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PREFACE

For more than two score years I have meditated upon
the nature of Mathematics, upon its significance in

Thought, and upon its bearings on human Life. In the

following course of lectures I have endeavored to present,

in the language current among educated men and women,
some of the maturer fruits of that study.

Though the course is designed primarily for students

whose major interest is in Philosophy, I venture to hope
that the lectures may not be ungrateful to a much wider

circle of readers and scholars:

To the growing class of such professional mathemati-

cians as are not without interest in the philosophical

aspects of their science.

To the growing class of such teachers of mathematics

as endeavor to make the spirit of their subject dominate

its technique.

To the growing class of those natural-science students

who are interested in the logical structure and the dis-

tinctive method of mathematics regarded not only as a

powerful instrument for natural science but also and

especially as the prototype which every branch of science

approximates in proportion as its basal assumptions and

concepts become clearly defined.

To the innumerous but precious tribe of those literary

critics who know that the art of Criticism owes its first

allegiance to the eternal laws of thought.
To such psychologists as are interested either in the
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psychology of mathematics or in the mathematics of

psychology.
To such sociologists as desire to conceive the nature of

our humankind justly
—in accord with the mathematical

principle of
"

logical types
"
or dimensionality.

To the rapidly increasing class of engineers who are

learning to conceive engineering worthily, as the science

and art of directing the civilizing energies of the world

to the advancement of the welfare of all mankind including

posterity.

Finally, to all readers who desire to acquire a fair

understanding of such genuinely great mathematical

ideas as are accessible to all educated laymen and to

come thus into touch with the universal spirit of the

science which Plato called divine.

In closing this preface I desire to record my gratitude

to Mr. John Macrae, vice-president of E. P. Dutton &

Company, for his generous encouragement in this enter-

prise.

Cassius Jackson Keyser.
Columbia University,

New York, January II, 1922.
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MATHEMATICAL PHILOSOPHY

LECTURE I

Introduction

INTELLECTUAL FREEDOM AND LOGICAL FATE MATHE-

MATICAL OBLIGATIONS OF PHILOSOPHY AND EDU-

CATION COMMON HUMANITY AND INDIVIDUALITY

HUMANISTIC AND INDUSTRIAL EDUCATION MAN
NOT AN ANIMAL ETHICS NOT A BRANCH OF ZO-

OLOGY EXCELLENCE AND THE MUSES LOGIC THE
MUSE OF THOUGHT THE HEROIC TRADITION IN

PHILOSOPHY RADIANT ASPECTS OF AN OVER-WORLD

It is the aim of the following lectures to point out,

in a manner suitable for you as students of Thought, and

to submit for your consideration, some of the more es-

sential and more significant relations between Mathe-

matics and Philosophy. Each of these great terms is to

be understood in its most embracing sense. Mathema-
ticians sometimes speak contemptuously of philosophy;
and philosophers sometimes speak contemptuously of

mathematics. The contempt thus manifested does not

spring from mathematics in the former case, nor from

philosophy in the latter; in both cases it springs out of

ignorance—philosophical ignorance of mathematicians
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and mathematical ignorance of philosophers. No doubt

philosophically unenlightened mathematicians and mathe-

matically unenlightened philosophers will quarrel in the

future as in the past; but in the future as in the past,

the quarreling and the sneering will be the quarreling and

sneering of men and not of the great subjects they rep-

resent and misrepresent; for between the spirit of mathe-

matics and the spirit of philosophy there is no discord, no

antagonism, no strife; they are by their natures friendly

rivals in the pursuit of truth and light; they are compan-
ions in excellence; they are comrades in the service of

wisdom.

I have said that the "aim" of these lectures is to dis-

close fundamental connections between mathematics and

philosophy. What I have described as their "aim" is

not so much the aim, or end, as a means. For it will be-

come increasingly evident as we advance that the work

we are to be engaged in is fundamentally the study of

Fate and Freedom—logical fate and intellectual freedom.

I mention the matter here because you ought to have it

consciously in mind from the beginning. You should bear

it in mind at every stage of the discussion, even in con-

nections where so warm an interest may seem remote. A
preliminary word of explanation is therefore desirable.

We are going to deal with ideas—with their charac-

ters, with their meanings, with their relations. Now, an

idea is in Itself an eternal thing and the relations of an

idea with other ideas are eternal. An idea is just what

it is and it is unalterable; a relation among ideas is just

what it is and it is unalterable. We do, indeed, often

speak as if such were not the case; we habitually speak
as if ideas and their relations were temporal affairs, im-

permanent, mutable, malleable, capable of growth, of
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modification, of decay, of destruction, as when we say,

for example, that we have "changed" our ideas or that

such-and-such an idea has "grown" in importance or has

"become" sterile or is "dead." It is, I fancy, hardly

necessary to say that all such ways of speaking are figura-

tively-convenient no doubt, often pleasing, sometimes

very effective, yet thoroughly figurative,
—and that, if

taken literally, they quickly and inevitably lead to scien-

tific and philosophic disaster. You or I may abandon an

idea that we have held and we may adopt an idea that is

new to us; the "old" one and the "new" one may closely

resemble each other; they may indeed be identical in some

respect and may even be called by the same name; but

neither of them has been transmuted into the other; each

of them remains and will remain just what it was. Let

me illustrate the eternality of ideas and of their relations

by means of a simple example. You know that in dis-

course ideas are represented by symbols—by words or

other signs. Consider the symbols 2, 7, 9, +, and = ;

each of them stands for an idea familiar to all of us.

The symbols are man-made; but the things they stand

for, though they were discovered by man, are not man-

made; they are increate, as Milton would say, and inde-

structible, and the like is true of their relations; one of

these is expressed by the statement (a) 2+7=9; the

statement expressing the relation is a creature of man, but

the relation itself is not—man discovered it, but he did

not make it—it is a thing increate and indestructible, the

same yesterday, today and forever. The truth of what
I have just now said is very evident, but the illustration

is arithmetical. Is the eternality equally evident in the

case of all other ideas and their relations? No, it is not

equally evident, but it is none the less true. Shall we take
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another example? Let us take one that is very far

from being specifically arithmetical. Consider the state-

ment :

(b) If something S has the property p and whatever

has the property p has the property />', then S has the

property p'.

You observe that the statement expresses a certain

relation among certain ideas—the idea, for example,
denoted by "something," that denoted by "property" (or

quality or mark), that denoted by "whatever," and so

on. The denoting terms are indeed man-made, but the

ideas denoted are not, they are merely man-discovered

and man-known; and the statement expressing the relation

is a creature of man, but the relation itself, though man
discovered it, was not created by him : it is an unoriginated

thing, immutable, universal, timeless. The illustration is

very general, very abstract and very cold. Perhaps you

prefer something warmer, more specific, more concrete.

Well, it is easy to find such, for the foregoing general

statement is infinitely rich in concrete applications. Let

me instance one of them, one that is sufficiently warm;
it is indeed one that goes to the very heart of our human
ethics—not to our ethics as it is, but as it ought to be and

as no doubt it will be. The application is this, namely:

If human beings are by nature civilization-builders,

or "time-binders," and if all time-binders, or civiliza-

tion-builders, are both inheritors from the toil of by-

gone generations and trustees for the generations to

come, then we humans stand in the double relationship—debtors of the dead, trustees of the unborn—thus

uniting past, present and future in one living, growing

reality.
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The infinite and eternal significance of that fact may,

I trust, be left for your meditation.

Without more talk and without danger of misunder-

standing, we may, I believe, now speak of ideas as con-

stituting a world—the world of ideas. With that world

all human beings as human have to deal—there is no

escape; it is there and only there that foundations are

found—foundations for science, foundations for philoso-

phy, foundations for art, foundations for religion, for

ethics, for government and education; it is in the world

of ideas and only there that human beings as human may
find principles or bases for rational theories and rational

conduct of life, whether individual life or community life;

choices differ but some choice of principles we must make
if we are to be really human—if, that is, we are to be

rational—and when we have made it, we are at once

bound by a destiny of consequences beyond the power of

passion or will to control or modify; another choice of

principles is but the election of another destiny. The
world of ideas is, you see, the empire of Fate.

Is the human Intellect, then, a slave? No: it is free;

but its freedom is not absolute; it is limited by fact and

by law—by the laws of thought, by the immutable char-

acters of ideas and by their unchanging eternal relation-

ships. Intellectual freedom is freedom to think in accord

with the laws of thought, in accord with the natures of

ideas, in accord with their interrelations, which are un-

alterable. And no variety of human freedom—no insti-

tution erected in its sacred name—if it does not conform

to the eternal conditions of intellectual freedom—can

stand.

What I have now said is, I hope, a sufficient prelimi-

nary intimation of what I mean by saying that our work
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in these lectures is to be fundamentally a study of Free-

dom and Fate.

Your major interest is in philosophy; mine is in mathe-

matics. You have besides, I trust, a lively, if only a

minor, interest in mathematics, as I have had from the

days of my youth a genuine interest, albeit a subordinate

one, in the concerns of philosophy and especially in the

philosophy of mathematics. It is, I believe, a happy cir-

cumstance that your interest and mine in these great sub-

jects are thus complementary instead of coincident or

antagonistic; for in this relation of interest there is im-

plied a corresponding relation of attainment, limitation,

outlook and temper; and this relation, if wc bear it in

mind, will be favorable in important ways to the pros-

perity of our enterprise; for example, it should, on the

one hand, have the effect of restraining me from adduc-

ing too lightly or too freely, with too little explanation,

mathematical considerations with which you may justly

feel I have no right to suppose you familiar; and, on the

other hand, when you discover, as you will doubtless fre-

quently discover, that I have fallen into error because of

my philosophical limitations, it will, I hope, make you
feel it your duty to "impose upon me the just retribution,"

in accordance with the saying of Plato that "The just

retribution of him who errs is that he be set right."

It need hardly be said that no one should follow this

course in the hope of thereby acquiring mathematical

knowledge or skill in the usual sense of these terms. I

assume that what is mainly responsible for your presence
here is a desire and a hope of a different kind: you desire

to gain insight into the essential' nature of mathematics

regarded as a distinctive type of thought; you desire to

acquire knowledge of what is characteristic and funda-
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mental In mathematical method; you hope to gain ac-

quaintance with some of the great mathematical concepts,

with such of the dominant concepts as are accessible to

laymen; you desire to win a just sense of the spiritual

significance of the science; in a word, your quest is for

such an understanding of it as will help you to view

mathematics in a vast perspective
—in relation, that is,

with the other sciences and arts and the other modes and

forms of human activity. Such, I take it, are the ends

that define our task. I should indeed be unhappy if I

did not hope that the lectures, though they have been

fashioned with controlling reference to the task indicated,

will at the same time serve in some measure to extend

your acquaintance with the existing body of mathematical

doctrine. But it is to be understood that this result, if

the lectures produce it, will be incidental and subsidiary

to their main purpose; for they are not designed to teach

a recognized branch of mathematics whether elementary
or more advanced. Mathematical students having little

or no interest in the philosophy of their science must be

frankly counseled to repair to other courses for the kind

of instruction they desire. And students of philosophy
should not indulge themselves in the vain hope of acquir-

ing mathematical knowledge by merely "philosophizing"
about the subject or by pensively gazing upon its general

aspects from an external point of view. From time im-

memorial, there has been but one way to become a mathe-

matician and there will never be another: it is a way
interior to the subject and involves years of assiduous

toil. Short cuts to mathematical scholarship there is

none, whether the seeker be a philosopher or a king.

How much mathematical training is essential to the

qualification of one who may hope to follow the lectures
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profitably? It is natural that you should wish to ask that

question at this point. The question is important and

the answer easy and short: so much mathematical train-

ing
—so much knowledge of algebra, geometry and trigo-

nometry—as a capable student can acquire in one col-

legiate year. Compared with the existing science of

mathematics such knowledge is very meagre, a bare be-

ginning; but, taken absolutely, it is much; in respect of

content or mere information as distinguished from insight

and power, it is far more than Thales had, or Pythagoras
or even Plato or even Galileo. It would be very con-

venient if I might assume more; projective geometry, for

example, and some acquaintance with analytical geometry—which should remind you of Descartes, and with the

calculus—which should remind you of Leibniz ; for I shall

be obliged occasionally to employ ideas drawn from these

and other branches of mathematics, and shall have to

interrupt and delay the discussion a little in order to ex-

plain the ideas as the necessity arises for using them.

Perhaps I should add that, for understanding the lectures,

a certain intellectual maturity, logical acumen, open-mind-
edness and philosophical insight are not less essential than

the stated minimum of mathematical knowledge.
I desire to invite you now to a somewhat compre-

hensive consideration of a much larger question, one of

greater difficulty and far greater importance
—a question

of both general and permanent interest. The question

is: How much mathematical training
—how much mathe-

matical knowledge, discipline, and habit—may be reas-

onably regarded as indispensable to the proper equip-

ment of a philosopher? It may well be that you will be

qualified to give a better answer at the end of the course

than that which I am about to submit here at the begin-
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ning of it. Nevertheless, I am disposed to think that a

preliminary discussion of the matter will be of some serv-

ice. A complete discussion would involve many consid-

erations differing greatly in weight. I shall ask your
attention to such of them as seem to me cardinal and

decisive.

The first consideration grows out of the fact that a

philosopher is a human being. It is immediately evident

that the proper equipment of a philosopher must include

as much mathematical training as is essential to the ap-

propriate education of men and women as human beings.

How much is that? Be good enough to note what the

question precisely is. I am not asking how much mathe-

matical discipline is essential to a "liberal education" for

this fine term, though clearly defined long ago by Aris-

totle in terms of spiritual interest and attitude, has in

our day lost its significance even for the majority of aca-

demic folk, who ought to be ashamed of the fact. That

great man, the late Lord Kelvin, used to tell his students

that among the "essentials of a liberal education is

mastery of Newton's Principia and Herschel's As-

tronomy." On the other hand, such educators as Mat-

thew Arnold, John Henry Newman, Thomas Huxley,

though differing infinitely in their outlooks upon the

world and in their estimates of worth, yet unite in deny-

ing Kelvin's contention impetuously or even with scorn.

Let us so frame our question as to avoid that debate. The

question is: How much mathematical discipline is es-

sential to the appropriate education of men and women
as human beings? This exceedingly important question
admits of a definite answer and it admits of it in terms of

a supremely important and incontestable general prin-

ciple. A clue to the principle is found in the phrase I
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have just now employed: education of men and women
as human beings. Before stating the principle, it will

be convenient to give it a name. I shall call it the Prin-

ciple of Humanistic Education as distinguished from

what has come to be designated in our day as Industrial

Education. I say "as distinguished from" because the

two varieties of education, whether they be compared
with respect to the conceptions which lie at the heart of

them or with respect to the motives which actuate and

sustain them, are widely different. In order to set the

principle in a clear light, let me indicate briefly the obvi-

ous facts lying at its base and leading naturally to its

formulation.

What the individuals composing our race have in

common falls into two parts: a part consisting of those

numerous instincts, impulses, traits, propensities and

powers which we humans have in common, not only with

one another, but with many of the creatures constituting

the world of animals—a subhuman *
world; and a second

part consisting of such instincts, impulses, traits, propen-
sities and powers as are distinctively human. These

latter, we may say, constitute our Common Humanity.

They present, indeed, an endless variety of detail, but in

the long course of man's experience with man he has

learned to group them, in accordance with their principal

aspects, into a small number of familiar classes. . And

accordingly, the nature of our common humanity is fairly

well characterized by saying that human beings as such

possess in some recognizable measure such marks as the

following: a sense for language, for expression in speech—the literary faculty; a sense for the past, for the value

1
See Lecture XX for a discussion of Korzybski's concept of Man in

terms of Time—a conception according to which humans are not animals.



INTRODUCTION 11

of experience
—the historical faculty; a sense for the

future, for prediction, for natural law—the scientific

faculty; a sense for fellowship, cooperation, and justice—the political faculty; a sense for the beautiful—the

artistic faculty; a sense for logic, for rigorous thinking—the mathematical faculty; a sense for wisdom, for

world harmony, for cosmic understanding
—the philo-

sophical faculty; and a sense for the mystery of divinity—the religious faculty.

Such are the evident tokens and the cardinal constitu-

ents of that which in human beings is human. It is es-

sential to note that to each of the senses or faculties in

virtue of which humans are, not animals, but a higher

class of beings, there corresponds a certain type of dis-

tinctively human activity
—a kind of activity in which all

human beings, whatever their stations or occupations, are

as humans obliged to participate. Like the faculties to

which they correspond, these types of activity, though

they are interrelated, are yet distinct. Each of them has

a character of its own. Above each of the types there

hovers a guardian angel
—an ideal of excellence—wooing

our loyalty with a benignant influence superior to every

compulsive force and every authority that may command.

Nothing more precious can enter a human life than a

vision of these angels, and it is the revealing of them

that humanistic education has for its function and its aim.

Stated in abstract terms the principle is this: Each of

the great types of distinctively human activity owns an

appropriate standard of excellence; it is the aim of hu-

manistic education to lead the student into a clear knowl-

edge of these standards and to give him a vivid and

abiding sense of their authority in the conduct of life.

Ethics is not a branch of Zoology.
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It is plain that this conception stands in sharp con-

trast with the central idea of industrial education. For

humanistic education has for its aim, as I have said, the

attainment of excellence in the things which constitute

our common humanity. On the other hand, industrial

education is directly and primarily concerned with our

individualities. It might, therefore, be more appropri-

ately called individualistic education. It regards the

world as an immense camp of industries where endlessly

diversified occupations call for special propensities, gifts,

and training. Accordingly its aim, its ideal, is to detect

in each youth as early as may be the presence of such

gifts and propensities as tend to indicate and to qualify

him for some specific form of calling or bread-winning

craft; then to counsel and guide him in the direction

thereof; and finally, by way of education, to teach him

those things which, in the honorable sense of the phrase,

constitute the tricks of the trade.

What are we to say of it? The answer is obvious.

Industrial education, rightly conceived, is essentially com-

patible with the humanistic type; it may breathe the

humanistic spirit; the two varieties of education are essen-

tial to constitute an ideal whole, for human beings possess

both individuality and the common humanity of man. In-

dustrial education, when thus regarded as supplementary
to humanistic education, is highly commendable ; but when

it is viewed as an equivalent for the latter or as an ideal

substitute for it, it is ridiculous, contemptible and vicious.

For the fact must not be concealed that a species of edu-

cation which, in producing the craftsman, neglects the

man, is, in point of kind and principle, precisely on a level

with that sort of training which teaches the monkey and
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the bear to ride a bicycle, or the seal to balance a staff

upon its nose or to twirl a disc.

These considerations are no doubt obvious. I should

not dwell upon them at so great length but for the fact

that in the excitement and confusion of our industrial

age the most obvious of important facts and the most

evident of important principles are so commonly lost

sight of that they require to be cited again and again

and again. Nowhere is the confusion of the time more

evident than in the somewhat noisy and sometimes acri-

monious discussion that has been recently and still is go-

ing on throughout our country regarding the value of

mathematics as a subject in secondary and collegiate edu-

cation. The instigators of the discussion, those, that is,

who advocate so reducing mathematical requirements as

practically to abolish the subject from curricula of general

education, are not malicious nor insincere; many of them,

I do not doubt, are well-meaning citizens. And if their

rather voluminous discourses are often singularly lacking

in coherence, in clarity and in depth, the defects are not

due to evil intentions but rather, I suspect, to confusion

and a lack of just that sort of discipline which the subject

the authors are engaged in depreciating is peculiarly

qualified to give. Perhaps we should not be astonished.

If the saying of Sir Oliver Lodge be true that "the mathe-

matical ignorance of the average educated person has

always been complete and shameless," one ought not, I

suppose, to be too much astonished if in a vast, crude,

formless, sprawling democracy like ours, a way to edu-

cational "leadership" is sometimes found by men whose

innocence, not only of mathematics but of the other great

subjects, including the principles of education, is well-

nigh complete and shameless. And yet, despite famil-
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iarity with the phenomenon, it is sometimes a bit hard to

avoid astonishment and even a loss of patience. Not

long ago a high-placed counselor of a well-known college

of liberal arts challenged me, with defiant confidence and

unfeigned solemnity, to give any good reason why college

students should be required to pursue a course in algebra

rather than one in some practical art, say the art of cook-

ing mutton chops. On receiving such a challenge from

a grown man, what should a grown man do? Confess

his astonishment? Betray an exhaustion of patience?

Fly to the easy refuge of ridicule? Any such reaction

would probably have been misunderstood. In dealing

with a solemn question, no matter how stupid, it is usually

the wiser course to treat it with respect if possible. I

might have responded, in the fine words of Professor

Whitehead,
1
that

"Algebra is the intellectual instrument which has

been created for rendering clear the quantitative as-

pects of the world. . . . Through and through the

world is infected with quantity. To talk sense, is to

talk in quantities. It is no use saying that the nation

is large,
—How large? It is no use saying that radium

is scarce,
—How scarce? You can not evade quantity.

You may fly to poetry and to music, and quantity and

number will face you in your rhythms and your octaves.

Elegant intellects which despise the theory of quantity

are but half developed. They are more to be pitied

than blamed."

It did not seem to me, however, that one capable of

issuing such a challenge as that to which I have alluded

1
A. N. Whitehead : The Organization of Thought. Cambridge Uni-

versity Press.
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could feel the weight of such a response, and I did not

make it. It is, you observe, a response in terms of quan-

tity. Quantity is indeed omnipresent in our world; but

so, too, is quality, and of the two things, the latter is per-

haps the more universal in its appeal. Algebra is indeed

essential to the theory of quantity and the theory of

quantity is essential to the subjugation of natural resources

to the use of man; of quality, on the other hand, algebra

is not a science but, though it is not a science of quality,

it has a quality, a human quality, to which it owes its high
rank in the spiritual hierarchy of human disciplines. And
so I endeavored, with poor success I fear, to answer the

challenge in terms of quality. I invoked the principle

which in this lecture I have been calling the principle of

humanistic education. I sought, that is, to make it clear

that, in contrast with the practical arts, the science of al-

gebra as a discipline possesses a certain quality by virtue

of which, if the subject be rightly administered, the

student is gradually brought into the presence of one of

those great standards of excellence by which, as we have

seen, distinctively human activity in all its principal types
is to be guided and judged. The standard to which I

refer is, as you have doubtless surmised, the standard of

excellence in the quality of thinking as thinking
—the

standard which mathematicians are accustomed to call

Logical Rigor—clarity, that is, precision and coherence.

And now the mention of that great term may serve

to reassure you, should you have begun to suspect that

in the course of this rather long excursion I may have

forgotten the question initiating it. The question is:

How much mathematical training is essential to the ap-

propriate education of men and women as human beings?
I have said that the question admits of a definite answer
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in terms of a supreme and incontestable principle. I

have stated the principle as well as I can and have tried

to signalize its importance for a general theory of edu-

cation. It remains to apply it to the specific question be-

fore us. The task is not difficult. It is plain that one

of the great types of distinctively human activity
—

per-

haps the greatest and most distinctively human type
—is

what is known as Thinking—the handling of ideas as

ideas—the formation of concepts, the combination of con-

cepts into higher and higher ones, discernment of the

relations subsisting among them, embodiment of these re-

lations in the forms of judgments or propositions, the

ordering and use of these in the construction of doctrine

regarding life and the world—in a word, the whole com-

plex of activity involved in the discourse of Thought. It

is essential to the argument I am making to keep steadily

in mind that this kind of activity, our sense for it, our

faculty for it, the need to which it ministers, the joy it

gives, and the obligation it imposes are part and parcel

of what we have been calling our common humanity as

distinguished, on the one hand, from that which is animal

in man, and, on the other, from such special propensities

or other marks as give the differing specimens of human-

kind their respective individualities. Thinking is not in-

deed essential to life, but it is essential to human life. All

men and women as human beings are inhabitants of the

Gedankenwelt—citizens, so to speak, of the world of

ideas, native citizens of the world of thought. And now
what shall we say is the prototype of excellence in think-

ing? What is the hovering angel wooing our loyalty to

what is best in thinking? What is the muse of life in

the world of ideas? An austere goddess, high, pure,

serene, cold towards human frailty, demanding perfect
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precision of ideas, perfect clarity of expression, and per-

fect allegiance to the eternal laws of thought. In mathe-

matics the name of the muse is familiar: it is Rigor—
Logical Rigor, which signifies a kind of silent music, the

still harmony of ideas, the intellect's dream of logical

perfection.

Can the dream be realized? I am well aware that

most of the things which constitute the subject-matter of

our human thinking
—that most of the things to which

our thought is drawn by interest or driven by the exigen-

cies of life—are naturally so nebulous, so vague, so

indeterminate that they cannot be handled in strict

accordance with the rigorous demands of logic. I am
aware that these demands can not be fully satisfied even

in mathematics, the logical science par excellence. Never-

theless I contend that, as the ideal of excellence in think-

ing, Logical Rigor is supremely important, not only in

mathematical thinking, but in all thinking and especially

in just those subjects where precision is least attainable.

For without this ideal, thinking is without a just standard

for self-criticism, and without light upon its course; it is

a wanderer, like a vessel at sea without compass or star.

Were it necessary, how easy it would unfortunately be

to cite endless examples of such thinking from the multi-

tudinous writings of our time. Indeed, if the pretentious

books produced in these troubled years by men without

logical insight or a sense of logical obligation were

gathered into a heap and burned, they would thus produce,

in the form of a bright bonfire the only light they are

qualified to give. "Logic," it has been said, "is the child

of a good heart and a clear head." We know, however,

that an evil heart is not essential to a fool and that, on
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the other hand, few heads are naturally so clear as not

to require discipline.

Now, it so happens that the term mathematics is the

name of that discipline which, because it attains more

nearly than any other to the level of logical rigor, is

better qualified than any other to reveal the prototype
of what is best in the quality of thinking as thinking.

And so, in accordance with the principle of humanistic

education, we have to say that the amount of mathematical

training essential to the appropriate education of men and

women as human beings and essential, therefore, to

philosophers as human beings, is the amount necessary

to give them a fair understanding of Rigor as the standard

of logical rectitude and therewith, if it may be, the spirit

of loyalty to the ideal of excellence in the quality of

thought as thought.

Such is my answer to the question that has detained

us so long. It is, you observe, a qualitative answer in

terms of a great ideal and a sovereign principle of edu-

cation. If I must add a word touching the strictly quan-

titative aspect of the question, if I must, that is, attempt

to indicate the extent of courses and the length of time

necessary and sufficient to yield the required quality and

degree of training, I do so with less confidence and far

less interest. For so much, so very much, depends on the

pupil's talent and the quality of instruction. A consider-

able degree of native mathematical ability is much more

common than is commonly supposed. Born mathematical

imbeciles are rare. Youth of fair mathematical talent

constitute an immense majority. I venture to say, re-

garding the question of time and the extent of courses,

that, for pupils of fair mathematical endowment, a col-

legiate freshman year or even a high school senior year
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of geometry and algebra, if the subjects be administered

in the true mathematical spirit, with due regard to pre-

cision of ideas and to the exquisite beauty of perfect

demonstration, is sufficient to give a fair vision of the

ideal and standard of sound thinking.

Herewith, I have come to the end of what I desired

to say respecting the mathematical equipment essential

to a philosopher in so far as its measure depends upon
the fact that philosophers are human beings. It remains

to enquire what further mathematical attainments are to

be regarded indispensable to the proper equipment of a

philosopher as a philosopher. It is evident that the an-

swer must be sought in the nature of the philosopher's
vocation. It would be presumptuous in me, a student

of mathematics, to offer to teach you, who are students

of philosophy, the nature of your vocation, but I may
remind you of it for it is necessary to have it clearly in

mind if we are to see its bearings upon the question in

hand. No one, I suppose, has conceived the philosopher's
vocation more justly and nobly or characterized it more

clearly and truly than Plato, as no other has drawn, with

such clarity and charm, with so perfect a union of finesse

and amplitude, so beautifully and so truly, the spiritual

portrait of the genuine philosopher. You are, of course,

familiar with the characterization and the portrait, which

together give for all time a vision of the great ideal:

what genuine philosophy is, and the philosopher ought
to be. I wish to remind you of such elements of it as

our present task requires.

The genuine philosopher, says Plato, "has magnifi-
cence of mind"; there is in him "no secret corner of illib-

erality" ; he is "noble, gracious, the friend of truth, justice,

courage, temperance"; he aims at being "a spectator of
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all time and all existence," and so he is a lover and seeker

of "wisdom," which does not consist of sense-impressions

nor of "the tempers and tastes of the motley multitude"

nor of fickle "blinking opinion" begotten of time-born

appearances and events destined to the doom of thing9

that perish in "the sea of change," but consists in knowl-

edge of things that abide—of true being—of whatsoever

in the world is eternal: pursuit of such wisdom is the

philosopher's vocation, sustained by the twofold hope
of coming at length into the full-shining presence of the

Beautiful, the True, and the Good and of bringing light

from them into the lives of the children of men.

From that conception of the genuine philosopher's

vocation and character, what conclusion follows regarding

his obligation to mathematics? An important conclusion,

as I hope to show if you agree with me in thinking that

we ought to ascertain what it is.

Let me say at the outset that there are two pretty

obvious considerations which I do not intend to insist

upon, although they are not without relevance and weight.

One of them is that which conceives mathematics as being

itself a branch of philosophy; the other relates to the

familiar contention of Plato, that mathematical discipline

is indispensable as a preparation for what he conceived

to be the philosopher's distinctive task—that of Dialectic.

As to the former consideration, one might argue,

pertinently and confidently, that both historically and in

accordance with the foregoing conception of philosophy,

Logic is one of its branches; that mathematics not only

employs logic as an instrument but is, in fact, identical

with it, mathematics (as traditionally viewed) being re-

lated to logic (as traditionally viewed) as the trunk and

branches of a tree are related to its roots; that, conse-
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quently, mathematics, being identical with logic, is not ex-

ternal to philosophy but is, strictly speaking, one of its

principal divisions; and that, accordingly, philosophers,

if they are not to be ignorant of one of the chief depart-

ments of their own subject, are obliged to be, not merely

mathematical dilettanti, but mathematical students, seri-

ous explorers of the science. Theoretically, the argument
is sound, which is the highest quality of argument as

such. I do not, however, as I have said, intend to press

it, because it imposes on the student of philosophy an

obligation that he cannot fully meet; his obligations are

many, too many and too great; he may not reasonably

hope to win the proper competence of a mathematician

in a subject where the developments, still rapidly progress-

ing in numerous directions, have already reached propor-
tions so great that no man, though he have the wide-

reaching arms of a Henri Poincare, can contrive to em-

brace them all.

Turning now to the second one of the two considera-

tions mentioned a moment ago, let me guard against the

danger of being misunderstood. You are aware that, in

the view of Plato, what is peculiar to philosophy is dia-

lectic—"the coping stone of the sciences"; you are aware

that dialectic is the sole means by which the philosopher

may gain a knowledge of
u
what each thing" in the hier-

archy of being "essentially is," and by which he may gain,

at length, as he ascends the scale, a vision of things su-

preme—absolute justice, absolute beauty, absolute truth,

absolute good; you are aware that the successful employ-
ment of dialectic requires not only native "magnificence
of mind," but also a long course of preparation in the

subsidiary sciences; you are aware that, according to

Plato, the most indispensable of these sciences are arith-
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metic and geometry: the former because arithmetic, not

as the mere practical art of calculation but as a discipline

in the logical nature of pure number, "lays hold of true

being"; and the latter because "the knowledge at which

geometry aims is knowledge of the eternal." Such is in

brief, as you know, the famous contention of Plato re-

specting the importance of mathematical discipline as a

preparation for philosophy. There can be no doubt that

the contention is perfectly just. Why, then, do I not

stress it in this connection? The reason is that the mathe-

matical discipline insisted on by Plato is more than cov-

ered by the mathematical training I have already urged as

essential to the appropriate education of the philosopher
as a human being, and that we are here considering such

further mathematical attainments as are essential to him

as a philosopher. Before leaving this theme, however,

I desire to point out a different aspect of it and in connec-

tion therewith to speak very briefly, in passing, of a mat-

ter which I have discussed elsewhere,
1
to which I hope to

return at a later stage of these lectures and which, I

believe, has a very important bearing upon the question
before us.

After some years of reflection, I am convinced that

the great Platonic Absolutes, whose "perception by pure

intelligence" brings us, says Plato, to "the end of the in-

tellectual world"—have indeed their proper locus beyond
it. I am convinced that, instead of being genuine con-

cepts amenable as such to the logical processes valid in

the intellect's world, the Platonic Absolutes are radiant

ideals of concepts, shining from above them like down-

ward-looking aspects of an over-world; transcending

1
Science and Religion, also The New Infinite and the Old Theology.

Yale University Press.
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every type of excellence in which intellectual progress is

possible, they appear as ideals supernal
—as stars beyond

the sky. I need not say that the Absolutes, thus regarded,

retain their glory unimpaired and their previous value

as sources of light and inspiration. We should not, how-

ever, fail to see clearly that, if they be thus regarded, the

philosopher is thereby confronted by a new challenge, a

new problem, a new field of study or, perhaps I should

say, by an old one seen as new. For, if the Absolutes

are not in the intellectual world but are beyond it; if they

be, in fact, not concepts, but ideals of concepts, shining

downward from above them, then obviously their origin,

the manner and genesis of their appearance, and their

significance for life, must be sought in the nature and

function of that strange and familiar spiritual process

omnipresent among the activities of the intellectual world

and known as Idealization. And now the point I am

aiming at and to which I invite your special attention is

this: In the study of this great subject
—the nature and

function of Idealization—the philosopher and especially

the theologian as philosopher—for rational theology,

rightly conceived, is the science of Idealization—will

have need of mathematical discipline surpassing the

Platonic requirement and surpassing what I have deemed

essential to the education of the philosopher as a human

being. For the term "idealization" is the generic literary

term for what in science and especially in mathematics is

known as generalization by means of the method or

process of limits. In mathematics, particularly in the

modern theory of the Real Variable, in connection with

the generalization of the number concept, the essential

nature of Idealization, the pattern of it as the process

and method of directing the attention from within a given
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domain of operation to the existence and the character

of outlying domains, comes into perfect light. It is in

mathematics and not elsewhere that Idealization is be-

held in its purity; and unless the philosopher becomes

familiar with it there in its purity, his endeavor to study

the great process elsewhere, amid the many disguises half

concealing its subtle ramifications throughout the shadowy
world of general thought, will encounter serious difficul-

ties, if not defeat.

The considerations I have now advanced, though they

are subordinate, are weighty, and I commend them as

worthy of your further reflection. Let us proceed, with-

out further delay, to the heart of the matter.

We have seen that the genuine philosopher "has mag-
nificence of mind"; that there is in him "no secret corner

of illiberality" ; that his vocation requires him to be "a

spectator of all time and all existence" ; and that the wis-

dom he seeks is the wisdom which consists in knowledge
of whatsoever is eternal. It is these great things

—the

highest distinctive marks of the genuine philosopher—
that determine the character of his mathematical obliga-

tions and enable us to measure them. For what is mathe-

matics ? What is that science which Plato x
called "divine,"

which Goethe called "an organ of the inner higher sense,"

which Novalis called "the life of the gods," and which

Sylvester called "the Music of Reason"? The question

is not intended to call for a complete description of the

science, much less for a definition of it. What it seeks is

a partial description. I wish merely to draw your atten-

tion to one feature of mathematics—to that feature of

it which all competent judges agree in signalizing as the

chief aspect of the science viewed as an enterprise. The

aspect in question I endeavored to point out some years
1
See Memorabilia Mathematica by Professor Moritz.
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ago in the following words: "As an enterprise, mathe-

matics is characterized by its aim, and its aim is to think

rigorously whatever is rigorously thinkable or whatever

may become rigorously thinkable in course of the upward

striving and refining evolution of ideas." * The same

feature has been recently indicated, even more clearly

perhaps and somewhat poignantly, in a striking utterance

by Mr. Bertrand Russell. "Pure logic, and pure mathe-

matics (which is the same thing), aims at being true, in

Leibnizian phraseology, in all possible worlds and not

merely in this higgledy-piggledy job-lot of a world in

which chance has imprisoned us."
2

You know, at least in a general way, that in pursuit

of that enterprise and aim through the centuries, the

mathematical spirit has achieved immense results and that

today the science of mathematics, as a body of permanent

knowledge regarding things eternal, is a veritable conti-

nent of expanding doctrine. And so it is pertinent to ask:

How can one aspiring to be a philosopher, unless he ex-

plores that growing continent of knowledge respecting

what is "true of all possible worlds," be in any proper

sense "a spectator of all time and all existence"? You

may wish to reply that, owing to his other obligations, the

philosopher cannot make the exploration fully; that in-

deed, owing to the nature of the continent, he cannot,

without exploring it step by step, gain even so much as a

clear knowledge of its contour and relief; that, however,

notwithstanding the endless diversity of the things that

are there, they have a certain essential character in com-

mon; that for the philosopher's vocation, knowledge of

1 Human Worth of Rigorous Thinking, p. 3. Columbia University
Press.

2
Introduction to Mathematical Philosophy. The Macmillan Company,

New York.
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that common character is sufficient; and that such knowl-

edge does not demand exploration of the continent in all

its length and breadth and height and depth, but may be

gained by examination of representative parts and especi-

ally of the elements which fundamentally compose the

whole .

That reply, if we rightly interpret the meaning of

the terms, is just. But their meaning is momentous. The
mathematical knowledge which they tell us is sufficient

for the purposes of the philosopher is neither slight nor

simple nor easy to gain. The questions it must answer

determine its nature and its scope. What are the idiosyn-

crasies of mathematics as a body of content? As a sys-

tem of methods? As a type of activity? As a distinct-

ive enterprise among the great kindred enterprises of the

human spirit? If the science be logical, what are its re-

lations to Logic? If it be beautiful, what are its rela-
(

tions to Art? If it employ hypothesis, observation and

experiment, what are its relations to Natural Science? If

it be purely abstract and conceptual, what are its relations

to the concrete world of Sense? If it be theoretic, what

are its relations to Practical Life? If it be self-critical,

what are its relations to the science and art of Criticism?

If it be a wisdom respecting infinite and eternal things,

what are its relations to Philosophy and to Religion? If

it have limitations, what are its relations to the dream
of Universal Knowledge? To the challenge of these

great questions and their kind, no one having "magnifi-

cence of mind," no one called to be "a spectator of all

time and all existence," can fail to respond. And so we
see that the mathematical obligations of the philosopher
confront him with two difficult close-related Problems:

the problem of definition and the problem of evaluation;
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he must endeavor to ascertain what mathematics essen-

tially is and endeavor to estimate, in the terms of spiritual

Worth, the rank and the dignity of the science in the

hierarchy of knowledges and arts.

It is a radical error to regard these kindred tasks of

definition and evaluation as belonging to the proper func-

tion of mathematicians as such. The term "mathematics"

is the name of an immense class of logically related terms

and most of these the mathematician must indeed de-

fine, but the term "mathematics," which names the class,

is not among them; the class is not a member of itself,

for no class can be; the name "mathematics" is not a

mathematical term; the mathematician would be none the

less a mathematician, had he never heard of it; it is a

philosophical term, used by mathematicians as a conven-

ience but never as a necessity. The proper activity, the

distinctive function, of the mathematician is to mathemat-

icize, as that of a swimmer is to swim; or that of a

farmer, to farm; or that of a poet, to make poetry; or

that of a trader, to trade. And it is as little the business

of the mathematician to define and evaluate the peculiar

type of his proper activity as it is that of the swimmer
or the farmer or the poet or the trader to do the like for

his. The philosopher, therefore, may not rightly look

to mathematicians as such for a definition of mathematics

nor for any appraisement of its significance or its worth.

Is it not true, nevertheless,—you may wish to ask—
that nearly all real advancement made in the course of

the centuries in these tasks of definition and appraise-

ment has been made by mathematicians? The answer is

yes, even if we do not forget or underrate the relevant

contributions of Plato and Aristotle, for knowing, as they

did, what was known then of mathematics, they must be
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counted among the mathematical scholars of their day.

It must be noted, however, that, though the advancement

in question was made by mathematicians, it was made by

them, not in their character as mathematicians, but in

their capacity as philosophers. There is nothing in the

fact to astonish. For a man is greater than any occupa-

tion, and a mathematician, like a physician or lawyer or

poet or statesman or farmer, may be—indeed he must be,

in some measure—a philosopher as well. It is not, then,

strange or a matter for wonder that there have been

mathematicians who, in relation to their proper subject

taken as a distinctive whole, have sometimes taken the

attitude and played the role of philosopher. Nay, even

within the subject, in relation to its parts, the role is very

common; for whenever a mathematician, having acquired

competence in two or more branches—say algebra and

geometry—pauses to compare them, seeking to ascertain

the essential nature of each, what they have in common,
their respective worths and their joint significance as

forms of activity, his interest and his attitude have then

become for the time, whether long or short, those of the

philosopher. The fact. is that such minor alternations of

the scientific and the philosophic interests may be con-

stantly witnessed even in the activity of such mathema-

ticians as ignorantly affect to spurn philosophy and to

scorn its achievements; but they are not aware of it.

Of the two tasks with which, as we have seen, the

mathematical obligations of the philosopher confront him,

the task of definition is far more advanced than that of

evaluation; and, though the work of the former is not yet

complete, we know much better today what mathematics

is than what it is worth. That it should be so is natural,

for a just appraisement of worth depends, of course, upon
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the nature of the thing appraised. We are, therefore,

not surprised to find that researches concerning the essen-

tial nature of mathematics have been prosecuted, espe-

cially in recent times, far more resolutely and systemat-

ically than such as aim at a critical estimate of its sig-

nificance and value. In Plato and in Aristotle, as you

know, research of both kinds produced results of great

importance. I shall not speak of the great Greek mathe-

maticians for their interest centered, not in the philosophy

of their subject, but in the science of it. They were swim-

mers mainly—not non-aquatic students of swimming. It

seems incredible that, after Plato and Aristotle, no im-

portant contribution to the philosophy of mathematics was

made in the course of twenty hundred years. Yet that

is the fact. Even the brilliant and exquisite De L'Esprit

Geomelrique of Pascal is thoroughly Aristotelian. The

great revival had to await the appearance of Leibniz

—of him who said, "Ma metaphysique est toute mathe-

matique." As students of philosophy, you know that

throughout his life this marvelous man was haunted by a

magnificent dream—the dream of "a universal mathe-

matics." In his manifold endeavors to make the dream

come true is found the origin of that great critico-con-

structive movement which has done more than all previ-

ous centuries to disclose the essential nature of rigorous

thought and which, after notable vicissitudes of fortune,

is known today, in all scientific countries of the world,

under the characteristic name of Symbolic Logic.

The leading names of its pioneers and contributors—
Leibniz, Lambert, De Morgan, Boole, Jevons, Schroder,

Peirce (C. S.), MacCall, Frege, Peano, Russell, White-

head, Hilbert, Huntington, Couturat, and others—suf-

ficiently indicate its international interest and the variety
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of genius to which it appeals. The growing literature

of the subject is large. Fortunately, it is not necessary,

except for the historian, to examine it all, for it has been

refined, assimilated, and, all but the later developments,

superseded in the monumental work of Whitehead and

Russell—Principia Mathematica—the present culmina-

tion of the movement. This work, however, which ha9

not yet been completed, the philosopher must examine

minutely if he would understand, as a philosopher ought
to understand, the fundamental nature of mathematics as

disclosed in the best light that has been thrown upon it

and especially if he would realize the hope of being able

to improve the light, which is not yet perfect. The

symbols are at first repellent; they tend to frighten but

are not in fact difficult to master.

They are things of so frightful mien
That to be hated need only be seen.

But often seen, familiar with their face,

We endure them first and then embrace.

Theoretically, the symbols are not essential, a suf-

ficiently powerful god could get along without them; but

practically they are indispensable as instruments for

economizing our intellectual energy.
1

No kind of work, whether philosophic or scientific,

can be severer in its demands. None surpasses it in re-

spect of the toil involved, nor in patience, nor in depth
of penetration, nor in subtlety, nor imagination, nor an-

alytic finesse, nor in the demand it makes upon the con-

structive faculty, and none can give to the competent
student a serener vision of eternal things. If on this

1
In relation to the early history and importance of symbolism do not

fail to read Professor David Eugene Smith's beautiful essay, "Ten Great

Epochs in the History of Mathematics," in Scientia, June, 1931.
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account it seems to you, as It may seem, a little strange

that the majority of mathematicians have little interest

in such work and are not familiar with it, it is sufficient

to reflect that, though its results as results are strictly

scientific, strictly a part of mathematics, they are deeply

tinged with philosophic interest and owe their discovery

primarily to the spirit of philosophic enquiry. In mathe-

matics, as in other subjects, fashions change; it is, more-

over, so large a subject that a student is obliged by his

limitations to specialize in a branch of it or in a group
of branches; and it so happens that a large majority of

mathematicians are disqualified,
—some of them by breed-

ing, more of them by temperament,
—for study or re-

search in that branch which deals with the foundations of

their science as a whole. Such disqualification is not to

be imputed to them as a fault; often no doubt,—oftener

than not, perhaps,
—it is only a defect of a quality; at all

events, a mathematician may not be rightly blamed for

the temperamental bent of his scientific interests. The
same may not be said of those who are inclined to de-

preciate other interests than their own. I refer to the

type of mathematician,—such as you may sometimes

meet,—who, as if to mitigate his sense of guilt for being

consciously innocent of symbolic logic and so to protect

his self-respect, will occasionally ask you, in a somewhat

disparaging tone, to tell him, if possible, of any important

service rendered by symbolic logic or of any important

proposition established by it or of any important method

devised by it for the use of mathematicians. If you dis-

regard the spirit in which such questions are sometimes

asked, it is easy to answer them in a way satisfactory to

any candid and competent enquirer. 7hc answer, as I

conceive it, is, in brief, as follows:
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(i) Symbolic logic has established the thesis that

all existing mathematics (and presumably all potential

mathematics) is literally a logical outgrowth of a few

primitive ideas, and a few primitive propositions, of

logic; and, that, accordingly, logic and mathematics

are spiritually one in the sense in which the roots, the

trunk and the branches of a tree are physically one: a

proposition which, though philosophical and not mathe-

matical, is, in respect of human significance, unsur-

passed.

(2) In course of the work establishing the fore-

going proposition, symbolic logic has discovered and

rigorously demonstrated a long sequence of theorems

respecting propositions, classes, and relations, which

theorems constitute an immense new body of genuinely

mathematical doctrine underlying mathematics as com-

monly understood and they are open to inspection by
all critics, whether friendly or unsympathetic.

(3) Symbolic logic has not promised nor pretended
to devise methods to facilitate mathematical research

except research in mathematical foundations; in such

research the effectiveness of the methods employed is

patent in the results.

(4) Finally, symbolic logic is simply the latest

fruit of the critical spirit in mathematics—fruit of the

refinement,—the inevitable refinement,—of that spirit

which has led to so many mathematical developments
familiar to all mathematicians,—the postulational

method, for example, the birth of non-Euclidean geo-

metries, the theory of manifolds including the hyper-

spaces, the so-called arithmetization of mathematics,

and similar phenomena throughout the history of the

science. To depreciate symbolic logic is to oppose the
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progress of the spirit of constructive criticism and that

means opposition to the progress of science; for

Cousin's famous mot is just : La critique est la vie de la

science.

In saying that the philosopher's mathematical obliga-

tions require him to familiarize himself with the methods

and results of symbolic logic, I have not quite finished the

tale. One point remains to be stressed. Before present-

ing it, let me remind you of a certain fairly obvious dis-

tinction which Bergson
1 has emphasized and has elevated,

rightly I believe, to the level of an important principle

of knowledge. I may best make it clear by an example.

You know, as we say, how to move your arms. This

knowledge is not a part of, and is not derived from,

your "scientific" knowledge of physiology, anatomy and

physics, though this knowledge, too, may tell you much

respecting the motion in question. The latter knowledge
is indirect and external—a knowledge from without; the

former is immediate and internal—a knowledge from

within; it is a living instinct—of the essence of your life;

the other is only a superadded understanding. Complete
or perfect knowledge of any thing involves both of these

kinds of knowledge. In the illustration I have used, the

thing to be known is a part of the knower—the mobile

arm is yours and its life is yours. But most objects of

knowledge are not thus parts of the knower. Of such

objects complete knowledge, even if we suppose the ele-

ment of "understanding" to be perfectible, is unattain-

able; for to attain it, to gain the other element,—the in-

stinctive element, the inner kind of knowlege,
—would

1
"Introduction a la M^taphysique." Revue de Melaphysique el de

Morale, Vol. n, (1903).
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require the knower to make the object's life an intimate

part of his own; and this, it is plain, cannot be done per-

fectly. But—and here is a fact of the utmost importance—it can be done approximately. Do you ask, how? The
answer is: By the noetic agency of sympathy or love;

by the means which Bergson has so finely described as

"intellectual sympathy" with the object's life. Your

thought, I fancy, runs ahead of my speech and already

sees the bearing of the point upon the philosopher's ob-

ligations to mathematics. In a sense more than figurative,

this science has a life of its own. Else how could it grow?
To acquire such knowledge of the science as the philoso-

pher's vocation demands, to know it from within as it

instinctively knows itself, he must acquire such intellectual

sympathy with it as will enable him to feel its proper life

as part of his own. Sympathy so living and intimate,—
embracing the instincts, and feeling the impulses and

moods, of an alien life,
—is not easily acquired. In the

case of mathematics, collegiate courses in algebra,

geometry and trigonometry cannot give it, except to the

born mathematician, who has it already; neither can it

be given adequately by symbolic logic for this study is too

meditative for the purpose, too introspective, being more

concerned to "understand," than to "live," the life of

mathematics. No, if the student of philosophy would

acquire that kind of knowledge of mathematics which can

come to him only through intellectual sympathy with its

life, he must share its life; he must penetrate it deeply

enough to feel the touch and thrill, the push and sweep,
of its conquering tide; he must at least plunge into Analy-
tical Geometry and the Infinitesimal Calculus where the

science first won, and its votaries first win, a worthy sense

of its power and its destiny.
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In the light of the foregoing considerations, the

mathematical obligations of the philosopher appear to be

heavy. They are heavy; but they are not too heavy for

those whose native talents qualify them for a vocation

demanding "magnificence of mind." It is consoling to

know that a student who faithfully keeps the obligations

will have two great rewards: the joy of an insight and a

power not to be otherwise gained; and the joy of repre-

senting and perpetuating a noble tradition of his kind,—
the tradition, I mean, of mathematical competence as il-

lustrated by the heroes of philosophy in every important

age. In relation to that tradition, it is indeed true, as you

know, that there have been many philosophers of great

learning, some of them important thinkers, whose ignor-

ance of mathematics has been virtually complete, and

these have differed widely in kind; of their mathematical

ignorance some of them have not been aware; some have

deeply regretted it and humbly confessed it—our own be-

loved William James, for example; in some it has been

not only complete but shameless as well, even haughty
and defiant, as in Sir William Hamilton and Schopen-

hauer, whose false and malicious diatribes against mathe-

matics I have dealt with elsewhere,
1 and in case also, I

am sorry to say, of Benedetto Croce," whose fine literary

and artistic culture and true elevation of spirit have not

availed to restrain him from speaking with strange con-

fidence and very disparagingly of a science which his fel-

low countrymen, by brilliant research, have done so much
to honor and which he has not qualified himself to under-

stand even slightly.

It is edifying to compare such representatives of phi-

1 Human Worth of Rigorous Thinking, p. 290.
1
Logic as the Science of the Pure Concept.
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losophy with its towering heroes, its men of "summit-

minds" : with Plato, for example, who knew perfectly the

mathematics of his time, whose sense and revelation of

its spiritual significance has never been surpassed, and

whose influence in his own and all succeeding ages has

given his name a permanent place in mathematical history;

and with Aristotle, whose discussions of such fundamental

questions as the nature of mathematical definition, hy-

pothesis, axiom, postulate, and subject matter, are of high

value even today and whose great contributions to logic

must now be regarded, in the light of modern symbolic

logic, as being, though he did not know it, genuine con-

tributions to mathematics; and with Descartes, discoverer

of important mathematical propositions, and chief inven-

tor of analytical geometry,
—second in scientific power to

only one among mathematical methods; and with Leibniz,

father of modern symbolic logic and co-inventor with

Newton of the infinitesimal calculus, "the most powerful
instrument of thought yet devised by the wit of man" ;

a

and with Spinoza to whose lot it fell to try the great ex-

periment,
—inevitable in the history of thought,

—of cloth-

ing ethical theory,
—

highest of human interests,
—with

the strength and beauty of mathematical rigor and form,

and, in trying it, to exemplify in a singularly noble way,
the fact that illustrious failures fall to the lot of none

but illustrious men; and with other great philosophic

personalities, if I did not fear to weary you in naming

them, who by their mathematical competence worthily

represent the heroic tradition.

In closing this initial lecture, I desire to indicate in a

general way the sort of topics with which the following
lectures will deal. The endless number of the ideas, or

1
See the preface of Professor W. B. Smith's Infinitesimal Calculus.
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notions, or concepts,
—as they are variously called,—

which enter as components into the stately edifice of

mathematics, though they are all of them, in a sense, in-

dispensable to it, yet differ very widely in respect of their

place and rank, their dignity and structural service. Ex-

amination of the great edifice makes it evident that some

of them,—a relatively small number of them,—have the

distinction of being related to it as central supporting

pillars. Among the chief of these are the concepts de-

noted by the terms: Function—Propositional Function

—
Implication

—
Proposition

—Class—Relation—Postulate

System—Doctrinal Function—Doctrine—Variable—Limit
—Number—Finitude—Infinity

— Transformation—Group—Invariance. It is with such pillar-concepts,
—which

are obviously not coordinate in rank,—that I purpose
to deal, and I shall deal with them primarily as concepts,

explaining them with constant regard to clarity, with a

minimum of technical symbols, and with a view, not

alone to their mathematical meanings, but to their sig-

nificance and use in outlying fields of thought. But I shall

not endeavor to expound, in the proper sense of the

term, the great technical doctrines that have grown up
about them as subject matter, for such exposition would

demand, as you know, not merely one course, but many
courses, of lectures. You will rightly infer that, though

proof or demonstration may not be entirely absent, it will

not be permitted to detain us too long, much less to

dominate the discussions.

Let me say, finally, that the course is not designed to

be, in the stricter and narrower sense of the term, a course

in the philosophy of mathematics. It aims at being at

once something less and something more: less, in that it

does not endeavor to begin with the most ultimate of
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logical principles and to build upon them, little step by

step, with infinite patience, the solid masonry of the mathe-

matical edifice; more, in that it is a good deal concerned

with the mentioned task of evaluation—with disclosing

the relations of mathematics to other great forms of in-

tellectual activity and especially its bearings upon the uni-

versal interests of the human spirit.



LECTURE II

Postulates

CONCRETE DEFINITION OF POSTULATE SYSTEM THE
PROTOTYPE OF PRINCIPLES OR PLATFORMS THE
ANCIENT "CRAFT OF GEMETRY" THE SWORD OF,

THE GADFLY CLARITY OR SILENCE MUNICIPAL

LAWS AND THE LAWS OF THOUGHT.

The introductory lecture has served, I hope, to indi-

cate in a general way the aim, the spirit, and the scope of

our undertaking. In deciding to begin the work proper with

a study of the great concept denoted by the familiar term
—Postulate System

—I have been guided by three con-

siderations: ( I ) every question arising in what is strictly

called the philosophy of mathematics—in the study, that

is, of its logical foundations—is connected more or less

closely, directly or indirectly, with that concept, which is

thus the central ganglion of mathematical philosophy;

(2) by means of the concept in question and without un-

necessary delay, I desire to set in clear light another con-

cept, intimately related to it, to which I have given the

name—Doctrinal Function—and which, if I am not mis-

taken, has great philosophic importance; (3) postulate

systems as employed in mathematics, appear there in

perfect light as systems of principles underlying and sup-

porting definite bodies of thought, and so they serve as

a model, as an ideal prototype, for the inspiration, the

39
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guidance and the criticism of every rational enterprise,

whether of philosophy, of science, or of life in general.

A subject so fundamental, many-sided, and far-reach-

ing will naturally detain us for some time. The wisdom

we seek is golden, but it cannot be gained by any of the

get-rich-quick methods characteristic of our industrial

and neurasthenic age; the way to it is a little long and I

may as well warn you that in these lectures I intend to

pursue It in a leisurely fashion. The study is not so "en-

tertaining" as a "movie" nor so easy as the life of "mag-

gots in a cheese" or that of summer birds in a valley of

fruits. It demands some patience, hard work and en-

durance. It will quickly weary such as are content with

a little phraseological facility in matters they do not

understand, but not those whose curiosity is deep and

genuine, for they will be sustained by the dignity of the

task and the joy of the game.
Let us now enter upon it. What are we to under-

stand by the term postulate? You are aware that a

branch of mathematics (or, for that matter, of mechanics

or of physics or of any other science), If the branch be

ideally constructed, is autonomous : it consists, that is, of

a body of propositions of which a few are assumed—not

proved in the branch but taken for granted there—and

the rest are deduced from them as logical consequences.

To students of philosophy, I need not say that to suppose
all the propositions of an autonomous theory to be proved
in it, plainly involves circularity and a contradiction in

terms. In accordance with current usage, which I Intend

to follow in this matter, any proposition thus taken for

granted in a given branch is called a postulate, or assump-

tion, or axiom, or primitive proposition, or fundamental

hypothesis, of the branch; these terms being used inter-
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changeably according to the taste of the author. It has

not always been so; the term axiom, for example, was

long used to denote "self-evident proposition," which is a

kind of proposition that modern mathematicians have not

been able to discover. But I shall not detain you with

an historical account of the terms, interesting and in-

structive as their history is. It gives me pleasure to say,

however, that, if you feel drawn thereto, as I hope you

do, you will find much more than an ample clue to it in

the introduction to Dr. T. L. Heath's superb edition of

Euclid's Elements where these terms and kindred matters

are set in the bright light of critical commentary from

the days of Plato down to the present time. In passing,

let me add, by way of indicating an opportunity, that

this work of Dr. Heath, like other works of his, attains

a high degree of excellence in a type of activity in which

our American mathematical scholarship has been singu-

larly lacking; not because American mathematicians have

lacked facilities or ability, for these they have not lacked,

but because the universities in which they have received

their training and have done their work have not yet ac-

quired the requisite atmosphere and spirit.

A postulate is one thing; a system of postulates is

another. In defining the former, I have by no means

defined the latter. It is not easy to do so with logical

precision: it is, I mean, not easy to give an abstract

definition of the generic concept denoted by the term,

postulate system; and I shall not attempt it at this point,

for it presupposes study of the concept as actually re-

vealed in mathematics and so has its proper place at the

end of the study. Here, at the beginning, we must be

content with definition by example, with what Professor

Enriques, in his Problems of Science, has called concrete
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definition, which is nothing more mysterious than the prac-

tice, familiar alike in science and in ordinary life, of tell-

ing the meaning of a general term by pointing out one or

more of the many objects imperfectly representing it, and

saying, "there, there, that is what it means, or that and

that." I wish it were practicable in this course to deal

adequately with Definition as a separate topic, with its

varieties, its functions and its history. It is, I think, an

admirable subject for a scholarly dissertation. In such

an undertaking the student would find many helpful sug-

gestions in the treatment of definition by Enriques in the

work just now mentioned; in certain passages of Science

and Hypothesis by Poincare; in some remarkably keen

observations found in Pascal's immortal essays, De L'Es-

prit Geometrique, which I cited in the preceding lecture;

in the above-mentioned work of Dr. Heath; in the liter-

ature of symbolic logic; and, as I need not say to you,

who are students of philosophy, in the Metaphysics and

Posterior Analytics of Aristotle, not to mention the Pla-

tonic Dialogues where philosophy in our western-world

first becomes fully conscious that the way to wisdom—
to knowledge of things eternal—is not the way of song,

however glorious, nor that of sophistry, however preten-

tious, but is the way of logic, and where accordingly, de-

spite the presence there of many mystical elements, the

spirit of Definition, which is the spirit of clear thinking

and determinate speech, becomes in Socrates a conquering

sword. And this leads me to say, in passing, that in these

our democratic times of free speech when everyone, no

matter how ignorant or foolish, is a licensed prophet, and

blatant sophists abound on every hand, there is no way
in which you as teachers of philosophy can render greater

service than by carrying on the work of the great Gadfly
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—
constraining men by relentless logical criticism to a

choice of one or the other of two alternatives: coherency

and clarity of speech or—silence. Today, the mind of

the world is a weltering sea of wild passions and wilder

opinions. It can not be calmed by municipal law, but it

can be by disciplining men to a decent respect for the

eternal laws of thought. And that is the supreme obliga-

tion of philosophy as the guardian of Reason.

A few moments ago I said that, in the beginning of

the study of postulate systems, we must be content to

define the notion concretely
—

by means, that is, of ex-

amples. Accordingly, I am going to spread before you

presently a definite system of postulates and invite you to

examine it as a geologist might examine a specific rock

formation; or as a student of poetry might examine a

specific poem; or a student of law, the constitution of the

Soviet republic or that of the United States. From the

large variety of postulate systems recently invented for

various mathematical branches, I have selected, as a

specimen for our initial study, the system devised by the

late Professor Hilbert and found in his famous Founda-

tions of Geometry. It is one of several systems invented

in our time to serve as logical bases of Euclidean Ge-

ometry. Though it is not intrinsically superior to its

rivals, whether in geometry or in other branches, I have

selected it in preference to them for two reasons. One
of them is that, practical arithmetic not being a science,

Euclidean Geometry is the oldest and most familiar

branch of mathematics, as well as being historically the

most interesting and even romantic.

"The clerk Euclide on this wyse hit fonde

Thys craft of gemetry yn Egypte londe
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In Egypte he tawghte hyt ful wyde,
In dyvers londe on every syde.

Mony erys afterwarde y understonde

Yer that the craft com ynto thys londe.

Thys craft com into England, as y you say,
Yn tyme of good Kyng Adelstone's day."

From which we see that even in the old island home
of our beautiful English tongue the Greek "Craft of

Gemetry" has been known for a thousand years. The

second reason for my selecting Hilbert's system is that

it is the most famous of all existing postulate systems,

save one only
—that of Euclid. Hilbert's acquired its

great fame immediately, not entirely by its merits, for

these, as already said, are not superior to the merits of

some other systems, but largely through the fame of its

author, which was world-wide. If you ask why I have

chosen it instead of Euclid's system, which surpasses all

others in fame, the answer is that, though Euclid's system
was good enough to withstand more than two thousand

years of criticism, it is now known, as we shall see later,

to have some grave imperfections
—most of them sins

of omission. The postulates of Hilbert's system are

called axioms by him—"axioms of geometry." As,

however, the term axiom as employed by him is exactly

equivalent to the term postulate as I have defined it, I

shall be doing him no injustice in uniformly referring to

his system as a system of postulates, thus avoiding the

term axiom as likely to suggest the unavailable notion (so-

called) of "self-evident truth." The postulates of Hil-

bert fall into six sets: postulates of connection; of order;

of parallels; of congruence; of continuity; of complete-
ness. I give them as found in the authorized English
translation of Hilbert's book by Professor Townsend.
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Physically, the book, as you observe, is small and light;

but spiritually it is big and weighty. Except for some

harmless abbreviations of statement, the postulates to-

gether with the definition of certain terms occurring in

them are as follows:

Postulates of Connection

(i) Two distinct points determine a straight line.

(2) Any two points of a straight line determine it.

(3) Three non-collinear points determine a plane.

(4) Any three non-collinear points of a plane de-

termine it.

(5) If two points of a line are in a plane, every point

of the line is in the plane.

(6) If two planes have one common point, they have

another.

(7) Every straight line contains at least two points;

every plane at least three non-collinear points; and space

at least four points not lying in a plane.

Postulates of Order

(8) If A, By C are points of a straight line and B is

between A and C, then B is between C and A.

(9) If A and C are two points of a straight line, there

is a point B between A and C, and a point D such that C
is between A and D.

(10) Of any three collinear points, one, and but one,

is between the other two.

(11) Any four collinear points, A, B, C, Z), can be so

arranged that B shall be between A and C and between

A and D, and that C shall be between A and D and

between B and D.
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Definitions.—A pair of points, A and B, on a line,

is a segment AB or BA; A and B are the segment's ends;

the points between A and 5 are the segment's points.

(12) Let A y By C be three non-collinear points and

let a be a line of their plane but not containing any of

them. If a contains a point of segment AB, it contains

a point of segment BC or of segment AC.

Postulate of Parallels

(13) If a straight line a and a point A, not in a, be in

a plane a, there is in a one and only one straight line

containing A but no point of a.

Postulates of Congruence

(14) If A and B are two points on a straight line a,

and if a point A' be on a straight line a', then on either

side of A' there is one and but one point B' such that

the segment AB is congruent to the segment A'B' .

Every segment is congruent to itself.

(15) If a segment AB is congruent to a segment
A'B' and to a segment A"B", then A'B' is congruent
to A"B".

(16) If segments y^i? and BC of a straight line a have

no common point but B, and if segments A'B' and i?'C

of a straight line a' have no common point but B', then,

if AB and J5C are respectively congruent to A'B' and

B'C, AC is congruent to A"C".
Definitions.—If be a point of a straight line <z,

the points of a on a same side of constitute a half-ray

emanating from 0; a pair of half-rays, h and k, emanating
from a point and not being parts of a same straight

line is an angle (h, k); is the angle's vertex, and A and k
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its sides; its interior is the class of points such that, if

A and B be any two of them, segment AB contains no

point of h or k; its exterior is composed of all other points

of the plane except and the points of h and k.

(17) Given an angle (h, k); a line a! in a plane «; a

point of <z'; and in a a half-ray h' emanating from 0;

then in a and emanating from there is one and but one

half-ray k' such that the angle (h\ k') is congruent to (h, k)

and that the interior of (h\ k') is on a given side of <s'.

(18) If the angle (h, k) is congruent to (h'> k') and to

(A", A"), then (A', A') is congruent to (A", A").

(19) If, in the triangles ABC and ^'j&'C, AB, AC and

angle ^y^C are respectively congruent to A'B', A'C and

angle B'A'C, then the angles ABC and ^C5 are respect-

ively congruent to the angle A'B'C and A'C'B'.

The Postulate of Continuity (or of Archimides)

(20) Let the point A\ be between any two given

points A and B of a straight line a. Let the points

A<z-> A$> A4, ... of «2 be such that A\ is between /^ and

A2 y A2 is between A\ and ^3, and so on, and that the

segments AAu A\Ai<> A2AZ, . . . are mutually congruent.

Then in the point series there is a point An such that B
is between A and An >

Postulate of Completeness

(21) To a system of points, lines and planes it is not

possible to add other elements such that the system thus

generalized shall form a new geometry in which all the

postulates of the foregoing five sets are valid.

Such is a list of the postulates devised by Hilbert to

serve as a foundation of Euclidean geometry. I regret
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having had to detain you so long in the rather arid busi-

ness of presenting so long a list in detail. My apology
is the importance of having the list definitely before us.

In closing this lecture, let me recommend that, as a

preparation for the next one, you familiarize yourselves
with the postulates and in doing so, that you read enough
of Hilbert's book to see how carefully the theorems are

deduced from the postulates and how inevitably they
follow therefrom.



LECTURE III

Basic Concepts

PROPOSITIONAL FUNCTION AND DOCTRINAL FUNCTION

MARRIAGE OF MATTER AND FORM ITS INFINITE

FERTILITY PROPOSITIONS AND DOCTRINES THE OFF-

SPRING VERIFIERS AND FALSIFIERS SIGNIFICANCE

AND NON-SENSE A QUESTION ASKED BY MANY AND
ANSWERED BY NONE.

All postulate systems have certain properties or

features in common. In connection with the Hilbert

system, I desire to draw your attention to such of these

features as will lead us to form a certain conception which

I think highly important and to which I have given the

name—Doctrinal Function.

As a preliminary, I must explain briefly a closely re-

lated term—Propositional Function—invented by Ber-

trand Russell; it is, perhaps, the weightiest term that has

entered the nomenclature of logic, or mathematics, in

the course of a hundred years. It has the rare distinction

of being, as we shall see, a perfect name for a supreme

concept. Every one is familiar with the ordinary notion

of a function—with the notion, that is, of the lawful

dependence of one or more variable things upon other

variable things, as the area of a rectangle upon the lengths

of its sides, as the distance traveled upon the rate of

going, as the volume of a gas upon temperature and pres-

49
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sure, as the prosperity of a throat specialist upon the

moisture of the climate, as the attraction of material

particles upon their distance asunder, as prohibitionary

zeal upon intellectual distinction and moral elevation,

as rate of chemical change upon the amount or the mass

of the substance involved, as the turbulence of labor

upon the lust of capital, and so on and on without end.

This familiar notion of mutual dependence and mutual

variation thus exemplified in every turn and feature of

life and the world, is indeed a powerful concept; it is,

in a sense, the sole subject matter of science; its scien-

tific name—function—was first pronounced, it is said,

by Leibniz; in modern mathematical analysis, it has

played a dominant role, giving both name and character

to certain great branches, as the theory of functions of

real variables and the theory of functions of complex
variables. Yet, powerful as it is, this Leibnizian con-

ception, as employed in traditional mathematics, is far

inferior in scope to that denoted by prepositional func-

tion, which indeed embraces the former as a special case.

What, then, are we to understand by this great term?

The answer, describing rather than strictly defining,

is that a propositional function is any statement contain-

ing one or more real variables, where, by a real variable,

is meant a name or other symbol whose meaning, or

value as we say, is undetermined in the statement but

to which we can at will assign in any order we please one

or more values, or meanings, now one and now another.

I fear that what I have just said is too general to be quite

intelligible. The idea can be made sufficiently clear,

however, by some simple examples
—by concrete defini-

tion—provided you will understand that the examples
are to the general concept in question as a burning match
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to a world-conflagration or as a few water drops to a

boundless ocean. If we denote the real variables by such

symbols as x, y, z, w, etc., then for simple examples of

what is meant by propositional function we may cite the

following quite at random: # is a man; # is a lover of y;

x is the specific gravity of y; x is a noble citizen intemper-

ately desiring to impose abstinence on y; x has been

divinely appointed by y to subjugate z; 2# — 3y = ioz+a>;
sin x = cos y; x denied that y said that z confessed to being
the author of w\ x knows that y voted against z on

account of jealousy of W\ and so on ad infinitum. How
many variables may enter a propositional function? As

many as we please. How many such functions are there ?

Their name is legion
—the host of them is literally infinite.

Even so, you may wish to say, the examples are not

impressive. Nevertheless, the concept they represent,

each in its little way, is sovereign
—"like Jupiter among

the Roman gods, first without a second." 1 Its majesty,
its power, its subtlety, the immeasurable depth and range
of its significance can not be perceived and felt at once,

but only more and more with days and months and years
of reflection. You will reflect upon it a very great deal

if ever you enter seriously upon the study of symbolic

logic.

Let us reflect a little upon it now. There will be

occasion to resume its consideration at a later stage. At

present, I wish merely to direct your attention to the

very significant fact that propositional functions, though

they have the forms of propositions, are not propositions.

It is of the utmost importance to bear that in mind. A
proposition is a statement that is true or else false. That
is why propositions are so important

—
they, and not

1
Gladstone.
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human hearts, are the residences—the dwelling places
—

of those curious things called Truth and Falsehood. A
propositional function, owing to the presence in it of

variables, is neither true nor false. The statements

2+7=9, 3+7=9> are propositions, one of them true,

the other one false; but the statement, x-{-y =9, is neither

true nor false; it is not a proposition but is a propositional

function.

You see at once that to derive propositions from a

propositional function it is necessary to replace the latter's

variables with what we may call constants, or values—
with terms of definite meaning; but such substitution,

though necessary, is not sufficient, for it is always pos-

sible to substitute such constants as will give, not a

proposition, but nonsense. Suppose, for example, that

our given function is the statement, x is an integer less

than 5. Now, the class of all integers less than 5 is a

constant—a definite somewhat. Substituting it for the

variable x, we get the statement, the class of all integers

less than 5 is an integer less than 5. This statement is

neither a propositional function nor a proposition; it is

nonsense—nonsense consisting in talking of a class of

things as if a given class could conceivably be one of the

things composing it; as if the class, for example, of loco-

motives were itself a locomotive; or as if the class of

prohibitionary moralists were itself a holy constituent

thereof; or as if the class of apples or of asses were itself

an apple or an ass. Such "talking" is sheer chattering,

as if there were no such things as laws of Thought. It

is evident that a propositional function is a matrix of the

propositions derivable from it by substitution and has

the same form as the propositions it thus moulds. This

latter fact should be noted carefully for in logic
—that is
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to say, in mathematics—form is all-important
—so impor-

tant indeed that some critical thinkers have ventured to

call mathematics the science of Form.

The constants that convert a given propositional func-

tion into nonsense may be called inadmissible constants

for that function; all other constants may be called

admissible constants for the function since they convert

it into propositions. It is worthy of note, in passing,

that the line of cleavage between the admissible and the

inadmissible constants for a given function is not always

sharply defined. You can readily construct or find func-

tions of x in respect of which it may be doubtful whether

certain constants—the sweetness of sugar, for example,
or the glory of renown—are admissible or not. You
stand here before an open and inviting field for research,

the problem being to determine criteria for deciding, in

the case of any propositional function, what constants

in the universe of constants are admissible and what ones

are not. The situation may be likened to that of physical

organisms, for there are plants and there are animals, but

in the case of some living organisms there is at present

no means of deciding to which division of the kingdom

they belong.

The admissible constants for a given function fall into

two classes: those converting it into true propositions and

those converting it into false ones. It is convenient to

call the constants of the former class verifiers of the func-

tion; and those of the latter class falsifiers of it. The
verifiers of a function are said to satisfy it and are called

the values of its variables; and the propositions derived

from a function by substituting values of its variables

for these are called values of the function. Thus, you
see that a propositional function is itself a variable—
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albeit of a different type from the variables it contains—
having for its values the true propositions derivable from

it by means of its verifiers.

With the foregoing ideas and distinctions in mind,
iet us return to the Hilbert postulates and ask: Are they

propositions or propositional functions? To answer, it is

necessary and sufficient to ascertain whether or not they
contain variables. We observe at once the presence in

them of certain substantive terms—"point," "straight

line," "plane," and "space"
—which seem to denote the

things about which the postulates talk, their subject-

matter—and certain relational terms—"between" and

"congruent"
—which have the air of denoting definite

fundamental relations among the "points" or figures

composed of them. We must now ask: Do these terms

denote constants—things of unique and definite meaning—or do they play the role of variables? Euclid does in-

deed, as you know, give what he calls "definitions" of

point, line and plane, but in his proofs and constructions

he makes no use whatever of the so-called definitions,

which he ought to have called descriptions designed merely
to indicate what he meant by the terms; or, better, he

ought to have omitted the definitions as logically useless.

As to the term, space, it does not, as it should not, occur

in Euclid's Elements. By examining Hilbert's book, you
will find that he does not attempt either to define or to

describe any of the above-mentioned six terms, except,

of course, in so far as they are defined—restricted in their

possible meanings
—by having to satisfy, or verify, the

postulates. The omission of all other definition of them
is deliberate. And so our question is reduced to this:

Does the requirement that the things denoted by the

six terms—"point," "straight line," etc.—make the terms
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constants, assign to each of them a unique and definite

meaning? The answer is No: each of the terms admits

of many, infinitely many, different definite meanings

satisfying the postulates. The answer will be justified

at a later stage of our discussion. For the present, I ask

you to assume its correctness. We may, therefore, now

state, in answer to our main question, that the six terms

are not constants, but variables, and that, accordingly,

the postulates are not propositions, as they are wont to

be called, but are propositional functions. As you reflect

upon this fact, you will find that its importance is im-

measurable, not only for philosophy in its narrower sense,

but for Criticism 1 in the widest sense, in all its fields.

In a future lecture, I shall return to the matter of estimat-

ing the fact's general importance. For the present, let

us follow its strictly logical and philosophical leading.

We have to say at once that the postulates of the

system we are examining as a representative specimen of

postulate systems in general, are neither true nor false,

being propositional functions. The same must, of course,

be said of all the theorems deduced or deducible from

them as their logical consequences or implicates, for all

such theorems, being statements involving the same

variables as are present in the postulates, are propositional

functions and are, therefore, neither true nor false. At

this point, I cannot refrain from pausing long enough to

point out how the most vitally fundamental fact in

logical theory appears here with startling vividness in

new light. Suppose that in the postulates we replace the

seven terms—"
point,"

"
straight line,"

"
plane," etc.—

respectively, by any meaningless vocables whatever, as

1
In this connection the reader should consult Professor F. C. S.

Schiller's very suggestive article "Doctrinal Functions" in The Journal

of Philosophy, Psychology and Scientific Methods, Vol. XVI., 1919.
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loig, boig, ploigy etc., so that postulates (i) and (3), for

example, shall read: (1) Two distinct loigs determine a

boig; (3) Any three loigs not in a same boig determine a

ploig. Imagine the other postulates to be similarly

restated. Then, of course, all the theorems and indeed

the entire Hilbert book will discourse explicitly about

loigs, boigs, ploigs, etc., and nothing else. Do not fail

to note now, once for all, that as thus restated, the

theorems and postulates are related precisely as before—
the former being logical consequences of the latter and

deducible therefrom without even the slightest change in

the reasoning. The fact which thus leaps naked into

view is that logical deduction,
—mathematical demonstra-

tion,-—<z// valid proof in no matter what subject-matter,
—

depends entirely upon the form of the premises, or pos-

tulates, and not at all upon any specific meanings we

may assign to their undefined, or variable, terms or

symbols. What is meant by propositional form? The

question has been often asked but never answered. I

ask it here merely to signalize its importance. It is

exceedingly difficult. I hope we may return to it later.

At present, let us go on with the central thread of this

lecture.

We have seen that the Hilbert postulates and all the

theorems logically deducible from them are propositional

functions. So important a fact ought not to be con-

cealed, not even from the physical eye. To lay it bare,

it is sufficient to replace in the postulates the terms,

there playing in disguise the role of variables, with proper

symbols for variables; substituting, let us say, the

symbols vi, V2, V3, V4, respectively, for the substantive,

or element-naming, terms,
—"

point,"
"
straight line,"

"
plane,"

"
space,"

—and for the relational terms,—"
be-
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tween,"
"
congruent,"—the symbols i?i and R2 . Then

postulate (i) will read: Two distinct »i's determine a

v2 . For another example, postulate (8) will read: If

Vi, vi'y Vi" are v\
y

s of a z>2 and »i" has the relation Ri
to vi and t>i'" then »i" has Ri to t>i'" and v\. It is

obvious that all of the postulates and theorems admit of

such restatement. I strongly recommend that, as a very

enlightening exercise, you thus restate all of the postu-

lates, a few of the theorems, and rewrite the proof of at

least one of the latter.

Having thus dragged into solar light the fact,
—hith-

erto evident only in the psychic light of understanding,
—

that our postulates and theorems involve variables, let

us now think of the postulates and theorems as con-

stituting a Whole—a definite Body of logically related

propositional functions. Not one of them is true; not

one of them is false. What is true is that the postulates

imply the theorems. But this statement of implication,

though it is a proposition and is a true one—is not a part
of the Whole; it is not contained in the Body of functions;

were we to put it in, it would stand there alone as an

intruder, being neither one of the postulates nor one of

the theorems, neither a premise nor a conclusion, neither

an implier nor an implied; it is a philosophical proposition
about the Whole but is not a member of it; it is a critical

commentary upon it but not upon itself; it is a judg-

ment,—a just and important judgment,
—

regarding the

Body of propositional functions, but is wholly external

to it.

