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EDITORS' PREFACE.

The volume called Higher Mathematics, the third edition

of which was published in 1900, contained eleven chapters by

eleven authors, each chapter being independent of the others,

but all supposing the reader to have at least a mathematical

training equivalent to that given in classical and engineering

colleges. The publication of that volume was discontinued in

1906, and the chapters have since been issued in separate

Monographs, they being generally enlarged by additional

articles or appendices which either amplify the former pres-

entation or record recent advances. This plan of publication

was arranged in order to meet the demand of teachers and

the convenience of classes, and it was also thought that it

would prove advantageous to readers in special lines of mathe-

matical literature.

It is the intention of the publishers and editors to add other

monographs to the series from time to time, if the demand

seems to warrant it. Among the topics which are under con-

sideration are those of elliptic functions, the theory of quantics,

the group theory, the calculus of variations, and non-Euclidean

geometry; possibly also monographs on branches of astronomy,

mechanics, and mathematical physics may be included. It is

the hope of the editors that this Series of Monographs may
tend to promote mathematical study and research over a wider

field than that which the former volume has occupied.





PREFACE

This introduction to the classical theory of invariants of

algebraic forms is divided into three parts of approximately

equal length.

Part I treats of linear transformations both from the stand-

point of a change of the two points of reference or the triangle

of reference used in the definition of the homogeneous coor-

dinates of points in a line or plane, and also from the stand-

point of projective geometry. Examples are given of invariants

of forms / of low degrees in two or three variables, and the

vanishing of an invariant of / is shown to give a geometrical

property of the locus /= 0, which, on the one hand, is inde-

pendent of the points of reference or triangle of reference,

and, on the other hand, is unchanged by projection. Certain

covariants such as Jacobians and Hessians are discussed and

their algebraic and geometrical interpretations given; in

particular, the use of the Hessian in the solution of a cubic

equation and in the discussion of the points of inflexion of

a plane cubic curve. In brief, beginning with ample illustra-

tions from plane analytics, the reader is led by easy stages

to the standpoint of hnear transformations, their invariants

and interpretations, employed in analytic projective geometry

and modern algebra.

Part II treats of the algebraic properties of invariants

and covariants, chiefly of binary forms: homogeneity, weight,

annihilators, seminvariant leaders of covariants, law of reciproc-

ity, fundamental systems, properties as functions of the roots,

and production by means of differential operators. Any
quartic equation is solved by reducing it to a canonical form

by means of the Hessian (§33). Irrational invariants are

illustrated by a carefully selected set of exercises (§ 35).

V
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Part III gives an introduction to the symbolic notation

of Aronhold and Clebsch. The notation is first explained at

length for a simple case; Hkewise the fundamental theorem

on the types of symbolic factors of a term of a covariant of

binary forms is first proved for a simple example by the method

later used for the general theorem. In \dew of these and

similar attentions to the needs of those making their first

acquaintance with the symboHc notation, the difiiculties usually

encountered will, it is beHeved, be largely avoided. This

notation must be mastered by those who would go deeply

into the theory of invariants and its apphcations.

Hubert's theorem on the expression of the forms of a set

linearly in terms of a finite number of forms of the set is proved

and appHed to estabHsh the finiteness of a fundamental set

of covariants of a system of binary forms. The theory of

transvectants is developed as far as needed in the discussion

of apolarity of binary forms and its appHcation to rational

curves (§§ 53-57), and in the determination by induction of

a fundamental system of covariants of a binary form without

the aid of the more technical supplementary concepts employed

by Gordan. Finally, there is a discussion of the t}'pes of s>Tn-

boHc factors in any term of a concomitant of a system of

forms in three or four variables, with remarks on line and plane

coordinates.

For further developments reference is made at appropriate

places to the texts in EngUsh by Salmon, EUiott, and Grace

and Young, as well as to Gordan's Invariantentheorie. The

standard work on the geometrical side of invariants is Clebsch-

Lindemann, Vorlesungen iiber Geometrie. Reference may be

made to books by W. F. Meyer, Apolaritdt iind Rationale Curve,

Bericht iiber den gegenwarligen Stand der Invariantentheorie, and

FormentJieorie. Concerning invariant-factors, elementary divi-

sors, and pairs of quadratic or bilinear forms, not treated here,

see Muth, Elementartheiler , Bromwich, Quadratic Forms and

their Classification by Means of Invariant Factors, and Bocher's

Introduction to Higher Algebra. Lack of space prevents also

the discussion of the invariants and covariants arising in the
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theory of numbers; but an elementary exposition is available

in the author's recent book, On Invaria?its and the Theory of

Numbers, pubKshed, together with Osgood's lectures on func-

tions of several complex variables, by the American Mathematical

Society, as The Madison Colloquium.

In addition to numerous illustrativ^e examples, there are four-

teen sets of exercises which were carefully selected on the basis

of experience with classes in this subject.

The author is indebted to Professor H. S. White for suggest-

ing certain additions to the initial list of topics and for reading

the proofs of Part I.

Chicago, May, 1914.
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ALGEBRAIC INVARIANTS

PART I

ILLUSTRATIONS, GEOMETRICAL INTERPRETATIONS AND
APPLICATIONS OF INVARIANTS AND COVARIANTS.

1. Illustrations from Plane Analytics. If x and y are the

coordinates of a point in a plane referred to rectangular axes,

while x' and y' are the coordinates of the same point referred

to axes obtained by rotating the former axes counter-clock-

wise through an angle 6, then

T: x = x' cos d — y' sin 6, ;y = a;' sin ^+7' cos ^.

Substituting these values into the linear function

l = ax-\-by-\-c,

we get a'x' +b'y' -\-c, where

a' =a cos d-\-h sin 6, h' = —a sin d+h cos 6.

It follows that

Accordingly, a?-\-lr is called an invariant of I under every

transformation of the type T.

Similarly, under the transformation T let

L =Ax^By+C = A'x'-^B'y'-\-C,

so that

^' = ^ cos ^+5 sin ^, B' = -Asm B+B cos 6.
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By the multiplication * of determinants, we get

a'
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but a more general fact will be obtained in § 4 without tedious

multiplications. Thus a+c and d^ac— h- are invariants of

/j and also of S, under every transformation of type T. When
5 = represents a real conic, not a pair of straight hues, the

conic is an ellipse ii d>0, an hyperbola if (/<0, and a parabola

if (^ = 0. When homogeneous coordinates are used, the classi-

fications of conies is wholly different (§ 13).

If X and y are the coordinates of a point referred to rectan-

gular axes and if x' and ;-' are the coordinates of the same

point referred to new axes through the new origin (r, s) and

parallel to the former axes, respectivel}', then

t: x = x'-\rr, y=y'-\-s.

All of our former expressions which were invariant under

the transformations T are also invariant under the new trans-

formations t, since each letter a, b, . . . involved is invariant

under t. But not all of our expressions are invariant under

a larger set of transformations to be defined later.

We shall now give an entirely different interpretation to

the transformations T and /. Instead of considering {x, y)

and {x\ y') to be the same point referred to different pairs

of coordinate axes, we now regard them as different points

referred to the same axes. In the case of /, this is accomplished

by translating the new axes, and each point referred to them,

in the direction from (r, s) to (0, 0) until those axes coincide

with the initial axes. Thus any point {x, y) is translated to

a new point {x'
,
y'), where

x'=x—r, y'=y—s,

both points being now referred to the same axes. Thus each

point is translated through a distance Vr^-\-s^ and in a direction

parallel to the directed hne from (0, 0) to {—r, —s).

In the case of T, we rotate the new axes about the origin

clockwise through angle 6 so that they now coincide with

the initial axes. Then any point (x, y) is moved to a new point

{x'
,
y') by a clockwise rotation about the origin through angle

d. By solving the equations of T, we get

x —X cos d-\-y sin d, y' = —x sin 0-f-y cos B.
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These rigid motions (translations, rotations, and combinations

of them) preserve angles and distances. But the transformation

x' = 2x^ y' = 2y is a stretching in all directions from the origin

in the ratio 2:1; while x' = 2x, y' = y is a stretching perpen-

dicular to the ;y-axis in each direction in the ratio 2:1.

From the multiplicity of possible types of transformations,

we shall select as the basis of our theory of invariants the very

restricted set of transformations which have an interpretation

in projective geometry and which suffice for the ordinary needs

of algebra.

2. Projective Transformations. All of the points on a

straight line are said to form a range of points. Project the

Fig. 1.

points A, B, C, . . . oi a. range from a point V, not on their

line, by means of a pencil of straight lines. This pencil is

cut by a new transversal in a range ^i, Bi, Ci, . . . , said to be

perspective with the range A, B, C, . . . . Project the points

Ai, Bi, Ci, . . . from a new vertex v by a new pencil and cut it

by a new transversal. The resulting range of points A', B'

C, . . . is said to be projective with the range A, B, C, . . .

Likewise, the range obtained by any number o.' projections

and sections is called projective with the given range, and
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the one-to-one correspondence thus estabhshed between cor-

responding points of the two ranges is called a projec-

tivity.

To obtain an analytic property of a projectivity, we apply

the sine proportion to two triangles in Fig. 1 and get

4C^sinj4FC ^C ^ sin ^FC
AV'dnACV BV~smACV'

From these and the formulas with D in place of C, we get

AC^AV sin A VC AD^AT sin A VD
BC BV' sin BVC BD BV' sin BVD'

Hence, by division

AC . AD _ sin A VC . sin A VD
BC ' BD "sin BVC '

sin BVD'

The left member is denoted by (ABCD) and is called the

cross-ratio of the four points taken in this order. Since the

right member depends only on the angles at V, it follows that

{ABCD) = {AiBiCiDi),

if .4i, . . . , Di are the intersections of the four rays by a

second transversal. Hence if two ranges are projective, the

cross-ratio of any four points of one range equals the cross-

ratio of the corresponding points of the other range.

Let each point of the line AB he determined by its dis-

tance and direction from a fixed initial point of the line; let

a be the resulting coordinate of A, and b, c, x those of B,

C, D, respectively. Similarly, let A', B', C, D' have the

coordinates a' , h' , c' , x' , referred to a fixed initial point on

their line. Then

(^5CZ))=—4-^ =V47-V-w = (^'^'C'£>')•
c— x— b c —b X —b

Hence

x' — b' _yX— b r,_c— a
—, — K , k— r

X —a x—a c-b ' c'-b'
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SO that yfe is a finite constant ?^0, if C is distinct from A and

B, and hence C distinct from A' and B'. Solving for x', we
obtain a relation

L:



§2] PROJECTIVE TRANSFORMATIONS

jc' determine four distinct points A', B\ C', D' of /'. For,

if zV./,

,_ ,^ aXx+ ^ aXj+ _ A{Xi— Xj)

yXi-\-8 yXj-{-8 {yXi+8){yXj+8)

(A'B'C'D') = ''\~^\ ^ ''\~'^\ =r'^^^^^^^^^^ = (ABCD)
Xs —X2 X4: —X2 X3 — X2 X4: — X2

since, if U denotes 7:^1+ 5,

^ ^ Wi/hkl ^ vwt/w ^ ^'

If A' 9^A, project the points A', B' , C, D' from any con-

venient vertex V' on to any line ABi through A and distinct

Fig. 2.

from I, obtaining the points Ai=A, B\, Ci, D\ of Fig. 2. Let

V be the intersection of BBi with CC\ and let VD\ meet / at

P. Then

{ABCP) = (AiBiCiDi) = {A'B'CD') = (ABCD).

From the first and last we have P = D, as proved above.

Holding xi, X2, xz fixed, but allowing Xi to vary, we obtain

two projective ranges on / and /'. If ^' = yl, we use T itself

as yl^i and see that the ranges are perspective.
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If / and /' are identical, we first project the range on /'

on to a new line {A'B' in Fig. 2) and proceed as before.

Any linear fractional transformation L is therefore a pro-

jective transformation of the points of a line or of the points

of one line into those of another line. The cross-ratio of any

four points is invariant.

3. Homogeneous Coordinates of a Point in a Line. They

are introduced partly for the sake of avoiding infinite coor-

dinates. In fact, if 7 5^0, the value -8/y of x makes x'

infinite. We set a; = a;i/a;2, thereby defining only the ratio of

the homogeneous coordinates xi, X2 of a point. Leta[;'=:j;iVa[;2'.

Then, if p is a factor of proportionaHty, L may be given the

homogeneous form

pxi =aXi-\-^X2, px2=yxi+ 8x2, a8- ^y^O.

The nature of homogeneous coordinates of points in a

line is brought out more clearly by a more general definition.

We employ two fixed points A and B of the line as points of

reference. We define the homogeneous coordinates of a point

P of the line to be any two numbers x, y such that

x_ AP
y'^'pB'

where c is a constant 9^0, the same for all points P, while

AP is a directed segment, so that AP=—PA. We agree

to take y = if P^B. Given P, we have the ratio of x to y.

Conversely, given the latter ratio, we have the ratio of ^P
to PB, as well as their sum AP+PB = AB, and hence can

find AP and therefore locate the point P.

Just as we obtained in plane analytics {cf. § l) the relations

between the coordinates of the same point referred to two

pairs of axes, so here we desire the values of x and y expressed

in terms of the coordinates ^ and rj of the same point P referred

to new fixed points of reference A', B' . By definition, there

is a certain new constant ^5^0 such that

, "pB'-
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Since A'P-\-PB' =A'B\ we may replace A'P by A'B'-PB'
and get

p^,_ knA'B'

Let A have the coordinates ^' , t] , referred to A\ B' . Then

PA=PB'-AB' =PB'-^^ Jj'^-^:''}^-'^'^'

Sirtiilarly, if B has the coordinates ^i, rji, referred to A' , B\

p^_ (v^i-^vi)k-A'B'

Hence, by division,

Since we are concerned only with the ratio of x to y, we may
set

Since the location of A and B with reference to A' and B^

is at our choice, as also the constant c (and hence r and s),

the values of rr]' and —r^' are at our choice, likewise srjx and

—s^\. There is, however, the restriction A 9^B, whence ij'^i j^ r)\ ^'

Thus a change of reference points and constant multiplier c

gives rise to a linear transformation

X=a^-\-^T1, y^-Y^+brj, ^0,

of coordinates, and conversely every such transformation can

be interpreted as the formulas for a change of reference points

and constant multiplier.

4. Examples of Invariants. The Unear functions

l^ax-\-by, L=Ax-\-By

become, under the preceding linear transformation T,

where

a' = aa-\-hy, b' = al3-\-b5, A' = Aa-\-By, B' =A^+BS.
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Hence the resultant of the new linear functions is

a'
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F is the square of a linear function of ^ and 77, whence the

discriminant D =AC— B^ of F is zero. In other words, d =

impHes D = 0. By inspection, the coefficient of —b-, the highest

power of &, in the expansion of D is

Thus D— A^d is a hnear function bq+r of b, where q and r are

functions of a, c, a, /3, 7, 6. Let a sind_c remain arbitrary, but

give to b the values Vac and —Vac in turn. Since d =

and D = 0, we have

0=Vac^+r, 0=— Vac^+r,

whence f = 9 = 0, D = A^d. Thus c/ is an invariant of / of

index 2. Another proof is as follows:

A^d =
a 7
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Multiplying determinants according to the rule in § 1, we have

hA =
M

dxdy
+ 5-

dxdy a/'

3^93'

dxdy 9/



EXAMPLES OF COVARIANTS 13

Let the above transformation T replace / by F{^, rj), and

g by G(^, 7/). By means of (l), we get

djF, G)

d{^, v)

9/ ,
a/

dx dy

dx dy

M+ 6^
dx dy

dx dy

dx

dg

dx

dy

dg

dy

I3\_^ d(f,g)
5

I

d{x,yy

Hence the Jacobian of / and g is a covariant of index unity of

/ and g. For example, the Jacobian of the linear functions

/ and Z, in § 4 is their resultant r; they are proportional if

and only if the invariant r is zero. The last fact is an illus-

tration of the

Theorem. Two functions f and g of x and y are dependent

if and only if their Jacobian is identically zero.

First, U g = 4){f), the Jacobian of/ and g is

9/

dx

4>'{f)
dx

df_

dy
= 0.

Next, to prove the second or converse part of the theorem,

let the Jacobian of / and g be identically zero. If g is a

constant, it is a (constant) function of /. In the contrary

case, the partial derivatives of g are not both identically zero.

Let, for example, dg/dx be not zero identically. Consider g
and y as new variables in place of x and >'. ThMs f=F{g,y)
and the Jacobian is

dFdg
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Hence dF/dy is identically zero, so that F does not involve

y explicitly and is a function of g only.

6. Forms and their Classification. A function like ax^-\-bx^y,

every term of which is of the same total degree in x and y,

is called homogeneous in x and y.

A homogeneous rational integral function oi x, y, . . . is

called a form (or quantic) m x, y, . . . . According as the

number of variables is 1, 2, 3, . . . , or ^, the form is called

unary, binary, ternary, . . . , or q-ary, respectively. Accord-

, ing as the form is of the first, second, third, fourth, . . . , or

p\h. order in the variables, it is called linear, quadratic, cubic,

quartic, . . . , or p-ic, respectively.

For the present we shall deal with binary forms. It is

found to be advantageous to prefix binomial coefficients to the

Hteral coefficients of the form, as in the binary quadratic and

quartic forms

ax^-{-2bxy-{-cy^, aox^-\-4:aix^y-^Qa2X^y^-}-4:a3xy^-\-a4y^.

7. Definition of Invariants and Covariants of Binary Forms.

Let the general binary form / of order p,

aox^+paix^-'y+^^^(^a2X^-y-^. . .-\-a,y^,

be replaced by

Ao^^+pAie-'v-\-^^~Y^A2e-'v'-\-- . .+^.^^

by the transformation T (§5) of determinant A?^0. If, for

every such transformation, a polynomial I{ao, . . . ,
ap) has

the property that

7(^0, . . . ,
^p)=AV(ao, . . . ,

ap),

identically in ao, • • • , «p, after the ^'s have been replaced

by their values in terms of the a's, then I{ao, . . . ,
ap) is

called an invariant of index X of the form/.
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If, for every linear transformation T of determinant A?^0,

a polynomial K in the coefficients and variables in / is such

that *

K{Aq, . . . ,Ay\ ^, r])^A^K(ao, . . . ,ap; X, y),

identically in ao, . . . , ap, ^, -q, after the ^'s have been replaced

by their values in terms of the a's, and after x and y have

been replaced by their values in terms of ^ and rj from T, then

K is called a covariant of index X of/.

The definitions of invariants and covariants of several

binary forms are similar.

These definitions are illustrated by the examples in §§4, 5.

Note that / itself is a covariant of index zero of /; also that

invariants are covariants of order zero.

EXERCISES

1. The Jacobian oi J=ax--\-2bxy+cy'^ and L= rx-\-sy is

J= 2{as-br)x-\-2{bs-cr)y.

If J is identically zero, f=tL'^, where t is a constant. How does this

illustrate the last result in § 5? Next, let / be not identically zero. Let

k and / be the values of x/y for which /=0; m that for which L = and n

that for which 7 = 0. Prove that the cross-ratio (k, tn, I, n)= —1. Thus
the points represented by/=0 are separated harmonically by those repre-

sented by Z,=0, /=0.

