Electronic Journal of Differential Equations, Monograph 07, 2006, (213 pages).
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE, MULTIPLICITY, PERTURBATION, AND
CONCENTRATION RESULTS FOR A CLASS OF
QUASI-LINEAR ELLIPTIC PROBLEMS

MARCO SQUASSINA

To my parents and to Maria and Giulia

ABSTRACT. The aim of this monograph is to present a comprehensive sur-
vey of results about existence, multiplicity, perturbation from symmetry and
concentration phenomena for the quasi-linear elliptic equation

n n
1 .
— Z Dy, (aij(z,u) Dy, u) + 3 Z Dya;j(z,u)Da;uDg;u = g(z,u) in §,
1,j=1 i,7=1
where 2 is a smooth domain of R™, n > 1. Under natural assumptions on the
coefficients a;;, the above problem admits a standard variational structure,
but the associated functional f : H} () — R,

flw) = %/QZ aij(:c,u)Dxiqujudx—/QG(x,u) dz,

3,j=1
turns out to be merely continuous. Therefore, some tools of non-smooth critical
point theory will be employed throughout the various sections.
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PREFACE

This monograph is an updated, expanded and restyled elaboration of the Ph.D.
thesis that the author defended at the University of Milan on January 2002. It
contains some of the author’s researches undertaken from 1997 to 2003 in the field
of variational quasi-linear elliptic partial differential equations, under the supervi-
sion of Marco Degiovanni. The author thanks him for his teaching, encouragement
and advice. The author is grateful to Lucio Boccardo and Filomena Pacella for
supporting a couple of stay at Rome University La Sapienza in 2002 and 2005.
Further thanks are due to the Managing Editors of the Electronic Journal of Dif-
ferential Equations, in particular to Professor Alfonso Castro for his kindness. The
author was supported by the MIUR research project “Variational and Topological
Methods in the Study of Nonlinear Phenomena” and by the Istituto Nazionale di
Alta Matematica “F.Severi”.

The presentation of the material is essentially self-contained. It only requires
some basic knowledge in functional analysis as well as in the theory of linear elliptic
problems. The work is arranged into nine paragraphs, and each of these is divided
into various numbered subsections. All results are formally stated as Theorems,
Propositions, Lemmas or Corollaries which are numbered by their section number
and order within that section. Throughout the manuscript formulae have double
indexing in each section, the first digit being the section number. When formulae
from another section are referred to, the number corresponding to the section is
placed first.

Marco Squassina
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NOTATION

) N, Z, Q, R denote the set of natural, integer, rational, real numbers;
) R™ (or RY) is the usual real Euclidean space;

) Q is an open set (often implicitly assumed smooth) in R™;
) 09 is the boundary of Q;

) a.e. stands for almost everywhere;

) p’ is the conjugate exponent of p;

) LP(f) is the space of u measurable with [, |u[Pdz < oo, 1 < p < oo;
) L>°(£) is the space of u measurable with |u(z)| < C for a.e. z €
) H I, and | - || norms of the spaces LP and L°°;

) D,,u(z) is the i-th partial derivative of u at z;

) Vu(z) stands for (Dy,u(x),..., Dy, u(z));

) Au(z) stands for 7 | D22u( )

) HY(Q), Hl(R”) HQ), e P(Q), WLP(R™), W, P (Q) are Sobolev spaces;
) H=1(Q), Wy (Q) are the first duals of Sobolev spaces;
) WEP(R™), WiP(€) denotes higher order Sobolev spaces;
) - llips |- llkps I - | =1,p norms of the Sobolev spaces;

) Lipy,.(R™) indicate the space locally Lipschitz functions;
) C(§2) functions differentiable at any order with compact support;
) L™(FE) denotes Lebesgue measure of F;

) H""1(A) denotes the Hausdorff measure of A4;

) ¢ usually stands for a suitable deformation;

) |df](u) stands for the weak slope of f at u;

) (um) denotes a sequence of scalar functions;

) (u™) denotes a sequence of vector valued functions;

) uT (resp. u™) is the positive (resp. negative) part of u;

) — (resp. —) stands for the weak (resp. strong) convergence;

) lim,, means the limit as n — +o0;

) By(z) or B(z,r) is the ball of center 2 and radius r;

) d(x, F) is the distance of x from E.

) {p,x) evaluation of the linear functional ¢ at x;

) x -y scalar product between elements z,y € R™;

) 6;5 is 1 for i = j and 0 for ¢ # j;

) xE (or 1g) is the characteristic function of the set F;

) A @ B is the direct sum between A and B.

1. INTRODUCTION

The recent years have been marked out by an evergrowing interest in the research
of solutions (and, besides, of their various qualitative behaviors) of semi-linear
elliptic problems via techniques of classical critical point theory. Readers which
are interested in these aspects may look at the following books: Aubin-Ekeland
[13], Chabrowski [39, [40], Ghoussoub [73], Mawhin-Willem [103], Rabinowitz [120],
Struwe [136], Willem [146] and Zeidler [147].

The present work aims to show how various achievements, well-established in
the semi-linear case, can be extended to a more general class of problems. More
precisely, let 2 be an open bounded subset in R® (n > 2) and f : H}(Q2) — R a
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functional of the form

flu) = %/ﬂ Z aij(m)DIiqujuda:f/QG(:r,u) dzx.

ij=1

Since the pioneering paper of Ambrosetti-Rabinowitz [5], critical point theory has
been successfully applied to the functional f, yielding several important results
(see e.g. [42, 103} (120} 136]). However, the assumption that f : Hi(Q) — R is of
class C'! turns out to be very restrictive for more general functionals of calculus of
variations, like

flu) = / Z(x,u,Vu)dx f/ G(z,u)dx,
Q Q
(see e.g. [53]). In particular, if f has the form

f(u):%/ﬂz aij(x,u)DmiuDIjudx—/QG(:Lu)dx,

i,j=1

we may expect f to be of class C! only when the a;;’s are independent of u or when
n = 1. In fact, if f was locally Lipschitz continuous, for v € H} (), we would have

sup { f'(u)(v) : v € C2(Q), [|[vll gy ) < 1} < o0,

that is to say

n

Z Dya;j(w,u)Dy,uDyu € H ().

ij=1
The above term naturally belongs to L'(Q), which is not included in H~!(Q) for
n > 2. On the other hand, since the papers of Chang [43] and Marino-Scolozzi
[101], techniques of critical point theory have been extended to some classes of
non-smooth functionals. In our setting, in which f is naturally continuous but not
locally Lipschitz, it turns out to be convenient to apply the theory developed in
[50, 58], 6], B7] according to the approach started by Canino [33]. Let us point out
that a different approach has been also considered in the literature. If we consider
the space Hg(Q2) N L>°(9) endowed with the family of norms

lulle = llullmy + ellullz=, >0,

then, under suitable assumptions, f is of class Ct in (H}(Q) N L>=(Q),] - <) for
each ¢ > 0. This allows an approximation procedure by smooth problems (the
original one is obtained as a limit when ¢ — 0). The papers of Struwe [137] and
Arcoya-Boccardo [6] [7] follow, with some variants, this kind of approach. However,
in view of multiplicity results, it is hard to keep the multiplicity of solutions at
the limit. In particular, when f is even and satisfies assumptions of Ambrosetti-
Rabinowitz type, the existence of infinitely many solutions has been so far proved
only by the former approach. The aim of this manuscript is to present some results
concerning existence, nonexistence, multiplicity, perturbation from symmetry, and
concentration for quasi-linear problems such as

n 1 n
- Z Dy, (aij(x,u)De,u) + B Z Dsaij(x,u) Dy, uDgu = g(z,u) in Q
ij=1 ij=1

u=0 ondN
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and even for the more general class of elliptic problems
—div (Ve Z(z,u, Vu)) + D Z(x,u, Vu) = g(z,u) in Q
u=0 on 0f,

including the case when g reaches the critical growth with respect to the Sobolev
embedding. New results have been obtained in the following situations:

Section 3: infinitely many solutions for quasi-linear problems with odd nonlinear-
ities; existence of a weak solution for a general class of Euler’s equations of multiple
integrals of calculus of variations; existence and multiplicity for quasi-linear elliptic
equations having unbounded coefficients (cf. [132] 133} [114]).

Section 4: multiplicity of solutions for perturbed symmetric quasi-linear elliptic
problems; multiplicity results for semi-linear systems with broken symmetry and
non-homogeneous boundary data (cf. [128| 129, [30, I10]).

Section 5: problems of jumping type for a general class of Euler’s equations of
multiple integrals of calculus of variations; problems of jumping type for a general
class of nonlinear variational inequalities (cf. [79] 80]).

Section 6: positive entire solutions for fully nonlinear elliptic equations; existence
of two solutions for fully nonlinear problems at critical growth with perturbations
of lower order; asymptotics of solutions for a class of nonlinear problems at nearly
critical growth (cf. [127, 134, 130, 107]).

Section 7: concentration phenomena for singularly perturbed quasi-linear ellip-
tic equations. Existence of families of solutions with a spike-like shape around a
suitable point (cf. [I31]).

Section 8: multi-peak solutions for degenerate singularly perturbed elliptic equa-
tions. Existence of families of solutions with multi spike-like profile around suitable
points (cf. [74]).

Section 9: Pucci-Serrin type identities for C! solutions of Euler’s equations and
related non-existence results (cf. [59]).

For the sake of completeness, we wish to mention a quite recent paper [35] dealing
with the variational bifurcation for quasi-linear elliptic equations (extending some
early results due to Rabinowitz in the semi-linear case [I12I]) and the paper [91]
regarding improved Morse index type estimates for the functional f.

2. REVIEW OF CRITICAL POINT THEORY

In this section, we shall recall some results of abstract critical point theory
[36l, 50, 58] [86, [87]. For the proofs, we refer to [36] or [50].

2.1. Notions of non-smooth analysis. Let X be a metric space endowed with
the metric d and let f : X — R be a function. We denote by B,.(u) the open ball
of center v and radius 7 and we set

epi(f) = {(u,A) € X XR: f(u) < A}.
In the following, X x R will be endowed with the metric
1/2
(N, (v,2)) = (d(w,0))? + (A= )"
and epi(f) with the induced metric.
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Definition 2.1. For every u € X with f(u) € R, we denote by |df|(u) the supre-
mum of the o’s in [0, +00] such that there exist § > 0 and a continuous map
A+ (Bs(u, f(u)) Nepi(f)) x [0,6] — X
satisfying
d(A (v, p),t),0) <t, f(A((v,1),1)) < p— ot
whenever (v, ) € Bs(u, f(u)) Nepi(f) and t € [0,d]. The extended real number
|df |(u) is called the weak slope of f at w.

Proposition 2.2. Let u € X with f(u) € R. If (up) is a sequence in X with
up, — u and f(up) — f(u), then we have |df|(uw) < liminfy, |df]|(up).

Remark 2.3. If the restriction of f to {u € X : f(u) € R} is continuous, then
ldf| : {u € X : f(u) € R} — [0, +0o0]
is lower semi-continuous.
Proposition 2.4. Let f : X — RU {+o0} be a function. Set
2(f) ={ue X : f(u) < +oo}

and assume that f|g(p) is continuous. Then for every u € Y (f) we have

|df|(u) = [df |5 | (w)
and this value is in turn equal to the supremum of the o’s in [0, +00[ such that there
ezist 6 > 0 and a continuous map

A (Bs(u) N 2(f)) % [0,6] — X

satisfying
d(A (v, t),0) <t, f(H(v,1) < fv) —at,
whenever v € Bs(u) N 2(f) and t € [0,4].

Definition 2.5. An element u € X is said to be a (lower) critical point of f if
|df|(u) = 0. A real number c is said to be a (lower) critical value of f if there exists
a critical point u € X of f such that f(u) = ¢. Otherwise c is said to be a regular
value of f.

Definition 2.6. Let ¢ be a real number. The function f is said to satisfy the
Palais-Smale condition at level ¢ ((CPS). for short), if every sequence (up) in X
with |df|(up) — 0 and f(up) — c admits a subsequence (up,) converging in X to
some u.

Let us also introduce some usual notations. For every b € RU {400} and ¢ € R
we set

fb:{uEX fw) <b}, K.={ueX:|df|(u)=0,f(u) =c}

Theorem 2.7 (Deformation Theorem). Let ¢ € R. Assume that X is complete,
f: X — R is a continuous function which satisfies (CPS).. Then, given & > 0, a
neighborhood U of K. (if K. = 0, we allow U = 0) and X\ > 0, there exist € > 0
and a continuous map n : X X [0,1] — X such that for every u € X and t € [0, 1]
we have:

(a) d(n(u,t),u) < X;
(b) f(n(u, 1)) < f(u);
(©) f(u) ¢le =& c+el=nlut) =
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(d) n(fr=\U1) C fos.

Theorem 2.8 (Noncritical Interval Theorem). Let a € R and b € RU {400} (a <
b). Assume that f: X — R is a continuous function which has no critical points u
with a < f(u) <b, that (CPS), holds and f€ is complete whenever ¢ € [a,b]. Then
there exists a continuous map 1 : X x [0,1] — X such that for every u € X and
t €[0,1] we have:

(a) 77(”)0) = U

(b) f(n(u,t)) < f(u);

(c) f(u) <a=nlut)=uy
(d) f(u) <b= f(n(u,1)) <a

Theorem 2.9. Let X be a complete metric space and f : X — R U {+o0} a
function such that D(f) is closed in X and f|@(f) is continuous. Let ug,vg, vy be in
X and suppose that there exists r > 0 such that ||[vg — uol|x <7, |lv1 —wollx > 7,

inf f(B,(ug)) > —o0, and

a =inf{f(u):ue X, ||u—uol|x =7} >max{f(vo), f(v1)}.
Let
I'={y:[0,1] = 2(f) continuous with ~(0) = vg,v(1) = v1}
and assume that T' # () and that f satisfies the Palais-Smale condition at the two
levels

a =inf f(Br(ug)), c2= inf %;aﬁc(f 7).

Then —oo < ¢1 < cg < 400 and there exist at least two critical points uy,us of f
such that f(u;) =¢; (1=1,2).
We now recall the mountain pass theorem without Palais-Smale.
Theorem 2.10. Let X is a Banach space and f : X — R is a continuous func-
tional. Assume that the following facts hold:
(a) There exist 7 > 0 and o > 0 such that

Vue X :|ullx = 0= f(u) >n;
(b) f(0) =0 and there exists w € X such that:
flw) <n and  [lwllx > o
Moreover, let us set
P ={y€C([0,1,X):7(0) =0, (1) =w}

and

< B = inf ).
n<pg ;lémgl[%ﬁ]f(w )

Then there exists a Palais-Smale sequence for f at level 3.

In the next theorem, we recall a generalization of the classical perturbation argu-
ment of Bahri, Berestycki, Rabinowitz and Struwe devised around 1980 for dealing

with problems with broken symmetry adapted to our non-smooth framework (See
[118]).
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Theorem 2.11. Let X be a Hilbert space endowed with a norm || - ||x and let
f: X — R be a continuous functional. Assume that there exists M > 0 such that f
satisfies the concrete Palais-Smale condition at each level ¢ > M. Let'Y be a finite
dimensional subspace of X and u* € X \'Y and set
Y'=Yo @), Yi={u+ " eY :uecY, A>0}.
Assume now that f(0) <0 and that
(a) There exists R > 0 such that

VueY :|lullx > R= f(u) < f(0);
(b) there exists R* > R such that:
Yue Y™ :|ullx > R" = f(u) < f(0).
Let us set
P = {’y eC(X,X): v odd, y(u) =w if max{f(w), f(—u)} < O}.

Then, if

¢* = inf su u)) > c¢= inf su u)) > M,
WG%G% f(y(w) 7e@uegf(v( ) =

f admits at least one critical value ¢ > c*.

2.2. The case of lower semi-continuous functionals. Let X be a metric space
and let f: X — RU{+o0} be a lower semi-continuous function. We set
dom(f)={ue X: f(u) <4oc} and epif={(u,n) X xR: f(u) <n}.

The set epi f is endowed with the metric

d((u,m), (v, 1)) = (A, 0)2 + (n — w)?)".

Let us define the function Gy : epi f — R by setting

Gy (u,m) = 1. (2.1)
Note that Gy is Lipschitz continuous of constant 1.
From now on we denote with B(u,d) the open ball of center u and of radius §.

We recall the definition of the weak slope for a continuous function introduced in
[50, 58, [86] [87].

Definition 2.12. Let X be a complete metric space, g : X — R a continuous
function, and u € X. We denote by |dg|(u) the supremum of the real numbers o in
[0, 00) such that there exist § > 0 and a continuous map

A . B(u,0) x [0,0] — X,
such that, for every v in B(u,d), and for every ¢ in [0, d] it results

A (0,8),0) <,

9( (v,1)) < g(v) — ot

The extended real number |dg|(u) is called the weak slope of g at w.

According to the previous definition, for every lower semi-continuous function f
we can consider the metric space epi f so that the weak slope of G¢ is well defined.
Therefore, we can define the weak slope of a lower semi-continuous function f by
using |dG | (u, f(u)).

More precisely, we have the following
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Definition 2.13. For every u € dom(f) let

|9 ]nre)
A, if |Gf|(u, f(u) < 1,
|df|(u) = § \/1-]Gs] (. r(u))? 91
+00, if 1G] (u, £(w)) = 1.

The previous notion allow us to give the following concepts.

Definition 2.14. Let X be a complete metric space and f : X — RU {+oc0} a
lower semi-continuous function. We say that v € dom(f) is a (lower) critical point
of f if |df|(u) = 0. We say that ¢ € R is a (lower) critical value of f if there exists
a (lower) critical point u € dom(f) of f with f(u) = c.

Definition 2.15. Let X be a complete metric space, f : X — RU {400} a lower
semi-continuous function and let ¢ € R. We say that f satisfies the Palais-Smale
condition at level ¢ ((PS), in short), if every sequence {u,} in dom(f) such that

|df |(un) — 0,
f(un) — G
admits a subsequence {u,, } converging in X.

For every n € R, let us define the set
fT={ueX: f(u) <n}. (2.2)

The next result gives a criterion to obtain an estimate from below of |df]|(u) (cf.
[B8]).

Proposition 2.16. Let f: X — RU {+oo} be a lower semi-continuous function
defined on the complete metric space X, and let w € dom(f). Assume that there
existd > 0,n > f(u), o > 0 and a continuous function 7 : B(u,d)Nf1x[0,] — X
such that

~+

d((v,t),v) <t, Yve B(u,d)Nf7,
f(H#(v,t)) < f(v) —ot, Yve B(u,d)N f.
Then |df|(u) > o.
We will also use the notion of equivariant weak slope (see [36]).

Definition 2.17. Let X be a normed linear space and f : X — RU {400} an
even lower semi-continuous function with f(0) < 4oco. For every (0,7) € epi f we
denote by |dz,Gr|(0,7n) the supremum of the numbers ¢ in [0, 00) such that there
exist 6 > 0 and a continuous map

H = (A1, 7) - (B((0,n),6) Nepi f) x [0,0] — epi f
satisfying
d(A((w, p), 1), (w, p)) < t, Ho((w, p),t) < p = ot,
S ((—w, p), 1) = =H((w, p), 1),
for every (w,u) € B((0,1),8) Nepi f and t € [0, §].
To compute |dG¢|(u,n), the next result will be useful (cf. [58]).
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Proposition 2.18. Let X be a normed linear space, J : X — RU{+o0} a lower
semi-continuous functional, I : X — R a C' functional and let f = J + 1. Then
the following facts hold:

(a) For every (u,n) € epi(f) we have
[dG|(u,n) =1 <= [dG;|(u,n—I(u)) =1;
(b) if J and I are even, for every n > f(0), we have
|dz,G¢l(0,n) =1 <= [dz,G,/(0,n = 1(0)) = 1;
(¢) if u € dom(f) and I'(u) =0, then |df|(u) = |dJ|(u).

Proof. Assertions (a) and (c) follow by arguing as in [58]. Assertion (b) can be
reduced to (a) after observing that, since I is even, it results I’(0) = 0. O

In [50, 8] variational methods for lower semi-continuous functionals are devel-
oped. Moreover, it is shown that the following condition is fundamental in order
to apply the abstract theory to the study of lower semi-continuous functions

Y(u,m) €epif: fluy<n = ’Qf’(u,n) =1. (2.3)
In the next section we will prove that the functional f satisfies (2.3). The next
result gives a criterion to verify condition (2.3]) (cf. [60, Corollary 2.11]).

Theorem 2.19. Let (u,n) € epi(f) with f(u) < n. Assume that, for every o > 0,
there exist § > 0 and a continuous map

A {w € B(u,0) : f(w) <n+d} x[0,0] = X
satisfying
d(A(w,t),w) < ot,  f(A(w,1)) < (1 =t)f(w)+t(f(u)+0)
whenever w € B(u,d), f(w) <n+46 andt € [0,6]. Then |dG¢|(u,n) =1. In addi-
tion, if f is even, u = 0 and I (—w,t) = —I€ (w,t), then we have |dz,G¢|(0,n) = 1.
Let us now recall from [50] the following result.

Theorem 2.20. Let X be a Banach space and f : X — RU {400} a lower semi-
continuous function satisfying (2.3). Assume that there exist vo,v1 € X andr >0
such that ||v1 — vol| > r and
inf{f(u) : ue X, ||u—vo| =r}>max{f(vo), f(v1)}. (2.4)
Let us set
I'={y:[0,1] — dom(f), = continuous, v(0) =wvg and v(1) = v1},

and assume that

c¢1 = inf sup f oy < 400
7€l 0,1

and that [ satisfies the Palais-Smale condition at the level c;. Then, there exists a
critical point uy of f such that f(u1) = c1. If, moreover,

¢o = inf f(By (o)) > —o0,

and f satisfies the Palais-Smale condition at the level cq, then there exists another
critical point ug of f with f(ug) = ¢p.

In the equivariant case we shall apply the following result (see [102]).
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Theorem 2.21. Let X be a Banach space and f : X — R U {+oo} a lower
semi-continuous even function. Let us assume that there exists a strictly increasing
sequence (Wy,) of finite dimensional subspaces of X with the following properties:

(a) There exist p > 0, v > f(0) and a subspace V. C X of finite codimension
with
YueV:|ull=p = flu)>nr;
(b) there exists a sequence (Ryp) in (p,o0) such that
Vue Wy : full 2Ry = f(u) < f(0);
(¢c) f satisfies (PS). for any ¢ >~ and f satisfies (2.3));
(d) 1dz,G¢1(0,m) # 0 for every n > f(0).
Then there exists a sequence {up} of critical points of f such that f(up) — +00.

2.3. Functionals of the calculus of variations. Let €2 be a bounded open subset
of R", n >3 and let f: W, P(Q;RY) — R (N > 1) be a functional of the form

f(u):/Qg(x,u,Vu)dx. (2.5)

The associated Euler’s equation is formally given by the quasi-linear problem
—div(VeZL(2,u, Vu)) + Vo ZL(z,u,Vu) =0 in Q

u=0 on JN. (2.6)

Assume that .2 : QxRN xR™ — R is measurable in z for all (s, &) € RY xR™N and
of class C! in (s,€) for a.e. z € Q. Moreover, assume that there exist ag € L(Q),
bo € R, a1 € L}, () and by € L2, (Q) such that for a.e. z € Q and for all
(5,€) € RY x R™™ we have

|2 (2, 5,6)] < ao(x) + bols|""/ ") 4 bo &P, (2.7)
Vol (w,5,€)] < ar(@) + ba(@)|s[""/ "2 + by () €], (2.8)
Vel (w,5,6)] < ar(@) + ba(@)]s[*"/ "7 + by () €], (2.9)

Conditions and imply that for every u € Wol’p (2, RY) we have
Vel (2,u, Vu) € L, (4 R™Y),
Vo (2,u,Vu) € L, (S RY).
Therefore, for every u € VVO1 P(Q,RY) we have
—div (Ve Z (2, u, Vu)) + V2 (2, u, Vu) € 7' (4 RY).

Definition 2.22. We say that u is a weak solution of (@, ifue Wol’p(Q,RN)
and

—div (VeZ(z,u, Vu)) + Vi ZL(z,u, Vu) =0
in 2'(Q; RY).
If the integrand £ is subjected to suitable restrictive conditions, it turns out
that f is of class C' and

—div (Ve L (2, u, Vu)) + VoL (z,u, Vu) € W I (Q,RY)
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for every u € VVO1 P(€,RN). In this regular setting, we have that f satisfies condition
(PS)., if and only of every sequence (u) in Wy (Q, RY) with f(us) — ¢ and

—div (Ve ZL(x,up, Vug)) + Vs ZL(x, up, Vup,) — 0

strongly in W17 (€, RY) has a strongly convergent subsequence in Wol’p(Q, RM).
Now, a condition of this kind can be formulated also in our general context,
without any reference to the differentiability of the functional f.

Definition 2.23. Let ¢ € R. A sequence (uy) in WyP(Q,RY) is said to be a
concrete Palais-Smale sequence at level ¢ ((CPS).-sequence, in short) for f, if

flun) = ¢,
—div (Ve (z,un, Vun)) + VoL (2, up, Vuy) € W I (Q,RY)
eventually as h — co and
—div (Ve ZL (@, un, Vug)) + VoL (2, up, Vuy) — 0

strongly in W~1#'(Q, RYN).

We say that f satisfies the concrete Palais-Smale condition at level ¢ ((CPS). in
short), if every (CPS).-sequence for f admits a strongly convergent subsequence
in WoP(Q,RV).

The next result allow us to connect these “concrete” notions with the abstract
critical point theory.

Theorem 2.24. The functional f is continuous and for all u € Wol’p(Q,RN),

|df |(u) > sup{/ (VeZ(x,u, Vu)-Vo+ VL (2, u, Vu)v)dz : v € CZ, |v]l1p < 1}
Q

Therefore, if |df|(u) < 400 it follows
—div (VeZ(z,u, Vu)) + VoL (2, u, Vu) € W (Q,RY)
and

| = div (VeZ(z,u, Vu)) + VoL (2, u, VU)HLP/ < |df [(u).

Corollary 2.25. Let u € Wy P(,RY), ¢ € R and let (uz) be a sequence in
Wy (Q,RN). Then the following facts hold:

(a) Ifu is a (lower) critical point of f, then u is a weak solution of ([2.6)));
(b) if (up) is a (PS)c-sequence for f, then (up) is a (CPS).-sequence for f;
(c) if f satisfies (CPS),, then f satisfies (PS)e.

By means of the previous result, it is easy to deduce some versions of the Moun-
tain Pass Theorem adapted to the functional f.

Theorem 2.26. Let (D,S) be a compact pair, let ¢ : S — Wol’p(Q,RN) be a
continuous map and let

¢ = {90 € C(D7W01,p(QaRN)) P PIs = '(/)} .
Assume that there exists a closed subset A of Wy'P (0, RYN) such that
iI}‘ff > gl(&;){f, ANyY(S) =0, ANne(D)#£DVYyp € d.
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If f satisfies the concrete Palais-Smale condition at level ¢ = inf,ce max,(p) f,

then there exists a weak solution u of (2.6) with f(u) = c¢. Furthermore, if inf 4 f >
2.6

¢, then there exists a weak solution u of (2.6) with f(u) =c¢ and u € A.
Theorem 2.27. Suppose that
g(l’, -5 76) = f(x, Sag)
for a.e. x € Q and every (s,£) € RN x R*™N . Assume also that
(a) There exist p > 0, a > f(0) and a subspace V.C Wy P(Q,RN) of finite
codimension with
YueV: |ul|=p = flu) > aq
(b) for every finite dimensional subspace W C Wy (0, RN), there exists R > 0
with
YueW: Jul| > R = f(u) < f(0);
(¢c) f satisfies (CPS). for any ¢ > a.
Then there exists a sequence (uy) C Wy P(Q,RN) of weak solutions of (2.6) with
limy, f(uh) = +00.

3. SUPER-LINEAR ELLIPTIC PROBLEMS

We refer the reader to [132] I33]. Some parts of these publications have been
slightly modified to give the monograph a more uniform appearance.