This definite Body of logically compendent proposi-

tional functions, if one will but meditate upon it, is a

truly wonderful thing
—a great indestructible shining

Form of forms—"
poised in eternal calm

"
above the
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changeful things of the world of sense. What shall we
call it? It is evidently one of many, for every postulate

system gives rise to such a Form and many of these sys-

tems, as we shall see, are essentially different. Shall we
call it Euclidean Geometry as Hilbert called it with the

world's consent? A part of our future task is to show

that it has neither more nor less to do with geometry as

this term has been understood from time immemorial

than with a thousand other things. Shall we say it is a

Doctrine of a certain kind? No; for a doctrine must

have a specific subject-matter, which our Form has not;

it must consist of propositions, which our Form does not;

it must be true or else false, but our Form is neither.

What, then, shall we say it is? What, pray, ought
our Form,—our definite autonomous Body of proposi-

tional functions,
—to be called? Observe that if we

replace the variables in its postulated functions by admis-

sible constants, we thus obtain a body of propositions

matching, in one-to-one fashion, all the functions of our

Body of functions; we thus obtain, that is, a doctrine,

for the body of propositions has a specific subject-matter
and is true or false according as the substituted con-

stants are all of them verifiers, or some of them falsifiers,

of the postulated functions. Obviously, we may thus

obtain various doctrines from our Body of functions by

substituting various sets of admissible constants for the

variables in the postulated functions. It is obviously

natural to call the true doctrines thus derivable the

values of the Body of functions.

It is now as plain as the noon-day sun what the

answer to our question must be: our Body of logically

related propositional functions, since it is a thing having
doctrines for its values must be named a Doctrinal
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Function. The same name must, of course, apply to the

function body consisting of the postulates of any other

postulate system together with the theorems logically

deducible from them. It can hardly escape your atten-

tion that just as a propositional function has true propo-
sitions for its values, a doctrinal function has true doc-

trines for its values; that just as we viewed a proposi-

tional function as the matrix of all the propositions (true

or false) derivable from it by substitution of admissible

constants, so we may view a doctrinal function as the

matrix of all the doctrines (true or false) derivable from

it in like manner; and that just as a given propositional

function and the propositions derivable from it are iden-

tical in form, so a given doctrinal function and the

doctrines derivable from it are the same in respect of

form; they are isomorphic, as we say. In marriage with

subject-matter, a Doctrinal Function becomes the matrix

of an infinite family of doctrines; the children inherit the

form of the mother.

It will be convenient to say that we are interpreting

a given doctrinal function whenever we derive from it,

in the way now familiar, one of its values, or true doc-

trines; and these values, or true doctrines, may be con-

veniently called interpretations of the function.



LECTURE IV

Doctrinal Interpretations

A MOTHER OF DOCTRINES MISTAKEN FOR HER ELDEST

CHILD INFINITELY MANY INTERPRETATIONS OF ONE
DOCTRINAL FUNCTION ORDINARY GEOMETRY BUT ONE
OF THEM OTHER INTERPRETATIONS GEOMETRIC,
ALGEBRAIC AND MIXED—IDENTITY OF FORM WITH
DIVERSITY OF CONTENT—DISTINCTION OF LOGICAL

AND PSYCHOLOGICAL—PROJECTIVE GEOMETRY THE
CHILD OF ARCHITECTURE A SCIENCE BORN OF AN
ART—INFINITE POINTS AND THE MEETING OF PARAL-

LELS POLE-TO-POLAR TRANSFORMATIONS LOGICAL

USE OF PATHOLOGICAL CONFIGURATIONS.

In the following discussion, I shall assume that you
have before you the Hilbert postulates as restated in

terms of the variable-symbols, v\> V2, V3, v*, Ri and R2.

It will be convenient to call the doctrinal function con-

sisting of these postulates and their consequent theorems

the
"
Hilbert doctrinal function

"
and to denote it by

HaF' . Now be good enough to note very carefully that,

if we omit from the postulates all reference to points not

in a given plane, the remaining postulates together

with their theorematic consequences constitute another

doctrinal function and that this is included in HaF'.

Let us denote the minor function by HaF. The

purpose of this lecture is to present or rather to indi-

60
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cate some of the infinitely many values, or interpreta-

tions, of these two functions; to indicate, that is, some

of the true doctrines having the functions for their

common mould.

One of the interpretations of HaF' is the familiar

doctrine which results from letting the symbols, v\, z%

z>3, V4, Ru R2, denote, respectively, point, straight line,

plane, space, between and congruent, or equal, taken in the

sense in which they have been taken from pre-Euclidean

days,
—in the sense in which they (or some of them)

are "described
"
by Euclid in the Elements,

—in the sense

in which Hilbert takes them in his Foundations as shown

by the drawings or figures he there employs and which is

doubtless responsible for his calling his book The Founda-

tions of Geometry. This special interpretation of HaF',—
this special value of that function,

—this special doctrine,

which I shall denote by D\,—is, you observe, the ordi-

nary Euclidean Solid Geometry, or geometry of three

dimensions, with which we all of us gained some acquaint-

ance in high school or college despite the somewhat rough
or uncritical way in which it was there presented as for

beginners. The corresponding interpretation of HaF is

the yet more familiar Euclidean geometry of the plane, a

two-dimensional geometry. Denote it by D\. I shall take

both D\ and D\ for granted, assuming them, whenever

it is convenient to do so, in future discussion.

Let me now direct your attention to another geometric

interpretation of the two functions—to one which, though
it is near-lying and fairly obvious, has not, so far as I am
informed, been published. In order to present it intel-

ligibly, I must, by way of preparation, make you ac-

quainted with the concepts of projective straight line,

projective plane and projective space, for, as you will
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recall, I have not assumed on your part a knowledge of

Projective Geometry. It will be sufficient for our pur-

pose to introduce them in the rough traditional way
instead of the very refined way employed by Veblen and

Young, for example, in their Projective Geometry, which is

based upon a postulate system appropriate for projective

geometry.

Fig. i.

Let the figure be in a Euclidean plane
—the kind of

plane belonging to D\. All lines of the plane that con-

tain a given point P constitute a pencil of lines; P is the

pencil's vertex. All the points of a line L constitute a

range of points; L is the range's base. It is plain that

each point of range L is on one line of pencil P; and

that, reciprocally, each line of P has one point of L, with

a single exception,
—L\ parallel to L, contains no point

of L. To remove this exception to the one-to-one corre-

spondence, otherwise perfect, there is made in projective

geometry an agreement or convention: namely, that

each line has (at an infinite distance) a so-called
"

ideal
"

point, or point at infinity, and that the
"

ideal
"

points

of any two parallel lines are coincident. We thus get,

as you see, a new sort of straight line and of plane and of
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space, which we describe by calling them respectively

projective straight line, projective plane and projective

space. The adjective has fine propriety, but that need

not here detain us. You can readily prove, or you may
assume, that the

"
ideal

"
points of the projective plane

constitute a straight line—called the
"

ideal
"

line, or

line at infinity; and that the locus of the
"

ideal
"
points

of projective space is a plane
—called the

"
ideal

"
plane,

or plane at infinity. I can not pause here to justify the

convention. It is amply justified by its consequences,
for which, if you be interested, you must repair to pro-

jective geometry,
—invented by the engineer, Desargues,

a contemporary of Descartes and Pascal,
—

quickly for-

gotten
—

reinvented, in France again, about one hundred

years ago
—

perhaps the most beautiful branch of mathe-

matics.

We may now proceed to the promised new interpre-

tation of our doctrinal functions. As HaF is simpler

than HaF', let us first deal with the former.

Let ir denote a projective plane. Let a chosen point
be the vertex of a pencil of lines of 71-; call each line of the

pencil an (9-line. Note that every other pencil of r

contains one and but one (9-line. Now let us in thought
remove from 71-, once for all, the (9-pencil. We thus

remove one and but one line from every other pencil.

We may conveniently call the pencils, thus bereft of a

line, pathopencils as being defective or, so to speak,

pathological. We have taken from -w one and but one

pencil of lines. Our field of operation consists of all that

is left. Denote the field by <l>. We are going to give

HaF an interpretation in $; the interpretation, as you
will see, will be a doctrine about certain things in $—
a geometry of the field. The interpretation results from
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assigning to the vs and the R's in the postulates otllAF the

following meanings, or constant values: v\ is to mean a

line of $; 02, a pathopencil of <£; i?i is to mean
"
between

"

in the sense that, if A, B, C be three lines of a pathopencil,
B will be considered to be between A and C, if A (or C)
must rotate through the position of B to coincide with C

(or A) (for, of course, a line of a pathopencil must not

be supposed to rotate into the position left vacant by
the absent 0-line); and R2 is to mean "

congruent
"

in a

sense to be given later.

Fig. 2.

We have to show that the indicated meanings satisfy,

or verify, the postulates of HaF. That some of them are

thus satisfied may be made evident by simple figures;

and it will be interesting and enlightening to exhibit

such evidence before giving the proof for all the postulates.

At the same time, we will lay bare, by means of figures,

the significance of one or two theorems of the new doc-

trine. I shall not here repeat the postulates, but will

suppose you to have them in hand.

Postulate (1) is plainly satisfied, for any two lines

A and B of <£ determine, as in Fig. 2, a pathopencil a,

which consists of all the lines through a except the 0-line

Oa.



DOCTRINAL INTERPRETATIONS 65

Next consider postulate (8). That it is verified is

evident in Fig. 3 where line B is clearly between A and C
and between C and A. For another example, let us take

Fig. 3.

postulate (12), the famous postulate of Pasch. But first

we must have some

Definitions.—A pair of lines, A and B, of a patho-

pencil, is a segment AB or BA; its ends are A and B; the

lines between them are the segment's lines.

Fig. 4.

In the light of Fig. 4, it is obvious that postulate (12)

is satisfied. Note that A, B, C are any three lines of «J>

not belonging to a same pathopencil; that pathopencil a

contains a line of segment AB, by hypothesis; and that a

contains a line of segment BC but none of segment AC.
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Before considering another postulate, let us illustrate

the following theorem (a propositional function in the doc-

trinal function HaF): Any given z>2 separates the remaining

v\s of the V3 into two classes such that, if v\ and v\" are one

of them in one of the classes and the other in the other, the

segment v\ v\" contains a v\ of the V2; and that, if v\ and

v\" are both in one of the classes, the segment does not

contain a v\ of the v2 . (It is theorem 5 of Hilbert's book.)

A fairly careful examination of Fig. 5 will suffice to con-

Fig. 5.

vince you that that theorem is verified in our new inter-

pretation. One of the two classes of lines is composed
of all the lines of $> that go between and a; all the

other lines compose the other class. Segments AA' and

BB' contain no line of the pathopencil a, but any such

segment as AB contains a line of a.

You should not fail to compare Fig. 5 with Hilbert's

figure for the corresponding proposition in doctrine D\,

the old familiar interpretation. The two figures are the

same logically but very different psychologically: in the
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latter figure the truth of the proposition is perfectly and

immediately evident to intuition, while in the former the

truth of the proposition is very far from being thus evi-

dent. Why? The question, you observe, is one for

psychologists, like hundreds of similar questions that

arise here and elsewhere in mathematics, if only psycholo-

gists would learn enough mathematics even to ask the

questions.

Fig. 6.

Let us now turn to postulate (13)
—the postulate of

parallels. Fig. 6 shows clearly that this famous Euclidean

postulate is satisfied by our new interpretation. Here a

is the given pathopencil; A is any given line not belonging
to a; b is a pathopencil containing A but having no line

in common with a, and there is plainly no other such

pathopencil; in other words, b is parallel to a and there

is no other such pathopencil containing A.

If, now, you attempt to show (and I advise you to

make the attempt) by a figure that postulate (20), or
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other postulate involving congruence, is satisfied, using
"
congruent

"
in your figure in the sense it has in the old

interpretation or doctrine £>i, you will quickly find

yourselves in trouble. In the new interpretation, how-

ever, we are not going to employ
"
congruent

"
in that

sense, but in a sense which I shall explain presently in the

course of a simple argument designed to show, as by a

Fig. 7.

single stroke, that all of the postulates are satisfied by our

new interpretation.

Before presenting that argument we must acquaint
ourselves with what is called, in the projective geometry
of a plane, the Pole-Polar transformation with respect to a

circle. It is a very beautiful transformation, important,
and easy to understand.

Let Fig. 7 be in a projective plane t. Tangents

through P are drawn to the circle. Line L joining the

points of tangency is called the polar of P, which is called
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the pole of L. You readily see that, if P moves off,

becoming an
"
Ideal

"
point of tt, the polar L goes through

the center—is a line of the pencil vertexed at 0; also, if

P moves up to the circle, L becomes tangent at P. If P
is inside the circle, say at P', L is Z/, whose construction

is obvious; if, in particular, P is at 0, L is x's
"
ideal

"

line, or line at infinity. Thus you see that the given circle

serves to set up a one-to-one correspondence between the

points of ir as poles and the lines of r as polars. This

correspondence is called the Pole-Polar transformation of

ir with respect to the circle. We say the transformation

transforms or converts a point into its polar line, a line

into its pole point, and each of these is called the transform
of the other. If you will study the transformation a bit,

playing with it, making a few figures, you will discover

some of its important properties, such as these: it con-

verts a range of points into a pencil of lines, and a pencil

into a range; a segment of a range into a segment of a

pencil, and a pencil segment into a range segment; if

three points of a range or three lines of a pancil are in the

order—A, B, C,
—the transforms are in the same order.

And now for the argument showing that all the pos-
tulates in HaF are verified by our new interpretation.

Imagine our field <J> laid down upon a Euclidean plane a.

Remember that the 0-pencil is not in $—I have put in a

few of its lines merely to remind us that it is absent.

Such a pencil is present in a just below. Remember also

that 4> has an
"

ideal
"

line at infinity which a has not.

Assume a definite circle C about as center. Consider

the pole-polar transformation as to C. Let the trans-

forms of the points and lines of a be in <l>; you readily

see that, in a one-to-one way, the points of a are converted

into the lines of $ and the lines (ranges) of a into the



70 MATHEMATICAL PHILOSOPHY

pathopencils of <£; also that the order of the elements in

a is carried over into their transforms in <$. But, as you

readily see, congruence in a,
—that is, congruence as under-

stood in interpretation Z>i,
—is not carried over. We,

therefore, agree to give a new meaning to
"
congruent

"

for use in $, and the meaning is this : if two segments or

angles be congruent (in the old sense) in a, then and only

Fig. 8.

then their transforms shall be said to be congruent in <f>.

It is evident, without further talk, that all the postulates

are satisfied and that we, accordingly, have a new inter-

pretation of the doctrinal function HaF. Let us denote

this interpretation, or doctrine, by D2. D2 is evidently a

two-dimensional geometry of the lines and pathopencils

of <£ and is isomorphic with Di, the ordinary geometry of

the points and lines of a Euclidean plane.
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I will close this lecture by indicating,
—

merely indicat-

ing,
—the analogous new interpretation of the Doctrinal

function HaF', which, you remember, includes the entire

list of Hilbert postulates in their restated form. I shall

denote the new doctrine, or interpretation, by ZV. Let

S denote a projective space of three dimensions. We have

already formed the concept of such a space. All the lines

(or planes) of S that have in common point P are together

called a sheaf, or bundle, of lines (or planes) ;
all the planes

having a common line constitute an axial pencil of planes.

Let be a chosen point of S. Call the sheaf of lines (or

planes) having for vertex the (9-sheaf of lines (or planes).

In thought remove from S the (9-sheaf of lines and the

(9-sheaf of planes. We thus remove from every other

line sheaf one line, from every other plane sheaf an axial

pencil and from every axial pencil (not contained in the

(9-sheaf of planes) one plane. The ensembles, thus ren-

dered defective, may be respectively called a pathosheaf
of lines, a pathosheaf of planes and a pathopencil of

planes, or plane pathopencil. Analogous to the pole-

polar transformation as to a circle,
—which we have

already explained and used,
—there is for S a pole-polar

transformation with respect to any given sphere convert-

ing each point into a polar plane and each plane into pole

point. Our field of operation
—$'—is S bereft of the two

O-sheaves. As you may have by this time surmised, our

new interpretation, or doctrine ZV\ arises on giving the

variable symbols in the postulates of HaF' meanings as

follows: v\ will mean a plane of 3>'; V2, a pathopencil of

planes; z% a pathosheaf of planes; V4, $'; Ri, between

in the sense that, if A, B, C are planes of a pathopencil,
B will be said to be between A and C if either of the latter

must rotate through the position of B to coincide with
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the other; Ri will mean congruent in the sense that

segments, etc., in <£' will be called congruent if they are

transforms of segments, etc., congruent in Dz-

Obviously D2 is a three-dimensional geometry of

planes, pathopencils of planes and pathosheaves of planes
of $' and is isomorphic with D\\ the familiar geometry
of points, lines and planes of ordinary Euclidean space.

Note that D2 and D2 are logically the same as D\ and

D\ but greatly differ from the latter psychologically.



LECTURE V

Another Geometric Interpretation

BRIEF INTRODUCTION TO THE METHOD OF DESCARTES AND

FERMAT INVERSION GEOMETRY AND INVERSION

TRANSFORMATION—THE INFINITE REGION OF INVER-

SION SPACE A POINT BUNDLES OF CIRCLES AND

CLUSTERS OF SPHERES PATHOCIRCLES AND PATHO-

SPHERES ONE-TO-ONE CORRELATION.

In presenting a third interpretation of our two doc-

trinal functions, it will be convenient to borrow a few

ideas from Cartesian Analytical Geometry and Inversion

Geometry. It will be advantageous to explain them in

advance.

The perpendicular lines OX and 0Y> Fig. 9, are called

coordinate axes; is the origin of distances, which, if

measured upward or rightward, are regarded positive, but,

if downward or leftward, negative. I am supposing the

figure to be in a Euclidean plane. Choose some unit of

length; then any point has a pair of numbers (x, y) y

P's distances from the axes and called its coordinates.

Conversely, to any such a pair belongs a point. Let (1),

Fig. 10, be any line through 0; then (2), parallel to (1),

is any line of the plane. Let P(x, y) be any point of (1);

let ra=tan 0; then y=mx; this equation is the equation
of (1); it is so called because to any pair (x, y) satisfying

it belongs a P of (1) and any P of (1) has a pair satisfying

73
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it. Plainly, the y of P' is equal to P's y+b; hence the

equation of (2), any line of the plane, is: y = mx-\-b.

Y

<ZhD

Fig. 9.

Fig. 10.

Conversely, any equation of first degree in x and y repre-

sents a line of the plane.
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By Fig. II you see that, if d is the distance between

two points, Pi(#i, y\) and ^2(^2, y2), then d2 = {x\
— x2)

2

+ (yi-y2 )
2

.

From the foregoing distance formula, you see that the

equation of any circle, Fig. 12, of radius r and center

{a, b) is (x — a)
2 + (y

—
b)

2 = r2
; that is, #

2 +y2 — lax — 2by +
a2 +lP— r2 =0. Conversely, any equation of the form

x2
-\-y

2+2dx+2By+C = represents a circle of center

(
—A

y —B) and squared radius, A2
-\-B

2 — C.

Fig. ii.

On any line through the center of a circle of radius r

let P, P' be such that distance OP times distance OP' =r2
;

the point P (or P') is called the inverse of P' (or P) ; the

circle and its center are called the inversion circle and

center. Taking the circle's center for origin, Fig. 13, you
will easily find that:

(0

x r't2

x =
*'2 +y'

2 '

y =
y'r

2 (2)

*' 2
+y'

x —
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Notice that to each point there corresponds one and but

one point
—

except that the inversion center corresponds
to no point (in the Euclidean plane). To remove this

exception it is common to assume the existence of one

and but one
"

ideal
"

point, or point at infinity, to serve

P(x.yJ

-e

Fig. 12.

as the inverse of the center. The new sort of plane thus

got is called the Inversion Plane. The foregoing point-to-

point correspondence is called the Inversion Transforma-
tion of the plane with respect to the given circle. Clearly,

any line through the center is converted into itself.
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What is the transform, or inverse, of a line not through
the center? Let Jx-\-By-\-C = be such a line; replace

the coordinates (x, y) of any point in it by their values

taken from (i), simplify the result and (if you like) drop
the primes; we thus get

A B
(3) x2 +y2 +r2—x+r2-y=0.

Fig. 13.

This, you note, is a circle through the inversion center,

which is here the origin, for the coordinates (0, 0) of the

origin satisfy the equation. Hence every line not through

the center has for its transform, or inverse, a circle through

the inversion center.

With these simple ideas held in reserve for use as we
need them, let us proceed to our third geometric interpre-

tation. It will be advantageous to deal first with IlAF.

Denote by -k an inversion plane. Let be a chosen point

of it. The ensemble of all circles through is called a
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bundle of circles. The bundle includes, as infinite circles

(i.e., circles of infinite radius), the straight lines through
0. Now, in thought, let us, once for all, remove the

point from ir. Each circle of the bundle now lacks a

point; we may call them pathocircles, and speak of the

(9-bundle of pathocircles. Our field of operation
—which

may be denoted by K—is composed of the patho-
circles of the 0-bundle and the points (except 0,

of course) of t. We are going to give the doctrinal

function HaF an interpretation in the field K; it will be

a geometry of certain elements of K. The interpretation

arises from assigning to the variable-symbols in the

postulates of HaF definite meanings as follows: vi will

mean a point of K\ V2, a pathocircle; Ri will mean
between in the sense that, if A, B, C be three points of a

pathocircle, B will be said to be between A and C, if A
(or C) must go through B in moving on the pathocircle

to C (or A); and .#2 will mean congruent in the sense

that, if two segments or angles be congruent in the

ordinary sense (interpretation Di), their transforms, or

inverses, with respect to a given circle with as center,

will be called congruent in the field of K.

We have now to show that the postulates are verified

by the meanings assigned. Before giving a proof valid

for all of the postulates, it will be instructive to deal with

a selected few of them singly by means of simple figures,

as in the preceding lecture. Postulate (1) is evidently

satisfied. In Fig. 14 the two points A and B determine

the pathocircle a of the (9-bundle.

Fig. 15 exhibits the fact that postulate (8) is verified.

Point B is between A and C and between C and A; neither

A nor C is between the other two of the three points;

of course, no point can move through the absent 0.
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Let us next have a look at postulate (12). But we
must premise some

Definitions.—A pair of points, A and B> of a patho-

circle is a segment AB or BA; A and B are its ends; the

points between them are the segment's points.

Fig. 16.

It is easy to see, Fig. 16, that the Pasch postulate (12)

is verified. A, B, C are three points not on a same

pathocircle; they determine three segments, AB, BC, CA;
the pathocircle a going through AB, one of the three,

goes through another, BC.
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Let me suggest that, as an exercise, you make a figure

illustrating that the theorem (corresponding to Hilbert's

theorem 5) dealt with in the preceding lecture, is verified

in the present interpretation.

Let us turn to the parallel postulate (13). That it is

satisfied is clear in the light of Fig. 17. The given

pathocircle is a; A is a point not on a; through A there

is evidently one and but one pathocircle b having no

point in common with a; a and b are, of course, parallel to

each other. This postulate, as you know, is the Euclidean

Fig. 17.

postulate par excellence—the one that mainly distin-

guishes Euclidean geometry from the famous non-Eucli-

dean geometries of Lobachevski and Riemann. And so

you see, in passing, that all interpretations of HaF or

IIAF' yield doctrines of Euclidean type
—in the sense that

in them the foregoing postulate of parallels is satisfied:

they all of them contain some theorems whose proofs

depend upon that postulate.

That all of the postulates of IIAF are verified by the

meanings we have assigned to their variables may be

quickly made evident by help of the inversion transforma-
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tion, explained a little while ago. Let us suppose our

field K to be laid down upon a Euclidean plane ir. Remem-
ber that is absent from K but that, below the vacant

position, ir has a point, which we may call 0'. In K take

a definite circle / for inversion circle having for center.

Regard the transformation as converting the points of

K (or ir) into the points of -w (or K), noting that 0' of ir

and the
"

ideal
"

point of K are each the other's trans-

form; that the lines of rr are converted into the patho-
circles of K, and conversely; and that, if, in ir, a point

B is between A and C on a line, then in K the transform

of B is between the transforms of A and C on a patho-

circle, the transform of the line. You see that there is

thus established a one-to-one correspondence between the

points and lines of ir and the points and pathocircles of

K
y
in such a way that all postulated relations among the

elements of t hold equally among the corresponding
elements of K.

Though logically superfluous, it will be instructive to

illustrate the matter a little further by simple figures.

In Fig. 18, / is the inversion circle; a is a line in x; patho-
circle a' is the transform of a; points A', B'> C are the

transforms of A> B, C; segments AB and BC are con-

gruent in the familiar sense—in doctrine D\\ their

transforms A'B' and B'C are congruent in the new sense.

You see that the postulate of Archimedes, postulate (20),

is verified; for as congruent segments stretch upward in

endless succession along a, their congruent transforms

proceed on a' in endless succession towards 0, never

reaching this vacant point-position.

Fig. 19 illustrates congruence of triangles in the new

interpretation. Triangles ABC and A1B1C1 are con-

gruent in 7r
—in D\\ their transforms,—the new triangles
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A'B'C and A'\B\C \ y
—are congruent in K—in the new

interpretation.

Let us denote the doctrine arising from the new

interpretation of HAF by D3. Ds is, as you see, a two-

dimensional geometry of the points and pathocircles of

the field K and is isomorphic with D x and D2 . We may
say that Di is converted, element for element, figure for

B

A

Fig. 18.

figure, proposition for proposition, into D3 by the inver-

sion transformation just as D\ is completely converted

into Z>2 by the pole-polar transformation. You thus begin

to glimpse the office and power of what mathematicians

call transformation, which, at the close of the first lecture,

I named, as you will remember, among the pillar-concepts

of mathematics.

It remains to give HaF' an interpretation analogous
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to that we have just given to HaF. I will sketch it

merely, inasmuch as you will find a fairly full account of

it in Weber and Wellstein's Elementare Geometric, which

is the second volume of their Encyklopadie der Elementar-

Mathematik—an excellent work handling in a maturely
critical way the various elementary branches of mathe-

FlG. 19.

matics. You should not be misled by the adjective

Elementare, for the discussions are designed for advanced

students.

By way of a preliminary, I should say a word respect-

ing inversion transformation of ordinary Euclidean space
with respect to a given sphere. If the radius be r and the



84 MATHEMATICAL PHILOSOPHY

center C, then two points, P and P', on a line through C,

are inverses of each other provided the distance CP times

the distance CP' =r2
. You easily see that to each point

there corresponds one and but one point, except that C
has no correspondent (in the Euclidean space). To annul

the exception we assume one
"

ideal
"

point, or point at

infinity, to serve as the transform of the inversion center

C. The new space thus obtained is called inversion space.

The lines and planes through C are transformed into them-

selves. All lines and planes not through C are converted

respectively into circles and spheres through C.

And now for the field of our new interpretation. You

probably guess what it is to be. Let S be an inversion

space; a chosen point in it. The ensemble of all the

spheres (including planes as spheres of infinite radius)

that go through may be called the (9-cluster of spheres.

Now remove the point from S; the cluster is now the

0-cluster of pathospheres; and the cluster of circles bereft

of will be called the 0-cluster of pathocircles. Our

field,
—let us denote it by Kr

,
—is composed of the points

(except 0) of S, the pathospheres and pathocircles of the

O-clusters.

I need hardly say,
—for you doubtless foresee,

—that

our new interpretation of HaF' springs from agreeing that

v\ shall mean a point of K'; Vi shall mean a pathocircle;

vz shall mean a pathosphere; R\ shall mean between in

the sense explained for the field K; and R2 shall mean

congruent in the sense that the transforms of segments or

angles congruent in the familiar sense of ZV shall be

congruent in the new sense.

Call the new doctrine thus arising D3'. It evidently

is a three-dimensional geometry of the points, patho-
circles and pathospheres of the field K' and matches
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D\ or ZV proposition for proposition. Once more let

me emphasize the fact that the differences—the very

striking differences—of these three geometries are psycho-

logical; logically the three are one.

The next lecture will present a won-geometric inter-

pretation of our two doctrinal functions.



LECTURE VI

Non-Geometric Interpretation

NOT ALL THAT GLITTERS IS GOLD—A DIAMOND TEST OF

HARMONY TWO-DIMENSIONAL DOCTRINE OF NUMBER
DYADS AND SYSTEMS THEREOF—THE THREE-DIMEN-

SIONAL ANALOGUE.

The interpretations, or doctrines, which have hitherto

concerned us—D\, D2 , D3 of HaF and ZV, ZV, ZV of

HaF'—ought to be called, and I have called them,

geometric doctrines because their content or subject-

matter,
—that which the doctrines are doctrines of or

about,
—consists of things, whether sensible or purely

conceptual, that are essentially and ultimately spatial in

kind. The distinction is psychological; mathematicians,

not being able to tell precisely what space is, and dis-

daining or affecting to disdain psychology, may ignore

the distinction, if they like—such asininity not being

penalized by municipal law in any land. Let us not be

so uncandid or so dull as to ignore the essential distinction

between spatial and non-spatial doctrines merely because

they happen to have the same form. Not all that glitters

is gold. Let us not so easily lose our common sense—a

box of table sugar is not a box of table salt even if the

two boxes are identical in size and form.

In the present lecture I invite your attention to a non-

geometric interpretation of our doctrinal functions—to an

interpretation, or doctrine, to be properly called non-

geometric because, though the same in form as the fore-

86
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going geometries, it deals with non-spatial things and so

has a non-spatial content. Some years ago I asked Mr.

Wellington Koo, then a student at Columbia University

and a pupil of mine, a brilliant pupil, in analytical geome-

try, to tell me what the Chinese word for geometry means

as a word. He replied :

"
It means show by a figure."

In the interpretation we are about to study we can have

no figures, for figures are spatial affairs. This necessity

of getting on without figures is, in a sense, fortunate—
fortunate as an intellectual discipline

—
for, in the absence

of sensuous representation by figures, we shall be driven

to a kind of sheer thinking. And this warning, I hope,

will prepare you for the needed effort.

As in the previous lecture, I will deal first with HaF.
At a later stage of our course, the nature of what is called

the system of real numbers may be discussed. But for the

purposes of the present lecture, I shall assume that you
are sufficiently acquainted with the system, merely remind-

ing you that it is composed of the positive and negative

integers; the ordinary fractions; the irrationals, such

as V2, "^7; and the transcendental numbers, like e and
71-,

for example. By the term number I shall mean a real

number. In order to indicate the nature and the field

of our new interpretation, it will be convenient to make
use of this definition: If a

y b, c be three numbers, b will be

said to be between a and c (or c and a) when and only when
a>b>c or a<b<c, where > means greater than and<
means less than.

The new field of operation
—which may be denoted by

N—consists of all dyads (x, y) of real numbers; that is,

of all ordered pairs (x, y), where by ordered I mean that

(x, y) will not be the same as (y, x) unless x=y. It is, of

course, understood that the dyads (#1, yi) and (#2, V2)
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are distinct unless xi = X2 and yi=y2. You see that the

field is non-spatial, non-geometric, for numbers and num-
ber dyads have no essential reference to space and would

continue to be perfectly good objects, or subjects, of

thought if all spatial sense and all conception of space

were to vanish; symbols for numbers and for dyads do

indeed occupy room, but numbers themselves and dyads
do not.

And now it is time to say that our non-geometric

interpretation of IiAF arises from assigning to the postu-
late variables constant values, or meanings, as follows:

v\ will mean a dyad of N; V2 will mean a system of dyads,

i.e., the dyads satisfying an equation of the form Ax-\-

By +C = 0, where either A or B is not zero, i.e., A ^0
or B^O; Ri will mean between in the sense that, if

C*i> yi)> (x2, ^2) and (X3, ^3) are three dyads of a same

system, (X2, 3^2) will be said to be between (xi, yi) and

C*3> y3) if and only if X2 is between x\ and #3 or y2 is

between y\ and yz\ and R2 will mean congruent in the

sense that two dyadic pairs (xi, yi), (#2, ^2) and (#3, 3>3)>

(*4 , ^4),
—that is, two segments (xi, yi,)(x2 , ^2), (x3 , ys)

(#4, V4),
—will be said to be congruent when and only

when V(xi -x2 )
2 + (yi -y2)

2 = \^(x3 -x4 )
2
+(y2 -y*)

2
;

with a like meaning for congruence of angles to be give

later.

Are the postulates in HAF verified by the meanings
thus assigned? It will be very instructive to examine

the matter somewhat carefully.

Postulate (1).
—Let Ax-\-By-\-C — be an undeter-

mined system s; d\, d-2, any two dyads {x\, y\), (X2, 72)

of field N; d\ and d2 will belong to s when and only when

Axi+Byi+C = 0,

1 Ax2 +By2 +C = 0;
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three cases are possible and only tnree: (a) xi = x2 , yi?^;
(0) xi9±x2,yi=y 2 ; (7) xi^x2 , yi^y 2 . In (a) 5 = and

C C— = -xi= -x2 ;
in (0) ^=0, and

j;=-yi=-y2;
in

(7) plainly ^ ^0, 2?^0, and if C = 0, then

A
B X\

y2
y

X2

I yi
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c c
By\-\-C = 0; so — = —

, and hence s' is the same system as
B B

s. If B = 0, the same identity results.

If A 9*0 and 5^0, then, if C = 0, C'=0, for di is

/
A

\ * • I
A

\ a
a y x y* f

I x\,
— —

xi I, d 2 is I x 2 ,

—
-^x2 ),

and — = =
; trom

\ B J \ B I B x\ X2

the last we see that x\9*X2, y\9*y2\ from the equation of

s' we have

A'Bxi-AB'xi+BC'^Q,
(2) A'Bx2 -AB'x2+BC'=0;

if xi =0 or #2=0, then C"=0, as B9*0; if #i^0, #2 5^0,

divide (2) by x\ and #2 respectively and then subtract;

so it is seen that C=0. Hence s' is A'x-\-B'y = 0, and,

as A'xi+B'yi = 0,
— = = — and so, again, s' and j
i> x\ B

are the same.

Finally, if A 9*0, B^0 and CV0, then, by the fore-

going reasoning, A' 9*0, B' 9*0 and C 9*0. Hence

B'

1 y 1

1 y 2
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by definition, #2 is between #3 and xi, or j2 is between

y3 and yi, and so dz is between J3 and d\. Hence the

postulate is satisfied.

Postulate (9).
—It is evident that in determining a

dyad of any given system we can assign the x (or y) at

will. Now let d\{x\ y y\) and d^{x^ V3) be two given

dyads of any given system s; let ^2(^2, V2) be a dyad of

j- such that *i<#2<#3; then d2 is between d\ and d%\

next let d\{x^ y±) be such that x\<xz<x±\ then ^3 is

between d\ and J4. Hence the postulate is satisfied.

Postulate (10).
—We need consider only four possi-

bilities: (a) A=0, and s is By +C=0; (0) 5-0, and j

is^*+C = 0; (7) A^0y B^O, C=0, <md s is Ax+By =0;

(5) J^0 y B^O, C^O, and s is Ax -\-By+C = 0.

You know that of three numbers one and only one is

between the other two. In (a) any three dyads of s are

of the form (xi,
—
—J,

lx2 ,

_
^)> (#3, ~J>)>

hence one

and only one of the x's is between the other two, and so,

too, of the dyads; in (0) like reasoning leads to the same

conclusion; in (7) let di(xu yi), d2(x2y y2), ^3(^3, y 3) be

A
any three dyads of s; then —

B
3'3 ,—

; hence
x3

y_i = _y_2

X\ X2

no two x's (or y's) are equal for, if they were, the corre-

sponding y's or (x's) would be equal and we should not

have three distinct dyads; hence one and only one of the

x's (and also one and only one of the y's) is between the

other two; hence so, too, the dyads; finally, in (5) we
have

A
C

I yi
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since any two of the dyads determine s; if two of the y's

were equal, then A =
0, contrary to hypothesis, unless the

corresponding x's were also equal, but then we should not

have three distinct dyads. Hence one and only one of

the y's (or x's) is between the other two, and, the same

being consequently true of the dyads, the postulate is

verified.

The next postulate in HaF is the beautiful postulate

(12). First, however, we must have a

Definition.—A pair of dyads, d\(x\, yi) and J2 (#2, V2)

of an s, is a segment d\d,2 or ^2^1; d\ and d% are its ends;

all dyads between the ends are the segment's dyads.

Postulate (12).—Let us notice, in the first place, that,

taken two at a time, three dyads, di(xi, yi), ^2(^2, ^2),

^3(^3, V3), not belonging to a same system, determine three

systems, Si 9 S2, S3, as follows:

x—X2_y—y2_
Si :

= —
Xi,x—x3 y—ys

x—x3 _ y—y3_
S2 '•

— —
X2,

x—xi y—yi

x—x\ y—yi
S3 •

= —
X3 ;x—xo y—y2

it is plain that there is but one restriction on the X's,

namely, Xi^i, X2?^i, X3?^i; for, except for the inequali-

ties, the given dyads would not be distinct. Looking at

S\y for example, you see that, when the variable dyad

d(x, y) is between J2 and J3 (i.e., when it belongs to the

segment ^2^3), Xi is negative; and that, if Xi is negative

(and neither zero nor 00 ), d is in the segment ^2^3.

Clearly the same statement, mutatis mutandis, is valid for

X2 and X3.
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Solving the foregoing equations for x and yy we get

X2 — Xi^3

for si

for S2

x =

for S3

x =

I-Xi

y2-Xiy3

I-Xx
;

#3 — X2#l

I — x2

V3-x2yi

i-x2
5

Xi — X3#2

I - X3

yi-X3y 2

1 x3

Now let us suppose that Ax-\-By-\-C = is a system j

not containing any of the dyads di> do, d%. The condi-

tions that s shall contain a dyad of each of the systems

*i> S2, S3, are respectively

Xi
=

X2

x3

Ax2 +By 2+C
Axz+Bya+(?

Axs + By 3 +C

Axi+Byi+C'

Axi+Byi+C,
Ax2 +By 2 +C'

We have, as you see, XiX2X3 = i; hence none of the X's is

negative or else two (and only two) of them are negative.

Now suppose that s contains a d in the segment d\d2 ;

then X3 is negative; hence Xi or \2 is negative, and so s
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C B
C B'

A B
A' B'
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given system s; it is clear that there is in s at least one

dyad d"(x", y") such that d\d2 is congruent with d'd'\

i.e.y such that

V(*i-*2 )
2 + (yi-y2)

2 = ^/(x'-x"y+{y'-y")\

for x" is at our disposal and y" is a function of it. But

is there in s more than one such d"1 We know that s is

y=mx-\-b or else ;v=m /

y+£
/

; let us use the former,

for the reasoning will be the same as for the latter. If

there be a second d"> denote it by d'"(x'", y'"), where

x'" =x"
'

+ 5; then since did2, d'd", d'd'" are congruent, we

vV-*")2
+(y'-/')

2 = •vV-*'"2 + (y'-)y"')
2

;

note that y'
= mx' +b, y" = mx" +b, y'" = m{x" -f- 8) +b; sub-

stituting these values in the last radical equation, and

simplifying, we get 8
2 +2(x" — x')8 = 0; whence 5=0 or

5 = 2(x' —x"); the former value of 8 gives x" =x'", and so

does not give a second d"; the latter value of 8 gives

x'" =x" — 2{x"
—

x'), and so there is one and but one other

d"\ now note that x'" — x' = —(x"—x'); hence if one d"

is on one side of d', the other d" is on the other side. And
so the postulate is verified.

Postulate (15).
—This postulate is so manifestly satis-

fied that we need not tarry to prove the fact.

Postulate (16).
—That this postulate is verified may be

readily proved as follows: Let d\(xi> yi), ^2(^2^2) and

^3(^3, ys), three dyads of any given systems s, be such

that the segments did2 and ^2^3 have in common no dyad
save ^2; let d\, dz > ds, three dyads of any given system /,

be such that d<i is the only dyad common to the segments

d\d% and d^dz . Let d\d2 be congruent with di'd^y

and d 2^3 with d^dz \ we are to prove that did-s and d\'dz

are congruent. We may take s to be y=mx-\-b, and s'
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to be y—m'x+b'; then, since d\d2 and d\'d2 are con-

gruent Vi-\-m2
(xi

— x2)
= y/i+m'2

{xi
—x2 ); so, too,

Vi+m2
(x2

—
xz) = Vi — m'2

(x 2 —X3') ; whence, by addi-

tion, Vi+m2(xi— xs)
= Vi — m'2(xi—X3'); but this last

equation tells us that did3 and d\'dz are congruent; and

so, we see, the postulate is verified.

Before attacking postulate (17) let us make due

preparation for it in the way of a simple theorem, some

definitions and a little acquaintance with a very funda-

mental kind of algebraic transformation.

Theorem.—Every system s separates the remaining

dyads of N into two classes such that, if d\ and d2 be any
two dyads the segment d\d2 contains or does not contain

a dyad of s according as the given dyads belong, one of

them to the one class and one of them to the other, or both

of the dyads belong to the same class. [The theorem is

the correspondent of Hilbert's theorem 5.]

The proof is not difficult. The given system s is of the

form (1) x = k or of the form (2) y =mx-\-b. If s be of

form (1), it is clear that the classes required are respect-

ively composed of dyads for which x> k and of those for

which x<k. Next suppose s to be y=mx-\-b. Let

di(x\, yi) and d2 (x2 , y 2) be any two given dyads not

belonging to s. It is plain that there is a system si,

y =mx-\-b\ y containing d\, and a system s 2 , y =mx-\-b2y

containing d2 ;
so that yi=mx\+bi and y 2 =mx2+b2 .

The dyads d\ and d2 determine a system s
f

, namely,

x— x\ _y
—
yi

X—X2 y—y2
>

now let d(x, y) be the dyad common to s and s'; then

x—xi m{x—x\)-\-b—b\

x—x2 m{x—X2)-\-b—b2

'
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whence

x—xi = p(b —b\) -f- (j
—
pm),

x —X2 = p{b —£2) -s- (j —pm),

where p is a proportionality factor. You see that x—xi
and X—X2 are unlike or like in sign according as b— b\

and b— b% are unlike or like in sign; that is, d is between

or not between d\ and di according as b is between or not

between b\ and #2; hence the theorem. We may agree to

say that the dyad d\{x\, y\) is on the positive or the

negative side of s according as b\> or <b.

Definitions.—If d be a dyad of a system s, the dyads
of j on a same side of d constitute a half-system emanating

from d. [So it is seen that any dyad of an s separates the

remaining dyads of s into two opposite half-systems.]

A pair of half-systems, h and k, emanating from a dyad d

and not belonging to a same system, is an angle (h, k);

d is the angle's vertex, and h and k its sides; its interior is

the class of dyads such that, if d\ and ^2 be anytwo of them,
the segment d\d<i contains no dyad of h or k; its exterior

consists of all other dyads of N except d and the dyads
of h and k. Let d and d' be the vertices of two angles

(h, k) and (h
r

, k') ; let dd\ and dd'2 be two segments of

h and k respectively, and let d'd\ and d'd^' be segments of

h' and k' respectively; suppose dd\ is congruent with

d'd\ and ddi with d'd2
r

\ then, if d\d2 is congruent with

d\'d2 > we shall say that the given angles are congruent.

[Note that we have defined congruence of angles in terms

of congruence of segments. Note also and note carefully

that, though we have for the sake of convenience used

such terms as angle, vertex, side, and so on, which smell

of geometry and suggest space, there is in such use no

logically implicit geometric or spatial reference whatever.
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The use of those terms here is purely metaphorical and,

had we desired to dispense with their use, it would not

have been difficult, as you no doubt see, to do so.]

Let me now explain briefly a simple but exceedingly

important algebraic transformation which will be very

helpful in dealing with postulate (17). Consider the pair

of equations

[
x—x' cos d— y' sin d+a,

^'
\ y =x' sin 6+y' cos 6+b;

solving these for x' and y', we get the pair

, J
x' = x cos 6 +3; sin — a cos 6 — b sin 0,

^

I y'
= — x sin 0+y cos — b cos 6-\-a sin 0;

you notice that (t) and (t') are equivalent, either pair

being obtainable from the other. Either pair, say (t)

defines a dyad-to-dyad transformation; that is, given a

dyad (x' y y'), there corresponds to it, by virtue of (t)

a definite dyad (x, y), and conversely. Of two dyads
thus related, we say that each is the other's transform

or that each is converted or transformed into the other.

I wish to call your attention to four further properties

of the transformation. One of them is that the dyads
of a system are converted into the dyads of a system. To

prove this proposition, take any system Ax+By+C
= 0, replace x and y by their values from (t), simplify,

and note that you then have the equation of a system.
Thus a dyad-to-dyad transformation is also a system-to-

system transformation: the transform of a system is a

system. Another property of the transformation, show-

ing its power, is that, owing to the presence of three

undetermined quantities, or parameters as they are called

—
a, b and 6—

,
we can convert any given system
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(i) Ax-\-By+C = into any given system (2) A'x+B'y+
C =0 and, at the same time, any given dyad of the

former into any given dyad of the latter; to show this

possibility, transform (1) as above indicated, then equate
the two ratios of the coefficients in the resulting equation
to the corresponding ratios taken from (2); these two

equations (two conditions on a, b and 0) insure that

(1) has (2) for its transform; but our three parameters
can satisfy a third condition; notice what it is; let

d\{xi y yi) be the given dyad of (1), and d\'{xi\ yi') theAC A' C
given dyad of (2) ; theny 1

= - —x l
- - and y/

= -~xi' -— ;

d\ is to be converted into d\ and this gives the third con-

IA' C'\
dition, which is that X\ =x\ cos Q~\-[—pc\-\-

—
J

sin 6-\-a

or an equivalent one obtained from the second equation
of (t). The writing out of the three conditions and

solving them for a, b and involves a little finger work
but no logical difficulty. You may wish to perform the

task as an exercise. Again, any one of our dyad-to-dyad
transformations converts any given segment into a

congruent segment. I say
"
any one of our dyad-to-dyad

transformations," for we have many, infinitely many,
of them, depending on the values we assign to the par-

ameters a, b and 0. To prove the property in question
let the segment be determined by di(xi, yi) and ^2(^2, y2);

in V (xi
—
*2)

2 + (yi
—
y2)

2
replace xi, y iy X2, y-2 by their

transforms xi cos 0— yi sin d+a, X\ sin 0+yi cos 6+b y

x2 cos 6— y-z sin 0+<z, X2 sin 0+y2 cos 0+&, simplify and

then note that the radical expression has suffered no

change. Finally, any one of our transformations leaves

the order of dyads unchanged; that is, if di, ^2 and d\>, are

converted respectively into di, d~2 and ds, then, if d2
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be between d\ and dz, d<i will be between d\ and d%. Let

di f d2, dz belong to s, y=mx+c; then yi=mxi-\-c, y2
=

mx2-\-c and yz=mxz-\-c; then from (t) we have

x\ =(cos 6-\-m sin d)x\-\-(c
—

b) sin 6 — a cos 0,

X2 = (cos +m sin 0)#2 + (c
—

b) sin — a cos 0,

#3' = (cos 0+w sin 0)xz + {c— b) sin 0— a cos 0;

hence

*i' —x r

2 = (cos +m sin 0) (#1 —#2),

X2 —x f

3
= (cos 0+?n sin 0)(#2— #3);

hence if #i>#2>#3 or xi<x2 <X3, then #i'>a;2'>.*3' or

xi <X2 <X3\ that is, if ^2 is between Ji and dz, ^2' is

between d\ and ^3'.

From the invariance of congruence and of order, or

betweenness, it follows that, if the angle (h
f

, k') be the

transform of the angle (A, k), the interior of the former

is the transform of the latter's interior and that the

angles are congruent.

With the foregoing equipment we may proceed to the

examination of

Postulate (17).
—Let me ask you to read the postulate

very attentively. It requires us to prove the following

proposition: Given an angle (h, k), a system s y a dyad d of s

and a half-system h' emanating from d, there is one and but

one half-system k' {emanating from d) such that the angle

(h' y k') is congruent with the angle (h y k) a?id that the

interior of (A, k) is on a given side of s.

In virtue of our dyad-to-dyad transformation it is

evident that, without loss of generality, we may take the

sides h and k to be half-systems belonging respectively

to the systems S\, y =m\x and J2, y =m2X-\-b, and emanat-

ing from their common dyad, say, d'(x
f

, y'); that we may
take J to be y =0, d to be the dyad (0, 0) of s, and h'
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to be a half-system belonging to s and emanating from

(0, 0). Let us now choose, as we evidently may choose,

di(xi, yi) on si, ^2(^2, y2) on S2, ^3(^3, 0) on s and ^4(^4, ji)

on y=mx so that the segments d'di, d'do, shall be con-

gruent respectively to ddz and dd^; note that dd± is part

of the side k' of the angle whose existence is to be estab-

lished. We have to show that m may be so chosen that

d\d2 and dsd* shall be congruent. By virtue of the given

congruences, the condition that did2 and ^3^4 shall be

congruent and that consequently the angles (A, k) and

{h'> k') shall be congruent is readily found to be

m2 — (mi —m.2)
2

(1 -fW1W2)
2 '

there are, you see, two real values of m, of opposite signs,

corresponding to the two sides of j" (or h') ; and the postu-

late is, accordingly, satisfied.

Postulate (18).
—So plainly satisfied as not to detain us.

Postulate (19).
—That this one is satisfied follows at

once from our definition of congruence of angles and the

fact that postulate (17) is satisfied.

We now come, finally, to the Archimedean postulate
of continuity.

Postulate (20).—By reason ofthe properties of our dyad-

to-dyad transformation we may, without loss of general-

ity, choose the system, y=0, for system s, and for given

dyads of s the dyads d(0, 0) and d'{x', 0). Let d\(x\, 0),

^2(^2, 0), ^3(^3, 0), . . . be such that d\ is between d and

d' and between d and J2, that d2 is between d\ and dz . . .,

and that the segments ddi, d\d2, dods, . . . are mutually

congruent. We are to prove that in the dyad series there

is a dyad dn(xn, 0) such that d' is between d and dn .

The series of x's is an increasing or decreasing series, say
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increasing. Then #1 =#2— #1 =#3— #2 = . . .
=ixn —xn_ 1 .

The sum nx\=xn \
we choose n so that nx\>x\ then

xn>x', but x'>0; hence x' is between and xn and hence

d' is between d and Ja ; which was to be proved.
To prove the compatibility of postulates we have to

find a set of things regarding which the ^jstulates make
true statements when the things are put in place of the

variables. The better the things are known, the better

is the test. Now number dyads and systems thereof

are the best known of things; and so, in showing that

they verify the Hilbert postulates, we have established

their compatability by the diamond test.

Let us denote the doctrine arising from the foregoing

interpretation of HaF by D±. D4, as I have said and as

you must now plainly see, is in all strictness non-geometric,

having no spatial content. It is purely algebraic or

numerical—a two-dimensional theory of dyads and sys-

tems of dyads of real numbers. In point of form it is

Euclidean, having the same form as Euclidean plane

geometry; but to say that is to say that Euclidean

geometry has the same form as the Dyad doctrine. If

the latter had happened, as it might have happened, to

be developed prior to Euclidean geometry and received

a name proper to it, there would be precisely as much
sense and propriety in calling Euclidean geometry by
that name as there now is in calling the Dyad doctrine

Euclidean geometry.
This lecture has grown, I fear, to a wearisome length.

Yet I must ask your permission to continue long enough
to indicate very briefly an interpretation of HaF' analo-

gous to the foregoing interpretation of HaF. The field

N' of the interpretation in question is composed of all the

triads (x, y, z) of the real numbers. The interpretation



NON-GEOMETRIC INTERPRETATION 103

arises from assigning to the variables in HaF' the following

values, or meanings: v\ is to denote a triad of N'; vo, the

system of triads common to a pair of equations, Ax-\-By -f

Cz+D=0, J f

x+B'y+C'z+D = 0;v3 , the system of triads

satisfying one such equation; v± is to mean N'\ Ri is to

mean between in the sense that if the triads, ti(xi, yi, Zi),

*2(*2, ^2, z2), ^3(^3, ^3, Z3), belong to a system of the

former kind, then t% will be between t\ and h when and

only when #2 is between #1 and #3 or yz is between y\ and

^3 or Z2 is between zi and Z3; and Ro is to mean congruent,
or equal, in the sense that the segment M2 will be con-

gruent to segment hh when and only when,

V(*i -^2)
2 + (yi -y 2)

2 + (zi -z2)
2 =

V(^3 -^4)
2 + (y3 -y4)

2+ (z3-Z4)
2
,

and, for angles, in the sense analogous to that given in

the preceding interpretation.

The interpretation is worked out with some detail in

a very interesting and enlightening way in the Elementare

Geometrie cited in the preceding lecture. The doctrine,

ZV> arising thus from IlAF' is, as you see, non-spatial and

non-geometric; it is a purely algebraic three-dimensional

theory of triads and systems of triads of real numbers and

is, of course, isomorphic with ordinary Euclidean geome-

try of space.



LECTURE VII

Essential Discriminations

DISTINCTION OF DOCTRINE AND METHOD ANALYTIC GEOM-

ETRY AND GEOMETRIC ANALYSIS THE TWAIN BEGOT-

TEN OF CONVERSE TRANSFORMATIONS AN INFINITE

FAMILY OF SISTERS ALL HERITORS OF THEIR

MOTHER'S FORM THEIR COMMON CHARACTER AND
INDIVIDUALITIES—EXCESSIVE MEANING OF CONTENT

GENERIC AND SPECIFIC MEANINGS OF EUCLIDEAN

AND NON-EUCLIDEAN THREE PROPERTIES COMMON
TO POSTULATE SYSTEMS FERTILITY AND COMPEND-

ENCE AND COMPATIBILITY.

In this lecture and the next one, I invite you to join

me in considering a variety of kindred matters closely

connected with the preceding lectures. Some of these

matters are suggested in the foregoing lengthy title.

In course of the discussion some of the unanswered ques-

tions you have asked and some others that you are no

doubt prepared to ask will, I hope, receive suitable

answers. I say
"
some

"
of them, for I trust we are not

so stupid as to be able to answer all the questions we are

able to ask. Let us begin with one of the questions that

must be asked and can be answered satisfactorily.

A Word about Analytic Geometry and Geometric

Analysis.
—In Lecture V, I gave a little introduction to

what is called the analytic or algebraic geometry of the

104
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Euclidean plane. We saw that, a pair of axes and a

distance unit being chosen, to any point P of the plane
there belongs a pair (x, y) of real numbers, and con-

versely; and that to each line there belongs an equation

Ax-\-By-\-C = 0, and conversely. Now such a pair and

such an equation are respectively what we called in

Lecture VI a dyad and a system of dyads. The question
is: Is not the dyad doctrine D4 simply ordinary Euclidean

geometry Di in disguise? I might answer, quite justly,

that D± is no more and no less Di in disguise than Di is

Z>4 in disguise. You may now wish to say: very well,

are not Di and D4 identical? The answer is no, for Di
is a doctrine about spatial things

—
points and lines—

while D\ is a doctrine about non-spatial things—dyads
and systems of dyads of pure real numbers. Perhaps

you would rejoin, saying: Is not D± simply the analytic,

or algebraic, geometry of the Euclidean plane? It is

evidently just to answer: D± is that, no more and no less

than D\ is the geometric algebra of N, which is the field of

number dyads and systems thereof just as the plane is the

field of points and lines. And you know that D\—the

ordinary plane geometry of Euclid—is not an algebra.

The fact is that, unless we are content to confound things

that are essentially different, we must here distinguish

four different things: namely, Di, Di, and two converse

aspects of what is in usage somewhat indiscriminately

called analytic, or algebraic, geometry of the Euclidean

plane. One of these aspects ought to be called analytic,

or algebraic, geometry; and the other, geometric analysis

or geometric algebra.
"
Ought," I mean, for the sake of

philosophic clarity, not necessarily in common every-day

parlance or practice. Let us be quite clear in this busi-

ness. What is commonly called the analytic, or algebraic,
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geometry of the Euclidean plane has its birth in a certain

transformation—a point-to-dyad transformation—which

consists in the fact that a one-to-one correspondence sub-

sists between the points of the plane and the number dyads

(x, y) of N. By virtue of this transformation, to any

given relation among points in doctrine Di there corre-

sponds a definite relation among dyads in doctrine At;
and conversely, for the correspondence runs both ways.
Do not fail to note now very carefully, for this is the crux

of the matter, that, owing to the mentioned correspond-

ence, we can translate a problem respecting points into a

problem respecting dyads, then solve the latter (alge-

braically) and finally translate the result in terms of points,

thus getting a proposition in D\\ and, conversely, we can

translate a problem respecting dyads into a problem

respecting points, then solve the latter (geometrically)

and finally translate the result in terms of dyads, thus

getting a proposition in A: in other words, we can inves-

tigate algebraically the point relations making up D\

and, conversely, we can investigate geometrically the

dyad relations making up A- It is now obvious that,

instead of calling both of these converse procedures

analytic, or algebraic, geometry, the former ought to be

called analytic, or algebraic, geometry; and the latter

geometric analysis or geometric algebra. Observe that

neither of them yields a new doctrine; each of them is

simply a new method of establishing an old doctrine;

and the fundamental distinction between the two doc-

trines, A and A, remains in undisturbed serenity.

You perceive at once that the foregoing discussion

applies, mutatis mutandis, to A' and At'.

The Possibility of Yet Other Interpretations of HaF and

HaF' .
—To each of these doctrinal functions have now
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been given three geometric interpretations but only one

non-geometric one, and the latter is algebraic. It is

natural to ask: are there other algebraic interpretations?

The answer is, there are. I shall not tarry to present

them, for we have many other things to consider, but we

may pause a moment to convince ourselves of their

existence. Let us recall our third interpretation of

HaF, for example, giving rise to the geometric doctrine

Dz. It is plain that in it we may replace point by dyad
and pathocircle by an equation determining a perfectly

corresponding system of dyads, and thus obtain a new

algebraic interpretation of HaF and therewith a new two-

dimensional theory of dyads and dyad systems. And
so on—an algebraic interpretation for each geometric one

and conversely.

How many geometric and how many algebraic inter-

pretations ofHaF or of HaF' are possible ? Is the number
finite or infinite? I will state—without giving the proof—that each of the two functions admits of an infinitude

of interpretations of either sort. And I may add,
—

again

omitting the proof, which is easy,
—that from any given

interpretation, whether geometric or algebraic, one can

derive an endless series of different interpretations,

correspondingly geometric or algebraic, drawing them,
each out of its predecessor, unceasingly as the successive

joints of an infinitely-many-jointed telescope. Most of

the interpretations thus obtainable and the corresponding
doctrines are devoid of interest for us human beings, but

that statement is a commentary upon our supersimian

curiosity and not upon the intrinsic merits of the doctrines.

Do HaF and IIAF' admit of interpretations that are

both non-geometric and non-algebraic? Yes: each of the

functions admits of an infinite variety of such interpreta-
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tions. It is very easy to prove it. To do so, consider

any one of the interpretations we have encountered, say
the fourth one of HaF—the doctrine At. Any other one

would do as well. You know that we can, if we choose,

associate in our thought any two given objects, 0\ and O2,

thus obtaining a third object, O3 (which is simply Oi

and Oo associated together). Now let denote some given

object of thought, say the center of gravity of the Milky

Way or Caesar's love for Cleopatra or the taste of good

whiskey
—any specific thing, no matter what. Now

associate with each dyad involved in D4; association of

with (xi, yi) gives a new object 0\\ association of

with (xo, ^2) gives us another new object O2'; and so on.

Never mind how arbitrary or artificial or uninteresting the

new objects may be, for that is of no logical importance at

all. Observe that we have a one-to-one correspondence
between the dyads in field N and the objects 0\ which

we may think of as constituting a field M. You see that

to a given system of dyads there now corresponds a

definite class of the 0"s, which class we may, if we like,

call a system of 0"s. Let us next agree,
—

evidently we

may agree,
—to say that two or more 0"s satisfy a relation

when and only when the corresponding dyads satisfy the

relation. You see immediately that, in virtue of our

agreement, or convention, the 0"s ofM and the 0'-systems

verify the postulates of H&F just as well as do the dyads
and dyad systems of N, that is, perfectly. And you see

that there thus arises a new interpretation of HAF and a

new doctrine whose content differs from that of D4 as

an 0' differs from a dyad. If you choose a difFerent

you obtain a new kind of object 0' and a new doctrine.

You thus get as many doctrines as there are objects to

use. If God has not made an infinite number of (9's for



ESSENTIAL DISCRIMINATIONS 109

you, you doubtless see that you can make them yourselves.

I grant that the vast majority of doctrines that are con-

structive in the way indicated are trivial—mere weeds

of the doctrinal garden; it was, however, not our task to

estimate their worth, but to demonstrate their infinite

multiplicity.

Sense in which All Doctrines Derivable from HAF and

HaF' Are Like in Form, or Structure.—Let me request

you to remind yourselves vividly of the fact that each

of the doctrinal Functions consists of a system of prepo-
sitional functions, called postulates, and a set of preposi-

tional functions logically deducible from the postulates

and called theorems. Be good enough to recall also the

fact that, if we replace the variables in the postulates

of one of the doctrinal functions by admissible constants—
a term already explained

—we thereby obtain a doctrine,

which is true, and then called a value of the function,

or false, according as the substituted constants verify

or do not verify all of the postulates. Because the doc-

trine, whether true or false, matches the doctrinal func-

tion, statement for statement, and because the statements

(propositions) composing the doctrine and the corre-

sponding statements (prepositional functions) composing
the doctrinal function are identical in respect of form, we

say that the doctrine and the function are themselves like

in form, or structure. You see that, therefore, the infini-

tude of values of either one of our doctrinal functions and

the infinitude of false doctrines derivable from it are all

of them like in form, or structure, for each of them is like

in form, or structure, to the function from which all of

them are derivable.

Senses in which All Doctrines Derivable from IIAF and

IIAF' Are Like and Unlike in Content, or Subject-matter.
—
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The doctrinal functions, we have seen, have no specific

content, no definite subject-matter, and are neither true

nor false. On the other hand, each of the derivable

doctrines has specific content, or subject-matter, and is

true or else false. Being, as we have seen, like in form, or

structure, the doctrines are discriminated among them-

selves solely by differences of content, or subject-matter.

Now, their contents, or subject-matters, difFer in respect

of what we may call their meanings. Query: Is there any

respect in which the contents of the various doctrines are

identical? The answer is that the contents of all of the

true doctrines,
—of all of the values of the doctrinal func-

tion concerned,
—are identical in the respect that the

various contents equally verify, or satisfy, the postulates

of the function; but such partial identity of content can

not be affirmed of two of the false doctrines. Let us now
confine our attention to the true doctrines for it is these

that we value. It is perfectly clear that the meaning of

the content, or subject-matter, of such a doctrine,
—the

meaning, that is, of the things which the doctrine is a

doctrine of or about,—-is not exhausted by the requirement
that the things shall be verifiers of the postulates. Ordi-

nary points and lines, for example, or number dyads and

dyad systems, have countless uses and significances over

and above the service they render by satisfying the

postulates of HAF. The meaning that the content of a

true doctrine has beyond that it must have to verify the

postulates of the function of which the doctrine is a value

may be called the content's, or subject-matter's, excessive

meaning. Thus you see that the infinitely many diverse

doctrines having a given doctrinal function for their

common matrix are discriminated from each other by
diversities in the excessive meanings of their contents.
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and each doctrine is identified by something peculiar in

the excessive meaning of its content. The statement just

made holds good for true doctrines only, for it is evident

that to false doctrines the notion of excessive meaning
does not apply. How are the false doctrines having a

common functional matrix discriminated and identified?

I leave the question to such of you as may be interested

to consider it.

We have seen that all doctrines, whether true or false,

that have a same doctrinal function for matrix are like in

form—they have, that is, the same logical frame or

structure. It is pretty obvious and very noteworthy

that, on the other hand, what we have called the excessive

meaning of a true doctrine's content is thus not logical,

but is purely psychological. A point and a number dyad,
for example, or a line and a pathocircle, or a plane and p.

pathosphere, though they fit into the same logical scheme,

performing the same (logical) office in relation to the

postulates, are discriminated not only by their differences

as concepts,
—which are psychological phenomena—but

also and especially by the exceedingly different imageries
or intuitions with which they and the doctrines they

figure in crowd the mind. You are students of philosophy.
As such you ought to be interested in psychology and I

trust none of you is afflicted with psychological blindness.

Not long ago, a professional philosopher in good stand-

ing, told me that he saw no
"
psychological

"
difference

between a point and a straight line. I cannot under-

stand how any student with a feeling for psychology can

fail to have a little quickening of pulse when he sees

clearly for the first time the fact now staring us in the

face: namely, that we are living in a world where it is

possible to have an infinitude of true doctrines and an
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infinitude of false ones which, though differing among
themselves psychologically in an endless variety of ways,
are yet but one in point of form, absolutely identical in

logical frame or structure. I know of no other equal

revelation of the truly amazing economic power of Logic
in our world. Think of having to live in a world where no

two doctrines, no two theories, could own an identity of

logical constitution. I suspect that in such a world there

could be no logic, no science, no philosophy, no genuine
life of intellect, no civilization.

Sense in which All Doctrines having HaF or HaF' for

Their Matrix Are Euclidean.—The adjectives, Euclidean

and non-Euclidean, are, as you are aware, customarily

employed to designate certain types of geometry. In

this use each of the adjectives has two difFerent meanings—one of them very specific and common, the other

generic and less common. In order to avoid confusion

in reading geometric literature it is important to know
what the two meanings are. In its generic and less com-

mon meaning the adjective
"
Euclidean

"
is used to

designate the kind of geometry that is, in all important
or essential respects, identical with the kind found in

Euclid's Elements. Having that meaning of Euclidean

in mind, we should say that a given geometry is non-

Euclidean if, for example, it is algebraic (or analytic) in

method, for the method of the Elements is that of so-called

pure (non-algebraic) geometry; or if it is a geometry of

four or more dimensions, for that of Euclid is three-

dimensional; or if, like projective geometry, for example,
or inversion geometry or the so-called hyperbolic geometry
of Lobachevski or the so-called elliptic geometry of

Riemann, it uses one or more postulates inconsistent with

Euclid's postulates; or if, like the endless series of geome-
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tries (actual or potential) initiated by Julius Pliicker's

great creation of Line Geometry, it employs some spatial

entity or entities other than the point, line and plane

(of Euclid's Elements) for primary element or elements, or

subject-matter. For all such distinctions are sufficiently

important. On the other hand, as I need hardly say, a

merely idiomatic or expressional difference,
—

such, for

example, as the Greek's saying,
"
a straight line can be

drawn from every point to every point
"
whereas we say

"
from any point to any point,"

—is no warrant for call-

ing the latter non-Euclidean. So much for the generic

meanings of the adjectives
—Euclidean and non-Euclidean

as applied in geometry. And now let us be very clear

as to what the specific and more common meaning of each

term is. One of Euclid's postulates
—his postulate 5

—
had the fortune to be an epoch-making statement—
perhaps the most famous single utterance in the history
of science. It is this:

// a straight line falling on two straight lines

make the interior angles on the same side less than two

right angles, the two straight lines, ij produced indefinitely,

meet on that side on which are the angles less than two

right angles.

Apparently convinced that this proposition could not

be deduced as a theorem from his other postulates and

axioms, or common notions, Euclid assumed it. It was
for him an assumption, an hypothesis, a primitive propo-

sition, a postulate—a basal proposition of the Elements.

It is commonly known as Euclid's parallel-postulate

because it is equivalent to the postulate that, if P be a

point and L a line, there is but one line through P parallel

to L. Unlike Euclid, his successors for two thousand

years, like his predecessors, were not convinced that the
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postulate was incapable of demonstration and many of

the best of them devoted their genius to vain attempts
at proving it. At length, however, mathematicians

learned better and began to produce geometries on the

basis of postulate systems in which Euclid's parallel

postulate was contradicted. That such geometries are

just as logically possible as Euclid's I will show in a

subsequent lecture. What I wish now to say is that any

geometry built upon a postulate system containing

Euclid's parallel-postulate, or its equivalent, is called

Euclidean, however widely it may differ in other respects

from Euclid's Elements ; and, correspondingly, any

geometry, like that of Lobachevski or that of Riemann,
whose postulate system contains a contradictory of

Euclid's parallel-postulate, is said to be non-Euclidean,

no matter how much it may be like Euclid's Elements

in other respects. Such are the specific and more usual

senses in which these familiar adjectives are employed
in the literature of geometry.

It must occur to you at once that there is no good rea-

son for confining the use of the terms, in the sense just

indicated, to geometry. For the Hilbert postulate (13)

being in agreement with the parallel-postulate of Euclid,

it is evident that we may with evident and perfect pro-

priety call Euclidean all of the infinitely many doctrines

having HAF or HAF' for matrix, whether the doctrines

be true or false, and whether they be geometric or alge-

braic or neither the one nor the other.

What Are the Properties that a Collection of Proposi-
tional Functions Must Have in Order to be a Postulate

System?
—I will name three properties: pregnance, or

productiveness, or fertility; compendence, or connected-

ness; and compatibility, or consistency. In discussions
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of the question, the last property is always specified; the

first two, seldom or never, though they are evidently

essential, as you will presently see.

In saying that the collection of propositional functions

must be pregnant, or fertile, I mean that it must be such

that one or more consequences, or theorems, can be

logically deduced from its component functions. In

other words, it must be capable of giving rise to a doc-

trinal function containing one or more propositional

functions besides those serving as postulates. No one,

I imagine, would deliberately call a barren collection of

propositional functions a postulate system.

In saying that a collection of propositional functions,

if it is to be a postulate system, must be compendent, or

connected, I mean something sufficiently easy to grasp,

once it is perceived, but not very easy to state precisely

and clearly. I will try to be intelligible. You know that

owing to the presence of variables in the postulates of a

postulate system, the latter has no specific subject

matter; we may say, however, that, since the postulates

talk about the variables as about subject-matter, the

system has
"
apparent

"
subject-matter, or, better, we

may say the system has undetermined subject-matter

represented by the variable-symbols or variable-names.

Now, if you will examine the postulates of some postulate

system, say those of the Hilbert system, you will dis-

cover—what you may not have before noticed con-

sciously
—that the variable-symbols are each connected

with every other; that is to say, the V\s are in ^'s, which

are in &3's, which are in v^ R\ is a relation of &i's, R2 a rela-

tion of segments composed of V\s and of angles composed
of half-rays (or half-&2's), and so on. This connectedness

gives the undetermined subject-matter of the system
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unity, makes it hang together, gives it and the systems

compendence. Suppose you had, as one might have, a

collection of propositional functions some of which talked

of the variables x, y, z, . . . , and some of which talked of

the variables x'> y', %', . . . , in such a way that the former

symbols were not connected with the latter, then the

undetermined subject-matter of the collection of functions

would lack unity; the collection would not be compendent
and would, therefore, not be a postulate system. If the

subcollection involving x, y, z, . . . connected them and if

the same were true of the subcollection involving

x'i y'> z'y ' • •> and each of the two subcollections were

moreover, pregnant and compatible, then the original

collection would constitute two postulate systems, but

these would not together constitute one. They would be

independent; neither of them being included in the other,

they would not be related like the systems involved

respectively in IIAF and HaF', for the former of these is

a part of the latter.

In saying that a collection of propositional functions,

if it is to be a postulate system, must be compatible, or

consistent, we mean that its functions must be such as

not to involve contradiction among themselves—they will

be compatible unless at least two of them contradict each

other explicitly or implicitly. The reason for this require-

ment is obvious. For, if the collection contained two

mutually contradictory functions, the functions of the

collection would admit of no verifiers; whatever set of

admissible constants we might substitute for the variables

in the functions would yield a set of propositions of which

at least two would be mutually contradictory; hence, if

we called the collection a postulate system and then con-

sistently called the system together with the theorems
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derivable therefrom a doctrinal function, it would be one

having no values, admitting of no interpretation, giving

rise to no true doctrine. For this reason an incompatible

collection of propositional functions is not called a postu-

late system.
If a collection of propositional functions be compatible,

how may the fact be ascertained ? There is but one known
test: if we find a set of constants that we are convinced

verify the functions, then and only then we say the

collection is compatible. If you will examine Hilbert's

book, you will find that he showed, or rather indicated

very briefly how to show, that his postulate system is

compatible by indicating how to show that the postulates

are verified by the pairs and certain systems of pairs of a

specified set of algebraic numbers. In Lecture VI, I have

shown in detail the compatibility of the postulates of

IIAF by showing that they are verified by the set of dyads
and certain systems of dyads of the real numbers, and

have indicated the analogous procedure for the postulates

of HaF'. That is one of the reasons why Lecture VI
is so detailed—I desired it should incidentally serve to

exemplify what we may call compatibility proof.



LECTURE VIII

Postulate Properties

SCIENTIFIC PLATFORMS THEIR FERTILITY, COMPENDENCE
AND COMPATIBILITY DIFFERENCES OF EQUIVALENT
PLATFORMS VARIETIES OF PLATFORMS AND FUNC-

TIONS MEANINGS OF INDEPENDENCE AND CATEGORI-

CALNESS THEORETICAL AND PRACTICAL DOUBT.

Unless I am mistaken, you, as students of philosophy,
should find no little interest in certain questions con-

nected with the properties I have mentioned as essential

to a genuine postulate system and as therefore common
to all such systems. I desire to draw your attention to

some of the questions without thereby promising or pre-

tending to answer all of them, for I can not do so

satisfactorily.

If a collection of propositional functions be fertile or

infertile, how may we ascertain the fact? Of course, if

we actually deduce one or more consequences from them,
we then know that the collection is fertile. But the ques-
tion I desire to ask and to commit to you for future con-

sideration is this: Is there a criterion for deciding a priori

whether a given collection of propositional functions is

fertile or not, and if there is, what is the criterion?

Another question
—which I believe to be important

and difficult—is this: What is the essential nature of the

role of variables in propositional functions by virtue of

118
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which a collection of such functions has an ambiguous,
or undetermined, subject-matter that may or may not

be compendent? May I leave this subtle matter to your
reflection?

As to compatibility, suppose we have a collection of

functions such that we have not been able either to

verify them or to prove them incompatible. Doubtless,

we must say, in such a case, that we do not know whether

the collection is compatible or not. Might not the col-

lection be incompatible without our being able ever to

discover the fact? Might it not be compatible, though
we should never be able to know it ? Another question

—
very different from the preceding one—is this: Is there,

conceivably, a compatible or a not incompatible collection

of propositional functions having no verifiers in our

world ?

What, essentially, is logical compatibility? Must we
be content with mere examples of it or with what seems

at all events to be such examples? Whatever logical

compatibility may be, it evidently is such that com-

patibility and incompatibility are related somewhat as

pleasure and pain, as cosmos and chaos, as music and

noise, as health and disease, as harmony and discord,

as beauty and ugliness
—so that Logic and Science are no

less under the empire of the muses than are the Arts.

Is compatibility, then, an emotion, a feeling, a mere

sentiment? If it be, it is not one of ideas, but is a senti-

ment of forms—propositional forms. What is proposi-

tional form? . The question arose before and I said we
should return to it. Well, here it is. I can not answer

it. I know, in a sense, and so do you, what such form

is, but I cannot define it abstractly,
—not satisfactorily.

Possibly you can—sometime; and if you do, you will
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thereby make a great contribution to the science of

Logic. Whatever the thing may be, it is something in

respect of which, for example, the statements
"
x is y

"

and
"
Socrates is a man "

are identical; something in

respect of which the statement
"

If x has the character y
and whatever has the character y has the character z,

then x has the character z
"

is identical with the statement
"

If Socrates is human and whatever is human is mortal,

then Socrates is mortal "; something in respect of which

either statement of the first pair and either one of the

second pair are, as specimens of logical material, radically

unlike, irreducible to the same type.

One word more regarding compatibility and I shall

quit the theme. I know you desire to ask,
—for in dis-

cussing the matter of testing for compatibility, students

never fail to ask,-
—how we may be certain that we have

found a set of verifiers for a given collection of proposi-

tional functions. The answer required is that one disci-

plined in the fine art of doubting never can be absolutely

certain. Absolute certainty is a privilege of uneducated

minds—and fanatics. It is, for scientific folk, an unat-

tainable ideal. Perhaps we can in no case reach a higher

degree of certainty than that the dyads and systems

thereof, employed in Lecture VI, satisfy the postulates

there concerned. Yet a capable doubter may doubt

whether we sufficiently understand the nature of the

real numbers to be absolutely certain even in that case.

Even less, but only slightly less, difficult is it to doubt the

adequacy, as verifiers, of the point and the straight line,

though these have been used as such verifiers since the

memory of man runneth not to the contrary. But, though
we can never attain absolute certainty in the premises,

we can reach a certainty so nearly absolute that one who,
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having such a certainty respecting any -practical affair, yet

refrained, for lack of certainty, from action where action

was called for, would be rightly judged, not necessarily

stupid, but foolish or morbid or insane.

The Hilbert Postulate System Not Intrinsically Superior
to Others.—In our discussions this particular system has

been the subject of so many commentaries that, despite

the precautions explicitly stated in Lecture II, it may
seem to you to be the subject of our study instead of being

merely one of the instruments employed. Perhaps I

need not remind you that what we have been mainly

examining is the nature of the important general concep-
tion denoted by the term

"
postulate system," and that,

instead of beginning with an abstract definition of the

concept, we have preferred to study it by means of a

specific representative, or typical, example. For such an

example, we have chosen the Hilbert system because of its

familiarity, accessibility and fame. Our purpose had

been served equally well, however, had we employed
some other system, whether logically equivalent or non-

equivalent to that of Hilbert. Systems of both kinds

abound, and I shall presently refer you to some of

them.

Equivalence of Postulate Systems and Identity of Their

Doctrinal Functions.—Two postulate systems, S" and S'
',

are said to be equivalent if, and only if, every postulate

in S is in S' or is deducible as a theorem from those in

S' and every postulate in S f

is in S or is deducible from

those in S. The same conception may be approached
and viewed as follows: S, we know, gives rise to a doc-

trinal function, say, Af, composed of the postulates in S

and the theorems deducible therefrom. Similarly, S'

yields a doctrinal function, say, A/v . Let us agree to
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call AF and AF' identical if, and only if, every proposi-

tional function in AF or AF' is in the other, AF' or AF> it

being, of course, understood that some mere rewording

may be required to show that a statement in one is in

the other. You see, at once, that two postulate systems
are equivalent or non-equivalent according as the corre-

sponding doctrinal functions are identical or non-identical;

and conversely. It is a fact of no little scientific and

philosophic interest—for it is far from
"
self-evident"—

that, within limits, the postulates and the theorems in a

doctrinal function may interchange their respective roles

without destroying the function's identity. Some ques-

tions arise here which, so far as I know, no one has asked,

and which I am unable to answer. One of them is:

what are the
"

limits
"

within which the mentioned

interchange of roles may occur?

