefficients will change as follows:

g′00 = g00 − 2∂0η
0, g′0i = g0i − ∂iη

0, g′ik = gik . (8.56)

It must be noted that transformation (8.55) does not take us
beyond the inertial reference system, since such a transfor-
mation is nothing but another choice of clock. All physically
measurable quantities are independent of this choice.

Assuming function η0 to be

η0 = −1

2
∂0

∫

ρ|x− x′|d3x′, (8.57)

and taking into account the identity

∂iη
0 =

1

2
(γikV

k −Ni),

Ni =
∫ ρvk(xk − x′k)(xi − x′i)

|x− x′|3 d3x′
(8.58)

upon substitution into (8.56) of expressions (8.28) for g0i and
gik and, also, of expression (8.54) for g00, and taking into ac-
count(8.57) and (8.58), we find the metric coefficients of effec-
tive Riemannian space in the so-called ”canonical form”:

g00 = 1 − 2U + 2U2 − 4Φ1 − 4Φ2 − 2Φ3 − 6Φ4,

g0i =
7

2
γikV

k +
1

2
Ni, (8.59)

gik = γik(1 + 2U) .
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These expressions coincide precisely with the formulae that
are obtained on the basis of GRT. The difference only consists
in that here they follow exactly from RTG, while for deriving
them from GRT equations it is necessary to apply additional
assumptions, that do not follow from theory, i.e. it is necessary
to go beyond the limits of GRT. But we shall specially deal
with this issue.

In the case of a static spherically symmetric body the
post-Newtonian approximation at a distance from the body
assumes, in accordance with (8.59), the form

g00 = 1 − 2MG

r
+ 2

(

MG

r

)2

, g0i = 0,

(8.59a)

gik = γik

(

1 +
2MG

r

)

, M =
∫

ρ(x)d3x.

On the basis of expressions (8.59) the post-Newtonian No-
rdtwedt–Will parameters in RTG assume the following values:

γ = 1, β = 1, α1 = α2 = α3 = ξ1 = ξ2 = ξ3 = ξ4 = ξW = 0.

We have calculated the metric coefficients (8.59) in RTG in an
inertial reference system. We shall now present the expressions
for the components of the energy-momentum tensor of matter
in the next approximation, as compared with (8.15). Taking
into account expression (8.34) for u0 and, also, that

ui =
dxi

ds
= vi(1 + U − 1

2
vkv

k) , (8.60)

we find from formula (8.10)

(3)

T
0i = ρvi(2U + Π − vkv

k) + pvi, (8.61)

(2)

T
ik = ρvivk − pγik. (8.62)

The component
(2)

T 00 is determined by expression (8.35).
On the basis of expression (8.59), making use of the equations
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for the geodesic line, it is possible to calculate all effects in
the Solar system. When gravitational effects in the Solar sys-
tem are calculated in GRT on the basis of the post-Newtonian
approximation, the results obtained are correct, and no ambi-
guity is present in the description of the effects. At the same
time, if the exact solutions of GRT are applied, ambiguity
arises in the description of the effects.

In conclusion we shall deal in somewhat greater detail with
the comparison of RTG and GRT in analyzing effects occurring
in a weak gravitational field. The set of equations (8.1) and
(8.2) together with the equation of state determines all the
physical quantities of one or another gravitational problem.
All the calculations performed above in the post-Newtonian
approximation were made in an inertial reference system. In
GRT there in principle exists no inertial reference system. In
this connection A. Einstein wrote: “The starting point of the-
ory consists in the assertion that there exists no state of motion
physically singled out, i.e. not only velocity, but acceleration,
also, have no absolute meaning” 28. But if no inertial reference
system exists, to which reference system must one consider
calculations performed within GRT to pertain?

In calculating gravitational effects V. A. Fock made use
of the harmonicity conditions in Cartesian coordinates. He
called them coordinate conditions. Thus, in a work published
in 1939 [24] he wrote: “In solving Einstein’s equations we
took advantage of a reference system, which we have termed
harmonic, but which merits being called inertial.” Further in
the same article he noted: “It seems to us that the possibil-
ity of introducing in general relativity theory a definite inertial
reference system in an unambiguous manner is noteworthy.”
And, finally, in Ref. [25] he wrote: “The relativity principle
expressed by the Lorentz transformations is possible in inho-

28Einstein A. Collection of scientific works, Moscow: Nauka, 1966,
vol.2, art.92, p.264.
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mogeneous space, also, while a general relativity principle is
not possible.”

All these statements of V. A. Fock were due to his aspira-
tion to clarify the essence of GRT, freeing it of general rela-
tivity devoid of any physical meaning. However, V. A. Fock,
here, actually went beyond the limits of GRT. Precisely owing
to this fact he arrived at the striking conclusion on the vali-
dity of the relativity principle in inhomogeneous space, also.
If one remains within Riemannian space, and no other space
exists in GRT, then this assertion contradicts the correct con-
clusion made by V. A. Fock “that in general relativity theory
there, generally speaking, exists no relativity.” [25]. But to
realize his goal it is necessary to introduce the concept of a
gravitational field in Minkowski space. Where did V. A. Fock
go beyond GRT? In applying the conditions of harmonicity he
actually considered Cartesian coordinates:

∂g̃µν

∂xµ
= 0 , (8.63)

where xµ are Cartesian coordinates. In Cartesian coordinates
γ(x) = det γµν = −1. Therefore, in accordance with the tensor
law of transformations we have

g̃µν(x) =
∂xµ

∂yα
· ∂x

ν

∂yβ
· g̃αβ(y)
√

−γ(y)
. (8.64)

We shall write equations (8.63) in the form

∂µg̃
µν(x) =

∂yτ

∂xµ
· ∂g̃

µν(x)

∂yτ
. (8.65)

For further calculations we present the formulae

∂

∂yτ





1
√

−γ(y)



 = − 1√−γ γ
λ
τλ, γ

ν
αβ =

∂2xσ

∂yα∂yβ
· ∂y

ν

∂xσ
. (8.66)
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Upon substitution of (8.64) into (8.65) and taking into account
(8.66) we obtain

∂µg̃
µν(x) =

1√−γ
∂xν

∂yσ
· ∂g̃

ασ(y)

∂yα
+

+
1√−γ g̃

αβ(y)
∂2xν

∂yα∂yβ
= 0 . (8.67)

We shall write the multiplier of the second term in the form

∂2xν

∂yα∂yβ
=
∂xν

∂yσ
· ∂y

σ

∂xτ
· ∂2xτ

∂yα∂yβ
=
∂xν

∂yσ
· γσαβ .

Substituting this expression into the preceding one we find

∂µg̃
µν(x) =

1√−γ · ∂x
ν

∂yσ

(

∂g̃ασ(y)

∂yα
+ γσαβ(y)g̃

αβ(y)

)

= 0 ,

i.e. we have

∂µg̃
µν(x) =

1√−γ · ∂x
ν

∂yσ
Dµg̃

µσ(y) = 0 . (8.68)

Thus, we have established that the density of the tensor
g̃µσ(y) in arbitrary coordinates automatically satisfies the gen-
eral covariant equation

Dλg̃
λσ = 0 ,

if the initial condition of harmonicity (8.63) is written in Carte-
sian coordinates. But this means that the harmonicity con-
dition is not a coordinate condition, but a field equation in
Minkowski space. Thus, application of the condition of har-
monicity in Cartesian coordinates is not an innocent opera-
tion, but it implies going beyond the framework of GRT by
introduction of Minkowski space.

The obtained equation coincides with equation (5.20) of
RTG. In RTG it follows from the least action principle. Per-
forming transformation from coordinates y to coordinates z
we obtain (see Appendix (E.12))

yλ = −γλαβ(y)gαβ(y),
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where denotes the operator

=
1

√

−g(z)
· ∂

∂zν

(

g̃νσ
∂

∂zσ

)

.

Therefore, when V. A. Fock wrote down the harmonicity con-
ditions in the form

yλ = 0,

he actually dealt with Cartesian coordinates, for which
γλαβ(y) = 0, i.e. with Minkowski space in Galilean coordi-
nates. In choosing harmonic coordinates in the form of con-
ditions (8.63) V. A. Fock actually made use of Minkowski
space in Galilean coordinates, while equations (8.63) played
the part of field equations, instead of coordinate conditions.
But why it was necessary to add to the Hilbert–Einstein equa-
tions precisely equations (8.63) in Galilean coordinates, in-
stead of some others, in order to obtain the complete set of
gravity equations within V.A.Fock’s approach, remained un-
clear. Here, V.A.Fock was most likely guided by physical intu-
ition, and also by the mathematical simplification that arose
in the course of calculations.

Did V. A. Fock attempt to consider the gravitational field
in Minkowski space? No, he was far from this idea, and in this
connection he wrote [24]: “We recall it here only in connection
with the sometimes observed tendency (certainly not shared by
us) to pack the theory of gravity into the framework of Eu-
clidean space.” As we have seen, application of the conditions
of harmonicity in Cartesian coordinates makes us go beyond
the framework of GRT. But this means that the set of equa-
tions of gravity, studied by V. A. Fock, differs from the set of
equations of GRT, i.e. V. A. Fock’s theory of gravity based
on the conditions of harmonicity in Cartesian coordinates and
Einstein’s GRT are different theories. V. A. Fock’s approach
turns out to be closer to the ideas of RTG. Everything that
V. A. Fock attempted to introduce in the theory of gravity (in-
ertial reference systems, acceleration relative to space) is fully
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inherent in RTG, but this is achieved by consideration of the
gravitational field, like all other physical fields, in Minkowski
space. Here, all the geometric characteristics of Riemannian
space are now field quantities in Minkowski space.

In analyzing gravitational effects in the Solar sys-
tem V.A. Fock actually made use of Minkowski space, since
he referred all the calculated gravitational effects to an iner-
tial reference system. Precisely this circumstance permitted
him to obtain correct expressions for the effects. Thus, for ex-
ample, he wrote [25]: “How should one define a straight line:
as a light ray or as a straight line in that Euclidean space in
which the harmonic coordinates x1, x2, x3 serve as Cartesian
coordinates? We think the second definition to be the only cor-
rect one. We actually made use of it in saying that a light ray
has the shape of a hyperbola in the vicinity of the Sun”, and
further on, “the argument that a straight line, like a ray of
light, is more directly observable, but it has no sense: in the
definitions it is not the direct observability that is decisive, but
the correspondence to Nature, even though this correspondence
may be established by indirect reasoning.”

In RTG gravitational effects are determined unambigu-
ously, because in accordance with equations (8.1) and (8.2)
written in the Galilean coordinates of an inertial reference sys-
tem, the motion of light or of a test body, when the gravita-
tional field is switched off, indeed proceeds along a straight
line, which is a geodesic line in Minkowski space. It is abso-
lutely clear that in a non-inertial reference system the geodesic
line in Minkowski space will no longer be a straight line. But
this means that in RTG, in an non-inertial reference system,
for revealing a gravitational effect motion in effective Rieman-
nian space must be compared precisely with the geodesic mo-
tion of the accelerated reference system.

In calculating gravity effects in the Solar system, when the
influence of the graviton mass can be neglected, only the RTG
set of equations (8.1) and (8.2) in Galilean coordinates coin-
cides with the set of equations dealt with by V. A. Fock in
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harmonic (Cartesian) coordinates. If one remains within the
framework of GRT, then in any other, for instance non-inertial,
reference system they differ essentially. This takes place be-
cause the covariance of V. A. Fock’s set of equations is not
general, unlike the set of RTG equations. V. A. Fock obtained
the complete set of gravitational equations (for island systems)
by adding the harmonicity conditions to the Hilbert-Einstein
equations. But why must precisely the harmonicity condi-
tions be added, instead of some other conditions, remained
unclear. In accordance with RTG, the complete set of gravi-
tational equations (8.1) and (8.2) arises from the least action
principle. Hence it becomes clear, why conditions (8.2), which
in Cartesian coordinates coincide with the harmonicity condi-
tions, arise, instead of some other conditions. But these equa-
tions become universal, valid not only for island systems. But
if V. A. Fock had realized that in applying the harmonicity
conditions he actually had to deal with Cartesian coordinates
of Minkowski space, he would have readily obtained expression
(8.68). As we already noted earlier, the harmonicity conditions
in Cartesian coordinates successfully applied by V. A. Fock
took him beyond the framework of Einstein’s GRT. This fact
was noted in 1957 by L. Infeld who wrote:“Thus, for Fock
the choice of the harmonicity coordinate condition becomes a
certain fundamental law of Nature, which alters the very char-
acter of Einstein’s general relativity theory and transforms it
into a theory of the gravitational field, valid only in inertial
reference systems” 29.

If one remains within the framework of GRT, then it is ab-
solutely incomprehensible, from the point of view of physics,
why it is necessary to choose the harmonicity conditions, in-
stead of any other conditions. While in RTG, owing to the
existence of the graviton mass, these conditions arise as a con-
sequence of the validity of the equations for matter [see (5.7)

29L.Infeld. Most recent problems in gravity. M.:Foreign literature
publishers, 1961, p.162.
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and (5.17)], i.e. they follow from the least action principle, and
they therefore have universal significance. However, in GRT
similar expressions for the post-Newtonian approximation are,
nevertheless, obtained without application of the harmonici-
ty conditions in Cartesian coordinates. Why is this so? The
reason consists in that Minkowski space in Galilean coordi-
nates is once again introduced and that the gravitational field
is actually considered as a physical field in this space.

The metric of Minkowski space in Galilean coordinates is
taken as the zero order approximation for the Riemannian
metric. It is complemented with various potentials with arbi-
trary post-Newtonian parameters, each of which decreases like
0(1

r
). In this way the arbitrariness contained in GRT is dis-

carded. Substitution of the Riemannian metric gµν in this form
into the Hilbert-Einstein equation permits one to determine
the values of the post-Newtonian parameters, and we again
arrive at the same post-Newtonian approximation. Precisely
here gravity is considered to be a physical field in Minkowski
space, the behaviour of which is described by the introduced
gravitational potentials. Such a requirement imposed on the
character of the metric of Riemannian space does not follow
from GRT, since in the general case the asymptotics of the
metric is quite arbitrary and even depends on the choice of
the three-dimensional space coordinates. Therefore it is im-
possible to impose physical conditions on the metric. But if
it is effective and its arising is due to the physical field, then
the physical conditions are imposed on the metric in a natural
manner.

In RTG the gravitational equations (5.19) and (5.20) are
generally covariant, but not form-invariant with respect to ar-
bitrary transformations. They are form-invariant relative to
the Lorentz transformations. But this means that in Lorentz
coordinates, in case the solution G(x) exists for the tensor of
matter Tµν(x), there exists, in the new Lorentz coordinates x′,
the solution G′(x′) for the tensor of matter T ′

µν(x
′), and, con-

96



sequently, in the coordinates x the solution G′(x) is possible
only for the tensor of matter T ′

µν(x).
In RTG a unique correspondence is established between the

Riemannian metric and the Minkowski metric, which permits
one to compare motion under the influence of the gravitational
field and in its absence, when calculation is performed of the
gravitational effect. When the gravitational field is switched
off in RTG the Riemann tensor turns to zero, and at the
same time transition occurs from Riemannian metric to the
Minkowski metric, previously chosen in formulating the phys-
ical problem. This is precisely what provides for the equiva-
lence principle to be satisfied in RTG.

For calculation of the gravitational effect it is necessary to
compare motion in Riemannian space with motion in absence
of the gravitational field. This is precisely how the gravita-
tional effect is determined. If in GRT one refers the set of
solutions for gµν to a certain inertial reference system, then it
is quite obvious that one will obtain a whole set of various val-
ues for the gravitational effect. Which one of them should be
chosen? Since the Hilbert-Einstein equations do not contain
the metric of Minkowski space, it is impossible to satisfy the
equivalence principle, because it is impossible to determine, in
which (inertial or non-inertial) reference system one happens
to be, when the gravitational field is switched off.

To conclude this section we note that the post-Newtonian
approximation (8.59) satisfies the causality principle (6.11).



9. On the equality of inert and

gravitational masses

Owing to the density of the energy-momentum tensor being
the source of the gravitational field, the inert and gravitational
masses were shown in section 8 to be equal. In this section we
shall show that the field approach to gravity permits obtaining
in a trivial manner the metric of effective Riemannian space in
the first approximation in the gravitational constant G. This
is especially simple to establish on the basis of equations (2.2).
In the case of a spherically symmetric static body, equations
(2.2) have the following form in the Galilean coordinates of an
inertial reference system:

∆Φ̃00 −m2Φ̃00 = −16πt00, (9.1)

∆Φ̃0i −m2Φ̃0i = 0, ∆Φ̃ik −m2Φ̃ik = 0, i, k = 1, 2, 3. (9.2)

For a static body the sole component t00 differs from zero.
From equations (9.2) we have

Φ̃0i = 0, Φ̃ik = 0 . (9.3)

Far away from the body, from equation (9.1) we find

Φ̃00 ≃ 4M

r
e−mr, M =

∫

t00d3x , (9.4)

M is the inert mass of the body, that creates the gravitational
field. In the Solar system the exponential factor can be ne-
glected, owing to the quantity mr being small.

Φ̃00 ≃ 4M

r
. (9.5)

We shall now find the components of the density of the
metric tensor of effective Riemannian space, g̃µν . On the basis
of (2.6) we have

g̃µν = γ̃µν + Φ̃µν , g̃µν =
√−ggµν . (9.6)
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Hence, taking into account (9.3) and (9.5), we obtain the fol-
lowing g̃µν components, that differ from zero:

g̃00 = 1 +
4M

r
, g̃11 = g̃22 = g̃33 = −1. (9.7)

They satisfy equation (2.3) exactly. On the basis of (9.7) we
find

g00 =

√−g
1 + 4M

r

, g11 = g22 = g33 = −
√
−g. (9.8)

− g = − g̃00g̃11g̃22g̃33 =
(

1 +
4M

r

)

. (9.9)

Substituting the expressions for g into formulae (9.8) we obtain

g00 ≃
(

1 − 2M

r

)

, g11 = g22 = g33 = −
(

1 +
2M

r

)

. (9.10)

It must be especially underlined that at the place, where
in accordance with Newton’s law of gravity there should be
an active gravitational mass, there appears the inert mass M .
Thus, the equality of the inert and active gravitational masses
is a direct consequence of the density of the energy-momentum
tensor being the source of the gravitational field. So the reason
that the inert and gravitational masses are equal is not the lo-
cal identity of the forces of inertia and of gravity (this actually
does not occur in GRT), but the universality of the conserved
source of the gravitational field, of the energy-momentum ten-
sor of matter.

The interval in effective Riemannian space has the form

ds2 =
(

1 − 2M

r

)

dt2 −
(

1 +
2M

r

)

(dx2 + dy2 + dr2) . (9.11)

Classical effects of gravity, such as the gravitational red shift
of spectral lines, the deviation of a light ray by the Sun, the
time delay of a radiosignal, the precession of a gyroscope on
the Earth’s orbit, are fully described by this interval.
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From expression (9.10) it is evident that the forces of gra-
vity are attractive, since the quantity M , being an inert mass,
is always positive. As to GRT, in accordance with this theory
it is not possible to prove the equality of inert and active grav-
itational masses. A detailed analysis of this issue is presented
in joint works performed with prof. V. I. Denisov. This cir-
cumstance is dealt with in detail in the monograph [10]. The
essence of the issue consists in that the expression for inert
mass, determined from the pseudotensor of the gravitational
field, depends on the choice of the three-dimensional coordi-
nates, which is physically inadmissible. Precisely by a simple
choice of three-dimensional space coordinates (which is always
permitted) one can show that in GRT inert mass is not equal
to active gravitational mass. Since the equality of physically
measurable quantities in GRT depends on the choice of the
three-dimensional coordinates, this means that not everything
in it is alright here, also. Sometimes the opinion is voiced
that within the framework of GRT it is possible to construct
the energy-momentum tensor of the gravitational field by sub-
stitution of covariant derivatives in Minkowski space for the
ordinary derivatives in the expression for the pseudotensor.
However, here, on the one hand, it is impossible to say with
definiteness which metric in Minkowski space must be taken
for such a substitution, and, on the other hand, in Riemannian
space no global Cartesian coordinates exist, and, consequently,
no Minkowski space, so such an approach does not remove the
essential difficulty of GRT: the absence of integral conserva-
tion laws of energy-momentum and of angular momentum for
matter and gravitational field taken together.



10. Evolution of the homogeneous

and isotropic Universe

We write the equations of RTG in the form

Rµν −
m2

2
(gµν − γµν) =

8π√−g

(

Tµν −
1

2
gµνT

)

, (10.1)

Dµg̃
µν = 0 . (10.2)

For convenience we have chosen the set of units
G = h̄ = c = 1. In the final expressions we shall restore the
dependence upon these constants. The density of the energy-
momentum tensor has the form

Tµν =
√
−g[(ρ+ p)UµUν − gµνp], Uν =

dxν

ds
. (10.3)

Here ρ is the density of matter, p is pressure, ds is the in-
terval in effective Riemannian space. For a homogeneous and
isotropic model of the Universe the interval of effective Rie-
mannian space ds has the general form

ds2 = U(t)dt2−V (t)

[

dr2

1 − kr2
+ r2(dΘ2 + sin2 ΘdΦ2)

]

. (10.4)

Here k assumes the values 1,−1, 0; k = 1 corresponds to the
closed Universe, k = −1 — to the hyperbolic Universe, and
k = 0 — to the “flat” Universe.

Since the set of RTG equations (10.1) and (10.2) together
with the equation of state is complete, then in the case of
appropriate initial conditions it can yield only a single solution
describing the development of a homogeneous and isotropic
model of the Universe. At the same time the equations of GRT
for the same model yield three well-known scenarios for the
development of the Universe. The scenario of the development
of the Universe obtained on the basis of the RTG does not
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coincide with any of the scenarios based on GRT. We shall
follow [31].

All our analysis will be made in an inertial reference sys-
tem in spherical coordinates r,Θ,Φ. An interval in Minkowski
space, in this case, will have the form

dσ2 = dt2 − dx2 − dy2 − dz2 =

= dt2 − dr2 − r2(dΘ2 + sin2 ΘdΦ2) . (10.5)

The determinant g, composed of components gµν , equals

g = −UV 3(1 − kr2)−1r4 sin2 Θ. (10.6)

The tensor density
g̃µν =

√−ggµν (10.7)

has, in accordance with (10.4), the following components:

g̃00 =

√

√

√

√

r4V 3

U(1 − kr2)
· sin Θ,

g̃11 = −r2
√

UV (1 − kr2) · sin Θ ,
(10.8)

g̃22 = −
√

UV

1 − kr2
· sin Θ,

g̃33 = −
√

UV

1 − kr2
· 1

sin Θ
.

The Christoffel symbols of Minkowski space are

γ1
22 = −r, γ1

33 = −r sin2 Θ, γ2
12 = γ3

13 =
1

r
,

(10.9)
γ2

33 = − sin Θ cos Θ, γ3
23 = cotΘ .

Equation (10.2) has the form

Dµg̃
µν = ∂µg̃

µν + γναβ g̃
αβ = 0 . (10.10)
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Substituting (10.9) into (10.10) we obtain

∂

∂t

(

V 3

U

)

= 0 , (10.11)

∂

∂r
(r2

√
1 − kr2) = 2r(1 − kr2)−1/2. (10.12)

From equation (10.11) it follows

V = aU1/3,

here a is an integration constant.
From equation (10.12) we directly find

k = 0 , (10.13)

i.e. the space metric is Euclidean. It must be stressed that
this conclusion for a homogeneous and isotropic Universe fol-
lows directly from equation (10.2) for the gravitational field
and does not depend on the density of matter. Thus, equa-
tion (10.2) excludes the closed and hyperbolic models of the
Universe. A homogeneous and isotropic Universe can only
be “flat” according to RTG. In other words, the well-known
problem of the Universe’s flatness does not exist within the
framework of RTG. With account of (10.11) and (10.13) the
effective Riemannian metric (10.4) assumes the form

ds2 = U(t)dt2 − aU1/3[dr2 + r2(dΘ2 + sin2 ΘdΦ2)] . (10.14)

If one passes to the proper time dτ

dτ =
√
Udt (10.15)

and introduces the notation

R2 = U1/3(t) , (10.16)

the interval (10.14) assumes the form

ds2 = dτ 2 − aR2(τ)[dx2 + dy2 + dz2] . (10.17)
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Here and further in this section R is a scaling factor. We are
compelled to make use of the notation adopted in the litera-
ture for this quantity, in spite of the fact that in the previous
sections R stood for the scalar curvature. For the given metric
the Christoffel symbols assume the form

Γ1
22 = −r, Γ1

33 = −r sin2 Θ, Γ2
12 = Γ3

13 =
1

r
,

(10.18)
Γ2

33 = − sin Θ cosΘ, Γ3
23 = cotΘ ,

Γ0
ii = aR

dR

dτ
, Γi0i =

1

R

dR

dτ
, i = 1, 2, 3 . (10.19)

Making use of expression (4.13) we have

R00 = − 3

R

d2R

dτ 2
, R11 = 2a

(

dR

dτ

)2

+ aR
d2R

dτ 2
,

(10.20)
R22 = r2R11, R33 = sin2 Θ · R22, R0i = 0 ,

Rµνg
µν = − 6

R
· d

2R

dτ 2
− 6

R2
·
(

dR

dτ

)2

. (10.21)

Since g0i = 0, R0i = 0, then from equation (10.1) it follows
directly that

T0i = 0 . (10.22)

Hence on the basis of (10.3) we have

Ui = 0 . (10.23)

This means that matter is at rest in an inertial reference sys-
tem. Thus, the so-called “expansion” of the Universe, observed
by the red shift, is due to the change of the gravitational field
in time. Therefore, there exists no expansion of the Universe,
related to the motion of objects with respect to each other.
The red shift is not due to the motion of galaxies, which is
absent, but to the variation of the gravitational field in time.
Therefore, the red shift does not indicate that the galaxies
were at a time close to each other. At the same time, in
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accordance with GRT “All versions of the Friedman model
have in common that at a certain moment of time in the past
(ten–twenty thousand million years ago) the distance between
adjacent galaxies should have been equal to zero” 30. We, here,
have quoted S. Hawking, and below we shall establish the rea-
son for the difference between the conclusions concerning the
development of the Universe in RTG and GRT. We shall now
deal in a somewhat greater detail with the nature of the red
shift.

From (10.17) it follows that the speed of a light ray equals

dr

dτ
=

1√
aR(τ)

.

Let us put the observation point at the origin of the reference
system (r = 0). Consider a light signal emitted from point
r during the time interval between τ and τ + dτ , and let its
arrival at the point r = 0 take place during the time interval
between τ0 and τ0 + dτ0; then, for light emitted at moment τ
and arriving at the point r = 0 at the moment τ0 we have

τ0
∫

τ

dτ

R(τ)
=

√
ar,

similarly, for light emitted at a moment τ +dτ and arriving at
the point r = 0 at the moment τ0 + dτ0 we find

τ0+dτ0
∫

τ+dτ

dτ

R(τ)
=

√
ar.

Equating these expressions we obtain

dτ

R(τ)
=

dτ0
R(τ0)

.

30S. Hawking. From the Big Bang to Black Holes. M.:Mir, 1990,
p.46.
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Or, passing to the light frequency, we have

ω =
R(τ0)

R(τ)
ω0.

Hence, it is obvious that the light frequency ω at the point of
emitting is not equal to the frequency of the light ω0 at the
point of observation.

Introducing the red shift parameter z

z =
ω − ω0

ω0
,

we have

z =
R(τ0)

R(τ)
− 1.

We see that the red shift is only related to variation of the
scaling factor R(τ), in the case of such variation there exists
no motion of matter, in accordance with (10.23). Thus, the
nature of the red shift is not related to the scattering of galax-
ies, which is absent, but to variation of the gravitational field
with time, i.e. it is related to the fact that R(τ0) > R(τ).

It must be especially stressed that a given inertial reference
system is singled out by Nature itself, i.e. in the considered
theory the Mach principle is satisfied automatically.