1. Quasi-linear elliptic systems. Many papers have been published on the
study of multiplicity of solutions for quasi-linear elliptic equations via non-smooth
critical point theory; see e.g. [0 8, 9, B3], 2] 36, 49, 112| 137]. However, for the
vectorial case only a few multiplicity results have been proven: [137, Theorem 3.2]
and recently [9 Theorem 3.2], where systems with multiple identity coefficients
are treated. In this section, we consider the following diagonal quasi-linear elliptic
system, in an open bounded set ) C R™ with n > 3,

—ZD ”(x w)Djug) + ZZDSk ”quuhD up, = Ds, G(xz,u) in Q,
1,7=1 zy 1h=1
(3.1)
for k=1,...,N, where u : @ — RY and u = 0 on 952. To prove the existence of
weak solutions, we look for critical points of the functional f : H}(Q,RY) — R,

/ ZZaU z,u)DjupD; uhdx—/Gxu (3.2)

1,j=1 h=1

This functional is not locally Lipschitz if the coefficients a? ; depend on u; however,
as pointed out in [6] 33] it is possible to evaluate f’,

/ Z Zaw x,w)Dup Djvy, de

i,j=1 h=1
/ZZDawxu vDuhDuhdac—/DGxu ~vdx
3,j=1 h=1

for all v € H}(Q,RN) N L= (Q,RY).
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To prove our main result and to provide some regularity of solutions, we consider
the following assumptions.

° (a?j(-, s)) is measurable in z for every s € RN, and of class C! in s for a.e.
r € Q with a?j = a?l-. Furthermore, we assume that there exist v > 0 and
C > 0 such that for a.e. z € , all s € RY and ¢ € R*Y

n N
DY al(w, )€ > vIgP, |al(x,s)| < O, |Dsaly(x,s)| < C (3.3)

i,j=1h=1
and
n N
Z Z 8- Dsafj(m, s)gﬁgf > 0. (3.4)
i,j=1h=1

e there exists a bounded Lipschitz function ¢ : R — R, such that for a.e.
reQ, forall ¢ € R™W g€ {-1,1}" and r,s € RY

n N

Z Z (;Dsa?j(m, s) - expy(r, s) + all;(x, s) D, (exp, (r, s))h) e <o (3.5)

i,j=1h=1

where (exp, (7, s)); = o;explo;(¢¥(r;) —(s;))] for each i =1,..., N.

e the function G(z, s) is measurable in z for all s € RY and of class C! in s
for a.e. x € Q, with G(x,0) = 0. Moreover for a.e. x € Q we will denote
with g(z,-) the gradient of G with respect to s.

e for every e > 0 there exists a. € L?>"/("+2)(Q) such that

l9(z, )| < ac(x) + els| "2/ 072) (3.6)

for a.e. z € Q and all s € RY and that there exist ¢ > 2, R > 0 such that
for all s € RV and for a.e. z € Q

|s] > R=0< qG(z,s) <s-g(z,s). (3.7)
e there exists v € (0,¢ — 2) such that for all £ € R"", s € RV and a.e. in

n N n N
> D s Daali(a,$)E0) <v Y D al(x, s)ErE) (3.8)

i,j=1 h=1 i,j=1h=1

Under these assumptions we will prove the following result.
Theorem 3.1. Assume that for a.e. x €  and for each s € RN
a?j(xvfs) :a?j(xvs)v g(z,—s) = —g(,s).

Then there exists a sequence (u™) C HY(Q,RY) of weak solutions to (3.1) such
that f(u™) — +o00 as m — 0.

The above result is well known for the semi-linear scalar problem

— Y Dj(aij(x)Diu) = g(z,u) in Q

4,5=1

u=0 on 0N.
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Ambrosetti and Rabinowitz in [5, [120] studied this problem using techniques of
classical critical point theory. The quasi-linear scalar problem

n

1 n
- E Dj(a;;j(z, u)D;u) + B g Daij(xz,uw)DiuDju = g(z,u) in Q
i,j=1 ,j=1

u=0 on JdNQ,

was studied in [32] 33} [36] and in [112] in a more general setting. In this case the
functional

1 n
flw) = f/ Z a;j(z,v)D;uDjudz —/ G(z,u)dx
2Jo 2 @
is continuous under appropriate conditions, but it is not locally Lipschitz. Con-
sequently, techniques of non-smooth critical point theory have to be applied. In
the vectorial case, to my knowledge, problem (3.1)) has only been considered in

[137, Theorem 3.2] and recently in [9, Theorem 3.2] for coefficients of the type

a?j’“(x, s) = Jhkaij(% s).

3.2. The concrete Palais-Smale condition. The first step for the (CPS). to
hold is the boundedness of (C'PS). sequences.

Lemma 3.2. For all c € R each (CPS). sequence of f is bounded in HL(Q,RN).
Proof. Let ag € L'(Q) be such that for a.e. x € Q and all s € RV
qG(z,s) < s-g(x,s) + ao(z).

Now let (u™) be a (CPS). sequence for f and let w™ — 0 in H~*(Q,RY) such
that for all v € C°(Q,RY),

n N
(w™,v) = /Q Z Za?j(x,um)DiuZlevh dx

i,j=1 h=1

n N
1
* 5/9 Z Z Daly(x,u™) - vD;up Djup do — /Qg(:mum) 0.

i,j=1h=1

Taking into account the previous Lemma, for every m € N we obtain
- ”wm”H*l(Q,RN)”umHHé(Q,RN)

n N
S/ Z Za?j(a:,um)Diuhijuzn dx
Q

i,j=1h=1

n N
1
+ 5/ Z ZDSGZ(J?,UM) - u™ Dyl Dyull dx — / gz, u™) - u™ da
Q. Q

i,j=1h=1

n N
§/ Z Za?j(w,um)DiuhijuZ"dx—i—
Q

i,j=1h=1

n N
1
+§/ E E Dsafj(z,um)~umDiuZleuzldz—q/ G(z,u™) dz+/ ag dx.
Q Q Q

i,j=1h=1
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Taking into account the expression of f and assumption (3.8)), we have that for
each m € N,

- ”meH”(Q,RN)HumHHg(Q,]RN)

n N
< - (% - 1) / Z Za?j(x,um)DiuZ”DjuZl dx
Q,

i,j=1 h=1

n N
1
+ 5/9 Z Z Dsalhj(x,um) -u"Dyup' Dijup' dae + qf (u™) + /Q ap dz
ij=1h=1

n N
q Y h m m m

+qf(u™)+ /Q ap dx.

Because of (3.3)), for each m € N,

n N
vla=2=IDu"3 < (a=2=7) [ 30 3 aly(o o) Daa Dy
i,j=1h=1

< 2[w™|[ -1 @) l[u" | g2 @ry) + 20f (u™) + 2/ apdx.
Q

Since w™ — 0 in H~1(Q,RY), (u™) is a bounded sequence in H}(Q,RY). O

Lemma 3.3. If condition (3.6) holds, then the map
H&(Q, RN) N L2n/(n+2) (Q, RN)
u — g(z,u)
is completely continuous.

The statement of the above lemma is a direct consequence of [36, Theorem 2.2.7].
The next result is crucial for the (C'PS). condition to hold for our elliptic system.

Lemma 3.4. Let (u™) be a bounded sequence in Hg(Q,RY), and set

n N
(w™, vy = / Z Za?j(x,um)DiuZ”Djvh dx
Q

i,j=1 h=1
1 no Y
+ 5‘/9 Z Z Dsaﬁlj(x,um) 'vDiUZleUZT dx
i,j=1h=1

for all v € C°(Q,RN). If (w™) is strongly convergent to some w in H~*(Q,RY),
then (u™) admits a strongly convergent subsequence in Hg (2, RY).

Proof. Since (u™) is bounded, we have u™ — wu for some u up to a subsequence.
Each component u}" satisfies (2.5) in [22], so we may suppose that D;u}’ — D;uy
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ae. in Qforall k=1,..., N (see also [54]). We first prove that

n N
/ Z Z a?j (x,u)DyupDjup d
Q

i,j=1h=1

n N
1
+ B /Q ”2221 }; Dsa?j(:c, u) - uDjupDjup do = (w, u).

Let 9 be as in assumption (3.5) and consider the following test functions
o™ = (o1 explor(P(ur) = P(ul"))], ..., on explon (Y(un) — P (ur))]),
where p € C(R), ¢ > 0 and o; = %1 for all I. Therefore, since we have
Djv* = (oxDjep + (V' (we) Djup — ' (ui") Djui’) ) explow (¥ (un) — v (ui))],
we deduce that for all m € N,
N

/Q S S al (o, u™) Do (04 Dy + 4 (un) Dyunp) explon (9(un) — w(uft)] de

i,j=1h=1

n N
[0}
[ XY Gl esplonbu) — oD Do da
ij=1h,i=1

n N
- /Q SO S b (, w™) Dyt Dy (uf) explon (b (un) — (uft) oo da

ij=1h=1
— <w7TL ,U’m>
Let us study the behavior of each term of the previous equality as m — oco. First
of all, if v = (019, ...,0Nny), we have that v™ — v implies

liibn(wm,vm) = (w, v). (3.10)

Since u™ — u, by Lebesgue’s Theorem we obtain

lim/ 2": ZN:a?»(x,um)Diuzl(Dj(ahgo) (3.11)

i,j=1h=1
+ U’ (un) Djup) explon (¥ (un) — P(up'))] do (3.12)
n N
= / Z Za?j(aﬁ,u)Diuh(Djvh + oy’ (up)Djuy) dx. (3.13)
Q4 j=1h=1

Finally, note that by assumption (3.5 we have

n N N o
l m m
>0 (X F Dadly(a,u™) explor(ur) — v(ui)
ij=1h=1 I=1
—aly (e u™ ) () explon (9 (un) — v (up))]) Dy Dy < 0.
Hence, we can apply Fatou’s Lemma to obtain

n N
i sup { 5 /Q 337 Dl explon((u) — () Dt Dy on) do

i,j=1h,l=1
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n N
= [ 3 aly o D Dy ) explon (o un) — v o)

i,j=1h=1

n N
1
< 5/9 Z Z Dsla?j(x,u)DiuhDjuh(algo) dx

i,j=1h,i=1

n N
_ /QmZJ};a?j(x,u)DiuhDjuhw’(uh)ga dz,
which, together with and , yields
n N 1 n N
/Q Z Z afj(x,u)DiuhDjvh dx + 5/9 Z Z Dsa?j(z,u) -vDyupDjuy, dx

i,j=1h=1 i,j=1h=1
> (w,v)

for all test functions v = (o1¢,...,0np) with o € CX(Q,RY), » > 0. Since we
may exchange v with —v we get

n N n N
1
/ g E aZ(x,u)DiuhDjvhdx+§/ E g Dsa%(:p,u)~vDiuhDjuhdx
Q Q

i,j=1 h=1 i,j=1h=1
= <w7 ’U>
for all test functions v = (a1¢,...,0Nnp), and since every function v € C° (2, RY)

can be written as a linear combination of such functions, we infer (3.9). Now, let
us prove that

n N n N
limsup/ Z Za%(m,um)Diuanjuz"” dx §/ Z Za%(m,u)DiuhDjuh dz.
m O Q

ij=1h=1 ij=1h=1
(3.14)
Because of (3.4), Fatou’s Lemma implies that

n N
/Q Z Z U - Dsa?j (x,u)DyupDjup dx

i,j=1h=1
n N
L. h
< hn}nlnf/ﬂ Z Z u™ - Dsagi(x,u™)Dyup! Djuy’ d.
1,j=1 h=1
Combining this fact with (3.9), we deduce that

n N
limsup/ g g a%(x,um)DiuZleu};“ dx
m Qyi=1h=1

n N
1
= lim sup [— 3 /Q i]z;l hz_lum . Dsa?j(l‘,um)DiuanjuZl dx + (W™, u™)

n N
1
< 3 /Q Z Z u- Dsa?j(:u w)Diup Djuy, do + (w, w)
ij=1h=1
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n N
:/ Z Za?j(gc,u)DiuhDjuhdm,
Q

ij=1h=1
so that (3.14]) is proved. Finally, by (3.3) we have
v||Du™ — Du)|3

n N
< / Z Z a?j(%um) (D;uy' Djup' — 2D;uy' Djup, + Diup Djuy) de.
Q. i=1h=1
Hence, by (3.14]) we obtain
limsup ||[Du™ — Dulls <0

which proves that u™ — u in Hg(Q,RY). O
We now come to the (CPS). condition for system (3.1)).
Theorem 3.5. f satisfies (CPS). condition for each ¢ € R.

Proof. Let (u™) be a (CPS), sequence for f. Since (u™) is bounded in H{ (2, RY),
from Lemma we deduce that, up to a subsequence, (g(x,u™)) is strongly con-
vergent in H~1(Q,RY). Applying Lemma we conclude the present proof. [

3.3. Existence of multiple solutions for elliptic systems. We now prove the
main result, which is an extension of theorems of [33] [36] and a generalization of
[0, Theorem 3.2] to systems in diagonal form.

Proof of Theorem[3.1. We want to apply [36, Theorem 2.1.6]. First of all, because
of Theorem f satisfies (CPS). for all ¢ € R. Whence, (¢) of [36, Theorem
2.1.6] is satisfied. Moreover we have

1
K/ | Dul? dac—/ G(z,u)dx < f(u) < =nNC [ |Dul? dx—/ G(z,u)dx.
2 Jo Q 2 Q Q

We want to prove that assumptions (a) and (b) of [36, Theorem 2.1.6] are also
satisfied. Let us observe that, instead of (b) of [36, Theorem 2.1.6], it is enough
to find a sequence (W,,) of finite dimensional subspaces with dim(W,) — +oo
satisfying the inequality of (b) (see also [I02, Theorem 1.2]). Let W be a finite
dimensional subspace of Hi(;RY) N L>(Q,RY). From we deduce that for
all s € RY with |s| > R

G <x,Rﬁ>

Cla,s) >

[s[* > bo()]s],

where
bo(z) = R™9inf{G(x,s) : |s| =R} >0
a.e. x € €. Therefore, there exists ag € L(£2) such that
G(z,s) > bo(x)|s|? — ao(x) (3.15)

a.e. x € Q and for all s € RV, Since by € L'(Q), we may define a norm | - ||¢ on

W by
1/q
ul|lg = bo|u|? dz .
fulle: = ( ] bolul” o)
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Since W is finite dimensional and ¢ > 2, from (3.15) it follows

lim Uu) = —00
|u|lg—+o0, uGWf( )

and condition (b) of [36], Theorem 2.1.6] is clearly fulfilled too for a sufficiently large
R > 0. Let now (A, up) be the sequence of eigenvalues and eigenvectors for the
problem

Auy=—Xu inQ
u=0 on 0.
Let us prove that there exist hg, « > 0 such that
Vu e VT i |Dullz =1= f(u) >

where V™ = span {u, € H}(Q,RY) : h > ho}. In fact, given u € V' and € > 0,
we find
al) € C2(Q), al? e LT (Q)

such that ||a§2)||2n/(n+2) < e and
l9(z,5)] < al?) (2) + al?) () + e s| " +D/ (72
If u € VT, it follows that

Upulz - | Gla,u)d
fw) = 51Dul} - | Glavu)da

> S1pulg = [ (ol + o)l + 25 2o ) o
Q
2n/(n—2)

14
S IDullz = allallullz = 118 ll20 /2 | Dull2 = ecal| Dull;

)

Y

v 2n/(n—2
> S 1Dull3 = lalll2llull2 — crel| Dulla — eea| Dufl3™ 7.

Then if hg is sufficiently large, from the fact that (\;) diverges, for all u € VT,
[|[Dull2 = 1 implies
lallalfullz < <.
Hence, for € > 0 small enough, ||Du||z = 1 implies that f(u) > v/6.
Finally, set V'~ = span {uh € HYQ,RN):h < ho} , we have the decomposition
HI(QRY) =VvTaVv.
Therefore, since the hypotheses for [36, Theorem 2.1.6] are fulfilled, we can find a

sequence (u™) of weak solution of system (3.1) such that lim,, f(u™) = +o00. The
proof is complete. O

3.4. Regularity of weak solutions for elliptic systems. Consider the nonlinear
elliptic system

/ Z (z,u)DjupDjvy dx = / b(x,u, Du) - vdz (3.16)

ij=1h,k=1 Q

for all v € HY(Q;RY). For I =1,..., N, we choose

bi(z,u, Du) = {— Z Z DS, i quuhD ug + g1z, u)}
i,j=1 h,k=1
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Assume that there exist ¢ > 0 and ¢ < Z—fg such that for all s € RY and a.e. in Q
l9(z,5)] < c(1+]s]7). (3.17)

Then it follows that for every M > 0, there exists C(M) > 0 such that for a.e.
z €Q, for all £ € R™Y and s € RY with |s| < M

[b(z,5,)| < e(M) (1 +[€). (3.18)

A nontrivial regularity theory for quasi-linear systems (see, [(5, Chapter VI]) yields
the following

Theorem 3.6. For every weak solution u € H'(Q,RN)NL>(Q,RYN) of the system
(3.1) there exist an open subset Qo C Q and s > 0 such that

Vp € (n,400) : u € CO17 5 (Qg; RY),
H(2\Q) = 0.

For the proof of the above theorem, see [75, Chapter VI]. We now consider the

particular case when a**(z,s) = a;j(x, s)d"*, and provide an almost everywhere

i
regularity result.

Lemma 3.7. Assume that (3.18)) holds. Then the weak solutions u € H}(Q,RY)
of the system

n N
/ Z Z a;j(z, w)DiupDjvy, de+
Q

i,j=1h=1

1 n N
+ 5/ Z Z Dgaij(x,u) - vDupDjup, de = / g(z,u) -vdx (3.19)
Q, Q

i,j=1h=1

for all v € C(Q,RY), belong to L (2, RY).

Proof. By [137, Lemma 3.3], for each (CPS). sequence (u™) there exist u € H} N
L*> and a subsequence (u™*) with u™* — w. Then, given a weak solution wu,

consider the sequence (u™) such that each element is equal to u and the assertion
follows. 0

We can finally state a partial regularity result for our system.

Theorem 3.8. Assume condition (3.18)) and let u € H} (Q,RY) be a weak solution
of the system

n N n N
1
/Q g E a;j(x,w)DjupDjvp, do + 5/9 g E Dsa;j(z,u) - vDyupDjup dx

i,j=1h=1 i,j=1h=1

:/Qg(ac,u)~vdx

for all v € C(Q,RY). Then there exist an open subset Qy C Q and s > 0 such
that

Vp € (n,400) : u € CO75 (Qg; RY),  H*5(Q\Q) = 0.

To prove the above theorem, it suffices to combine the previous Lemma with
Theorem [3.61
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3.5. Fully nonlinear scalar problems. Recently, some results for the quite gen-
eral problem

—div (Ve ZL(z,u, Vu)) + Do ZL(z,u, Vu) = g(x,u) in Q

u=0 on 0N, (3.20)

have been considered in [6] [7] and [IT12]. The goal of this section is to extend some of
the results of [6 [112]. To solve (3.20]), we shall look for critical points of functionals
f:WyP(Q) — R given by

fu) :/Q.i”(x,u,Vu)dx—LG(x,u) dx. (3.21)

In general, f is continuous but not even locally Lipschitz unless .¢ does not depend
on u or .Z is subjected to some very restrictive growth conditions. Then, again we
shall refer to non-smooth critical point theory.

We assume that £ : Q x R x R” — R is measurable in z for all (s,£) € R x R",
of class C! in (s,€) for a.e. o € Q, the function #(x,s,-) is strictly convex and
Z(x,5,0) =0 for a.e. € Q. Furthermore, we will assume that:

e there exist a € L'(Q) and bg, v > 0 such that
v[glP < Z(z,5,€) < alx) + bols[” + bol¢]”, (3.22)

for a.e. x €  and for all (s,£) € R x R™;
e for each £ > 0 there exists a. € L'(Q) such that

Do (,5,6)| < ac(w) +els” + brle]”, (3.23)

for a.e. € Q and for all (s,£) € R x R", with b; € R independent of .
Furthermore, there exists a; € L () such that

Ve (2,5,6)| < ar(@) + bils| 7 + bifel ™, (3.24)

for a.e. € Q and for all (s,€) € R x R™;
e there exists R > 0 such that

|s| > R= D% (x,s,&)s >0, (3.25)

for a.e. z € Q and for all (s,&) € R x R™;
e G: QxR — Risa Carathéodory function such that

G(z,s) < d(x)|s|P + bs|”” (3.26)
lim E&28) (3.27)
s=0  |s[P

for a.e. z € Q and all s € R, where d € L7 (Q) and b € R. Moreover,

G(z,s) :/ g(x,7)dr
0
and there exist ¢y, co > 0 such that
9(x, 8)| < e1+cals]”

for a.e. x € Q and each s € R, where 0 < p* — 1.
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e there is ¢ > p and R’ > 0 such that for each € > 0 there is a. € L(Q) with

0 < ¢G(z,s) < g(z,s)s, (3.28)

qg(stag) - vf"g(a"ﬂ%g) . 5 - DS$($7S7§)S 2 V|§|p - G/E(ﬂ?) - E‘SP (329)
for a.e. z € Q and for all (s,&) € R x R with |s| > R'.

Under the previous assumptions, the following is our main result.

Theorem 3.9. The boundary value problem

—div (Ve Z(z,u, Vu)) + Do Z(z,u, Vu) = g(z,u) in Q
u=0 ondf

has at least one nontrivial weak solution u € Wy (Q).

This result is an extension of [6, Theorem 3.3], since instead of assuming that
VseR: qL(z,5,§) = VeL(x,5,8)-§ = DL (2,5,8)s 2 v[g]",

for a.e. = € Q and for all £ € R™, we only request condition . In this way
the proof of Lemma becomes more difficult. The key-point, to deal with the
more general assumption, is constituted by Lemma .

Similarly, in [IT2] Theorem 1], a multiplicity result for is proved, assuming
that

VseR: Dy ZL(x,8,8)s>0,
VseR: qL(x,5,8) = VeL(,5,8) £ — D L(x,5,8)s 2 V],
for a.e. € Q and for all £ € R™, which are both stronger than ([3.25) and (3.29).

In particular, the first inequality above and the more general condition (3.25)) are
involved in Theorem [B.10l

Finally, let us point out that the growth conditions - are a relaxation
of those of [0l T12], where it is assumed that

viglP < ZL(,5,6) < BIEIP, | DsZL(z,5,8)] <),
Vel (@, 5,€) < arx) +bi|s|"~" +bal¢"~",
for a.e. € Q and for all (s,£) € R x R™.

3.6. The concrete Palais-Smale condition. Let us point out that as a conse-
quence of assumption (3.22)) and convexity of Z(x,s,-), we can find M > 0 such
that for each & > 0 there is a. € L'(Q2) with

VeZ(z,5,€) - & 2 vIE]’ —alx) — bols|”, (3.30)
D2 (x,5,6)| < MVeL(x,5,6) - €+ ac(x) +elsP, (3.31)

for a.e. x €  and for all (s,€) € R x R™.

We now come to a local compactness property, which is crucial for the (CPS).
condition to hold. This result improves [112, Lemma 2], since relaxes condi-
tion (8) in [112].
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Theorem 3.10. Let (up,) be a bounded sequence in Wy (Q) and set
(wp,v) = / Ve L (x, up, Vuy) - Vodz +/ D, % (z,up, Vup)vde, (3.32)
Q Q
for all v € C(Q). If (wp) is strongly convergent to some w in W=7 (), then
(un) admits a strongly convergent subsequence in WyP ().

Proof. Since (uy) is bounded in Wy?(Q), we find a u in W, ?(Q) such that, up to
a subsequence,

Vup, = Vu  in LP(Q), up—u in LP(Q), wup(z) — u(z) for ae. z €.
By [22] Theorem 2.1], up to a subsequence, we have
Vup(xz) — Vu(z) for ae. z € Q. (3.33)
Therefore, by we deduce that
VeZ(x,un, Vup) = Ve (z,u, Vu)  in LY (Q,R").
We now want to prove that u solves the equation

Yoe C(Q): (w,v) = / Ve (x,u, Vu)-Vvdx—i—/ D, Z(x,u, Vu)vdz. (3.34)
) Q

To this aim, let us test equation (3.32)) with the functions
vh = gexp{—M(uy + R)T}, @ e WiP(QNL®(Q), ¢>0.
It results that for each h € N,

/QV§.$(36, up, Vup) - Vo exp{—M (up + R)*} dv — {wy,, pexp{—M (uj, + R)T})

+/ [DsZ (%, un, Vup) — MV Z (2, up, Vug) - V(up + R)T|
Q

pexp{—M(uy + R)T}dx = 0.
Of course, for a.e. x € 2, we obtain
pexp{—M(up + R)"} — pexp{—M(u+ R)"}.
Since by inequality and for each € > 0 and h € N we have
(DL (x, un, Vup) — MV Z (2, up, Vug) - V(up + R)T]
xpexp{—M (un + R)*} —elunl”" ¢ < ac (@),

Fatou’s Lemma implies that for each £ > 0,

lim sup/ [DsZ (@, un, Vup) — MV Z (@, up, Vuy) - V(up, + R)Jr]<,oe3_M("h+R)+
o Ja

— elupl? o dx

< / [Ds&Z (2, u,Vu) — MV L (2, u, Vu) - V(u+ R)Jr]goe*]‘/[(““%))r — elul? g da.
Q

Since (up,) is bounded in LP"(Q), we find ¢ > 0 such that for each ¢ > 0

limsup/ [Ds.i”(x,uh,Vuh) — MV L (x,up, Vuy) - V(uy, +R)+]¢6—M(uh+R)+dx
h Q

< / [Ds&Z (2, u, Vu) — MV¢Z (2, u, Vu) - V(u+ R)+]¢6_M(“+R)+d:r — ce.
Q
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Letting € — 0, the previous inequality yields

limsup/ [Ds.i”(x,uh, Vup) — MV Z (z,un, Vup) - V(up, + R)+]
h Q

X cpe_]V[(“h+R)+ dx

< /Q (D& (2,u,Vu) — MV L (z,u,Vu) - V(u+ R)T] <pe*M(“+R)+dx.
Note that we have also
wexp{—M(u, + R)*} = pexp{—M(u+ R)*} in Wy (Q).
Moreover,
Vepexp{—M (up + R)T} — Vpexp{—M(u+ R)"} in LP(Q,R"),
so that

/ Vel (x,up, Vuy) - Vexp{—M (up, + R) " }dx
Q

— / Vel (x,u, Vu) - Voexp{—M (u+ R) " }dx.
Q
Therefore, we conclude that

/Q Vel (x,u,Vu) - Voexp{—M(u+ R)"} dz — (w, pexp{—M(u+ R)*})

+ / (D% (x,u,Vu) — MV Z (x,u,Vu) - V(u+ R)"|pexp{—M (u+ R)" }dx
>0,
Consider now the test functions
o= pH(D ep{Mu+ R}, »eCX(Q), ¢>0,

where H € C*(R), H =11in [-3,4] and H = 0 in | — 0o, —1] U [1, +oo[. It follows
that
u

| Ve .u V0 Torexp{-Mlu+ B bdo — (w. o ()

+/ (D2 (x,u,Vu) — MV L (2, u,Vu) - V(u+ R)"] @H(%) dx > 0.
Q
Furthermore, standard computations yield

Veor = exp{M(u+R)"} [VoH(T) + H'(2)£Vu+ MY (u+ R)*pH(7))| .

u
k
Since @H () goes to ¢ in WP (), as k — +o0o we have

(w.oH (D)) = (w.0).