2. If / is the Jacobian of two binary quadratic forms /and g, the points

represented by 7= separate harmonically those represented by /=0
and also those represented by g= 0. Thus 7= represents the pair of

double points of the involution defined by the pairs of points represented

by/=Oandg= 0.

3. If /(x, y) is a binary form of order n, then (Euler)

X—+y— = nf.
dx ^dy ^

Hint : Prove this for /= ax^y" ~ ^ and for /= fi +f2.
4. The Hessian of (ax+by)"' is identically zero.

Hint : It is sufficient to prove this for x^. Why?

* The factor can be shown to be a power of A if it is merely assumed to be

a function only of the coefficients of the transformation.
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5. Conversely, if the Hessian of a binary form/(x, y) of order n is iden-

tically zero, / is the nXh. power of a linear function.

Hints: The Hessian of / is the Jacobian of dj/ dx, dj/ dy- By the

last result in § 5, these derivatives are dependent:

cx , dy

where a and b are constants. Solving this with Euler's relation in Ex. 3,

we get

{ax-^hy) -^ = naf, {ax+by) — = nbf,
dx dy

9 log/_ na aJog/_ nb

dx ax+by dy ax+by'

Integrating,

log;-;? log iax+by) = <i>iy)^^p{x).

Hence (^= 1// = constant, say log c. Thus f=c(ax+ by)^.

8. Invariants of Covariants. The binary cubic form

( 1

)

jXx,y)= ax^+ Zhx-y+ 'icxy^+dy^

has as a covariant of index 2 its Hessian 36 h:

(2) h = rx^+ 2sxy+ ty'^, r = ac-b~, 2s = ad-bc, t = bd-c^.

Under any linear transformation of determinant A, let /become

(3) F = A^^+-Wey}+^Cir^^+Dr^^.

Let H denote the Hessian of F. Then the covariance of h gives

(4) H = Re+'^S^r,-\-Tri^~=A^h, R =AC-B\ . . .

Hence A^r, 2A~s, A-t are the coefficients of a binary quadratic

form which our transformation replaces by one with the coeffi-

cients R, 25, T. Since the discriminant of a binary quad-

ratic form is an invariant of index 2,

RT-S^ = AHA^r-AH-{A^sf\=A^{rt-s^).

Hence rt— s^ is an invariant of index 6 of/.

A Kke method of proof shows that any invariant of a covariant

of a system offorms is an invariant of the forms.
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As an example in the use of the concepts invariants and

covariants in demonstrations, we shall prove that the invariant *

(5) - 4(r/ - s^) = {ad- hcf - 4(ac - h^) {hd - c^)

is zero if and only \i J{x/y, l)=0 has a multiple root, i.e., if

J{x, y) is divisible by the square of a linear function of x and

y. If the latter be the case, we can transform / into a form

(3) with the factor ^^] then C =D = and the function (5)

written, in capitals is zero, so that the invariant (5) itself is

zero. Conversely, if (5) is zero, /=0 has a multiple root.

For, the Hessian (2) is then a perfect square and hence can

be transformed into ^^, which, by the covariance of h, differs

only by a constant factor from the Hessian R^- of the trans-

formed cubic (3) . Thus6' = r = 0. IfZ) = 0, thenC = 0(byr = 0)

and (3) has the factor ^^, as affirmed. If D^O,

9. Canonical Form of a Binary Cubic; Solution of Cubic

Equations. We shall prove that every binary cubic form whose

discriminant is not zero f can be transformed into X'^-\-Y^.

For, if the discriminant (5) of the binary cubic (1) is not

2ero, the Hessian (2) is the product of two linear functions which

are linearly independent. Hence the cubic form / can be

transformed into a form F whose Hessian (4) reduces to 2S^r],

and hence has i? = 0, T = Q, 5?^0. If C = 0, then 5 = (by

i? = 0) and/^ = .4^3^Z)r7^^Z)?^0 {hy S^Q). Taking

^ = ^-^Y, r]=D-'Y,

we get F = X^-\-Y^, as desired. The remaining case Cj^O

is readily excluded; for, then Bp^O (by r = 0) and

A=~, D = ^, AD = BC, 5 = 0.
C B

* It is often called the discriminant of/. It equals — a*P/27, where P is the

product of the squares of the differences of the roots oif{x/y,\) =0. Other writers

call a^P the discriminant of/.

t If zero, / has a square factor and hence can be transformed into XW or X^.
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To solve a cubic equation without a multiple root, we
have merely to introduce as new variables the factors ^ and

7? of the Hessian. For, then, the new cubic is A |'^+Z)j?^ = 0.

To treat an example, consider f=x^+ 6x-y+ 12xy-+dy^ — 0. The Hes-

sian is (d—8) {xy+2y^). Hence we take ^= ^+23; and r]= y as new

variables. We get /= ^'+ (^—8)77^ If d= 9, we have ^^+ ri^ = 0, whence

^/n= —1, — w or —co^, where w is an imaginary cube root of unity. But

x/y+2=^/r). Hence :K;/y=— 3, — w— 2, — co2-2.

10. Covariants of Covariants. Any covariant of a system

of covariants of a system offorms is a covariant of the forms.

The proof of this theorem is similar to that used in the

following illustrations. We first show that the Jacobian of

a binary cubic form / and its Hessian A is a covariant of index

3 of/. We have

d(F,H) ^^d(f,AVi) _^, d(f,h)

a(^, v) d{x, y) d{x, y)'

As the second illustration we consider the forms /, L in

Ex. 1, § 7. Their Jacobian is the double of the covariant

K = vx-\-wy of index unity, where

v = as — br, w = hs— cr.

Thus K and L are covariants of the system of forms/, L. These

two linear covariants have as an invariant their resultant

1 =
V w
r s

= as^ — 2brs-\-cr^.

Under a linear transformation of determinant A, let / become

A^^+. . . , and L become R^+Sr]. By the covariance of K,

V^-{-Wv=A(.vx+wy), V=AS-BR, W =BS-CR.

Thus our transformation replaces the hnear form having the

coefficients A^; and Aw by one having the coefficients V and

W. Th. resultant

Av Aw
r s
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of this linear form and L is an invariant of index unity. Hence

V W
R S

AE,
V W
R S

:A2
V w
r s

so that I = vs— wr is an invariant of index 2 of/ and L.

From the earlier expression for /, we see that it is the

resultant of / and L. We have therefore illustrated also the

theorem that the resultant of any two binary forms is an

invariant of those forms.

11. Intermediate Invariants and Covariants. From the

invariant ac — b^ of the binary quadratic form

f=ax^-\- 2hxy+ cy~

we may derive an invariant of the system of forms / and /'

where

f = a'x^+ 2b'xy+c'y'^.

Let any linear transformation replace / and / by

If / is any constant, the form/+// is transformed into F+tF'.

By the invariance of the discriminant of /+//',

{A-VtA'){C+tC')-{B+tB'Y^6?\{a+ta'){cMc')-{b+tby\,

identically in /. The equahty of the terms free of / states

only the known fact that ac— b^ is an invariant of/. Similarly

the equality of the terms involving t^ states merely that

a'c'— b"^ is an invariant of/'. But from the terms multiplied

by i, we see that

(1) ac'^a'c-2bb'

is an invariant of index 2 of the system of forms /, i' . It

is said to be the invariant intermediate between their dis-

criminants. It was discovered by Boole in 1841.

The method is a general one. Let K be any covariant of

a form jix.y, . . .). Let a, 6, ... be the coefhcients of /.

Let fix, y, . . .) be a form of the same order with the coeffi-

cients a' , b\ . . . . If in iT we replace a by a-\-ta', b by
b+tb', . . . , and expand in powers of /, we obtain as the
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coefficient of any power r of / a covariant of the system /, /'.

By Taylor's theorem, this covariant is

in which the symbolic rth power of 9/9a is to be replaced

by d'/da', etc.

EXERCISES

1. For r=l, K^ac— b\ (2) becomes (1).

2. Taking as K the Hessian (2) of cubic (1) in § 8, obtain the covariant

{ac'+a'c-2bb')x''+ {ad'+a'd-bc'-b'c)xy+ {bd' + b'd-2cc')y^

of index 2 of a pair of binary cubic forms.

3. If (1) is zero, the pair of points given by /=0 is harmonic with the

pair given by/'= 0.

12. Homogeneous Coordinates of Points in a Plane. Let

Li-. aiX+bty-hct = (f = l, 2, 3)

be any three linear equations in x, y, such that

ai h\ ci
I

A= a2 1)2 C2 5^0.

^3 &3 C2,
I

Interpret x and y as the Cartesian coordinates of a point

referred to rectangular axes. Then the equations represent

three straight lines Lt forming a triangle. Choose the sign

before the radical in

_aiPC-\-hiy_^tCi

so that pi is positive for a point (x, y) inside the triangle and

hence is the length of the perpendicular from that point to

Li. The homogeneous (or trilinear) coordinates of a point

{x, y) are three numbers Xi, X2, xs such that

pXi=kipi, pX2=k2p2, pX3=k3p3,

where ki, k2, ks are constants, the same for all points. In

view of the undetermined common factor p, only the ratios

of xi, X2, X3 are defined.
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For example, let the triangle be an equilateral one with sides of length

2, base on the .r-axis and vertex on the y-axis. The equations of the

sides Li, Li, Lz are, respectively,

Vz+'='' vr'='-
"''

Take each ^<=1. Then

y+ V3(x-l) y-Vz{x+ \)
pxi=

;;
, pXi= , pX3=y.-2 _2

The curve XiX^^Xi"^ is evidently tangent to Z,i(i.e., Xi = 0) at Q=(010),

and tangent to Li at P=(100). Substituting for the x< their values, we

see that the Cartesian equation of the curve is

ix-o

Fig. 3.

i{(>'-V3)^-3x=}=y2orx2+(^y+^y-|.

Hence it is a circle with radius CP and center at the intersection C of the

normal to L^ at P with the normal to Zi at Q.

Changing the notation for the coeflScients of kipi, call

them a J, hi, d. Then we have

m pXi = aiX-{-biy-\-Ci, A?^0 (^• = 1,2,3).
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Multiply the ith equation by the cofactor Ai of at in the

determinant A and sum for i = l, 2, 3. Next use as multiplier

the cofactor Bt of bi] finally, the cofactor d of d. We get

Ax = p'EAiXi, Ay = pi:BiXi, A = p^CtXi.

Hence x and y are rational functions of x\, X2, xs:

, „. _ AiXi-{-A2X2-{-A3X3 ^ BiXi-\-B2X2-i-B3X3

CiXi-\-C2X2+ CsX3' CiXi-\-C2X2-hC3Xs'

Any equation f{x, y)=0 in Cartesian coordinates becomes,

by use of (C), a homogeneous equation (j)(xi, X2, X3)=0 in

homogeneous coordinates. The reverse process is effected by

use of (H). In particular, since any straight line is represented

by an equation of the first degree in x and y, it is also rep-

resented by a homogeneous equation of the first degree in

Xi, X2, X3. For example, the sides of the triangle of reference

are xi = 0, X2 = 0, X3 = 0. Conversely, any homogeneous equation

of the first degree in xi, X2, X3 represents a straight line.

The degree of ^ is always that of /.

Take the y-axis as Li, the x-axis as L2, and let L3 recede to infinity by

making C3 and 63 approach zero. Then (//) and (C) become

Xi Xi
pXi = x, pxi.—y, pxz=\; x=-, y=~.

X3 X3

We are thus led to a very special, but much used, method of passing from

homogeneous to Cartesian coordinates and conversely.

For a new triangle of reference, let the homogeneous coor-

dinates of (jc, y) be yi, y2, ys- Then, as in (5'),

pyi = a'iX^rh'iy^rc'i (i = l,2, 3).

Inserting the values of x and y from (C), we get relations like

i'. ryi = eax -\-f1X2 +g<X3 (^ = 1 , 2, 3)

.

Hence a change of triangle of reference and constants ki,

k2, ks gives rise to a linear homogeneous transformation / of

coordinates. The determinant of the coefficients in / is not
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zero, since yi=0, >'2 = 0, y3 = represent the sides of the

new triangle. Conversely, any such transformation t may be

interpreted as a change of triangle of reference and con-

stants ki.

Instead of regarding t as a set of relations between the

coordinates of the same point referred to two triangles of

reference, we may regard it as defining a correspondence between

the points {xi, X2, X3) and (yi, y2, ys) of two different planes,

each referred to any chosen triangle of reference in its plane.

This correspondence is projective; for, it can be effected by

a series of projections and sections, each projection being

that of the points of a plane from a point outside of the plane

and each section being the cutting of such a bundle of pro-

jecting lines by a new plane. Proof will not be given here,

nor is the theorem assumed in what follows. It is stated

here to show that if / is any invariant of a ternary form /
under all linear transformations /, then 7 = gives a projective

property of the curve /=C. It is true conversely that any

projective transformation between two planes can be effected

by a linear homogeneous transformation on the homogeneous

coordinates. ' Thus for three variables, just as for two (§§ 2, 3),

the investigation of the invariants of a form under all linear

homogeneous transformations is of e^i^ecial imoortance.

13. Properties of the Hessian. Let f{xi, . . . , Xn) be a

form in the independent variables xi, . . . , Xn- The Hessian

/j of / is a determinant of order w in which the elements of

the ith. row are

a-/ dj ay
dXidxi dXtdX2 dxtdXn

Let /become <i){yi, . . .
, jn) under the transformation

T: Xi = Ciiyi+Ci2y2-\-. . .+Ci„y„ (/ = !,. . . , w),

of determinant A = |q|. The product hA is a determinant

of order n in which the element in the ith row and jth column
is the sum of the products of the above elements of the ^'th
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row of h by the corresponding elements of the ^th column

of A, and hence is

-C\}-\--—r C2j-\-. . .+—

—

Cn)

^ a / 9/ dxi df dX2 . df dxn\ ^ d

dxXdxidyj dX2dyj '
' ' dxndyjj dx

d±
dXidyj'

= Hessian of 0.
= 1 n

Let a' be the determinant obtained from A by interchanging

its rows and columns. In the product A'-M, the element

in the rth row and jih column is therefore

dxi dyj dXn dyj dyr dyj

since dr is the partial derivative of Xt with respect to yr. Hence

dyrdyj

Thus h is Si covariant of index 2 of/.

To make an application to conies, let / be a ternary quad-

ratic form. Then h is an invariant called the discriminant

of/. Let (ai, 02, as) be a point on /=0 (for example, one

with 0:3 = 0). For Ca=ai and Ct2, Cjs chosen so that A?^0,

transformation T makes (x) = (a) correspond to (3;) = (100).

Hence we may assume that (100) is a point on/=0, so that

the term in xi^ is lacking. Consider the terms xj with the

factor xi. If /^O, / involves only X2 and xs and hence is a

product of two linear functions, while h= 0. In the contrary

case, we may introduce / as a new variable in place of 0:2. This

amounts to setting l = X2,

f= XiX2-\-aX2^-\-bX2X3-\-CX3^.

Replacing xi by Xi — ax2 — bx3, we get :j;ia;2 — ^^3^, whose Hessian

is 2k. Hence /=0 represents two (distinct or coincident)

straight lines if and only if the Hessian (discriminant) of /

is zero.

Moreover, if the discriminant is not zero, then k^^O and we

may replace Vkxs by X3 and get 0:1^:2— ^3^- Hence all conies,

which do not degenerate into straight lines, are equivalent
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under projective transformation. If the triangle of reference

is equilateral and the coordinates are proportional to the per-

pendiculars upon its sides, :riX2— X3^ = is a circle (§ 12).

On the contrary, if we employ only translations and rota-

tions, as in plane analytics, there are infinitely many non-

equivalent conies ; we saw in § 1 that there are then two

invariants besides the discriminant.

Next, to make an application to plane cubic curves, let

f{xx, X2, xz) be a ternary cubic form. A triangle of reference

can be chosen so that P=(001) is a point of the curve /=0.

Then the term in x^^ is lacking, so that

/= ^3-/l+A-3/2+/3,

where /« is a homogeneous function of .ri and X2 of degree /.

We assume that P is not a singular point, so that the partial

derivatives of / with respect to Xi, X2, and xa are not all zero

at P. Hence /i is not identically zero and can be introduced

as a new variable in place of xi. Thus, after a preliminary

linear transformation, we have

xz^xi+xz{axi~ -[-hxiX2+cx2^) +fi.

Replace xs by xs — ^ (axi -\-bX'2) We get

F = xs^xi -\-ex3X2-+C,

where C is a cubic function of Xi, X2, whose second partial

derivative with respect to Xt and Xj will be denoted by Cy.

The Hessian of F is

H =

If the transformation which replaced / by F is of deter-

minant A, it replaces the Hessian k of / by H = A~h. Thus

H = represents the same curve as h = 0, but referred to the

same new triangle of reference as F = 0. We may therefore

speak of a definite Hessian curve of the given curve f=0.
In investigating the properties of these curves we may therefore

Cn
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refer them to the triangle of reference for which their equations

aren = 0,F = 0.

The coefficient of xs^ in H is evidently — 8^. Thus P is on

the Hessian curve if and only ii e = 0. li d is the coefficient of X2^

in C,xi=0 meets 7^ = at the points for which X2"{ex3-\-dx2) =0

and these points coincide (at F) if and only if e = 0. In

that case, P is called a point of inflexion oi F = and a-i=0

the inflexion tangent at P. For a cubic curve /=0 witJwut a

singular point, every point of inflexion is a point of intersection

of the curve with its Hessian curve and conversely.

14. Inflexion Points and Invariants of a Cubic Curve. EHm-

inating x^ between /= 0, A = 0, we obtain a homogeneous relation

in Xi, X2, which has therefore at least one set of solutions .t'i, X2-

For the latter values of Xi and X2, /=0 and h = are cubic

equations in xs with at least one common root, x's. Hence

/=0 has at least one inflexion point {x'l, x'2, x'3). After a

suitable linear transformation, this point becomes (001). As

in § 13, we can transform / into F, in which e is now zero. If

d = 0, then F = xiQ, and the derivatives

=(J-rXi , Xi , —

—

—^i~
dxi 9x1 9X2 9x2 9x3 9x3

all vanish at an intersection of xi=0,Q = 0. But we assume

that there is no singular point on/=0 and thus none on F=0.

Hence J 5^0. Replacing X2 by J~*X2, we have an F with

d = l. Adding a multiple of Xi to X2, we get

F=X32xi+C, C=X2=^+3iX2Xi2+aXi3,

di Ci

C12 C2
^=-4X32C22+ 2Xi</., <,

so that is the Hessian of C. By § 8,

(f,
= 3Q{ — b-xr-{-axiX2+bx2^).

Eliminating xs^ between F = 0, ^^ = 0, we get

Xi20+2C22C= 12(x2*+ 6^)X22xi2+4ax2Xi3-362xi4) =0.