The only way to know that two equivalent systems
are equivalent is to prove them equivalent. It would be

very enlightening and a lot of fun to illustrate the process,

but it would delay our course too much. Perhaps you
will try your hand at the game. Two extremely interest-

ing systems which, I believe, though I have not proved
it in full detail, are equivalent to Hilbert's system and

consequently to one another are the systems devised

respectively by Professor O. Veblen and Professor Mario

Pieri. Veblen's system, called
" A System of Axioms for

Geometry," is found in Volume V of The Transactions of

the American Mathematical Society (1904). This system,
in a modified form, was subsequently presented by its

author as the initial monograph in the Monographs on

Topics of Modern Mathematics (edited by Professor

J. W. A. Young)—a volume which, though its articles

differ widely in aim, spirit and excellence and though it
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attempts, pretty successfully, to avoid philosophic ques-

tions, may yet be recommended to philosophical students

as a collection of essays affording an introduction to a

variety of important elementary topics of modern mathe-

matics : namely, Veblen's The Foundations of Geometry
—

which does not deal with the foundations of geometry in

general, but gives the reader a finely histological view of

the ultimate tissues and minute logical structure of the

first parts of Euclidean metric geometry; Non-Euclidean

Geometry, by Professor F. S. Woods—resembling Veblen's

essay in spirit and method, hardly surpassed as an intro-

duction, for beginners, to the geometries of Lobachevski

and Riemann; Modern Pure Geometry, by Professor T. F.

Holgate
—not postulational or rigoristic like the articles

just now mentioned, and not concerned with pure geome-

try in general, but giving such an acquaintance with pure

projective geometry as one gains of an immense city by
riding about in it on the top of a comfortable 'bus; an

exceedingly enlightening essay by Professor E. V. Hunting-

ton, dealing postulationally and very refreshingly with

The Fundamental Propositions of Algebra; an interesting

and instructive article by Professor G. A. Miller treating

The Algebraic Equation in part historically, in part critic-

ally, in a manner a little too mature, perhaps, and a bit

sketchy for beginners; The Function Concept and the

Fundamental Notions of the Calculus, by Professor G. A.

Bliss—an essay chiefly notable, I think, as showing how

swiftly and quickly a competent reader may be con-

ducted into the presence of the cardinal concepts of the

calculus and be given some sense of their power; and

three instructive and stimulating essays by Professors

J. W. A. Young, L. E. Dickson and D. E. Smith con-

cerned, respectively, with The Theory of Numbers, Con-
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structions with Ruler and Compasses and The History and

Transcendence of t.

A moment ago I referred to a remarkable postulate

system devised by the Italian mathematician, Pieri. It

was published in 1899 in Memorie delta R. Academia delle

Scienze di Torino under the title
"
Delia Geometria ele-

mentare come sistema ipotetico-detuttivo; monografia del

punto e del mote "; an excellent abstract of it was published
in 1905 by the late Louis Couturat in his Les Principes

des Mathematiques and was partly reproduced in 191 1 by
Professor J. W. Young in his admirable Lectures on Funda-

mental Concepts of Algebra and Geometry. I desire, in

passing, to recommend these books of Couturat and

Young as well worth your attention, provided you will

really read them—pondering what is said in them—
and not be content with merely glancing through them.

They handle, in excellent style, some important matters

which these lectures touch but lightly or not at all.

You can not fail to observe, if you will examine and

compare them—as I hope you will—that Veblen's system
and that of Pieri differ from Hilbert's in various ways.
For example, Veblen's system contains 12 postulates;

Hilbert's, 21; Pieri's, 20; again, while Hilbert's system

contains, as we have seen, five undefined terms, or vari-

ables, Veblen's has but two—"
point

"
and "

between
"—

and Pieri's also has but two—"
point

"
and

"
motion."

In studying the Italian's beautiful system, your under-

standing of it will be much facilitated by noticing that the

undefined term
"
motion

"
is used in the sense of a

unique and reciprocal correspondence
—a one-to-one

transformation—between points, and not in the man-

in-the-street's sense of a physical time-consuming change
of place.
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Other Varieties of Postulate Systems and Doctrinal

Functions.—By
"
other

"
varieties I mean such as are

not equivalent to the foregoing systems. Before citing

them, or rather some of them—for I am far from intending

to list all that have been devised—a word of caution

seems desirable. In inventing a postulate system the

inventor is never, or almost never, aiming at the establish-

ment of what we have been calling a doctrinal function.

He is aiming at establishing autonomously a particular

one of the many doctrines which, as we have seen, a

doctrinal function has for its values. Such special interest

of the inventor, guiding and controlling him, is nearly

always betrayed by the air or color of his speech: often

by his giving his system a kind of name indicating that

the system has a specific subject-matter, which it has not;

nearly always by calling the postulates propositions, which

they are not, instead of propositional functions, which

they are; and usually by denoting the undefined terms by
names instead of variable-symbols as if the undefined

terms were constants instead of variables. This precau-

tion will, I trust, help to keep you from gaining a false

impression from the following citations. The systems in

the list are almost random selections, and the list is far

from exhaustive but, by help of the numerous references

in the systems cited, it will afford you a clue to all or

nearly all extant systems.

The Axioms of Projective Geometry, by A. N. White-

head, Cambridge University Press, 1906.

The Axioms of Descriptive Geometry, by A. N. White-

head, Cambridge University Press, 1907.
" A Set of Axioms for Line Geometry," by E. R. Iled-

rick and Louis Ingold, Transactions of the American

Mathematical Society, Vol. XV, 191 4.
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" On a Set of Postulates Which Suffice to Define a

Number-Plane," by R. L. Moore, Trans. Amer. Math.

Soc, Vol. XVI, 191 5.
" A Set of Postulates for Real Algebra, Comprising

Postulates for a One-Dimensional Continuum and for

the Theory of Groups," by E. V. Huntington, Trans.

Amer. Math. Soc, Vol. VI, 1905.
"
Set of Independent Postulates for Betweenness,"

by E. V. Huntington and J. R. Kline, Trans. Amer.

Math. Soc, Vol. XVIII, 1917.
"
Complete Existential Theory of the Postulates for

Serial Order," by E. V. Huntington, Bull. Amer. Math

Soc, Vol. XXIII, 1917.
"
Sui principi fondamentali della Geometria della

Retta," by G. Vailati, Revista di Matematica, Vol. II, 1892.
" A Set of Five Independent Postulates for Boolean

Algebras, with Application to Logical Constants," by
H. M. Sheffer, Trans. Amer. Math. Soc, Vol. XIV, 191 3.

"
Sulle ipotesi che permettono I'

'

introduzione delle coordi-

nati in una varieta a piri- dimensioni," by F. Enriques,
Rendiconti del Circolo matematico di Palermo, Vol. XII,

1898.

Finally, I will add to the foregoing short list a refer-

ence to the famous postulate system by which G. Peano-—
founder and leader of the important Italian school of

workers in the foundations of mathematics, owning such

names as Pieri, Padoa, Vailati and others,
—

sought to

characterize the class of finite integers. It is found in

various editions of the Formulaire de Mathematiques (as

1899, 1901) and has been often quoted and critically dis-

cussed—especially by Bertrand Russell in his Principles of

Mathematics, by Couturat in his Les Principes des

Mathematiques, already cited, and again, very recently and
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illuminatingly, by Russell in his Introduction to Mathe-

matical Philosophy
—a work which no student of philos-

ophy can afford to neglect.

Independence of Postulates.—You observe that in some

of the foregoing titles the word "
independent

"
occurs:

What does it signify? It is used in a technical sense and

means that the postulates of the system in question are

such that none of them is a logical consequence of the rest.

As students primarily of philosophy and therewith of

epistomology, you should, I believe, be specially inter-

ested in the way in which postulates are tested for inde-

pendence. What is the way? It is this: if we find a

set of constants verifying all the postulates but one, then

and only then we say that this one is independent of the

others, for if it were not, it could be deduced from them

but, in such case, it would be verified by their verifiers.

If the system contain n postulates, then, to test the

entire system, it is obviously necessary to make n partial

tests—one for each postulate. If a collection of propo-
sitional functions is to be a postulate system, is it essential

that the functions be independent? The answer is no;

independence is desirable but not essential; it would be

essential if the doctrinal function corresponding to the

system were required to have a minimum of assumption
and a maximum of deduction, and that is indeed a genuine
ideal. Custom, however, does not require that the postu-

lates of a system be independent; those of Peano's sys-

tem, for example, are independent; but those of Hilbert's

are not, as you can readily see by comparing the last one

with the next to the last. You will note, however, that

Hilbert did not neglect the question of independence. If

you disregard postulate (21), his postulates compose five

sets. He proved that those of any set are independent
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of each other and that each set is independent of the other

sets.

Categoricalness, or Sufficiency, or Completeness of a

Postulate System.
—A postulate system is said to be

categorical, or sufficient, or complete, when and only
when it has a certain property to be stated presently.

The first of the adjectives was introduced into the litera-

ture of the subject by Veblen, who received the suggestion

from Professor John Dewey; the second one had been

previously employed by Huntington, and the third by
Hilbert. The property in question, which a postulate

system may or may not have, is very interesting, some-

times important, and a bit subtle—not easy to make

quite clear. The term
"
category," as you know, is a

Greek word denoting a class, and we shall see that it has

that meaning here. What is meant by categoricalness of

a postulate system? Let me remind you that some of

the undefined terms, or variables—say, v\, v-2, 03, . . . , vn—in the postulates of a system S denote elements, or

substantives, and the others—say, R\, R2, Rz, . . ., Rk
—

denote relations, or connections (among the elements).

Let me further remind you that, accordingly, a set of

verifiers of S—a set of constants, or meanings, verifying

S—is composed in part of element-constants—the values

or meanings assigned to the vs—and in part of connection-

constants, or r^/^zon-constants—the values, or meanings,

assigned to the R's. Now, in any given set of verifiers of

S, let C\, Co, C3, . . . be the element-constants (representing

the p's), and r\, ro, r%, . . . , the relation-constants (repre-

senting the R's); and in any other set of verifiers, let the

element-constants be c\, co
f

, C3', . . .
,
and let the relation-

constants be r\ , ro', r% ,
.... If it be possible to set up

a one-to-one reciprocal correspondence between the c's
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and the Ci"s, the ci s and C2"s, . . .
,
in such a way that,

if two or more c's be related by some r, the corresponding
c"s are related by the corresponding r', then and only

then we say that the system S is categorical, or sufficient.

Two sets of verifiers that are transformable into each other

in the manner indicated are said to be of the same type.

It is easy to see the dictional propriety of the adjectives
"
categorical

"
and

"
sufficient

"
as thus used. For if S

be categorical, or sufficient, it determines a category, or

class, of sets of verifiers, which sets are all of them of the

same type, and it (S) is
"

sufficient
"

to do that. The
Hilbert system is categorical, as are some of the other

systems above listed. For an interesting discussion of the

term categorical, of the advantages and disadvantages of

categoricalness, together with detailed proofs that certain

systems are, and certain others are not, categorical, I

may refer you to the previously mentioned Fundamental

Concepts of Young and to Huntington's article in the

above-cited Monographs.
Euclid's Postulate System Defective.

—In a previous
lecture I stated that Euclid's postulate system is defective
—

mainly by omission—and promised to prove the fact

at a later stage. Owing, however, to time limitations and

to the insistence of many other topics which remain to be

considered, I have decided to omit the proof and to be

content with referring you to Young's Fundamental Con-

cepts (pp. 12, 143) where the defectiveness in question is

demonstrated simply and clearly.



LECTURE IX

Truth and the Critic's Art

MATHEMATICAL PHILOSOPHY IN THE ROLE OF CRITIC

A WORLD UNCRITICISED, THE GARDEN OF THE DEVIL

"SUPERSIMIAN" WISDOM AUTONOMOUS TRUTH
AND AUTONOMOUS FALSEHOOD OTHER VARIETIES

OF TRUTH AND UNTRUTH MATHEMATICS AS THE
STUDY OF FATE AND FREEDOM ITS PURE BRANCHES
AS DOCTRINAL FUNCTIONS ITS APPLIED BRANCHES
AS DOCTRINES THE PROTOTYPE OF REASONED DIS-

COURSE OFTEN DISGUISED AS IN THE DECLARATION
OF INDEPENDENCE, THE CONSTITUTION OF THE
UNITED STATES, THE ORIGIN OF SPECIES, THE
SERMON ON THE MOUNT.

We have seen that a doctrinal function is composed
of two sets of propositional functions: an assumed set,—

fertile, compendent, compatible, sometimes independ-

ent, sometimes categorical,
—called a system of postu-

lates; and a set logically deducible from the postulates,

and called theorems.

We have seen that an autonomous doctrine,—a doc-

trine derivable from a doctrinal function by replacing the

variables in the postulates with admissible constants,—is

composed of two sets of propositions: a set derived from

the postulates
—one for each postulate; and a set similarly

matching the theorems.

330
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We have seen that a doctrinal function is, like the

propositional functions composing it, neither true nor

false; and that a doctrine derived from it, is, like each

of its component propositions, either true or else false.

We have seen that a doctrinal function gives rise to

an infinitude of true doctrines,—values of the function,—
and an infinitude of false ones.

We have seen that a doctrinal function, owing to the

presence of the variables in its propositional functions,

has no specific or definite, but only an ambiguous or un-

determined, subject-matter; and that, on the other hand,

a doctrine, owing to the presence of the "substituted"

constants in its propositions, has a specific, or definite,

kind of subject-matter.

We have seen that, in respect to structure or form, a

doctrinal function and all of the derivable doctrines are

identical, while, in respect to content, or subject-matter,

no two of them are identical.

We have seen that, in the case of a doctrinal func-

tion, the theorems, (which are forms) are logically de-

ducible from the postulates (which are forms)—the

deduction being purely formal; and that, in the case of

a derived doctrine, the propositions matching the theo-

rems can not be logically deduced as propositions from

the other propositions as propositions but only as forms,
in which respect, however, the propositions and the cor-

responding propositional functions are, as we have seen,

identical; so that, in any and all cases, it is the form of

the premises, and never their subject-matter, that de-

termines their logical consequences.

Hereupon, there supervenes an important critical

question : Given a doctrinal function and one of the

doctrines derivable from it, which of the two things ought
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to be called a branch of pure mathematics and which one

a branch of applied mathematics? It is evidently not

merely a question of taste, for the two things are not on

the same level, they are not coordinate : the doctrinal

function is a matrix, the doctrine is one of the things it

moulds ; the former is form, the latter has form, and sub-

ject-matter besides. In the light of the foregoing con-

spectus of their differences and similitudes, it is obvious,

I think, what the answer must be : the doctrinal function

is a branch (or part) of pure mathematics; the doctrine,

a branch (or part) of applied mathematics—of what

Lord Bacon called "mixed" mathematics, the mixture

consisting in the mingling or union of form and subject-

matter—of structure and something having it or con-

forming to it—of a prototype, model, mould, or pattern,

and material owning the impress thereof. Are we, then,

to say that the various kinds of geometric doctrine,—
ordinary Euclidean metric geometry, for example,

—and

the various kinds of algebraic doctrine,—the algebra of

the real numbers, for example,—are all of them so many
branches of applied mathematics? From that conclusion

there is, I believe, no escape. They are quite as genu-

inely, though not quite so obviously, applied mathematics

as are, for example, rational mechanics, mathematical

statistics, mathematical physics, and mathematical astron-

omy, for the things which geometries and algebras are

doctrines about are just as genuinely, though less evi-

dently, kinds of subject-matter (as distinct from pure

form) as are the things which the other mentioned

branches are doctrines about.

In the view thus presented, pure mathematics appears
as a large (potentially infinite) ensemble of doctrinal

functions and applied mathematics as the ensemble of
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doctrines derivable from them, having them for matrices,

and owning their forms. The view, as you will readily

see upon a little reflection, is recommended and confirmed

by its harmony with many an insight similarly or other-

wise gained and usually justified in other terms.

It accords, for example, with the splendid mot of

Bertrand Russell that "mathematics is the science in

which one never knows what one is talking about nor

whether what one says is true"; for a doctrinal function,

as we have said so often, has no determinate subject-

matter and, without losing its integrity as a function,

might conceivably be not even verifiable by any of the

subject-matters in our world.

It accords with another just saying (before quoted)

of the same author that "pure logic, and pure mathe-

matics (which is the same thing), aims at being true, in

Lcibnizian phraseology, in all possible worlds, and not

only in this higgledy-piggledy job-lot of a world in which

chance has imprisoned us"; for the connection of the

theorems of a doctrinal function with its postulates,
—

the logical lien binding the former to the latter as con-

clusions to premises indissolubly, forever,—depends in

no manner or degree upon the content, the accidents, or

the vicissitudes of the "big buzzing blooming confusion"

which we call our universe.

It accords perfectly with the critical judgment, else-

where *

expressed, that "it is in implications and not in

applications that (pure) mathematics has its lair"; for

the very essence of a doctrinal function,—constituting of

its elements a single indestructible Form of forms,—is

that its postulates logically imply its theorems.

It accords with the often quoted definition of pure
1 Human Worth of Rigorous Thinking, p. 303.
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mathematics given by Benjamin Peirce as "the science

which draws necessary conclusions"
; for the theorems

of a doctrinal function are necessary consequences of its

postulates in the sense that the former just are the impli-

cates of the latter.

It accords with the judgment of Pieri that pure
mathematics is a "hypothetico-deductive" science; for the

postulates of a doctrinal function appear in the role of

hypotheses and the theorems in that of conclusions logi-

cally deduced.

It accords with the exquisite penetrating saying of

William Benjamin Smith that pure mathematics is "the

universal art apodictic" ; for the logical validity of a

propositional function as such is completely independent
of any and all particular subject-matters, whether of our

world or of any other that may be conceivable or pos-

sible, and the logical coherence of the theorems and pos-

tulates of such a function is apodictically certain.

It accords with the seemingly shallow but really pro-

found saying of Henri Poincare that mathematics is "the

giving of the same name to different things" ; for, despite

the confusion thus arising, a doctrinal function and its

various values are commonly given a single name, which

is usually that of a specially important or familiar one of

the values.

It accords well with the saying of an eminent jurist

that "mathematics is the attempt to seize hold of God
where the hair is shortest"; for the pure forms of thought

present clean-shaven aspects
—

they are "bald as the bare

mountain tops are bald, with a baldness that is sublime,"

and the discourse of a Gauss or a Lagrange is naturally

less 'woolly" than that of a Cicero or a Justinian or a

Coke or a Montesquieu or a Blackstone.
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It does nqj, however, accord,—and that, too, is con-

firmatory,
—with such definitions,

—no longer current

among competent critics,
—as held mathematics to be the

science of "number" and "space" or the science of

"quantity" or the science of "measurement" or the "sci-

ence of indirect
1
measurement"; for, as you clearly see,

a propositional function as such has no essential concern

with such particulars as number or space or quantity or

measurement direct or indirect.

But, as you see, it does accord with the often ex-

pressed view that mathematics is the science of form and

with the view that it is the normative science par excel-

lence.

Finally, it accords perfectly with the saying
—reiter-

ated many times and in may forms since the golden days
of Plato—that mathematics contemplates Being under

the aspect of Eternity; for it is perfectly clear that doc-

trinal functions, though their discovery by man is a

temporal event, are themselves timeless—"older than the

Sun or the Sky" and destined to survive all things that

are under the law of change and the doom of death.

We have seen that one doctrinal function may, with-

out losing its proper autonomy, be a part of another one,—one autonomous Form of forms being thus an integral

constituent of another such Form more inclusive,—in

which case any doctrine derivable from the former is

similarly a part of the corresponding doctrine derivable

from the latter. For example, H AF and its values are

thus related, as we saw, to Ha F' and its values. Whether
all doctrinal functions,—both those that are known and

those that remain to be discovered,—are somehow logic-

1

Auguste Compte: The Positive Philosophy (translation by Harriet

Martineau).



136 MATHEMATICAL PHILOSOPHY

ally connected together as an immense hierarchical gang
of subordinates to one supreme Function, or Form, which

embraces the whole of pure mathematics, is a question

most worthy of your best attention as students of phi-

losophy. It has been answered affirmatively, as I said

in the introductory lecture, by Whitehead and Russell

in the Principia. I shall not here attempt to justify the

answer but, for information regarding the manner of

the answer and the evidence supporting it, I again refer

you to that monumental work, which, as it is a composite

of the most scientific philosophy and the most rigorous

science, you will find a little harder to read than philo-

sophical works of the usual rhetorical type.

The view I have been presenting, in which pure
mathematics appears as a vast array of doctrinal func-

tions, gives the science, from one point of view, a pretty

severe aspect. For a doctrinal function is not only time-

less, as said, and indestructible, but,
—and the fact merits

our most pensive meditation,—when once the principles,

or postulates, are chosen, the die is cast—all else follows

with a necessity, a compulsion, an inevitability that are

absolute—we are at once subject to a destiny of conse-

quences which no man nor any hero nor Zeus nor Yahweh
nor any god can halt, annul or circumvent. Mathematics

is, in a word, the study of Fate. Let me hasten to say

that the Fate is not physical, it is spiritual
—the unbreak-

able binding thread of destiny runs through the universum

of rigorous Thought: the fate is logical Fate. Is it a

tyrant? And the intellect, then, a slave? A tryant has

whims but Logic is lawful. Where, then, is the intellect's

freedom? What do you love? Poetry? Painting?
Architecture? Statuary? Music? The muses are their

fates. If you love them, you are free. Logic is the
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muse of thought. When I violate it, I am erratic; if I

hate it, I am licentious or dissolute; if I love it, I am free

—the highest blessing the austerest muse can give.

The remainder of this lecture consists of a brief dis-

cussion of a very much neglected subject of very great

importance; and its importance is not only of the theo-

retical kind but, as I trust you will be able to see, of the

most effectively practical kind also; practical, that is, for

such as have the talent and training,
—the gumption and

discipline,
—to employ effectively the most delicate and

most powerful of intellectual instruments. I may call the

subject

The Role of Postulate Systems and Doctrinal Func-

tions in the Structure and Criticism of Thought.—Here,
as generally in these lectures, I use the term Thought in a

very comprehensive sense : not in a sense so inclusive as it

has sometimes—in William James's Principles of Psy-

chology, for example, where it often signifies or covers

"mental states at large, irrespective of their kind"; but

rather in the sense it has in Theodore Merz's great History

of European Thought in the Nineteenth Century where the

term embraces both what we ordinarily mean by "Science"

and what by "Philosophy"; in other words, I am using

the term Thought to signify that sort of discourse which

deliberately owns allegiance, even though it often fails in

loyally, to the authority of Logic. The subject is, you

see, immense, penetrating all the sciences and all the phi-

losophies, natural, or social, or speculative
—all fields, in

short, where men have sought by means of reasoned dis-

course to gain or to give wisdom and light for the guid-

ance of humankind. To treat it as it deserves to be

treated,—both in full generality and in detail,
—would

require the writing of a large volume. Since every doc-
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trinal function includes a postulate system as its logical

base and since pure mathematics, as we have seen, con-

sists of doctrinal functions, such a volume might be ap-

propriately entitled: The Role of Pure Mathematics in

the Criticism of Thought; or, better perhaps, Pure

Mathesis in the Role of Critic. Possibly, one of you will

one day undertake the production of such a work. The

entire present course of lectures evidently bears upon the

task but the bearing is, in the main, implicit. In what

remains of the hour, I desire to discuss the subject, very

sketchily indeed, but explicitly and in terms. And I will

begin with a word regarding
Autonomous Truths and Autonomous Falsehoods.—

We have repeatedly spoken of the logically organic body
of propositional functions constituting a doctrinal func-

tion as being an autonomous form. We have done so, as

you know, because the thing presents a certain aspect of

self-sufficience or independence. If such a function be

included in another one, it does not owe its existence, its

unity or its integrity to that relation. It stands alone,

erect, eternal, holding its principles, its base,—the postu*

lates,
—within itself, as it contains within itself the logical

lien binding its elements into one solitary, self-sufficing,

indestructible whole. A doctrine derived from it (in the

way now familiar) is not so pure as the function whence

it was derived; it is, so to speak, the doctrinal function

dipt
—

dipt or immersed in subject-matter, in a kind of

material giving each of the propositional functions sig-

nificance, each of them thus loaded being a proposition

and, as such, true or false; hence, we cannot say that the

doctrine is form but, as we have seen, it has form, and

the form it has is precisely that which the doctrinal func-

tion is; and so we say that such a doctrine, too, is autono-
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mous. A doctrine is the off-spring of a marriage—the

marriage of subject-matter and pure form; the latter is

the mother and transmits its own autonomy to all its chil-

dren. If the doctrine be true, we may call it an autono-

mous truth,
—the most beautiful and most precious thing

in the world,—for it has the doctrinal function's beauty
of form; it has the beauty of truth; and is, besides, tinged

with the warmth and living colors of some species of

subject-matter in which our practical life is immersed and

finds its interests and its sustenance; if, on the other hand,

the doctrine be untrue, then it is not a falsehood merely,

but is an autonomous falsehood; this is indeed not a

precious thing, it is the very opposite; and yet, strange

to say,
—for so pervasive is beauty in our world,—an

autonomous falsehood, despite its having the ugliness of

vntruth, has all the beauty of perfect form—the form

of the doctrinal function whence it was derived.

An autonomous falsehood's perfection of form is

both a great advantage, and a minor disadvantage, in

the quest of truth, for it makes it in one respect much

easier, and in one respect somewhat harder, to detect the

falsity. It makes it easier, for, as you know, an autono-

mous doctrine consists of a set of propositions [/>], de-

rived from the doctrinal function's postulates, and a set

[/>'], derived from the function's theorems; and hence

two ways,—a direct way and an indirect way,—are open
in which to try whether the postulates are satisfied: the

direct way, by comparing the known facts in the field of

the doctrine's subject-matter with [/>] ; the indirect way,

by comparing them with [/>']. It makes it harder, for

formal perfection is in itself a thing so impressive, so

fascinating, so pleasing, that it tends to camouflage a de-

fect of content and thus to deceive by a kind of agreeable
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dazzling of the mind. The disadvantage in question,

though always inferior to the mentioned advantage, is

naturally more serious in cases where the question of

postulate verification is especially difficult to answer with

perfect certitude. Such cases are not merely supposable;

they are in fact of very frequent occurrence in the history

of science. Just at present, we have indeed a living il-

lustration in the world-wide discussion of relativity

theories, wherein the satisfiedness, or verifiedness, of

certain famous postulates (or deductions therefrom)—
once regarded as established, long so regarded in the

case of some of them—has been called in question and is

now held in doubt or denied. For a presentation of the

great matter of these theories, I have real pleasure in

referring you to C. D. Broad's article, "Euclid, Newton,
and Einstein," in The Hilbert Journal, Vol. XVIII.

,

April, IQ20; the article, which is easily the best I have

seen on the subject, is quite notable as a sound, intelligible,

semi-popular exposition of an exceedingly recondite sci-

entific development.
1 The art of such exposition, let me

say in passing, is difficult and important
—

quite as dif-

ficult and, in its service, quite as important as research

itself; a high degree of skill in it is, I think, not less

rare than a high degree of research ability; once in a

great while, the two things are united in one personality,

as in W. K. Clifford, for example, in Thomas Huxley,
in Helmholz and Ernst Mach, but not in Henri Poincare

who, though he repeatedly essayed the task of popular

exposition and indeed produced many a lightning flash

1
Since this was written many attempts have been made to explain the

doctrine in popular terms. Among the best attempts may be mentioned
Bolton's Introduction to the Theory of Relativity [E. P. Dutton & Co.]
and W. B. Smith's article, Relativity and Its Philosophic Implications

[Monist, Dec, 1921].
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in the layman's sky, yet lacked the requisite patience for

continuous clarity.

Heteronomous, or Anantonomous, Doctrines, True

and False.—Everyone knows that each of the great sub-

jects belonging to the domain of Thought has a more or

less reasoned literature,
—often an immense literature,

—
of its own. Everyone knows that any such literature,

—
the literature of any such subject,

—is composed of a

number of more or less logically organized bodies of

propositions. It is common and convenient, as everyone

knows, to speak of such a body of propositions,
—no

matter what the subject,
—as a theory or a philosophy or

a science or a doctrine. Let us here employ the term

last mentioned. Everyone knows that in every great

subject such doctrines are not only numerous but that,

by modification of old ones and addition of new ones,

the number is constantly increasing. Together they con-

stitute our more or less reasoned wisdom,—what Clar-

ence Day would call our supersimian wisdom,—about the

world.

I desire to draw your attention to the fairly obvious

fact that most doctrines,
—the vast majority of doctrines

whether true or false,
—are not autonomous. Autonomy,—the quality of being autonomous,—is an ideal; it is an

ideal to which doctrines in every subject, or the builders

of them, do indeed more or less consciously aspire and

to which they slowly, for the most part very slowly, ap-

proximate but which they seldom even nearly attain.

When a doctrine does reach (or nearly reach, for it can

not quite reach) the ideal, when it attains close approxi-
mation to autonomy, then and, strictly speaking, only
then it has become mathematical; the immense majority
of doctrines are, then, non-mathematical, lacking au-
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tonomy. They are heteronomous, or anautonomous, doc-

trines. These are, I grant you, terrifying words. Why
not say mathematical and non-mathematical, and have

done with it? Because the other words serve to direct

and fix attention upon what is precisely characteristic of

mathematical doctrine, on the one hand, and of the non-

mathematical, on the other.

Why is it that nearly all doctrines in the world, even

those which deal with the most familiar subjects, not

excluding some doctrines that are currently called mathe-

matical, have been and are tfwautonomous? The causes

are evidently many. There is the general feebleness, the

logical meagreness, of the human intellect; there are the

strong unruly passions of men driving them in uncharted

courses as rudderless vessels in a storm; there are their

lusts and greeds aiming at the gratification of propensi-

ties infinitely beneath and commonly hostile to the craving

for truth; there are laziness, fickleness, and impatience;

there is the marvelous copiousness and prodigality of

mother Nature enabling her children to get on somehow
even though they have but meagre care for wisdom; and,

finally, there is the inherent intractableness of the great

subject-matters with which most doctrines deal.

Hence a rough general answer to our question evi-

dently is that the building of an autonomous doctrine re-

garding any great matter is, for us humans, constituted

and circumstanced as we are, exceedingly difficult, while

the making of the other kind is easy : there are so many,

many ways in which a doctrine may fail of autonomy—
so many possibilities, so many opportunities, so many so-

licitations from within ourselves and from without, for

going wrong in the business and incurring delay. Do
but reflect a little upon the matter. An autonomous doc-
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trine, we have seen, is one derivable from a doctrinal

function and inheriting its form. Today indeed we are

familiar with the general conception of such functions and

have numerous examples of it; and we are in some danger
of inferring or supposing that the formation of that con-

ception and the discovery of the known functions exempli-

fying it have been accomplished easily. But such an in-

ference or supposition would be very erroneous. Those

whom we conventionally call the authors of the known
doctrinal functions are not, strictly speaking, their dis-

coverers. Far from it. The discovery of them and of

the general concept they exemplify is not the achievement

of an individual but of a very, very long series of indi-

viduals; it is, like all other forms of wealth, like all other

elements of civilization, a racial achievement—the slowly

accumulated fruit of many generations of dead men's toil.

And clear consciousness of the outcome,—of the fact and

nature of the fruit,
—is of very recent date. To realize

vividly that such is the case, you need only reflect that

doctrinal functions are composed of propositional func-

tions and that, as we saw in a previous lecture, the su-

premely important notion of propositional function came
to recognition and received a name only a few years ago.

Compared with the vast backward stretch of human time,—
say, a quarter or a half million years,

—the interval

from Euclid's day to ours is indeed very short; virtually

we are among Euclid's contemporaries; yesterday he was

here; yet his Elements is our human race's earliest ex-

ample of a doctrinal function and even it is an imperfect

example, failing, as we have seen, to state certain of the

postulates explicitly, and being in appearance, as he prob-

ably conceived it to be in fact, a specific doctrine instead

of a doctrinal function.
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But the sheer difficulty of attaining doctrinal au-

tonomy, great as the difficulty is, is by no means solely

responsible for the fact that so few of the doctrines in

the world are autonomous and that nearly all the rest

of them are very remote from that estate. Part, a very

large part, of the explanation is found in the fact,
—

abundantly manifest in the history of thought and for

most of us strongly confirmed, I fear, by our introspective

knowledge of ourselves,
—that we humans in our doctrinal

constructions and preachments are but seldom much con-

cerned to make them even approximately perfect in re-

spect to logical form; in their content our interest is, in

general, far greater; but even as to content, we have, I

think, to own that we are, in general, much less concerned

to have our doctrines ultimately true than to have them

instantly elective. I trust I am not sufficiently depraved
to believe in the total depravity of man; for many of his

supersimian traits and for some of his simian qualities,

I have profound admiration; but in candor we must own,
I believe, that wholly disinterested pursuit of truth is very
rare. We humans desire indeed to be regarded devoted

lovers of truth and we flatter ourselves that we are such

in fact; sometimes we are, but, in general, we are not;

in general, we prefer something else; we often boast that

we are not theoreticians, and the boast has its basis in fact;

we are not theoreticians, we are practicians, though we
dislike the word and call ourselves practical instead.

Being primarily and predominately practical in our in-

terests, when we are building doctrines, though we al-

ways pretend to be thus endeavoring to set forth truth,

we are, with rare exceptions, animated by a very different

motive; we are not trying to formulate something that,

by painstaking research, we have found to be true; we
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are, instead, though we do not confess and may not even

know our real motive, trying to make an instrument that

will "work," that will be an effective means to some prac-

tical end; we are not,
—however much we pretend to

be,
—endeavoring to enlighten our fellow men—we are

endeavoring to influence them : our aim is not the ad-

vancement of wisdom; it is, in current slang, to put some-

thing over or across. And, as already intimated, the

dominance of this motive is entirely consistent with sin-

cerity. The builder or the advocate of a doctrine os-

tensibly aiming at truth but really aiming at some prac-

tical achievement, may be entirely sincere—he may indeed

be, like Mahomet, for example, like Deacon Paris or

Lenin, a fanatic, incapable of doubt, incapable (that is)

of doubting the validity or justice of his central thesis,

and hence incapable of scientific devotion to truth.

Now, it is evident that one making or advocating a

doctrine, if he be animated, not by the genuine philoso-

pher's love of truth, but by the spirit of the partisan and

propagandist, if he have not the disinterestedness of the

genuinely scientific worker but have instead the interest

of one bent on driving through to the goal of some prac-

tical purpose by any and every available means thereto

—it is evident, I say, that such a one will not desire to

bring his doctrine to the perfection of logical form but

will often indeed desire the very opposite; and the rea-

sons are plain: to make a doctrine autonomous requires

much patience and time, but the practician, the partisan,

the propagandist, is by nature impatient
—he is eager for

results; in trying to make a doctrine autonomous, we

usually discover that the doctrine is false (for most doc-

trines are false), but such a discovery, which tends to

dampen ardor, is just what your partisan or your fanatic
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most desires to avoid; an autonomous doctrine, because

its elements are arranged in order and their logical con-

nections are bared, is thereby prepared for relatively easy

examination by others, so that, if the doctrine be false,

the fact is specially liable to detection, but it is not the

aim of your propagandist to make such detection easy;

a doctrine, once it is made autonomous, though it has

thus gained in light, has lost its heat, it is lacking in punch,

as we say, or "pep," it is prepared for the service of mere

enlightenment; but your propagandist, your fanatic and

your partisan do not seek to enlighten, they seek to in-

fluence,
—to get action,—and so they keep their doctrines

amorphous, malleable, and charged with emotion for

emotional utterance and emotional effect.

Well, you may say, what is to be done about it?

What is the remedy? The remedy is—Criticism—the

Gadfly: patient, unsparing logical criticism of one's own
work in doctrine building; and, in all subjects, keen,

merciless, stinging, gadfly criticism of any and all half-

baked, logically amorphous, flabby doctrines pretending
to be important embodiments of truth or vessels of wis-

dom. Men must be driven by art,
—the art of criticism,—to levels of excellence higher than those to which they

are drawn by unenlightened nature.

I am, I hope, not misunderstood in this matter. I

am far from contending,—no one can be so foolish as to

contend,—that in every field of thought workers can be

constrained by criticism to put their results in the logically

perfect form of an autonomous doctrine; man can not

be constrained to perform the impossible nor to do in-

stantly what has at best a very remote possibility of being
done at all : what I do contend is that in all departments
of thought men can be constrained by criticism to have
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constant regard to the principles and the spirit of mathe-

matics—the spirit of dispassionate thought—to estimate

the logical cogency of their thinking in accordance with

mathematical standards, to employ the postulational

method in many instances where it has never been em-

ployed nor even attempted, to hold it as a model in all

cases, and in all their work to own the authority, even

though they can not attain the perfection, of the doctrinal

function as the highest and purest of logical ideals; and

I contend that, if this were done, both the logical quality

and the /rz^/z-quality of what I have called "the more

or less reasoned literature" of the world would be thereby

rapidly, constantly and immeasurably improved.

Finally, I would direct your best attention to the fact

that everywhere in that literature,—the literature of

Thought,—there are to be found certain phenomena,
certain common characters, which invite us to the indi-

cated type of criticism as to a great and hopeful enter-

prise. What I mean is this: if you will select any well-

known doctrine, no matter how amorphous, belonging to

any field, no matter how remote or seemingly remote

from mathematics— it may be in natural science or in

philosophy or in theology or in ethics or in law or in

education or in politics or in economics or in history or

in sociology or in education—if I say, you will select from

any such field a doctrine worthy of attention and examine

it, you will find that the author has more or less con-

sciously recognized, in at least some small measure, the

necessity of working with principles which he may not

have explicitly stated as such either in whole or even in

part; you will find that he has consciously or unconsciously
made use of certain (or uncertain) primitive propositions
or propositional functions,—certain assumptions, that is,
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or postulates,
—which he may or may not have regarded,

and may or may not have recorded, as such; you will

probably find that he has tried to define certain of his

terms and will certainly find that other terms ostensibly

defined or not, have in fact been virtually employed, de-

liberately so or not, as undefined terms (primitives, or

variables) ; you will find that he has stated a series of

propositions which he has made some effort to prove,

to demonstrate, to deduce, by a process of reasoning,

from something or other; in a word, you will find that

within the doctrine, however formless, however ill or-

dered its parts, however loosely knit its texture, there is

shadowed forth more or less clearly, very dimly it may
be, something of the figure and frame of the logical pro-

totype called doctrinal function, as if this thing were so

built into the very constitution of intellect as in some

measure to guide and shape its activity whether we will

or no.

It would amply compensate us for the toil involved,

had we the time for it, to devote one or more lectures

of this course to illustrating the truth of what I have just

said by critically examining one or more outstanding doc-

trines of the non-mathematical, or anautonomous, sort

with a view to discovering the presence in them of the

mentioned phenomena. But, except for a few hints to be

presently given, I must leave the task for you, commend-

ing it as being in my judgment the best possible discipline

in the great art of doctrinal criticism, for which the pres-

ent condition of the wrorld calls more loudly than ever

before and which it is your supreme privilege and supreme

duty as philosophers to master, foster, and practise.

You have the clue and the material abounds on every
hand. "I do not frame hypotheses" (Hypotheses non
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jingo) said Newton and he accordingly called his prin-

ciples of dynamics "Axioms or Laws of Motion" (Axio-

mata sive leges motus). Today, however, even we, who
are hardly Newtons, know that his "axioms" are not

absolute certitudes, that they are not self-evident propo-

sitions, that they are indeed not perfectly clear; we know

that they are "hypotheses," pure assumptions, postulates,

genuine propositional functions in which the variables

are, in Euclidean fashion, denoted by names, which names

or some of them are, again in Euclidean fashion, "de-

fined"—defined by definitions, or descriptions, serving

merely to indicate one specific interpretation of the func-

tions. For a good approximation to the sort of criticism

I am recommending, let me refer you to an examination

of Newton's doctrine of dynamics by the late Ernst Mach
in his masterful Science of Mechanics. Do you wish to

say that this doctrine is mathematical? Very well, it is

mathematical but it is not purely such and I have cited

it partly on that account and partly because of its fame.

Let us, however, take a glance in other directions. Con-

sider, for example, that most significant of all American

political documents—The Declaration of Independence.
It is, or contains, in epitome, a political doctrine of the

highest importance. In saying, "We hold these truths to

be self-evident," its authors virtually said, JFe lay down
the following postulates; and the list they give of "self-

evident truths" is clearly a list of their political postu-

lates. These are propositional functions; a little scrutiny

will enable you to detect the undefined, or variable, terms,

which the authors of course assumed would be understood

in some specific sense. The postulates, you observe, are

swiftly followed by important deductions. I can not here

further elaborate the matter, but you can not fail to de-
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tect in it the outlines or rudimentary presence of a

singularly impressive doctrinal function of political type

and to feel invited to examine the great document and

perhaps to elaborate it in accordance with the conception

and method of such functions.

For another example, consider the Constitution of the

United States. It may be regarded in the same light,

only to do so requires a little more ingenuity. Omit, "We
the people of the United States do ordain and establish

this Constitution for the United States of America";
what is left embodies a doctrine—a doctrine in the field

of government. What are its postulates? Everything
from article I to the end of the document—of course, the

provisions are not stated in the manner of postulates but

they can be so stated. Where are the theorems? These

are not stated at all but are involved in the meanings of

the great phrases respecting justice, tranquillity, and so

on of the heavily laden preamble. I wonder if what I

have said is a sufficient hint. The doctrine in question is,

in a word, this: the provisions in the Constitution,—that

is, the postulates,
—

imply the body of unstated proposi-

tions involved in the great terms of the preamble. Such,

in a nut-shell, was the thought, the doctrine, of the fathers.

Let me offer a similar hint, a mere hint, regarding the

philosophy of Descartes. You know how strenuously he

sought for a basis of indubitable fact. He was seeking,

though he did not so conceive the task, for the indubit-

able verification of certain propositional functions, which

he did not indeed formulate nor evoke from the shadowy
background of his thought. One of the verifications he

found or thought he found is, as you know, of world

wide and immortal fame. Consider the propositional
function: if x performs a kind y of activity, then x has
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the property z. Let x denote /
;
let y denote thinking, let

z denote being, drop the hypothetical form, and you have

Descartes's Cogito, ergo sum; Je pense, done je suis; 1

think, therefore I am. Enough of hints. The suggested

type of analysis is evidently applicable on every hand—
to the Sermon on the Mount, to the Republic of Plato, to

Darwin's Origin of Species, to the League of Nations

Covenant, to Marxian Socialism, to the Soviet Constitu-

tion of Russia, to the Constitution of the German Re-

public, to the Einstein Doctrine of Relativity, to the Bry-

anistic Ethics of Prohibition—to all manner of doctrin-

istic contentions of wise men, knaves, fanatics and fools.

The type of criticism I am here advocating and urg-

ing as supremely important shapes itself, as you see, very

simply. Confronted by a doctrine in any department
of thought, Criticism demands answers to these questions :

What is assumed—what are the postulates? What are

the undefined, or variable, terms? What are the theorems

or proved propositions and what the defined, or constant,

terms? How have the theorems been deduced, and the

defined terms defined? What meanings have been as-

signed to the variable terms, and how? Upon these ques-

tions, criticism, if it is to be criticism of Thought, is bound

to insist—there is no alternative. Such criticism is a civi-

lizing agency
—the guardian of the principles of freedom.

Without it, the world becomes a wilderness of error and

lust—the garden of the Devil.

Easy to ask, the questions are, in general, not easy
to answer, and the difficulty of answering rightly is usually

greatest just where it is most important to compel an

answer—in the case, that is, of amorphous, emotion-

charged "dynamic" doctrines that pretend to aim at en-

lightenment but really aim at victory and win it by ap-
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pealing, not to love of truth, but to lust for power or

gain. If the author be unable to answer, criticism must

drive him back to the silence of the cloister for further

study. If he contend, as sometimes he will contend, that

he has defined all his terms and proved all his proposi-

tions, then either he is a performer of logical miracles

or he is an ass; and, as you know, logical miracles are im-

possible.

Allow me, in closing, an additional word to guard

against a possible misapprehension. We have seen and

said that a doctrine, in becoming autonomous, though it

thus gains in light, loses in heat—it tends to become

static. Is it not true, however, that to do its work in the

world a doctrine must be dynamic? The answer is, it

must; and nothing has been said to the contrary. It is

necessary to distinguish: to test for truth is one thing; to

utter is another. Of these two things, the former is the

duty to which men must be driven by criticism if they

be not drawn to it by love of truth. Once the test is

made and the doctrine found not wanting, then, and not

before, it may be legitimately urged home with full ardor

by all the arts of utterance even though the truth be thus

made to burst upon us like the thunder of Wagnerian
music, making the mountains tremble, the seas vibrate,

and seeming to shake the very rafters of the sky.



LECTURE X

Transformation

NATURE OF MATHEMATICAL TRANSFORMATION NO

TRANSFORMATION, NO THINKING TRANSFORMA-

TION LAW ESSENTIALLY PSYCHOLOGICAL RELA-

TION AND FUNCTION AND TRANSFORMATION AS

THREE ASPECTS OF ONE THING ITS STUDY THE
COMMON ENTERPRISE OF SCIENCE THE ART OF

MATHEMATICAL RHETORIC THE STATIC AND THE
DYNAMIC WORLDS THE PROBLEM OF TIME AND
KINDRED PROBLEMS IMPORTATION OF TIME AND
SUPPRESSION OF TIME AS THE CLASSIC DEVICES OF

SCIENCES

Looking back to the days of my youth, I see pretty

clearly and a little sadly that in this good land of ours

secondary and collegiate mathematical instruction was,

with little exception, then remarkable for two things : its

emphasis and its silence. It was very diligent and very

emphatic about small matters; about great ones it was
dumb. 1

I am led to this reflection by recalling my first

and second introductions to the term, "transformation."

The first was in algebra; there was a chapter on the cubic

and the biquadratic equations, which we were to learn

'Sec in this connection Professor J. C. Fields' brilliant address-

Universities, Research and Brain Waste—published by the University of

Toronto Press, 1920.
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how to solve ;
in the chapter was a section headed, Trans-

formation of Equations; in it the x of our equations was

replaced by something else; so we got new equations;

these were managed so that, after a few "stunts," we

had the roots sought; just what part of the proceeding

was dubbed transformation and what not, we were left to

conjecture, but, in those days, even conjecture,
—

guessing,—was a kind of sin, for mathematics was "the exact sci-

ence," it was just "pure reasoning." I wonder if you,

who are of a later generation, were more fortunate.

Well, my second introduction to the term in question oc-

curred in analytical geometry, for the book contained,

over toward the middle of it, an arid little chapter en-

titled Transformation of Coordinates—a meagre, dull,

stupid, stupefying parched little desert discussion, of

which no use was made there and very little in the subse-

quent part of the course. In neither of the "introduc-

tions" was there an illuminating word by text-book or

by instructor to signalise the significance of the matter in

hand—no insight, no outlook, apparently no sense of

being in the presence of a great matter, at once a power-
ful instrument and a subject of first-rate importance.

What I have said of the term "transformation" might
be said with equal truth of other great terms,—of Func-

tion, for example, which is at length happily winning its

way to due recognition in elementary instruction,—of

Invariant and Group, of which I hope to speak at a later

stage
—and especially of Relation, which, though long

current in mathematical literature as a convenient term

used in a sense semi-scientific (or semi-technical) and

semi-literary, is at length coming to be recognized, owing
to recent work in the logical foundations of mathematics,

as denoting better than any other term the ultimate tissue
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of mathematical science. For, while this science is, as

we have seen, composed of doctrinal functions, these

forms are themselves woven of abstract, or formal, re-

lations.

In this lecture, I purpose to deal with the mathemat-

ical idea denoted by the term "transformation." I need

not say that an hour's lecture can neither impart much

knowledge of transformation theory nor give skill in the

use of transformations as instruments; for the former

requires prolonged study and the latter is the slow-matur-

ing fruit of practice. What I hope to do in the hour is

to make clear what mathematicians mean by a trans-

formation and by a law of transformation; to show how
fundamental and omnipresent the process of transforma-

tion is in all our thinking; to give an inkling of the end-

less number and endless variety of existing transforma-

tions; to show how transformations appear now as power-
ful tools and now as interesting themes; to disclose the

intimate connection of the notion of transformation with

that of relation and that of function; and briefly to indi-

cate how the phenomena of transformation in the ab-

stract static world of mathematics correspond to the

phenomena of change in the concrete dynamic world of

sense.

Let me begin as simply as I can—so simply, indeed,

as possibly to suggest that transformation is a trivial

term, which it is infinitely far from being. The notion of

transformation has its root in the power we have, when

given any two objects of thought, to associate either of

them with the other. If a and a' be two such objects, we

can, in thought, associate: (i) a with a!{a—> a')\ or,

conversely, (2) a' with a(a<— a'); or (3) each with the

other (a * >
a'). If we do (1), we say we have trans-
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formed (or converted) a into a' and that a' is the transform
of a; if we do (2), we transform a' into a, which is then

the transform of a'; if we do (3), we transform each into

the other and each is the other's transform.

Let us take another step : suppose C is a class composed
of a, b, c, and that C is a class composed of a', b'

,
c' . We

may transform in the manner,—according to the law,
—

shown in the table (1): {a —* a'), (b
—>

b'), (c
—> c'); or by

the law (2): (a -^ a'), ^ —* c ')i (c
—
>b'); or by the law

(3): {a
—> £'), (£

—> a'), (c—><:'); or by the law (4):

(#
—> &'), (b

—» c')> (c
~~* #')> or by tne law (5) : (a

—>
<:')>

(i -> «o» fr -* &') ;
or by the law (6) : ->

c')> (* -» C),

{c
—> a')- ^n each case we have, we say, transformed the

class C into the class C, and C, we say, is the transform

of C. You see, too, that we could conversely transform

C into C in six corresponding ways—by any one of six

corresponding laws, which we could express by tables as

above. You see, too, that we could transform the classes

C and C each into the other, now by one law, now by
another, as, for example by the law (7): (a < > a'),

(b< >V),{c< >c')\ or by (8): (a< >b'), (b < > a'),

(c < > c'); and so on. Notice that in each of the trans-

formations (1), . . .
, (6), each element of C has only one

transform and that each element of C is a transform;

each of those transformations is a one-to-one transforma-

tion, and has a direction, or sense, namely, from C to C;
not from C to C; observe that in (7) or (8) the transfor-

mation is again one-to-one but runs both ways. In each of

the cases considered, one of the classes is transformed into

the whole of the other, not merely into a part of it. But

such need not be so; we can transform two or more

elements of C into a same one of C or one of C into more

than one of C and thus transform C into a part, or sub-
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class, of C, as by the law (9) : (a
—» a'), (b

—> a'), (c
—» &'),

or into the whole of it, as by the law (10): {a —> a
f

),

(b —> a'), (c —>&')> (c —>c')- You will note that neither

(9) nor (10) is a one-to-one transformation. And by a

little work, or a little play, you will readily discover that

the possibilities of transformation increase or decrease

with the sizes of the classes and vary with other circum-

stances such as whether the classes are of the same size

(containing the same number of elements), whether the

classes have elements in common,—overlap or intersect,

as we say,
—

possibly coincide, and especially whether the

classes are finite (like those we have considered) or

infinite (like the class, for example, of all the integers,

1, 2, 3, . . . and so on endlessly).

Let us think a bit about the effect of such circum-

stances.

Suppose C has more elements than C has; it is plain

that no one-to-one transformation of C into C can cover

the .vhole of C, but it can be covered by transformations

that are not one-to-one.

Suppose a of C is the same as a of C",
—C and C

thus intersecting; then in the above transformations

(1), . . . , (6), C itself contains the transform of one of

its own elements, a being the transform of a in (1) and

(2), of b in (3) and (5) and of c in (4) and (6).

Suppose C and C coincide,—the elements of either

being those of the other,
—an important special case of

intersection; then, you see, each of the transformations

(1), . . . , (8) converts (transforms) the class C into itself.

Next suppose C to be composed of all the integers

I, 2, 3, ... fly ... ; and suppose C to be composed of all

the even integers 2, 4, 6 ...
, 211, . . . ; you notice that C

is a party or subclass, of C; now let us transform C by the
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simple law which requires us to associate, in thought, each

element of C with its double; symbolically expressed the

law is: (i -» 2), (2 -> 4), (3 -> 6), . . .
, (n -> 2n), . . . ;

you observe that the class C is thus transformed into the

class C by a one-to-one transformation; now, C is, as

said, a part of C, so that C has been, you see, transformed,

by a one-to-one transformation, into a £<zr£ of itself; and

that is remarkable, for it can not, as you know, be done

with just any class—it can not, for example, be done with

a class composed of one thing, or two, or three, or a dozen,

or a dozen million. If a class be such that it can be thus

transformed into some part of itself, it is said to be

infinite
—an infinite class. The concept denoted by the

term,
"

infinite class," is one of the most important of our

modern mathematical and philosophical concepts. In

noticing that it is defined by means of transformation,

you get a glimpse of the latter's fundamental importance.

May I here relate a bit of relevant personal experience?

Some years ago a student of philosophy and I undertook

to read together a pioneer work in the mathematical

doctrine of infinity
—the Paradoxien des Unendlichen by

Bernhard Bolzano, mathematician, philosopher and theo-

logian. We came to a passage where Bolzano shows

that the class of points composing a straight line segment
is an infinite class. He does it very simply and very

clearly by showing, about as follows, that the segment

O _
.,

Fig. 20.

can be transformed, in a point-to-point fashion, into a

part of itself. Let y =\x\ use the equation as a law of

transformation converting a point whose distance from
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is x into the point whose distance is y, or %x; the point

O, its distance being zero, is transformed into itself, for

the half of zero is zero; the point I is transformed into the

point |; and the points between and I have for their

transforms the points between and |; nothing, as you
see, could be clearer; yet our plan of joint reading had

to be here abandoned, for my fellow student, prophet of

philosophy, would not follow Bolzano's reasoning and

remained invincible to the bitter end. Can you beat that ?

For a simple example illustrating both the concept of

transformation and that of infinite class geometrically,

consider Fig. 21. We are going to transform the class

composed of the points of segment AD into the subclass

composed of the points of segment A"D" . Let all the

points of AD be joined to P; any such join, say, PB,
contains a point, B' of A'D'; associate B with B'

;
in

this way segment AD is transformed, point for point, into

segment A'D'; next join Q to all the points of A '

B''; any
such join, say, QB', contains a point, B" of A"D";
associate B' with B"; in this way segment A'D' is trans-

formed, point for point, into segment A"D" ;
now observe

that, starting with any point B of AD, the first trans-

formation gives us B' of A'D'
,
and the second leads to

B" of A"D" ; finally, associate each such initial point B
with the final point B"; the result, as you see, is a point-

to-point transformation of the entire segment AD into

one of its parts, the segment A"D"; and so we see, in the

light of the last transformation, that segment AD is an

infinite class of points; the same is, of course, true of any
other segment, however short, for, in the foregoing argu-

ment, AD is any segment you please. In passing, we may
notice also that we can choose Q so that segment A"D"
shall be any part we please of AD, and we have the
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Theorem: that any segment, however long, can be converted,

by a point-to-point transformation, into any one of its parts,

however short.

Before further illustrating the concept of mathematical

transformation, let us ask what we mean by the law of

such a transformation. The answer is pretty evident.

It is that the law of a transformation is any rule, formula,

scheme or device which, given any one of the elements or

objects we are dealing with, determines its transform (or

transforms, if it have more than one). It is, you should

note, a psychological affair, the law being a device for

guiding the transfer of attention from a given object to a

definite other object (or objects). Such a law may be

variously expressed: if the class to be transformed be

small, it is practicable to express the law by tabulation,

as by the foregoing tables (i), (2), . . . , (10); this is theo-

retically possible for any finite class, but is impracticable

if the class, though finite, be very large; to express a law
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of transformation for an infinite class, by tabulation, is

not even theoretically possible, but in such cases we must

use an incomplete table or ordinary speech, as in the

foregoing example where each integer is associated with

(transformed into) its double and as in the example of

Fig. 21 ; or, finally, we must express the law, as in Bol-

zano's example, by means of an equation or system of

equations. Of all methods of expression, the equational

method is the most common, and is usually the most

satisfactory when it is possible, which it is sometimes not.

We have seen that the meaning of mathematical

transformation has its root in the power we have to asso-

ciate any idea or thing with any other, however like or

unlike the former. As this power is fundamental and is

continually exercised by all human beings in every kind of

matter, we find, as we should expect to find, not only

that mathematical transformation pervades mathematical

thinking, but that such transformation is only a refinement

of a process present in all our human thinking: a fact

clearly illustrating the general truth that mathematical

activity, instead of being remote from common life,

merely consists in doing, with a peculiar finesse and

ideality, what all human beings, when they think about

the ordinary affairs of life and the world, are doing in a

fashion relatively rough and crude. An ordinary dic-

tionary, for example, is a good illustration of a kind of

transformation that would be genuinely mathematical

were it more precise; for, by definition, the class of words

is transformed into the class of verbal meanings, and,

conversely, the latter class is transformed into the former;

the transformation runs both ways, but it is not one-to-one,

since a given word commonly has two or more meanings
and to a given meaning may correspond two or more
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words (synonyms). A telephone directory is a similar

example, more nearly mathematical than the other one.

Indeed, you will find, by a little looking about, that such

illustrations abound on every hand. A perfect example of

a genuinely mathematical one-to-one transformation run-

ning both ways is afforded by the vulgar process of counting

the objects of a class, a class of count-words (one, two, . . .)

being transformed, in a certain order, into the class (of

objects to be counted), and conversely.

A moment ago I told you that, when a boy, my second

puny introduction to the concept of mathematical trans-

formation occurred in a dry little chapter (called trans-

formation of coordinates) located near the middle of a

beginners' course in analytical geometry. You will recall

that in a previous lecture of the present course I gave a

very brief introduction to the analytical geometry of the

plane. As you will recall, it was shown how to transform

(in one-to-one fashion) the class of the plane's points into

the class of the real number pairs (x, y), and, conversely,

the latter class into the former; we saw that the former

transformation gives birth to the method of analytical

geometry; and the converse transformation, to the con-

verse method—that of geometric analysis. We may
think of the two transformations as one having two

converse aspects, and, following usage, may speak of the

two methods as one—called analytical geometry. Now
observe carefully that the analytical geometry (of the

plane), instead of merely using transformations among
its processes, actually springs out of—owes its very
existence to—a transformation, that of points into num-
ber pairs and of such pairs into points. Nay, the whole

of analytical geometry viewed (properly) as a method is

simply a vast transformation based upon the one just
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stated. To envisage the matter in a large way, conceive

two immense canvases suspended parallel to each other

each of them bisecting the universe of space. Imagine

yourself comfortably seated between them; fancy that

on the face of one of them are marked and drawn the

points of a plane, its point loci,
—curves and sets thereof

limitless in number and variety,
—and that on the face of

the other canvas are recorded the real number pairs, pair

systems
—

(#, y)-equations and sets thereof, more numer-

ous than the sands of the sea; choose a unit of length

and in the former face a pair of axes. What happens?
You behold the phenomena on either sheet transformed

into those of the other—and this infinitely multitudinous

transformation is the method of plane analytical geometry.
The like is true of analytical geometry of three or more

dimensions. You see that instead of transfomation

being a chapter in analytical geometry, the latter is itself

only a huge chapter in the infinitely more embracing

theory of Transformation.

And now do you ask what transformations are good for?

That is very much like asking what Thinking is good for;

for without transformations, thinking could not go on.

We have just seen that analytical geometry is born of

transformation and does its work thereby; we have seen

that the Olympian concept of Infinity owes its birth to

transformation; we have seen that, except for transforma-

tion, we could not even count the cattle in a field; we have

seen that transformation pervades the practical thinking
of the workaday world; in previous lectures, as you will

recall, we saw that certain simple transformations,—
the inversion transformation and others,

—enable us to

establish divers verifications of the doctrinal functions of

Hilbert, doctrines being thus derived from doctrines and
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compared with one another, element for element and

proposition for proposition, giving rise in this way to

what might be appropriately called the Comparative

Anatomy of Doctrines. These examples of the use of

transformation, though they must suffice for the present,

are only as pebbles picked up at random on the ocean

beach.
" The hour contracts

"
and we have yet to speak of

The Connection of the Concept of Transformation with

that of Relation and that of Function.—We shall see that

the three concepts are very similar—but three aspects

indeed of one and the same thing seen from different points

of view. Let us, in the first place, try to understand

clearly what a relation is. This is necessary because,

though countless hosts of relations are present everywhere
in the world and are used by everybody all the time, even

in their dreams, yet the scientific conception of what a

relation precisely is, is not familiar; even the great major-

ity of logicians and mathematicians are not familiar with

it; it seems a little strange that such is the fact, for the

logical theory of relations,—the logical theory having the

nature and the properties of relations as subject-matter,
—

goes back to the logical work of J. H. Lambert (1728-77),

—mathematician, physicist, astronomer,—and especially

to that of Augustus DeMorgan (1806-78),
—mathema-

tician, logician and wit; was advanced by important
researches of our fellow countryman, the late C. S. Peirce,

who called it the logic of relatives; and has now reached

a high state of development in the Principia of Whitehead

and Russell, who have made the theory of abstract rela-

tions supreme in logical doctrine. This great theory
—

fundamental alike in philosophy and in mathematics—
has not yet become in most universities a subject of
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regular instruction, but it is, I believe, destined by its

intrinsic importance to win such recognition.

Relations, as we are presently to see, are determined

by propositional functions of two or more variables, and

are accordingly described as dyadic, triadic (3-cornered),

tetradic (4-cornered), . . . , n-adic (w-cornered), and so

on. The most important ones are the dyadic relations.

What is meant by a dyadic relation? I will answer

as clearly and simply as I can and will do so by the help

of two familiar examples. Consider the two propositional

functions: (1) 2x J
riy

— 1 =0; (2) x is a parent of y.

Each of these is said to determine a dyadic relation.

What is the relation determined by (1)? We see that

(1) will be satisfied if, for example, we replace x by 1 and

y Dv —
3 ana< so we saY tn at the ordered pair (1,

—
|) is a

couple of verifiers of (1); another such couple is (0, §);

there are, you see, infinitely many such couples; the set,

or class, of all the couples of verifiers of (1) is said to be

the relation determined by (1). Each of the couples may
be called an element or constituent of the relation. What
is the relation determined by (2) ? Suppose John Smith is

the father of Bill Smith, then the ordered pair (John

Smith, Bill Smith) is a couple of verifiers of (2); the class

of all such verifying couples is the relation determined by

(2). In the light of these simple illustrations you will

rightly understand that a dyadic relation is the class of

all the couples (x, y) that verify (satisfy) some proposi-

tional function F(x, y) containing two (and only two)

variables, say, x and y.

It is necessary to note carefully the following distinc-

tion in usage: in ordinary function-theory
—

say, in algebra

or in analytical geometry
—it makes no essential difference

whether the #-terms in a propositional function come first
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or the y-terms first; that is, for example, no essential

difference between (i) 2#+3;y
— I =0, or x=\(l — 3y)

and (i') 3y+2^ — 1=0 or y = f(i
—

2x); (i) and (Y). for

example, represent the same straight line; but in relation-

theory it is essential to take account of the order in which

the variables occur; the relations determined respectively

by (i) and (i') are not the same; for example, the former

relation contains the couple (0, \) but the latter does not;

on the other hand, the latter contains the couple (|,0 )

but the former does not; if we denote the former relation

by R and the latter one by R', we then write 0i?f to say
that

"
has the relation R to |

"
and write f R'O to say

"
£

has the relation R r

to "; but we have neither 0R'^ nor

IRO, for both of these propositions are false; in general,

as you see, if we have xiRyi, then we have y\R'x\, and

conversely, but not yiRxi nor x\R'y\ (except in very

special cases); here we encounter the important notion

of the converse of a relation—two relations, R and R',

are each the other's converse if they are such that, when-

ever one of them holds between the terms of a couple

(/i, fy), the other holds between the terms of the inverse

couple (t2, ti); thus the relations determined by the propo-
sitional functions (i) and (V) are each the other's converse.

It is sufficiently obvious that every relation has a converse.

(In the case of some important relations,
—such as equal-

ity, for example, or similarity or diversity or identity,
—

the relation and its converse are the same.) The con-

verse of the relation determined by (2) is that determined

by the propositional function (2'), y is a child of x, so that,

if the couple (John Jones, Mary Jones) be a constituent of

the former relation, the couple (Mary J, John J) is a con-

stituent of the latter.

You are now in a fairly good position to see that the
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concept of mathematical transformation, the concept of

relation and the (ordinary) concept of mathematical

function are, as I have said, virtually but three aspects

of one and the same thing seen from different points of

view. For look again at the propositional functions:

(i) #=§(i— 33;), (i') y=|(i— 2x). Observe that (i) is:

(a) a law of transformation by which a class of numbers y
is converted into a class of numbers x; (b) a determiner

of a relation, namely, that composed of the couples

(x, y) verifying (i); (c) a determiner of x as a function

(in ordinary sense) of y, namely, the function §(i
—

3y).

Observe that (i') determines at once the converse trans-

formation, the converse relation and the converse,
—com-

monly called the inverse,
—

function. Observe that if

#1 and yi verify (i), then the pair {x\, y\) is: (d) composed
of a thing transformed and its transform; (e) a pair of

values of the function; (/) a couple, or constituent, of the

relation. Of course, the like is true of (i').

Look again at the propositional functions: (2) x is a

parent of y; (2') y is a child of x. You see that (2) is at

once: (g) the determiner, or law, of a transformation, asso-

ciating any given x (a parent) with some y or y's (child or

children of the x), the y or y's being the x's transform or

transforms; (h) the determiner of x as a function (in

ordinary sense) of y, for to any value of y (some child)

there corresponds a value or values of a; (some parents);

(i) the determiner of a relation, composed of the couples
of verifiers of (2). It is plain that (2') yields the respect-

ive converses of the foregoing transformation, function

and relation.

The connections shown by these particular examples
hold in general: given a transformation, you have a

function and a relation; given a function, you have a
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relation and a transformation; given a relation, you have

a transformation and a function: one thing
—three aspects;

and the fact is exceedingly interesting and weighty.

Impressed by the immeasurable scope of the ordinary
function concept, some thinkers have said, with a striking

approximation to truth, that mathematics and indeed

the whole of science is just the study of functions. It

can, you see, be said, with the same approximation to

truth, that the whole of science, including mathematics,
consists in the study of transformations or in the study
of relations.

Time is lacking for extensive pursuit of the matter

here. Before leaving it, however, I should like to sig-

nalize the parallelism in another way. A relation R
has what is called a domain,—-the class of all the terms

such that each of them has the relation to something or

other,
—and also a codomain—the class of all the terms

such that, given any one of them, something has the

relation to it; a transformation T proceeds from a class,
—

that of the things transformed,—to a class—that of the

transforms; the independent variable (or argument, as

it is called) of a junction F has a range,
—the class of values

the argument may take,
—and the function has a range,

—
the class of values the function may take. Note the

matching of the foregoing things; it is easiest to do it by
an example. Consider the simple propositional function:

x = 2y. It determines a relation R, a transformation T
and a function F (i.e., x, or iy). Let K denote the class

of real numbers and K' the class of their doubles. You
see that K is at once the codomain of R, the class trans-

formed by T, and the range of F's argument y; also that

K' is at once the domain of R, the class of transforms

(under T), and the range of F. In this particular example
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we happen to have identity, or coincidence, of domain

and codomain, of transform class and transformed class,

of function-range and argument-range; but this is, in gen-

eral, not so; and I recommend that you do the matching

by some other propositional function, say, x is the husband

of y, or x is the specific gravity of y, or the integer x is

greater than the integer y, or x is ethically so sublime that

he should not allow y to make a glass of beer or
"
turn

water into wine."

I can not refrain from tarrying here long enough to

illustrate, by just one example, the now evident fact that

any problem, process or operation having to do with

(ordinary) functions is a problem, process or operation

having to do with relations or with transformations, and

conversely. The example is as follows: If Ri and R2

be two relations such that it is significant (true or false

and not merely nonsensical) to say that Ri's codomain

and i^'s domain intersect, then there is a relation R'—
called the relative product of R\ by R2-—such that, if

xR\y and yR2Z, then xR'z\ respecting functions the corre-

sponding fact is this—if F\ and F2 be two functions such

that it is significant to say that the range of F\s argument
intersects the range of F2, then there is a function F'—
which might be called the functional product of F\ by F2—
such that, if x = Fi(y) and y=F2 (z), then x=F'(z);

finally, as to transformations, the corresponding fact is

this—if T\ and T2 be two transformations such that it is

significant to say that the class of transforms (under T\)

and the class of things transformed by T2 intersect,

then there is a transformation ^'—called the product of

T\ by T2—such that, if T\ converts x into y and T2

converts y into z, then T' converts x into z. I hope that

what I have now said is sufficient to make clear the exceed-
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ingly important fact that the meanings of the great terms
—transformation, relation and function (in ordinary

sense)
—are essentially identical.

The Rhetoric of Mathematics.—Before closing this lec-

ture I wish to say something about the psychology of

the mathematician's use of the word transformation and

in connection therewith to speak briefly of what may be

called the rhetoric of mathematics, a subject worthy of

much fuller treatment than we have time to give it here.

Are mathematicians rhetoricians? Rhetorician? "That

is, of all things
"—the mathematician will say

—"
exactly

what I most certainly am not." And he should not be

harshly blamed for disowning the character; for, by

empty-headed advocates of good causes and by full-

headed advocates of bad ones, the art of rhetoric has

been so much abused in the world that
"
rhetorician

"

has come to be, oftener than not, a term of reproach.

Nevertheless Rhetoric is a perfectly good name for the

greatest of all the arts—the art of expression by speech.
"
Thought," said Henri Poincare,

"
is only a flash of light

between two eternities of darkness, but thought is all

there is." How much poorer we should be, had the great

thinker not expressed this thought, so beautiful and so

poignant, all will know who have worthily meditated upon
life and the world. Thought unexpressed is thought con-

cealed, and concealed thought
—

light hid under a bushel—
fades and perishes with the thinker. Expressed, how-

ever, it lives and grows, engendering its kind, adding its

flame to the flame of other thought, and so that radiance

which is
"

all there is
"

increases and tends to abide: it is

expression, and especially expression in speech,
—

expression

by the art of rhetoric,
—that gives increase and perpetuity

of light to the narrow vale between the dark eternities.
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And, now, rightly using the term
"
rhetoric

"
to

denote the art of expression by speech, my thesis is that

mathematicians are all of them devoted rhetoricians and

the best of them masters of the art. The thesis is not

difficult to maintain. For what does the art demand ?

What are the first qualities of Style? Clarity? Energy?
Order? Unity? Convincingness? Restraint? Beauty?
In respect to these things no literature surpasses the

literature of mathematics. It may not indeed be easy
to understand, for the understanding of it requires a fair

measure of mind,—imagination, especially, and logical

sense,
—but the difficulty inheres in the subject and not

in the manner of handling it, for the latter is clear—
clear in its definitions, clear in its enunciations, clear in

its demonstrations; its energy may not be easy to feel,

for the feeling of it requires a certain order of sensibility,

but energy is always present in a high degree
—indeed

the whole vast symbolism of mathematics, invented with

a view to the effective use of intellectual energy, is charged
therewith beyond the measure of common words; its

order may not be easy to appreciate, for it is the order of

logic, beginning with principles and pursuing their

destined consequences under the subtle rule of fate; its

unity may not be easy to grasp, for it is the unity of a

whole owing its integrity to the inner bond of implication;
its convincingness may not be easy to sense for it is disin-

terested, dispassionate, purely intellectual, ideal; its

restraint is the restraint of direct achievement by the

simplest means; and its—Beauty? Its beauty is two-

fold: the exquisite austere beauty of sheer form; and a

unique kind of dictional beauty, due to the union, in mathe-

matical nomenclature, of two qualities not elsewhere

united. I mean a certain literary quality, not essential
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to mathematics as such, and a certain perfection of logical

quality which neither
"
the literature of power

"
nor

(outside of mathematics)
"
the literature of knowledge

"

attains. Pray do not fear that, in saying this, I am

speaking as a partisan. Why should I? Mathematics

and literature are, both of them, ineffably precious. I am

merely endeavoring to state an interesting fact. And if

the meaning and the truth of what I have said respecting

mathematical diction be not yet sufficiently evident to

you, they will become so if, when you have the oppor-

tunity, you will examine the matter attentively. It

would be sufficient to examine fifty or a hundred represent-

ative mathematical terms, such, for example, as the fol-

lowing, taken quite at random from a vast multitude:

Real — ideal— imaginary
— transcendental — elliptic

—
parabolic

—
hyperbolic

— value — range
— field — do-

main — harmonic — anharmonic — symmetric
—

asym-
metric— golden section — degrees of freedom— determi-

nation—necessary
— sufficient— discriminant— determi-

nant — variable — constant — invariant — covariant —
calculus — congruent

—
divergent

—
oscillating

— max-

imal — minimal— sheaf (of lines)
—

pencil (of planes)
—

family (of curves)
— cluster (of spheres)

—
asympotic con-

tact or approach
—

point of osculation—conjugate (ele-

ments or figures or forms)
—interval—neighborhood

—
correlation — dependent

—
independent

— closed — open— boundary— inside— outside— on— slope
— continu-

ity
— discreteness — finite — infinite — infinitesimal —

limit — chance -— law. The literary significance of such

representative terms—the wealth and variety of their

general meanings, the warmth of some of them, their

colors, the imageries awakened by them, the associations

they carry
—all that is evident. In addition to that, each
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of them denotes, as you may ascertain, a sharply defined

mathematical concept, which in every instance is due to

selecting and refining some feature or aspect of the term's

general meaning. We have, then, as you see, in each of

the terms two distinct qualities
—the literary quality of

its general meaning and the logical quality of perfect

precision of specific meaning; but that is not all; not

only are the two qualities present in the terms, but they
are connected in them—they are there joined in a spiritual

union not to be found beyond the borders of mathematical

speech.

I had not intended to speak at so great length of

mathematical rhetoric and can offer no plea in mitigation

except the fascination of the theme and a growing sense of

its importance. I must now hasten to say in connection

therewith, what I have so long delayed saying with

respect to the psychology of the mathematician's use of

the word
"
transformation."

Functions, propositional functions, doctrinal functions,

propositions, classes, points and point configurations,

numbers and systems thereof—mathematical entities in

general, simple or complex, elemental or composite,
—

are,

all of them, stable things; immobile and immutable; they
neither come nor go; they are not born and they do not

perish; they have neither origin nor destiny, neither past
nor future; they are timeless—inhabitants of eternity;

they are: the world of mathematical entities is a static

world; it owes its unity and integrity to the presence
within it of an infinite system of interlocking relations;

and those mathematical relations, too, like the entities

constituting them and related by them, are static. And,

now, what term do mathematicians employ to denote these

static things ? They employ, as we have seen, the dynamic
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term Transformation—as if they fancied themselves to be

dealing with temporal things, with actual vicissitudes, with

transmutations, with the changeful phenomena of the

fluctuant world of sense. Why? Partly, no doubt,

because they enjoy the illusion, for it stimulates their

minds, enveloping the train of their abstract thought in

a beautiful mist of sensuous imagery, and does so without

diverting it from its true course. But is the illusion

really an illusion? In a sense it is—in the sense indicated;

but in a deeper sense it is not. For in dealing with the

static world of immobile, unchanging, eternal things,
—the

world of concepts,
—we are in fact dealing with the

dynamic world of mobile, changing, temporal things,
—

the streaming world of sense,
—in the only way in which

the latter can be dealt with by logical thought. What is

that way? Thought arrests the chaotic stream and gives

it order—arrests it, I mean, and gives it order, in the

sense of carving and shaping its confused and formless

content into permanent kinds, classes, concepts
—

unchang-

ing, immobile conceptual entities constituting a static

world. For Thought this world of static elements and

static relations represents, under the aspect of eternity,

the temporal elements and temporal transformations of

the dynamic world of Sense. And so we have a kind of

provisional answer to our question: mathematicians dis-

course in dynamic terms about static things because they
are constrained to think in static terms when they think

about dynamic things. The real problem, however, is not

thus solved—it is merely pointed at; for what is the secret

of the mentioned constraint and the consequent compro-
mise ? I can hardly state the problem adequately, much less

am I able to solve it; it is a problem for you and the future
—a momentous problem for science and for philosophy.
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It is evident that the nut to be cracked, or one of the

nuts, is Time. We have seen that in the world of logic

things and their relations are timeless, they are—all are

present at once; but the things of the other world and their

transformations are temporal, they are not all present

at once, but occur in temporal order—each thing becomes

its own successor and, in so becoming, ceases to be, so

that there is a Past (which is empty) and a Future (never

filled)
—

only a mobile Now, sole field and vehicle of change
and transformation. How can either of these sharply

contrasted worlds represent the other—the things that

are, standing for the things that happen, the permanent
for the changeful, rest for motion, relations for trans-

formations, the beginningless and everlasting for the

momentary children of birth and decay
—the timeless for

the temporal? It is evident, as said before, that one of

the troublesome factors is Time. In endeavoring to

manage this factor, science has tried two and only two

ways—the way of importation and the way of suppression.

We are going to see what they are.

The former is the way of Newton, the way of his

Fluxions and Fluents. From the objective dynamic
world of sense and physics time is imported into the sub-

jective static world of conception and logic
—it is smuggled

in with motion: points are not immobile, they move;
lines and curves do not really exist,

—
they are not unbe-

gotten inhabitants of eternity,
—

they are engendered in

time by motion of points; the same is held respecting

surfaces, which are but the paths of moving lines and

curves; and respecting solids, produced by moving suf-

faces; x, y and z are viewed as varying actually, they

grow, their increments are fluents; and the static world is

invaded by velocities and accelerations. The Newtonian



176 MATHEMATICAL PHILOSOPHY

method of dealing with the problem,
—

dynamicising
the static world,

—
flooding the realm of eternal things

with the waters of time,—has had a great vogue, has

produced inestimable results and is still dominant; but

it is not ultimately satisfactory; for Geftihl ist alles, and

we can not rid ourselves of the feeling that points do not

move, that numbers do not change, that relations are not

transmutations, and that, in general, logical and mathe-

matical entities are immutable.

And so, in the recent literature of science are to be

found increasing tokens of dissatisfaction and reaction.

The troublesome factor of Time is to be suppressed;

instead of dynamicising the static world of conception

and logic, we are to staticise the dynamic world of sensa-

tion and physics. I have alluded to tokens. The atmos-

phere of present-day
"

relativity
"

discussion is charged
with them. Let me direct your attention to a striking

one. I refer to Minkowski's famous interpretation of

what is known as the Lorentz transformation. My pres-

ent concern is with a single feature of the interpretation.

It may be set in light as follows. Think of a
"
substan-

tial
"

particle p of our physical world; we are accustomed

to saying that, at a time-instant (t), p is at a space-point

(x, y, z); that, at instant (*')> p is at the point (V, y', z');

and so on; thus, to give account of p we must give both

its when and its where—its t and its x, y, and z; we have

thus a tetrad (x,y, z, t); now let us, says Minkowski, view

the matter in another way; let us regard this tetrad as

one thing and name it Weltpunkt
—

world-point; such a

world-point has four coordinates, x, y, z, t, and the

world constituted by such points is a 4-dimensional

world; the points of this world—of which there are 00 4—
all exist at once, they coexist; the fluxion called time is
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abolished; motion, as a change of place during a flow of

time, is gone; in the new world, where (if the term be used)

has a new meaning
—it has absorbed both the old where

and the old when. Where is the particle p\ Where,
that is, in the new world ? At the point (x, y, z, t). Where
is the particle p'\ At (#', y

r

, z', t'). The particles p and

p' are never the same; there are relations, but no trans-

formations; no history in ordinary sense—no past
—no

future; child, youth, man coexist as phases of one individ-

ual; the same is true of morning, noon, night and so on:

all is static—as a
"
painted ship on a painted ocean."

You see what has happened here and how. By sup-

pressing the fluxional character of time along with its

implicates,
—motion, transformation, change,

—and by

regarding time as simply a cosmic dimension to be joined
with the familiar dimensions of space, the Dynamics of

our spatially 3-dimensional world has been made to

appear as a Statics of a 4-dimensional world. I need not

say that this way of handling time, however beautiful

and helpful, is, like Newton's way (of which it is the

antithesis), not ultimately satisfactory. I should add that

Minkowski was far from regarding it as a final solution.

