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PREFACE TO THE FIRST EDITION

(1912).

THE aim of the following pages is fully stated in the

Introductory Chapter. Here I need only mention
that some of the reflections in this book are taken
from articles of mine in the Monist of 1908 and in

Nature of 1909. To the Editors of these periodicals
I wish to express my thanks for allowing me again to

say some things which their kindness allowed me to

say before. I must also thank those of my friends

who have kindly read and helpfully criticised parts
of this book.
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PREFACE TO THE REVISED EDITION

(1919).

THIS edition has been very thoroughly revised and
some additions have been made. A few of the

corrections were kindly pointed out by Messrs. G.
Ashworth and J. W. Thomas.
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THE
NATURE OF MATHEMATICS.

INTRODUCTION.

AN eminent mathematician once remarked that
he was never satisfied with his knowledge of a

mathematical theory until he could explain it to

the next man he met in the street. That is hardly

exaggerated ; however, we must remember that a

satisfactory explanation entails duties on both sides.

Any one of us has the right to ask of a mathematician,
" What is the use of mathematics ?

"
Any one

may, I think and will try to show, rightly suppose
that a satisfactory answer, if such an answer is anyhow
possible, can be given in quite simple terms. Even
men of a most abstract science, such as mathematics
or philosophy, are chiefly adapted for the ends of

ordinary life
; when they think, they think, at the

bottom, like other men. They are often more highly
trained, and have a technical facility for thinking
that comes partly from practice and partly from the

use of the contrivances for correct and rapid thought
given by the signs and rules for dealing with them
that mathematics and modern logic provide. But
there is no real reason why, with patience, an

ordinary person should not understand, speaking
broadly, what mathematicians do, why they do it, and

what, so far as we know at present, mathematics is.
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Patience, then, is what may rightly be demanded
of the inquirer. And this really implies that the ques-
tion is not merely a rhetorical one an expression of

irritation or scepticism put in the form of a question
for the sake of some fancied effect. If Mr. A. dislikes

the higher mathematics because he rightly perceives
that they will not help him in the grocery business,

he asks disgustedly,
" What's the use of mathema-

tics ?
" and does not wait for an answer, but turns

his attention to grumbling at the lateness of his dinner.

Now, we will admit at once that higher mathematics
is of no more use in the grocery trade than the

grocery trade is in the navigation of a ship ; but
that is no reason why we should condemn mathe-
matics as entirely useless. I remember reading a

speech made by an eminent surgeon, who wished,

laudably enough, to spread the cause of elementary
surgical instruction.

" The higher mathematics,"
said he with great satisfaction to himself,

" do not

help you to bind up a broken leg !

"
Obviously they

do not
; but it is equally obvious that surgery does

not help us to add up accounts
;
... or even to

think logically, or to accomplish the closely allied

feat of seeing a joke.
To the question about the use of mathematics we

may reply by pointing out two obvious consequences
of one of the applications of mathematics : mathe-
matics prevents much loss of life at sea, and increases

the commercial prosperity of nations. Only a few
men a few intelligent philosophers and more ama-
teur philosophers who are not highly intelligent
would doubt if these two things were indeed bene-
fits. Still, probably, all of us act as if we thought
that they were. Now, I do not mean that mathe-
maticians go about with life-belts or serve behind
counters

; they do not usually do so. What I mean
I will now try to explain.
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Natural science is occupied very largely with
thej

prevention ofwaste of thelabourof thought and muscle

when we want to call up, for some purpose or other,

certain facts of experience. Facts are sometimes

quite useful. For instance, it is useful for a sailor

to know the positions of the stars and sun on the

nights and days when he is out of sight of land.

Otherwise, he cannot find his whereabouts. Now,
some people connected with a national institution

publish periodically a Nautical Almanac which
contains the positions of stars and other celestial

things you see through telescopes, for every day
and night years and years ahead. This Almanac,

then, obviously increases the possibilities of trade

beyond coasting-trade, and makes travel by ship,
when land cannot be sighted, much safer

;
and there

would be no Nautical Almanac if it were not for

the science of astronomy ;
and there would be no

practicable science of astronomy if we could not

organise the observations we make of sun and moon
and stars, and put hundreds of observations in a

convenient form and in a little space in short, if

we could not economise our mental or bodily activity

by remembering or carrying about two or three

little formulae instead of fat books full of details;

and, lastly, we could not economise this activity
if it were not for mathematics.

Just as it is with astronomy, so it is with all other

sciences both those of Nature and mathematical
science : the very essence of them is the prevention
of waste of the energies of muscle and memory.
There are plenty of things in the unknown parts of

science to work our brains at, and we can only do so

efficiently if we organise our thinking properly,
and consequently do not waste our energies.

The purpose of this little volume is not to give
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likea text-book a collection of mathematical methods
and examples, but to do, firstly, what text-books

do not do : to show how and why these methods

grew up. All these methods are simply means,
contrived with the conscious or unconscious end of

economy of thought -labour, for the convenient

handling of long and complicated chains of reasoning.
This reasoning, when applied to foretell natural

events, on the basis of the applications of mathe-

matics, as sketched in the fourth chapter, often

gives striking results. But the methods of mathe-

matics, though often suggested by natural events,
are purely logical. Here the word "

logical
" means

something more than the traditional doctrine con-

sisting of a series of extracts from the science of rea-

soning, made by the genius of Aristotle and frozen

into a hard body of doctrine by the lack of genius
of his school. Modern logic is a science which has

grown up with mathematics, and, after a period in

which it moulded itself on the model of mathematics,
has shown that not only the reasonings but also

conceptions of mathematics are logical in their nature.

In this book I shall not pay very much attention
to the details of the elementary arithmetic, geometry,
and algebra of the many text-books, but shall be
concerned with the discussion of those conceptions

such as that of negative number which are used
and not sufficiently discussed in these books. Then,
too, I shall give a somewhat full account of the

development of analytical methods and certain

examinations of principles.
I hope that I shall succeed in showing that the

process of mathematical discovery is a living and a

growing thing. Some mathematicians have lived

long lives full of calm and unwavering faith for

faith in mathematics, as I will show, has always been
needed some have lived short lives full of burning
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zeal, and so on
;
and in the faith of mathematicians

there has been much error.

Now we come to the second object of this book.

In the historical part we shall see that the actual

reasonings made by mathematicians in building up
their methods have often not been in accordance

with logical rules. How, then, can we say that the

reasonings of mathematics are logical in their nature ?

The answer is that the one word "
mathematics

"

is habitually used in two senses, and so, as explained
in the last chapter, I have distinguished between
"
mathematics," the methods used to discover

certain truths, and "
Mathematics," the truths

discovered. When we have passed through the

stage of finding out, by external evidence or con-

jecture, how mathematics grew up with problems
suggested by natural events, like the falling of a

stone, and then how something very abstract and

intangible but very real separated out of these prob-
lems, we can turn our attention to the problem of

the nature of Mathematics without troubling our-

selves any more as to how, historically, it gradually

appeared to us quite clearly that there is such a

thing at all as Mathematics something which exists

apart from its application to natural science. History
has an immense value in being suggestive to the

investigator, but it is, logically speaking, irrelevant.

Suppose that you are a mathematician ; what you
eat will have an important influence on your dis-

coveries, but you would at once see how absurd it

would be to make, say, the momentous discovery
that 2 added to 3 makes 5 depend on an orgy of

mutton cutlets or bread and jam. The methods
of work and daily life of mathematicians, the con-

necting threads of suggestion that run through their

work, and the influence on their work of the allied
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work of others, all interest the investigator because

these things give him examples of research and

suggest new ideas to him ; but these reasons are

psychological and not logical.

But it is as true as it is natural that we should

find that the best way to become acquainted with

new ideas is to study the way in which know-

ledge about them grew up. This, then, is what we
will do in the first place, and it is here that I must

bring my own views forward. Briefly stated, they
are these. Every great advance in mathematics with
which we shall be concerned here has arisen out of the

needs shown in natural science or out of the need
felt to connect together, in one methodically arranged
whole, analogous mathematical processes used to

describe different natural phenomena. The applica-
tion of logic to our system of descriptions, which we

may make either from the motive of satisfying an in-

tellectual need (often as strong, in its way, as hunger)
or with the practical end in view of satisfying ourselves

that there are no hidden sources of error that may
ultimately lead us astray in calculating future or

past natural events, leads at once to those modern
refinements of method that are regarded with dis-

favour~by the old-fashioned mathematicians.
In modern times appeared clearly what had

only been vaguely suspected before the true nature
of Mathematics. Of this I will try to give some
account, and show that, since mathematics is logical
and not psychological in its nature, all those petty
questions sometimes amusing and often tedious
of history, persons, and nations are irrelevant to

Mathematics in itself. Mathematics has required
centuries of excavation, and the process of excava-
tion is not, of course, and never will be, complete.
But we see enough now of what has been excavated

clearly to distinguish between it and the tools which
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have been or are used for excavation. This confusion,
it should be noticed, was never made by the excava-

tors themselves, but only by some' of the philosophi-
cal onlookers who reflected on what was being done.

I hope and expect that our reflections will not lead

to this confusion.



CHAPTER I.

THE GROWTH OF MATHEMATICAL SCIENCE IN

ANCIENT TIMES.

IN the history of the human race, inventions like

those of the wheel, the lever, and the wedge were

made very early judging from the pictures on
ancient Egyptian and Assyrian monuments. These

inventions were made on the basis of an instinctive

and unreflecting knowledge of the processes of nature,

and with the sole end of satisfaction of bodily needs.

Primitive men had to build huts in order to protect
themselves against the weather, and, for this purpose,
had to lift and transport heavy weights, and so on.

Later, by reflection on such inventions themselves,

possibly for the purposes of instruction of the younger
members of a tribe or the newly-joined members
of a guild, these isolated inventions were classified

according to some analogy. Thus we see the same
elements occurring in the relation of a wheel to its

axle and the relation of the arm of a lever to its

fulcrum the same weights at the same distance

from the axle or fulcrum, as the case may be, exert

the same power, and we can thus class both instru-

ments together in virtue of an analogy. Here what
we call

"
scientific

"
classification begins. We can

well imagine that this pursuit of science is attractive

in itself ; besides helping us to communicate facts

in a comprehensive, compact, and reasonably con-

nected way, it arouses a purely intellectual interest.

(2,051) 16
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It would be foolish to deny the obvious importance
to us of our bodily needs ;

but we must clearly realise

two things : (1) The intellectual need is very strong,
and is as much a fact as hunger or thirst

;
some-

times it is even stronger than bodily needs Newton,
for instance, often forgot to take food when he was

engaged with his discoveries; (2) Practical results

of value often follow from the satisfaction of intellec-

tual needs. It was the satisfaction of certain in-

tellectual needs in the cases of Maxwell and Hertz
that ultimately led to wireless telegraphy ;

it was
the satisfaction of some of Faraday's intellectual

needs that made the dynamo and the electric tele-

graph possible. But many of the results of strivings
after intellectual satisfaction have as yet no obvious

bearing on the satisfaction of our bodily needs.

However, it is impossible to tell whether or no they
will always be barren in this way. This gives us a
new point of view from which to consider the question," What is the use of mathematics ?

" To condemn
branches of mathematics because their results cannot

,

obviously be applied to some practical purpose is \(

short-sighted.

The formation of science is peculiar to human beings -

among animals. The lower animals sometimes, but

rarely, make isolated discoveries, but never seem
to reflect on these inventions in themselves with a
view to rational classification in the interest either of

the intellect or of the indirect furtherance of practical
ends. Perhaps the greatest difference between man
and the lower animals is that men are capable of

taking circuitous paths for the attainment of their

ends, while the lower animals have their minds so

filled up with their needs that they try to seize the

object they want, or remove that which annoys
them, in a direct way. Thus, monkeys often vainly

(2,051) 2
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snatch at things they want, while even savage men
use catapults or snares or the consciously observed

properties of flung stones.

The communication of knowledge is the first occa-

sion that compels distinct reflection, as everybody
can still observe in himself. Further, that which
the old members of a guild mechanically pursue
strikes a new member as strange, and thus an impulse
is given to fresh reflection and investigation.
When we wish to bring to the knowledge of a person

any phenomena or processes of nature, we have the

choice of two methods : we may allow the person
to observe matters for himself, when instruction

comes to an end
; or, we may describe to him the

phenomena in some way, so as to save him the trouble

of personally making anew each experiment. To
describe an event like the falling of a stone to the

earth in the most comprehensive and compact
manner requires that we should discover what is

constant and what is variable in the processes of

nature
;
that we should discover the same law in the

moulding of a tear and in the motions of the planets.
This is the very essence of nearly all science, and
we will return to this point later on.

We have thus some idea of what is known as
"
the

economical function of science." This sounds as

if science were governed by the same laws as the

management of a business
;
and so, in a way, it is.

But whereas the aims of a business are not, at least

directly, concerned with the satisfaction of intel-

lectual needs, science including natural science,

logic, and mathematics uses business methods

consciously for such ends. The methods are far

wider in range, more reasonably thought out, and
more intelligently applied than ordinary business

methods, but the principle is the same. And this

may strike some people as strange, but it is never-
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theless true : there appears more and more as time

goes on a great and compelling beauty in these

business methods of science.

The economical function appears most plainly in

very ancient and modern science. In the beginning,
all economy had in immediate view the satisfaction

simply of bodily wants. With the artisan, and still

more so with the investigator, the most concise and

simplest possible knowledge of a given province of

natural phenomena a knowledge that is attained

with the least intellectual expenditure naturally
becomes in itself an aim

;
but though knowledge

was at first a means to an end, yet, when the mental
motives connected therewith are once developed
and demand their satisfaction, all thought of its

original purpose disappears. It is one great object
of science to replace, or save the trouble of making,
experiments, by the reproduction and anticipation
of facts in thought. Memory is handier than ex-

perience, and often answers the same purpose.
Science is communicated by instruction, in order that
one man may profit by the experience of another and
be spared the trouble of accumulating it for him-
self

; and thus, to spare the efforts of posterity, the

experiences of whole generations are stored up
in libraries. And further, yet another function of

this economy is the preparation for fresh investi-

gation.*
The economical character of ancient Greek geom-

etry is not so apparent as that of the modern algebra-
ical sciences. We shall be able to appreciate this fact

when we have gained some ideas on the historical

development of ancient and modern mathematical
studies.

The generally accepted account of the origin and
*

Cf. pp. 11, 24, 27, 29, 73, 121.
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early development of geometry is that the ancient

Egyptians were obliged to invent it in order to restore

the landmarks which had been destroyed by the

periodical inundations of the Nile. These inunda-

tions swept away the landmarks in the valley of the

river, and, by altering the course of the river, in-

creased or decreased the taxable value of the adjoin-

ing lands, rendered a tolerably accurate system of

surveying indispensable, and thus led to a systematic

study of the subject by the priests. Proclus (412-
485 A.D.), who wrote a summary of the early history
of geometry, tells this story, which is also told by
Herodotus, and observes that it is by no means strange
that the invention of the sciences should have

originated in practical needs, and that, further, the

transition from perception with the senses to re-

flection, and from reflection to knowledge, is to be

expected. Indeed, the very name "
geometry

"

which is derived from two Greek words meaning
measurement of the earth seems to indicate that

geometry was not indigenous to Greece, and that it

arose from the necessity of surveying. For the
Greek geometricians, as we shall see, seem always to

have dealt with geometry as an abstract science

to have considered lines and circles and spheres and
so on, and not the rough pictures of these abstract

ideas that we see in the world around us and to

have sought for propositions which should be abso-

lutely true, and not mere approximations. The
name does not therefore refer to this practice.

However, the history of mathematics cannot
with certainty be traced back to any school or period
before that of the Ionian Greeks. It seems that the

Egyptians' geometrical knowledge was of a wholly
practical nature. For example, the Egyptians were

very particular about the exact orientation of their

temples ; and they had therefore to obtain with
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accuracy a north and south line, as also an east and
west line. By observing the points on the horizon

where a star rose and set, and taking a plane midway
between them, they could obtain a north and south

line. To get an east and west line, which had to be
drawn at right angles to this, certain people were

employed who used a rope ABCD, divided by knots
or marks at B and C, so that the lengths AB, BC, CD
were in the proportion 3:4:5. The length BC was

placed along the north and south line, and pegs P
and Q inserted at the knots B and C. The piece BA
(keeping it stretched all the time) was then rotated

round the peg P, and similarly the piece CD was
rotated round the peg Q, until the ends A and D
coincided ;

the point thus indicated was marked by
a peg R. The result was to form a triangle PQR
whose angle at P was a right angle, and the line PR
would give an east and west line. A similar method
is constantly used at the present time by practical

engineers, and by gardeners in marking tennis courts,
for measuring a right angle. This method seems also

to have been known to the Chinese nearly three

thousand years ago, but the Chinese made no serious

attempt to classify or extend the few rules of arith-

metic or geometry with which they were acquainted,
or to explain the causes of the phenomena which

they observed.

The geometrical theorem of which a particular
case is involved in the method just described is well

known to readers of the first book of Euclid's

Elements. The Egyptians must probably have known
that this theorem is true for a right-angled tri-

angle when the sides containing the right angle are

equal, for this is obvious if a floor be paved with

tiles of that shape. But these facts cannot be
said to show that geometry was then studied as

a science. Our real knowledge of the nature of
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Egyptian geometry depends mainly on the Rhind

papyrus.
The ancient Egyptian papyrus from the collection

of Khind, which was written by an Egyptian priest
named Ahmes considerably more than a thousand

years before Christ, and which is now in the British

Museum, contains a fairly complete applied mathe-

matics, in which the measurement of figures and
solids plays the principal part ;

there are no theorems

properly so called ; everything is stated in the form
of problems, not in general terms, but in distinct

numbers. For example : to measure a rectangle the

sides of which contain two and ten units of length ;

to find the surface of a circular area whose diameter
is six units. We find also in it indications for the

measurement of solids, particularly of pyramids,
whole and truncated. The arithmetical problems
dealt with in this papyrus which, by the way, is

headed
"
Directions for knowing all dark things

"

contain some very interesting things. In modern

language, we should say that the first part deals with
the reduction of fractions whose numerators are 2

to a sum of fractions each of whose numerators is 1.

Thus
-/-g

is stated to be the sum of ^, T\, -

Ii- ,
and

g^j. Probably Ahmes had no rule for forming the

component fractions, and the answers given represent
the accumulated experiences of previous writers.

In one solitary case, however, he has indicated his

method, for, after having asserted that is the sum
of \ and

,
he added that therefore two-thirds of

one-fifth is equal to the sum of a half of a fifth and a
sixth of a fifth, that is, to TV+sV
That so much attention should have been paid to

fractions may be explained by the fact that in early
times their treatment presented considerable diffi-

culty. The Egyptians and Greeks simplified the

problem by reducing a fraction to the sum of several
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fractions, in each of which the numerator was unity,
so that they had to consider only the various de-

nominators : the sole exception to this rule being the

fraction f . This remained the Greek practice until

the sixth century of our era. The Romans, on the

other hand, generally kept the denominator equal
to twelve, expressing the fraction (approximately)
as so many twelfths.

In Ahmes' treatment of multiplication, he seems
to have relied on repeated additions. Thus, to

multiply a certain number, which we will denote

by the letter
"
a," by 13, he first multiplied by 2 and

got 2a, then he doubled the results and got 4a, then
he again doubled the result and got 8a, and lastly
he added together a, 4a, and 8a.