If xi = 0, then X2 = and we obtain the known intersection
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(001). For the remaining intersections, we may set Xi = l

and obtain from eacii root r of

(1) r4+6&/^+4ar- 3^2 =

two intersections (1, r, ix's). For, if x'z = ^, then C = 0, so

that (1) would have a multiple root, whence d?'-\-W' = ^. But

the three partial derivatives of F would then all vanish at

{2b, ~a, 0) or (1,0,0), according as ftj^O or b = 0. Hence there

are exactly nine distinct points of inflexion.

For each of the four roots of (1), the three points of inflexion

P and (1, r, ztx's) are collinear, being on X2=rxi. Since we

may proceed with any point of inflexion as we did with P,

we see that there are 9-4/3 or 12 lines each joining three points

of inflexion and such that four of the lines pass through any

one of the nine points. The six points of inflexion not on a

fixed one of these lines therefore lie by threes on two new

lines; three such lines form an inflexion triangle. Thus there

are ^12 = 4 inflexion triangles.

The fact that there are four inflexion triangles, one for

each root r of (1), can also be seen as follows:

iTH+rF = {rxi-X2)\x3~-rx2^-{r^-\-3b)xiX2-{r^-{-Qbr-\-3a)xi^\.

The last factor equals

X3'--\rx2+hir^-\-3b)xir-,
r

and hence is the product of two hnear functions.

Corresponding results hold for any cubic curve /=0 without

singular points. We have shown that / can be reduced to

the special form 7^ by a linear transformation of a certain

determinant A. Follow this by the transformation which

multiplies xs by A and Xi by A"^^ and hence has the determin-

ant A~^ Thus there is a transformation of determinant

unity which replaces / by a form of type F, and hence replaces

the Hessian h oi f by the Hessian H of F. Hence there are

exactly four values of r for which i}/ = h-\-2Arf has a linear factor

and therefore three linear factors. These r's are the roots

of a quartic (l) in which a and b are functions of the coefi&cients
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of/. To see the nature of these functions, let Xi—\X2—nX3
be a factor of \p. After replacing xi by 'Kx2+fJiX3 in

\l/,
we

obtain a cubic function of X2 and X3 whose four coefficients

must be zero. Eliminating X and ai, we obtain two conditions

involving r and the coefficients of / rationally and integrally.

The greatest common divisor of their left members is the

required quartic function of r. Unless the coefficient of r^ is

constant, a root would be infinite for certain /'s. The inflexion

triangles of a general cubic curve /=0 are given by h-{-2^rf=0,

where h is the Hessian of f and r is a root of the quartic (1) in

which a and b are rational integral invariants off.

The explicit expressions for these invariants are very long;

they are given in Salmon's Higher Plane Curves, §§ 221-2,

and were first computed by Aronhold. For their short sym-

bolic expressions, see § 65, Ex. 4.

EXERCISES

1. Using the above inflexion triangle yiy-iys — O, where

rxi— X2= yY, ^rXi±:{rx-i-\-kxx) = 2yi, 2yi,

k={r^+2.b)/2, r^+k = l{r'-+ h)9^Q,

as shown by use of (1), we have the transformation

^rXi= yn-\-yi, {r--\-k)xi = ryi+D, {r'^+Ji)x2= —kyi-\-rD,

where D= y2—y:u Using (1) to eliminate a, show that

^ {r".j^b)F= -{y-^-y,') +Zyxyty,--(r^+U)yiK
8 r 8

Adding the product of the latter by 54 to its Hessian, we get the product

of yiyiyz by Z\r'^ +h) / r'^
. Hence the nine points of inflexion are found by

setting yi, y^, yz equal to zero in turn.

2. By multiplying the y's in Ex. 1 by constants, derive

/= a(3,3 +s,3 +233) +6|3ZiZ2Z3,

called the canonical form. Its Hessian is ^%, where

// = -aiS^Si' +S..' +23=') + (a3 +2/33)ZiZ223.

Thus find the nine inflexion points and show that the four inflexion triangles

are

ZiZ2Z3= 0, 2Zi'— 3/2iZiZ3= (/=!, w, w^),
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where w is an imaginary cube root of unity. Their left members are

constant multiples of 3h+rf, where r= 3/32,— (/«— ^)2 are the four roots

of (1), with

3. The Jacobian of /i(a;i, . . . , Xn), . . .
, fnixi, . . , Xn) is

dfndfn

Show that it is a covariant of index unity of /i, . . .
, fn-

4. Hence the resultant of three ternary linear forms is an invariant of

index unity.

5. If /i, . . . ,fn are dependent functions, the Jacobian is zero.



PART II

THEORY OF INVARIANTS IN NON-SYMBOLIC
NOTATION

15. Homogeneity of Invariants. We saw in § 11 that two

binary quadratic forms / and /' have the invariants

d = ac-b'^, s = ac'+a'c-2bh'

of index 2. Note that s is of the first degree in the coefficients

a, b, c oi f and also of the first degree in the coefficients of /',

and hence is homogeneous in the coefficients of each form

separately. The latter is also true of d, but not of the invariant

s-\-2d.

When an invariant of two or more forms is not homogeneous

in the coefficients of each form separately, it is a sum of invariants

each homogeneous in the coefficients of each form separately.

A proof may be made similar to that used in the following

case. Grant merely that s-\-2d is an invariant of index 2 of

the binary quadratic forms/ and/'. In the transformed forms

(§ 11), the coefficients A, B, C oi F are linear in a, b, c; the

coefficients A', B' , C of F' are Hnear in a', b', c' . By hypothesis

AC^A'C-2BB' ^2{AC-B'^)=^\s^2d).

The terms 2d!^ of degree 2 in a, b, c on the right arise only

from the part 2(AC-B^) on the left. Hence d is itself an

invariant of index 2; likewise s itself is an invariant.

However, an invariant of a single form is always homo-

geneous. For example, this is the case with the above dis-

criminant d of /. We shall deduce this theorem from a more

general one.

30
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Let / be an invariant of r forms /i, . . . ,/r of orders p\y

. . ., pT in the same q variables Xi, . . . , Xq. Let a particular

term ^ of / be of degree di in the coefficients of /i, of degree

d2 in the coefficients of /2, etc. Apply the special transformation

Xi=a^i, X2=(x^2, • • ., XQ=a^g,

of determinant A =a'^. Then/t is transformed into a form whose

coefficients are the products of those of ft by a^K Hence in

the function / of the transformed coefficients, the term cor-

responding to / equals the product of t by

This factor therefore equals A^, if X is the index of the invariant.

Thus
r

S dipi = \q.

Hence I,dipi is constant for all the terms of the invariant.

For the above two quadratic forms, r= pi — pi= 2. For invariant d,

we have di = 2, di= 0, '^dipi= 4: = 2\. For s, we have di = d.,= l, Zdtpi= 4:.

Again, the discriminant (§8) of the binary cubic form is of constant degree

4 and index X= 6; we have 7:dipi = i-3 = 2\.

If, as in the last example, we take r = l, we see that an

invariant of index X of a single ^-ary form of order p is of

constant degree d, where dp = X^, and hence is homogeneous.

16. Weight of an Invariant / of a Binary Form f. Give to

I and/ the notations in § 7. Let

be any term of /, and call

^ = ^1+2^2+3^3+ . . .+pep

the weight of /. Thus w is the sum of the subscripts of the

factors Oi each repeated as often as its exponent indicates.

We shall prove that the various terms of an invariant of a binary

form are of constant weight, and hence call the invariant isoharic.

For example, aQX^-\-2a\xy-\-a2y^ has the invariant 00^2— fli^,

each of whose terms is of weight 2.
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To prove the theorem, apply to/ the transformation

X=^, y=ari.

We obtain a form with the Uteral coefficients

Ao = ao, Ai=aia, A2 = a2a^, . . . , Ap = apa^.

Hence if I is of index X,

/(go, aia, . . . , apaP)=a^I{ao, ai, . . . , Up),

identically in a and the a's. The term of the left member
which corresponds to the above term / of / is evidently

CoQo^o . . . Qp^'va^.

Hence w = X. The weight of an invariant of degree d oi 2.

binary p-\z is thus its index and hence (§ 15) equals \dp.

17. Weight of an Invariant of any System of Forms. Let

/i, . . .
,
/„ be forms in the same variables X\^ . . . , Xg. We

define the weight of the coefficient of any term of ft to be

the exponent of Xa in that term, and the weight of a product

of coefficients to be the sum of the weights of the factors.

For q = 2, this definition is in accord with that in § 16, where

the coefficient at of a:iP~%2^' was taken to be of weight k.

Again, in a ternary quadratic form, the coefficients of xi^,

a;iit;2 and X2^ are of weight zero, those of X1X3 and ::C2^3 of weight

unity, and that of xs^ of weight 2.

Under the transformation of determinant a,

Xl = §1, . . . , Xq —I =^ ^q—l, Xg =Q;^j,

fi becomes a form in which the coefficient c' corresponding

to a coefficient c of weight k in ft is ca/^. If / is an invariant,

7(c')^q:V(c), identically in a. Hence every term of I is of

weight X.

Thus any invariant of a single form is isoharic; any invariant

of a system of two or more forms is isoharic on the whole, hut

not necessarily isoharic in the coefficients of each form separately.

The index equals the weight and is therefore an integer ^ 0.
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EXERCISES

1. The invariant a^a'2+a2a'Q—2aia'i of

Gox"^ -\-2aixy+a2y~, a' ox"^ -\-2a\xy -\-a'2y'^

is of total weight 2, but is not of constant weight in ao, Ci, a2 alone.

2. Verify the theorem for the Jacobian of two binary h'near forms.

3. Verify the theorem for the Hessian of a ternary quadratic form.

4. No binary form of odd order p has an invariant of odd degree d.

^0,

18. Products of Linear Transformations. The product TT' of

a 13

7 5

' a'a p

7

is defined to be the transformation whose equations are obtained

by eliminating ^ and r? between the equations of the given

transformations. Hence

la"=aa'+/37',i8"=a/3'+/35',7" = 7a'+ 57',5" = 7/3'+ 55'.

Its determinant is seen to equal AA' and hence is not zero.

By solving the equations which define T, we get

,.5 /3 —7 a

A A-^ A A-^

These equations define the transformation T~^ inverse to T\

each of the products TJ"^ and T~'^T is the identity trans-

formation a; = X, y=Y

.

The product of transformation Tq, defined in § 1, by T^' is seen to equal

Tgj^Q', in accord with the interpretation given there. The inverse of

Tb is

T -e: ^= X cos e -\-y ?,\n e , 77= — x sin e+y cos 0.

Consider also any third linear transformation

Ti: X=axU+&iV, Y = yiU+biV.

To prove that the associative law

{Tr)Ti = T{T'Ti)
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holds, note that the first product is found by eliminating first

^, rj and then X, Y between the equations for T, T, Ti, while

the second product is obtained by eliminating first A"^, Y and

then ^, 7] between the same equations. Thus the final eliminants

must be the same in the two cases.

Hence we may write TT'Ti for either product.

19. Generators of All Binary Linear Transformations. Every

binary linear homogeneous transformation is a product of the

transformations

Tn: x=^+nri, y = v;

S,: x=^, y = kr) (k^O);

V: x=-v, y=^-

From these we obtain *

]/'-i = F^: x = v, y= — ^',

V-^T-nV=^T'n: x = x', y = y-\-nx';

V-'StV =S\: x = kx', y-^y' (k^O).

For 55^0, the transformation T in § 18 equals the product

For 5 = 0, SO that iSy^^O, T equals

SyS' -pi -a/pV

'

20. Annihilator of an Invariant of a Binary Form. The

binary form in § 7 may be written as either of the sums

/=S y.\ aiX^-^y = ^ y.\ ap-iX'yP-K

Transformation V, of determinant unity, replaces the second

sum by

ii^^a,-t{-ly^r>-^r,i,

Comparing this with the first sum we see that an invariant

of/must be unaltered when

(1) di is replaced by { — lYap-i (i = 0, 1, . . . ,p),

* The T's are of the nature of translations, and the 5's stretchings.
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By § 16, a function I{ao, ..., Gp) is invariant with respect

to every transformation St if and only if it is isobaric.

Finally, the function must be invariant with respect to

every r»; under this transformation let

Differentiating partially with respect to n, we get

since T7 = y is free of n, while ^ = x— nri. The total coeflScient

of ^p-V is

the second term being absent if 7=0. But

Hence]

dn dAi dAo QA3 ^ QAp

Now I(ao, . . . , dp) is invariant with respect to every

transformation T„, of determinant unity, if and only if

I{Ao, . . . , Ap)=I{aQ, . . . , dp),

identically in n and the a's. This relation evidently implies

dljAo, • • • , ^p) ^Q

Conversely, the latter implies that /(^o, . • . , Ap) has the

same value for all values of n and hence its value is that given

by n = 0, viz., I(ao, . . . , Gp). Hence / has the desired property

if and only if the right member of (2) is zero identically in

n and the a's. But this is the case if and only if

f2/(ao, . . . , ap)=0,
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identically in the a's, where 2 is the differential operator

dai 3^2 das 9«p

In other words, I must satisfy the partial differential

equation 12/ = 0. In Sylvester's phraseology, / must be anni-

hilated by the operator Q.

From this section and the preceding we have the important

Theorem. A rational integral function I of the coefficients

of the binary form f is an invariant of f if and only if I is iso-

baric, is unaltered by the replacement (1), and is annihilated

by n.

EXAMPLE

An invariant of degree d of the binary quartic (§6) is of weight 2d

(end of § 16). For J=l, the only possible term is kai] since 0=U{ka2)
= 2kai, we have ^=0, For J =2, we have

/= raodi +saia3 +ta2'^,

i2/= (5+4r)aoa3+ (4/+35)aia2= 0,

5=— 4r, i= 3r, /= r(aoa«-4aia3+3cj*).

EXERCISES

1. Every invariant of degree 3 of the binary quartic is the product of a

constant by

J= ao(i2ai-\-2aia2a3— Goaz'^— Oi^ai— a2^.

2. The invariant of lowest degree of the binary cubic

aoX^+3aiX^y+3a2xy'^+a3y^

is its discriminant (aoOs— oiOa)^— 4(ao02— ai^)(aia3— 02^).

3. An invariant of two or more binary forms

C0XP1+. . ., boxP^+. . ., CoxP^+. . .

is annihilated by the operator

sn^oo— +2a,— +. . .+bo~-+2bi~+. . .+Co— +. . . .

dai da2 dbi dbz dCi

4. Every invariant of

aox^+2aixy+a2y^, boX^+2bixy+b2y^
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of the first degree in the a's and first degree in the 6's is a multiple of

a<,bi+a2bo—'2aibi.

5. A binary quadratic and quartic have no such lineo-hnear invariant.

6. Find the invariant of partial degrees 2, 1 of a binary linear and

a quadratic form.

7. Find the invariant of partial degrees 1, 2 of a binary quadratic and a

cubic form.

8. The first two properties in the theorem of § 20 imply that / is homo-

geneous. For, under replacement (1), any term cao% . . . Up^P of /, of

weight w= ei+2e2+ . . . +pep, implies a term zLcao^^ai^P-i . . . ap%

of weight w~ep-i+2ep-2+ . . . + ip— l)ei+ peo. Adding the two

expressions for w, show that the degree d= ea+ei+ . . . -{-Cp is the constant

2w/p.

21. Homogeneity of Covariants. A covariant which is not

ho}}ws;cncous in the variables is a sum of covariants each homo-

geneous in the variables.

For, il a, b, . . . are the coefficients of the forms, and K
is a covariant,

K(A, B,. . .; ^,v, • .)=A^K(a, b, . . .; x, y, . . .).

When X, y, . . . are replaced by their linear expressions in

I, 77, ... ,
the terms of order co in x, y, . . . on the right (and

only such terms) give rise to terms of order co in ^, 7?, . . . on

the left. Hence, if A'l is the sum of all of the terms of order

0) of K,

Ki(A, B,...;^,v,.. .)=A^Ki(a, b, . . . ; x, y, . . .),

and A'l is a covariant. In this way, K = Ki-\-K2+ . . . .

Henceforth, we shall restrict attention to covariants which

are homogeneous in the variables, and hence of constant order.

A covariant K of constant order oi of a single form f is homo-

geneous in the coefficients, and hence of constant degree d.

For, let / have the coefficients a, b, . . . and order p, and

apply the transformation x = a^, y=aT], .... The coefficients

of the resulting form are A =aPa, B=a^b Thus

K(a^a,a^'b,. . . ; a-^x,a-^y,. . .)^(aiyK(a,b, . . . ;x,y, . . .)^

identically in a, a, b, . . . , x, y, . . . , since the left member
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equals K(A, B, . . .
; ^, v, - - )- Now K is homogeneous

in X, y, . . . , of order w; thus

a-"K(aPa, aPb, . . .; X, y, . . .)=a^^K{a, b, . . . ; x, y, . . .).

Thus if A' has a term of degree d in a, b, . . . , then

a-"-aP'^=a«\ pd — (x} = q\,

so that d is the same for all terms of A'.

// / is a form of order p in q variables and if K is a covariant

of degree d, order co and index X, then pd— w = q\.

22. Weight of a Covariant of a Binary Form. In

f= aQxTP-\-paixP-^y-\-. . .-\-i.\aiX^-'y^+. . .+apyP

the weight of at is k. We now attribute the weight 1 to :«;

and the weight to y, so that every term of / is of total

weight p.

Apply to/ the transformation x=^, y=ar]. The hteral

coefficients of the resulting form are

^0 = ^0, Ai=aai, . . ., Ap=aPap.

If A is a covariant of degree d, order co, and index X, then

K(Ao, . . . , Ap] ^, 7]) =a^K{ao, . . . , ap-, x, y).

Any term on the left is of the form

cAo'oAi'i . . . Ap'p^^yf {eo-\-ei+ . . . +ep=d).

This equals

coQ^mi^ . . . ap'vx'y'^-'a^-'' {W = r-\-ei+2e2+ . . . +pep).

This must equal a term of the right member, so that

W—<ji = \. But W is the total weight of that term. Hence

every term of A is of the same total weight. A covariant

of index X and order oj of a binary form is isobaric and its weight

is co+X.

For a form /of order p'm q variables, we attribute the weight 1 to Xi, Xi,

. . . , ajj.i and the weight to Xq\ then (§ 17) every term of/ is of total

weight p. By a proof similar to the above, a covariant of index X and order

to of / is isobaric and its weight is w+X.
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Consider a covariant K homogeneous and of total order w in the variables

Xi, . . . , Xq of two or more forms /j. As in § 15, K need not be homo-

geneous in the coefificients of each form separately, but is a sum of covariants

homogeneous in the coefificients of each. Let such a. K he oi degree dt in

the coefificients of /(, of order />j. As in ^21, ^pidt—u— qX. The total

weight oi K is o}+ \.

For example, ii pi = po= q = 2,

/i = aoX^+2aixy +a2y-, fi= boX^+2bixy+biy'^.

The Jacobian of /i and fi is 4^", where

K = {aohi — aibo)x^+ (aob2— a2bo}xy+ (aib2— a2bi)y''.

Here

di = d2=l, w = 2, X = 1 , and K is of weight 3.