And so science and philosophy are still confronted and

to-day confronted afresh by the age-old problem of Time.

No one has been able to tell satisfactorily what is meant,
or should be meant, by when. From time immemorial,
human beings have talked of

"
instants," but no one has

discovered what an instant is. It is important to observe

that the time problem is not solitary; it is but one of a

class of kindred problems or is perhaps an aspect or a

fragment of a larger problem embracing them all. For

what is meant, or should be meant, by where? By herel

By there} By a point? And we talk of matter as of time
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and space. But what is an atom or an electron? And
what is ether? No one has been able to answer these and

like questions satisfactorily. It is fair to ask what sort

of answer would be satisfactory. By help of an analogy
this question can, it appears, be answered approximately
with a good deal of confidence. Respecting the nature of

Number there are questions analogous to the foregoing

questions respecting Time, Space, Matter. As we ask

for the meanings of—instant—when—now—then—point— where — here — there — electron — atom — ether —
and the like, so in the domain of Number we ask such

questions as these: What is a cardinal number? A posi-

tive integer? A negative integer? A rational number?

An irrational number? A real number? A complex
number? And so on. Now, in recent years, by workers

in the logical foundations of mathematics, especially by
the researches of Peano, Frege, Russell and Whitehead,
these latter questions

—
analogues of the former kind—

have at length been answered with a pretty high degree
of satisfaction. Answered how? Answered in terms of a

small number of logical data (or concepts or constants)

more fundamental and more embracing than the terms

defined: answered, that is, in terms of such familiar

logical notions as class, relation, symmetric relation, asym-
metric relation, serial relation, and a few other varieties.

In this procedure in the Number field we have probably
a model of what to seek in the other fields and a clue to it:

the ultimate constituents of time, space and matter are

to be conceived in terms of logical data. When this great

task is accomplished, will the results be entirely satis-

factory? I suspect not; the problem of defining the

various kinds of number in terms of logical constants has,

as I have said, been pretty satisfactorily solved; but,
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unless I am mistaken, there remains a psychological prob-

lem,
—an immense and difficult one,

—the task of discov-

ering the connections of the number concepts with the

data of sensation and sense-perception. Is a class, for

example, or a relation, a percept or a concept or both?

So, too, respecting time, space and matter, if the problem
of defining their elements in logical terms were solved,

there might still remain to be solved a psychological prob-

lem; or it may be that the solutions of the two problems
will be advanced simultaneously. Duration, for example,
seems to be a datum of sense, and so, too, as William

James long ago pointed out, voluminousness, or bulk,

appears to be a datum of sense; it may be that an instant

and time itself will be logically and psychologically defined

in terms of sense-given durations; and that a point and

space itself will reach similar definition in terms of sense-

given bulks. And similarly for similar things.

You are to be congratulated on the date of your

generation when these kindred problems, or these kindred

phases of the one great problem constituted by them,
are pressing for solution; for the problem is indeed

immense, embracing, not merely the now exciting question

of
"

relativity," but—what is infinitely more—the nature

/of the ultimate data and ultimate structure of Knowledge.
Let me, in closing, refer you to some of the works of some

of the pioneers
—to Russell's Scientific Method in Philoso-

phy,
1 to his Analysis of Mind, to certain parts of White-

head's Organization of Knowledge,
2 to his Concept of

Nature, and especially to his truly momentous book,

The Principles of Natural Knowledge. Regarding the last

'Reviewed by C. J. Keyser in The Bulletin of the American Mathe-
matical Society.

3 Reviewed by C. J. Keyser in Science.
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it must be said that it contains obscure passages. The

obscurity is to be ascribed partly to the very great dif-

ficulties of the subject and partly to the new ideas throng-

ing the author's mind and impatiently pressing for utter-

ance. The ideas will gradually win their way to greater

clarity of exposition by Whitehead himself or by his

collaborators and successors in the work; for his book

both makes and marks the beginning of an epoch, and,

when it perishes, it will
"
perish by supersession." In

the same connection, you should examine Professor

Eddington's Space, Time, and Gravitation.



LECTURE XI

Invariance

THE AGES-OLD PROBLEM OF PERMANENCE AND CHANGE
THE QUEST OF WHAT ABIDES IN A FLUCTUANT WORLD
THE BINDING THREAD OF HUMAN HISTORY THE TIE

OF COMRADESHIP AMONG THE ENTERPRISES OF THE

HUMAN SPIRIT NEED OF CRITICAL HISTORY OF

THOUGHT.

Invariance is, in all strictness, a subject of universal

interest: it penetrates, as we shall see, not only all the

sciences and all the arts, but also the common life of

mankind everywhere and always. And no wonder. For

the most obvious, the most embracing, the most poignant
and the most tragic fact in the pageant we call the world

is the fact of Change; in the world of sights and sounds,

in the world of sense, nothing abides.
" The life of man,"

said the Spirit of the Ocean,
"
passes by like a galloping

horse, changing at every turn, at every hour." And so

the sovereign fact in the life of reason is the quest of

things Eternal. The mathematical theory of transforma-

tions,
—dealt with in the preceding lecture,

—is the logic

of change; the mathematical theory of invariance,
—the

principal theme of the present hour,
—is the logic of eternal

things, the logic of permanence. The latter theory, like

the former, with which it has the closest connections, is

immense, manifold, technical and intricate; extensive

181
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knowledge of it can be gained only by pursuing it through

many months with the tireless energy of a sleuth-hound.

It is my aim to give you just a little introduction to the

matter, a clue to it, a good grasp of its central idea, a very

slight acquaintance with its methods, and a fair sense of

its general significance and its bearings as a prototype
for that quest of abiding reality which has dominated all

the great truth-seeking activities of man and has served

to unite them,—religion, philosophy, art, science,
—as but

different aspects of one supreme enterprise: emancipation
from the tyranny of change

—
discovery of a stable world—

a haven of refuge from the raging tempests of the sea.

Let us begin as we began in the case of transformation
—as simply as we can; indeed, to begin aright we must

return and begin our new study just where we began to

study the meaning of mathematical transformation; for

we may say at once that, in general sense, an invariant,

as the word indicates, is to signify something which, when
other things connected with it suffer change, remains

itself unchanged; and now change, as we have seen, is

represented in logic (in mathematics) by means of relations

which, as we have also seen, mathematicians call trans-

formations; so that the mathematical term
"
invariant

"

or
"
invariance

"
would be unintelligible or meaningless

save for its connection with the mathematical notion of

transformation.

We will accordingly suppose, as in the preceding lec-

ture, that a and a' denote two objects of thought and that

by a transformation—which we may denote by T—a has

been transformed, or converted, into a'
y {a

—> a'). Now,
an object of thought has what we call properties, some (at

least one) of which are peculiar to it and some belong to

one or more other objects as well. Let us suppose that a
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has the peculiar properties p\, p2, . • . ; that a! has the

peculiar properties pi, p2, . . .
',
and that the properties

iri, 7T2, . . . belong to both a and a'', we say that the proper-

ties 7ri, 7T2, . . ., since they belong both to a and to its

transform a' , are invariant under T,
—have suffered no

change,
—are preserved; and that pi, p2 y . . •

, as they

belong to a but not to its transform, are variant under T,
—

properties lost under the transformation,
—not carried

over by it. It is plain that under the converse (commonly
called the inverse) transformation V, (a <— a'), pi, p2

f

, . . .

are variant while in, 7T2, . . . are invariant as before. It is

evident that, if a property be invariant under some

transformation, it will be invariant under the converse

transformation. I am aware that what I have now said

is so general, abstract and simple as to make the concept
dealt with seem unreal—tasteless, pallid, thin, intangible.

But the seeming is seeming only. The idea in question,

far from being detached from reality, literally pervades it

—
pervades our thinking about it and our handling of it.

How may we convince ourselves that this is true? We
may do it by looking about us a little and by a little reflec-

tion—by considering a few specific concrete examples
and observing that such examples abound in countless

multitudes on every hand.

For a few examples that everyone can understand,

consider the following. Let / denote the class of familiar

integers: I, 2, 3, . . . ; and suppose these to be trans-

formed in accordance with the law: (1) y = 2x. The trans-

forms constitute the class of even integers: 2, 4, 6, ... .

We note that integers are converted into integers, and so

the property of being an integer is preserved
—

it is an

invariant under transformation (1); the value of an

integer, however, is a property not preserved
—it is
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doubled; neither is the product of integers preserved, for,

if #1 and #2 be any two numbers in /, and their transforms

be yi and
;y>2,

then the product ;via;2 is transformed into

yi}>2> which is not #1*2 but is 4JV1X2; sums and differences

are also variant, the transforms of #i+#2 and #i— #2

being respectively 2(^1+^2) and 2(^1—^2); but ratios

yi 2xt xi
are invariant tor — =— =—

. JNow suppose the law or

y2 1x2 X2

transformation to be: (2) y—\x\ then neither the prop-

erty of being an integer, nor value, nor product nor sum
nor difference is invariant, but ratio is; so, too, is the

property of being a number, as was also the case under (1),

though not there mentioned. This latter property is

again invariant under the transformation: (3) y=x+ i;

but ratio is not. Is the property of being a number invari-

ant under every transformation of P. No, it is not

invariant under the transformation converting the inte-

gers of / into an endless succession of days, di, d.2 ds, . . .

in accord with the law: (4) n —» dn ; but even under

(4) we have an interesting invariant,
—

namely, the prop-

erty of nextness,
—for the transform of an integer next

after a given one is itself next after the given one's trans-

form. Note that under none of the transformations

(1), (2), (3) is the class / invariant as a whole, being

converted by (1) and (3) into a part of itself and by (2)

into a class including it and another class besides—a class

of fractions. But / as a whole is invariant under many
transformations—for example, under the reciprocal one-

to-one transformation: (5) 1 < 2, 3 < >
4, . . . .

For a different sort of example, consider the following.

Let D denote something very strong and solid, say a

diamond at a certain time and place; suppose it removed

gently to another place, and now denote it by D'; D and D'
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are two objects of thought, for they are evidently not the

same in all respects. Let us now suppose D transformed

into D' y (D —» D'), by a transformation T—l do not mean

transmutation, I mean association of D with D f

,
for that,

as we have seen, is at bottom what a mathematical

transformation is, that and nothing more. Among the

variant properties of D under T are certainly time and

place, and possibly weight and distance from the Moon.

What, if any, are the invariants? Subject to some correc-

tion by the refinements of modern physics, it is yet instruc-

tive to answer that among the invariant properties of

D under T are shape, size, mass, degree of hardness,

capacity for light absorption, and so on. Some of these

will, of course, not be invariant under transformation of

D into D', where D' denotes D crushed.

For an example drawn from a very different field, let

P denote the personality of John Smith at the age of 15,

P' his personality at the age of 30, and let someone, say

Smith himself at the age of 45, transform P into P\
(P —» P'), by a transformation T—again I do not mean

transmutation, the mysterious process of a boy's becom-

ing a man. The variant properties of P under T are

obviously many—years, for example, wisdom, folly, inter-

ests, hope, and so on; among invariants are the properties

of being a son, of being a man, of being a human, of being

what Count Korzybski calls a time-binder, of being a

visible object; another one—of extraordinary interest—
is the property called personal identity. This last prop-

erty, which runs through a long sequence of personalities,

exemplifies an immense class of important invariants that

no one has been able to formulate precisely though their

existence is manifest: we may call them unformulated

or qualitative invariants. These are not indeed strictly
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mathematical invariants, which are formulated precisely;

yet they evidently belong, like the latter, to the type of

invariantive matter and will more and more approximate
or even attain precision in course of the progress of

analysis and definition.

Let us now have another little dip in the boundless sea

of strictly mathematical invariants. In Lecture IV we
were introduced to the -pole-polar transformation of a

plane with respect to a circle; we saw that it converts a

point (as pole) into a line (as polar), and a line (as polar)

into a point (as pole) ; it is, you see, a one-to-one reciprocal

transformation—a twofold affair composed of a transform-

ation (i) of points into lines and the converse transforma-

tion (2) of lines into points. Let us first think of (1) alone;

we readily detect certain variants and certain invariants

under it; the property of being a point is not preserved,

since the transform of a point is a line; a range of points

loses the range property, since the transform of a range is

a pencil (of lines); distance is lost, since the distance

between two points has for transform the angle between

two lines (the transforms of the points); now, as you

know, a curve has two aspects (called dual aspects), one

as the locus of its points, the other as the envelope of its

(tangent) lines; the property of being a curve is invariant

(preserved), for under (1) the transform of a curve is a

curve; but the locus aspect is lost, its transform being

the envelope aspect; as we saw in Lecture IV, the relation

of order and the relation of congruence are exceedingly

important invariants under (1); by (1) the ordinary

geometry D\ of the plane was transformed into the

geometry D2 of lines and pathopencils; and, as D\ and D2

are the same in respect to form, we see that under (1)

doctrinal form, or logical structure, is invariant. I
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leave to you the analogous consideration of transforma-

tion (2).

Let me suggest that, for a handsome illustration of

invariance, you look again at the inversion transformation,

presented and employed in Lecture V. You will readily

see that the inversion plane, as a whole, and the inversion

circle, are invariants; that a point's property of being a

point and a curve's property of being a curve, as well as

its locus aspect, are invariants; that, on the other hand,

neither the magnitude of distances nor the sense of angles

is invariant, but that angular magnitudes are preserved;

and,—most beautiful of all,
—

if, as is customary, we regard

a straight line as a circle (of infinite radius), then cocircu-

larity of points is an invariant, for, as we saw, the inverse,

or transform, of a circle is a circle.

I hope I shall not be overtaxing your interest if, to the

foregoing list of somewhat random illustrations, I add a

specially chosen one, lying at the heart of Projective

Geometry. Let x denote a real number and suppose it

transformed into x' in accordance with the law:

,
ax+b

cx-\-d
y

note that (1) contains three parameters,
—the three inde-

pendent ratios of the coefficients,
—

say, a/d, b/dy c/d. To
each of these we may give any one of the infinitely many
(00) real values; and thus, as you see, there are 00 3 different

transformations of the form (1); the transform x' of a

given x will, of course, depend upon the particular one of

the transformations we choose to employ. Let us now

imagine that (1) is some definite one of the transforma-

tions; then a given x has a definite transform x'\ let

#1, X2, *3, #4 be any 4 given real numbers and let
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X\' y xo', xz> x± be their respective transforms. Consider

the expression, or function,

(Xi —X2) (X3— #4)

(X2—X2i)(x4—Xi)'

being very important, this function has a special name;
it is called the anharmonic ratio of x\, X2, #3, Xa taken in the

order as written, and may be denoted by the symbol

R{x\X2Xzx±)\ so we may write

n/ N (#1 ~X2)(X3— Xa)
K(XiX2X3Xi ) = —

{X2—Xz)\X±—X\)

Now, the transform of R{x\X2XzXa) obviously is

R(x\X2X2,'xa). How are these two anharmonic ratios

related? To find the answer it is sufficient to replace

xi, X2 y xz, X4! of the transform ratio by their respective

values

ax\-\-b ax2-\-b axz-\-b ax4-\-b

cx\-\-<£ cx2-\-d
>

cxz+d'' cx±-\-<£

and to simplify the result; by doing so, which is easy, you
will find that R{x\X2X^x\) =R(xi'xo'x3'xi). We have here,

as you see, an exceedingly beautiful specimen of mathe-

matical invariance: namely, under each and all of the

threefold infinity of transformations of form (1), each of

them ronverting the entire class of real numbers into

itself, the anharmonic ratio, (R(xiX2XzXa), of any ordered

set of four numbers, remains absolutely unchanged.
The invariant in question, though it here appears as

a function of pure numbers, lies, as I have intimated, at

the heart of Projective Geometry. We may see the

thing in geometric light readily as follows. Suppose Fig.

22 to be in a projective plane; let x be the distance from
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to P; a value of x is thus associated with a point P of

the range L, with a line p of the pencil V, and conversely;

R(xiXoX3Xi) may be called the anharmonic ratio of the 4

corresponding points. Pi, P2, P3> P4, and be denoted by

R(PiP2PzP4), or of the corresponding lines, pi, po, pz, p4,

and be denoted by R(pip 2p3p4)', then, you see, any
tetrad of collinear points or any tetrad of copunctal lines

has an anharmonic ratio.

Fig. 22.

Consider a transformation of form (1) in connection

with Fig. 23; let us associate the values of x with the

points of L and the lines of V, and the corresponding
values of x' with the points of L' and the lines of V '; we

have, you see, thus transformed the points of the range
L into the points of the range L' and also into the lines

of the pencil V '; at the same time we have transformed

the pencil V into the pencil V and also into the range V .

Now let Pi, P 2 , P3, P4 (or pi, p 2 , p3, p4) be any 4 points

(or lines) of L (or V), and let their transforms be

Pi', P>\ P/, Pi' (or p x\ p-/, p/, p,
f

) of V (or PO, then,

owing to the invariance of anharmonic ratios under our

transformation, we have
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R(PlP2P*Pi) =*R(pip2p3p*) =

i?(iYP27YP4 ') =R(pi
,

p2
,

PsW)

Such a transformation is called a projective transforma-

tion and, when it has been applied as above, L and Z/, or

Fig. 23.

V and V, or L and V, or // and V, are said to be pro-

jectly related. Why call the transformation projective?

Because the correspondence set up by it can be set up

by what architects call projection
—as is shown for the

case of L and V in Fig. 24, where Pi, P2 , P3, • • • are

projected from V respectively into Pi', B, J, . . .
, and



INVARIANCE 191

these are then projected from V respectively into

Pi', P2 ', iY, . . . , so that we have finally Pi, P2 , P3 , . . . ,

corresponding respectively to Pi', P2 ', P3', . . . , as re-

quired by the given transformation.

The 00 3
projective transformations of form (1) are

included in a yet larger class of projective transformations

of the plane, which latter are included in a still larger

Fig. 24.

class of projective transformations of (ordinary) space,

and so on for spaces of higher dimensionality. Imagine
two planes it and ir' in ordinary space; let F be some

figure in r\ let be a point in neither plane; the lines

through and the points of F project (as we say) the

latter points into points of 71-' constituting a figure F'.

F and F' have certain properties in common; that is, cer-

tain properties of a figure are invariant under projection.
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Projective Geometry is the study of such properties;

these are all of them expressible in terms of anharmonic

ratios and that is why I said that the invariance of the

anharmonic ratio is at the heart of projective geometry.
The idea of invariance—of permanence in the midst

of change,
—of abiding realities in a fluctuant world,— is

very, very old,
—far older than history,

—as old probably
as the race of man—certainly as old as the dream of

eternal things, of everlasting goods. On this account and

especially because mathematics has always been peculiarly

concerned with eternal things, it seems a bit strange that

the mathematical theory of invariance—the doctrine, I

mean, having invariance consciously for its subject-matter—is a strictly modern theory. Yet such is the case. Why
it is so is a question I shall not here attempt to answer.

It is but a minor one of a large class of very interesting

questions belonging to a great unwritten history
—the

history of the development of intellectual Curiosity,
—

a subject requiring for its treatment philosophical genius
and learning of the highest order. The mathematical

theory of invariance is about as old as American inde-

pendence. Like most other great doctrines, it began,
not in ratiocination, but in an observation, and not in an

observation of a great fact by a small mind but in an

observation of a small fact by a great mind. I allude

to the observation by Lagrange in 1773 of the little fact

that the discriminant of the quadratic expression, or

form, (1) ax2
-\-2bxy-\-cy

2
, remains unchanged when (1) is

transformed by replacing x by x-\-\y. In high school or

college, you learned what the discriminant of (1) is and

what it signifies. May I remind you? It is b2 —ac; and

it means that the roots of the equation (2) ax2
-\-ibxy -\-

cy
2
=0,—the two values of x/y that satisfy (2)

—are equal,
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or real and unequal, or conjugate imaginary, numbers

according as b2 — ac is equal to, or greater than, or less

than zero. Transforming (i) by replacing its x by x:+ Xy,

you will readily find that the transform of (i) is

(V) ax2 +2(a\+b)xy-\-{a\
2 +2b\+c)y2

>
and that the

transform of (2) is the equation (2') ax2
+2(a\-\-b)xy+

{a\
2
+2b\-{-c)y =0. The discriminant of the transform

(i') or (2') is (a\-\-b)
2 — a(a\

2
-\-2b\ Jr c), and this, you see,

reduces to b2 —ac exactly. You will notice that by allow-

ing X to vary in value, we obtain an infinity of trans-

formations—as x-\-2y, x-\-\y, x — \y, x+Vi^y, and so on
—all of them similar in type, and a corresponding infinity

of transforms (V) or (2') of the same expression (1) or

equation (2) ; owing to the invariance of b2 — ac under each

and all of these transformations, we know that, if the

roots of (2) are equal, or real and unequal, or imaginary,
then the same is true of the roots of each one of the

infinitely many transform equations (2'). I have ex-

plained this simple fact,
—small indeed as a mustard seed,—so fully because, as already said, Lagrange's observa-

tion of it was the germ of the now vast and still growing
mathematical theory of invariance. Its early history

owns great names: Gauss who in 1801 showed the dis-

criminant of the ternary quadratic, ax2
-\-by

2 +cz2
-{-

2dxy -\-2exz-\-2fyz, to be invariant under the transforma-

tion replacing x by Jx+By+Cz, y by Dx+Ey -\-Fz and

z by Gx-\-Ily +/z; Boole who in 1841 established, among
other interesting results, the invariance of the discrimi-

nant of expressions involving an arbitrary number of

variables; Cayley who, incited by Boole's beautiful

results, assailed the problem of ascertaining all invariant

functions of the coefficients of an equation of degree 11

and produced in rapid succession his great memoirs on
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Quantics; Sylvester who soon joined Cayley in the field,

brilliantly rivalled his researches there and conceived the

subject more poetically as the Calculus of Forms; Eisen-

stein, Aronhold, Hermite, Clebsch, Gordan and others;

names representing, you see, both Great Britain and the

continent of Europe. The result is a truly colossal

doctrine variously styled the algebra of quantics, the

theory of algebraic invariants and the theory or calculus

of forms—a doctrine which has not yet ceased to grow and

to which American mathematicians have recently made
valuable contributions. But this algebraic theory is by
no means the whole of the mathematical doctrine of

invariance; it is only the oldest and most elaborate part

of it; every division of mathematics has its problem of

invariants; and vital portions of many subjects,
—number

theory, for example, differential equations, various func-

tion theories, all the multifarious branches of geometry,
—

belong to the doctrine in question.

It would be a great mistake to imagine that the interest

of mathematicians in the matter of invariance is peculiar

to them; their method of handling it,
—in the abstract

by logical means,—is indeed peculiar to them; but the

matter itself is not; for a little reflection suffices to show

that search for Constance,—constant quantities, constant

properties, constant relations,
—in our world of ceaseless

change, is just as much the concern of religion, of philos-

ophy, of political science, of education, of art, and of

natural science as it is of mathematics, though each of the

former enterprises has, like mathematics, a method of its

own, and differs from its allies in respect to the type of

invariants it seeks.

Consider natural science, for example. What is it?

For our present purpose, it is sufficiently characterized by
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its conscious aim, and that aim is discovery of those

uniformities in the course of Nature which men of natural

science are wont to call natural laws. What, pray, is a

natural law? A natural law,
—

if, strictly speaking, there

be such a thing outside the conception thereof,
—is

fundamentally nothing more nor less than a constant

connection among inconstant phenomena: it is, in other

words, an invariant relation among variant terms. It is

necessary to notice the sense in which the term
"

rela-

tion
"

is here used. In the preceding lecture, where we

spoke of dyadic relations, it was said that such a relation,

determined by a propositional function F(x, y) y consists

of all the couples (x, y) of verifiers of the function. In

accordance with that view,
—which is the extensional view

of relations,
—the relation determined by the function,

x is the father of y, is the class of all the couples (x, y)

such that the x is some male that begot the y, and all such

couples are regarded as coexisting and thus constituting

the relation once for all even though most fathers and

children are either dead or unborn. There is, however,

another view of relations,
—the intensional view,

—in which

the concept of father is the concept of a constant relation

which does indeed subsist between the terms of such

a couple if and when the latter exists but which would

continue to exist in its full integrity as a relation at an

instant or during an interval when there were neither

fathers nor children. This view makes it possible to

speak, in a
"
natural

"
way, of a relation as being itself

constant while having in the flux of the world a temporal
succession of terms or sets of terms. And this intensional

or intrinsic sense of the term relation is the sense in

which I employ it when I say that a law of nature is simply
an invariant relation among variant terms.
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In this conception of natural law and the consequent

conception of natural science as having for its aim discov-

ery of invariant relations among the things that appear and

disappear in the flowing pageant of the world, there is, I

believe, nothing new except its setting and its manner.

Rankine, for example, in a paper presented before the Glas-

gow Philosophical Society in 1867, said: "One of the chief

objects of mathematical Physics is to ascertain, by the

help of experiment and observation, what physical quan-
tities are conserved" And among invariants thus found

he instances mass, resultant momentum, total energy, and

other things. More embracing are the words of Major
MacMahon in his address to the Mathematical Section

of the British Association in 1901.
"
In any subject of

inquiry there are," he says,
"
certain entities, the mutual

relations of which, under various conditions, it is desirable

to ascertain. A certain combination of these may be

found to have an unalterable value where the entities are

submitted to certain processes or are made the subject

of certain operations. The theory of invariants in its

evident scientific meaning determines these combinations,

elucidates their properties, and expresses results when

possible in terms of them. Many of the general principles

of political science can be expressed by means of invarian-

tive relations connecting the factors which enter as enti-

ties into the special problems. The great principle of

chemical science which asserts that when elementary or

compound bodies combine with one another, the total

weight of the material is unchanged, is another case in

point. Again, in Physics, a given mass of gas under the

operation of varying pressure and temperature has the

well-known invariant, pressure multiplied by volume and

divided by absolute temperature." You doubtless know
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that similar examples might be cited at great length;

and I need hardly say that, if some of those cited by
Rankine and MacMahon may have to be withdrawn in

view of recent physical refinements, the weight and

justice of their main contentions remain unimpaired.

Interest in things that abide,
—interest in stable

values, transcending time and change,
—is as fundamental

and regnant in art as in natural science. It is true that

the invariants which art seeks in its own way to find and

in its own way to disclose or represent are not sharply

defined; like personal identity, they are of the class of

those which a little while ago we described as unformu-

lated or qualitative invariants; they are none the less

genuine invariants, and no defect of their definition can

disguise or dim the fact that, like natural science and like

mathematics, art,
—art in its great moods and proper

character as art,
—

contemplates the world under the

aspect of eternity, aims at what is permanent in the
"

fleeting show," devotes itself to goods that are ever-

lasting. For the fact is manifest in many ways. A
thing of beauty is a joy forever. Who does not know, or

at all events feel, the deep and proper meaning of this

familiar mot? It is not that any phrase or picture or poem
or symphony or statue or temple will escape the doom of

temporal things; nor that the joy they may give you or

me will endure; it is that a certain quality,
—the quality

in virtue of which a thing of beauty is such a thing,
—is

timeless, unbegotten and, though its temporal embodi-

ments must perish, is itself imperishable.
" The purpose

of art," said John LaFarge,
"

is commemoration." In

ceternitatum pingo, said Zeuxis, the Greek painter. One
need not be an artist to understand that, in the words of

Joshua Reynolds,
" The idea of beauty in each species of
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being is perfect, invariable, divine." One need not be a

Plato, to know, as I have elsewhere said,
"
that by a

faculty of imaginative, mystical, idealizing discernment

there is revealed to us, amid the fleeting beauties of Time,
the immobile presence of Eternal beauties, immutable

archetypes and source of the grace and loveliness beheld

in the shifting scenes of the flowing world of sense."

These archetypes,
—

perfect, unbegotten, everlasting,
—

these are the invariants which it is the aim and the

function of art to discern and to represent.

It seems unnecessary to argue here that what has been

said respecting the motivity of natural science and the

like motivity of art is, mutatis mutandis, equally valid in

education, in jurisprudence, in political science, in eco-

nomics, in philosophy, and in religion, for the sufficient

evidence is not far to seek and you have, I trust, an ample
clue.

And so we are led to a grave and impressive thesis—
a thesis regarding the principle which unites all the great

forms of human endeavor. The thesis is that the unifying

principle,—the central binding thread of human history,
—

the tie of comradeship among the spiritual enterprises of

man,—is passion and search for things eternal: the thesis

is that quest of invariance,
—

quest of abiding reality,
—

is

itself the sovereign invariant in the changeful life of reason.

You are students of philosophy
—students of the life of

reason. To you, therefore, with the utmost confidence

I commend the thesis as worthy of your best attention.

As you meditate upon it, there will arise within you the

bright vision of a great and inspiring task—a task that

has not been performed nor even essayed. I mean the

writing of A Critical History of Thought Viewed as the

Quest of Invariance in a Fluctuant World. Taking

Thought in its widest sense, embracing all the cardinal
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enterprises of the human spirit, such a history, if ever it

be written, will have a scope greatly exceeding that of any
extant

"
history of philosophy "; in addition to that and

far more important, it will have, unlike such histories

of philosophy, a natural unity, for it will have a unity
derived from the unity of Thought itself. The history of

Thought in our ever-growing, ever-perishing universe is

the history of human endeavor to answer the question:

What abides? The task of criticism as thus conceived

is indeed immense. What abides? To cbllate and name
and locate and order; to understand, describe and explain;

to compare, judge and evaluate all of the chief responses
that the religions and arts and sciences and philosophies

and speculations of the ages have made to the question
in divers tongues

—these are the things which constitute

and define the obligations of the historian of Thought.
If you be ambitious—but what is ambition? Some
one has conceived it to be a great man's desire to cast his

shadow endlessly down the course of history. I prefer

to regard it as the urge felt by great men to exercise the

power of creation; for this power, the power of creative

love—peculiar to man—is the power which, inheriting

civilization as fruit of dead men's toil, receives it, not

as the beasts receive the natural fruits of earth, but as

spiritual capital to be more and more augmented—with

ever-increasing speed in the course of successive genera-
tions—for the well-being of humankind including pos-

terity. If you be ambitious in that sense, the task I have

tried to signalize is worthy of your mettle—worthy of

whatever genius you may have, of all the learning you can

acquire, of all your talent for devotion and toil. Let me

say finally, as I have already intimated, that the bearings

thereupon of the mathematical theory of invariance are

the bearings of a prototype and guide.



LECTURE XII

The Group Concept

THE NOTION SIMPLY EXEMPLIFIED IN MANY FIELDS IS

"MIND" A GROUP? GROUPS AS INSTRUMENTS FOR

DELIMITING DOCTRINES—CONNECTION OF GROUP WITH

TRANSFORMATION AND INVARIANCE THE IDEA FORE-

SHADOWED IN THE AGES OF SPECULATION THE

PHILOSOPHY OF THE COSMIC YEAR THE IDEA OF

PROGRESS.

You will recall that near the close of the introductory

lecture I gave a partial list of those mathematical terms

which may be rightly regarded as denoting the pillar-

concepts of the science. Among these are function, rela-

tion, transformation, invariance and group. In Lecture X
we saw that the first three denote three aspects of one and

the same thing seen from different points of view, and

this thing,
—whether we call it function or relation or

transformation,
—is sovereign

—the central support not

only of mathematics but of the entire edifice of science

taken in the widest sense. In the closest logical connec-

tion therewith stand the two great concepts of invariance

and group; so that I can hardly overemphasize the impor-
tance of your learning to associate the three notions as

intimately in your thought as they are associated in fact:

Transformation — Invariance — Group. Of transforma-

tion I endeavored to give some account in Lecture X and

200
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of invariance in Lecture XI. I invite your attention

during the present hour to the notion of group. Even

if I were a specialist in group theory,
—which I am not,

—
I could not in one hour give you anything like an extensive

knowledge of it, nor facility in its technique, nor a sense

of its intricacy and proportions as known to its devotees,

the priests of the temple. But the hour should suffice to

start you on the way to acquiring at least a minimum of

what a respectable philosopher should know of this funda-

mental subject; and such a minimum will include: a

clear conception of what the term "group" means;

ability to illustrate it copiously by means of easily under-

stood examples to be found in all the cardinal fields of

interest—number, space, time, motion, relation, play,

work, the world of sense-data and the world of ideas;

a glimpse of its intimate connections with the ideas of

transformation and invariance; an inkling of it both as

subject-matter and as an instrument for the delimitation

and discrimination of doctrines; and discernment of the

concept as vaguely prefigured in philosophic speculation

from remote antiquity down to the present time.

I believe that the best way to secure a firm hold of the

notion of group is to seize upon it first in the abstract

and then, by comparing it with concrete examples,

gradually to win the sense of holding in your grasp a

living thing. In presenting the notion of group in the

abstract, it is convenient to use the term system. This

term has many meanings in mathematics and so at the

outset we must clearly understand the sense in which

the term is to be employed here. The sense is this: as

employed in the definition of group, the term system
means some definite class of things together with some

definite rule, or way, in accordance with which any
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member of the class can be combined with any member
of it (either with itself or any other member). For a

simple example of such a system we may take for the class

the class of ordinary whole numbers and for the rule ofcom-
bination the familiar rule of addition. You should note

that there are three and only three respects in which two

systems can differ : by having different classes, by having
different rules of combination, and by differing in both

of these ways.
The definition of the term "

group
"

is as follows.

Let S denote a system consisting of a class C (whose
members we will denote by a> b, c and so on) and of a rule

of combination (which rule we will denote by the symbol o,

so that by writing, for example, aob, we shall mean the

result of combining b with a). The system S is called a

group if and only if it satisfies the following four conditions :

(a) If a and b are members of C, then aob is a member
of C; that is, aob =c, where c is some member of C.

(b) If a, by c are members of C, then (aob)oc = ao(boc);

that is, combining c with the result of combining b with a

yields the same as combining with a the result of combin-

ing c with b; that is, the rule of combination is asso-

ciative.

(c) The class C contains a member i (called the

identical member or element) such that if a be a member
of C, then aoi = ioa=a; that is, C has a member such

that, if it be combined with any given member, or that

member with it, the result is the given member.

(d) If a be a member of C, then there is a member a'

(called the reciprocal of a) such that aoa' =a'oa =i; that

is, each member of C is matched by a member such that

combining the two gives the identical member.

Other definitions of the term
"
group

"
have been
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proposed and are sometimes used. The definitions are

not all of them equivalent but they all agree that to be a

group a system must satisfy condition (a).

Systems satisfying condition (a) are many of them on

that account so important that in the older literature of

the subject they are called groups, or closed systems, and

are now said to have
"
the group property," even if they

do not satisfy conditions (&), (c) and (d). The propriety

of the term
"
closed system

"
is evident in the fact that a

system satisfying (a) is such that the result of combining

any two of its members is itself a member—a thing in

the system, not out of it.

Various Simple Examples of Groups and of Systems
that Are Not Groups.

—You observe that by the foregoing

definition of group every group is a system; groups, as

we shall see, are infinitely numerous; yet it is true that

relatively few systems are groups or have even the group

property
—so few relatively that, if you select a system at

random, it is highly probable you will thus hit upon one

that is neither a group nor has the group property.

Take, for example, the system S\ whose class C is the

class of integers from I to 10 inclusive and whose rule of

combination is that of ordinary multiplication X; 3 X4 = 12;

12 is not a member of C, and so Si is not closed—it has

not the group property.

Let S2 have for its C the class of all the ordinary

integers, 1, 2, 3, . . . ad infinitum, and let o be X as

before; as the product of any two integers is an integer,

(a) is satisfied—S2 is closed, has the group property;

(b), too, is evidently satisfied, and so is (c), the identity

element being 1 for, if n be any integer, wXi =1 Xn =n\
but (d) is not satisfied—none of the integers (except 1)

composing C has a reciprocal in C—there is, for example,
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no integer n such that 2X«=«X2 = i; and so S2, though
it has the group property, is not a group.

Let S3 be the system consisting of the class C of all the

positive and negative integers including zero and of

addition as the rule of combination; you readily see that

S3 is a group, zero being the identical element, and each

element having its own negative for reciprocal.

A group is said to be finite or infinite according as its

C is a finite or an infinite class and it is said to be Abelian

or non-Abelian according as its rule of combination is or

is not commutative—according, that is, as we have or do

not have aob=boa, where a and b are arbitrary members
of C. You observe that the group S3 is both infinite and

Abelian.

For an example of a group that is finite and Abelian

it is sufficient to take the system S4 whose C is composed
of the four numbers, 1, —I, i, —i, where i is V~^i, and

whose rule of combination is multiplication; you notice

that the identical element is 1, that 1 and — 1 are each

its own reciprocal and that i and —i are each the other's

reciprocal.

Let S5 have the same C as S3 and suppose o to be sub-

traction instead of addition; show that S5 has the group

property but is not a group. Show the like for S fi in

which C is the same as before and o denotes multiplica-

tion. Show that S7 where C is the same as before and o

means the rule of division, has not even the group property.

Consider Sg where C is the class of all the rational

numbers (that is, all the integers and all the fractions

whose terms are integers, it being understood that zero

can not be a denominator) and where o denotes +; you
will readily find that Ss is a group, infinite and Abelian.

Examine the systems obtained by keeping the same C
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and letting o denote subtraction, then multiplication, then

division. Devise a group system where o means division.

If S and S' be two groups having the same rule of

combination and if the class C of S be a proper part of the

class C of S' {i.e., if the members of C are members of

C but some members of C are not in C), then S is said

to be a sub-group of S'. Observe that S3 is a sub-

group of Sg.

Show that S9 is a group if its C is the class of all real

numbers and its o is +; note that Sg is a sub-group of

S9 and hence that S3 is a sub-group of a sub-group of a

group. Is So itself a sub-group? If so, of what group or

groups? Examine the systems derived from S by

altering the rule of combination.

The most difficult thing that teaching has to do is to

give a worthy sense of the meaning and scope of a great

idea. A great idea is always generic and abstract but it

has its living significance in the particular and concrete—
in a countless multitude of differing instances or examples
of it; each of these sheds only a feeble light upon the idea,

leaving the infinite range of its significance in the dark;

whence the necessity of examining and comparing a large

number of widely difFering examples in the hope that many
little lights may constitute by union something like a

worthy illustration; but to present these numerous

examples requires an amount of time and a degree of

patience that are seldom at one's disposal, and so it is

necessary to be content with a selected few. And now
here is the difficulty: if the examples selected be complex
and difficult, they repel; if they be simple and easy, they
are not impressive; in either case, the significance of the

general concept in question remains ungrasped and unap-

preciated. I am going, however, to take the risk—to the
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foregoing illustrations of the group concept I am going
to add a few further ones,

—some of them very simple,

some of them more complex,
—

trusting that the former

may not seem to you too trivial nor the latter too hard.

Every one has seen the pretty phenomenon of a grey

squirrel rapidly rotating a cylindrical wire cage enclosing

it. It may rotate the cage in either of two opposite ways,
senses or directions. Let us think of rotation in only one

of the ways, and let us call any rotation, whether it be

much or little, a turn. Each turn carries a point of the

cage along a circle-arc of some length, short or long.

Denote by R the special turn (through 360 ) that brings

each point of the cage back to its starting place. Let

Sio be the system whose C is the class of all possible

turns and whose o is addition of turns so that aob shall

be the whole turn got by following turn a by turn b.

You see at once that S has the group property for the sum
of any two turns is a turn; it is equally evident that the

associative law—condition (b)
—is satisfied. Note that R

is equivalent to no turn,
—

equivalent to rest,
—

equivalent

to a zero turn, if you please; note that, if a be a turn

greater than R and less than 2R, then a is equivalent to

as excess over R; that, if a be greater than zR and less

than 3R, then a is equivalent to as excess over 2R; and

so on; thus any turn greater than R and not equal to a

multiple of R is equivalent to a turn less than R; let us

regard any turn that is thus greater than R as identical

with its equivalent less than R; we have, then, to con-

sider no turns except R and those less than R—of which

there are infinitely many; you see immediately that, if

be any turn, aoR=Roa—a, which means that condition

(c) is satisfied with R for identical element. Next notice

that for any turn a there is a turn a' such that ooa! —



THE GROUP CONCEPT 207

a'oa=R. Hence Sio is, as you see, a group. Show it

to be Abelian. You will find it instructive to examine

the system derived from Sio by letting C be the class of

all turns (forward or backward).

Perhaps, you will consider the system suggested by the

familiar spectacle of a ladybug or a measuring-worm

moving round the rim or edge of a circular tub; or the

system suggested by motions along the thread of an

endless screw; or that suggested by the turns of the earth

upon its axis; or that suggested by the motions of a planet

in its orbit.

Do such examples give the meaning of the group

concept? Each one gives it somewhat as a water-drop

gives the meaning of ocean, or a burning match the mean-

ing of the sun, or a pebble the meaning of the Rocky
Mountains. Are they, therefore, to be despised? Far

from it. Taken singly, they tell you little; but taken

together, if you allow your imagination to play upon
them, noting their differences, their similitudes, and the

variety of fields they represent, they tell you much.

Let us pursue them further, having a look in other fields.

Consider the field of the data of sense,
—a field of uni-

versal interest,
—and fundamental. We are here in the

domain of sights and sounds and motions among other

things. Are there any groups to be found here? Who,

except the blind-born, are not lovers of color? Do the

colors constitute a group? I mean sensations of color,
—

color sensations,
—

including all shades thereof and white

and black. Denote by Su the system whose C is the class

of all such sensations and whose rule of combination is,

let us say, the mixing of such sensations. But what are

we to understand by the mixing of two color sensations?

Suppose we have two small boxes of powder,
—

say of
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finely pulverized chalk,
—a box of, say, red powder and

a box of blue; one of the powders gives us the sensation

red, the other the sensation blue; let us thoroughly mix

the powders; the mixture gives us a color sensation;

we agree to say that we have mixed the sensations and

that the new sensation is the result of mixing the old

ones. As the combination of any two color sensations is

a color sensation, Sn has, you see, the group property.
Is it a group? Evidently condition (b) is satisfied. Are

conditions (c) and (d) also satisfied ?

Let us pass from colors to figures or shapes,
—to figures

or shapes, I mean, of physical or material objects,
—

rocks,

chairs, trees, animals and the like,
—as known to sense-

perception. No doubt what we ordinarily call perception
of an object's figure or shape is genetically complex, a

result of experience contributed to by two or more senses,

as sight, touch, motion; let us not, however, try to

analyze it thus; let us take it at its face value—let us

regard it as being, what it appears to be before analytic

reflection upon it, a sense-given datum; and let us confine

ourselves to the sense of sight. Here is a dog; its ears

have shape; so, too, its eyes, its nose and the other

features of its head; these shapes combine to make the

shape or figure of the head; each other one of its visible

organs has a shape of its own; these shapes all of them

combine to make that thing which we call the shape or

figure of the dog. Yonder is a table; it has a shape, and

this is due to some sort of combination of the shapes of its

parts
—

legs, top, and so on; upon it are several objects
—

a picture frame, a candlestick, some vases; each has a

shape; the table and the other things together constitute

one object
—disclosed as such to a single glance of the eye;

this object has a figure or shape due to the combined pres-



THE GROUP CONCEIT 209

ence of the other shapes. In speaking of the dog and the

table, I have been using the word
"
combination

"
in a

very general sense. Can it, in this connection, be made

precise enough for our use? Is it possible to find or frame

a rule by which, any two visible shapes being given, these

can be combined? If so, is the result of the combination

a visible shape? If so, the system consisting of the rule

and the total class of shapes has the group property.

Does the system satisfy the remaining three conditions

for a group ?

And what of sounds—sensations of sound ? Are sounds

combinable? Is the result always a sound or is it some-

times silence? If we agree to regard silence as a species

of sound,—as the zero of sound,
—has the system of sounds

the property of a group? There is the question of thresh-

olds: sound is a vibrational phenomenon; if the rate of

vibration be too slow or too great,
—

say, 100,000 per

second,
—no sound is heard. If you disregard the thresh-

olds, has the sound system the group property? Is it a

group? If so, what is the identical element? And what
would you say is the reciprocal of a given sound or tone?

Consider other vibrational phenomena—as those of

light or electricity. Can you so conceive them as to get

group systems? Sharpen your questions and then carry
them to physicists. You need have no hesitance—the

service is apt to be mutual.

The Infinite Abelian Group of Angel Flights.
—We are

accustomed to think of ourselves as being in a boundless

universe of space filled with what we call points any two

of which are joined by what we call a straight line.

Imagine one of those curious creatures which are to-day
for most of us hardly more than figures of speech but

which for many hundreds of years were very real and very
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lovely or very terrible things for millions of men, women
and children and were studied and discoursed about

seriously by men of genius : I mean angels. Angels can

fly. Let us confine their flights to straight lines but

impose no other restrictions. I am going to ask you to

understand a flight as having nothing but length, direction

and sense; if it is parallel to a given straight line, it has

that line's direction; if it goes from A towards B, it has

that sense; if from B toward A, the opposite sense; a

flight from A to B and one from C to D are the same if

they agree in length, direction and sense. Consider a

flight a from point A to point B followed by a flight b

from B to C; you readily see that a and b are two adjacent
sides of a parallelogram, one of whose diagonals is the

direct flight d from A to C; d is called the resultant or

flight-sum of a and b because d tells us how far the angel

has finally got from the starting place; and so we write

aob=d. If flight V goes from P to Q but agrees with b

in length, direction and sense, we write aob' =d as before

for, as already said, b and b' are one and the same. Now
let S12 denote the system whose C is the class of all

possible angel flights including rest, or zero flight, and

whose rule of combination is flight summation as above

explained; you see at once that Si2is a closed system, has

the group property, for the combination of any two

flights is a flight; if a, b and c be three flights, we may sup-

pose them to go respectively from A to B, from B to C,

and from C to D; consider (aob)oc; aob=d, the flight

from A to C; doc=e, the flight from A to D; now con-

sider ao(boc); boc=d', flight from B to D; aod'=e f

,

flight from A to D; so e=e' and (aob)oc = ao(boc) ; hence

summation of flights is associative—condition (b) is satis-

fied. Condition (c) is satisfied with zero (0) flight for i;
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for, if a be any flight, it is plain that <zo0=0o#=tf. And
condition id) is satisfied for it is evident that aoa' =

a
foa=0 where a' and a agree in length and direction but

are opposite in sense. Hence the system of angel flights

is a group. And it is easy to see that it is both infinite

and Abelian.

What I have here called an angel flight is known in

mathematics and in physics as a vector; a vector has no

position
—it has its essential and complete being in having

a length, a direction and a sense. And so, you see, the

system composed of the vectors of space and of vector

addition as a rule of combination is an infinite Abelian

group.

Connection of Groups with Transformations and Invari-

ants.—Let us have another look at our angel flights, or

vectors. I am going to ask you to view them in another

light. Let V be any given vector—that is, a vector of

given length, sense and direction; where does it begin

and where does it end? A moment's reflection will show

you that every point in the universe of space is the begin-

ning of a vector identical with V and the end of a vector

identical with V. Though these vectors are but one, it is

convenient to speak of them as many equal vectors—
having the same length, direction and sense. Let the

point P be the beginning of a V and let the point Q be

its end. Let us now associate every such P with its

Q(P —> Q); we have thus transformed our space of points

into itself in such wise that the end of each V is the

transform of its beginning; call the transformation 7';

let us follow it with a transformation T' converting the

beginnings of all vectors equal to a given vector V into

their corresponding ends. What is the result? Notice

that T converted P into Q and that T' then converted Q
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into Q\ the end of the V beginning at Q; now there is a

vector beginning at P and running direct to Q'\ and so

there is a transformation T" converting P into Q' \ it is

this T" that we shall mean by 7bV . Without further

talk, you see that our group of angel flights, or vectors,

now appears as an infinite Abelian group of transformations

(of our space of points into itself). Such transformations

do not involve motion in fact; it is customary, however,
for mathematicians to call them motions, or translations,

of space; 5', for example, being thought of and spoken
of as a translation of the whole of space (as a rigid body)
in the direction and sense of V and through a distance

equal to Vs length. In accordance with this stimulating,

albeit purely figurative, way of speaking, the group in

question is the group of the translations of our space.

We are now in a good position to glimpse the very
intimate connection between the idea of group and the

idea of invariance. Suppose we are given a group of

transformations; one of the big questions to be asked

regarding it is this: what things remain unaltered,
—

remain invariant,
—under each and all the transformations

of the group ? In other words, what property or proper-

ties are common to the objects transformed and their

transforms ? Well, we have now before us a certain group
of space transformations—the group of translations.

Denote it by G. Each translation in G converts (trans-

forms, carries, moves) any point into a point, and so

converts any configuration F of points,—any geometric

figure,
—into some configuration F'. What remains un-

changed? What are the invariants? It is obvious that

one of the invariants,
—a very important one,

—is distance;

that is, if P and Q be any two points and if their trans-

forms under some translation be respectively P' and Q'>
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then the distance between P' and Q' is the same as that

between P and Q; another is order among points—if Q
is between P and R, Q' is between P' and R'; you see

at once that angles, areas, volumes, shapes are all of them

unchanged: in a word, congruence is invariant-—if, a

translation convert a figure F into a figure F', F and F'

are congruent. Of course congruence is invariant under

all the translations having a given direction. Do these

constitute a group? Obviously they do, and this group
G' is a sub-group of G. Congruence is invariant under

G'\ it is also invariant under G; G' is included in G; it is

natural, then, to ask whether G itself may not be included

in a still larger group having congruence for an invariant.

The question suggests the inverse of the one with which

we set out. The former question was: given a group,

what are its invariants? The inverse question is: given
an invariant, what are its groups and especially its largest

group? This question is as big as the other one. Con-

sider the example in hand. The given invariant is con-

gruence. Is G,
—the group of translations,

—the largest

group of space transformations leaving congruence un-

changed? Evidently not; for think of those space trans-

formations that consist in rotations of space (as a rigid

body) about a fixed line (as axis); if such a rotation

converts a figure F into F', the two figures are congruent.
It is clear that the same is true if a transformation be a

twist—that is, a simultaneous rotation about, and transla-

tion along, a fixed line. All such rotations and twists

together with the translations constitute a group called

the group of displacements of space; it includes all trans-

formations leaving congruence invariant. This group, as

a little reflection will show you, has many sub-groups,

infinitely many; the set of displacements leaving a
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specified point invariant is such a sub-group; the set

leaving two given points unchanged is another. How is

the latter related to the sub-group leaving only one of the

two points invariant? Is there a displacement leaving

three non-collinear points invariant? Do the displace-

ments leaving a line unchanged constitute a group? Such

questions are but samples of many that you will find it

profitable to ask and to try to answer.

For the sake of emphasis, permit me to repeat the two

big questions: (i) Given a group of transformations,

what things are unchanged by them? (2) Given some-

thing
—an object or property or relation, no matter what

—that is to remain invariant, what are the groups of

transformations, and especially the largest group, that

leave the thing unaltered? You may wish to say: I

grant that the questions are interesting, and I do not

deny that they are big
—

big in the sense of giving rise to

innumerable problems and big in the sense that many of

the problems are difficult; but I do not see that they are

big with importance. Why should I bother with them?

In reply I shall not undertake to say why you should

bother with them; it is sufficient to remind you that as

human beings you cannot help it and you do not desire to

do so. In the preceding lecture, we saw that the sovereign

impulse of Man is to find the answer to the question:

what abides? We saw that Thought,
—taken in the widest

sense to embrace art, philosophy, religion, science, taken

in their widest sense,
—is the quest of invariance in a

fluctuant world. We saw that the craving and search for

things eternal is the central binding thread of human

history. We saw that the passion for abiding reality is

itself the supreme invariant in the life of reason. And
we saw that the bearings of the mathematical theory
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of invariance upon the universal enterprise of Thought
are the bearings of a prototype and guide. It is evident

that the same is true of the mathematical theory of

groups. Our human question is: what abides? As
students of thought and the history of thought, we have

learned at length that the question can not be answered

fully at once but only step by step in an endless progres-

sion. And now what are the steps? You can scarcely

fail to see, if you reflect a little, that each of them,—
whether taken by art or by science or by philosophy,

—
consists virtually in ascertaining either the invariants

under some group of transformations or else the groups
of transformations that leave some thing or things

unchanged.

Groups as Instruments for Defining, Delimiting, Dis-

criminating and Classifying Doctrines.—The foregoing

question (2) has another aspect, which I believe to be of

profound interest to all students except those, if there be

such, who are insensate to things philosophical. I mean

that, if and whenever you ascertain the group of all the

transformations that leave invariant some specified object
or objects of thought, you thereby define perfectly some
actual (or potential) branch of science—some actual (or

potential) doctrine. I will endeavor to make this fact

evident by a few simple examples, and I will choose them
from the general field of geometry, though, as you will

perceive, such examples might be taken from other fields.

For a first example, consider the above-mentioned

group D of the displacements of our space. I say that

this group defines a geometry of space, which may be

called the geometry of displacements. It defines it by

defining, or delimiting, its subject-matter. What is its

subject-matter? What does the geometry study? The
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two questions are not equivalent. It studies all the

figures in space but it does not study all their properties.

Its subject-matter consists of those properties which it

does study. What are these? They are those and only
those properties (of figures) that remain invariant under

all displacements but under no other transformations of

space. The geometry of displacements might be called

congruence geometry. It includes the greater part of the

ordinary geometry of high school but not all of it, for the

latter deals, for example, with similarity of figures;

similarity is indeed invariant under displacements, but

it is also invariant under other transformations—the

so-called similitude transformations, to be mentioned

presently.

For a second example, consider the following. I may
wish to confine my study of spatial figures to their shape.

The doctrine thus arising may be called the geometry of

shape, or shape geometry. If I tell you that I am study-

ing shape geometry and you ask me what I mean by the

geometry of shape, there are two ways in which I may
answer your question. One of the ways requires me to

define the term shape
—

shape of a geometric figure; the

other way,
—the group way,

—does not. Let us examine

them a little. I have never seen a mathematical definition

of shape, but it may, I believe, be precisely defined as

follows. We must distinguish the three things: sameness

of shape; shape of a given figure; and shape of a figure.

I will define the first; then the second in terms of the

first; and, finally, the third in terms of the second.

Two figures F and F' will be said to have the same shape
if and only if it is possible to set up a one-to-one corre-

spondence between the points of F and those of Ff

, such

that, AB and CD being any distances between points of
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F
y and A'B' and CD' being the distances between the

corresponding points of F', AB/CD=A'B''/CD'. Two
figures having the same shape will be said to be similar,

and conversely. Having defined sameness of shape, or

similarity, of figures, I will define the term
"
shape of a -

given figure
"
as follows : if F be a given, or specific, figure,

the shape of F is the class <r of all figures similar to F; it

is evident that, if F and F' are not similar, the class a

and the class a'—the shape of F'—have no figures in

common; it is evident, moreover, that there are as many
o-'s as there are figure shapes. And now what do we
mean by the general term shape, or—what is tantamount
—

shape of a figure? What the answer must be is pretty
obvious: shape is the class 2 of all the a's. Note that

S is a class of classes and that any a is a class of (similar)

figures. Having defined the general term shape, I have,

you see, virtually answered your question: what is the

geometry of shape ?

Let us now see how the question may be answered by
means of the group concept. Two congruent figures are

clearly similar, and so similarity is invariant under the

group of displacements. But you readily see that there

are many other transformations under which similarity is

invariant. Let be a point; consider the bundle of

straight lines,
—all the lines through 0,

—
having for its

vertex; every point of space is on some line of the bundle;

let k be any real number (except zero); let P be any

point and let P' be such a point on the line OP that the

segment OP' =kx segment OP; you see that each point P
is transformed into a point P'; the transformation is

called homothetic; its effect, if k be positive and exceed I,

is a uniform expansion of space from outward in all

directions; if k be positive and less than I, the effect is
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contraction toward 0\ if k be negative, the effect is such

an expansion or contraction, followed or preceded by
reflection in as in a mirror; distances are clearly not

preserved, but distance ratios are; that is, if A, B, C
be any three points and if their respective transforms

under some nomothetic transformation be A f

, B', C f

, it

is evident that AB/BC = A'B''/B'C; accordingly, if F
be the transform of a figure F, the figures are similar,

—
they have the same shape but not the same size,

—
they

are not congruent: similarity is, then, invariant under all

homothetic transformations, and hence under combina-

tions of them with one another and with displacements;
the displacements and the homothetic transformations

together with all such combinations constitute a group
called the group of similitude transformations ; it contains

all and only such space transformations as leave similarity

unchanged. Here, then, is our group definition of shape

geometry: namely, the geometry of shape is the study of

that property of figures which is common to every figure

and its transforms under each and all transformations of the

similitude group. Observe that this definition, unlike

the former one, employs neither the notion of shape in

general, nor that of the shape of a given figure; it employs

only the notion of similarity
—sameness of shape.

We ought, I think, to consider one more example of

how a group of transformations serves to determine the

nature and limits of a doctrine and thereby to discriminate

the doctrine from all others. I will again take a geometric

example, but for the sake of simplicity I will choose it

from the geometry of the plane (instead of space) . Before

presenting it, let me adduce a yet simpler example of the

same kind taken from the geometry of points in a straight

line. In Lecture IV, I explained what is meant by a
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projective line—an ordinary line endowed with an
"

ideal
"

point, or point at infinity, where the line meets

all lines parallel to it. Let I be a projective line. In

the preceding lecture, we gained some acquaintance with

the transformations of the form

,
ax+ b

cx-\-d

where the coefficients are any real numbers such that

ad — be 9^0; we saw that there are 00 3 such transformations

and that each of them converts the points of L into the

points of L in such a way that the anharmonic ratio of

any four points is equal to the anharmonic ratio of their

transforms. Distances are not preserved; neither are the

ordinary ratios of distances preserved; hence neither

congruence nor similarity is invariant; no relation among
points

—that is, no property of figures (for here a figure is

simply a set of points on L)
—is invariant except anhar-

monic ratio and properties expressible in terms of the

latter; no other transformations leave these properties

invariant. By a little finger work you can prove in a

formal way that these transformations constitute a group.
I will merely indicate the procedure, leaving it to you to

carry it out if you desire to do so. The transformations

differ only in their coefficients. Let {au b\, d, d\),

(<22 , #2, C2, ^2), (as, &3, C3, ds) be any three of the trans-

formations; consider the first and second; the rule o

of combination is to be: operate with the first and then

on the result with the second. The first converts point
x into point x':

a\x+bi
(2) x'= ;

C\x-\-d\
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the second converts x' into point x" :

a2x' -\-b 2

(3) *" =
c2x' -\-d2

in (3) replace x' by its value given by (2), simplify and then

notice that you have a transformation of form (1) con-

verting x directly into x" . This shows that the set of

transformations have the group property. To show that

they obey the associative law, it is sufficient to perform
the operations

(4) Oi, bu d, di)o[(a 2 , b2 ,
c 2,

d2)o(a3 , h, c3 , d3)],

(5) l(*i> bi, ci, di)o{a2 , b2 , c2 , d2)]o(a3 ,
b3 ,

c3 , ds),

and then to observe that the results are the same. The
identical element i is (a, o, o, a)—that is, the transforma-

tion, x' =x. The inverse of any transformation (a, b, c, d)

is (— d, by c, —a) for you can readily show that combina-

tion of these gives (a, 0, 0, a).

The fact to be specially noted is that this group of

so-called homographic transformations defines a certain

kind of geometry in the line L—namely, its projective

geometry. In a line there are various geometries; among
these the projective geometry is characterized by its sub-

ject-matter, and its subject-matter consists of such proper-

ties of point sets, or figures, as remain invariant under its

homographic group.

And now I come to the example alluded to a moment

ago
—the one to be taken from geometries in (or of) a

plane. The foregoing homographic group
—in a line, a

one-dimensional space
—has an analogue in a projective

plane, another in ordinary 3-dimensional projective space,

another in a projective space of four dimensions, and so on
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ad infinitum. What is the analogous group for a plane ?

In a chosen plane take a pair of axes as explained in

Lecture V, and consider the pair of equations

(i)

y =

Ax+By +C
Gx+Hy+ I

Dx+Ey+F
Gx+Hy+I

where the coefficients are any real numbers such that

ABC
(i') D E F ^0;

GUI
i.e., such that

(i') AEI-CEG+CDII-BDI+BFG-AFH^O.

The coefficients furnish eight independent ratios,—called

"parameters,"
—and so we have oo s

equation pairs of form

(i); choose any one of them and notice that it is a trans-

formation converting the number pair (x, y) into a number

pair (x' y y') y and so converting the point (x, y) into a

point (V, y')\ owing to the inequality (i')> any point

(x, y) is transformed into a definite point (x',y'). In

any line ax' +by' +c = Q, replace x' and y' by their values

given by (i), and simplify; the resulting equation is of

first degree in x and y and hence represents a line; hence,

you see, points of a straight line are converted into points

of a straight line—the relation, collinearity, is preserved;

so is copunctality
—a pencil of lines has a pencil for its

transform; you can readily show that order is not pre-

served, nor distances nor ordinary distance-ratios, nor

angles; hence, if the figure F' be the transform of F, the

two figures are, in general, neither congruent nor similar;
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we say, however, that F and F' are projective because,

as can be proved, the anharmonic ratio of any 4 points

(or lines) of either is equal to that of the corresponding

(transform) points (or lines) of the other. By the method

indicated for the homographic transformations of a line,

you can prove that the 00 8 transformations of form (1)

constitute a group.

Just as a point of the plane has two coordinates (x, y),

so a line depends on two coordinates; there are various

ways to see that such is the case; an easy way is this:

the line, ax-\-by-\-c
= 0, depends solely upon the ratios

{a : b : c) of the coefficients; these three ratios are not

independent
—two of them determine the third one; you

thus see that the line depends upon only two independent
variables—it has, like the point, two coordinates; let us

denote them by (u, v). Now consider the transformations

(2)

, _ Ju-\-Kv+LU ~
Pu+Qv+R*
Mu+Nv+O
Pu+Qv+R

'v —

where the coefficients are subject to a relation like (1').

We saw that a transformation (1) converts points into

points directly and lines into lines indirectly; just so, a

transformation (2) converts lines into lines directly and

points into points indirectly; hence the group of line-to-

line transformations (2) is essentially the same as the

foregoing group of point-to-point transformations (1).

This latter group is called the group of collineations of

(or in) the plane.

I am going now to ask you to notice an ensemble of

transformations (of the plane) that are neither point-to-
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point nor line-to-line transformations but are at once

point-to-line and line-to-point transformations. These

are represented by the pair of formulas

(3)

ax-\-by-\-cu= / .

gx+hy+i
dx-\~ey-\-f

gx-\-hy-\-i

v =

where the coefficients are again subject to a relation like

(i'). Any such transformation converts a point (x, y)

into a line {u, v); now operate on the points of this line

by the same transformation or another one of form (3);

the points are converted into lines constituting a pencil

having a vertex, say (x
f

, y'); thus the combination con-

verts point (x, y) into point (x
r

, y')
—it is a point-to-point

transformation and hence belongs to the group of collinea-

tions; you thus see that the set of transformations (3)

is not a group; but this set and the collineations together

constitute a group including the collineations as a sub-

group. This large group is called the Group of Projective

Transformations of the Plane. Why? Because every

transformation in it and no other transformation leaves

all anharmonic ratios unchanged.
What is the projective geometry of the plane? The

group now in hand enables us to answer the question

perfectly. The answer is: Projective plane geometry is

that geometry which studies such and only such properties

of plane figures as remain invariant under the group of

projective transformations.

In reading the essays of the late Henri Poincar^ you
have met the statement:

"
Euclidean space is simply a

group." The foregoing examples should enable you to
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understand its meaning. And they should lead you to

surmise—what is true—that answers like the foregoing

ones are available for similar questions regarding all

geometries of a space of any number of dimensions and
—what is more—regarding mathematical doctrines in

general. Whatsoever things are invariant under all and

only the transformations of some group constitute the

peculiar subject-matter of some (actual or potential)

branch of knowledge. And you see that every such group-
defined science views its subject matter under the aspect of

eternity.

A Question for Psychologists.
—Before closing this

lecture, I desire to speak briefly of two additional matters

connected with the notion of group: one of the matters

is psychological: the other is historical. Being students

of philosophy, you are obliged to have at least a good

secondary interest in psychology. I wish to propose for

your future consideration a psychological question
—one

which psychologists (I believe) have not considered and

which, though it has haunted me a good deal from time

to time in recent years, I am not yet prepared to answer

confidently. The question is: Is mind a group? Let us

restrict the question and ask: Is mind a closed system
—

that is, has it the group property ? Some of the difficulties

are immediately obvious. In order that the question

shall have definite meaning, it is necessary to think of

mind as a system composed of a class of things and a rule,

or law, of combination by which each of the things can be

combined with itself and with each of the other things.

We may make a beginning by saying that the required

class is the class of mental phenomena. But what does

the class include? What phenomena are members of it?

Some phenomena,
—

feeling, for example, seeing, hearing,
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tasting, thinking, believing, doubting, craving, hoping,

expecting,
—are undoubtedly mental; others seem not to

be—as what I see, for example, what I taste, what I

believe, and the like. Here are difficulties. You will

find a fresh and suggestive treatment of them in Bertrand

Russell's The Ultimate Constituents of Matter, found in the

author's Mysticism and Logic and especially in his

Analysis of Mind. Let us suppose that, despite the dif-

ficulties in the way, you have decided what you are going
to call mental phenomena. You have then to consider

the question of their combination. We do habitually

speak of combining mental things: hoping, for example,

is, in some sense, a union, or combination, of desiring and

expecting; the feeling called patriotism is evidently a

combination of a pretty large variety of feelings; in the

realm of ideas,
—which you will probably desire to include

among mental phenomena,
—we have seen that, for

example, the idea named "
vector

"
is a union, or combina-

tion, of the ideas of direction, sense and length; and so on
—

examples abound. But does combination as a process

or operation have the same meaning in all such cases?

It seems not. What, then, is your rule o to be? Possibly

the difficulty could be surmounted as follows: if you
discovered that some mental phenomena are combinable

by a rule o\, others by a rule 02, still others by a rule 03,

and so on, thus getting a finite number of particular rules,

you could then take for a more general rule the disjunc-

tion, or so-called logical sum, of the particular ones; that

is, you could say that rule is to be : 1 or 02 or 03 or . . . or o„;

so that two phenomena would be combinable by if they
were combinable by one or more of the rules o\, o 2 ,

. . .
,
on .

If you thus found a rule by which every two of the phe-
nomena you had decided to call mental admitted of com-
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bination, then your final question would be: is the result

of every such combination a mental phenomenon? That
is not quite the question; for under the rule two phe-
nomena might be combinable in two or more ways, and

some of the results might (conceivably) be mental and the

others not; so your question would be: can every two

mental phenomena be combined under your rule so as to

yield a mental phenomenon? If so, then mind, as you had

defined it, would have the group property under some

rule of combination. If you found mind to have the

group property under some rule or rules but not under

others, you would be at once confronted with a further

problem, which I will not tarry to state.

We have been speaking of mind—of mind in general.

Similar questions,
—

perhaps easier if not more fruitful

questions,
—can be put respecting particular minds—

your mind, mine, John Smith's. Has every individual

mind the group property? Has no such mind the prop-

erty? Have some of them the property and others

not?

It seems very probable that the answer to the first of

the questions must be negative. There are at all events

some minds having (presenting, containing) mental

phenomena that are definitely combinable in a way to

yield mental phenomena that nevertheless do not belong

to those minds. What is meant is this: a given mind

may possess certain ideas which are combinable so as to

form another idea; it may happen that the mind in ques-

tion is incapable of grasping the new idea. Such minds

have no doubt come under the observation of every

experienced teacher. I myself have seen many such cases

and remember one of them very vividly: that of a young
woman who had made a brilliant record in undergraduate
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collegiate mathematics including the elements of analyt-

ical geometry and calculus; and who, encouraged by this

initial success, aspired to the mathematical doctorate and

entered seriously upon higher studies essential thereto;

it was necessary for her to grasp more and more complicate

concepts formed by combining ideas she already pos-

sessed; after no long time she reached the limit of her

ability in this matter,
—a fact first noticed by her instruc-

tors and then by herself,
—and being a woman of good

sense, she abandoned the pursuit of higher mathematics.

I may add that subsequently she gained the doctorate in

history. It may be that some minds are not thus limited.

It may be that a genius of the so-called universal type,
—

an Aristotle, for example, or a Leibniz or a Leonardo

da Vinci,
—is one whose mind has the group property.

May I leave the questions for your consideration in the

days to come?

The Group Concept Dimly Adumbrated in Early

Philosophic Speculation.
—The mathematical theory of

groups is immense and manifold; in the main it is a work
of the last sixty years; even the germ of it seems not to

antedate Ruffini and Lagrange. Why so modern ? Why
did not the concept of a closed system,

—of a system having
the group property,—come to birth many centuries earlier?

The elemental constituents of the concept,
—the idea of a

class of things, the idea of anything being or not being a

member of a class, the idea of a rule or law of combination,—all these were as familiar thousands of years ago as they
are now. The question is one of a host of similar ques-
tions whose answers, if ever they be found, will constitute

what in a previous lecture I called the yet unwritten

history of the development of intellectual curiosity. Who
will write that history? And when?



228 MATHEMATICAL PHILOSOPHY

The fact that the precise formation of the mathematical

concept of group is of so recent date is all the more curious

because an idea closely resembling that of group has

haunted the minds of a long line of thinkers and is found

stalking like a ghost in the mist of philosophic speculation

from remote antiquity down even to Herbert Spencer.
I refer to those worldwide, age-long, philosophic specula-

tions which, because of their peculiar views of the uni-

verse, may be fitly called the Philosophy of the Cosmic

Cycle or Cosmic Year. This philosophy, despite the spell

of a certain beauty inherent in it, has lost its vogue.

To-day we are accustomed to thinking of the universe as

undergoing a beginningless and endless evolution in course

of which no aspect or event ever was or ever will be

exactly repeated. In sharpest contrast with that con-

ception, the philosophy of the cosmic cycle regards all

the changes of which the universe is capable as constitut-

ing an immense indeed but finite and closed system of

transformations, which follow each other in definite suc-

cession, like the spokes of a gigantic revolving wheel,

until all possible changes have occurred in the lapse of a

long but finite period of time—called a cosmic cycle or

cosmic year
—
whereupon everything is repeated precisely,

and so on and on without end. This philosophy, I have

said, has lost its vogue; but, if the philosophy be true,

it will regain it, for, if true, it belongs to the cosmic

cycle and hence will recur. The history of the philosophy
of the cosmic year is exceedingly interesting and it would,
I believe, be an excellent subject for a doctor's disserta-

tion. The literature is wide-ranging in kind, in place and

in time. Let me cite a little of it as showing how closely

its central idea resembles the mathematical concept of a

cyclic group.
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In his Philosophie der Griechen (Vol. Ill, 2nd edition)

Zeller, speaking of the speculations of the Stoics, says:

Out of the original substance the separate things are

developed according to an inner law. For inasmuch as

the first principle, according to its definition, is the
creative and formative power, the whole universe must

grow out of it with the same necessity as the animal
or the plant from the seed. The original fire, according
to the Stoics and Heraclitus, first changes to

"
air

"

or vapor, then to water; out of this a portion is pre-

cipitated as earth, another remains water, a third

evaporates as atmospheric air, which again kindles the

fire, and out of the changing mixture of these four

elements there is formed,—from the earth as center,
—

the world. . . . Through this separation of the elements
there arises the contrast of the active and the passive

principle: the soul of the world and its body. . . . But
as this contrast came in time, so it is destined to cease;
the original substance gradually consumes the matter,
which is segregated out of itself as its body, till at the

end of this world-period a universal world conflagration

brings everything back to the primeval condition. . . .

But when everything has thus returned to the original

unity, and the great world-year has run out, the forma-
tion of a new world begins again, which is so exactly
like the former one that in it all things, persons and

phenomena, return exactly as before; and in this wise

the history of the world and the deity . . . moves in an
endless cycle through the same stages.

A similar view of cosmic history is present in the

speculations of Empedocles, for whom a cycle consists of

four great periods: Predominant Love—a state of com-

plete aggregation; decreasing Love and increasing Hate;

predominant Strife—complete separation of the elements;

decreasing Strife and increasing Love. At the end of this

fourth period, the cycle is complete and is then repeated
—
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the history of the universe being a continuous and end-

lessly repeated vaudeville performance of a single play.

Something like the foregoing seems to be implicit in

the following statement by Aristotle in the Metaphysics:

Every art and every kind of philosophy have prob-
ably been invented many times up to the limits of what
is possible and been again destroyed.

And in Ecclesiastes (III, 15):

That which hath been is now; and that which is

to be hath already been.

Even Herbert Spencer at the close of his First Prin-

ciples speaks as follows:

Thus we are led to the conclusion that the entire

process of things, as displayed in the aggregate of the

visible universe, is analogous to the entire process of

things as displayed in the smallest aggregates. Motion
as well as matter being fixed in quantity, it would seem
that the change in the distribution of matter which
motion effects, coming to a limit in whatever direction

it is carried, the indestructible motion necessitates a

reverse redistribution. Apparently the universally
coexistent forces of attraction and repulsion, which
necessitate rhythm in all minor changes throughout the

universe, also necessitates rhythm in the totality of

changes
—alternate eras of evolution and dissolution.

And thus there is suggested the conception of a past

during which there have been successive evolutions

analogous to that which is now going on; and a future

during which successive other evolutions may go on—
ever the same in principle but never the same in con-

crete result.

Spencer was, you know, but poorly informed in the history

of thought and he was probably not aware that the main
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idea in the lines just now quoted was ancient two thousand

years before he was born. You should note that the

Spencerian universe of transformations narrowly escapes

being a closed system
—

escapes by the last six words of

foregoing quotation. The cosmic cycles do indeed follow

each other in an endless sequence
—"

ever the same in

principle but never the same in concrete result." The

repetitions are such
"

in principle
"

only, not in result—
there is always something new.

One of the very greatest works of man is the De Rerum
Natura of Lucretius—immortal exposition of the thought
of Epicurus,

" who surpassed in intellect the race of man
and quenched the light of all as the ethereal sun arisen

quenches the stars." Neither a student of philosophy nor

a student of natural science can afford to neglect the read-

ing of that book. For, although it contains many,—very,
very many,—errors of detail,

—some of them astonishing

to a modern reader,
—

yet there are at least four great

respects in which it is unsurpassed among the works that

have come down from what we humans, in our ignorance
of man's real antiquity, have been wont to call the

ancient world: it is unsurpassed, I mean, in scientific

spirit; in the union of that spirit with literary excellence;

in the magnificence of its enterprise; and in its anticipa-

tion of concepts among the most fruitful of modern

science. For such as can not read it in the original there

are, happily, two excellent English translations of it—one

by H. A. J. Munro and a later one by Cyril Bailey. Of
this work I hope to speak further in a subsequent lecture

of this course. My purpose in citing it here is to signalize

it as being perhaps the weightiest of all contributions to

what I have called the philosophy of the cosmic year.

The Lucretian universe though not a finite system, is
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indeed a closed system, of transformations: any event,

whether great or small, that has occurred in course of the

beginningless past has occurred infinitely many times and

will recur infinitely many times in course of an unending

future; and nothing can occur that has not occurred,
—

there never has been and there never will be aught that

is new,—every occurrence is a recurrence. Let me say

parenthetically, in passing, that such a concept of the

universe is damnably depressing but not more so than the

regnant mechanistic hypothesis of modern natural science.

In relation to this hypothesis you should by no means

fail to read and digest Professor W. B. Smith's great

address: "Push or Pull?" (Monist, Vol. XXIII, 1913).

See also Smith's "Are Motions Emotions?" (Tulane

Graduates
1

Magazine, Jan., 1914). And you should read

J. S. Haldane's Life, Mechanism and Personality.

Should you desire to pursue the matter further either

with a view to noting speculative adumbrations of the

group concept or, as I hope, with the larger purpose of

writing a historical monograph on the philosophy of the

Cosmic Cycle, the following references may be of some

service as a clue.
" The Dream of Scipio

"
in Cicero's Republic (Hard-

ingham's translation).

Michael Foster's Physiology.

Lyell's Principles of Geology.

The fourth Eclogue of Virgil (verses 31-36).

Riickert's poem Chidher.

Moleschott's Kreislauf des Lebens.

Clifford's
" The First and Last Catastrophe

"
in his

Lectures and Essays.

Inge's The Idea of Progress (being the Romanes

Lecture, 1920).



LECTURE XIII

Variables and Limits

A GLANCE AT THE SHADOWY BACKGROUND OF SCIENTIFIC

IDEAS—THE MEANINGS OF VARIABLE AND CONSTANT

RANGES OF VARIATION AND THE IDEA OF NEIGHBOR-

HOOD VARIOUS DEFINITIONS OF LIMIT CLARIFIED

BY SIMPLE EXAMPLES THE SCANDAL OF A STARVING

NURSE IN THE RICHEST LAND KNOWN TO HISTORY.

In the introductory lecture, I spoke at length on the

mathematical obligations of philosophy. In preparing to

discharge them it is imperatively necessary for students

of philosophy to gain genuine understanding of those

great concepts that are as vital organs in the body of

mathematics, giving the science not only its life but its

character and its power. It is one of the aims of these

lectures to assist students primarily interested in philoso-

phy to gain such an understanding. In pursuance of that

aim it is, I believe, essential to devote one or two lectures

to the nature and the significance of the mathematical

concept denoted by the term
"

limit." There are in cur-

rent use several concepts of the term, but for the present
we may speak as if there were only one. The importance
and the power of the concept have been so long recognized

by mathematicians that the notion of limit and what is

often called the method of limits have found their way
down into text-books of algebra, geometry and trigonom-

233
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etry designed for high schools. In high school you prob-

ably learned something of the lingo of limits; if you really

there grasped the ideas involved, you were extraordinary

pupils or were very fortunate in your teachers or both.

I say this because in collegiate freshman classes I have

met many students who in their preparation for college

had been exposed to the notion and method of limits, and

I have the impression that among them there were very
few or none whose wisdom in the matter was appreciably

more than phraseological; in the case of most it was even

less. The explanation is not far to seek: the concept of

limit is a subtle concept and the right use of it in mathe-

matical argumentation is a delicate process; these two

things can not be caught, so to speak, on the fly; they

require to be reflected upon again and again; they are

among the things that require to be pondered; but such

meditation, such deliberation upon elusive scientific

abstractions, is one of the things which boys and girls

of the indicated age will not do; it is not their fault;

if they did it they would not be boys and girls; they
would be seasoned logicians and philosophers. If such

understanding of the nature and significance of limits

as you may be supposed to have acquired in high school

has not been deepened and refined by subsequent study,

the intervening years have probably so dimmed your

impressions of the matter that you are now fortunately

able to approach the subject afresh, bringing to bear upon
it critical power of sufficient maturity.

In endeavoring to analyze the concept of limit it

becomes immediately evident that it involves the notion

of variable and the notion of constant, together with such

other notions as that of variable and that of constant

themselves involve. What do mathematicians mean by
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the terms variable and constant? The great majority of

professional mathematicians take the meanings of these

terms mainly for granted; they do so because they are so

occupied in teaching mathematics or in extending its

superstructure as to have but little or no interest in
"
the nice sharp quillets of the law

"
as revealed in its

logical foundations; in the foregoing lectures I have fol-

lowed the actual practice of mathematicians in respect to

the two terms in question; I have, that is, freely employed
the terms, not indeed quite unconsciously, but without

apology and without explanation, believing that such use

would lead to no appreciable misunderstanding. Now,
however, before attempting to give a formal definition of

the great term
"

limit," it will be worth while, I believe,

to glance at its shadowy background
—to reflect a little on

the meanings of the yet greater notions upon which the

concept of a limit depends.