By the properties of H and the growth conditions on V.2, letting kK — 400 yields
/ VeZ(2,u,Vu) - V@H(%) — / VeZ(2,u,Vu) - Vodz,
Q Q

/ Ve (x,u, Vu) - VuH'(E)fdac —0,
o Bk
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/ MV L (x,u,Vu) - V(u+ R)Jr(pH(%) — / MV (x,u,Vu) - V(u+ R)T .
Q Q
Whence, we conclude that for all ¢ € C°(9),
0>0= (w,p) < / VeZ(x,u,Vu) - Vodz +/ D, % (x,u,Vu)pdx.
Q Q

Choosing now as test functions
vp = pexp{—M(up, — R)"},

where as before ¢ > 0, we obtain the opposite inequality so that (3.34) is proven.
In particular, taking into account the Brezis-Browder type results, we immedi-
ately obtain

(w,u) = / VeZ(x,u, Vu) - Vudx—|—/ D% (x,u, Vu)udz. (3.35)
Q Q
The final step is to show that (up) goes to u in I/VO1 P(Q). Consider the function
¢ : R — R defined by

Ms if0<s< R

MR ifs>R
_ 2 3.36
)= _ars if —R<s<0 (3:36)

MR ifs<—-R,

and let us prove that

limsup/ VeZ(x, un, Vuy) - Vup exp{((up)} dx
h Q

< / VeZ(x,u, Vu) - Vuexp{¢(u)} dz.
Q
Since up, exp{¢(un)} are admissible test functions for (3.32)), we have

A Ve L (x, up, Vug) - Vup, exp{{(up)} dx — (wp, up exp{¢(un)}) +

+/ [Ds L (z,un, Vup) + ¢ (un)Ve L (x,un, Vup) - Vug] up exp{¢(up)} dz = 0.
Let ug observe that implies that
VeZ(x,un, Vuy) - Vup, — Ve Z(x,u, Vu) - Vu  for ae. z € Q.
Since by inequality for each ¢ > 0 and h € N we have
[—DsZL(z,un, Vup) — ¢ (un) Ve L (z,un, Vuy) - Vug)
x up, exp{C(un)} — Rexp{MR}e|us|”"
< Rexp{MR}a.(z),

Fatou’s Lemma yields

hmsup/ [_ Dsf(x,Uh, vuh) - CI(U}L)V&D?(JZ, Up, VUh) ' Vuh]
h Q

x upeSn) — ReMPBe|y, [P dx

< / [— D& (z,u, Vu) — (' (u)Ve L (z,u, Vu) - Vu]uexp{¢(u)}
Q
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— ReMEBe|ulP” da.
Therefore, since (uy,) is bounded in LP"(2), we find ¢ > 0 such that for all € > 0

lim Sup/ [_Dsg(x7 Uhs Vuh) - gl(uh)vﬁg(l‘v Uh, VU}L) . Vuh] uheg(uh)dﬂf
h Q

< / [~Ds.Z (x,u, Vu) — ' (u)Ve.ZL (z,u, Vu) - Vu] ueS@dx — ce.
Q
Taking into account that ¢ is arbitrary, we conclude that

lim sup/ VeZ(x, un, Vug) - Vup exp{¢(up)} dx
h Q

= lim sup { / [—Dsg(ﬂ,‘, Uh, VU,h) - C’(uh)V5$(x7 Up, vuh) . vuh] uheg(uh)dx
h Q

o+ (s un exp{Cun)}) }
< /Q [~ D& (x,u, Vu) — (' (u)VeL (z,u, Vu) - V] ue™@dx 4 (w, uwexp{¢(u)})
= /QVE.Z(x,u,Vu) - Vuet™ dr.

In particular, we have

/ Vel (x,u, Vu) - Vuet™ do < lirnhinf/ Ve (2, un, Vup) - Vupet ) dz
Q Q

< limsup/ vgg(Luh,vuh) . vuheC(uh,) dx
h Q

< / Ve(x,u,Vu) - Vuet W dz,
Q
; namely,
li}]in/ Ve (x, up, Vup)-Vuy, exp{((up) }dz = / Ve & (x,u, Vu)-Vuexp{{(u)}dz.
Q Q
Therefore, by (3.30), generalized Lebesgue’s theorem yields
1imsup/ |Vup|Pde < / |VulPdx,
h Q Q
that implies the strong convergence of (uy,) to u in WyP(Q). O

Lemma 3.11. Let ¢ € R and let (up,) be a (CPS)q-sequence in Wy P(Q). Then, for
each € >0 and o > 0 there exists K, . > 0 such that, for all h € N,

/ V§$(£L’, Up, Vuh) . Vuh dx
{lun|<o}

§€/ Vg.f(x,uh,Vuh) -Vuhdl’+Kg75
{o<|un|<Ky,e}

and

/ |Vup|? d §5/ |Vup|P do + K, ..
{lun|<e} {o<|un| <K}
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1
Proof. Let o,e > 0 and p > 0. For all v € W;*(), we set

(wp,v) = / VeZ (2, un, Vug) - Vode
@ (3.37)
+/ D,Z(x,up, Vup)vdr — / g(x,up)vde.
Q Q
Let us now consider ¢; : R — R given by

s if |s| <o

91(s) = —s+20 fo<s<2 (3.38)
! ) —s—20 if —20<s<—0 '
0 if |s| > 20.

Then, testing (3.37) with ¥ (up) € L*>°([—20,20]), we obtain

/Vfiﬂ(x,uh,Vuh) : Vﬂl(uh)dx—F/ DL (x,up, Vup)0 (up) dz
Q Q

< / g, un )0 (un) e + |wn]| 1 91 (un)
Q

Then, it follows that

|1,p~

/ Ve (x,up, Vuy) - Vuy de — / Ve (x,up, Vuy) - Vuy dz
{lun|<c} {

o<|up|<20}

+ / DL (x,up, Vup)up dx + / D, L (x,up, Vup)1 (up) dz
{lun|<o} {o<|un|<20}

’

n(p—1)+p 4'v ’ 14
< [ (er+ al2o =) o do b — g funly  + F10san)I
Q pprve
Let Ky > 0 be such that ||wp||—1, < Ko. Then, since by (3.30) we have

v[[91 (un)llY

< / v|Vup|P dzx —|—/ v|Vu|P dx
{lun|<o} {o<|un|<L20}

< / VeZ(x, un, Vuy) - Vuy, dr + / VeZ (2, un, Vug) - Vup do
{lurn|<o} {

- o<|up|<20}

+/ a(x) derbo/ |un |P da:Jr/ a(x) dx
{lun|<o} {lun|<o} {o<|un|<20}

+bo/ |up|P da ,
{o<]un|<20}

taking into account (3.31)), we get for a sufficiently small value of o > 0,

1
(1 — oM — 7) / Ve (x,up, Vuy) - Vuy do
47 Jun) <o}

1
< (].-Q-O'M-i-*)/ ng(x,uh,Vuh) -Vuy, dx
47 Jio<lunl<20}

n(p—1)+p 4
—I—/ (cl+02\20| =n )de—l—ﬁl(g
Q
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—|—/ ac(z)dx + [bo(Qp + 1)o? + 60”’*“} L7(Q).
Q
Whence, we have shown an inequality of the type
/ Ve (@, up, Vuy) - Vuy do
{lun|<o}
< Kl/ Vel (x,un, Vug) - Vuy do + Ks.
{o<|un|<20}

Let us now define for each k£ > 1 the functions ¥ , Y21 : R — R by setting

0 if |s| < ko
s—ko ifko <s<(k+1)o
s+ ko if —(k+1)o<s<—ko
Vok(s) = .
—s+(k+2)0 if (k+1)o<s<(k+2)o
—s—(k+2)0 if —(k+2)0<s<—(k+1)o
0 if |s| > (k4 1)o,
and
7 if |s| < ko
—s+(k+1)o ifko<s<(k+1)o
Iage1(5) = s—(k+1)0 if(k+1)o<s<(k+2)o

—s—(k+1)o if —(k+1)o<s<—ko
s+(k+1)o if —(k+2)o<s<—(k+1)o
0 if |s| > (k+1)o.

Therefore, by iterating on k, we obtain the k-th inequality

/ Ve (x,up, Vuy) - Vuy dz

{lun|<ko} (3.39)

< Kl(k)/ VeZ (2, un, Vug) - Vup do + Ko (k).
{ko<|un|<(k+1)o}

Let now choose k > 1 such that ko > p and ko > R. Take 0 < § < 1 and let
¥5 : R — R be the function defined by setting

0 if |s| < ko
s —ko ifko<s<(k+1)o
s+ ko it —(k+1)o<s<—ko

’19 =
s(s) —ds+o+6k+1)o if(k+1)o<s<(k+1)o+ %

—0s—0—0k+1)o if —(k+1)o—-§<s<—(k+1)o
0 if [s| > (k+1)o + §.

As before, we get

/ VeZ(x,un, Vuy) - Vis(up) de +/ D, L (x,up, Vup)9s(up,) dz
Q Q

1 ’
< / g, un)Os(un) d + ——[[wn 7y, + Sll0s(un)|L,.
Q p/p757
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Taking into account (3.25), by computations, we deduce that
/ DL (x,up, Vup)9s(up) dz > 0.
Q

Moreover, we have as before

195 (un)lIF

< / |Vup|P dx +/ [Vup|P dx
{ko<|un|<(k+1)o} {lun|>(k+1)0}

1

I A

/ VeZ(x, up, Vug) - Vuy, dz
{ko<|up|<(k+1)o}

+ - / Ve L (x, up, Vuy) - Vuy, dz
{lun|>(k+1)c}

b
j/ a(z) dx 4749 up|? da
{ko<|upn|<(k+1)o} {ko<|upn|<(k+1)o}

b
/ ax)dx—i——o |up|P da
{lun|>(k+1)o} {1 +§ 2 un| 2 (k+1)0 }

+
Rlm= |

+

so that
)

t-7)

v /{k0<|uh<(k+1)‘7}

1)
<(0+-) / Ve (x,un, Vuy) - Vup, dz
{lurn|>(k+1)o}

Vel (2, un, Vup) - Vuy, dz

v

+/ <Cl+02’(k‘+1)0+5‘
Q

+ %/Qa(x) dr + %0 [(k + 1P+ ((k+1)+ é)”] aPL(Q).

(P 1)+p

1
)adm—i—p,

Therefore, we get

/ vgf(xauhm vuh) ’ vuh dx
{ko<|un|<(k+1)o}
<< v +96

V=0 J{jun|2(k+1)0)

Combining this inequality with (3.39)) we conclude that

Vel (z,up, Vug) - Vuy, do + Ks(k, 0).

/ Ve (x,up, Vuy) - Vuy do

{lun|<e}

S / V§$(1’,Uh, Vuh) . Vuh dxr
{lun|<ko}

< Kl(k)/ VeZ(x, un, Vug) - Vup do + Ko (k)
{ko<|upn|<(k+1)o}

vi+6

V=0 J{jun>(k+1)0}
+ Ky (k)K3(k,0) + Ka(k) <

< Ki(k)

Ve (x,un, Vuy) - Vuy, do

31
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< e’:‘/ ng(:r,uh, Vuy) - Vuy de + K,.,
{lun|>o}

where we have fixed § > 0 in such a way that K (k)2%2 <e. O

The next result is an extension of [I12] Lemma 1], since (3.29)) relaxes [112]
condition (9)].

Lemma 3.12. Letc € R. Then each (CPS).-sequence for f is bounded in W, " ().
Proof. First of all, we can find ag € L'(2) such that for a.e. z € Q and all s € R
qG(z,s) < sg(z, s) + ao(z).

Now, let (up) be a (CPS).-sequence for f and let for all v € C°(Q)
(w,v) = / VeZ(z,u, Vu) - Vodz + / Dy % (z,u,Vu)vde — | g(z,up)vde.
Q Q

Q
According to Lemma for each € > 0 we have

— |lwnll—1p llunll1p

S/ng(x,uh,Vuh)~Vuhdx+/Dsf(x,uh,Vuh)uhdx—/g(x,uh)uhdx
Q Q Q

S/ng(x,uh,Vuh)-Vuhdx—I—/Dsf(ac,uh,Vuh)uhdx
Q Q

—q/G(m,uh)dx—i—/aodx

Q Q

< (1—}—5)/ Vgc?(x,uh,Vuh)~Vuhdx+/ D, %L (x,up, Vup)up dz
{lun|>R'} Q

- (J/ Lz, up, Vup) do + qf (up) + / apdz + Kpe.
Q Q
On the other hand, from Lemma and (3.29)), for each € > 0 we obtain

/Dsf(x,uh,Vuh)uhdx

Q

:/ DL (x,up, Vup)up, dx—i—/ DL (x,up, Vup)up, dx
{lun| <R’} {lun|>R’}

< €MR,/ Vgﬁ(w,uh, Vuh) . Vuh dx
{Kgs >[un|>R'}

—/ Vg.,?(x,umVuh)-Vuhdsc—i-q/f(ﬂc,uh,Vuh)dx—i—/as(a:)d:r
{|U}L‘>R/} Q Q

+s/ |uh|pdx—z// |Vup|P de + Kpy e
{lun|>R"} {lun|>R"}

Taking into account Poincaré and Young’s inequalities, by (3.24)) we find ¢ > 0 and
Cr/ e > 0 with

/ D, 2 (x, up, Vup)uyp, dz
Q

< Ec/ [Vup|P dz — / Vel (z,up, Vuy) - Vuy, dz
{lun|>R"} {lun|>R"}
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+q/$(z,uh,Vuh)d3:+/ ag(x)da:—l// [Vup|P dz + Crr ..
Q Q {lun|>R"}

Therefore, for a sufficiently small € > 0, there exists 9. > 0 with

195/ Vup|P dz
{lun|>R"}

< Nwnll-spllunllsp + af (un) + / aode + / a.de+ Ko+ Cro...
Q Q

Moreover, it satisfies
/ [Vup|P dx < (1+5)/ [Vup|P de + Kgi e
Q {lun|>R"}

Since wy, — 0 in W17 (Q), the assertion follows.

3.7. Existence of a weak solution.

Lemma 3.13. Under assumptions (3.27)) we have
Jo G2, up) da

—0 ash— 40,
[[un]

P
1p

for each (up,) that goes to 0 in WP ().

33

Proof. Let (uz) C Wy (€) with u, — 0 in Wy (Q). We can find (g5) C R and a
sequence (wy,) € Wy (Q) such that u, = gpwp, on — 0 and |Jwp |1, = 1. Taking

into account (3.27)), it follows

lim G(z,up(x))

=0 forae. ze€f.
h Huh

17
Moreover, for a.e. z € 2,
Gz, un(x))

20 "
o < d\wh|p+b9ﬁ /(n p)|wh|p )
[unlly,

If w is the weak limit of (wy,), since d|wy|P — d|w[? in L' (Q2) and b},
0 in L'(Q), (a variant of) Lebesgue’s Theorem concludes the proof.

We conclude with the proof of the main result of this section.

Pz/(nﬂﬂ)|wh|p* _

O

Proof of Theorem[3.9 From Lemma (3.12) and Theorem (3.10)) it follows that f
satisfies the (C'PS),. condition for each ¢ € R. By (3.22)) and (3.28) it easily follows

that
Yu € Wy P (Q)\{0} : Jim  f(tu) = —oo.

From Lemma (3.13]) and ([3.22)), we deduce that 0 is a strict local minimum for f.

From Theorem ([2.26) the assertion follows.

O

Remark 3.14. As proved by Arcoya and Boccardo in [6], each weak solution
of (3.20) belongs to W,*(Q) N L=(Q) provided that £ and g satisfy suitable
conditions. Then, some nice regularity results hold for various classes of integrands

Z (see [90]).
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3.8. Super-linear problems with unbounded coefficients. The aim of this
section is to prove existence and multiplicity results of unbounded critical points
for a class of lower semi-continuous functionals (cf. [IT4]). Let us consider a bounded
open set Q C RY (N > 3) and define the functional f : H}(2) — RU {+o0} by

f(u) = /2 a0 = [ Glau)

where j(z,5,£) : 2 x R x RY — R is a measurable function with respect to x for
all (5,€) € R x RY, and of class C! with respect to (s,¢) for a.e. © € Q. We also
assume that for almost every x in 2 and every s in R

the mapping {{ — j(z, s,{)} is strictly convex . (3.40)

Moreover, we suppose that there exist a constant g > 0 and a positive increasing
function o € C(R) such that the following hypothesis is satisfied for almost every
x € Q and for every (s,&) € R x RV

aolél? < j(x,s,€) < a(|s])[¢*. (3.41)
The functions js(x,s,§) and je(z, s,€) denote the derivatives of j(z,s, ) with re-
spect of the variables s and & respectively. Regarding the function js(z,s,§), we
assume that there exist a positive increasing function § € C(R) and a positive
constant R such that the following conditions are satisfied almost everywhere in (2
and for every ¢ € RV:

ljs(@,5,8)| < B(]s DIE|?,  for every s in R, (3.42)
]S((E 5,€)s >0, for every s in R with |s| > R. (3.43)

Note that, from (3.40) and (3.41)), it follows that je(z, s, £) satisfies the following
growth condition (see Remark - for more details)

|je(x,5,6)| < 4a(|s])[¢]. (3.44)
The function G(x,s) is the primitive with respect to s such that G(z,0) = 0 of
a Carathéodory (i.e. measurable with respect to x and continuous with respect to
s) function g(x,s). We will study two different kinds of problems, according to
different nonlinearities g(z, s), that have a main common feature. Indeed, in both
cases we cannot expect to find critical points in L°°(£2). To be more precise, let us
consider a first model example of nonlinearity and suppose that there exists p such
that

g1(z,8) = a(x)arctgs + |s[P2%s, 2<p< (3.45)

N -2’
where a(x) € LJ\%’Z(Q) and a(x) > 0. Notice that from hypotheses (3.41]) and
(3.45) it follows that f is lower semi-continuous on H} (). We will also assume

that
alsl) _
|s]—o0 |S|p72 -
Condition , together with , allows f to be unbounded from below, so
that we cannot look for a global minimum. Moreover, notice that g(x, s) is odd with
respect to s, so that it would be natural to expect, if j(z, —s, =) = j(z, s,£), the
existence of infinitely many solutions as in the semi-linear case (see [6]). Unfortu-
nately, we cannot apply any of the classical results of critical point theory, because
our functional f is not of class C* on Hg(f2). Indeed, notice that [, j(x,v, Vv) is
not differentiable. More precisely, since je(z, s, &) and js(z, s, ) are not supposed

(3.46)
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to be bounded with respect to s, the terms je(z,u, Vu) - Vo and j,(z, u, Vu)v may
not be L(2) even if v € C§°(Q). Notice that if js(z,s,&) and je(z, s, &) were sup-
posed to be bounded with respect to s, f would be Gateaux derivable for every u
in Hi(Q) and along any direction v € H{(2) N L>(Q) (see [6l 33, 36, 112, 132
for the study of this class of functionals). On the contrary, in our case, for every
u € HYQ), f'(u)(v) does not even exist along directions v € Hg (2) N L ().

To deal with the Euler equation of f let us define the following subspace of
H(Q) for a fixed u in HE(Q)

W, = {v € H{(Q) : je(z,u, Vu) - Vo € L'(Q) and j,(z,u, Vu)v € L' (Q)}. (3.47)
We will see that W, is dense in Hg (£2). We give the definition of generalized solution
Definition 3.15. Let A € H~1(Q) and assume (3.40)), (3.41), (3.42). We say that
u is a generalized solution to

—div(je(z,u, Vu)) + jo(z,u, Vu) = A, in Q,
u=0, on Jf,

if u € H}(Q) and it results
je(w,u, Vu) - Vu € LYQ),  js(x,u, Vu)u € L*(Q),

/jg(ac,mVu)-Vv—i—/js(x,u,Vu)v:(A,v), Vo e W,.
Q Q

Theorem 3.16. Assume conditions (3.40), (3.41), (3.42), (3.43)), (3.45), (3.46]).
Moreover, suppose that there exist R* > 0 and § > 0 such that
s|]> R = pj(,s,8) = js(z,5,)s — je(z,5,6) - &> 6[¢), (3.48)
for a.e. x € Q and all (5,€) € Rx RN, If j(x, —s,—&) = j(x,s,£), then there exists
a sequence {up} C HY(Q) of generalized solutions of
—div(je(x, u, Vu)) + js(x, u, Vu) = g1 (x,u), inQ,
u=20, ondQ

(3.49)

such that f(up) — +00.

In the nonsymmetric case we consider a different class of nonlinearities g(z, s).
A simple model example can be the following

g2(z,8) = d(x)arctg(s?) + [s[P7%s, 2<p< (3.50)

N -2’
where d(z) € L= (Q) and d(z) > 0. We will prove the following result.

Theorem 3.17. Assume conditions (3.40), (3.41), (3.42), (3.43)), (3.46), (3.48),
(3.50). Then there exists a nontrivial generalized solution of the problem
—div(je(z,u, Vu)) + js(x, u, Vu) = ga(x,u), in Q,
u=0, ondQ.

Since the functions «a(]s|) and B(|s|) in (3.41)) and (3.42) are not supposed to be

bounded, we are dealing with integrands j(z, s,£) which may be unbounded with
respect to s. This class of functionals has also been treated in [7], [2I] and [23)].
In these papers the existence of a nontrivial solution u € L*®(Q) is proved when
g(x,s) = |s|P~2s. Note that, in this case it is natural to expect solutions in L>(2).
To prove the existence result, in [21] and [23], a fundamental step is to prove that

(3.51)
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every cluster point of a Palais-Smale sequence belongs to L*°(€2). That is, to prove
that u is bounded before knowing that it is a solution. Notice that if u is in L ()
and v € C§°(2) then j¢(z,u, Vu) - Vv and js(z,u, Vu)v are in L*(Q). Therefore, if
g(z,5) = |s|P~2s, it would be possible to define a solution as a function u € L>(12)
that satisfies the equation associated to (Py) (or (P;)) in the distributional sense.
In our case the function a(z) in belongs to L?N/(N+2)(Q), so that we can only
expect to find solutions in H}(Q). In the same way, the function d(z) in is in
LN/2(Q) and also in this case the solutions are not expected to be in L>(Q). For
these reasons, we have given a definition of solution weaker than the distributional
one and we have considered the subspace W, as the space of the admissible test
functions. Notice that if u € H}(Q) is a generalized solution of problem (P;) (resp.
(Py)) and u € L*°(Q), then wu is a distributional solution of (P;) (resp. (FP2)).

We want to stress that we have considered here particular nonlinearities (i.e.
g1 and go) just to present - in a simple case - the main difficulties we are going
to tackle. Indeed, Theorems and will be proved as consequences of two
general results (Theorems and [3.20). To prove these general results we will use
an abstract critical point theory for lower semi-continuous functionals developed in
[50, 58, [60]. So, firstly, we will show that the functional f can be studied by means
of this theory (see Theorem. Then, we will give a definition of a Palais-Smale
sequence {u,} suitable to this situation (Definition [3.37)), and we will prove that
uy, is compact in Hg(€2) (Theorems [3.34] and [3.43). To do this we will follow the
arguments of [33, [36] 112} 132] where the case in which a(s) and ((s) are bounded
is studied. In our case we will have to modify the test functions used in these papers
in order to get the compactness result. Indeed, here the main difficulty is to find
suitable approximations of u,, that belong to W, , in order to choose them as test
functions. For this reason a large amount of work (Theorems and
is devoted to find possible improvements of the class of allowed test functions.

3.9. General setting and main results. Let us consider €2 a bounded open set
in RN (N > 3). Let us define the functional J : H3(Q) — RU {+o00} by

J(v) = /Qj(wyv,Vv)y (3.52)

where j(z,s,&) satisfies hypotheses (3.40), (3.41), (3.42), (3.43). We will prove
existence and multiplicity results of generalized solutions (see Definition [3.15]) of
the problem

—div(je(z, u, Vu)) + js(x,u, Vu) = g(x,u), in€Q, 253
u=0, on dN. (3.53)

To do this, we will use variational methods, so that we will study the functional
[ HY Q) — RU{+o0} defined as

()= 1) = [ 6o,
where G(z, s) = [; g(,t)dt is the primitive of the function g(z, s) with G(x,0) = 0.
To state our multiplicity result let us suppose that g(x, s) satisfies the following

conditions. Assume that for every e > 0 there exists a. € L*N/(N+2)(Q) such that

l9(z,8)| < ac(z) +els| =2, (3.54)
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for a.e. z € Q and every s € R. Moreover, there exist p > 2 and functions
ao(x), a(z) € LY(Q), bo(x), b(z) € L%(Q) and k(z) € L*®°(Q) with k(z) > 0
almost everywhere, such that
pG(Z‘,S) Sg($,8)8+a0($)+bo($)|8|, (355)
G, 5) > k(w)|s|” — a(x) - b(x)]s], (3.56)
for a.e. x € Q and every s € R (the constant p is the same as the one in (3.48)).

In this case we will prove the following result.

Theorem 3.18. Assume conditions (3.40), (3.41), (3.42), (3.43)), (3.46), (3.48),

(13.54), (3.55)), (3.56)). Moreover, let
j(l‘v -, _5) = j(l’,S,f) and g(x, _8) = —g(x,s), (357)

for a.e. © € Q and every (s,€) € R x RN, Then there exists a sequence {up} C
H(Q) of generalized solutions of problem (3.53)) with f(up) — +oo.

Remark 3.19. In the classical results of critical point theory different conditions
from (3.54)), (3.55)) and (3.56)) are usually supposed. Indeed, as a growth condition
on g(z,s), it is assumed that

2N
l9(x,9)| < a(x) +0ls]7"}, 2<o <, bERT, a(r)e L% (Q). (3.58)

Note that implies . Indeed, suppose that g(z, s) satisfies , then
Young inequality implies that is satisfied with a.(z) = a(x) + C(b,€). More-
over, as a superlinearity condition, it is usually assumed that there exist p > 2 and
R > 0 with

0 < pG(x,s) < g(z,s)s, forevery sin R with |s| > R. (3.59)

Note that this condition is stronger than conditions (3.55)), (3.56]). Indeed, suppose
that g(z, s) satisfies (3.59) and notice that this implies that there exists ag € L' (Q)
such that

pG(z,s) < g(x,s)s + ap(z), for every sin R.
Then ({3.55) is satisfied with bg(x) = 0. Moreover, from (3.59) we deduce that there
exists a(z) € L*(£2) such that
1
G(z,s) > T min{G(z, R), G(x,—R), 1}|s|’ —a(z),
so that also (3.56) is satisfied.

To state our existence result in the nonsymmetric case, assume that the function
g satisfies the following condition

l9(@, )| < ax(x)|s] +bls|” ", (3.60)

2N
2<0< v ai(z) € L7 (Q), beR".

We will prove the following
Theorem 3.20. Assume conditions (3.40), (3.41), (3.42), (3.43)), (3.46), (3.48),

B.55), B56), (3-60). Also, let

im 272 0 e in. (3.61)

s—0 S
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Then there exists a nontrivial generalized solution of the problem (3.53). In ad-
dition, there exist € > 0 such that for every A € H=Y(Q) with |Al|—12 < € the
problem

—div(je(z, u, Vu)) + js(z,u, Vu) = g(z,u) + A, in Q,

.62
u=0, on 0, (3.62)

has at least two generalized solutions uy,us with f(u1) <0< f(uz).

Remark 3.21. Notice that, in order to have g(x,v)v € L'(Q2) for every v € H}(Q),
the function a;(z) has to be in L= (€2). Nevertheless, also in this case we cannot
expect to find bounded solution of problem . The situation is even worse in
problem , indeed in this case we can only expect to find solutions that belong
to H3(Q) N dom(J).
Remark 3.22. Notice that condition implies . Indeed, suppose that
g(z, s) satisfies . Then Young inequality implies that, for every ¢ > 0, we
have Nio N

gz, 8)] < B(e)(ar(x)) T +els| =2 + (e, b),
where 3(¢) and «y(e, b) are positive constants depending on € and b. Now, since we
have a1 (z) € L (), there holds

a:(2) = (BE) @ (@) T +9(e,b)) € L3 (@),
which yields (3.54).