23. Annihilators of Covariants K of a Binary Form. Pro-

ceeding as in § 20, we have instead of (2)

9 AY /I A t \ V ^KdAj dK d^.dKdv—K{Ao, . . . , Ap-y ^, v) = 2 —
dn j=odAj dn d^ dn dv dn

and obtain the follov^^ing result: K is covariant with respect

to every transformation x=^+ «?7, >' = ??, if and only if it is

annihilated by *

(1) fi-3'l- ffi = ao-^+. . .^pa^-x^
9^ \ 9a 1 9«p

The binary form is unaltered if we interchange x and y,

Gi and Qp-i ior i = 0, 1, . . .
, p. Hence A' is covariant with

respect to every transformation x=^, y = r}-\-fi^, if and only

if it is annihilated by

(2) 0-x^ (o^pa,^~Hp-l)a2^-+. • •+«.^).
dy \ dao dai dcip-\/

Denote a covariant of order co of the binary p-'ic by

K = Sx"+Six''-'^y-\-. . .+5.y'*'.

* For another derivation, see the corollary in § 47.
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By operating on K by (2), we must have

{OS-Si)x''+{OSi-2S'2)x^-'y^. . .+ (06',_] -co^Jx^-^

•1.1,- XT r-u +bS^r^O,
identically in x, y. Hence A becomes

(3) K = Sx"-hOSx'^-'y-\-hO^Sx''-Y+ - • •+^0"^/',

whik.by O6'. = 0,

(4) O"+'6' = 0.

Hence a covariant is uniquely determined by its leader S.

(Cf. §25).

Similarly, K is annihilated by (l) if and only if

(5) 125 = 0, nSi = uS, 1252=(a;-l)5i, ..., QS^ = S^-i.

The function 5 of ao, • • • , dp must be homogeneous and

isobaric (§§21, 22). If such a function 6* is annihilated by

Q, it is called a seminvariant. If we have S^, we may find

6*0,-1 by (5), then 8^-2, • • • ,
and finally Si. But if K is

a covariant, we can derive S^ from S. For, by § 20, the

transformation x=—-q, y=i replaces / by a form in which

Ai = { — '[yap-u by the covariance of A',

6'U)r+ - • .=6U)r+ . . .^S{a)x'^-\-. . .+6'.(a)r,

so that Soi{a) =S{A). Hence S^ is derived from 5 by the

replacement (1) in § 20.

When the seminvariant leader S is given, and hence also co

(see Ex. 1), the function (3) is actually a covariant of/; likewise

the function whose coefficients are given by (5). Proof will be

made in § 25. In the following exercises, indirect verification

of the covariance is indicated.

EXERCISES

1. The weight of the leader 5 of a covariant of order w of a binary form

/ is W ~u= X and hence (§ 21) is ^(pd—w). Thus S and / determine u.

2. The binary cubic has the seminvariant S= aoa2— ai''. A covariant

with 5 as leader of is order to= 2 and is

(aoflo— Ci^)^^+ (aofls— aia2)xy+ (aiOs— a2-)y''.

Since this is the Hessian of the cubic, it is a covariant.
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3. Find the covariant of the binary cubic / whose leader is

Co^fls— 3aoaitX2+2ai^ the only seminvariant of weight 3 and degree 3. It

is the Jacobian of / and its Hessian.

4. A covariant of two or more binary forms is annihilated by

2fi-?/— , ZO-x—.
dx dy

5. Find a seminvariant of weight 2 and partial degrees 1, 1 of a binary

quadratic and cubic. Show that it is the leader of the covariant

{aob2~2aibi +a-,bo)x+ (aobi— 2ai&2 +a2bi)y.

24. Alternants. Consider the annihilators

p p. p-i
p)

fi = 2 7(7^-1— =2 {k+ l)at:
3=1 d(Jj k=o dOk + i

= 2 {p-j-^i)aj-^^z' {p-k)a,+^:^

of invariants of a binary form. We have

P f p, p-l ?^2 1

nO = ^ jaj-A(p-j+ l)-^—^^ (p-k)a, +r-^\.,

P-I f p. P o2
00 = 2 (p-k)at + i\(k-\-\)^—1-2 jaj-i-^—

A.-=o
[

9at+i y=i 9d't9(/>

The terms involving second derivatives are identical. Hence

fiO-OS2 = 2 (i-\-l)(p-i)ai—-Zi{p-i-hl)ai^
i=o 9^1 »=i 9^

= 2 (p-2i)ai--,
t=o 9«t

since the first sum is the first sum in fiO with j replaced by
i-\-l, and the second is the first sum in 00 with k replaced

by i—1.

If 6* is a homogeneous function of ao, . . . , Op of total degree

d and hence a sum of terms

cao'oai^i . . . Qp'v {eo-\-ei-\-. . .+ep = d),

we readily verify Euler's theorem:

«=o ddi
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If 5 is isobaric, It is a sum of terms

t = cao<^oai^i . . . dp^p (^1+2^2+. . .+pep=w)

where w is constant; then

P Ql P P g^
S idi— =2 iett = wt, S ?a,— = wS.

% =0 9^1 % =0 » =0 9a<

Hence if S is both homogeneous (of degree d) and isobaric

{of weight w) in ao, . . . , dp, then

(1) {W-0^)S = oiS, o} = pd-2w.

A covariant with the leader S has the order w. (Ex. 1, § 23.)

Since OS is of degree d and weight w-\-l, we have

(1202 - 0212)5= (120- 012)05 +0(120- 012)5

= (co - 2)05+aj05 = 2(co- 1)05.

Hence for r = 1 and r = 2, we have

(2) (l20'--0^12)5 = r(co-r+ l)0'-i5.

To proceed by induction, note that (2) implies

(120^+1 -0'-+il2)5= (120'--0'-12)05+0^(12C>-Ol2)5

= r(co-2-r+l)0'-5+coO'-5 = (r+ l)(co-r)0''5,

so that (2) holds also when r is replaced by r+ 1.

25. Seminvariants as Leaders of Binary Covariants.

Lemma. // 5 is a seminvariant, not identically zero, of degree

d and weight w, of a binary p-ic, then dp — 2wl0.

Suppose on the contrary that 5 is a seminvariant for which

w<0, where u = dp — 2w. By the definition of a seminvariant,

125 = 0. Hence, by (2), § 24,

(1) UO'S = r{o:-r+ l)0'-''S (r = l, 2, 3, . . .)

and no one of the coefficients on the right is zero. But

being of degree d and weight dp+ l; in fact, the largest weight

of a function of ao, . . • , dp oi degree d is dp, the weight of

a/. Then (1) for r = dp-wi-l gives O'*^-"'5 = 0. Then (1)
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for r =dp-w gives O''^""'-' 5 = 0, etc. Finally, we get 5 = 0,

contrary to hypothesis.

Theorem. There exists a covariant K of a binary p-ic

whose leader is any given seminvariant S of the p-ic.

The covariant K is in fact given by (3), § 23. By (1),

for r = co4-l,

fiO"+i5= 0.

Hence 0""'"^5'
is a seminvariant of degree d and weight

w' =w-\-ii}-\-\ =pd—w-{-l.

Then dp-2w' = -{pd-2w)-2 is negative. Hence (4), §23,

follows from the Lemma. Thus K is annihilated by the

operator (2), § 23. Next, in

^-y^]K,

the coefficient of x" y is

r
\w'S—-^U-r+\)0^-'S^-.W^S-r{u^-r+\)0:-'S\,

which is zero by (1). Hence K is covariant with respect to all

of the transformations Tn and T'n of § 19. Now

r_irir_i = F: x=-y, y=x,

as shown by eliminating ^, t], ^\, r]i between

y= V, 1 j/ = »?i + ^i, 1 vi= y.

Since K is of constant weight, it is covariant with respect to

every St (§ 16). Hence, by § 19, K is covariant with respect

to all binary linear transformations.

26. Number of Linearly Independent Seminvariants.

Lemma. Given any homogeneous isobaric function S of

ao, . . . , Gp of degree d and weight w, where co= dp — 2w>0,
we can find a homogeneous isobaric function Si of degree d and
weight w-\-l such that fi5i =5.
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In (2), § 24, replace 5 by W'^S, whose degree is d and

weight is w— r -}-l, so that its co is a)+2/'— 2. We get

W^n'-'^S-0'-n'S^r{o:-\-r-l)0'-^2'-^S.

Multiply this by

(-1)'""^ ^ .

^ ^ r!co(a;+ l) . . . {co-\-r-l)

The new right member cancels the second term of the new

left member after r is replaced by r — l in the latter. Hence

if we sum from r = l to r = w-\-l, the terms not cancelling are

those from the first terms of the left members, that from the

right member for r = l, and that from the second term on

the left for r=w-]-l. But the last is zero, since O'^+^6'^0,

ff''S being of weight zero and hence a power of ao. Hence

we get Q,Si=S, where

r=irlco{cjo-\-l) . . . (co+r-l)

Theorem.* The number of linearly independent seminvariants

of degree dand weight w of the binary p-ic is zero if pd— 2w<0,
but is

{w; d, p)-(w-l; d, p),

if pd — 2w't_0, where (w; d, p) denotes the number of partitions

of w into d integers chosen from 0, 1, . . .
, p, with repetitions

allowed.

If p^4, (4; 2, p) = S, since 4+0, 3+ 1, 2+2 are the partitions of 4 into

2 integers. Also, (3; 2, p) = 2, corresponding to 3+0, 2+ 1. Hence the

theorem states that every seminvariant of degree 2 and weight 4 of the

binary p-ic, p^i, is a numerical multiple of one such (see the Example

in § 20).

The literal part of any term of a seminvariant 6* specified

in the theorem is a product of d factors chosen from ao, oi,

. . . , Op, with repetitions allowed, such that the sum of the

subscripts of the d factors is w. Hence there are {w; d, p)

possible terms. Giving them arbitrary coefficients and oper-

ating on the sum of the resulting terms with fi, we obtain

a linear combination S' of the (w— 1; d, p) possible products

* Stated by Cayley; proved much later by Sylvester.
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of degree d and weight w-\. By the Lemma there exists*

an 6" for which 9.S is any assigned S' . Thus the coefficients

of our S'^9,S are arbitrary and hence are hnearly independent

functions of the {w; d, p) coefficients of S. Hence the con-

dition S25= imposes (w-1; d, p) Hnearly independent linear

relations between the coefficients of 5 and hence determines

(w— 1; d, p) of the coefficients of S in terms of the remaining

coefficients. Thus the difference gives the number of arbitrary

constants in the general seminvariant S, and hence the number

of linearly independent seminvariants S.

27. Hermite's Law of Reciprocity. Consider any partition

W = «l+ «2+ . . .+«5

of IV into b^d positive integers such that p'^ni^n2 ... ^ Wj.

Write «i dots in a row; then in a second row write m dots

under the first no dots of the first row; then in a third row

write «3 dots under the first ns dots of the second row, etc.,

until w dots have been written in 8 rows.

Now count the dots by columns instead of by rows. The

number nn of dots in the first (left-hand) column is 8; the

number m2 in the second column isj;«i; etc. The number

of columns is wi ^ p. Hence we have a partition

w = mi-\-m2-\-. . .-\-m^

of IV into TT ^ p positive integers not exceeding d.

Hence to every one of the {w; d, p) partitions of the first

kind corresponds a unique one of the {w; p, d) partitions of

the second kind. The converse is true, since we may begin

with an arrangement in columns and read off an arrangement

by rows. The correspondence is thus one-to-one. Hence

(w; d, p) = {w; p, d).

By two apphcations of this result, we get

(w; d, p)-{w-l; d, p) = (w; p,d)-iw-l; p,d).

Hence, by the theorem of § 26, the number of linearly independent

Provided />(/-2(!ci-l)>0, which holds if /'(i-2i<:'^0. But if pd-2w<0,

our theorem is true by the Lemma in § 25.
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seminvariants of weight w and degree d of the binary p-ic equals

the number of weight w and degree p of the binary d-ic.

Let dp— 2w= o}^0. Then, by the theorem of §25, each

seminvariant in question uniquely determines a covariant of

order w.

The number of linearly independent covariants of degree

d and order w of the binary p-ic equals the number of linearly

independent covariants of degree p and order w of the binary d-ic.

The covariants are of course invariants if and only if = 0.

EXERCISES

1. Show by means of (1), § 24, that w—hpd for an invariant.

2. Show that (6; 6, 3) = 7, (5; 6, 3) = 5. Find the two linearly inde-

pendent seminvariants of weight 6 and degree 6 of the binary cubic.

3. There are only two linearly independent seminvariants of degree

4 and weight 4 of a binary quartic. Find them.

4. There is a single invariant or no invariant of degree 3 of the binary

P-ic according as p is or is not a multiple of 4. (Cayley.)

Hint: Every invariant of the binary cubic is a product of a constant

by a power of its discriminant, of order 4 (§ 30).

5. The binary p-ic has a single covariant or no covariant of order p
and degree 2 according as p is or is not a multiple of 4. (Cayley.)

Hint: Every covariant of the binary quadratic /is of the type c D^f*,

where c is a constant and D the discriminant of / (§ 29.) The degree 2«+w»
of the product equals its order 2m if m= 2n. Thus / has a covariant of

order and degree p if and only if ^ = 4«, viz., c Z)"/"".

6. No covariant of degree 2 has a leader of odd weight.

7. If 5 is of degree di in the coefficients of a binary pi-ic, of degree

d2 in the coefficients of a p2-ic, . . . , and of total weight w, (2), §24,

holds with fi and replaced by 212 and 20, and co replaced by I,pidi—2w.

For any such S, there exists an ^i of partial degrees di and total weight

w+ 1 for which {ZQ)Si = S. If 5 is a seminvariant, co^O. Generalize

§§ 26, 27, using (w; du pr, di, pu . . ) to denote the number of ways in

which w can be expressed as a sum of di or fewer positive integers ^/>i,

of di or fewer positive integers^/»2, etc.
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Fundamental System of Covariants of a Binary Form,

§§ 28-31

28. Certain Seminvariants. For ao9^0, we may set

f= aoX^-]-paixP~'^y-{-. .
.+apyP = ao(x-aiy) . . . (x-apy).

Apply to / the transformation

r„: x=^-\-nr], y = -q.

Then each root aj of / = is diminished by w, since

X— aiy= ^—(ai — n)r].

Hence the difference of any two roots is unaltered.

In particular, if n=—ai/ao, f is transformed into the

reduced form
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Since /' was derived from / by a linear transformation of

determinant unity, any seminvariant S oif has the property

S{ao,

Hence any rational integral seminvariant is the quotient

of a polynomial in ao, A2, . . , ^j; by a power of gq. For

/> ^ 4, we shall find which of these quotients equal rational

integral functions of ao, . . . , Op and hence give rational integral

seminvariants. The method is dua to Cayley.

For p = l, S is evidently a numerical multiple of a power

of ao. Since co is the leader of the covariant /=aox+aiy of

/, we conclude that every covariant of a binary linear form /
is a product of a power of / by a constant; in particular, there

is no invariant.

29. Binary Quadratic Form. Since A2 does not have the

factor ao, we conclude that every rational integral seminvariant

is a polynomial in ao and A2. Now A 2 is an invariant of /
(§4), and ao is the leader of the covariant/ of/. Hence a

fundamental system of rational integral covariants of the binary

quadratic formf is given hyf and its discriminant A2. We express

in these words our result that any such covariant is a rational

integral function of/ and A2.

30. Binary Cubic Form. We seek a polynomial P(ao, ^2,^3)
with the implicit, but not expHcit, factor ao. Write A'l for

the terms of Ai free of ao:

(1) A'2 = -ai\ A'^ = 2a,K

We desire that P(0, A' 2, ^'3) =0, identically in ai. Now

4^V+^V^0,

(2) 4.A2^+Az^^ao''D,

where D is the discriminant of the cubic form,

D = a^rr.:r — Gaoaia2a3 +4aoa2^ +4ai^a3 — 3ai^a2^.
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By means of (2) we eliminate As~ and higher powers of

A3 from P(ao, A2, A 3) and conclude that any seminvariant

is of the form w/ao'^, where tt is a polynomial in ao, A2, A3, D,

of degree 1 or in yl 3. li k>0, we may assume that not every

term of x has the explicit factor ao- In the latter case, t does

not have the implicit factor ao- For, if it did,

x' = 7r(0, A'o, A's, D')=0, D' = 4:ai^a3-Sai^a2^.

Since as occurs in D', but not in A'2 or ^'3, tt' is free of D'.

By (1), the first power of A'3 is not cancelled by a power of

A'2. Hence tt' is free of A'3 and hence of A'2-

A fundamental system of rational integral seminvariants of

the binary cubic is given by ao, A2, A3, D. They are connected

by the syzygy (2).

A fundamental system of rational integral covariants of the

binary cubic f is given by f, its discriminant D, its Hessian H,

and the Jacobian J off and H. They are connected by the syzygy

(3) 4H^+J-^fW.

The last theorem follows from the first one and (2), since

ao, A2, A3 are the leaders of the covariants/, //, /.

31. Binary Quartic Form. We first seek polynomials

P(ao, A2, A3, Ai) with the impHcit, but not explicit, factor

oq. Thus

r = P{0,A'2,A'3,AU)^0, A'2=-ai\ A'3 = 1ax\ A\= -Za^K

The simplest P' is evidently 3^1 '2" +.4 '4. We get

/44+3/l22 = ao-/, / = aoa4-4aia3+3a22.

We drop Ai, and consider polynomials 7r(ao, Ao, A3, I) with

the imphcit, but not exphcit, factor, ao. Such a polynomial

is given by (2) , § 30. For ao = 0, D= -ai^I = A '2I. We have

A2l-D = aQj,

J = aoa2a4 — aoCa^+ 2aia2a3 — ai-a4 — ao^.

Eliminating D between this relation and (2), § 30, we get

(1) ao-V-ao2^2/+4^2^+^32 = 0.
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In view of their origin, / and / are seminvariants of the

quartic /. Since they are unaltered by the replacement (1),

§20, they are invariants of/ {cf. §20, Example and Ex. 1).

In view of (I), tt equals a polynomial ^ in ao, A2, A^, I, /,

of degree or 1 in ^3. Suppose that (/> does not have the

explicit factor oq. Then the equal function of ao, . . . , a^ is

not divisible by Qq. For, if it were,

(/)(0, — fli^, 2ai3, 302^ — 4aia3, —ai^a^-]-. . .)— 0-

In view of the term a^, <i> cannot involve /, and hence not /.

Nor can </> be linear in ^3 in view of the odd power a\^. Hence

is free of ^3 and hence of ^2.

A fundamental system of rational integral seminvariants of

the binary quartic is given by ao, A2, A3, I, J. They arc con-

nected by the syzygy (1).

A fundamental system of rational integral covariants of the

binary quartic f is given by f, its invariants I and J, its Hessian

H and the Jacobian G of f and H. They are connected by the

syzygy

(2) f^J-fmi-\-im-\-G^^O.

The second theorem follows from the first one, since ao,

A2, A3 are the leaders of the covariants/, H, G.

It would be excessively laborious, if not futile, to apply

the same method to the binary quintic, whose fundamental

system is composed of 23 covariants,* most of which are

very complex. The symbolic method is here superior both

as to theory and as to compact notation (see Part III.).