Meaning of the Terms Variable and Constant.—What is

the mathematical meaning of the term variable? It is

natural to answer, and to answer very confidently, that a

variable is something that varies or changes, like the

position of an object in motion, the time of day, the

length of a burning cigar. We are going to see that this

answer, though perfectly natural, is entirely wrong. In a

previous lecture I drew your attention to the fact that

mathematicians habitually employ highly figurative

speech; especially that they are constantly employing

dynamic terms in describing static facts. In particular

I pointed out that it is a common practice of mathema-

ticians to use the dynamic term transformation,—suggest-

ing change, variation, transmutation,—to denote what is

in fact a static thing, namely, a relation—something that

is unchanging, eternal. There is thus a striking incon-
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gruity between what is said, or the manner of saying it,

and what is meant. We are going to see that there is a

like incongruity between the meaning of the mathematical

term "
variable

"
and the manner in which mathematicians

habitually speak of variables. I do not condemn their

manner of speech; I approve of it because it is stimulating
and economical and because it does not, except in certain

very fundamental questions, lead to error; but such

incongruity is a thing which you as philosophers should

carefully notice in the interest of clarity and critical

understanding. Mathematicians do indeed habitually

speak of variables as if the mathematical concept of a

variable were the concept of something whose essential

nature is to suffer change; that is to say, when they use

some symbol, say, x, to denote what they call a variable,

they familiarly speak of the variable x as altering its

value, as increasing or decreasing, as growing large or

growing small, as approaching or not approaching this or

that, and so on; yet, in spite of such a way of speaking,

what they really mean by the term
"
variable

"
essentially

involves no idea of change whatever as
"
change

"
is

commonly understood. This fact may, I believe, be made

sufficiently evident.

To make it evident let us, in seeking the meaning of the

term
'

variable," recur to the idea of propositional

function; for, although some of the things called variables

in the logical theory of propositional functions are not so

called in traditional mathematics, yet whatever is called a

variable in mathematics appears explicitly or implicitly

as a variable in some propositional function; for example,
the variable x in such a propositional function as— a; is a

man,— has not yet gained full recognition as a mathe-

matical variable; on the other hand, the mathematical
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variable x in an equation, say, ^x
2 -\-2x—9=0, appears as

a variable in a propositional function, for, as you know,
such an equation is such a function; and, for another

example, when the mathematician says,
"

I will let x

represent any point in a certain line L," thereby indicating

that he will use x as a variable, he virtually (implicitly)

says,
"

I will let x represent any one of the verifiers of the

propositional function— # is a point in the line L."

Now let 4>(x) denote some given propositional

function involving one and only one of the things called

variables. I am going to speak of 4>(x); while I am doing

so, you may find it helpful to attach what is said to some

simple specific function such as
"
x is a man "

or
"
x2 =4"

or
"
x is a member of this audience." Our function

<t>(x) contains, we say, one variable, namely, x\ x, we say,

is a symbol; notice that, when speaking precisely, we do

not say that the symbol denotes the variable, we say that

the symbol is the variable. The question is: What is

meant by saying that as here used the symbol x is a

variable? Before attempting to answer, let us reflect

that there are terms such that if any one of them be

substituted for x in <f>(x) the resulting statement is non-

sensical,
—

non-significant,
—and hence neither true nor

false; and that there are other terms which, on being thus

substituted, yield significant statements—that is, propo-
sitions (true or false). You will recall that terms of the

former kind,
—

nonsense-giving terms,
—were described

in a previous lecture as inadmissible for <j>(x) and that the

latter kind,
—

sense-giving terms,—were described as ad-

missible terms for </>(#)• Now, it is significant statements,—statements that are true or false,
—

propositions,
—and

only such that we are concerned with when using proposi-

tional functions as instruments in research or in exposi-
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tion, and hence the admissible terms and only these are

important, for it is in virtue of these and only these that

a propositional function is, as we have seen, a matrix,

mould, or source, of propositions. If now we observe that

the admissible terms for a given function 4>(x) constitute

a type, or class, of terms, we shall be prepared to answer

our question. The answer is: The symbol x in a given

propositional function 4>(x) is called a variable because the

symbol represents any one of the terms of the class of

admissible terms for 4>(x) and represents nothing else.

There is nothing subtler in human speech and nothing
more important than the phrase

"
any one

"
as here used;

without it, logic, science, philosophy, even the discourse of

the workaday world, would be impossible. What does

the phrase mean ? It does not admit of precise definition,

for it is essentially involved (explicitly or implicitly) in

the very act of definition. The only or the best way to

sharpen our sense of its meaning is to meditate upon

examples of its use. A farmer has in his barn three

horses—Black, Sorrel and Gray. He says to his servant:

"John, fetch me a horse from the barn." John asks:

"Which one?"
"
Any one," replies the farmer. As here

used the phrase
"
a horse

"
is a variable because it repre-

sents
"
any one

"
of a certain class of horses; in represent-

ing
"
any one

"
of the class, it does not refer to a particular

horse, for evidently
"
any one

"
is not a description or

designation of a particular one of the horses; neither does

it refer to all of the horses conjunctively
—Black and

Sorrel and Gray—John is not to fetch them all; it does

refer to each of them disjunctively
—

John is to fetch Black

or Sorrel or Gray—no matter which one. So it is in the

foregoing definition: in representing
"
any one

"
of the

class of admissible terms for 4>{x), x does not refer to a
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specific one of the terms nor to all of them conjunctively;

it refers to each of them disjunctively. It is essential

and now easy to see clearly that no idea of variation or

change is involved: <f>(x) being given, it is timeless,

unchanging; the class of its admissible terms is timeless,

unchanging;
"
any one

"
applied to the terms of this class

is timeless, unchanging; x's representation of this
"
any

one
"

is timeless, unchanging; you thus see that a given
mathematical variable is timeless, unchanging; and so

you see that, when mathematicians speak of a variable as

undergoing change, they speak metaphorically. Such

speech is, I have said, very convenient and stimulating,

and, now that we recognize its metaphorical character,

I shall feel at liberty to employ it freely in this discussion.

A variable being given, the class of terms
"
any one

"

of which is represented by it is commonly called the range
of the variable; thus in the case of our 4>(x), the range of

x is the class of admissible terms for <j)(x). The range of

a variable may contain only one term, as, for example,
when we say,

"
Let x represent any point common to the

given intersecting lines L and L'." Such a variable is

called a constant; thus you see that a mathematical

constant, far from being (as vulgarly supposed) the oppo-
site of a variable, is itself a variable. If a variable's

range be a null class (an empty class, a class having no

terms) we may describe the variable as a null variable.

For example, x is such a variable if it denotes any integer

greater than 4 and less than 5.

It will be very helpful to illustrate the notion of a

variable by means of examples. Before doing so, how-

ever, I wish to handle briefly a puzzling question that may
have occurred to you in the course of the foregoing discus-

sion. We saw that the admissible terms for </>(#),—the
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sense-giving terms,
—constitute a class of terms—the

range of x. Let us denote the class by C. The question

is: Do the nonsense-giving terms,
—the inadmissible

terms,
—constitute a class? The answer is No; there are

such terms, but they do not together constitute a class.

The correctness of th$ answer may be shown as follows:

If the terms in question constitute a class, denote it by
C; C'y being itself a term, is either in C or in C; to see

that C" is not a term in C, consider any simple example of

<f>(x)
—

say, x is a man; in this case C is composed of all

the terms such that it is significant,
—true or false,

—to say
that any one of them is a man; our hypothetical C con-

sists of all the terms such that it is neither true nor false,

but is nonsense to say that any one of them is a man;

evidently it is neither true nor false, but is nonsense to

say,
" The class of all the terms such that it is nonsense

to say they are men "
is a man; hence C, if there be such

a class, is not a term in C, but is a term in C; it is, how-

ever, foolish to say that C is a term in C", in itself—as

\ foolish as to say, for example, that a class of apples or of

points is an apple or a point, or that the class of featherless
1

/ bipeds is a two-legged thing without feathers. And thus

you see that the inadmissible terms for a given preposi-
tional function do not constitute a class. The question
I have thus summarily treated is of the kind of questions
which have led Messrs. Russell and Whitehead—or rather

have driven them—to the theory of Types in the Principia.

In its present state the theory is far from being entirely

satisfactory, but it is exceedingly helpful and it undoubt-

edly faces in the right direction. I desire to recommend
it to you for consideration and for improvement.

Examples of Variables.—Let us now turn to the task of

illustrating the mathematical notion of a variable by
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means of various examples. Every example of a great

idea gives a little light and casts a big shadow; we must

try to see the idea in the mingled lights and not lose it in

the composite dark of the shadows. Again consider the

propositional function </>(#). The class C—the range of

the function's variable x—is, as you know, the logical

sum of two sub-classes: Ci, composed of the verifiers of

<f>(x); and C2, composed of the falsifiers of <f>(x). We
may chance to be interested only in the true propositions

derivable from <f>(x) or only in the false ones; accordingly
we then restrict our thought to the verifiers or else to the

falsifiers; if to the former, then the variable x represents,

not any one of the terms in C, but any one of the verifiers

—x's range being, not C, but Ci; if to the latter, then

x's range is C2. In these cases what determines the

variable's range? The answer is: neither the function

alone nor our restrictive decision alone, but the two

things taken together. The range of a variable is in every
case either the class of admissible terms for some propo-
sitional function or a sub-class of such a class, the sub-

class being determined by some restriction which the

function as such does not impose; observe that, if some

symbol x is to be a variable, it is we who decide what its

range is to be, for it is we who choose the function and,

if any restriction is added, it is we who impose it. Is our

freedom in the matter absolute? No; there is no such

thing as absolute freedom; in the matter in question, as

in all other purely intellectual matters, we have all the

freedom there is, but it is not absolute; we have just seen

that we can not have a variable representing
"
any one

"

of the inadmissible terms for a given propositional func-

tion, for the supposition that we can leads, as we saw, to

contradiction. Freedom of thought,
—intellectual free-
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dom,—is conditioned, restricted, limited; but it is funda-

mentally limited by only one Law—the law which says to

Intellect,
" Thou shalt not incur a contradiction in

terms." This law is the eternal guardian of intellectual

integrity; reverence for it,
—the disposition to keep it,

—
is the absolute invariant of intellectual life; disregard of

the law,
—I do not mean inadvertent violation of it,

—
means intellectual extinction: for intellect, disloyalty is

death. Incidentally, we thus glimpse another phase of the

truth, mentioned before, that mathematics is the study
of Fate and Freedom.

Examples illustrating the mathematical concept of a

variable are more numerous than the sands of the seashore

or indeed the stars of the heavens, even if the multitude

of the stars be infinite. In examining the following more

specific and more familiar specimens it should be borne

in mind that in mathematical discourse the range of a

variable is very frequently indicated without explicitly

stating the propositional function or functions necessarily

involved in determining the range; such statement is,

however, always possible and is often made. And now
some familiar specimens.

(i) Consider the finite cardinal numbers: 0, I, 2,

3, 4, 5, . . .; let x represent any one of them; here the

symbol x is a variable; its range is, not the endless row

as such, but the class of terms (numbers) in the row; the

range is the same as would be indicated if we said, let x

represent any one of the verifiers of the propositional

function—n is a cardinal number. What is here the

range of n ?

(2) A variable's range may be finite or infinite. In (1)

the range, you note, is infinite. If we let x represent any
cardinal greater than 1 and less than 10, x's range is the
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finite class composed of the terms, 2, 3, 4, 5, 6, 7, 8, 9:

we can indicate the range by saying, let x represent any
one of the verifiers of the function—n is a cardinal whose

value is between 1 and 10. What is n's range? What
would the range of x be if we simply said

"
x is a cardinal

between 1 and 10
"

?

(3) If we say, let x be any verifier of the function

—n is a cardinal between 5 and 7
—

, the range ofx is— , not

5
—but the class whose sole member is 5; in this case the

varible is a constant.

(4) Consider the infinite (endless) series: l+2+3-f
4+ 5+. . • ; the sum, S„, of the first n terms is %n(n-\-i),

so that Sn = %n(n+ i). Here the language implies that

n is being regarded as a variable whose range is the class

of all positive integers; perhaps some one doubts the

implication; very well, let us explicitly agree to let n be

such a variable; you see at once that we then have

another variable on our hands, namely, Sn
—an ordinary

(not a propositional) function of n, for to each value, as

we say, of n (i.e., to each number in n's range) there

corresponds a definite sum, a definite value of S„; plainly

these sums are: 1, 3, 6, 10, 15, . . .; the class of these is

the range of the variable S». Adopting the usual figura-

tive speech, we may say that, as the variable n runs along
the row 1, 2, 3, . . .

, the dependent variable, or function

S»y glides along the sequence 1,3,6, . . . But we must

not let such talk make us forget what the ranges are:

these are classes and not rows of their members or terms;

the terms of either range appear in many different rows,

but the range is one thing and each of the rows is another.

If we so desire we can make explicit the propositional

function involved in determining the range of Sn ; we can

say, for example, that the symbol Sn represents any one
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of the terms in the class of verifiers of the propositional

function—x is the first term or the sum of the first two

terms or the sum of the first three terms, ... of the

row i, 2, 3, 4, 5, ... ; such speech is or may become for-

biddingly cumbrous, but it serves to remind us that,

though propositional functions be not always mentioned,

they are yet omnipresent and may, if we so desire, be

made manifest to the eye or the ear.

(5) If we agree to let x represent any one of the

numbers in the unending row, I, §, \y §, . . . ,
the range

of the variable x is the class of all the numbers in the row;

it is common and often convenient to indicate this row

by writing: 1, -, —,—,—,..., nm, • • •
; the symbol

2 2 2 2* 2

-^z"i is called the general term or the nth term (of the row);
2

it is, you observe, a function of n. But what is n here?

Plainly it is a variable whose range is the class of positive

integers; so the symbol -^1 is a variable depending on

another variable n; using our figurative way of speaking,

we may say that, as n varies from term to term of its

range, the function ~^zi runs from term to term of its
2

range, the class of numbers in the foregoing row; we may
say that, if n starts at 1 and runs along the row 1,2,...,

—j—i starts at 1 and runs along the row 1, |, j, . . .
; or

we may say more precisely that n represents any one of

the numbers of its range and that -^1 correspondingly

represents any one of the numbers of its range; the latter
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range is identical with the range of x, and so you see that

in this example x and -^r are, as variables, identical, two
2

symbols playing the same role.

(6) Consider the infinite (unending) series,

III T

I+-+-+-+ . . . n — li
2 2Z 2* 2

its terms are those of the row in (5); it is, you notice, a

geometric series or progression whose ratio, as it is called,
—

the ratio of any term (except the first) to its predecessor,
—

is |; let us denote the sum of the first n terms by Sn ;

then, as you learned in elementary algebra, Sn = 2——^r\.
2

Observe that we are here confronted with three related

variables: n y ~T-it and Sn, the second being a function
2

of the first, and the third a function of the second (directly)

and of the first (indirectly, through the second). What
are their respective ranges? That of the first is the class

of positive integers; that of the second is the class of

numbers in the row 1, -,—,—,... ; that of the third is

2 2 2

3 7 15
the class of numbers in the row 1, -, -,

—
, ... I leave

2 4 16

it to you to describe the situation in the dynamic, or

picturesque, language of change, variation, behavior.

(7) The foregoing six examples are very specific. Let

us take one that is somewhat less so. Consider the

geometric progression

(S) a+ar2 +ar3 + . . . +ar
n ~ 1

+ . . . ;
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for the sum of the first n terms we have, as you know,

I r
Sn =a

I — r i — r

as in example (6) we have here three related variables,

n, r" and SB, if we suppose (as we commonly do) that a

and r have given values; and you may wish to tell, as an

exercise, how the three variables are related and what

their respective ranges are. I desire to call your attention

to the fact that, when we say
"
Let (S) be any geometric

progression," we are implicitly treating both a and r as

variables, and not only that, but we are explicitly treating

(S) itself as a variable. In such case, what are the ranges

of 0, r and (S) ? We can not answer definitely until we
have told what field or domain of number we are working

in, as (say) that of the positive integers or that of the

rational numbers or that of all the so-called real numbers

or that of the ordinary complex numbers, and so on. If

we are working in,
—

confining ourselves to,
—the domain

of the real numbers, the answer is that the range of a

is the class of all the real numbers, that r's range is the

same as as and that the range of the variable (S) is the

class of all unending geometric series or progressions

formed or formable of real numbers. It is interesting to

observe, in passing, that the range of (S) contains a two-

fold infinity (°°
2
) of geometric series; for assigning some

value to a, we can obtain as many series whose a has that

particular value as there are possible values for r,
—as

many, that is, as there are real numbers,—an infinite

multiplicity often denoted by the symbol °°
; it is plain

that for each of these we get <x> series by letting a assume

its possible values; so that in the domain of real numbers

there exist oo X oo, or oo 2
, unending geometric series—as
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many as there are points in a plane or pairs of real num-
bers. You will find it very interesting to describe in your
own way the functional relations among the six variables

n, a, r, r
n
, Sn and (S), and very instructive to state explic-

itly the propositional functions implicitly involved in

determining the various ranges. Instead of fixing upon a

particular domain as above, you may say, if you like,
"
Let

our number domain D be any number domain "; then Dy

too, will be a variable and the complications thicken.

Variables, you see, are lurking everywhere and are ever

ready to leap into the arena of our attention, thus lifting

our thought to higher and higher levels of generality.

The scale of levels is summitless. Science, it is said, is

the study of functions; functions are variables—science

is the study of variables; every variable has its range

partly determined by the scope of some propositional

function—science is the study of propositional functions;

the general concept and the name of propositional function

are only beginning to gain a little recognition; the philoso-

phy of science is in its infancy; the infant's nurse is the

philosophy of mathematics; in the richest nation known
to history,

—made such by science,
—the nurse can hardly

contrive to live—she can hardly even publish her works

because they are not profitable commercially; the nation

is vain and boastful. May God deliver us.

In the foregoing list of examples the ranges of the

variables are composed of numbers, with one notable

exception: the range of (S) is composed of series; these

are indeed constructed out of numbers but they are not

themselves numbers; and, though they are called geomet-
ric series, they are not spatial entities and have no essen-

tial connection with geometry. In citing additional

examples, it will be easy to include among them some
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that are strictly geometric and some that are neither

geometric nor numerical.

(8) Consider the class 2 of the spheres having a given

point C for center and any radius greater than zero.

Each of the spheres has many points, many tangent lines

and many tangent planes. Each sphere has an interior,
—

the region or room bounded by the sphere,
—and an

exterior—the region outside of it. If you let S, R, R', r,

P, Ly ir, I, A, V> P', P" respectively represent any one of

the spheres, any one of the interiors, any one of the

exteriors, any one of the radii (taken as line segments),

any one of the points on any one of the spheres, any one

of the tangent lines, any one of the tangent planes, any
one of the radial lengths, any one of the sphere areas,

any one of the sphere volumes, any one of the points

common to all the interiors, any one of the points common
to all the exteriors, then the symbols S, R, R', r, P, L, iry

P' , P" are geometric variables, and /, A, V are arithmetic,

or numerical, variables. Of the former ones the respective

ranges are: the class S, the class of all the interiors of the

spheres in 2; the class of all the sphere exteriors; the

class of all the radii; the class of all the points of our

space except the point C; the class of all the lines of space

except the lines of the line-sheaf having C for vertex;

the class of all the planes of space except those of the

bundled vertexed at C; the class whose sole member is

the point C (P
f

being thus a constant); and the null

(empty) class of points (the range of P" containing no

terms); the ranges of /, A and V are the same, namely,
the class of all the positive real numbers (zero not

included).

Let me remind you of something and then submit a

few questions that should give you a happy hour or so of
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cloistral meditation. You know, I believe, that when
mathematicians say that two variables V and V (having
K and K' for their ranges) are functions of each other,

they mean that to any given term in either range there

corresponds a definite term (or terms) in the other range;

you know that, if to each term in (say) K' there corre-

sponds only one term in K, then V is called a cm<?-valued

function of V, and that, if two or more terms in K corre-

spond to a term in K', V is called a many-valued function

of V ', where the
"
many

"
may be finite or infinite^

The questions I wish to ask are these: Is each one of the

foregoing 12 variables, S, R, R'> r, and so on, a function

of each of the II others? Which ones, if any, of these

functions are one-valued? Which, if any, are many-
valued? Which, if any, are infinitely many-valued?
What sort of a function is / of r? r of /? Is there in 2

a least sphere? A largest one? If we choose to regard

the common center C as a sphere of zero radial length,

and, in describing 2, drop the requirement that every
radius must exceed zero, what, if any, changes must be

made in the answers to the foregoing questions? If we

fancy ourselves working in projective space
—which, asyou

know, has one and but one plane (an infinite sphere) at 00

and if we let 2 be the class of spheres having a given
common center C and radius equal to or greater than

zero, what are the ranges of our 12 variables?

1

*
£ « %

Fig. 25.

(9) For further examples of variables, some of them

geometric, some ofthem numerical, consider the following:
Let the line-segment AB have a length of 2 units. Denote
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by Pi the mid-point of AB, by P2 the mid-point of seg-

ment PiB, by P3 the mid-point of P2B, and so on end-

lessly, so that Pn will denote the mid-point of the segment
Pn _ 1

B. Suppose we let the symbols P, S, S', I, I' represent

respectively any one of the indicated mid-points, any
one of the segments {AP\, P1P2, P2P3, • . . ), any one

of the segments beginning at A and ending at a mid-

point, any one of the lengths of the S-segments, any one

of the lengths of the S'-segments; the ranges are respect-

ively the class of the mid-points, the class of segments in

the row APi, P1P2, P2P3, • , the class of segments in the

row APu AP2, AP3, AP±, . . .
,
the class of numbers in

tl»e row I,
—

; -r-,
—

,
. . . , and the class of numbers in the

2 2 2

row 1, —,
'—

. . . Observe that P, S and S" are geometric
2 4

variables and that / and /' are numerical. Observe that

the role of P is the same as that of Pn and so we may write

P =Pn ; similarly, we may write S=Pa _ 1
Pn (understanding

that Po is A), S' =APn, l
=

~T=ri and l'
= 2 5^1; and so,

2 2

you see, the variables P, S, S', /, /' are functions of the

variable n whose range is the class of positive integers.

Are the functions one-valued or are they many-valued?
Describe the so-called variation of these functions as n
"
varies." As n increases more and more will Pn ever

reach P? Why not? Can you, by increasing n, make

the length of the segment PnB smaller than any length

you choose if you don't choose zero length ?

(10) In Fig. 26 we have a circle K of given center C
and radius of given length R. By circle K, I mean the

curve. Denote the length of K by L and the area of K by
A. Do not fail to distinguish geometric from numerical
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things: observe, for example, that K is geometric,
—a

specific curve,
—and that, like R, L and A are numerical—

specific numbers. Consider the indicated inscribed regu-

lar polygons
—the triangle (or 3-side), hexagon (or 6-side),

do-decagon (or 12-side), 24-side, 48-side, and so on end-

lessly; note that the nx\\ polygon of the unending row has

Fig. 26.

n-l
3X2"" sides. You see that n is a variable whose range
is the class of positive integers. Denote by Pu the nth

polygon, by Lu the perimeter (length) of P„, by An the

area of (size or magnitude of) Pn, and by dn the length of

the perpendicular from C to a side of Pn . The symbols
Pn, Ln, An and da are variables. Which ones are geo-
metric? Which numerical? They are functions of n.
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What kind? What are their ranges? Are these finite

or infinite? Do the functions increase or decrease with w?

All increase with n except P»; how justify the exception?
Can n so increase that Pn will coincide with K\ Or Ln

with Z,? Or An with At Or dn with R? Why not?

the differences L—Ln, A — A„, R—dn are variables, func-

tions of n—are they not? If I name a positive number a

as small as I please, can you then choose such a value for

n,
—such a term in ns range,

—that the foregoing differ-

ences will be less than <r? Having thus chosen n, if you
let n take still larger and larger values, will the differences

in question keep always less than <r? Will they ever

vanish—that is, be equal to zero? Why or why not?

(n) Let us now consider two variables that are

neither geometric nor numerical. Referring to Fig. 26,

let us write K — P\, K —
P2, . . .

;
these seem to be symbols

but what, pray, do they symbolize? They are indeed

suggestive, but they have at present no definite meanings,
for neither K nor any of the P's is a number, K being just

a circle—a specific circle—and each P a specific polygon.

We may, however, assign meanings to the ostensible

symbols, thus making them genuine symbols. What

meanings shall we assign? A little reflection upon the

make-up of Fig. 26 naturally suggests that we let K — Pi,

K —
P2, K— Pz, . . . , denote respectively the endless

polygon-row.? indicated at the right of them below:

(S)

K-P,
K-P2

K-P3

P2, Pz, P4, P5,

P3, P±, P5, . .

P±, P5,
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Note that we have here an endless (downward running)

row (S), of endless rows of polygons. It is obviously natu-

ral to denote by K —Pn any one—the nth one—of the

rows in the row (S). The symbol K—Pn thus becomes

a variable whose range is, not (S), but the class of rows

in (S). Our new variable is plainly not numerical;

neither is it geometric for, though the rows,—the terms in

its range,
—are composed of polygons, a row of geometric

figures is, in strictness, no more a geometric figure than a

row of men is a man.

For an example of a variable more evidently, though
not more actually, non-geometric and non-numerical than

the preceding one, we may take p where p represents any
one of the propositions derivable from some given prepo-
sitional function </>(#) by means of its verifiers. The

range of p is obviously the class of true propositions

having 4>(x) for matrix.

Conceptions of Limit.—It is evident that much of our

human thinkings
—I strongly suspect that all of it,

—is

concerned with variables. One of the lessons which the

history of thought and our personal experience in thinking

teach very clearly is that we can not deal with variables

logically or with any close approximation to rigor without

the help of the notion (or notions) which mathematicians

denote by the term
"

limit." We must, accordingly, try

to understand what the term means. I have just now
used the plural—conceptions of limit—instead of the

singular. I have done so because there are various

meanings of the term and I intend to present more than

one of them. The definitions I am going to present are

closely related, but they are not equivalent: they differ

in content and scope, and you will find it very instructive

to compare them in these respects. You will observe at
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once that there are two respects in which they agree
—

they involve the notion of variable and its range (every

limit is a limit of a variable) and all but one of them
involve the notion of difference. The notion of variable

we have discussed at unusual length and it is, I trust, now

fairly clear. It will be useful, I believe, to say a pre-

liminary word regarding the notion of difference. It is

not my aim to define the general notion; my aim is merely
to enliven a little our consciousness of it. In the back-

ground of our human thinking, however refined, however

precise the ideas we are explicitly handling, there lurk

other ideas—shadowy, nebulous, vague
—which we have

not defined, which we may not have attempted to define,

which we may not even be conscious of; yet these back-

ground ideas give our so-called precise ones all the meaning
the latter have. In the present discussion, the idea of

difference is a background idea.

Any given variable, as we have seen, has a range
—a

certain class of things, or objects, called the terms of the

class and commonly spoken of as the variable's
"
values."

A class being given, each of its terms is comparable with

each in one or more respects: that is to say, each of them

differs from each in one or more respects; the respects,

and hence the differences, may be very definite or fairly

definite or very vague; the differences may be differences

in respect of position or of magnitude (size) or of number
or color or shape or weight or of importance or of dignity

or of beauty or of sensibility and so on; we may, therefore,

speak of kinds of difference as distinguished from amounts

of a given kind. It is essential to note the obvious fact

that, if each term of a class differs from each of its fellow

terms in respect to some specific kind k of difference, it

may happen that the terms in the class differ from some
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terms not in it in respect to the same kind k. Examples
abound, and need not be cited. If, with respect to a given
kind of difference, two terms be identical, we shall say
that the amount of their difference (of the given kind)

is null or naught; if, as often happens, the given kind of

difference be numerical, then the hypothetical identity

is numerical equality and we shall say, in accordance with

usage, that the amount of difference is zero; we shall thus

be using zero as a special variety of the foregoing null or

naught. Here, as elsewhere, it is essential to use good
sense. It would, for example, be nonsense to speak of

two numbers as differing in respect to color or patriotism
or loyalty. When we speak of two terms as having an

amount of difference of a kind k, it is to be understood that

k is a kind with respect to which the terms can be sig-

nificantly compared. A kind k of difference may be

called a ^-difference; and a given amount d of it, the

^-difference d.

I am now going to define a very convenient idea to be

called a k-neighborhood of a term t. Let t be a term

comparable with one or more terms in respect to a kind k

of difference, and let d be a given amount (greater than

null) of such difference; then d is said to determine a

^-neighborhood of t. If d grow larger or smaller, the

neighborhood will do likewise. If d be specified, we may
speak of the ^-neighborhood d of t. Observe that d

determines the same neighborhood for each and every term

comparable with one or more terms in respect to the

given difference-kind k. A term t' will be said to be in

or not in the ^-neighborhood d of t according as t' differs

from t by an amount less than or not less than d. You
see at once that, if t' be in the ^-neighborhood d of /, t is

in the ^-neighborhood d of /'. Obviously t is itself in all
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the ^-neighborhoods obtainable by letting d vary, for the

amount of ^'s difference from t is null and null is less than

any amount d is allowed to be.

Let us now give the following broad definition D\ of

the term limit, and see what happens.

D\ : Let V be a variable, R its range, and k a kind of

difference with respect to which the terms in R are com-

parable; if there be a term / (in R or not) such that, how-

ever small a ^-neighborhood of t be chosen, some term of

R is in the neighborhood, then t is a &-limit of V.

When, as is usual, the context indicates what particular

k is under consideration, it need not be mentioned explic-

itly and we may speak of a t (satisfying the foregoing

conditions) simply as a limit of V.

It is easy to see that, under definition Di, every term

in the range R of a variable V is a limit of V, for, if t be

in R, and k be an admissible kind of difference, the amount
of /'s /e-difference from t being null, t is in every ^-neighbor-
hood of/, and is, therefore, a £-limit of V. A null variable

has no limit; every other one has. Unless the contrary
be clearly indicated, let us understand that the variables

under discussion are not null variables. Can a V have a

limit that is not in the R of VI If t be not in R and if

fs ^-difference from some term in R be null, then clearly

t is a &-limit of V; if an outside t be a &-limit of V> it

may or may not be a £Mimit of V, if k and k' be not the

same. For example, let V's range have but one term—
say, a sphere S of given color, mass and volume; let

^-difference, ^'-difference and ^"-difference be respectively

difference in color, in mass and in volume; then any

object having the same color as S will be a &-limit of V,

though not in general a £'-limit or a F'-limit; and so on.

Query: Can a V have a &-limit t not in the R of V
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if the amounts of t's ^-difference from the terms in R be

each more than null? If R be a finite class, the answer

is evidently no. If R be an infinite class, the answer

depends on k. Here we must make an important distinc-

tion. The difference-kind k may be such that, given any
two amounts of it, there are at most only a finite number
of intermediate amounts. Such a kind may be called a

discrete difference-kind. An example is the difference-

kind we have or should have in mind when, confining our

attention to zero and the positive integers, we talk of the
"

differences
"

(strictly, the amounts of difference) found

by subtraction; of such amounts, the smallest is zero,

the next smallest is I, the next 2, and so on, and there are

no other amounts of the kind of difference we are here

dealing with. If we were talking of
"

differences,"
—

amounts of difference—of (say) rational fractions, we
should have in mind a different kind of difference. As

in the foregoing example, so if k be any discrete difference-

kind, there is, as you readily see, an amount of the

^-difference next greater than the null of it. On the other

hand, a difference-kind may be such that, given any two

amounts of it, there is one amount (and hence infinitely

many amounts) intermediate to the given ones. Such a

kind may be called a compact or dense difference-kind. An

example is the difference-kind involved when, confining

our attention to the rational numbers, we say the amount
of difference of this fraction and that is so-and-so. It is

perfectly clear that no amount of dense difference-kind is

next greater than the null amount of it.

Let us now return to our query. If the ^-difference

be discrete, the answer is negative, even though R be

infinite. For let d be the smallest amount of ^-difference

except null; then no term t' of R is in the /('-neighborhood
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d of t for, if *' were in the neighborhood, then the amount
of ^-difference of t and t' would be less than d, but there is

no such amount except null, and null is excluded by the

hypothesis of the query. On the other hand, if the

^-difference be dense, the answer is affirmative: there are

F's having the sort of limit required. For it is sufficient

that the range R be such that for some t not in R there is,

for any chosen ^-neighborhood d of t, however small the

neighborhood, an R term in the neighborhood
—that is,

an R term differing from t by more than null and less than

d; and the existence of such F's may be shown by letting

V be the variable whose R has for its terms zero and all

ordinary fractions less than I ; you note that I is a t not in

R; that in comparing the terms in question we employ
a dense difference-kind; that, however small a neighbor-
hood of I be chosen, R has terms in the neighborhood;
and that I is, therefore, a limit of V. For another example
consider the variable x in (5) of our foregoing list of

variables; show that zero, which is not in the range, is a

limit of x. You will find it interesting and very instruct-

ive to examine all the variables of the cited list with a

view to ascertaining which of them have limits outside

their ranges and what the limits are.

The concept of a limit as defined by the definition D\

has, you see, some striking properties. It is, however,

too broad for certain highly useful purposes; for example,
it does not sufficiently discriminate variables among
themselves; according to it all variables (except null ones)

have limits, as we have seen, and every term in a variable's

range is a limit of the variable. It is obviously desirable

to classify variables with respect to the character or con-

stitution of their ranges. Let us accordingly try a some-

what narrower definition D2 of the term limit.
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D2I Let V be a variable, R its range, and k a suitable

kind of difference; if there be a term t (in R or not) such

that, however small a ^-neighborhood of t be chosen, some

R term differing from 2 by more than null is in the neigh-

borhood, then t is a £-limit of V.

Note that the sole distinction between D\ and A> is

due to the presence in D2 of the phrase
—"

differing from

/ by more than null." The distinction, seemingly slight,

is very grave, as we shall see. In the first place we easily

see that no V has a £-limit if k be a discrete difference-

kind. For suppose t to be such a limit; let d be the

smallest amount of the /^-difference greater than the null

amount; then R has a term, say t', in the ^-neighborhood
d of t; and t' differs from t by more than null and less than

dy which is impossible. Again, no V whose R is finite

has a limit. For suppose such a V to have a limit, say

t\ let the difference-kind k be dense—the preceding

proposition makes it superfluous to consider the case of

k discrete; the number of terms in R is finite, say, n\

there are at most n non-null amounts of ^-difference

between them and t; one of these amounts, say d, is as

small as any of them; by supposition there is an R term,

say, t', in the ^-neighborhood d of t, and t' differs from

t by more than null and less than d, which is impossible.

From the two propositions just now proved it follows

that if a V have a limit under definition D2, it is necessary
both that Vs range be infinite and that the difference-

kind concerned be dense. Are these necessary require-

ments also sufficient? A simple example will suffice to

show that they are not. Let F's R be the class whose

terms are the rational numbers: 0, 1, 2, 3, 4, . . .
; the

appropriate difference-kind is dense (since we are dealing

with rationals) and R is infinite; if V have a limit /, Ms a
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rational number; of all the non-null (non-zero in this

example) amounts of difference between t and the R
terms, one of them, say d, is as small as any of them,

obviously; hence no R term differing from / by more than

zero is in the neighborhood d of t; and so V is limitless.

Query: Are there any variables which, under Do, have

limits? The answer is yes; such variables abound in

endless number and variety. Is the x in (i) of our list of

variables one of them? No; for the difference-kind

appropriate to cardinal numbers is discrete. For a like

reason neither is the variable Sn in (4) one of them.

But, as you easily see, the variable x, or -^zri, in (5) has

a limit, namely, zero (0); so has Sn in (6), the limit being

2; so, too, has Sn in (7) if r be numerically less than 1;

for the range of n is the class: 1, 2, 3, . . . ;
the range of

r
n

.

r
n

is the class: r 1

, r2 , r3 , . . . ; the range of -—
is the

2 3

class :
, , , . . . ; and the range of Sn is the class

I — r 1 — r 1 — r

a
/ 1 r

\\
— r 1 — r) \i

— r 1 —r) \i
— r I — r

Consider these ranges. Let d be any given number

greater than 0; as r is less than 1, it is plain that there are

terms in the range of r exceeding by less than d—terms

that is, in any prescribed neighborhood of 0, however

small; and so, is the limit of r"; evidently it is also the

rn

limit of -—-

; without further talk you see that in any

prescribed neighborhood of —— there are terms of the

range of Sn ; hence Sn has —— as limit. What if r be
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not numerically less than I? If r = l, the divisor i—r
is zero, but the phrase

"
division by zero

"
is meaningless,

and so, if r = I, <S» is limitless. If r be numerically greater
than i, you readily see that the (numerically) smallest

difference between —— and the terms of S»'s range is

rz~~~\ hence, if we choose a neighborhood d of -

CLT

where d is smaller than (and we can take it thus
i — r

v

smaller, if, as we are assuming, a is not zero), SVs range

has no term in the neighborhood; therefore ——
is not a

limit of S„, if r be numerically greater than zero. Has
Sn any limit at all under the hypothesis? You can

readily show that it has not.

I wonder if you are growing weary of this long discus-

sion. I must believe you are, unless your desire to under-

stand the subject be genuine, deep, invincible. If we fail

to master some important idea, what is the explanation?
It may be stupidity; it is, more probably, unwillingness

to pay the price
—meditation; but, if we be really inter-

ested, meditation is not a price, it is a pleasure
—a sus-

taining joy; the great source of success is abiding interest.

I have been counting upon your interest and am going
to count upon it yet further.

Consider that somewhat unfamiliar variable (S) in

(7) of our list. Has (S) a limit? Its range, we saw, is

the twofold infinitude of geometric series formable from

a and r where a and r are variables each representing any
real number. As the range of a (or of r) is the class of

real numbers, it is evident that every real number is a

limit of a (and of r), for it is evident that in any given



262 MATHEMATICAL PHILOSOPHY

neighborhood, however small, of any given real number,
there are real numbers whose numerical difference from

the given number is more than zero. If we are to talk of

(S) as having or not having a limit, we must indicate

what we are going to mean by
"

difference
"
of geometric

series as such. This we may do as follows: let {a\, r\)

be a given pair of real numbers, and let d and d' be given

positive numbers; we agree to say that the neighborhood
d of a i, and the neighborhood d' of n, together determine a

neighborhood (d, d') of the series a\-\-a\r\-\-a\r\
2 + . . ,

and that, if a-i be in the first neighborhood and r2 in the sec-

ond, then and only then the series a2+a2^2+«2^22+ . . . ,

is in the third. Now, as we saw a moment ago, a\ is a

limit of <z, and r\ of r; hence, the series a\-\-a\T\-\-

a\T\
2

-\- ... is a limit of a-\-ar-\-ar
2

-\- . . .
,
that is, of

(S); hence, every series in the range of (S) is a limit of (S).

You will recall that in (n) of our little list of variables,

p is a variable whose range is the class of all the true

propositions having a given propositional function 4>{x)

for their common matrix. Can we associate the notion

of limit with p\ We can, as follows: Let V be a variable

whose range R is the class of verifiers of (x); denote the

range of p by R'; if x\ be a given term in R, then the

proposition 4>(xi) is a definite term in R'—to each R
term there thus corresponds an R' term, and conversely;

let k be a suitable difference-kind for the R terms; it will

evidently be a suitable difference-kind for the R' terms,

for, if and only if the amount of ^-difference between the

R terms x\ and xi be null, the corresponding R' terms

4>(xi), 0(^2) are identical propositions
—

indistinguishable

with reference to k; we will regard the amount of /^-dif-

ferences between x\ and X2 as the measure of ^-difference

between 4>(*i) an^ 0(^2); let t be a term (in R or not)



VARIABLES AND LIMITS 263

comparable with the R terms with respect to k; then

<£(X), whether in R' or not, is comparable with the R'

terms with respect to k; to the ^-neighborhood d of t

corresponds the ^-neighborhood d of <i>(t); if an R term

t' be in the former neighborhood, the corresponding R!

term 4>{t') is in the latter neighborhood; and so, you see,

if t be a £-limit of V, the proposition 4>(t) is a £-limit of p.

Observe that, according as a £-limit of V is or is not an

R term, the corresponding limit of p is a true or a false

proposition.

For a very simple example of the foregoing, suppose

<t>{x) to be: x is a term in the class a of the rational num-
bers |, |, j, . . . ; ^'s range is a; ^>'s range is the class a'

of propositions: \ is a term in «; | is a term in «; j is a

term in a; ... . Zero being a limit of j^, the false propo-
sition—zero is a term in a—is the corresponding limit of p.

What change of supposition will make the limit of p a

true proposition?

Permit me to recommend strongly that, as an exercise,

you determine which of the variables in the above-given
list of variables have limits under definition D2 and what
the limits are; that you similarly examine a goodly variety

of variables not in the list; and that you consider the

question: if a V has a £-limit t under D2 ,
has it the same

limit under Z)i?

There are two reasons why I am inviting you to con-

sider various non-equivalent definitions of the term limit.

One of the reasons is that such consideration helps to

deepen, refine and clarify our understanding of the great

conceptions
—variable and range thereof. The other

reason is that mathematicians use the term
"

limit
"

in a

variety of senses differing in scope. In any discussion

involving the term
"

limit," mathematicians, when they
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speak carefully (which, being human beings, they do not

always do), indicate explicitly or contextually the sense in

which the term is being employed. I have now pre-

sented two widely differing definitions of the term—
D\ and D2. I am not aware that the former one has been

hitherto given. On the other hand, D2 (or some virtual

equivalent otherwise stated) is of very frequent use in the

mathematical literature of the last half-century. In the

next lecture I shall invite you to consider additional mean-

ings of the term in question.



LECTURE XIV

More About Limits

FURTHER DEFINITIONS OF LIMIT LIMITS AND THE INFINI-

TESIMAL CALCULUS CONNECTION WITH ORDER, SERIES

AND SEQUENCES LIMITS AND LIMIT PROCESSES OMNI-

PRESENT AS IDEALS AND IDEALIZATION IN ALL THOUGHT
AND HUMAN ASPIRATION—IDEALS THE FLINT OF

REALITY GENIUS AND GENERALIZATION.

There are two additional definitions of the term
"

limit
"
with which it is, I believe, very important for

philosophical students to get well acquainted. Both of

them are closely, indeed essentially, connected with what

mathematicians variously call a linear order or a serial
'

relation or a series or a sequence. Before presenting them
we must recall clearly to mind some matters briefly

explained in Lecture X and then join therewith certain

kindred ideas and distinctions. You will recall that a

propositional function, say </>(#, y), containing two

variables, is said to determine a (dyadic) relation; that,

if <t>(xi, j2) is a true proposition, then and only then the

pair or couple (#1, ^2) is called a constituent or element of

the relation; that the class of all such constituents,
—the

class of all the pairs verifying (satisfying) </>(*, y), is the

relation; that, if we denote the relation by R
y
we say

"
x has the relation R to y

"
by writing xRy; that R

accordingly has a sense—so that, if (xi, yi) be a con-

265
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stituent, we have xiRyi, but, in general, not yiRxi; that

the domain of R is the class of all the x's,
—the class of all

the terms,
—such that each of them has the relation to

something or other; and that the codomain of R is the

class of all the y's,
—the class of all the terms,

—such that,

given any one of them, something or other has the relation

to it. I may add that the terms in the domain of R are

often called the referents of R and that the terms in the

codomain are called the relata of R. Some relations have

fields; others, not. R has a field if and only if the domain

and codomain are of the same type,
—that is, are com-

posed of individuals or else of classes of individuals or

else of classes of classes of individuals, and so on,
—and

the field is, if there be one, the logical sum of the domain

and codomain,—the class, that is, containing every term

in the domain or in the codomain and no other term.

Thus, if <f>(x, y) be—x is a husband of y
—

then, if yi be a

wife of X\, the couple (xi, yi) is a constituent of the rela-

tion; the relation
"
husband of" is the class of all such

couples; the domain is the class of husbands; the codo-

main is the class of wives; the field is the class of husbands

and wives; each husband and nothing else is a referent;

each wife and nothing else is a relatum; observe that in

this example, the domain and codomain have no common
terms. If <j>(x, y) be—x is a positive integer less than a

positive integer y
—then the relation is the class of all

couples (xi, yi) such that xi and yi are positive integers of

which the former is the less; every integer is a referent;

every integer except I is a relatum; and so, you see, the

domain includes the codomain, but the converse is not

true. If R were identity, for example, or equality or

diversity, then, as you easily see, the domain and the

codomain would each include the other—they would
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coincide. Of relations as a subject I have already

repeatedly indicated the immensity and the first-rate

importance. At present, I am asking you to consider

only so much of it as is necessary and sufficient for our

present purpose, which is that of preparing us to under-

stand certain highly important meanings of the term

limit.

Relations are endless in number and in variety and

they are omnipresent as well in practical life as in abstract

thought. There is one variety (including a vast multitude

of sub-varieties) to which I am going now to ask your best

attention. Before defining it, it will be helpful to con-

sider a simple specific example of it. The example I am

going to use is one of the relations instanced a moment

ago. I mean the relation determined by the propositional

function : x is a positive integer less than a positive integer

y. Let us denote the relation by P. Observe what P is.

It is the class of couples: (i, 2), (1, 3), (1, 4), (1, 5), . . . ;

(2, 3), (2, 4), (2, 5), . . . ; (3, 4), (3, 5), ..;...;...;
and so on endlessly. Note that P has a field—the class of

all the positive integers. The relation P has numerous

properties; let me ask you to inspect very carefully just

three of them. The three are these: (a) if n be in P's

field, (w, n) is not a constituent of P,
—that is, nPn is a

false proposition,
—that is, P is not a relation which, like

identity, holds between a term and that same term;

(b) if n and n' are in P's field, then either (n, n') or else

(w', n) is a constituent of P—that is, nPn' or else n'Pn\

(c) \inPn' and n'Pn"
y
then also nPn" . Because the rela-

tion has these three properties, it is called a serial relation,

or a series, or a sequence, or a specimen of linear order.

You detect at once how to define these equivalent terms.

The definition is as follows: A serial relation (or series or
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sequence or linear order) is a relation R such that: (a) if

xRy, x and y are not the same; (b) if x and y are terms in

R's field, then xify or else yRx; and (c) if xRy and yi^z,

then xRz. In this discussion, let us use the shorter names,

sequence and series, for such an R, instead of the other

names. Evidently the above P is a specific instance of a

sequence or series. Consider another instance, say P',

where P' is determined by the prepositional function:

x is a positive integer greater than a positive integer y.

You see that P' is indeed a sequence. Notice that P and

P' are different sequences: for example, the couple (i, 2)

is a constituent of P but (2, 1) is not, while (2, 1) is a

constituent of P' but (1, 2) is not. Yet the field of P is

the same as the field of P'—namely, the class of positive

integers. You readily see that, if the field F of a given

sequence be infinite, there are infinitely many different

sequences having F for their field. It is plain that the

smallest class that can be the field of a sequence is a class

having two and only two members, say, a and b; even

in this case, there are two sequences having the field in

common; one of them consists of the couple (a, b), the

other of the couple (b, a). Let me, in passing, propose an

instructive little exercise. Given a class of three terms,

a, b and c, show that there are six sequences having the

class for field, that each sequence is a class of three couples,

and write down the couples for each case.

In our introductory study of sequences, or series, it is

desirable to learn something more of the subject's lan-

guage; for as supersimians, we must chatter about the

subject, and as supersimian philosophers, we must try to

chatter intelligibly. If the relation R be a sequence we

say that the referents of R are predecessors
—

predecessors

for R, or R predecessors; that the relata of R are sue-
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cessors—successors for R, or R successors; that, if xRy,
a: is a predecessor of y and y is a successor of x—more

precisely, that x is an R predecessor of y and y is an R
successor of x. You see immediately that every term

in R's domain is an R predecessor, that every term in

R's codomain is an R successor, and that every term in

R's field is either a predecessor or a successor and is

generally (not always) both. Thus in the case of our

example P, I is a predecessor but not a successor, while

every other integer in the field is both; on the other hand,
in the case of P', I is a successor but not a predecessor,

while every other positive integer is again both. If a

term t be an R predecessor but not an R successor, the

sequence R is commonly and conveniently said to have a

beginning t
—to begin at t; thus P has a beginning, it

begins at i. If t be a successor but not a predecessor, the

sequence has an end t
—it ends at t; thus P' has an end,

it ends at I ; P is endless, P' is beginningless. A sequence

may have both beginning and end or neither. An

example of the former is the sequence P" determined by
the propositional function: x is a positive integer less than

a positive integer y not greater than 10; you see that

P" is a sequence and that it has a beginning, I, and an

end, 10. The field of P" is finite. Can a sequence
whose field is infinite have both beginning and end? Yes;
consider the sequence determined by the propositional

function: * is a real number (equal to or greater than i)

less than a real number y (not greater than 2); you see

that the relation determined by the function is a sequence,
that the sequence begins at 1 and ends at 2, and that the

field is infinite—the class whose terms are 1, 2 and all the

intervening real numbers. For an example of a sequence

having neither beginning nor end, we may take the
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series P'">
—the class of couples (x, y),

—determined by the

propositional function: x is a real number (greater than

i) less than a real number y (less than 2); it is clear that

P'" is beginningless and endless—each term in its field

is both a predecessor and a successor. If t be a term in the

field of a sequence and be at once a successor of t\ and a

predecessor of *2> then t is said to be between ti and t?. If

the sequence be S, we may say that the terms between

ti and t2 are S-intermediate to t\ and tz. If between every
two terms in the field of a sequence there is a term of the

field, the sequence is said to be dense; thus, P'", for

example, is dense, while P, P\ P" are not. You will

hardly confuse the notion of a dense sequence with that

of a dense difference kind k. The amounts of such a kind

constitute a field of a dense sequence but the difference-

kind is not itself a sequence. >

It is noteworthy that, in dealing with a sequence,

mathematicians do not usually state explicitly a proposi-

tional function determining it, though it is always pos-

sible and often helpful to do so; neither do they usually

indicate explicitly (as above done in the case of P) the

class of couples constituting the sequence, though this,

too, can be done if desired. For example, if a mathema-

tician wishes to invite attention to our sequence P, he

will ordinarily say: Consider the sequence

1, 2, 3, 4, ... , n, tt + i, . . .

He will probably talk as if the row of numbers were the

sequence, though it is not—the sequence being, as we have

seen, a certain class of couples; the numbers in the row

constitute the field of P but the field as such he will

probably not mention; he will speak of the numbers as

the terms of the sequence, though they are merely the
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terms of the field, the terms of the sequence (a class of

couples) being the couples in the class; and he will

ordinarily have you understand that a number on the left

of another in the row is a predecessor of the latter and that

the latter is a successor of the former. This usual row

method of indicating sequences has obvious advantages,
—

it is mechanical, spatial, visual, diagrammatic,
—but it

has to be used with care if confusion and error are to be

avoided, for, as you already see and will further see, it

disguises some of the nicer logicalities involved. For

example, the mathemetician may indicate the sequence
P' (instead of P) by writing the foregoing row of numbers;
in this case, a number to be a predecessor of another

must be on the right of the latter instead of on the left of

it; you see that the notion left-right (or its like) is not

that of predecessor-successor; the former is spatial and

sensuous, the latter logical and supersensuous; in the case

of P, 3 is the predecessor of 4, not because 3 is on the left

of 4 in the row, but simply because 3P4; and in the case

of P\ 4 is the predecessor of 3, not because the former is

on the latter's right, but because \P'^ ; again P begins at

1, not because 1 begins the row of numbers, for, you see,

P' ends at 1, despite the fact that the row begins at I.

Keeping such precautions in mind, we may often very

conveniently employ the row method of indicating or

representing sequences.

We are at length almost prepared for a certain new
definition of the term

"
limit "; but there remains to be

explained one further preliminary. It is a sfollows: If

xRy implies xR'y, the relation R is said to be included

in the relation R'; in other words, R is included in R' if

every couple (xy y) in the class of couples constituting R
is a couple in the class of couples constituting R'; if R
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be included in R' we say naturally that R is a part of R' .

I need hardly point out the fact that a relation includes

itself and is thus a part of itself. R and R' are identical

when and only when each is a part of the other. Now
suppose R to be a part of R' and suppose R' to be a

sequence (series); then R is also a sequence obviously;
and thus, as you see, one sequence may be a part of

another. It is plain that, if a sequence R be a part of a

sequence R
f

,
the field F of i? is a part of the field F' of i?';

and conversely that, if a class F (of two or more terms)

be a part of the field F' of a sequence R', then .F is the

field of a sequence i? included in R'. Consider, for

example, our familiar friend P; its F is the class of

positive integers; take any part of F,
—
any part contain-

ing two or more terms,
—

say, the class C composed of

2, 3 and 7; C is the field of the sequence composed of the

couples (2, 3), (2, 7), (3, 7); this sequence is a part of P.

It will be enlightening to notice that P is itself a part of

another sequence; let be the sequence determined by
the propositional function, a; is a positive real number less

than a positive real number y; you see that Q is a sequence,

that its field is the class of all positive real numbers, that

this field includes the field of P; that every couple in P
is also in Q; and that P is a part of Q. You readily see

that if one sequence be a part of a second, and the

second a part of a third, the first is a part of the third.

When we speak of the (amount of) difference between

a term t in the field of a sequence S and a term /', let it be

always understood that t' is either in the field of S or in

the field of a sequence including S.

I hope we are now prepared to grasp the following

definition of the term
"

limit."

D3: Let V be a variable whose range R is included in



MORE ABOUT LIMITS 273

the field F of a sequence S, and (as before) let k be an

available difference-kind; if there be in F a term t such

that, however small a ^-neighborhood of t be chosen,

there is in the neighborhood an R term t' differing by
more than null from t and being such that all R terms

between t and t' are in the neighborhood, then t is an S
&-limit of V.

The meaning of D%, which is a bit subtle and sly, may
be made evident by means of a few examples. In adduc-

ing examples it will be convenient to make some use

of the customary row method of representing sequences.

For a simple example, let S be the sequence determined

by the propositional function: # is a fraction (having i

for numerator and a positive integer for denominator)

greater than a fraction y (having I or zero for numerator

and a positive integer for denominator). F is composed
of the numbers in the row

h I) i i • • • (ad infinitum), 0.

Let V be the variable whose range R is the class of all the

F terms except 0; let k be the kind of difference in respect

of which we compare the values or magnitudes of rational

fractions (as when we say \— $ = £). The question
is: Has V an S £-limit t\ The answer is yes: t is

such a limit if t be zero (0). To prove it, suppose chosen a

^-neighborhood d of 0, however small; there is no restric-

tion upon the choice of d save that d must be a positive

rational number; it is plain that there is in R a number t

differing from by more than null (zero) and by less than

d; it is evident that such a / and all the R terms between

t and are in the chosen neighborhood; and hence

is, as said, an S &-limit of V.

It should be said in passing that a V having, under
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Z>3, zero (or null) for limit is called an infinitesimal
—a

term of great importance in most branches of mathe-

matics. We will return to it if time permits.

Let us choose another difference-kind and see what

happens when V, F and S have the same meanings as

above. Observe that the denominators of the F terms are

positive integers, for may be written 0/n where n is a

positive integer. We may compare the F terms with sole

reference to the values of their denominators—with

reference, that is, to the difference-kind k' in respect of

which we compare the magnitudes of positive integers

as such. Of k' the only amounts d are: null, I, 2, 3, 4, ...
;

hence the smallest ^'-neighborhood d of is that for which

d=i; as no R term differs from (0/n) by an amount

of difference-kind k' more than null and less than 1, it is

seen that no R term t' differing by more than null of the

difference-kind k' from is in the neighborhood of for

which d = i; therefore, is not an S £'-limit of V. And
so is justified the mention of k in Z)3 .

We have just seen that, though a t be an S &-limit of V,

it may not be an S &'-limit of V if k and k' be not the

same. We may now show that, though a t be an S &-limit

of V, it may not be an S' £-limit of V, if S and S' be

different sequences. Consider the numbers in the row

!> 3> i> • • • (&d infinitum), t, 0.

Let S' be a sequence having the class of thes° numbers

for its field and let S' be such that, if a is an S' predecessor

of b, then a and b are in the row, a on the left of b, and

that any number in the row is an S' predecessor of all the

numbers on its right and an S' successor of all the numbers

on its left. S', as you see, is now completely determined—
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we know all the couples constituting it; and you note that

its field F is the same as that of S above. Let V be the

same as before and let k be the same as in the above

paragraph, in which was found to be an S £-limit of V.

The question is: is an S r

&-limit of V\ The answer is

no, as you readily see; for choose a ^-neighborhood d of 0,

where d is, say, \ ; any F term /' differing by more than

null (zero) from 0, if it be in the chosen neighborhood, is,

as you see, a predecessor of |; and so y> though it is be-

tween such t' and 0, is not in the chosen neighborhood;

accordingly, as said, is not an S' &-limit of V.

Comparing D2 with D3 you observe that Dz contem-

plates F's range as a part of the field of a sequence and

that D>> does not; you notice, too, that D3 contains the

same conditions as D2 contains and one other—the
"
between

"
condition (which would indeed be meaningless

in D> inasmuch as D2 does not regard V\ range as included

in the field of a sequence). It follows that if a V have a

limit t under D%, the same V has t for limit under D2.

Is the converse true? It is easy and instructive to show

by an example that it is not. Consider the numbers in

the row

(i+i), (i-i), (i+i), (tV-0, (A+i), GrV-i), ...;

which are the same as the numbers in the row

t3 » J-5. .2-3. 63
>
—

T, Iff,

~
TS, "3"2",

—
FT> • • • >

let S be a sequence such that, if aSb, a and b are in the row,

a on the left of b, and that each number in the row is an

S predecessor of every number on its right. S's field F
is the class of the numbers in the row. Let k be the
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difference-kind appropriate for comparing (as by sub-

traction) the values of real numbers. Let V be the

variable whose range is F. It is easy to see that I and — I

are both of them limits of V under Az and that neither of

them is an S limit of V under D3. For choose a neighbor-
hood d of 1, no matter how small; plainly there is an F
term (a positive number in the row, but not a negative

one) differing from 1 numerically by less than d, and

such a term is in the chosen neighborhood; accordingly

1 is, by Z>2, a limit of V; but 1 is not an S limit of V for 1

is not even a term of S's field. Like reasoning would show

that —1 is a limit of V under D2 but is not, under D3,

an S limit of V, where S is the sequence above indicated.

We have seen that, if two sequences S and S' have a

common field F and if V be a variable whose range R
is a part of F, a term t may be an S limit of V without

being an S f

limit of V. This fact is so important that it

seems advisable to give it further exemplification. Let F
be the class of all the positive rational numbers and zero.

Consider the following sequences Si, S2, S3, having F
for their common field.

Si is to be such that, if xSiy, x and y are in F and x

is less than y; and such that, if x and y be in F, then

xSiy if and only if x is less than y. We commonly say
that Si as defined arranges the terms of F in the order

of increasing magnitude.
To define S2 consider the row

/•„\ 1 1 1 . f» 2 2 2 . 3 3 3

\d) T, ?Z, ^"> • • • 5 U, T, "3", Z, • • > 1, 2, 4, ••• , • • • j • • •

You observe that the row contains all and only the terms

of F; S2 is to be such that, if xS2y, x is on the left of y in

the row, and that any term in the row is an S2 predecessor

of every number on its right.
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To define S3 consider the array.

277

Fig. 27.

A little inspection shows that the array contains all and

only the terms of Fy zero excepted. The arrows indicate

how the terms of F may be arranged as in the row

(U\ 1213214321
\0) ±, T, U, T, "J, S, T, IT, ?, T, ; 0.

Notice that the scheme gives each F term a definite place

in the row. S3 is to be such that, if xS^y, x is on the left

of y in (b) and that every term in (b) is an S3 predecessor
of every term on its right.

Now let V be the variable having for its range the

class of all F terms except zero, and let k be the familiar

difference-kind we have in mind when we say the (amount

of) difference between this real number and that is such-

and-such. Applying Dz to V you will readily find that
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zero and all positive rational numbers are Si limits of V\

that zero and nothing else is an S2 limit of V\ and that

V has no S3 limit whatever. Two additional facts are

worth noting here: one of them is that, under D2 zero

and every positive real number is a limit of V; the other

is that, under D3, zero and every positive real number will

be an S limit of F, if S's field be the class of positive reals

and zero, and if S arrange the terms of F in the order of

increasing magnitude.
I shall leave it to you to practise to your heart's con-

tent in applying D3 to such various variables and sequences
as you can readily find or devise.

Presently, I shall ask you to consider a fourth concep-

tion of limit. Before doing so, I wish to call your atten-

tion to a curious nice little dispute that now and then

arises respecting the notion of limit as defined by D%
or by a virtual equivalent of D3. The dispute arises out

of confusion due partly to the row method of indicating

sequences and partly to the custom of speaking figura-

tively of a variable as if it actually changed, varied,

increased, decreased, and so on, instead of merely repre-

senting
"
any one

"
of the terms of some specified class.

I can best present the matter by means of an example
or two. Consider the three sequences indicated by the

three number rows.

/_ \ , 1 3 7 15 . T
\T\) • ~2, 4, 8, 16, • • • y 1

/., \ . 3 5 9 17 , T
(To) • 2, T, 8, H, • • • J I

/„ \ . 1 3 3 5 . T
l/3j • 2) S) I) I) . . . ,

I

You note that the three sequences are distinct and that

their fields are distinct. If the ranges of the variables

V\, Vi-> Vz contain respectively the same terms as the

fields except 1, you easily see that, under D3, 1 is a limit
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of V\, of V2 and of V?,. It is customary to say,
" As V\

runs along the sequence (n) from left to right it approaches
1 as its limit

"
or to use some equivalent equally figurative

speech; and similarly for V2 and Vz. It is noticed that

the V\ in running along their so-called sequences get

nearer and nearer to their limits but never reach them.

The question arises: Is it possible for a sequence having a

limit to be such that the variable, in the course of its

approaching the limit, reaches it one or more times?

Some say no; others say yes. The latter attempt to justify

their answer substantially as follows: Consider, they will

say, the sequence

(r) i, I, 1, f, f, 1, i, I, 1, • • . (ad infinitum); 1,

got from (r^) by inserting 1 after each of the successive

pairs of numbers in (73) ; observe, they will say, that if a V
runs along (r), skipping the third term, the sixth and so

on, it will approach the same limit (namely, 1) as if it

ran along (r^), and that, if it runs along (r) without

skipping, it will again evidently approach the same limit,

1, but in this case will actually reach 1 infinitely often in

endlessly approaching it; and so you are expected to see

not only that (r) is a sequence having a limit but that,

while endlessly approaching it, it actually reaches it again
and again and again. You instinctively feel that you are

being hocus-pocused by such argument, and your instinct

is sound. What is the trick? It is easy to detect. The

juggler (we may call him a juggler, though he does not

intend to deceive) asks us to regard (r) as a sequence or

at all events as indicating a sequence. Let us try to do

so in good faith. If (r) be or indicate a sequence S, what is

the field F? The answer is obvious: the terms of F are

the numbers in (r3). Among these is 1, the final number
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of (f3) and of (r). But (r) indicates that F contains a

host of i's—the
"
inserted

"
i's; but if these are in F,

they are S predecessors and successors, and we have 1S1

contrary to the definition of a sequence. You see that

(r) neither is, nor property indicates, a sequence. (It is

of course possible to define the terms
"
sequence

"
and

"
limit

"
so that a sequence having a limit may be such

that the variable in running towards the limit reaches it

one or more times.) Here is a good place to emphasize
the fact that the field of a sequence never contains two

identical terms. Why not? Because a field is a class,

and a class contains all and only the verifiers of some

propositional function, say, <f>(x); if x\ be a verifier of

4>(x), then x\ is a term or member of the class; it is

evident that as such a member, it occurs but once. We
do indeed often speak (unprecisely) as if such were not the

case; but when we speak of a and a! as being identical

members of a class, we mean that a and a' are two dif-

ferent symbols for one and the same member of the class

and we do not mean that the two symbols are themselves

members of the class.

Serial (Ordinal) Definition of the Term "
Limit."—We

have now before us three definitions—£>i, A2, Dz—of the

term. It is important to observe that each of them

essentially involves the notion of quantity; they involve it,

for they involve the notion of the neighborhood of a term,

and this notion is quantitative; a given neighborhood
has a size; another one is larger or smaller; neighbor-

hoods are among the things differing from one another in

respect of magnitude
—

quantity is of their essence. We
should not fail to observe, too, that, while the three

definitions thus agree in involving the notion of quan-

tity, Z>3 involves also the notion of a sequence or series,
—
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a non-quantitative, purely ordinal notion,
—and that Di

and Di do not. I mean that D3 contemplates the vari-

able's range as being the field (or a part of the field) of a

series, or sequence, and that Di and D2 do not. As

ontologists you may no doubt contend that the terms of

any given class and hence the terms of any given variable's

range are, quite independently of our intention or will,

arranged once for all and eternally in every variety of

sequence of which they are capable. I am not disputing

the justice of that contention; conceding it to be just,

granting the eternal existence of all the sequences possible

for a given range, I am merely signalizing the fact that Di
and Z>2 disregard them each and all, and that D% does not;

D3 regards the variable's range as an ordered class of

terms; D\ and D2, disregarding order, regard the vari-

able's range as an orderless collection. We may say,

then, that D\ and D2 are quantitative definitions and that

Di is mixed—both quantitative and serial.

It is natural to ask whether the term
"

limit
"
some-

times denotes a purely serial conception. The answer is

affirmative. The following definition presents such a

definition of the term.

D4: Let V be a variable whose range R is included in

the field F of a sequence (series) S; if an F term / be such

that, given any S predecessor t' of t among the R terms,

there is an R term between t' and t, or such that, given

any S successor /' of / among the R terms, there is an

R term between t and t', then t is an S limit of V.

Let us at once cite some simple examples. Consider

the sequence.

Si : 1, 2, 3, 4, . . . (ad infinitum), £, |.

Let predecessor-successor mean left-right; let the terms
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of F be the numbers in the row; let the terms of F's

range jR be the row's integers. You see that | is an Si

limit of V and that \ is not. Why not? Notice that \

is not an Si limit of V under Dz nor a limit of V under

D2 . If a term be a limit of a V under D3 or D2 ,
must it

be a limit under Z>4? If, in the foregoing example, we

suppose the R to include | (besides the integers), will the

new V have an S limit? Why not? If we strike out

\ and \ and suppose R to coincide with the new F (of the

new Si), will V have an Si limit? Why not?

Fig. 28.

For other examples consider the following. Let S2

be a sequence having for its F the points of the line

segment AD, including A and D. Let us take predecessor-

successor to mean, as before, left-right; let the R of V
be composed of A and the other points preceding B; you
see that all the points in R and the point B but no other

F points are S2 limits of V. Notice that the same would

be true if we supposed R to include B. Suppose the F
of S2 to be composed of B, B's predecessors, C and C's

successors; and, as before, let the terms of R be B's

predecessors; you readily see that the S2 limits of V are

B, B's predecessors and C; that all of these except C are

S2 limits of V under D3 and limits of V under D2 ; and

that, under D4, C is not an S2 limit if R include B (as well

as its predecessors). Why not? Next suppose the F of

S2 to consist of all the points of AD except B and C, and

let the terms of R be the midpoint A' of AB, the midpoint
of A'B, and so on, the midpoint B' of BC, the midpoint of

B'C, and so on, the midpoint C of CD, the midpoint of

CD, and so so; then show that D is the only S2 limit of
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V under either At or D3 but that, under Do, B and C as well

as D are limits of V.

With the foregoing non-quantitative
—

purely serial—
conception of limit, you can make yourselves familiar

by applying the definition to numerous examples which

you can readily construct or easily find, for they abound

on every hand.

I have now spoken of limits and limit conceptions at

far greater length than I had originally intended to do.

If I have thus exhausted your interest and patience, I

assure you that I have by no means exhausted the subject.

There are in use yet other conceptions of the term limit

and connected therewith many interesting and important

refinements,
—refinements of refinements,—with which,

however, I do not intend to trouble you. There remain

two questions which must have occurred to you and

which I am sure you will desire to consider before we
take final leave of the subject. One of them is easy and

admits of a brief answer. The question is: In view of the

variety of senses in which mathematicians employ the

term
"

limit," how do they manage, if they do manage,
to avoid confusion—confusion of themselves and others?

The answer is: They do not always avoid it, but in general

they do, and they do so, as I have already intimated, by

indicating either explicitly or contextually, when speaking
of a limit, the sense in which the term is to be understood.

The second question relates to the scientific and philo-

sophic importance of the term. Both by dwelling on it so

long and by explicit statement, I have said that its impor-
tance is very great. I wish now to show that the estimate

is just and how it is so.

Scientific and Philosophic Importance of the Term

Limit.—As to its scientific importance, the task of show-
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ing it is very easy if we take
"

scientific
"

in its stricter

and narrower sense. We may go at once to the heart of

the matter by reflecting a little upon the most rigorously

scientific of scientific subjects and procedures
—the Dif-

ferential and Integral Calculus—and upon its ramifications

and its applications. Some of you have had a beginner's

course in the calculus; others of you, not; I am not

going to offer here an introduction to it but will merely
state succinctly, by way of reminder or of information, a

few such facts respecting it as will make indubitable the

great scientific importance of the term in question. One
of the facts is that the Calculus is primarily and mainly
concerned with what mathematicians call continuous

functions (or variables), and that both functional con-

tinuity and functional discontinuity, with which latter

the calculus is also concerned, are not only defined by
means of limits, but are indeed not otherwise definable.

Another of the salient facts is that among the host of

ideas met with in the Calculus three ideas are supreme
—

namely, those denoted by the terms Derivative, Anti-

derivative (or Indefinite Integral) and Definite Integral
—

and the three essentially involve a limit conception, the

first and third of them directly, the second one indirectly.

It follows, as you see, that in all the multifarious ramifica-

tions and applications of the Calculus, whether in differen-

tial equations or function theories or geometry or mechan-

ics or astronomy or physics or chemistry or other fields

into which the calculus has found or is inevitably finding

its way, some variety of limit conception is continually

playing an indispensable scientific role. Indeed it is only

by prolonged meditation upon the matter that one can

even fairly begin to realize how very deeply the progress

of science and therewith of civilization depends upon



MORE ABOUT LIMITS 285

ideas denoted by the modest little five-lettered word—
limit.

What, broadly speaking, we may call its philosophic

significance is less well understood for the reason that it

has been neglected. It has been neglected because but

few mathematicians have been interested in it and but

few philosophers have been mathematically qualified to

treat it. If only the concept of limit and the role thereof

had been familiar in the days of Plato! How it would

have enriched and fortified his dialectic. In his hands

the concept would have been a new spiritual instrument

of immeasurable power; in his thought it would have

opened new ways to the inner vision of supernal light;

in his brightest pages it would have been the secret and

source of a yet stranger and brighter glory. His shining

Absolutes,—absolute justice, absolute beauty, absolute

truth, absolute good,
—whose "

perception by pure intelli-

gence
"

brings us, said he,
"
to the end of the intellectual

world," would not have appeared as ends, or final terms,

of any sequences or progressions in the intellectual world

nor even as limits of such progressions but, as I intimated

in the initial lecture of the course, the absolutes would

have appeared as supernal ideals, over and above every

type of excellence in which intellectual progress is pos-

sible. And thus the Platonic philosophy would have

advanced, in even greater measure than it did advance,

the science of Idealization—the science, I mean, which

has for its appropriate subject-matter those spiritual

phenomena of life which the terms, ideal and idealization,

rightly understood, denote. In saying this, I have in

some measure anticipated the outcome of considerations

not yet adduced, and so I must ask you to reserve your

judgment for a little time.



286 MATHEMATICAL PHILOSOPHY

In order to arrive at a fair estimate of the philosophic

significance of limit concepts and limit processes,
—in

order, that is, to win a fair sense of their function and

service in the life of Thought taken in all its varieties and

scope,
—

it is necessary as a preparation to examine the

matter a little further in mathematical light for it is

here and not elsewhere that concepts of limit and limit

processes are seen, and seen at work, in their nakedness

and purity. As beheld in that light, conceptions of limit,

apart from any question regarding their instrumental

value, are objects of no little interest—a fact well worthy
of passing mention, though I do not insist upon it in this

connection. Regarding instrumental value, we have seen

that limit concepts enable us to discriminate and classify

variables with reference to the constitution of their

ranges and to the connections of these with series; we
have seen that limit concepts are essential to the formation

and so to the meanings of innumerable other concepts,

many of them of great import, as that of functional con-

tinuity or that of derivative, instanced a moment since;

you know, or (if not) you can quickly learn by glancing
at mathematical literature that limit concepts play an

indispensable, perhaps the chief, role in the conduct of

proofs, or demonstrations, in all branches of Analysis and

its applications. I wish now to invite your best attention

to the fact that, over and above the foregoing types of

service, limit concepts render an invaluable service of a

radically distinct kind in connection with that very
familiar yet always strange thing which we are wont to

call
"
generalization." I mean the kind of generalization

which consists in our somehow contriving so to extend the

meaning of an established concept as to bring within its

enlarged scope,
—as under the unity and order of a new
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empire,
—what had been seemingly unconnected, recip-

rocally alien provinces of thought.
The meaning and justice of what I have just now said

may be made evident by means of simple examples.
Three or four little ones will suffice, and we can both

shorten the task and enliven it by speaking of our vari-

ables in the customary dynamic fashion.

In the first example, I am going to ask you to imagine
that we have arrived at a stage of mathematical evolution

where we are familiar with the ordinary fractions, or

ratios, including such as 1, f, . . .
,
which for convenience

we will write 1,2,... ; and that we know nothing of so-

called irrational numbers. Let S be the sequence of the

ratios arranged in the natural order of increasing magni-
tude. Let V

x represent any ratio less than 2 (i.e., f)

and let V2 represent any one greater than 2. You imme-

diately see that, under either D3 or D4, 2 is a limit of V
x

and also of /£, V
x approaching it from below and V2

from above. Observe that neither of the F's can reach

the limit; one of them is always less, the other always

greater, than 2; they can, however, so close in upon 2

as to make the difference between them less than any

preassigned positive ratio, however small,
—we can make

the Vs as near together as we please if only we do not

please to make them meet—between them stands their

common limit, 2, fringed on both sides with a row of

ratios which the F's in their race towards 2 can never run

through. Now consider very carefully two other vari-

ables, V and V' y the former representing any one of the

ratios whose square is less than 2, and the latter any one

whose square is greater than 2. Note that the new V's>

like the old ones, can come indefinitely near together;

observe that as they approach each other, one of them
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growing continually larger, the other continually smaller,

though they can never meet, yet they, like the old F's

come to differ by less than any preassigned positive

amount, however small. Undoubtedly the new F's, like

the old ones, seem thus to close in upon a common limit.

Do they do so in fact? If they do, what is the limit?

If there be one, it must, we are sure, be something having
a square and having 2 for the square; but this something,
if it exist, can not be one of the things which we and

our race have hitherto meant by number, for, by hypoth-

esis, the only numbers we know in our present stage of

evolution are cardinals, integers and ordinary fractions,

and none of these has 2 for its square. You sense vividly,

I trust, the painful situation into which our limit idea has

brought us. Do you know how we will behave under the

circumstances? How we will try to escape? By what

means we will endeavor to reach a reconciliation? We
are to suppose ourselves to be dealing with the difficulty

as the mathematicians have dealt with it. Accordingly,

we will not all of us behave in the same way—some of

us will resort to one means of extrication and some to

another. {A) Some of us will say: V and V have not

a common S limit, but they have a common S" limit where

S r

is a sequence of things we have not yet learned, but

must learn, to recognize and handle; this common limit,

though not a number in the accepted sense of the term, is

something we must regard as having a square and as

having 2 for its square; we will denote the thing by the

symbol, \/2, and call it a number of a new kind—an

irrational number to distinguish it from the old familiar

ratios to be henceforth called rational. (B) Others of us

will say: V and V have no common limit of any kind

familiar or unfamiliar; it is, however, manifest that they
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ought to have one for the sake of our convenience, and, as

none exists, we will create one; we will call the creature
"
the square root of 2," denote it by the symbol, \/2y

regard it as a number, and describe it as irrational to

distinguish it from the old sort of numbers,—the ratios,
—

to be henceforth described as rational. (C) Yet others of

us, not so numerous but harder-headed and more critical,

will say: it is evident that to escape decently from our

predicament we must somehow enlarge our conception of

number; not, however, by asserting that V and V have

a mysterious sort of common limit, for they evidently

have no common limit; nor by pretending to
"
create

"

one for them, which we can not do; but by discovering

that certain existing things, not hitherto regarded as

numbers, ought to be so regarded
—a discovery that,

briefly sketched, runs as follows: we reflect that the

ranges of V
x
and V (we could equally well use V2 and V)

are classes of ratios ordered by S; we observe that neither

of the ranges contains a maximum term, a largest ratio,

though one of them (or its variable Vi) has an upper

limit, 2, and the other has no upper limit; giving the

name segment to such ratio ranges, that is, to such of them

as have no maximum, we see that a segment may or may
not have an upper limit; we readily see that segments
have certain properties (summability, and so on) very
like the properties of what we have been calling numbers;
we accordingly and naturally agree to call the segments
themselves numbers; they are a new kind of numbers—
—not ratios, but certain classes thereof; we call the new
numbers rational if the segments have upper limits and

irrational if they have not; thus the segment represented

by Vx is a rational number while that represented by V
is irrational; we denote the former by 2 because the
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upper limit of J{ is the ratio f, but we must not confound

this rational 2 (which is a segment of ratios) with the

cardinal 2 nor with the integer 2, nor with the ratio f

(commonly denoted by 2) nor with any other number that

blundering custom may yet denote by the same symbol;
the irrational number or segment represented by V is

denoted by \/2; and so on analogously for analogous

cases; to each ratio 7 will correspond a rational number 7,
b b

so that, for example, to the ratio f will correspond the

conceptually distinct rational number f ;
to the irrational

numbers, however, no ratios will thus correspond; the

rationals and the irrationals taken together we will call*

real numbers; these may be arranged in the order of

increasing magnitude by a sequence S', and, if we then

let V\ range be, not the class of ratios less than the ratio 2,

but the class of rationals less than the rational 2, V will

indeed have 2—rational 2—for upper limit; and so at

length the mystery is dispelled
—what fooled us before

was our confounding the familiar class of ratios with the

then unknown, yet vaguely felt, class of rationals, corre-

sponding to but logically distinct from the ratios.

Well, what is it that has happened here in our racial

history? I hope you see that what has happened is this:

we have made a leap, an immense forward leap, in the

course of mathematical evolution; we have made a great

number-generalization; we have, that is, extended our old

familiar well-established concept and name of numbers

so as to make it include and cover two immense new

varieties, namely, the rationals,
—which are as multitu-

dinous as the infinite host of our old traditional ratios,
—

and the irrationals,
—which may be shown to be infinitely

more in multitude than all the old numbers taken together.
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Do not fail to observe how the tremendous generaliza-

tion, so copiously enriching our human world of mathe-

matical ideas, was brought about: we were operating in a

certain domain,—the domain of ratios; we were there

employing the notion of limit; using the notion, we found

ourselves looking for a limit where we were suddenly and

painfully astonished to find there was none; we were

baffled, we wondered, felt a need,
—the need of a deeper

view, of a larger vision, of a more embracing conception
to extricate us; and we found it—how? By means of the

limit idea; that which got us into the difficulty got us

out of it and, in doing so, gave us a larger world.