Substituting (10.20) and (10.3) into equation (10.1), with
account of (10.23), we have

1

R

d2R

dτ 2
= − 4πG

3

(

ρ+
3p

c2

)

− 2ω
(

1 − 1

R6

)

, (10.24)

(

1

R

dR

dτ

)2

=
8πG

3
ρ− ω

R6

(

1 − 3R4

a
+ 2R6

)

. (10.25)

where

ω =
1

12

(

mc2

h̄

)2

. (10.26)

From (10.24) it is seen that for small values of the scaling
factor R there arises an initial acceleration owing to the sec-
ond term. This is precisely what “incites” the “expansion” of
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the Universe. The initial acceleration appears at the moment
when the density of matter stops growing in the preceding cy-
cle. From (10.25) it follows that in the region R >> 1 the
contemporary density of matter in the Universe equals

ρ(τ) = ρc(τ) +
1

16πG

(

mc2

h̄

)2

, (10.27)

where ρc(τ) is the critical density determined by the Hubble
“constant”

ρc =
3H2(τ)

8πG
, H(τ) =

1

R
· dR
dτ

. (10.28)

Hence, the necessity for the existence of “dark” matter, which
is in accordance with modern observational data.

From equations (10.24) and (10.25) one can obtain the ex-
pression for the deceleration parameter of the Universe, q(τ):

q = −R̈
R

1

H2
=

1

2
+

1

4

(

c

H

)2 (mc

h̄

)2

. (10.29)

Thus, the parameter q at present is positive, i.e. “expansion”
of the Universe has slowed down, instead of being accelerated.
The relation (10.29) makes it possible, in principle, to deter-
mine the mass of the graviton from two observable quantities,
H and q. From the causality principle (6.10), (6.11) it follows
that

R2(R4 − a) ≤ 0 . (10.30)

To satisfy the causality condition throughout the entire region
of variation of R(τ) it is natural to set

a = R4
max. (10.31)

From the condition that the left-hand side of equation (10.25)
is not negative it follows that the expansion should start from
some minimum value Rmin, corresponding to the value dR

dτ
= 0.
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On the other hand, if R >> 1, the expansion should stop at
Rmax, when the density (10.27) reaches its minimum value

ρmin =
1

16πG

(

mc2

h̄

)2 (

1 − 1

R6
max

)

. (10.32)

and the process starts of compression down to Rmin.
Thus, in RTG there exists no cosmological singularity, and

the presence of the graviton mass results in the evolution of
the Universe exhibiting a cyclical character. The time required
for the Universe to expand from the maximum to its minimum
density is mainly determined by the stage at which nonrela-
tivistic matter is dominant and is

τmax ≃
√

2

3

πh̄

mc2
. (10.33)

From the covariant conservation law, that is a consequence of
equations (5.19), (5.20)

∇µT̃
µν + ΓναβT̃

αβ = 0

it is possible to obtain the equation

1

R

dR

dτ
= − 1

3(ρ+ p
c2

)

dρ

dτ
. (10.34)

For the stage of development of the Universe dominated by
radiation

p =
1

3
ρc2

from equation (10.34) we obtain the following expression for
the radiation density ρr:

ρr(τ) =
A

R4(τ)
. (10.35)

Here A is an integration constant. At the stage of development
of the Universe, when nonrelativistic matter is dominant and
pressure can be neglected, from equation (10.34) we find

ρm(τ) =
B

R3(τ)
, (10.36)
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B is an integration constant.
Consider that at a certain moment of time τ0 the radiation

density ρr(τ0) becomes equal to the density of matter, ρm(τ0)

ρr(τ0) = ρm(τ0) , (10.37)

then
A = BR(τ0) = BR0.

Since at later stages of the development of the Universe matter
is dominant, we have from formula (10.36) the following:

B = ρmin · R3
max. (10.38)

Thus,

ρ ≃ ρr =
ρminR0 · R3

max

R4
, R ≤ R0, (10.39)

ρ ≃ ρm = ρmin

(

Rmax

R

)3

, R ≥ R0. (10.40)

According to observational data (see, for example, [33]), the
present-day density of radiation (including the three sorts of
neutrinos, which we for definiteness consider massless) and the
critical density of matter, are

ρr(τc) = 8 · 10−34g/cm3, ρm(τc) = 10−29g/cm3. (10.41)

The “hidden” mass must be attributed to the density of mat-
ter, ρm(τc), for our choice of the graviton mass (m = 10−66g)
it is close to the critical density ρc determined by the Hub-
ble “constant”. We intend matter to actually be all forms of
matter, with the exception of the gravitational field.

In accordance with formulae (10.39), (10.40) and (10.41)
we have

ρr(τc) =
ρminR0 · R3

max

R4(τc)
= 8 · 10−34g/cm3, (10.42)
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ρm(τc) = ρmin

(

Rmax

R(τc)

)3

= 10−29g/cm3. (10.43)

Hence, we find

R0 =
ρr(τc)

ρ
4/3
m (τc)

Rmax · ρ1/3
min = 3, 7 · 105ρ

1/3
min ·Rmax. (10.44)

Let us introduce the notation

σ =
4

3
R0 · R3

max. (10.45)

In accordance with (10.39), (10.44) and (10.45) we obtain

ρ(τ) ≃ ρr(τ) =
3

4
· σ · ρmin

R4(τ)
, R ≤ R0. (10.46)

Assuming radiation to be dominant at the initial stage of ex-
pansion in the hot Universe model, from equation (10.25) by
taking into account (10.31), (10.32) and (10.46), we obtain the
following:

H2 =

(

1

R

dR

dτ

)2

= ω

[

3σ

2R4
− 2 +

3

R4
max · R2

− 1

R6

]

. (10.47)

Equation (10.47) makes it possible to determine the law of
expansion of the Universe at the initial stage. It is readily
seen that the right-hand side of equation (10.47) turns to zero
at sufficiently small values of R = Rmin. The main role, here,
is due to the first term in brackets in equation (10.25), that is
responsible for the graviton mass.

By introducing the variable x = R−2 one can readily find
approximate values for the roots of the equation

3

2
σx2 − 2 +

3

R4
max

x− x3 = 0 , (10.48)

which are the turning points

x1 =
3

2
σ + 0

(

1

σ2

)

, x2,3 = ±
√

4

3

1√
σ

+ 0
(

1

σ2

)

. (10.49)
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Hence, we find the turning point

Rmin =

√

2

3σ
. (10.50)

Thus, owing to the graviton mass, there exists no cosmolo-
gical singularity in RTG, and expansion of the Universe starts
from the finite non-zero value R = Rmin. On the basis of
(10.46) we obtain

ρmax =
3

4
· σρmin

R4
min

=
27

16
σ3 · ρmin. (10.51)

In accordance with (10.49) expression (10.47) can be written
in the form

H2 = ω(x1 − x)(x− x2)(x− x3) . (10.52)

Within the range of variation of the scaling factor

Rmin ≤ R ≤ R0 (10.53)

the expression for H2 is significantly simplified:

H2 ≃ ωx2(x1 − x) =
3σω

2R6
(R2 −R2

min) . (10.54)

Within this approximation equation (10.47) assumes the form

1

R2

(

dR

dτ

)2

=
3σω

2R6
(R2 −Rmin) . (10.55)

Upon integration we find

τ =
R2

min√
6σω

[Z
√
Z2 − 1 + ln(Z +

√
Z2 − 1)] , (10.56)

where
Z = R/Rmin.
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Utilizing expressions (10.50) and (10.51) we obtain

R2
min√
6σω

=
1

2
√

2ω

(

ρmin

ρmax

)1/2

. (10.57)

Substituting into this expression the value ρmin from (10.32)
we find

R2
min√
6σω

=

√

3

32πGρmax
. (10.58)

Taking into account (10.58) in (10.56) we obtain

τ =

√

3

32πGρmax
[Z

√
Z2 − 1 + ln(Z +

√
Z2 − 1)] . (10.59)

In the vicinity of R ≃ Rmin from (10.59) we find

R(τ) = Rmin

[

1 +
4πG

3
ρmax · τ 2

]

. (10.60)

In the region Rmin << R < R0 we obtain

R(τ) = Rmin

(

32πG

3
ρmax

)1/4

· τ 1/2. (10.61)

In this region the dependence on time of the density of mat-
ter determined by equation (10.46), with account of (10.50),
(10.51) and (10.61), has the form

ρ(τ) =
3

32πGτ 2
, (10.62)

i.e. coincides with the known equation that yields the Fried-
man model in GRT for a “flat” Universe. We shall now de-
termine the time corresponding to transition from the stage of
expansion of the Universe dominated by radiation to the stage
dominated by nonrelativistic matter. According to (10.61) we
have

R2
0 = R2

min

(

32πG

3
ρmax

)1/2

· τ0. (10.63)
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Hence, taking into account (10.44), (10.45) and (10.58) we find

τ0 =
ρ3/2
r (τc)

ρ2
m(τc)

√

3

32πG
=

= 2, 26 · 108

√

3

32πG
≃ 1, 5 · 1011s . (10.64)

Now consider development of the Universe, when pressure
can be neglected. At this stage of evolution we write equation
(10.25) as

(

dx

dτ

)2

=
2ωx2

α
(x− 1)[(α− x3)(x2 + x+ 1) − 3x2] . (10.65)

Here x = Rmax/R, α = 2R6
max. Taking into account that

α >> 3 , (10.66)

we find

τ = τ0 +

√

α

2ω

x0
∫

x

dy

y
√

(y3 − 1)(x3
1 − y3)

. (10.67)

Here x0 = Rmax/R0, x1 = 21/3 · R2
max. Upon integration of

(10.67) we obtain

τ = τ0 +
1

3

√

α

2x1ω
[arcsin f(x0) − arcsin f(x)]. (10.68)

Here

f(x) =
(x3

1 + 1)x3 − 2x3
1

x3(x3
1 − 1)

. (10.69)

Note that

f(x0) ≃ 1 − 2

x3
0

, (10.70)

arcsin f(x0) ≃ arccos
2

x
3/2
0

=
π

2
− 2

x
3/2
0

. (10.71)
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Taking into account (10.71) we find

τ = τ0 −
2

3
√

2ωx
3/2
0

+
1

3
√

2ω

[

π

2
− arcsin f(x)

]

. (10.72)

Taking into account the equality

τ0 =
1

2
√

2ωx
3/2
0

, (10.73)

expression (10.72) can be written in the form

3
√

2ω(τ + βτ0) =
π

2
− arcsin f(x) . (10.74)

Hence, we have

cosλ(τ + βτ0) =
(α + 1)x3 − 2α

x3(α− 1)
. (10.75)

Here

λ = 3
√

2ω =

√

3

2

(

mc2

h̄

)

, β = 1/3 . (10.76)

From expression (10.75) we find

R(τ) =
[

α

2

]1/6

·
[

(α + 1) − (α− 1) cosλ(τ + βτ0)

2α

]1/3

. (10.77)

Owing to the equality (10.40) the following relation occurs:

ρm(τ)

ρmin
=

[

Rmax

R(τ)

]3

, (10.78)

taking into account (10.78) we obtain

ρm(τ) =
2αρmin

(α + 1) − (α− 1) cosλ(τ + βτ0)
. (10.79)
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Since α >> 1, from (10.79) we have

ρm(τ) =
ρmin

sin2 λ(τ+βτ0)
2

, (10.80)

in a similar way from formula (10.78) we have

R(τ) = Rmax sin2/3 λ(τ + βτ0)

2
. (10.81)

In the region of values λ(τ+βτ0)
2

≪ 1 we have

ρm(τ) =
1

6πG(τ + βτ0)2
, (10.82)

R(τ) = Rmax

[

λ(τ + βτ0)

2

]2/3

. (10.83)

For τ >> βτ0 formulae (10.82) and (10.83) yield for ρm(τ) and
R(τ) time dependencies similar to those obtained within the
Friedman model in GRT for a ”flat” Universe.

Making use of formulae (10.44), (10.45) and (10.51) one
can readily establish the following relation:

Rmax =
ρ1/3
m (τc)

ρ
1/4
r (τc)

(

ρmax

4ρ2
min

)1/12

≃ 3, 6 · 10−2

(

ρmax

ρ2
min

)1/12

. (10.84)

In a similar manner with the aid of expression (10.57) and of
(10.50) one can express, via ρmax, the second turning point
Rmin:

Rmin =

(

ρmin

2ρmax

)1/6

. (10.85)

From (10.84) and (10.85) it is clear that the existence of the
graviton mass not only removes the cosmological singularity,
but also stops the expansion process of the Universe, which
undergoes transition to the compression phase. Thus, the evo-
lution of a homogeneous and isotropic Universe is determined
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by modern observational data (10.41), by the maximum den-
sity of matter and the graviton mass. The scalar curvature
is the largest at the beginning of the “expansion”, and on the
basis of (10.21), (10.24) and (10.85) equals the following value:

Rµνg
µν = −16πG · ρmax

c2
,

while its minimum value at the end of “expansion” is

Rµνg
µν =

3

2

(

mc

h̄

)2

.

The initial acceleration, which serves as the initial “push”
that led to the “expanding” Universe, is, in accordance with
(10.24), (10.32) and (10.85), the following:

d2R

dτ 2
=

1

3
(8πGρmax)

5/6

(

mc2

2h̄

)1/3

.

It arises at the moment when the density of matter stops grow-
ing during the preceding cycle. The maximum density of mat-
ter in the Universe in this model remains undefined. It is
related to the integral of motion. The latter is readily estab-
lished. We write equation (10.24) in the form

d2R

dτ 2
= −4πG

(

ρ+
p

c2

)

R+
8πG

3
ρR−2ω

(

R− 1

R5

)

. (10.86)

Determining from equation

1

R

dR

dτ
= − 1

3(ρ+ p
c2

)

dρ

dτ
(10.87)

the value of
(

ρ+ p
c2

)

we find

ρ+
p

c2
= −1

3
R
dρ

dR
. (10.88)
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Substituting this value into equation (10.86) we obtain

d2R

dτ 2
=

4πG

3
· d

dR
(ρR2) − ω

d

dR

(

R2 +
1

2R4

)

. (10.89)

Introducing the notation

V = −4πG

3
ρR2 + ω

(

R2 +
1

2R4

)

, (10.90)

one can write equation (10.89) in the form of the Newton equa-
tion of motion

d2R

dτ 2
= −dV

dR
, (10.91)

where V plays the role of the potential. Multiplying (10.91)
by dR

dτ
we obtain

d

dτ





1

2

(

dR

dτ

)2

+ V



 = 0 . (10.92)

Hence, we have

1

2

(

dR

dτ

)2

+ V = E , (10.93)

where E is an intergal of motion, the analog of energy in clas-
sical mechanics. Comparing (10.93) with (10.25) and taking
into account (10.31) we obtain

R4
max =

1

8E

(

mc2

h̄

)2

. (10.94)

Substituting into (10.94) expression (10.84) we find

E = 7, 4 · 104







(

mc2

h̄

)10

(16πG)2ρmax







1/3

. (10.95)

This quantity is extremely small.
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Thus, ρmax is actually an integral of motion, determined by
the initial conditions of the dynamic system. The analysis per-
formed reveals that the model of a homogeneous and isotropic
Universe develops, in accordance with RTG, cyclically start-
ing from a certain finite maximum density ρmax down to the
minimum density, and so on. The Universe can only be “flat”.
Theory predicts the existence in the Universe of a large “hid-
den” mass of matter. The Universe is infinite and exists for
an indefinite time, during which an intense exchange of in-
formation took place between its regions, which resulted in
the Universe being homogeneous and isotropic, with a cer-
tain inhomogeneity structure. In the model of a homogeneous
and isotropic Universe this inhomogeneity is not taken into
account, for simplifying studies. The information obtained
is considered a zeroth approximation, that usually serves as a
background in considering the development of inhomogeneities
caused by gravitational instability. “Expansion” in a homo-
geneous and isotropic Universe, as we are convinced, is due
to variation of the gravitational field, and no motion of mat-
ter occurs, here. The existence of a certain inhomogeneity
structure in the distribution of matter in space introduces a
significant change, especially in the period after the recombi-
nation of hydrogen, when the Universe becomes transparent
and the pressure of radiation no longer hinders the collection
of matter in various parts of the Universe.

This circumstance results in the motion of matter relative
to the inertial reference system. Thus arise the peculiar velo-
cities of galaxies with respect to the inertial reference system.
A reference system related to the relic radiation can, with
a great precision, be considered inertial. Naturally, a refe-
rence system related to the relic gravitational radiation would
to an extremely high degree be close to an inertial system.
What was the maximum density of matter, ρmax, earlier in
the Universe? An attractive possibility is reflected in the hy-
pothesis that ρmax is determined by the world constants. In
this case, the Planck density is usually considered to be ρmax.
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Here, however, there exists the problem of overproduction of
monopoles arising in Grand Unification theories. To overcome
this problem, one usually applies the “burning out” mech-
anism of monopoles during the inflational expansion process
due to the Higgs bosons. Our model provides another, alterna-
tive, possibility. The quantity ρmax may even be significantly
smaller, than the Planck density. In this case the tempera-
ture of the early Universe may turn out to be insufficient for
the production of monopoles, and the problem of their over-
production is removed in a trivial manner. This, naturally,
does not exclude the possibility of inflational expansion of the
Universe, if it turns out to be that at a certain stage of its
development the equation of state is p = −ρ.

Thus, in accordance with RTG, no pointlike Big Bang oc-
curred, and, consequently, no situation took place, when the
distance between galaxies were extremely small. Instead of the
explosion, at each point of the space there occurred a state of
matter of high density and temperature, and it further devel-
oped till the present moment, as described above. The differ-
ence between the development of a homogeneous and isotropic
Universe in RTG and GRT arose owing to the scaling factor
R(τ) in RTG not turning into zero, while in GRT it becomes
zero at a certain moment in the past.

In GRT with the cosmological term λ the homogeneous and
isotropic model of the Universe is also possible in the absence
of matter. The solution of the GRT equations for this case
was found by de Sitter. This solution corresponds to curved
four-dimensional space-time. This signifies the existence of
gravity without matter. What is the source of this gravity?
Usually, it is vacuum energy identified with the cosmological
constant λ that is considered to be this source. In RTG, when
matter is absent (ρ = 0), in accordance with equations (10.25)
and (10.31), the right-hand side should turn to zero, which
is possible only if Rmax = 1. Hence it follows that R ≡ 1,
and, consequently, the geometry of space-time in the absence
of matter will be pseudo-Euclidean. Thus, in accordance with
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RTG, when matter is absent in the Universe, there also exists
no gravitational field, and, consequently, vacuum possesses no
energy, as it should be. According to RTG, the Universe can-
not exist without matter.

In conclusion let us determine the horizon of particles and
the horizon of events. For a light ray, in accordance with the
interval (10.17), we have

dr

dτ
=

1√
aR(τ)

. (10.96)

The distance covered by the light by the moment τ is

dr(τ) =
√
aR(τ)

r(τ)
∫

0

dr = R(τ)

τ
∫

0

dσ

R(σ)
. (10.97)

If the gravitational field were absent, the distance covered by
the light would be cτ . As R we should have substituted ex-
pression (10.59) for the interval (0, τ0), and expression (10.81)
for the time interval (τ0, τ). We shall estimate dr(τ) approxi-
mately by the expression

R(τ) = Rmax sin2/3 πτ

2τmax
(10.98)

Throughout the entire integration interval

dr(τ) =
2τmax

π

[

sin
πτ

2τmax

]2/3

·

√
y

∫

0

dx

x2/3
√

1 − x2
=

=
6τmax

π

√
yF

(

1

2
,
1

6
,
7

6
, y
)

. (10.99)

Here y = sin2 πτ
2τmax

, F (a, b, c, y) is a hypergeometric function.
We shall give the values for some quantities determining

the evolution of a homogeneous and isotropic Universe. We
set the graviton mass to m = 10−66g, while the present-day
Hubble “constant” is

Hc ≃ 74
km

s Mpc
. (10.100)
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Then for the present-day moment of time τc, qc will be equal
to

τc ≃ 3 · 1017s, qc = 0, 59, ρc = 10−28 g

cm3
. (10.101)

According to formula (10.33) the half-period of cyclical devel-
opment is

τmax = 9π · 1017s . (10.102)

It must be stressed that the parameters τc, qc determining
the evolution of the Universe are practically independent of the
maximum density of matter ρmax. The maximum temperature
(and, hence the maximum density), that could occur in the
Universe, may be determined by such phenomena, that took
place in these extreme conditions, and the consequences of
which may be observed today. A special role, here, is played
by the gravitational field, which contains the most complete
information on the extreme conditions in the Universe. In
the model, considered above, of an isotropic and homogeneous
Universe the known problems of singularities, of causality, of
flatness, that are present in GRT, do not arise.

Making use of (10.99) and (10.101) we find the size of the
observable part of the Universe at the moment τc:

dr(τc) ≃ 3cτc = 2, 7 · 1028cm .

We see that the path covered by light in the gravitational field
of the Universe during the time τc is three times larger than
the corresponding distance in absence of the gravitational field,
cτc. During the half-period of evolution, τmax, the horizon of
particles be

dr(τmax) =
cτmax√
π

· Γ(1/6)

Γ(2/3)
. (10.103)

The horizon of events is determined by the expression

dc = R(τ)

∞
∫

τ

dσ

R(σ)
. (10.104)
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Since the integral (10.104) turns to infinity, the horizon of
events in our case does not exist. This means that information
on events taking place in any region of the Universe at the
moment of time τ will reach us. This information can be
obtained with the aid of gravitational waves, since they are
capable of passing through periods, when the density of matter
was high.

We shall especially note that within the framework of RTG
a homogeneous and isotropic Universe can exist only if the
graviton mass differs from zero. Indeed, in accordance with
(10.46) and (10.51), the constantA in expression (10.35) equals

A = ρ1/3
max

(

ρmin

2

)2/3
. Therefore, if ρmax is fixed, then the con-

stant A turns to zero, when m = 0.



11. The gravitational field of a

spherically symmetric static

body

The issue of what takes place in the vicinity of the Schwar-

zschild sphere, when the graviton has a rest mass, was first

dealt with in relativistic theory of gravity in ref. [2], in which

the following conclusion was made: in vacuum the metric coef-

ficient of effective Riemannian space, g00, on the Schwarzschild

sphere differs from zero, while g11 has a pole. These changes,

that in the theory are due to the graviton mass, result in the

“rebounding” effect of incident particles and of light from the

singularity on the Schwarzschild sphere, and consequently, in

the absence of “black holes”.

Further, in ref. [14] a detailed analysis of this problem in

RTG was performed, which clarified a number of issues, but

which at the same time revealed that the “rebounding” takes

place near the Schwarzschild sphere. In the present work we

follow the article [13], in which it was shown in a most simple

and clear manner that at the point in vacuum, where the met-

ric coefficient of effective Riemannian space g11 has a pole, the

other metric coefficient g00 does not turn to zero. The resul-

ting singularity cannot be removed by a choice of the reference

system, so the solution inside a body cannot be made to match

the external solution. In this case, if transition is performed

to the reference system related to a falling test body, then it

turns out to be that the test body will never reach the surface

of the body, that is the source of the gravitational field. Pre-

cisely this circumstance leads to the conclusion that the radius

of a body cannot be inferior to the Schwarzschild radius. All

this issue will be dealt with in detail in this section.
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We now write equations (5.19), (5.20) in the form

Rµ
ν −

1

2
δµνR +

1

2

(

mc

h̄

)2 (

δµν + gµαγαν −

−1

2
δµν g

αβγαβ

)

= κT µν , (11.1)

Dµg̃
µν = 0 . (11.2)

Here g̃µν =
√−ggµν , g = det gµν , R

µ
ν is the Ricci tensor,

κ = 8πG
c2
, G is the gravitational constant, Dµ is the covariant

derivative in Minkowski space, γµν(x) is the metric tensor of

Minkowski space in arbitrary curvilinear coordinates.

Let us now determine the gravitational field created by a

spherically symmetric static source. The general form of an

interval of effective Riemannian space for such a source has

the form

ds2 = g00dt
2 + 2g01dtdr + g11dr

2 + g22dΘ
2 + g33dΦ

2, (11.3)

We introduce the notation

g00(r) = U(r), g01(r) = B(r),

g11(r) = −
[

V (r) − B2(r)

U(r)

]

, (11.4)

g22(r) = −W 2(r), g33(r,Θ) = −W 2(r) sin2 Θ.

The components of the contravariant metric tensor are

g00(r) =
1

U

(

1 − B2

UV

)

, g01(r) = − B

UV
, g11(r) = − 1

V
,

(11.5)
g22(r) = − 1

W 2
, g33(r,Θ) = − 1

W 2 sin2 Θ
.

The determinant of the metric tensor gµν is

g = detgµν = −UV W 4 sin2 Θ . (11.6)
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For a solution to have physical meaning the following condition

must be satisfied:

g < 0 . (11.7)

In the case of spherical coordinates g can turn to zero only

at the point r = 0. On the basis of (11.5) and (11.6) we find

the density components of the metric tensor

g̃µν =
√
−ggµν . (11.8)

One have the form

g̃00 =
W 2

√
UV

(

V − B2

U

)

sin Θ, g̃01 = −BW 2

√
UV

sin Θ,

g̃11 = −
√

U

V
W 2 sin Θ, (11.9)

g̃22 = −
√
UV sin Θ, g̃22 = −

√
UV sin Θ, g̃33 = −

√
UV

sin Θ
.

We shall carry out all reasoning in an inertial reference

system in spherical coordinates. An interval in Minkowski

space has the form

dσ2 = dt2 − dr2 − r2(dΘ2 + sin2 ΘdΦ2) . (11.10)

The Christoffel symbols in Minkowski space that differ from

zero and that are determined by the formula

γλµν =
1

2
γλσ(∂µγσν + ∂νγσµ − ∂σγµν) (11.11)

are equal to

γ1
22 = −r γ1

33 = −r sin2 Θ, γ2
12 = γ3

13 =
1

r
,

(11.12)
γ2

33 = − sin Θ cos Θ, γ3
23 = cotΘ .

We write equation (11.2) in an expanded form,

Dµg̃
µν = ∂µg̃

µν + γνλσg̃
λσ = 0 . (11.13)
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In Galilean coordinates of Minkowski space they have the form

∂µg̃
µν = 0 . (11.14)

In the case of a static gravitational field we have from (11.14)

∂ig̃
iν = 0, i = 1, 2, 3 . (11.15)

Applying the tensor transformation law, it is possible to

express the components g̃i0 in Cartesian coordinates in terms

of the components in spherical coordinates

g̃i0 = −BW 2

√
UV

· x
i

r3
,
√−g =

√
UV W 2r−2. (11.16)

Here xi are spatial Cartesian coordinates. Assuming ν = 0

in (11.15) and integrating over the spherical volume upon ap-

plication of the Gauss-Ostrogradsky theorem, we obtain the

following integral over the spherical surface:

∮

g̃i0dsi = − BW 2

r3
√
UV

∮

(~xd~s) = 0 . (11.17)

Taking into account the equality

∮

(~xd~s) = 4πr3, (11.18)

we obtain
BW 2

√
UV

= 0 . (11.19)

Since equation (11.14) holds valid both within matter and

outside it, (11.19) should be valid for any value of r. But

since, owing to (11.7), U, V and W cannot be equal to zero,

then from (11.19) it follows that

B = 0 . (11.20)
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The interval (11.3) of effective Riemannian space assumes the

form

ds2 = Udt2 − V dr2 −W 2(dΘ2 + sin2 ΘdΦ2) . (11.21)

From (11.20) it follows that no static solution exists of

the Hilbert–Einstein equations in harmonic coordinates, that

contains in the interval a term of the form

B(r)dtdr . (11.22)

The energy-momentum tensor of matter has the form

T µν =
(

ρ+
p

c2

)

vµvν − δµν ·
p

c2
. (11.23)

In expression (11.23) ρ is the mass density of matter, p is the

isotropic pressure, and

vµ =
dxµ

ds
(11.24)

is the four-velocity satisfying the condition

gµνv
µvν = 1 . (11.25)

From equations (11.1) and (11.2) follows

∇µT
µ
ν = 0 , (11.26)

where ∇µ is the covariant derivative in effective Riemannian

space with the metric tensor gµν . In the case of a static body

vi = 0, i = 1, 2, 3; v0 =
1√
U
, (11.27)

and therefore

T 0
0 = ρ(r), T 1

1 = T 2
2 = T 3

3 = −p(r)
c2

,

(11.28)
T µν = 0, µ 6= ν .
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For the interval (11.21) the Christoffel symbols, differing

from zero, are

Γ0
01 =

1

2U

dU

dr
, Γ1

00 =
1

2V

dU

dr
, Γ1

11 =
1

2V

dV

dr
,

Γ1
22 = −W

V

dW

dr
,Γ1

33 = sin2 Θ · Γ1
22 , (11.29)

Γ2
12 = Γ3

13 =
1

W

dW

dr
, Γ2

33 = − sin Θ cos Θ , Γ3
23 = cotΘ.