Canonical Form of Binary Quartic. Solution of Quartic

Equations

32. Theorem. A binary quartic form f, whose discrim-

inant is not zero, can be transformed linearly into the canonical

form

(1) X^+ Y^+QmX^YK
* Faa di Bruno, Thcorie der Bindren Formen, German tr. by Walter, 1881,

pp. 199, 316-355. Salmon, Modern Higher Algebra, Fourth Edition, 1885, p.

227, p. 347.
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The reason there is here a parameter m lies in the existence

of two invariants / and / of weights (and hence indices) 4

and 6, and hence a rational absolute invariant P/J-, i.e., one

of index zero, and consequently having the same value for/

and any form derived from / by linear transformation.

Since / vanishes for four values of x/y and hence is the

product of four linear functions, it can be expressed (in three

ways) as a product of two quadratic forms, say those in the

right members of the next equations. To prove our theorem

it suffices to show that there exist constant p, q, r, s (each 5^0)

and a, /3 {a 9^0) such that

p(x -]-ay)~-\-q(x-\-l3y)^ ^ ax^-\-2bxy-\-cy^,

r(x +ay)- +5(x +/3y)- = gx^+ 2hxy+ ky^.

For, the product/ of these becomes (1) by the transformation

A' = '^pr {x+ay) , Y = ^qs {x+ ^y)

,

of determinant 5^0. The conditions for the two identities are

p-\-q = a, pa-\-qfi = b, pa'^-\-q0^ = c,

r-\-s = g, ra-\-s0 = k, ra^-{-s^^ = k.

The first three equations are consistent if

1 1 a

a ^ b ^{^-a)=C-b(a+l3)-\-aa^ = 0.

If p = 0, or if q = 0, the same equations give b'~ = ac, so that the

first quadratic factor of / and hence / would have a dcuble

root. Similarly, the last three equations have solutions r^^O,

^-//(a+/3)+ga/3 = 0.

If the determinant ah— bg is not zero, the last two relations

determine a 4-/3 and a^, and hence give a and /3 as the roots of *

{ah — bg)z- — (ak — cg)z-\-bk — ch = 0.

* Its left member is obtained by setting x/y= — s in the Jacobian of the two

quadratic factors of /.
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If its roots were equal, the two relations would give

C-2ba-\-aa^ = 0, k-2ha-\-ga^ = 0,

and the two quadratic factors of/ would vanish for x/y= -a.

If ah-bg = 0, but ch — bk^^O, we interchange x with y

and proceed as before. If both determinants vanish, either

b9^0 and the second quadratic factor is the product of the

first by h/b, or else b = and hence h = and no transfor-

mation of/ is needed.

33. Actual Determination of the Canonical Quartic. Let

A denote the determinant of the coefficients of x, y in A', Y.

Then /, its invariants / and / and Hessian H are related to

the canonical form, its invariants and Hessian, as follows:

/ = A4(l+3m2), J^A^(m-m^),

Zr = A2iw(X4+F^) + (l-3w2)X2 72|_

Thus A^m may be found from the resolvent cubic equation

4(A2w>^-/(A2w)+/ = o.

Then A* may be found from /. We may select either square

root as A2 and hence fmd m. In fact, by replacing .Y by

XV — 1 in /, the signs of A2 and m are changed. By elim-

inating X^+F^, we get

If 9^2=1, / is the square of X'^dzY'^ and the discriminant of

/ would vanish. Hence we obtain XY by a root extraction.

Thus X and F are determined up to constant factors / and

t'^. We may find / by comparing the coefficients of .t^ and

x^y in / and the expansion of its canonical form, or by use

of the Jacobian G oi f and H:

G = ^K\-9m^~)XY{X^-Y^),

and combining the resulting X*— F^ with the earlier A^^-f-F'*.

Or from/ and XY we can find A'2+ F2 and then X±F.
To solve /= 0, we have only to find the canonical form
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Seminvariants, Invariants, and Covariants of a Binary

Form/ as Functions of the Roots of/=0, §§ 34-37.

34. Seminvariants in Terms of the Roots. Give / the nota-

tion used in § 28, so that ai, . . . , ap are the roots of /=0.

After removing possible factors ^o from a given seminvariant

of /, we obtain a seminvariant 5 not divisible by qq. Let

5 be the degree of the homogeneous function S of the a's.

Thus S is the product of a^ by a polynomial in ai/ciQ, . . . , dp/ao

of degree 8. The latter equal numerical multiples of the ele-

mentary S}'mmetric functions of ai, . . . , ap, each of which

is linear in every root. Hence our polynomial equals a sym-

metric polynomial a in ai, . . . , ap of degree 5 in every

root.

Since S is of constant weight w and since at/ao equals a

function of total degree i in the roots, a is homogeneous in

the roots and of total degree w in them.

Besides being homogeneous and isobaric in the a's, a sem-

invariant must be unaltered by every transformation Tn of

§ 28. Under that transformation, each root is diminished,

by w (§28). Since

ai = ai-{-{ai— ai) (^ = 2,. . .
, p)

we can express o- as a polynomial P(ai) whose coefficients

are rational integral functions of the differences of the roots.

If P{ai) is of degree ^1 in ai, we have P(ai)=P{ai — tt), for

all values of ?i. But an equation in n cannot have an infinitude

of roots. Hence P(ai) does not involve ai, so that a equals

a polynomial in the differences of the roots.

Multiplying by the factors ao removed, we obtain the

theorem

:

Any seminvariant of degree d and weight w of the binary

form aQX^-\-. . . equals the product of a(f by a rational integral

symmetric function a of the roots, homogeneous {of total degree

w) in tJie roots, of degree ^ d in any one root, and expressible

as a polynomial in the differences of the roots.

Conversely, any such product can be expressed as a poly-

nomial in the a's and this polynomial is a seminvariant.



54 ALGEBRAIC INVARIANTS

Since the factor o- is symmetric in the roots, and is of degree

^d in any one root, its product by ao'^ equals a homogeneous

polynomial in the a's whose degree is d. This polynomial is

isobaric since a is homogeneous, and is unaltered by every

transformation T„, since o- is expressible as a function of the

differences of the roots.

The importance of these theorems is due mainly to the

fact that they enable us to tell by inspection (without com-

putation by annihilators) whether or not a given function of

the roots and ao is a seminvariant. A like remark applies to

the theorem in § 35 on invariants and that in § 36 on covariants.

EXAMPLE

The binary cubic has the seminvariant

ao*2(ai— a2)(ai— a3)=aoK^«i"~2:aia2)
3

= CoM(2ai)='-3Saia2}=ao-| (
—
-j -sl— ) i

= -9{aoa2-ai^).

35. Invariants in Terms of the Roots. A seminvariant of

/ is an invariant of / if and only if it is unaltered by the trans-

formation X = - 77, >» = H§ 20) . For the latter,

X—ay= —al ^H— r?j,

so that ar is replaced by — Ifar, and hence ar-as by

ar— as

(XrOCs

The coefficient of ^^ in the transformed binary form is

Ao = ( — iyaia2 . . . ocpao.

By § 34, any seminvariant of / is of the type

ao'^2ci(product of w factors like ar — as).

Hence this is an invariant if and only if it equals

(^-iyd(^ai . . . a:p)'^ao'^Sct( product of the w corresponding-^^



§35] INVARIANTS IN TERMS OF THE ROOTS 55

and hence if ±0:1'' . . . ap'^ equals the product of the factors

arOis in the denominators. This is the case if and only if each

root occurs exactly d times in every term of the sum and if

pd is even. By the total number of a's, pd = 2w.

Any invariant of degree d and weight w of the binary form

aoX^-\- . . . equals the product of ai,^ by a sum of products of

constants and certain dij'erences of the roots, such that each root

occurs exactly d times in every product; moreover, tJie sum equals

a homogeneous symmetric function of the roots of total degree w.

Conversely, the product of any such sum by ao'^ equals a rational

integral invariant.

EXERCISES

1. a(,^{ai—a2)- is an invariant of the binary quadratic form. Any
invariant is a numerical multiple of a power of this one.

2. ai,-2(ai— a2)'(«3— 04)' is an invariant of the binary quartic.

3. 00^2(01—a2)(ai— a:)) is not an invariant of the binary cubic.
3

4. If we multiplyrtn^'''"^' by the product of the squares of the differences

of the roots of the binary p-ic f, we obtain an invariant (discriminant of

/) . Also verify that pd= 2w.

5. The sum of the coefficients of any seminvariant is zero.

Hint: Use/= (x + y)^, whose roots are all equal.

6. Every invariant of the binary cubic is a power of its discriminant.

7. A function which satisfies the conditions in the theorem of § 35

except that of symmetry in the roots is called an irrational invariant. If

aj, . . . , a4 arc the roots of a binary quartic/, and

U=(ai—ai)(a-i—a3), V= {a>— ai)(a:i—ai) , W= {ai—a2)(a3—a4)

,

why are aou, a„v, aoW irrational invariants of /? They are the roots of

z'— 12/2— 5= 0, where 5- is the product of ao" by the product of the squares

of the differences of the roots and hence is the discriminant of/. Hints:

tt+Z)+w= 0, and s = nv-\-iiw-\-mv is a symmetric function of ai, . . . , at

in which each aj occurs twice in every product of differences, so that ao'^s

is an invariant of degree 2. By the Example in §20, ao^s = cI, where c

is a constant. To determine c, take ai = l,a2= — 1, 03 = 2, «<= — 2, so that

/=(x2-y2)(;t2-4y2), 7 = 73/12, u=-Q, v=l, w= 8, 5= -73. Hence
c= — 12. As here, so always an irrational algebraic invariant is a root of an

equation whose coefficients are rational invariants.
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8. If ai, oil are the roots of the binary quadratic form/, and as, a^ the

roots of /' in § 11, the simultaneous invariant

ac' +a'c— 2hh'= aa'lasat +aia2— K«i +"2) (as -\-o!i) \
= \ao{u— v)

,

if the product jf is identified with the quartic in Ex. 7. Hence a simul-

taneous invariant of the quadratic factors of a quartic is an irrational invar-

iant of the quartic. Why a priori is the invariant three-valued?

9. The cross-ratios of the four roots of the quartic are —v/ii, etc. These

six are equal in sets of three if 7 = 0. For, if 5= 0,

, , . , —V —u —w
vw— u\—v—w) = u^, uw= v{-'u—w) = v^, — =— — .

U W V

The remaining three are the reciprocals of these and are equal.

10. By Ex. 3, § 11, one of the cross-ratios is —1 if ac'-f- . , . =0. Why
does this agree with Ex. 8?

11. The product of the squares of the differences of the roots of the

cubic equation in Ex. 7 is known * to be

— 4.(-12l)^-278'-= aoKti-v)-{n-w)-(v-wy.

Also,* 52= 256(7' -27/2). Hence the left member becomes 3^-4^/2. Thus

33. 42/= zizaQ^{u—v)(u—w){v—w).

Using J from § 31, and the special values in Ex. 7, show that the sign is

plus. Verify that the cross-ratios equal —1, —1, 2, 2, 5, 5, if 7 = 0.

36. Covariants in Terms of the Roots. Let K (ao, . . ,ap\x, y)

be a covariant of constant degree d (in the coefficients) and

constant order co (in the variables) of the binary form/= aoa;^+ . .

.

Then
K = Qo'^fK,

where k is a polynomial in x/y and the roots a\, . . . , ap oi

/=0. Under the transformation Tn in §28, let / become

^0^^+ . . . , with the roots a'l, . . . ,
a'p. Then

X ? / II
a% = cc J, aT — (Xs=OLT — OLs.

y V

Making use of the identities

y \y

Cf. Dickson, Elementary Theory of Equations, p. 33, p. 42, Ex. 7.
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we see that k equals a polynomial P(ai) whose coefficients are

rational integral functions of the differences of x/y, ai, . . . , ap

in pairs. Since

K{Ao, . . . , Ap] ^, ri)=K{ao, . . . ,ap; X, y), Ao = ao, r] = y,

we have ^1 a'l, . . . , a'p, -j =«( ai, . . . , ap, -j.

The left member equals -P(a'i) since

a'i = {ai— ai)-i-a'i, -=( ai)-\-ai.
V \y /

Hence
P(ai-n)-P(ai)=0

for every n. Hence ai does not occur in P(ai), and k is a

polynomial in the differences of x/y, ai, . . . , ap.

Let W be the weight of K and hence of the coefficient of

y. Then k is of total degree W in the a's and of degree co

in x/y. Thus

K = 2C(| product of w differences hke—aA
[ y J

•{product of W— o) differences like ar—as].

Hence
K = ao'^ZCi\'prod\iQt of w differences like x—ary]

• {product of W—oi differences like ar—as\.

Next, for x=—t], y=^, f becomes F =Ao^^+ . . . with

a root — X/ut corresponding to each root ar of /. The function

K for F is

product of CO differences like ^-\— ri = - !^[
ar —ar \

•
]
product of W— o) differences like — ^

[

.

\
aras

J

Using the value of Aq in § 35, we see that the factor

\-\yW . . . ap'^

must be cancelled by the —ar and the aras in the denominators.
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Thus each term of the sum involves every root exactly d times.

The signs agree since

as follows by counting the total number of as.

Any covariant of degree d, order co and weight W of

ao{x—aiy) . . . (x—apy)

equals the product of ao^ by a sum of products of constants and

w differences like x—ary and W— oj differences like ar—as, such

that every root occurs in exactly d factors of each product; more-

over, the sum equals a symmetric function of the roots. Conversely,

the product of ao^ by any such sum equals a rational integral

covariant.

EXERCISES

1. j=aoX^-\-ZaiX'^y-\-Za2xy-+a3y^ has the covariant

K= ao'^'L{x-aiyy{oL'z-azy-.
3

Show that the coefficient of x"^ in K equals — 18(aoa2— Oi^). Why may we

conclude that K= — 18H, where H is the Hessian of/?

2. The same binary cubic has the covariant ^

ao^Z(x—aiy){x—a2y){a2— a3)ia3—ai) = 9H.
3

3. Every rational integral covariant of the binary quadratic / is a prod-

uct of powers of / and its discriminant by a constant.

37. Covariant with a Given Leader S. If the seminvariant

S has the factor ao, and S = aoQ, and if Q is the leader of a

covariant K of /, then, since ao is the leader of /, S is the leader

of the covariant fK. Hence it remains to consider only a

seminvariant 6* not divisible by oq. li S is of degree d and

weight w,

S = ao'^XCiiproduct of w factors like ar—as),

where each product is of degree at most d in each root, and

of degree exactly d in at least one root (§ 34). If each product

is of degree d in every root, S is an invariant (§ 35) and hence

is the required covariant. In the contrary case, let a2, for

example, enter to a degree less than d; we supply enough

factors x—a2y to bring the degree in a2 up to d. Then ao'^
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multiplied by the sum of the total products is a covariant

with the leader S. For example,

ao^2(a2— 03)^, 00^2(0:2 — 0:3) («3—ai)
3 3

are the leaders of the covariants in Exs. 1, 2, § 36, of the binary

cubic. The present result should be compared with the

theorem in § 25.

We may now give a new proof of the lemma in § 25 that

dp — 2w^0 for any seminvariant 5 of degree d and weight

w of the binary p-ic. Whether 5 has the factor ao or not,

the first term of the resulting covariant K is Sx", where

oo = dp— 2w. For, in each product in the above S, the roots

ai, . . . , ap occur 2w times in all. In K each root occurs d

times. Hence we inserted dp — 2w factors x—ay in deriving K
from S.

38. Differential Operators Producing Covariants. Let the

transformation

T: x = a^-\-^v, y = y^-\-8v, A=a8-^y^0

replace /(x, )') by (/)(^ r?). Then

d±^^dx dldy^^df^ df

d^ dx d^ dy d^ dx dy

d±^^dx_^^dy^^d[_^^^
di dx dv dy dv dx dy

Solving, we get

dy dv d^ dx dv d^

or df=D<p, dif = D]_(p, if we introduce the differential operators

dy dx dv 9? a^ a^

As usual, write d'-dif for d\d{dif)]. Since the result of

operating with d on df is the same as operating with D on

the equal function D^ of ^ and r], we have d-f=D"4>. Similarly,



60 ALGEBRAIC INVARIANTS

(r+5 = a)),

The right member is the result of operating on with the

operator obtained by substituting D for d/dn and Di for — d/dk
in

whose terms are partial derivatives of order w. Hence, if

the form

becomes X(^, r?) under the transformation T, our right mem-
ber is the result of operating on ^ with \{d/drj, — d/9^). The

left member is the result of operating on / with

\ dy dx) • \dy dxj

Hence if T replaces the forms J{x, y), l{x, y) by 0(^, rf), X(^, rj),

then

L VaV 9^/
0(?, ^)=A'' f{x, y)

\-\dy dxj \

is a consequence of the equations for T, if oj is the order of l{x, y).

Let / and / be covariants of indices m and n of one or more

binary forms ft with the coefficients ci, C2, . . . . Under T
let the transformed forms have the coefficients Ci, C2, ....

Then

/(C; ^, v) = A-/(c; x, y), 1{C; ^, v) = A«/(c; x, y).

But 0(^, ri) =f{c\ X, y), by the earlier notation. Hence

^{^, r})=A-^f{C; ^, v), X(^, 7;)=A-"/(C; ^, r?).

Inserting these into the formula of the theorem, and mul-

tiplying by A"'+'', we get

['{''• i'-i-^\'''-'''^^^''^^'ii'-4y'-l^)
f{c;x,y).

The function in the right member is therefore a covariant of

index w+w+w of the ft. We therefore have the theorem

of Boole, one of the first known general theorems on covariants:
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Theorem. If I and J are any covariants of a system of

binary forms, we obtain a covariant {or invariant) of the system

of forms by operating on f with the operator obtained from I by

replacing x by d/dy and yby— d/dx, i.e., x'"/ byf— iyd'"^^/dy''dx\

EXERCISES

1. Taking l=f=ax-+2bxy+cy-, obtain the invariant 4{ac—b-) of /.

2. If /=/ is the binary quartic, the invariant is 2 -4! / of § 31.

3. Using the binary quartic and its Hessian, obtain the invariant /.

4. Taking l= aoX^+. . .
, f=boX^+. . ., obtain their simultaneous

invariant

If also /=/, we have an invariant of/, which vanishes if p is odd. For

/> = 2 and ^= 4, deduce the results in Exs. 1 , 2.

5. A fundamental system of covariants of a quadratic and cubic

Q= Ax^ +2Bxy+Cy, f= ax' +3bx-'y +3cxy^- +dy^

is composed of 15 forms. We may take Q and its discriminant AC—B'';

f, its discriminant and Hessian h, given by (5) and (2) of § 8, the Jacobian

/of/and£?:

J=(d''d-3abc+2b')x^+3(abd+b'-c-2ac^)x'-y

+3(2b''d-acd-bc")xy''+ {3bcd-ad'-2c')y»;

the Jacobian of /and Q:

{Ab-Ba)x'+ i2Ac-Bb-Ca)x^y+ (Ad+Bc-2Cb)xy^+ (Bd-Cc)y^;

the Jacobian of Q and //:

{As-Br)x^+ {At-Cr)xy+ (Bt-Cs)y'-;

the result of operating on / with the operator obtained as in the theorem

from l=Q:

Li= (aC+cA-2bB)x+ (bC+dA-2cB)y;

the result of operating on Q with the operator obtained from Lr.