3.10. Verification of the key condition. Let us now set X = H}(Q) and con-
sider the functional J : H}(2) — R U {+oo} defined in (3.52). From hypothesis
(3.41]), we immediately obtain that J is lower semicontinuous. We will now prove
that J satisfies (2.3). To this aim, for every k > 1, we define the truncation
T : R — R at height k, defined as

Te(s)=s if|s| <k,  Tu(s)= ké if |s| > k. (3.63)
Theorem 3.23. Assume conditions (3.40), (3.41), (3.43). Then, for every (u,n) €
epiJ with J(u) < n, there holds

dGs|(u,n) = 1.
Moreover, if j(x,—s,—&) = j(z,s,£), Vn > J(0)(= 0) it results |dz,G](0,n) = 1.
Proof. Let (u,n) € epiJ with J(u) < n and let ¢ > 0. Then, there exists ¢ € (0, 1],
0 =0(p), and k > 1, k = k(0), such that k > R (where R is as in ) and
| Tk (v) —vll12 < o, forevery v € B(u,d). (3.64)
From we have
gz, v, VTi(v)) < a(k)| Vol

Then, up to reducing §, we get the following inequalities

/S2J(m707VTk(v))<A](xauaVTk(u))+Q§/Q](xvuavu)—’_«ga (365)

for each v € B(u,d). We now prove that, for every t € [0,4] and v € B(u, ), there
holds
J((1 =t +tTk(v)) < (1 —t)J(v) +t(J(u) + o). (3.66)
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From (3.40) and since j(x, s, &) is of class C! with respect to the variable s, there
exists 6 € [0, 1] such that

Jlz, (1= t)v +tTp(v), (1 — ) Vo + tVTy(v)) — j(z,v, Vv)
=j(z,1 —t)v+tTx(v),(1 — )V + tVT,(v)) — j(z,v, (1 — t)Vv + tVTE(v))
+j(z,v,(1 = t)Vo +tVTi(v)) — j(z,v, Vv)
< tjs(z, v+ 0t(Tk(v) —v), (1 — t)Vo + tVTE(v)) (T (v) — v)
+t(j(x,v,VTr(v)) —j(z,v,Vv)).
Notice that
v(z) >k = v(z)+0t(Ti(v(z)) —v(z))
v(z) < -k = o(z)+0t(Tp(v(z)) —v(x))
Then, in light of one has
Js(z, v+ 0t(Ti(v) —v), (1 —t)Vo +tVTi(v))(Tk(v) —v) <0.
It follows that

k>R,

>
<—-k<-R

Jlx, (1=t +tTk(v), (1 —t)Vo + tVT(v))
< (1-t)j(z,v, Vo) +tj(z,v, VI (v)).
Therefore, from one gets (3.66)). To apply Theorem we define
H: {v e B(u,8): J(v) <n+d} x[0,6] — Hy(Q)
by setting
H(v,t) = (1 —t)v + tTx(v).

Hence, taking into account and , it results

d(H(v,t),v) < ot and J(H(v,t)) < (1—¢t)J(v)+t(J(uw)+ o),
for v € B(u,0), J(v) <n+0 and t € [0,6]. The first assertion now follows from

Theorem [2.19] Finally, since H(—v,t) = H(v,t) one also has |dz,Gs|(0,n) = 1,
whenever j(z, —s, —&) = j(z, s,§). O

3.11. The variational setting. This section concerns the relationship between
|dJ|(u) and the directional derivatives of the functional .J. Moreover, we will obtain
some Brezis-Browder (see [27]) type results.

First of all, we make a few observations.

Remark 3.24. It is readily seen that hypothesis (3.40)) and the right inequality of
(3.41)) imply that there exists a positive increasing function @(|s|) such that

e (@, 5,€)] < a(ls])lel, (3.67)
for a.e. x € Q and every (s,¢) € R x RV, Indeed, from (3.40)) one has
Vo eRY o] <1 = j(x,s,&+ [€|v) > j(2,s,6) + je(w, 5,€) - v[¢].
This, and (3.41)) yield
Je(z,5,€) - vlé| < da(|s])Igf.

From the arbitrariness of v, (3.67)) follows. On the other hand, if (3.67]) holds we
have

! 1
(o5, < [ i) - €lde < 5als)IeP
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As a consequence, it is not restrictive to suppose that the functions in the right
hand side of ([3.41)) and (3.67]) are the same. Notice that, in particular, there holds
je(z,5,0) =0.

Remark 3.25. Tt is not restrictive to suppose that the functions a(s) and 8(s) are

both increasing. Indeed, if this is not the case, we can consider the functions
Ar([s[]) = sup a(|s|) and B (|s|) = sup 5(]s),

[s|<r [s|<r
which are increasing.

Remark 3.26. The assumption of strict convexity on the function { — j(z,s,&)}
implies that, for almost every = in () and for every s in R, we have

[jg(l‘,s,f) —jg(l’,S,f*)} ’ (5 - 5*) >0, (368)

for every £, & € RV, with £ # £*. Moreover, hypotheses (3.40) and (3.41)) imply
that,

Je(z,8,€) - € > agl¢? (3.69)
Indeed, we have
0=j(,s,0) 2 j(z,s,8) + je(x,5,§) - (0-&),
so that inequality (3.69) follows by virtue of (3.41)).
Now, for every u € Hg (), we define the subspace
Vu={veH{(Q)NL®Q): ue L®({z e Q: v(z) #0})}. (3.70)

As proved in [61], V, is a vector space dense in HE (). Since V,, C W,, also W,
(see the introduction) is dense in H} (). In the following proposition we study the
conditions under which we can compute the directional derivatives of J.

Proposition 3.27. Assume conditions (3.41), (3.42)), (3.44). Then there exists
J'(u)(v) for every u € dom(J) and v € V,,. Furthermore, we have

js(z,u, Vu)v € LY(Q) and  je(x,u, Vu) - Vv € L*(Q),

and

J'(u)(v) = /ng(m,u,Vu)-Vv—i—/st(x,u, Vu)v.

Proof. Let u € dom(J) and v € V,,. For every t € R and a.e. x € Q, we set
F(z,t) = j(z,u(z) + tv(x), Vu(z) + tVo(z)).

Since v € V,, and by using (3.41)), it follows that F(x,t) € L'(Q). Moreover, it
results
OF . .
E(x, t) = js(z,u + tv, Vu + tVo)v + je(z,u + tv, Vu + tVv) - V.
From hypotheses (3.42)) and (3.44) we get that for every x € Q with v(z) # 0, it
results
oF 5
192 @ 0)] < olooBulo + ollo0) (V] + [92)
+ a(l|ulloe + [[0lloc) (V] + [Vo[)[Vo].

Since the function in the right hand side of the previous inequality belongs to L (),
the assertion follows. (]
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In the sequel we will often use the cut-off function H € C*°(R) given by
H(s)=1 on[-1,1], H(s)=0 outside [-2,2], |H'(s)|<2. (3.71)

Now we can prove a fundamental inequality regarding the weak slope of J.

Proposition 3.28. Assume conditions (3.41)), (3.42)), (3.44). Then

a7 = w)lw) = sup { [ jewu.V0) - Vot [ oo Vupo = (o)
vE Vi flollia <1}

for every u € dom(J) and every w € H—().
Proof. If |d(J — w)|(u) = oo, or if

sup{/Q Je(x,u, Vu) - Vo + /st(ac,mVu)v —{(w,v) v €V, |v]h2 < 1} =0,

then the inequality holds. Otherwise, let u € dom(.J) and let n € RT be such that
J(u) < n. Moreover, let us consider & > 0 and T € V,, such that ||7];2 <1 and

/ Je(z,u, Vu) - Vi + / Js(x,u, Vu)o — (w,7) < —7. (3.72)
Q Q
Let us fix € > 0 and let us prove that there exists kg > 1 such that
u
HH(k—O)EHL2 <l+4e¢ (3.73)
and
. U\ _ . U\ _ U\ _ o
/Q]s(x,u, Vu)H(k—O)v + /ng(x,u,Vu) . V(H(k—o)v> - <w,H(k—O)v> <(—<;.1)
3.

Let us set vy, = H(u/k)v, where H(s) is defined as in (3.71)). Since v € V,, we deduce
that v € V,, for every k > 1 and vy, converges to v in H{(Q2). This, together with
the fact that ||7]j12 < 1, implies . Moreover, Proposition implies that
we can consider J'(u)(vg). In addition, as k goes to infinity, we have

Js(z,u(z), Vu(x))vg(z) — js(x,u(z), Vu(z))v(z), forae. x €,
Je(z,u(z), Vu(x)) - Vog(z) — je(z,u(z), Vu(x)) - Vo(z), for a.e. z € Q.

Moreover, we get

S ‘]9 (LE, U, vu)@‘ ?

js(x,u,vu)H(%ﬁ
l7e (@, u, V) - Vog| < |je(z, u, Vu)|| VD] + 2[0]|je (z, u, Vu) - V.

Since v € V,, and by using (3.42) and (3.44)), we can apply Lebesgue Dominated
Convergence Theorem to obtain

I
S— 55—

lim | jo(x,u, Vu)ug Js(x,u, Vu)o,

k—o0 o)

Je(z,u, Vu) - V1,

k—o0

lim | je(z,u, Vu) - Vug
Q
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which, together with (3.72)), implies (3.74). Since we want to apply Proposition
2.16} let us consider J" as defined in (2.2). Let us now show that there exists
01 > 0 such that

|E <ZO> 7| <1+¢, (3.75)

as well as
e ()Y  fatowam e o) <
3.76

for every z € B(u,d;) N J". Indeed, take u,, € J" such that u, — u in H(Q) and
set

We have that v, — H(u/ko)v in Hg(2), so that (3.75)) follows from (3.73]). More-
over, note that v, € V,,,, so that from Proposition [3:27] we deduce that we can

consider J'(uy,)(vy,). From (3.42) and (3.44)) it follows
15 (2, i, Vg Jon| < B(2k0) (|0l oo | Vuun |,

. 2 _
e (@t V) - Vo] < (2k0)| Vet [,%||voo|wn| n w] .

Then we obtain

lim js(x,un,Vun)vn:/js(ac,u,Vu)H(g)@,

lim ng(w,un,Vun) -V, = /ng(m?u,Vu) . V[H(%)@},

n—oo

which, combined with (3.74)), immediately implies (3.76)). Now, observe that (3.76)
is equivalent to say that J'(z) (H (£)v) — (w, H () v) < —o. Thus, there exists
6 < 6, with

4 Z t z o
J( H(—)*) —J(z) - < , H<f)*> <74 3.77
Z+1—|—5 kov (2) wl—i—s kv - 1+4e ( )
for every t € [0,0] and z € B(u,d) N J". Finally, let us define the continuous
function H : B(u,d) N J7 x [0,8] — HE(2) given by
z
H(—)v.
1+¢ (ko )v
JFrom ([3.75) and (3.77) we deduce that H satisfies all the hypotheses of Proposition
2.16} Then, [d(J —w)|(u) > 137, and the conclusion follows from the arbitrariness
of . O

H(z,t) =2z +

The next Lemma will be useful in proving two Brezis-Browder type results for
J.

Lemma 3.29. Assume conditions (3.40), (3.41), (3.42), (3.43) and let u € dom(J).
Then

/ Je(z,u, Vu) - Vu + / Js(z, u, Vu)u < |dJ|(u)||u]|1,2- (3.78)
Q Q

In particular, if |dJ|(u) < oo, then
Je(w,u, Vu) - Vu € LYQ)  and  j(x,u, Vu)u € L' (Q).
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Proof. First, notice that if w is such that |dJ|(u) = oo, or

/ jﬁ(xaua V’LL) -Vu+ / js(l'vuvvu)u <0,
Q Q

then the conclusion holds. Otherwise, let & > 1, u € dom(J) with |dJ|(u) < oo,
and o > 0 be such that

/ Je(z,u, Vu) - VI (u) —l—/js(x,u, Vu)Ti(u) > o||Tk(w)1,2,
Q Q
where Ty(s) is defined in (3.63]). We will prove that |dJ|(u) > o. Fixed ¢ > 0, we
first want to show that there exists 6; > 0 such that
[Tk (w)ll1,2 < (1 + &) [|Th(u)]l1,2, (3.79)

/ jg(l‘,ﬂh VUI) . VTk(w) + / js(w,w, Vu/)Tk(w) > O'HT}C(’U,)HLQ, (380)
Q Q

for every w € Hg(Q) with ||w — ull12 < &1. Indeed, take w, € HJ(£2) such that
wy, — uwin H (). Then, (3.79) follows directly. Moreover, notice that from (3.42))

and (3.43)) there holds
Js (@, wi (x), Vo (@) )w, (z) > —RB(R)[Vw, (z)[*.
Since w,, — u in H(Q), from (3.69) and by applying Fatou Lemma we get

lim inf |:/ jg(.’b, Wn,s an) : VTk(wn) + / js(xawna vwn)Tk(wn)
Q Q

n—oo

> / je(@,u, Vu) - VTi(u) + / s u, V) Ti(w) > ol|To(u) 1.2,
Q Q

which yields (3.80). Consider now the continuous map H : B(u,d;) x [0,61] —
H () defined as

t
[Tk (u)]l1,2(1 + &
From and we deduce that there exists § < §; such that

d(H(w,t),w) < t,
o
T, 1)) ~ Jw) < T,

for every t € [0,6] and w € H}(Q) with |[w —ul|;2 < § and J(w) < J(u)+6. Then,
the arbitrariness of € yields |dJ|(u) > o. Therefore, for every k > 1 we get

/js(%%VU)Tk(U)vL/jg(%u, Vu) - VT (u) < [dJ|(u) [ Tr (w)]]1,2-
Q Q

Taking the limit as k — oo, the Monotone Convergence Theorem yields (3.78f). O

H(w,t) =w — )Tk(w).

Notice that a generalized solution u (see Definition is not, in general, a
distributional solution. This, because a test function v € W, may not belong to
Cg°. Thus, it is natural to study the conditions under which it is possible to enlarge
the class of admissible test functions. This kind of argument was introduced in [27].
More precisely, suppose we have a function u € HE(Q) such that

/ Je(z,u, Vu) - Vz + / Js(z,u, Vu)z = (w, z), VzeV,, (3.81)
Q Q
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where V,, is defined in (3.70) and w € H~1(Q). A natural question is whether or
not we can take as test function v € Hj(2) N L°°(2). The next result gives an
answer to this question.

Theorem 3.30. Assume that conditions (3.40), (3.41), (3.42) hold. Let w €
H=Y(Q) and u € H}(Q) that satisfies (3.81]). Moreover, suppose that je(z,u, Vu) -
Vu € LY() and there exist v € HE(2) N L>®() and n € L*(Q) such that

Js(@,u, Vu)v + je(x,u, Vu) - Vo > 1. (3.82)
Then je(z,u, Vu) - Vo + js(x,u, Vu)v € LY(Q) and
/ Je(z,u, Vu) - Vo + / Js(z,u, Vu)v = (w, v).
Q Q
Proof. Since v € Hg(2) N L>(Q), then H(#)v € V,,. From (3.81)) we have

/ng(a:,u,Vu)-V [H(%)v} +/st($,u,Vu)H(%)v: <w,H(%)v>, (3.83)

for every k > 1. Note that
. ,, ULV 2 .
‘jg(x,u,Vu) VuH' (=)= | < =|[v|leo [ Je(z,u, Vu)- Vu.
o kS & o
Since j¢(z,u, Vu) - Vu € LY(Q), the Lebesgue Dominated Convergence Theorem
yields
U\ _

lim [ je(z,u,Vu) VuH'(-)—- =0,
o ok

k—o0

lim <w,H(%)v> = (w,v).

k—o0
As far as the remaining terms in (3.83]) concerns, note that from (3.82)) it follows
u
k

Thus, we can apply Fatou Lemma and obtain

u

[Js(z,u, Vu)v + je(z, u, Vu) - Vo]H( ’

)> H(-)n>—n~ € L'(Q).

/ Js(x, u, Vu)v + je(z,u, Vu) - Vo < (w,v).
Q
The previous inequality and (3.82)) imply that
gs(@,u, Vu)v + je(z,u, Vu) - Vo € L (Q). (3.84)
Now, notice that

‘[js(aﬁ,u, Vu)v + je(z,u, Vu) - Vo) H(%)) < |js(@,u, Vu)v + je(x,u, Vu) - Vol

From ([3.84)) we deduce that we can use Lebesgue Dominated Convergence Theorem
to pass to the limit in (3.83)) and obtain the conclusion. O

In the next result we find the conditions under which we can use v € HE(Q)

in (3.81). Moreover, we prove, under suitable hypotheses, that if u satisfies (3.81))
then w is a generalized solution (see Definition [3.15)) of the corresponding problem.
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Theorem 3.31. Assume that conditions (3.40), (3.41), (3.42), (3.43) hold. Let
w e H1(Q), and let u € H}(Q) be such that (3.81)) is satisfied. Moreover, suppose
that je(z,u, Vu) - Vu € LY(Q), and that there exist v € H}(Q) and n € L*(Q) such
that

Js(z,u,Vu)v >n and je(z,u,Vu)- Vo >n. (3.85)
Then js(z,u, Vu)v € LY(Q), je(z,u, Vu) - Vv € L'(2) and
/ Je(z,u, Vu) - Vo + / Js(z,u, Vu)v = (w, v). (3.86)
Q Q

In particular, it results js(x,u, Vu)u, js(z,u, Vu) € LY(Q) and

/ Je(z,u, Vu) - Vu + / Js(z,u, Vu)u = (w, u).
Q Q

Moreover, u is a generalized solution of the problem
—div(je(z,u, Vu)) + js(z,u, Vu) = w, in £,
(e ( )+ Js( ) (3.87)
u=0, on .

Proof. Let k > 1 be fixed. For every v € Hi(Q) we have that Ty (v) € Hi(Q) N
L>(Q) and —v~ < Tk (v) < vT. Then, from (3.85)), we get

js(@,u, Vu) Ty, (v) > —n~ € LY(Q). (3.88)
Moreover,
e (@, u, Vu) - VT (v) > —[je(z,u, Vu) - VIi(v)]” > —n~ € LY(Q). (3.89)
Then, we can apply Theorem and obtain

/ Js(x,u, Vu)Ti (v) +/ Je(z,u, Vu) - VI (v) = (w, Ti(v)) (3.90)
Q Q

for every k > 1. By using again (3.88)) and (3.89)) and by arguing as in Theorem
[3:300 we obtain
js(@,u, Vu)v € LYQ) and  je(w,u, Vu) - Vo € LH(Q).

Thus, we can use Lebesgue Dominated Convergence Theorem to pass to the limit

in (3.90) and get (3.86). In particular, by (3.42)), (3.43) and (3.69) we can choose
v = u. Finally, since

Js(@,u, Vu) = jo(z,u, Vu) X fjuj<1y + s (@, u, VU)X {ju>1}
and
‘js(‘r; u, vu)X{|u\21}| < |js(xa U, VU)U|,
by (3.42) it results also js(x,u, Vu) € L}(Q2). Finally, notice that if v € W,, we can
take n = je(z,u, Vu) - Vo and n = js(x,u, Vu)v, so that (3.86) is satisfied. Thus,
u is a generalized solution to Problem (3.87]). O

We point out that the previous result readily implies that, if u € H} () satisfies
(3:831) and je(z,u, Vu) - Vu € LY(Q), it results that js(z,u, Vu) € L*(Q), then
Js(x,u, Vu)v € LY(Q) for every v € C§°(9). Instead, the term which has not a
distributional interpretation in is je(z,u, Vu). In the next result we show
that if we multiply je(z,u, Vu) by a suitable sequence of C! functions, we obtain,
passing to the limit, a distributional interpretation of .
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Theorem 3.32. Assume conditions (3.40)), (3.41), (3.42), (3.43)). Letw € H=1(Q)
and u € H}(Q) be such that (3.81) is satisfied. Let (91) be a sequence in CL(R)
with

sup [|[9n [l < 00, sup [|¥},[lee < o0,
h>1 h>1

hlim In(s) =1, hlim 93,(s) = 0.

If je(z,u, Vu) - Vu € L' (Q), the sequence

div [95 (v)je (2, u, Vu)]

N
N-1’

lim {—div [95(w)je(z, u, V)| } + js(z,u, Vu) =w in W H9Q).

h—o0

Proof. Let w = —div F with F € L2(Q,RY) and v € C2°(Q). Then 9 (u)v € V,
and we can take v as test function in (3.81)). It results

/ng(x, u, Vu)dp(u) - Vo = — /ng(x, u, Vu)dy, (u) - Vuv — /st(x,u, Vu)dp, (u)v

is strongly convergent in W~=14(Q) for every 1 < q < and

+ /Q F},(uw)Vuv + /Q Fiy,(u)Vo.
Then u is a solution of the following equation
—div [ﬁh(u)jg(x,u, Vu)} =¢, inD'(Q),
where
&= — 9% (w)(Je(z,u, Vu) — F) - Vu + 95, (u)js(z, u, Vu) | — div(dp,(u)F).

Now, notice that

In(u)F — F, strongly in L?(€).
Then, div(J,(u)F) is a convergent sequence in H (). Since the embedding of
H=Y(Q) in W=14(Q) is continuous, we get the desired convergence. Moreover,
Theorem implies that js(x,u,Vu) € L'(Q). Then, the remaining terms in
&, converge strongly in L'(£2). Thus, we get the conclusion by observing that the
embedding of L(Q) in W~14() is continuous. O

Consider the case j(z,s,£) = a(x,s)|¢]? with a(z,s) measurable with respect
to x, continuous with respect to s and such that hypotheses (3.40)), (3.41)), (3.42),
, are satisfied. The next result proves that, in particular, if there exists
u € HE(Q) that satisfies and if a(z,u)|Vu|? € L(Q), then u satisfies
in the sense of distribution.

Theorem 3.33. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.46). Let w €
H=YQ) and u € H}(Q) that satisfies (3.81]). Moreover, suppose that je(z,u, Vu) -
Vu € L' (Q) and that

i@, s,€) :3\(‘%’787 1) (3.91)
Then je(z,u, Vu) € L' () and u is a distributional solution to
—div(je(z,u, Vu)) + js(x,u, Vu) = w, in Q,
u=20, on 0.
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Proof. Tt is readily seen that, in view of (3.40) and (3.91)), it results
|£H‘7§((£,S,€)| § ﬁjﬁ(masag) : g
for a.e. x € Q, every s € R and £ € RY. Then
jg(l‘, U, VU)X{‘Vu|>1} € L' (Q)
Moreover, we take into account ({3.46)), and we observe that (3.44)) implies that there
exists a positive constant C such that

€l <1 = [je(,5,6)] < da(|s]) < C(|s[P~2 + 1),
which, by the Sobolev embedding, implies also that je(x,u, Vu)x{jvu<1} € LY(Q).
Then j¢(z,u, Vu) € L'(2). Moreover, from (3.42) and (3.43) we have
js(x, Uu, VU)U > js(x, U, VU)UX{QC: |u(z)| <R} € Ll(Q)

Then Theorem implies that js(z,u, Vu)u € L'(Q2). Finally, again Theorem
yields the conclusion. O

3.12. A compactness result for J. In this section we will prove the following
compactness result for J. We will follow an argument similar to the one used in
[36] and in [132].

Theorem 3.34. Assume conditions (3.40), (3.41), (3.42), (3.43). Let {u,} C
H}(Q) be a bounded sequence with je(x,un, V) - Vu, € LY(Q) and let {w,} C
H=1(Q) be such that

Yo eV, : /st(x,un,Vun)v + je(z, upn, Vuy,) - Vo = (wy, v). (3.92)
If w,, is strongly convergent in H~1(Q), then, up to a subsequence, u, is strongly
convergent in Hg(£2).
Proof. Let w be the limit of {w,} and let L > 0 be such that
lunll12 <L, forevery n > 1. (3.93)
From we deduce that there exists u € H{(2) such that, up to a subsequence,

Up — u, weakly in HJ (). (3.94)
Step 1. Let us first prove that v is such that
[ iV Vo + [ peu Vo =), eV  (39)
Q Q

First of all, from Rellich Compact Embedding Theorem, up to a subsequence,
un, — u, in LI(Q), Vqel,2N/(N —2)),
(3.96)
up(x) — u(z), fora.e x €.
We now want to prove that, up to a subsequence,
Vuy(x) — Vu(x), forae. z €. (3.97)

Let h > 1. For every v € C2°(2) we have that H (%) v € V,,, (where H is again
the function defined in (3.71))), then

/ H(u—n)jg(x,un, Vuy,) - Vv
Q h
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— _/Q {H (Uh )Js(x Un, Vuy) + H' ( }:)]E(x U, Vi) - Vgn .

ot (2)0)

Let w,, = —div(F,), with (F,) strongly convergent in L?(€2,R"). Then it follows
that

/QH (uh )]5((1’3 Uy Vug) - VU

/[ ) (B = el un,Vun)).v;:"H(ij)js(ﬂfaumvun)]v

+/QH(7)F,L-VU.
For the square bracket is bounded in L*(2) and (H (%) F,,) is strongly convergent

in L2(Q,RY) we can apply [54, Theorem 5] with

bp(z,8) = H <un}§x)> Je(z,up(x),6) and E=Ep={zre€Q: |u(x)| < h}

and deduce (3.97) by the arbitrariness of h > 1. Notice that, by virtue of Theo-
rem for every n we have

/jf(xaunavun)'vun Jr/js(zyunavun)un = <wn7un>~
Q Q

Then, in view of (3.43)), one has

Sup/ jg(:z:,un, vun) - Vu, < oo. (398)
Q

n>1
Let now k > 1, ¢ € C°(Q), ¢ > 0 and consider
B(2k)

(&7s)

v = e~ MrluntR)" pr (%) ,  where M, = (3.99)
Note that v € V,,,, and

Vo = Ve Ml BT g (u—") — Mygpe Meent B g (4, 4 R)TH (%)

k
~Mp(un+R)* s (ul) Vi
+ e A o

Taking v as test function in (3.92)), we obtain
/ Je (@, tn, V) - e Mt D g (uf) Vo
Q

+ / ['S(x,un, V) — Mije(z, un, V) - V(u, + R)Jr} pe Mrlut I (%)
Q

= [ - e~ Mr(un+R)* gt Vi
/Q]E(as,un,Vun) pe” H (k) A

e (5)
) k *

Observe that
|:js($,un7 Vun) - Mkjf(l',uny V’un) : V(Un + R)+:| CPeiMk(unJrR)-*—H (ul) <0.
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Indeed, the assertion follows from ([3.43)), for almost every z such that u,(z) < —R
while, for almost every x in {z : —R < u,(z) < 2k} from (3.44), (3.69) and (3.99)

we get

[js(x, Uy Vi) — Mije (@, tn, Vi) - V(ty + R)*} < (B(2k) — apMy)|Vun|? < 0.