Applying the following expression for the Ricci tensor:

Rµν = ∂σΓ
σ
µν − ∂νΓ

σ
µσ +

+ΓσµνΓ
λ
σλ − ΓσµλΓ

λ
σν , R

µ
ν = gµλRλν (11.30)

and substituting into it expressions for the Christoffel sym-

bols from (11.29), it is possible to reduce equations (11.1) for

functions U, V and W to the form

1

W 2
− 1

VW 2

(

dW

dr

)2

− 2

VW

d2W

dr2
− 1

W

dW

dr

d

dr

(

1

V

)

+

+
1

2

(

mc

h̄

)2
[

1 +
1

2

(

1

U
− 1

V

)

− r2

W 2

]

= κρ , (11.31)

1

W 2
− 1

VW 2

(

dW

dr

)2

− 1

UVW

dW

dr

dU

dr
+

+
1

2

(

mc

h̄

)2
[

1 − 1

2

(

1

U
− 1

V

)

− r2

W 2

]

= −κ p
c2
, (11.32)

− 1

VW
W ′′ − 1

2UV
U ′′ +

1

2WV 2
W ′V ′ +

1

4V U2
(U ′)2 +

+
1

4UV 2
U ′V ′ − 1

2UVW
W ′U ′ +

+
1

2

(

mc

h̄

)2 [

1 − 1

2

(

1

U
+

1

V

)]

= −κ p
c2
. (11.33)
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Equation (11.13), with account of (11.12), (11.9) and (11.20),

can be reduced to the form

d

dr





√

U

V
W 2



 = 2r
√
UV . (11.34)

We note that by virtue of the Bianchi identity and of equa-

tion (11.2) one of the equations (11.31) – (11.33) is a conse-

quence of the other ones. We shall further take equations

(11.31), (11.32) and (11.34) to be independent.

We write equation (11.26) in an expanded form

∇µT
µ
ν ≡ ∂µT

µ
ν + ΓµαµT

α
ν − ΓαµνT

µ
α = 0 . (11.35)

Making use of expressions (11.28) and (11.29) we obtain

1

c2
· dp
dr

= −ρ+ p
c2

2U
· dU
dr

. (11.36)

Taking into account the identity

1

W 2
(

dW
dr

) · d
dr





W

V

(

dW

dr

)2


 =
1

VW 2

(

dW

dr

)2

+

+
2

VW

d2W

dr2
+

1

W

dW

dr

d

dr

(

1

V

)

, (11.37)

equation (11.31) can be written as

1 − d

dW







W

V
(

dr
dW

)2





+
1

2

(

mc

h̄

)2
[

W 2 − r2+

+
W 2

2

(

1

U
− 1

V

)

]

= κW 2ρ . (11.38)

In a similar manner we transform equation (11.32):

1 − W

V
(

dr
dW

)2

d

dW
ln(UW ) +

1

2

(

mc

h̄

)2 [

W 2 − r2−

−1

2

(

1

U
− 1

V

)]

= −κW
2p

c2
. (11.39)
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We write equations (11.34) and (11.36) in the form

d

dW



W 2

√

U

V



 = 2r
√
UV

dr

dW
. (11.40)

1

c2
· dp
dW

= −
(

ρ+
p

c2

)

1

2U
· dU
dW

. (11.41)

In equations (11.38) – (11.41) we pass to dimensionless

variables. Let l be the Schwarzschild radius of the source, the

mass of which equals M , then

l =
2GM

c2
. (11.42)

We introduce new variables x and z, equal to

W = lx, r = lz. (11.43)

Equations (11.38) – (11.41) assume the form

1 − d

dx







x

V
(

dz
dx

)2





+ ǫ
[

x2 − z2+

+
1

2
x2
(

1

U
− 1

V

)]

= κ̃x2ρ(x), (11.38a)

1 − x

V
(

dz
dx

)2

d

dx
ln(xU) + ǫ

[

x2 − z2−

−x
2

2

(

1

U
− 1

V

)

]

= −κ̃x
2p(x)

c2
, (11.39a)

d

dx



x2

√

U

V



 = 2z
dz

dx

√
UV , (11.40a)

1

c2
dp

dx
= −

(

ρ+
p

c2

)

1

2U

dU

dx
. (11.41a)
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Here ǫ is a dimensionless constant equal to

ǫ =
1

2

(

2GMm

h̄c

)2

, κ̃ = κl2. (11.44)

The sum of and the difference between equations (11.38a)

and (11.39a) are

2 − d

dx







x

V
(

dz
dx

)2





− x

V
(

dz
dx

)2

d

dx
ln(xU) +

+ 2ǫ(x2 − z2) = κ̃x2
(

ρ− p

c2

)

, (11.45)

d

dx







x

V
(

dz
dx

)2





− x

V
(

dz
dx

)2

d

dx
ln(xU) −

− ǫx2
(

1

U
− 1

V

)

= −κ̃x2
(

ρ+
p

c2

)

. (11.46)

We introduce the new functions A and η:

U =
1

xηA
, V =

x

A
(

dz
dx

)2 . (11.47)

In these new variables equation (11.45) assumes the form

A
d ln η

dx
+ 2 + 2ǫ(x2 − z2) = κ̃x2

(

ρ− p

c2

)

. (11.48)

Equation (11.38a) is written in the form

dA

dx
= 1 + ǫ(x2 − z2) + ǫ

x2

2

(

1

U
− 1

V

)

− κ̃ · x2ρ(x) . (11.49)

In accordance with the causality condition (see Addendum)

γµνU
µUν = 0 , (11.50)
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gµνU
µUν ≤ 0 , (11.50a)

it is easy to establish the inequality

U ≤ V . (11.51)

For our problem it suffices to consider only the values of x and

z from the interval

0 ≤ x≪ 1√
2ǫ
, 0 ≤ z ≪ 1√

2ǫ
. (11.52)

These inequalities impose an upper limit on r,W :

r,W ≪ h̄

mc
. (11.53)

In the case of such a restriction equation (11.49) assumes the

form

dA

dx
= 1 + ǫ

x2

2

(

1

U
− 1

V

)

− κ̃x2ρ(x) . (11.54)

Outside matter we have

dA

dx
= 1 + ǫ

x2

2

(

1

U
− 1

V

)

. (11.55)

By virtue of causality (11.51) the following inequality holds

valid beyond matter
dA

dx
≥ 1. (11.56)

Integrating (11.54) over the interval (0, x) we obtain

A(x) = x+
ǫ

2

x
∫

0

x′
2
(

1

U
− 1

V

)

dx′ − κ̃

x
∫

0

x′
2
ρ(x′)dx′. (11.57)

A(0) in (11.57) is set equal to zero, since if it were different

from zero, function V (x) would turn to zero as x tends toward

zero, which is inadmissible from a physical standpoint. On
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the basis of (11.56) function A(x) beyond matter grows in

monotonic way with x, and it therefore can only have the sole

root

A(x1) = 0, x1 > x0. (11.58)

On the basis of (11.57) we have

x1 = 1 − ǫ

2

x1
∫

0

x′
2
(

1

U
− 1

V

)

dx′. (11.59)

We have here taken into account that when l is chosen to be

equal to (11.42)

κ̃

x0
∫

0

x′
2
ρ(x′)dx′ = 1.

The matter is concentrated inside the sphere 0 ≤ x ≤ x0.

We shall further consider the case, when the radius of the

body, x0, is less than x1. Precisely in this case in vacuum, i.e.

outside the body, there will exist a singularity which cannot

be removed by a choice of reference system.

Owing to the graviton mass the zero of function A is shifted

inward the Schwarzschild sphere. Since as x tends toward

x1, V (x) tends toward infinity, owing to A(x) tending toward

zero, there will exist such a vicinity about the point x1

x1(1 − λ1) ≤ x ≤ x1(1 + λ2), λ1 > 0, λ2 > 0 , (11.60)

(λ1 and λ2 assume small fixed values), inside which the follow-

ing inequality holds valid:

1

U
≫ 1

V
. (11.61)

In this approximation we obtain

A(x) = x− x1 +
ǫ

2

x
∫

x1

dx′x′
2 1

U
. (11.62)
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Substituting into this expression U in the form (11.47) we find

A(x) = x− x1 +
ǫ

2

x
∫

x1

dx′x′
3
η(x′)A(x′). (11.63)

In the region of variation of x one can substitute x3
1 for x3

within the interval (11.60):

A(x) = x− x1 +
ǫ

2
x3

1

x
∫

x1

η(x′)A(x′)dx′. (11.64)

Hence, we obtain

dA

dx
= 1 +

ǫ

2
x3

1η(x)A(x). (11.65)

In the considered approximation (11.52) equation (11.48) as-

sumes the form

A
d ln η

dx
+ 2 = 0 . (11.66)

We now introduce a new function

f(x) =
x3

1

2
η(x)A(x) . (11.67)

Equation (11.65) assumes the form

dA

dx
= 1 + ǫf(x) , (11.68)

and equation (11.66) assumes the form

A

f
· df
dx

− dA

dx
= −2 . (11.69)

From equations (11.68) and (11.69) we find

A(x) = −(1 − ǫf)f
(

df
dx

) . (11.70)
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From expression (11.67) we obtain

η(x) = − 2 df
dx

x3
1(1 − ǫf)

. (11.71)

Substituting (11.70) and (11.71) into (11.47) we find

U =
x3

1

2xf
, V = − x df

dx

f(1 − ǫf)
(

dz
dx

)2 . (11.72)

Making use of these expressions we can rewrite the determi-

nant g as

g =
x3

1
df
dx
x4

2f 2
(

dz
dx

)2
(1 − ǫf)

sin2 Θ < 0 . (11.73)

For condition (11.7) to be satisfied, it is necessary for ex-

pressions df
dx

and (1− ǫf) to have opposite signs. Substituting

(11.70) into (11.68) we obtain

d

dx
ln

∣

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

∣

− d

dx
ln |f(1 − ǫf)| =

1 + ǫf

f(1 − ǫf)
· df
dx

. (11.74)

Hence, we find

d

dx
ln

∣

∣

∣

∣

∣

(1 − ǫf) df
dx

f 2

∣

∣

∣

∣

∣

= 0 . (11.75)

Thus,
∣

∣

∣

∣

∣

(1 − ǫf) df
dx

f 2

∣

∣

∣

∣

∣

= C0 > 0 . (11.76)

Taking into account that the quantities (1 − ǫf) and df
dx

must

have opposite signs we find

df

dx
= − C0f

2

(1 − ǫf)
. (11.77)
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Substituting this expression into (11.70) we find

A(x) =
(1 − ǫf)2

C0f
, A(x1) = 0 at f =

1

ǫ
. (11.78)

With account of (11.78), expression (11.47) for the function V

assumes the form

V =
C0xf

(1 − ǫf)2
(

dz
dx

)2 . (11.79)

Integrating (11.77) and taking into account (11.78) we obtain

C0 · (x− x1) =
1

f
+ ǫ ln ǫ|f | − ǫ . (11.80)

Relation (11.80) has been obtained for the domain of x

values determined by equalities (11.60), however, it is also

valid in the region where the graviton mass can be neglected.

In accordance with (11.60) the domain C0(x−x1) is within

the limits

− C0x1λ1 ≤ C0(x− x1) ≤ C0x1λ2, (11.81)

when f is positive, it satisfies the inequalities

C̃ ≤ f ≤ 1

ǫ
. (11.82)

Making use of (11.80), in accordance with (11.81), we have

1

f
+ ǫ ln ǫf − ǫ ≤ C0x1λ2.

Hence, we can find C̃:

1

C̃
+ ǫ ln ǫC̃ − ǫ = C0x1λ2. (11.83)
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From expression (11.83) we find the approximate value for C̃:

C̃ =
1

C0x1λ2

. (11.84)

For negative values of f , the value |f |, determined from

the following equation, corresponds to the point x = x1:

− 1

|f | + ǫ ln ǫ|f | − ǫ = 0 . (11.85)

Hence, we find

|f | =
a

ǫ
, ln a =

1 + a

a
. (11.86)

In accordance with (11.81), the following inequality should be

satisfied:

− C0x1λ1 ≤ − 1

|f | + ǫ ln ǫ|f | − ǫ . (11.87)

Hence it is possible to find the lower boundary for |f | = D:

− C0x1λ1 = − 1

D
+ ǫ ln ǫD − ǫ . (11.88)

From expression (11.88) we find the approximate value for D:

D =
1

C0x1λ1
. (11.89)

This means that the quantity |f | satisfies the inequality

|f | ≥ D =
1

C0x1λ1
. (11.89a)

Let us now establish the dependence of variable z upon

x. Substituting (11.47) into (11.40a) and taking into account

(11.48) we obtain

A
d

dx

(

x
dz

dx

)

= 2z − x
dz

dx

[

1 + ǫ(x2 − z2)−

−1

2
κ̃x2

(

ρ− p

c2

)]

. (11.90)
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In the approximation (11.52), outside matter, equation (11.90)

assumes the form

A
d

dx

(

x
dz

dx

)

+ x
dz

dx
− 2z = 0 . (11.91)

We have to find the regular solution z(x) of equation (11.91).

In equation (11.91) we pass from variable x to f . Applying

relation (11.80)

x =
1

C0f
[C0x1f + 1 − ǫf + ǫf ln ǫ|f |] , (11.92)

and taking into account (11.65), (11.66) and (11.83), equation

(11.91) can be represented in the form

d2z

df 2
+
C0xf + ǫf − 1

C0f 2x
· dz
df

− 2z

C0f 3x
= 0 . (11.93)

By direct substitution one can establish that the expression

z =
x1

2
+

1

C0f
[1 − ǫf + ǫf ln ǫ|f |] (11.94)

satisfies equation (11.93) with an accuracy up to the quantity

ǫ
(1 − ǫf + ln ǫ|f |)

C2
0xf

3
, (11.95)

that is extremely small in the vicinity of the point x1. From

expressions (11.92) and (11.94) we find

z = x− x1

2
. (11.96)

Taking this relation, as well as (11.79) and (11.72), into ac-

count we obtain

U =
x3

1

2xf
, V =

C0xf

(1 − ǫf)2
. (11.97)
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For negative values of f the causality condition (11.51) as-

sumes the form

|f |2(2x2C0 − ǫ2x3
1) − 2ǫx3

1|f | − x3
1 ≤ 0. (11.98)

Inequality (11.98) is not satisfied, since it does not com-

ply with inequality (11.89a). Thus, the causality principle is

violated in the domain of negative values of f . This means

that in the region x1(1 − λ1) ≤ x < x1 the solution has no

physical sense. If x0 < x1(1 − λ1), the situation arises, when

the physical solution inside the body, 0 ≤ x ≤ x0, cannot be

made to match the physical solution in the region x > x1,

since there exists an intermediate region x1(1− λ1) ≤ x < x1,

within which the solution does not satisfy the causality princi-

ple. Hence it necessarily follows that x0 ≥ x1. From a physical

point of view, it is necessary to exclude the equality x0 = x1,

since the solution inside the body should undergo smooth tran-

sition to the external solution. Consequently, the variable

f only assumes positive values. For values from the region

x ≥ x1(1 + λ2) one may, in equations (11.38a) and (11.39a),

drop the terms containing the small parameter ǫ. Thus, we

arrive at Schwarzschild’s external solution

zs = (x− ω)

[

1 +
b

2ω
ln
x− 2ω

x

]

, (11.99)

Vs =
x

(

dz
dx

)2
(x− 2ω)

, Us =
x− 2ω

x
. (11.100)

Here, "ω" and "b" are certain constants that are determined

from the condition that solution (11.96), (11.97) is made to

match solution (11.99), (11.100). At point x = x1(1 + λ2) the

function z from (11.96) is

z = x1

(

1

2
+ λ2

)

, (11.101)
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At the same point zs equals

zs = [x1(1 + λ2) − ω]

[

1 +
b

2ω
ln
x1(1 + λ2) − 2ω

x1(1 + λ2)

]

. (11.102)

From the condition that (11.101) and (11.102) match we find

ω =
x1

2
, b = 0 . (11.103)

At point x = x1(1+λ2) the function U from (11.97) equals

U =
x3

1

2x1(1 + λ2)C̃
, (11.104)

since C̃, in accordance with (11.84), is

C̃ =
1

C0x1λ2
. (11.105)

Substituting (11.105) into (11.104) we obtain

U =
C0x

3
1λ2

2(1 + λ2)
, (11.106)

At the same point, with account of (11.103), Us is

Us =
λ2

1 + λ2

. (11.107)

From the condition that (11.106) and (11.107) match we

find

C0 =
2

x3
1

. (11.108)

At point x = x1(1+λ2) the function V from (11.97) equals

V = C0x1(1 + λ1)C̃ . (11.109)

Substituting into (11.109) the value C̃ from (11.105) we obtain

V =
1 + λ2

λ2

(11.110)
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at the same point, with account of (11.99) and (11.103), Vs
equals

Vs =
1 + λ2

λ2
, (11.111)

i.e. the solution for V matches the solution for Vs.

Thus, if the radius of a body exceeds the Schwarzschild ra-

dius, then the graviton mass can be neglected, and the interval

of effective Riemannian space in an inertial reference system

in spherical coordinates outside the body in the region (11.53)

has the form:

ds2 =
r −GM

r +GM
dt2 − r +GM

r −GM
dr2 −

−(r +GM)2[(dΘ)2 + sin2 Θ(dϕ)2].

This expression is determined unambiguously from the com-

plete set of equations (11.1) and (11.2), and, here, there exists

no arbitrariness. When the solution inside the body is made

to match the solution outside the body it is also necessary, as

first shown by R. Avakian, to take into account the logarith-

mic term (11.99) which arises when the solution of equations

(11.2) is sought. However, since the radius of the Sun exceeds

the Schwarzschild radius significantly, we can do not take it

into account in calculations of gravitational effects in the Solar

system.

Now consider (11.92) for values of ǫf close to unity:

f =
1

ǫ
(

1 + y
ǫ

) ,
y

ǫ
≪ 1. (11.112)

Substituting this expression into (11.92) and expanding in y
ǫ

we obtain

y2 = 2ǫC0(x− x1). (11.113)
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Inequality (11.112) signifies, that the quantity (x−x1) = δ≪ǫ,

i.e.
y

ǫ
=
√

2C0 ·
√

x− x1

ǫ
≪ 1 . (11.114)

Substituting (11.113) into (11.112), and then f into (11.97),

we obtain for U and V the following expressions:

U =
x3

1[ǫ+
√

2ǫC0(x− x1)]

2x
,

(11.115)

V =
x[ǫ+

√

2ǫC0(x− x1)]

2ǫ(x− x1)
.

Hence, within the domain of variable x satisfying inequality

(11.114), we have

U =
ǫx3

1

2x
, V =

x

2(x− x1)
. (11.116)

We see that the presence of the graviton mass essentially

alters the character of the solution in the region close to the

gravitational radius. At the point, where the function V , in

accordance with (11.116), has a pole, the function U differs

from zero, while in general relativity theory it equals zero. It

is precisely owing to this circumstance, that an irreversible

gravitational collapse arises in GRT, during which there ap-

pear “black holes” (objects that have no material boundaries

and that are “cut off” from the external world). In RTG “black

holes” are impossible.

If one takes into account (11.42), (11.43), (11.96) and ne-

glects the second term in (11.59), then expressions (11.116)

for U and V assume the form:

U =
(

GMm

h̄c

)2

, V =
1

2
· r + GM

c2

r − GM
c2

, (11.117)
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which coincides with the formulae of [2]. We note that the

residue at the pole of function V at ǫ 6= 0 equals GM
c2

, while

at ǫ = 0 it equals 2GM
c2

. This is so, because, when ǫ = 0, the

pole of function V at point x = x1 is due to function f , which

at this point has a pole, while, if ǫ 6= 0, it is due to function

(1 − ǫf), which, in accordance with (11.92), turns to zero at

the point x = x1.

We shall now compare the character of motion of test bod-

ies in effective Riemannian space with the metric (11.117) and

with the Schwarzschild metric. We write the interval (11.21)

of Riemannian space in the form

ds2 = Udt2 − Ṽ dW 2 −W 2(dΘ2 + sin2 ΘdΦ2) . (11.118)

Here Ṽ is

Ṽ (W ) = V

(

dr

dW

)2

. (11.119)

The motion of a test body proceeds along a geodesic line of

Riemannian space

dvµ

ds
+ Γµαβv

αvβ = 0 , (11.120)

where

vµ =
dxµ

ds
, (11.121)

the velocity four-vector vµ satisfies the condition

gµνv
µvν = 1 . (11.122)

Now consider radial motion, when

vΘ = vΦ = 0 . (11.123)

Taking into account (11.29), from equation (11.120) we find

dv0

ds
+

1

U
· dU
dW

v0v1 = 0 , (11.124)
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where

v1 =
dW

ds
. (11.125)

From equation (11.124) we find

d

dW
ln(v0U) = 0 . (11.126)

Hence, we have

v0 =
dx0

ds
=
U0

U
, (11.127)

where U0 is the integration constant.

Taking into account (11.127), condition (11.122) for radial

motion assumes the form

U2
0

U
− 1 = Ṽ ·

(

dW

ds

)2

. (11.128)

If we assume the velocity of a falling test body to be zero at

infinity, then we obtain U0 = 1. From (11.128) we find

dW

ds
= −

√

1 − U

UṼ
. (11.129)

Taking into account (11.79), (11.96), (11.97) and (11.108) we

have

U =
x3

1

2xf
, Ṽ =

2xf

x3
1(1 − ǫf)2

.

Substituting these expressions into (11.129) we obtain

dW

ds
= −

√
1 − U(1 − ǫf) . (11.130)

Applying (11.108), (11.112) and (11.113), in the vicinity of the

point x1 we have

dW

ds
= − 2

x1

√

x− x1

ǫx1
. (11.131)
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Passing from the variable x to W , in accordance with (11.43)

and taking into account (11.44), we obtain

dW

ds
= − h̄c2

mGM

√

W

GM

(

1 − 2GM

c2W

)

. (11.132)

Hence there evidently arises a turning point. Differentia-

ting (11.132) with respect to s we find

d2W

ds2
=

1

2GM

(

h̄c2

mGM

)2

. (11.133)

At the turning point, the acceleration (11.133) is very large,

and it is positive, i.e. there occurs repulsion. Integrating

(11.132), we obtain

W =
2GM

c2
+

(

h̄c2

2mGM

)2

· 1

GM
(s− s0)

2. (11.134)

Formulae (11.132) – (11.134) coincide with the formulae

of ref. [2]. The presence of the Planck constant in formula

(11.132) is due to the wave nature of matter, in our case,

of gravitons exhibiting rest mass. From formula (11.134) it

is evident that a test body cannot cross the Schwarzschild

sphere. In GRT the situation is totally different. From the

Schwarzschild solution and expression (11.129) it follows that

a test body will cross the Schwarzschild sphere, and that a

“black hole” will form. Test bodies or light can only cross

the Schwarzschild sphere inwards, and then they can never

leave the Schwarzschild sphere any more. The same result is

obtained, if we pass to a synchronous set of freely falling test

bodies with the aid of the transformations

τ = t+
∫

dW

[

Ṽ (1 − U)

U

]1/2

. (11.135)
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R = t+
∫

dW

[

Ṽ

U(1 − U)

]1/2

. (11.136)

In this case the interval (11.118) assumes the form

ds2 = dτ 2 − (1 − U)dR2 −W 2(dΘ2 + sin2 ΘdΦ2) . (11.137)

In this form, the singularities of the metric coefficients dis-

appear both for the Schwarzschild solution, when ǫ = 0, and

for the solution in our case, when ǫ 6= 0. However, while in

GRT the variable W may turn to zero, in RTG, by virtue of

expression (11.134), it is always larger, than the Schwarzschild

radius.

Subtracting from expression (11.136) expression (11.135)

we obtain

R− τ =
∫

dW

√

√

√

√

UṼ

(1 − U)
. (11.138)

Differentiating equality (11.138) with respect to τ , we find

dW

dτ
= −

√

(1 − U)

UṼ
. (11.139)

Thus, we arrive at the same initial equation (11.129). Taking

into account that r = W − GM
c2

, on the basis of expressions

(11.117), we obtain from equation (11.139) the following:

W =
2GM

c2
+

1

4

(

h̄c2

GMm

)2

· (R− cτ)2

GM
(11.134a)

Hence, it is also evident that, if ǫ 6= 0, then a falling test body

can never cross the Schwarzschild sphere. In that case, when

ǫ = 0, the Schwarzschild singularity in the metric does not

influence the motion of the test body in a falling synchronous

reference system. In GRT the following expression will occur,

instead of formula (11.134a):

W =
[

3

2
(R− cτ)

]2/3 (2GM

c2

)1/3

,
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which testifies that a test body will reach the point W = 0 in

a finite interval of proper time. The falling particles, here, will

only cross the Schwarzschild sphere in one direction, inward.

We shall now calculate the propagation time of a light signal

from a certain point W0 to the point W1 = 2GM
c2

, given by the

clock of a distant observer. From the expression ds2 = 0 we

have the following for the Schwarzschild solution:

dW

dt
= −c

(

1 − 2GM

c2W

)

. (11.140)

Integrating this equation we obtain

W0 −W +
2GM

c2
ln
W0 − 2GM

c2

W − 2GM
c2

= c(t− t0) . (11.141)

Hence, it is obvious that an infinite time, by the clock of a

distant observer, is required in GRT in order to reach the

gravitational radius W1 = 2GM
c2

. In RTG, as we established

earlier, the Schwarzschild solution is valid up to the pointW =

W1(1 + λ2), so the time required to reach this point is

c(t− t0) = W0 −W1(1 + λ2) +
2GM

c2
ln
W0 − 2GM

c2

λ2
2GM
c2

. (11.142)

The propagation time of a light ray from the point W =

W1(1 + λ2) to the point W1 can be calculated making use of

formulae (11.97) and (11.108). Within this interval we have

dW

dt
= −c x

3
1

2xf
(1 − ǫf). (11.143)

Hence, upon integration and a change of variable, we obtain

2MG

c2

1/ǫ
∫

f

xdf

f
= c(t1 − t) . (11.144)
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In accordance with (11.84) and (11.108) the lower integration

limit is

f = C̃ =
x2

1

2λ2

. (11.145)

The integral (11.144) is readily calculated and with a good

accuracy leads to the following relation:

c(t1 − t) = W1λ2 +
2GM

c2
ln

2λ2

ǫ
. (11.146)

On the basis of (11.142) and (11.146), the time required

for a light signal to cover the distance between the points W0

and W1 = 2GM
c2

, is equal to the sum of expressions (11.142)

and (11.146),

c(t1 − t0) = W0 −W1 +
2GM

c2
ln
W0 − 2GM

c2

ǫGM
c2

. (11.147)

Hence it is seen, that in RTG, unlike GRT, the propagation

time of a light signal to the Schwarzschild sphere is finite, even

if measured by the clock of a distant observer. From formula

(11.147) it is evident that the propagation time is not enhanced

significantly by the influence of the gravitational field.

On the basis of the above presentation it is clear that, if

the graviton mass exists, ǫ 6= 0, then the solution in RTG

differs essentially from the Schwarzschild solution owing to

the presence on the Schwarzschild sphere of a singularity, that

cannot be removed by a choice of reference system. Thus, in

the case we have considered, when the radius of a body is

smaller than the Schwarzschild radius, or to be more precise,

when x0 < x1, a test particle can never reach the surface of

the body, by virtue of (11.134). Owing to the presence of a

singularity, the physical condition g < 0 is violated outside

the body, and precisely for this reason a physical solution for

a static spherically symmetric body is possible only in the
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case, when the point x1 is inside the body. This conclusion is

conserved, also, for a synchronous reference system, when the

metric coefficients (see (11.134a)) are functions of time.