L2= {aBC-b{2B^+AC) +3cAB-dA']x

+ \aO-3bBC+c(AC+2B^~)-dAB\y;



62 ALGEBRAIC INVARIANTS

the result Lz, of operating on / with Q and the result Li of operating on Q
with Li (so that Li and Li may be derived from Ly and L2 by replacing

a, . . . , d by the corresponding coefficients of J) ; the intermediate

invariant At+Cr—2Bs of Q and h (§ 11); the resultant of Q and/:

c2C3-6a65C2+6acC(252-.4C)+a(f(6.45C-853) +96^.4 C2

-18bcABC+6bdA(2B^-AC)+9cW-C-()cdBA^+d\L^;

the resultant of Zi and Z4 (= resultant of Z,2 and L3), obtained at once as a

determinant of order 2. Salmon, Modern Higher Algebra, § 198, gives geo-

metrical interpretations. Hammond, Arner. Jour. Math., vol. 8, obtains the

syzygies between the 15 covariants.



PART III

SYMBOLIC NOTATION

The Notation and its Immediate Consequences, §§ 39-41

39. Introduction. The conditions that the binary cubic

(1) f^aoXi^-\-3aiXi"X2-{-3a2XiX2^-\-(i3X2^

shall be a perfect cube

(2) (aiXi -\-a2X2y

are found by eliminating ai and a2 between

(3) ai'^ — Qo, ai-a2 = ai, axa2~ — CL2, a<^=az,

and hence the conditions are

(4) aoa2 = ai~, aia3=a2^.

Thus only a very special form (1) is a perfect cube.

However, in a symbolic sense * any form (1) can be rep-

resented as a cube (2), in which ai and 0:2 are now mere symbols

such that

(3') ai'^, ci^a.2, aiQ:2~, 0^2

are given the interpretations (3), while any linear combination

of these products, as 2ai^ — la2^, is interpreted to be the cor-

responding combination of the a's, as 2aQ — la2,. But no inter-

pretation is given to a polynomial in ai, 012, any one of whose

terms is a product of more than three factors a, or fewer than

three factors a. Thus the first relation (4) does not now follow

from (3), since the expression 0:1^0:2" (formerly equal to both

* Due to Aronhold and Clebsch, but equivalent to the more complicated

hyperdeterminants of Cajdey.

63
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Gofl2 and Gi^) is now excluded from consideration; likewise

for ai^ao^ and the second relation (4).

In brief, the general binary cubic (1) may be represented

in the symbolic form (2) since the products (3') of the symbols

ai, 02 are in effect independent quantities, in so far as we

permit the use only of linear combinations of these products.

But we shall of course have need of other than linear

functions of oo, • . .,03- To be able to express them sym-

bolically, we represent / not merely by (2), but also in the

symbolic forms

(5) (/3iXi+/32^2)^, (71^1+72:^2)^, . . .,

so that

(6) /3i3 = ao, |8i2/32 = ai, Pip2^ = a2, /32^ = a3; 71^ = ^0, ....

Thus aoCf2 is represented by either ai^/3i/32- or jSi^q;iq:2^, while

neither of them is identical with the representation ara2^i^^2

of ai^. Hence

aoa2-ai2 = i(ai3^i/322+|3i3aia22-2ai2a2/3i2^2)

= iai/3i(ai^2-a2/3i)2.

We shall verify that this expression is a seminvariant of

/. If

Xi^Xi-{-tX2. .r2=A^2,

then /becomes F = AoXi^-{-. . . , where

Ao = ao, Ai=ai-\-tao, A2 = a2-\-2tai-\-fiao,

^3 = a3+3/a2+3/2ai+/3ao.

Hence, by (3),

F = {aiXi-{-a 2X2)^, a 2=oc2-\-tai.

Similarly, the transform of (5i) is

(iSiXi +^'2X2)3, |8'2 = i82+^i8i.

Hence we obtain the desired result

^0^2-^i2 = |ai/3i(ai^'2-«'2/3i)2
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40. General Notations. The binary n-ic

is represented symbolically as a^" = /3x" = . . . , where

ax = aiXi-\-a2X2, /3j; = /3i.ri +182X2, . • •
,

a2" = a„; /3i" = ao, ....

A product involving fewer than n or more than n factors ai,

0:2 is not employed except, of course, as a component of a

product of n such factors.

The general binary linear transformation is denoted by

T: xi = ^iXi + -niX2, X2 = aA^i + 7,2X2, {kri)9^0
1

where {^n) = hm— hvi- It is an important principle of com-

putation, verified for a special case at the end of § 39, that

T transforms ax" into the »th power of the linear function

(ai ^1 -\-0c2 h)X\ + (ai 7/1 +a:2r?2)-X'2 =a^Xi +a,X2,

which is the transform of a^ by T. Further,

/j\ «£ oir, ^ ai a2 h V\

/?€ ^n iSi 182 * ^2 7/2

where (ajS) =ai/32 — q:2/3i = — (/3a). Thus

(a^^,-a,^J)" = (^7,)"(a|8)^

so that (ai3)" is an invariant of ai"=fij^ of index «. Since

{^aY represents the same invariant, the invariant is identically

zero if n is odd.

= M)(l^),

EXERCISES

1. {a^y is the invariant 2(aoa2— ar) of ccx-= 0x'^-

2. (a/3)^ is the invariant 2/ of ax'= /Ji* (§ 31).

3. (ai3)2 ((37)2 (Ya)2 is the invariant 6/ of ax*= /3i<=7i^ (§ 31).

4. The Jacobian of ax"* and /3x" is

7" — !

";3x""Vi

7W — 1

«|3x" ~^/32
:m«(«/3)ax'"-Vx'^-^
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-5. The quotient of the Hessian of ax" = 0x" by «'(«— 1)^ equals

n —2 9
ax Oil

|3/ "-/i,/32

a 102 &x
n-2

010:

one-half of the sum of which equals § a^" ^/3j;" '^{a0)'^.

6. ai Pi 7i

"2 ft 72

az ft yx

=M 7:t+ (^7)«:r+ (7«)ft= 0.

41. Evident Covariants. We obtain a covariant iiC of

/= «/^ = /3/ = . . .

by taking a product of w factors of type ax and X factors of

type (a(S), such that a occurs in exactly n factors, jS in exactly

n factors, etc. On the one hand, the product can be inter-

preted as a polynomial in ao, • • • , a», ^i, ^2- On the other

hand, the product is a covariant of index X of /, since, by

(1), §40,

{ABy{Acy{Bcy . . . a^b'^c^ . .

.

= i^rjy{a^y{ayy{0yy . . . ax«i8.^7/ • • • ,

if \ = r-\-s-\-t-\-. . . and

Ax = AiXi-{-A2X2, Ai=a^, ^2=«„ {AB)=AiB2-A2Bi,

etc. The total degree of the right member in the as, /3's, . . .

is 2\-\-o: = nd, if d is the number of distinct pairs of symbols

Oil, a2; /3i, /32; . • .in the product. Evidently d is the degree

of A' in ao, ai, • • • ,
and co is its order in xi, X2.

Any linear combination of such products with the same

CO and X, and hence same d, is a covariant of order co, index

X and degree d of /.

EXERCISES

1. {a0){ay)ax^l3x'yx*and {ai3y{ay)ax'tix'y'x are COvariants ofax^=ft^= 7x^

2. {al5)W
"'

fix""
"'

is a covariant of ax'\ ft^.

3. Iim= n, ft"=aa;"^ and ris odd, the last covariant is identically zero,

4. aoXi^+2aiXiX-+aoXo^ and boXi^+2biXiX2+b2X2^ have the invariant
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COVARIANTS AS FUNCTIONS OF TwO SYMBOLIC TypES, §§ 42-45

42. Any Covariant is a Polynomial in the ax, (a^). This

fundamental theorem, due to Clebsch, justifies the symbolic

notation. It shows that any covariant can be expressed in

a simple notation which reveals at sight the covariant property.

While a similar result was accomplished by expressing

covariants in terms of the roots (§36), manipulations with

symmetric functions of the roots are usually far more complex

than those with our symbolic expressions.

The nature of the proof will be clearer if first made for

a special case. The binary quadratic ax^ has the invariant

K = aoa2—ai~

of index 2. Under transformation T of § 40, ai^ becomes

(a{Xi+a,A'2)^=/loA'r+ . . . , Ao=a(^, Ai=a^a^, A2=a^^.

Hence AoAo—Ar equals

We operate on each member twice with

(1) v = -^- ^
9^i9'72 9^29771'

and prove that we get Q{a0)^ = l2K, so that K is expressed

in the desired symbolic form. We have

(^^) = ^l'72-^2 VI,

:^(^r?)2 = 2(^77)a, -r^(^vy = 2i^v)+2n^^,
dV2 0K10V2

OVl dK20r]l

V{^vy = Q{^v), F2(|r,)2 = 12,

since F(^r?) =2, by inspection. Next

(2) Va^^r, = V{ai ^1 +a2 ^2) (Pi Vi +132^72) =«il82 -a2^i = (oc0).
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Hence

= /3ea,(a^)+aj^,(i3«),

The difference of the expressions involving V^ is 6(q:/3)2. Hence

if (1) operates twice on the equation preceding it, the result is

43. Lemma. F'^(^t7)" = (w+ 1)(w!)2.

We have proved this for w = 1 and n = 2. li n'L2,

9?i9'72

Similarly, or by interchanging subscripts 1 and 2, we get

Subtracting, we get

F(^T?)" = !2w+w(w-l)}(^r7)"-i=w(;^+ l)(^r7)"-i.

It follows by induction that, if r is a positive integer,

F'-(^7?)"=(w+ l)lw(fi-l) . . . (w-r+2)|2(w-r+l)(^7J)"-^

The case r = n yields the Lemma.

44. Lemma. // the operator V is applied r times to a product

of k factors of the type aj and I factors of the type /3„ there results

a sum of terms each containing k—r factors a^, l—r factors )3„

and r factors {a0)

.

The Lemma is a generalization of (2), § 42. To prove

it, set
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Then

(s) a (<)'

a?29^i . = 1^ = 1 aj(^^/3,^'^'

Subtracting, we get

Hence the lemma is true when r = l. It now follows at once

by induction that

(1) VAB
A B= S2(a(si)|3('i)) . . .

{a(sr)^{tr)).

«l
(si)

. . . ajCsO |3,('i) . . . |S,('0'

where the first summation extends over all of the

hik — l) . . . (^' — r+ 1) permutations ^i, . . . , ^r of 1, . . . , ^

taken r at a time, and the second summation extends over

all of the /(/— I) . . . (/— r+ 1) permutations /i, . . . , Ir of

1, . . . , / taken ;' at a time.

Corollary. The terms of (1) coincide in sets of rl and

the number of formally distinct terms is

II 1 /k\/l\
,

rl.

{k-r)\ {l-r)\ rl \r/\r

For, we obtain the same product of determinantal factors

if we rearrange si, . . . , Sr and make the same rearrangement

of /i, . . . , tr.

45. Proof of the Fundamental Theorem in § 42. Let K be

a homogeneous covariant of order cu and index X of the binary

form / in § 40. By § 40, the general linear transformation

replaces /=a:x" by

(1) ^t =ai"-V (^ = 0,1,. . .,n).

k=o\k
Hence
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By the covariance of K,

(2) K{Aq, . . . ,An\ Xi, X2) = {h)^K{aQ, . . . , a„; :ki,:^2).

By (1) the left member equals

»'=0

in which the inner summation extends over various products

AB, where ^ is a product of a constant and factors of type

a|, and 5 is a product of a constant and factors of type a,.

Let Xi=y2, and X2^—yi. Then, by solving the equations

of T, § 40,

Xi=yJ{^v), X2=-yi/{^ri).

Hence the equation (2) becomes

i 2{-iyABy„'^-'yii={^vy+''K.
t=0

Since the right member is of degree X+ co in ^i, ^2, and of

degree \-\-co in 771, 772, we infer that each term of the left mem-
ber involves exactly X+ co factors with subscript ^ and X+w
factors with subscript rj.

Operate with F^"*"" on each member. By § 43, the right

member becomes cK, where c is a numerical constant 5^0.

By § 44, the left member becomes a sum of products each of

X+co determinantal factors of which co are of t^'pe {ay) = ax,

and hence X of type {a0). The last is true also by the definiton

of the index X of K. Hence K equals a polynomial in the

symbols of the types ax, (a0).

To extend the proof to covariants of several binary forms

a/, yx^, . . . , we employ, in addition to (l),Ct = 7j*"~*7,*, • • •

and read a^, y^, . . . for a^ in the above proof.

FiNITENESS OF A FUNDAMENTAL SYSTEM OF COVARIANTS,

§§ 46-51

46. Remarks on the Problem. It was shown in §§28-31

that a binary form / of order <5 has a finite fundamental

system of rational integral covariants A'l, . . . , Ks, such

therefore that any rational integral covariant of / is a poly-
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nomial in Ki, . . . , Kg with numerical coefl&cients. We shall

now prove a like theorem for the covariants of any system

of binary forms of any orders. The first proof was that by
Gordan; it was based upon the symbolic notation and gave

the means of actually constructing a fundamental system.

Cayley had earlier come to the conclusion that the fundamental

system for a binary quintic is infinite, after making a false

assumption on the independence of the syzygies between the

covariants. The proof reproduced here is one of those by
Hilbert; it is merely an existence proof, giving no clue as to

the actual covariants in a fundamental system.

47. Reduction of the Problem on Covariants to one on In-

variants. We shall prove that the set of all covariants of the

binary forms /i, ...,/* is identical with the set of forms

derived from the invariants 7 of /i, . . .
, ft and l^xy' — x'y

by replacing .r' by x and y' by y in each /. It is here assumed

(§ 15) that 7 is homogeneous in the coefficients of / and that

the covariants are homogeneous in the variables.

Let the coefiicients of the /'s he a, b, ... , arranged in

any sequence. Let A, B, . . .be the corresponding coefficients

of the forms obtained by applying the transformation in § 5.

The latter replaces / by W-^'t], where

r,'=ay'-yx', ^' = bx'-^y'.

Solving these, we get

Ax'=a^'+^r?', ^y' = yt'J^bn'.

Let I{a, b, . . . ; x', y') be an invariant of / and the /'s.

Then

I(A,B,. . .; ^\r,')=AH(a,b,. . .; x',y').

Since 7 is homogeneous, of order w, in x', y', the right member
equals

A^-"7((Z, b, . . . ; Ax', Ay')-

Hence we have the identity in ^', rj' :

liA, B,. . .; ^', r?0^A^-<::7(a, b, . . . a^'+/3r?', y^'+W).
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Thus we may remove the accents on ^', t] . Then, by our

transformation,

I{A,B,. . .
;
^,v)=A^-"I{a,b,. . .; x,y).

Hence I {a, b, . . . ; x, y) is a. covariant of /i, . . .
, ft oi order

o) and index X— co. *

The argument can be reversed. Note that the sum of the

order and the index of a covariant is its weight (§ 22) and hence

is not negative.

Corollary. A covariant of the binary form / has the

annhilators in § 23.

For, an invariant of / and xy' — x'y has the annihilators

fi-y--, o-x'^,
ax" ay'

48. Hilbert's Theorem. Any set S of forms in xi, . . . , Xa

contains a finite number of forms Fi, . . . , F^ such that any form

F of the set can be expressed as F=fiFi-\-. . .4-/t^t, where

fx, . . . , fk drc forms in xi, . . . , Xn, but not necessarily in

the set S.

For w = l, 5 is composed of certain forms Cix^\ C2X^\ ....

Let Cs be the least of the e's, and set Fi=CsX^K Then each

form in 5 is the product of Fi by a factor of the form cx«, e ^ 0.

Thus the theorem holds when n = l.

To proceed by induction, let the theorem hold for every

set of forms in n— \ variables. To prove it for the system

S, we may assume, without real loss of generality,* that S
contains a form Fq of total order r in which the coefficient

of xj is not zero. Let F be any form of the set 5. By division

we have F = FqP-\-R, where i? is a form whose order in Xn

* Let F be a form in 5 not identically zero and let the linear transformation

Xi = Cii3'i+Cj2>'2+. . .+Cinyn (/=L. . . , «)

replace F(:x:i, . . . ,Xn) by K{yi, . . .
, jn)- In the latter the coefficient of the term

involving only >'« is obtained from F by setting Xi = cin and hence is F{cin., con, •
,

Cnn), which is not zero for suitably chosen c's (Weber's Algebra, vol. T, p. 457;

second edition, p. 147). But our theorem will be true for 5 if proved true for

the set of forms K.
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is <r. In i? we segregate the terms whose order in x» is exactly

r — 1, and have

where M is a form in xi, . . . , a-„_i, while iV is a form in

iCi, . . . , Xn whose order in Xn is :^ /- — 2. Each F uniquely deter-

mines an M.
For the defmite set of forms M in w— 1 variables the theorem

is true by hypothesis. Hence there exists a fmite number

of the M's, say M\, . . . , Mi (derived from Fi, . . . , F^,

such that any M can be expressed as

where the/'s are forms in xi, . . . , x„_i. Then

t = 1

F = FoP'-{- ^fiF^+R', P'^P-Zf^P^, R'^N-Xf,Ni.
1=1

Each exponent of Xn in R' is ^r— 2. We segregate its terms

in which this exponent is exactly r— 2 and have

F = FoP'-i- i JiF.-hM'xZ-'^+N',
«=i

where M' is a form in xi, . . . , Xn-i, and N' a form in

Xi, . . . , x„ whose order in x„ is ^ r— 3.

The theorem is apphcable to the set of forms M\ so that

each is a linear combination of M\, . . . , M'm, corresponding

to i^'^+i, . . . , Fi+jn, say. As before, F differs from a linear

combination of Fq, . . . , Fi+mhy

M"x/-^-\-N",

where M" is a form in xi, . . . , Xn-i and TV" is a form whose

order in Xn is ^ r— 4. Proceeding in this manner, we see that

F differs from a linear combination of Fq, . . . , Ft by a form

R in xi, . . . , x„^i. One more step leads to the theorem.

49. Finiteness of a Fundamental System of Invariants. Con-

sider the set of all invariants of the binary forms /i, . . .
, fa,
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homogeneous in the coefi&cients of each form separately. By
the preceding theorem, there is a finite number of these invariants

/i, . . . , Im in terms of which any one of the invariants / is

expressible linearly:

(1) / = £i/i + . . .-\-EmIn.,

where Ej is not necessarily an invariant, but is a polynomial

homogeneous in the coefficients of each fi separately.

Let ai, a2, ... be the coefficients in any order of/i, . . . ,/d.