Moreover, from (3.44)), (3.93)), (3.96) and (3.97) we have
/Vd%umvwﬂf”WW”ﬁﬁH(%QV¢
¢ k

—>/j5(a:,u,Vu)~e_M’“("+R)+H(%)V30,
Q

and

(a8 (32) e (1),

as n — oo. We take into account (3.98) and deduce that there exists a positive
constant C such that
un) Vuy, | < C

. — M, un-‘,—RJr
!/Qﬂ»s(%umwn)'s@e u )Hl<k k k

We take the limit superior in (3.100)) and we apply Fatou Lemma to obtain

/jg(m,u,Vu)~67M’“(“+R)+H(%)Vg0 Jr/js(x,u, Vu)(peiM’“(“+R)+H(%)
Q Q

- Mk/ Je(z,u, Vu) - Vu*gae*M’“(“JrR)JrH(%)
Q

R i—
(3.101)
for every ¢ € C°(Q) with ¢ > 0. Then, the previous inequality holds for every

© € HiNL>(Q) with ¢ > 0. We now choose in (3.101]) the admissible test function
p=MTy yev,, p2o.
It results
. U . U C U
/jg(x,u,vu).ﬂ(f)w +/ ol u, V) H() = = +(w, H(Z)$ ) . (3.102)
0 2 0 k k 2
Notice that
. u .
el u, V) - H(Z)V| < ljela,u, Vo)l [V,

o, V) H(w| < s (o, T

Since ¢ € V,, and from (3.42) and (3.44) we deduce that we can pass to the limit
in (3.102]) as k — oo, and we obtain

/jg(:cyu,w) Vi +/js<x,u, V) > (w,9), Vi€ Vi, 9 > 0.
Q Q

To show the opposite inequality, we can take v = e Mkr(un—R)" g (“T") as test
function in (3.92) and we can repeat the same argument as before. Thus, (3.95)
follows.
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Step 2. In this step we will prove that u, — u strongly in H}(Q). From (3.69),
(3.98) and Fatou Lemma, we have

0< / Je(x,u, Vu) - Vu < liminf/ Je(x, upn, Vuy) - Vu, < 0o
Q o Jq
so that je¢(z,u, Vu) - Vu € L*(Q). Therefore, by Theorem we deduce

/ Je(z,u, Vu) - Vu + / Js(z,u, Vu)u = (w, u). (3.103)
Q Q
To prove that u,, converges to u strongly in H{ (2) we follow the argument of [132]

Theorem 3.2] and we consider the function ¢ : R — R defined by

Ms, if0<s<RM="0

MR, ifs>R

¢(s) = Lo (3.104)

—Ms, if —R<s<0,

MR, ifs<-—R.
We have that v, = u,e¢("») belongs to H}(f2), and conditions (3.42), (3.43) and
(3.44) imply that hypotheses of Theorem are satisfied. Then, we can use v,
as test function in (3.92)). It results

/ Je(@, un, Vuy,) - VY, es(4n)
Q

= <wnavn> o A [js(xauna Vun) +j§(x»una vun) . vuncl(un)] Un

Note that v, converges to ue¢(™) weakly in H}(Q) and almost everywhere in €.
Moreover, conditions (3.42)), (3.43) and (3.104) allow us to apply Fatou Lemma
and get that

limsup/ Je(@, up, Vuy,) - Vel (tn)
h Q

(3.105)
< (w, ueS™) — / s (2, u, V) + je (2, u, V) - Vuc (u)] ue™.,
Q
On the other hand (3.103)) and (3.104) imply that
Ge(z,u, Vu) - Vuet™| + ji(z, u, Vu)uet™ e L(Q),
¢ )V [uet™] + i ) (@) (3.106)

Je(z,u, Vu) - V[ueC(“)] c L'(Q).

Therefore, from Theorem (3.31
/jg(x,u,Vu) -V [ueC(“)} + / sz, u, Vu)uet™ = (w, uet™). (3.107)
Q Q

Thus, (3.105) and (3.107) imply

n—oo

/ je(z,u, V) - Vuet™ < lim inf/ e (2, Un, Vitg) - Vg, e$ )
Q Q

< lim sup/ Je(z, up, Vuy,) - Vet tn)
Q

n—oo

< / je(x,u, V) - Vuet™,
Q

Then (3.69) implies that u,, — u strongly in H}(Q). O
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3.13. Proofs of the main Theorems. In this section we give the definition of
a Concrete Palais-Smale sequence, we study the relation between a Palais-Smale
sequence and a Concrete Palais-Smale sequence, and we prove that f satisfies the
(PS). for every ¢ € R. Finally, we conclude by giving the proofs of Theorems

and B.200
Let us consider the functional I : H}(2) — R defined by

/va (A, ),

where A € H=(Q), f (z,t)dt and g Q2 xR — R is a Carathéodory

n
function satisfying assumptlon Then 1) implies that the functional f :
H} () — RU {+00} defined by f(v) = J(v) —|— I(v) is lower semi-continuous. To
apply the abstract theory, it is crucial to have the following result.

Theorem 3.35. Assume conditions (3.40), (3.41)), (3.43), (3.54). Then, for every
(u,m) € epi f with f(u) <n, it results

|dG | (u,n) = 1.
Moreover, if j(x,—s,—¢§) = j(l‘ s f) g(x,—s) = —g(x,s) and A = 0, for every
n> £(0) one has \dzzgf\( n) =

Proof. Since G is of class C', Theorem and Proposition imply the result.
O

Furthermore, since G a C! functional, as a consequence of Proposition one
has the following

Proposition 3.36. Assume conditions (3.41), (3.42), (3.44)), (3.54) and consider
u € dom(f) with |df|(u) < co. Then there exists w € H1(Q) such that ||w| -1 <
|df|(u) and

Yo eV, : / Je(z,u, Vu) - Vo + / Js(z,u, Vu)v — / g(x,u)v — (A, v) = (w,v).
Q Q Q

Proof. Given u € dom(f) with |df|(u) < oo, let

Jw) = J(w) - /Q ol u) — (A, v),

~

I(v) = 1(v) +/Qg(x,u)v + (A, v).

Then, since I is of class C with I’ u) = 0, by (¢) of Proposition we get
|df|(u) = |dJ|(u). By Proposition there exists w € H~1(Q) with ||w|_12 <
|df |(u) and

YoeV,: / Je(z,u, Vu) - Vo + / Js(x,u, Vu)v — / g(z,uw)v — (A, v) = (w,v),
Q Q Q

and the assertion is proved. O
We can now give the definition of the Concrete Palais-Smale condition.

Definition 3.37. Let ¢ € R. We say that {u,,} is a Concrete Palais-Smale sequence
for f at level ¢ ((CPS).-sequence for short) if there exists w, € H~1(Q) with
wy, — 0 such that je(z, un, Vu,) - Vu, € L' (Q) for every n > 1, and

flun) — ¢, (3.108)
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/ Je(z, upn, Vuy,) - Vo + / Js (@, up, Vg )v — / g(x,un)v — (A, v) (3.109)
Q Q Q
= (Wp,v), YVE V,, .

We say that f satisfies the Concrete Palais-Smale condition at level ¢ ((CPS),. for
short) if every (C'PS).-sequence for f admits a strongly convergent subsequence in
Hy ().

Proposition 3.38. Assume conditions (3.41), (3.42), (3.43), (3.44), (3.54). If

u € dom(f) satisfies |df|(u) =0, then u is a generalized solution to

—div(je(z,u, Vu)) + js(x,u, Vu) = g(z,u) + A, in Q,
u=0, ondQ.

Proof. Tt is sufficient to combine Lemma [3.29] Proposition [3.36} and Theorem [3.31
[

The following result concerns the relation between the (P.S). condition and the
(CPS), condition.

Proposition 3.39. Assume conditions (3.41), (3.42), (3.43), (3.44), (3.54). Then
if [ satisfies the (CPS). condition, it satisfies the (PS). condition.

Proof. Let {u,} C dom(f) that satisfies the Definition From Lemma and
Proposition [3:36] we get that u,, satisfies the conditions in Definition [3:37] Thus,
there exists a subsequence, which converges in H}(12). ([

We now want to prove that f satisfies the (C'PS). condition at every level ¢. To
do this, let us consider a (CPS).-sequence {u,} € dom(f).
From Theorem we deduce the following result.

Proposition 3.40. Assume that conditions (3.40), (3.41)), (3.42)), (3.43)), (3.54)
are satisfied. Let {u,} be a (CPS).-sequence for f, bounded in Hg (). Then {u,}
admits a strongly convergent subsequence in H((2).

Proof. Let {u,} C dom(f) be a concrete Palais-Smale sequence for f at level c.
Taking into account that, as known, by the map {u +— g(x,u)} is compact
from H{ () to H~1(Q), it suffices to apply Theoremto see that {u,,} is strongly
compact in Hg (). O

Proposition 3.41. Assume conditions (3.40), (3.41)), (3.42), (3-43)), (3.48), (3.54)),
(3.55). Then every (CPS).-sequence {u,} for f is bounded in H}(S2).

Proof. Condition (3.43)) and (3.69) allow us to apply Theorem to deduce that
we may choose v = u,, as test functions in (3.109)). Taking into account conditions

[3.48)), (3.54), (3.59), (3-108)), the boundedness of {u, } in H}(Q) follows by arguin
’ ’ 9 0 Y g g
as in [132] Lemma 4.3]. O

Remark 3.42. Note that we use condition (3.48]) only in Proposition

We can now state the following result.

Theorem 3.43. Assume conditions (3.40), (3.41), (3.42), (3.43), (3-48), (3.54),

(3.55). Then the functional f satisfies the (PS). condition at every level ¢ € R.
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Proof. Let {u,} C dom(f) be a concrete Palais-Smale sequence for f at level c.
From Proposition it follows that {u,} is bounded in HZ(). By Proposi-
tion f satisfies the Concrete Palais-Smale condition. Finally Proposition [3.39
implies that f satisfies the (PS). condition. O

Proof of Theorem[3.18 This theorem will as a consequence of Theorem [2.21] First,
note that and imply that f is lower semi-continuous. Moreover,
from we deduce that f is an even functional, and from Theorem we
deduce that and condition (d) of Theorem are satisfied. Hypothe-
ses implies that condition (b) of Theorem is verified (see the subse-
quent proof of Theorem . Let now (An,©p) be the sequence of solutions of
—Au = Au with homogeneous Dirichlet boundary conditions. Moreover, let us con-
sider V* = span{p;, € H}(Q) : h > ho} and note that V* has finite codimension.
To prove (a) of Theorem it is enough to show that there exist hg,y > 0 such
that for all uw € VT with ||Vu||2 = 1 there holds f(u) > v. First, note that condition
implies that, for every £ > 0, we find al") € C=(Q) and al?) € L2N/(N+2)(())
with ||a§2)||2N/(N+2) < e and

l9(2,5)| < o (@) + 0l (@) + £]s| V2.

Now, let © € VT and notice that there exist two positive constants c;, ca such that
£ = aol Vul} - [ Gl
Q
N -2
> ol Vall = [ (a0 +a®) ful + 5532l #%)
Q 2N

2N
> ao||Vull3 — [l l2]lull2 — C1Ha§2)IIN% [Vull2 — eca|[Vaully

2N _
> a0l Vull3 — lla"[2llullz — c1e| Vullz — ecz | Vully

Then if hy is sufficiently large, since A\, — +o0, for all w € V', ||Vul|2 = 1 implies
||a§1)|\2||u||2 < ap/2. Thus, for € > 0 small enough, ||Vull2 = 1 implies f(u) > v
for some v > 0. Then also (a) of Theorem is satisfied. Theorem implies
that f satisfies (PS). condition at every level ¢, so that we get the existence of
a sequence of critical points {up} C H(2) with f(up) — +oco. Proposition m
yields the assertion. |

Let us conclude this section with the following proof.

Proof of Theorem[3.20f We will prove this theorem as a consequence of Theorem
2.20l To do this, let us notice that, from (3.41) and (3.60), f is lower semi-
continuous on H{(2). Moreover, Theorem [3.23 implies that condition is
satisfied. From Theorem we deduce that f satisfies (PS). condition at every
level c. Tt is left to show that f satisfies the geometrical assumptions of Theorem
2.20)

Let us first consider the case in which A = 0. Notice that conditions ,
(3.60) and imply that there exist v > 0 and r > 0 such that for ||ull12 =7
there holds f(u) > . Conditions and imply that there holds

10 < [ alloDIVeP = [ k@Il + el + Coll g Iolha: (3120
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Now, let us consider a finite dimensional subspace W of H{(2) such that W C
L>(€). Condition (3.46]) implies that, for every € > 0, there exists R > r, w € W,
with ||lw||s > R and a positive constant C, such that

/QOé(IWDIVwI2 < eCwllwllf 5 + Cellwli o, (3.111)

where Cyy is a positive constant depending on W. Then, by suitably choosing &,
(3.110) and (3.111) yield condition for a suitable v; € Hg(Q) and for vy = 0.
Thus, we can apply Theorem and deduce the existence of a nontrivial critical
point u of f. From Proposition u is a generalized solution of Problem .

Now, let us consider the case in which A # 0. Let ¢ be the first eigenfunction
of the Laplace operator with homogeneous Dirichlet boundary conditions and set
vy = top for tg > 0. Then, if ¢g sufficiently small, thanks to and , we
get f(vg) < 0. As before, (3.41), (3.60) and (3.61) imply that there exist ¢ > 0,
r =r(e) > 0 and v > 0 such that, for every A € H~1(Q) with |[|A||—1 < &, there
holds

f(u) >~, forevery u with ||u —voll12 =r7.

Moreover, we use condition (3.41)), (3.46) and (3.56) and we argue as before to

deduce the existence of v; € H}(Q) with |[v; — vo|| > 7 and f(v1) < 0. Condition
is thus fulfilled. Then, we can apply Theorem m getting the existence of
two distinct nontrivial critical points of f. Finally, Proposition yields the
conclusion. O

Remark 3.44. Notice that Theorems [3.16 and are an easy consequence of
Theorems and respectively. Indeed, consider for example g;(z,s) =
a(z)arctgs + |s[P~2s. To prove Theorem it is left to show that gy (z,s) sat-
isfies conditions (3.54), (3.55) and (3.56). First, notice that Young inequality im-
plies that, for every € > 0, there exists a positive constant §(¢) such that
holds with a.(z) = B(g) + a(x). Moreover, is satisfied with ao(x) = 0 and
bo(z) = 7/2(p — 1). Finally, is verified with k(z) = 1/p, a(z) = 0 and
b(x) = (1/2 + C)a(x) where C € RT is sufficiently large. Theorem can be
obtained as a consequence of Theorem [3:20] in a similar fashion.

3.14. Summability results. In this section we suppose that g(z,s) satisfies the
following growth condition

lg(z,5)| < a(z) +b|s| ™2, a(z) € L7(Q), beR". (3.112)
Note that (3.54) implies (3.112)). Let us set 2* = 2N/(N — 2). We prove the

following

Theorem 3.45. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.112)). Let
u € HY(Q) be a generalized solution of problem (P). Then the following conclusions
hold:

(a) Ifr € (2N/(N+2),N/2), then u belongs to L (), where r** = Nr/(N —
2r);
(b) if r > N/2, then u belongs to L>°().

The above theorem will be proved as a consequence of the following result.
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Lemma 3.46. Let us assume that conditions (3.40), (3.41), (3.42), (3.43) are
satisfied. Let u € Hi(Q) be a generalized solution of the problem
—div(je(z, u, Vu)) + js(x, u, Vu) + c(z)u = f(z), inQ,
u=0, on N.

(3.113)

Then the following conclusions hold:
(i) Ifce L= () and f € L™(Q), with r € (2N/(N + 2), N/2), then u belongs
to L™ (), where 7** = Nr/(N — 2r);
(i) if c € L*(Q) with t > N/2 and f € L), with ¢ > N/2, then u belongs to
L>(Q).

Proof. Let us first prove conclusion (i). For every k > R (where R is defined in
(3.43)), let us define the function n(s) : R — R such that 7, € C1, n; is odd and

0, if0<s<R,
me(s) =1 (s— R)>H, if R<s<k, (3.114)
brs + ck, if s >k,

where by and ¢ are constant such that ny is C 1. Since u is a generalized solution of
(3.113), v = nk(u) belongs to W,,. Then we can take it as test function, moreover,

Js(z,u, Vu)ng(u) > 0. Then from (3.43) and (§ we get
0 [ k) Tl < /Q Flameu) /Q e(ayu (u). (3.115)
Now, let us consider the odd function ¥g(s) : R — R defined by

5) = /0 k) dt. (3.116)

The following properties of the functions v and 7, can be deduced from (3.114))
and (3.116)) by easy calculations

[ (s)]” = nj(s), (3.117)
0 <mi(s)(s — R) < Covhu(s)?, (3.118)
i (5)] < Coltbw(s)| 557, (3.119)

where Cy is a positive constant. Notice that for every ¢ > 0 there exist ¢;1(z) €
L= (Q), with lerllx < € and ¢z € L>(Q) such that c(x) = c1(z) + c2(x). From
(3.115), (3.117)), (3.118) and Hélder inequality, we deduce

a0 / IV (60 (w))?

<Golla@ly [ [ o] / |(2) = Rer(2) — eaaulln ()]
We fix e = (ozoS)/(QC’o) where S is the Sobolev constant. We obtain
/2"
[ o] <0 [ 1@ - Ra@) - ea@ulm@l @120

Now, let us define the function

hz) = [f(x) = Rea(x) — ca(@)u(z)], (3.121)
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and note that h(z) belongs to L*(2) with
t = min{r, 2"}. (3.122)
Let us consider first the case in which ¢ = r, then from (3.119) and (3.120)), we get

«12/2" /2v+1 1/7“
[ [ oor ] <ctm,[ [ pwr

Since 2N/(N +2) < r < N/2 we can define v € RT by

r(N +2)—2N . ,
= v o 2 1) =7r"2y+1)=r". 12
N =) (y+D)=rZy+1)=r (3.123)
Moreover, since r < N/2 we have that 2/2* > 1/7, then
21
[/Q\wkw)\z ]2 "< Clhl. (3.124)

Note that [ (u)] — C(v)|u — R"™ X {a:ju(z)|> k) almost everywhere in Q. Then
Fatou Lemma implies that [u — R X (.. ju(x)>r) belongs to L2"(Q). Thus, u
belongs to L2 0D (Q) = L™ (Q) and the conclusion follows. Consider now the
case in which ¢ = 2* and note that this implies that N > 6. In this case we get

[ ™ < e[ [ stonta® 5]

Since N > 6 it results 2/2* > 1/(2*)". Moreover, we can choose 7 such that
2*(v+1) = (29 (2y + 1).

Thus, we follow the same argument as in the previous case and we deduce that u
belongs to L*'(2) where

2*N
N —292%°
If it still holds s; < r we can repeat the same argument to gain more summability
on u. In this way for every s € [2*,r) we can define the increasing sequence

Nsy,
N —2s,’
and we deduce that there exists 7 such that sz_1 < r and sz > r. At this step from
(3-122) we get that t = r and then u € L™ (Q), that is the maximal summability
we can achieve.

Now, let us prove conclusion (ii). First, note that since f € LI(Q2), with ¢ > N/2,
f belongs to L"(Q) for every r > (2N)/(N + 2). Then, conclusion (i) implies that
u € L7(R) for every o > 1. Now, take § > 0 such that t —§ > N/2, since u € L5 ()

it results s
et < @[ [ ju] <

Then, the function d(z) = f(z) — c(z)u ( ) belongs to L™(2) with » = min{q,t —
d} > N/2. Let us take k > R (R is defined in and consider the function
v = Gr(u) = u — Ti(u) (where Ti(s) is defined in (3.63])). Since u is a generalized
solution of we can take v as test function. From (3.43) and (3.69) it results

a0 /Q VG (u)? < /Q d(@)][G(u)].
}

The conclusion follows from Theorem 4.2 of [I35].

51 =

*
50:2 B Sn+1 =
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Remark 3.47. In classical results of this type (see e.g. [104] or [26]) it is usually
considered as test function v = |u|>u. Note that this type of function cannot be
used here for it does not belong to the space W,,. Moreover, the classical truncation
T, seems not to be useful because of the presence of ¢(x)u. Then, we have chosen
a suitable truncation of w in order to manage also the term c(z)u.

Proof of Theorem[3.45 This theorem will be proved as a consequence of Lemma
So, consider u a generalized solution of Problem 7 we have to prove
that u is a generalized solution of Problem for suitable f(z) and c(z). This
is shown in Theorem 2.2.5 of [36], then we will give here a sketch of the proof of
[36] just for clearness. We set

go(z, s) = min{max{g(z, s), —a(z)}, a(z)},
gl(xv 5) = g(x, 8) - 90(377 8)'

It follows that g(z,s) = go(x, s) + g1(x, s) and |go(z, s)| < a(x) so that we can set
f(@) = go(z,u(x)). Moreover, we define

_gi(zu(x)
o(a)= | wm o fu@ A0,
0, if u(z) = 0.

Then |c(z)] < b|u(x)|ﬁ, so that c(z) € L= (Q). Lemma implies that conclu-
sion (a) holds. Now, if 7 > N/2 we have that f(z) € L"(Q2) with » > N/2. More-
over, conclusion (a) implies that u € L*(Q2) for every t < oo, so that c(x) € L'(Q)
with ¢ > N/2. Then Lemma implies that u € L>®(Q). O

Remark 3.48. When dealing with quasi-linear equations (i.e. j(z,s,§) = a(z, s)¢-
€), a standard technique, to prove summability results, is to reduce the problem to
the linear one and to apply the classical result (see e.g. [I35]). Note that here this
is not possible due to the general form of j.

4. PERTURBATION FROM SYMMETRY

We refer the reader to [128, 129, 110, ©2] B0]. Some parts of these publications
have been slightly modified to give this collection a more uniform appearance.

4.1. Quasi-linear elliptic systems. In critical point theory, an open problem
concerning existence, is the role of symmetry in obtaining multiple critical points
for even functionals. Around 1980, the semi-linear scalar problem

— Y Dj(aij(x)Diu) = g(z,u) + ¢ in Q

i,j=1
u=0 onJdQ,

with g super-linear and odd in u and ¢ € L?(£2), has been object of a very careful
analysis by A. Bahri and H. Berestycki in [I5], M. Struwe in [137], G-C. Dong and
S. Li in [66] and by P.H. Rabinowitz in [118] via techniques of classical critical point
theory. Around 1990, A. Bahri and P.L. Lions in [I'7, 18] improved the previous
results via a Morse-Index type technique. Later on, since 1994, several efforts have
been devoted to study existence for quasi-linear scalar problems of the type

n 1 n
_ Z Dj(a;j(z,u)D;u) + 3 Z Dga;j(xz,uw)D;uDju = g(z,u) in Q

i,j=1 i,5=1
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=0 on 9.

We refer the reader to [9l B33, B2] 36, 137] and to [6l, 112, 132] for a more general
setting. In this case the associated functional f : H}(Q,RY) — R given by

/ZauquuDudas—/Gacu

1,j=1

is not even locally Lipschitz unless the a;;’s do not depend on u or n = 1. Conse-
quently, techniques of non-smooth critical point theory have to be applied. It seems
now natural to ask whether some existence results for perturbed even functionals
still hold in a quasi-linear setting, both scalar (N = 1) and vectorial (N > 2). In
[133] it has recently been proved that diagonal quasi-linear elliptic systems of the
type (k=1,...,N)

—ZD ”(muDuk ZZDSk 2];13uDuhDuh—DSkG(ac,u) in Q,
i,j=1 i,j=1 h=1

(4.1)

possess a sequence (u™) of weak solutions in Hg (2, RY) under suitable assumptions,

including symmetry, on coefficients a?j and G. To prove this result, we looked for

critical points of the functional fy : Hi (2, RY) — R defined by

/ Z Zau x,w)Djup Djuy, de — G(x,u) dx. (4.2)
Q

1,j=1 h=1

In this section we want to investigate the effects of destroying the symmetry of
system (4.1)) and show that for each ¢ € L?((, RN) the perturbed problem

_i:D z](x u)Duk ZZDék UZ"LLDU,}LD Up,

4,j=1 i,j=1 h=1
= D;, G(z,u) + ¢i in Q,

(4.3)

still has infinitely many weak solutions. Of course, to this aim, we shall study the
associated functional

/ZZa”quuhDuhdm—/Gmu dw—/go udx. (4.4)

i,j=1h=1

In the next, 2 will denote an open and bounded subset of R™. To adapt the
perturbation argument of [I18], we shall consider the following assumptions: - the
matrix (a Z(:c 5)) is measurable in z for each s € RY and of class C! in s for a.e.
x €  with
h _ _h
aij(xvs) = a’ji(xy s).

Moreover, there exist v > 0 and C' > 0 such that

n N

Z Za%(w,s)&f{? > vlEP, ali(x,s)] < C,
e n N (45)
|Dsa?j(xas)| SC, Z ZSDSG,Z(.’E,S)flthhZO,

i,j=1h=1
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for a.e. 2 € Q and for all s € RY and ¢ € R™Y; - (if N > 2) there exists a bounded
Lipschitz function 7 : R — R such that

n N
Z Z (;Dsa?j (z,s) - exp,(r,s) + a?j(x, $)Ds, (exp, (r, s))h> f?fjh <0, (4.6)

i,j=1h=1
for a.e. x € Q, for all ¢ € R™Y, 5 € {~1,1} and r,s € RY, where
(exp, (r,5)); = 03 explai () — B(s:))]
for each i = 1,..., N. - the function G(z, s) is measurable in x for all s € RV, of

class Ct in s for a.e. x € Q with G(z,0) = 0 and g(z, ) denotes the gradient of G
with respect of s. - there exist ¢ > 2 and R > 0 such that

|s| > R=0<qG(z,s) <s-g(z,s), (4.7
for a.e. € Q and all s € RY; - there exists v €]0, ¢ — 2 such that

ZZS Dazjx5§z§]<’yZZa”xs§z , (4.8)

i,j=1h=1 i,j=1h=1
for a.e. x € Q and for all s € RN and ¢ € R*". Under the previous assumptions,
the following is our main result.

Theorem 4.1. Assume that there eists o in |1, w[ such that
qn+(g—1)(n—2)

l9(z,5)| < a+0bls|7, (4.9)
with a,b € R and that for a.e. x € Q and for each s € RY
a?j(a%is) *GZ(‘I,S), g(m,fg) = *g(z,s).

Then there exists a sequence (u™) C H& (Q, RN) of solutions to the system

_i:D z]('rUDuk ZzDsk z]quuhDuh

1,7=1 3,j=1 h=1
=D;, G(z,u) + ¢ inQ
such that f(u™) — +00 as m — o0.

This is clearly an extension of the results of [15] [66] 118] 137] to the quasi-linear
case, both scalar (N = 1) and vectorial (N > 2).

Let us point out that in the case NV = 1 a stronger version of the previous result
can be proven. Indeed, we may completely drop assumption (b) and replace Lemma
with [36, Lemma 2.2.4]. To the best of our knowledge, in the case N > 1 only
very few multiplicity results have been obtained so far via non-smooth critical point
theory (see [9, 133 [137]).

4.2. Symmetry perturbed functionals. Given ¢ € L?(Q,RY), we shall now
consider the functional f : H}(Q,RY) — R defined by

/ZZa”muDuhDuhdx—/Gxudx—/ap udz.

2,j=1h=1
If ¢ #£ 0, clearly f is not even. Note that by (4.7) we find ¢1, ¢o, ¢z > 0 such that

1
6(5 cg(z,8) +c1) > Gz, s) + ca > c3ls|? (4.10)
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Lemma 4.2. Assume that u € HE(Q,RY) is a weak solution to (4.3). Then there
exists o > 0 such that

[ @+ e do < o (F0? +1)

Proof. If u € H}(Q,RY) is a weak solution to (4.3), taking into account (4.8)), we
deduce that

1/2

1

Flu) = fuw) = 5.f'(u)(u)

:/ {lg(m,u)-u—G(x,u)—lw-u dx
02 2

n N

1
_Z/ ZZDQaZ:Eu ~uDsupDjuy dx
Q

1,j=1 h=1

> (2o /Q (gl ) - utex) e — gl

q

_,/ ZZauquuhD up dx — ¢y

i,j=1 h=1
q v Y q q/
> (5 -1-5) | (Glz,u)+c2) do—_ f(u) —elull§ — BlE)llellz —cs
2 2/ Jg 2
with e — 0 and ((g) — +o00. Choosing £ > 0 small enough, by (4.10) we have

of(u) > /Q(G(x,u) + ¢2) dx — cg,

24y

where o = ,
q—2—y

and the assertion follows as in [I18, Lemma 1.8]. 0

We now want to introduce the modified functional, which is the main tool in
order to obtain our result. Let us define x € C*°(R) by setting x = 1 for s < 1,
x=0for s >2and -2 < x’ <0 when 1 < s < 2, and let for each u € H}(Q,RY)

1/2

o) =20 (7P + 1) () = (00 [ (Glo +e) do).

Finally, we define the modified functional by

/ Z Za” (x,u)DiupDjup, de+

i.j=1h=1 (4.11)

—/QG(x,u)d:v—w(u)/Qw-udw.

The Euler’s equation associated to the previous functional is given by

n

- ZDj(afj(x u)Djuy,) Z ZDSk a;;(z, u) Diup Djup, = g(x, u) in Q,
3,7=1 i,7=1h=1
(4.12)

where we set

5 w) = g2, ) + (u)p + ' (u) / o udz.
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Note that taking into account the previous Lemma, if u € H(,RY) is a weak
solution to (4.3), we have that ¥(u) = 1 and therefore f(u) = f(u). In the next

result, we measure the defect of symmetry of f, which turns out to be crucial in
the final comparison argument.