Thus, in accordance with RTG, no Schwarzschild singula-

rity for a body of arbitrary mass exists, since the radius of the

body is greater than the Schwarzschild radius, and so the for-

mation of “black holes” (objects without material boundaries

and “cut off” from the external world) is impossible. This

conclusion complies with the conclusion made by A. Einstein

in 1939, most likely based on his physical intuition, than on

GRT logic. He wrote: “Schwarzschild’s singularity does not

exist, since matter cannot be concentrated in an arbitrary man-

ner; otherwise clustering particles would achieve the velocity of

light” 31. A. Einstein, naturally, saw that the existence of the

Schwarzschild singularity violated his main principle: “to ac-

knowledge all conceivable (we shall not, here, deal with certain

restrictions, following from the requirement of uniqueness and

continuity) reference systems to be essentially equivalent for

describing nature” 32. Precisely for this reason, he considered,

from a physical point of view, that no Schwarzschild singular-

ity in the metric coefficients should exist in a reference system

related to a distant observer, also. All this, however, is realized

in RTG, but not in GRT.

In accordance with RTG, as a field theory of gravity, a body

of arbitrary mass cannot undergo compression indefinitely, and

therefore no gravitational collapse involving the formation of a

“black hole” is possible. This means that a collapsing star

cannot go beneath its gravitational radius. Spherically

symmetric accretion of matter onto such a body, at its final

31Einstein A. Collection of scientific works, M.: Nauka, 1966, vol.2,
art.119, p.531.

32Einstein A. Collection of scientific works, M.: Nauka, 1965, vol.1,
art.38, p.459.
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stage of evolution (when nuclear resources are exhausted), will

be accompanied by a great release of energy, owing to mat-

ter falling onto the surface of the body. According to RTG,

gravitational absorption of light is impossible. In GRT, when

spherically symmetric accretion of matter onto a “black hole”

takes place, the energy release is quite low, since the falling

matter brings energy into the “black hole”. Gravitational ab-

sorption of light takes place. Gravitational self-closure of the

object occurs. Observational data on such objects could pro-

vide the answer, as to what happens with stars of large mass

at their final stage of evolution, when all nuclear resources are

exhausted.



Addendum

In spherical coordinates of Minkowski space the intervals of

Minkowski space and of effective Riemannian space have the

form

dσ2 = dt2 − dr2 − r2(dΘ2 + sin2 ΘdΦ2) , (1)

ds2 = U(r)dt2 − V (r)dr2 −W 2(r)(dΘ2 + sin2 ΘdΦ2) . (2)

We now introduce the velocity vector

vi =
dxi

dt
, vi = vei, (xi = r,Θ,Φ) . (3)

ei represents the unit vector with respect to the metric of the

spatial part of Minkowski space

κike
iek = 1 . (4)

In the general case κik is

κik = −γik +
γ0iγ0k

γ00
. (5)

In case (1)

κik = −γik. (6)

Condition (4) for metric (1) has the form

(e1)2 + r2[(e2)2 + sin2 Θ · (e3)2] = 1 . (7)

We define the velocity four-vector by the equality

vµ = (1, vei) (8)

and require that it be isotropic in Minkowski space

γµνv
µvν = 0 . (9)
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Substituting (8) into (9) and taking into account (7) we find

v = 1 . (10)

Thus, the isotropic four-vector vµ is equal to

vµ = (1, ei) . (11)

Since, in accordance with special relativity theory, motion

always proceeds inside or on the boundary of the Minkowski

causality cone, then, in the case of a gravitational field, the

causality principle

gµνv
µvν ≤ 0 (12)

will be valid, i.e.

U − V (e1)2 −W 2[(e2)2 + (e3)2 sin2 Θ] ≤ 0 . (13)

Taking into account (7), expression (13) may be written as

U − W 2

r2
−
(

V − W 2

r2

)

(e1)2 ≤ 0 . (14)

Let

V − W 2

r2
≥ 0 . (15)

Owing to arbitrariness, 0 ≤ (e1)2 ≤ 1, inequality (14) will be

satisfied only if

U − W 2

r2
≤ 0 . (16)

From inequalities (15) and (16) follows

U ≤ V . (17)

In the case, when

V − W 2

r2
< 0 , (18)
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we write inequality (14) as

U − V −
(

W 2

r2
− V

)

(1 − (e1)2) ≤ 0 . (19)

Owing to the arbitrariness of e1, expression (19) will hold valid

for any values 0 ≤ (e1)2 ≤ 1, only if

U ≤ V . (20)

Thus, the causality principle in RTG always results in the

inequality

U(r) ≤ V (r) . (21)



12. Gravitational effects in the Solar

system

Before proceeding to examine such effects, we shall first dwell

upon certain general assertions of RTG and GRT, which

are explicitly manifested in calculations of gravitational ef-

fects. The RTG equations (5.19) and (5.20) are universally

covariant under arbitrary transformations of coordinates and

form-invariant under the Lorentz transformations. In other

words, the situation in RTG is the same as in electrody-

namics. If in two inertial reference systems the respective

distributions of matter in Galilean coordinates, Tµν [x, gαβ(x)]

and Tµν [x
′, gαβ(x

′)], are identical, then by virtue of the form-

invariance of the equations relative to the Lorentz transfor-

mations we obtain identical equations, which in identical con-

ditions of the problem provide for the relativity principle to

be satisfied. On the other hand, if in a certain inertial refer-

ence system and for a given distribution of matter Tµν(x) the

solution we have is gµν(x), then applying the Lorentz trans-

formations to another inertial reference system we obtain the

metric g′µν(x
′), but it corresponds to the distribution of matter

T ′
µν(x

′). Owing to the equations being form-invariant under

the Lorentz transformations we can return to the initial vari-

ables x and obtain a new solution g′µν(x) corresponding to the

distribution of matter T ′
µν(x). This means that a unique cor-

respondence exists between the distribution of matter and the

metric. When the distribution of matter changes, the metric

changes also. An essential point in RTG is the presence of

the metric of Minkowski space in the equations. Precisely this

circumstance permits performing a comparison of the motion

of matter in a gravitational field with the motion of matter in

the absence of any gravitational field.
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In GRT the situation is quite different. The GRT equa-

tions outside matter are form-invariant relative to arbitrary

transformations of coordinates, and therefore, if for the distri-

bution of matter Tµν(x) the solution we have is gµν(x), then by

transforming coordinates, so that in the region of matter they

coincide with the initial ones, and outside matter differ from

them, our solution in the new coordinates will have the form

g′µν(x
′). Owing to the equations being form-invariant outside

matter, we can go back to the initial variables x, and, conse-

quently, obtain a new solution g′µν(x) for the same distribution

of matter, Tµν(x). To these two metrics (any amount of met-

rics can be constructed) there correspond differing intervals:

ds2
1 = gµν(x)dx

µdxν

ds2
2 = g′µν(x)dx

µdxν .

Which interval must be chosen? The point is that the

geodesic lines of these intervals differ from each other. In this

connection, attempts are made to identify the gravitational

field in GRT with the class of equivalent diffeomorphic metrics

gµν(x), g
′
µν(x)..., obtained with the aid of transformations of

coordinates. From the point of view of mathematics this is

obvious, but what about the physical interpretation?

Thus, there exists a fundamental difference between the

conclusions in RTG and GRT, and its essence consists in that

the RTG equations are not form-invariant with respect to ar-

bitrary coordinate transformations, while the GRT equations

outside matter are form-invariant relative to such transforma-

tions. The RTG equations are only form-invariant relative to

such transformations of coordinates that leave the Minkowski

metric γµν(x) form-invariant. Hence, for example, follows the

form-invariance of equations with respect to the Lorentz trans-

formations.
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The issue of the multiplicity of solutions gµν(x), g
′
µν(x)...

worried A. Einstein seriously, and he discussed this issue in

detail in 1913–1914 in four articles [29] and arrived at the

conclusion that the choice of coordinate reference systems is

limited, since he considered that from the universal covari-

ance for one and the same distribution of matter Tµν(x) there

arises a whole set of metrics, which is physically inadmissible.

However, the main reason for ambiguity is not related to the

general covariance, it is related to the form-invariance of GRT

equations outside matter with respect to arbitrary transfor-

mations of coordinates. To remove this ambiguity, there is no

need to renounce general covariance, since it is not the cause,

but it is necessary to restrict the form-invariance of equations

in accordance with the relativity principle. Precisely this is

done in RTG on the basis of the field approach. A simple ex-

ample from electrodynamics can be presented. Assume that

for a current jµ(x) we have the solution Aµ(x). Upon perform-

ing transformations to the new variables x′ coinciding with the

initial variables x in the region of the distribution of current

jµ(x) and differing from them in the region outside the cur-

rent, our solution assumes the form A′
µ(x

′). But it is absolutely

obvious that A′
µ(x) will not be a solution of the equations of

electrodynamics in the coordinates x, since the equations of

electrodynamics are not form-invariant with respect to arbi-

trary transformations of coordinates.

This means that in electrodynamics for one and the same

distribution of current jµ(x) in identical conditions there ex-

ists only one distribution of the electromagnetic field ~E, ~H.

If in GRT the distribution of matter, determined by the ten-

sors Tµν(x) and Tµν(x
′), is the same in two arbitrary reference

systems, then the GRT equations being form-invariant out-

side matter, we can, in identical conditions, for example, have
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identical metric coefficients gµν(x) and gµν(x
′). Precisely this

circumstance permitted A. Einstein to put forward the gen-

eral relativity principle for all physical processes. However,

the requirement that the metric coefficients be identical re-

sults in a strong restriction being imposed on the structure of

Riemannian space, it turns out to be a space with constant

curvature.

Since Riemannian space in GRT does not have this prop-

erty, in the general case, then the general relativity principle,

as a physical principle, is not realized in Nature. This also

follows from the equations of electrodynamics, for example,

not being form-invariant with respect to arbitrary transfor-

mations of coordinates. The relativity principle, as a physical

principle, is not related to universal covariance, but to the

form-invariance of equations and of the metric relative to the

transformations of coordinates. V.A. Fock was right, when he

wrote: “a general relativity principle, as a physical principle,

that could be valid with respect to arbitrary reference systems,

is not possible” [25]. In GRT for one and the same distribu-

tion of matter Tµν(x) there exists a whole range of solutions of

the GRT equations for the metric coefficients gµν(x), g
′
µν(x), ...

Outside matter the geodesic lines for these solutions will be

different.

The issue of the multiplicity of metrics in GRT in one coor-

dinate system was widely discussed in 1921-1922 by P.Painlevé,

M.Chazy, J.Becquerel, A.Gullstrand, E.Kretschmann. The

essence of the polemic actually reduced to the question: with

which radial variable in the GRT equations is it necessary to

identify the astronomically determined distance between the

Sun and a planet? It must be noted that this arbitrariness

in the first order in the gravitational constant does not in-

fluence certain gravitational effects: the deflection of a light
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ray, the shift of the perihelion of Mercury, the precession of a

gyroscope. However, it does, already in the first order in G,

influence the delay effect of a radiosignal.

Thus, depending on the choice of solutions in the Schwarz-

schild form or in harmonic coordinates we will obtain different

values for the delay time. We will further see that there exists

no such arbitrariness in RTG, and that effects are determined

unambiguously.

The reason for the multiplicity of metrics is not general

covariance, but the form-invariance of equations with respect

to arbitrary transformations of coordinates. There exists no

such ambiguity in RTG, since the metric gµν(x) is unambigu-

ously determined by the distribution of matter Tµν(x). In

section 11 it was shown that since the radius of a static spher-

ically symmetric body exceeds the Schwarzschild radius, then

the external solution of RTG equations in an inertial reference

system in spherical coordinates in the region (11.53) has the

form

ds2 =
r −MG

r +MG
(dx0)2 − r +MG

r −MG
(dr2)−

−(r +MG)2[(dθ)2 + sin2 Θ(dϕ)2]. (α)

Precisely such a solution in the post-Newtonian approxima-

tion yields expressions for the metric coefficients of effective

Riemannian space that coincide with the previously obtained

formulae (8.59a) applied for explanation of gravitational ef-

fects in the Solar system.

An essential point is that, when the gravitational field is

switched off (for instance, the body is removed), we necessarily

turn out to be in Minkowski space in an inertial reference

system with the metric

dσ2 = (dx0)2 − (dr)2 − r2[(dθ)2 + sin2 Θ(dϕ)2].
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In calculating gravitational effects in the Solar system we

have to calculate the trajectory of motion in effective Rieman-

nian space, that is determined by the interval ds, and to com-

pare it with the corresponding trajectory determined by the

interval dσ. The metric of Minkowski space is present in the

RTG equations. This is precisely how the deflection angle of a

light ray and the delay time of a radiosignal, due to the influ-

ence of the gravitational field of the Sun, are determined. As

to calculating the shift in the perihelion of a planet, here it is

necessary to compare the trajectory of motion of a test body

around the Sun calculated within RTG with the trajectory

obtained from Newton’s theory of gravity. Precisely in these

calculations there exists a difference between the RTG and

GRT conclusions, since within GRT one cannot say in which

reference system (inertial or non-inertial) of Minkowski space

one happens to be, when the gravitational field is switched

off. For calculating the gravitational effect it is necessary to

compare in one coordinate system the motion along a geodesic

line in Riemannian space with motion along the geodesic line

in Minkowski space with gravity switched off. But to this end

it is necessary to know exactly both the metric gµν(x) and the

metric γµν(x).

However, in GRT, owing to the multiplicity of so-

lutions both for gµν(x) and for γµν(x) we cannot with

definiteness say which Riemannian metric gµν(x) it is

necessary to take for the chosen metric γµν(x) in order

to find the geodesic lines in Riemannian space and

in Minkowski space. This is actually the essence of

the ambiguity in predictions of gravitational effects in

GRT. Sometimes errors are avoided in GRT by considering

the initial reference system to be an inertial reference sys-

tem in Cartesian coordinates (but no such coordinates exist in
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GRT) and then dealing with a weak gravitational field against

this background. No such difficulty exists in RTG, since for

the chosen metric γµν(x), with the aid of equations (5.19) and

(5.20), under appropriate conditions, the metric gµν(x) of ef-

fective Riemannian space is determined unambiguously, which

permits to determine unambiguously the gravitational effect.

In calculations of effects in the gravitational field of the

Sun one usually takes as the idealized model of the Sun a

static spherically symmetric body of radius R⊙. The general

form of the metric of Riemannian space in an inertial reference

system in spherical coordinates is

ds2 = U(r)(dx0)2 − V (r)(dr)2 −
−W 2(r)[(dθ)2 + sin2 Θ(dϕ)2]. (12.1)

In the absence of a gravitational field the metric has the form

dσ2 = (dx0)2 − (dr)2 − r2[(dθ)2 + sin2 Θ(dϕ)2]. (12.1a)

Substituting (12.1) and (12.1a) into equations (5.19) and

(5.20) we precisely obtain the external solution for the Sun

(α).

In section 5 it was shown that from the RTG equations

(5.19) and (5.20) follow directly the equations of motion for

matter,

∇νT
µν = 0. (12.2)

Hence it is easy to obtain the equations of motion for a test

body in a static gravitational field. The energy-momentum

tensor for matter, T µν , in this case assumes the form

T µν = ρUµUν , Uµ =
dxµ

ds
. (12.3)

Substituting (12.3) into (12.2) we obtain

Uµ∇ν(ρU
ν) + ρUν∇νU

µ = 0. (12.4)
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Multiplying this equation by Uµ and taking into account

UµU
µ = 1 we obtain

∇ν(ρU
ν) + ρUνUµ∇νU

µ = 0. (12.4a)

Since

∇ν(UµU
µ) = 2Uµ∇νU

µ = 0.

from equation (12.4a) we have

∇ν(ρU
ν) = 0. (12.5)

Substituting (12.5) into (12.4) we find

Uν∇νU
µ = 0. (12.6)

Applying the definition of a covariant derivative, equations

(12.6) may be written as

[

∂Uµ

∂xν
+ ΓµνσU

σ

]

dxν

ds
= 0. (12.7)

Taking into account the definition of a total differential we

have

dUµ =
∂Uµ

∂xν
dxν . (12.8)

On the basis of (12.8) equation (12.7) assumes the form

dUµ

ds
+ ΓµνσU

νUσ = 0, Uµ =
dxµ

ds
. (12.9)

The equation of motion of a test body, (12.9), is an equa-

tion of geodesic lines in the space with the metric gµν . The

Christoffel symbols are determined by the formula

Γµνσ =
1

2
gµλ(∂νgσλ + ∂σgνλ − ∂λgνσ). (12.10)
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On the basis of (12.1) and (12.10) it is easy to obtain the

Christoffel symbols of interest to us:

Γ2
12 =

1

W

dW

dr
, Γ2

33 = − sin Θ cosΘ,

(12.11)

Γ3
13 =

1

W

dW

dr
, Γ3

23 = cot Θ, Γ0
01 =

1

2U

dU

dr
.

Of the four equations (12.9) only three are independent,

since the following relation is valid:

gµνU
µUν = 1. (12.12)

We shall further make use of this circumstance by choosing the

three simplest equations from (12.9). From equations (12.9)

we shall take equations

d2x0

ds2
+

1

U

dU

dr

dx0

ds

dr

ds
= 0, (12.13)

d2Θ

ds2
+

2

W

dW

dr

dr

ds

dΘ

ds
− sin Θ cos Θ

(

dϕ

ds

)2

= 0, (12.14)

d2ϕ

ds2
+

2

W

dW

dr

dr

ds

dϕ

ds
+ 2 cotΘ

dΘ

ds

dϕ

ds
= 0 (12.15)

and supplement them with equation (12.12) in the form

U

(

dx0

ds

)2

− V

(

dr

ds

)2

−W 2

(

dΘ

ds

)2

−

−W 2 sin2 Θ

(

dϕ

ds

)2

= 1. (12.16)

Since the gravitational field is spherically symmetric, it

is natural to choose the reference system so as to make the

motion take place in the equatorial plane, i.e.

Θ =
π

2
. (12.17)
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In the case of our choice equation (12.14) is identically satis-

fied.

Equations (12.13) and (12.15) can be respectively written

as
d

ds

[

ln
dx0

ds
U

]

= 0, (12.18)

d

ds

[

ln
dϕ

ds
W 2

]

= 0. (12.19)

Hence, we find the first integrals of motion E, J :

dx0

ds
U =

1√
E
,

dϕ

ds
W 2 =

J√
E
. (12.20)

Substituting these expressions into (12.16) we obtain

1

EU
− V

(

dr

ds

)2

− J2

W 2E
= 1. (12.21)

From the second relation (12.20) we find

ds = dϕ

√
EW 2

J
. (12.22)

Passing in (12.21), with the aid of (12.22), to the variable ϕ

we obtain

V

W 4

(

dr

dϕ

)2

+
1

W 2
− 1

J2U
+
E

J2
= 0. (12.23)

From the first relation (12.20) we find

(ds)2 = EU2(dx0)2. (12.24)

Hence it follows that E > 0 for test bodies and E = 0 for

light.

Gravitational effects in the Solar system have been calcu-

lated within GRT by various methods. Here, we shall follow

S. Weinberg’s method of calculation [1].

163



12.1. Deflection of light rays by the Sun

Consider a photon from a distant region passing near the Sun.

What is the trajectory of the light ray? It is determined from

equation (12.23), when E = 0, and it has the form

dϕ = dr

√

√

√

√

UV

W 2
(

W 2

J2 − U
) . (12.25)

At the point of the light ray’s trajectory (see the figure) closest

to the Sun
dr

dϕ

∣

∣

∣

r0
= 0. (12.26)

∆ϕ

l

r0

lr

ϕ(r)

Deflection of the light ray

The integral of motion J is expressed via the metric pa-

rameters U0 and W0:

J2 =
W 2(r0)

U(r0)
=
W 2

0

U0
. (12.27)
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Integrating (12.25) we obtain

ϕ(r) = ϕ(∞) +

∞
∫

r

dr







V

W 2
(

W 2

W 2
0

U0

U
− 1

)







1/2

. (12.28)

The deflection angle of a light ray is

∆ϕ = 2|ϕ(r0) − ϕ(∞)| − π. (12.29)

Here, we have taken into account that in the absence of a

gravitational field a light ray propagates along a straight line

l, and precisely for this reason π has appeared in (12.29). For

the Sun, from the RTG equations we have

U(r) =
r −GM

r +GM
, V =

r +GM

r −GM
, W 2 = (r+GM)2. (12.30)

For calculations it is sometimes convenient to make use of an

independent variable W :

U(W ) = 1 − 2GM

W
, V (W ) =

1

1 − 2GM
W

. (12.31)

In the first approximation in the gravitational constant G the

metric coefficients are

U(r) = 1 − 2GM

r
, V (r) = 1 +

2GM

r
,

(12.32)

W 2 = r2
(

1 +
2GM

r

)

.

Substituting these expressions into the integral (12.28) we ob-

tain for it the following expression:

I = r0

∞
∫

r0

dr

r
[

r2
(

1 − 4MG
r0

)

+ 4MGr − r2
0

]1/2
. (12.33)

165



Performing a change of variables, r = 1
t
, we obtain

I =

1/r0
∫

0

dt
√

r−2
0

(

1 − 2MG
r0

)2 −
(

t− 2MG
r2
0

)2
. (12.34)

Making use of the tabular integral

∫

dx
√

m2 −
(

x− b
2

)2
= arcsin

x− b
2

m
+ c,

we find

I =
π

2
+

2MG

r0
. (12.35)

On the basis of (12.29) we obtain

∆ϕ =
4M⊙G

c2r0
, (12.36)

taking into account

M⊙G

c2
= 1, 475 · 105cm, R⊙G = 6, 95 · 1010cm, (12.37)

we find

∆ϕ =
R⊙

r0

∑

⊙
,
∑

⊙
=

4M⊙G

R⊙c2
= 1, 75′′. (12.38)

Thus, the deflection of a light ray by the gravitational field

of the Sun is equal to

∆ϕ = 1, 75′′ · R⊙

r0
. (12.39)

In calculating the deflection angle of a light ray we took into ac-

count that in the absence of a field in an inertial reference sys-

tem, a light ray travels, by virtue of the metric (12.1a), along

a straight line l. Precisely the deviation from this straight line

is the gravitational effect.
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12.2. The delay of a radiosignal

I.I. Shapiro [43] proposed and implemented an experiment for

measurement of the time required for a radiosignal to reach the

planet Mercury and, upon reflection, to return to the Earth.

We shall calculate this time on the basis of RTG equations.

We shall pass from the independent variable ϕ to the in-

dependent variable x0. To this end, making use of (12.22) and

(12.24), we shall obtain

(dϕ)2 =
J2U2

W 4
(dx0)2. (12.40)

With the aid of (12.40), equation (12.23) assumes the form

ct(r, r0) =

r
∫

r0

dr







V
(

1 − W 2
0

W 2 · U
U0

)

U







1/2

. (12.41)

Substituting expressions (12.32) into the integral (12.41), we

find

ct(r, r0) =

r
∫

r0

rdr
√

r2 − r2
0

[

1 +
2MG

r
+

2MG

r

r0
r + r0

]

. (12.42)

Applying the tabular integrals

r
∫

r0

dr
√

r2 − r2
0

= ln
r +

√

r2 − r2
0

r0
,

(12.43)
r
∫

r0

dr
√

r2 − r2
0

r0
r + r0

=
[

r − r0
r + r0

]1/2

,

we obtain

ct(r, r0) =
√

r2 − r2
0 + 2MG ln

r +
√

r2 − r2
0

r0
+

+2MG
[

r − r0
r + r0

]1/2

. (12.44)
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Let re, rp be the heliocentric coordinates of the Earth and

of Mercury. Since re, rp >> r0, then in the summands of

expressions (12.44), that contain the gravitational constant,

the influence of r0 present under the square root sign can be

neglected, which will result in

ct(rp, re) =
√

r2
e − r2

0 +
√

r2
p − r2

0 +

+
2MG

c2
ln

4rerp
r2
0

+
4MG

c2
. (12.45)

We shall drop a perpendicular r⊥ from the center of the source

of the gravitational field onto the straight line connecting points

re and rp. Then, according to Pythagoras’ theorem, we have

r2
e = R2

e + r2
⊥, r2

p = R2
p + r2

⊥. (12.46)

In the first order in G

r0 ≃ r⊥ +Re
∆ϕ

2
, r2

0 − r2
⊥ ≃ Rer0∆ϕ, (12.47)

∆ϕ is the deflection angle of a light ray due to the influence

of a source of the gravitational field (see (12.36)).

√

r2
e − r2

0 = Re

√

1 − r0
Re

∆ϕ ≃

≃ Re − r0
∆ϕ

2
= Re −

2MG

c2
, (12.48)

similarly

√

r2
p − r2

0 ≃ Rp − r0
∆ϕ

2
= Rp −

2MG

c2
. (12.49)

With account of (12.48) and (12.49) expression (12.45) as-

sumes the form

ct(rp, re) − R =
2MG

c2
ln

4rerp
r2
0

, (12.50)
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here R = Re +Rp is the distance between the planets.

The delay time of a radiosignal propagating from the Earth

to Mercury and back is

∆τ = 2[t(rp, re) − R/c] =
4MG

c3
ln

4rerp
r0

,

(12.51)

re = r⊕ = 15 · 1012cm, rp = r� = 5, 8 · 1012cm,

as r0 it is possible to take the radius of the Sun, R⊙:

R⊙ = 6, 95 · 1010cm.

Substituting these values into (12.51) and taking into account

that
4M⊙G

c2
= 5, 9 · 105cm,

we obtain

∆τ =
4M⊙G

c3
ln

4r⊕r�
R2

⊙
= 219, 9 µ s. (12.52)

In calculating the delay effect of a radiosignal we have taken

into account that in the absence of a gravitational field a light

ray, by virtue of (12.1a), travels from point e to point p along

a straight line in an inertial reference system. Comparison

with such motion is precisely how the gravitational effect is

determined. It is precisely for this reason, that the summand
2R
c

has appeared to the left in (12.51). In observations, the

time 2R
c

is determined during a period, when the Sun moves

away from the trajectory of the light ray, so its influence is

significantly reduced.

In GRT, if the solution is sought of the Hilbert–Einstein

equations for a static spherically symmetric body of mass M ,

then within one and the same coordinate system it is possible
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to obtain the external solution for the metric, that involves

two arbitrary functions

ds2 = g00dt
2 + 2g01dtdr+

+g11dr
2 + g22(dΘ)2 + g33(dϕ)2, (12.31a)

where

g00 = 1 − 2GM

W (r)
, g01 = −B(r),

g11 = −
(

1 − 2GM

W

)−1

·




(

dW

dr

)2

−B2



 ,

g22 = −W 2(r), g33 = −W 2 sin Θ.

Thus, within one and the same coordinate system for a

body of mass M there exists an infinite number of solutions.

Here, functions B(r) and W (r) are, generally speaking, ar-

bitrary, they are not determined by GRT. P. Painlevé wrote

about all this some 80 years ago and stressed that the choice

of initial formulae is purely arbitrary. Hence it is obvious that

within GRT neither Newton’s law nor the post-Newtonian ap-

proximation (8.59a), used in GRT for explaining gravitational

effects in the Solar system, follow unambiguously from the ex-

act external solution of equations. Hence, also, it follows, for

example, that an infinitesimal period of true physical time in

GRT,

dτ =



dt

√

1 − 2GM

W (r)
− B(r)dr
√

1 − 2GM
W (r)





will differ depending on the choice of the arbitrary functions

W (r) and B(r). This means that for a static spherically sym-

metric body of mass M the course of physical time for one or

another process is not determined unambiguously.
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As we can see, the situation in GRT differs totally from

the situation in electrodynamics, where the Coulomb law un-

ambiguously follows from the equations of theory. We shall

clarify the situation making use of the example of Minkowski

space. From the point of view of geometry, Minkowski space

both in an inertial and in a noninertial reference system re-

mains essentially the same, since the tensor of Riemann cur-

vature equals zero. By virtue of the form-invariance of the

Riemann tensor we will have in one and the same coordinate

system an infinite amount of metrics γµν(x), γ′µν(x)... and so

on, that reduce the Riemann tensor to zero. But, depending

on the choice of metric we will have different geodesic lines

in one and the same coordinate system, i.e. the physics will

vary. All this is obvious and well known, since the dynam-

ics in an inertial reference system differs from the dynamics

in a non-inertial reference system owing to the appearance of

forces of inertia. Precisely for this reason the choice of the

non-inertial reference system in four-dimensional Minkowski

space alters the physics. In Minkowski space, however, there

exist inertial reference systems, and observational astronomi-

cal data are referred precisely to an inertial reference system.