Let A I, A2, . . . be the coefficients in the same order of the

forms obtained from them by applying a linear transformation

of determinant (l??). We may write

I{A) = {^r,)^I{a), Ij{A) = avrjTj{a), EAA)=Gj,

where Gj is a function of the a's, |'s, 77's. From the identity

(1) in the a's, we obtain an identity by replacing the a's by the

A's. Hence
m

ihYl^ ^Gji^vYJlj,

in which the arguments of the /'s are a's. Thus Gj is of order

X — X; in ^1, I2 and of order X— X^ in rji, 772. Operate on each

member by V^. By § 43, the left member becomes

(X+ 1)(X!)2/.

By the formula to be proved in § 50, the right member

becomes

:^IACo(^r,)'^-^Gj-^C,{h)^^-^+'VGj-h. . .+a{^vY^V'Gj\,
i = i

where the C's are numerical constants. Since Gj is of order

v= X— X^ ^ in ^1, ^2 and of order p in 771, 772,

V+'Gj^O, V^+-Gj = 0, ..., V^Gj = 0.

Also Co, Ci, . . . , Cy-i are zero since they multiply powers

of (^rj) whose exponents —v, —v-\-l, . . ., X^ — X+j^— 1= — 1

are negative. Hence
m

(X+l)(X!)2/= ZljC^VGj.
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The torm obtained from/t = Q;2" by our linear transformation

has the coefficients (1), § 45. The polynomial G] in these

coefficients is therefore a sum of terms each a product of a

constant by v factors of type a^ and v factors of type or,.

Hence, by § 44, VCj is a polynomial in the determinantal

factors (a/S) and is consequently an invariant of the forms

fi. Thus
m

1= S//0,

where I'j is an invariant. Then, by (l),

TO m

k=\ i,k=\

By repeating the former process on this /, we get

m

j,k=\

where the /" are invariants of the forms ft. Since there is

a reduction of degree at each step, we ultimately obtain an
expression for / as a polynomial m Ii, . . . , In with numerical

coefficients.

50. Lemma. If D= ^ir]2— ^2Vi, cind P is homogeneous {of

order X) in |i, ^2, and homogeneous {of order n) in t/i, 772, then

m
(1) F"»Z)"P= 2 GD" -'"+'FP,

r=0

where Co, . . . , Cm are constants.

First, we have

FZ)P =P+ r/2—+^1— +/>-
^^^

'dri2 dh dhdm

-{-P-h^-ml-+D:^)=-2+X+^)P+DVP,
\ dh 9171 9^29771/

by Euler's theorem for homogeneous functions (§24). If P
is replaced by D"-^P, so that X and m are increased by n— 1, we
get

VD"P = {\-\-fx-\-2n)D''-^P-\-DVD''-'^P.
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Using this as a recursion formula, we get

which reduces to the result in §43 if P = l, whence X = /i = 0.

Hence (1) holds when m = l. To proceed by induction from

m to w+ 1, apply V to (1). Thus

m

r=0

In the result for VD"'P, replace n by n—m-\-r and P by

V^P, and therefore diminish X and m by r. We get

Yf£)n-m+rYrp\ _^ £)n -m+r -lyrp \£)n—m+rYr+ lp

where
tr={n—m-\-r){\-\-ij. — r-{-n—m-\-l).

Hence, changing r+l to r in the second summand, we get

m+l
ym+lj)np^ V

(Crtr+ Cr-l)D''-'^+'-^V'P,
r=0

with C„,+i = 0, C_i = 0. Thus (1) is true for every m.

51. Finiteness of Syzygies. Let /i, . . . , 7^ be a funda-

mental system of invariants of the binary forms /i, . . .
, fa-

Let S{zi, . . . , Zm) he a. polynomial with numerical coefficients

such that S(Ii, . . . , /w),Vhen expressed as a function of the

coeflficients c of the /'s, is identically zero in the c's. Then

5(7) = is a syzygy between the invariants.

By means of a new variable z^+i, construct the homogeneous

form 5'(zi, . . ., z^+i) corresponding to S. By §48, the

forms S' are expressible linearly in terms of a finite number

S\, . . . , yt of them. Take 2^+1 = L Thus

(1) 5 = Ci5i + . . .+CA

where Ci, . . . , Ct are polynomials in zi, . . . , z„,. Take

zi =Ii, . . . , Zm = Im- Hence there is a finite number of syzygies

Si=0, . . ., St = 0, such that any syzygy 5 = implies a

relation (l) in which Ci, . . . , C* are invariants. In particular,

every syzygy is a consequence of 5i = 0, . . . , 5t = 0.
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52. Transvectants. Any two binary forms

have the covariant

(1) (/, 0)'- = (a^)'-«/-'-/3i-'-,

called the rth. transvectant (Ueberschiebung) of / and <^, and
due to Caj'ley. It is their product if r = 0, their Jacobian

if r = l, and their Hessian \i J=<t> and r = 2, provided numerical

factors are ignored (Exs. 4, 5, § 40).

It may be obtained by differentiation and without the use

of the symbolic notation. In fact, a special case of (l), § 44, is

so that if/ is of order k and 4> of order /,

(2) im, 0(^))^ = fc^' ^^[F'-/(^)c/>fr,)l, = ,.

x\ftcr/(ti, ^2)-4>(m, m) is operated on by V, we set 771 = ^1,

For example, let /(^)=a^a^, </.($) = 7^\ P^a^S^y '. Then

d^idvi ^ *
9^29771 * *

The difference is VP. Taking r]i= ^i, 772= I2, we get

The numerical factor in (2) is here I/6. Hence

(3) ^<^j y,')' = h{0yh^yf+K'xy)0^y^'.

In general, consider the two forms

Then by (l), § 44, and the Corollary, and by (2),

where the summation extends over all the combinations of the
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as r at a time, and over all the permutations of the /S's r at

a time. Thus the number of terms in the sum is the reciprocal

of the factor preceding S.

If the a's are identified and also the /3's, (4) becomes (1). li k = 2,

l=S, r=l, we have one-sixth of a sum of six terms; then if the /3's are

identified we have two sets of three equal terms and obtain (3).

Since F is a differential operator, (2) gives

(5) (2c/,, i:kj<f>jy = ^^cMft, 4>,)r.

Apolarity; Rational Curves, §§ 53-57

53. Binary Forms Apolar to a Given Form. Two binary

quadratic forms are called apolar if their lineo-linear invariant

is zero; then they are harmonic (Ex. 3, § 11). In general,

the binary forms

i=Q\l/ i=o\t/

of the same order, are called apolar if

(1) {a^y'^=lji-i)'(jyA.-i=o.

In particular, / is apolar to itself if n is odd (Ex. 4, § 38).

Let the actual linear factors of <^ be /3x^^\ • • •
,

/3j'^"^ By

(1), (4), § 52,

(a^)" = (a/, /3,(i>
. . . /3,("))" = (a|3(i))

. . . (a/3("^).

But ^x^"^ vanishes if xi and X2 equal respectively

Thus

Hence if vanishes for xi=yi''''\ X2=y2^''^ (r = l, . . . , n),

it is apolar to f if and only if

Thus / is apolar to an actual wth power (y2A;i— ^1^2)" if

and only if q:j,'* = 0, i.e., if yi, y2 is a pair of values for which

/=0.
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If no two of the actual linear factors /< of / are propor-

tional, / is apolar to n actual «th powers //' and these are readily

seen to be linearly independent. Then their linear combinations

give all the forms apolar to/. For, if/ is apolar to <^i, . . .
, 0n,

it is apolar to /^i<^i + . . •-\-kn4>n^ where ^i, , . . , ^a are con-

stants, since, by (5), § 52,

(/, y^i0i+. . .+K^nY = k,{J,<j>iY+. . .-\-knU,4>nY = o.

Moreover,/ is not apolar to n-\-\ linearly independent forms

01, 02, • • . , 0n+l-

For, if so, we have n-\-l equations like (1), in which the deter-

minant of the coefficients of ao, • • • , an is therefore zero.

But this implies a linear relation between the 0's. /// is the

product of n distinct linear factors U, a form can be repre-

sented as a linear combination of /i", . . . , In^ if afid only if

is apolar to f. In particular, if r and 5 are the distinct roots

of f^ax'-\-2bx-\-c = 0, the only quadratics harmonic to / are

g{x-rY+}i{x-sY.

In case h, . . . , Ir are identical, while li^lt{i>r), we may
replace /i", . . . , /r" in the above discussion by /i", /i"~^X, . . .

,

l^n-r+iy-i^ whcrc X is any linear function of Xi and x-y which

is hnearly independent of h. In fact, after a linear trans-

formation of variables, we may set li=X2, \ = Xi. Then the

above r forms have the factor 0:2""''"^^ and hence are of type

with bi = 0{i ^ n—r). Also, / now has the factor x-z^, so

that ai = 0{i<r). Hence every term of (l) is zero.

For example, /=.Vi-.r-..(.Vi— .Vi)- is apolar to

Xi^, Xi^Vi] .r2»; (xi— x-2)\ (.fi— .^2)^^:1,

which give five linearly independent quintics.

In general, when there are multiple factors of /, the n

forms apolar to / obtained above can be proved to be linearly

independent. This fact is not presupposed in what follows.

54. Binary Forms Apolar to Several Given Forms. From
the list of the given forms we may drop any one linearly de-
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pendent on the others, since a form apolar to several forms is

apolar to any Hnear combination of them. In the resulting

linearly independent forms

the g-rowed determinants in the rectangular array of the

coefficients are not all zero. For, if so, there are solutions

^1, . . .
T
kg, not all zero, of

kiaii-\-k2aio-\- . . .-\-kgaig = {i = 0,l,. . . ,n),

which would give, contrary to hypothesis, the identity

If io^i"+ . . . is apolar to each/r, then

2(-l)Y".)aJ;„_,- = (r = l,. . .
, g).

These determine g of the b's as linear functions of the remaining

5's, which are arbitrary. Hence there are exactly n-\-l—g

linearly independent forms apolar to each of the g given

linearly independent forms.

In particular, apart from a constant factor, there is a

single form apolar to each of n given linearly independent

forms of order n.

Consider three binary cubic forms

/i =aJ^=aoXi^+3aixrx2-}-^a2XiX2^-\-a3X2^,

J2 = /Sx^ = h(iXi^ -\-2,hxXi^X2-\-^h2XiX2'^ +h2,X2^

,

Jz=-'yx^^CQXi^-\-ZCiXi~X2+2>C2XiX2^-{-C2X2^.

Each is apolar to the cubic form

= (a/3)(a7)(i37)«:ri3^Tx.

For, by (4), § 52, and the removal of a constant factor by (5),

(<^, 5.-^)3 = («i3)(a7)(/3T)(«5)(/35)(75),

which is changed in sign if 6 is interchanged with a, /3, or 7,
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and hence is zero if bj^ is one of the fi. Hence each /< is apolar

to 4). Now
ai" a\a.2 of^

71^ 7172 72"

In fact, the determinant vanishes if (ajS) = as may be seen

by setting ^i=cai, ^2=ca2. Moreover, the two members are

of total degree six and the diagonal term of the determinant

equals the product of the first terms 0:1182, etc., on the left.

Since ai^ax=ai^xi-i-ai^a2X2=aoXi-{-aiX2, etc., we find, by
multiplying the members of the last equation by ax/3x7z,

aoXi-j-aiX2 ai:ri+a2^2 02^1+03X2

boXi-\-biX2 biXi-{-b2X2 b2Xi-\-b3X2

CoXi-\-CiX2 ^1:^1+^2^:2 C2X1+C3X2

where

= [012]xl3+ [013]A-l%2+ [023]xlX22 + [123]:^;2^

at Qj at

[ijk] =
1
bi bj bt

Ci Cj Ct

If (p is identically zero, the four three-rowed determinants

in the rectangular array of the coefficients of /i, /2, /a are all

zero, and the/'s are linearly dependent.

Apart from a constant factor, is the unique form apolcr

to three linearly independent cubic forms fi, f2, fz-

The extension to n binary w-ics is readily made.

55. Rational Plane Cubic Curves. The homogeneous coor-

dinates ^, rj, f of a point on such a curve are cubic functions

of a parameter /. We may take / = a:i/.T2 and write

Ps=/l, PV^f2, P^^fd,

where p is a factor of proportionality and the /'s are the cubic

forms in § 54.

We may assume that the/'s are linearly independent, since

otherwise all of the points (^, tj, f) would He on a straight

line.
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There is a unique cubic form ^ apolar to /i, /2, /a (§ 54).

This cubic form, denoted by (p = (p/, is fundamental in the

theory of the cubic curve.

Three points determined by the pairs of parameters xi, X2;

yi, y2', and z\, so, are collinear if and only if

(1) 4>x4>Az = ^-

For, if the three points he on the straight Hne

(2)
/t+ ;«r7+ «r = 0,

the three pairs of parameters are pairs of values for which

(3) C{xi, x-f) ^lfi-^mf2-{-nf3 = 0.

Since C is apolar to (p, (1) follows from the first italicized theorem

in § 53. Conversely, (1) implies that the cubic C which van-

ishes for the three pairs of parameters is apolar to ^ and hence

(§ 53) is a linear combination of /i, /2, /s, say (3); the corre-

sponding three points lie on the straight line (2).

Since (2) meets the curve in three points the ratios xi/x-z

of whose parameters are the roots of (3), the curve is of the

third order.

We restrict attention to the case in which the actual linear

factors ax, ^x, ix of 4> are distinct. Since any cubic apolar

to </> is a linear combination of their cubes (§ 53),

/i = rna.3+Ct2/3/+c,37/ (^ = 1, 2, 3).

Since the determinant
\ dj \

is not zero, suitable linear com-

binations of the/'s give a/, /3x^, jx^. Hence by a linear trans-

formation on ^, 7], f (i. e., by choice of a new triangle of ref-

erence), we may take *

The line ^ = is an inflexion tangent, likewise 7j = and

f = 0. In addition to the resulting three inflexion points,

there are no others. For, at an inflexion point three consecutive

points are collinear, so that (l) gives (^ = <^/ = 0. In the present

* We now have the formulas in the second part of § 54, where now ax^ is the

actual, not a symbolic, expression of /i, etc.
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case there are therefore exactly three inflexion points and they

are coHinear.

56. Any Rational Plane Cubic Curve has a Double Point.

Let Px denote the point (^, r/, i") determined by the pair of

parameters xi, xo. If the ratios x\/x2 and yi/y2 are distinct

and yet Pi coincides with Py, then Px is a double point. For,

any straight line (2), § 55, through Px meets the curve in

only the three points whose pairs of parameters satisfy the

cubic equation (3), and since two of these pairs give the same

point Px. the line meets the curve in a single further point.

Hence there is a double point Px = Py if and only if there are

two distinct ratios xi/xo and yi/>'2 such that (l) holds identically

in Si, 22-

Let Q be the quadratic form which vanishes for the pairs

of parameters xi, X2 and yi, yo giving a double point. By (1),

and the first theorem in § 53, Q is apolar to <f)x~(f>z for Si, Z2

arbitrary. Write (f)'i^ as a symbolic notation for
<f>, alter-

native to ^/. Applying the argument made in § 54 for three

cubics to two quadratics, we see that the unique quadratic

(apart from a constant factor) which is apolar to both <^^-0,

and (t>'x'^4>'u> is their Jacobian

/= (<^0 )<t>x4> X* 020 W

Since and 0' are equivalent symbols, their interchange must

leave / unaltered. Hence

-^ = 2(00 )0x0 x{(t>z4>'w— 4>'z4>tc\.

The quantity in brackets equals {<i><i>'){zw) by (l), § 40. Dis-

carding the constant factor \{zw), we may take

as the desired quadratic form. This is the Hessian of 0.

Conversely, the pairs of values for which Q vanishes are the

pairs of parameters of the unique double point of the curve.

57. Rational Space Quartic Curve. Such a curve is given

by
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where the four binary quartics are linearly independent. By

§ 54, there is a unique quartic apolar to each of the four.

As in § 55, four points Px, Py, Pz, Pw on the curve are coplanar

if and only if

Thus = gives the four points at which the osculating plane

meets the curve in four consecutive points. It may be shown

that the values i"/*\ X2^'^^ for which the Hessian of </> vanishes

give the four points i'j:^') on the curve the tangents at which

meet the curve again.

Fundamental Systems of Covariants of Binary Forms

§§ 58-63

58. Linear Forms. A linear form otx is its own symbolic

representation. If ax = 0x, then (q:/3)=0. Hence the only

covariants of ax are products of its powers by constants. A
fundamental system of covariants of n linear forms is evidently

given by the forms and the ln(n — l) invariants of type (a/3),

where ax and 0x are two of the forms.

59. Quadratic Form. A covariant K of a single quadratic

may have no factor of type (a/S) and then it is

ax Px Ifx • . • J ,

or may have the factor (a/S) and hence the further factor {a0),

{ay){p8), {ay)^x, or axl3x, including the possibility 5 = 7. In

the first case, K^{a^)^Ki, where A'l is a covariant to which

the same argument may be applied. Now {a'y)^ay if ^1=72,

y2=—yx. Hence in the last three cases, K has a factor of

the type

e = {a^)ay^^,

where ay is either ax or a new mode of writing (0:7), and similarly

jSj is either ^x or a new mode of writing (/35).

Interchanging the equivalent symbols a and 8, we get

d - i^a)^,a, = K«/3) (a,/3, - /3,«.) = § (a^)2(y3),
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by (1), § 40. We are thus led to the first case. Hence the

fundamental system of covariants of / is composed of / and
its discriminant.

EXERCISES

1. The fundamental system for f=ax^= bx- and l=ax= 0x is /, /, {ab)*,

{aocy, {aa)ax.

2. The fundamental system for f=ax^= bx- and <t>
= ax^ = Px^ is/, <t>,

{aby, (a^)^, (oa)-, {aa)axax. Hint:

{act) {a0)aaliy= {aa) '-fiy^z-\{a0) ^GyOz,

as proved by multiplying together the identities (Ex. 6, § 40)

{a^)ay= {ap)ay-{aa)0^, (a/3)(Zz=(d/3)as-(aa)/5,,

and noting that a and /3 are equivalent symbols.

60. Theorems on Transvectants. In the expression (4),

§ 52, for a transvectant, each summand taken without the

prefixed numerical factor is called a term of the transvectant.

In the first transvectant (3), § 52, the difference of the two

terms is

by Ex. 6, § 40, and is the negative of the 0th transvectant

(viz., product) of (a/3) and y^^. The act of remo\dng a factor

a^ and a factor jS^ from a product and multiplying by the

factor (q:/3) is called a convolution (Faltung). We have therefore

an illustration of the following

Lemma. The difference between any two terms of a trans-

vectant equals a sum of terms each a term of a lower transvectant

offorms obtained by convolution* from the two given forms.

Consider the rth transvectant of

where P and Q are products of determinantal factors. Then
PQ is a factor of each term of the transvectant. Any two

terms T and T differ only as to the arrangements of the as
and the /3's. Hence T' can be derived from 7 by a permuta-

* Including the case of no convolution, as 7^' from itself, in the above example.
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tion on the as and one on the /S's, and hence by successive

interchanges of two a's and successive interchanges of two

jS's. Any such interchange is said to replace a term by an

adjacent term. For example, the two terms of (3), § 52,

are adjacent, each being derived from the other by the inter-

change of a with /3. Between T and T' we may therefore

insert terms Ti, . . . , Tn such that any term of the series

T, Ti, T2, ' , Tn, T' is adjacent to the one on either side

of it. Since

r-r=(r-ri)+(ri-r2)+. . .+(r„_i-r„)+rr„-r),

it suffices to prove the lemma for adjacent terms.