Did the limit concept compel the generalization? No;
such generalization is never compelled,

—it is suggested,

recommended, stimulated, even urged,—but not com-

pelled as a conclusion from premises,
—

generalization al-

ways involves an act of will,
—a choice between a smaller,

meaner view and a larger, nobler one; and in the present

instance it was, you see, the notion of limit that gave
man's will the necessary suggestion, incitement and

guidance.
There is another aspect of the matter which you as

philosophers must on no account fail to notice very

carefully, for it is a phenomenon of all genuine generaliza-

tion. It is this: the world of the real numbers, though
itself a strictly actual world once it is found, yet is, for

any possible point of view in the domain of ratios, a

strictly ideal world—ideal in the just sense that, though
it is suggested by phenomena in the domain of ratios, it is

itself wholly outside thereof and can in no wise be attained

by pursuing sequences, however endless, within the

domain; a generally neglected fact of the utmost impor-

tance, not only in discussing the spiritual bearings of
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mathematics, but also and especially in understanding the

ways of spiritual life—the ways of truth to men.

Not to wish to dwell in this insight long enough to

make it our own would show us unworthy—stupid or

perverse. We might indeed illustrate it in many ways and

in many connections. We might show in detail how limit

concepts at work in the domain of real numbers, especially

in connection with equations failing to have roots in that

domain when the variable coefficients are allowed to

approach certain limits, make us keenly aware that the

domain of reals, vast as it is, is yet too meagre for our

purposes, and how we are thus led to effect another

immense number-generalization
—that one, I mean, which

gave us what we call the complex numbers (x+iy, x and y

being reals, and i being the so-called imaginary unit,

\/ — i), now the subject of a stately theory having wide

application in physics and even in engineering; we might
show in detail, little step by step, how limit concepts at

work in geometry have availed so to extend or generalize

such fundamental notions as length, area and volume—
formerly clear and well defined only in connection with

broken lines, or polygons, and solids bounded by planes
—

that we can now confidently and understandingly use the

notions in connection with all manner of curves and

curved surfaces. But such details would require certainly

more time and perhaps more patience than we now have

at our disposal.

I must, however, once more insist upon the matter

which I mentioned a moment ago and which I have em-

phasized elsewhere. The matter is this: a limit-begotten

generalization always originates in the work of some limit

concept operating in some established domain (such as that

of our ratios, for example) wherein the concept leads us
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into the presence of baffling phenomena, waking our

wonder, giving us a painful sense of failing to see some-

thing we ought to see, a sense of logical suffocation, of be-

ing hampered, hemmed in; we seek emancipation and at

length achieve it, not solely by purely logical means, but

partly by observation (as in the case of the segments),

partly by reasoning and partly by an act of will—in short,

by generalization; this deed gives us a new domain of

thought
—a new field of ideas (as, for example, the domain

of real numbers); the new domain, once thus established,

is as actual for us as the old one; with reference, how-

ever, to any viewpoint within the old one, the new domain

is and forever remains a sheer ideal, not to be attained by

any process or operation
—however oft repeated, swift or

prolonged
—within the old domain; and finally, a new

domain (as that of the real numbers, for example) may
in its turn become, in the manner indicated, an old one

in relation to another domain (as, for example, the domain

of the complex numbers) which, though itself actual, is,

with respect to the former, an eternal ideal.

Mathematical Limit Processes Viewed as Species of

Idealization.—In nearing the close of this second long

lecture on variables and limits we come now to what I

most desire to signalize as being for students of philosophy
the most significant aspect of the whole matter. It is this:

In mathematics the great role of what we there call limits

and limit processes is in kind identical with the momentous
role of that which in other fields of interest we call ideals

and idealization. In the light of the foregoing discussion

the fact is evident, and it shows us again very clearly

what we have repeatedly seen in other connections—that
—far from being detached from common life or alien

thereto,
—mathematics is a refined model or prototype
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of that which in life is most precious and, strange to say,

most omnipresent, too, though the presence be often

disguised. With sequences,
—many of them finite, many

of them potentially infinite,
—our concrete life is indeed

replete: sequences of potential degrees of knowledge, of

potential degrees of wisdom, of potential degrees of skill,

of justice, of beauty, of righteousness, of authority, of

power, of freedom, of potential degrees of innumerable

forms of excellence in the achievements and dreams and

aspirations of mankind. I hope you will not fail to see

clearly that just as in the mathematical prototype of

idealization,
—in the theory, that is, of limits and limit

processes,
—so here, in our concrete and passionate life,

ideals are of two kinds: namely, ideals which we pursue

endlessly from degree to degree of excellence of a given

type, as a variable having a limit endlessly pursues it

without attaining it; and those higher ideals which are

indeed not as limits of endless sequences of degrees of

excellence of a given type (that of jazz music, for example,
or that of a Beethoven sonata), but which require us to

rise from given types to higher types by a species of ideali-

zation corresponding to that which, in the model, we have

called limit-begotten generalization. It is thus evident

that ideals are not things to gush over or to sigh and

sentimentalize about; they are not what would be left if

that which is hard in reality were taken away; ideals are

themselves the very flint of reality, beautiful, no doubt,

and precious, without which there would be neither dig-

nity nor hope nor light; but their aspect is not sentimental

and soft; it is hard, cold, intellectual, logical, austere.

Idealization consists in the conception or the intuition of

ideals and in the pursuit of them. And ideals, I have said,

are of two kinds. Let us make the distinction clearer.
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Every sort of human activity,
—

shoeing horses, abdominal

surgery or painting profiles,
—admits of a peculiar type of

excellence. No sort of activity can escape from its own

type, but within its type it admits of indefinite improve-
ment. For each type there is an ideal,

—a dream of per-

fection,
—an unattainable limit of an endless sequence of

potential ameliorations within the type and on its

level. The dreams of such unattainable perfections are

as countless as the types of excellence to which they

respectively belong and they together constitute the

familiar world of our human ideals. To share in it,
—

to feel the lure of perfection in one or more types of

excellence, however lowly,
—is to be human; not to feel

it is to be sub-human. But this common kind of ideal-

ization, though it is very important and very precious,

does not produce the great events in the life of mankind.

These are produced by the kind of idealization that corre-

sponds to what we have called, in the mathematical

prototype, limit-begotten generalization,
—a kind of ideal-

ization that is peculiar to creative genius and that,

not content to pursue ideals within established types of

excellence, creates new types thereof in science, in art,

in philosophy, in letters, in ethics, in education, in social

order, in all the fields and forms of the spiritual life of man.

We have here, you see, a new way—I think it a most

fruitful way—to study the phenomena of spiritual life,

whether our own or that of mankind in general. I

leave it to you to pursue it if you will, for that is what

philosophy is,
—the study of the phenomena of the

spiritual life man,—and if it is not that, it is nothing.

In relation thereto I will merely say, in closing, that of

the two kinds of ideals and idealization, it is byjmeditating
on the higher kind, in the light of the mathematical theory
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of limits, that I have been led, as already indicated, to

regard the great Platonic Absolutes as supernal ideals,

indicated indeed in the world of logic but there indicated

as having their locus above it so that they appear like

downward-looking aspects of an over-world.



LECTURE XV

Infinity

MATHEMATICAL INFINITY—ITS DYNAMIC AND STATIC

ASPECTS NEED OF HISTORY OF THE IMPERIOUS CON-

CEPT THE ROLE OF INFINITY IN A MIGHTY POEM

NO INFINITY, NO SCIENCE.

It is inconceivable that a course of lectures having

the aim of the present course should be altogether silent

respecting the mathematical concept of infinity. For

among the great mathematical concepts that are acces-

sible to laymen there is none which surpasses this one in

importance or in power; there is none that appeals more

strongly to the imagination of such as are qualified to

receive it; and the nearer mile-posts of its endless avenue

of increasing wonders are not difficult to reach. On these

accounts the temptation to devote at least one lecture to

an elementary exposition of the idea is strong. I have

decided, however, not to yield to it for, if I did so, I

should be wasting your time; I should be only adding an-

other one to already numerous expositions of the kind,

some of them so simple and clear as to leave no excuse

for not acquiring a fair knowledge of the matter except

the melancholy excuse of spiritual inaptitude therefor.

In the Revue de Metaphysique et de Morale, for example,

the elements of the subject are handled, often admirably,

in a variety of papers, some of them by notable philoso-

297
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phers and some of them by distinguished mathematicians.

One of the best expositions I have seen is that by Profes-

sor E. V. Huntington in his The Continuum and Other

Types of Serial Order where, moreover, you can learn

what mathematicians mean by the highly important term

"continuum,"—the Grand Continuum as Sylvester called

it,
—an idea with which for lack of time I was unable to

deal in the two preceding lectures—and where, too, you
will find an introduction to the transfinite numbers of

Georg Cantor, masterful primate among all who have

contributed to our understanding of mathematical infinity.

For another excellent account I may refer you to the

already mentioned Fundamental Concepts of Algebra and

Geometry by Professor J. W. Young. Clear indication

of the philosophic significance of the idea in question is

found in an article on the "Concept of the Infinite" by
the late Professor Royce (Hibbert Journal, Vol. I) and

in the Appendix to The World and the Individual, by the

same author. Perhaps no one else has treated the mat-

ter with so much deserved emphasis and with so much

freshness and facility as Bertrand Russell in his more

popular works. For some indication of my own views

respecting the bearings of the concept upon certain funda-

mental questions of philosophy, theology and religion, I

may be permitted to refer you to Science and Religion;

to The New Infinite and the Old Theology; and to the

articles—"The Walls of the World," "The Axiom of In-

finity," and "Mathematical Emancipations"—contained in

The Human Worth of Rigorous Thinking. In the fore-

going works, you will find an ample clue to the extensive

literature of the subject, both that which is more popular
and that which is, I will not say more scientific, but more

technical, if indeed you should, fortunately, desire to
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pursue the doctrine in its elaborate and recondite develop-

ments.

To an audience of philosophical students it need not

be said that some notion of infinity has figured conspicu-

ously, often fundamentally and dominantly, throughout
the whole historic period of philosophy and speculation

East and West. It may, however, be said to such an

audience, and I think it should be said, that a critical his-

tory of the concept of infinity
—or rather of the concepts

thereof, for there have been many of them, for the most

part but ill defined—would be an invaluable contribution

to the history of Thought—an incomparably more im-

portant contribution than the philosophical doctor dis-

sertations commonly accepted. There can hardly be a

doubt, I believe, that the mentioned task of historical

criticism will sometime be performed. Why should it not

be done by one of you? You are, of course, aware that

the doing of it calls for an extraordinary kind of com-

posite scholarly preparation
—

linguistic, historical, philo-

sophical, scientific, and especially mathematical. Our
American universities have long been amply equipped
with adequate machinery for the giving of such prepara-
tion. Perhaps one of you will demonstrate that they have

at length acquired the necessary spirit and purpose and

atmosphere and temper.
In any adequate historico-critical survey of the role

which the notion of infinity has played in our human think-

ing, the thought of many thinkers, widely distributed in

time and in space, would have to be passed in review—
analyzed, understood, and appraised. Among the ques-

tions which the critic would have to ask and try to answer

respecting each thinker are such as these: What did he

mean by infinite? Did he employ the term to denote a
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definite concept or at best a vague and emotional intui-

tion? Was his thought and use of it mystical, or logical

and analytical, or both? Did he regard his infinite as

a fact or as an hypothesis, and why? Was it time? An
extension in time? Space? An extension in space? Was
it matter or mind or both? Was it physical or spiritual?

Concrete or abstract? Did he define it and, if so, in

what terms? Or did he take it as a primitive, and, if so,

did he do it consciously? Did he think of it as magnitude
or as multitude or as both? Had he but one infinite or

many of them? If many, were they coordinate or hier-

archical? If the latter, was the hierarchy crowned or

summitless? Was his infinite subordinate in his thought
or central and dominant? Did he employ it consistently

or confusedly? Was its function poetic or scientific or

both? What was its relation to the modern concept of

mathematical infinity?

It has seemed to me that I could best serve you in this

hour by sketching what I conceive should be an impor-
tant chapter in such a critical work. The sketch, which

will be very imperfect, is offered, not as a model, but only

as a concrete suggestion. I have selected for the purpose
the philosophy of Lucretius, in which, as you are no doubt

aware, the notion—or some notion—of infinity is very

conspicuous. The question is: what notion and what is

its significance there?

It will facilitate the discussion if we first remind our-

selves of the meaning of mathematical infinity and, in

connection therewith, note one or two distinctions and

make the acquaintance of two important technical terms—equivalence of classes, and denumerability . In the lec-

ture on the nature of mathematical transformation, we
met the notion of an infinite class of terms, or objects of



INFINITY 301

thought; we there saw, for example,
—what any one but

a fool can see,
—that we can set up a one-to-one corre-

spondence between the integers of the entire class of in-

tegers and the integers (say the even ones) composing a

part, or sub-class, of the entire class, by the simple law or

device of making i correspond to 2, 2 to 4, 3 to 6, 4 to

8, . . .
,

n to 2«, and so on endlessly. Two classes

between which it is possible to set up, by some law of

transformation, a one-to-one correspondence are said to

be equivalent classes; and a class that is equivalent to a

part, or sub-class, of itself is called an infinite class. In-

finite classes,
—of numbers, of points, of lines, of curves,

of surfaces, of propositions, of relations, of functions,

and so on,—abound on every hand; theoretically, and

therefore practically, infinite classes are more important
than finite ones, even though the spiritually blind are un-

able to see the fact; without infinite classes, as the late

Henri Poincare repeatedly said, there could be, strictly

speaking, no such thing as science. Scien^eJsJndfeedLthfi.

study of infinity.

""Tf an infinite class be equivalent,
—in the sense de-

fined,
—to the class of positive integers, it is said to be

denumerable—a denumerably infinite class. Many in-

finite classes are denumerable which have not the appear-
ance of being so. A striking example is the infinite class

of our ordinary ratios, or fractions. Between any two

integers,
—

nay, between any two fractions, however near

to each other in value,—there are infinitely many frac-

tions—and yet the entire class of fractions is precisely

equivalent to the class of integers: an astonishing fact

readily shown as follows. In the preceding lecture we
saw that the fractions can be arranged in a row by means

of a certain rectangular array with arrows. To see that
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the equivalence in question actually exists, you have now

merely to observe that we can associate the first frac-

tion of the row with the integer I, the second with 2, and

so on, thus using each fraction and each integer once

and but once. Such an astonishing result makes one

wonder whether every infinite class is denumerable. The
answer is, No. It is well known that the class of real

numbers,—even the class of the irrational numbers, even

the class of points in a microscopically short line-segment,—is non-denumerable. Such classes are infinite but they

are infinite of higher order. It is known that infinities

rise above infinities in a summitless hierarchy. At present,

the denumerable grade and that of the real numbers are

the most important. In time to come such may not be the

case
;
no one knows enough to say.

Here we must make a distinction. A class is a multi-

tude—not a magnitude such as length, for example, or

weight or area or volume or distance or the like; an in-

finite class is thus an infinite multitude; it has its root in

the question
—how many? A class is not a variable in

the ordinary sense of this term,—it is a fixed thing,
—a

constant,—a datum given once for all in the world of

thought
—in logic the members of a class do not succeed

each other in time—they coexist; and so you see that an

infinite class is a static infinity. Long before this concep-

tion of infinity established itself in mathematics there was,

as there is now, another conception of infinity,
—of a

sort of dynamic infinity,
—

namely, the conception of a

changing magnitude or function capable of growing to

exceed any given amount denotable by any integer how-

ever large. The idea may be conveyed as follows: let

n denote any given positive integer, no matter how
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large; in the fraction —
f
let x be a variable representing

x
a real number; let us treat x as an infinitesimal—a vari-

able having zero for its limit; as x grows smaller and

smaller, the function H grows larger and larger; if we
x

prescribe any finite amount—an amount, that is, such that

we can denote it or a larger one by a positive integer,

then, as x decreases towards zero, — will come to exceed
x

the prescribed amount, however large; we express this

obvious fact by saying that, for x approaching zero, —
x

approaches infinity or becomes infinite or is an infinite

variable or function; by such speech mathematicians do

not mean that there is a definite quantity called infinity

(oo ) and that the ratio becomes equal to it when x takes

the value zero; for when x takes this value, the indicated

division becomes meaningless and the ratio ceases to

exist; what the speech means—and it means nothing else,—
is, as said, that for x decreasing as indicated, the ratio

becomes larger than any prescribed finite amount. Such

is the conception of an infinite function or variable,—
a dynamic infinity, as we may call it to distinguish it from

the other,
—the static infinity. The dynamic type has its

root in the question
—how much? It is obvious that the

two conceptions, though radically distinct, are intimately

related. I shall leave it to you to compare them deeply
if you will.

The "new infinity," as it is sometimes called, means

the static infinity. It was introduced into mathematics

something more than a half-century ago by Bernhard

Bolzano, Richard Dedekind and Georg Cantor. Long
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before that, however, it was grappled and wrestled with

by two geniuses of the first rank,—Galileo (in The Two
New Sciences) and Pascal (in the Pensees, Havet's edi-

tion).

Is the concept, as some non-mathematicians have con-

tended, a mere curiosity? The contention springs out of

the unpardonable academic sin of stupidity.

With the preliminaries in mind, let us turn to the De
Rerum Natura of Lucretius.

1 This work of an Italian

poet I have already mentioned, in the lecture on the

notion of group, in connection with what I have there

called the philosophy of the cosmic cycle, or cosmic year.

And I have mentioned it as one of the greatest works,

not of a Roman as such, but of Man. Memorable on

numerous accounts the Romans were. For the construc-

tion of palaces, temples, roads, aqueducts and other public

works—with a measureless appalling waste of material

and human energy, owing to pathetic ignorance of science;

for inventions in the art of war, conquest and public

murder; for elaborate, sometimes clever, often crude and

vulgar imitation of Greek letters, eloquence, and art;

for a manifold development of an imperious jurispru-

dence; for the theory and practice of empire over sub-

jugated peoples; for the unintentional dissemination of

Hellenic culture, which most of them despised, through-
out vast portions of the world; for the establishment,—
by conquest, exploitation and robbery,

—of an unrivalled

luxury and sensual magnificence rotting the moral fiber

of both rulers and ruled: on these and similar accounts,

the Romans are indeed memorable forever. But they

*The following discussion is partly embodied in my article "The
Role of the Concept of Infinity in the YVork of Lucretius" in the Bulletin

of the American Mathematical Society, April, 1918. The article was re-

printed in The Classical Weekly, January 27, 1919.
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are equally memorable on other accounts—for their lack

of any genuine spirit of philosophic enquiry, for their

lack of reverence for human beings as human, for their

stupid belief that the things of wisdom could be pur-

chased, and especially for their brutal lack of scientific

curiosity, scientific imagination and scientific achievement.

Even the one really great exception
—De Reriitn Natura

—
is, in respect of its content, Greek in origin

—it is, as

you know, Epicurean; it is, nevertheless, the "one really

great exception," for the thought of the Greek thinker

stirred the great genius of the Italian poet to its depths;

Lucretius understood it and he cast it in immortal form

for the edification of all posterity. So far, however, as

Romans were concerned, the Lucretian work "was still-

born, into a suffocating atmosphere of vile wealth and

military oppression. The true figure to represent the

classical Roman attitude to science is not Lucretius, but

that Roman soldier who hacked Archimedes to death at

the storming of Syracuse."

Most of the many great merits of the work of Lucre-

tius have been long, though not generally nor even widely,

recognized. One of its recognized merits is, as I have

already said, its superb daring,
—the unsurpassed mag-

nificence of its enterprise, which was nothing less than

to show forth a method for explaining all phenomena
(whether mental or not) without having to resort to any

hypothesis of divine intervention; another of its merits,—a very striking one,—is its probably unequalled union

of literary excellence with scientific spirit and aim; still

another—which includes many, being a highly composite
merit—is its confident and often acutely argued presenta-

tion, sometimes in detail and sometimes in clear outline

only, of ideas and doctrines whose just recognition had to
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await the coming of modern science. I refer to such

scientific concepts and dogmas as : natural law—the atomic

constitution of matter—conservation of mass—conserva-

tion of energy
—

organic evolution—spontaneous or chance

origination and variation of organic life forms—struggle

for existence in partly friendly and partly hostile environ-

ment—survival of the fit (the well adapted) and de-

struction of the ill adapted—and sensation as the ulti-

mate basis of knowledge and as the ultimate test of reality—not to mention other equally brilliant anticipations of

"modern" scientific thought.

In extant appreciations of the work of Lucretius his

employment of the notion of infinity is indeed commonly
indicated but it is indicated only more or less incidentally,

without due signal of that notion's role in the poet's

thought. For example, in Masson's large and, in many
ways, excellent volume,—Lucretius, Epicurean and Poet,—the term infinite has only a subordinate place in the

index of important terms; in the very extensive Notes to

Munro's famous translation the term receives but scant

attention; and it receives even less in the Notes found

in Cyril Bailey's recent and deservedly much praised

English translation of the poem. What is missed in

such appreciations and commentaries and what I wish

especially to signalize here is the fact that the concept of

infinity,
—of infinite multitude and infinite magnitude,—

is not merely one among the many ideas employed by
Lucretius but is indeed the dominant idea in his system
of thought. A critical examination of the work as a sci-

entific structure can hardly fail to discover that in the

author's judgment the concept of infinity was not only

the most powerful of his logical instruments but also—
which is quite another matter—the one most obviously
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indispensable to the prosperity of his great undertaking.

This is not the place to give a detailed account of

the Lucretian principles and procedure. For our present

purpose it is sufficient to point out that among the propo-
sitions of De Rerum Natura there are three major ones

and that these owe their efficacy and indeed their control

of the entire discourse to the fact of their postulating

the existence of infinite multitude and infinite magnitude.

"Postulating" I have said, although Lucretius regarded
the propositions, not as mere hypotheses or assumptions,

but as indubitable certitudes. What are these three basic

propositions? They are: that the universe of space is a

region or room of infinite capacity
—infinite extent; that

time is an infinite duration composed of a beginningless

infinite past and an endless infinite future; and that the

universe's matter consists of an infinite multitude of ab-

solutely solid (non-porous) and non-decomposable atoms
—"seeds of things"

—
always moving hither and thither

in an infinite variety of ways and ever so distributed

throughout infinite space that of all spheres none but such

as are microscopically minute could at any instant fail

to enclose one or more of the "seeds." Without these

infinitudes, explanation of the phenomena of the world

was, in the poet's belief, impossible; with them, supple-

mented by certain other principles, such explanation was

possible. In the view of Lucretius cosmic history was an

eternal (infinite) drama enacted by an infinitude of un-

originated and indestructible "seeds," atoms, or elements

operating upon an infinite stage. The drama was not to

be understood except by help of the concept of infinity;

and so De Rerum Natura may be not unjustly said to be

a kind of poetic celebration of what the poet deemed to

be the scientific efficacy of that concept.
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What did Lucretius mean by infinity? What did he

mean by an infinite multitude and by an infinite magni-

tude? No formal definition of any of these terms is to

be found in his work. It is perfectly clear, however, that,

if one had asked him whether an infinite multitude of

elements was such that it could not be exhausted by re-

moving from it one element at a time, he would have

answered in the affirmative; and that, if one had asked

him whether the elements of an infinite multitude could

be thought of as arranged, like beads on a string, in an

endless succession of elements, he would have again an-

swered affirmatively. In short, an infinite multitude sig-

nified for Lucretius what mathematicians now describe

as a denumerably infinite multitude or class. In his work

there is no hint or suggestion that he had any conception

or any inkling of any higher order of infinity. It is highly

probable or indeed quite certain that, owing to his lack

of mathematical discipline, such a conception, had it been

suggested, would have seemed to him unintelligible or

absurd.

It is in itself noteworthy, and if one is really to under-

stand Lucretius it is essential to note, that, with the pos-

sible exception of time, the fundamental Lucretian infini-

ties were not mere variables capable of increase beyond

any prescribed finite amount—they were not, that is, what

we have called dynamic infinities; on the contrary, they

were, like the infinites of Cantor, constant or static af-

fairs; but, unlike the Cantor infinites, those of Lucretius

were composed of actual concrete things and not of ab-

stract ones like points, for example, or pure numbers;
thus the Lucretian infinitude of atoms, for example, was

an infinitude of material particles (taking up room) and

they all existed at once.
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Let us recall the current definition of an infinite class :

An infinite class is a class having a sub-class, or part,

equivalent to the whole—equivalent, that is, in the sense

that a one-to-one correspondence can be set up between

the elements of the part and those of the whole. This

definition of infinity was not given by the poet for, as

we have seen, he gave no formal definition of it at all.

We may ask, however, whether Lucretius was aware of

the fact that an infinite multitude, as conceived by him,

contained parts, or sub-multitudes, equivalent, as we now

say, to the whole. The answer is, yes: not only was he

aware of it but he repeatedy employed this characteris-

tic property of infinite multitudes correctly and effectively.

This rather astonishing fact is sufficiently interesting to

justify citation of one or two passages supporting my as-

sertation of it. If we bear in mind that one of the funda-

mental Lucretian infinites was the succession of time units

(days, say, or generations or other finite stretches) begin-

ning at any given instant and together composing what

is called the future, the following famous passage makes

it perfectly clear that, according to its author, the re-

moval of any finite multitude of elements from an in-

finite multitude of them leaves a remainder—a part
—

exactly equal (or equivalent, as we say) to the whole:

Nor by prolonging life do we take one tittle from
the time past in death nor can we fret anything away,
whereby we may haply be a less long time in the con-

dition of the dead. Therefore, you may complete as

many generations as you please; none the less, how-

ever, will that everlasting death await you; and for no

less long a time will he be no more in being, who begin-

ning with today has ended his life, than the man who
has died many months and years ago.

1

1 Munro's translation, 4th ed.
( p. 83.
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Lucretius, as already said, postulated the existence of

an infinitude of atoms. These "seeds of things"
—

by

whose clashings together and interlockings with one an-

other all things (including souls) were produced, to be

sooner or later again resolved into their elements by
ceaseless hammering of atomic storms—these "seeds,"

the ultimate constituents of all the world (including

minds), were not all of them identical in shape nor in

size, though all of them were too minute to be seen singly

or to be thus apprehended by any other sense; in respect

to shape and size the atoms presented a number of va-

rieties but only a finite number. The atoms of each

variety, it was held, constituted an infinite multitude ;
and

so there was some finite number of infinite classes of

atoms. The physical functions of the atoms of one class

were, in virtue of their size and shape, different from the

functions of the atoms of any other class. In respect,

however, of multiplicity, these infinite classes were equiv-

alent—they were each of them denumerable—and each

of the classes was equivalent to the class which we today

should call their logical sum,—to the class, that is, of

all the atoms in the universe.

It is sufficiently evident that the poet's conception of

infinite multitude was identical with that now employed

by mathematicians. If you will carefully scrutinize the

poem, you will discover that the same may be said of the

author's conception of infinite magnitude. Formal defini-

tion of the notion is not present. We are told, however,

that all the atoms are, in respect of size, between a finite

upper bound and a finite lower bound, and this notion

of lower bound is of critical importance
—what the lower

bound is we are not told but we are told that there is

such a bound and that it is finite (not zero),
—in other
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words, atomic size is not infinitesimal,
—it is a variable

but not one having zero, or null size, for limit; we are

told, rightly, that the sum of any finite number of atoms

is finite; we are told that the sum of all the atoms of a

given atomic form is infinite and that, therefore, their

number must be infinite. It is thus evident that the Lu-

cretian conception of an infinite magnitude was that of

a magnitude exceeding the sum of any finite number of

finite quantities none of which surpasses, in respect of

parvitude, a finite size.

It is important to bear in mind that formation of

ideas or possession of them is one thing, and that logically

correct handling of them in argumentation is quite an-

other. The difference is that between conception and

ratiocination. In his use of the ideas in question Lucre-

tius was frequently right and frequently wrong. You
would find it a very edifying discipline to determine all

the instances of both kinds. Of right use some examples
have already been given and it would be easy to cite

others. Let us now consider an instance of erroneous

use. A remarkable example is found in the following

passage (as correctly translated by Munro, page 15)—
a passage of exceeding interest apart from the error in

question:

Again unless there shall be a least, the very small-

est bodies will consist of infinite parts, inasmuch as

half of a half will always have a half and nothing will

set bounds to the division. Therefore between the

sum of things and the least of things what difference

will there be? There will be no distinction at all; for
however absolutely infinite soever the whole sum is,

yet the things which are smallest will equally consist

of infinite parts.
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The significance of the passage and the erroneous use

it makes of the concept of infinity will be clearer to us

if we observe that the passage is a portion of an argument

by which Lucretius endeavors to prove that a finite por-

tion of matter is not indefinitely or limitlessly divisible.

He assumed, as we have seen, that matter is composed
of invisibly small, absolutely solid particles called atoms,

or "seeds of things," these atoms being, by hypothesis,

the smallest particles capable of existing spatially sepa-

rate from one another. He conceived an atom, however,

to be composed of parts, which were, of course, not sep-

arable spatially from the atom. His contention was that

among the parts of an atom there was a least part
—a

part, that is, such that none of the parts was smaller.

The foregoing quotation is, as I have said, a part of the

poet's argument in behalf of this contention. Para-

phrased in modern terms this portion of the argument
would run about as follows: "If among the parts com-

posing an atom and being such that no two of them have

points in common (save points of a common surface)

there be no least part, then the atom consists of an in-

finite number of non-interpenetrating parts; the infinite

multitude of atoms in the universe and the infinite mul-

titude of parts of one atom are, as multitudes, equivalent

(in the sense of one-to-one correspondence between the

atoms in the former multitude and the atom-parts in the

latter) ;
the sum of the elements (atoms) of the multitude

of the atoms is an infinite magnitude, the total quantity

of the universe's matter; so, too, the sum of the elements

(atom-parts) of the infinite multitude of parts of one

atom is an infinite magnitude; but this latter sum is the

atom itself; hence, if there be no least part among the

parts of an atom, an atom is an infinite magnitude, and
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as such is no less than the sum of all matter." The error

to which I desire to invite your attention,
—an error in

the poet's use of the concept of infinity,
—is his assertion

italicised in the foregoing paraphrase. The error is not

due to wrong conception of infinity, whether of multitude

or of magnitude; it is due solely to the tacit assumption

that the sum of the elements of any infinite multitude of

elements is infinite,
—an assumption which, as you are

aware, is false, for, for example, the sum of the elements

of the infinite multitude of elements (h h h • • •) ls
>

as you learned in high school, not infinite but is i
—

in other words, the limit of the sum, I s , of the first

/• i
• i I i

i
I

i

n terms or the series,
—

I

—~+-^-r . . . , -.+ • • •

2 22 23 2

is i. Such a series,
—

any series such that the sum of

the first n terms has a finite limit for n increasing limit-

lessly,
—is said to be convergent. An obvious moral is

that a little knowledge of the convergence of series

would greatly improve the philosophy of poets and the

science of philosophers.

It is astonishing that the mentioned fallacy occurs, as

it does, in immediate conscious connection with a line

seeming (to us) to refute it: the half of the half will

alzvays have a half and nothing will set bounds to the

division. What is the explanation? It is not to be found

in any supposition of stupidity or of momentary nodding.
It is doubtless to be found in the author's purpose and

point of view. He was here exclusively concerned with

natural phenomena, with what he deemed to be existing

entities—with bodies (and parts thereof) occupying

space, actually filling what would else have been absolute

emptiness or void. And so, if you had tried to refute
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him by means of such a series as i, i, i, . . .
, which

his own words indeed suggest, he would probably have

said in effect: "Composed of man-made symbols like

words, your series is not and never can be endless; to

speak of the sum of a non-existing endless series is mean-

ingless; moreover, even if we supposed the series to be

endless, to be summable and to have i for its sum, this

would be neither finite nor infinite, for it would not be

a magnitude, inasmuch as the summands are themselves

not magnitudes but are merely empty abstract symbols;
if i be said to be a magnitude, in the sense of representing

a magnitude, then indeed, if magnitude I be composed
of two equal magnitudes, I grant that | will be a mag-
nitude in the same sense (of representing one) ;

if all the

symbols be magnitudes in that same sense, the summation

of the series of abstract symbols may be said to be the

summation of an endless (infinite) series of magnitudes;

but otherwise, not; and now what I have contended in

my poem is that, if your magnitude I be finite, not more

than a finite number of the symbols in the series can be

magnitudes, and this contention, denying the endless di-

visibility of finite magnitude,
—

especially denying that an

atom has an infinitude of parts,
—is based on physical

considerations—on grounds other than that advanced in

the passage you have quoted from my argument." If

Lucretius thus replied to you, what suitable rejoinder, if

any, could you make?
I shall not attempt to recount here, much less to esti-

mate, those other grounds. It must, however, be said, in

passing, that one of them is, in point of kind, almost per-

fectly represented by the following words of Clerk Max-
well

( Theory of Heat, p. 285) :
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What we assert is that after we have divided a body
into a certain finite number of constituent parts called

molecules, then any further division of these molecules

will deprive them of the properties which give rise to

the phenomena observed in the substance.

The traditional form of the thesis tacitly invoked by
Lucretius to fortify his "other" grounds for holding that

among the parts of an atom there is a least part, is ex-

ceedingly vague : all infinites are equal. Its vagueness

helps to account for its ages-long and world-wide vogue.

Thus Kanadi, an old Hindu author, employs the thesis

to prove that, if every body be infinitely divisible, there

can be "no difference of magnitude between a mustard

seed and a mountain" (Daubeny's Introduction to Atomic

Theory, p. 5). In this connection, anyone, philosopher

or mathematician, if he be at all interested in the history

of the idea of infinity, will be glad to have his attention

called to a little-known letter of Newton dealing with the

idea. The letter, which is addressed to Richard Bentley

{Works of, Vol. Ill, p. 207), is interesting on several

accounts: it points out the vagueness and falseness of the

above-mentioned thesis, which Dr. Bentley had assumed

to be true; it itself repeatedly employs the term "infinite"

in a sense not less vague and indeterminate; and it virtu-

ally asserts that, if two infinite magnitudes be equal, the

addition of any finite magnitude to either of them will

destroy the equality
—a proposition which we now know

to be false.

I have said that a thorough-going Critical History
of the Concept of Infinity would be a highly valuable con-

tribution to our knowledge and understanding of human-

kind. The account I have now given of the role of in-

finity in the work of Lucretius is submitted, let me say
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again,
—not as a model, for it is too imperfect for that,—but as only a concrete suggestion of what one chapter

of such a history might contain. In closing the lecture,

I desire to guard against the danger of leaving a false

impression. The mere correctness of the Lucretian con-

cept of infinity does not of itself account for the signifi-

cance and power of the author's work. The secret lies

in the fact that the imagination of a great thinker and

poet was so stimulated by the concept as to cause him to

express in immortal form a body of ideas which he had

acquired from an elder and alien world and which after

the long lapse of centuries are found to be among the

most fruitful scientific ideas of our time.



LECTURE XVI

Hyperspaces

MEANING OF DIMENSIONALITY SPACES OF FOUR OR

MORE DIMENSIONS THE MODE OF THEIR EXISTENCE

DISTINCTION OF IMAGINATION AND CONCEPTION

LOGICAL EXISTENCE AND SENSUOUS EXISTENCE

OPEN AVENUES TO UNIMAGINABLE WORLDS.

It is the aim of this lecture to explain in simple ways
what mathematicians mean by Hyperspace and to convey
some sense of the scientific and philosophic importance of

the concept which the term denotes. Let us understand

in the first place that the terms,—"hyperspace," "multi-

dimensional space," "space of n dimensions," "w-dimen-

sional space," and some other readily recognized variants

upon them,—are but different names for one and the

same idea; they are employed interchangeably as equiva-

lents; and the like may be said of the terms,—"geometry
of hyperspace," "multi-dimensional geometry," "geome-

try of n dimensions," and their variants,—each of which

simply denotes the geometry, or the science, of a space

having more than three dimensions.

The concept of hyperspace, though it is a modern

notion, is not strictly new,—it goes back three or four

generations and is now, among enlightened mathemati-

cians, as classic and orthodox as the ordinary multiplica-

tion table. Though only a short while ago it was re-

317
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garded by mathematicians of the conservative and reac-

tionary type with a good deal of suspicion as being, if not

crazy, at least a bit queer, over-romantic, and unsound,

it is now constantly employed as a great convenience by
mathematicians everywhere and even by physicists (say

in the kinetic theory of gases) quite without apology.

The literature of the subject is large and growing. In

Sommerville's Bibliography of Non-Euclidian Geometry,

Including the Theory of Parallels, the Foundations of

Geometry, and Space of n Dimensions (1911) there are

listed 1832 references on n dimensions.

The concept has not, indeed, so great scientific and

spiritual dignity as some others,—as that of function, for

example, or relation or transformation or group or in-

variance or infinity or limit,
—

yet it is a very grave notion,

and it has, moreover, a certain double distinction : it is,

I mean, one of the few among the important concepts in

modern mathematics that philosophers have seriously

grappled with and one of the still fewer that have piqued
the curiosity of the educated public. The results of such

popular curiosity are themselves a little curious. Not

long ago, for example, I heard and read an address on

hyperspace which a professional astronomer had ventured

to make before an audience of university students. It

was not a happy performance; not only did the speaker
confound the idea of ^-dimensional space with that of

non-Euclidean space, but he made it pathetically evident

that he had grasped neither the one idea nor the other,

nor did anyone in the evidently interested audience ap-

pear to observe the fact. I have cited this instance be-

cause, if a reputable astronomer can err so egregiously
in a matter that is not remote from the field of his special

studies, we ought not perhaps to be astonished at the
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meagreness of the educated layman's understanding of it.

And yet the fact is astonishing. For interest in the con-

cept of hyperspace and especially in what is naively called

the idea of "the fourth dimension" is, as you know,

widespread among educated laymen; the concept itself,

as we are going to see, is not a very difficult one; and fair

accounts of it have been given from time to time in popu-

lar and semi-popular magazines and books. Neverthe-

less, understanding of the matter, outside the circle of

professional mathematicians, is exceedingly rare. What
is the explanation? What has been the trouble? No
doubt part of it is that competent mathematicians have,

in general, been unwilling, sometimes haughtily unwilling,

to explain their ideas in popular terms lest they should

seem to be thus seeking the applause of the gallery,
—not

aware of the fact that such haughtiness is itself one of

the most effective means of impressing the gallery with-

out enlightening it, winning its applause of what it is per-

mitted to believe is a kind of mysterious intelligence so

high and mighty as to be inaccessible to all mortals save

the few who are endowed with mathematical genius; no

doubt another part of the trouble has been that, though
the concept of hyperspace has indeed aroused wide curi-

osity, it has not been pursued diligently in our industrial

generation as it would have been had it seemed to have

practical or bread-winning value,
—

if, in other words,
instead of being only a form of spiritual wealth, it had

carried the promise of material wealth. These consider-

ations, however, do not, I believe, explain the matter

fully. The main trouble has been that, though the idea

in question is not very difficult to acquire, yet the acquisi-

tion of it does demand some patient meditation, some

precision of thought, and the exercise of a little genuine
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wit, and this is a price that the vast majority of "edu-

cated" laymen are unwilling to pay; their interest in scien-

tific ideas is neither steady nor deep; the ideas they acquire

are such as can be taken, so to speak, on the fly, not such

as require to be pursued and pondered; amusement is

preferred to instruction; it is easier to read newspapers
or novels or history of the romantic type or even phi-

losophy of the verbalistic variety than to acquire solid

knowledge; it is easier to feel the galvanic effect of a

poem than to discern the beauty and feel the inspiration

of a scientific work; and far easier to acquire the lighter

lingo of knowledge sufficient for the dabbling conversa-

tion of a "smoker" or an afternoon tea than it is to think

and to know. What I have just now said requires an

important qualification,
—the public's interest in science

can be greatly improved if those who are expert in a

branch of science will teach those who are not,—but such

teaching has been very slight.

I have just now alluded to "precision of thought"
and "the exercise of wit"—"genuine" wit. Perhaps you
will allow me to digress a little in this connection. A
short while ago I read a review, by a distinguished man
of letters, of Professor George Santayana's Character

and Opinion in the United States. The reviewer tells us

that the work has, besides other excellences, the qualities

of precision, wit, and beauty. I have read much of San-

tayana's writing, including the poems and the five volumes

of The Life of Reason. Undoubtedly, his writing is

beautiful—that is why I have read it—and it is bright,

too, sparkling, and full of surprises; perhaps we may say
that it has, in one sense of the term, wit also; to me its

wit appears to be scintillation rather than genuine wit for

in this latter there is an element of gravity which Santa-
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yana lacks; at all events if he have wit, it is not wit in

the sense in which that quality is found in Kant, for ex-

ample, or Hume or Spinoza or Descartes or Pascal or

Aristotle. As for the quality of precision, it is certain

that neither Santayana nor his reviewer has it or indeed

knows the meaning of it as it is rightly understood by

logicians or mathematicians, for the writers in question

are not logicians. They do indeed produce literature—
beautiful literature—but it does not belong to the litera-

ture of knowledge, which is also beautiful; the literature

it belongs to is the literature of opinion, some of which

is not even beautiful, for though it includes such beautiful

writing as that of Benedetto Croce, for example, yet it

embraces work like Professor Bliss Perry's The Present

Conflict of Ideals, which we must allow is a kind of lit-

erature even though it remind one of a traveling sales-

man displaying his wares or, less dimly, of an indiscrimi-

nate "feeder" who loves to talk of the things he has

tasted and who sometimes ascribes to bad food or bad

cuisine distress that is due to enfeebled or feeble digestion.

Indeed Professor Santayana, like his reviewer, is,

primarily and essentially, a poet; but there are three kinds

of poetry: there is the poetry of pure thought,
—the

poetry of Logic,
—and there are two other kinds—the

hypological and the hyperlogical. Each of the kinds has

a muse of its own; that of the first kind, as I said in a

previous lecture, is called Logical Rigor, an austere god-

dess, guardian of precision, mistress of the silent har-

monies of perfect thought. By that muse poets like

Santayana have not been inspired.

Returning from the digression, let us now endeavor

to answer the main question of this lecture: what is the

meaning of the term "hyperspace" or "//-dimensional
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space," where n is greater than three? I have said "the

meaning" as if there were only one. As a matter of fact,

the term has three meanings, which, though they are

closely related, it is essential to distinguish if we are to

avoid confusion. I shall try to explain them clearly, re-

serving the most interesting one for the last. Certain

refinements of refinements I shall avoid as likely to ob-

scure and hinder rather than to clarify and help in a first

presentation. It will be very advantageous as a pre-

liminary to speak of some simple matters connected with

the system of real numbers.

There is, as you doubtless know, an extensive and very

refined theory of the logical genesis and properties of these

numbers. The theory is to be found in the numerous

works dealing with functions of a real variable, the

profoundest treatment of the subject being that in the

Principia Mathematica. I am not going to assume that

you are familiar with that theory. I take it for granted,

however, that you are sufficiently acquainted with the

system of real numbers to understand fairly well what I

purpose to say about it here. You are aware that the

system is composed of the infinitude of positive and

negative integers, the infinitude of rational fractions, and

the infinitude of irrational numbers like V2, for example,
and including the so-called transcendental numbers such,

for example, as the familiar specimens, -w and e. His-

torically these numbers were called
"

real
"
to distinguish

them from the so-called
"
imaginary

"
numbers, like

\/ — 2, for example, which latter were long regarded, quite

unjustly, as an ungenuine kind of number. Today the

old adjectives, real and imaginary, are still regularly

employed, but they no longer signify that the numbers
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thus designated are either more or less genuine than other

numbers.

The system of real numbers is a vast system or class—
the multitude of the numbers in it is indeed very great.

The extent of the multiplicity,
—the number, if you please

of all the real numbers,—is often conveniently denoted by
the familiar symbol for infinity, oo . The same symbol
is used to indicate how many things, elements or members
there are in any other equally numerous system or class—
say, that of the points in a straight line. If a; be a vari-

able representing
"
any one

"
of the real numbers, we say

that x has one degree of freedom; we say also that the

system of real numbers is a o;z<"-dimensional system or

class; in like manner we say that a point P, if free to

move along a straight line, has, in virtue of that fact, one

degree of freedom, and that a line, regarded as a system
of points, has one dimension or is ow^-dimensional.

Now, a real number is one thing and a pair of them is

another. Such pairs constitute a system (of pairs). How
many pairs are in the system? It is easy to tell. Let

the symbol (x, y) be a variable representing any one of

the pairs; give y some definite value, say, yi, and let x

vary
—x can take oo values; each of these taken with y\

gives a pair, and so we get oo pairs; in each of these we

may replace y 1 by any of the oo of values that y may take;

we so obtain in all, as you see, oo times oo
, or oo 2

, pairs.

It is plain that the variable (x, y), an arbitrary or unde-

termined pair of the system, has two degrees of freedom,

owing to the variability of the two parameters, or coor-

dinates, x and y. Thus the system of all the pairs of real

numbers is a /wo-dimensional system (of pairs). You see

at once that the system of triads or triplets of real numbers

has three dimensions, or is a tri-dimensional system (of
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triads); that the system contains oo 3
triads; and that an

undetermined triad (x, y, z) enjoys three degrees of free-

dom, one for each of the mutually independent coordinates,

or parameters, x, y and z. The generalization is obvious

and easy; if we think of the system of all the sets

(#1, #2, • • • > *n) of real numbers, each set composed of n

numbers, it is readily evident that the system is an

^-dimensional system (of sets); that it contains oo
n
sets;

and that a free, or undetermined, set of the system

possesses n degrees of freedom.

I have been speaking mainly of numerical things. I

am now going to speak of things geometrical or spatial,

and will first make a little more precise what I said a

moment ago regarding a line. Let I be a straight line;

choose a point of L for origin of distances and mark it 0;

let P denote any point of L; denote by x the distance (in

terms of some chosen unit) from to P, it being under-

stood that x is positive or negative according as P is on the

one side of or on the other—of course x will be zero if

P coincide with 0. Thus a reciprocal one-to-one corre-

spondence is set up between the real numbers of the

system thereof and the points of L; x represents P numer-

ically, P represents x geometrically; and x is the coor-

dinate or parameter of P. Notice that L is here the field

or the space of operation and that we are regarding it as a

field or a space of points. In the light of the preliminary
discussion respecting numbers, you see immediately that

a straight line, regarded as a space of points, is one-

dimensional, since it perfectly matches, as indicated, the

one-dimensional system of the real numbers. In other

words a line is a point-space of one dimension. You
catch the idea: if a point of a line depended upon two or

more coordinates instead of only one, we should say that a
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line is a point-space of two or more dimensions. All this

is obvious. I have stressed it because it is essential to a

good understanding of any one of the meanings of hyper-

space. Let us turn to analogous considerations in the

case of a plane.

In Lecture V we saw that, by means of a pair of

rectangular axes and a unit of length, a one-to-one corre-

spondence can be established between the points P of a

plane and the pairs (x, y) of real numbers. The pair

represents the point, and the point the pair; the x and y
of a pair are at once the coordinates of the pair and of the

corresponding point. There are as many points in the

plane as there are pairs of real numbers in the system of

such pairs. Hence a plane contains oo 2
points; a point

that is free to move in a plane and is confined thereto

has two and but two degrees of freedom; a plane, regarded
as a space of points, is a /z#o-dimensional space; and you
see why it is so called,—it is because the points of a plane

match, in one-to-one fashion as we have seen, the pairs of

real numbers in the two-dimensional system of such pairs.

And now what shall we say of ordinary space? What,
I mean, shall we say of that immense region or room in

which we are immersed and, with us, our floating world

and the stars? Let us think of it as a field, or a plenum,
of points. What, then, is its dimensionality? It is easy
to ascertain.

Choose three mutually perpendicular planes; they
have a common point 0, called the origin; they determine

three lines, OX, OY, OZ, called axes; agree that a distance

measured parallel to an axis shall be positive or negative

according as it is reckoned in the sense of the arrow or in

the opposite sense; note that the three planes divide the

whole of space into eight compartments; choose a unit
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of length; let P be any point and, as in the figure, denote

its distances from the coordinate planes by x, y and z,

called the coordinates of P; they are also the coordinates

of the triad (x, y, z). It is plain that a P determines a

Qcyz)

->X

Fig. 29.

triad, and a triad a P. You see at once that ordinary

space, if regarded as a plenum of points, has three dimen-

sions, since the points match the triads in the three-

dimensional system of triads of real numbers. In such
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space there are, you see, oo 3
points, and a point has therein

three degrees of freedom and only three.

We are going very soon to see very clearly one of the

three meanings of the term n-dimensional space, n greater

than three. Do not fail to note that thus far we have

regarded the line, the plane, and ordinary space as fields,

or plena, or spaces, of points; the point, that is, has been

taken for element; but nothing constrains us to elect the

point to that position; we can geometrize just as well,

sometimes better, with some other entity taken as element;

we may choose for element the point -pair or point triad,

and so on; in the case of the plane, we may take the

line or the circle or something else for element; in the

case of ordinary space we may take for element any of

the foregoing entities or a plane, for example, or a sphere,

and so on. It is true that, from time immemorial until

a little less than a century ago, the point was exclusively

employed as geometric or spatial element, but there is

nothing in the ten commandments nor even in the Vol-

stead Act to prevent the use of something else. The

point's ages-old monopoly was broken up mainly by

Julius Pliicker (1801-1868)
—one of the greatest of

geometricians and a distinguished physicist besides,
—

who geometrized the plane in terms of its lines and

geometrized ordinary space in terms of its planes and its

lines—thus emancipating geometry forever from its old

bondage to points. A geometry in which the point-^xztr

is taken for element will deal with the properties of

configurations composed, not of points, but of point-pairj
-

.

Now, in a line a po\nt-pair has two coordinates, two

degrees of freedom; in a plane it has four; in ordinary

space it has six; a line has 00 2
point-pairs; a plane, 00 4

of them; and ordinary space, 00 6
; and so you see that,
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regarded as a plenum or space of point-pairs, a line has

two, a plane jour, and ordinary space six, dimensions.

You see that the dimensionality of a space depends, not

only upon the space itself, but also upon the entity

employed as element. You see easily that, in respect to

point-triads, the dimensionality of a line is three, that of

a plane is six, and that of ordinary space is nine; and

you see that, if we take for element the point-j^ contain-

ing n points, then a line is an w-dimensional space, a plane
has 2ft dimensions, and the dimensionality of ordinary

space is 3«. There is no sense in simply saying that a

plane, for example, or that ordinary space has such-and-

such a dimensionality (or number of dimensions); what
we have to say is that it has such-and-such a dimen-

sionality when it is conceived as a space or plenum of

elements of such-and-such a kind. When people say

simply, as they often do, that space (meaning ordinary

space) has three dimensions, they mean—though they
do not know well what they mean—that it has three

dimensions as a space of points. If you think they know
what they mean, ask them what they mean. For addi-

tional examples showing that space dimensionality de-

pends upon space element, consider the following. In

a previous lecture we saw that in a plane a line has two

coordinates, two degrees of freedom—a plane being pre-

cisely as rich in lines as in points; and so a plane is a two-

dimensional space of lines, as it is, we have seen, of points.

What is the line dimensionality of ordinary space? It is

easily seen to be four. To see it, reflect that a line is

determined by two points, say a point in the plane of the

floor of this room and a point in the plane of the ceiling;

each of the points (kept in its plane) has two coordinates,

two degrees of freedom, and so, you see, the line has four.
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To distinguish a line of ordinary space from all its other

lines, it is necessary and sufficient to tell four independent
facts about it; ordinary space contains oo 4

lines, and you
see that Pliicker's famous line geometry (of ordinary

space), which studies configurations composed of lines

(and not of points), is a four-dimensional geometry. Let

us return for a moment to the plane; think of it as a

plenum of circles. Each of its points is the center of an

oo of circles, and it has oo 2
points; and so, you see, a plane

has oo 3
circles; in a plane the circle has three degrees of

freedom,—three coordinates or parameters; a plane of

circles is a /Am'-dimensional space
—as rich in circles as in

point-triads
—as rich in circles as ordinary space in points.

You can readily show that ordinary space is four-dimen-

sional in spheres, as we have seen it to be in lines, five-

dimensional in flat \ine-pencils (explained before), six-

dimensional in circles, and so on and on to your heart's

content.

I venture to believe that the foregoing illustrations

have sufficiently disclosed one of the meanings of the

term
"
hyperspace ": that meaning, namely, according

to which the term signifies an ensemble of geometric, or

spatial, entities, or elements, of such a kind that an

undetermined (or arbitrary) one of them has, in the

ensemble, four or more degrees of freedom. This state-

ment is not designed to be a definition of the meaning,
but only a good-enough description of it. In this meaning
of hyperspace there certainly is nothing to mystify; for,

in order to find examples of such hyperspaces, one is not

obliged to perform the familiar mathematical feat,
—which

many good people seem to find difficult or even impossible,

—of going beyond the great domain of Imagination into

the infinitely vaster domain of pure Conception. I have
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sometimes felt that no student is intellectually fit to be

graduated from college who does not easily and habitually

recognize the immense and fundamental difference between

those domains. Such a student is as meagrely disciplined

as one who believes that, if two things or persons be each

of them indispensable, they are therefore of equal impor-
tance—a rank fallacy vitiating 90 per cent of current social

philosophy throughout the world. I once heard a railway

section-hand argue that, because his work was indispen-

sable, he was just as important as the railway president.

Have you observed that among the hyperspaces which

we have so far taken occasion to notice there is no hyper-

space of points? The examples have been hyperspaces of

pomt-pairs or of point-triads, ... or of n-sets (of points),

... or of lines or of circles or of \me-pencils or of spheres,

and you are now doubtless prepared to extend the list of

such examples indefinitely, for
"
the clue, grown familiar

to the hand, lengthens as we go and never breaks."

But it is not this kind of hyperspace that mystifies the

layman. What he desires to have you make clear to him,—
though he may not be able to say so very clearly,—is the

conception of a hyperspace of points. When he asks you
to

"
explain the fourth dimension," he is really asking

you to explain the idea of a space that is 4-dimensional
in points in the sense in which ordinary space is 3-dimen-
sional in points, a plane 2-dimensional and a line i-dimen-

sional. And so we see that our further task is thus

defined. I have said that hyperspace has three intimately

related meanings. One of them has been explained.

The other two attach to the term, hyperspace of points,

or—what is tantamount—point-space of four or more

dimensions. And we are now to see what the meanings
are. They are not hard to see if we but look attentively.
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Let us begin very simply by recalling the fact that in a

line a point is represented by one coordinate x, in a plane

by a pair (x, y) of them, and in ordinary space by a triad

(x, y, z) of them. Now, instead of always saying that the

point is thus
"
represented," it is very common, because

very convenient, to say that the x or the (x, y) or the

(x, y, z) is the point, and this is done, explicitly or implic-

itly, in very many ways; thus we say, for example,
"
consider the point (x, y)

"
or

"
consider the line

ax-\-by-\-c=0
"

instead of saying, "consider the system
of those pairs of values of x and y which satisfy the

equation ax-\-by+c=0." This familiar way of speaking
as if real numbers, pairs thereof and triads thereof were

indeed points and as if equations were indeed loci, is very

brief, very neat and very stimulating, too, on account

of its keeping the mind continually delighted with the

presence of geometric or spatial imagery. You see that,

in order to be thoroughly consistent in this manner of

speaking, we should have to say that the system of real

numbers x is the line, that the system of pairs (x, y) is

the plane, and that the system of triads (x, y, z) is

(ordinary) space.

And now what I wish to point out is that just such a

thoroughgoing geometric way of speaking is often em-

ployed by mathematicians when dealing with four or

more real variables, x, y, z, zv, etc. That is to say, if they
be handling four variables, they call a tetrad (x, y, z, zv)

of numbers a point and the totality of such points they

quite consistently call a point-space of four dimensions.

And in like manner for any yet larger number of variables.

Query: when mathematicians thus speak, do they sup-

pose that there exists a 4-dimensional space containing

points for the number tetrads (x, y, z, zv) to represent as
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there exists a plane (say) containing points for the dyads

(x, y) to represent? The answer is that some of them

suppose it and some of them do not; and in this fact is

the key to the two meanings of the term,
"
hyperspace

of points." According to one of the meanings, a point-

space of w-dimensions is, strictly speaking, not a space

at all, but is simply and purely an w-dimensional system
of number sets (each having n numbers); and the theory
or science of such a system, verbally geometrized as I have

indicated, is not genuine geometry, but is simply a species

of ^-dimensional Algebra or Analysis conducted and

couched in geometric speech. Such,—to take an example
as early as 1847,

—is Cauchy's Memoir sur les lieux

analytiques where he says,
" We shall call a set of n

variables an analytic point, an equation or system of

equations an analytical locus," and so on. According to

the other meaning a hyperspace of points is held to be a

genuine space; the points constituting it, though repre-

sentable by number sets of n numbers each, are distinct

from, and independent of, such sets as the points of

ordinary space are distinct from, and independent of, their

representative number triads (x, y> z) ; and the theory of

such a space, whether the theory be built up synthetically

or analytically, is genuine w-dimensional geometry
—

geniune geometry of a hyperspace of points.

I am sure that in this connection you are impatient to

raise the question whether hyperspaces of points may be

said to exist, and, if we allow that they may, in what

sense of the term "
exist." The question evidently

involves nice matters both of psychology and of meta-

physics. Many mathematicians have not carefully con-

sidered those
"
nice matters

"
and are quite content

(because of convenience as already explained) to speak
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as if the hyperspaces in question exist, without thereby

intending either to affirm or to deny that they do exist

in fact. After much reflection I have myself no longer

any doubt in the premises, and in my Human Worth of

Rigorous Thinking, p. 256, I have stated my conviction

in the words: hyperspaces have every kind of existence that

may be warrantably attributed to the space of ordinary

geometry. The considerations that have led me to that

conclusion are set forth at sufficient length in the work

cited and need not be restated here.

In relation to the matter in hand, note carefully the

sharp difference of temper, attitude and interest between

the following two classes of mathematicians: those of the

one class, primarily interested in geometry, affirm the

existence of a point-space of n dimensions and then inves-

tigate its properties
—build up its geometry

—
by the

algebraic or analytic method—by applying, that is, the

theory of n independent numerical variables (say, x\, X2,

X3, . . .
,
xn) to the postulated space; those of the other

class, primarily interested in algebra or analysis, employ,
in their discourse about the system of n variables, the

nomenclature of the geometry of a point-space of n dimen-

sions as if there were such a space, but do not affirm its

existence. (Of course the former class are not obliged

to employ the analytic method nor are the latter class

obliged to employ geometric speech.) Note the
"

as if
"

in the following extract from J. J. Sylvester's
" A Plea

for the Mathematician
"

(Mathematical Papers, Vol. II):

Dr. Salmon in his extension of Chasles' theory of
characteristics to surfaces, Mr. Clifford in a question
of probability, and myself in my theory of partitions,
and also in my paper on barycentric projection, have all

felt and given evidence of the practical utility of
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handling space of four dimensions as if it were con-

ceivable space.

By
"
conceivable

"
he here means actual.

It is noteworthy that in the difference between affirm-

ing the existence of hyperspaces of points and merely

speaking as if such spaces existed we have a striking

illustration of the Kantian distinction between postulating

and feigning—between hypothesis and fiction
—a much-

neglected distinction justly and stoutly insisted upon by

Vaihinger in his great Philosophie des Als Ob as being of

fundamental importance in the philosophy of science and

the philosophical history of thought in general. The
distinction is indeed very important and very wide in its

application. One must be pretty dull not to perceive

that the difference is radical between saying, for example,
"
there is an infinite and all-wise God and hence we

ought to live so-and-so
"

and saying
" we ought to live

as if there were such a God "; or between saying
"
there

is a universal ether having such-and-such properties and

that is why light behaves in such-and-such a way
"
and

saying
"

light behaves as if there were an ether having
such-and-such properties "; or between saying

"
the

human soul is immortal and hence we ought to live so-

and so
"
and saying

" we ought to live as if the human soul

were immortal "; and so on throughout the whole range of

thought. A postulate or hypothesis, as here understood,

is a proposition and is true or false; but a fiction is not a

proposition and is neither true nor false. It would be

very enlightening to make a survey of scientific
"
hy-

potheses
"
with a view to ascertaining which of them are

genuine hypotheses and which ones are only fictions—
only as ifs. There can be no doubt that many a scientific

worker would be astonished at the results of such a
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critical survey. An excellent clue to Vaihinger's work is

found in Dr. W. B. Smith's penetrating review of it in

The Literary Review (N. Y. Evening Post), July 9, 1921.

The hyperspaces of points are unimaginable worlds—
unimaginable for us humans, I mean, in our present stage

of development
—but they are thoroughly conceivable

worlds; and for mathematical purposes nothing is

demanded but thorough conceivability. The importance
of that fact is fundamental. Experience has taught me
that it is hard to drive the fact home to the average

understanding. Wherever the distinction involved in the

fact is not understood by
"

critics," whether scientific

or literary or philosophic, criticism is blind and worse

than futile, being at once misled and misleading, confused

and confusing. It is important to observe and to bear

in mind that, with respect to the great powers, or types,

of mental activity,
—

Sensibility (or Sense-perception),

Imagination, Conception,
—we humans fall into three

classes: there are those who have the first power but

little of the second; there are those who have the first and

the second powers but little of the third; and there are

those who have in good measure the three powers. The
second class is related to the third very much as the first

is related to the second. Beware of the first two classes,—
they can give you neither science nor genuine philosophy

nor,
—

properly speaking,
—criticism. Are they aware of

their limitations? No; at all events not keenly. How
could they be?

There are various avenues by which beginners may
approach those unimaginable worlds and enter them; and

that is a blessing, for the worlds are replete with wonders.

One of the ways is that followed by Professor H. P. Man-

ning, for example, in his Geometry of Four Dimensions,



336 MATHEMATICAL PHILOSOPHY

the reading of which requires no more preparatory knowl-

edge of geometry and geometric method than can be

acquired in a good high school.

Another of the ways is the deliberate and patient way
of postulate procedure. I am not going to take the time

that would be necessary to spread before you here a

system of postulates for the geometry of a point-space of

n dimensions. To do so would be wasteful, for I miy
assume that you are now pretty familiar with one or

more postulate systems for a space of three dimensions,
—

as that of Hilbert or that of Veblen or that of Veblen

and Young (for 3-dimensional projective geometry),
—

and only slight alteration of any such system is needed to

convert it into a system available for 4, 5 or n dimensions.

I will content myself with referring you to page 24 of

Veblen and Young's Projective Geometry, for example, for

a clear indication, if you require to be shown, of the

simple sort of alteration that will suffice.

The two foregoing ways of working into and working in

the worlds of hyperspace are, as you observe, the ways of

pure, or synthetic, geometry as distinguished from ana-

lytic, or algebraic, geometry (which latter, let me remind

you, is only a geometric method). The "
pure

"
ways are

followed with especial frequency by the Italian geometri-

cians, though, of course, the latter often employ the

analytic method also.

Of the latter method, I have already said enough for

the stated purpose of this lecture. An excellent way for a

beginner is found in a somewhat rough mixture of the
"
pure

"
and the algebraic ways, guided by the chief of all

intellectual guides
—

analogy
—as follows :

Let I be a line (say a projective line) of points; it is

a space of one dimension, Si; if you like, you may say
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that a point is itself a space of zero dimensions, and denote

it by So; conceive a point P not in L and consider the set

of lines joining P to the points of L; in this set there are

00 lines; think of the ensemble of all the points of these

lines; there are oo 2 of them; they evidently constitute a

plane
—a 2-dimensional point-space, S2. Now conceive a

point P not in S2 and think of the set of all lines joining

P to the points of S2', of such lines there are 00 2
; plainly

the points of these lines together constitute a 3-dimensional

space (like the familiar space of ordinary solid geometry);
it has 00 3

points; denote it by S3. In the next step imag-
ination ceases to accompany our thought; so much the

worse for imagination, for conception goes on rejoicing,

quite as before; if it could not go on endlessly, there could

be, strictly speaking, no science. You see, of course,

what the next step is; take it boldly: conceive a point P
not in S3; conceive P joined by lines to all the points of

S3; of such lines there are, as you see, oo 3 in all; each of

them has an 00 of points and all of them together give

you 00 4
points constituting a 4-dimensional space, S4.

Repetition of the process yields S3, then Sc, and so on till

you have the conception of a point-space of any required

dimensionality, however high.

Having once formed the concept of hyperspace, what

then? What is to be done with it? The answer depends

upon you
—

upon your interest and your ability. Those

higher worlds, I have said, are replete with wonders.

These are not (yet) shown in the
"
movies." Neither can

1 exhibit them here. If you wish to see them you must

pay a certain price
—that of seriously studying hyper-

space geometry. Of this geometry the literature is large,

is growing, and will continue to grow. An excellent intro-

duction to it is Schoute's Mehrdimension ale Geometric
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where the matter is handled systematically, elementally
and many-sidedly. Among the aims of the course in

Modern Theories of Geometry, which I have given at

Columbia University for many years, is that of helping
students to acquire a working knowledge of n-dimensional

geometry. The importance of such a knowledge is by no

means restricted to students of so-called pure mathematics.

Indeed, a few years ago, I had the honor to give a series

of lectures on w-dimensional geometry to a group of

physicists who had found that without some knowledge
of hyperspace methods, they could not read the literature

of their own subject, especially that of the kinetic theory
of gases. That was before the present relativity rage,

which, as we saw in a previous lecture, avails itself of the

idea of four-dimensional space. It will take but a minute

and it will be instructive to show why students of gas

theory are now obliged to acquire some knowledge of

^-dimensional geometry. It is because some of the fore-

most writers on the theory,
—

J. H. Jeans, for example,
—

have adopted and elaborated the following considerations.

Suppose we have a closed vessel, say a sphere, filled with

gas. Let us suppose the gas is composed of N molecules.

These are flying about hither and thither, all of them in

motion. Think of one of them; at a given instant it is at

a point (x y y, z) ; at the same time it is moving so that the

components of its velocity along the axes of reference

are (say) u, v and w\ if and only if we know the six

coordinates of the molecule at an instant, we know where

it is and the direction and rate of its going. The N
molecules constituting the gas thus depend, you see, upon
6N coordinates. At any instant these have definite values.

Together these values define the
"

state
"

of the gas at

that instant. Now, say the writers in question, the



HYPERSPACES 339

6N values determine a point in a space of 6N dimensions.

Thus there subsists a correspondence between such points

and the varying gas states. As the state of the gas

changes (owing to the motions of the molecules) the

corresponding point generates a path, or locus, in the

space of 6N dimensions; and so the behavior or history of

the gas (as a whole) gets geometrically represented by
loci in the mentioned hyperspace. That will suffice as a

hint at what has become a recondite mathematical theory—the kinetic theory of gases.

I have said that I cannot here exhibit the wonders to

be found in the worlds of hyperspace. To do so in any
fair measure would require many lectures as long as this

one. I can not refrain, however, from leading you, if

you be willing, to see one of the minor wonders met with

on the very threshold of 4-dimensional space. We can

find it in the
"
mixed way

" we were following a little

while ago, guiding ourselves by analogy, and at the same

time you will see how you can yourselves discover further

wonders. Note the facts carefully and note their analo-

gies as we start at the bottom and ascend the scale.

Observe, to begin, that in a line (Si) an equation ax+b =0
of first degree in one variable (x) represents a point (So);

in a plane (S-z) an equation ax-\-by-\-c
= of first degree in

two variables (x, y) represents a line (Si), and that two

such equations taken as simultaneous represent a point

(So)
—the common point of the two lines; in an ordinary

space (S3) an equation ax-\-by-\-cz-\-d
= of first degree

in three variables (xy y, z) represents a plane (S L>), two

such equations taken as simultaneous represent a line

(Si),
—the line common to the two planes,

—and that

three such equations (if independent) together represent a

point (So)
—the common point of the three planes. You
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now have the analogical clue. Following it you see imme-

diately that in a 4-dimensional space (S4) an equation

ax+by-\-cz-\-dw+e = Q of first degree in four variables

(x, y, z, w) represents an ordinary space (S3)
—named a

lineoid by my colleague, Professor F. N. Cole; that two
such equations together represent a plane (S2)

—the plane
common to the two lineoids; that three such equations

(if independent) represent a line (Si)
—the line common to

the three lineoids; and, finally, that four such equations

(if independent) represent a point (So)—the common

point of the four lineoids. You are already, you see, in

the midst of astonishing things: you see that an S4—a

hyperspace of the lowest dimensionality
—contains a four-

fold infinity (00
4
) of lineoids (spaces like our own); you

see that any two of these have a plane for their inter-

section, that any three independent lineoids (in S4) have

a line in common, and that four of them have one point
in common and only one. I spoke of showing you a
"
minor wonder." It is that in S4 two planes (unless they

happen to be in a same lineoid) have one and only one

point in common. To see that this statement is true,

consider four independent equations like the last of the

foregoing; two of them, as we have seen, represent a

plane; the other two represent another plane. What

points have the planes in common? The answer is:

those points whose coordinates (x, y, z, w) satisfy the

four equations. But, as you know, such a system of

equations is satisfied by only one set of values. Hence

the proposition. There are many other near-lying mar-

vels in S4. One of them is that you can pass from the

inside to the outside of an ordinary sphere without going

through its surface. Another one is this: if in ordinary

space you wish to make a prison bounded by planes, you
have to use at least four planes; while in S4 the analogous
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prison is bounded by five ordinary SVs. I will mention

but one more. In ordinary space (S3) two planes have

but one angle; in S4 two planes make two angles with

each other, so that, if you would bring the planes into

coincidence, you must rotate one of them about their

common point in two ways. These specimens are mild

marvels; in S4 their like is inexhaustible; astonishment

increases as one ascends the summitless scale of dimen-

sionality, and, with astonishment, also light and edifica-

tion. Indeed we may say that the science of geometry

is, properly speaking, ^-dimensional geometry.
In closing this long lecture, I need add but little respect-

ing the human significance of the momentous conception
with which it has dealt. We have seen that, in the

matter of scientific speech, the geometry of hyperspace
has clothed pure Analysis with the beauty and strength

of a tongue that is at once delightful, stimulating and

economical; we have seen that the language, the ideas

and the methods of w-dimensional geometry are becoming

rapidly more and more powerful agencies in the great

outlying domain of Physics; we have glimpsed the fact

not only that w-dimensional geometry is in itself of exceed-

ing great interest, but that the geometry of the higher
worlds illuminates that of the lower as the geometry of

ordinary space illuminates that of the plane or the line.

I have now, finally, to mention what is, in my belief,

the chief consideration. Human progress is progress in

emancipation; and in the Concept of a summitless

hierarchy of Hyperspaces is attained, I do not say the

most precious, but the amplest, Freedom yet won by the

human spirit,—room, I mean, for exterior representation,

for the architecture, if you please,
—of every analytic

doctrine or theory, even though there be involved in its

structure an infinite number of variables.



LECTURE XVII

Non-Euclidean Geometries

THEIR BIRTH AND VARIETIES THEIR LOGICAL PERFEC-

TION THEIR PSYCHOLOGICAL DIFFERENCES

THEIR SCIENTIFIC AND PHILOSOPHIC SIGNIFICANCE

ALL OF THEM PRAGMATICALLY TRUE SCIENCE

AND TRAGEDY A PRELUDE ON THE POPULARIZA-

TION OF SCIENCE SCIENCE AND DEMOCRACY.

"In the early part of the last century a philosophic
French mathematician, addressing himself to the ques-
tion of the perfectibility of scientific doctrines, ex-

pressed the opinion that one may not imagine the last

word has been said of a given theory so long as it can

not by a brief explanation be made clear to the man
of the street."

x

The mathematician referred to is Gergonne, one of

those who assisted in the second discovery of projective

geometry (long after the work of its first discoverer,

Desargues, as I said in a previous lecture, had been lost

and utterly forgotten). It is to Gergonne that we owe
the first enunciation of the great law of Duality

—one of

the most beautiful and fertile principles of modern

geometry. His noble dream respecting the perfectibility

1

Quoted from address on Mathematics written in 1907 and published
as final chapter in The Human Worth of Rigorous Thinking (Columbia
University Press, 1916).
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of scientific theories ought to be given in his own words.

They are these:

On ne peut se flatter d'avoir le dernier mot d'une

theorie, tant qu'on ne pent pas I'expliquer en peu de

paroles a tin passant dans la rue.

Can the dream come literally true? We are certain

that it cannot, for it is an ideal,
—a genuine ideal,

—and

genuine ideals can never be realized fully. Therein is

their precious value as lights and lures of the spirit
—

they are "ever flying perfects," not to be overtaken but

to be pursued by us, as they rise and soar and lead, for-

ever.

The ideal of Gergonne is a democratic ideal. To

pursue it is, therefore, not merely our privilege; it is a

great and solemn duty. Democracy is on trial,
—it is an

experiment,—the greatest experiment ever undertaken by
our humankind. Unless the community be pervaded with

ever-increasing scientific intelligence, that supreme experi-

ment,—the sovereign hope of the world,—is doomed to

failure. Than that, nothing can be more evident to such

as reflect. The affairs of state must be rescued from the

hands of ignorant politicans and be committed to scien-

tific management—to the guidance, that is, of honest

men who know. That, too, is as evident as anything can

become. How can the destiny of the state be committed

to the guidance of science if the men and women who
constitute the electorate know nothing of science, nothing
of its methods, nothing of its content, nothing of its

achievements, nothing of its spirit, nothing of its infinite

potency for human service? Election is selection. How
can the ignorant select the wise?

In view of such considerations, so obvious and so
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important, it is indeed strange that scientific men have

been so little actuated by Gcrgonne's beautiful dream.

What has been the trouble? What is the secret? Is it

that scientific specialists find in the educated public a lack

of scientific interest? Tokens of scientific curiosity

abound on every hand,—witness, for example, the recent

world-wide curiosity manifested by non-specialists in the

theories,
—most recondite theories,—of Professor Ein-

stein. No doubt such curiosity is often shallow and

transitory, but it can be nourished and be thereby made

deeper and more enduring. Do scientific specialists

really believe that, in general, educated non-specialists

have not enough mind to understand scientific ideas, even

when these are presented in non-technical speech? If they

do, I am convinced that they are mistaken; and if they

do, they must be convinced, if they have considered the

matter, that Democracy is a futile enterprise. The same

conclusion would evidently follow if they held that, for

the most part, scientific ideas do not admit of intelligible

expression in non-technical terms. But they cannot

rationally hold that such expression is in fact impossible;

they may rightly regard it as difficult, as demanding the

patience and skill and humane motivity of a special art,

but they must know that it is not impossible; for they

know that scientific ideas, however high they be above

the level of common experience and common sense, yet

have their roots in its homely soil. Was it Lord Kelvin

or another sage who said of mathematics that it is just

"common sense etherealized"? The statement is as true

of science in general as it is of mathematics; it is not in-

deed a complete characterization of either of them, for

the process by which they rise out of common sense in-

volves something more than etherealization, something
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more than purification, more than elimination of dross;

it involves, besides, a constructive process, a process of

creation. But, though the statement is not a complete

characterization of science in general nor of any branch

thereof, yet, regarded as a partial characterization, it is

fundamentally true of every branch: of all science com-

mon experience,
—common sense,—is the basic soil. And

not only do scientific specialists know that all scientific

ideas have their roots in the soil of common sense but

they know, too, that every single term in the vast jargon
of science ultimately derives its meaning, in one way or

another, from generic ideas which, though ill defined in

the common consciousness, are present there and are

constantly employed by your man-in-the-street. The

process of such derivation is a perfectly natural one;

natural processes are, for the most part, not reversible;

but this one is; there is, I mean, no scientific idea what-

ever, however complicated and refined, and there never

will be one, that does not admit of being analyzed and

ultimately expressed in the language appropriate to the

vulgar elements whence the idea was originally derived.

In the case of many ideas, such elemental analysis requires

great patience and skill, and their expression in common

speech can not be made perfectly clear; it will sometimes,

of necessity, be so cumbrous and prolix as to be unprofit-

able except as an exercise; but the thing can be done, and

the point is that, in an immense multitude of cases, it can

be done in a way to edify not only the general public,

but also the experts who render the service.

The radical explanation of the scientific ignorance of

the educated public is to be found in the fact that, with

rare exceptions, those who understand do not teach—do

not teach, I mean, save in a manner suitable for the train-
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ing of specialists like themselves, in terms, that is, that

are highly technical and jargonistic. In the course of a

good many years of university experience, I have had

occasion to attend many public examinations of candidates

for the degree of doctor of philosophy, not only in mathe-

matics but in other branches of science. There is one

question which I have been accustomed to ask the can-

didates. The question is: Can you state intelligibly, in

the language current among educated men and women
the nature of your research,

—the problem you have

solved, the methods you have employed, and the results

you have obtained? And in every instance the response

has amounted to this : "I have never attempted to do

it; I have not thought of it; but I believe it would be very

difficult or quite impossible." What is to be said of their

estate ? I think we may say this : Their estate is pitiable ;

they have devoted long laborious years to qualifying

themselves for a certain ordeal,—the ordeal of demon-

strating that they have acquired a certain competence of

highly technical scholarship in some field of study and

that they have the ability to do independent research in

the field; they have, let us say, gone through the ordeal

successfully; that, in itself, is well, but the price they have

paid is terrible; they have submitted to the painful process

by which men are converted into mere technicians; the

education they have acquired in the best years of growth
is lacking in the quality of amplitude; they have become

narrowly technologized; long confined within the prison
walls of a Specialty, sinking deeper and deeper in its

profound indeed but narrow shaft, they have become

more and more detached from the thronging life of the

world, and lost alike the power of sympathy and the

power of communion with their fellow men and women;
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they have Indeed qualified for membership in a small and

insulated class of technicians, composed, in the main,

of spiritually meagre men; and the worst of it is that,

having lost perspective, they are often vain of the dis-

tinction; they are apt to fancy themselves investigators,

and some of them will be but most of them will not;

teaching,
—

teaching, I mean, in the collegiate sense, they

are prone to regard as drudgery with which a cruel fate

hampers their genius, while teaching in the larger sense

of interpreting science in popular terms for the public

enlightenment,
—that they have been taught to scorn as

beneath the dignity of a doctor (which means a teacher)

of philosophy. Their estate, I have said, is pitiable; it

is pitiable; it is pitiable that men who hold themselves

specially trained in the arts of scientific "discovery" should

not be able to discover the glaringly patent fact that

research is often far easier than competent exposition;

that every normal child, for example, discovers a world

of facts which it seldom has the power to express fittingly;

and that little doctors of philosophy are far more numer-

ous, because they are easier to produce, than great ex-

pounders and interpreters of scientific truth.

When will scientific specialists, especially those who
cherish the hope that the world's human affairs may at

length be scientifically controlled by an enlightened

Democracy, when, I ask, will such men keenly feel their

great obligation to enlighten the public and learn to dis-

cipline themselves and their pupils to keep the obligation?
In the address alluded to a moment ago, I expressed the

hope

that here at Columbia or other competent center there

may one day be established a magazine that shall have
for its aim to mediate . . . between the focal concepts
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and the larger aspects of the technical doctrines of the

specialist, on the one hand, and the teeming curiosity,

the great listening, waiting, eager, hungering conscious-

ness of the educated thinking public, on the other.