Lemma 4.3. There exists 3 > 0 such that for all u € H}(Q,RY)

) = F-u)l < 8 (1F@] e +1).
Proof. Note first that if u € supp(¢) then
’/<p~udx‘§a(|f(u)\1/q+1), (4.13)
Q
where « > 0 depends on ||¢||2. Indeed, by (4.10) we have
R 1/q
| [ - uda] < Jullaliol < luly < é( [ (Glan)+ca) do) ",
Q Q
and since u € supp(v)),
[ (G + ex) do < 10 (0 + 1) < (5w + D),
Q
inequality (4.13)) easily follows. Now, since of course
f@l < 1fw+2] [ ¢-ude
by (4.13)) we immediately get for some b > 0
~ 1) 1/q
)| [ - ude| < b (|F@+| [ ¢ouda] " +1).
Q Q

Using Young’s inequality, for some b1,bs > 0 we have that

w(u))/ﬂapudx‘ < <|f(u)|1/q+l>,

)

and
_ . Fla)|1/a
veu) | [ o) <t (1Fu e +1).
and since
) = F=wl = @) + o) [ o-udal,
the assertion follows. O

Theorem 4.4. There exists M > 0 such that if u € H}(Q,RY) is a weak solution

to (4.12) with f(u) > M then u is a weak solution to (4.3) and f(u) = f(u).
Proof. Let us first prove that there exist M >0 and & > 0 such that
VM € [M,+oc]: f(u) > M, u € supp(¥) = f(u) > aM. (4.14)

Since we have

)

fw = fw | [ o-u
by we deduce that

F) +alf) > fu) —a > T
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for M > M, with M large enough. Now, if it was f(u) < 0, we would obtain
ad 1 M
oWl =z alfw)]T = 4 | f ),
q q 2
which is not possible if we take M > 209 (¢')~!. Therefore it is f(u) > 0 and
M M\
- > (2=
rw>4 o = (4

and (4.14) is proven. Of course, taking into account the definition of ¥, to prove
the Lemma it suffices to show that if M > 0 is sufficiently large and u € H} (2, RY)

is a weak solution to (4.12) with f(u) > M, then

qzﬁ(u)*l/ (G(z,u) + ) dx < 1.
Q
If we set

I(u) = gb(u)*l/ (G(z,u) + o) dux,

it follows that !
' (u)(u) = X' (9(w))p(u) 2 [(ZS(U)/QQ(%U) ~udz — (20)*9(u) f () f'(u)(u)|.
Define now 71,75 : H} (2, RY) — R by setting

JMM=%WWM%Vmew*ﬂWAwwm%

EW=%WMMM”waw+ﬂW)

Then we obtain

N
JF'(U)() (1+T1(u /ZZ (z,u)DjupDjup, dz
J=1h=1
1 n N
+§(1+T1 /Z_Z ) - uDupDjup dx

—O+BWDAM%W%M%%MM+EWDwaML
Consider now the term
F) = sy T )

If ¥(u) =1 and Ti(u) = 0 = T(u), the assertion follows from Lemma
Otherwise, since 0 < ¥(u) < 1, if Ti(u) and To(u) are both small enough the
computations we have made in Lemmastill hold true with o replaced by (2—¢)o,
for a small € > 0, and again assertion follows as in Lemma

It then remains to show that if M — oo, then T} (u), T2 (u) — 0. We may assume
that u € supp(v), otherwise T;(u) = 0, for ¢ = 1,2. Therefore, taking into account
([.13), there exists ¢ > 0 with

HOIGES!

=)
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Finally, by (4.14) we deduce |T1(u)| — 0 as M — oo. Similarly, |T5(u)| — 0. O
4.3. Boundedness of concrete Palais-Smale sequences.

Definition 4.5. Let ¢ € R. A sequence (u™) C H}(Q,RY) is said to be a concrete
Palais-Smale sequence at level ¢ ((CPS).-sequence, in short) for f, if f(u™) — ¢,

Z ZDSk al’s(z,u™)Dyup Dyupt € H-H(Q,RY)
i,j=1 h=1

eventually as m — oo and
_ZD zg($u Duk ZZDSk 1] DuhDuh _gk(mvum),
3,j=1 i,j=1h=1

approaches zero strongly in H~1(Q,RY), where
i) = (o) + o+ 0w [ e,

We say that ]7 satisfies the concrete Palais-Smale condition at level ¢, if every
(CPS). sequence for f admits a strongly convergent subsequence in Hg (Q, RY).

Lemma 4.6. There exists M > 0 such that each (CPS).-sequence (u™) for f with
¢ > M is bounded in H}(Q,RYN).

Proof. Let M > 0 and (u™) be a (CPS).-sequence for f with ¢ > M in H} (Q,RY)
such that, eventually as m — +o0

M < f(u™) < K.

for some K > 0. Taking into account [I33 Lemma 3], we have F(u™)(u™) = 0 as
m — +00. Therefore, for large m € N and any o > 0, it follows

QHumHl,2+KZf(U) of (u™)(u™)

= (o + 1) [ 3 S aly(o ) Dt Dy

n

N
- g(l + Tl(um))/ Z Z Dsa?j(x,um) ~u™ Dyup' Djuy' dx

Q4 i=1h=1

+ Q(l +T2(u7rL))/ g(x7um) . um dr
Q

- / G, ™) di + [o((u™) + Ty (u™)) — (™) / o u™ di >
Q

Q

Z(;—g(l—i-Tl(um))—(l—le >/ ZZa”xu ) Diui Djull da

i,j=1h=1

+ o1+ To(u™) /Q oz, u™) - u™ da

- / G, ™) di + [o((u™) + Ty (u™)) — (™)) / o um da
Q

Q
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> 5 (1 =0@+7) A +Ta(u™)) [u™[F 2 + (go(1 + To(u™)) — 1) /Q Gz, u™) dx

— [e(t +Ta(u™)) + Ullellafle™ 2.

N R

If we choose M sufficiently large, we find ¢ > 0, 7 > 0 and ¢ € ]HT", i;; [ such

that uniformly in m € N
(I1—0@+7)A+T1(u™) >e,  (qo(1+T2(u™)) —1) >n.
Hence we obtain

ve
ol iz + K = 2 um

|12+ bnllu™ 1 — cllu™||z,
which implies that the sequence (u™) is bounded in H}(Q,RY). O

Lemma 4.7. Let ¢ € R. Then there exists M > 0 such that for each bounded
(CPS). sequence (u™) for f with ¢ > M, the sequence (g(x,u™)) admits a conver-
gent subsequence in H=1(Q,RY).

Proof. Let (u™) be a bounded (CPS).-sequence for f with ¢ > M. We may assume
that (u™) C supp(¢), otherwise (u™) = 0 and 9’ (u™) = 0. Recall that

G, ™) = gla, u™) + P(u™)p + ¥ (™) /Q o um de.

Since by [36, Theorem 2.2.7] the maps
HI(Q,RY) — HY(QRV)
u — gla,u)

and
HY(QRY) — H-(Q,RY)
u — Y(we,
are completely continuous, the sequences (g(z,u™)) and (¥ (u™)p) admit a conver-
gent subsequence in H~1(2,R"). Now, we have

™) = [ O™ ] gl um)+
[0 (D™ p(™) 20 (™) f (™)) £ (™).
On the other hand,
Py = Fluam) + [ o dx} (™) + (™) — 1.
Therefore,
2./ m m\—2 m m .um - /um
[1+[4ax<z9<u Dolam) 2o [ o de )
= X' (@(u™)p(w™) ] g(a,u™) (4.15)
[0 (O™ (™) 20 (™) f (™)) F (™)
[0 (0™ )™y 20 (™) f ()W ™) — 1)] .

By assumption we have f'(u™) — 0 in H~'(Q,RY). Taking into account the
definition of x, ¢ and ¥, all of the square brackets in equation are bounded
in R for some M > 0 and we conclude that also (¢'(u™)) admits a convergent
subsequence in H~1(Q, RY). The assertion is now proven. O



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 65

4.4. Compactness of concrete Palais-Smale sequences. The next result is
the crucial property for Palais-Smale condition to hold.

Lemma 4.8. Let (u™) be a bounded sequence in H (2, RY) and set

n N
(W™, v) :/ Z Za%(g:,um)DiuZlevh dx
Q

i,j=1h=1

N
1 n
+ 5/ Z Z Dsa?j(x,um) -vDup' Dijupt dz
@ i=1h=1

for all v € CX(QRYN).  Then, if (w™) is strongly convergent to some w in
H=L(Q,RY), (u™) admits a strongly convergent subsequence in Hg(Q, RY).

For the proof of the above lemma, sew [I33, Lemma 6].

Theorem 4.9. There exists M > 0 such that ]? satisfies (CPS).-condition for
c> M.

Proof. Let (u™) be a (CPS), sequence for f with ¢ > M, where M > 0 is as in
Lemma Therefore, (u™) is bounded in HJ (9, RY) and from Lemma we
deduce that, up to subsequences, (§(x,u™)) is strongly convergent in H (0, RY).
Therefore, the assertion follows from Lemma [4.8] a

4.5. Existence of multiple solutions. Let (A, uy) be the sequence of eigenvalues
and eigenvectors for the problem
Au=—Au in
u=20 on 09,
and set
Vi = span {ul, S u € Hé(Q,]RN)} )
We deduce that for all s € RV
G (x, R

B
) > bo(a)]s|",

>R G >
|5|_ = (73’8)— R

where
bo(x) = R™9inf{G(z,s): |s| =R} >0.
Then it follows that for each k € N there exists Ry > 0 such that for all u € V},
12> Rp = f(u) <0.
Definition 4.10. For each k£ € N set

D=V N B(O,Rk),

[ u

'y = {7 € C(Dy, Hy) : 7is odd and Nono,my = Id} ,

b, = inf .
k= inf max f(y(u))

Lemma 4.11. For each k € N, ¢ €]0, Ri[ and v € Ty,
v(Dg) NOB(0,0) N ViE, # 0.

For the proof of the above lemma, wee, [118 Lemma 1.44].
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Lemma 4.12. There exist 3 > 0 and kg € N such that

(n+2)—(n—2)o

Vk > ko: b > Pk n—D
Proof. Let v € Ty, and g €]0, Ri[. By previous Lemma there exists
w € ¥(D) NOB(0,0) NVi-

and therefore

max f(y(u)) 2 f(w) 2 ueaB((i)flgf)ka{l fw). (4.16)

Given u € 9B(0,0) N V-, by 1) we find a1, s, a3 > with

~ 1
fw) > 50* = eaflull7iy = azllgllafluls - as.
Now, By Gagliardo-Nirenberg inequality, there is ay > 0 such that

lullor < cvallullf o lully ™,

n(oc—1)
2(o+1)

where 9 = . As is well known, it is

1
Hu”? < \/EHU”LQ?

so that we obtain

_ 1 _(-9)(o4D) a1
flu) > 592 — Qi 2 07T —anllpllaA, o — as.

Choosing now

_(-9) (o+1)
0=ch, T -0
yields
_ 1, .
flu) > 7%~ az|lell2A, 2 ok — as.

Now, as is shown in [52], there exists a5z > 0 such that for large k, Ay > ag,k%.
Therefore. we find § > 0 with

~ n42)—(n—2)o

(
Flu) > g5
and by (4.16) the Lemma is proved. O

Definition 4.13. For each k£ € N set
U, = {f =tupy1 +w: te [O,Rk+1}, w e B(07Rk+1) N Vi, ||§||172 < Rk+1},
Ay = {)\ € C(Up, HY) : Ny, € Tpay and

A|aB(Oka+l)U((B(07Rk+l)\B(O’Rk))mvk) = Id}
cx = inf max f(A(u)).
We now come to the our main existence tool. Of course, differently from the
proof of [II8, Lemma 1.57], in this non-smooth framework, we shall apply [36]
Theorem 1.1.13] instead of the classical Deformation Lemma [I18, Lemma 1.60].
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Lemma 4.14. Assume that ¢ > by > M, where M is as in Theorem [£9] If
0 €]0, ¢k, — bi[ and

Aw(8) = {A €Ap: FMu)) <by+6 for ue Dk},

set

c(6) = (o ) max (A(u)).
Then ci(8) is a critical value for f.

Proof. Let € = £(c; — by — 8) > 0 and assume by contradiction that c;(8) is not

a critical value for f Therefore, taking into account Lemma, by [36, Theorem
1.1.13], there exists £ > 0 and a continuous map

n: Hg(2,RY) x [0,1] — Hg(2,RY)
such that for each u € H}(Q,RY) and ¢ € [0, 1],

Fu) Aen(8) =&, cx(0) +2[ = nlu,t) = u, (4.17)
n(ferOre 1) € fere, (4.18)

Choose A € Ag(d) so that
max FMu)) < cn(6) + ¢ (4.19)

and consider n(A(-),1) : Uy — HE(Q,RY).

Observe that if u € 9B(0, Ry 1) or u € (B(0, Rp11)\B(0, Rg)) V4, by definition
J(M(w)) = f(u). Hence, by (4.17)), it is n(A(u), 1) = u. We conclude that n(A(-),1) €
Aj,. Moreover, by our choice of € > 0 and § > 0 we obtain

Vu e Dy f(Mw) <bg+6<cp—z<cp(d)—E.

Therefore (4.17)) implies that n(A(+),1) € Ax(5). On the other hand, again by (4.18)
and (4.19)

max f(1(A(u), 1)) < cx(8) —e, (4.20)
u k
which is not possible, by definition of c(9). O

It only remains to prove that we cannot have ¢ = by for k sufficiently large.

/I:emma 4.15. Assume that ¢, = by for all k > ki. Then, there exist v > 0 and
k > ki with _

by < vk
Proof. Choose k > k1, >0 and a A € Ag such that

< .
max (Mu)) < by +¢

Define now A : Dy41 — Hg such that

<o AMu) ifueUy
Alw) = {—)\(—u) if u e —Uy.

Since X‘B(O.Rwlm% is continuous and odd, it follows Y= T't41. Then

brt1 < max f(A(u)).

uED 41
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By Lemma [£.3] we have
max f(Mw) < be+e+ B (|be+211+ 1),
ue—Uy

and since Dgy1 = U U (=Uy), we get
Ve>0: bpp gbk+g+ﬁ(|bk+g\1/q+l),
that yields
Vk > k1 bper < b+ 3 (|bk|1/q n 1) .
The assertion now follows recursively as in [120, Proposition 10.46]. |

We finally come to the proof of the main result, which extends the theorems of
[15], 66, 118, 137] to the quasi-linear case, both scalar and vectorial.
Proof of Theorem[4.1. Observe that the inequality
gn+(g—1D(n+2)

l<o< ,
g+ (q-Dn-2)

implies
¢ (n+2)—o(n-2)
g—1 n(c —1)
Therefore, combining Lemma and Lemma we deduce ¢ > by, so that we
may apply Lemma [4.14] and obtain that (c;(8)) is a sequence of critical values for
f. By Theorem @ we finally conclude that f has a diverging sequence of critical
values. g

4.6. Semi-linear systems with nonhomogeneous data. Since the early seven-
ties, many authors have widely investigated existence and multiplicity of solutions
for semi-linear elliptic problems with Dirichlet boundary conditions, especially by
means of variational methods (see [I36] and references therein). In particular, if ¢
is a real L? function on a bounded domain @ C R?, p > 2 and p < 2* if n > 3
(here, 2* = -22) the following model problem (% 1)

~Au=[uff2u+¢ inQ
u=0 on 0f,

has been extensively studied, even when the nonlinear term is more general.

If ¢ = 0, the problem is symmetric, so multiplicity results have been achieved
via the equivariant Lusternik-Schnirelman theory and the notion of genus for Zs-
symmetric sets (see [120] and references therein).

On the contrary, if ¢ #Z 0, the problem loses its Zo-symmetry and a natural
question is whether the infinite number of solutions persists under perturbation of
the odd equation. In this case, a detailed analysis was carried on by Rabinowitz in
[118], Struwe in [I37], Bahri and Berestycki in [I5], Dong and Li in [66] and Tanaka
in [I39]: the existence of infinitely many solutions was obtained via techniques of
classical critical point theory provided that a suitable restriction on the growth of
the exponent p is assumed.

Furthermore, Bahri and Lions have improved some of such results via a technique
based on Morse theory (see [I7), [I8]); while, more recently, Paleari and Squassina
have extended some of the above mentioned achievements to the quasi-linear case
by means of techniques of non-smooth critical point theory (see [110]).

(4.21)
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Other perturbation results were obtained by Bahri and Berestycki in [I5] and by
Ambrosetti in [2] when p > 2 is any but subcritical: in particular, they proved that
for each v € N there exists ¢ > 0 such that (£ ,,1) has at least v distinct solutions
provided that ||¢[l2 < e.

The success in looking for solutions of a non-symmetric problem as (% 1)
made quite interesting to study the problem (£ 1)

—Au = |ulP"2u + in Q
Fl ’ (4.22)
u=yx onJf)

where, in general, the boundary condition y is different from zero. Some multiplicity
results for (4.22)) have been proved in [29] provided that

1
2<p<2%7 Y € COQR) N H2 (00, R), ¢ € L*(QLR).

The upper bound to p seems to be a natural extension of the assumption 2 < p < 4
considered by Ekeland, Ghoussoub and Tehrani in [67] in order to solve such a
problem when n = 1 (in this case, the range p < 2 was covered by Clarke and
Ekeland in a previous paper [47]).

We stress that an improvement of the results in [29] 67] has been reached with a
different technique by Bolle in [24] and Bolle, Ghoussoub and Tehrani in [25]. From
one hand, they prove that if QO C R” is a C? bounded domain and

2 _
2<p<n7jb1, X € C2(0Q,R), ¢ € C(Q,R),

then (£ ,.1) has infinitely many classical solutions. On the other hand, they
show that in the case n = 1 it suffices to assume p > 2, namely the result becomes
optimal.

It remains open, even for x = 0, the problem of whether (2, , 1) has an infinite
number of solutions for p all the way up to 2*. For x = 0, the most satisfactory
result remains the one contained in the celebrated paper [I§] of Bahri and Lions
where they prove that this fact is true for a subset of ¢ dense in L?(2,R).

Let us fix N > 1. The purpose of this section is to show the multiplicity of
solutions for the following semi-linear elliptic system (Zy o n)

n N
— 5" 3. Dy(alf (@) Diun) = b(@) P 2w + pr(z) in Q
hj=1h=1 (4.23)
u=7yx on Jf)

k=1,...,N

taken any x € H'Y2(0Q,RN). Clearly, reduces to the problem if
N =1, afjk = 5lh7k and b(x) = 1.

To the best of our knowledge no other result can be found in the literature about
multiplicity for systems of semi-linear elliptic equations with non-homogeneous
boundary conditions; on the contrary, some multiplicity results are known in the
case of Dirichlet boundary conditions (see [46] for the semi-linear case and [110} [133]
for some extensions to the quasi-linear case).
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It is well known that the functional f : .#, — R associated with (4.23) is given
by

/ZZ DuhDukdxf%/

b(x)|ulP dx — / v udr
1,7=1h,k=1 Q Q
where 4, = {u € H/(Q,RY) :u=x ae. ondN}.

In the next,  will denote a Lipschitz bounded domain of R™ with n > 3 while

we shall always assume that the coefficients a k and b belong to C(€,R) with

aZ’“ ji " and b > 0. Moreover, there exists v > 0 such that

Z Z (@)&&in"n" = viglnl® (4.24)

1,j=1 h,k=1

for all z € Q and (£,7) € R® x RV (Legendre-Hadamard condition).
Here, we state our main results.

Theorem 4.16. Let p €]2,22EL[. Then for each ¢ in L*(Q,RY) and x in the space
HY2(00,RN) the system ([@.23) admits a sequence (u™),, of solutions in ., such
that f(u™) — 4o0.

To prove Theorem we use some perturbation arguments developed in [15]
118, [137]; so the condition p < 2 "T'H is quite natural.

An improvement of such a “control” can be obtained by means of the Bolle’s
techniques, but more assumptions need. In fact, all the weak solutions must be
regular and the system has to be diagonal, i.e. a?jk = 6hk.

More precisely, we can prove the following theorem.

Theorem 4.17. Let p 6]2,n e[, 09 s of class C’2 X in C?(0Q,RYN), ¢ in

CO(Q,RN) for some o €]0,1] and al'f = 6}F. Then ) has a sequence (™),
of classical solutions such that f(u™) — —|—oo

Clearly, Theorems [4.16] and [.17] extend the results of [29] and [25] to semilinear
elliptic systems. We underline that (4.24) is weaker than the strong ellipticity
condition.

Let us point out that, in general, whereas De Giorgi’s famous example of an
unbounded weak solution of a linear elliptic system shows (cf. [57]), we can not
hope to find everywhere regular solutions for coefficients a?j’“ € L>®(2,R). Anyway,

if af € C(Q,R) and (4.24) holds we have that if u solves (2, n) then

u e 0O (Q,RY)

for each a €]0, 1[ (see [75]); but if we look for classical solutions, namely u of class
C? on Q, the coefficients ahk have to be sufficiently smooth while ¢ € C%*(Q,RY)
for some « €]0,1[ and x € CZ(GQ,RN ) (see [90] and references therein).

4.7. Reduction to homogeneous boundary conditions. As a first step, let us
reduce (|4.23) to a Dirichlet type problem. To this aim, let us denote by ¢ € %,
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the only solution of the linear system

—ZZD )D;¢p) =0 inQ

bj=1h=1 (4.25)
¢=x on df

k=1,...,N
Since p < 2%, it results ¢ € LP(Q,RY).
From now on, we shall assume that b = 1. Taking into account that there exist
two positive constants m; and M, such that

my < b(x) < M, for all z € Q,

the general case can be covered by slight modifies of some lemmas proved in the
next sections.
It is easy to show that the following fact holds.

Proposition 4.18. u € .#, is a solution of (P, n) if and only if = € Hi (Q,RY)
solves

—ZZD 2)Dizn) = |z + ¢[P 2 (21 + b)) + or(x) in Q
i,7=1h=1

z=0 on o

k=1,...,N,

where u(x) = z(x) + ¢(x) for a.e. z € Q.

Therefore, in order to find solutions of our problem it is enough looking for
critical points of the C'-functional f, : H} (2, RY) — R given by

/ Z Z z)D;upD; ukdx—f/|u+¢|pdx—/cp udz

4,7=1h,k=1

(we refer the reader to [120, [I36] for some recalls of classical critical point theory).

Lemma 4.19. There exists A > 0 such that if u € H}(Q,RY) is a critical point of
fx, then

/ lu+ ¢P dz < pA (fi(u) + 1)1/2 )
Q
Proof. By Young’s inequality, for each ¢ > 0 there exist a., 5 > 0 such that
Jut @] < elut S +acl@l”, Ju+ gllol < elut S+ Bl (4.26)

with % + 1% = 1. Therefore, if u is a critical point of f,, we get

fx(u)
= fy(u) — %f;((u)[u]
1 1 p 1 b= ’ - '

-2 1 _ 1
222 [uropdo = [ Jus ol oldo— 3 [ (ut dllel +Il6)) da
2p Jo 2 Ja 2 Ja
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p—2 P g P v
> (22 =) [ oo = 5 (acloll + Bl + lelaliole)
Choosing ¢ such that p — 2 — 2pe > 0, i.e., € €]0, % — %[, we get

pM. fy(u) > /Q |u + ¢|P dz — pM.:(p, ¢, @),

where M, = ﬁ and
1 !
1e(p, 8, 2) = 5 (@cl9llz + Bellelly + lellal91l2) -
At this point, the assertion follows by A > v/2M. max{1,7.(p, ¢, ¢)}. O

Now, let n € C*°(R,R) be a cut function such that n(s) =1 for s <1, n(s) =0
for s > 2 while =2 < 7/(s) < 0 when 1 < s < 2. For each u € H&(Q,RN) let us
define

Clw) = 2pA (f2(w) + )%, () = n(¢(u)™! / lu+ P der), (4.27)

where A is as in Lemma Finally, we introduce the modified functional fx :
H}Q,RY) — R in order to apply the techniques used in [29]:

33 S dtepmnie =t [ v [

1,j=1 h,k=1

with
i

p p
Let us provide an estimate for the loss of symmetry of f~x

O(z,u) = +o-u
Lemma 4.20. There exists § > 0 such that
Fw) = Fl=w]| < 8 (IF@)I™F +1)  for all u € supp(v)

(here, supp(v) is the support of ).

Proof. First of all, let us show that there exist c¢1,co > 0 such that there results

—1
| [ (6P =) de] < el @] 7 +ea (125)

p=1
| [ (= oP =) de] < el ] 7 +ea (129
\/ p-udz| < ei|fy ()7 + e (4.30)

Q
for all u € supp(¢)). In fact, taken any u € Hg (2, R) it is easy to see that

[lu+ @ — [ulP| < p2P2|u + ¢~ |g] + p2P 2|7, (4.31)
lu— 6P — [ulP| < p2P~2|u+ ¢[P~H|g] + p22P 3 |g|P. (4.32)

Hence, by (4.31)) we get
p—1

| [ (o =y de] < 2221l ([ Jukolrda) 7 22l
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while (4.32)) implies

p—1

| [ (=0 =1l da] < o272l ([ o dz) T 022 ol

Moreover, by Holder and Young’s inequalities it results

p—1 p—1
| [oruael < ([ urorar) ™ +m-2(E) 7 4 oo

If, furthermore, we assume u € supp(t)), it follows
[ o de < apaq )+ 1)

which implies (4.28)), (4.29) and (4.30). Then, again by Young’s inequality, simple
29, @

calculations and ) give

|Fe(w)] < arlfx(w)] + az, (4.33)
for suitable aj,as > 0. The assertion follows by combining inequalities (4.28]),
(@29), (30 and (1.33). O

Now, we want to link the critical points of fx to those ones of f,. To this aim we

need more information about f;( Taken u € H}(Q,RY), by direct computations
we get

_ n N
f;l((u)[u] =(1+Tx (u))/Q Z Z a?jk(l')DiuhDjuk dx

i,j=1h,k=1

—(1—=v(u ulPdx — u 1 (u -udx (4.34)
1 w<>>/ﬂ||d (¢<>+T<>>/Qso a
~ () + Ta(w)) /Q fu+ P2 (u + ) - ude
where Ty, Ty : H3 (Q,RY) — R are defined by setting
T (u) = 4p? A% (6(0))3 (u)C (1) i (1) / O, u) dr,

Ty (u) = prf (5(u))¢(u) / O, u) dz + T (u)

with §(u) = ((u)™! [ [u+ @ da.
Remark 4.21. To point out some properties of the maps 77 and T, defined above,

let us remark that by (4.28) and (4.30) there exist by,by > 0 such that for all
u € supp(®) it is

|T;(w)] < b1|fX(u)|_% + bo| fy(u)| ™t for both i = 1,2.

Therefore, arguing as in [I18] (see also [29, Lemma 2.9]), there exist ag, My > 0
such that if M > Mj then

fx(u) > M, wesupp(v) = fy(u) > aghl;

whence, it results |T;(u)| — 0 as M — +oo for ¢ = 1,2 (trivially, it is T1(u) =
Ty(u) = 0 if u ¢ supp(¥)).
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Theorem 4.22. There exists My > 0 such that if u is a critical point of J?x and
fx(w) > My then u is a critical point of f,, and f,(u) = fy (u).

Proof. Let u € H}(Q,RY) be a critical point of f; By the definition of ¢ it suffices
to show that, if f,(u) > M for a large enough M, then 6(u) < 1, i.e.,

Clu)™! /Q lu+¢Pdax < 1.