The interchange of two a's or two /3's affects just two factors

of a term of (4), § 52. The types of adjacent terms are *

where /3' and /3" were interchanged. The difference of the

last two terms is seen to equal C(jS"^')a\ by the usual identity.

The latter is evidently a term of the (r — l)th transvectant

of / and {l3"^')4>/{^'\^\], which is obtained from
<f) by one

convolution.

The difference of the first two adjacent terms equals

C(aW')(fi'^"), since

a la I p i p 1

{a'a")(p'n - ia'^'){a"n + icc'fi"){a"^') ^\
I n n> o"a 2OL 2P2P 2

' // Qt o"a \a i p 1 p 1

a 20i 2 P 2 p 2

= 0,

as shown by Laplace's development. The same relation

follows also from the identity just used by taking |i = — a"2,

^2= a" I. The resulting difference is a term of the (r-2)th

transvectant of

a ^a ^ p iP ^

which are derived from / and by a convolution.

*A pair C(a'0')a"^, C(a"li')a'^, obtained by interchanging a and a", is

essentially of the second type.
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The LcMnma leads to a more important result. By tlie

proof leading to (4), § 52. the coefficient of each term of a

transvectant is 1/N, if .Y is the number of terms. Just as

S = hiTi-\-T-2) implies S-Ti=h(T2-Ti), so

impUes

S = ^{Ti + . . . + r.v)

Hence ilic clijjcrciicc bclwccii a traiisvccia>i! a)iJ any one of its

terms equal a sum of lernis eaeJi a term of a lower iransveeiant

offorms obtained by eonvolntion from the two givefi forms.

Each term of a lower transvectant may be expressed, by
the same theorem, as the sum of that transvectant and terms

of still lower transvectants, etc. Finally, when we reach a

0th transvectant, i.e., the product of the two forms, the only

term is that product. Hence we have the fundamental

Theorem. The differenee between any transveetant and

any one of its terms is a linear function of lower Iransvcclanls

offorms obtained by convolution from the two given forms.

For example, from (3), §52, and the result preceding the

Lemma, we have

and {ajS) is dcri\oil from (Vcp\ by one convolution.

61. Irreducible Covariants of Degree m Found by Induction.

Let

/=a/ = /3V' = . . .=X/

be the binary ;;-ic whose fundamental s}'stem of covariants

is desired. Since a term with the factor (a/3) is of degree at

least two in the coefficients of /, the only covariants of degree

unity are kf, where k is a numerical constant. We shall say

that / is the only irreducible covariant of degree unity, and
that/, A'l, .... /v, form a complete set of irreducible covariants

of degrees <m if every covariant of degree <;;/ is a poly-
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nomial in f, ..., Ks with numerical coefficients. Given the

latter, we seek the irreducible covariants of degree m.

A covariant of degree m is a polynomial in the (a/S) and

the ax such that each term contains m letters a, ^, y, . . . .

Let Tm be one of the terms with its numerical factor suppressed.

Let a, /3, . . . , K, X be the m letters occurring in Tm, so that

r„ = P(aX)«(/3X)^ . . . {kXYxJ {a-\-b+ . . .+k-^l = n),

where P involves only a, /3, . . . , k. Then

r^_i=Pa.«/3/ . . .
K,fc

is a covariant of degree m—l. Evidently Tm is a term of

{Tm-i, X/)^ {r = n-l),

since it is obtained by r = a-\-b^. . .-{-k convolutions from

Tm-i^x"^- By the final theorem in § 60,

Tm={Tm-ljy+^^'cj{frn-ufy,
j=0

where the Cj are numerical constants, and each Tj^-i is derived

from r„i_i by convolutions and hence is a covariant of degree

m—l. But the covariant of degree m was a linear function

of the various Tm- Hence every covariant of degree m oj f is

a linear function of transvectants {Cm-ufY of covariants C^-i

of order m—l with f. Such a transvectant is zero if k>n,

in view of the order of/. Moreover, it suffices by (5), §52,

to employ the C^-i which are products of powers oif,Ki,. . .
,

Kg. Hence the covariants of degree m are linear functions of

a finite number of transvectants.

In the examination of these transvectants {Cm-i, fY, we

first consider those with k = \, then those with k = 2, etc. We
may discard any {Cm-i,fY for which Cm-i has a factor <t>, of

order '^k, which is a product of powers of f, Ki, . . . , Ks, and

of degree <m-l. For, if T is a term of (c^,/)^, and if C^_i=^0,

then T is obtained by k convolutions of 0/, and qT by the same

k convolutions of g<^/, not affecting q. Hence qT is a term of

{q(t>, fY' Hence

(Cm-i, fY-qT+~^' Cj(Cm-i,fy.
3=0
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But the terms of the last sum have by hypothesis been con-

sidered previously, while the covariants ^ and T are of degree *

<m and hence are expressible in terms of/, Ki, . . . , Ks.

62. Binary Cubic Foim. The only irreducible covariant of

degree one of

was shown to be /. The only covariants of degree two are

(a^)'-a/-%-'^-'- (r = 0, 1, 2,3).

This vanishes identically if r is odd. If r = 0, we have /-,

which is reducible. Hence the only irreducible covariant of

degree two is

ia0)-a,l3, = (/, f)~ = Hessian H of /.

To find the irreducible covariants of degree m=S, we
have Cjn-i = Ii or/-. In the second case, C^-i has the factor

f of degree <m — l and order 3^^' (since we cannot remove

by convolution more than three factors from the second function

f in the transvectant). Hence we may discard Cm-i=f~- It

remains to consider (H, f)^\ k^l, 2. Now

(H, /) = (a/3)2(a7)/3^7/ = Jacobian / of // and /

is irreducible, being of order and degree three and hence not

a polynomial in / and H. Next,

{H, jy - (a/3)2(a7) (^7)7x = P{a^h., P = {cc0) {ay) (fiy) .

Interchanging a with 7, we get P{^y)ai. Interchanging jS

with 7, we get P(y(x)0j. Hence

(F,/P = |F|M)7.+ (^7K+ (7«)/3x|=0.

The irreducible covariants of degree three or less are therefore

/, H, J.

To find those of degree 7;z=4, we have Cm-i=P, fB, J,

* This is evident for the factory of Cm-i- Since <f) is of degree <w— 1, the

term T of (<^,
/)^' involves fewer than m— 1+ 1 symbols a, ^, . . . , and hence is

of degree < m.
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of which the first two may be discarded as before. It remains

to consider (/,/)*, for ^ = 1, 2, 3. By § 52,

= (a/3)2(a7) lKi35)7x-5.2+ |(y5)i3.7x5/|.

Replacing {P8)yz by iy8)^s+ il3y)8„ and noting that

{amay){^yH5.' = {H,f)--f=0,
we get

(/,/) = (a/3)2(a7)(75)/^.7x5/.

Interchange y and 5, Hence

U,/)=K«/3)'(75))3.7x5xK«7)5x+ (5a)7x}.

The quantity in brackets equals —{yd)ax. Hence

Denoting H by Jh^ = h"^i, we have

/ = (//,2^^^3) = (/,^)/,^^^2^ /= ^:X 7

by the theorem in § 60. Here J = {haYax = {H, f)^ = 0. Since

the first term is changed in sign when a and /3 are interchanged,

we have {J,fy = 0.

For the third case,

(/, /)3 = (M)2(a7)^x7x2, 5.3)3 = {amay)(^8){y8y = D,

an invariant, evidently equal to {H, H)^, the discriminant

of H. Thus D is the discriminant of / (§§8, 30) and is not

identically zero. Hence D is the only irreducible covariant

of degree four.

We can now prove by induction that /, H, J and D form

a complete set of irreducible covariants of degree ^ ;w ^ 5. Let

this be true for covariants Cm-\ of degree ^w — 1. We may
discard (C^-i, fy if Cm-i has the factor/ or /, each of which

is of order 3 ^ ^ and of degree (1 or 3) less than m — 1; and

evidently also if it has the factor D. Hence Cm-\=n% e ^ 2.

If ^ J 2, it has the factor E of order 2^k and degree 2<m— l.

It remains to consider {E% f)^. If e>2, H^ has the factor
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H' of order 4^3 and degree -Kw— 1, since H'^ is of degree

^ 6. Finally,

{H\ / )3 = {hVl\, a/)3 = {ha)Hh'a)h\ = {h\ (JlaY-a;) = 0.

Hence /, H, J, D form a fundamental system of covariants

{cf. §30).

63. Higher Binary Forms. The concepts introduced by

Gordan in his proof of the liniteness of the fundamental system

of covariants of the binary p-ic enabled him to find * the

system of 23 forms for the quintic, the system of 2G forms for

the sextic, as well as to obtain in a few lines the system for

the cubic (§ 62) and the quartic (§ 31). Fundamental sys-

tems for the binary forms of orders 7 and 8 have been deter-

mined by von Gall.f

Gordan's method yields a set of covariants in terms of

which all of the covariants are expressible rationally and

integrally, but does not show that a smaller set would not

serve similarly. The method is supplemented by Cayley's

theory | of generating functions, which gives a lower limit

to the number of covariants in a fundamental system.

64. Hermite's Law of Reciprocity. This law (§ 27) can be

made self-evident by use of the symbolic notation. Let the

form

<t)=ax^ = ^x^ = - . .=ao{xi — piX2){xi— P2X2) . . . {xi — ppX2)

have a covariant of degree d,

K = ao'^^ipi-p-2)Kpi-p-syip2-P3)^ . . . (xi-pi-rs)'' . . . (xi-ppa:.)^

so that each of the roots pi, . . .
, pp occurs exactly d times

in each product. Consider the binary ^-ic

J= ai'^ = b/ = . . . = CoCti— riXo) . . . {xi — raXo).

* Gordan, Inmriantentheorie, vol. 2 (1887), p. 236, p. 275. Cf. Grace and
Young, Algebra of Invariants, 1903, p. 122, p. 128, p. 150.

t Malhematische Annaleii, vol. 17 (1880), vol. 31 (18S8).

X For an introduction to it, see Elliott, Algebra of Quantics, 1895, p. 165, p.

247.
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To the various powers, whose product is any one term of K,

{pi-p'zY, {pi-p-j.y, {p2-p-iY, . . .,

(X1-P1X2)'', {xi-p2X2)^, . . .,

we make correspond the symboUc factors

{ahy, {acy, (be)'', . . ., aj\ h\ . . .

of the corresponding covariant of/:

C={ahy{acy{bcY . . . aj'hjx'j' . . .,

of degree p (since there are p symbols a, b, c, . . . , cor-

responding to pi, . . .
, Pj,) and having the same order

/i+^2+/3+ . . . as A'. Conversely, C determines A.

EXAMPLES

Let p= 2. To K = au^^(pi — Pi)^'' corresponds the invariant C= (ai)^^

of degree 2 of f=(ix'^ = hx'^^. Again, to the covariant K4>^ of (/> corresponds

the covariant (ab)'^^ OxVV of the form ax'^'^'^^= bx^^'^K

Concomitants of Ternary Forms in Symbolic Notation,

§§ 65-67

65. Ternary Form in Symbolic Notation. The general

ternary form is

'' r\s\l\

where the summation extends over all sets of integers r, 5, /,

each = 0, for which r-\-s-\-l = n.

We represent/ symbohcally by

/= a_," = |3/ . . .
,

ax = a\X\-^a2X2-\-OL2,Xz, ....

Only polynomials in ai, 02, "a of total degree n have an inter-

pretation and

Just as a\^2—(X2^\ was denoted by (a/S) in §39, we now

write

(a/37)

a\
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Under any ternary linear transformation

T: ^i=^tXi+ 7jtX2+ f«X3 (j = l,2, 3)

ax becomes Q:{Xi+a,X2+«5-A'3, and/ becomes

fi !

Z
,

'. ATstX^\X''2X^-s = (aiXi-\-a^X2-\-oiiX:i) .

risltl

Thus ax behaves Uke a covariant of index zero of /. Also

«{ a, «{•

^j /3, ^f =M7J(^r7f),

7£ 7., 7r

so that (aj37) behaves like an invariant of index unity of/.

EXERCISES

1. The discriminant of a ternary quadratic form ax^ is ^ {aftyY.

2. The Jacobian of a^', Px"^, tz" is /ww (a/3TJa:c^~Vi'"~V/~^

3. The Hessian of a^" is the product of (a/37)2a/~^/3z"~^7i"~^ by a

constant.

4. A ternary cubic form ai'= /3i' = . . . has the invariants

{a0y){a0b){ayb){fiyb), (a0y)(a0o)(aye)(0y<}>)(oe<t>y.

66. Concomitants of Ternary Forms. If ui, ii2, uz are

constants,

Uz = UiXi-\-U2X2+U:iX3 =

represents a straight line in the point-coordinates xi, xo, X3.

Since ui, U2, M3 determine this line, they are called its line-

coordinates. If we give fixed values to xi, X2, X3 and let the

line-coordinates ui, U2, ws take all sets of values for which

Ux = 0, we obtain an infinite set of straight lines through the

point (xi, X2, X3). Thus, for fixed x's, Ux = is the equation

of the point (xi, X2, x^) in line-coordinates.

Under the linear transformation T, of § Go, whose deter-

minant {^vO is not zero, the line Ux = is replaced by

Ux=UiXi-{-U2X2+ U3X3=0,
in which 333

f/i = S ^iUi, 1/2= ^ ViUi, t/3 = - fi«<-

t=l i=l 1=1
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The equations obtained by solving these define a linear trans-

formation Ti which expresses wi, U2, us as linear functions

of Ui, U2, Us and which is uniquely determined * by the

transformation T. Two sets of variables Xi, X2, X3 and wi, ti2, U3,

transformed in this manner, are called contragredient.

A polynomial P{c, x, u) in the two sets of contragredient

variables and the coefficients c of certain forms Ji{x\, X2, xz)

is called a mixed concomitant of index \ of the /'s if, for every

linear transformation T of determinant A?^0 on xi, X2, X3 and

the above defined transformation Ti on ui, U2, uz, the product

of P{c, X, u) by a'' equals the same polynomial P(C, A', U)

in the new variables and coefficients C of the forms derived

from the /'s by the first transformation. For example, Ux is

a concomitant of index zero of any set of forms.

In particular, if P does not involve the w's, it is a covariant

(or invariant) of the /'s. If it involves the u's, but not the

re's, it is called a contravariant of the /'s.

Since U\=u^, U2 = u^, 1/3=11^, we see by the last formula

in § 65, with 7 replaced by u, that (a^u) behaves like a contra-

variant of index unity of ax^, and also like one of ax", ^x^.

For the linear forms ax and fix, («/3«) has an actual interpretation.

For /=«!== /So:-, where

/= a2ooXr +ao2oX2^ +0002X3^ +2auoXiX2 +20101X1X3 +2aonX2X3,

it may be shown that

O200 duo ClOl 111

Olio flo20 floil Ui

Gioi flon aoo2 ^h

III Ui Hi

{afiuY

By equating to zero this determinant (the bordered discriminant of

/), we obtain the line equation of the conic /= 0.

67. Theorem. Every concomitant oj a system of ternary forms

is a polynomial in Ux and expressions of the types ax,{a^y), {a^u).

* We have only to interchange the rows and columns in the matrix of T and
then take the inverse of the new matrix to obtain the matrix of the transforma-

tion Ti. Similarly, Xu x-i are contragredient with Ui, Ui, if we have T, § 40, and

«i = (^72 Ui - & Ui) / (It?) , Ui = (- ,,1 t/i+ ti Ui) I ( i-n)

.
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etc. Replacing xi by y2Z3-ys^2, X2 by yaZi-yiSs, and xs by
yiZ2—y2Zi, we get

{^vOXi^yr,z^-y^Zr„

{h^)X2 = ycZ^-yiZ^,

(^v^)X3=yiZ,-y„Zi.

Our relation for a covariant K of order co now becomes

S(product of factors a^, y^, z^, a,,, . . . , z^) = {^r]^Y'^''K{a, x)

.

each term on the left having \+co factors with the subscript ^,

etc. Apply the operator V to the left member. We obtain

a sum of terms with one determinantal factor (a/37), ("i3y) or

{ayz)=ax, and with X+co — 1 factors with the subscript |, etc.

The result may be modified so that the undesired factor (a^y)

shall not occur. For, it must have arisen by applying V to

a term with a factor Hke a^^^y^ and hence (by the formulas

for the Xi) with a further factor s, or z^. Consider therefore

the term Ca^jS^y^z, in the initial result. Then the term

— Caj|8,>\Sf must occur. By operating on these with F,

we get C{a^y)Zr„ — C(a/3s)y„ respectively, whose sum equals

CI (/3y2K- (ays)^,N C(/3.a, -ax/3,)

,

as shown by expanding, according to the elements of the last

row.

Oil /3i yi zi

a2 /32 )'2 Z2

«3 /33 ys Z3

Oir, ^„ ytl Zr,

:0.

The modified result is therefore a sum of terms each with

one factor of type (ai37) or ax and with X+oj— 1 factors with

subscript ^, etc.

Applying V in succession X+ co times and modifying the

result at each step as before, we obtain as a new left member

a sum of terms each with \-\-w factors of the types {al3y) and

ax only. From the right member we obtain nK, where n is

a number ?^0. Hence the theorem is proved.
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68. Quaternary Forms. For ax=Q;i:ri+. . .-{-a^Xi,

{ „ n an », n tn
J —OLx = Pi — 7x — Ox

has the determinant {a^yb) of order 4 as a symbolic invariant

of index unity. Any invariant of / can be expressed as a

polynomial in such determinantal factors; any covariant as

a polynomial in them and factors of type ax. In the equation

«x = of a plane, n\, . . ., W4 are called plane-coordinates.

The mLxed concomitants defined as in § 66 are expressible

in terms of Ux and factors hke ax, (a^y d) , ia^yu) . For geometrical

reasons, we extend that definition of mked concomitants to

polynomials P{c, x, u, v), where Vi, . . . , 1)4 as well as wi, . . . , W4

are contragredient to xi, . • . , X4.' There may now occur

the additional type of factor

{a^Uv) = {ai^2 -Ot2^l) (usVi-UiV^) +. . . -f- (0:3/34 -0:4183) {uiV2 -U2V1).

These six combinations of the w's and v's are called the line-

coordinates of the intersection of the planes Wx = 0, Vx = 0. For

instance, {a^uv)~ = is the condition that this line of inter-

section shall touch the quadric surface ax^ = 0.

We have not considered concomitants involving also a

third set of variables wi, . . • , w^, contragredient with the x's.

For, in

Mi:»:i-|-. . .-\-u^Xi = 0, z'lXi-f-. . .-\-V4X4, = 0,

WiXi-}-. . .+^4^4 = 0,

xi, . . . , Xi are proportional to the three-rowed determinants

of the matrix of coefficients, so that (auvw) is essentially a*.
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