Now, we have used the sign "a" to stand for any
number : not a particular number like 3, but any
one. This is what Ahmes did, and what we learn

to do in what we call
"
algebra." When Ahmes

wished to find a number such that it, added to its

seventh, makes 19, he symbolised the number by
the sign we translate

"
heap." He had also signs

for our
"
+,"

"
," and " =".* Nowadays we

can write Ahmes' problem as : Find the number

x such that x+?=19. Ahmes gave the answer

in the form

* In this book I shall take great care in distinguishing

signs from what they signify. Thus 2 is to be distinguished
from " 2 "

: by
" 2

"
I mean the sign, and the sign written

without inverted commas indicates the thing signified. There
has been, and is, much confusion, not only with beginners
but with eminent mathematicians between a sign and what
is signified by it. Many have even maintained that numbers
are the signs used to represent them. Often, for the sake of

brevity, I shall use the word in inverted commas (say
" a ")

as short for
" what we call 'a,'

" but the context wUl make
plain what is meant.



24 THE NATURE OF MATHEMATICS.

We shall find that algebra was hardly touched by
those Greeks who made of geometry such an impor-
tant science, partly, perhaps, because the almost

universal use of the abacus * rendered it easy for

them to add and subtract without any knowledge
of theoretical arithmetic. And here we must remem-
ber that the principal reason why Ahmes' arith-

metical problems seem so easy to us is because of

our use from childhood of the system of notation

introduced into Europe by the Arabs, who originally
obtained it from either the Greeks or the Hindoos.

In this system an integral number is denoted by a

succession of digits, each digit representing the

product of that digit and a power of ten, and the

number being equal to the sum of these products.
Thus, by means of the local value attached to nine

symbols and a symbol for zero, any number in the

decimal scale of notation can be expressed. It is im-

portant to realise that the long and strenuous work of

the most gifted minds was necessary to provide us with

simple and expressive notation which, in nearly all

parts of mathematics, enables even the less gifted
of us to reproduce theorems which needed the greatest

genius to discover. Each improvement in notation

seems, to the uninitiated, but a small thing : and yet,
in a calculation, the pen sometimes seems to be more

intelligent than the user. Our notation is an instance

of that great spirit of economy which spares waste of

labour on what is already systematised, so that all

our strength can be concentrated either upon what is

known but unsystematised, or upon what is unknown.
* The principle of the abacus is that a number is represented

by counters in a series of grooves, or beads strung on parallel
wires ; as many counters being put on the first groove as
there are units, as many on the second as there are tens,
and so on. The rules to be followed in addition, subtraction,

multiplication, and division are given in various old works
on arithmetic.
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Let us now consider the transformation of Egyptian
geometry in Greek hands. Thales of Miletus (about
640-546 B.C.), who, during the early part of his life,

was engaged partly in commerce and partly in public
affairs, visited Egypt and first brought this know-

ledge into Greece. He discovered many things
himself, and communicated the beginnings of many
to his successors. We cannot form any exact idea

as to how Thales presented his geometrical teaching.
We infer, however, from Proclus that it consisted

of a number of isolated propositions which were not

arranged in a logical sequence, but that the proofs
were deductive, so that the theorems were not a
mere statement of an induction from a large number
of special instances, as probably was the case with
the Egyptian geometricians. The deductive char-

acter which he thus gave to the science is his chief

claim to distinction. Pythagoras (born about
580 B.C.) changed geometry into the form of an
abstract science, regarding its principles in a purely
abstract manner, and investigated its theorems
from the immaterial and intellectual point of view.

Among the successors of these men, the best known
are Archytas of Tarentum (428-347 B.C.), Plato

(429-348 B.C.), Hippocrates of Chios (born about
470 B.C.), Menaechmus (about 375-325 B.C.), Euclid

(about 330-275 B.C.), Archimedes (287-212 B.C.),

and Apollonius (260-200 B.C.).

The only geometry known to the Egyptian priests
was that of surfaces, together with a sketch of that

of solids, a geometry consisting of the knowledge of

the areas contained by some simple plane and solid

figures, which they had obtained by actual trial.

Thales introduced the ideal of establishing by exact

reasoning the relations between the different parts
of a figure, so that some of them could be found by
means of others in a manner strictly rigorous. Thia
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was a phenomenon quite new in the world, and due,
in fact, to the abstract spirit of the Greeks. In

connection with the new impulse given to geometry,
there arose with Thales, moreover, scientific astron-

omy, also an abstract science, and undoubtedly a

Greek creation. The astronomy of the Greeks dif-

fers from that of the Orientals in this respect : the

astronomy of the latter, which is altogether concrete

and empirical, consisted merely in determining the

duration of some periods or in indicating, by means
of a mechanical process, the motions of the sun and

planets ;
whilst the astronomy of the Greeks aimed

at the discovery of the geometrical laws of the

motions of the heavenly bodies.

Let us consider a simple case. The area of a

right-angled field of length 80 yards and breadth

50 yards is 4000 square yards. Other fields which
are not rectangular can be approximately measured

by mentally dissecting them a process which often

requires great ingenuity and is a familiar problem to

land-surveyors. Now, let us suppose that we have
a circular field to measure. Imagine from the centre

of the circle a large number of radii drawn, and let

each radius make equal angles with the next ones

on each side of it. By joining the points in succes-

sion where the radii meet the circumference of the

circle, we get a large number of triangles of equal
area, and the sum of the areas of all these triangles

gives an approximation to the area of the circle.

It is particularly instructive repeatedly to go over

this and the following examples mentally, noticing
how helpful the abstract ideas we call

"
straight

line,"
"
circle,"

"
radius,"

"
angle," and so on, are.

We all of us know them, recognise them, and can easily
feel that they are trustworthy and accurate ideas.

We feel at home, so to speak, with the idea of a

square, say, and can at once give details about it
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which are exactly true for it, and very nearly true for

a field which we know is very nearly a square. This

replacement in thought by an abstract geometrical

object economises labour of thinking and imagining
by leading us to concentrate our thoughts on that

alone which is essential for our purpose.
Thales seems to have discovered and it is a good

thing to follow these discoveries on figures made
with the help of compasses and ruler the proof of

what may be regarded as the obvious fact that the

circle is divided into halves by its diameter, that

the angles at the base of a triangle with two equal
sides an "

isosceles
"
triangle are equal, that all the

triangles described in a semi-circle with two of their

angular points at the ends of the diameter and the

third anywhere on the circumference contain a

right angle, and he measured the distance of vessels

from the shore, presumably by causing two observers

at a known distance apart to measure the two angles
formed by themselves and the ship. This last dis-

covery is an application of the fact that a triangle
is determined if its base and base angles are given.
When Archytas and Menaechmus employed me-

chanical instruments for solving certain geometrical

problems,
"
Plato," says Plutarch,

"
inveighed

against them with great indignation and persistence
as destroying and perverting all the good there is in

geometry ;
for the method absconds from incorporeal

and intellectual to sensible things, and besides em-

ploys again such bodies as require much vulgar
handicraft : in this way mechanics was dissimilated

and expelled from geometry, and, being for a long
time looked down upon by philosophy, became one of

the arts of war." In fact, manual labour was looked
down upon by the Greeks, and a sharp distinction

was drawn between the slaves, who performed bodily
work and really observed nature, and the leisured
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upper classes, who speculated and often only knew
nature by hearsay. This explains much of the naive,

hazy, and dreamy character of ancient natural

science. Only seldom did the impulse to make

experiments for oneself break through ; but when
it did, a great progress resulted, as was the case

with Archytas and Archimedes. Archimedes, like

Plato, held that it was undesirable for a philosopher
to seek to apply the results of science to any practical
use

; but, whatever might have been his view of

what ought to be the case, he did actually introduce

a large number of new inventions.

We will not consider further here the development
of mathematics with other ancient nations, nor the

chief problems investigated by the Greeks ;
such

details may be found in some of the books mentioned
in the Bibliography at the end. The object of this

chapter is to indicate the nature of the science of

geometry, and how certain practical needs gave
rise to investigations in which appears an abstract

science which was worthy of being cultivated for

its own sake, and which incidentally gave rise to

advantages of a practical nature.

There are two branches of mathematics which
'

began to be cultivated by the Greeks, and which
allow a connection to be formed between the spirits
of ancient and modern mathematics.

^\t*$
The first is the method of geometrical analysis to

;,'v - which Plato seems to have directed attention. The

analytical method of proof begins by assuming
that the theorem or problem is solved, and thence

deducing some result. If the result be false, the

theorem is not true or the problem is incapable of

solution : if the result be true, if the steps be re-

versible, we get (by reversing them) a synthetic

proof ; but if the steps be not reversible, no con-
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elusion can be drawn. We notice that the leading

thought in analysis is that which is fundamental
in algebra, and which we have noticed in the case

of Ahmes : the calculation or reasoning with an
unknown entity, which is denoted by a conventional

sign, as if it were known, and the deduction at last,

of some relation which determines what the entity
must be.

And this brings us to the second branch spoken
of : algebra with the later Greeks. Diophantus of

Alexandria, who probably lived in the early half of

the fourth century after Christ, and probably was
the original inventor of an algebra, used letters for

unknown quantities in arithmetic and treated

arithmetical problems analytically. Juxtaposition
of symbols represented what we now write as

"
+,"

and " " and " "
were also represented by

symbols. All these symbols are mere abbreviations

for words, and perhaps the most important advantage
of symbolism the power it gives of carrying out a

complicated chain of reasoning almost mechanically
was not made much of by Diophantus. Here

again we come across the economical value of

symbolism : it prevents the wearisome expenditure
of mental and bodily energy on those processes
which can be carried out mechanically. We must
remember that this economy both emphasises the

unsubjugated that is to say, unsystematised

problems of science, and has a charm an aesthetic

charm, it would seem of its own.

Lastly, we must mention
"
incommensurables,"

"
loci," and the beginnings of

"
trigonometry."

Pythagoras was, according to Eudemus and
Proclus, the discoverer of

"
incommensurable

quantities." Thus, he is said to have found that

the diagonal and the side of a square are "incom-



30 THE NATURE OF MATHEMATICS.

mensurable." Suppose, for example, that the side

of the square is one unit in length ; the diagonal is

longer than this, but it is not two units in length.
The excess of the length of the diagonal over one

unit is not an integral submultiple of the unit. And,

expressing the matter arithmetically, the remainder
that is left over after each division of a remainder
into the preceding divisor is not an integral sub-

multiple of the remainder used as divisor. That is

to say, the rule given in text-books on arithmetic

and algebra for rinding the greatest common measure
does not come to an end. This rule, when applied
to integer numbers, always comes to an end; but,

when applied to certain lengths, it does not. Py-
thagoras proved, then, that if we start with a line of

any length, there are other lines whose lengths do
not bear to the first length the ratio of one integer
to another, no matter if we have all the integers to

choose from. Of course, any two fractions have
the ratio of two integers to one another. In the

above case of the diagonal, if the diagonal were in

length some number x of units, we should have
x- = 2, and it can be proved that no fraction, when
"
multiplied

"
in the sense to be given in the next

chapter by itself gives 2 exactly, though there are

fractions which give this result more and more

approximately.
On this account, the Greeks drew a sharp distinc-

tion between
"
numbers," and "

magnitudes
"

or
"
quantities

"
or measures of lengths. This dis-

tinction was gradually blotted out as people saw
more amd more the advantages of identifying
numbers with the measures of lengths. The inven-

tion of analytical geometry, described in the third

chapter, did most of the blotting out. It is in com-

paratively modern times that mathematicians have

adequately realised the importance of this logically
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valid distinction made by the Greeks. It is a curious

fact that the abandonment of strictly logical thinking
should have led to results which transgressed what
was then known of logic, but which are now known
to be readily interpretable in the terms of what we
now know of Logic. This subject will occupy us

again in the sixth chapter.
The question of loci is connected with geometrical

analysis, and is difficult to dissociate from a mental

picture of a point in motion. Think of a point
under restrictions to move only in some curve.

Thus, a point may move so that its distance from a

fixed point is constant
;

the peak of an angle may
move so that the arms of the angle pass slipping

through two fixed points, and the angle is always
a right angle. In both cases the moving point keeps
on the circumference of a certain circle. This curve
is a

"
locus." It is evident how thinking of the

locus a point can describe may help us to solve

problems.

We have seen that Thales discovered that a

triangle is determined if its base and base angles are

given. When we have to make a survey of either

an earthly country or part of the heavens, for the

purpose of map-making, we have to measure angles
for example, by turning a sight, like those used

on guns, through an angle measured in a circular

arc of metal to fix the relative directions of the

stars or points on the earth. Now, for terrestrial

measurements, a piece of country is approximately
a flat surface, while the heavens are surveyed as

if the stars were, as they seem to be, scattered on
the inside of a sphere at whose centre we are.

Secondly, it is a network of triangles plane or

spherical of which we measure the angles and
sometimes the sides : for, if the angles of a triangle
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are known, the proportionality of the sides is known ;

and this proportionality cannot be concluded from
a knowledge of the angles of a rectangle, say. Hip-

parchus (born about 160 B.C.) seems to have invented

this practical science of the complete measurement
of triangles from certain data, or, as it is called,
"
trigonometry," and the principles laid down by

him were worked out by Ptolemy of Alexandria

(died 168 A.D.) and also by the Hindoos and Arabians.

Usually, only angles can be measured with accuracy,
and so the question arises : given the magnitude of

the angles, what can be concluded as to the kind
of proportionality of the sides. Think of a circle

described round the centre 0, and let AP be the

arc of this circle which measures the angle AOP.
Notice that the ratio of AP to the radius is the same
for the angle AOP whatever value the radius may
have. Draw PM perpendicular to OA. Then the

figure 0PMAP reminds one of a stretched bow, and
hence are derived the names "sine of the arc AP"
for the line PM, and "

cosine
"

for OM. Tables of

sines and cosines of arcs (or of angles, since the arc

fixes the angle if the radius is known) were drawn

up, and thus the sides PM and OM could be found
in terms of the radius, when the arc was known. It

is evident that this contains the essentials for the

finding of the proportions of the sides of plane
triangles. Spherical trigonometry contains more

complicated relations which are directly relevant

to the position of an astronomer and his measure-
ments.

Mathematics did not progress in the hands of the
Romans : perhaps the genius of this people was too

practical. Still, it was through Rome that mathe-
matics came into medieval Europe. The Arab
mathematical text-books and the Greek books from
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Arab translations were introduced into Western

Europe by the Moors in the period 1150-1450, and

by the end of the thirteenth century the Arabic
arithmetic had been fairly introduced into Europe,
and was practised by the side of the older

arithmetic founded on the work of Boethius (about

475-526). Then came the Renascence. Mathe
maticians had barely assimilated the knowledge
obtained from the Arabs, including their transla-

tions of Greek writers, when the refugees who
escaped from Constantinople after the fall of the
Eastern Empire (1453) brought the original works
and the traditions of Greek science into Italy. Thus

by the middle of the fifteenth century the chief

results of Greek and Arabian mathematics were
accessible to European students.

The invention of printing about that time rendered
the dissemination of discoveries comparatively easy.

(2,051)



CHAPTER II.

THE RISE AND PROGRESS OF MODERN MATHE-

MATICS ALGEBRA.

MODERN mathematics may be considered to have

begun approximately with the seventeenth century.
It is well known that the first 1500 years of the

Christian era produced, in Western Europe at least,

very little knowledge of value in science. The spirit

of the Western Europeans showed itself to be dif-

ferent from that of the ancient Greeks, and only

slightly less so from that of the more Easterly
nations ; and, when Western mathematics began
to growt we can trace clearly the historical begin-

nings of the use, in a not quite accurate form, of those

conceptions variable and function which are char-

acteristic of modern mathematics. We may say, in

anticipation, that these conceptions, thoroughly
analysed by reasoning as they are now, make up
the difference of our modern views of Mathematics

from, and have caused the likeness of them to,

those of the ancient Greeks. The Greeks seem, in

short, to have taken up a very similar position
towards the mathematics of their day to that which

logic forces us to take up towards the far more

general mathematics of to-day. The generality of

character has been attained by the effort to put
mathematics more into touch with natural sciences

in particular the science of motion. The main

difficulty was that, to reach this end, the way in
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which mathematicians expressed themselves was

illegitimate. Hence philosophers, who lacked the

real sympathy that must inspire all criticism that

hopes to be relevant, never could discover any
reason for thinking that what the mathematicians
said was true, and the world had to wait until the

mathematicians began logically to analyse their own

conceptions. No body of men ever needed this

sympathy more than the mathematicians from the

revival of letters down to the middle of the nine-

teenth century, for no science was less logical than
mathematics.
The ancient Greeks never used the conception of

motion in their systematic works. The idea of a

locus seems to imply that some curves could be

thought of as generated by moving points ;
the

Greeks discovered some things by helping their

imaginations with imaginary moving points, but they
never introduced the use of motion into their final

proofs. This may have been because the Eleatic

school, of which one of the principal representatives
was Zeno (495-435 B.C.), invented some exceedingly
subtle puzzles to emphasise the difficulty there is

in the conception of motion. We shall return in

some detail to these puzzles, which have not been

appreciated in all the ages from the time of the

Greeks till quite modern times. Owing to this

lack of subtlety, the conception of variability was

freely introduced into mathematics. It was the

conceptions of constant, variable, and function, of

which we shall, from now on, often have occasion

to speak, which were generated by ideas of motion,
and which, when they were logically purified, have
made both modern mathematics and modern logic,
to which they were transferred by mathematical

logicians Leibniz, Lambert, Boole, De Morgan,
and the numerous successors of Boole and De
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Morgan from about 1850 onwards into a science

much more general than, but bearing some close

analogies with, the ideal of Greek mathematical
science. Later on will be found a discussion of

what can be meant by a
"
moving point."

Let us now consider more closely the history of

modern mathematics. Modern mathematics, like

modern philosophy and like one part the speculative
and not the experimental part of modern physical

science, may be considered to begin with Rene
Descartes (1596-1650). Of course, as we should ex-

pect, Descartes had many and worthy predecessors.

Perhaps the greatest of them was the French mathe-
matician Francois Viete (1540-1603), better known

by his Latinized name of
"
Vieta." But it is simpler

and shorter to confine our attention to Descartes.

Descartes always plumed himself on the independ-
ence of his ideas, the breach he made with the old

ideas of the Aristotelians, and the great clearness

and simplicity with which he described his ideas.

But we must not underestimate the part that
"
ideas

in the air
"

play ; and, further, we know now that

Descartes' breach with the old order of things was
not as great as he thought.

Descartes, when describing the effect which his

youthful studies had upon him when he came to

reflect upon them, said :

"
I was especially delighted with the mathematics,

on account of the certitude and evidence of their

reasonings : but I had not as yet a precise knowledge
of their true use ; and, thinking that they but con-

tributed to the advancement of the mechanical arts,

I was astonished that foundations so strong and
solid should have had no loftier superstructure reared

on them."
And again :
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"
Among the branches of philosophy, I had, at an

earlier period, given some attention to logic, and,

among those of the mathematics, to geometrical

analysis and algebra three arts or sciences which

ought, as I conceived, to contribute something to

my design. But, on examination, I found that, as

for logic, its syllogisms and the majority of its other

precepts are of avail rather in the communication of

what we already know, or even in speaking without

judgment of things of which we are ignorant, than in

the investigation of the unknown : and although
this science contains indeed a number of correct and

very excellent precepts, there are, nevertheless, so

many others, and these either injurious or super-

fluous, mingled with the former, that it is almost

quite as difficult to effect a severance of the true

from the false as it is to extract a Diana or a Minerva
from a rough block of marble. Then as to the

analysis of the ancients and the algebra of the

moderns : besides that they embrace only matters

highly abstract, and, to appearance, of no use, the

former is so exclusively restricted to the consideration

of figures that it can exercise the understanding only
on condition of greatly fatiguing the imagination;
and, in the latter, there is so complete a subjection
to certain rules and formulas, that there results an
art full of confusion and obscurity, calculated to

embarrass, instead of a science fitted to cultivate

the mind. By these considerations I was induced to

seek some other method which would comprise the

advantages of the three and be exempt from their

defects. . . .