The choice of reference system in physical equations is based

precisely on this circumstance. In GRT Riemannian geome-

try there exist no such reference systems, so it is absolutely

unclear, which coordinates it is necessary to choose so as to

compare theoretical calculations and observational data. The

geometry does not depend on the choice of reference system

(or, in other words, in our particular case, on the choice of

functions B(r) and W (r))), it remains, like before, Rieman-

nian geometry, however, the physics changes. Naturally, it is
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possible, in our case, to select arbitrary functions B(r) and

W (r) so as to provide for Newton’s law of gravity to be sat-

isfied, and for the post-Newtonian approximation to have the

form (8.59a). However, such a choice in GRT is, regrettably,

arbitrary, since it is not imposed by any physical conditions.

It is not possible to formulate physical requirements to be im-

posed on the behaviour of Riemannian metric, if it is not of

a field origin, because such behaviour even depends on the

choice of three-dimensional space coordinates. V.A. Fock re-

solved the issue of the choice of coordinates for island systems,

with the aid of the harmonicity conditions. But why precisely

they have to be chosen, instead of some other ones, remained

unclear.

Now, let us go back to the analysis of a concrete example

demonstrating the ambiguity of GRT in calculations of the

gravitational delay effect of a radiosignal traveling from the

Earth to Mercury and back. The predictions of theory depend

on the choice of solution. For simplicity we shall advantage of

the simplest partial case

B(r) = 0, W (r) = r + (λ+ 1)M, r > R0,

λ is an arbitrary parameter, R0 is the radius of the body dealt

with. If an appropriate choice is made of function W (r) in the

vicinity of the body, then this solution can be made to match

the solution inside the body. If the previous calculations are

repeated, then for this metric we find

ct(r, r0) =
√

r2 − r2
0 + 2MG ln

r +
√

r2 − r2
0

r0
+

+2MG

(

1 +
λ

2

)

[

r − r0
r + r0

]1/2

. (A)
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Comparing this expression with (12.44) we see that already

in the first order in G an ambiguity due to the influence of

the source of the gravitational field arises in GRT in the de-

scription of the delay effect of a radiosignal. On the basis of

(A) the delay time of a radiosignal traveling from the Earth

to Mercury and back, in accordance with GRT, equals the

following:

∆τ = 2
[

t(re, rp) −
R

c

]

=
4MG

c3
ln

4rerp
r2
0

+
2MG

c3
λ. (B)

We note that in the first order in G the physical distance

l, determined by the expression

l =

r
∫

R0

√
g11dr ≃ r −R0 +

GM

c2
ln

r

R0

does not depend on the parameter λ, and precisely for this

reason the first term in (B) will also not depend on λ, and,

consequently, owing to the presence of the second term, we will

have different predictions for the delay time of a radiosignal,

depending on the choice of the constant λ. Expression (B) dif-

fers essentially from the result (12.51), which follows exactly

from RTG and complies with experimental data [43]. For the

Schwarzschild solution λ = −1 the difference from (12.51) will

be 2GM
c3

, which for the Sun amounts to about 10 microseconds.

In calculations of the following gravitational effects: of the de-

flection of a light ray by the Sun, of the shift of a planet’s peri-

helion, of the precession of a gyroscope, of the shift of spectral

lines, an ambiguity also arises, but in the second order in the

gravitational constant G. All the above has been discussed in

detail with prof. Yu.M. Loskutov (see, also, monograph [10]).
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Thus, GRT cannot, in principle, provide definite predic-

tions on gravitational effects, which is still another of its fun-

damental defects. Certain attempts to relate the gravitational

field in GRT to the equivalence class of diffeomorphic met-

rics do not remove this ambiguity, since they do not discard

the fundamental defect of GRT — the form-invariance of the

Hilbert–Einstein equations outside matter with respect to ar-

bitrary transformations of coordinates 33. Precisely this cir-

cumstance results in the entire set of diffeomorphic metrics

arising within one coordinate system for one and the same

distribution of matter, while this, according to the Weyl–

Lorentz–Petrov theorem (see end of section 14), leads to dif-

ferent geodesic lines in identical conditions of the problem,

which is physically inadmissible. The essence of the is-

sue does not consist in the general covariance, which

must always exist, but in whether the form-invariance

of physical equations relative to arbitrary transforma-

tions of coordinates is admissible?

Since reference systems are not equivalent in the presence

of forces of inertia, no sense whatsoever can be attributed to

the form-invariance of physical equations with respect to ar-

bitrary transformations of coordinates. General covariance is

a mathematical requirement, while form-invariance has a pro-

found physical content. Actually, in all physical theories the

form-invariance of equations and of metrics holds valid rel-

ative to the Lorentz transformations — precisely this is the

essence of the relativity principle.

The non-equivalence of various reference systems is espe-

cially evident, if one considers pseudo-Euclidean geometry,

33See, for instance: J.Stachel. Conference “Jena-1980”, 1981 (DDR).
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for which the curvature tensor is zero. From the equality of

the curvature tensor to zero it is possible, by virtue of form-

invariance, to obtain a set of solutions for the metric tensor in

one and the same coordinate system. But it is quite obvious

that they are physically not equivalent, since some of them are

inertial reference systems, while others are non-inertial refer-

ence systems. All the above, involving significant complica-

tions, also takes place in the case of Riemannian geometry.

It is important to stress once more that in GRT,

owing to the equations being, outside the distribu-

tion of matter, form-invariant relative to arbitrary

transformations of coordinates, there arises a situa-

tion when for one and the same distribution of matter

there exists, in one and the same coordinate system,

an indefinite amount of metrics. No such situation ex-

ists in any other physical theory, since form-invariance within

them is admissible only with respect to transformations of co-

ordinates leaving the metric γµν(x) form-invariant. From this

fact, for example, the form-invariance of equations relative to

the Lorentz transformations follows.

12.3. The shift of a planet’s perihelion

Consider the motion of a test body on a solar orbit. At the

perihelion the heliocentric distance of the test body is at its

minimum and is r−, while at the aphelion it reaches its maxi-

mum and equals r+. Since at the perihelion and at the aphe-
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lion dr
dϕ

= 0, from equation (12.23) we obtain

1

W (r+)
− 1

J2U(r+)
= − E

J2
,

(12.53)
1

W (r−)
− 1

J2U(r−)
= − E

J2
.

Hence, we find

J2 =

1
U+

− 1
U−

1
W 2

+

− 1
W 2

−

. (12.54)

Now we write equations (12.53) in another form:

J2 = W 2
+

(

1

U+
− E

)

, J2 = W 2
−

(

1

U−
−E

)

. (12.55)

Hence, we obtain

E =

W 2
+

U+
− W 2

−

U−

W 2
+ −W 2

−
. (12.56)

By integration of equation (12.23) we find

ϕ(r) = ϕ(r−) +

r
∫

r−

√
V
[

1

J2U
− 1

W 2
− E

J2

]−1/2 dr

W 2
. (12.57)

For convenience of calculations we introduce a new indepen-

dent variable

W = r +GM. (12.58)

Substituting (12.54) and (12.56) into (12.57) and passing to

the new independent variable W we find

ϕ(W ) = ϕ(W−) +

+

W
∫

W−

{

W 2
−[U−1(W ) − U−1

− ] −W 2
+[U−1(W ) − U−1

+ ]

W 2
−W

2
+[U−1

+ − U−1
− ]

}−1/2

×

×
√
V dW

W 2
. (12.59)
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On the basis of (12.31) we have for function U−1(W ) in the

second order in the gravitational constant G the following:

U−1(W ) = 1 +
2GM

W
+

(2GM)2

W 2
. (12.60)

We must take into account the second order in U−1(W ), since,

if we only consider the first order in G, then the expression

under the root sign in figure brackets will be independent of

the gravitational constant. But this means that in calculations

this circumstance results in our losing the term containing G

in the first order. We will have taken into account only the

term of the first order in G entering into function V . For the

metric coefficient of V it suffices to take into account only the

first order in G,

V (W ) = 1 +
2GM

W
. (12.61)

In the approximation (12.60) the numerator of the expres-

sion under the root sign in the figure brackets of (12.59) is a

quadratic function of the variable 1
W

of the following form:

2GMW−W+(W+ −W−)

[

1

W 2
− 1

W

(

1

W−
+

1

W+

)

+

+
1

W−W+

]

= 2GMW−W+(W+ −W−) ×

×
(

1

W
− 1

W−

)(

1

W
− 1

W+

)

. (12.62)

The denominator of the expression under the root sign in

(12.59) is

W 2
−W

2
+ [U−1

+ − U−1
− ] = 2GMW−W+(W− −W+) ×

×
[

1 + 2GM

(

1

W−
+

1

W+

)]

. (12.63)
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Taking (12.62) and (12.63) we find the expression under

the root sign in the figure brackets (12.59),

1
[

1 + 2GM
(

1
W−

+ 1
W+

)]

(

1

W−
− 1

W

)(

1

W
− 1

W+

)

. (12.64)

Substituting (12.61) and (12.64) into (12.59) and considering

only terms of the first order in the gravitational constant G,

we obtain

ϕ(W ) = ϕ(W−) +

[

1 +
1

2

(

1

W−
+

1

W+

)

2GM

]

×

×
W
∫

W−

(

1 + MG
W

)

dW

W 2
[(

1
W−

− 1
W

) (

1
W

− 1
W+

)]1/2
. (12.65)

For calculating the integral in (12.65) we introduce a new vari-

able ψ

1

W
=

1

2

(

1

W+
+

1

W

)

+
1

2

(

1

W+
− 1

W−

)

sinψ. (12.66)

Applying (12.66) we obtain
(

1

W−
− 1

W

)(

1

W
− 1

W+

)

=

=
1

4

(

1

W−
− 1

W+

)2

cos2 ψ. (12.67)

Upon substitution of (12.66) and (12.67) we find

I(W ) =

W
∫

W−

(

1 + MG
W

)

dW

W 2
[(

1
W−

− 1
W

) (

1
W

− 1
W+

)]1/2
=

= ψ +GM

{

1

2

(

1

W−
+

1

W+

)

ψ+

+
1

2

(

1

W−
− 1

W+

)

cosψ }
∣

∣

∣

ψ
−π/2.
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Hence we obtain

I(W+) = π +GM
1

2

(

1

W−
+

1

W+

)

π. (12.68)

Making use of (12.68), from (12.65) we have

ϕ(W+) − ϕ(W−) = π +
3

2
πGM

(

1

W−
+

1

W+

)

. (12.69)

Hence the change in angle ϕ during one revolution is

2|ϕ(W+) − ϕ(W−)| = 2π + 6πGM
1

2

(

1

W−
+

1

W+

)

. (12.70)

The shift of the perihelion during one revolution will amount

to

δϕ = 2|ϕ(W+) − ϕ(W−)| − 2π =

= 6πGM
1

2

(

1

W+
+

1

W−

)

, (12.71)

or, going back to the variable determined from (12.58), we

obtain the following in the same approximation in G:

δϕ = 6πGM
1

2

(

1

r+
+

1

r−

)

. (12.72)

The quantities r− and r+ are expressed via the large semiaxis

a and the eccentricity e e

r± = (1 ± e)a. (12.73)

Usually a focal parameter is introduced:

1

L
=

1

2

(

1

r+
+

1

r−

)

. (12.74)
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Using (12.73) we find

L = (1 − e2)a. (12.75)

Substituting (12.75) into (12.74) we obtain

1

2

(

1

r+
+

1

r−

)

=
1

(1 − e2)a
. (12.76)

Taking into account (12.76) in (12.72) we find

δϕ =
6πGM

c2(1 − e2)a
. (12.77)

In formula (12.77) we have restored the dependence upon

the velocity of light. For Mercury

e = 0, 2056, a = 57, 91 · 1011cm. (12.78)

Substituting these values into formula (12.77) we obtain the

shift of Mercury’s perihelion during one revolution:

δϕ� = 0.1037′′. (12.79)

In one century Mercury undergoes 415 revolutions, therefore

the shift of Mercury’s perihelion in 100 years amounts to

∆ϕ = 43.03′′. (12.80)

Modern data confirm this result with an accuracy up to 1%.

Astronomers have been studying the shift of Mercury’s perihe-

lion for several centuries. In 1882 S. Newcomb established the

difference between observations and theoretical calculations,

that turned out to be 43′′ per century. At present optical ob-

servations, that have been under way for over 200 years, yield
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an uncertainty in the determination of the precession velocity

of approximately 0, 4′′ per century.

To conclude this section we shall write equation (12.23) in

the variables u = 1
W
, W = r +GM .

(

du

dϕ

)2

+
u2

V
− 1

J2UV
+

E

J2V
= 0. (12.81)

For a static spherically symmetric field, by virtue of (12.31)

we have

U = V −1 = (1 − 2GMu). (12.82)

Differentiating (12.81) with respect to ϕ and taking into ac-

count (12.82) we obtain

d2u

dϕ2
+ u =

EGM

J2c2
+

3GM

c2
u2. (12.83)

Here, we have restored the dependence upon the velocity of

light. This equation differs from the equation obtained on

the basis of Newton’s theory of gravity by an additional term
3GM
c2
u2. As we see, this term is relativistic. Precisely this term

leads to a shift in a planet’s perihelion.

Expressing the integrals of motion E and J2 in terms of

the eccentricity and the superior semiaxis in the nonrelativistic

approximation, we have

GME

c2J2
=

1

a(1 − ǫ2)
. (12.84)

Thus, in the nonrelativistic approximation we obtain the equa-

tion of Newton’s theory of gravity

d2σ

dϕ2
+ σ =

1

a(1 − ǫ2)
, σ =

1

r
. (12.85)
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Precisely such an expression is found in classical mechanics,

if the initial Newton equations are referred to an inertial re-

ference system. In our calculation this is natural, since the

initial RTG equations are also written in an inertial reference

system.

Comparing the motion complying with (12.83) with the

motion (12.85), we precisely determine the shift effect of the

perihelion for a single revolution of the body about the Sun. In

calculating the shift of Mercury’s perihelion and the deflection

of a light ray by the Sun, A. Einstein intuitively considered

gravity to be a weak physical field against the background of

Minkowski space. Precisely such an approach brought him to

the well-known formulae for these gravitational effects. Howe-

ver, these formulae are not unambiguous consequences of the

GRT equations. In deriving them A. Einstein rather followed

his physical intuition, than the logic of his theory. However,

upon finding these effects in 1915 he anyhow noted: “Con-

sider a material point (the Sun) at the origin of the reference

system. The gravitational field created by this material point

can be calculated from equations by successive approximations.

However, it can be assumed that for a given mass of the Sun,

gµν are not quite fully determined by equations (1) and (3).

(Here the equations Rµν = 0, given the restriction |gµν | = −1,

are intended. – A.L.) This follows from these equations being

covariant with respect to any transformations with a determi-

nant 1. Nevertheless, we, most likely, are justified in assuming

that by such transformations all these solutions can transform

into each other and that, consequently, (for given boundary

conditions) they differ from each other only formally, but not

physically. Following this conviction, I shall first restrict my-
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self, here, to obtaining one of the solutions, without going into

the issue of whether it is the sole possible solution” 34.

Later the issue of other possible external solutions arose

in the twenties, when the French mathematician P. Painlevé

criticized A. Einstein’s results. Following P. Painlevé, we shall

consider this issue from the point of view of the exact external

solution (12.31a) of the GRT equations for a static spherically

symmetric body.

In GRT, calculation of the shift of Mercury’s perihelion on

the basis of the exact external solution (12.31a), for a choice

of the arbitrary functions B(r) and W (r) in the simplest form

B(r) = 0, W (r) = r + (λ+ 1)GM,

would lead to the following result:

δϕ =
6πGM

L

[

−(1 + λ)GM

L
(1 + e2))+

+
9GM

2L

(

1 +
e2

18

)]

. (12.72a)

This expression is presented in monograph [10], therein, also,

references to original articles can be found. From formula

(12.72a) it can be seen that in GRT, also, ambiguity exists

in predicting the shift effect of Mercury’s perihelion, but it

manifests itself in the second order in G, instead of the first,

and therefore is beyond the accuracy limits of modern observa-

tional data, if one is restricted to small values of the arbitrary

parameter λ. However, from the point of view of principle it

is seen that the ambiguity is also present in the case of such

34Einstein A. Collection of scientific works, Moscow: Nauka, 1965,
vol.1, art.36, p.440.
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a choice of λ, when Newton’s law of gravity holds valid. But

from GRT it does not follow that the parameter λ should be

small. Since in the solution (12.31a) the arbitrary functions

B(r) and W (r) are not determined in GRT, therefore for a

chosen partial case the parameter λ can assume any values.

If it is chosen sufficiently large, so that the second term in

the brackets in expression (12.72a) is of the order of 10−1, we

would arrive at a contradiction both with observational data

on the shift of Mercury’s perihelion and with Newton’s univer-

sal law of gravity. But this means, owing to the arbitrariness

of λ, that Newton’s law is not the only possible consequence

of GRT. If it were unknown to us, then from GRT, as a theo-

retical scheme, we would never obtain neither it, nor any cor-

rections to it. The maximum, that we could establish, would

be the asymptotics at infinity. All this reveals that al-

though GRT happened to be an important landmark

in gravity after the works of I. Newton, it neverthe-

less turned out to be an incomplete scheme, from the

point of view of both its physical aspects and its main

equations, applied for explaining and predicting grav-

itational phenomena.

After the sharp criticism of GRT (in the twenties) by

P. Painlevé and A. Gullstrand concerning the ambiguity in

determining gravitational effects, V.A. Fock (in the thirties)

clearly understood the essence of GRT and its not complete

definiteness. While studying island systems in the distribution

of matter in GRT, V.A. Fock added to the Hilbert–Einstein

equations harmonic coordinate conditions (actually, certain

equations were taken in Galilean coordinates of Minkowski

space, and thus departure beyond the limits of GRT was per-
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formed) and obtained a complete set of gravitational equa-

tions. In RTG, in studying island systems of the distribution

of matter precisely such a set of equations arises in an iner-

tial reference system (in Galilean coordinates) from the least

action principle. Thus, it becomes clear, why the harmonic

conditions in Galilean (Cartesian) coordinates are universal

equations.

In studying island systems, A. Einstein and L. Infeld ap-

plied other coordinate conditions, however, in the post-Newto-

nian approximation they are close to the harmonic conditions,

and therefore within this approximation they yield the same

result. Thus, V.A. Fock’s theory of gravity permitted to un-

ambiguously determine all the effects in the Solar system. But

his approach was not consistent.

The RTG way consists in total renunciation of

A. Einstein’s ideas on inertia and gravity and return-

ing to the physical gravitational field in the spirit of

Faraday–Maxwell, exact conservation of special rela-

tivity theory, proclaiming a universal conserved quan-

tity — the energy-momentum tensor of all matter, in-

cluding the gravitational field, the source of the gravi-

tational field. Precisely such an approach leads to a new set

of equations of the theory of gravity, removes the fundamental

difficulties of GRT, discards ambiguity in the determination of

gravitational effects, predicts an another (unlike GRT) devel-

opment of the collapse and of the Universe, and at the same

time retains what is most valuable in GRT: the tensor charac-

ter of gravity and Riemannian space. But now it already stops

being the starting point and fundamental, but becomes only

effective, that arises because the energy-momentum tensor of
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all matter, including the gravitational field, is the source of

the gravitational field.

All this is reflected in the complete set of gravitational

equations (5.19) and (5.20), that differ from the GRT equa-

tions. The effective Riemannian space, that arises in RTG

owing to the influence of the gravitational field, only has a

simple topology. This means that, in principle, no “miracles”,

that are possible in GRT owing to the complex topology of

Riemannian space, can take place in RTG.

12.4. The precession of a gyroscope

In the works of Pugh [42] and Schiff [44] a proposal was

made to put a gyroscope on an orbit around the Earth and to

examine its precession for studying the Earth’s gravitational

field and for testing general relativity theory. Precisely in this

effect, was the existence to be revealed of an inertial reference

system connected with distant stars. For simplicity, we shall

consider the gyroscope to be a pointlike test body. The equa-

tion for the angular momentum of the gyroscope, Sµ, has the

following form:
dSµ
ds

= ΓλµνSλ
dxν

ds
. (12.86)

In a reference system connected with the gyroscope it under-

goes no precession, which is reflected in equation (12.86). The

angular momentum of the gyroscope, ~J , does not change in

value, below it will be shown to be expressed via the angular

momentum ~S and the velocity ~v. In the rest frame of the test

body Sµ = (0, ~S), and therefore

SµU
µ = 0, Uµ =

dxµ

ds
. (12.87)
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From equality (12.87) we obtain

S0 = −1

c
Siv

i, vi =
dxi

dt
. (12.88)

Equation (12.86) for µ = i assumes the form

dSi
dt

= cΓji0Sj − Γ0
i0v

jSj + Γjikv
kSj − Γ0

ikv
jSj

1

c
. (12.89)

For a static spherically symmetric source of the gravita-

tional field in the linear approximation in the gravitational

constant we have

g00 = 1+2Φ, g11 = g22 = g33 = 1−2Φ, Φ = −GM
c2r

. (12.90)

Applying these expressions we calculate the Christoffel sym-

bols

Γji0 = 0, Γ0
ik = 0, Γ0

i0 =
∂Φ

∂xi
,

(12.91)

Γjik =
∂Φ

∂xk
δij −

∂Φ

∂xi
δjk +

∂Φ

∂xj
δik.

Substituting these expressions into equation (12.89) we obtain

d~S

dt
= −2(~v~S)∇Φ − (~v∇Φ)~S + (~S∇Φ)~v. (12.92)

The following expression will be the integral of motion of this

equation:
~J2 = ~S2 + 2Φ~S2 − (~v~S)2. (12.93)

This is readily verified by differentiating it with respect to

time:

2 ~J
d ~J

dt
= 2~S

d~S

dt
+ 4Φ~S

d~S

dt
+

+2(~v~S)







(~S∇Φ) + ~v





d~S

dt











. (12.94)
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Retaining the principal terms in this expression, we have

2 ~J
d ~J

dt
= 2~S

d~S

dt
+ 2(~v~S)(~S∇Φ). (12.95)

Multiplying equation (12.92) by ~S and retaining the principal

terms, we obtain

~S
d~S

dt
= −(~v~S)(~S∇Φ). (12.96)

Substituting this expression into (12.95) we find

~J
d ~J

dt
= 0. (12.97)

Thus, we have established that expression (12.93) is an

integral of motion of equation (12.92). On the basis of (12.93)

it is possible to construct the vector ~J . Within the limits of

accuracy it has the form

~J = (1 + Φ)~S − 1

2
~v(~v~S). (12.98)

Differentiating (12.98) with respect to time, within the limits

of our accuracy, we obtain

d ~J

dt
= [~Ω, ~J ], ~Ω = −3

2
[~v,∇Φ]. (12.99)

The vector ~J , while remaining the same in absolute value,

undergoes precession with a velocity |~Ω| about the direction

of vector ~Ω. At present such an experiment is at the stage

of preparation. The precession of a gyroscope, determined by

formula (12.99), shows that a reference system, connected with

a gyroscope undergoing free motion, is not inertial. From the

point of view of RTG this is obvious, since the motion of a
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gyroscope in the gravitational field represents an accelerated

motion with respect to the inertial reference system related to

distant stars. Precisely for this reason, the reference system

connected with the gyroscope will be non-inertial, which is

what causes precession of the gyroscope. In GRT a reference

system connected with a gyroscope, undergoing free motion,

is considered inertial. But then it is absolutely unclear, why

this inertial reference system rotates with an angular velocity

of |~Ω| relative to distant stars.

12.5. The gravitational shift

of spectral lines

Consider a stationary gravitational field, i.e. when the metric

coefficients are independent of time. Let radiation be emitted

from point e by the source, and let it be received at point p by

a receiver. If the source emits radiation during a time interval

(dt)e, then the receiver will also perceive it during an identical

time interval, since the gravitational field is stationary.

The proper time at point e is

(dτ)e = (
√
g00dt)e, (12.100)

and at point p it will be

(dτ)p = (
√
g00dt)p. (12.101)

But, since the time (dt)e = (dt)p, from formulae (12.100) and

(12.101) we obtain

(dτ)e
(dτ)p

=

√

√

√

√

(g00)e
(g00)p

. (12.102)
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Thus, the proper time interval, during which the source

emits the signal, is not equal to the proper time interval, dur-

ing which the signal is received, since the gravitational field

differs from point e to p.

If we pass to the light frequency ω, then we obtain

ωe
ωp

=

√

√

√

√

(g00)p
(g00)e

. (12.103)

Here ωe is the frequency of light measured at the source point

e, and ωp is the frequency of the light that arrives from point

e and is measured at the receiver point p. The change in

frequency is characterized by the quantity

δω

ω
=
ωe − ωp
ωp

. (12.104)

On the basis of (12.103) and (12.104) we find

δω

ω
=

√

√

√

√

(g00)p
(g00)e

− 1. (12.105)

For a weak gravitational field we have

g00 = 1 − 2U. (12.106)

Substituting this expression into (12.105) we obtain

δω

ω
= Ue − Up. (12.107)

If the source (for example, an atom) is in a strong gravi-

tational field, and the receiver is in a weaker field, then a red

shift is observed, and the quantity δω/ω will be positive.



13. Some other physical conclusions

of RTG

At large distances r from a static spherically symmetric body

the metric coefficients have the form

U(r) = 1 − 2M

r
e−mr, V (r) = 1 +

2M

r
e−mr,

W = r
(

1 +
M

r
e−mr

)

.

We shall now deal with the problem of radiation of weak grav-

itational waves, when the graviton has mass. It has long been

well known that in linear tensor theory introduction of the

graviton mass is always accompanied by “ghosts”. However,

in refs. [15, 16, 39] it is shown that the intensity of the grav-

itational radiation of massive gravitons in nonlinear theory is

a positive definite quantity, equal to

dI

dΩ
=

2

π

∞
∫

ωmin

dωω2q{|T 1
2 |2 +

1

4
|T 1

1 −2
2 |2 +

+
m2

ω2
(|T 1

3 |2 + |T 2
3 |2) +

3m4

4ω4
|T 3

3 |2} , (13.1)

here q =
(

1 − m2

ω2

)1/2
.

In RTG, like in GRT, outside matter the density of the

energy-momentum tensor of the gravitational field in Rieman-

nian space equals zero:

T µνg = −2
δLg
δgµν

= 0 . (13.2)

However, from expression (13.2) no absence of the gravita-

tional field follows. It is precisely in this expression, that the
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difference between the gravitational field and other physical

fields is especially revealed. But this means that the energy

flux of the gravitational field in the theory of gravity is not

determined by the density components of the tensor T 0i
g , cal-

culated with the aid of the solutions of equations (13.2), since

they are equal to zero. The problem of determining the energy

flux in the theory of gravity, unlike other theories, requires a

different approach.

Yu.M. Loskutov [15, 16, 39] finds the solution of (13.2) in

the form

Φ̃µν = χµν + ψµν , (13.3)

where the quantities χµν and ψµν are of the same order of

smallness, and ψµν describes waves diverging from the source,

while χµν characterizes the background. Energy transport is

only realized by divergent waves. In ref. [15] it is shown that

the flux of gravitational energy is actually determined by the

quantity T 0i
g (ψ) calculated not on the solutions of equations

(13.2) themselves, but only on that part of solutions, that

describes divergent waves ψµν . Here it is taken into account

that gravitons do not travel in Minkowski space, like in linear

theory, but in effective Riemannian space. Therefore, in the

linear approximation the following equality is satisfied:

7γµν
dxµ

ds
· dx

ν

ds
− 1 =

dσ2 − ds2

ds2
≃

≃ −1

2
γµνΦ

µν + Φµν dx
α

dσ
· dx

β

dσ
γµαγνβ . (13.4)

Precisely taking this circumstance into account consistently in

the course of finding the intensity has led the author of ref. [15]

to the positively definite energy flux, determined by formula

(13.1), the obtained result is of fundamental importance, since
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it alters conventional ideas and, therefore, it necessarily re-

quires further analysis.