By (4.34) we have

O L ) p——

S0+ ) f )]

1 1 - (u) /
=— [ Ju+ pdx—/ ~udm—|—7 ul? dx
p/ﬂ' i 0’ 21+ T (u 4

P(u) + Th(u) P(u) + To(u s
*m/ﬁ'“dm*W/\ WP ) ude

11 b Ti(u) = Ty(u )
= (5 ) [ v oras - 550 [uras

+% (W—l) /(|u+¢|”— |ulP) da

1/1( +T2

- (+Ta l/|+¢W2w+¢)¢m

Then, by Remark it is possible to choose M; > 0 so large that

) ‘w )+ Tiw)|
1+T1(’LL 1+T1 ) - ’
’w )+ Tou) ‘ ’1/} +T2()<2.
1+ T (u) 1+ T (u) ’

so we deduce that for each € > 0 there exist he, J:(p, ¢, ¢) > 0 such that

Rz (P2 e B0 2 Ti0)

2p 1—|—T1(U) —he)/9|u+¢|pdx—§5(p,¢,<p)

where h. — 0 as ¢ — 0. At this point, choosing a priori € and M; in such a way
that

T2 (u) — T1 (u)

272 the<P2
4p

)

we obtain
p—2 » ~
fx(u) > 1 ‘u+¢| dﬂf—%(p7¢,</7)7
P Ja

which completes the proof if, as in Lemma the constant A taken in the defi-
nition (4.27)) is large enough. O
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4.8. The Palais-Smale condition. Let us point out that, in the check of the
Palais-Smale condition for semi-linear elliptic systems under the assumption (4.24]),
an important role is played by the so called Garding’s inequality.

Lemma 4.23. Let (u™),, be a bounded sequence in H}(Q,RN) and let (w™),, be
a strongly convergent sequence in H~1(Q,RY) such that

n N
/ Z Z a?jk(x)Diuanjvk dr = (w™,v) for all v € H}(Q,RYN).
Q5=1h k=1

Then (u™),, has a subsequence (u™*)y strongly convergent in H}(Q,RN).

Proof. First of all, in our setting the following Garding type inequality holds: taken
v as in (4.24) for each e €]0, [ there exists ¢. > 0 such that

n N
/ S Y @M (@) DiunDyug dw > (v — &) | Dul? — c. Jull?
Q

ij=1h,k=1
for all u € HE(Q,RY) (see [105, Theorem 6.5.1]). Therefore, fixed € > 0, we have
n N

(W — W™~y = /Q S°Y Al (@) Dyl — u) Dy — ) da
i,j=1h,k=1

> (v —e)|[Du = Du™ |3 — cel|u’ — u™|3

for all m,l € N. Since u™ — u in L2(Q,RY), up to subsequences, we can conclude

that Du™ — Du in L%(Q,RY). O
Now, let d > 0 be such that
n N U
/ (32 3 al o) DaunDjus + diul?) o > 2 || Du} (4.35)
Qi i=1hk=1

for all u € HE(Q,RY).

Lemma 4.24. There exists My > 0 such that if (u™ ), is a (PS).-sequence offx
with ¢ > My, then (u™),, is bounded in HZ(Q,RY).

Proof. Let Ms > 0 be fixed and consider (u™),, a (PS).-sequence of fvx, with
¢ > Moy, such that

M, < fy(w™) < K,
for a certain K > M.
First of all, let us remark that if there exists a subsequence (u™*); such that

u™ ¢ supp(v) for all k € N then it is a Palais-Smale sequence for the symmetric
functional

n N
1 1
folu) = 3 / E E alhjk(x)DiuhDjuk dx — f/ |ulP dx
Qi i=1hk=1 pJa

in H}(Q,RY). Whence, it is easier to prove that such a subsequence is bounded.
So, we can assume u"™ € supp() for all m € N. For m € N large enough and any

0> 0, taken d as in (4.35) by (4.34) it results
K+ o Du™|2



76 MARCO SQUASSINA EJDE-2006/MON. 07

> Fywm) = o ()

1 n N

=3 (1-20(1+Ti(u / l;ﬂbéla x)D;up' Djug + d| m|) x
- g2 B e+ (o - v - 1) [ e

o (™) + To(u™)) /Q ™+ QPR (™ ) - da
o (™) + Ty(™)) / o™ dz — p(u™) / O, u™) dz

Since it is p > 2, we can fix, a priori, a constant h €]1,5[ such that, taken

w€]0,1 — 2p[ 0 E]f LA and o €0, 0(1 — $)[, by Remarklf M, is large
enough for all m € N we have

T3 (u™)] < min {1, 12_7“ “1), D) <1 - % - %
and then
p<1—201+T1(u™)) <1, (4.36)
P2 o1+ Ta(u™) - (4:37)
So, by and we obtain
K + ol Du™||
> 2 0w - e+ (o - ) - 3) [ s

(o (1 + |Ti(™) + 1) / llu™ dz — o (1 + [To(™)]) / ™ + GP || de

+ (2 + 1) = M) [ g op ) ao.

Hence, fixed any ¢ > 0, by (4.26), (4.37) and a suitable choice of the positive
constants a; and a§ there results

K+ o |Du™ > + 9]l
> 22 || Du™3 + (7 - zar) ™}
+ (2 0m + Ty - L) [ um s g - ) s - a5
Let us point out that, as u™ € supp(v), and imply

([t or - |ump>dx)m€N

is bounded. Whence, p > 2 and a suitable choice of ¢ small enough allow to
complete the proof. O
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Lemma 4.25. Let My be as in Lemma and ¢ > Ms. Then, taken any (PS).-
sequence (u™)n, for fy, the sequence

gz, u™) = [u™ P 2™ 4+ p(u™)O (2, u™) + 1//(1/")/ O(z,u™)dx
Q
admits a convergent subsequence in H—*(Q,RY).

The proof of the above lemma follows the steps in [I10, Lemma 3.3].

Theorem 4.26. The functional fx satisfies the Palais-Smale condition at each
level ¢ € R with ¢ > Ms, where M is as in Lemma[{.24).

Proof. Let (u™),, be a Palais-Smale sequence for fx at level ¢ > Ms. There-
fore, (u™),, is bounded in H} (€2, RY) and by Lemma [4.25) up to a subsequence,
(G(z,u™ i im is strongly convergent in H~!(Q, RY). Hence, the assertion follows by

Lemma4.23|applied to w™ = g(x, u™)+ f; (u™) where, by assumption, f} (u™) — 0
in H-1(Q, RV). O

4.9. Comparison of growths for min-max values. In this section we shall
build two min-max classes for fx and then we compare the growth of the associated
min-max values.

Let (AL, u!); be a sequence in R x H}(Q,RY) such that

—Aul =Xl inQ
u'=0 on 09,
k=1,...N,
with (u!); orthonormalized. Let us consider the finite dimensional subspaces
Vo = <u0>; Vigi =V e Ru!tt for any [ € N.
Fixed I € N it is easy to check that some constants (1, 82, 83, 84 > 0 exist such that
Fe(w) < Blull? o = Ballullf o = Bsllullr2 — Ba, for all u € V.
Then, there exists R; > 0 such that
weVy, flullhe>R = fi(w) < f(0) <0
Definition 4.27. For any [ > 1 we set D; =V, N B(0, R;),
I = {y € C(Dy, Hy (0, RY)) : 7 odd and v, ., = Id},

and

bi= Inf max f (v(w)).

To prove some estimates on the growth of the levels b;, a result due to Tanaka
(cf. [139]) implies the following lemma.

Lemma 4.28. There exist 3 > 0 and lg € N such that
by > B 175D for all 1> lg.
Proof. By and simple calculations ay,as > 0 exist such that
Folu) > %||Du||§ —arflulls —az for all u € AB(0, R;) N Vit,.

Then, it is enough to follow the proof of [I39, Theorem 1]. a
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Now, let us introduce a second class of min-max values to be compared with b;.
Definition 4.29. Taken [ € N, define
U={=tu" +w:0<t <R, weBO,R41)NVi, ||€]li2 < Ry}
and
A ={XeC(U, Hy(Q,RY)) : N, € I and
Mon(o,ri)u((BO.R)\BO,R)WV) = Td}-

Assume

cr = jnf max fy(A(u)).

The following result is the concrete version of Theorem [2.11
Lemma 4.30. Assume ¢; > by > max{Mi, Ms}. Taken 6 €]0,¢; — by[ , let us set
N(8) = {N € A s fy(\(w)) < b+ 8 for allu € Dy},

a(d) = N Sx(A(u)).

Then, ¢;(9) is a critical value for fX

The proof of the above lemma can be obtained by arguing as in [I18, Lemma
1.57]. Now, we prove that the situation ¢; = b; can not occur for all large .

Lemma 4.31. Assume that ¢; = by for all | > ;. Then there exists v > 0 with
bl < Yy P,

Proof. Working as in [I18, Lemma 1.64] it is possible to prove that
bior < b+ B 7 +1) forall > 15.

The assertion follows by [I5, Lemma 5.3]. O
Proof of Theorem [{.16 Observe that the inequality 2 < p < 2L implies
2p
< .
n(p —2)

Therefore, by Lemmas and it follows that there exists a diverging sequence
(In)n C N such that ¢;, > b, for all n € N, then Lemma implies that (c;,, (6))n
is a sequence of critical values for fx Whence, by Theorem the functional f,
has a diverging sequence of critical values. O

Remark 4.32. When p goes all the way up to 2*, in a similar fashion, one can
prove that for each v € N there exists ¢ > 0 such that (Z.y e, n) has at least v
distinct solutions in .#;,. This is possible since there exists § > 0 such that

Fetw) = F(-w| < e (IF @15 +1)
for each € > 0 and u € supp(v), where f; : HE(Q,RY) — R is defined by

n N
~ 1
f;(u) = 5/9 Z Z a?jk(m)DiuhDjuk dx+

i,j=1hk=1

2 [P de = vt [ Ontn0)do
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with
_JutedlP Juf?

Oclw,u) = = = En tep wau)=n(QUY4/£ht+a¢de}

for more details in the scalar case, see [2] [15].

4.10. Bolle’s method for non-symmetric problems. In this section we briefly
recall from [24] the theory devised by Bolle for dealing with problems with broken
symmetry.

The idea is to consider a continuous path of functionals starting from the sym-
metric functional fy and to prove a preservation result for min-max critical levels
in order to get critical points also for the end-point functional fi.

Let 2 be a Hilbert space equipped with the norm || - || and f:[0,1] x 2" = R
a C%-functional. Set fy = f(6,-) if 6 € [0, 1].

Assume that 2" = 2Z_ & 27 and let (¢;);>1 be an orthonormal base of 27 such
that we can define an increasing sequence of subspaces as follows:

Lo =X, Ziyr:=2i ®Reppyif L €N,
Provided that dim(.2_) < 400, let us set
H ={CeC(Z,Z):(isodd and ((u) = u if ||ul]| > R}
for a fixed R > 0 and

o= Cier{)fg usg% fo(¢(uw)).

Assume that

o f satisfies a kind of Palais-Smale condition in [0,1] x 2" any ((0™,u™))m
such that

(f(0™,u™))y, is bounded and  fpm (u™) — 0 as m — +oo (4.38)
converges up to subsequences;
e for any b > 0 there exists C} > 0 such that

2f(t‘), uw)| < Co([lfo(w)ll + D (flull + 1)

00
for all (0,u) € [0,1] x Z7;

e there exist two continuous maps 71,7z : [0, 1] Xx R — R which are Lipschitz
continuous with respect to the second variable and such that 7y < 7.
Suppose

[fo(u)] <b =

M0, fo(w) < = F(0,u) < ma(6, fo(w) (439)

at each critical point u of fy;
e fy is even and for each finite dimensional subspace # of Z" it results

lim sup f(0,u) = —o0.
Hu||—>+oo,uEW96[071] ( )

Taken for ¢ = 1,2, let us denote by 1, : [0,1] x R — R the solutions of

0

5 0i(0.5) = (6, 4:(0, 9))

¥;(0,8) = s.
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Note that v;(0,-) are continuous, non-decreasing on R and ¢ < 1)5. Set

71(s) = sup ni(0,s), 7a(s)= sup n2(0,s).
6€[0,1] 0€[0,1]

In this framework, the following abstract result can be proved.

Theorem 4.33. There exists C' € R such that if | € N then
(a) either fi has a critical point ¢ with ¥2(1,¢;) < ¥1(1,¢41) < ¢,
(b) or we have ¢cj41 — ¢ < C (M1 (c141) + (1) + 1).

For the proof of the above theorem, see [24, Theorem 3] and [25, Theorem 2.2].

4.11. Application to semi-linear elliptic systems. In this section we want to
prove Theorem in a simpler fashion by means of the arguments introduced in
Section 6.

For 6§ € [0, 1], let us consider the functional fy : H}(Q,RY) — R defined as

n N
1 1
fo(u) = 5/9 E E a?jk(x)DiuhDjuk dx — > /Q |u+ 0P do — 0/Qg0 ~udr.

i,j=1h,k=1
It can be proved that all the previous assumptions are satisfied.

Lemma 4.34. Let ((0™,u™)),, C [0,1] x H}(Q,RYN) be such that condition (4.38))
holds. Then ((0™,u™)),;, converges up to subsequences.

Proof. Let ((6™,u™)),;, be such that (4.38) holds. For a suitable K > 0 and any
o> 0itis

K+ o [|IDu™l2 = for (u™) = ofgm (u™)[u™]

n N
! 1
= (§ - 9)/9 Z Z a?jk(x)DiuhijuL”dx + (0 — Z;) /Q W™ + 0™ |Pdx

i,j=1h,k=1
- 9m9/ [u™ 4+ 0™ [P (U™ + 0" ¢) - ¢ da
Q

for all m large enough. Then, fixed any ¢ > 0 and taken d as in (4.35)), (4.26)) and
simple computations imply

o 1Du™ 2+ (5 = w3 = (5 — o) 5 1Du™ 3 +

1

1 m
F(Q(l —€) - ];) [w™I5 — ac

for a certain a. > 0. Hence, if we fix o E]%, 3] and € €]0,1 — é[ , by this last
inequality it follows that (u™),, has to be bounded in Hg (9, RY).

So, if we assume w™ = fh. (u™) + [u™ + 0T P[P (U™ + 0™ ¢) + 0™ it is easy to
prove that (w™),, strongly converges in H~!(Q, RY), up to subsequences. Whence,
Lemma implies that (u™),, has a converging subsequence in H(Q,RY). O

Lemma 4.35. For each b > 0 there exists C, > 0 such that
0
[fow)| < b = \%f(&un < Golllfo(w)ll + 1) (Jlullz +1)

for all (6,u) € [0,1] x HE(Q,RY).
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Proof. Fix b > 0. The condition |fs(u)| < b is equivalent to

‘/ Z Z x)DjupDjuy, — — |u+9¢\p —0p-u dx‘ <b (4.40)

4,7=1h,k=1

which implies that

9/(,0 udr > = /ZZ x)Djup Djuy dz

1,j=1 h,k=1 (441)
f/|u+9¢|pdxf(p71)0/<p~udmfpb.
Q Q
So, taken d as in (4.35]), we have

—fi(u /Z Z z)Dyup Djuy, dx

4,7=1h,k=1

—|—/ \u+9¢|p_2(u+9¢)~udm+9/gp-udx
Q Q

> (g - 1) /Q ( Z Z afjk(x)DiuhDjuk +d |uf?) dz

i,j=1 h,k=1

~(E-1)a Hu||§—/ fu+ 6672 (u + 06) - 66 dx
Q
—(p—l)&/gp~udw —pb
Q
v p 2
>(p—2) = 2 _ (2
> (p—2) ZIDully — (5 -1)dljul}

—/ \u+9q’>|p—2(u+9¢)~9¢da:—(p—1)9/g@-udx— p b.
Q Q

By Holder inequality there exist ¢y, ca,cs > 0 such that

| [ ut 0P+ 00) - 00.de] < crllu+ 005, (1.42)
Q
‘/ go-udx‘ < ecollu+ 66, + cs3; (4.43)
Q
while (4.40) implies
lu+ 065 < cal Dull3 + c5(b) (4.44)

for suitable ¢4, c5(b) > 0. Then, since Young’s inequality yields
cillu+ 0927 < ellu+ 092 + 21 (e), (4.45)
Collu+ 09|y < ellu+09[|7 + c2(e), '

for all € > 0 and certain ¢ (g),¢2(g) > 0, it can be proved that cg, c7(g,b) > 0 exist
such that

v
~fy@ll > ((p—2)7 —=co) |Dull§ = er(e.b).
So, if ¢ is small enough, some g, ¢7(b) > 0 can be find such that

% ||Dull3 — &7 (b) < —fj(u)[ul. (4.46)
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On the other hand, since

0

500 = = [ 002+ 00) oo~ [ oouda

by (4.42) and (4.43) it follows
0
|%f(9,u)| < 08Hu—|—9¢||£_1 + ¢y (4.47)
and then by (4.45)
0
| 1(60,0)] < ellu+ 091 + exofe)

for any ¢ > 0 and cs, cg,c19(e) > 0 suitable constants. So, for all ¢ > 0 and a

certain c11(g,b) > 0, (4.44]) implies

0
|%f(971t)| <ecy ||Dull} + c11(e,b). (4.48)
Hence, the proof follows by (4.46)), (4.48) and a suitable choice of ¢. O

Lemma 4.36. If u € H}(Q,RY) is a critical point of fg, there exists o > 0 such
that

[ oor i <o (3 +1)'".
Q

For the proof of the above lemma it suffices to argue as in Lemma |4.19
Lemma 4.37. At each critical point u of fy the inequality holds if n1,m2 are
defined in (0,s) € [0,1] x R as

p—1
—m(0,s) =m2(0,s) =C (s*+1) (4.49)
for a suitable constant C' > 0.

For the proof of this lemma, it is sufficient to combine (4.47) and Lemma m

New proof of Theorem[{.16, Clearly, f is an even functional. Moreover, by Lem-
mas [£.34] [£.35] and [£.37] all the hypotheses of the existence theorem are fulfilled.
Now, consider (V});, the sequence of subspaces of H(Q,RY) introduced in the
previous sections. Defined the set of maps % with 2 = H}(Q,R"), assume

a= inf sup Jo(C(w))-

Simple computations allow to prove that, taken any finite dimensional subspace #
of H}, some constants 31, 32,33 > 0 exist such that

fo(u) < Bullullis = Bollullf o — 85 for allue 7.

Then

lim sup fo(u) = —oc.
llull1,2—=+o00, u€W ge(o,1]

Hence, Theorem applies and, by the choice made in (4.49)), the condition (b)
implies that there exists C' > 0 such that

—1

e = al <€ ((@)F + ()7 +1) (4.50)
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which implies ¢; < 7 [P for some 7 > 0 in view of [I5, Lemma 5.3]. Taking into
account Lemma we conclude that (4.50) can not hold provided that

_ 2%
n(p —2)

namely p €]2,2 “t[. Whence, the assertion follows by (a) of Theorem O

n

> D,

4.12. The diagonal case. Now, we want to prove Theorem [4.17] To this aim let
us point out that we deal with the problem
—Auy, = |uP"%uy, + pp(x) in Q
u=yx on 0N (4.51)
k=1,...,N

and want to prove that (4.51) has an infinite number of solutions if p € }2, % [
In this case, the functional fy defined in the previous section becomes

fg(u):%/|Vu\2d:z:fl/|u+0¢|pdx—9/<p~udm
Q b Ja Q

where ¢ solves the system 1) with a?jk = 5%’“.

By the regularity assumptions we made on 912, x and ¢ the following lemma can
be proved.

Lemma 4.38. There exists ¢ > 0 such that if u is a critical point of fy, then

1 5 1 0w,2 2
)/m (§|Vw| -5 )da‘gc/ﬂ(\Vw\ 4wl + 1) da

where w = u + 0¢.

Proof. If uw € HJ(Q,RY) is such that fj(u) = 0, then some regularity theorems
imply that u is a classical solution of the problem
—Auy, = |u+ 0P (up, + 09) + Opp,  in Q

u=0 on 0N

k=1,...,N,
then w = u + ¢ € C?(,RY) solves the elliptic system

—Awy = |w[P"?wy, + Opp  in Q
wy, = 0¢  on 0N (4.52)

k=1,...,N.
Taken 6 > 0, let us consider a cut function 77 € C*°(R,R) such that 7(s) = 1 for
s < 0and 7(s) = 0 for s > §. Moreover, taken any = € RV, let d(z,09) be the

distance of z from the boundary of €. Let us point out that, since €2 is smooth
enough, § can be chosen in such a way that d(-, 92) is of class C? on

Qn{z eR":d(z,090) < 6},

and 7i(x) = Vd(x, ) coincides on JQ with the inner normal. So, defined g : RY —
R as g(x) = 1j(d(x,09Q)), for each k = 1,..., N let us multiply the k-th equation in
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(4.52)) by g(z)Vwy - n(z). Hence, working as in [25, Lemma 4.2] and summing up
with respect to k, we get

al 1 ow
Z/ —Awy, g(x)Vwy, - ndx :/ (5|Vw]* = ‘
el Q o0 2 on

N

- o?
> [ bt o) Vun-ade =2 [ ol do 0 (Jul)
=19 YEl)

2
)do + 0 ([Vwl3) ,

N
%/ﬁemm @)V ide =0 [ o6 do+0(ull)

Whence, the proof follows by putting together these identities. ([

With the stronger assumptions we made in this section, the estimates in Lemma
[4.37 can be improved.

Lemma 4.39. At each critical point u of fo the inequality holds if m1,m2 are
defined in (0,s) € [0,1] xR as
1/4
—m(0,s) =n2(0,8) =C (82 + 1) /
for a suitable constant C' > 0.

Proof. Let u be a critical point of fy. Then,
0 0
lOw=[ Sodos [ oo (00-udn:
o0 On Q
5o, taking into account Lemma[4.38] it is enough to argue as in [25] Lemma 4.3]. O

00
Proof of Theorem[/.17 Arguing as in the proof of Theorem we have that the
proof of Theorem [£.17] follows by Theorem [£.33]since also in this case the condition
(b) can not occur. Let us point out that, by Lemma the incompatibility
2p

condition is np—2) > 2,1e pe ]27 anll [ -

5. PROBLEMS OF JUMPING TYPE

We refer the reader to [79, [80]. Some parts of these publications have been
slightly modified to give this collection a more uniform appearance.

5.1. Fully nonlinear elliptic equation. Let us consider the semi-linear elliptic
problem

- Z Dj(aij(x)D;u) = g(x,u) +w in Q

ij=1 (5.1)
u=0 on 0N,
where ) is a bounded domain in R", w € H=1(Q) and g : Q x R — R satisfies
im 959 _ o pm 98 g (5.2)
§——00 S s$—+400 S

Let us denote by (1) the eigenvalues of the linear operator on H} ()

U= — Z Dj(a”(x)Dlu)

4,j=1
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Since 1972, this jumping problem has been widely investigated in the case when
some eigenvalue p, belongs to the interval |3, o[ (see e.g. [98, 100 124] and refer-
ences therein), starting from the pioneering paper [4] of Ambrosetti and Prodi.

On the other hand, since 1994, several efforts have been devoted to study exis-
tence of weak solutions of the quasi-linear problem

n 1 n
— Z Dj(a;;(z,w)Du) + 3 Z Dsa;j(z,u)DiuDju = g(x,u) +w in Q
i,j=1 i,j=1

(5.3)
u=0 on 0,

via techniques of non-smooth critical point theory (see e.g. [8| [32] B6L 49, [137]).
In particular, a jumping problem for the previous equation has been treated
in [31]. More recently, existence for the Euler’s equations of multiple integrals of
calculus of variations
—div (Ve ZL(z,u,Vu)) + Do Z(z,u, Vu) = g(z,u) +w in

u=0 on 0N, (5-4)

have also been considered in [6] and in [I12, [132] via techniques developed in [36].
In this section we see how the results of [31] may be extended to the more general
elliptic problem . We shall approach the problem from a variational point of
view, that is looking for critical points for continuous functionals f : T/VO1 Q) —-R
of type

ﬂ@:Az@Mvwm—AG@wm—wm.

We point out that, in general, these functionals are not even locally Lipschitzian,
so that classical critical point theory fails. Then we shall refer to non-smooth
critical point theory, In our main result (Theorem [5.1)) we shall prove existence of
at least two solutions of the problem by means of a classical min-max theorem in
its non-smooth version.

5.2. The main result. We assume that (2 is a bounded domain of R, 1 < p < n,
weW b (Q) and £ : Q x R x R" — R is measurable in z for all (s,£) € R x R
and of class C! in (s,€) a.e. in Q. Moreover, the function .Z(z,s, ) is strictly
convex and for each t € R L(x,s,t&) = [t|P.L(z,s,§) for a.e. x € Q and for all
(s,€) € R x R™. Furthermore, we assume that:

e There exist ¥ > 0 and b; € R such that:
V|£‘p < .i”(x,s,ﬁ) < b1|£|p7 (55)

for a.e. z € Q and for all (s,&) € R x R™;
e there exist by, b3 € R such that:

|D(‘;$(I,S,§)| < b2|§|p7
for a.e. x € Q and for all (s,£) € R x R™ and
Vel (x,5,6)] < bslgP~, (5.6)

for a.e. x € Q and for all (s,£) € R x R™;
e there exist R > 0 and a bounded Lipschitzian function ¢ : R — [0, 4o00[
such that:

|s| > R= sDsZ(x,s,6) >0, (5.7)
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sDsZ(x,5,§) < s9'(s) Ve L (x,5,8) - &, (5-8)

for a.e. z € Q and s € R and for all £ € R". Without loss of generality, we
may take assume that J(s) — ¢ as s — +00;
e g(z,s) is a Carathéodory function and G(z, s) fo x,T)dr. We assume

that there exist a € L™/("®P=D+P)(Q) and b € L™/P(Q) such that:
l9(z,s)| < a(z) +b(x)|sP~", (5.9)
for a.e. x € Q and all s € R. Moreover, there exist «, 8 € R such that

9(@.8) _ oy 98 -3, (5.10)

- ’ s~>+oo| |P 23

§— —00 |5|p—25
for a.e. z € Q.

Let us now suppose that

s5—400
(both limits exist by (5.7)) and denote by ,Zoo(x,f) the common value, that we
shall assume to be of the form a(z)[£[P with a € L*°(£2). Moreover, assume that
sp — 400, & = &= VeL(x,81,&) — Vel (, ). (5.11)
Let

A1 = min {p/ Lo, Vu)dz : u e WyP(Q / |ul? dz = 1 (5.12)
Q

be the first eigenvalue of {u —— —div (V¢ Loo(z, Vu))}.

Observe that by [6], Lemma 1.4] the first eigenfunction ¢; belongs to L>°(2) and
by [142], Theorem 1.1] is strictly positive.

Under the previous assumptions, we consider problem in the case w =
td? ™ + wo, with wy € W1 (Q) and ¢ € R. The following is our main result.

Theorem 5.1. If 3 < A1 < « then there exist t € R and t € R such that the
problem
—div (VeZL (z,u, V) + Do (2, u, V) = glz,u) +tdh " +wo  in Q

(5.13)
u=0 on o)

has at least two weak solutions in WOLP(Q) fort >t and no solutions for t < t.

This result extends [3I], Corollary 2.3] dealing with the case p = 2 and
1 n
L(x,s,§) = 3 Z a;;(z,8)&& — Gz, s)

4,j=1

for a.e. x € Q and for all (s,£) € R x R"™.

In this particular case, existence of at least three solutions has been recently
proved in [34] assuming 8 < p; and a > po where py and po are the first and
second eigenvalue of the operator

U= — Z DJ(AZJD,L'LL)
i,7=1
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In our general setting we only have existence of the first eigenvalue A1 and it is not
clear how to define higher order eigenvalues Az, As,.... Therefore in our case the
comparison of o and 3 with such eigenvalues is still not possible.

5.3. The concrete Palais-Smale condition. The following result is one of the
main tool of the section.

Lemma 5.2. Let (uz) be a sequence in Wy *(Q) and (05) C )0, +00] with g, — 400

be such that u
vp = — —=v in Wy ().
Oh

Let v, — v in L™P(Q) with |y, (x)| < c(x) for some ¢ € LP(Q). Moreover, let
Wp — Wb in L"p//("+p/)(Q), O0p, — 0 in W_l’p/(Q)
be such that for each ¢ € C°(Q):
/ Ve (x,un, Vuy) - Vo dx +/ D% (x,up, Vup)p dz
@ @ (5.14)
= /Q%|uh|p_zuh<ﬂd$+ Qﬁ_l/ﬂuhwdaﬂr (On , ).