" The long chains of simple and easy reasonings by
means of which geometers are accustomed to reach

the conclusions of their most difficult demonstrations
had led me to imagine that all things to the knowledge
of which man is competent are mutually connected in
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the same way, and that there is nothing so far removed
from us as to be beyond our reach, or so hidden that

we cannot discover it, provided only that we abstain

from accepting the false for the true, and always

preserve in our thoughts the order necessary for the

deduction of one truth from another. And I had
little difficulty in determining the objects with which
it was necessary to begin, for I was already persuaded
that it must be with the simplest and easiest to know,
and, considering that, of all those who have hitherto

sought truth in the sciences, the mathematicians
alone have been able to find any demonstrations,
that is, any certain and evident reasons, I did not

doubt but that such must have been the rule of their

investigations. I resolved to begin, therefore, with

the examination of the simplest objects, not antici-

pating, however, from this any other advantage than
that to be found in accustoming my mind to the love

and nourishment of truth and to a distaste for all

such reasonings as were unsound. But I had no in-

tention on that account of attempting to master
all the particular sciences commonly denominated
'

mathematics
'

; but observing that, however dif-

ferent their objects, they all agree in considering only
the various relations or proportions subsisting among
those objects, I thought it best for my purpose to

consider these proportions in the most general form

possible, without referring them to any objects in

particular, except such as would most facilitate the

knowledge of them, and without by any means

restricting them to these, that afterwards I might thus

be the better able to apply them to every other class

of objects to which they are legitimately applicable.

Perceiving further that, in order to understand these

relations, I should have sometimes to consider them
one by one and sometimes only to bear in mind or

embrace them in the aggregate, I thought that, in
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order the better to consider them individually, I

should view them as subsisting between straight

lines, than which I could find no objects more simple
or capable of being more distinctly represented to

my imagination and senses ; and, on the other hand,
that, in order to retain them in the memory, or em-
brace an aggregate of many, I should express them

by certain characters the briefest possible. In this

way I believed that I could borrow all that was
best both in geometrical analysis and in algebra,
and correct all the defects of the one by help of the

other."

Let us, then, consider the characteristics of algebra
and geometry.
We have seen, when giving an account, in the first

chapter, of the works of Ahmes and Diophantus,
that mathematicians early saw the advantage of

representing an unknown number by a letter or

some other sign that may denote various numbers

ambiguously, writing down much as in geometrical

analysis the relations which they bear, by the con-

ditions of the problem, to other numbers, and then

considering these relations. If the problem is deter-

minate that is to say, if there are one or more
definite solutions which can be proved to involve

only numbers already fixed upon this consideration

leads, by the use of certain rules of calculation, to the

determination actual or approximate of this solu-

tion or solutions. Under certain circumstances, even
if there is a solution, depending on a variable, we can
find it and express it in a quite general way, by rules,

but that need not occupy us here.

Suppose that you know my age, but that I do not
know yours, but wish to. You might say to me :

"
I was eight years old when you were born." Then

I should think like this. Let x be the (unknown)
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number of years in your age at this moment and,

say, 33 the number of years in my age at this mo-
ment

;
then in essentials your statement can be

translated by the equation
"
x 8=33." The mean-

ing of the signs
"

,"
"
=," and " + "

are supposed
to be known as indeed they are by most people

nowadays quite sufficiently for our present purpose.
Now, one of the rules of algebra is that any term can

be taken from one side of the sign
" = "

to the other

if only the
" + "

or
" "

belonging to it is changed
into

" "
or

"
+," as the case may be. Thus, in

the present case, we have: "z=33+8=41." This

absurdly simple case is chosen intentionally. It is

essential in mathematics to remember that even

apparently insignificant economies of thought add

up to make a long and complicated calculation

readily performed. This is the case, for example,
with the convention introduced by Descartes of using
the last letters of the alphabet to denote unknown
numbers, and the first letters to denote known ones.

This convention is adopted, with a few exceptional
cases, by algebraists to-day, and saves much trouble

in explaining and in looking for unknown and known

quantities in an equation. Then, again, the signs
+ ,"

"
,"

" = " have great merits which those

unused to long calculations cannot readily under-

stand. Even the saving of space made by writing"
xy

"
for "xxy" (" x multiplied by y ") is im-

portant, because we can obtain by it a shorter and
more readily surveyed formula. Then, too, Des-
cartes made a general practice of writing

"
powers

"

or
"
exponents

"
as we do now ;

thus
"

ar
3 "

stands

for
"
xxx

"
and " x5 " for some less suggestive

symbol representing the continued multiplication
of five x's.

One great advantage of this notation is that it

makes the explanation of logarithms, which were
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the great and laborious discovery of John Napier
(1550-1617), quite easy. We start from the equa-
tion

" xmx"=xm+"." Now, if xp=y, and we call p
the

"
logarithm of y to the base x

"
;

in signs :

"
p=\ogzy

"
; the equation from which we started

gives, if we denote xm by
" u " and xn

by
"
v," so that

m=\og;U and w=logj.i?, that logc(wv)=logxM+logJ.t;.

Thus, if the logarithms of numbers to a given base

(say =10) are tabulated, calculations with large
numbers are made less arduous, for addition replaces

multiplication, when logarithms are found. Also
subtraction of logarithms gives the logarithm of the

quotient of two numbers.
Let us now shortly consider the history of algebra

from Diophantus to Descartes.

The word "
algebra

"
is the European corruption

of an Arabic phrase which means restoration and
reduction the first word referring to the fact that

the same magnitude may be added to or subtracted

from both sides of an equation, and the last word

meaning the process of simplification. The science

of algebra was brought among the Arabs by Mo-
hammed ben Musa (Mahomet the son of Moses),
better known as Alkarismi, in a work written about
830 A.D., and was certainly derived by him from the

Hindoos. The algebra of Alkarismi holds a most

important place in the history of mathematics, for

we may say that the subsequent Arab and the early
medieval works on algebra were founded on it, and
also that through it the Arabic or Indian system of

decimal numeration was introduced into the West.
It seems that the Arabs were quick to appreciate the

work of others notably of the Greek masters and
of the Hindoo mathematicians but, like the ancient

Chinese and Egyptians, they did not systematically

develop a subject to any considerable extent.
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Algebra was introduced into Italy in 1202 by
Leonardo of Pisa (about 1175-1230) in a work based

on Alkarismi's treatise, and into England by Kobert
Kecord (about 1510-1558) in a book called the

Whetstone of Witte published in 1557. Improvements
in the method or notations of algebra were made by
Record, Albert Girard (1595-1632), Thomas Harriot

(1560-1621), Descartes, and many others.

In arithmetic we use symbols of number. A symbol
is any sign for a quantity, which is not the quantity
itself. If a man counted his sheep by pebbles, the

pebbles would be symbols of the sheep. At the

present day, when most of us can read and write, we
have acquired the convenient habit of using marks
on paper,

"
1, 2, 3, 4," and so on, instead of such

things as pebbles. Our "
1+1

"
is abbreviated into

"
2,"

" 2+1 "
is abbreviated into

"
3,"

"
3+1

"
into

"
4," and so on. When "

1,"
"
2,"

"
3," &c., are

used to abbreviate, rather improperly,
"

1 mile,""
2 miles,"

"
3 miles," &c., for instance, they are

called signs for concrete numbers. But when we shake
off all idea of

"
1,"

"
2," &c., meaning one, two, &c.,

of anything in particular, as when we say,
"

six and
four make ten," then the numbers are called abstract

numbers. To the latter the learner is first intro-

duced in treatises on arithmetic, and does not always
learn to distinguish rightly between the two. Of the

operations of arithmetic only addition and subtrac-

tion can be performed with concrete numbers, and
without speaking of more than one sort of 1. Miles

can be added to miles, or taken from miles. Mul-

tiplication involves a new sort of 1, 2, 3, &c., stand-

ing for repetitions (or times, as they are called). Take
6 miles 5 times. Here are two kinds of units, 1 mile

and 1 time. In multiplication, one of the units must
he a number of repetitions or times, and to talk of
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multiplying 6 feet by 3 feet would be absurd. What
notion can be formed of 6 feet taken

"
3 feet

"

times ? In solving the following question, "If 1

yard cost 5 shillings, how much will 12 yards cost ?
"

we do not multiply the 12 yards by the 5 shillings ;

the process we go through is the following : Since

each yard costs 5 shillings, the buyer must put down
5 shillings as often (as many times) as the seller uses

a one-yard measure
;

that is, 5 shillings is taken 12

times. In division we must have the idea either of

repetition or of partition, that is, of cutting a quantity
into a number of equal parts.

"
Divide 18 miles by 3

miles
"
means, find out how many times 3 miles must

be repeated to give 18 miles : but
"
divide 18 miles

by 3
"
means, cut 18 miles into 3 equal parts, and

find how many miles are in each part.
The symbols of arithmetic have a determinate con-

nection ; for instance, 4 is always 2+2, whatever the

things mentioned may be, miles, feet, acres, &c.

In algebra we take symbols for numbers which have
no determinate connection. As in arithmetic we
draw conclusions about 1, 2, 3, &c., which are equally
true of 1 foot, 2 feet, &c., 1 minute, 2 minutes, &c. ;

so in algebra we reason upon numbers in general,
and draw conclusions which are equally true of all

numbers. It is true that we also use, in kinds of

algebra which have been developed within the last

century, letters to represent things other than
numbers for example, classes of individuals with
a certain property, such as

"
horned animals," for

logical purposes ;
or .certain geometrical or physical

things with directions in space, such as
"
forces

"

and signs like
" + " and " "

to represent ways of

combination of the things, which are analogous to,

but not identical with, addition and subtraction.

If
"
a
"
denotes

"
the class of horned animals

" and
"
6
"

denotes
"
the class of beasts of burden," the
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sign
"
ab

"
has been used to denote

"
the class of

horned beasts of burden." We see that here abba,
just as in the multiplication of numbers, and the

above operation has been called, partly for this

reason, "logical multiplication," and denoted in

the above way. Here we meet the practice of

mathematicians and of all scientific men of using
words in a wider sense for the sake of some analogy.
This habit is all the more puzzling to many people
because mathematicians are often not conscious that

they do it, or even talk sometimes as if they thought
that they were generalising conceptions instead of

words. But, when we talk of a
"
family tree," we

do not indicate a widening of our conception of trees

of the roadside.

We shall not need to consider these modern

algebras, but we shall be constantly meeting what
are called the

"
generalisations of number " and

transference of methods to analogous cases. Indeed,
it is hardly too much to say that in this lies the very
spirit of discovery. An example of this is given by
the extension of the word " numbers "

to include

the names of fractions as well. The occasion for this

extension was given by the use of arithmetic to

express such quantities as distances. This had been
done by Archimedes and many others, and had be-

come the usual method of procedure in the works of

the mathematicians of the sixteenth century, and

plays a great part in Descartes' work.

Mathematicians, ever since they began to apply
arithmetic to geometry, became alive to the fact

that it was convenient to represent points on a

straight line by numbers, and numbers by points on
a straight line. What is meant by this may be
described as follows. If we choose a unit of length,
we can mark off points in a straight line correspond-

ing to units which means that we select a point,
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called
"
the origin," to start from, 1 unit, 2 units,

3 units, and so on, so that
"
the point m," as we will

call it for short, is at a distance of m units from the

origin. Then we can divide up the line and mark
points corresponding to the fractions |, f , J-, ^, f,
or the point between 1 and 2 which is the same dis-

tance from 1 as f is from 0, and so on. Now, there

is nothing here to distinguish fractions from numbers.
Both are treated exactly in the same way ;

the results

of addition, subtraction, multiplication, and divi-

sion * are interpretable in much the same way as

new points whether the "a" and "6" in
"
a+b,""

ab,"
" ab" and so on, stand for numbers or

fractions, and we have, for example,

a+b=b+a, ab=ba, a (b+c)=ab+ac,

always. Because of this very strong analogy,
mathematicians have called the fractions

"
numbers "

too, and they often speak and write of
"
generalisa-

tions of numbers," of which this is the first example,
as if the conception of number were generalised, and
not merely the name "

number," in virtue of a great
and close and important analogy.
When once the points of a line were made to

represent numbers, there seemed to be no further

difficulty in admitting certain
"
irrational numbers

"

to correspond to the end-points of the incommensur-
able lines which had been discovered by the Greeks.

This question will come up again at a later stage :

* The operation of what is called, for the sake of analogy,"
multiplication

"
of fractions is defined in the manner in-

dicated hi the following example. If f of a yard costs 10d.,

how much does f of a yard cost ? The answer is 5 3o x o

pence, and we define -z 5 as ,
"
multiplied by

"
|, by analogy

with what would happen if were 1 and were, say, 3.
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there are necessary discussions of principle involved,
but mathematicians did not go at all deeply into

questions of principle until fairly modern times.

Thus it has happened that, until the last sixty years
or so, mathematicians were nearly all bad reasoners,
as Swift remarked of the mathematicians of Laputa
in Gulliver's Travels, and were unpardonably hazy
about first principles. Often they appealed to a

sort of faith. To an intelligent and doubting
beginner, an eminent French mathematician of the

eighteenth century said :

" Go on, and faith will

come to you." It is a curious fact that mathema-
ticians have so often arrived at truth by a sort of

instinct.

Let us now return to our numerical algebra. Take,

say, the number 8, and the fraction, which we will

now call a
" number "

also, J. Add 1 to both
;
the

greater contains the less exactly 8 times. Now this

property is possessed by any number, and not 8 alone.

In fact, if we denote the number we start with by

"a," we have, by the rules of algebra, r~~r~-\
a -

This is an instance of a general property of numbers

proved by algebra.

Algebra contains many rules by which a com-

plicated algebraical expression can be reduced to

its simplest terms. Owing to the suggestive and

compact notation, we can easily acquire an almost

mechanical dexterity in dealing with algebraical

symbols. This is what Descartes means wTien- ha.

"BpeSfcgTo? algebra as not being a science fitted to

- ^.cultivate the mind. On the other hand, this art is

due to the principle of the economy of thought; ^snd~

the mechanical aspect becomes, as Descartes fore-

-r,
1

saw, very valuable if we could use it to solve geo-
metrical problems without the necessity of fatiguing
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our imaginations by long reasonings on geometrical

figures.

I have already mentioned that the valuable nota-

tion
"
xm " was due to Descartes. This was pub-

lished, along with all his other improvements in

algebra, in the third part of his Geometry of 1637.

I shall speak in the next chapter of the great dis-

covery contained in the first two parts of this work ;

here I will resume the improvements in notation and
method made by Descartes and his predecessors,
which make the algebraical part of the Geometry

very like a modern book on algebra.
It is still the custom in arithmetic to indicate

addition by juxtaposition : thus
"
2|

" means
" 2+." In algebra, we always, nowadays, indicate

addition by the sign
" + " and multiplication by

juxtaposition or, more rarely, by putting a dot or the

sign
" x "

between the signs of the numbers to be

multiplied. Subtraction is indicated by
"

".

Here we must digress to point out what is often,

owing to confusion of thought, denied in text-

books that, where
"
a
" and "

b
"

denote numbers,
"a b" can only denote a number if a is equal to

or greater than b. If c is equal to b, the number
denoted is zero; there is really no good reason for

denying, say, that the numbers of Charles II. 's foolish

sayings and wise deeds are equal, if a well-known

epitaph be true. Here again we meet the strange

way in which mathematics has developed. For
centuries mathematicians used

"
negative

"
and

"
positive

"
numbers, and identified

"
positive

"

numbers with signless numbers like 1, 2, and 3,

without any scruple, just as they used fractionary
and irrational

"
numbers." And when logically-

minded men objected to these wrong statements,
mathematicians simply ignored them or said :

" Go
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on ; faith will come to you." And the mathema-
ticians were right, and merely could not give correct

reasons or at least always gave wrong ones for

what they did. We have, over again, the fact that

criticism of the mathematicians' procedure, if it

wishes to be relevant, must be based on thorough
sympathy and understanding. It must try to ac-

count for the Tightness of mathematical views, and

bring them into conformity with logic. Mathema-
ticians themselves never found a competent philo-

sophical interpreter, and so nearly all the interesting

part of mathematics was left in obscurity until, in

the latter half of the nineteenth century, mathema-
ticians themselves began to cultivate philosophy
or rather logic.
Thus we must go out of the historical order to

explain what "
negative numbers

"
means. First,

we must premise that when an algebraical expression
is enclosed in brackets, it signifies that the whole

result of that expression stands in the same relation

to surrounding symbols as if it were one letter only.

Thus, "a (b c)
" means that from a we are to

take bc, or what is left after taking c from b. It

is not, therefore, the same as a bc. In fact we

easily find that a (bc) is the same as a b+c.
Note also that

"
(a+b) (c+d)

" means (a+b) multi-

plied by (c+d).
Now, suppose a and b are numbers, and a is greater

than b. Let a 6 be c. To get c from a, we carry
out the operation of taking away b. This operation,
which is the fulfilment of the order :

"
Subtract b," is

a
"
negative number." Mathematicians call it a

" number " and denote it by
"

b
"
simply because

of analogy : the same rules for calculation hold for
"
negative numbers

" and "
positive numbers

"
like

"
+6," whose meaning is now clear too, as do for our

signless numbers ;
when "

addition,"
"
subtraction,"
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&c., are redefined for these operations. The way
in which this redefinition must take place is evident

when we represent integers, fractions, and positive
and negative numbers by points on a straight line.

To the right of are the integers and fractions, to

the left of are the negative numbers, and to the

right of stretch the series of positive numbers,
-\-a coinciding with a and being symmetrically placed
with a as regards 0. Also we determine that the

operations of what we call
"
addition," &c., of these

new " numbers
"
must lead to the same results as the

former operations of the same name. Thus the same

symbol is used in different senses, and we write

This is a remarkable sequence of quick changes.
We have used the sign of equality,

" = ". It

means originally,
"

is the same as." Thus 3+1=4-
But we write, by the above convention, "a=+a,"
and so we sacrifice exactness, which sometimes looks

rather pedantic, for the sake of keeping our analogy
in view, and for brevity.
Let us bear this, at first sight, puzzling but, at

second sight, justifiable peculiarity of mathematicians
in mind. It has always puzzled intelligent beginners
and philosophers. The laws of calculation and con-

venient symbolism are the things a mathematician
thinks of and aims at. He seems to identify different

things if they both satisfy the same laws which are

important to him, just as a magistrate may think
that there is not much difference between Mr. A.,
who is red-haired and a tinker and goes to chapel,
and Mr. B., who is a brown-haired horse-dealer and

goes to church, if both have been found out com-

mitting petty larceny. But their respective ministers

of religion or wives may still be able to distinguish
them.

(2,051) 4
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Any two expressions connected by the sign of

equality form an "
equation." Here we must notice

that the words "Solve the equation x2+ax=b "

mean: find the value or values of x such that, a
and b being given numbers, xz+ax becomes b. Thus,
if a=2 and b= 1, the solution is x= 1.

As we saw above, Descartes fixed the custom of

employing the letters at the beginning of the alphabet
to denote known quantities, and those at the end of

the alphabet to denote unknown quantities. Thus,
in the above example, a and 6 are some numbers

supposed to be given, while x is sought. The ques-
tion is solved when x is found in terms of a and b and
fixed numbers (like 1, 2, 3) ;

and so, when to a and b

are attributed any fixed values, x becomes fixed.