It must be noted that the set of gravitational equations

(5.19) and (5.20) is hyperbolic, and precisely the causality

principle provides for existence, throughout the entire space,

of a spacelike surface, which is crossed by each nonspacelike

curve in Riemannian space only once, i.e., in other words,

there exists a global Cauchy surface, precisely on which the ini-

tial physical conditions are given for one or another problem.

R. Penrose and S. Hawking [32] proved, for certain general con-

ditions, singularity existence theorems in GRT. On the basis of

equations (5.21a) outside matter, for isotropic vectors of Rie-

mannian space, by virtue of the causality conditions (6.12a),

the following inequality holds valid:

Rµνv
µvν ≤ 0 . (13.5)

The conditions of the aforementioned theorems are contrary

to inequality (13.5), so they are not applicable in RTG.

In RTG spacelike events in the absence of a gravitational

field can never become timelike under the influence of the grav-

itational field. On the basis of the causality principle effective

Riemannian space in RTG will exhibit isotropic and timelike

geodesic completeness. In accordance with RTG, an inertial

reference system is determined by the distribution of matter

and of the gravitational field in the Universe (Mach’s princi-

ple).

In GRT the fields of inertia and of gravity are insepara-

ble. A. Einstein wrote about this: “... there exists no real

division into inertia and gravity, since the answer to the ques-

tion, of whether a body at a certain moment is exclusively un-

der the influence of inertia or under the combined influence
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of inertia and gravity, depends on the reference system, i.e.

on the method of dealing with it” 35. Fields of inertia satisfy

the Hilbert-Einstein equations. In RTG the gravitational field

and the fields of inertia, determined by the metric tensor of

Minkowski space, are separated, they have nothing in com-

mon. They are of different natures. The fields of inertia are

not solutions of RTG equations (5.19) and (5.20). In RTG

the fields of inertia are given by the metric tensor γµν , while

the gravitational field Φ̃µν is determined from the equations of

gravity (5.19) and (5.20).

In conclusion it must be noted that the idea that one can

arbitrarily choose both the geometry (G) and the physics (P),

since the sum (G+P) apparently seems to be the sole test

object in the experiment, is not quite correct. The choice of

pseudo-Euclidean geometry with the metric tensor γµν is dic-

tated both by fundamental physical principles — the integral

conservation laws of energy-momentum and of angular mo-

mentum, and by other physical phenomena. Thus, physics (at

the present-day stage) unambiguously determines the struc-

ture of the space-time geometry, within which all physical

fields, including the gravitational field, develop. In accor-

dance with RTG, the universal gravitational field creates effec-

tive Riemannian space with a simple topology, and Minkowski

space does not vanish, here, but is manifested in the equations

of theory and reflects a fundamental principle — the relativity

principle. Effective Riemannian space is of a field nature.

On the basis of RTG one can draw the following general

35Einstein A. Collection of scientific works, M.: Nauka, 1965, vol.1,
art.33, p.422.
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conclusions:

Representation of the gravitational field as a physical field

possessing the energy-momentum tensor, has drastically al-

tered the general picture of gravity, earlier worked out on the

basis of GRT. First, the theory of gravity now occupies its

place in the same row as other physical theories based on the

relativity principle, i.e. the primary space is Minkowski space.

Hence, it immediately follows that for all natural phenomena,

including gravitational phenomena, there exist fundamental

physical laws of energy-momentum and angular momentum

conservation. Since a universal quantity — the conserved

energy-momentum tensor of matter (including the gravita-

tional field) is the source of the gravitational field, then there

arises effective Riemannian space-time, which is of a field na-

ture. Since the formation of effective Riemannian space-time

is due to the influence of the gravitational field, it automati-

cally has a simple topology and is described in a sole coordi-

nate system. The forces of inertia, unlike GRT, have nothing

in common with the forces of gravity, since they differ in na-

ture, the first arise owing to the choice of reference system in

Minkowski space, while the latter are due to the presence of

matter. The theory of the gravitation, like all other physical

theories (unlike GRT) satisfy the equivalence principle.

Second, the complete set of equations of the theory of gra-

vity permits to determine unambiguously gravitational effects

in the Solar system and leads to other (differing from those

of GRT) predictions both on the evolution of objects of large

mass and on the development of a homogeneous and isotropic

Universe. Theory reveals the formation of “black holes” (ob-
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jects without material boundaries that are “cut off” from the

external world) to be impossible and predicts the existence in

the Universe of a large hidden mass of “dark” matter. From

the theory it follows that there was no Big Bang, while some

time in the past (about ten-fifteen billion years ago) there ex-

isted a state of high density and temperature, and the so-called

“expansion” of the Universe, observed by the red shift, is not

related to the relative motion of matter, but to variation in

time of the gravitational field. Matter is at rest in an inertial

reference system. The peculiar velocities of galaxies relative

to inertial reference systems are due to inhomogeneities in the

density distribution of matter, which is precisely what led to

the accumulation of matter during the period, when the Uni-

verse became transparent.

The universal integral conservation laws of energy-momen-

tum and such universal properties of matter, as, for example,

gravitational interactions, are reflected in the metric proper-

ties of space-time. While the first are embodied in the pseudo-

Euclidean geometry of space-time, the latter are reflected in

effective Riemannian geometry of space-time, that arose owing

to the presence of the gravitational field in Minkowski space.

Everything that has a character common to all matter can be

considered as a part of the structure of the effective geome-

try. But, here, Minkowski space will be present for certain,

which is precisely what leads to the integral conservation laws

of energy-momentum and angular momentum, and, also, pro-

vides for the equivalence principle to be satisfied, when the

gravitational field, as well as other fields, are switched off.



Appendix A

Let us establish the relation

δL

δγµν
=

δL

δgαβ
· ∂gαβ
∂γµν

+
δ⋆L

δγµν
, (A.1)

here
δL

δγµν
=

∂L

∂γµν
− ∂σ

(

∂L

∂γµν,σ

)

, (A.2)

δL

δgµν
=

∂L

∂gαβ
− ∂σ

(

∂L

∂gαβ,σ

)

, (A.3)

the asterisk in the upper formula (A.1) indicates the varia-

tional derivative of the density of the Lagrangian with respect

to the metric γµν explicitly occurring in L. Upon differentia-

tion we obtain

∂L

∂γµν
=

∂⋆L

∂γµν
+

∂L

∂gαβ,σ
· ∂gαβ,σ
∂γµν

+
∂L

∂gαβ
· ∂gαβ
∂γµν

, (A.4)

∂L

∂γµν,σ
=

∂⋆L

∂γµν,σ
+

∂L

∂gαβ,τ
· ∂gαβ,τ
∂γµν,σ

. (A.5)

We substitute these expressions into formula (A.2):

∂L

∂γµν
− ∂σ

(

∂L

∂γµν,σ

)

=
δ⋆L

δγµν
+

∂L

∂gαβ,σ
· ∂gαβ,σ
∂γµν

+

+
∂L

∂gαβ
· ∂gαβ
∂γµν

− ∂σ

(

∂L

∂gαβ,τ
· ∂gαβ,τ
∂γµν,σ

)

=
δ⋆L

δγµν
+

+
∂L

∂gαβ
· ∂gαβ
∂γµν

− ∂σ

(

∂L

∂gαβ,τ

)

· ∂gαβ,τ
∂γµν,σ

+

+
∂L

∂gαβ,σ

[

∂gαβ,σ
∂γµν

− ∂ρ

(

∂gαβ,σ
∂γµν,ρ

)]

. (A.6)

Now, consider expression

∂gαβ,σ
∂γµν

− ∂ρ

(

∂gαβ,σ
∂γµν,ρ

)

. (A.7)
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For this purpose we shall write the derivative gαβ,σ in the form

gαβ,σ =
∂gαβ
∂γλω

∂σγλω +
∂gαβ
∂Φλω

∂σΦλω , (A.8)

hence it is easy to find

∂gαβ,σ
∂γµν,ρ

=
∂gαβ
∂γµν

· δρσ . (A.9)

Upon differentiating this expression we have

∂ρ

(

∂gαβ,σ
∂γµν,ρ

)

=
∂2gαβ

∂γµν∂γλω
∂σγλω +

∂2gαβ
∂γµν∂Φλω

∂σΦλω . (A.10)

On the other hand, differentiating (A.8) with respect to

γµν we have

∂gαβ,σ
∂γµν

=
∂2gαβ

∂γµν∂γλω
∂σγλω +

∂2gαβ
∂γµν∂Φλω

∂σΦλω . (A.11)

Comparing (A.10) and (A.11) we find

∂gαβ,σ
∂γµν

− ∂ρ

(

∂gαβ,σ
∂γµν,ρ

)

= 0 . (A.12)

Taking this relation into account, we obtain in (A.6)

δL

δγµν
=

δ⋆L

δγµν
+

∂L

∂gαβ
· ∂gαβ
∂γµν

− ∂σ

(

∂L

∂gαβ,τ

)

· ∂gαβ,τ
∂γµν,σ

. (A.13)

Substituting (A.9) into (A.13) we find

δL

δγµν
=

δ⋆L

δγµν
+

[

∂L

∂gαβ
− ∂σ

(

∂L

∂gαβ,σ

)]

∂gαβ
∂γµν

, (A.14)

i.e.,
δL

δγµν
=

δ⋆L

δγµν
+

δL

δgαβ
· ∂gαβ
∂γµν

. (A.15)
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The following is calculated in a similar manner:

δL

δgαβ
=

δL

δg̃λρ
· ∂g̃

λρ

∂gαβ
. (A.16)

Making use of (A.16), one can write expression (A.15) as fol-

lows:
δL

δγµν
=

δ⋆L

δγµν
+

δL

δg̃λρ
· ∂g̃

λρ

∂γµν
. (A.17)



Appendix B

The density of the Lagrangian of the gravitational field proper

has the form

Lg = Lg0 + Lgm , (B.1)

Lg0 = − 1

16π
g̃αβ

(

Gτ
λαG

λ
τβ −Gτ

αβG
λ
τλ

)

, (B.2)

Lgm = − m2

16π

(

1

2
γαβ g̃

αβ −√−g −√−γ
)

. (B.3)

The third-rank tensor Gτ
αβ is

Gτ
αβ =

1

2
gτλ(Dαgβλ +Dβgαλ −Dλgαβ) , (B.4)

it is expressed via the Christoffel symbols of Riemannian space

and of Minkowski space:

Gτ
αβ = Γταβ − γταβ . (B.5)

Let us calculate the variational derivative of Lg with re-

spect to the explicitly present metric of Minkowski space, γµν :

δ⋆Lg0
δγµν

=
∂Lg0
∂γµν

− ∂σ

(

∂Lg0
∂γµν,σ

)

. (B.6)

For this purpose we perform certain preparatory calculations:

∂Gλ
αβ

∂γµν
= −

∂γλαβ
∂γµν

=
1

2
(γλµγναβ + γλνγµαβ) ,

(B.7)
∂Gλ

αλ

∂γµν
= −∂γ

λ
αλ

∂γµν
=

1

2
(γλµγνλα + γλνγµαλ) ,

∂Gλ
αβ

∂γµν,σ
= − ∂γλαβ

∂γµν,σ
= −1

4

[

γλµ(δναδ
σ
β + δσαδ

ν
β)+

+γλν(δµαδ
σ
β + δσαδ

µ
β) − γλσ(δµαδ

ν
β + δναδ

µ
β)
]

, (B.8)

∂Gλ
αλ

∂γµν,σ
= − ∂γλαλ

∂γµν,σ
= −1

2
γµνδσα .
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Differentiating (B.2) we obtain

∂Lg0
∂γµν

= − 1

16π
g̃αβ

[

∂Gτ
αλ

∂γµν
Gλ
τβ +Gτ

λα

∂Gλ
τβ

∂γµν
−

−∂G
τ
αβ

∂γµν
Gλ
τλ −Gτ

αβ

∂Gλ
τλ

∂γµν

]

.

Substituting into this expression formulae (B.7) we find

∂Lg0
∂γµν

= − 1

16π
g̃αβ

{

Gτ
λαγ

λµγντβ +Gτ
λαγ

λνγµτβ −
1

2
Gλ
τλγ

τµγναβ −

−1

2
Gλ
τλγ

τνγµαβ−
1

2
Gτ
αβγ

λµγντλ−
1

2
Gτ
αβγ

λνγµτλ

}

=
1

32π
Bµν . (B.9)

With the aid of the derivatives (B.8) we obtain

∂Lg0
∂γµν,σ

=
1

32π
Aσµν , (B.10)

where

Aσµν = γτµ(Gσ
τβ g̃

νβ +Gν
τβ g̃

σβ −Gλ
τλg̃

σν)−

−γµνGσ
αβ g̃

αβ + γτν(Gσ
τβ g̃

µβ +Gµ
τβ g̃

σβ −Gλ
τλg̃

σµ)+

+γτσ(Gλ
τλg̃

µν −Gµ
τβ g̃

νβ −Gν
τβ g̃

µβ). (B.10′)

The density of the tensor Aσµν is symmetric in indices µ

and ν. The ordinary derivative of this density can be repre-

sented in the form

∂σA
σµν = DσA

σµν − γµσρA
σρν − γνσρA

σµρ.

Substituting into (B.6) expressions (B.9) and (B.10) we find

δ⋆Lg0
δγµν

=
1

32π
Bµν − 1

32π
DσA

σµν +

+
1

32π
γµσρA

σρν +
1

32π
γνσρA

σµρ. (B.11)
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Now, we write the density of the tensor Aσρν in the form

Aσρν = (Gσ
τβγ

τρg̃νβ −Gρ
τβγ

τσg̃νβ) + (Gν
τβγ

τρg̃σβ−Gν
τβγ

τσg̃ρβ)−
−(Gλ

τλγ
τρg̃σν −Gλ

τλγ
τσg̃ρν) +Gσ

τβγ
τν g̃ρβ +Gρ

τβγ
τν g̃σβ −

−Gλ
τλγ

τν g̃σρ −Gσ
αβγ

ρν g̃αβ,

in the brackets, terms antisymmetric in indices σ and ρ have

been formed. Writing in such a way facilitates finding the

expression for the quantity γµσρA
σρν , since the terms antisym-

metric in indices σ and ρ vanish automatically, here.

γµσρA
σρν = 2Gσ

τβγ
µ
σργ

τν g̃ρβ −
−Gλ

τλγ
µ
σργ

τν g̃σρ −Gσ
αβγ

µ
σργ

νρg̃αβ. (B.12)

Representing in a similar manner Aσµρ as

Aσµρ = (Gσ
τβγ

τρg̃µβ−Gρ
τβγ

τσg̃µβ) + (Gµ
τβγ

τρg̃σβ−Gµ
τβγ

τσg̃ρβ) +

+(Gλ
τλγ

τσg̃µρ −Gλ
τλγ

τρg̃σµ) +Gσ
τβγ

τµg̃ρβ +Gρ
τβγ

τµg̃σβ −
−Gλ

τλγ
τµg̃σρ −Gσ

αβγ
µρg̃αβ,

where again in the brackets terms antisymmetric in the indices

σ and ρ are formed, we obtain

γνσρA
σµρ = 2Gσ

τβγ
ν
σργ

τµg̃ρβ −
−Gλ

τλγ
ν
σργ

τµg̃σρ −Gσ
αβγ

ν
σργ

µρg̃αβ. (B.13)

Summing (B.12) and (B.13) one readily verifies the following

equality:

γµσρA
σρν + γνσρA

σµρ = −Bµν . (B.14)

Taking this equality into account we write expression (B.11)

in the form
δLg0
δγµν

= − 1

32π
DσA

σµν . (B.15)
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Taking into account the equalities

Gλ
τλ =

1

2
gλρDτgλρ, Dτ

√−g =
√−gGλ

τλ ,

we find

Gσ
τβ g̃

νβ +Gν
τβ g̃

σβ −Gλ
τλg̃

σν = −Dτ g̃
νσ,

Gσ
τβ g̃

µβ +Gµ
τβ g̃

σβ −Gλ
τλg̃

σµ = −Dτ g̃
µσ (B.16)

Gν
τβ g̃

µβ +Gµ
τβ g̃

νβ −Gλ
τλg̃

µν = −Dτ g̃
µν .

Substituting these expressions into (B.10′) we obtain

Aσµν = γτσDτ g̃
µν + γµνDτ g̃

τσ − γτµDτ g̃
νσ − γτνDτ g̃

µσ.

Substituting this expression into (B.15) we find

δ⋆Lg0
δγµν

=
1

32π
Jµν , (B.17)

where Jµν = −DσDτ (γ
τσg̃µν + γµν g̃τσ − γτµg̃νσ − γτν g̃µσ) .

On the basis of (B.3) we have

δ⋆Lgm
δγµν

= −m2

32π
(g̃µν − γ̃µν) = −m2

32π
Φ̃µν . (B.18)

Thus, taking into account (B.1) and applying (B.17) and

(B.18) we find

δ⋆Lg
δγµν

=
1

32π
(Jµν −m2Φ̃µν) , (B.19)

and, consequently,

−2
δ⋆Lg
δγµν

=
1

16π
(−Jµν +m2Φ̃µν) . (B.20)
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Appendix B∗

In this Appendix we shall make use of expressions (B.2) and

(B.3) for the density of the Lagrangian Lg0 and Lgm in order

to establish the following equalities:

δLg0
δg̃αβ

= − 1

16π
Rαβ ,

δLgm
δg̃αβ

=
m2

32π
(gαβ − γαβ), (B∗.1)

here, by definition, the tensors δLg0

δg̃αβ ,
δLgm

δg̃αβ are equal to

δLg0
δg̃αβ

=
∂Lg0
∂g̃αβ

− ∂σ
∂Lg0

∂g̃αβ,σ
,
δLgm
δg̃αβ

=
∂Lgm
∂g̃αβ

− ∂σ
∂Lgm

∂g̃αβ,σ
. (B∗.2)

The tensor relations (B∗.1) are most readily established in a

local Riemann reference system, where the derivatives of the

components of the metric tensor gµν with respect to the co-

ordinates are zero and, consequently, the Christoffel symbols

Γλµν are also zero.

On the basis of the formula

∂Γτλα
∂gµν

= −1

2
(gµτΓναλ + gντΓµαλ) . (B∗.3)

it is easy to establish that in the indicated reference system

the following equality holds valid:

∂Lg0
∂gµν

=

√−g
16π

(

gαµgβν − 1

2
gµνgαβ

)

) ×

×
(

γτλαγ
λ
τβ − γταβγ

λ
τλ

)

. (B∗.4)

Here, γλτβ are the Christoffel symbols of Minkowski space.

Making use of expression

∂Γταλ
∂gµν,σ

=
1

4
{gτµ(δναδσλ + δνλδ

σ
α) + gτν(δµαδ

σ
λ+

+δµλδ
σ
α) − gτσ(δµαδ

ν
λ + δµλδ

ν
α)} , (B∗.5)
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we obtain

− ∂Lg0
∂gµν,σ

=

√−g
16π

[

(gαµgβν − 1

2
gµνgαβ)(Γσαβ − γσαβ)−

(B∗.6)

− (gαµgσν − 1

2
gµνgασ)(Γλαλ − γλαλ)

]

.

Hence in a local Riemann reference system we find

− ∂σ
∂Lg0
∂gµν,σ

=

√−g
16π

(

gαµgβν − 1

2
gµνgαβ

)

·
(B∗.7)

×
[

(∂σΓ
σ
αβ − ∂βΓ

λ
αλ) − (∂σγ

σ
αβ − ∂βγ

λ
αλ)
]

.

On the basis of (B∗.4) and (B∗.7) the tensor (B∗.2) in the local

Riemann reference system is

δLg0
δgµν

=
∂Lg0
∂gµν

− ∂σ
∂Lg0
∂gµν,σ

=

√−g
16π

(

gαµgβν−
(B∗.8)

−1

2
gµνgαβ

)

(∂σΓ
σ
αβ − ∂βΓ

λ
αλ − Rαβ(γ)).

In a local Riemann reference system the second-rank cur-

vature tensor of Riemann space, Rαβ(g), has the form

Rαβ(g) = ∂σΓ
σ
αβ − ∂βΓ

λ
αλ. (B∗.9)

In expression (B∗.8), the second-rank tensor Rαβ(γ) is

Rαβ(γ) = ∂σγ
σ
αβ − ∂βγ

λ
αλ + γταβγ

λ
τλ − γτλαγ

λ
τβ.

In Minkowski space with the metric γµν and Christoffel sym-

bols γσµν the tensor Rαβ(γ) equals zero. Taking into account

(B∗.9) and, also, that the tensor Rαβ(γ) equals zero, the tensor

relation (B∗.8) assumes the form

∂Lg0
∂gµν

=

√−g
16π

(

Rµν − 1

2
gµνR

)

. (B∗.10)
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This equality has been established in a local Riemann reference

system, but by virtue of its tensor character it holds valid in

any reference system.

Applying relation

dg = −ggαβdgαβ, (B∗.11)

we find
∂g

∂g̃αβ
= gg̃αβ. (B∗.12)

On the basis of equality

g̃µσgσν = δµν
√
−g (B∗.13)

it is easy to obtain the following relation:

∂gλν
∂g̃αβ

=
1√−g

{

−1

2
(gλαgνβ + gλβgνα) +

1

2
gαβgνλ

}

. (B∗.14)

Since on the basis of Appendix A the following equality is

valid:
δLg0
δg̃αβ

=
δLg0
δgλν

· ∂gλν
∂g̃αβ

, (B∗.15)

then, upon applying expressions (B∗.10) and (B∗.14) we find

δLg0
δg̃αβ

= − 1

16π
Rαβ. (B∗.16)

In a similar manner we have

δLgm
δg̃αβ

=
∂Lgm
∂g̃αβ

=
m2

32π
(gαβ − γαβ). (B∗.17)

Adding up expressions (B∗.16) and (B∗.17) we obtain

δLg
δg̃αβ

= − 1

16π
Rαβ +

m2

32π
(gαβ − γαβ). (B∗.18)
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It is also easy to obtain the following relation:

δLM
δg̃αβ

=
δLM
δgλν

· ∂gλν
∂g̃αβ

= −1

2
T λν

∂gλν
∂g̃αβ

=

=
1

2
√−g (Tαβ −

1

2
gαβT ). (B∗.19)

Here T λν = −2 δLM

δgλν
is the density of the energy-momentum

tensor of matter in effective Riemannian space. At last we

present the following relations:

Dν

√−g = ∂ν

(
√

g

γ

)

=
√−gGλ

νλ,
(B∗.20)

∂ν
√−g =

√−gΓλνλ, ∂ν
√−γ =

√−γγλνλ,

that are applied in obtaining equality (5.15).



Appendix C

For any given density of the Lagrangian L, in the case of an

infinitesimal change in the coordinates, the variation of the

action

S =
∫

Ld4x

will be zero. We shall calculate the variation of the action of

the density of the Lagrangian LM

SM =
∫

LM(g̃µν ,ΦA)d4x

of matter and establish a strong identity. In the case of the

following transformation of the coordinates:

x′µ = xµ + ξµ(x) , (C.1)

where ξµ(x) is an infinitesimal displacement four-vector, the

variation of the action under transformation of the coordinates

equals

δcSM =
∫

d4x

(

δLM
δg̃µν

δLg̃
µν +

δLM
δΦA

δLΦA + div

)

= 0. (C.2)

In this expression div stands for the divergence terms, which

are not essential for our purposes.

The Euler variation is defined as usual:

δL

δΦ
≡ ∂L

∂Φ
− ∂µ

∂L

∂(∂µΦ)
+ ∂µ∂ν

∂L

∂(∂µ∂νΦ)
.

The Lie variations δLg̃
µν , δLΦA are readily calculated under

changes of the coordinates, if the transformation law of the

quantities gµν ,ΦA is applied:

δLg̃
µν = g̃λµDλξ

ν + g̃λνDλξ
µ −Dλ(ξ

λg̃µν),

δLΦA = −ξλDλΦA + FB;λ
A;σ ΦBDλξ

σ,

(C.3)
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Dλ are covariant derivatives in Minkowski space. Substituting

these expressions into (C.2) and integrating by parts we obtain

δSM =
∫

d4x

{

−ξλ
[

Dα

(

2
δLM
δg̃λν

g̃αν
)

−Dλ

(

δLM
δg̃αβ

)

g̃αβ+

+ Dσ

(

δLM
δΦA

FB;σ
A;λ ΦB

)

+
δLM
δΦA

DλΦA

]

+ div

}

= 0 . (C.4)

Owing to the arbitrariness of vector ξλ, we derive from this

equality a strong identity, which is valid independently of

whether the equations of motion for the fields are satisfied

or not. It has the form

Dα

(

2
δLM
δg̃λν

g̃αν
)

−Dλ

(

δLM
δg̃αβ

)

g̃αβ =

= −Dσ

(

δLM
δΦA

FB;σ
A;λ ΦB

)

− δLM
δΦA

DλΦA. (C.5)

We now introduce the notation

Tµν = 2
δLM
δgµν

, T µν = −2
δLM
δgµν

= gµαgνβTαβ,

T = T µνgµν , T̃µν = 2
δLM
δg̃µν

, (C.6)

T̃ µν = −2
δLM
δg̃µν

= g̃µαg̃νβT̃αβ , T̃ = T̃ αβ g̃αβ.

Taking into account this notation, one can write the left-hand

side of identity (C.5) as

Dα(T̃λν g̃
αν) − 1

2
g̃αβDλT̃αβ = ∂α(T̃λν g̃

αν) − 1

2
g̃αβ∂λT̃αβ .

The right-hand side of this equation is readily reduced to the

form

∂α(T̃λν g̃
αν) − 1

2
g̃αβ∂λT̃αβ = g̃λν∇α

(

T̃ αν − 1

2
g̃ανT̃

)

, (C.7)
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where ∇α is the covariant derivative in Riemannian space.

We shall now represent the expression under the sign of the

covariant derivative ∇α in terms of the density of the tensor

T αν . To this end we take advantage of formula (A.16):

δLM
δgµν

=
δLM
δg̃αβ

· ∂g̃
αβ

∂gµν
, (C.8)

where
∂g̃αβ

∂gµν
=

√
−g∂g

αβ

∂gµν
− 1

2
√−g · ∂g

∂gµν
gαβ. (C.9)

Using the relations

gαβgβσ = δασ ,

we find
∂gαβ

∂gµν
= −1

2
(gαµgνβ + gανgµβ) . (C.10)

Applying the rule for differentiating determinants we find

dg = ggµνdgµν , (C.11)

from which we find
∂g

∂gµν
= ggµν. (C.12)

Substituting expressions (C.10) and (C.12) into (C.9) we ob-

tain

∂g̃αβ

∂gµν
= −1

2

√−g[gαµgβν + gανgβµ − gµνgαβ] . (C.13)

Using this relation in (C.8) we find

δLM
δgµν

=
√
−g

(

δLM
δg̃αβ

gαµgβν − 1

2

δLM
δg̃αβ

gαβgµν
)

. (C.14)

With account of notation (C.6) this expression can be written

in the form √−gT µν = T̃ µν − 1

2
g̃µνT̃ . (C.15)
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On the basis of equality (C.15), the strong identity (C.5)

assumes, with account of (C.7), the following form

gλν∇αT
αν = −Dσ

(

δLM
δΦA

FB;σ
A;λ ΦB

)

− δLM
δΦA

DλΦA, or

(C.16)

∇αT
α
λ = −Dσ

(

δLM
δΦA

FB;σ
A;λ ΦB

)

− δLM
δΦA

DλΦA.