That hope has not yet been fully realized. But on

every hand there are indicia of amelioration: magazines
and magazine departments, aiming at scientific enlight-

enment of the public, are growing in number; scientific

expositions in the newspaper press, though often amaz-

ingly ignorant and misleading, are becoming less so; books

of popular science not only continue to multiply, but they

are better than formerly, at all events not quite so bad;

one hears more and more frequently of universities pro-

viding "omnibus" courses in science—general courses,

that is, designed for the scientific enlightenment of stu-

dents not intending to specialize in science, as one may
become intelligent about history, for example, or music

or architecture, without becoming a professional historian

or an expert musician or architect; it occasionally happens
that a university professor, representing some highly

specialized subject, undertakes to give instruction in avail-

able parts of it in a manner suited to the needs of a gen-

eral audience; an example of this is the course of mathe-

matical lectures recently given in the University of Illinois

by Professor J. B. Shaw and subsequently published in a

volume entitled The Philosophy of Mathematics. The

signs are encouraging; but the best of them remains to

be mentioned. I refer to the recent establishment, at

Washington, of a new institution, called Science Service.

The founding and maintenance of this institution was

made possible by the liberality of Mr. E. W. Scripps, of

California. Its aim is that which I have been here trying

to emphasize the importance of—scientific enlightenment
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of the public. The editor of Science Service is Dr. E. E.

Slosson. A good account by him of the new institution's

charter, scope, purpose, organization and present policy

is found in Science, April 8, 1921. The work it is at-

tempting to do is of the highest importance but it is ex-

ceeding hard. It is hard because there are but few com-

petent scientists who believe in the possibility of popular-

izing science; because, among those who believe in the

possibility, there are but few who are willing to engage
in the enterprise; and because, among the willing, there

are but few who have acquired the requisite art. What
is needed is a more numerous breeding of men like Galileo

Galilei and Auguste Comte and W. K. Clifford and

Thomas Huxley and John Tyndall and Ernst Haeckel

and Joseph Le Conte and Camille Flammarion and Louis

Couturat and Ernst Mach and Josiah Royce. Let the

multiplication of mute specialists proceed
—their service

is mighty in its way; but its way is not enough. Democ-

racy demands that the discovery of truth be attended and

be followed by exposition, by interpretation, by evalua-

tion, in terms that educated laymen can understand.

Doubtless, you have been wondering why these medi-

tations upon the popularization of science have been in-

serted as a prelude to a lecture on non-Euclidean geome-

try. I admit that they might have been submitted else-

where with equal propriety; they might indeed have been

presented in the introductory lecture for the entire course

has for its aim, as you know, the democratizing of scien-

tific knowledge and scientific criticism. Why, then, have

I inserted the discussion in the present connection? The

explanation, which is a very simple one, is in terms of

personal psychology. I had been considering whether

I should or should not include in the course a lecture on
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non-Euclidean geometry, and what, if I discussed the

subject at all, it would be best to say. Well, the course

of my meditation respecting the first question ran as fol-

lows : the birth of non-Euclidean geometry was and is one

of the most momentous events in the history of thought;
no other has served to reveal in so clear a light the nature

of logical Fate and the nature, scope and limitation of

intellectual Freedom; no other has so well disclosed the

distinction,—which is radical and cannot be obliterated,—between the world of conception and the world of per-

ception,
—the world of pure thought and the world of

sensuous experience; no other has so clearly defined the

great problem of ascertaining how the two worlds are

interrelated; the matter in question,
—the advent and

nature of non-Euclidean geometry,
—is one of the few

great mathematical matters that professional philosophers

have seriously sought to understand and it is one that

has at the same time persistently haunted the imagination
of the educated portion of the non-mathematical public;

many, very many, have been the attempts to explain the

subject in the daily press, in spoken lectures, in magazines
and in books; nevertheless, outside of mathematical

circles, understanding of the matter, it must be owned, is

meagre; for making the matter clear to the man-in-the-

street adequate means has not yet been found. What, I

asked myself, is to be done? Must we in this case re-

linquish the hope of successful popularization? And I

answered, no, we must keep on trying; for I vividly re-

called Gergonne's noble dream and the world's great

hope—Democracy; so my mind was set swarming with

the considerations adduced in the prelude; and that is

why I have presented it here.

Do I flatter myself with the belief that in this lecture
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the nature of non-Euclidean geometry is at length going
to be made so plain that he who runs may read and under-

stand? I do not; nothing is farther beyond my hope.

Much that others have said I shall omit, and most of

what I shall say has been repeatedly said, in one way or

another, by them; if I succeed in adding only a little light

to that given by the extant literature of the subject, I

shall be quite content.

In Lecture VII, as you will remember, I pointed out

that the term non-Euclidean has two meanings—one of

them specific and usual, the other one generic and less

usual; the former meaning always refers to the theory
of parallels; the latter does not. In the present discus-

sion, the term will be used in the specific sense only.

It is customary to say that non-Euclidean geometry
is a strictly modern discovery, due to the daring genius

of a young Hungarian, John Bolyai, and independently

to that of a Russian, Lobachevski, both of whom flour-

ished in the first half of last century. The discovery, as

I have intimated, was preceded by an immense period of

preparation in which geometricians wrestled with a very

old puzzle
—the so-called problem of parallels. If you

will consult Dr. T. L. Heath's superb edition of Euclid's

Elements, you will find that controversial discussion of

that problem began in pre-Euclidean days, was but ag-

gravated instead of terminated by Euclid's handling of

the matter, and, though culminating in the birth of the

new geometry, has continued (among the geometrically
ill informed) down to our own day, a hundred years

after the puzzle was virtually solved by the two pioneers

I have named. There is no tale more romantic, nor, in

the proper sense of the term, more human, in the whole

history of Thought. A human tale, I have said, dis-
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tinctively human. I am unable to understand how any-

one can ponder its character and its significance intelli-

gently and candidly without seeing clearly that the old

zoological conception according to which human beings

are a species of animal is not only false, as Count Korzyb-
ski has pointed out, but is stupid as well; in view of its

baneful effects upon the world's ethics, the monstrous

misconception deserves indeed to be branded as the Great

Stupidity.

I shall not here recount the tale; the story has been

often told in all the lands and all the tongues of science.

If you desire to learn the story, you will find in the men-

tioned work of Dr. Heath an ample clue to the litera-

ture. For an account that is at once very clear, very

succinct and finely critical, I have special pleasure in re-

ferring to Dr. George B. Halsted's article ("Geometry,

non-Euclidean") in the Encyclopedia Americana. I own
to the feeling of a little pride,

—
pardonable, I hope,

—
in that citation for it was my privilege, as then mathe-

matical editor of Americana, and my good fortune, to

obtain the article in question. I requested Dr. Halsted

to write it because he was specially qualified to do it;

no other American scholar knew more than he of non-

Euclidean origins and no other has done so much as he

has done, by voice and pen, to signalize the importance
of non-Euclidean geometry as making and marking a

momentous epoch in human Thought.
Of non-Euclidean geometry there are two principal

varieties; these are associated respectively with the names

of their inventors—Lobachevski (1793-1856) and Bern-

hard Riemann (1826-66). I am going to tell, as clearly

as I can without too great prolixity, how the varieties
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arise and what they are. And I will begin with that of

the Russian.

The point of departure is Euclid's famous postulate,—his postulate V,—which I stated in a previous Lecture

(VII) ; this postulate,
—or assumption, for that is what

it is,
—is pretty long; it is known, however, to be equiva-

lent to the briefer assumption:

Through any point there is one and but one line,

parallel to a given line.

For many centuries geometricians, great and small,

tried to deduce this assumption,
—which may be called

the ow^-parallel assumption,—as a theorem from Euclid's

other assumptions (conscious and unconscious). They
failed, and today we know why—the assumption is not

implied in the other ones and so is not deducible from

them, not even by demons or archangels or gods. Now,
what the adventurous spirit of Lobachevski led him to

do is simply this: retaining all of the Euclidean assump-
tions save the one respecting parallels, he replaced the

latter by an assumption contradicting it, and then pro-
ceeded to deduce the consequences of the set of assump-
tions he had thus adopted as postulates. What is the

assumption with which he replaced Euclid's postulate of

the single parallel? It may be stated as follows by help
of Fig. 30: // line PF rotate (in the plane of the figure)

about P, say counterclockwise
,

it will come to a position,

call it PK, where it first fails to cut line L, and then, with-

out cutting L, it will rotate through a finite angle KPH
into a position PH such that, if it rotate further, it will

cut L to the left of F, the angles FPK and FPK' being

equal.

According to this assumption the lines of the Pencil
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P fall into two sets—the set of those that cut L and the

set of those that do not; the former set consists of all

the lines within the angle KPK!
; and the latter set con-

sists of PK, PK' and the lines within the angle KPH (or,

what is tantamount, the angle K'PH'). The limiting or

boundary non-intersectors, PK and PK'
,

are the Lo-

bachevski parallels
—

parallel, that is, to L. We may,

accordingly, call Lobachevski's asumption the /wo-parallel

assumption.



NON-EUCLIDEAN GEOMETRIES 355

dress Riemann indicated the possibility of constructing

a geometry upon a basis of postulates containing the as-

sumption that

No two lines of a plane are parallel; or, what is

equivalent, every two lines of a plane intersect.

This Mo-parallel assumption contradicts not only the

OHtf-parallel assumption of Euclid but another assumption

of his,
—a tacit assumption,

—
namely, that a line has in-

finite extent (see propositions 16 and 28, Book I, in

Heath's edition of the Elements). The remaining as-

sumptions of Euclid are retained by Riemann.

We have now before us three postulate systems,
—

one of them Greek,—one of them Russian,—one of them

German. Upon them have been erected and now stand

three geometries, one of them Euclidean, the other two

non-Euclidean; of these two, the former is often called

Lobachevskian, and the latter Riemannian. For a good
reason, which I will not pause here to explain, Professor

Felix Klein has called the three geometries respectively

Parabolic, Hyperbolic, and Elliptic, descriptions that are

now in common use.

With the elements of the parabolic geometry you are

familiar; with those of the other two varieties you are

presumably not acquainted. The hyperbolic and elliptic

geometries have been built up by various methods, ele-

mentary and more advanced, pure and analytic. I credit

you with having curiosity to see how the building can be

done by the familiar elementary processes of ordinary

geometry. To apply them here would detain us too long;

but if you have the curiosity, you can gratify it by reading
the previously mentioned essay of Professor F. S. Woods
on "Non-Euclidean Geometry" (found in Monographs
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on Modern Mathematics, edited by J. W. A. Young).
We have seen in what respects the bases, the postulate

systems, of the three geometries are alike and in what

respects they are unlike. We naturally pass to a com-

parison of the superstructures
—to a comparison, that is,

of the theorematic contents of the geometries. Do the

geometries intersect? Have they, that is, any theorems

in common? The answer is obvious: they have in com-

mon such and only such theorems as are deducible from

the assumptions that are common to the three systems

thereof. One such theorem is this: The summit angles

of a birectangular quadrilateral are equal; in other words,

if ABCD be a quadrilateral having right angles at A and

B and having the side AC equal to the side BD, then the

angle at C is equal to that at D. You may wish to make

a list of such common theorems as an exercise. More

striking are the theorems in which the geometries differ;

such differences are of course due to the differences in the

postulate systems. Let us notice some of them. The

one most commonly mentioned relates to the sum of the

angles of a triangle. In the parabolic geometry that sum

is constant (the same for all triangles) and is exactly two

right angles, as you know; in the hyperbolic and elliptic

geometries the sum is variable (depending upon the tri-

angle's size) ;
in the former geometry it is always less

than two right angles and decreases as the triangle's area

increases; in the latter, the sum is always greater than

two right angles and increases with the area.

Again : If two lines of a plane are perpendicular to a

third, then, in parabolic geometry, the two are parallel;

in the hyperbolic, they are not parallel nor do they inter-

sect; in the elliptic, they meet at a point whose distance
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from the third line is finite, and all perpendiculars to this

line meet at that point.

One more : In parabolic geometry each summit angle

of an isosceles birectangular quadrilateral is a right angle;

in hyperbolic geometry, it is acute; and in elliptic geome-

try it is obtuse. So it is seen that neither of the non-

Euclidean geometries contains rectangles among its

figures.

It would be easy to prolong the list of such differ-

ences; the theorems already stated, which are not dif-

ficult to prove, are sufficient, however, for illustration and

they ought, I think, to challenge the curiosity of any in-

tellectual student.

There are certain questions which you are doubtless

bursting to ask, for in a discussion of this subject thought-

ful beginners always ask them.

One of the questions is this: Can we be quite cer-

tain that neither of the non-Euclidean geometries involves

an inner contradiction? In other words, can we be cer-

tain with respect to each of them that the propositions

constituting it are compatible with one another? The
answer is, yes. The propositions constituting a geometry

consist, as you know, of its postulates and of the proposi-
tions logically deducible therefrom; and so, if the postu-

lates are mutually compatible, the whole geometry is self-

consistent. The question thus reduces to this: Can we
be certain with respect to each of the non-Euclidean

geometries that its postulates are mutually compatible?

Now, in respect of the Euclidean postulates, we saw in

Lecture VI, you will remember, that we can be as cer-

tain of their compatibility as it is possible to be of any
reasoned proposition, and that is what I mean by "quite

certain" and it is what you mean. Well, it can be shown
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that, if Euclidean geometry is self-consistent, then each of

the non-Euclidean geometries is self-consistent. And this

has been done by various mathematicians in various ways.

It has been done very simply by Henri Poincare in his

widely known 'Science and Hypothesis; and it has been

done still better, in the sense of greater detail, in the pre-

viously cited Elementare Geometrie of Weber and Well-

stein. Suffice it here to say,
—for I am going to leave it

to you to examine the proofs,
—that the principle or the

trick involved in them is that of showing the postulate

systems of the non-Euclidean geometries to be each of

them satisfied by suitably selected classes of geometric

entities found in Euclidean geometry. So, you see, if

the non-Euclidean geometries have any unsoundness in

them, there is a corresponding unsoundness in Euclidean

geometry. In respect of soundness—inner consistency
—

self-compatibility
—

logical concordance among the parts

of each—the three geometries are on exactly the same

level, and the level is the highest that man has attained.

The three doctrines are equally legitimate children of one

spirit,
—the geometrizing spirit, which Plato thought

divine,
—and they are immortal. Work inspired and ap-

proved by the muse of intellectual harmony can not per-

ish—it is everlasting.

Another question is: Are these geometries true?

They are true in the sense in which truth resides in a

body of propositions of which some are mutually com-

patible premises and the rest are inevitable consequences

thereof, enchained thereto by the binding threads of log-

ical fate, which is changeless and timeless. Such truth,

however, though it is ineffably precious, is only a quality

or an aspect of that inner consistency which gives an au-

tonomous body of propositions its peculiar beauty, pure,
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perfect, and eternal. But it is not this aspect of logical

consistency that the "true" of your question is designed

to mean.

Perhaps the question you intend to ask is this: Are

the geometries true in the sense of giving an exact ac-

count of Space? Or, better, since they contradict one

another in cardinal matters, is one of them true in the

indicated sense? I have already pointed out that the

term "space" does not occur in Euclid's Elements, and

I may add that there is no necessity for its occurrence in

either of the non-Euclidean geometries. Since it is never-

theless customary to use the term in philosophic discus-

sions of geometry, we, too, must do so here. If we are

to do so profitably, we must make and keep steadily in

mind a fundamental distinction, which is indeed a pretty

obvious one but is commonly neglected; and the neglect

of it is always attended with utter confusion. We must,

I mean, not fail to distinguish sharply between perceptual

space and spaces of conception; that is, between space in

which points, lines, planes, circles, spheres, and so on, are

material or physical dots, rods, or ropes, slabs or rough

irregular "surfaces" thereof, hoops or rings, globes or

balls (of wood or gold or marble), and so on, and a

space in which the terms point, line, . . . denote pure

concepts of which no instance is found, for no instance

exists, in perceptual space. Unless we make and keep
that radical distinction, we might better abandon the

discussion; but if we make the distinction clearly and do

not lose it, the question you have put can be answered

clearly and rightly.

And the answer? It is found in the following con-

siderations.

The space of a geometry is always a conceptual space.
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What is the space? It is the class of conceptual entities

(no matter what we call them, points, lines, and so on,

or jabberwockies) which satisfy or verify the geometry's

postulates and about which the geometry is therefore a

reasoned discourse. The geometry is, therefore, true in

the sense of giving an exact account of space, where by

"space" is meant the space of that geometry. I say "of

that geometry" for, you see, two geometries which con-

tradict one another in one or more respects have dif-

ferent spaces. The answer to your question is, then, this:

Euclidean geometry, Lobachevskian geometry, and Rie-

mannian geometry are each of them true in the sense that

each of them gives an exact account of its own space,

which is a conceptual space.

But what of perceptual space? What, I mean, of

that all-enveloping region or room or spread which is

revealed to us by touch and sight and hearing and the

sense of muscular movement? Is one of the three geome-
tries true in the sense of giving an exact account of this

space? The question is a fallacy of interrogation; it im-

plies, that is, that our perceptual space is a thing of which

an exact geometric account is possible; but it is not such

a thing
—

perceptual space is not, rightly speaking, ge-

ometrizable. Wherein it fails to be so, is easy to make
clear. Consider, for example, three of its "lines," say

pencils or rods, lu /2 ,
/3 . Compare their "lengths" per-

ceptually, which is the only way in which such "lengths"
can be compared. Compare h with /., then l 2 with 4,

and then h with /-,. You know what may happen, for it

is a common phenomenon of such comparison of per-

ceptual things. It may happen that the "length" of h
is equal to (indistinguishable from) the "length" of /2 ,

that the "length" of /2 is equal to the "length" of lS}
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while that of lx is z/wequal to (distinguishable from) that

of /3 ,
so that, in symbols, the record of relations will

stand thus:

(i) Ji=/2 ,
/2=4, li9*h.

Now reflect that our perceptual space is such that the

the concurrence of relations like (i) is a familiar and

unavoidable phenomenon of "lengths" not only but also

of "areas" and "volumes"; then reflect that such situa-

tions as ( i ) ,

—though inherent in the nature of percep-

tual space,
—are utterly and glaringly illogical; finally,

reflect that all the relations occurring in a geometry must

be, unlike those of (i), logically consistent; and you will

be thus led to see clearly that our perceptual space cannot

be geometrized in Euclidean fashion or otherwise, if the

term geometry is to retain its essential meaning.
But is there not, among the various current meanings

of the term "truth," one meaning which enables us to say

that Euclidean geometry, regarded as a doctrine about

our perceptual space, is true? The answer is: yes, there

is such a meaning. It is the "instrumental" meaning in-

sisted upon by Professor John Dewey—the "pragmatic"

meaning first signalized by C. S. Peirce, subsequently in-

terpreted, elaborated and advocated by William James
and others. It is the meaning in accordance with which

an idea or a proposition or a doctrine is true if it "works,"

in so far as it "works," so long as it "works." The

meaning is not without merits that commend it to all

men and women for all human beings have, below their

distinctively human qualities, certain animal propensities

and animal impulses, and, in the animal world, the end

always justifies the means—all ways that "work" equally

well, all means that are equally "effective," are equally
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good. It is the pragmatic meaning of truth that makes

treason a crime, if it fail, and a virtue, if it succeed. It

is a meaning that is especially congenial to practicians

and "politicians," whose "philosophy" never rises above

the question: How can I "get there"? How can I put

this thing "through," "over" or "across"? What is the

means that will "work"? It is a meaning, too, that is

especially congenial to an industrial age,
—an experi-

mental age,
—an age of laboratories,—an adventurous

age when men act more than they think. In the head-

long rush and hurly-burly of such an age, men and women
are not aware of the fact that the world of human affairs

would quickly dash upon utter destruction but for the

guiding and saving influence of a nobler truth-conception

which they do not consciously own,—the conception, I

mean, of truth as having its highest meaning in the un-

changing relations and eternal laws of Logical Thought.
I have said that in the pragmatic sense of "true,"

Euclidean geometry may be said to be true of our per-

ceptual space. It may be said because this geometry,
when applied (as we say) to this space, "works"—which

means that temples, aqueducts, tunnels, bridges, railways,

ships and other architectural and engineering structures

whose designing is guided by Euclidean formulas are

successful—they wear out but they do not perish from

any essential defect of structural design.

Does not the fact just stated show that Euclidean

geometry is superior to the other two varieties? It does

not; for, if the designing and the building of the struc-

tures alluded to were guided by Lobachevskian or by
Riemannian formulas, the structures, when completed,

would not differ perceptibly from the former ones, and

the railways, ships, and so on, would be equally durable
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and serviceable; the reason is that, though the formulas

of any one of the geometries differ radically from their

correspondents in either of the other two, yet they differ

in such a way that the difference could not crop out in

any physical structure unless the latter were vastly larger

than any our small planet admits of. We may say,

then, that all three of the geometries are pragmatically,

or instrumentally, true of our perceptual space
—the

space of sensuous experience, though, as we have seen,

no one of them and no other geometry is or can be,

rightly speaking, the geometry or a geometry of percep-

tual space.

Since all three of the geometries in question are prag-

matically true of our perceptual space, why is it that in

practical work, like bridge building and the like, the

Euclidean variety is employed exclusively? It is because

the Euclidean formulas are simpler, easier to use than

the others. What, if any, is the epistemological signifi-

cance of this fact? The question seems important. I do

not know the answer. Maybe one of you will discover it.

Is non-Euclidean geometry always 3-dimensional?

No; like the Euclidean variety, it may have any number

of dimensions from one up.

What of Einstein geometry? The answer is implicit

in what has been said. "Einstein geometry" is not geome-

try,
—not yet, at all events,

—it is a figure of speech, con-

venient for experts, misleading for laymen. That is not

a comment upon the doctrine of Relativity regarded as

being,
—what it is,

—a physical theory.

The advent of non-Euclidean geometry is, I have said,

one of the gravest events in the history of thought. It

has been tragic as well. The two facts are connected.

Thirty years ago, I visited a locally eminent professor of
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mathematics in an excellent middle-West college of the

sectarian variety. I was astonished to find him in a sad

mental state, worried, distracted, agitated, tremulous,

unable to sleep or rest, thinking always about the same

thing, and no longer able to do so coherently. What
was the trouble? For many years he had been teaching

geometry,
—Euclidean geometry,

—and his teaching had

been done in the spirit and faith of a venerable philoso-

phy. Like almost all the educated men of his time and

like millions of others in the preceding centuries, he had

been bred in the belief that the geometry he was teach-

ing was far more than a body of logical compatibilities;

it was not only true internally,
—

logically sound, that is,—but it was true externally
—an exact account of space,

the space of the sky and the stars; its axioms were not

mere assumptions,
—not mere ifs,

—
they were truths,

"self-evident" truths, and, like the propositions implied

by them, they were not only valid but were known to be

valid, and valid eternally; in a word, the geometry of

Euclid was a body of absolute knowledge of the nature

of space,
—the space of the outer world,—other space

there was none. That was a comforting belief, a con-

genial philosophy, held as a precious support of religion

and life; for, though there are many things unknown and

some perhaps unknowable, yet something, you see, was

known; there was thus a limit to rational skepticism; our

human longing for certitude had at least one great grat-

ification—the validity of Euclidean geometry as a de-

scription of Space was indubitable. Such was the philoso-

phy in which my dear old friend had been bred, and,

with unquestioning confidence, he had devoted long years
to the breeding of others in it. At length, he heard of

non-Euclidean geometries, in which his cherished certi-
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tudes were denied—denied, he knew, by great mathe-

maticians, by men of creative genius of the highest order;

he could not accept, he could not reject, he could not

reconcile; the foundations of rational life seemed utterly

destroyed; he pondered and pondered but the great new

meaning he was too old to grasp, and his mind perished

in the attempt,
—killed by the advancement of science,

—
slain by a revolution of thought.

Pitiless indeed are the processes of Time and Crea-

tive Thought and Logic; they respect the convenience of

none nor the love of things held sacred; agony attends

their course. Yet their work is the increasing glory of

a world,—the production of psychic light,
—the growth

of knowledge,—the advancement of understanding,
—the

enlargement of human life,
—the emancipation of Man.



LECTURE XVIII

The Mathematics of Psychology

BACKWARDNESS OF THIS AND OF THE PSYCHOLOGY OF

MATHEMATICS THE LAW OF WEBER AND FECHNER
REEXAMINED SOME OF THE LAW'S UNNOTICED IM-

PLICATIONS THOUGHT AS INFINITELY REFINED

SENSIBILITY.

Two of the subjects that this course should include

are the mathematics of psychology, and the psychology
of mathematics. The two things, though closely related,

are distinct—they interpenetrate but neither includes the

other; it is one thing to mathematicize psychology, and

a very different thing to psychologize mathematics; the

aim of the former is to express psychological relations in

mathematical terms; that of the latter is to study those

aspects of mathematics which are psychological as dis-

tinguished from logical; both enterprises are immense

and important; neither one is far advanced, and the rea-

sons are evident—the tasks are difficult, requiring special

preparation, while psychologists have not been mathe-

maticians and the latter have not been psychologists. But

psychologists have done as much to mathematicize their

subject as mathematicians have done to understand the

psychology of theirs, though the former task is perhaps
the harder of the two.

366
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I will begin with the mathematics of psychology and

will in the main confine my remarks to its most famous

achievement, which is also, I believe, its most important
one—the so-called Psychophysical Law of Weber and

Fechner. When the law was duly announced in its mathe-

matical form, it aroused much interest among psycholo-

gists, evoked much admiration, and stimulated research

and discussion; at the same time it produced something
like fright or consternation for it began to seem that one

could not be a scientific psychologist without being a

mathematician, and that was a fearful thought. But the

"interest," the "admiration" and the "fright" were des-

tined to pass or, at least, to suffer much mitigation. A
generation ago the law had been often presented and

elaborately discussed. At length it was handled by Will-

iam James in The Principles of Psychology. After pre-

senting it with characteristic honesty and with quite as

much accuracy as could be expected from one who not

only was not a mathematician but knew and owned that

he was not, James proceeds to examine the claims that

had been made in behalf of the law and then, with abso-

lute candor and great confidence, to estimate its signifi-

cance. And what is the estimate? It is this: "Fechner's

book, Psychophysik, was the starting point of a new de-

partment of literature, which it would be perhaps impos-
sible to match for the qualities of thoroughness and sub-

tlety, but of which, in the humble opinion of the present

writer, the proper psychological outcome is just nothing"

(Vol. I, p. 534). Again: "The Fechnerian Maasformel
and the conception of it as an ultimate 'psychophysic law'

will remain an Mdol of the den,' if there ever was one"

(P- 549) • Of that judgment, right or wrong, pronounced

by so great an authority, it may not be said that its psycho-
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logical "outcome" or effect—upon psychologists
—was

"just nothing." On the contrary the effect was great and

it was soothing; it dampened interest in Fechner's work;

it moderated admiration of the man; and it greatly re-

lieved many a psychologist who had been frightened by
what had seemed a serious mathematical invasion of his

subject. James's discussion of the matter is very inter-

esting and enlightening
—more so than any other I have

seen; his presentation of the law in question is marred,

however, by some inaccuracies; moreover, respecting the

significance of the law, it has, if I be not mistaken, certain

implications and important bearings not noticed by James
nor, I believe, by others. It has, therefore, seemed to

me that a discussion of the matter might be properly in-

cluded in this course, even though part of my remarks

can at most remind you of things you are already fa-

miliar with.

The Rise of Psychology as an Experimental Science.—For convenience of reference let me place before you,
in chronological order, five important names.

Immanuel Kant (i 724-1 804)
Johann Friedrich Herbart (1776-1841)
Ernst Heinrich Weber ( 1 796-1 878 )

Gustav Theodor Fechner (1801-1887)
Bernhard Riemann (1 826-1 866)

I well remember that, when I was a boy, it was cus-

tomary for people who liked to talk about science to

speak of two kinds thereof—the natural, or physical,

sciences and the so-called mental sciences. The classifica-

tion was then an old one but it is not yet without some

vogue. The distinction may not have been profound but

it was obvious: the former kind of science was quantita-
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tive for it dealt with phenomena that were measurable;
the latter kind was qualitative for it dealt with phe-

nomena that were supposed to be non-measurable. Now,
owing to its lack of precision, a qualitative science was

looked upon as being scientifically inferior to one that was

quantitative. According to Kant, for example, psy-

chology was not a true science and never could be. What
he meant by a "true science" is sufficiently revealed by
his saying that a natural science is a science only in so

far as it is mathematical. It is noteworthy that this say-

ing of a great philosopher accords perfectly with the

saying of one who was at once a great physicist and a

great mathematician—Bernhard Riemann: "Natural

Science is the attempt to understand nature by means of

exact concepts." It is "noteworthy" but is not surpris-

ing in view of Kant's strong predilection for mathematics

and physical science, and of Riemann's early interest in

psychology and metaphysics (as shown in the Anhang of

his Gesammelte Werke or in Keyser's translation of the

Anhang in the Monist, January, 1900).

Among the first to reject the Kantian dogma respect-

ing psychology was Herbart, the so-called "exact philoso-

pher." Herbart believed it was possible to build up a

static:, and a mechanics of elementary ideas,—a mechanics

of mind, let us say,
—modeled after the classical me-

chanics of matter, and he boldly essayed the task. But

apriori reasoning cannot do a work that calls for patient

experimentation, and Herbart's mathematical formulae,

though rather impressive to the physical eye, have but

little interest except as representing a reaction and a

prophecy.
It was not a professional philosopher who took the

first important steps toward making psychology a labora-
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tory, or quantitative, science; they were taken by men

trained in the ways of natural science. These men were

Weber, professor of anatomy and physiology in the uni-

versity of Leipzig, and Fechner, professor of physics in

the same institution. What was the new problem they

set for themselves and how did they attack it? Well,

there is in our world what we call matter and there is

what we call mind. Let us not tarry to debate the great

present-day question whether the two things are essen-

tially one nor whether they are derived from a "neutral"

something—something, that is, that is neither matter nor

mind. 1 For our pioneers mind and matter were obviously

two, the two were related, and the problem was to ascer-

tain how. And their method was that of experiment and

observation. Where did they begin? And why there?

Sense Departments and Their Fundamental Prob-

lems.—Imagination, conception, reason, will, all these

have to do with matter, but experimental research did not

begin with them. Why not? Because it was best to be-

gin at the beginning, and the beginning is sensation—it is

in what we call sensation that our "minds" first get into

some sort of knowing connection with "matter." It was

soon found necessary to distinguish many more "sense

departments,"—as they are called,—than the traditional

five departments of hearing, sight, and so on; for ex-

ample, our capacity to feel pressure gives rise to a dis-

tinctive class of sensations, and so the pressure-sense is

spoken of as a sense department; in like manner, we

speak of sense departments corresponding respectively to

the capacities for feeling warmths, brightnesses, sizes,

sounds, and so on, it being evident that some of the de-

1 In relation to the question, see Russell's Analysis of Mind and
Keyser's review of It in The Literary Review (N. Y. Evening Post).
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partments are sub-departments of others; that of length,

for example, is a division, branch or species of the generic

department of size.

Each department presents three problems—funda-

mental problems. It is easy to see why this is so, and

what the problems are.

Everyone knows that some lights are too dim to be

seen, that some tastes are too delicate to be discerned,

that some pressures are too slight to be felt, that some

lengths are too short to be sensed, and so on for the

other sense departments. The form of my statement in-

volves a contradiction in terms but the meaning is clear,

and that is enough. Out of the kind of facts stated arises

one of the experimenter's problems. The problem is :

Given a sense department, to determine the smallest

amount of (the appropriate) stimulus that will yield a

sensation.

The problem just stated has a complement. Every-
one knows that a stimulus may be too great, as well as

too small, to produce a sensation. Thus in the sense de-

partment of tones there is no sensation answering to

100,000 vibrations per second; a pressure may be so great

that we cannot feel it; a light may be so intense as to

blind us; and so on. Whenever the stimulus exceeds a

certain amount, the nerves are put out of commission, and

the scale of sensation reaches an end. Hence the prob-

lem: Given a sense department, to determine the maxi-

mal stimulus that will produce a sensation. And so wc
see that the world of sensory experience possible to us

humans is a confined world,—walled in by the surround-

ing presence of limits, a lower and an upper limit in every

department of sense. The two problems stated arc those

of determining the location of all the parts of the wall.
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The third one of the experimenter's fundamental

problems has to do with what occurs within the wall. It

is this: Given a sense department and in it a sensation

corresponding to the least (or greatest) stimulus that

will produce it, to determine how much the stimulus must

be increased (or decreased) to beget a new, or different,

sensation.

Some Technical Terms and Symbols.—In the litera-

ture we encounter, as you probably know, the equivalent

terms—Threshold, Limen, Schwelle—introduced by
Herbart about a hundred years ago, and the symbols

—
R, L, D, T, RL, TL, DL—whose meanings are easy to

grasp. R comes from the German Rciz, signifying stimu-

lus; L stands for Limen, or threshold; and T for termi-

nal; RL denotes initial threshold,—the least stimulus that

will yield a sensation; TL denotes terminal threshold,—
the greatest stimulus that will yield a sensation; and DL
denotes difference threshold,—the difference between the

least (or greatest) amounts of stimulus that correspond
to two just discernibly different sensations. The three

fundamental problems may accordingly be restated thus:

To determine in each sense department its RL, TL, and

DL.
The pioneers, Weber and Fechner, were contempora-

ries but the work of Weber came first. He dealt mainly
with hearing and touch. A rough statement of Weber's

Law,—so named by Fechner,—is this: The increase of

stimulus necessary to produce a change of sensation is not

a constant difference, but is a constant ratio of the pre-

ceding stimulus. It is, you notice, concerned with the

DL, the difference threshold. It is often referred to as

Fechner's law or the Weber-Fechner law or the psycho-

physical law. It is to Fechner,—whose great work,



THE MATHEMATICS OF PSYCHOLOGY 373

Elemente der Psychophysik, appeared in i860,—that we
owe the first formulation of the methods which, with

many modifications and improvements, are now employed
in psychological laboratories throughout the world. That

is why Fechner is called the father of modern psychology.

Symbolic Statement of the Psychophysical Law.—We
are not here concerned to deduce the law nor to verify

it, but to state it in symbols and to examine its meaning.
Consider one of the sense departments, say that of

pressure. Denote by Si the sensation produced by a cer-

tain stimulus Ri. Next suppose the stimulus increased

till there is felt a sensation S 2 just discernibly different

from S x . Denote the new stimulus by R 2 . Suppose the

stimulus to be again increased till a new sensation S3 is

felt that is just distinguishable from S2 ,
and denote the

third stimulus by R 3 . We now have the table of cor-

respondents :

Si *i

02 R-2

03 R3

The question is: how are the R y

s related? If we are to

suppose them related at all, connected, that is, by some

invariant order, or law, the simplest guess would be that

Rz — R2 — R2 — Ri-

But that guess would be wrong. Experiment shows that

it is, not the difference, but the ratio that is constant;

that is,

R2 Rs

Ri R2
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And this is very remarkable, for no one could know in

advance that so simple a relation holds. A relation so

complex as not to admit of statement in a finite number
of words may exist in the world but, for scientific pur-

poses, such a relation is practically equivalent to chaos, to

no relation at all. Denote the constant ratio by K.

Then R2 =KRi, Rz=KR2 . As K exceeds I, we may
write K = I -\-r, where r is positive. Then

R 2 =R 1 (i+r)
R3 =R2(i+r)=R 1 (i+r)

2
.

Denote by A the amount of stimulus such that the

amount A{\ +r) is the smallest stimulus that will yield a

sensation in the sense department under consideration;

in other words, A{\ -f-r) is the RL of that department. Let

the sensation corresponding to the stimulus A{\ +r) be

denoted by the number I. The absence of sensation corre-

sponding to A may be indicated by zero (0). The experi-

mental results may be shown, as follows, in tabulated

form.

Sensations Stimuli

A
i A(\+r)
2 A{\+rf

n A(i+r)
f

Of course the final continuation marks do not mean
ad infinitum, for, as we have seen, the sensation scale has
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an upper limit—an end as well as a beginning. Observe

that

. stimulus
°gl+r

~A

. stimulus .=
~A

' gl+ '
e '

Let us now write S = n, R = stimulus -ri and C = log1+r e.

Then we have

S = C log R

Such, then, is Fechner's formulation of what he called

the Psychophysical Law. We must not fail, if we are to

understand it, to note very carefully, the meaning of the

symbols. Observe that S, the initial letter of the word

sensation, denotes nothing but a cardinal number. Note

that the constant C depends on r and that r, which is

the same for the sensations of a given sense department,
differs for different departments. Note also that R is

not the stimulus that produces S, as it is commonly said

to be (by Professor James, for example), but that it is

the quotient of that stimulus divided by A, and that A
depends upon the sense depaitment under investigation.

The sense departments that have been most investi-

gated are those of light, muscular sensation, pressure,

warmth and sound. For these the values of r, as reported

by Professor Wundt, are as follows:

For light, r = about tott

For muscular sense, r = about tV

For pressure, r= about ^

For warmth, r = about §

For sound, r = about
-|
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In other departments, where investigation is more dif-

ficult, there is wide divergence in the results that have

been reported.

The Literature of the Law.—"
Those," says James,

" who desire this dreadful literature can find it." The
best of it is cited under the caption,

"
Weber's Law,"

in the eleventh edition of The Encyclopedia Britannica.

For an excellent introduction to the methods of quantita-

tive psychology, I have pleasure in referring to Titchener's

Experimental Psychology.

As to the Validity of the Law.—In the nature of things,

no law can be shown to be absolutely valid by means of

experiment. Respecting Weber's Law, we may safely

make the following statements. Experiment has shown

it to be approximately valid in several of the chief depart-

ments of sense. As these are the departments most

accessible to experiment, it may be that the law will

yet be found to be approximately valid in other depart-

ments. Such validity has not been disproved for any

department. The law is found to hold best in the mid-

region of a sense scale; that is, it is least certain near the

initial and terminal thresholds. This fact, however, is

consistent with the assumption that the lawisequally valid

throughout the scale, for it is plain that, near the begin-

ning and the end of a scale, where sensation is dim because

of defect or excess of stimulus, the distinctions of dif-

ferent sensations are more difficult to detect and record.

What is Measured.—Fechner calls the law of psycho-

physics a Maasformel. But what is it that is measured?

What is the magnitude? According to Fechner it is

sensation. He says:

Our measure of sensation amounts to this: that we
divide every sensation into equal parts, that is, into
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equal increments out of which it is built up from the
zero of its existence, and that we regard the number
of these equal parts as determined by the number of
the corresponding variable increments of stimulus that
are able to arouse the equal increments of sensation,

just as if the increments of stimulus were the inches

upon a yard-stick.

It is evident that, in Fechner's view, two just discernibly

different sensations, belonging to a same sense depart-

ment, differ by a sensation-unit (of a sort characteristic

of such department). According to him, a sensation

denoted by n in the foregoing table is the sum if n equal

sensation-units, that is, n times the sensation denoted by
the number I in the table. Thus, according to Fechner's

interpretation of the experimental facts, sensation in-

creases as the terms in the arithmetic progression,

I, 2, 3, ... ,
while the series of corresponding stimuli is

an increasing geometric progression. And this logarith-

mic correspondence between the two progressions Fechner

regarded as the law of correlation between mind and matter,

between the psychical world and the physical world. He
thus judged that he had made a very great discovery and

naturally spoke of it with a feeling of triumph. Fechner

was at once physicist, mathematician, poet, dreamer and

mystic
—a magnanimous man who believed that all the

animals, the plants, the earth and the stars have souls.

For the considerations that led him to this noble belief,

see his works entitled Nanna and Zendavesta. In his view,

the souls of human beings are, in the scale of being, inter-

mediate to the souls of plants and the souls of stars, the

latter being likened by him to angels. God, he taught, is

the soul of the universe, and the uniformities that we call

natural laws are simply the ways of God. This view of

things he called the
"
daylight

"
view of the world in
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contrast with the
"
night view

"
of materialism. It is

not to small men, but to great ones, that this sublime con-

ception of our universe appeals. Even so hard-headed

a scientific man as Bernhard Riemann, whose philosophic

Fragments I have already alluded to, there speaks of the

conception with deep interest and grave respect. And,
as you may be interested to know, Professor William James
has dealt with the same subject in one of his latest writings.

I refer to an article, entitled
" The Earth Soul," which

appeared in the Hibbert Journal, January, 1909.

Fechner's view that a given sensation is a sum of

sensation units has not ultimately found favor with

psychologists. Why not? Mainly because a sensation

is not felt or sensed as a sum of sensations or of sensation

units, and the question relates to sensations, not as they

may appear mediately in our reflection upon them, but as

they appear immediately in feeling. A sensation of bright-

ness, for example, is not felt to be composed of so-and-so

many units of brightness. A feeling of pink, says James,
is surely not a portion of our feeling of scarlet.

And so the question recurs: What is it that the experi-

ments have measured? Or approximately measured, as

we ought to say, for it is evident that nothing ever is or

can be measured with absolute precision experimentally.

Perhaps we may say that what is measured is a human
sensorium's discriminative sensibility to stimulus. Our

sensibility does not detect every difference of stimulus.

It does detect some differences. By experiment these have

been approximately ascertained for several departments
of sense, and the psychophysical law is an approximately
accurate statement of the way in which they are related.

Sensation as a Function of Stimulus.—In the mathe-

matical meaning of the term
"
function," sensation is a
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function of stimulus within the interval between the

initial and the terminal thresholds of any department.
For to any amount of stimulus in such an interval, there

corresponds a sensation. That is to say, in no such

interval have there been found any blind spots or gaps
or regions or points where the sensorium fails to respond.
The question arises : Is sensation, or the intensity of sensa-

tion, a continuous function of stimulus? Most psycholo-

gists answer yes. Among these may be mentioned, for

example, Titchener, Ward and Stout. James has

answered no. The men named leave one in doubt

whether they know precisely what is meant by a con-

tinuous function. Let us recall to mind the idea of

functional continuity. Let us remember that if f(x) is

to be a continuous function of a real variable x in an

interval having a for its beginning and b for its end, the

following conditions must be satisfied :

(i) If x' be any value of x in the interval, then/(V) =

some definite value.

(2) Limit f(x
f

±Ax) =/(#') as Ax approaches zero.

Condition (1) is indeed included in (2) but it is helpful to

state it explicitly. Now we know that the ordinary func-

tion, y=c\ogx, is continuous throughout any interval

not containing the value, x=0. But is the Fechner func-

tion, S = C log R, a continuous function of R? No; for

consider a stimulus greater than A{i+r)
n
and less than

A{\ -\-r)

n
; compare the corresponding sensation S with

that denoted by n (in the above-given table) and then

compare it with that denoted by n + 1
; in the first compari-

son S appears to be n; in the second, it appears to be

n-\- 1. Condition (1) is, you see, not satisfied. Then, of

course, condition (2) is not satisfied. Moreover, when we

speak offix) as a continuous function, we imply that the
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variable x can vary continuously. In the Fechner func-

tion, however, the variable R, which means stimulus

divided by A, can not thus vary. For weights, pressures,

the number of air or of ether vibrations per second, etc.,

when they vary, vary discontinuously; the changes may
indeed be small, but they are finite, and they occur as a

leap or bound. It thus appears that to debate whether or

not sensation is a continuous function of stimulus is to

engage in the rather meaningless exercise of discussing

whether a function of a discontinuous variable is a con-

tinuous function of it.

The Fallacy of the Tangent Galvanometer Experiment.
—

Imagine a coil or ring of copper wire placed in the plane
of the magnetic meridian. At its center is suspended a

small magnetic needle so it may turn in a horizontal

plane. In its initial position it points towards the mag-
netic pole. A current of electricity passed through the

wire will cause the needle to turn by an amount depending
on the strength of the current. Now notice how hand-

somely the behavior of the needle resembles that of sensa-

tion. The electric current plays the role of stimulus.

Owing to the presence of friction in the turning of the

needle, a certain small strength of current is necessary to

start the needle. This amount may be likened to the
"

initial threshold." And there is a kind of
"
terminal

threshold," too, for no finite strength of current can bring

the needle to an angle of 90 with the meridian plane.

When the needle starts, it leaps to a certain position and

there remains, if the current be steady, till the current

has been increased by a certain amount, when the needle

leaps again, and again remains in its new position if the

current be steady, and so on and on. And so we see there

is here involved a kind of
"
difference threshold." The
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like phenomena are, of course, observed in the behavior

of a pair of scales for weighing. It is evident that, owing
to friction, the tangent of the needle's angle with the

meridian plane, though it is a function of the current's

strength, is not a continuous function of it. It is common,
however, to idealize the situation, by disregarding the

frictional effect, and to say that the function is continuous,

though as a matter of fact it is not. Misled by such

considerations certain psychologists have argued falla-

ciously as follows: The tangent of the needle's angle really

is, they say, a continuous function of the current's

strength. They admit that it does not appear to be so,

but that, they say, is because the fact or the law is

" masked
"
by the presence of friction. And then they

contend that the situation is essentially the same in the

case of sensation. Sensation, they say, is indeed a con-

tinuous function of stimulus, though it does not appear
to be such. For, they say, the continuity is

" masked
"

by what they call the
"

frictional effect
"
or the opposition

of some chemical or mechanical or physical resistance

offered by the sensorium to the action of stimulus. The

fallacy is obvious. It consists in ignoring some of the

facts. The question is not whether the functions under

consideration would be continuous if there were no

friction or
"

frictional effects," but whether they are in

fact continuous in a world where friction and
"

frictional

effects
"

persist as part of reality.

The Number of Possible Sensations Finite.—How many
different sense departments are there? I know of no way
to prove that the number is finite, but the assumption
that the number is finite seems to be very probably correct.

Let us make the assumption. We know that the number

of discernibly different sensations that any department
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admits is finite. It follows that the total number of

different sensations of which a human being is capable
is a finite number. I am not aware that this important
consideration has been recognized in the literature of

psychology. It would not be strange if it has not, for

the distinction of finite and infinite, though it is very im-

portant scientifically and in some of its connections is

awe-inspiring, has not yet gained much intelligent recogni-

tion outside the circle of mathematicians. What I wish

to signalize here is this: the fact that the ensemble of

possible concepts is infinite and the fact that the ensemble

of possible sensations or percepts is finite together confront

with a difficult and important problem those psychologists

who hold that our mental life is based on sensation in

the sense that all ideas arise out of sensation. For

others the problem does not exist. Plato, for ex-

ample, held ideas to be eternal, existing before, during
and after sensation or perception, and that the world

of sensation or perception is only an imperfect and

transitory imitation of the eternal world of ideas or

concepts.

Sense Continua.—We have seen that the results of

experiment do not warrant us in saying that sensation is

a continuous function of stimulus in the mathematical

sense of the term. Nevertheless, it will be convenient to

speak of physical or experiential or sensible or sense
"
continua

"
and we shall do so but we shall thereby

mean merely that to any amount of stimulus between the

initial and terminal thresholds of a sense department
there corresponds a sensation in the department. We
must at no time confound this meaning of continuous with

the mathematical meaning of the term. With this under-

standing we will speak of the
"
continuum

"
of pres-
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sures or of weights or of sizes or of sounds and so on for

the other departments of sense.

A Remarkable Property of Sense
"
Continual—Owing

to the presence of difference thresholds in sense depart-

ments, the sense continuum of any department possesses
a remarkable property. It is this: If Si, S2, S3 are sensa-

tions corresponding to three different amounts, R ly R 2y Rs,

of stimulus, it may happen that no two of the S's are dis-

tinguishable from each other and it may happen that Si

is indistinguishable from So, and that S2 is indistinguish-

able from S3 but that nevertheless Si and S3 are dis-

tinguishable from each other. So that in a given depart-
ment we may have three S's (three in the sense of their

being produced by three different amounts of stimulus)

such that

(i) Si=S2, 02= 03, Si=S3;

and we may have three such that

(2) Si = S2, So = S3, Si^Ss;

of course there are other possibilities. Thus if the sense
"
continuum

"
be that of pressures, then, if the S's

correspond respectively to 10, iof and 1 1 grams, they

satisfy relations (1); but if they correspond to 10, n and

12 grams, they satisfy relations (2). The matter may,
of course, be exemplified in other sense

"
continua."

Thus in the sense
"
continuum

"
of lengths the sensations

produced by (say) three pencils of three different lengths

may satisfy relations (1) or (2).

Another Aspect of the Matter.—This matter has another

striking and important aspect. If sensation be allowed to

judge, then we should say that a stimulus Q and a stimulus

Q' (of the same kind as Q) arc equal if the corresponding
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sensations, S and S', are indistinguishable, and that the

0's are unequal when the S's are distinguishable. Accord-

ingly, if sensation be the judge, then three quantities,

0i> 02, 03, belonging to a given sense
"
continuum," may

be such as to satisfy the relations

(3) 01=02, 02=03, 01=03,

or such as to satisfy the relations

(4) 01=02, 02=03, 01^03.

Now, as we noted in the preceding lectures, the series

(2) of relations or the series (4) violates the logical law of

Contradiction (or of Non-contradiction, as it is sometimes

called). What of it? In response we have only to reflect

upon the role of that law in the realm of rational life.

The law is indispensable to logical thinking, to science,

to the very life of intellect. No doubt a pig or other

animal may treat some object 0\ as if it were the same

as some different object O2, then react to O2 as if it were

the same as some third object O3, and then react to 0\

as if it were different from O3; and this the animal may do

without feeling any sense of shock or surprise. This

sense of shock is a human experience,
—an idiosyncrasy

of a rational being,
—a mark of man. Might we not em-

ploy it as the definition of man? Instead of saying with

Plato that man is a featherless biped, would it not be

better to define man as the creature that is capable of

feeling the shock of contradiction (2) or (4) ? Such a

definition would have the merit of excluding from the

genus homo some featherless bipeds even if it did not

include any quadrupeds. However this may be, we are

literally driven, on pain of intellectual or logical extinction,

to say, in the case of the relations (4), that Qi 9^Q-i or that
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Q'iT^Qz or that both of these inequalities subsist despite
the verdict of sensation to the contrary. But what does

that mean? It means that we are driven to assume that

there are quantities of magnitude so small as to be insen-

sible, too small to be sensed or felt or perceived. And
what does that mean? It means—and the answer is

fundamentally important—that we are driven to posit or

postulate the existence of purely conceptual quantities or

amounts of magnitude. And we do it.

Properties of the Conceptual Magnitudes.
—We must

not fail to note some of the properties with which our

human minds have been constrained to endow such con-

ceptual magnitudes. If we were to suppose our discrimi-

native sensibility to be by some means so increased or

refined as to bring the assumed insensible quantity

Qi^Qz (tne difference between the sensible quantities

Qi and Qo) well within the domain of the increased sensi-

bility, we have no reason to doubt that the old phenome-
non would recur therein; we should, that is, expect to

find quantities q\ y q>ly qz within the interval Q\<*>Q2 such

that

qi=q2, q2=qs, qi^qs",

that is to say, fatal violence to the mentioned law of

logic would remain. And so it would did we suppose

our sensibility to be again increased so as to render

sensible the newly postulated quantity, qx^qy, and so

on and on. Observe attentively that the indicated process

of intercollating ever smaller and smaller insensible-

quantities is precisely like that by which symbols called

rational fractions are interlarded between the integers

and then other rational fractions are inserted between the

former ones, and so on and on. Observe also that, in
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order by this means to rescue the law of non-contradiction

from the violence of the relations (4), it would be necessary

to suppose our discriminative sensibility to be increased

till the difference between quantities (of magnitude)

corresponding to any two rational fractions, however slight

their difference, would be sensibly discernible, that is,

sensation would have to be a continuous function of

stimulus where continuity signified continuity defined in

the domain of rational numbers. The definition would

be the same as that above recalled except that the function

and its argument would be restricted to rational values.

No such endless refining of sensibility has occurred

nor is it possible, but we know that in the long course of

time the various kinds of sensible magnitude,
—the magni-

tudes revealed by or in sensation,
—have gradually been

submitted to a conceptualizing process that is, in a very

important respect, virtually equivalent to the refining

process in question. The various kinds of sensible magni-

tude,
—the various sense

"
continua

"
presented respect-

ively in various sense departments of sound, color, weight,

taste, warmth, duration, hardness, spatial extent, velocity,

acceleration, etc.,
—have all of them, in the course of the

centuries, got replaced in our thinking with corresponding
insensible or conceptual magnitudes having the structure

of the system of rational numbers. The process has been

partly conscious and partly unconscious. This system,

you know, is what has been sometimes called the mathe-

matical continuum of first order, as by the late Professor

Henri Poincare, for example, in Science and Hypothesis.

So we may say that one of the great achievements of the

human intellect in its dealing with the magnitudes
revealed in sensation has been the substitution, for such

sense
"
continua," of conceptual magnitudes or conceptual
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"
continua

"
of the type of the mathematical

"
con-

tinuum
"

of the first order. As already pointed out, the

great replacement or substitution has been logically

coerced by the mentioned contradiction that inheres in

the
"
continua

"
of sense. The aim, which has been con-

scious or unconscious, and the issue have been emanci-

pation, intellectual harmony, increase of freedom from

logical discord: we know that, if qi, qo, qz be quantities of

a conceptual magnitude or
"
continuum "

of the type in

question, and if qi=q2, and ^2=^3, then q\=qz without

exception.

The Need of Further Emancipation.
—But the replace-

ment mentioned is not enough. For starting with the

kind of conceptual magnitudes in question, we are destined

to encounter contradictions or discords of another sort.

This fact may be shown as follows: Consider a sensible

line. It is for sensibility a thing like a rope or a cable

or a chalk mark. In it inheres the old contradiction (4).

Now suppose it replaced by a corresponding conceptual

magnitude of the type of the first order
"
continuum."

The new thing can be made as thin and as narrow as the

difference between any two rational numbers. But this

difference can be made to approach as near as we please

to zero. Taking the limit, we have a line having only

length, the thickness and the width being zero. Such

a line is, we say, geometric; it is not sensible, but is purely

conceptual. Let us now take two such sensible lines

having a (sensible) bulk or piece in common, as indicated

in Fig. 31, and let us suppose them submitted to the con-

ceptualizing process above indicated. The result, we say,

is two geometric lines and a geometric point common to

them, the point being, we say, the limit of the bulk that

the lines have in common as sensible lines and also as
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conceptual lines before passing to the limit. We are

thus led to believe that any two conceptual lines that

cross one another have a point in common. (In this

connection see the book of Poincare above referred to.)

Such, however, is not always the case if the lines are
"
continua

"
of only first order, that is, if they have

points that correspond only to rational numbers or, as

we say, to rational coordinates. It is sufficient to con-

sider the crossing of a circle and a straight line through
its center, if either or both of them be supposed to have

no points except such as have rational coordinates. For

Fig. 31.

let at
2 +v2 = i and y=x be respectively such a circle and

line. If we undertake to solve for their common points,

we immediately find that they have none; for we obtain

x = i : V2 and y = i : V2; but these numbers are not

rational and hence do not represent a point common
to the crossing line and circle. It might be supposed that

such a circle could have only a finite number of points

and that their ensemble, if plotted, would not look like a

circle. It is easy, however, to prove that the number
of the points is infinite and that they constitute a dense

set, a set, that is, such that between any two of them

there is another one. Obviously, one of the points is the

point (0, 1). Suppose x^O. Then since x and y are to

be rational, y must be of the form, y = 1 — rx, where r is
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rational. Substitute in x2
-\-y

2 = \. We thus get x2+
(i
—

rx)
2 =

i, whence

2r
x =

anc

i+r2

i^r2

I +r2

Thus it is seen that our circle, which by hypothesis con-

tains no points except such as have rational coordinates,

yet contains an infinite number of points
—one for each

rational value of r. It is evident also that, given any one

of them, there is another one as near to it as we please.

—X1

Fig. 32.

Another illustration: if, operating in the conceptual
"
continuum

"
of rational lengths, we affirm the existence

of a square, we find the
"
continuum

"
contains no

quantity or magnitude to connect the diagonally opposite

corners. For, if the length of the square's side be J,

the length of the diagonal d
y

if there were a diagonal,

would be d=sV2; but as s is rational, sVz is not rational

and so it is not a length in the
"
continuum

"
of operation.
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The discovery of the incommensurability of the side and

the diagonal of a square, which was a very great discovery,

is commonly attributed to Pythagoras. It is said that the

discovery made him unhappy. Why? Because he was

a union of scientific man and religious mystic, who

taught that Number is the essense of all things. But here

was something,
—the ratio of the side and diagonal of a

square,
—that no number recognized by him and his sect

could express. This fact, should his religious followers

find it out, might disturb or destroy their faith. Accord-

ingly, so it is said, Pythagoras decided to keep the fact a

secret among a few of his leading disciples, and
"
one of

their number, Hippasos of Metapontion, is even said to

have been shipwrecked at sea for impiously disclosing the

terrible discovery to their enemies." You should not

fail to read what Bertrand Russell has said on this subject

in his recently published book entitled Our Knowledge of

the External World as a Field for Scientific Method in

Philosophy. Of philosophic method in science we hear

much—the phrase is familiar if the thing itself is not.

But what, pray, is meant by
"

scientific method in

philosophy"? That is what Mr. Russell aims to tell

us, in outline, in this book. It is in the main a rough,

preliminary, semi-popular sketch or adumbration of a

method that is, I am told, being employed by Mr. White-

head in minute detail in his preparation of the fourth

volume of the Principia Mathematica. I commend the

book to your serious attention. Whoever it was that dis-

covered incommensurables, it is certain that their exist-

ence was known to the Greeks, as we learn, for example,
in the Metaphysics of Aristotle. It is a pleasure to be able

to say that Aristotle has at length learned to speak

English. I refer to W. D. Ross's translation of the
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Metaphysics and to the English translations of Aristotle's

other works published or being published by The Claren-

don Press. On page 983a of Ross's translation we find

the following:

For all men begin, as we said, by wondering that
the matter is so (as those who have not yet perceived
the explanation marvel at automatic marionettes)

—
whether the object of their wonder be the solstices or
the incommensurability of the diagonal of a square
with the side; for it seems wonderful to all men that

there is a thing which cannot be measured even by the

smallest unit. But we must end in the contrary and,

according to the proverb, the better state, as is the
case in these instances when men learn the cause;
for there is nothing which would surprise a geometrician
so much as if the diagonal turned out to be com-
mensurable.

That rendering is hard to beat. It is true that to

make the thought of the Stagirite quite agree with the

modern mathematical conception of the matter it would

be necessary to replace the phrase,
"
by the smallest unit

"

by some such expression as, by any unit however small,

for there is no such thing as the smallest unit, just as,

zero being excluded, there is no smallest rational number

(nor indeed a smallest irrational number). The transla-

tion, however, is excellent. Do but compare it with the

following translation taken from the Metaphysics of

Bohn's Classical Library.

For, indeed—as we have remarked—all men com-
mence their inquiries from wonder whether a thing be

so, as in the case of the spontaneous movements of

jugglers' figures, to those who have not as yet specu-
lated into their cause; or respecting the solstices, or the

incommensurability of the diameter; for it seems to be
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a thing astonishing to all, if any quantity of those

that are the smallest is not capable of being measured.
But it is necessary to draw our inquiry to a close in a

direction the contrary to this, and towards what is

better, according to the proverb. As also happens in

the case of these, when they succeed in learning those

points; for nothing would a geometrician so wonder at,

as if the diameter of a square should be commensurable
with its side.

No one who had grasped the author's thought even fairly

well could have written that. And these two specimens
are typically representative: they serve to exemplify the

comparative merits of the two translations as wholes.

The Grand Continuum.—On first encountering the sort

of contradiction or discord dealt with a moment ago, our

minds are surprised and shocked because we cannot but

believe that there must be, or ought to be, a kind of

magnitude such that a definite part or amount of it just

reaches from a corner to the diagonally opposite corner

of any given square and because we cannot but feel that

geometric lines or curves ought to be so conceived that,

if they cross, they intersect, or have a point (or points)

in common. What has the human mind done about it?

What has it done to secure release from the kind of dis-

cord in question and so to enlarge the sphere of intellectual

harmony? What it has done is this: it has assumed or

created the kind of magnitude required. This new sort

of magnitude is, of course, not sensible; it is conceptual,

but it is not of the type of the mathematical continuum

of first order, for it is in this type that the difficulties

to be overcome have their roots; the structure of the new

variety of magnitude is patterned on the structure of the

mathematical continuum of second order: this latter

continuum is the mathematical continuum proper
—the
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" Grand Continuum "
as it was called by Professor

Sylvester. It contains such symbols as V2, <?,
-k and

countless hosts of others sandwiched between the symbols

constituting the first-order continuum, much as the

rational fractions of this are sandwiched between the

cardinal numbers.

The Grand Continuum has been a subject of profound

investigation by mathematicians, especially during the

last half-century, and has long been everywhere an

important theme of university instruction in what is called

the theory of the real variable. This instruction, which

has found its way into numerous text-books on function

theory, is mainly based, directly or indirectly, upon three

classical expositions of the matter. I refer to Dedekind's

exposition, which has been translated by Beman and

Smith and with another of the author's works has been

published under the title Essays on Number; to that by

Georg Cantor in his creative memoirs on Mannigfaltig-
keitslehre (or Mengeniehre); and to the exposition found

in the works of Weierstrass. For our present purpose it

will be sufficient to remind ourselves briefly of one way
in which the concept of the Grand Continuum may be

formed and of its two essential or definitive marks. Con-

sider the following two sequences of rational numbers:

first, the sequence of all rational numbers such that each

of them is less than 2; second, the sequence of all rational

numbers such that the square of each of them is less than 2.

Each of the sequences approaches, as we say, a definite

somewhat as a limit. The limit of the first is 2, which is

rational; the limit of the second is not rational; we call

it irrational^ denote it by the symbol V2, and say that this

irrational is given or defined by the sequence (or any

other sequence) having it for limit. There are infinitely
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many such sequences,
—

sequences (of rationals), that is—
that approach perfectly definite somewhats as limits

which (limits), however, are not rational numbers. The
total ensemble of definites thus defined or definable is the

system of irrational numbers. And these, taken together
with the rational numbers from which they are thus

derived or derivable, are commonly said to constitute the

system of real numbers. This use of the terms
"

rational,"
"

irrational
"

and
"

real," though dictionally somewhat

unfortunate, is historically justified. I need not say that

as employed in mathematics, these terms have completely
lost whatever metaphysical connotation they may once

have had: rational does not signify reasonable; nor

irrational, unreasonable; nor is a
"

real
"

number any
more real metaphysically than is any other sort of number.

Well,
—to return from this cautionary digression,

—it is

the real numbers that constitute the Grand Continuum.

Perhaps it were better to say that the system of real

numbers is the basal instance of the Grand Continuum
for other continua essentially like it are derived from it

as the model. You are aware that it is common to give

the name continuum to any segment of the Grand Con-

tinuum, where, by segment, I mean any two real numbers

together with all the numbers that lie between them in

value. Thus the numbers zero and I, with the real num-
bers between them, constitute a continuum of second

order. The most convenient and vivid example or

representation of such a continuum is the ensemble of

points constituting a straight line-segment as ordinarily

conceived—as conceived, that is, in such a way that by

taking an arbitrary point of the line for origin and employ-

ing an arbitrary unit of length or distance, a one-to-one

correspondence can be set up between the points of the
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line and the real numbers. Such a continuum of points
or of real numbers is a linear or o/^-dimensional contin-

uum of second order. The ensemble of pairs of real

numbers or the ensemble of points of a plane (as ordi-

narily conceived, in analytic geometry, for example) is

a ^o-dimensional continuum of second order; for a three-

dimensional one, it suffices to refer to the ensemble of

triplets or triads of real numbers or to the ensemble of the

points of our familiar geometric space as ordinarily con-

ceived. And it is evident that second-order mathe-

matical continua may have any given dimensionality
whatever. For a logically much more refined account of

the system of real numbers, you should examine Russell's

Principles and especially the Principia. I am giving here

but a sketch of the usual account.

The Definitive Marks of a Grand Continuum.—What
are the characteristic or definitive marks or properties of

a mathematical continuum of second order? The answer

is: an ensemble of numbers or points or other elements is

such a continuum when and only when the ensemble is

compendent and perfect. These are technical terms. What
do they mean? Let us answer in terms of points. An
ensemble of points is compendent (or zusammenhangend
as the Germans say or connected as it is common to say

in English) if it be such that, given any two points of it,

it is possible, by stepping only on points of the ensemble,

to pass from one of the given points to the other by a

finite number of steps, where each step is equal to or less

than some previously assigned distance, however small.

An ensemble of points is perfect, provided it be identical

with the ensemble of its limit- points, where, by a limit-

point of an ensemble, is meant a point such that there are

points of the ensemble distant from the given point by an

7
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amount less than any prescribed distance, however small.

It is easy to see that the properties, compendence and

perfectness, are independent properties: neither of them

implies the other. The ensemble, for example, of the

rational points of a straight line is compedent, but it is

not perfect for many of its limit-points,—that one, for

example, whose distance from the origin is V2,—are not

members of the ensemble. On the other hand, the

ensemble composed of the points, (X 1, 2, 4 and all the real

points between and 1 and all between 2 and 4, is perfect,

but it is plainly not compendent for the passage from,

say, point 1 to point 2 cannot be made in the required

way. It is clear, however, that the system or ensemble

of the real numbers is at once perfect and compendent.
The same is true of the segment composed of zero, 1 and

the intervening numbers; it is true of the ensemble of

points of a straight line or of any segment of it; it is true

of the ensemble of the points of a plane or of the ensemble

composed of the points inside and of those on the cir-

cumference of a circle; and so on and on.

These considerations may, I trust, suffice to give you a

general notion of that great mathematical instrument

known in modern analysis as the Grand Continuum or

as the mathematical continuum of second order or simply
as the mathematical continuum. And let me say that

you will miss a main point if you overlook the intimate

connection of the matter with the Weber-Fechner law.

I have said that in the long course of time and in the

interest of intellectual harmony or freedom the various

sense
"
continua

"
of weights, lengths, sounds, pressures,

velocities and so on, have been gradually replaced, in our

thinking, first by corresponding conceptual continua of

the type of the mathematical continuum of first order and
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second by conceptual continua of the type of the mathe-

matical continuum of second order. Of course, I do not

mean to imply that the first replacement was completed
before the second began. I mean merely that the order

indicated is, roughly speaking, correct. Neither do I

intend to imply that the process of substitution has been

always a conscious one nor that it has been always accom-

panied by a realizing sense of its actuating motive.

Much of our intellectual life is not attended by con-

sciousness either that it is going on or why it proceeds in

this direction rather than that. That the replacements
have been actually made, however, is sufficiently evident

in the fact that students of natural science,
—

physicists,

for example, or astronomers or chemists,
—

habitually and

freely employ the real numbers, whether rational or

irrational, algebraic or transcendental, to express quan-
tities or amounts of the various kinds of physical magni-
tude. Are these students aware that they are thus deal-

ing with purely conceptual continua and not with such

as are revealed in sense? It must be said that, for the

most part, they are not. For the most part these students

are not indeed aware that there are such continua even

in mathematics; much less are they informed regarding

the inner structure or constitution of them; they employ
them naively, as children may handle tools which they

have not yet analyzed. This is not said in any spirit of

reproach or derogation, for it is only in very recent times

that even mathematicians themselves have made the con-

stitution of continua a subject of deliberate investiga-

tion, though the matter figured itself vaguely in the back-

ground of their thought for more than two thousand

years. Even Aristotle in his Physics made a stab at the

question.
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Some Questions.
—Hereupon certain questions natur-

ally supervene. One of them is this: How can the

symbols or elements or terms that constitute the mathe-

matical continuum be effectively employed in studying
such a magnitude as pressure, for example, or gravity or

velocity? The answer seems to reside in two considera-

tions: one of them, which I have hitherto mentioned in

these lectures, is the fact that the various kinds of the

magnitude in question are each of them conceived to be

composed of, or decomposable into, parts or elements

matching in a one-to-one way the elements or terms that

constitute the mathematical continuum, and related

among themselves as the terms of the continuum are

related among themselves; the second consideration is

the fact that natural science is concerned, not with the

constituents of a magnitude, but only with the relations

among them. This second consideration, which so easily

escapes attention, is one of those fundamental matters

which Professor Poincare never wearied of insisting upon.
See his Science and Hypothesis, for example.

Another natural question is this: Does the replacement
of the sensible or of the rational continua by continua

patterned on the model of the Grand Continuum guaran-
tee us against all difficulties resembling the kind repre-

sented by the possibility of two lines crossing without

intersecting? The answer is, no. This particular kind

of difficulty has indeed been overcome by means of the

Grand Continuum. But there remain to surprise us other

difficulties of a somewhat similar kind. Let us glance at

one of them. Consider a sensible curve and a sensible

straight line. We can always dispose them so that they
will have a common part without crossing. Let us now

replace them, in thought, by corresponding conceptual



THE MATHEMATICS OF PSYCHOLOGY 399

magnitudes of the type of the second-order mathematical

continuum. Next let the breadth and thickness diminish

more and more, keeping always a common part without

crossing. It appears that, at the limit, the common part

will be a point at which, however, the line and the curve

do not cross; that is to say, it appears that the line

becomes a tangent to the curve at the point. In some such

way, it came to be believed that a curve, if continuous

at any point, admits a tangent at the point. Nothing
could be more natural and the belief was persistent and

long-lived. Yet we know to-day that in such matters

Fig. 33.

our intuition, precious as it is, cannot be implicitly

trusted for we know today that the belief in question is

false. This fact may be shown by the following classical

example. Consider the locus of the equation

1

y = x sin
-

J x

It is continuous at every point except the point whose

abscissa is #=0. At this point y is not defined, since

division by zero is meaningless. Hence we may define

it as we please. Let us agree that y shall be zero when

x=0. This being done, the curve is now continuous at

the point, x = 0, as well as at all other points. Differentiat-

ing, we get

dy • I 1 1-~— sin cos -
dx x x x
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for the slope of the tangent at any point whose abscissa

dy
x yields a definite value for -7-. But at the point, x =

— has no value; it is indeed meaningless as involving

division by zero. Hence the curve, though it is con-

tinuous at the point in question, does not admit a tangent
at the point.

As you may know, such curves are infinitely numerous.

For other examples one may consult a memoir on discon-

tinuous functions by Darboux in the Annates de I'

'

Ecole

Normale superieure, Vol. IV, 2d series. Some examples
of the kind are beautifully discussed in the appendix
of W. B. Smith's Infinitesimal Analysis. See also W. K.

Clifford's remarks on
"
Crinkly Curves

"
in Vol. I of his

Elements of Dynamic. The matter is, of course, dealt

with in all up-to-date books of advanced calculus or of

the theory of functions of the real variable. By a famous

example adduced by Weierstrass, it was shown that a

curve may be continuous at every point and yet have no

tangent at any point.

Phenomena of the kind above indicated naturally

raise another question, which I may state without attempt-

ing to discuss it here. The question is: Is it possible to

construct continua of higher than second order, continua,

that is, whose elements are, so to speak, compacted
more closely together than in the case of the Grand

Continuum; and what would be the bearing of such a

higher continuum upon the sort of phenomena above

indicated? The first part of the question is discussed by
Paul Du Bois-Reymond. The works of this author are

not easy to read. The student may be referred to G. H.

Hardy's Orders of Infinity: the InHnitar-calciil of Paid
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Du Bois-Reymond, where the chief ideas of the latter

are presented and his works cited.

Conquest or Transcendence of Sensibility Thresholds.—
By way of emphasis,

—for the matter is very important,

especially for psychology,
—let us state explicitly that the

conceptual continua which we have been discussing at so

great length are not infected, as are sense
"
continua,"

with the presence of thresholds. They are free from

initial thresholds, for any such conceptual continuum

is composed of parts that continuously decrease in size

down to zero. They are free from terminal thresholds

because they each of them present a sequence of parts

increasing beyond any assigned finite amount, however

great. They are free from difference thresholds, for any

difference, however small, between portions of a con-

ceptual continuum is conceptually discernible. In a

sense
"
continuum

"
there are, properly speaking, neither

infinitesimals nor infinites, but in a conceptual con-

tinuum there are both. In a word we may say that

conception, or thought, is a kind of infinitely refined sensi-

bility, for there is no quantity too small for thought to

detect and to discriminate from any other. Here this

lecture must close. Our topic has been the mathematics of

psychology; the discussion, you see, has inevitably led

us pretty far into our next topic
—the psychology of

mathematics—and even into the psychology of science

in general.



LECTURE XIX

The Psychology of Mathematics

RETARDATION OF MATHEMATICS AND SCIENCE BY BACK-

WARD PSYCHOLOGY PSYCHOLOGY OF MATHEMATICS
ESSENTIAL TO BEST MATHEMATICAL TEACHING

QUESTIONS FOR PSYCHOLOGISTS SYMMETRY OF

THOUGHT AND ASYMMETRY OF IMAGINATION.

In the preceding lecture we saw that a little study in

the "mathematics of psychology" led us quickly and

naturally into the "psychology of mathematics" and even

into that of science in general. Yet we are now going to

discuss the "psychology of mathematics" as if its field

were well defined and did not run into all other subjects,

which, in their turn, penetrate it. Nature does not greatly

respect our little academic custom of carving her up and

calling the pieces departments of study. Chemistry,

physics, mechanics, geometry, metaphysics, psychology,

logic, ethics, esthetics, and the rest all penetrate and

overflow the walls we surround them with, and mingle
their waters in one vast sea. In the great world of

Nature,—the subject of all thought,
—there are emphases

indeed but no fixed divisions corresponding to our pretty

ologies, ographies, and ics, and even the emphases per-

petually shift their incidence. And yet there is a sense

in which such divisions and walls are not artificial but are

402
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natural for they are made by man, and man is a part of

nature—the part that studies the whole. In that sense,

man-made divisions of nature are natural divisions, made

by Nature herself to facilitate the process of self-under-

standing; but they are not aboriginal and they are not

permanent,—they are experimental devices, mere con-

veniences for the service of a people or an age, and des-

tined to change.

There was a time when what we now call logic and

what we now call psychology were not distinguished
—

not held apart; today they are; and so, given any scien-

tific or philosophic subject, we habitually speak of its

logic and its psychology; the two things, though the sub-

ject is one, represent different types of interest in it, dif-

ferent emphases or aspects of it. Accordingly, mathe-

matical science presents two fields of interest: the logic

of mathematics and the psychology of mathematics. In

the former, research has achieved great results; in the

latter, but little of solid worth. Why the great disparity?

Because the logic of mathematics has interested philo-

sophic-minded logicians who were at the same time mathe-

maticians; while those who have dealt with the psychology
of mathematics have not known mathematics well enough
to know what it was they were attempting to psychologize
or even to know that they did not know—witness, for

example, the literature of the "psychology of number."

In the introductory lecture I pointed out that modern

research in the logic of mathematics has culminated in

a really marvelous thesis: rightly understood, mathematics

and logic are identical,
—the two are one science,

—
logic

(in its tradition sense) being the earlier part of that

science, and mathematics (in its traditional sense) being

its later part. We could, therefore, say with perfect jus-
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tice that what we arc now to discuss is the psychology of

logic. For our present purpose it is better, however,
to say psychology of mathematics; the other title is too

unfamiliar.

It is my aim to signalize the importance of the sub-

ject, to suggest a few of its problems, and thus possibly

to incite some mathematician to acquire sufficient psy-

chological competence, or some psychologist to acquire

sufficient mathematical competence, to deal with it effect-

ively. The subject no doubt possesses great interest in

itself. "The genesis of mathematical discovery," says

Poincare in Science and Method, "is a problem which

must inspire the psychologist with the keenest interest."

But that is not the main point. The main point is that

the general neglect of the subject by competent men

throughout the centuries has greatly retarded the prog-
ress of science; it has, in the first place, retarded the

progress of mathematics and it has thus retarded the

progress of all the sciences whose prosperity depends

upon that of mathematics. That such is the case, a few

considerations will make sufficiently evident.

Consider, for example, the birth and development of

the concept of hyperspaces, which, as we saw in a

previous lecture, is less than a hundred years old.

We have noted its great importance for mathematics,

for physical science and for philosophy. Why was

the advent of this great concept so long delayed? The
answer is: because the psychology of mathematics was

so little understood. For many centuries the concept in

question had been knocking at the door but it was not

admitted because psychologically ignorant mathematicians

and psychologically ignorant philosophers believed that

mathematical concepts, if they be not indeed concepts
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of sensible or perceptible things, must at all events be

concepts of things that we can imagine. The evidence

supporting my answer is unmistakable and conclusive. Let

us consider some of it. I am here greatly indebted to

Professor Manning's admirable "Introduction" to his

Geometry of Four Dimensions. In the following quota-

tions from various authors cited by him, I shall take the

liberty, for it will be helpful, to italicise some of their

words.

In the De Caelo of Aristotle we are told that "The
line has magnitude in one way, the plane in two ways,
and the solid in three ways, and beyond these there is no

other magnitude because the three are ally It is plain

that the "all" is an "all" for imagination, not for con-

ception. And we are further told that "There is no

transfer into another kind, like the transfer from length

to area and from area to solid." The statement is true

for perception and for imagination; but for thought or

conception, it is false.

For another instance in point consider the following

statement (of the sixth century, A. D.) found in the

Commentaries of Simplicius: "The admirable Ptolemy
in his book On Distance well proved that there are no

more than three dimensions, because of the necessity that

distances should be defined, and that the distances defined

should be taken along perpendicular lines, and because

it is possible to take only three lines that are mutually per-

pendicular, two by which the plane is defined and a third

measuring depth; so that if there were any other distance

after the third it would be entirely without measure and

zvithout definition. Thus Aristotle seemed to conclude

from induction that there is no transfer into another

magnitude, but Ptolemy proved it." Here it is again
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evident that the psychology of mathematics had not yet

learned to discriminate the conceivable from the imagin-

able. We now know that in a space of n dimensions n

lines can be mutually perpendicular and we know that

such spaces are geometrically just as good as any other.

And not only was the progress of geometry thus retarded

but that of algebra, too, in as great or greater measure;

for not only were lines, surfaces and solids things in

imagination's realm but so, too, were numbers; it is well

known that for the Greek mathematicians and a long

series of their successors, numbers were geometric things—one number was a line (segment), a product of two

numbers was a rectangle or a square, and that of three

a parallelopiped or a cube. False psychology thus

balked the advancement of equation theory, for x3 was

indeed a real thing,
—a geometric cube,

—but what, pray,

was #4
,
for example, or .v

5

,
and so on? The answer was

evident—they were unreal. So, in the sixteenth century,

we are told by Stifel, reviser of Rudolph's Algebra, that

"going beyond the cube just as if there were more than

three dimensions" is a thing "against nature." And in

the following century John Wallis regards the giving of

"ungeometrical" names to the fourth and higher powers
of numbers as quite intolerable. They are, he says, a

"Monster in Nature, less possible than a Chimaera or

Centaure." Why? Because "Length, Breadth and

Thickness take up the whole of Space. Nor can Fansie

imagine how there should be a Fourth Local Dimension

beyond these Three." Here note again what the barrier

is,
—a childishly naive psychology,

—Nature does not

transcend the imaginable,
—what is merely conceivable is

monstrous,—a psychology so rude and so crude that, were
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it strictly applied, the very possibility of mathematics,

rightly understood, would be thereby excluded.

It would not be difficult to produce much more evi-

dence of similar kind. But I will content myself with

one further citation—one that is less than a century old

and comes from a mathematician of great power. I re-

fer to Mobius, author of Der barycentrische Calcul

(1827). He saw indeed that, if there were a space of

four dimensions, it would be possible to rotate in it a solid

figure of ordinary space just as a plane figure can be

rotated in the latter space; and he saw that, if such a

rotation of solids were possible, we could make two sym-
metric solids coincide just as we can make two symmetric

plane figures coincide by rotation in space immersing the

plane. This is perfectly good mathematics, which, how-

ever, he rejects because of a false psychology. His

statement is this: "Da aber ein soldier Raum nicht

gedacht werden kann, so ist auch die Coincidenz in diesem

Falle unmbglich" He meant that such a space cannot

be imagined—he could not have meant that it cannot be

conceived, for he had already conceived it; his blunder

was not one in logic; it was a blunder in psychology
—the

psychology of mathematics; though an able mathemati-

cian, he did not know that a conceivable space and a con-

ceivable rotation are perfectly good mathematically, even

though they transcend the domain of imagination.