The signs
"
a
" and " b" denote ambiguously, not

uniquely like as
"
2
"
does

;
and "

x "
does not always

denote ambiguously when a and b are fixed. Thus,
in the above case, when o=2, &= 1,

"
x "

denotes

the one negative number 1. What is meant is

this : In each member of the class of problems got

Tjy giving a and b fixed values independently of one

another, there is an unknown x, which may or may
not denote different numbers, which only becomes
known when the equation is solved. Consider now
the equation ax+by=c, where a, b, and c are known

quantities and x and y are unknown. We can find

x in terms of a, b, c, and y, or y in terms of a, b, c,

and x
; but x is only fixed when y is fixed, or y when

a; is fixed. Here in each case of fixedness of a, 6, and

c, x is undetermined and "
variable," that is to say,

it may take any of a whole class of values. Cor-

responding to each x, one y belongs ;
and y also

is a
"
variable

"
depending on the

"
independent

variable
"

x. The idea of
"
variability

"
will be

further illustrated in the next chapter ;
here we will

only point out how the notion of what is called by
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mathematicians the
"
functional dependence

"
of

y on x comes in. The variable y is said to be a
"
function

"
of the variable x if to every value of x

corresponds one or more values of y. This use has,
to some extent, been adopted in ordinary language.
We should be understood if we were to say that the

amount of work performed by a horse is a function

of the food that he eats.

Descartes also adopted the custom if he did not

arrive at it independently advocated by Harriot

of transferring all the terms of an equation to the

same side of the sign of equality. Thus, instead of
"
x=l,"

"
ax-\-b=c," and " 3x2

-\-g=hx," we write

respectively
" x 1=0,"

"
ax+(b c)=0," and

"
3x2

Jix+g=Q." The point of this is that all equa-
tions of the same degree in the unknown we shall

have to consider cases of more unknowns than one in

the next chapter that is to say, equations in which
the highest power of. x (x or x2 or x3

. . . .)
is the same,

are easily recognisable. Further, it is convenient
to be able to speak of the expression which is equated
to as well as of the equation. The equations in

which x2
, and no higher power of x, appears are

called
"
quadratic

"
equations the result of equating

a
"
quadratic

"
function to

;
those in which x3,

and no higher power, appears are called
"
cubic

"
;

and so on for equations
"
of the fourth, fifth ..."

degrees. Now the quadratic equations, 3x2+g=0,
ax-+bx+c=Q, x2

1=0, for example, are different,

but the differences are unimportant in comparison
with this common property of being of the same

degree : all can be solved by modifications of one

general method.
Here it is convenient again to depart from the

historical order and briefly consider the meaning
of what are called

"
imaginary

"
expressions. If

we are given the equation x* 1=0, its solutions are
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evidently x= + l or x= 1, for the square roots

of +1 are +1 and 1. But if we are given the

equation z'
2+l=0, analogy would lead us to write

down the two solutions x= + -Jl and x= Jl.
But there is no positive or negative

"
number

"

which we have yet come across which, when multi-

plied by itself, gives a negative
"
number." Thus

"
imaginary numbers " were rejected by Descartes

and his followers. Thus x- 1=0 had two solutions,
but z2+l=0 none; further, x?+x*+x+l=Q had
one solution (x= 1), while x3 x2 z+l=0 had
two (x=l, x= 1), and x3 2z2 z+2=0 had three

(x=l, x= 1, x=2). Now, suppose, for a mo-

ment, that we can have
"
imaginary

"
roots and

( Jl) ( v/ 1)= 1, and also that we can speak of

two roots when the roots are identical in a case like

the equation x2+2x+l=0, or (z+l)
2=0, which

has two identical roots x= 1. Then, in the above
five equations, the first two quadratic ones have

two roots each (+!,-!, and + ,J^I,
- J^l

respectively), and the three cubics have three

each (-1, + J^T, - J^T; +1, -1, +1; and

+ 1, 1, +2 respectively). In the general case, the

theorem has been proved that every equation has

as many roots as (and not merely
" no more than,"

as Descartes said) its degree has units. For this

and for many other reasons like it in enabling
theorems to be stated more generally,

"
imaginary

numbers " came to be used almost universally.
This was greatly helped by one puzzling circum-

stance : true theorems can be discovered by a process
of calculation with imaginaries. The case is analo-

gous to that which led mathematicians to introduce

and calculate with
"
negative numbers."

For the case of imaginaries, let a, b, c, and d be

any numbers, then
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= (a+b J-l)(c+d J-l)

= [(ac-bd)+
[(ac-bd)- J-

= (ae-bdf+(ad+bc)'
2
.

AVe get, then, an interesting and easily verifiable

theorem on numbers by calculation with imaginaries,
and imaginaries disappear from the conclusion.

Mathematicians thought, then, that imaginaries,

though apparently uninterpretable and even self-

contradictory, must have a logic. So they were
used with a faith that was almost firm and was only

justified much later. Mathematicians indicated

their growing security in the use of JI by writing
"

i
"

instead of
"

N/ 1
" and calling it

"
the com-

plex unity," thus denying, by implication, that

there is anything really imaginary or impossible or

absurd about it.

The truth is that
"

i
"

is not uninterpretable. It

represents an operation, just as the negative numbers

do, but is of a different kind. It is geometrically

interpretable also, though not in a straight line, but
in a plane. For this we must refer to the Bibliog-

raphy ;
but here we must point out that, in this

"
generalisation of number "

again, the words
"
addition,"

"
multiplication," and so on, do not have

exactly the same, but an analogous, meaning to those

which they had before, and that
"
complex numbers

"

form a domain like a plane in which a line represent-

ing the integers, fractions, and irrationals is con-

tained. But we must leave the further development
of these questions.
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It must be realised that the essence of algebra is

its generality. In the most general case, every

symbol and every statement of a proposition in alge-
bra is interpretable in terms of certain operations
to be undertaken with abstract things such as

numbers or classes or propositions. These opera-
tions merely express the relations of these things to

one another. If the results at any stage of an alge-
braical process can be interpreted and this inter-

pretation is often suggested by the symbolism say,
not as operations with operations with integers, but
as other operations with integers, they express true

propositions. Thus (a+fe)
2=a'2+2o5+62

expresses,
for example, a relation holding between those opera-
tions with integers that we call

"
fractionary num-

bers," or an analogous relation between integers.
The language of algebra is a wonderful instrument
for expressing shortly, perspicuously, and sugges-

tively, the exceedingly complicated relations in which
abstract things stand to one another. The motive
for studying such relations was originally, and is

still in many cases, the close analogy of relations

between certain abstract things to relations between
certain things we see, hear, and touch in the world

of actuality round us, and our minds are helped in

discovering such analogies by the beautiful picture
of algebraical processes made in space of two or of

three dimensions made by the
"
analytical geometry

"

of Descartes, described in the next chapter.



CHAPTER III.

THE RISE AND PROGRESS OF MODERN MATHEMATICS
ANALYTICAL GEOMETRY AND THE METHOD OF

INDIVISIBLES.

WE will now return to the consideration of the first

two sections of Descartes' book Geometry of 1637.

In Descartes' book we have to glean here and there

what we now recognise as the essential points in

his new method of treating geometrical questions.
These points were not expressly stated by him. I

shall, however, try to state them in a small compass.
Imagine a curve drawn on a plane surface. This

curve may be considered as a picture of an algebraical

equation involving x and y in the following way.
Choose any point on the curve, and call

"
x
" and

"
y
"

the numbers that express the perpendicular
distances of this point, in terms of a unit of length,
from two straight lines (called

"
axes ") drawn at

right angles to one another in the plane mentioned.

Now, as we move from point to point of the curve,
x and y both vary, but there is an unvarying relation

which connects x and y, and this relation can be expressed

by an algebraical equation called
"

the equation of the

curve," and which contains, in germ as it were, all the

properties of the curve considered. This constant rela-

tion between x and y is a relation like y~=kax. We
must distinguish carefully between a constant relation

between variables and a relation between constants.

We are always coming across the former kind of
55
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relation in mathematics ;
we call such a relation a

"
function

"
of x and y the word was first used about

fifty years after Descartes' Geometry was published,

by Leibniz and write a function of x and y in general
as

"
f(x, y}." In this notation, no hint is given as

to any particular relation x and y may bear to each

other, and, in such a particular function as y
2

4ax,
we say that

"
the/orm of the function is constant,"

and this is only another way of saying that the rela-

tion between x and y is fixed. This may be also ex-

plained as follows. If x is fixed, there is fixed one
or more values of y, and if y is fixed, there is fixed one

or more values of x. Thus the equation ax+by+c=Q
gives one y for each x and one x for each y ;

the

equation y'
1 4ax=0 gives two y's for each x and one

x for each y*
Consider the equation ax+by+c=0, or, say, the

more definite instance x+2,y 2=0. Draw axes

and mark off points ; having fixed on a unit of length,
find the point x=l on the x-axis, on the perpendicular
to this axis measure where the corresponding y, got

by substituting =1 in the above equation, brings
us. We find y=\. Take x=$, then */=; and so

on. We find that all the points on the parallels to

the ?/-axis lie on one straight line. This straight
line is determined by the equation x+2y 2=0;
every point off that straight line is such that its

x and y are not connected by the relation x+2^2=0,
and every point of it is such that its x and y are con-

nected by the relation x-\-1y-2=0. Similarly we
can satisfy ourselves that every point on the cir-

* We also denote a function of x by "fix)
"

or
"

F(x)
"

or
"

<p(x)," &c. Here "/" is a sign for "function of," not
for a number, just as later we shall find

"
sin

" and " A "

and " d "
standing for functions and not numbers. This

may be regarded as an extension of the language of early

algebra. The equation y=f[r) is in a good form for graphical
representation in the manner explained below.
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cumference of a circle of radius c units of length,
described round the point where the axes cross, is

such that o;
2
+2/

2 c2
,
and every point not on this

circumference does not have an x and y such that the
constant relation 2

+?/
2=c2

is satisfied for it.

There are two points to be noticed in the above

general statement. Firstly, I have said that the
curve

"
may be expressed," and so on. By this I

mean that it is possible and not necessarily always
true that the curve may be so considered. We
can imagine curves that cannot be represented by
a finite algebraical equation. Secondly, about the
fundamental lines of reference the

"
axes

"
as they

are called. One of these axes we have called the
"

a;-axis," and the distance measured by the number
x is sometimes called

"
the abscissa

"
;

while the
line of length y units which is perpendicular to the
end of the abscissa farthest from the origin, and
therefore parallel to the other axis (" the y-axis ")
is called

"
the ordinate." The name "

ordinate
"

was used by the ancient Roman surveyors. The
lines measured by the numbers x and y are called

the
"
co-ordinates

"
of the point determining and

determined by them. Sometimes the numbers x
and y themselves are called

"
co-ordinates," and we

will adopt that practice here.

Sometimes the axes are not chosen at right angles
to one another, but it is nearly always far simpler
to do so, and in this book we always assume that the
axes are rectangular. The whole plane is divided

by the axes into four partitions, the co-ordinates

are measured from the point called
"
the origin

"

where the axes cross. Here the interpretation in

geometry of the
"
negative quantities

"
of algebra

which so often seems so puzzling to intelligent be-

ginners gives us a means of avoiding the ambiguity
arising from the fact that there would be a point
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with the same co-ordinates in each quadrant into

which the plane is divided.

Consider the cc-axis. Measure lengths on it from
the origin, so that to the origin (0) corresponds the

number 0. Let OA, measured from left to right

along the axis, be the unit of length ;
then to the

point A corresponds the number 1. Then let lengths

AB, BC, and so on, all measured from left to right,
be equal to OA in length ;

to the points B, C, and so

on, correspond the numbers 2, 3, and so on. Further

to the point that bisects OA let the fraction

correspond ;
and so on for the other fractions.

In this way half of the z-axis is nearly filled up with

points. But there are points, such as the point
P, such that OP is the length of the circumference

of a circle, say of unit diameter. For picturesque-
ness, we may imagine this point P got by rolling the

circle along the z-axis from through one revolution.

The point P will faU a little to the left of the point
3i and a little to the right of the point 3/7 ,

and so on
;

the point P is not one of the points to which names
of fractions have been assigned by the process sketched
above. This can be proved rigidly. If it were not

true, it would be very easy to
"
square the circle."

There are many other points like this. There is

no fraction which, multiplied by itself, gives 2 ;

but there is a length the diagonal of a square of

unit side which is such that, if we were to assume
that a number corresponded to every point on OX, it

would be a number a such that a2=2. We will

return to this important question of the correspon-
dence of points and lines to numbers, and will now

briefly recall that
"
negative numbers

"
are repre-

sented, in Descartes' analytical geometry, on the

3-axis, by the points to the left of the origin, and,
on the y-axis, by the points below the origin. This

was explained in the second chapter.
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Algebraical geometry gave us a means of classifying
curves. All straight lines determine equations of the

first degree between x and y, and all such equations
determine straight lines

;
all equations of the second

degree between x and y, that is to say, of the form

determine curves which the ancient Greeks had
studied and which result from cutting a solid circular

cone, or two equal cones with the same axis, whose

only point of contact is formed by the vertices. It

is somewhat of a mystery why the Greek geometri-
cians should have pitched upon these particular
curves to study, and we can only say that it seems,
from the present standpoint, an exceedingly lucky
chance. For these "conic sections" of which, of

course, the circle is a particular case are all the

curves, and those only, which are represented by the

above equation of the second degree. The three

great types of curves the
"
parabola," the

"
ellipse,"

and the
"
hyperbola

"
all result from the above

equation when the coefficients a, b, c, d, e, f satisfy
certain special conditions. Thus, the equation of a

circle which is a particular kind of ellipse is always
of the form got from the above equation by putting
6=0 and c=a.

It may be mentioned that, long after these curves

were introduced as sections of a cone, Pappus dis-

covered that they could all be defined in a plane as

loci of a point P which moves so that the proportion
that the distance of P from a fixed point (S) bears to

the perpendicular distance of P(PN) to a fixed straight
line is constant. As this proportion is less than

equal to or greater than 1, the curve is an ellipse,

parabola, or hyperbola, respectively.
It will not be expected that a detailed account

should here be given of the curves which result from
the development of equations of the second or higher
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degrees between x and y, I will merely again em-

phasise some points which are, in part, usually

neglected or not clearly stated in text-books. The
letters

"
a, 6, ... x, y" here stand for

"
numbers "

in the extended sense; We have seen in what
sense we may, with the mathematicians, speak of

fractionary, positive, and negative "numbers,"
and identify, say, the positive number + 2 and the

fraction
-|

with the signless integer 2. Well, then,
the above letters stand for numbers of that class

which includes in this sense the fractionary, irrational,

positive and negative numbers, but excludes the

imaginary numbers. We call the numbers of this

class
"
real

"
numbers. The question of irrational

numbers will be discussed at greater length in the

sixth chapter, but enough has been said to show how
they were introduced. In mathematics it has, I

think, always happened that conceptions have been
used long before they were formally introduced, and
used long before this use could be logically justi-
fied or its nature clearly explained. The history of

mathematics is the history of a faith whose justi-
fication has been long delayed, and perhaps is not

accomplished even now.
These numbers are the measurements of length,

in terms of a definite unit, like the inch, of the

abscissae and ordinates of certain points. We speak
of such points simply by naming their co-ordinates,

and say, for example, that
"
the distance of the

point (x, y} from the point (a, 6) is the positive

square root of (x a)
2
-{-(y b)

2
.

Notice that x2
,
for example, is the length of a line.

It is natural to make, as algebraists before Descartes

did, a
2 stand primarily for the number of square units

in a square whose sides are x units in length, but there

is no necessity in this. We shall often use the latter

kind of measurement in the fourth and fifth chapters.
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The equation of a straight line can be made to

satisfy two given conditions. We can write the

equation in the form

and thus have two ratios, - and -, that we can
a a

determine according to the conditions. The equa-
tion ax+by+c=Q has apparently three

"
arbitrary

constants," as they are called, but we see that this

greater generality is only apparent. Now we can
so fix these constants that two conditions are ful-

filled by the straight line in question. Thus, sup-

pose that one of these conditions is that the

straight line should pass through the origin the

point (0, 0). This means simply that when x=0,
then y0. Putting them, x=0 and y=0 in the

above equation, we get -=0, and thus one of the

constants is determined. The other is determined

by a new condition that, say, the line also passes

through the point (J, 2). Substituting, then, in the

above equation, we have, as -=0, as we know

already, J+ =0, whence -=
|. Hence the equa-

tion of the line passing through (0, 0) and (, 2) is

x %y=0, or y 6x=0. Instead of having to pass

through a certain point, a condition may be, for

example, that the perpendicular from the origin on
the straight line should be of a certain length, or

that the line should make a certain angle with the

z-axis, and so on.

Similarly, the circle, whose equation is written in

the form
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is of radius c and centre (a, 6). It can be deter-

mined to pass through any three points, or, say, to

have a determined length of radius and position of

centre. Fixation of centre is equivalent to two con-

ditions. Thus, suppose the radius is to be of unit

length : the above equation is (x a)
2
+(y b)'

2=l.
Then, if the centre is to be the origin, both a and
6 are determined to be 0, and this may also be
effected by determining that the circle is to pass

through the points (|, 0) and ( |, 0), for example.
Now, if we are to find the points of intersection

of the straight line 2x+2y=l and the circle

je
2
-f-y

2=l, we seek those points which are common
to both curves, that is to say, all the pairs of values

of x and y which satisfy both the above equations.
Thus we need not trouble about the geometrical

picture, but we only have to apply the rules of

algebra for finding the values of x and y which satisfy
two "

simultaneous
"

equations in x and y. In the

above case, if (X, Y) is a point of intersection, we
-i n Y

have Y= -
,
and therefore, by substitution

in the other equation, X2+(
l ~ 2^V=1. This

gives a quadratic equation

8Z2-4X-3=0
for X, and, by rules, we find that X must be either

i(l+ x/7) or |(1- v/7). Hence there are two

values of the abscissa which are given when we ask

what are the co-ordinates of the points of inter-

section
;
and the value of y which corresponds to

each of these x's is given by substitution in the

equation 2x+2y=l.
Thus we find again the fact, obvious from a figure,

that a straight line cuts at two points at most. We
can determine the points of intersection of any
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two curves whose equations can be expressed alge-

braically, but of course the process is much more

complicated in more general cases. Here we will

consider an important case of intersection of a

straight line.

Think of a straight line cutting a circle at two

points. Imagine one point fixed and the other point
moved up towards the first. The intersecting line

approaches more and more to the position of the

tangent to the circle at the first point, and, by making
the movable point approach the other closely enough,
the secant will approach the tangent in position as

nearly as we wish. Now, a tangent to a curve at a
certain point was defined by the Greeks as a straight
line through the point such that between it and the

curve no other straight line could be drawn. Note
that other curves might be drawn : thus various

circles may have the same tangent at a common
point on their circumference, but no circle and no
curve met with in elementary mathematics has

more than one tangent at a point. Descartes and

many of his followers adopted different forms of

definition which really involve the idea of a limit,

an idea which appears boldly in the infinitesimal

calculus. A tangent is the limit of a secant as the

points of intersection approach infinitely near to

one another
; it is a produced side of the polygon

with infinitesimal sides that the curve is supposed
to be

;
it is the direction of motion at an instant of

a point moving in the curve considered. The equa-
tion got from that of the curve by substituting for

y from the equation of the intersecting straight line

has, if this straight line is a tangent, two equal
roots. In the above case, this equation was quad-
ratic. In the case of a circle, we can easily deduce
the well-known property of a tangent of being

perpendicular to the radius ;
and see that this
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property has no analogue in the case of other

curves.