Appendix D

A second-rank curvature tensor Rµν can be written in the form

Rµν =
1

2
[g̃αβ(g̃µκg̃νρ −

1

2
g̃µν g̃κρ)DαDβ g̃

κρ −

−g̃νρDκDµg̃
κρ − g̃µκDνDρg̃

κρ] +
1

2
g̃νωg̃ρτDµg̃

κρDκg̃
ωτ +

+
1

2
g̃µω g̃ρτDν g̃

κρDκg̃
ωτ − 1

2
g̃µω g̃νρDτ g̃

ωκDκg̃
ρτ −

−1

4
(g̃ωρg̃κτ −

1

2
g̃ωτ g̃κρ)Dµg̃

κρDν g̃
ωτ −

−1

2
g̃αβg̃ρτ (g̃µκg̃νω −

1

2
g̃µν g̃κω)Dαg̃

κρDβ g̃
ωτ . (D.1)

Raising the indices by multiplying by gǫµgλν and taking into

account the equation

Dµg̃
µν = 0 , (D.2)

we obtain

−gRǫλ =
1

2
g̃αβDαDβ g̃

ǫλ − 1

4
g̃ǫλg̃κρg̃

αβDαDβ g̃
κρ +

+
1

2
g̃ρτ g̃

ǫµDµg̃
κρDκg̃

λτ +

+
1

2
g̃ρτ g̃

λνDν g̃
κρDκg̃

ǫτ − 1

2
Dτ g̃

ǫκDκg̃
λτ −

−1

4
(g̃ωρg̃κτ −

1

2
g̃ωτ g̃κρ)g̃

ǫµg̃λνDµg̃
κρDν g̃

ωτ −

−1

2
g̃ρτ g̃

αβDαg̃
ǫρDβ g̃

λτ+
1

4
g̃ρτ g̃

ǫλg̃κωg̃
αβDαg̃

κρDβ g̃
ωτ. (D.3)

Hence, we find

−gR =
1

2
gǫλg̃

αβDαDβ g̃
ǫλ − gκρg̃

αβDαDβ g̃
κρ +

1

2
gρτDµg̃

κρDκg̃
µτ−

−1

4
(g̃ωρg̃κτ −

1

2
g̃ωτ g̃κρ)

√−gg̃µνDµg̃
κρDν g̃

ωτ −

−1

2
g̃ρτ g̃

αβgǫλDαg̃
ǫρDβ g̃

λτ + g̃ρτgκωg̃
αβDαg̃

κρDβ g̃
ωτ . (D.4)
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With the aid of expressions (D.3) and (D.4) we find

−g(
(

Rǫλ − 1

2
gǫλR

)

=

= −1

2

{

1

2

(

g̃νσg̃τκ
1

2
g̃νκg̃τσ

)

g̃ǫαg̃λβDαg̃
στDβ g̃

νκ−

−1

4
g̃ǫλg̃αβ

(

g̃νσg̃τκ −
1

2
g̃νκg̃τσ

)

Dαg̃
τσDβ g̃

νκ +

+g̃αβg̃στDαg̃
ǫτDβ g̃

λσ − g̃ǫβg̃τσDαg̃
λσDβ g̃

ατ −

−g̃λαg̃τσDαg̃
βσDβ g̃

ǫτ +
1

2
g̃ǫλg̃τσDαg̃

βσDβ g̃
ατ +

+Dαg̃
ǫβDβ g̃

λα − g̃αβDαDβ g̃
ǫλ

}

. (D.5)

It must be especially stressed that in finding expression (D.5)

we made use of equation (D.2). By substituting expression

(D.5) into equation (5.19) and writing the thus obtained equa-

tion in the form (8.1) we find the expression for the quantity

−16πgτ ǫλg :

−16πgτ ǫλg =
1

2
(g̃ǫαg̃λβ − 1

2
g̃ǫλg̃αβ)(g̃νσg̃τµ −

1

2
g̃τσg̃νµ) ×

×DαΦ̃
τσDβΦ̃

µν + +g̃αβg̃τσDαΦ̃
ǫτDβΦ̃

λσ − g̃ǫβg̃τσDαΦ̃
λσDβΦ̃

ατ −

−g̃λαg̃τσDαΦ̃
βσDβΦ̃

ǫτ+
1

2
g̃ǫλg̃τσDαΦ̃

σβDβΦ̃
ατ+DαΦ̃

ǫβDβΦ̃
λα−

−Φ̃αβDαDβΦ̃
ǫλ −−m2

(

(
√−gg̃ǫλ −√−γΦ̃ǫλ + g̃ǫαg̃λβγαβ−

−1

2
g̃ǫλg̃αβγαβ)

)

. (D.6)



Appendix E

Let us write the RTG equation (5.20)

Dσg̃
σν(y) = ∂σ g̃

σν(y) + γναβ(y)g̃
αβ(y) = 0 (Σ)

in a somewhat different form. For this purpose, making use of

the definition of a Christoffel symbol,

Γναβ(y) =
1

2
gνσ(∂αgσβ + ∂βgσα − ∂σgαβ), (E.1)

we find

Γναβ g̃
αβ(y) =

√
−g

(

gνσgαβ∂αgσβ −
1

2
gνσgαβ∂σgαβ

)

. (E.2)

Taking into account the equalities

Γλσλ =
1

2
gαβ∂σgαβ =

1√−g∂σ
√

−g(y),

∂αg
αν = −gνσgαβ∂αgσβ (E.3)

we rewrite (E.2) as

Γναβ(y)g̃
αβ(y) = −√−g∂σgσν − gνσ∂σ

√−g = −∂g̃
σν

∂yσ
. (E.4)

With account of this equality the initial equation (Σ) assumes

the form

(Γναβ(y) − γναβ(y))g
αβ(y) = 0. (E.5)

If we pass from coordinates “y” to other curvilinear coor-

dinates “z”, then the Christoffel symbols assume the form

Γλµν(y) =
∂yλ

∂zσ
· ∂z

α

∂yµ
∂zβ

∂yν
Γσαβ(z) +

+
∂2zσ

∂yµ∂yν
· ∂y

λ

∂zσ
. (E.6)
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Applying this expression we find

Γλµν(y)g
µν(y) =

∂yλ

∂zσ

[

Γσαβ(z)g
αβ(z)+

+
∂2zσ

∂yµ∂yν
∂yµ

∂zα
· ∂y

ν

∂zβ
gαβ(z).

]

(E.7)

On the basis of (E.4) we write expression (E.7) in the form

Γλµν(y)g
µν(y) = − 1√−g

∂

∂zµ

(

g̃µσ
∂yλ

∂zσ

)

+

+gµσ
∂2yλ

∂zµ∂zσ
+
∂yλ

∂zσ
· ∂2zσ

∂yµ∂yν
∂yµ

∂zα
∂yν

∂zβ
gαβ(z). (E.8)

Upon differentiating equality

∂zσ

∂yµ
· ∂y

µ

∂zα
= δσα (E.9)

with respect to the variable zβ we obtain

∂2zσ

∂yµ∂yν
∂yµ

∂zα
· ∂y

ν

∂zβ
= −∂z

σ

∂yµ
· ∂2yµ

∂zα∂zβ
. (E.10)

Taking into account this equality, in the third term of (E.8)

we find

Γλµν(y)g
µν(y) = − 1

√

−g(z)
∂

∂zν

(

g̃νσ
∂yλ

∂zσ

)

. (E.11)

Substituting this expression into (E.5) we obtain

yλ = −γλαβ(y)gαβ(y), (E.12)

where denotes the operator

=
1

√

−g(z)
∂

∂zν

(

g̃νσ
∂

∂zσ

)

. (E.13)



14. Elements of tensor analysis and

of Riemannian geometry

Consider a certain coordinate system xα, i = 1, ...n to be de-

fined in n-dimensional space. Instead of this coordinate system

one may also choose another one defined by expression

x′α = f(xα), α = 1, ...n. (14.1)

These functions must be continuous and have continuous par-

tial derivatives of order N . If the transformation Jacobian at

each point,

J = det

∣

∣

∣

∣

∣

∂fα

∂xβ

∣

∣

∣

∣

∣

, (14.2)

differs from zero, then in this condition the variables x′α will

be independent, and, consequently, the initial variables xα can

be unambiguously expressed in terms of the new ones, x′α:

xα = ϕ(x′α). (14.3)

Physical quantities must not depend on the choice of coor-

dinate system, and therefore they must be expressed in terms

of geometrical objects. The simplest geometrical object is a

scalar, that transforms in transition to the new coordinates as

follows:

Φ′(x′) = Φ(x(x′)). (14.4)

The gradient of a scalar function Φ(x) transforms in accor-

dance with the rule for the differentiation of composite func-

tions,
∂Φ′(x′)

∂x′α
=

∂Φ

∂xβ
· ∂x

β

∂x′α
. (14.5)
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Here, summation is performed over identical indices β. The set

of functions transforming under coordinate transformations by

the rule (14.5) is termed the covariant vector

A′
α(x

′) = Aβ(x)
∂xβ

∂x′α
. (14.6)

Correspondingly the quantity Bµν is a covariant second-rank

tensor, that transforms by the rule

B′
µν(x

′) = Bαβ(x)
∂xα

∂x′µ
· ∂x

β

∂x′ν
(14.7)

and so on.

We shall now pass to another group of geometric objects.

Consider transformation of the differential of coordinates

dx′µ =
∂x′µ

∂xα
dxα. (14.8)

A set of functions transforming under coordinate transforma-

tions by the rule (14.8) has been termed a contravariant vector,

A′µ(x′) =
∂x′µ

∂xα
Aα(x), (14.9)

correspondingly, the quantity Bµν a contravariant second-rank

tensor transforming by the rule

B′µν(x′) =
∂x′µ

∂xα
∂x′ν

∂xβ
Bαβ(x) (14.10)

and so on. Expressions (14.6), (14.7), (14.9) and (14.10) per-

mit to write the transformation law of tensors of any form.

For example,

B′µ
ν (x′) =

∂x′µ

∂xα
· ∂x

β

∂x′ν
Bα
β (x) (14.11)
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From the transformational properties of a tensor it follows

that, if all its components are equal to zero in one coordinate

system, then they equal zero in another coordinate system,

also. It is readily verified that the transformations of covariant

and contravariant quantities exhibit the group property. For

example:

A′µ =
∂x′µ

∂xα
Aα(x), A′′ν(x′′) =

∂x′′ν

∂x′µ
A′µ(x′),

A′′ν(x′′) =
∂x′′ν

∂x′µ
· ∂x

′µ

∂xα
Aα(x) =

∂x′′ν

∂xα
Aα(x).

(14.12)

Now, let us pass to tensor algebra. Here, four operations are

possible: addition, multiplication, convolution, and permuta-

tion of indices.

Addition and subtraction of tensors

If we have tensors of identical structure, i.e. that have the

same number of contravariant indices and the same number of

covariant indices, for example,

Aαβµνσ, Bαβ
µνσ,

then it is possible to form the tensor

Cαβ
µνσ = Aαβµνσ +Bαβ

µνσ. (14.13)

Multiplication of tensors

Tensors can be multiplied independently of their structure.

For example,

Cαβλ
µνσρ = Aαβµνσ · Bλ

ρ . (14.14)

Here, both the order of multipliers and the order of indices

must be observed.
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The convolution operation of tensors

With the aid of the Kronecker symbol

δµν =

{

0 at µ 6= ν
1 at µ = ν,

(14.15)

which is a tensor, it is possible to perform the convolution

operation of indices, for example,

Aαβµν · δνσ = Aαβµσ . (14.16)

Here, on the left, summation is performed over identical in-

dices.

The permutation operation of indices

By permutation of indices of the tensor we obtain another ten-

sor, if the initial tensor was not symmetric over these indices,

for example,

Bµν
λσ = Aµνσλ. (14.17)

With the aid of this operation, as well as addition, it is possible

to construct a tensor that is symmetric over several indices.

For example,

A(µν) =
1

2
(Aµν + Aνµ). (14.18)

It is also possible to construct a tensor, that is antisymmetric

over several indices. For example,

A[µν] =
1

2
(Aµν −Aνµ). (14.19)

Such an operation is called antisymmetrization.

Riemannian geometry

A Riemannian space Vn is a real differentiable manifold, at

each point of which there is given the field of a tensor

gµν(x) = gµν(x
1, . . . , xn) (14.20)
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twice covariant, symmetric and nondegenerate

gµν = gνµ, g = det |gµν | 6= 0. (14.21)

The tensor gµν is called a metric tensor of Riemannian space.

The functions gµν are continuous and differentiable with re-

spect to all variables x1, . . . , xn up to the n-th order.

With the aid of the metric tensor in Riemannian space it

is possible to introduce an invariant differential form termed

an interval

(ds)2 = gµν(x)dx
µdxν . (14.22)

With the aid of coordinate transformations this form at any

fixed point can be reduced to a diagonal form. Here, in the

general case, the diagonal components of the matrix gµν will

not all be positive. But, by virtue of the law of inertia for

quadratic forms the difference between the amounts of pos-

itive and of negative diagonal components will be constant.

This difference is called the signature of a metric tensor. In an

arbitrary Riemannian space Vn the interval will exhibit alter-

nating signs. We shall further call it timelike, if ds2 > 0, space-

like, if ds2 < 0, isotropic, if ds2 = 0. These terms originated

within special relativity theory, where space and time form

a unique manifold, while the interval in Cartesian (Galilean)

coordinates has the form

dσ2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. (14.23)

In arbitrary coordinates it assumes the form

dσ2 = γµν(x)dx
µdxν . (14.24)

Since the determinant |gµν | 6= 0, we can construct a contravari-

ant metric tensor with the aid of equations

gµσg
σν = δνµ. (14.25)
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With the aid of tensors gµν and gλσ it is possible to raise and

to lower indices

Aν = gνσAσ, Aν = gνσA
σ. (14.26)

Geodesic lines in Riemannian space

Geodesic lines in Riemannian space play the same role as

straight lines in Euclidean space. They are called extremal

lines. For defining an extremal we shall take advantage of vari-

ational calculus. The essence of variational calculus consists

in generalization of the concepts of maximum and minimum.

The issue is not finding the extremum of a function, but find-

ing the extremum of a functional, i.e. finding such functions,

that make it an extremum. The distance between close points

in Riemannian space is determined by the interval ds. The

quantity ds is not a total differential. The interval between

points a and b is

S =

b
∫

a

ds =

b
∫

a

√

gµν(x)dxµdxν . (14.27)

The extremum is determined by the relation

δ

b
∫

a

ds =

b
∫

a

δ(ds) = 0. (14.28)

Thus, such functions gµν(x) are sought, that provide for the

functional (integral) achieving its extremum:

δ(ds2) = 2dsδ(ds) = δ(gµν(x)dx
µdxν) =

=
∂gµν
∂xσ

δxσdxµdxν + 2gµν(x)dx
µδ(dxν). (14.29)
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We note that

δ(dxν) = d(δxν). (14.30)

On the basis of (14.29) and (14.30) we have

δ(ds) =
1

2

∂gµν
∂xσ

Uµdxνδxσ+gµνU
µd(δxν), Uµ =

dxµ

ds
. (14.31)

Substituting (14.31) into (14.28) we obtain

δS =

b
∫

a

[

1

2

∂gµν
∂xσ

UµUνδxσ + gµνU
µ d(δx

ν)

ds

]

ds = 0. (14.32)

Since

gµνU
µd(δx

ν)

ds
=

d

ds
(gµνU

µδxν) − δxν
d

ds
(gµνU

µ), (14.33)

and at the integration limits δxν = 0, from (14.32) we obtain

δS =

b
∫

a

[

1

2

∂gµν
∂xσ

UµUν − gµσ
dUµ

ds
−

−∂gµσ
∂xλ

UµUλ ] dsδxσ = 0. (14.34)

We now represent the last term in (14.34) as

UµUλ∂gµσ
dxλ

=
1

2

(

∂gµσ
∂xλ

+
∂gλσ
∂xµ

)

UµUλ. (14.35)

Substituting (14.35) into (14.34) we find

δS =

b
∫

a

[

UµUλ 1

2

(

∂gµσ
∂xλ

+
∂gλσ
∂xµ

− ∂gµλ
∂xσ

)

+

+gµσ
dUµ

ds

]

dsδxσ = 0. (14.36)
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Since the variation δxσ is arbitrary, the integral (14.36) turns

to zero, only if

gµσ
dUµ

ds
+

1

2

(

∂gµσ
∂xλ

+
∂gλσ
∂xµ

− ∂gµλ
∂xσ

)

UµUλ = 0. (14.37)

Multiplying (14.37) by gσα we obtain

dUα

ds
+ ΓαµλU

µUλ = 0, (14.38)

where the Christoffel symbols Γαµν are

Γαµλ =
1

2
gασ(∂λgµσ + ∂µgλσ − ∂σgµλ). (14.39)

The Christoffel symbols are not tensor quantities. Pre-

cisely equations (14.38) are the equations for a geodesic line.

There are four of them, but not all are independent, since the

following condition takes place:

gµν(x)U
µUν = 1. (14.40)

By transformations of coordinates xµ it is possible to equate

the Christoffel symbols to zero along any not self-intersecting

chosen line [22].

Covariant differentiation

We now take an arbitrary covariant vector Aλ and form its

convolution with the vector Uλ, and thus obtain the scalar

AλU
λ, (14.41)

upon differentiating it with respect to ds we also have a scalar:

d

ds
(AλU

λ) =
dAλ
ds

Uλ + Aν
dUν

ds
=

=
∂Aλ
∂xσ

UσUλ + Aν
dUν

ds
. (14.42)
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Substituting into the right-hand side expression (14.38) we

obtain

d

ds
(AλU

λ) =

[

∂Aλ
∂xσ

− ΓνσλAν

]

UσUλ. (14.43)

Since (14.43) is a scalar, and Uσ is a vector, we hence have a

second-rank tensor

Aλ;σ =
DAλ
dxσ

=
∂Aλ
∂xσ

− ΓνσλAν . (14.44)

Here and further a semicolon denotes covariant differenti-

ation. Thus, we have defined the covariant derivative of the

covariant vector Aλ. We shall now define the covariant deriva-

tive of the contravariant vector Aλ.

To this end we write the same scalar in the form

d

ds
(AµUνgµν) =

∂Aµ

∂xσ
UσUνgµν +

+Aµgµλ
dUλ

ds
+ AµUνUσ∂σgµν . (14.45)

Substituting into the right-hand side expression (14.38) we

obtain

d

ds
(AµUνgµν) = UνUσ

[

gµν
∂Aµ

∂xσ
−

−AµgµλΓλσν + Aµ∂σgµν

]

. (14.46)

Taking into account expression (14.39) we have

d

ds
(AµUνgµν) =

[

gµν
∂Aµ

∂xσ
+

+
1

2
(∂σgµν + ∂µgσν − ∂νgσµ)A

µ

]

UνUσ. (14.47)
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Representing Uν in the form

Uν = Uλg
λν (14.48)

and substituting it into relation (14.47) we obtain

d

ds
(AµUνgµν) =

[

∂Aλ

∂xσ
+ ΓλσµA

µ

]

UσUλ. (14.49)

Since this expression is a scalar, hence it follows that the con-

travariant derivative is a tensor,

Aλ;σ =
DAλ

dxσ
=
∂Aλ

∂xσ
+ ΓλσµA

µ. (14.50)

Thus, we have defined the covariant derivative of the con-

travariant vector Aλ.

Applying formulae (14.44) and (14.50), it is also possible

to obtain covariant derivatives of a second-rank tensor:

Aµν;σ =
∂Aµν
∂xσ

− ΓλσµAλν − ΓλσνAλµ, (14.51)

Aµν;σ =
∂Aµν

∂xσ
+ ΓµσλA

νλ + ΓνσλA
µλ. (14.52)

Aνρ;σ =
∂Aνρ
∂xσ

− ΓλρσA
ν
λ + Γνσλ

Aλρ . (14.53)

Making use of expression (14.51) it is easy to show, that

gµν;σ ≡ 0,

i.e. the covariant derivative of a metric tensor is equal to zero.

The Riemann-Christoffel curvature tensor

In Riemannian space the operation of covariant differentiation

is noncommutative. Covariant differentiation of vector Aλ,
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first, with respect to the variable xµ and, then, with respect

to xν leads to the following expression:

Aλ;µν =
∂Aλ;µ

∂xν
− ΓτνλAτ ;µ − ΓτµνAλ;τ , (14.54)

but since

Aλ;µ =
∂Aλ
∂xµ

− ΓτλµAτ , Aτ ;µ =
∂Aτ
∂xµ

− ΓσµτAσ,
(14.55)

Aλ;τ =
∂Aλ
∂xτ

− ΓσλτAσ,

upon substitution of these expressions into (14.54) we have

Aλ;µν =
∂2Aλ
∂xµ∂xν

− Γτλµ
∂Aτ
∂xν

− Γτνλ
∂Aτ
∂xµ

−−Γτµν
∂Aλ
∂xτ

−

−Aτ
∂Γτλµ
∂xν

+ ΓτνλΓ
σ
µτAσ + ΓτµνΓ

σ
λτAσ. (14.56)

We shall now calculate the quantity Aλ;νµ:

Aλ;νµ =
∂Aλ;ν

∂xµ
− ΓτµλAτ ;ν − ΓτµνAλ;τ , (14.57)

with account of the expression

Aλ;ν =
∂Aλ
∂xν

− ΓτλνAτ , Aτ ;ν =
∂Aτ
∂xν

− ΓστνAσ,

(14.58)

Aλ;τ =
∂Aλ
∂xτ

− ΓσλτAσ,

relation (14.57) assumes the form

Aλ;νµ =
∂2Aλ
∂xµ∂xν

− Γτλν
∂Aτ
∂xµ

− Γτµλ
∂Aτ
∂xν

− Γτµν
∂Aλ
∂xτ

−

−Aτ
∂Γτλν
∂xµ

+ ΓτµλΓ
σ
ντAσ + ΓτµνΓ

σ
λτAσ. (14.59)
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On the basis of (14.56) and (14.59), only the following terms

are retained in the difference:

Aλ;µν − Aλ;νµ = Aσ

[

∂Γσλν
∂xµ

− ∂Γσλµ
∂xν

+

+ΓτνλΓ
σ
µτ − ΓτµλΓ

σ
ντ

]

. (14.60)

The quantity Rσ
λµν is termed the Riemann curvature tensor

Rσ
λµν =

∂Γσλν
∂xµ

− ∂Γσλµ
∂xν

+ ΓτνλΓ
σ
µτ − ΓτµλΓ

σ
ντ . (14.61)

From this tensor it is possible, by convolution, to obtain a

second-rank tensor, the Ricci tensor:

Rλν = Rσ
λσν =

∂Γσλν
∂xσ

− ∂Γσλσ
∂xν

+ ΓτνλΓ
σ
στ − ΓτσλΓ

σ
ντ . (14.62)

We note that for an interval of the form (14.23) or (14.24) the

curvature tensor equals zero.

From expression (14.61) it is obvious that the curvature

tensor is antisymmetric with respect to the two last indices

µ, ν:

Rσ
λµν = −Rσ

λνµ

It is possible to construct a curvature tensor with lower indices:

Rρλµν = gρσR
σ
λµν .

It possesses the following symmetry properties:

Rρλµν = −Rλρµν = −Rρλνµ, Rρλµν = Rµνρλ.

We see that the curvature tensor is antisymmetric both with

respect to the first pair of indices and with respect to the
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second. It is also symmetric with respect to permutation of

index pairs, without any change of their order.

In Riemannian space there exists a local coordinate sys-

tem, within which the first derivatives of the components of

the metric tensor gµν are equal to zero. Here, the Christoffel

symbols are, naturally, also equal to zero. Such coordinates

are called Riemann coordinates. They are convenient for find-

ing tensor identities, since if it has been established, that in

this coordinate system a certain tensor is zero, then, by virtue

of tensor transformations, it will also be zero in any coordinate

system.

The curvature tensor in a Riemann coordinate system is

Rσ
λµν = ∂µΓ

σ
λν − ∂νΓ

σ
λµ. (14.63)

The covariant derivative of the curvature tensor has the form

Rσ
λµν;ρ = ∂ρ∂µΓ

σ
λν − ∂ρ∂νΓ

σ
λµ. (14.64)

Cyclically transposing indices µ, ν, ρ and adding up the ob-

tained expressions we obtain the Bianchi identity

Rσ
λµν;ρ +Rσ

λρµ;ν +Rσ
λνρ;µ ≡ 0. (14.65)

Performing convolution of indices σ and ν we obtain

−Rλµ;ρ +Rσ
λρµ;σ +Rλρ;µ = 0. (14.66)

We multiply this expression by gλα:

−Rα
µ;ρ + (gλαRσ

λρµ);σ +Rα
ρ;µ = 0.

We have, here, taken into account the previously established

property of metric coefficients consisting in that they can, in
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case of covariant differentiation, be freely brought or taken out

from under the derivative sign.

Performing convolution of indices ρ and α we obtain

−Rρ
µ;ρ + (gλρRσ

λρµ);σ + ∂µR ≡ 0, (14.67)

where

R = Rρ
ρ = Rµνg

µν

is the scalar curvature.

Let us consider under the derivative sign the second term

in identity (14.67):

gλρRσ
λρµ = gλρgνσRνλρµ = gνσgλρRλνµρ = gνσRρ

νµρ = −Rσ
µ.

We have, here, applied the symmetry properties of the curva-

ture tensor and the definition of the tensor Rµν . Substituting

this expression into (14.67) we obtain

(Rρ
µ −

1

2
δρµR);ρ = ∇ρ(R

ρ
µ −

1

2
δρµR) ≡ 0. (14.68)

We now introduce the notation

Gρ
µ = Rρ

µ −
1

2
δρµR. (14.69)

On the basis of (14.53), identity (14.68) can be written in the

expanded form

∇νG
ν
ρ = Gν

ρ;ν =
∂Gν

ρ

∂xν
− ΓλρνG

ν
λ + ΓννλG

λ
ρ ≡ 0, (14.70)

taking into account that

Γννλ =
1

2
gµν

∂gµν
∂xλ

(14.71)
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and differentiating the determinant g,

∂g

∂xλ
= ggµν

∂gµν
∂xλ

, (14.72)

we find, by comparison of (14.71) and (14.72), the following:

Γννλ =
1

2
· 1

g

∂g

∂xλ
=

1√−g∂λ(
√−g). (14.73)

Substituting this expression into (14.70) we obtain

∇ν(
√−gGν

ρ) = ∂ν(
√−gGν

ρ) −
√−gΓλρνGν

λ ≡ 0. (14.74)

Making use of expression (14.39), we find for the Christoffel

symbol

∂ν(
√−gGν

ρ) +
1

2
· ∂g

λσ

∂xρ
√−gGλσ ≡ 0. (14.75)

Such an identity was first obtained by D. Hilbert. It was neces-

sary for constructing the equations of general relativity theory.

In conclusion we shall show that the quantity determining

volume

v′ =
∫

√

−g′dx0 ′dx1 ′dx2 ′dx3 ′ (14.76)

is an invariant under arbitrary transformations of coordinates.

Under coordinate transformations we have

g′µν(x
′) = gλσ(x)

∂xλ

∂x′µ
· ∂x

σ

∂x′ν
.

We write this expression in the form

g′µν(x
′) =

∂xλ

∂x′µ
· gλσ

∂xσ

∂x′ν
.

We shall, now, calculate the determinant g′ = det g′µν

g′ = det

(

gσλ
∂xλ

∂x′µ

)

det

(

∂xσ

∂x′ν

)

=

= det(gλσ) det

(

∂xλ

∂x′µ

)

det

(

∂xσ

∂x′ν

)

.

230



Hence, we have

g′ = gJ2. (14.77)

Here J is the transformation Jacobian,

J =
∂(x0.x1, x2, x3)

∂(x0′, x1′, x2′, x3′)
. (14.78)

Thus,
√

−g′ =
√−gJ. (14.79)

Substituting this expression into (14.76) we obtain

v′ =
∫ √

−g ∂(x0.x1, x2, x3)

∂(x0′, x1′, x2′, x3′)
dx0 ′dx1 ′dx2 ′dx3 ′ =

=
∫ √−gdx0dx1dx2dx3. (14.80)

But the right-hand side represents volume

v =
∫ √

−gdx0dx1dx2dx3. (14.81)

Thus, we have established the equality

v′ = v. (14.82)

Hence it follows, that the quantity

√−gd4x (14.83)

is also an invariant relative to arbitrary coordinate transfor-

mations.

Certain special features of Riemannian geometry should be

noted. In the general case, Riemannian space cannot be de-

scribed in a sole coordinate system. For its description an atlas

of maps is necessary. Precisely for this reason, the topology of
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Riemannian space differs essentially from the topology of Eu-

clidean space. In the general case, no group of motion exists

in Riemannian space. In pseudo-Euclidean space, described

by the interval (14.23) or (14.24), there exists a ten-parameter

group of space motions.