The foregoing facts show clearly that a backward

psychology of mathematics not only operated to hamper
the progress of algebra, but actually delayed, for more

than two thousand years, the advent of the concept of

hyperspace and w-dimensional geometry.
If you turn to the genesis of non-Euclidean geometry,

you find an essentially similar tale. The birth was baf-
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fled for over twenty centuries. Baffled by what? By a

psychology which recognized no space except our sensuous

space, which believed that our sensous space is geome-

trizable, that Euclid's axioms are "self-evident" truths

regarding it, and that his Elements embodies an exact

description of it; by a psychology which, therefore, could

not contemplate even the possibility of wow-Euclidean

geometry and which, when such a geometry was at length

devised in spite of it, insisted upon trying its claims in the

courts of sensibility and perception and imagination, not

knowing that, in questions regarding the logical validity

of geometric science, those courts are entirely without

jurisdiction.

Let me allude briefly to another branch of modern

mathematics—projective geometry. It was invented, we

have seen, in the seventeenth century, lost, forgotten, and

re-invented in the nineteenth. Why not before—centuries

before? What was in the way? Logic? Not primarily;

it was psychology
—a false psychology of mathematics.

The invention, as you know, required the conception of

infinitely distant points and the conception of lines and

planes such that, if parallel, they meet in those points. But

how could that happen? How could parallels meet?

They could not, it was said,
—it was psychologically im-

possible,
—the possibility was denied by sense, denied by

perception, and, most conclusive of all, denied by imagi-

nation.

I have just now mentioned "infinitely" distant points.

We are thus reminded of the modern concept of infinity,—of infinite classes, ensembles, sets, or manifolds,—the

subject of Lecture XV. We have seen that this great

concept, though it is classic today, was born but yesterday.

Why not a thousand or two thousand years ago? Well,
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it was born or well-nigh born, as we have seen, to the

genius of Epicurus and had the fortune to inspire the

great poem of Lucretius. With this exception, it had

no career in science and none in philosophy—it was

sterile. Why? The same old trouble—a shallow psy-

chology. For, as you know, an infinite class must have

a part containing as many things as the whole class con-

tains. But who ever saw such a class or ever imagined
one? "Nonsense!" exclaimed psychology, and the great

conception,
—so important for science, for philosophy

and for rational theology,
—slumbered for twenty cen-

turies.

Passing to another field, we find that the development
or generalization of the number concept was greatly

hampered by the same cause. The descriptive terms,—
"surd" (which means absurd), "irrational," "imaginary,"

and "impossible,"
—which were applied to large classes

of numbers that had been literally forced upon the atten-

tion of mathematicians by familiar operations, sufficiently

tell the tale. Mathematically those numbers, as we now

know, were quite as genuine, quite as legitimate, as the

ordinary integers and fractions. Why, then, were they

called "surd," "irrational," "imaginary," and "impos-

sible"? Because they encountered a psychology that did

not understand the nature,
—the mental nature,—of

mathematical generalization: a psychology which held

that the new "numbers," in order to be legitimate, must

conform to the familiar laws of the old ones and must,

moreover, like the old ones, admit of interpretation or

application in the so-called "actual" world of sense-per-

ception.

The history of many another mathematical develop-

ment bears similar witness. But we need not pursue the
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matter further. The evidence now before us is sufficient.

It is perfectly clear that in course of the centuries the

progress of mathematics has been much retarded, some-

times arrested for long periods or diverted from its

natural course, by a psychology which, in things mathe-

matical, often did not know a knee from an elbow.

Is mathematics retarded by that cause today? I

believe that mathematical research is not much thus re-

tarded—at all events not directly. No doubt the number

of mathematicians who are also expert psychologists is

very small. But research mathematicians usually, though
not always, understand the psychology of their own science

well enough to recognize a mathematical idea as being

such, wherever and whenever it occurs. If it be a new

one and be found to be interpretable in the world of

perception or in the world of imagination, they are

thereby rejoiced, naturally so; but if it be not thus in-

terpretable, as it may not be, they are not so psychologic-

ally unenlightened as to refuse it hospitality on that

account. The history of their subject has taught them

better.

But mathematical research and the dissemination of

mathematical knowledge are very different things. In

respect of the latter, I have no doubt that, if teachers

of mathematics were better trained in psychology and

especially in the psychology of mathematics, their teach-

ing would be far more effective; for questions of logic

would then be seen and set in clearer light, less frequently

confused with psychological considerations, while the

latter, presented as such, would often contribute to the

instruction a light of their own. Will you allow me a

word of personal experience? I count it a great good

personal fortune that as a young man I received mathe-
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matical instruction from one in whose teaching the logic,

the philosophy, the psychology, and the poetry of the

subject mingled together and fortified each other like the

parts of an orchestra. I refer to Professor William

Benjamin Smith, now of world-wide fame as a Biblical

scholar and critic. I am not going to enlarge here upon
this important matter of making the psychology of

mathematics effective in mathematical instruction, but will

merely refer you, for some relevant suggestions, to the

earlier lectures where distinctions of logical and psycho-

logical were repeatedly indicated and where, especially

in Lecture VII, in connection with the psychological dis-

crimination of logically identical doctrines, was intro-

duced the important notion of "excessive meaning."
We have been talking about the neglect and back-

wardness of the psychology of mathematics. Thus far

we have referred mainly to the neglect of it by mathe«

maticians. What are we to say of its neglect by profes-

sional psychologists? I have no desire to be fault-finding,

querulous or unjust. I am well aware that psychologists

have many things to occupy their attention—that their

field is vast, diversified and complicate. I know that,

like other scientific folk, they are obliged to select. I

know that for an outsider to attempt to dictate or pre-

scribe their choice would be presumptuous. At the risk,

however, of seeming impertinent,
—which usually means

a little too pertinent,
—I venture, as an interested layman,

to suggest that, in neglecting the psychology of mathe-

matics, professional psychologists not only neglect an

obligation to mathematics and natural science but also

neglect an exceedingly interesting subdivision of their

own proper field. For their field is Mind,—psychology,

we are told, is the study of mind, the study of mental
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phenomena,
—and I believe we may assume that, where

there is mathematics, there is some manifestation of mind,—that mathematics, regarded as an enterprise, is an

enterprise of mind,—that, regarded as a body of achieve-

ments, it is a body of mental achievements,—that, re-

garded as a mode of life, it is a mode of mental life,—
that, in a word, mathematical phenomena represent

mental phenomena and are unsurpassed as means in the

study of mind. I do not mean that all kinds of mental

phenomena are thus represented. Lust, for example, is

not, nor fear, nor anger, nor hate, nor malice, nor envy,

nor many another such amiable propensity of unregen-

erate souls—of course I am speaking here of mathe-

matics and not of mathematicians, who have many inter-

esting qualities that their science has not. But perception— discrimination — imagination — fantasie — concep-

tion— judgment— analysis
—

synthesis
— reasoning

—
generalization

— the energy of will— the restraint of

passion
—the sensibility and daring of genius

—the sense

for order, for symmetry, for harmony, for intellectual

beauty, for cogency and clarity of thought,—where out-

side of mathematics do such mental phenomena, which it

is the psychologist's profession to examine, show them-

selves in so clear a light? It is indeed obvious that the

whole literature of mathematics may be read and in-

terpreted as a commentary upon the nature of the

human mind. Select, for example, a well-wrought dem-

onstration and examine it. What can you say of it?

You can say this: A normal human mind is such that,

if it begin with such-and-such principles or premises and

with such-and-such ideas and if it combine them in such-

and-such ways, moving from step to step in such-and-such

an order, it will find that it has thus passed from dark-
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ness to light,
—from doubt to conviction. Obviously such

a proposition is not mathematical; it is psychological
—

it states a fact respecting the nature of a normal human
mind. Such interpretations of mathematical literature

are psychologically very illuminating; the possibility of

making them is so evident, once it is pointed out, that I

should have refrained from mentioning it except for the

fact of its being commonly overlooked and neglected.

For another example, consider the phenomenon of

generalization,
—the process by which the human mind

from time to time enlarges the empire of its rational

activity. What is generalization as a process of mind,

as a mental event? What are the mental phenomena
involved? How? In what relations? I am not going
to attempt to answer here. I wish merely to propose the

problem to students of psychology. Generalization occurs

in all fields of thought but in mathematics it may be seen

in its nakedness. There, then, is the best place to study

it as a phenomenon of mind. Take, for example, the

striking succession of generalizations by which the domain

of the number concept, which once contained nothing but

our familiar integers, has been gradually extended to

embrace positives and negatives, rationals and irrationals,

reals and imaginaries, cardinals and ordinals, including

the transfinite numbers of Georg Cantor; or take the

no less striking series of generalizations by which the

conception of geometry has been enlarged. As specimens
of generalization, those alluded to are probably the best

to be found in the history of thought. I venture to com-

mend them as such to students of mind. Some of you
are psychologists. If you will study the great process

of generalization by help of the specimens mentioned,

then the rest of us will go to you confidently,
—as laymen
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to experts,
—for enlightenment. For there are questions

to be asked. Generalization seems to be sometimes very

simple and sometimes very complicate. We should like

to know what mental phenomena,—what sorts of mental

activity,
—are involved in it. What, if any, is the role

of imagination in it, and that of conception and that of

reasoning? Does generalization transcend the realm of

imagination? What is the office of logic therein? Is

generalization the end of a series of operations or is it

the beginning of a new series? Is it a conclusion forced

by reason or does it involve a creative act of will stimu-

lated by motives but not coerced by them? What are

the actuating motives of the process? Are all general-

izations essentially alike? If not, what are the kinds,

and how do they differ? How do the phenomena of

scientific generalization compare with those of idealiza-

tion in other fields? Such questions are neither primarily

mathematical nor primarily metaphysical; they are psy-

chological questions, which it is your proper function as

students of mind to investigate for your own enlighten-

ment and for that of others. Let me cite again the

statement of that great man, Henri Poincare: "The

genesis of mathematical discovery is a problem which

must inspire the psychologist with the keenest interest."

The things I have been saying are submitted as sug-

gestions only; being a layman's suggestions, they are

probably very inferior to the best that could be made.

I am tempted, nevertheless, to add yet another one. It

is that a good way,
—perhaps the best way,—for psy-

chologists to advance their own subject would be to

cooperate with philosophic mathematicians and philo-

sophic physicists in their efforts to solve the great problem
mentioned near the close of Lecture X,—the problem, I
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mean, of discovering the relations between the data of

sense and the conceptual objects of science,
—the problem,

in other words, of ascertaining whether, how, and to

what extent such conceptual and hypothetical objects

(points, instants, space, time, atoms, electrons, ether,

etc.) can be replaced by objects actually constructed out

of sense-given data and having the properties demanded

by science. If such constructions can be made, science

will be able to dispense with many hypotheses or many
"as ifs." That problem, it is evident, is a truly great

one.

In this lecture (as also in preceding ones) I have

repeatedly emphasized the importance of a certain psy-

chological distinction which I have called the distinction

between imagination and conception. It is today well

recognized by all mathematicians. They are accustomed

to designating it,
—not quite happily, I believe,

—as the

distinction between "intuition" and "analysis." It is the

distinction between the power of the mind to picture

and its power to think. We have seen that failure to

make it has often retarded the progress of mathematics

directly and that of kindred sciences indirectly. It is

absolutely essential to the philosophy of science; without

it the history of thought cannot be understood. I am
here reminding you of the matter because the considera-

tions with which I intend to close will incidentally shed

new light upon it.

I wish to call your attention to certain contrasting

psychological phenomena that seem not to have found

recognition in the literature of psychology. I shall pre-

sent them without attempting to explain them. What I

wish to point out is that, in relation to space, conception

or thought is symmetric in its representations and that
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imagination is not. My theme is : The symmetry of

thought and the asymmetry of imagination.
1

Consider the simple algebraic expression

The u's precede the x's, but that is here of no importance,

for, owing to the commutative law of ordinary multiplica-

tion, ux is equivalent to xu; if we replace the u's by the

corresponding x's and the latter by the former, the

expression remains algebraically unaltered. On that ac-

count we say that the expression is symmetric with respect

to the us and the x's. Such interchange of the us
and the x's may be likened to the interchange of two

opposite halves of a perfectly symmetric tree—the figure

of the tree as a whole remains unchanged. It will be

convenient to denote the expression by the symbol

E{u> x)
—the symbol E(x, u) would, of course, do just

as well but let us use the former.

Now consider the equation

(i) E{u, x) =0

It is, like the expression, symmetric in the sense defined.

We may interpret the equation geometrically. To do so,

let us view the x's as coordinates of a point in a point-

space, Sn, of n dimensions. If we suppose the u's to have

definite values the equation (i) imposes one condition

on the mobility of the point {x\, X2, . . .
,
xn); and so the

equation represents,
—has for its locus, as we say,

—a

space S„_ x
of points. If we give the u's another set

of values, thus obtaining a new equation of form (i),

J A paper on this subject which I presented at the Princeton meeting
of the American Philosophical Association (1910) was published in the

Journal of Philosophy, Psychology and Scientific Method, June 8, 191 1.
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the new equation will represent another space of n — I

dimensions. It is thus plain that the u's serve for coor-

dinates for a variable Sn _ 1
in Sn just as the x's serve for

coordinates of a point in Sa . Since the us may take as

many different systems of values as the x's may take, you
see that the space S„, in which we are operating, contains

as many S„_ x
's as it contains points.

We have just now seen that, if the us be held fixed

in value and the x's be allowed to vary subject to condi-

tion (i), this equation represents some definite Sn _ 1
as

the ensemble or locus of the points contained in it. Now
note very carefully the reciprocal or dual, as it is called,

of the fact just stated. The dual is that, if the x's be held

fixed in value (thus giving us a fixed point, say, P) and

the u's be allowed to vary subject to condition (i), the

equation represents P as the ensemble or envelope (as it

is called) of all the Sn_^s containing it.

Naturally the two interpretations
—one for the us

fixed and the x's variable, the other for the x's fixed and the

u's variable—of one and the same equation

E(u, x) =0=E{x> u)

may be significantly described as symmetric interpreta-

tions. Indeed, as you readily see, if in the conceptual

space Sn (of operation) we interchange the notion of

point (as an envelope of Sn _^s) and the notion of Sn _ 1

(as a locus of points), Sn will as a whole remain, like the

initial expression, like our equation, like our symmetric

tree, absolutely unchanged. Under the mentioned opera-

tion, Sn is an invariant. In the same way, systems of

equations like the foregoing one admit of symmetric

interpretations. But I shall not deal with such systems

where n is general. It will be easier for you, and for my
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purpose it will be sufficient, to begin with the simple case

where n = 2 and to observe what happens when n is taken

larger and larger.

It is essential to note the fact that the above-given

symmetric interpretations are conceptual
—

interpretations

by, in and for pure thought. It is equally essential to

note that our
"

spatial
"

imagination or intuition or

picturing power attempts to imitate them,—attempts
to make in its way parallel interpretations,

—
interpreta-

tions, that is, which correspond to or match in detailed

one-to-one fashion the thought interpretations. In other

words, imagination endeavors to find in its own domain

images, pictures or objects to match the conceptual

objects
—

points, Sn _ 1's, lines, Sn_2$> and so on—which

figure in the interpretations by thought. We are going to

see that this enterprise of imagination succeeds fairly

well if n be small, that its prosperity decreases as n

increases, and that its failure is well-nigh complete when
n is taken very large. At the same time, we shall see

that, in the case of interpretations by thought, symmetry
never fails in even the least degree, no matter how high

the dimensionality of the space in which we are operating.

Let us for convenience denote any two reciprocal

thought-interpretations by the symbols T(u) and T(x)>

the former when the -m's are fixed and the x's are variable,

and the latter when the x's are fixed and the us are

variable; and let I(u) and I(x) denote the corresponding

pair of interpretations essayed by imagination.

Consider first the simple case where w=2; S2, the

space of operation, is a plane; equation (1) now is:

(1) U1X1+U2X2 + 1 =0. What are T{u) and T(x)1 The
former is a conceptual range of points; the latter, a

conceptual pencil of lines. What are I(u) and I(x) ?
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The former is the conceptual range's so-called image or

mental picture, commonly represented to the physical

eye by a row or series of dots; the latter is the conceptual

pencil's so-called image or mental picture, commonly
represented to the physical eye by a set of physical lines

(or dot rows) having a physical point (or dot) in common.
You are familiar with the sensuous figures.

Still keeping n = 2, let us take a pair of equations like

(i), writing them, for short, (2) E'(u, x) = 0, (3)

E"(u, *)=0; and consider (4) E' + \E" = where X

is a parameter. Denote the ranges represented by (2) and

(3) by R' and it", and denote the pencils represented by
them by P' and P" . What are T{u) and T(x) of (4) ?

The former is a conceptual variable range of the pencil

(of ranges) determined by R' and R"\ the latter is a

conceptual variable point (or pencil) determined by P' and

P" \ it is plain that I{u) and I{x) are respectively the

so-called images of the variable range and variable point

(or pencil) just mentioned.

Advancing to the case where n =3, we have for field of

operation the space S3 of ordinary geometry. Consider

(5) U1X1+U2X2+U3X3 + 1 = 0. T{u) of (5) is obviously a

conceptual plane of points, while T{x) is a conceptual

bundle of planes (a point, that is, enveloped by the planes

containing it); and, of course, /(«) and I(x) are respect-

ively the
"
images

"
of the conceptual plane and bundle

(or point as the bundle's vertex or carrier).

Let us now take a pair of equations like (5), namely,

(6) E'=0, (7) E"=Q; and consider (8) E'+ \E"=0.

Let r' and tt" be the planes, and B' and B" the bundles

(or points), represented by (6) and (7). T(u) of (8) is a

conceptual variable plane of the axial pencil (of planes)

determined by tt' and tt"; T(x) is a conceptual variable
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point (bundle veitex) of the line (axis of plane-pencil)

determined by B' and B"; while Iiu) and I(x) are imag-
ination's correspondents of the foregoing concepts.

Finally, let us join with (6) and (7) a third equation

(9) E'" = 0, independent of them and representing a

plane 71-'" or a point (plane bundle) B'" . Consider the

equation (10) E'-\-\E" +nE'" = 0. What are its T(u) and

T(x) ? The former is a conceptual variable plane of the

point (or bundle) determined by vr', ir" and •/"; the latter

is a conceptual variable point (bundle vertex) of the

plane determined by B', B" and B'"\ while I(u) and

I{x) are the imitating
"
images

"
of the same.

Let us now pass to n—\\ our field of operation is

S4, a four - dimensional space of points. Consider

(11) u\X\-\-u<>x<2.-\-u?,xz-\-u±x±-\-\ =0. Its T(u) is a con-

ceptual lineoid (an S3) of points, and its T(x) is a concept-
ual hypersheaf of lineoids (a point enveloped by the

00 3 lineoids containing it). Now scrutinize carefully the

results, I(u) and I(x), of imagination's effort to imitate

or represent pictorially the concepts T(u) and T{x).

You observe at once the following facts: (a) both I(u)

and I(x) are inferior to their analogues for «=3 or 2;

(b) the defect of I(u) differs in kind from that of I(x).

Indeed the two kinds of defect are, in a sense, reciprocal;

for I(u), in trying to match T(u), though it succeeds in

imaging points and point configurations interior to the

lineoid or locus, presents no image of the lineoid itself

or the locus as a whole; while, on the other hand, I(x) y

in trying to match T(x)> presents an image corresponding

to the point or envelope but no image to match the

enveloping lineoids. The contrast may be vividly seen

as follows: Note that, in the one case, the lineoid is the

bond or lien of the elements,
—

points,
—of which it is the

locus, and that, in the other case, the point is the bond or
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lien of the elements,
—

lineoids,
—of which it is the envelope.

And now the fact to be noticed is this: I{u) images ele-

ments, but not their bond; I(x) images the bond, but
not the elements.

It is plain, too, that I(u) is more satisfactory than

I(x). This fact becomes obtrusively evident if we

geometrize T(u) and T(x) themselves. The two geome-
tries,

—which we must remember are conceptual,—match
each other in fact-to-fact fashion perfectly; with respect
to each other they are perfectly symmetric. In the two

geometries a point of T{u) corresponds to a lineoid of

T{x) y and a line-segment joining two points of T(u)

corresponds to the angle of two lineoids of T(x). Now
it is evident that the image of a segment is very superior

to any image we can form for the angle between two

intersecting lineoids. I need not give further examples,
which are endless in number and tell the same tale. If

you desire to do so, you can pursue the matter in S4

and in higher and higher spaces.

The conclusion is that, in relation to space, conception
or thought is perfectly symmetric and that imagination or

intuition is asymmetric. As n increases, thought con-

tinues to look about in spaces of ever-ascending dimen-

sionality like a binocular being with no impairment of its

twofold vision; its light is spread abroad equally every-

where; whilst imagination's eyes not only fail more and

more as n mounts higher, but they fail in unequal measure.

To change the figure, thought enters and moves about

freely in the hyperspaces like an eagle with both wings

equally outspread and always adequate for any zone

however vast or high, but the movement of imagination

there is like the flight of a bird of feeble and failing wings,

unable to rise and soar.



LECTURE XX

Korzybski's Concept of Man !

WHAT TIME-BINDING MEANS DIMENSIONALITY AND THE
MATHEMATICAL THEORY OF LOGICAL TYPES THE
NATURAL LAW OF CIVILIZATION AS AN INCREASING

EXPONENTIAL FUNCTION OF TIME HUMAN ETHICS

AS TIME-BINDING ETHICS, NOT THE SPACE-BINDING

ETHICS OF ANIMALS.

A few years ago our lives were lapt round with a

civilization so rich and comfortable in manifold ways,
so omnipresent, so interwoven with our whole environ-

ment, that we did not reflect upon it but habitually took

it all for granted as we take for granted the great gifts

of Nature,—land and sea, light and sky and the common
air. We were hardly aware of the fact that Civilization

is literally a product of human labor and time; we had

not thought deeply upon the principle of its genesis nor

seriously sought to discover the laws of its growth; we
had not been schooled to reflect that we who were en-

joying it had neither produced it nor earned its goods;
we had not been educated to perceive that we have it

almost solely as a bounty from the time and toil of

by-gone generations; we had not been disciplined to feel

the mighty obligation which the great inheritance imposes
1 Part of this lecture is found in my Phi Beta Kappa address on The

Nature of Man (Science, Sept. 9, 1921) and some of it in an article by
me in The Pacific Review, Dec, 1921.

422
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upon us as at once the posterity of the dead and the

ancestry of the yet unborn. We had been born in the

midst of a great civilization, and, in accord with our

breeding, we lived in it and upon it like butterflies in a

garden of flowers, not to say as "maggots in a cheese."

Since then a change has come. The World War
awoke us. The awakening was rude but it was effectual.

Everywhere men and women arc now thinking as never

before, and they are thinking about realities for they

know that there is no other way to cope with the great

problems of a troubled world. They have learned, too,

that, of all the realities with which we humans have to

deal, the supreme reality is Man; and so the questions

that men and women are everywhere asking are questions

regarding Man, for they are questions of ethics, of social

institutions, of education, of economics, of philosophy, of

industrial methods, of politics and government. The

questions have led to some curious results,
—to doctrines

that alarm, to proposals that startle,
—and we are wont

to call them radical, revolutionary, red. Is it true that

our thinking has been too radical? How the question

would have made Plato smile—Plato who had seen his

venerated teacher condemned to death for radical criti-

cism. No, the trouble is that, in the proper sense of that

much abused term, our thought has not been radical

enough. Our questionings have been eager and wide-

ranging but our thought has been shallow. It has been

passionate and it has been daring but it has not been

deep. For, if it had been deep, we could not have failed,

as we have failed, to ask ourselves the fundamental

question: What is that in virtue of which human beings

are human? What is the distinctive place of our human

kind in the hierarchy of the world's life? What is Man?
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I have called the question "fundamental"—it is

fundamental—the importance of a right answer is sov-

ereign
—for it is obvious, once the fact is pointed out,

that the character of human historys the character of

human conduct, and the character of all our human insti-

tutions depend both upon what man is and in equal or

greater measure upon what we humans think man is.

Why, then, have we not asked the question? The
reason doubtless is that we have consciously or uncon-

sciously taken it for granted that we knew the answer.

For why enquire when we are sure we know?
But have we known? Is our assumption of knowledge

in this case just? Have we really known, do we know

now, what is in fact the idiosyncrasy of the human class

of life? Do we know critically what we, as representa-

tives of man, really are? Here it is essential to dis-

tinguish; we are speaking of knowledge; there is a kind

of knowledge that is instinctive,
—instinctive knowledge,—immediate inner knowledge by instinct,

—the kind of

knowledge we mean when we say that we know how to

move our arms or that a fish knows how to swim or that

a bird knows how to fly. I do not doubt that, in this

sense of knowing, we do know what human beings are ;

it is the kind of knowledge that a fish has of what fishes

are or that a bird has of what birds are. But there is

another kind of knowledge,—scientific knowledge,—
knowledge of objects by analyzing them,—objective

knowledge by concepts,
—

conceptual knowledge of ob-

jects; it is the kind of knowledge we mean when we say
that we know or do not know what a plant is or what a

number is. Now, we do not suppose fish to have this

sort of knowledge of fish; we do not suppose a bird can

have a just conception,
—

nor, properly speaking, any
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conception,
—of what a bird is. We are speaking of

concepts, and our question, you see, is this: Have we
humans a just Concept of Man? If we have, it is rea-

sonable to suppose that we inherited it, for so important
a thing, had it originated in our time, would have made
itself heard of as a grave discovery. So I say that, if

we have a just concept of man, it must have come down
to us entangled in the mesh of our inherited opinions

and must have been taken in, as such opinions are usually

taken in, from the common air, by a kind of "cerebral

suction."

If we discover that we have never had a just concept

of man, the fact should not greatly astonish us, for the

difficulty is unique; man, you see, is to be both the knower

and the object known; the difficulty is that of a knower

having to objectify itself and having then to form a just

concept of what the object is.

In saying that in the thought of our time the great

question has not been asked, I have now to make one

important exception and, so far as I know, only one.
2

I

refer to Count Alfred Korzybski, the Polish engineer.

In his momentous book ( The Manhood of Humanity :

The Science and Art of Human Engineering*) ,
he has

both propounded the question and submitted an answer

that is worthy of the serious attention of every serious

student, whatever his field of study. It is the aim of this

lecture to present the answer and to examine it by help

of the Theory of Logical Types, the Theory of Classes,
:
Since writing the foregoing I have ob-erved a learned discussion of

the question by Professor Wm. E. Ritter in an article, Science and Or-

ganized Civilization, in the Scientific Monthly, Aug., 1917. Professor

Ritter once more defines man as a kind of animal but the distinctive

marks of the kind, as given by him, are so grave as to make one

wonder why he did not altogether drop the "animal" element from the

definition.
'
E. P. Dutton & Company.
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and the author's closely allied notion of "Dimensions."

Let me say at the outset that one who would read

the book understanding^ must come to it prepared to

grapple with a central concept, a concept whose role

among the other ideas in the work is like that of the sun

in the solar system. It happens, therefore, that readers

of the book, or of any other book built about a central

concept, fall into three mutually exclusive classes:

(I) The class of those who miss the central concept—
(I have known a learned historian to miss it)

—not

through any fault of their own,—they are often indeed

well meaning and amiable people,
—but simply because

they are not qualified for conceptual thinking save that

of the commonest type.

(II) The class of those who seem to grasp the

central concept and then straightway show by their

manner of talk that they have not really grasped it but

have at most got hold of some of its words. Intellectu-

ally such readers are like the familiar type of undergrad-
uate who "flunks" his mathematical examinations but may
possibly "pull through" in a second attempt and so is

permitted, after further study, to try again.

(III) The class of those who firmly seize the central

concept and who by meditating upon it see more and

more clearly the tremendous reach of its implications. If

it were not for this class, there would be no science in the

world nor genuine philosophy. But the other two classes

are not aware of the fact for they are merely "verbalists."

In respect of such folk, the "Behaviorist" school of

psychology is right for in the psychology of classes (I)

and (II) there is no need for a chapter on "Thought
Processes"—it is sufficient to have one on "The Language
Habit."
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What is that central concept? What is Korzybski's

Concept of Man? I wish to present it as clearly as I

can. It is a concept defining man in terms of Time.

"Humanity," says the author, "is the time-binding class

of life." What do the words mean? What is meant by

time-binding or the binding of time? The meaning,
which is indeed momentous, will be clearer to us if we

prepare for it by a little preliminary reflection.

Long ages ago there appeared upon this planet
—no

matter how—the first specimens of our human kind.

What was their condition? It requires some meditation

and some exercise of imagination to realize keenly what

it must have been. Of knowledge, in the sense in which

we humans now use the term, they had none—no science,

no philosophy, no art, no religion; they did not know
what they were nor where they were ; they knew nothing

of the past, for they had no history, not even tradition;

they could not foretell the future, for they had no knowl-

edge of natural law; they had no capital,
—no material

or spiritual wealth,—no inheritance, that is, from the

time and toil of by-gone generations; they were without

tools, without precedents, without guiding maxims, with-

out speech, without any light of human experience; their

ignorance, as we understand the term, was almost abso-

lute. And yet, compared with the beasts, they were

miracles of genius, for they contrived to do the most

wonderful of all things that have happened on our globe—
they initiated, I mean, the creative movement which

their remote descendants call Civilization.

Why? What is the secret? Have you ever tried to

find it? The secret is that those rude animal-resembling,

animal-hunting, animal-hunted ancestors of ours were a

new kind of creature in the world—a new kind because
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endowed with a strange new gift
—a strange new capacity

or power—a strange new energy, let us call it. And it

is in the world today. What is it? We know it partly

by its effects and partly by its stirring within us for as

human beings, as representatives of Man, we all of us

have it in some measure. It is the energy that invents—
that produces instruments, ideas, institutions and doc-

trines; it is, moreover, the energy that, having invented,

criticizes, then invents again and better, thus advancing

in excellence from creation to creation endlessly. Be good

enough to reflect and to reflect again upon the significance

of those simple words: invents; having invented, criti-

cizes; invents again and better; thus advancing, by cre-

ative activity, from stage to stage of excellence without

end. Their sound is familiar; but what of their ultimate

sense? We ought indeed to pause here, withdraw to the

solitude of some cloister and there in the silence meditate

upon their meaning; for they do not describe the life of

beasts; they characterize Man.
We are speaking of a peculiar kind of energy

—the

energy that civilizes—that strange familiar energy that

makes possible and makes actual the great creative move-

ment which we call human Progress, of which we talk

much and think but little. Let us scrutinize it more

closely; let us, if we can, lay bare its characteristic rela-

tion to Time for its relation to Time is the relation of

Time to the distinctive life of Man.

Compare some representative of the animal world,

a bee, let us say, or a beaver, with a correspondingly

representative man. Consider their achievements and

the ways thereof. The beaver makes a dam; the man,
a bridge or some discovery,

—
analytical geometry, for

example, or the art of printing, or the Keplerian laws of
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planetary motion, or the atomic constitution of matter.

The two achievements,—that of the beaver and that of

the man,—are each of them a product of three factors:

time, toil, and raw material, where the last signifies, in

the case of purely scientific achievement, the data of

sense, in which science has its roots. Both achievements

endure, it may be for a short while only,
—as in the case

of the dam or the bridge,
—or one of them may endure

endlessly,
—as in that of a scientific discovery. What

happens in the next generation? The new beaver begins

where its predecessor began and ends where it ended—
it makes a dam but the dam is like the old one. Yet the

old dam is there for the new beaver to behold, to con-

template, and to improve upon. But the presence of the

old dam wakes in the beaver's "mind" no inventive im-

pulse, no creative stirring, and so there is no improve-

ment, no progress. Why not? The answer is obvious:

the beaver "mind" is such that its power to achieve is

not reinforced by the presence of past achievement. The
new beaver's time is indeed overlapped, in part or wholly,

by the time of its predecessor for the latter time is pres-

ent as an essential factor of the old dam, but that old-

time factor, though present, produces nothing
—it is as

dead capital, bearing no interest. Such is the relation

of the beaver "mind,"—of the animal mind,—to time.

Now, what of the new man? What does he do?

What he does depends, of course, upon his predecessor's

achievement; if this was a bridge, he makes a better

bridge or invents a ship; if it was the discovery of analyt-

ical geometry, he enlarges its scope or invents the cal-

culus; if it was the art of printing, he invents a printing

press; if it was the discovery of the laws of planetary

motion, he finds the law of gravitation; if it was the dis-
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covery of the atomic constitution of matter, he discovers

the electronic constitution of atoms. Such is the familiar

record—improvement of old things, invention of new

ones—Progress. Why? Again the answer is obvious:

the mind of man, unlike animal "mind," is such that its

power to achieve is reinforced by past achievement. As

in the case of the beaver, so in that of man, the successor's

time is overlapped by the predecessor's time for the latter

time continues its presence as an essential factor in the

old achievement, which endures; but,
—and this the point,—in man's case, unlike the beaver's, the old-time factor

is not merely present, it works; it is not as dead capital,

bearing no interest, and ultimately perishing
—it is living

capital bearing interest not only but interest perpetually

compounded at an ever-increasing rate. And the interest

is growing wealth,—material and spiritual wealth,—not

merely physical conveniences but instruments of power,

understanding, intelligence, knowledge and skill, beauti-

ful arts, science, philosophy, wisdom, freedom—in a

word, Civilization.

That great process,
—

involving some subtle alchemy
that we do not understand,—by which the /iw^-factor,

embodied in things accomplished, perpetually reinforces

more and more the achieving potency of the human mind,
— the process by which mysterious Time thus continually

and increasingly augments the civilizing energy of the

world,—the process by which the evolution of civilization

involves the storing up or involution of time,—it is that

mighty process which Korzybski happily designates by
the term, Time-binding. The term will recur frequently

in our discussion, and so I recommend that you dwell

upon its meaning as given until you have seized it firmly.

It is because time-binding power is not only peculiar to
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man but is, among man's distinctive marks, beyond all

comparison the most significant one—it is because of that

two-fold consideration that the author defines humanity
to be "the time-binding class of life."

Such, then, is Korzybski's answer to the most im-

portant of all questions: what is Man? Do not lose sight

of the fact that we have here a concept and that it defines

man in terms of a certain relation, subtle indeed but un-

doubtedly characteristic, that man has to time. By saying

that the relation is "characteristic" of man I mean that,

among known classes of life, man and only man has it.

Animals have it not or, if they have it, if they have time-

binding capacity, they have it in a degree so small that

it may be neglected as mathematicians neglect infini-

tesimals of higher order.

The answer in question is not one to which the world

has been or is now accustomed. If you apply for an

answer to the thought of the bygone centuries or to the

regnant philosophies of our own time, what answer will

you get? It will be one or the other of two kinds: it

will be a zoological answer—man is an animal a kind

or species of animal, the bete humaine; or it will be a

mythological answer—man is a mysterious compound or

union of animal (a natural thing) with something "super-

natural." Such are the rival conceptions now current

throughout the world. They have come to us as a part

of our philosophical inheritance. Some of us hold one

of them; some of us, the other; and no doubt many of

us hold both of them for, though they are mutually in-

compatible, the mere incompatibility of two ideas does

not necessarily prevent them from finding firm lodgment

in a same brain.

That Korzybski's concept of man is just and impor-
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tant,
—

entirely just and immeasurably important,
—I have

no reason to doubt after having meditated much upon it.

But the author does not content himself with presenting

that concept; he goes much further; he denies outright

the zoological conception and similarly denies the ages-

old rival, the mythological conception, denouncing both

of them as being at once false to fact and vicious in effect.

Why false? Wherein?
Let us deal first with the zoological or biological con-

ception. Natural phenomena are to be conceived and

defined in accord with facts revealed by observation and

analysis. The phenomena the author is concerned with

are the great life-classes of the world: plants, animals,

and humans. What, he asks, are the significant facts

about them, their patent cardinal relations, their dis-

tinctive marks, positive and negative? And his answer

runs as follows: Of plants the most significant positive

mark is their power to "bind" the basic energies of the

world—to take in, transform and appropriate the ener-

gies of sun, soil, water and air; but they lack autonomous

power to move about in space, and that lack is a highly

significant negative mark of plants. The j^hmts^are said

to constitute the "chemistry-binding" or basic-energy-

binding class of life; the name suggests only the positive

mark but it is essential to note that the definition of the

class is effected by the positive and the negative marks

conjoined. What of the animals? These, like the plants,

take in, transform and appropriate the basic energies of

sun, soil, water and air, taking them in large part as

already transformed by the plants; but this power of

animals to bind basic energies,
—the positive one of the

two defining marks of plants,
—is not a defining mark

of animals; the positive defining mark of animals is their
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autonomous power to move x about in space,
—to crawl or

run or fly or swim,—enabling them to abandon one place

and occupy another and so to harvest the natural fruits

of many localities; this positive mark, you observe, is a

relation of animals to space; but they have, we have seen,

a negative mark, a relation to time—animals lack capacity

for binding time. Because of the positive mark, animals

are said to constitute the "space-binding" class of life,

but it is to be carefully noted that the definition (as dis-

tinguished from the name) of the class is effected by
the positive mark conjoined with the negative one.

Finally, what of humans? We have already seen the

answer and the ground thereof—humanity is the time-

binding class of life. For the sake of clarity let us

summarize the conceptions, or definitions, as follows: a

plant is a living creature having the capacity to bind

basic energies and lacking the autonomous ability to

move in space; an animal is a living creature having the

autonomous ability to move about in space and lacking

the capacity for binding time; a man, or a human, is a

living creature having time-binding power.
It is to be noted that, as thus conceived, the great

life-classes of the world constitute a hierarchy arranged

according to a principle which Korzybski calls life-dimen-

sions or dimensionality, as follows:

The plants, or basic-energy-binders, belong to the

lowest level or type of life and constitute the life-dimen-

sion /.

The animals, or space-binders, belong to the next

higher level or type of life and constitute the life-dimen-

sion //.

"Do sessile animals really constitute an exception? It can lie shown,
I think, that such animals are space-binders in Korzybski's sense.
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Human beings, or time-binders, belong to a still

higher level or type of life and constitute the life-dimen-

sion ///.

Whether there be a yet higher class of life we do

not know and that is why in the conception of man no

negative mark is present.

Now, it is, of course, perfectly clear that, accord-

ing to the foregoing conceptions or definitions, the old

zoological conception of man as a species of animal is

false, as the author contends. But may we not say that

he is here merely playing with words? Is it not entirely

a matter of arbitrary definition? Has he not, merely
to please his fancy, quite willfully defined the term

"animal" in such a way as to exclude humans from the

class so defined? The answer is undoubtedly, No. Of

course, it goes without saying that we could, if we chose,

define the mere word "animal" or any other noun so as

to make it stand for the "class" of plants, elephants,

humans, jabberwocks and newspapers. But we do not so

choose. Why not? Because we desire our definitions

to be expedient, to be helpful, to serve the purpose of

rational thinking. We want them, in other words, to

correspond to facts. Let us, then, forget the word for

a little while and look at the facts. It is a fact that there

is a class of creatures having space-binding capacity but

not time-binding capacity; it is a fact that there is another

class of creatures having both kinds of capacity; it is a

fact that the difference between the two,—namely, the

capacity for binding time,
—is not only beyond all com-

parison the most significant of the marks peculiar to man,
but is indeed the most significant and precious thing in

the world; it is, therefore, a fact that not only the inter-

ests of sound ethics, but the interests of science, demand



KORZYBSKI'S CONCEPT OF MAN 433

that the two classes, thus distinct by an infinite difference

of kind of endowment, be not intermixed in thought and

discourse; it is a fact that use of the same term "animal"

to denote the members of both classes,
—men and beasts

alike,
—

constantly, subtly, powerfully tends to produce
both intellectual and moral obfuscation; it is, therefore,

a fact that the author's condemnation of the zoological

conception as false to fact is amply justified on the best

of grounds.
It is indeed true that humans have certain animal

organs, animal functions, and animal propensities, but to

say that, therefore, humans are animals is precisely the

same kind of logical blunder as we should commit if we
said that animals or humans are plants because they have

certain organs, functions and properties in common with

plants; and the blunder is of a kind that is fundamental—it is the kind which mathematicians call the confusion

of types or of classes and which Korzybski calls the

"mixing of dimensions." To say that humans are animals

because they have certain animal propensities is logically

on a par with saying that geometric solids are surfaces

because they have certain surface properties or with say-

ing that fractions are whole numbers because they have

certain properties that whole numbers have.

Why is it that people are shocked on encountering for

the first time a categorical denial of their belief that man
is a species of animal? Do they feel that their proper

dignity as human beings is thus assailed? Is it because

the animal basis of their space-binding ethics is being thus

attacked? Is it that a well-reasoned scientific conviction

is suddenly contradicted? I do not think the shock is

due to any of these things. It is, I believe, due simply

to the fact that an old unquestioned, uncrlticized creed
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of that great dullard,—Common Sense,—has been un-

expectedly challenged. For it is evident to common

sense,—it is obtrusively evident to sense-perception,
—

that humans have certain animal organs and animal ex-

perience
—

they are begotten and born, they feed and

grow, have legs and hair, and die, all just like animals;

on the other hand, their time-binding faculty is not thus

evident; it is not, I mean, a tangible organ; it is an in-

tangible function, subtle as spirit; and so common sense,

guided according to its wont by the uncriticized evidence

of sense, and thoughtlessly taking for major premise the

false proposition that whatever has animal organs and

propensities is an animal, concludes that our human kind

is a kind of animal. But in this matter, as in so many
others, the old dullard is wrong. The proper life of

animals is life-in-space; the distinctive life of humans is

life-in-time.

But why are mere concepts so important? Our lives,

we are told, are not controlled by concepts but by im-

pulses, instincts, desires, passions, appetites. The answer

is: Because concepts are never "mere" concepts but are,

in humans, vitally connected with impulses, instincts,

desires, passions, and appetites; concepts are the means

by which Reason does its work, leading to prosperity or

disaster according as the concepts be true or false.

I have said that the ancient and modern rival of the

zoological conception of man is the mythological concep-

tion according to which man is a mysterious compound
or hybrid of natural (animal) and supernatural. This

conception might well be treated today as it was treated

yesterday by Plato (in the Timaeus, for example). "We
must accept," said he, "the traditions of the men of old

time who affirm themselves to be the offspring of the
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gods—that is what they say
—and they must surely have

known their own ancestors. How can we doubt the word
of the children of the gods? Although they give oo

probable or certain proofs, still, as they declare that they

are speaking of what took place in their own family, we
must conform to custom and believe them." * But this

gentle irony,
—the way of the Greek philosopher,

—is not

the way of the Polish engineer. The latter is not indeed

without a blithesome sense of humor but in this matter

he is tremendously in earnest, and he bluntly affirms,

boldly and confidently, that the mythological conception

of man is both false and vicious. As to its validity or

invalidity, it involves, he says, the same kind of logical

blunder as the zoological conception
— it involves, that is,

a fatal confusion of types, or mixing of dimensions. To

say that man is a being so inscrutably constituted that he-

must be regarded as partly natural (partly animal) and

partly supernatural (partly divine) is logically like saying

that a geometrical solid is a thing so wonderful that it

must certainly be a surface miraculously touched by some

mysterious influence from outside the universe of space.

Among the life-classes of the world, our humankind is

the time-binding class; and Korzybski stresses again and

again the importance of recognizing that time-binding

energy and all the phenomena thereof are perfectly

natural—that Newton, for example, or Confucius, was

as thoroughly natural as an eagle or an oak.

What does he mean by "natural"? He lias not told

us,
—at all events, not explicitly,

—and that omission is

doubtless a defect which ought to be remedied in a future

edition of the book.

You are aware that the terms "nature" and "natural"

1

Jowett's translation.
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are currently employed in a large variety of senses—
most of them so vague as to be fit only for the use of

"literary" men, not for the serious use of scientific men.

What ought we to mean by the term "natural" in such

a discussion as we are now engaged in? The question

admits, I believe, of a brief answer that is fairly satis-

factory. Everyone knows that the things encountered

by a normal human in the course of his experience differ

widely in respect of vagueness and certitude; some of

them are facts so regular, so well ascertained, so indubit-

able that they guide in all the affairs of practical life;

they are known facts, we say, and to disregard them

would be to perish like unprotected idiots or imbeciles;

such facts are of two kinds: facts of sense-perception, or

of this and memory, and facts of pure thought; the

former are familiar in the moving pageant of the world
—

birth, growth, death, day, night, land, water, sky,

change of seasons, and so on; facts of pure thought are

not so obtrusively obvious but there are such facts; one

of them is—"If something S has the property P and

whatever has P has the property P\ then S has P'"

Now, all such facts are compatible—each of them fits

in, as we say, with all the others. I take it that what we

ought to mean by natural is, therefore, this: Nature (or

the natural) consists of all and only such things as are

compatible (consistent) with the best-ascertained facts

of sense and of thought.

If that be what Korzybski means by "natural,"—and

I think it very probably is,
—then I fully agree with him

that humans are thoroughly natural beings, that time-

binding energy is a natural kind of energy, and that his

strenuous objection to the mythological conception of

man is, like his objection to the zoological conception,
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well taken. If it were a question of biological data, mere
mathematicians would, of course, like other sensible folk,

defer to the opinion of biologists; it is not, however, a

question of biological data, these are not in dispute; it is

a question of the logical significance of such data; and

respecting a question of logic, even biologists,
—for they,

too, are sensible folk,
—will probably admit that engineers

and mere mathematicians are entitled to be heard.

In this connection I desire to say that, for straight

and significant thinking, the importance of avoiding what

Korzybski calls "mixing dimensions" can not be over-

stressed. The meaning of the term "dimensions" as he

uses it is unmistakable; he has not, however, elaborated

an abstract theory of the idea; such an elaboration would,

I believe, show that the idea is reducible or nearly reduc-

ible to that of the Theory of Logical Types, briefly dealt

with in a previous lecture and fully outlined in the Pr'in-

cipia Mathematica of Whitehead and Russell; it is,

moreover, very closely allied to, if it be not essentially

identical with, Professor J. S. Haldane's doctrine of

"categories" as set forth in his very stimulating and sug-

gestive book Mechanism, Life, and Personality (E. P.

Dutton and Co.) wherein the eminent physiologist main-

tains that mechanism, life, and personality belong to dif-

ferent categories constituting a genuine hierarchy such

that the higher is not reducible to the lower, that life,

for example, cannot be understood fully in terms of

mechanism, nor personality in terms of life. It is, you

observe, an order of ideas similar to that of Korzybski's

thesis that humans can be no more explained in terms of

animals than animals in terms of plants or plants in terms

of minerals. And it is an order of ideas that recommends

itself, to me at all events, because it is fortified by the
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analogous consideration that geometry cannot be reduced

to arithmetic, nor dynamics to geometry, nor physics to

dynamics, nor psychology to physics. It will, I believe,

be a great advantage to science and to philosophy to

recognize that there exists, whether we will or no, a

hierarchy of categories and to recognize that, to an

understanding of the higher categories, the lower ones,

though necessary, are not sufficient.

Is there not, indeed, a highly important sense in which

the phenomena of a higher category throw as much light

upon those of a lower as the latter throw upon the

former? Who can deny that, for example, dynamics
illuminates geometry quite as much as geometry illumi-

nates dynamics?
In Korzybski's indictment of the zoological and myth-

ological conceptions of man there are, we have seen, two

counts: he denies that the conceptions are true; and he de-

nounces them as vicious in their effects, contending that

they are mainly responsible for the dismal things of

human history and for what is woeful in the present plight

of the world. Of the former count I have already spoken;

respecting the latter one, my convictions are as follows;

( i
)

if humanity be not a thoroughly natural class of life,

the term "natural" having the sense above defined, it is

perfectly evident that there never has been and never can

be a system of human ethics having the understandability,

the authority, and the sanction of natural law, and this

means that, under the hypothesis, there never has been

and never can be an ethical system "compatible with the

best-ascertained facts of sense and of thought"; (2) if,

although our human kind be in fact a thoroughly natural

class, we continue to think that such is not the case, the

result will be much the same—our ethics will continue to
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carry the confusion and darkness due to the presence in

it of mythological elements; (3) on the other hand, so

long as we continue to regard man as a species of animal,

the social life of the world in all its aspects will continue

to reflect the tragic misconception, and our ethics will

remain,—what it always has been in large measure,—an

animal ethics, space-binding ethics, an ethics of might,
of brutal competition, of violence, combat, and war.

Why so much stress upon ethics? Because ethics is

not a thing apart; it is not an interest that is merely co-

ordinate with other interests; it penetrates them all.

Ethics is a kind of social ether which, whether it be good
or bad, sound or unsound, true or false, pervades life,

private and public, in all its dimensions and forms; and

so, if ethics be vitiated by fundamentally false concep-

tions of human nature, the virus is not localized but

spreads throughout the body politic, affecting the charac-

ter of all activities and institutions,
—education, science,

art, philosophy, economics, industrial method, politics,

government,—the whole conduct and life of a tribe or

a state or a nation or a world. I hardly need remind

you that only yesterday the most precious institutions of

civilization were in great danger of destruction by a

powerful state impelled, guided and controlled by ani-

malistic ethics, the space-binding ethics of beasts. This

is indeed an unforgettable illustration of the mighty fact,

before pointed out, that the character of human history,

human conduct and human institutions depends, not

merely upon what man distinctively is, but also in large

measure, even decisively, upon what we humans think

man is. If a man or a state habitually regards humanity

as a species of animal, then that man or state may be
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expected to act betimes like a beast and to seek justifica-

tion in a zoological philosophy of human nature.

In view of such considerations it is a great pleasure

to turn to Korzybski's concept of man, for it is not only

a noble conception, as none can fail to perceive, but it is

also, as we have seen, undoubtedly just. Nothing can

be more important. What are its implications? And
what are its bearings? You cannot take them in at a

glance—meditation is essential; but, if you will medi-

tate upon the concept, you will find that the body of its

implications looms larger and larger and that the range
of its bearings grows ever clearer and wider. Indeed

we may say of it what Carlyle said of Wilhelm Meister:

"It significantly tends towards infinity in all directions."

Let us reflect upon it a little. We shall see that human

history, the philosophy thereof, the present status of the

world, the future welfare of mankind, are all of them

involved.

The central concept or thesis is that our human kind

is the time-binding class of life; it is, in other words, that

there is in our world a peculiar kind of energy, time-

binding energy, and that man is its organ
—its sole instru-

ment or agency. What are its implicates and bearings?

One of them we have already noted. It is that,

though we humans are not a species of animal, we are

natural beings : it is as natural for humans to bind time

as it is natural for fishes to swim, for birds to fly, for

plants to live after the manner of plants. It is as natural

for man to make things achieved the means to greater
achievements as it is natural for animals not to do so.

That fact is fundamental. Another one, also funda-

mental, is this : time-binding faculty,
—the characteristic

of humanity,
—is not an effect of civilization but is its
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cause; it is not civilized energy, it is the energy that

civilizes; it is not a product of wealth, whether material

or spiritual wealth, but is the creator of wealth, both

material and spiritual.

I come now to a most grave consideration. Inasmuch
as time-binding capacity is the characterizing mark,—
the idiosyncrasy,

—of our human kind, it follows that

to study and understand man is to study and understand

the nature of man's time-binding energies; the laws of

human nature are the laws,—natural laws,—of these

energies; to study time-binding phenomena,—the phe-
nomena of civilization,

—and to discover their laws and

teach them to the world, is the supreme obligation of sci-

entific men, for it is evident that upon the natural laws

of time-binding must be based the future science and art

of human life and human welfare.

One of the laws we know now,—not indeed precisely,—but fairly well,—we know roughly, I mean, its general

type,
—and it merits our best attention. It is the natural

law of progress in time-binding
—in civilization-building.

We have observed that each generation of (say) beavers

or bees begins where the preceding one began and ends

where it ended; that is a law for animals, for mere

space-binders
—there is no advancement, no time-binding—a beaver dam is a beaver dam—a honey comb a honey

comb. We know that, in sharp contrast therewith, man

invents, discovers, creates; we know that inventions lead

to new inventions, discoveries to new discoveries, crea-

tions to new creations; we know that, by such progressive

breeding, the children of knowledge and art and wisdom

not only produce their kind in larger and larger families

but engender new and higher kinds endlessly; we know

that this time-binding process, by which past time em-
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bodied as cofactor of toil in enduring achievements thus

survives the dead and works as living capital for aug-

mentation and transmission to posterity, is the secret and

process of progressive civilization-building. The ques-

tion is: What is the Law thereof—the natural law?

What its general type is you apprehend at once
;

it is like

that of a rapidly increasing geometric progression
—if P

be the progress made in a given generation, conveniently

called the "first," and if R denote the ratio of improve-

ment, then the progress made in the second generation is

PR, that in the third is PR 2

,
and that made in the single

Tth generation will be PR 1
'

\ Observe that R is a large

number,—how large we do not know,—and that the

time T enters as an exponent—and so the expression

PR 7 ' 1
is called an exponential function of Time, and it

makes evident, even to the physical eye, the involution of

time in the life of man. This is an amazing function, as

every student of the Calculus knows; as T increases,

which it is always doing, the function not only increases

but it does so at a rate which itself increases according

to a similar law, and the rate of increase of the rate of

increase again increases in like manner, and so on end-

lessly, thus sweeping on towards infinity in a way that

baffles all imagination and all descriptive speech. Yet

such is approximately the law,—the natural law,—for

the advancement of Civilization, immortal offspring of

the spiritual marriage of Time and human Toil. I have

said "approximately," for it does not represent adequately
the natural law for the progress of civilization; it does

not, however, err by excess, it errs by defect; for, upon
a little observation and reflection, it is evident that R,
the ratio of improvement, is not a constant, as above con-

templated, but it is a variable that grows larger and larger

as time increases, so that the function PR T ~ X
increases
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not only because the exponent increases with the flux of

time, but because R itself is an increasing function of

time. It will be convenient, however, and we shall not

be thus erring on the side of excess, to speak of the above-

mentioned law, though it is inadequate, as the natural

law for the progress of time-binding, or of civilization-

making.

Hereupon, there supervenes a most important ques-

tion: Has civilization always advanced in accord with

the mentioned law? And, if not, why not? The time-

binding energies of mankind have been in operation long—300,000 to 500,000 years, according to the estimates

of those most competent to guess
—

anthropologists and

paleontologists. Had progress conformed to the stated

law throughout that vast period, our world would doubt-

less now own a civilization so rich and great that we

cannot imagine it today nor conceive it nor even con-

jecture it in dreams. What has been the trouble? What
have been the hindering causes? Here, as you see, Kor-

zybski's concept of man must lead to a new interpretation

of history
—to a new philosophy of history. A funda-

mental principle of the new interpretation must be the

fact which I have already twice stated,—namely, that

what man has done and does has depended and depends

both upon what man distinctively is and also, in very

great measure, upon what the members of the race have

thought and think man is. We have here two determin-

ing factors—what man is and what we humans think man

is. It is their joint product which the sociologist or the

philosophic historian must examine and explain. In view

of the second factor, which has hardly ever been noticed

and has never been given its due weight, Kor/.ybski, in

answer to our question, maintains that the chief causes

which have kept civilization from advancing in accord
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with its natural law of increase are man's misconceptions

of man. All that is precious in present civilization has

been achieved, in spite of them, by the first factor—by
what man is—the peculiar organ of the civilizing energies

of the world. It is the second factor that has given

trouble. Throughout the long period of our race's child-

hood, from which we have not yet emerged, the time-

binding energies have been hampered by the false belief

that man is a species of animal and hampered by the

false belief that man is a miraculous mixture of natural

and supernatural. These are cave-man conceptions. The

glorious achievements of which they have deprived the

world we cannot now know and may never know, but the

subtle ramifications of their positive evils can be tracec

in a thousand ways. And it is not only the duty of pro-

fessional historians to trace them, it is your duty and

mine. Whoever performs the duty will be appalled, for

he will discover that those evils—the evils of "magic and

myth," of space-binding "ethics," of zoological "right-

eousness"—for centuries growing in volume and momen-
tum—did but. leap to a culmination in the World War,
which is thus to be viewed as only a bloody demonstra-

tion of human ignorance of human nature.

We are here engaged in considering some of the

major implicates and bearings of the new concept of man.

The task demands a large volume dealing with the rela-

tions of time-binding to each of the cardinal concerns of

individual and social life—ethics, education, economics,

medicine, law, political science, government, industry,

science, art, philosophy, religion. Perhaps you will write

such a work or works. In the closing words of this lec-

ture I can do no more than add to what I have said a

few general questions and hints.
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Korzybski believes that the great war marks the end
of the long period of humanity's childhood and the be-

ginning of humanity's manhood. This second period, he

believes, is to be initiated, guided, and characterized by
a right understanding of the distinctive nature of Man.
Is he over-enthusiastic? I do not know. Time will tell.

I hope he is not mistaken. If he is not, there will be

many changes and many transfigurations.

I have spoken of ethics and must do so again, for

ethics, good or bad, is the most powerful of influences,

pervading, fashioning, coloring, controlling all the moods
and ways and institutions of our human world. What
is to be the ethics of humanity's manhood? It will not

be an ethics based upon the zoological conception of man;
it will not, that is, be animalistic ethics, space-binding

ethics, the ethics of beasts fighting for "a place in the

sun," the ethics of might, crowding, and combat; it will

not be a "capitalistic" ethics lusting to keep for self, nor

"proletarian" ethics lusting to get for self; it will not be

an ethics having for its golden rule the law of brutes—
survival of the fittest in the sense of the strongest.

Neither will it be an ethics based upon a mythological

conception of man; it will not, that is, be a lawless ethics

cunningly contrived for traffic in magic and myth. It will

be a natural ethics because based upon the distinctive

nature of mankind as the time-binding,
—

civilization-pro-

ducing,
—class of life; it will be, that is, a scientific ethics

having the understandability, the authority, and the sanc-

tion of natural law, for it will be the embodiment, the

living expression, of the laws,—natural laws,—of the

time-binding energies of man; human freedom will be

freedom to live in accord with those laws and righteous-

ness will be the quality of a life that does not contravene
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them. The ethics of humanity's manhood will thus be

natural ethics, an ethics compatible with the best-ascer-

tained facts of sense and of thought
—it will be time-

binding ethics—and it will grow in solidarity, clarity, and

sway in proportion as science discovers the laws of time-

binding,
—the laws, that is, of civilization-growth,

—and

teaches them to the world.

And so I am brought to say a word respecting educa-

tion. In humanity's manhood, education,—in home, in

school, in church,—will have for its supreme obligation,

and will keep the obligation, to teach the young the dis-

tinctive nature of man and what they, as members and

representatives of the race of man, essentially are, so

that everywhere throughout the world men and women
will habitually understand, because bred to understand,

what time-binding is, that their proper dignity as humans

is the dignity of time-binding life, and that for humans

to practice space-binding ethics is a monstrous thing, in-

volving the loss of their human birthright by descent to

the level of beasts.
1

It is often said that ethics is a thing

which it is impossible to leach. Just the opposite is true

—it is impossible not to teach ethics, for the teaching of

it is subtly carried on in all our teaching, whether con-

sciously or not, being essentially involved in the teacher's

"philosophy of human nature." Every home or school

in which that philosophy is zoological is, consciously or

unconsciously, a nursery of animalistic ethics; every home
or school in which there prevails a mythological phi-

losophy of human nature is, consciously or unconsciously,

a nursery of a lawless ethics of myth and magic. From
1
In a recent bulletin of the Cora L. Williams Institute for Creative

Education, Miss Williams has said, with fine insight, that "time-binding
should be made the basis of all instruction and The Manhood of Hu-
manity a textbook in every college throughout the world."
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time immemorial, such teaching of ethics, for the most

part unconscious, the whole world has had. And we have

seen that when such teaching becomes conscious, delib-

erate, and organized, a whole people can be so imbued

with both the space-binding animal ethics of might and

the mythical ethics of Gott mit uns that their State will

leap upon its neighbors like an infuriated beast. Why
should we not learn the lesson which the great war has

so painfully taught regarding the truly gigantic power of

education? If the accumulated civilization of many
centuries can be imperiled by ethical teaching based upon
a false philosophy of human nature, who can set a limit

to the good that may be expected from the conscious,

deliberate, organized, unremitting joint effort of home

and school and press to teach an ethics based upon the

true conception of man as the agent and organ of the

time-binding, civilizing energy of the world? I cannot

here pursue the matter further; but in closing I should like

to ask a few general questions
—

pretty obvious questions—
indicating roughly the course which, I believe, further

enquiry should take.

What are the bearings of the new concept of man

upon the social so-called sciences of economics, politics,

and government?
Can the new concept transform those ages-old pseudo-

sciences into genuine sciences qualified to guide and guard
human welfare because based upon scientific understand-

ing of human nature?

In view of the radical difference between the distinct-

ive nature of animals and the distinctive nature of man,

what are likely to be the principal differences between

Government of Space-binders, by Space-binders, for

Space-binders
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and

Government of Time-binders, by Time-binders, for

Time-binders?

Which of the two kinds of government best befits the

social regime of autocrats, or plutocrats, and slaves?

And which best befits the dream of political equality and

democratic freedom?

Which of them most favors the prosperity of "Ac-

quisitive Cunning" ? And which the prosperity of Pro-

ductive Skill?

Which of them is the most friendly to the makers of

wealth? And which of them to the takers thereof?

Which of them most favors "boss" repression of

others? And which makes the best provision for intel-

ligent self-expression?

Which of them depends most upon might and war?

And which upon right and peace?
Which of them is government by "politics," by poli-

ticians? And which of them by science, by honest men
who know?

If man's time-binding energy, which has produced all

the wealth of the world, both material and spiritual

wealth, be natural energy, and if, as is the case, the

wealth existing at a given moment be almost wholly a

product of the time and toil of the by-gone generations,

to whom does it of right belong? To some of the living?

To all of the living? Or to all of the living and the yet

unborn? Is the world's heritage of wealth, since it is a

natural product of a natural energy and of time (which
is natural), therefore a "natural resource" like sunshine,

for example, or a newfound lake or land? If not, why
not? What is the difference in principle?

Are the "right of conquest" and the "right of squatter
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sovereignty" time-binding rights? Or are they space-

binding "rights" having their sanction in animalistic

"ethics," in a zoological philosophy of human nature?

What are the bearings of the new concept of man

upon the theory and practice of medicine? Man, though
not an animal, has animal organs and animal functions.

Are all the diseases of human beings animal diseases or

are some of them human diseases, disorders, that is, af-

fecting humans in their distinctive character as time-

binders? Can Psycho-analysis or Psychiatry throw any

light upon the question?

And what of the power that makes for righteousness?

Religion, it would seem, has the seat of its authority in

that time-binding double relationship in virtue of which

the living are at once posterity of the dead and ancestry

of the unborn,—in the former capacity inheriting as

living capital the wealth of civilization from the time and

toil of by-gone generations,
—in the latter capacity hold-

ing the inheritance in trust for enlargement and trans-

mission to future man.

A final reflection: under the doctrine outlined there

lies an assumption—it is that, when men and women are

everywhere bred to understand the distinctive nature of

our human kind, the time-binding energies of man will be

freed from their old bondage and civilization will

advance, in accord with its natural law, in a warless

world, swiftly and endlessly. If the assumption be not

true, great Nature is at fault and the world will continue

to flounder. Of its truth, there can be only one test—
experimentation, trial. The assumption appears to be

the only scientific basis of hope for the world. Must

not all right-thinking men and women desire ardently

that this noble assumption be tried?



LECTURE XXI

Science and Engineering

CHANGE OF EMPHASIS FROM NON-HUMAN TO HUMAN
ENERGIES SCIENCE AS ENGINEERING IN PREPARA-

TION ENGINEERING AS SCIENCE IN ACTION

MATHEMATICS THE GUIDE OF THE ENGINEER EN-

GINEERING THE GUIDE OF HUMANITY HUMANITY
THE CIVILIZING OR TIME-BINDING CLASS OF LIFE—'

THE FOUR DEFINING MARKS OF THE GREAT ENGI'

NEER OF THE FUTURE ENGINEERING STATESMAN-

SHIP.

I AM not a professional engineer. What, then, is my
apology for daring to speak of engineering? It is not,

I fear, a quite convincing one. For it is the apology of

a layman who can only plead that for more than twenty-

five years he has taught mathematics to engineering stu-

dents; that during these years he has associated a good
deal both with practicing engineers and with professors
of engineering science and art; that, like all who think

of the matter, he has been deeply impressed in beholding
and contemplating engineering achievements, from the

great pyramids and aqueducts and roads of what we call

antiquity down to the rapidly multiplying marvels wrought
on every hand by the engineering prowess of our own day;
that he has examined some of the writings of engineers,

ancient, mediaeval, and modern—the work of Frontinus,

452
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the engineering speculations of Leonardo da Vinci, es-

pecially the famous books recently produced by "wizard"

apostles of "efficiency"; and that he has been thus led

to reflect a good deal upon the opportunities, the func-

tions and the obligations of engineering, rightly conceived,
in the great affairs of our human world. There is, more-

over, the general consideration that a layman, viewing
a profession from the outside, seeking thus to ascertain

its proper relations to the common weal, may bring to the

task a certain freedom, which, were he a member of the

profession, he might have lost. "Men trained in a pro-

fession," said Professor David Swing, "come by degrees

into the profession's channel, and flow only in one direc-

tion, and always between the same banks. The master

of a learned profession at last becomes its slave. He who

follows faithfully any calling wears at last a soul of

that calling's shape. You remember the death scene of

the poor old schoolmaster. He had assembled the boys

and girls in the winter mornings and had dismissed them

winter evenings after sundown, and h^d done this for

fifty long years. One winter morning he did not appear.

Death had struck his old and feeble pulse; but, dying,

his mind followed its beautiful but narrow river-bed, and

his last words were: 'It is growing dark—the school is

dismissed—let the girls pass out first.'
"

Finally, it is not

my intention to deal with the technique of engineering nor

with that of any branch thereof, but rather with its gen-

eral aspects, with what is essentially common to its

branches, with the science viewed as a whole. I shall

not be so much concerned with the present status of the

science as with its potence and promise. Of individual

engineers the ideals may be high or low, worthy or un-
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worthy; but of engineering itself the ideal is great and

mighty. It is of that ideal that I intend to speak.

What is engineering? It is evident that the term

stands, or ought to stand, for a great conception. What
is that conception? Many attempts have been made to

define it. Most of them throw more light upon the char-

acter and outlook of those who have made them than

upon the nature of engineering itself.

To say that an engineer is one who "knows what to

do, when to do it and how to do it" may be true,
—the

formula is very neat,
—but it can hardly be said to be

quite definitive, seeing that it applies equally well to the

wisdom of a wise philanthropist and to the cunning of

a cunning thief.

To define engineering in terms of aim is no doubt

feasible; but to say that the aim is "maximum produc-

tion with minimum outlay of time, effort and resources"

sounds like the "efficiency" cry of brute industrialism,

appears to regard quantity as the summum bonum, seems

to ignore the spiritual autonomy of men and women, and

to idealize a "system" in which "laborers" are reduced

to the level of machines.

To say that the aim of engineering is the "mastering
of natural forces and materials for the benefit of man-

kind" is far better in one respect because it is humane—
it represents engineering, I mean, as having for its aim

"the benefit of mankind." But what do its sponsors mean

by "natural forces"? Do they intend the term to cover

the personalities of individual men and women, their

perfectly natural civilizing impulses and aspirations? Do

they include among "natural forces" the spiritual energies

of our human kind—those time-binding powers in virtue

of which human beings are human? If they do not, why
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not? And if they do, what do they mean by "the master-

ing of natural forces" ? The questions are important and
sometime the philosophers of engineering must answer

them.

The most famous conception of engineering and, in

the judgment of many, the best one to be found in the

literature is almost a century old. It is due, I believe,

to the English engineer, Thomas Tredgold (i 788-1 829)
and is found in the charter of the Institution of Civil

Engineers (London, 1828). Engineering is there called

an art—"the art of directing the great sources of power
in nature for the use and convenience of man, as the

means of production and of traffic in states, both for

external and internal trade, as applied in the construction

of roads, bridges, harbours, moles, breakwaters, and

lighthouses, and in the art of navigation by artificial

power for the purposes of commerce, and in the drainage
of cities and towns." The gist of the matter is in the first

eighteen words: the art of directing the great sources of

power in nature for the use and convenience of man. For

our purpose it will be well worth while to reflect upon
them a little. Though found in a charter for civil as

distinguished from military engineering, they apply no

better to what we today call civil engineering than to any

other of the numerous varieties into which, since the

words were written, engineering has branched; moreover,

they apply no better to a branch of engineering than to

Engineering itself, regarded as one great Enterprise, and

that is why it will repay us to reflect upon them.

In view of their date (1828) it is not strange that

they represent engineering as an "art" instead of a science,

as we call it today, or a science and art, as, I think, we

ought to call it. But that is a trivial matter.
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What is not trivial,
—what is indeed of the gravest

importance,
—are the major emphases in the conception.

These are two: one of them is upon the ultimate aim,

purpose, or end of engineering; the other is upon means

thereto.

What is the former? .What is engineering for? Is

it for "the use and convenience" of engineers? Or for

that of a "shop"? Or that of a manufacturing estab-

lishment? Or that of an industry? Or that of a group
of "capitalists"? Or that of a class of "laborers"? No;
it is for no such restricted good; it is infinitely higher

and nobler and more embracing—engineering is for "the

use and convenience of man'''; and "man" does not mean

this group or that; it means all the people of the world,

not only those now living but an unending succession of

generations to come. The appeal is thus to an imagina-

tion great enough to grasp and represent the race. We
are wont to say that in things human there can be no

perfection. I believe we may say, however, that the ulti-

mate aim, purpose, or end of engineering as presented in

that century-old conception of it is a perfect ideal and

can never be improved.
But of the other major emphasis in the famous state-

ment the same cannot be said—far from it. For note its

incidence. Where does the emphasis fall? It falls upon

"directing the sources of power in nature," and the an-

swer is important as indicating the psychology, the at-

titude and temper, the social philosophy, of an age—an

age that still lingers, but is being outgrown and is destined

to pass. For what is there meant by "nature"? It is

evident that what is meant is physical nature, the external

universe, the wow-human part of the world, and it is evi-

dent that the term "power" refers to the blind forces of
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that "nature"—to wind and wave and tide and gravity
and heat and so on. Such things, we say, are non-human,—man has great interest in them but they have no interest

in man,—and when they are made, as they can be made,
to serve human welfare, what is it that makes them serve?

Everyone knows the answer: what makes them serve is

human thought,
—it is human intelligence and purpose

and will,
—it is the power that invents,

—the power that

observes and remembers and imagines and conceives and

reasons and creates,
—it is, in a word, what we may for

convenience call the spiritual energies of our human kind.

These energies are just as natural as Tredgold's "power."
The reflection is no doubt just but it is very obvious.

Why, then, insist upon it so? Because, as you must see,

it fundamentally alters the traditional point of view. We
are seeking a just and worthy conception of the science

and art of Engineering, and the reflection in question

radically shifts the incidence of the major emphasis. It

shifts it from the non-human to the human. For it is

clear that what requires "directing"
—what requires to

be engineered—is primarily, not the blind forces of ex-

ternal nature, but those other natural forces—the spirit-

ual energies of Man. It is perfectly evident that the

ultimate aim and ideal of engineering,
—the welfare of

our human kind,—not only demands the conquest of

physical nature, not only demands subjugation of the non-

human forces of the world, but also demands, as even

more essential, world-wide enlightenment of human

beings, world-wide coordination of human effort, world-

wide establishment of Justice; and it is perfectly evident

that the sole means to these great ends is the understand-

ing and "directing,"
—the "engineering," if you please,

—of what we have called the spiritual energies of man.
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These are the energies with which we dealt in the

preceding lecture; they are the energies which, in Korzyb-
ski's fine phrase, constitute humanity the "time-binding"
class of life; they are the human energies in virtue of

which the distinctive life of man is life-in-time; they are

the energies that make man the creator of Civilization;

man is their sole agency, their sole instrument, their sole

organ; characteristic of humankind, they are present in

some measure wherever human beings are found. Upon
the effectiveness of these energies depends the creation

of material and spiritual wealth—the advancement of

civilization—the well-being of man. To be effective,

however, they must be understood, they must be organ-

ized, they must be coordinated, they must be brought into

world-wide cooperation
—in one word, they require to be

engineered. And so I propose to define Engineering to

be

The science and art of directing the time-binding

energies of mankind,—the civilizing energies of the

world,—to the advancement of the welfare of man. 1

That conception does not represent engineering as jt

has been practiced in the past nor as it is practiced today.

It represents an Ideal which engineering will approxi-

mate more and more just in proportion as it becomes more

and more humanized and enlightened. The ideal is an

inspiring one; but it ought not to flatter the vanity of

1 My friend, Mr. Robert B. Wolf, has pointed out to me that the

preamble of the Constitution (1920) of The Federated American Engi-

neering Societies says: "Engineering is the science of controlling the

forces and of utilizing the materials of nature for the benefit of man,
and the art of organizing and of directing human activities in connection

therewith." I hope the reader will compare that conception critically
with the one which I have submitted. The preamble dedicates the

federation "to the service of the community, state, and nation." Why not

to the service of the World?
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professional engineers; it ought rather to give them a

feeling of humility. For consider its spirit and its scope.

Its spirit is not a self-serving spirit nor a class-serving

spirit nor any provincial spirit; it is a world-serving

spirit
—the spirit of devotion to the well-being of all

mankind including posterity.

And what is its scope? Is it confined to the kinds

of work done today by professional engineers in the name

of engineering? It is by no means thus confined; its

scope is immeasurably greater; for, over and above such

work, which no one could wish to belittle, it embraces

whatever may be intelligent, humane, and magnanimous
in the promotion of science, in the work of educational

leadership, in the conduct of industrial life, in the estab-

lishment and administration of justice
—in all the affaire

of a statesmanship big enough to embrace the world.

I am facing the future, and I say "in all the affair*

of statesmanship" because I do not doubt that the affairs

of state,
—which are the affairs of man,—will at length

be rescued from the hands of "politicians" and be com-

mitted to a statesmanship which will be an engineering

statesmanship because it will guide itself and the affairs

of state in scientific light by scientific means.

Engineering statesmanship will know enough to know

that scientific knowledge cannot be applied to the conduct

of human affairs if such knowledge does not exist; it will

have sense enough to know also that knowledge which

does not exist cannot be suddenly called into existence at

the moments when it is needed. Engineering statesman-

ship will, therefore, be sagacious enough to make ample

provision in advance for scientific research; not only for

technological research, but,
—

primarily and especially,
—

for that kind of research which does not consciously aim
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at utility or applications. What kind is that? It is the

kind whose "only purpose," in the clear words of Presi-

dent Nichols,
1

"is the discovery of new knowledge with-

out thought of any material benefit to anybody" ; it is the

kind which Simon Newcomb 2 had in mind when he said

that, "The true man of science has no such expression in

his vocabulary as 'useful knowledge' "; it is the kind of

which Henri Poincare said that, if there can be "no

science for science's sake," there can be "no science";
3

it is, in a word, the kind of research which springs out

of pure scientific curiosity,
—out of wonder, as Aristotle

said,
—and which, just because it is thus disinterested,

just because it seeks the True, is the principal source of

the Useful also.

The subject of such research will be Nature,—non-

human nature and human nature,—the nature of the non-

human world and the nature of man,—for we can know

nothing else. Engineering statesmanship will have sense

enough to know that its work cannot be done without

scientific knowledge of both kinds of nature; it will,

therefore, provide every means for promoting the ad-

vancement of the physical sciences and of those biological

sciences that deal with the non-human world; and it will

especially provide every means for promoting those re-

searches which have for their aim the understanding of

Man. I have said "especially" because engineering states-

manship will have sense enough to know that, of all the

things it must deal with, man is the supreme reality, and

that, therefore, the understanding of man,—scientific

1 The Inaugural Address of the President of the Massachusetts Insti-

tute of Technology, Science, June io, 1921.
2

Congress of Arts and Sciences, vol. I, p. 137.
* Poincare: Science and Method (translation by Francis Maitland),

p. 1 6,
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knowledge of human nature,—is absolutely essential to

its enterprise.

And here we must say a word respecting the relation

of engineering, as it is here conceived, to Education. The
science and art of human engineering,

—the science and

art of engineering statesmanship,
—is based upon a most

important assumption. The assumption is that when
and only when men and women are everywhere bred in

the knowledge and the feeling of what man distinctively

and naturally is, it will be possible so to organize, to co-

ordinate, and to direct the time-binding powers of man-

kind,—the civilizing energies of the world,—that Civi-

lization will advance in accord with its natural law, which

is that of a swiftly increasing exponential function of

Time. And so engineering statesmanship will not only

provide, as said, for the scientific study of man, but it will

provide a system of education whereby the children of

man will be taught the results of such study,
—an educa-

tion which will have for its supreme obligation to teach

boys and girls and men and women what, as representa-

tives of man, they really and naturally are,—not a higher

species of animal, nor a lower species of angel,
—but

humans, whose proper life is time-binding life, civilizing

life, life-in-Time.

In view of such considerations it is easy to see what

the defining marks of a great engineer are destined to

be. They will not be the marks of mere "efficiency" nor

of mere technological knowledge nor of technological

skill—they will not be mere engineering technique of any

kind, whether "civil" or "mechanical" or "marine" or

"architectural" or "sanitary" or "chemical" or ''elec-

trical" or "industrial"; these things will be important, as

they are now, they will indeed be indispensable, but they



462 MATHEMATICAL PHILOSOPHY

will not constitute, and they will not define, the great

engineer. The characteristic marks of the great engineer

will be four: Magnanimity—Scientific Intelligence
—Hu-

manity
—Action.

He will be religious and he will be patriotic: "to do

good" will be his religion, and his love of country will

embrace the world. For he will be the scientific organizer
and director of the civilizing energies or the World in

the interest of all mankind. 1

1 Readers interested in what may be called the Humanization of en-

gineering will find it profitable to examine the folowing works:
F. W. Taylor: The Principles of Scientific Management (Harper and

Brothers, 1916).
H. L. Gantt: Work, Wages, and Profits (The Engineering Magazine

Company, 1916).
W. N. Polakov and others: The Life and Work of Henry L. Gantt

(The American Society of Mechanical Engineers, 1920).
Dr. Walter N. Polakov: Mastering Power Production (The Engineer-

ing Magazine Company).
Robert B. Wolf: "Individuality in Industry" (Bulletin of the Society

to Promote the Science of Management, 1915) ;
Non-Financial Incentives

(American Society of Mechanical Engineers, 1918) ; "Securing the Initia-

tive of the Workman" (American Economic Review Supplement, 1919) ;

and Modern Industry and the Individual (A. W. Shaw Company, 1920).

Especially Messrs. Polakov and Wolf deserve the highest commenda-
tion and the thanks of all men and women for their insistence upon
bringing the theory and practice of engineering under the control of

humane considerations, upon basing engineering on the time-binding
principles characteristic of humans instead of the space-binding principles
characteristic of animals, and upon thus making engineering the chief

of civilizing agencies, devoted to the promotion of Freedom and Justice

throughout the World. These men have the vision to see that the time
is coming when to call one a "mere space-binder" will be to call him
a brute but to call one a time-binder will be to call him a man, a human.
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