We must remember that, just as plane curves

determine and are determined by equations with

two independent variables x and y, so surfaces

spheres, for instance in three-dimensional space
determine and are determined by equations with

three independent variables, x, y, and z. Here

x, y, and z are the co-ordinates of a point in

space ;
that is to say, the numerical measures of

the distances of this point from three fixed planes
at right angles to each other. Thus, the equation
of a sphere of radius d and centre at (a, b, c) is

(x-ar-+(y-W+(z-c?=V.
We may look at analytical geometry from another

point of view which we shall find afterwards to be

important, and which even now will suggest to us

some interesting thoughts. The essence of Descartes'

method also appears when we represent loci by the

method. Consider a circle
;

it is the locus of a

point (P) which moves in a plane so as to preserve
a constant distance from a fixed point (0). Here
we may think of P as varying in position, and make

up a very striking picture of what we call a variable

in mathematics. We must, however, remember

that, by what we call a
"
variable

"
for the sake of

picturesqueness, we do not necessarily mean some-

thing which varies. Think of the point of a pen as

it moves over a sheet of writing paper ;
it occupies

different positions with respect to the paper at

different times, and we understandably say that the

pen's point moves. But now think of a point in

space. A geometrical point which is not the bit

of space occupied by the end of a pen or even an
" atom "

of matter is merely a mark of position.
We cannot, then, speak of a point moving ;

the very
essence of point is to be position. The motion of a
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point of space, as distinguished from a point of

matter, is a fiction, and is the supposition that a

given point can now be one point and now another.

Motion, in the ordinary sense, is only possible to
matter and not to space. Thus, when we speak of

a
"
variable position," we are speaking absurdly if

we wish our words to be taken literally. But we
do not really so wish when we come to think about
it. What we are doing is this : we are using a

picturesque phrase for the purpose of calling up an

easily imagined thought which helps us to visualise

roughly a mathematical proposition which can only
be described accurately by a prolix process. The
ancient Greeks allowed prolixity, and it was only
objected to by the uninitiated. Modern mathematics

up to about sixty years ago successfully warred

against prolixity ; hence the obscurity of its funda-
mental notions and processes and its great conquests.
The great conquests were made by sacrificing very
much to analogy : thus, entities like the integer 2,

the ratio 2/1, and the real number which is denoted

by
"
2
"
were identified, as we have seen, because of

certain close analogies that they have. This seems
to have been the chief reason why the procedure of

the mathematicians has been so often condemned

by logicians and even by philosophers. In fact,

when mathematicians began to try to find out the

nature of Mathematics, they had to examine their

entities and the methods which they used to deal with
them with the minutest care, and hence to look out
for the points when the analogies referred to break

down, and distinguish between what mathematicians
had usually failed to distinguish. Then the people
who do not mind a bit what Mathematics is, and are

only interested in what it does, called these earnest

inquirers
"
pedants

" when they should have said
"
philosophers," and

"
logic-choppers

"
whatever

(2,051) 5
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they may be when they should have said "logicians."
We have tried to show why ratios or fractions, and
so on, are called

"
numbers," and apparently said

to be something which they are not ;
we must now

try to get at the meaning of the words
"
constant

"

and "
variable."

By means of algebraic formulae, rules for the recon-

struction of great numbers sometimes an infinity
of facts of nature may be expressed very concisely

or even embodied in a single expression. The essence

of the formula is that it is an expression of a constant

rule among variable quantities. These expressions"
constant

" and "
variable

"
have come down into

ordinary language. We say that the number of

miles which a certain man walks per day is a
" variable quantity

"
; and we do not mean that,

on a particular day, the number was not fixed and

definite, but that on different days he walked, gener-

ally speaking, different numbers of miles. When, in

mathematics, we speak of a
"
variable," what we

mean is that we are considering a class of definite

objects for instance, the class of men alive at

the present moment and want to say something
about any one of them indefinitely. Suppose that

we say :

"
If it rains, Mr. A. will take his umbrella

out with him "
;

the letter
" A "

here is what we
call the sign of the

"
variable." We do not mean

that the above proposition is about a variable man.
There is no such thing ;

we say that a man varies

in health and so in time, but, whether or not such
a phrase is strictly correct, the meaning we would
have to give the phrase

"
a variable

"
in the above

sentence is not one and the same man at different

periods of his own existence, but one and the same
man who is different men in turn. What we mean is

that if
" A "

denotes any man, and not Smith or

Jones or Robinson alone, then he takes out his
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umbrella on certain occasions. The statement is

not always true
;
it depends on A. If

" A "
stands

for a bank manager, the statement may be true
;

ii

for a tramp or a savage, it probably is not. Instead
of

"
A," we may put

" B "
or

" C "
or

" X "
;

the

kind of mark on paper does not really matter in the

least. But we attach, by convention, certain mean-

ings to certain signs ;
and so, if we wrote down a

mark of exclamation for the sign of a variable, we

might be misunderstood and even suspected of

trying to be funny. We shall see, in the seventh

chapter, the importance of the variable in logic and
mathematics.

" Laws of nature
"

express the dependence upon
one another of two or more variables. This idea

of dependence of variables is fundamental in all

scientific thought, and reaches its most thorough
examination in mathematics and logic under the

name of
"
functionality." On this point we must

refer back to the second chapter. The ideas of

function and variable were not prominent until the

time of Descartes, and names for these ideas were
not introduced until much later.

The conventions of analytical geometry as to the

signs of co-ordinates in different quadrants of the

plane had an important influence in the transforma-

tion of trigonometry from being a mere adjunct to

a practical science. In the same notation as that

used at the end of the first chapter, we may con-

veniently call the number
-y^,

which is the same

for all lengths of OP, by the name " u" for short,

and define -^ and ^ as the
"
sine of u" and

the
"
cosine of u "

respectively. Thus "sin u "
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and
"
cos w," as we write them for short, stand for

numerical functions of u. Considering as the

origin of a system of rectangular co-ordinates of

which OA is the x-axis, so that u measures the

angle POA and - and ^ are cos u and sin u respec-

tively. Now, even if u becomes so great that POA
is successively obtuse, more than two right angles
. . ., these definitions can be preserved, if we pay
attention to the signs of x and y in the various

quadrants. Thus sin u and cos u become separated
from geometry, and appear as numerical functions

of the variable u, whose values, as we see on re-

flection, repeat themselves at regular intervals as u
becomes larger and larger. Thus, suppose that OP
turns about in a direction opposite to that in which
the hands of a clock move. In the first quadrant, sin

u and cos u are ^ and -
;

in the second they are
r r

U and ^^ ; in the third they are ~^- and ; in the
r r r r

fourth they are ^- and -; in the fifth they are

^ and - again ; and so on. Trigonometry was

separated from geometry mainly by John Bernoulli

and Euler, whom we shall mention later.

We will now turn to a different development of

mathematics.
The ancient Greeks seem to have had something

approaching a general method for finding areas of

curvilinear figures. Indeed, infinitesimal methods,
which allow indefinitely close approximation, natu-

rally suggest themselves. The determination of the

area of any rectilinear figure can be reduced to that
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of a rectangle, and can thus be completely effected.

But this process of finding areas this "method of

quadratures
"

failed for areas or volumes bounded

by curved lines or surfaces respectively. Then
the following considerations were applied. When
it is impossible to find the exact solution of a ques-
tion, it is natural to endeavour to approach to it as

nearly as possible by neglecting quantities which
embarrass the combinations, if it be foreseen that
these quantities which have been neglected cannot,

by reason of their small value, produce more than a

trifling error in the result of the calculation. For

example, as some properties of curves with respect
to areas are with difficulty discovered, it is natural

to consider the curves as polygons of a great number
of sides. If a regular polygon be supposed to be in-

scribed in a circle, it is evident that these two figures,

although always different, are nevertheless more and
more alike according as the number of the sides of

the polygon increases. Their perimeters, their areas,

the solids formed by their revolving round a given axis,

the angles formed by these lines, and so on, are, if

not respectively equal, at any rate so much the

nearer approaching to equality as the number of

sides becomes increased. Whence, by supposing the

number of these sides very great, it will be possible,
without any perceptible error, to assign to the

circumscribed circle the properties that have been
found belonging to the inscribed polygon. Thus,
if it is proposed to find the area of a given circle,

let us suppose this curve to be a regular polygon
of a great number of sides : the area of any regular

polygon whatever is equal to the product of its per-
imeter into the half of the perpendicular drawn from
the centre upon one of its sides

; hence, the circle

being considered as a polygon of a great number of

sides, its area ought to equal the product of the
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circumference into half the radius. Now, this result

is exactly true. However, the Greeks, with their

taste for strictly correct reasoning, could not allow

themselves to consider curves as polygons of an
"

infinity
"

of sides. They were also influenced by
the arguments of Zeno, and thus regarded the use

of
"
infinitesimals

"
with suspicion.

Zeno showed that we meet difficulties if we hold

that time and space are infinitely divisible. Of the

arguments which he invented to show this, the best

known is the puzzle of Achilles and the Tortoise.

Zeno argued that, if Achilles ran ten times as fast

as a tortoise, yet, if the tortoise has (say) 1000 yards
start, it could never be overtaken. For, when
Achilles had gone the 1000 yards, the tortoise would
still be 100 yards in front of him ; by the time he

had covered these 100 yards, it would still be 10

yards in front of him
;
and so on for ever : thus

Achilles would get nearer and nearer to the tortoise,

but never overtake it. Zeno invented some other

subtle puzzles for much the same purpose, and they
could only be discussed really satisfactorily by quite
modern mathematics.
To avoid the use of infinitesimals, Eudoxus (408-

355 B.C.) devised a method, exposed by Euclid in

the Twelfth Book of his Elements and used by
Archimedes to demonstrate many of his great dis-

coveries, of verifying results found by the doubt-

ful infinitesimal considerations. When the Greeks

wished to discover the area bounded by a curve,

they regarded the curve as the fixed boundary to

which the inscribed and circumscribed polygons

approach continually, and as much as they pleased,

according as they increased the number of their

sides. Thus they exhausted in some measure the

space comprised between these polygons and the

curve, and doubtless this gave to this operation
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the name of
"
the method of exhaustion." As

these polygons terminated by straight lines were
known figures, their continual approach to the
curve gave an idea of it more and more precise, and
"
the law of continuity

"
serving as a guide, the

Greeks could eventually arrive at the exact knowledge
of its properties. But it was not sufficient for

geometricians to have observed, and, as it were,

guessed at these properties ;
it was necessary to

verify them in an unexceptionable way ; and this

they did by proving that every supposition contrary
to the existence of these properties would necessarily-
lead to some contradiction : thus, after, by infini-

tesimal considerations, they had found the area (say)
of a curvilinear figure to be a, they verified it by
proving that, if it is not a, it would yet be greater
than the area of some polygon inscribed in the curvi-

linear figure whose area is palpably greater than that

of the polygon.
In the seventeenth century, we have a complete

contrast with the Grecian spirit. The method of

discovery seemed much more important than cor-

rectness of demonstration. About the same time as

the invention of analytical geometry by Descartes

came the invention of a method for finding the

areas of surfaces, the positions of the centres of

gravity of variously shaped surfaces, and so on.

In a book published in 1635, and in certain later

works, Bonaventura Cavalieri (1598-1647) gave his
"
method of indivisibles

"
in which the cruder ideas

of his predecessors, notably of Kepler (1571-1630),
were developed. According to Cavalieri, a line is

made up of an infinite number of points, each with-

out magnitude, a surface of an infinite number of

lines, each without breadth, and a volume of an
infinite number of surfaces, each without thickness.

The use of this idea may be illustrated by a single
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example. Suppose it is required to find the area

of a right-angled triangle. Let the base be made

up of n points (or indivisibles), and similarly let the
side perpendicular to the base be made of na points,
then the ordinates at the successive points of the base
will contain a, 2a . . ., na points. Therefore the
number of points in the area is a-f-2a+ -\-na;
the sum of which is ^(w

2
o-f na). Since n is very

large, we may neglect \na, for it is inconsider-

able compared with \r?a. Hence the area is com-

posed of a number \(na)n of points, and thus
the area is measured in square units by multiplying
half the linear measure of the altitude by that of

the base. The conclusion, we know from other

facts, is exactly true.

Cavalieri found by this method many areas and
volumes and the centres of gravityof many curvilinear

figures. It is to be noticed that both Cavalieri and
his successors held quite clearly that such a supposi-
tion that lines were composed of points was literally

absurd, but could be used as a basis for a direct and
concise method of abbreviation which replaced with

advantage the indirect, tedious, and rigorous methods
of the ancient Greeks. The logical difficulties in the

principles of this and allied methods were strongly
felt and commented on by philosophers sometimes
with intelligence ; felt and boldly overcome by
mathematicians in their strong and not unreasonable
faith

; and only satisfactorily solved by mathe-
maticians not the philosophers in comparatively
modern times.

The method of indivisibles whose use will be
shown in the next chapter in an important question
of mechanics is the same in principle as

"
the integral

calculus." The integral calculus grew out of the
work of Cavalieri and his successors, among whom the

greatest are Roberval (1602-1675), Blaise Pascal
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(1623-1662), and John Wallis (1616-1703), and mainly
consists in the provision of a convenient and sug-

gestive notation for this method. The discovery of

the infinitesimal calculus was completed by the

discovery that the inverse of the problem of finding
the areas of figures enclosed by curves was the problem
of drawing tangents to these curves, and the provision
of a convenient and suggestive notation for this

inverse and simpler method, which was, for certain

historical reasons, called
"
the differential calculus."

Both analytical geometry and the infinitesimal

calculus are enormously powerful instruments for

solving geometrical and physical problems. The
secret of their power is that long and complicated
reasonings can be written down and used to solve

problems almost mechanically. It is the merest

superficiality to despise mathematicians for busying
themselves, sometimes even consciously, with the

problem of economising thought. The powers of

even the most god-like intelligences amongst us are

extremely limited, and none of us could get very far

in discovering any part whatever of the Truth if we
could not make trains of reasoning which we have

thought through and verified, very ready for and

easy in future application by being made as nearly
mechanical as possible. In both analytical geometry
and the infinitesimal calculus, all the essential prop-
erties of very many of the objects dealt with in

mathematics, and the essential features of very

many of the methods which had previously been
devised for dealing with them are, so to speak, packed
away in a well-arranged (and therefore readily got

at) form, and in an easily usable way.



CHAPTER IV.

THE BEGINNINGS OF THE APPLICATION OF MATHEMA-

TICS TO NATURAL SCIENCE THE SCIENCE OF

DYNAMICS.

THE end of very much mathematics and of the

work of many eminent men is the simple and, as

far as may be, accurate description of things in the

world around us, of which we become conscious

through our senses.

Among these things, let us consider, say, a partic-
ular person's face, and a billiard ball. The appearance
to the eye of the ball is obviously much easier to

describe than that of the face. We can call up the

image a very accurate one of a billiard ball in the

mind of a person who has never seen it by merely
giving the colour and radius. And, unless we are

engaged in microscopical investigations, this de-

scription is usually enough. The description of a face

is a harder matter : unless we are skilful modellers,
we cannot do this even approximately ;

and even
a good picture does not attempt literal accuracy,
but only conveys a correct impression often better

than a model, say in wax, does.

Our ideal in natural science is to build up a working
model of the universe out of the sort of ideas that

all people carry about with them everywhere
"
in

their heads," as we say, and to which ideas we

appeal when we try to teach mathematics. These

ideas are those of number, order, the numerical
74
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measures of times and distances, and so on. One
reason why we strive after this ideal is a very practical
one. If we have a working model of, say, the solar

system, we can tell, in a few minutes, what our

position with respect to the other planets will be
at all sorts of far future times, and can thus predict
certain future events. Everybody can see how useful

this is : perhaps those persons who see it most

clearly are those sailors who use the Nautical Al-

manac. We cannot make the earth tarry in its*

revolution round its axis in order to give us a longer

day for finishing some important piece of work
;

but, by rinding out the unchanging laws concealed
in the phenomena of the motions of earth, sun, and

stars, the mathematician can construct the model

just spoken of. And the mathematician is completely
master of his model

;
he can repeat the occurrences

in his universe as often as he likes
; something like

Joshua, he can make his
"
sun

"
stand still, or hasten,

in order that he may publish the Nautical Almanac
several years ahead of time. Indeed, the

"
world

"

with which we have to deal in theoretical or mathe-
matical mechanics is but a mathematical scheme,
the function of which it is to imitate, by logical con-

sequences of the properties assigned to it by definition,

certain processes of nature as closely as possible.
Thus our

"
dynamical world

"
may be called a model

of reality, and must not be confused with the reality
itself.

That this model of reality is constructed solely
out of logical conceptions will result from our con-

clusion that mathematics is based on logic, and on

logic alone
;

that such a model is possible is really

surprising on reflection. The need for completing
facts of nature in thought was, no doubt, first felt

as a practical need the need that arises because

we feel it convenient to be able to predict certain



76 THE NATURE OF MATHEMATICS.

kinds of future events. Thus, with a purely mathe-
matical model of the solar system, we can tell, with

an approximation which depends upon the com-

pleteness of the model, the relative positions of the

sun, stars, and planets several years ahead of time ;

this it is that enables us to publish the Nautical

Almanac, and makes up to us, in some degree, for

our inability
"
to grasp this sorry scheme of things

entire . . . and remould it nearer to the heart's

desire."

Now, what is called
"
mechanics

"
deals with a very

important part of the structure of this model. We
spoke of a billiard ball just now. Everybody gets
into the way, at an early age, of abstracting from the

colour, roughness, and so on, of the ball, and forming
for himself the conception of a sphere. A sphere
can be exactly described ; and so can what we call

a
"
square," a

"
circle

" and an
"

ellipse," in terms

of certain conceptions such as those called
"
point,""

distance,"
"
straight line," and so on. Not so

easily describable are certain other things, like a

person or an emotion. In the world of moving
and what we roughly class as inanimate objects
that is to say, objects whose behaviour is not per-

ceptibly complicated by the phenomena of what we
call "life" and "

will
"

people have sought from very
ancient times, and with increasing success, to dis-

cover rules for the motions and rest of given systems
of objects (such as a lever or a wedge) under given
circumstances (pulls, pressures, and so on). Now,
this discovery means : the discovery of an ideal,

exactly describable motion which should approxi-
mate as nearly as possible to a natural motion or

class of motions. Thus Galileo (1564-1642) dis-

covered the approximate law of bodies falling freely,

or on an inclined plane, near the earth's surface ;

and Newton (1642-1727) the still more accurate law
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of the motions of any number of bodies under any
forces.

Let us now try to think clearly of what we mean
by such a rule, or, as it is usually called, a

"
scientific

"

or
"
natural law," and why it plays an important

part in the arrangement of our knowledge in such a
convenient way that we can at once, so to speak,

lay our hand on any particular fact the need of which
is shown by practical or theoretical circumstances.