The main characteristic of Riemannian geometry — the

curvature tensor Rσ
λµν — is a form-invariant quantity relative

to coordinate transformations. The tensor Rλν is also a form-

invariant quantity. Here, form-invariance is not understood

as one and the same functional dependence of the curvature

tensor upon the choice of coordinate system, but identity in

constructing the curvature tensor for a given expression gµν(x),

similarly to how expression

Aν(x)

is written in the same way in Galilean coordinates in differing

inertial reference systems for a given expression Aν . There

exists an essential difference between invariance and form-

invariance. for example, the operator γµν(x)DµDν (where

γµν(x) is the metric tensor of Minkowski space) for arbitrary

coordinate transformations is an invariant, i.e. a scalar, but

it is not form-invariant. It will be form-invariant only in the

case of such coordinate transformations, under which the ten-

sor γµν(x) remains form-invariant, i.e.

δγµν(x) = 0.

The curvature tensor varies under gauge transformations

(3.16) according to the following rule:

δǫRµναβ = −RσναβDµǫ
σ −RµσαβDνǫ

σ−
−RµνσβDαǫ

σ −RµνασDβǫ
σ − ǫσDσRµναβ .
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This variation is due to arbitrary coordinate systems not being

physically equivalent.

Within the text of this book there are encountered, to-

gether with covariant derivatives in Riemannian space, ∇λ,

covariant derivatives in Minkowski space, Dλ. The difference

consists in that in constructing the covariant derivatives Dλ

it is necessary to substitute into formulae (14.50 - 14.53) the

Christoffel symbols of Minkowski space, γναβ, instead of the

Christoffel symbols of Riemannian space, Γναβ ,

In conclusion, we present the Weyl–Lorentz–Petrov theo-

rem [21]. Coincidence of the respective equations of isotropic

and timelike geodesic lines for two Riemannian spaces with

the metrics gµν(x) and g′µν(x) and with the same signature –2

leads to their metric tensors only differing by a constant fac-

tor. From this theorem it follows that, if in one and the same

coordinate system x we have different metric tensors gµν(x)

and g′µν(x), then, in identical conditions, different geodesic

lines, and, consequently, different physics, will correspond to

them. Precisely for this reason, the situation, that arises in

GRT with the appearance of a multiplicity of metrics within

one coordinate system, leads to ambiguity in the description

of gravitational effects.



ADDENDUM

On the gravitational force

The expression for the gravitational force is presented at page

66. We shall now derive this expression from the equation of a

geodesic in effective Riemannian space. The equation for the

geodesic line has the form

dpν

ds
+ Γναβp

αpβ = 0, pν =
dxν

ds
, ds2 = gµνdx

µdxν > 0. (1)

In accordance with the definition of a covariant derivative in

Minkowski space we have

Dpν

ds
=
dpν

ds
+ γναβp

αpβ. (2)

Applying (1) and (2) we obtain

Dpν

ds
= −Gν

αβp
αpβ. (3)

Here

Gν
αβ = Γναβ − γναβ (4)

We shall write the left-hand side of relation (3) as

Dpν

ds
=

(

dσ

ds

)2






DV ν

dσ
+ V ν

d2σ
ds2

(

dσ
ds

)2





 , V ν =
dxν

dσ
. (5)

Here V ν is the timelike velocity four-vector in Minkowski space,

that satisfies the condition

γµνV
µV ν = 1, dσ2 > 0. (6)

Substituting (5) into (3) we obtain

DV ν

dσ
= −Gν

αβV
αV β − V ν

d2σ
ds2

(

dσ
ds

)2 (7)
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From (6) we have

(

dσ

ds

)2

= γαβp
αpβ. (8)

Differentiating this expression with respect to ds we obtain

d2σ
ds2

(

dσ
ds

)2 = −γλµGµ
αβV

λV αV β. (9)

Substituting this expression into (7) we find [4]

DV ν

dσ
= −Gµ

αβV
αV β(δνµ − V νVµ). (10)

Hence it is evident that the motion of a test body in Minkowski

space is due to the action of the force four-vector F ν :

F ν = −Gµ
αβV

αV β(δνµ − V νVµ), Vµ = γµσV
σ. (11)

One can readily verify that

F νVν = 0. (12)

By definition, the left-hand side of equation (10) is

DV ν

dσ
=
dV ν

dσ
+ γναβV

αV β . (13)

It must be especially noted that the motion of a test body

along a geodesic of effective Riemannian space can be rep-

resented as motion in Minkowski space due to the action of

the force F ν , only if the causality principle is satisfied. The

force of gravity and the Riemann curvature tensor, arising

from the gravitational equations (5.19) and (5.20), are cor-

related. Thus, if the curvature tensor is zero, then, by virtue

of equations (5.19) and (5.20), the gravitational force will also
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be equal to zero. When the curvature tensor differs from zero

and Rµν 6= 0, the force of gravity will also not be zero. And,

on the contrary, if the force of gravity F ν , arising from equa-

tions (5.19) and (5.20), differs from zero, then the Riemann

curvature is also not zero. Equating the gravitational force F ν

to zero results in the Riemann curvature tensor being equal to

zero.

Is the metric field of a non-inertial

reference system a special case of the

physical gravitational field?

From the causality conditions (6.10) and (6.11) it follows that,

if the vector Lν satisfies the condition

γµνL
µLν < 0, (1)

then the inequality

gµνL
µLν < 0. (2)

should also be fulfilled. We now form the convolution of equa-

tion (10.1) with the aid of the vector Lν defined by inequality

(1),

m2γµνL
µLν = 16π

(

Tµν −
1

2
gµνT

)

−

−2RµνL
µLν +m2gµνL

µLν . (3)

Since we are only considering metric fields of Minkowski space,

equation (3) is simplified:

m2γµνL
µLν = 16π

(

Tµν −
1

2
gµνT

)

+m2gµνL
µLν . (4)

In the case of an ideal fluid, the energy-momentum tensor of

matter has the form
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Tµν = (ρ+ p)UµUν − pgµν ,

(5)

T = Tµνg
µν = ρ− 3p, Uν =

dxµ

ds
.

Substituting (5) into (4) we obtain

m2γµνL
µLν = 16π(ρ+ p)(UµL

µ)2−

−8πgµνL
µLν

(

ρ− p− m2

8π

)

. (6)

From conditions (1) and (2) it follows that the right-hand side

of equation (6) is strictly positive, since

ρ > p+
m2

8π
, (7)

while the left-hand side of equation (6) is strictly negative.

Hence it follows that in the presence of matter no metric field

of Minkowski space satisfies the gravitational equations, and

therefore the metric fields arising in non-inertial reference sys-

tems of Minkowski space cannot be considered gravitational

fields. In the absence of matter, ρ = p = 0, equation (6) has

the sole solution

gµν(x) = γµν(x). (8)

On the covariant conservation law

The covariant conservation law of matter energy-momentum

tensor density T νµ in General Relativity (GRT) takes in Rie-

mannian space the following form

∇νT
ν
µ = ∂νT

ν
µ − 1

2
T σλ∂µgσλ , T σλ = −2

δLM
δgσλ

. (1)
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This equation is a straightforward consequence of Gilbert-

Einstein equations. Though the equation has a covariant form,

nevertheless the energy-momentum conservation law of matter

and gravitational field taken together has in GRT a noncovari-

ant appearance

∂ν(T
ν
µ + τ νµ ) = 0. (2)

Just by this way the gravitational field pseudotensor τ νµ , which

is not a covariant quantity, arises in GRT. It is impossible

in principle to write conservation equations of the energy-

momentum of matter and gravitational field in the generally

covariant form. The idea that the gravitational energy cannot

be localized in GRT has arisen from this fact.

If we will not use Eq. (8.2) in the derivation of Eqs. (8.1),

then gravitational equations will take the following form

√−γ(−Jελ +m2φ̃ελ) = 16π
√−g(T ελ + tελg ) . (3)

Here tελg is the energy-momentum tensor density for the grav-

itational field.

16π
√−gtελ = −DµDσ(φ̃

ελφ̃µσ − φ̃εµφ̃λσ)+

+Dσφ̃
ελDµφ̃

µσ −Dµφ̃
εµDσφ̃

λσ+

+1
2
gελgρτDµφ̃

αρDαφ̃
µτ − gρτg

εµDµφ̃
αρDαφ̃

λτ−
−gρτgλνDνφ̃

αρDαφ̃
ετ + gρτg

αβDαφ̃
ερDβφ̃

λτ+

+1
2

(

gβρgατ − 1
2
gβτgαρ

)

×
×
(

gεµgλν − 1
2
gελgµν

)

Dµφ̃
λρDνφ̃

βτ−
−m2

(√−gg̃ελ −√−γφ̃ελ + g̃εαg̃λβγαβ − 1
2
g̃ελg̃αβγαβ

)

.

(4)

Jελ = −DµDν(γ
µν g̃ελ + γελg̃µν − γεν g̃µλ − γεµg̃λν). (5)

Let us mention that expression

Dσ(φ̃
ελφ̃µσ − φ̃εµφ̃λσ)
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is antisymmetric under permutation of indicies λ µ, and so

the following identity takes place:

DλDµDσ(φ̃
ελφ̃µσ − φ̃εµφ̃λσ) = 0 .

It is also easy to get convinced, that the following equation is

valid

DλJ
σλ = 0 . (6)

Gravitational field equation (3) can be presented also in other

form (5.19)

√−g
(

Rµν − 1
2
gµνR

)

+

+m2

2

[

g̃µν +
(

g̃µαgνβ − 1
2
g̃µνgαβ

)

γαβ
]

= 8πT µν .
(7)

From Eqs. (7) it follows

m2√−g
(

gµαgνβ − 1

2
gµνgαβ

)

∇µγαβ = 16π∇µT
µν . (8)

By taking into account relation

∇µγαβ = −Gσ
µαγσβ −Gσ

µβγσα , (9)

we find
(

gµαgνβ − 1
2
gµνgαβ

)

∇µγαβ =

= −gµαgνβGσ
µαγσβ − gµαgνβGσ

µβγσα + gµνgαβGσ
µαγσβ .

(10)

It is easy to see that the following identity takes place:

−gµαgνβGσ
µβγσα + gµνgαβGσ

µαγσβ . (11)

Therefore we have
(

gµαgνβ − 1

2
gµνgαβ

)

∇µγαβ = −gµαgνβGσ
µαγσβ . (12)
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By substituting expression (4.5) instead of Gσ
µα we get

(

gµαgνβ − 1
2
gµνgαβ

)

∇µγαβ =

= γµλg
µν
(

Dσg
σλ +Gσ

ασg
αλ
)

.
(13)

After taking into account Eq. (13), Eq. (8) takes the following

form

16π∇µT
µν = m2√−g γµλ gµν

(

Dσg
σλ +Gσ

ασg
αλ
)

. (14)

Applying equation

√−g
(

Dσg
σλ +Gσ

ασg
αλ
)

= Dσφ̃
σλ , (15)

we find

m2γνλDσφ̃
σλ = 16π∇µT

µ
ν . (16)

According to Eq. (3) we have

m2φ̃σλ = Jσλ + 16π

√

g

γ

(

T σλ + tσλg
)

. (17)

Substituting Eq. (17) into Eq. (16) we get

Dσ

[
√

g

γ

(

T σλ + tσλg
)

]

= γνλ∇µT
µ
ν . (18)

When matter equations of motion are valid we have

δLM
δφA

= 0 . (19)

According to strong identity (.16) the following equality is

valid

∇µT
µ
ν = 0 , (20)
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and therefore, according to Eq. (18), the covariant conser-

vation law for energy-momentum of matter and gravitational

field taken together is as follows

Dσ

[√−g
(

T σλ + tσλg
)]

= 0 . (21)

So, if in GRT covariant law (1) leads to a noncovariant

conservation law for energy-momentum of matter and gravita-

tional field (2), and also to arising of a noncovariant quantity –

pseudotensor τ νµ of the gravitational field, then in RTG covari-

ant law (1) together with gravitational equations written in a

form (3) or (7) exactly leads to the covariant conservation law

for energy-momentum of matter and gravitational field writ-

ten in a form (21). In Eq. (21) the gravitational component√−g tσλg enters in additive form under the Minkowski space

covariant derivative symbol, whereas the gravitational compo-

nent disappears from Eq. (20), it is used for generating the

effective Riemannian space and so only the energy-momentum

tensor density of matter in Riemannian space stays under the

covariant derivative symbol. The presence of covariant conser-

vation laws (21) is just the point to see that the gravitational

energy as also all other forms of energy is localizable.

H.Poincare On the dynamics of the

electron

(5 June 1905)36. (The comments are italicized and indicated

by an asterisk).

36Poincare H. Sur la dynamique de l’electron // Comptes rendus
hebdomadaires des seances de l’Akademie des sciences. – Paris, 1905. –
V.140. – P.1504–1508.
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It seems at first sight that the aberration of light and the re-

lated optical and electrical phenomena would provide us with

a means of determining the absolute motion of the Earth, or

rather its motion not with respect to the other stars, but with

respect to the ether. Actually, this is not so: experiments

in which only terms of the first order in the aberration were

taken into account first yielded negative results, which was

soon given an explanation; but Michelson also, who proposed

an experiment in which terms depending on the square aberra-

tion were noticeable, also met with no luck. The impossibility

to disclose experimentally the absolute motion of the Earth

seems to be a general law of Nature.

* “Experiment has provided numerous facts justifying the

following generalization: absolute motion of matter, or, to be

more precise, the relative motion of weighable matter and ether

cannot be disclosed. All that can be done is to reveal the mo-

tion of weighable matter with respect to weighable matter” 37.

The above words written by Poincare ten years earlier quite

clearly demonstrate that his vision of a general law determin-

ing the impossibility of absolute motion of matter had been

maturing since long ago.

In development of his idea on the total impossibility of

defining absolute motion in relation to the new hypothesis, put

forward by Lorentz and according to which all bodies should

experience a decrease in length by 1/2 ·10−9 in the direction of

motion of the Earth, Poincare wrote:

“Such a strange property seems to be a real coup de pouce

presented by Nature itself, for avoiding the disclosure of ab-

37Poincare H. On Larmor’s theory // The relativity principle: Col-
lection of works on special relativity theory. — Moscow, 1973. — P.7.
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solute motion with the aid of optical phenomena. I can’t be

satisfied and I must here voice my opinion: I consider quite

probable that optical phenomena depend only on the relative

motion of the material bodies present, of the sources of light

or optical instruments, and this dependence is not accurate

up to orders of magnitude of the square or cubic aberration,

but rigorous. This principle will be confirmed with increasing

precision, as measurements become more and more accurate.

Will a new coup de pouce or a new hypothesis be nec-

essary for each approximation? Clearly this is not so: a well

formulated theory should permit proving a principle at once

with all rigour. The theory of Lorentz does not permit this yet.

But, of all theories proposed it is the one nearest to achieving

this goal” 40.

In a report to the Congress of art and science held in Saint

Louis in 1904 Poincare among the main principles of theoret-

ical physics formulates the relativity principle, in accordance

with which, in the words of Poincare, “the laws governing phys-

ical phenomena should be the same for a motionless observer

and for an observer experiencing uniform motion, so there is

no way and cannot be any way of determining whether one

experiences such motion or not”41.

An explanation has been proposed by Lorentz, who has

introduced the hypothesis of a contraction experienced by all

bodies in the direction of the motion of the Earth; this con-

traction should account for Michelson’s experiment and for all

40Poincare H. Electricite et optique: La lumiere et les theories elec-
trodynamiques. — 2 ed., rev. et complettee par Jules Blondin, Eugene
Neculcea. Paris: Gauthier–Villars, 1901.

41Poincare H. L’etat et l’avenir de la Physique mathematique // Bul-
letin des Sciences Mathematiques. — Janvier 1904 — V.28. Ser.2 —
P.302–324; The Monist. — 1905. V.XV, N1.
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other relevant experiments performed to date. It would, how-

ever, leave place for other even more subtle experiments, more

simple to be contemplated than to be implemented, aimed at

revealing absolute motion of the Earth. But considering the

impossibility of such a claim to be highly probable one may

foresee that these experiments, if ever they will be performed,

to once again provide a negative result. Lorentz has attempted

to complement and alter the hypothesis so as to establish a

correspondence between it and the postulate of total impos-

sibility of determining absolute motion. He has succeeded in

doing so in his article entitled Electromagnetic phenomena in

a system moving with any velocity smaller than that of light

(Proceedings de l’Academie d’Amsterdam, 27 May 1904).

The importance of this issue has induced me to consider

it once again; the results I have obtained are in agreeement

with those obtained by Lorentz in what concerns all the main

points; I have only attempted to modify them somewhat and

to complement them with some details.

The essential idea of Lorentz consists in that the equations

of the electromagnetic field will not be altered by a certain

transformation (which I shall further term the Lorentz trans-

formation) of the following form:

x′ = γl(x− βt), y′ = ly, z′ = lz, t′ = γl(t− βx), (1)

where x, y, z are the coordinates and t is the time before the

transformation; and x′, y′, z′ and t′ are the same after the

transformation. The quantity β is a constant determined by

the transformation

γ =
1√

1 − β2
,

while l is a certain function of β:
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* Poincare writes: “The idea of Lorentz”, but Lorentz never

wrote such words before Poincare. Here, Poincare formulated

his own fundamental idea, but attributed it fully to Lorentz.

Probably more than any other person, did he always highly

esteem and note each person, who gave his thought an impetus

and presented him with the happiness of creativity. He was

totally alien to issues of his own personal priority.

From formulae (1) it is immediately seen that the condition

x = βt corresponds to the origin (x′ = y′ = z′ = 0) of the new

reference system. In other words, the new origin is shifted in

the reference system x, y, z with a speed β along the x-axis.

Thus, the Lorentz tranformations relate the variables

(x, y, z, t) referred to one reference system and the variables

(x′, y′, z′, t′) in another system moving uniformly in a straight

line along the x-axis with the velocity β relative to the first

system.

Proof of the statement that the equations of the electro-

magnetic field do not alter under the Lorentz transformations

signifies that electromagnetic phenomena are described in both

reference systems by identical equations and that, consequently,

no electromagnetic processes can be utilized to distinguish be-

tween the (x, y, z, t) reference system and the (x′, y′, z′, t′) ref-

erence system moving uniformly in a straight line with respect

to the first system.

We see that invariance of the equations of the electromag-

netic field under transformations of the Lorentz group results

in the relativity principle being fulfilled in electromagnetic phe-

nomena. In other words, the relativity principle for electro-

magnetic phenomena follows from the Maxwell–Lorentz equa-

tions in the form of a rigorous mathematical truth.
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In this transformation the x-axis plays a particular role,

but it is clearly possible to construct such a transformation,

in which this role will be assumed by a certain straight line

passing through the origin. The set of all such transformations

together with all spatial rotations should form a group; but for

this to take place it is necessary that l = 1; hence one is led

to assume l = 1, which is precisely the consequence obtained

by Lorentz in another way.

* It must be underlined that, by having established the group

nature of the set of all purely spatial transformations together

with the Lorentz transformations, that leave the equations of

electrodynamics invariant, Poincare thus discovered the exis-

tence in physics of an essentially new type of symmetry re-

lated to the group of linear space-time transformations, which

he called the Lorentz group.

Supplemented with transformations of space coordinate and

time translations, the Lorentz group forms a maximum group

of space-time transformations, under which all equations of

motion for particles and fields remain invariant and which now

is called the Poincare group, the name given to it subsequently

by E.Wigner. Richard Feynman wrote about this fact as fol-

lows: “Precisely Poincare proposed to find out what one can

do with equations without altering their form. He was the per-

son who had the idea to examine the symmetry properties of

physical laws”.

Let ρ be the charge density of the electron, and vx, vy, and

vz the components of the electron velocity before the trans-

formation; then, after applying the transformation one has for

246



these same quantities ρ′, vx
′, vy

′, and vz
′ the following:

ρ′ = γl−3ρ(1 − βvx), ρ′vx
′ = γl−3ρ(vx − β),

ρ′vy
′ = l−3ρvy, ρ′vz

′ = l−3ρvz.
(2)

These formulas differ somewhat from the ones found by

Lorentz.

Now, let ~f and ~f ′ be the three-force components before and

after application of the transformation (the force is referred to

unit volume); then

f ′
x = γl−5(fx − β ~f~v); f ′

y = l−5fy; f
′
z = l−5fz. (3)

These formulas also differ somewhat from the ones pro-

posed by Lorentz; the additional term in ~f · ~v reminds the

result earlier obtained by Lienard.

If we now denote by ~F and ~F ′ the force components referred

to the electron mass unit, instead of unit volume, we obtain

F ′
x = γl−5 ρ

ρ′
(Fx − β ~F · ~v);F ′

y =
ρ

ρ′
l−5Fy;F

′
y =

ρ

ρ′
l−5Fx. (4)

* Formulae (2), (3), and (4) comprise the relativistic trans-

formation laws, first established by Poincare, for the charge

density and velocity of motion of an electron, referred both to

unit charge and unit volume.

Thus, Poincare, as compared with Lorentz, made the deci-

sive step in this work and laid down the foundations of rela-

tivity theory.

It is notable that, while developing totally new ideas in ar-

ticles on the dynamics of the electron and correcting and com-

plementing Lorentz, Poincare is careful to paid maximum trib-

ute to Lorentz as the discoverer and leaves it to others to judge

about his own personal contribution to the creation of relativity

theory.
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The testimony of Lorentz himself is extremely important in

this respect, since it permits filling in the gap, sometimes left

by certain authors writing about the history of the creation of

relativity theory, and to do justice to Poincare as the creator

of relativistic mechanics and special relativity.

Thus, in discussing the relativistic transformation formu-

lae for the velocities, charge densities, and current of the elec-

tron, Lorentz wrote:46 “Formulae (4) and (7) are absent in

my article published in 1904, since I didn’t even think of a

direct path leading to them, because I thought an essential dif-

ference existed between the systems x, y, z, t and x′, y′, z′, t′. In

one of them – such was my reasoning – coordinate axes were

used that had a fixed position in ether and what could be called

true time; in the other system, on the contrary, one dealt with

simply auxiliary quantities introduced only with the aid of a

mathematical trick. Thus, for instance, the variable t′ could

not be considered to be time in the same sense as the variable t.

Given such reasoning, I had no intention of describing phe-

nomena in the system x′, y′, z′, t′ in precisely the same manner

as in the system x, y, z, t...” And further, in the same work:

“... I was unable to achieve total invariance of the equations;

my formulae remained cumbersome owing to additional terms,

that should have disappeared. These terms were too small to

exert noticeable influence on the phenomena, and this sup-

plied me with an explanation for their being independent of

the Earth’s motion revealed by obs and universal truth.

46Lorentz H.A. Two articles by Henri Poincare on mathematical
physics // The relativity principle: Collection of works on special rel-
ativity theory. – Moscow, 1973. – P.189–196.
Formulae (4) and (7) dealt with by Lorentz are the transformation for-
mulae for the electron velocities and charge densities, respectively.
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Contrariwise, Poincare achieved total invariance of the equa-

tions of electrodynamics and formulated the ¡¡relativity pos-

tulate¿¿ — a term introduced by him. Indeed, adopting the

point of view, that I had failed to take into account, he derived

formulae (4) and (7). We should add, that in correcting the

defects of my work he never reproached me for them”.

Lorentz also arrived at the necessity of assuming a moving

electron to have the shape of a compressed ellipsoid; the same

hypothesis was made by Langevin, but while Lorentz assumed

the two axes of the ellipsoid to be constant, in agreement with

his hypothesis that l = 1, Langevin assumed, contrariwise, the

volume of the ellipsoid to be constant. Both authors showed

the two hypotheses to be in the same good agreement with

the experiments performed by Kaufmann, as the initial hy-

pothesis of Abraham (the spherical electron). The advantage

of Langevin’s hypothesis consists in its being sufficient, i.e. it

suffices to consider the electron to be deformable and incom-

pressible for explaining why it assumes an ellipsoidal shape in

motion. But I can show, without contradicting Lorentz, that

this hypothesis cannot be consistent with the impossibility of

revealing absolute motion. As I have already said, this occurs

because l = 1 is the only hypothesis for which the Lorentz

transformations form a group.

But in the Lorentz hypothesis, also, the agreement between

the formulas does not occur just by itself; it is obtained to-

gether with a possible explanation of the compression of the

electron under the assumption that the deformed and com-

pressed electron is subject to constant external pres-

sure, the work done by which is proportional to the

variation of volume of this electron.
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Applying the principle of least action, I can demonstrate

the compensation under these conditions to be complete, if

inertia is assumed to be of a totally electromagnetic origin, as

generally acknowledged after Kaufmann’s experiments, and if

all forces are of an electromagnetic origin, with the exception

of the constant pressure of which I just spoke and which acts on

the electron. Thus, it is possible to explain the impossibility of

revealing the absolute motion of the Earth and the contraction

of all bodies in the direction of the Earth’s motion.

But this is not all. In the quoted work Lorentz considers

it necessary to complement his hypothesis with the assump-

tion that in the case of uniform motion all forces, of whatever

origin, behave exactly like electromagnetic forces, and that,

consequently, the influence of the Lorentz transformation on

the force components is determined by equations (4).

* Here, Poincare in development of the assumption expressed

by Lorentz extends the Lorentz transformations to all forces,

including, for instance, gravitational forces.

He was the first to point out that the relativity postulate

requires such a modification of the laws of gravity, according to

which the propagation of forces of gravity is not instantaneous,

but proceeds with the speed of light.

It has turned out necessary to consider more carefully this

hypothesis and, in particular, to clarify which changes it com-

pels us to introduce into the laws of gravity. This is just what

I attempted to determine: I was first induced to assume the

propagation of gravity forces to proceed with the speed of light,

and not instantaneously. This seems to contradict the result

obtained by Laplace who claims that although this propaga-

tion may not be instantaneous, it is at least more rapid than
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the propagation of light. However, the issue actually raised

by Laplace differs significantly from the issue dealt with here

by us. According to Laplace, a finite propagation velocity was

the sole alteration, introduced by him to Newton’s law. Here,

also, a similar change is accompanied by many others; hence,

partial compensation between them is possible, and it actually

does take place.

Consequently, if we speak about the position or velocity of

a body exerting attraction, we shall bear in mind its position

or velocity at the moment, when the gravitational wave

departs from this body; if we speak about the position or

velocity of a body being attracted, we shall intend its position

or velocity at the moment, when this body being attracted is

overcome by the gravitational wave emitted by another body:

the first moment clearly precedes the second.

Hence, if x, y, z are the projections onto three axes of the

vector ~r connecting the two positions and if ~v = (vx, vy, vz)

are the velocity components of the body attracted and ~v1 =

(v1x, v1y, v1z) are the velocity components of the attracting

body, then the 1z three components of the attraction (which

I may also call ~F ) will be functions of ~r, ~v, ~v1. The question

is whether these functions can be defined in such a way that

they behave under the Lorentz transformation in accordance

with equations (4) and that the conventional law of gravity be

valid in all cases of the velocities ~v, ~v1 being sufficiently small

to allow neglecting their square values as compared with the

square speed of light?

The answer to this question must be affirmative. It has

been revealed that the attraction, taking into account the cor-

rection, consists of two forces, one of which is parallel to the
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components of the vector ~r, and the other to the components

of the velocity ~v1.

The disagreement with the conventional law of gravity, as

I just pointed out, is of the order of v2; if, on the other hand,

one assumes, as Laplace did, the propagation velocity to be

equal to the speed of light, this divergence will be of the order

of v, i.e. 10000 times greater. Consequently, at first sight, it

does not seem absurd to assume astronomical observations to

be insufficiently precise for revealing the smallest imaginable

divergence. Only a profound investigation can resolve this

issue.

* Poincare thus introduces the physical concept of gravita-

tional waves, the exchange of which generates gravitational

forces, and supplies an estimation of the contribution of rela-

tivistic corrections to Newton’s law of gravity.

For example, he shows that the terms of first order in v/c

cancel out exactly and so the relativistic corrections to New-

ton’s law are quantities of the order of (v/c)2.

These results remove the difficulty noted previously by Laplace

and permit making the conclusion that the hypothesis equating

the speeds of light and of gravitational influence is not in con-

tradiction with observational data.

Thus, in this first work Poincare already gave a general

and precise formulation of the main points of relativity theory.

It is here that such concepts as the following first appeared:

the Lorentz group, invariance of the equations of the electro-

magnetic field with respect to the Lorentz transformations, the

transformation laws for charge and current, the addition for-

mulae of velocities, the transformation laws of force. Here,



also, Poincare extends the transformation laws to all the forces

of Nature, whatever their origin might be.
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