For this purpose, we will see how Galileo, in a work

C
1

lished in 1638, attacked the problem of a falling

y. Consider a body falling freely to the earth :

Galileo tried to find out, not why it fell, but how it

fell that is to say, in what mathematical form the

distance fallen through and the velocity attained

depends on the time taken in falling and the space
fallen through. Freely falling bodies are followed with
more difficulty by the eye the farther they have
fallen

;
their impact on the hand receiving them is,

in like measure, sharper ; the sound of their striking
louder. The velocity accordingly increases with the

time elapsed and the space traversed. Thus, the

modern inquirer would ask : What function is the

number (v) representing the velocity of those (s and

t) representing the distance fallen through and the

time of falling ? Galileo asked, in his primitive

way : Is v proportional to s
;

or again, is v pro-

portional to t ? Thus he made assumptions, and then
ascertained by actual trial the correctness or otherwise

of these assumptions.
One of Galileo's assumptions was, thus, that the

velocity acquired in the descent is proportional
to the time of the descent. That is to say, if a body
falls once, and then falls again during twice as long
an interval of time as it first fell, it will attain in the

second instance double the velocity it acquired in

the first. To find by experiment whether or not this
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assumption accorded with observed facts, as it

was difficult to prove by any direct means that the

velocity acquired was proportional to the time of

descent, but easier to investigate by what law the

distance increased with the time, Galileo deduced

from his assumption the relation that obtained between

the distance and the time. This very important
deduction he effected as follows.

On the straight line OA, let the abscissa? OE, OC,
OG, and so on, represent in length various lengths
of time elapsed from a certain instant represented

by 0, and let the ordinates EF, CD, GH, and so on,

corresponding to these abscissae, represent in length
the magnitude of the velocities acquired at the time

represented by the respective abscissae.

We observe now that, by our assumption, 0, F,

D, H, lie in a straight line OB, and so : (1) At the

instant C, at which one-half OC of the time of descent

OA has elapsed, the velocity CD is also one-half of

the final velocity AB ; (2) "if E and G are equally
distant in opposite directions on OA from C, the

velocity GH exceeds the mean velocity CD by the

same amount that the velocity EF falls short of it ;

and for every instant antecedent to C there exists

a corresponding one subsequent to C and equally
distant from it. Whatever loss, therefore, as com-

pared with uniform motion with half the final veloc-

ity, is suffered in the first half of the motion, such loss

is made up in the second half. The distance fallen

through we may consequently regard as having been

uniformly described with half the final velocity.
In symbols, if the number of units of velocity

acquired in t units of time is v, and suppose that v

is proportional to t, the number s of units of space
descended through is proportional to fy

2
. In fact,

s is given by \vl, and, as v is proportional to t, s is

proportional to \t-.
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Now, Galileo verified this relation between s and t

experimentally. The motion of free falling was too

quick for Galileo to observe accurately with the very
imperfect means such as water-clocks at his dis-

posal. There were no mechanical clocks at the

beginning of the seventeenth century ; they were
first made possible by the dynamical knowledge of

which Galileo laid the foundations. Galileo, then,
made the motion slower, so that s and t were big

enough to be measured by rather primitive apparatus
in which the moving balls ran down grooves in in-

clined planes. That the spaces traversed by the ball

are proportional to the squares of the measures of

the times in free descent as well as in motion on
an inclined plane, Galileo verified by experimentally

proving that a ball which falls through the height of

an inclined plane attains the same final velocity as a
ball which falls through its length. This experiment
was an ingenious one with a pendulum whose string,
when half the swing had been accomplished, caught
on a fixed nail so placed that the remaining half of

the swing was with a shorter string than the other

half. This experiment showed that the bob of the

pendulum rose, in virtue of the velocity acquired
in its descent, just as high as it had fallen. This fact

is in agreement with our instinctive knowledge of

natural events
;

for if a ball which falls down the

length of an inclined plane could attain a greater

velocity than one which falls through its height, we
should only have to let the body pass with the

acquired velocity to another more inclined plane
to make it rise to a greater vertical height than that

from which it had fallen. Hence we can deduce,
from the acceleration on an inclined plane, the

acceleration of free descent, for, since the final

velocities are the same and s=%vt, the lengths of

the sides of the inclined plane are simply pro-
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portional to the times taken by the ball to pass over

them.

The motion of falling that Galileo found actually
to exist is, accordingly, a motion of which the velocity
increases proportionally to the time.

Like Galileo, we have started with the notions

familiar to us (through the practical arts, for example),
such as that of velocity. Let us consider this motion
more closely.

If a motion is uniform and c feet are travelled over
in every second, at the end of t seconds it will have
travelled ct feet. Put ct=s for short. Then we call

the
"
velocity

"
of the moving body the distance

traversed in unit of time so that it is - units of length

per second, the number which is the measure of

the distance divided by the number which is the

measure of the time elapsed. Galileo, now, attained

to the conception of a motion in which the velocity
increases proportionally to the time. If we draw
a diagram and set off, from the origin along the

x-axis OA, a series of abscissae which represent the

times in length, and erect the corresponding ordinates

to represent the velocities, the ends of these ordinates

will lie on a line OB, which, in the case of the
"
uni-

formly accelerated motion
"
to which Galileo attained,

is straight, as we have already seen. But if the

ordinates represent spaces instead of velocities, the

straight line OB becomes a curve. We see the dis-

tinction between the
"
curve of spaces

" and "
the

curve of velocities," with times as abscissae in both
cases. If the velocity is uniform, the curve of spaces
is a straight line OB drawn from the origin 0, and
the curve of velocities is a straight line parallel to

the z-axis. If the velocity is variable, the curve of

spaces is never a straight line ; but if the motion



THE SCIENCE OF DYNAMICS. 81

is uniformly accelerated, the curve of velocities

is a straight line like OB. The relations between
the curve of spaces, the curve of velocities, and the
areas of such curves AOB are, as we shall see, re-

lations which are at once expressible by the
"

dif-

ferential and integral calculus
"

indeed, it is mainly
because of this important illustration of the calculus

that the elementary problems of dynamics have
been treated here. And the measurement of velocity
in the case where the velocity varies from time to

time is an illustration of the formation of the funda-

mental conception of the differential calculus.

It may be remarked that the finding of the velocity
of a particle at a given instant and the finding of a

tangent to a curve at a given point are both of them
the same kind of problem the finding of the

"
dif-

ferential quotient
"

of a function. We will now
enter into the matter more in detail.

Consider a curve of spaces. If the motion is uni-

form, the number measuring any increment of the

distance divided by the number measuring the

corresponding increment of the time gives the same
value for the measure of the velocity. But if we were

to proceed like this where the velocity is variable,

we should obtain widely differing values for the

velocity. However, the smaller the increment of

the time, the more nearly does the bit of the curve

of spaces which corresponds to this increment ap-

proach straightness, and hence uniformity of in-

crease (or decrease) of s. Thus, if we denote the

increment of t by
"
Ai," where

" A "
does not

stand for a number but for the phrase
"
the incre-

ment of," and the corresponding increment (or

decrement) of s by
"
As," we may define the measure

of average velocity in this element of the motion

as
-^. But, however small A is, the line represented

(2,051) 6
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by As is not, usually at least, quite straight, and
the velocity at the instant t, which, in the language
of Leibniz's differential calculus, is denned as the

quotient of
"

infinitely small
"
increments and sym-

bolised by -p
the A's being replaced by d's when

we consider
"

infinitesimals," appears to be only
defined approximately. We have met this difficulty
when considering the method of indivisibles, and will

meet it again when considering the infinitesimal

calculus, and will only see how it is overcome when
we have become familiar with the conception of a
"

limit."

This new notion of velocity includes that of uni-

form velocity as a particular case. In fact, the rules

of the infinitesimal calculus allow us to conclude,

from the equation ^r=a, where a is some constant,

the equation s=at+b, where 6 is another constant.

We must remember that all this was not expressly
formulated until about fifty years after Galileo

had published his investigations on the motion of

falling.

If we consider the curve of velocities, uniformly
accelerated motion occupies in it exactly the same

place as uniform velocity does in the curve of spaces.
If we denote by v the numerical measure of the

velocity at the end of t units of time, the acceleration,
in the notation of the differential calculus, is measured

by -^, and the equation -^=h, where h is some
at at

constant, is the equation of uniformly accelerated

motion. In Newtonian dynamics, we have to con-

sider variably accelerated motions, and this is where
the infinitesimal calculus or some practically equi-
valent calculus such as Newton's

" method of
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fluxions
"

becomes so necessary in theoretical

mechanics.

We will now consider the curve of spaces for

uniformly accelerated motion. On this diagram
the arcs being t and s we will draw the curve

4
where g denotes a constant. Of course, this is the

same thing as drawing the curve ?/= in a plane

divided up by the z-axis and the t/-axis of Descartes.

This curve is a parabola passing through the origin.
An interesting thing about this curve is that it is

the curve that would be described by a body pro-

jected obliquely near the surface of the earth if the

air did not resist, and is very nearly the path of

such a projectile in the resisting atmosphere. A
free body, according to Galileo's view, always falls

towards the earth with a uniform vertical acceleration

measured by the above number g. If we project a

body vertically upwards with the initial velocity of

c units, its velocity at the end of t units of time is

c+gt units, for if the direction downwards (of g)
is reckoned positive, the direction upwards (of c)

must be reckoned negative. If we project a body
horizontally with the velocity of a units, and neglect
the resistance of the air, Galileo recognised that it

would describe, in the horizontal direction, a distance

of at units in t units of time, while simultaneously

it would fall a distance of QL units. The two motions

are to be considered as going on independently of

each other. Thus also, oblique projection may be
considered as compounded of a horizontal and a
vertical projection. In all these cases the path of the

projectile is a parabola ;
in the case of the horizontal
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projection, its equation in x and y co-ordinates is

got from the two equations x=at and y=^~, and

is thus
y=g.

Now, suppose that the velocity is neither uniform
nor increases uniformly, but is different and increases

at a different rate at different points of time. Then
in the curve of velocities, the line OB is no longer

straight. In the former case, the number s ivas the

number of square units in the area of the triangle AOB.
In this case the figure AOB is not a triangle, though
we shall find that its area is the s units we seek,

although v does not increase uniformly from to A.
Notice again that if, on OA, we take points C and

E very close together, the little arc DF is very nearly

straight, and the figure DGF very nearly a rectilinear

triangle. Note that we are only trying, in this, to

get a first approximation to the value of s, so

that, instead of the continuously changing velocities

we know or think we know from our daily experi-
ence, we are considering a fictitious motion in which
the velocity increases (or decreases) so as to be the

same as that of the motion thought of at a large
number of points at minute and equal distances, and
between successive points increases (or decreases)

uniformly.
Note also that we are assuming (what usually

happens with the curves with which we shall have
to do) that the arc DF which corresponds to CE
becomes as straight as we wish if we take C and E
close enough together.
And now let us calculate s approximately. Start-

ing from O, in the first small interval OH the recti-

linear triangle OHK, where HK is the ordinate at H,
represents approximately the space described. In
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the next small interval HL, where the length of HL
is equal to that of OH, the space described is repre-
sented by the rectilinear figure KHLM. The rect-

angle KL is the space passed over with the uniform

velocity HK in time HL
;
and the triangle KNM

is the space passed over by a motion in which the

velocity increases from zero to MN. And so on for

other intervals beyond HL. Thus s is ultimately

given (approximately) as the number of square units

in a polygon which closely approximates to the

figure AOB.

We must now say a few words about the meaning
of the letters in geometrical and mechanical equations

which, following Descartes, we use instead of the

proportions used by Galileo and even many of his

contemporaries and followers. It seems better,

when beginning mechanics, to think in proportions,
but afterwards, for convenience in dealing with the

symbolism of mathematical data, it is better to think

in equations.
A typical proportion is : Final velocities are to

one another as the times
; or, in symbols,

" V : V : : T : T'"

Here " V "
(for example) is just short for

"
the

velocity attained at the end of the period of

time
"

(reckoned from some fixed instant) denoted

by
"
T," and V : V, and T : T', are just numbers

(real numbers) ; and the proportion states the

equality of these numbers. Hence the proportion
is sometimes written

" V : V'=T : T'." If, now, v

is the numerical measure, merely, of V, v' that of V,

and so on, we have
V
-= -. or vt'=v't.
v t'

In the last equation, the letters v and t have a

mnemonic significance, as reminding us that we
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started from velocities and times, but we must carefully
avoid the idea that we are

"
multiplying

"
(or can do

so) velocities by times ; what we are doing is mul-

tiplying the numerical measures of them. People
who write on geometry and mechanics often say in-

accurately, simply for shortness,
"
Let s denote the

<listance, t the time," and so on
; whereas, by a tacit

convention, small italics are usually employed to

denote numbers. However, in future, for the sake of

shortness, I shall do as the writers referred to, and

speak of v as
"
the velocity." Equations in me-

chanics, such as
" s=9 -," are only possible if the

left-hand side is of the same kind as the right-hand
.side : we cannot equate spaces and times, for ex-

ample.

Suppose that we have fixed on the unit of length
as one inch and the unit of time as one second. As
unit of velocity we might choose the velocity with

which, say, a inches are described uniformly in one
second. If we did this, we should express the rela-

tion between the s units of space passed over by a

body with a given velocity (v units) in a given time

{t units) as
" savt "

; whereas, if we denned the

unit of velocity as the velocity with which the unit

of length is travelled over in the unit of time, we
should write

"
s=vt."

Among the units derived from the fundamental
units such as those of length and time the simplest

possible relations are made to hold. Thus, as the

unit of area and the unit of volume, the square and
the cube of unit sides are respectively used, the unit

of velocity is the uniform rate at which unit of length
is travelled over in the unit of time, the unit of

Acceleration is the gain of unit velocity in unit time,
and so on.
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The derived units depend on the fundamental

units, and the function which a given derived unit

is of its fundamental units is called its
"
dimensions."

Thus the velocity v is got by dividing the length s by
the time t. The dimensions of a velocity are written

" rin_[-k]
J~m'

and those of an acceleration denoted
" F "

These equations are merely mnemonic ;
the letters

do not mean numbers. The mnemonic character

comes out when we wish to pass from one set of units

to another. Thus, if we pass to a unit of length b

times greater and one of time c times greater, the
accelerationf with the old units is related to that (/')

with the new units by the equation

As the units become greater, /' becomes less
; and,.

since the dimensions of F are
,
the factor r is

[2f 6

obviously suggested to us the symbol
"
[T]

2 "
sug-

gesting a squaring of the number measuring the

time.

From Galileo's work resulted the conclusion that,

where there is no change of velocity in a straight line,

there is no force. The state of a body unacted upon
by force is uniform rectilinear motion

;
and rest in

a special case of this motion where the velocity is.

and remains zero. This
"
law of inertia

" was

exactly opposite to the opinion, derived from Aris-



88 THE NATURE OF MATHEMATICS.

totle, that force is requisite to keep up a uniform

motion, and may be roughly verified by noticing
the behaviour of a body projected with a given

velocity and moving under little resistance as a

stone moving on a sheet of ice. Newton and his

contemporaries saw how important this law was in

the explanation of the motion of a planet say,
about the sun. Think of a simple case, and imagine
the orbit to be a circle. The planet tends to move

along the tangent with uniform velocity, but the

attraction of the sun simultaneously draws the

planet towards itself, and the result of this continual

combination of two motions is the circular orbit.

Newton succeeded in calculating the shapes of the

orbits for different laws of attraction, and found

that, when attraction varies inversely as the square
of the distance, the shapes are conic sections, as had
been observed in the case of our solar system.
The problem of the solar system appeared, then,

in a mathematical dress
;
various things move about

in space, and this motion is completely described if

we know the geometrical relations distances, posi-

tions, and angular distances between these things
at some moment, the velocities at this moment, and
the accelerations at every moment. Of course, if we
knew all the positions of all the things at all the

instants, our description would be complete ; it

happens that the accelerations are usually simpler to

find directly than the positions : thus, in Galileo's

case the acceleration was simply constant. Thus,
we are given functional relations between these posi-
tions and their rates of change. We have to deter-

mine the positions from these relations.

It is the business of the
" method of fluxions

"
or

the
"
infinitesimal calculus

"
to give methods for

finding the relations between variables from relations

between their rates of change or between them and
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these rates. This shows the importance of the cal-

culus in such physical questions.
Mathematical physics grew up perhaps too much

so on the model of theoretical astronomy, its first

really extensive conquest. There are signs that

mathematical physics is freeing itself from its tradi-

tions, but we need not go further into the subject in

this place.

Eoberval devised a method of tangents which is

based on Galileo's conception of the composition of

motions. The tangent is the direction of the resultant

motion of a point describing the curve. Newton's

method, which is to be dealt with in the fifth chapter,
is analogous to this, and the idea of velocity is funda-

mental in his
" method of fluxions."



CHAPTER V.

THE RISE OP MODERN MATHEMATICS THE
INFINITESIMAL CALCULUS.

IN the third chapter we have seen that the ancient

Greeks were sometimes occupied with the theoreti-

cally exact determination of the areas enclosed by
curvilinear figures, and that they used the

" method
of exhaustion," and, to demonstrate the results which

they got, an indirect method. We have seen, too, a
" method of indivisibles," which was direct and
seemed to gain in brevity and efficiency from a
certain lack of correctness in expression and perhaps
even a small inexactness in thought. We shall find

the same merits and demerits both, especially the

merits, intensified in the
"
infinitesimal calculus."

By the side of researches on quadratures and the

finding of volumes and centres of gravity developed
the methods of drawing tangents to curves. We
have begun to deal with this subject in the third

chapter : here we shall illustrate the considerations

of Fermat (1601-1665) and Barrow (1630-1677)
the intellectual descendants of Kepler by a simple

example.
Let it be proposed to draw a tangent at a given

point P in the circumference of a circle of centre

and equation x2+y2=l. Let us take the circle to

be a polygon of a great number of sides
;

let PQ be

one of these sides, and produce it to meet the z-axis

at T. Then PT will be the tangent in question.
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Let the co-ordinates of P be X and Y
; those of Q

will be X+e and Y+a, where e and a are infinitely
small increments, positive or negative. From a

figure in which the ordinates and abscissae of P and
Q are drawn, so that the ordinate of P is PR, we
can see, by a well-known property of triangles,
that TR is to RP (or Y) as e is to a. Now, X
and Y are related by the equation Xz+ Y2=l,
and, since Q is also on the locus x2+y2=l, we
have (X+e) 2+(Y+a)2=l. From the two equa-
tions in which X and Y occur, we conclude that

2eX+e2+2aY+a2=0, and hence
e
-(X+

e
-)+Y+-=Q.

d L 2i

But -=^; hence fffl=~
Y

(Y+ ^. Now, a and
a Y Xff

e may be neglected in comparison with X and Y,
and thus we can say that, at any rate very nearly, we

Y2

have TR=^-. But this is exactly right,, for, sinceX
TP is at right angles to OP, we know that OR is to

RP as PR is to RT. Here Z and Y are constant,
but we can say that the abscissa of the point
where the tangent at any point (say y) of the

circle cuts the x-axis is given by adding to x.
x

Thus, we can find tangents by considering the

ratios of infinitesimals to one another. The method

obviously applies to other curves besides circles
;

and Barrow's method and nomenclature leads us

straight to the notation and nomenclature of Leibniz.

Barrow called the triangle PQS, where S is where a

parallel to the x-axis through Q meets PR, the
"

dif-

ferential triangle," and Leibniz denoted Barrow's a
and e by dy and dx (short for the

"
differential of y

"

and "
the differential of x," so that

"
d
"

does not

denote a number but "dx" altogether stands for



92 THE NATURE OF MATHEMATICS.

an "
infinitesimal ") respectively, and called the

collection of rules for working with his signs the
"

differential calculus."

But before the notation of the differential calculus

and the rules of it were discovered by Gottfried

Wilhelm von Leibniz (1646-1716), the celebrated

German philosopher, statesman, and mathematician,
he had invented the notation and found some of the

rules of the
"
integral calculus

"
: thus, he had used

the now well-known sign "/" or long
"

s
"
as short

for
"
the sum of," when considering the sum of an

infinity of infinitesimal elements as we do in the

method of indivisibles. Suppose that we propose
to determine the area included between a certain

curve y=f(x), the z-axis, and two fixed ordinates

whose equations are x=a and x=b ; then, if we make
use of the idea and notation of differentials, we notice

that the area in question can be written as

"fy.dx,"

the summation extending from x=a to x=b. We
will not here further concern ourselves about these

boundaries. Notice that in the above expression
we have put a dot between the

"
y
" and the

"
dx

"
:

this is to indicate that y is to multiply dx. Hitherto

we have used juxtaposition to denote multiplication,
but here d is written close to x with another end in

view
;
and it is desirable to emphasise the difference

between "
d
"

used in the sense of an adjective and
"
d
"
used in the sense of a multiplying number, at

least until the student can easily tell the difference

by the context. If, then, we imagine the abscissa

divided into equal infinitesimal parts, each of length
dx, corresponding to the constituents called

"
points

"

in the method of indivisibles, y . dx is the area of the

little rectangle of sides dx and y which stand at the end
of the abscissa x. If, now, instead of extending to
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x=b, the summation extends to the ordinate at the
indeterminate or

"
variable

"
point x, y . dx becomes

a function of x.

Now, if we think what must be the differential of

this sum the infinitesimal increment that it gets
when the abscissa of length x, which is one of the

boundaries, is increased by dx we see that it must be

y . dx. Hence
d(fy .dx)=y. dx,

and hence the sign
"
d
"

destroys, so to speak, the

effect of the sign "/" We also have fdx=x, and
find that this summation is the inverse process to

differentiation. Thus the problems of tangents and

quadratures are inverses of one another. This vital

discovery seems to have been first made by Barrow
without the help of any technical symbolism. The

quantity which by its differentiation produces a

proposed differential, is called the
"
integral

"
of

this differential
;

since we consider it as having been

formed by infinitely small continual additions :

each of these additions is what we have named the

differential of the increasing quantity, it is a fraction

of it : and the sum of all these fractions is the entire

quantity which we are in search of. For the same
reason we call

"
integrating

"
or

"
taking the sum of

"

a differential the finding the integral of the sum of

all the infinitely small successive additions which
form the series, the differential of which, properly

speaking, is the general term.

It is evident that two variables which constantly
remain equal increase the one as much as the other

during the same time, and that consequently their

differences are equal : and the same holds good even
if these two quantities had differed by any quantity
whatever when they began to vary ; provided that

this primitive difference be always the same, their

differentials will always be equal.
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Reciprocally, it is clear that two variables which
receive at each instant infinitely small equal additions

must also either remain constantly equal to one

another, or always differ by the same quantity
that is, the integrals of two differentials which are

equal can only differ from each other by a constant

quantity. For the same reason, if any two quan-
tities whatever differ in an infinitely small degree
from each other, their differentials will also differ

from one another infinitely little : and reciprocally
if two differential quantities differ infinitely little

from one another, their integrals, putting aside the

constant, can also differ but infinitely little one from
the other.

Now, some of the rules for differentiation are as

follows. If y=f(x), dy=f(x+dx)f(x), in which

higher powers of differentials added to lower ones

may be neglected. Thus, if y=x-, then dy=(x+dx)
2

-x2=2x.dx+(dx)2=2x.dx. Here it is well to

refer back to the treatment of the problem of tangents
at the beginning of this chapter. Again, if y=a . x,

where a is constant, dy=a . dx. If y=x . z, then

dy=(x+ dx)(z+ dz)-x.z=;x.dz + z.dx. If y=
x

,

x=y . z, so dx=y . dz+z . dy ;
hence dy=

X~ y ' z
.

Since the integral calculus is the inverse of the dif-

ferential calculus, we have at once

f2x . dx=x2
, fa . dx=afdx,

fx . dz+ fz . dx=xz,

and so on. More fully, from d(x
3
)=3x- . dx, we con-

clude, not that/a;
2

. dx^^x3
,
but that/a

2
. dx=%x3 +c,

where
" c" denotes some constant depending on the

fixed value for x from which the integration starts.

Consider a parabola y-ax ;
then 2y . dy=a . dx,
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or dx=- y '

%. Thus the area from the origin to

the point x is /^*+c; but <&?=V^
; thus

the area is -~+c, or, since y
2
=ax, \x . y+c. To

determine c when we measure the area from to x, we
have the area zero when x=Q ; hence the above

equation gives c=0. This whole result, now quite

simple to us, is one of the greatest discoveries of

Archimedes.

Let us now make a few short reflections on the
infinitesimal calculus. First, the extraordinary power
of it in dealing with complicated questions lies in that
the question is split up into an infinity of simpler
ones which can all be dealt with at once, thanks to

the wonderfully economical fashion in which the

calculus, like analytical geometry, deals with vari-

ables. Thus, a curvilinear area is split up into

rectangular elements, all the rectangles are added

together at once when it is observed that integral
is the inverse of the easily acquired practice of

differentiation. We must never lose sight of the

fact that, when we differentiate y or integrate y . dx,
we are considering, not a particular x or y, but any
one of an infinity of them. Secondly, we have seen

that what in the first place had been regarded but
as a simple method of approximation, leads at any
rate in certain cases to results perfectly exact. The
fact is that the exact results are due to a compensation
of errors : the error resulting from the false supposi-
tion made, for example, by regarding a curve as a

polygon with an infinite number of sides each in-

finitely small and which when produced is a tangent
of the curve, is corrected or compensated for by that
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which springs from the very processes of the calculus,

according to which we retain in differentiation in-

finitely small quantities of the same order alone.

In fact, after having introduced these quantities into

the calculation to facilitate the expression of the

conditions of the problem, and after having regarded
them as absolutely zero in comparison with the pro-

posed quantities, with a view to simplify these

equations, in order to banish the errors that they had

occasioned, and to obtain a result perfectly exact,
there remains but to eliminate these same quantities
from the equations where they may still be.

But all this cannot be regarded as a strict proof.
There are great difficulties in trying to determine
what infinitesimals are : at one time they are treated

like finite numbers and at another like zeros or as
"
ghosts of departed quantities," as Bishop Berkeley,

the philosopher, called them.
Another difficulty is given by differentials

"
of

higher orders than the first." Let us take up again
the considerations of the fourth chapter. We saw

that v=-=-, and found that s was got by integration :

at

s=fv . dt. This is now an immediate inference,

since -^ dt=ds. Now, let us substitute for v in ^.
at at

Here t is the independent variable, and all of the

older mathematicians treated the elements dt as

constant the interval of the independent variable

was split up into atoms, so to speak, which themselves

were regarded as known, and in terms of which other

differentials, ds, dx, dy, were to be determined.

Thus

dt dt dt dP'
"
d-s

"
being written for

"
d(ds)

" and "
dt-

"
for
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"
(dt)~ ". Thus the acceleration was expressed as

"
the second differential of the space divided by the

square of dt." If -=-f were constant, say, a, then

-j-=a .dt; and, integrating both sides :

^=fa . dt=afdt=at+b,
at

where & is a new constant. Integrating again, we
have :

s=aft . dt+bfdt^+bt+c,
2i

which is a more general form of Galileo's result.

Many complicated problems which show how far-

reaching Galileo's principles are were devised by
Leibniz and his school.

Thus, the infinitesimal calculus brought about a

great advance in our powers of describing nature.

And this advance was mainly due to Leibniz's nota-

tion
;
Leibniz himself attributed all of his mathema-

tical discoveries to his improvements in notation.

Those who know something of Leibniz's work know
how conscious he was of the suggestive and econom-
ical value of a good notation. And the fact that

we still use and appreciate Leibniz's "/" and
"
d,"

even though our views as to the principles of the

calculus are very different from those of Leibniz

and his school, is perhaps the best testimony to the

importance of this question of notation. This fact

that Leibniz's notations have become permanent is

the great reason why I have dealt with his work
before the analogous and prior work of Newton.

Isaac Newton (1642-1727) undoubtedly arrived

at the principles and practice of a method equiva-
lent to the infinitesimal calculus much earlier than

(2,051) 7
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Leibniz, and, like Roberval, his conceptions were
obtained from the dynamics of Galileo. He con-

sidered curves to be described by moving points. If

we conceive a moving point as describing a curve,
and the curve referred to co-ordinate axes, then the

velocity of the moving point can be decomposed into

two others parallel to the axes of x and y respec-

tively ;
these velocities are called the

"
fluxions

"
of x

and y, and the velocity of the point is the fluxion of

the arc. Reciprocally the arc is the
"
fluent

"
of the

velocity with which it is described. From the given

equation of the curve we may seek to determine the

relations between the fluxions and this is equiva-
lent to Leibniz's problem of differentiation ; and

reciprocally we may seek the relations between the

co-ordinates when we know that between their

fluxions, either alone or combined with the co-

ordinates themselves. This is equivalent to Leibniz's

general problem of integration, and is the problem to

which we saw, at the end of the fourth chapter, that

theoretical astronomy reduces.

Newton denoted the fluxion of x by
" x" and the.

fluxion of the fluxion (the acceleration) of x by
" x"

It is obvious that this notation becomes awkward
when we have to consider fluxions of higher orders ;

and further, Newton did not indicate by his notation

the independent variable considered. Thus "
y
"

might possibly mean either
-^

or
-j^.

We have x=-?>

aj=_=_
;

but a dot-notation for -- would be
at at* at

clumsy and inconvenient. Newton's notation for

the
"
inverse method of fluxions

" was far clumsier

even, and far inferior to Leibniz's "/"

The relations between Newton and Leibniz were at
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first friendly, and each communicated his discoveries

to the other with a certain frankness. Later, a long
and acrimonious dispute took place between Newton
and Leibniz and their respective partisans. Each
accused unjustly, it seems the other of plagiarism,
and mean suspicions gave rise to meanness of conduct,
and this conduct was also helped by what is some-
times called

"
patriotism." Thus, for considerably

more than a century, British mathematicians failed

to perceive the great superiority of Leibniz's notation.

And thus, while the Swiss mathematicians, James
Bernoulli (1654-1705), John Bernoulli (1667-1748),
and Leonhard Euler (1707-1783), the French mathe-
maticians d'Alembert (1707-1783), Clairaut (1713-

1765), Lagrange (1736-1813), Laplace (1749-1827),

Legendre (1752-1833), Fourier (1768-1830), and
Poisson (1781-1850), and many other Continental

mathematicians, were rapidly
*
extending knowledge

by using the infinitesimal calculus in all branches

of pure and applied mathematics, in England com-

paratively little progress was made. In fact, it was
not until the beginning of the nineteenth century
that there was formed, at Cambridge, a Society to

introduce and spread the use of Leibniz's notation

among British mathematicians : to establish, as it

was said,
"
the principles of pure (Z-ism in opposition

to the dot-age of the university."

The difficulties met and not satisfactorily solved

* It is difficult for a mathematician not to think that the

sudden and brilliant dawn on eighteenth century France
of the magnificent and apparently all-embracing physics of

Newton and the wonderfully powerful mathematical method
of Leibniz inspired scientific men with the belief that the

goal of all knowledge was nearly reached and a new era of

knowledge quickly striding towards perfection begun ; and
that this optimism had indirectly much to do in preparing
for the French Revolution.
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by Newton, Leibniz, or their immediate successors,
in the principles of the infinitesimal calculus, centre

about the conception of a
"
limit

"
;
and a great part

,

of the meditations of modern mathematicians, such
as the Frenchman Cauchy (1789-1857), the Nor-

wegian Abel (1802-1829), and the German Weier-
strass (1815-1897), not to speak of many still living,
have been devoted to the putting of this conception
on a sound logical basis.

We have seen that, if y=x~, -^=2x. What we do
CKX

in forming -^ is to form
'

'-HJL which is6 dx Ax

readily found to be 2x+Ax, and then consider that,
as Ax approaches more and more, the above quotient

approaches 2x. We express this by saying that the
"
limit, as Ji approaches 0," is 2x. We do not consider

Ax as being a fixed
"
infinitesimal

"
or as an absolute

zero (which would make the above quotient become

indeterminate -), nor need we suppose that the

quotient reaches its limit (the state of Ax being 0).

What we need to consider is that
" Ax "

should

represent a variable which can take values differing
from by as little as we please. That is to say, if

we choose any number, however small, there is a

value which Ax can take, and which differs from

by less than that number. As before, when we speak
of a

"
variable," we mean that we are considering a

certain class. When we speak of a
"
limit," we are

considering a certain infinite class. Thus the se-

quence of an infinity of terms 1, , \, \, ^$, and so

on, whose law of formation is easily seen, has the

limit 0. In this case is such that any number

greater than it is greater than some term of the

sequence, but itself is not greater than any term of
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the sequence and is not a term of the sequence. A
sequence like 1, 1+|, 1+|+|, l+i+i+i . . . ?

has an analogous upper limit 2. A function f(x),
as the independent variable x approaches a certain

2x
value, like as x approaches 0, may have a value

x
n

(in this case 2, though at 0, is indeterminate). The
cc

question of the limits of a function in general is some-
what complicated, but the most important limit is

s AZ approaches 0; this, if y=f(x),

dx

That the infinitesimal calculus, with its rather ob-

scure
"
infinitesimals

"
treated like finite numbers

when we write ^- dx = dy and T =^~, and then, on
dx "

dy'

occasion, neglected leads so often to correct results

is a most remarkable fact, and a fact of which the

true explanation only appeared when Cauchy, Gauss

(1777-1855), Riemann (1826-1866), and Weierstrass

had developed the theory of an extensive and much
used class of functions. These functions happen to

have properties which make them especially easy to

be worked with, and nearly all the functions we

habitually use in mathematical physics are of this

class. A notable thing is that the complex numbers

spoken of in the second chapter make this theory to

a great extent.

Large tracts of mathematics have, of course, not

been mentioned here. Thus, there is an elaborate

theory of integer numbers to be referred to in a note

to the seventh chapter, and a geometry using the
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conceptions of the ancient Greeks and methods of

modern mathematical thought ;
and very many

men still regard space -perception as something
mathematics deals with. We will return to this soon.

Again, algebra has developed and branched off
; the

study of functions in general and in particular has

grown ;
and soon a list of some of the many great

men who have helped in all this would not be very
useful. Let us now try to resume what we have seen

of the development of mathematics along what seem
to be its main lines.

In the earliest times men were occupied with par-
ticular questions the properties of particular num-
bers and geometrical properties of particular figures,

together with simple mechanical questions. With
the Greeks, a more general study of classes of geo-
metrical figures began. But traces of an earlier

exception to this study of particulars are afforded

by
"
algebra." In it and its later form symbols

like our present x and y took the place of numbers,
so that, what is a great advance in economy of thought
and other labour, a part of calculation could be done
with symbols instead of numbers, so that the one
result stated, in a manner analogous to that of Greek

geometry, a proposition valid for a whole infinite

class of different numbers.
The great revolution in mathematical thought

brought about by Descartes in 1637 grew out of the

application of this general algebra to geometry by
the very natural thought of substituting the numbers

expressing the lengths of straight lines for those lines.

Thus a point in a plane for instance is determined

in position by two numbers x and y, or co-ordinates.

Now, as the point in question varies in position, x
and y both vary ;

to every x belongs, in general, one

or more y's, and we arrive at the most beautiful idea
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of a single algebraical equation between x and y
representing the whole of a curve the one

"
equation

of the curve
"

expressing the general law by which,
given any particular x out of an infinity of them, the

corresponding y or y's can be found.
The problem of drawing a tangent the limiting

position of a secant, when the two meeting points
approach indefinitely close to one another at any
point of a curve came into prominence as a result of

Descartes' work, and this, together with the allied

conceptions of velocity and acceleration "at an
instant," which appeared in Galileo's classical in-

vestigation, published in 1638, of the law according
to which freely falling bodies move, gave rise at

length to the powerful and convenient
"
infinitesimal

calculus
"

of Leibniz and the
" method of fluxions

"

of Newton. Mathematically, the finding of the tan-

gent at the point of a curve, and rinding the velocity
of a particle describing this curve when it gets to

that point, are identical problems. They are ex-

pressed as finding the
"
differential quotient," or the

"
fluxion

"
at the point. It is now known to be very

probable that the above two methods, which are

theoretically but not practically the same, were

discovered independently ;
Newton discovered his

first, and Leibniz published his first, in 1684. The

finding of the areas of curves and of the shapes of the

curves which moving particles describe under given
forces showed themselves, in this calculus, as results

of the inverse process to that of the direct process
which serves to find tangents and the law of attrac-

tion to a given point from the datum of the path
described by a particle. The direct process is called
"
differentiation," the inverse process

"
integration."

Newton's fame is chiefly owing to his application
of this method to the solution, which, in its broad

outlines, he gave of the problem of the motion of
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the bodies in the solar system, which includes his

discovery of the law according to which all matter

gravitates towards is attracted by other matter.

This was given in his Principia of 1687 ; and for

more than a century afterwards mathematicians were

occupied in extending and applying the calculus.

Then came more modern work, more and more
directed towards the putting of mathematical methods
on a sound logical basis, and the separation of mathe-
matical processes from the sense-perception of space
with which so much in mathematics grew and grows
up. Thus trigonometry took its place by algebra
as a study of certain mathematical functions, and it

began to appear that the true business of geometry
is to supply beautiful and suggestive pictures of

abstract
"
analytical

"
or

"
algebraical

"
or even

"
arithmetical," as they are called processes of

mathematics. In the next chapter we shall be con-

cerned with part of the work of logical examination
and reconstruction.



CHAPTER VI.

MODERN VIEWS OF LIMITS AND NUMBERS.

LET us try to form a clear idea of the conception
which showed itself to be fundamental in the prin-

ciples of the infinitesimal calculus, the conception of

a limit.

Notice that the limit of a sequence is a number
which is already defined. We cannot prove that

there is a limit to a sequence unless the limit sought
is among the numbers already defined. Thus, in

the system of
" numbers "

here we must refer back
to the second chapter consisting of all fractions

(or ratios), we can say that the sequence (where 1

and 2 are written for the ratios y and f) 1, 1+|,
l+i+i> >

nas a limit (2), but that the sequence

or 1-4142. . . .,

got by extracting the square root of 2 by the known

process of decimal arithmetic, has not. In fact, it

can be proved that there is no ratio such that it

is a limit for the above sequence. If there were,
and it were denoted by

"
x," we would have x2=2.

Here we come again to the question of incommen-
surables and "

irrational numbers." The Greeks
were quite right in distinguishing so sharply between
numbers and magnitudes, and it was a tacit,

natural, and unjustified not, as it happens, in-

correct presupposition that the series of numbers,

completed into the series of what are called
"
real

105
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numbers," exactly corresponds to the series of points
on a straight line. The series of points which repre-
sents the sequence last named seems undoubtedly
to possess a limit ;

this limiting point was assumed
to represent some number, and, since it could not

represent an integer or a ratio, it was said to represent
an "

irrational number," ^/2. Another irrational

number is that which is represented by the incom-

mensurable ratio of the circumference of a circle to

its diameter. This number is denoted by the Greek
letter

"
TT," and its value is nearly 3 "1416. . . Of

course, the process of approximation by decimals

never comes to an end.

The subject of limits forced itself into a very

conspicuous place in the seventeenth and eighteenth
centuries owing to the use of infinite series as a means
of approximate calculation. I shall distinguish
what I call

"
sequences

" and "
series." A sequence

is a collection finite or infinite of numbers ;
a

series is a finite or infinite collection of numbers
connected by addition. Sequences and series can be

made to correspond in the following way. To the

sequence 1, 2, 3, 4, . . . belongs a series of which the

terms are got by subtracting, in order, the terms of

the sequence from the ones immediately following

them, thus :

(2-l)+(3-2)+(4-3)+ - - .

and from a series the corresponding sequence can be

got by making the sum of the first, the first two, the

first three, . . . terms the first, second, third . . .

term of the sequence respectively. Thus, to the

series 1+ 1+1+ . . . corresponds the sequence 1,

2, 3, ...
Now, if a series has only a finite number of terms,

it is possible to find the sum of all the terms ;
but

if the series is unending, we evidently cannot. But
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in certain cases the corresponding sequence has a

limit, and this limit is called by mathematicians,
neither unnaturally nor accurately,

"
the sum to

infinity of the series." Thus, the sequence 1, 1+|,
1+i+i has the limit 2, and so the sum to

infinity of the series 1+|+J+|+ . . . is 2. Of

course, all series do not have a sum : thus 1+ 1+ 1 -f-

... to infinity has not the terms of the corre-

sponding sequence increase continually beyond all

limits. Notice particularly that the terms of a

sequence may increase continually, and yet have a
limit those of the above sequence with limit 2 so

increase, but not beyond 2, though they do beyond
any number less than 2

;
also notice that the terms

of a sequence may increase beyond all limits even
if the terms of the corresponding series continually

diminish, remaining positive, towards 0. The series

l+|'+|+|+i+ ... is such a series; the terms of

the sequence slowly increase beyond all limits, as we
see when we reflect that the sums

Hi,HHHiH - - +A,
are all greater than \. It is very important to realise

the fact illustrated by this example ;
for it shows

that the conditions under which an infinite series

has a sum are by no means as simple as they might
appear at first sight.
The logical scrutiny to which, during the last

century, the processes and conceptions of mathe-
matics have been subjected, showed very plainly
that it was a sheer assumption that such a process
as 1-4142 . . ., though all its terms are less than 2,

for example, has any limit at all. When we replace
numbers by points on a straight line, we feel fairly

sure that there is one point which behaves to the

points representing the above sequence in the same
sort of way as 2 to the sequence 1, 1+|,
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Now, if our system of numbers is to form a continuum,
as a line seems to our thoughts to be

;
so that we can

amrm that our number system is adequate, when we
introduce axes in the manner of analytical geometry,
to the description of all the phenomena of change of

position which take place in our space,* then we must

have a number ,/2 which is the limit of the sequence
1-4142 ... if 2 is of the series 1+J+J+ . . ., for

to every point of a line must correspond a number
which is subject to the same rules of calculation as

the ratios or integers. Thus we must, to justify
from a logical point of view our procedure in the

great mathematical methods, show what irrationals

are, and define them before we can prove that they
are limits. We cannot take a series, whose law is

evident, which has no ratio for sum, and yet such

that the terms of the corresponding sequence all

remain less than some fixed number (such as

of the corresponding sequence are less than 3, for

example), and then say that it
"
defines a limit."

All we can prove is that if such a series has a limit,

then, if the terms of its corresponding sequence do
not decrease as we read from leit to right (as in the

preceding example), it cannot have more than one

limit.

Some mathematicians have simply postulated the

irrationals. At the beginning of their discussions

they have, tacitly or not, said :

"
In what follows we

* The only kind of change dealt with in the science of

mechanics is change of position, that is, motion. It does not
seem to me to be necessary to adopt the doctrine that the

complete description of any physical event is of a mechanical
event ; for it is possible to assign and calculate with numbers
of our number-continuum to other varying characteristics

(such as temperature) of the state of a body besides position.
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will assume that there are such things as fill up kinds
of gaps in the system of rationals (or ratios)." Such
a gap is shown by this. The rationals less than |
and those greater than | form, two sets and \ divides

them. The rationals x such that x2 is greater than 2

and those x's such that x2
is less than 2 form two an-

alogous sets, but there is only an analogue to the divid-

ing number if we postulate a number ^/2. Thus

by postulation we fill up these subtle gaps in the set

of rationals and get a continuous set of real numbers.
But we can avoid this postulation if we define
"

,J2
"

as the name of the class of rationals x such
that x2 is less than 2 and "

(|)
"

as the name of the

class of rationals x such that x is less than J. Pro-

ceeding thus, we arrive at a set of classes, some of

which correspond to rationals, as (|) to J, but the

rest satisfy our need of a set without gaps. There
is no reason why we should not say that these classes

are the real numbers which include the irrationals.

But we must notice that rationals are never real

numbers
; | is not (|), though analogous to it. We

have much the same state of things as in the second

chapter, where 2, +2, and - were distinguished and
then deliberately confused because, with the mathe-

maticians, we felt the importance of analogy in

calculation. Here again we identify () with
,
and

so on.

Thus, integers, positive and negative
"
numbers,"

ratios, and real
" numbers

"
are all different things :

real numbers are classes, ratios and positive and

negative numbers are relations. Integers, as we
shall see, are classes. Very possibly there is a

certain arbitrariness about this, but this is unimpor-
tant compared with the fact that in modern mathe-

matics we have reduced the definitions of all
"
numbers "

to logical terms. Whether they are
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classes or relations or propositions or other logical
entities is comparatively unimportant.

Integers can be defined as certain classes. Mathe-
maticians like Weierstrass stopped before they got
as far as this : they reduced the other numbers of

analysis to logical developments out of the concep-
tion of integer, and thus freed analysis from any
remaining trace of the sway of geometry. But it was
obvious that integers had to be defined, if possible,
in logical terms. It has long been recognised that

two collections consist of the same number of objects

if, and only if, these collections can be put in such

a relation to one another that to every object of each
one belongs one and only one object of the other.

We must not think that this implies that we have

already the idea of the number one. It is true that
"
one and only one

"
seems to use this idea. But

"
the class a has one and only one member "

is

simply a short way of expressing :

"
x is a member

of a, and if y is also a member of a, then y is iden-

tical with x." It is true, also, that we use the idea

of the unity or the individuality of the things con-

sidered. But this unity is a property of each indi-

vidual, while the number 1 is a property of a class.

If a class of pages of a book is itself, under the name
of a

"
volume," a member of a class of books, the

same class of pages has both a number (say 360)
and a unity as being itself a member of a class.

The relation spoken of above in which two classes

possessing the same number stand to one another

does not involve counting. Think of the fingers on

your hands. If to every finger of each hand belongs,

by some process of correspondence, one and only
one remember the above meaning of this phrase
of the other, they are said to have

"
the same

number." This is a definition of what "
the same

number" is to mean for us; the word "number" by
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itself is to have, as yet, no meaning for us
; and, to

avoid confusion, wehad better replace thephrase
"
have

the same number "
by the words

"
are equivalent."

Any other word would, of course, do, but this word

happens to be fairly suggestive and customary. Now,
if the variable u is any class,

"
the number of u "

is de-

fined as short for the phrase :

"
the class whose mem-

bers are classes which are similar to u" Thus the

number of u is an entity which is purely logical in

its nature. Some people might urge that by" number "
they mean something different from

this, and that is quite possible. All that is main-
tained by those who agree to the process sketched
above is : (1) Classes of the kind described are

identical in all known arithmetical properties with
the undefined things people call

"
integer numbers

"
;

(2) It is futile to say :

"
These classes are not

numbers," if it is not also said what numbers are that

is to say, if
"
the number of

"
is not defined in some

more satisfactory way. There may be more satis-

factory definitions, but this one is a perfectly sound
foundation for all mathematics, including the theory
not touched upon here of ordinal numbers (denoted

by
"

first,"
"
second," . . .) which apply to sets

arranged in some order, known at present.
To illustrate (1), think of this. According to the

above definition 2 is the general idea we call
"
couple."

We say :

"
Mr. and Mrs. A. are a couple

"
;

our

definition would ask us to say in agreement with

this :

"
The class consisting of Mr. and Mrs. A.

is a member of the class 2." We define
"
2
"

as
"
the class of classes u such that, if x is a u, u lacking

x is a 1
"

;
the definition of

"
3
"

follows that of
"
2
"

; and so on. In the same way, we see that

the class of fingers on your right hand and the

class of fingers on your left hand are each of

them members of the class 5. It follows that
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the classes of the fingers are equivalent in the above

Out of the striving of human minds to reproduce
conveniently and anticipate the results of experience
of geometrical and natural events, mathematics has

developed. Its development gave priceless hints

to the development of logic, and then it appeared
that there is no gap between the science of number
and the science of the most general relations of

objects of thought. As for geometry and mathe-
matical physics, it becomes possible clearly to

separate the logical parts from those parts which
formulate the data of our experience.
We have seen that mathematics has often made

great strides by sacrificing accuracy to analog.
Let us remember that, though mathematics and

logic give the highest forms of certainty within the

reach of us, the process of mathematical discovery,
which is so often confused with what is discovered,
has led through many doubtful analogies and errors

arriving from the great help of symbolism in making
the difficult easy. Fortunately symbolism can also

be used for precise and subtle analysis, so that we
can say that it can be made to show up the difficulties

in what appears easy and even negligible like

1+1=2. This is what much modern fundamental
work does.



CHAPTER VII.

THE NATURE OF MATHEMATICS.

IN the preceding chapters we have followed the de-

velopment of certain branches of knowledge which
are usually classed together under the name of
"
mathematical knowledge." These branches of

knowledge were never clearly marked off from all

other branches of knowledge : thus geometry was
sometimes considered as a logical study and some-
times as a natural science the study of the properties
of the space we live in. Still less was there an abso-

lutely clear idea of what it was that this knowledge
was about. It had a name "

mathematics
"

and few except
"
practical

" men and some philoso-

phers doubted that there was something about
which things were known in that kind of knowledge
called

"
mathematical." But what it was did not

interest very many people, and there was and is a

great tendency to think that the question as to

what mathematics is could be answered if we only
knew all the facts of the development of our mathe-
matical knowledge. It seems to me that this opinion
is, to a great extent, due to an ambiguity of lan-

guage : one word "
mathematics

"
is used both

for our knowledge of a certain kind and the thing,
if such a thing there be, about which this knowledge
is. I have distinguished, and will now explicitly

distinguish, between
"
Mathematics," a collection of

(2,051) 113 8
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truths of which we know something, and "
mathe-

matics," our knowledge of Mathematics. Thus, we

may speak of
"
Euclid's mathematics

"
or

"
Newton's

mathematics," and say truly that mathematics has

developed and therefore had history ;
but Mathe-

matics is eternal and unchanging, and therefore has

no history it does not belong, even in part, to Euclid
or Newton or anybody else, but is something which
is discovered, in the course of time, by human minds.
An analogous distinction can be drawn between
"
Logic

" and "
logic." The small initial indicates

that we are writing of a psychological process which

may lead to Truth
;
the big initial indicates that we

are writing of the entity the part of Truth to

which this process leads us. The reason why mathe-
matics is important is that Mathematics is not

incomprehensible, though it is eternal and un-

changing.
Grammatical usage makes us use a capital letter

even for
"
mathematics

"
in the psychological sense

when the word begins a sentence, but in this case

I have guarded and will guard against ambiguity.
That particular function of history which I wish

here to emphasise will now, I think, appear. In

mathematics we gradually learn, by getting to know
some things about mathematics, to know that there

is such a thing as Mathematics.
We have, then, glanced at the mathematics of primi-

tive peoples,and have seen that at first discoveries were
of isolated properties of abstract things like numbers
orgeometrical figures, and of abstract relations between
concrete things like the relations between the weights
and the arms of a lever in equilibrium. These prop-
erties were, at first, discovered and applied, of course,
with the sole object of the satisfaction of bodily needs.

With the ancient Greeks comes a change in point
of view which perhaps seems to us, with our defective
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knowledge, as too abrupt. So far as we know,
Greek geometry was, from its very beginning, deduc-

tive, general, and studied for its own interest and
not for any applications to the concrete world it

might have. In Egyptian geometry, if a result was
stated as universally true, it was probably only held

to be so as a result of induction the conclusion from
a great number of particular instances to a general

proposition. Thus, if somebody sees a very large
number of officials of a certain railway company,
and notices that all of them wear red ties, he might
conclude that all the officials of that company wear
red ties. This might be probably true : it would
not be certain : for certainty it would be necessary
to know that there was some rule according to which
all the officials were compelled to wear red ties. Of

course, even then the conclusion would not be certain,

since these sort of laws may be broken. Laws of

Logic, however, cannot be broken. These laws are

not, as they are sometimes said to be, laws of thought;
for logic has nothing to do with the way people think,

any more than poetry has to do with the food poets
must eat to enable them to compose. Somebody
might think that 2 and 2 make 5 : we know, by a

process which rests on the laws of Logic, that they
make 4.

This is a more satisfactory case of induction:

Fermat stated that no integral values of x, y, and z

can be found such that x"-\-y
n=zn

,
if n be an

integer greater than 2. This theorem has been

proved to be true for n = 3, 4, 5, 7, and many other

numbers, and there is no reason to doubt that it is

true. But to this day no general proof of it has

been given.* This, then, is an example of a mathe-

* This is an example of the
"
theory of numbers," the study

of the properties of integers, to which the chief contributions,

perhaps, have been made by Fermat and Gauss.
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matical proposition which has been reached and
stated as probably true by induction.

Now, in Greek geometry, propositions were stated

and proved by the laws of Logic helped, as we now
know, by tacit appeals to the conclusions which
common sense draws from the pictorial representa-
tion in the mind of geometrical figures about any
triangles, say, or some triangles, and thus not about
one or two particular things, but about an infinity
of them. Thus, consider any two triangles ABC
and DEF. It helps the thinking of most of us

to draw pictures of particular triangles, but our

conclusions do not hold merely for these triangles.
If the sides BA and AC are equal in length to the

sides ED and DF respectively, and the angle at A is

equal to the angle at D, then BC is -equal to EF.
This is proved rather imperfectly in the fourth

proposition of the first Book of Euclid's Elements.

When we examine into and complete the reason-

ings of geometricians, we find that the conception of

space vanishes, and that we are left with logic alone.

Philosophers and mathematicians used to think

and some do now that, in geometry, we had to

do, not with the space of ordinary life in which our

houses stand and our friends move about, and which
certain quaint people say is

"
annihilated

"
by electric

telegraphs or motor cars, but an abstract form of the

same thing from which all that is personal or material

has disappeared, and only things like distance and
order and position have remained. Indeed, some
have thought that position did not remain ; that,

in abstract space, a circle, for example, had no

position of its own, but only with respect to other

things. Obviously, we can only, in practice, give
the position of a thing with respect to other things"

relatively
" and not

"
absolutely." These

"
relativists

"
denied that position had any prop-
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erties which could not be practically discovered.

Relativism, in a thought-out form, seems quite
tenable ; in a crude form, it seems like excluding the
number 2, as distinguished from classes of two

things, from notice as a figment of the brain, because
it i.s not visible or tangible like a poker or a bit of

radium or a mutton-chop.
In fact, a perfected geometry reduces to a series

of deductions holding not only for figures in space,
but for any abstract things. Spatial figures give a

striking illustration of some abstract things ; and
that is the secret of the interest which analytical

geometry has. But it is into algebra that we must
now look to discover the nature of Mathematics.
We have seen that Egyptian arithmetic was more

general than Egyptian geometry : like algebra, by
using letters to denote unknown numbers, it began
to consider propositions about any numbers. In

algebra and algebraical geometry this quickly grew,
and then it became possible to treat branches of

mathematics in a systematic way and make whole
classes of problems subject to the uniform and
almost mechanical working of one method. Here
we must again recall the economical function of

science.

At the same time as methods algebra and

analytical geometry and the infinitesimal calculus

grew up from the application of mathematics
to natural science, grew up also the new concep-
tions which influenced the form which mathematics
took in the seventeenth, eighteenth, and nineteenth

centuries. The ideas of variable and junction became
more and more prominent. These ideas were

brought in by the conception of motion, and, un-

affected by the doubts of the few logicians in the

ranks of the mathematicians, remained to fructify

mathematics. When mathematicians woke up to the
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necessity of explaining mathematics logically and

finding out what Mathematics is, they found that,

in mathematics the striving for generality had led,

from very early times, to the use of a method of

deduction used but not recognised and distinguished
from the method usually used by the Aristotelians.

I will try to indicate the nature of these methods,
and it will be seen how the ideas of variable and

function, in a form which does not depend on that

particular kind of variability known as motion,
come in.

A proposition in logic is the kind of thing which is

denoted by such a phrase as :

"
Socrates was a

mortal and the husband of a scold." If and this is

the characteristic of modern logic we notice that

the notions of variable and function (correspondence,

relation) which appeared first in a special form in

mathematics, are fundamental in all the things which
are the objects of our thought, we are led to replace
the particular conceptions in a proposition by varia-

ables, and thus see more clearly the structure of the

proposition. Thus :

" x is a y and has the relation

R to 2, a member of the class u "
gives the general

form of a multitude of propositions, of which the

above is a particular case, the above proposition

may be true, but it is not a judgment of logic, but
of history or experience. The proposition is false

if
" Kant "

or
"
Westminster Abbey

"
is substi-

tuted for
"
Socrates

"
: it is neither if

"
x," a sign

for a variable, is, and then becomes what we call a
"
prepositional function

"
of x and denote it by"

<f>x

"
or

"
\fa" If more variables are involved,

we have the notation
"

<J>(x,y)," and so on.

Relations between prepositional functions may be

true or false. Thus x is a member of the class a,

and a is contained in the class 6, together imply that

x is a 6, is true. Here the implication is true, and
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we do not say that the functions are. The kind of

implication we use in mathematics is of the
form :

"
If <fa is true, then fa is true

"
; that is, any

particular value of x which makes <fa true also makes

ifx true.

From the perception that, when the notions of

variable and function are introduced into logic, as

their fundamental character necessitates, all mathe-
matical methods and all mathematical conceptions can
be denned in purely logical terms, leads us to see

that Mathematics is only a part of Logic and is

the class of all propositions of the form : <j>(x,y,z, . . . )

implies, for all values of the variables, \f(x,y,z, . . . ).

The structure of the propositional functions involves

only such ideas as are fundamental in logic, like

implication, class, relation, the relation of a term to

a class of which it is a member, and so on. And, of

course, Mathematics depends on the notion of Truth.

When we say that "1+ 1= 2," we seem to be

making a mathematical statement which does not

come under the above definition. But the statement
is rather mistakenly written : there is, of course,

only one whole class of unit classes, and the notation
"

1+ 1
" makes it look as if there were two. Re-

membering that 1 is a class of certain classes, what
the above proposition means is : If x and y are

members of 1, and x differs from y, then x and y
together make up a member of 2.

At last, then, we arrive at seeing that the nature

of Mathematics is independent of us personally and
of the world outside, and we can feel that our own
discoveries and views do not affect the Truth itself,

but only the extent to which we or others see

it. Some of us discover things in science, but we
do not really create anything in science any more
than Columbus created America. Common sense

certainly leads us astray when we try to use it for
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the purposes for which it is not particularly adapted,
just as we may cut ourselves and not our beards if

we try to shave with a carving knife
;
but it has the

merit of finding no difficulty in agreeing with those

philosophers who have succeeded in satisfying them-
selves of the truth and position of Mathematics.
Some philosophers have reached the startling con-

clusion that Truth is made by men, and that Mathe-
matics is created by mathematicians, and that
Columbus created America

;
but common sense, it is

refreshing to think, is at any rate above being flattered

by philosophical persuasion that it really occupies a

place sometimes reserved for an even more sacred

Being.
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