Then, the following facts hold:
(a) (vg) is strongly convergent to v in Wol’p(Q) ; /
(b) (yn|vn|P~2vy) is strongly convergent to y|v|P~2v in W=LP (Q);
(¢) there exist nt, n~ € L>(Q) such that:

(@) = exp{-9} ifv(z)>0
exp{MR} ifv(z)<0

exp{—9} < nT(z) <exp{MR} if v(z)=0,

{exp{ J} ifv(z) <0
~(x)
(

and

exp{ MR} ifv(z)>0
exp{—9} <n (z) <exp{MR} ifv(z)=0,
and such that for every ¢ € WO’ Q) with ¢ > 0:

/77+Vs-i”oo(w,Vv)~V<pdw2/vn*lvl”‘vader/un*wdm,
Q Q Q

/n‘Vsa?oo(m,Vv)-Vsode/W_Ivl”_2wdfc+/un‘wdw.
Q Q Q

Proof. Arguing as in [31, Lemma 3.1], (b) immediately follows. Let us now prove
(a). Up to a subsequence, vy (z) — v(x) for a.e. z € Q. Consider now the function
¢ : R — R defined by
Ms if0<s<R
MR ifs>R
= = 5.15
=N s i - R<s<0 (5.15)
MR ifs<-R,
where M € R is such that for a.e. x € Q, each s € R and £ € R"

|Dsf($,8,£)‘ < MV§j(ZE7S,£) ! 5 (516)
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By [132], Proposition 3.1], we may choose in ([5.14)) the functions ¢ = vy, exp{¢(un)}
yielding

| Ve, Tun) - Vo exp{un)} da

+ /Q [Ds L (z,un, Vup) + ¢ (un) Ve L (2, un, Vug) - Vug) vp exp{C(up)} dz

:/nyh|uh|p72uhvhexp{((uh)}dx+9271/Quhvhexp{g(uh)}dw

+ (On, vn exp{C(un)})-
Therefore, taking into account conditions (5.7) and (5.16)), we have

Qﬁ_l / Ve (x,un, Vo) - Vo, exp{((un)} dz
Q

<o /Q mlonl? exp{¢(un)} da + g2~ /Q inon exp{C(un)} da

+ (Oh, v exp{C(un)}) -

After division by gfl_l, using the hypotheses on vy, up and 0y, we obtain

lim sup/ Ve (x,un, Vo) - Vo, exp{((un)} dz
ho Ja

(5.17)
< exp{MR} (/ ~|vlP dz —|—/ v dx) .
Q Q
Now, let us consider the function 9; : R — R given by
I(s) ifs>0
91(s) = ¢ Ms f—R<s<0 (5.18)

—MR ifs<—-R,

with o satisfying (5.8)). Considering in (5.14) the functions (v A k) exp{—01 (up)}
with k € N, we obtain

/QV£$(9£, un, Vo) - V(o A k) exp{—1(up)} dz
1
o
x (vt A k) exp{—91(un)} dz
= / Yo vn P20, (0T A E) exp{ =91 (up)} do + / pn(vT A k) exp{—01(up)} dx
Q Q
1

onpP~1

By (5.7), (5.8) and (5.16|) it results that for each h € N
[Ds & (x,un, Vup) — 91 (un) Vel (2, un, Vuy) - Vup] (v A k) exp{—91(un)} <O0.

Taking into account assumptions (5.11) and (5.6), we may apply [54, Theorem 5]
and deduce that

+

: / (DL (x,un, Vup) — 9 (un) Ve L (2, un, Vug) - Vug)
Q

+

(On, (v A k) exp{—01(un)}) .
(5.19)

a.e. in Q\{v=0}: Vouu(r) = Vo(z).
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Being up(z) — 400 a.e. in Q\ {v = 0}, again recalling (5.11), we have
a.e. in Q\{v=0}: V. Z(z,un(x), Vop(z)) = VeLoo(z, Vo(z)).
By combining this pointwise convergence with ([5.6), we obtain
Vel (x,un, Vo) = VeLo(x, Vo) in L (). (5.20)
Therefore, for each £ € N we have
li}rln Ve (x,up, Vop) - V(o A k) exp{—01(up)}
= VeLoo(x,Vv) - V(v A k) exp{—V},
strongly in L(Q),
lin(* A K) exp{—1 ()} = (v* A &) exp{ 7}
weakly in WP (Q), using (b)
lin oy [on |20 (v A k) exp{—d (un)} = ol 20(v* A k) exp{-},
strongly in L'(Q) and

(vt A k) exp{—91(un)} =0,

lim s
hoob

weakly in WP (). Therefore, letting h — +oo in (5.19), for each k € N we get

/ VeLoo(z, V) - V(0T A k) exp{—1} dz
Q

> /Qv|v\p_2v(v+ A k)exp{—0}dz + /Q vt Ak)exp{—19}dz.
Finally, if we let k — 400, after division by exp{—19}, we have
/ VeLoo(, Vot) - Vot do > / Y|vP~2(vT)? da +/ pot dx. (5.21)
Analogo?lsly, if we define a function 15‘25:2 R — R by ’
9(s) if s <0

Ya(s)=¢ —-Ms if0<s<R
_MR ifs>R,

and consider in (5.14) the test functions (v= A k) exp{—v2(us)} with k € N, we
obtain

/ VeLoo(x,Vv) - Vo de < —/ Y|P3 (v™)? dx—i—/ uv~dx. (5.22)
Q Q Q
Thus, combining (5.21]) and (5.22)) yields
/ngoo(ava) -Vodz > / ~|v|P d:r—i—/ pode. (5.23)
Q Q Q

Finally, putting together (5.17) and (5.23)), we conclude

limsup | VeZ(x,up, Vup) - Vup exp{{(up)} dz
h Q

< exp{MR}/ VLo (z,Vv) - Vude.
Q
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In particular, by Fatou’s Lemma, it results

exp{MR}/ VeLoo(z,Vv) - Vodz

Q

< limhinf/ Ve (x, up, Voy) - Vo, exp{((un)} dz
Q

< exp{MR}/ VeLoo(x, V) - Vodz;
Q
namely,
VeZ(x, un, Vor) - Vo exp{({(un)} — exp{M R}V L (z, Vv) - Vo.
LY(Q). Therefore, since v|Vup, [P < Ve Z(z,up, Vo) Vo, exp{C(us)}, again thanks
to Fatou’s Lemma, we conclude that

limsup/ |Vop|P dz S/ |VolP dz,
h Q Q

and the proof of (a) is concluded.
Let us now prove assertion (¢). Up to a subsequence, exp{—9;(up)} weakly*
converges in L>(£2) to some n*. Of course, we have

7 () = {exp{—ﬁ} if v(z) >0
exp{MR} ifv(z) <0,

exp{—9} < nT(z) < exp{MR} if v(z) = 0.
Then, let us consider in (5.14]) as test functions:
pexp{—vi(un)}, ¢€CT(Q), ¢=0.
Whence, like in the previous argument, we obtain

/n*ngoo(%W)-demZ/vn*\v\p_st@der/ﬂn*wdx,
Q Q Q

for any positive ¢ € WO1 P(Q). Similarly, by means of the test functions
pexp{—ta(un)}, ¢ € CZ(Q), ¢=0,
we get for any positive ¢ € W* ()

/Qn_V5,Zoo(x, V) - Vpdr < /Q'yn_|v|p_2v<p dx + /Q un~ @ dx,
where 1~ is the weak® limit of some subsequence of exp{—v2(us)}. O
Consider now
go(w,8) = g(x,s) — Bls|P2sT +als|P™?s™, Go(z,s) = /OS go(z,7)dr.

Of course, gg is a Carathéodory function satisfying for a.e. x € 2 and for all s € R

go(l‘, S)
|s|—o0 |S|p728

=0, |go(w,5)| < alw) +b(x)|s]"

with b € L™?(Q). Since we are interested in weak solutions u € Wy*(€) of the
equations

—div (V£$(‘T, u, V'LL)) —+ Dsf(m7 u, Vu) — g(x’ U) + tqaffl + wo 7
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let us define the associated functional f; : Wy (Q) — R, by setting
fi(u) = / Z(z,u, Vu)de — p / (u™)P dx — 2 / (u™)Pdz
Q P Ja P Ja
— / Go(z,u)dr — \t|p_2t/ A uda — (wo, u).
Q Q

Lemma 5.3. Let (up,) a sequence in Wy P() and o, C0,4o00[ with g, — +oo.
Assume that the sequence (%) is bounded in WyP(). Then

_np’ G
79‘)(””’_?“ S0 in LA (Q), 70(%“*‘)
o Oh

For the proof of the above lemma, argue as in [31l Lemma 3.3]. We now recall
from [132] a compactness property of (C'PS).-sequences.

— 0 in L'(Q).

Theorem 5.4. Let (uy,) be a bounded sequence in W, (Q) and set
(wp,v) = / Vel (z,up, Vug) - Vodz —|—/ DL (x,up, Vup)v dz, (5.24)
Q Q
for all v e C(Q). If (wy) is strongly convergent to some w in W=7 (Q), then
(un) admits a strongly convergent subsequence in WyP ().
For the proof of the above theorem, see [I32, Theorem 3.4].

Lemma 5.5. For each c,t € R the following assertions are equivalent:

(a) ft satisfies the (CPS). condition ;
(b) every (CPS).-sequence for f, is bounded in W, (£2).

Proof. (a) = (b). It is trivial. (b) = (a). Let (up) be a (CPS).-sequence for f;.
Since (uy,) is bounded in W, (), and the map

ur— g(a,u) + 167" + wo,
is completely continuous by , up to a subsequence (g(x,up) + t(bll’_l + wp) is
strongly convergent in L (Q), hence in W=17'(Q). O
We now come to one of the main tool of this section.
Theorem 5.6. Let ¢,t € R. Then f; satisfies the (CPS). condition.

Proof. If (up) is a (CPS).-sequence for f;, we have fi(un) — ¢ and for all v €
C§e(Q):

/ VeZ (2, un, Vug) - Vvdx+/ D, &L (x,up, Vup)vdx

Q Q

—ﬁ/(u;)p_lvdx—l—a/(u,:)p_lvdx—/go(x,uh)vdx— |t|p_2t/ d1vdx
Q Q Q Q

= <W0 + O'h,’U>,

where oy, — 0 in W~1#'(€). Taking into account Theorem by Lemma it
suffices to show that (uy) is bounded in Wy (). Assume by contradiction that,
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up to a subsequence, |lupll1, — +00 as h — 400 and set v, = uh||uh||1_}n By
Lemma we can apply Lemma [5.2] choosing

O R Ry
M) = a if up(x) <0, on = lnlitp:

_ go(af,uh)

o anllt,” 0n = [tP*t¢1 + wo + on.
hil1,p

Then, up to a subsequence, (vp) strongly converges to some v in WO1 P(Q). Moreover,
putting ¢ = v in (c) of Lemma [5.2] we get

/ N~ VeLoo(z, VoT) - Vol dz < / By~ (vh)Pdx,
Q Q
hence, taking into account 7 we have
A1 / (vF)Pdx < / VeLoo(2, Vot) - Vot do < ﬂ/ (vF)? da.
Q Q Q

Since 8 < A, then v = 0. By using again the first inequality in (c) of Lemma
for each ¢ > 0 we get

/977+V5.$OO($, Vv) - Vedr > a/{2n+|v|p_2v<p dx.
namely, since v < 0, we have
/QV5.ZOO(33, Vo) -Veodx > oz/Q [v[P 2 da.
In a similar way, by the second inequality in (¢) of Lemma we get
/QV§.$OO(JU, Vo) - Vedr < a/Q [v[P~2vep d.
Therefore,
/ VeLoo(x,Vv) - Vodr = a/ lv[P~2vp dz
which, in view of [9512, Remark 1, pp. 161] is impogsible if « differs from Aq. |

5.4. Min-Max estimates. Let us introduce the “asymptotic functional” fo :
WyP(Q) — R by setting

foolt) = | Loo(x,Vu)dx — s / (ut)P dx — @ / (u™)Pdx —/ o ude.
Q P Ja P Ja Q
Then consider the functional ft : WO1 P(Q) — R given by

ft(U)Z/Qi”(x,tu,Vu)dx—g/g(uﬂpdx_g/ﬂm—)pdm

p

Go(z, — )
_/Q o(z tu)_/ﬁ(ﬁ 1udz—<w0 U>.

tp tr—1
Theorem 5.7. The following facts hold:
(a) Assume that (t,) C]0,+oo] with t;, — 400 and uy — u in Wy (Q). Then

li}rln .Eh (uh) = foo (u)
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(b) Assume that (ty) CJ0, +-00[ with t;, — +oo and up, — u in Wy P(Q). Then
foolu) < limhinf ﬁh (up).-
(¢) Assume that (t;) CJ0, 400[ with t;, — +oco, up, — u in Wy P(Q) and

limhsup ﬁh (un) < fool(u).

Then (up,) strongly converges to u in WoP ().

Proof. (a) It is easy to prove. (b) Since up — u in LP(f2), it is sufficient to prove
that

/foo(x,Vu) dx < limhinf/ Z(x, thup, Vup,) dz.
Q Q

Let us define the Carathéodory function L OxRxR* >R by setting

L(x,5,6) = {f(xvtan(s),ﬁ) it s

|
Zoo(,8) it |s|

INIERNIE)

Note that & > 0 and ﬁx, s,+) is convex. Up to a subsequence we have
thup, — z ae. in Q\{u =0}, Vup —Vu in LP(Q\{u = 0}),

and
arctan(tpup) — arctan(z)  in LP(Q\{u = 0}).
Therefore, by [85, Theorem 1] we deduce that

/ G?(:r, arctan(z), Vu) dz < lim inf/ ,?(x, arctan(tpup), Vup,) do
O\ {u=0} hJa\{u=0}
that implies

/.foo(m,Vu) dx:/ Loo(x, Vu) dx
Q O\ {u=0}

< liminf/ Z(x, thup, Vuy,) dz
b Jafu=0}

= hmhinf/ ZL(x, thup, Vuy) de.
Q
Let us now prove (c¢). As above, we obtain
1 1
liminf/ < <x,thuh, —Vup, + Vu) dx > / Loo(x, Vu)de.
h Q 2 2 Q
Since we have
lim/ L (x, thup, Vu) de = / Lo (x,Vu) dzx
hJa Q
and
lim sup/ L(x, thun, Vup) dr < / Loo(z,Vu)dx, (5.25)
h Q Q

we get

lim sup/ (ZL(z, thupn, Vup) — L (z, thup, Vu)) dx < 0.
h Q

On the other hand, the strict convexity implies that for each h € N

1 1 1 1 1
§$(x,thuh, Vup) + §$(x,thuh, Vu) — if(x,thuh, §Vuh + §Vu) > 0.
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Therefore, the previous limits yield

1 1 1 1 1
/Q {2$(x,thuh, Vup) + if(x,thuh, Vu) — 53(3@, thup, §Vuh + 2Vu>} dx

— 0.

In particular, up to a subsequence, we have
1 1 1 1 1
if(x,thuh, Vup) + §$(x,thuh, Vu) — 5.,2”(3:, thup, §Vuh + §Vu> — 0,
a.e. in Q. It easily verified that this can be true only if

Vup(xz) — Vu(z) for a.e. x €.

Then we have
%.Z(x,thuh, Vup(z)) — %foo(:z:, Vu(z)) for ae. z €.
Taking into account , we deduce
%/Qﬁ(a:,thuh,Vuh) dx — %/Q.foo(x,Vu) dz,

that by v|Vu,|P < Z(x, thun, Vuy) yields

lim/ |Vuh\pdx:/ |Vul? dz,
hJa Q

namely the convergence of uy, to u in WyP(Q). O

Remark 5.8. Assume that § < A; < a. Then the following facts hold:
(a) fi(r)(1) = 0;

(b) lims_, oo foo(5¢1) = —o00, where we have set ¢ = S S—
(A=B)Pp-1
Proof. (a) It is easy to prove. (b) A direct computation yields that for s < 0
Al —«
foo(s61) = Z—=|5]P — s.
Since o > A1, assertion (b) follows. d

Lemma 5.9. For every M > 0 there exists o > 0 such that for each w € Wol’p(ﬂ)
with ||w — @11, < 0 we have

/QZOO(:E,wa*)dx > M/Q(w*)p dx.

For the proof of the above lemma, we argue as in [31, Lemma 4.1].

Lemma 5.10. There exists r > 0 such that

(a) for each w € WoP(Q), [lw = 1ll1p <7 = foo(w) > foo(d1) ;
(b) for each w € W&’p(ﬂ), lw—=01l1,p =7 = foo(w) > foo(d1).

Proof. Let us fix a u € W, P(Q) and define 7, :)0,4+00[— R by setting n,(t) =
foo(tw). Tt is easy to verify that n, assumes the minimum value:

1, ,1, 2
A (u) :*(1*5)(5)
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|:fQ ¢€_1u dx} o

X —.
{fQ (z, Vu) x—ff u*szffo pdz}

Moreover, a direct computation yields for each u # ¢

foo(01) < A (u) (5.26)
if and only if

p/ Loz, Vu)dx > ﬁ/ (u)P dx +a/ (u)Pdr+ (M — ﬁ)[/ (b’l’_ludxr.
Q Q Q Q
(5.27)
If we now set W = {u EWP(Q): [y db tude = 0} , we obtain
WP () = span(¢1) @ W. (5.28)
Let us now prove that (5.27) is fulfilled in a neighborhood of ¢;. Since (5.27) is

homogeneous of degree p, we may substitute ¢; with ¢;. Let us first consider the
case p > 2 and 8 > 0. In view of (5.28), by strict convexity, there exists £, > 0
such that for any w € W

5 [+t 0u-0) [ oo
<5 [ (@t )yt (- /|¢1+w|pdx—<A1 9)ey | ol do

3 (5.29)
< —p/.f z,V(p1 +w)T )der )\ p/.foo(:c,V(@er))dx
1 Q
— (A1 — /B)sp/ |wl|P dz.
Q
On the other hand, by Lemma , for a sufficiently large M we get
“/<<¢1+w)*>”dw<*/f V(g1 +w)”)dx
@ (5.30)
S / Lo V(g1 +w)”)dx,
for ||w||1,, small enough. By comblmng and we obtain
5 [ o0y dna [ ((@rw) P det - m/ o do
@ @ (5.31)

<p/$ (2, V(1 +w))dax — (A — /|w|pdx

Therefore, (5.27) holds in a neighborhood of ¢;. In view of (4.4) of [04) Lemma
4.2], the case 1 < p < 2 may be treated in a similar fashion. Let us now note that

o1 +w|Pdx > o'dr Yw e W.
1
Q Q

In the case § < 0, we have

5/ (1 +w)*t dx+a/Q((¢1+w)‘)”dx+(A1—ﬂ)/Q¢’fda;
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A A
< *1/ |1 +w|pdx+(a—ﬂ)/ (1 +w)" )" dz + (M ——1)/¢’1’dx
2 Jo Q 27 Jo
so that we reduce to (5.31)). d

Proposition 5.11. Let r > 0 as in Lemma [5.10 Then there exist t € RT and
o > 0 such that for each t > and w € Wy (Q)

lw = 1llp == filw) > foo(1) + 0.
Proof. By contradiction, let (t,) € R and (wy) € W, ?(Q) such that t, > h and

1

lon = Gullp =7 fou(wn) < foo(Gr) + 7. (5:32)

Up to a subsequence we have wy, — w with ||w — ¢1]1, < r. Then, by (5.32) and
(a) of the previous Lemma we get

timsup fi, (1) < foo(1) < Foo (), (5.33)

In view of (¢) of Theorem wy, strongly converges to w and then ||w— 1|1, = 7.
By combining (5.33)) with (b) of Lemma we get a contradiction.

E’roposition 5.12. Leto aridf be as in the previous proposition. Then there exists
t >t such that for each t >t there exist vy, w; € Wol’p(Q) with

lve = Billip <7 folv)) < 5+ foolB0), (5.34)

_ o
lwe = @1l > 7, filwe) < 9 + foo(¢1)- (5.35)
Moreover, sup,¢g 17 ft(svr + (1 — s)wy) < +o00.

Proof. We argue by contradiction. Set t =t + h and suppose that there exists
(tn) C R with tj, > £ such that for every v;, and w, in W, (5),

N o N

||Uth - ¢1||1,p <r, fth(vth) > 5 + fw(¢1)’
N o R

lwe, = @ullip >0 fon(we,) > 5 + foo(¢1)-

Take now (z5) going strongly to ¢; in Wy*(). By (a) of Theorem we have
fi, (1) = foo(@1). On the other hand eventually ||z, — ¢1]l1, < r and fi, (21,) <
7 + foo(91), that contradicts our assumptions. Recalling (b) of Remark by
arguing as in the previous step, it is easy to prove (5.35). The last statement is
straightforward. O

5.5. Proof of the main result. We now come to the proof of the main result of
the section.

Proof of Theorem [5.1. From Theorem we know that f; satisfies the (CPS),
condition for any ¢ € R. By Proposition [.11] and Proposition [5.12] we may apply
Theorem with ug = and obtain existence of at least two weak solutions
u € WP (Q) of problem for ¢ > t for a suitable ¢.
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Let us now prove that there exists ¢ such that (5.13]) has no solutions for ¢ < t.

If the assertion was false, then we could find a sequence (¢5) C R with ¢}, — —o0
and a sequence (uy) in W, P () such that for every v € C°(Q),

/ng(x,uh,Vuh)~Vvdx+/ D% (x,up, Vup)vdx

Q Q

:5/(u;)p’1vd:c—a/(u;)pflvd;vnt/go(x,uh)vdm
Q Q Q

+ \th\p_ch/ qS’l’*lv dx + (wo, v)
Q

Let us first consider the case when, up to a subsequence, W — 0 and set
D
vy, = ”ugﬁ By applying Lemmawith on = |lunll1,p, 0 = wo and
G if up(x) >0 go(x, up th|P 2ty
o) =7 Hun) = pltn) | P e
a if up(z) <0, lunll¥p llunlly,

up to a subsequence, (vp) converges strongly to some v in WO1 P(Q). Then using
the same argument as in the proof of Theorem we get a contradiction.

Assume now that there exists M > 0 such that ||up|1, < —Mty. Then setting
wp, = fuht}jl, wy, weakly converges to some w € Wol’p(Q). By applying Lemma
with o, = —tp, 6p = wo and

B if up(w) >0 go(@, up, -1
Yn(r) = . Mh:—(ifQ)—Qﬁ) )

a if up(x) <0, [tn|P—2tp,
we have that wy, strongly converges to w in WO1 P(Q2). The choice of the test function
@ = wT gives, as in the first case, wT = 0. Arguing as in the end of the proof of
Theorem [5.6] we obtain a contradiction. O

Remark 5.13. Even though we have only considered existence of weak solutions
of (5.13), by [6, Lemma 1.4] the weak solutions u € W, ?(Q) of (5.4) belong to
L*>°(©2). Then some nice regularity results can be found in [90].

5.6. Fully nonlinear variational inequalities. Starting from the pioneering pa-
per of Ambrosetti and Prodi [4], jumping problems for semi-linear elliptic equations
of the type

— Y Dj(aij(x)Diu) = g(z,u) in Q

4,5=1

u=0 on JQ,

have been extensively studied; see e.g. [84, 08, [T00, 124]. Also the case of semi-
linear variational inequalities with a situation of jumping type has been discussed
in [78,[99]. Very recently, quasi-linear inequalities of the form

n

/Q { Z aij(z, u)DuD; (v — )

,j=1

+ 1 Z Dga;;(x,u)DyuDju(v — u)} dx — / g(z,u)(v—u)de
2 ij=1 Q
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> (w0 —u) Yve Ky,

u € Ky,
where Ky = {u € HYQ) : u > 9 ae. inQ}, Ky = {ve Ky :(v—u) e L*(Q)}
and ¥ € H}(Q), have been considered in [77].

When ¢ = —oo, namely we have no obstacle and the variational inequality
becomes an equation, the problem has been also studied in [31] [34] by A. Canino
and has been extended in [79] to the case of fully nonlinear operators.

The purpose of this section is to study the more general class of nonlinear vari-
ational inequalities of the type

/Q {Vgﬁ(x, u, Vu) - V(v —u) + Ds.Z(x,u, Vu) (v — u)} dx

- /Qg(x,u)(v —u)dz (5.36)

> (w,v—u) YoeKy,
u € Ky.

In the main result we shall prove the existence of at least two solutions of ([5.36]).
The framework is the same of [79], but technical difficulties arise, mainly in the
verification of the Palais-Smale condition. This is due to the fact that such condition
is proved in [79] using in a crucial way test functions of exponential type. Such
test functions are not admissible for the variational inequality, so that a certain

number of modifications is required in particular in the proofs of Theorem [5.18|and
Theorem [(.211

5.7. The main result. In the following, 2 will denote a bounded domain of R™,
1<p<mn,decW,?(Q) with 9~ € L=®(Q), w € W12 (Q) and

Z: OxRxR"—=R

is measurable in z for all (s,£) € R x R™ and of class C! in (s,€) a.e. in Q. We
shall assume that Z(z, s, -) is strictly convex and for each t € R

L(x,5,t8) = [t|PL(x,,€) (5.37)
for a.e. x €  and for all (s,£) € R x R". Furthermore, we assume that:
e there exist ¥ > 0 and b; € R such that
vl < Z (@, 5,6) < bilE]”, (5.38)

for a.e. z € Q and for all (s,£) € R x R";
e there exist bg, b3 € R such that

|DsZ (x,5,8)| < baf€]”, (5.39)
for a.e. z € Q and for all (s,£) € R x R™ and
Ve 2 (w,5,6)] < bsleP, (5.40)

for a.e. z € Q and for all (s,£) € R x R™;
e there exist R > 0 and a bounded Lipschitzian function ¢ : [R,+oo[—
[0, +00[ such that

s> R=D;%(x,5& >0, (5.41)
s> R= DsZ(x,5,8) </(s) VeL(2,5,6) - €, (5.42)
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for a.e. x € Q and for all £ € R”. We denote by 1 the limit of ¥(s) as
s — +00.
o g(z,s)is a Caratheodory function and G(z, s) fo x,7)dr. We assume

that there exist a € Ln(r’*le( ) and b € L7 (Q) such that
l9(z,5)| < a(z) +b(x)|sP~", (5.43)
for a.e. x € Q and all s € R. Moreover, there exists a € R such that

lm 208 (5.44)

s——+00 51”*1 ’
for a.e. z € Q.

Set now

lim Z(x,s,&) = Loo(x,§)

s——+o00

(this limit exists by (5.41)). We also assume that £, (z,-) is strictly convex for
a.e. x € ). Let us remark that we are not assuming the strict convexity uniformly
in z so that such %, is pretty general. Moreover, assume that

Sp — +OO, Eh - g = vfg(‘ru Shvgh) - Vggoo(m,g), (545)

for a.e. x € . Let now
A1 = min {p/ Lo, Vu)dz : u € Wy P(Q), / |ulP doz = 1}, (5.46)
Q Q
be the first (nonlinear) eigenvalue of
u— —div (Ve Lo (z, Vu)) .

Observe that by [6, Lemma 1.4] the first eigenfunction ¢; belongs to L>°(Q) and
by [142, Theorem 1.1] is strictly positive.

Our purpose is to study when w = —tpfl(zﬁszl, namely the family of
problems

/Q {Vgﬁ(a:, u, Vu) - V(v —u) + DL (x,u, Vu)(v — u)} dx

_/ 9(z,u)(v —u)dz +tp71/ P v —u)de >0 Yoe Ky, (5.47)
& 2

u € Ky,
where Ky = {u € WP(Q) :u >0 ae. in Q} and
Koy={veKy:(v—u)e L)}
Under the above assumptions, the following is our main result.

Theorem 5.14. Assume that o > X1. Then there exists t € R such that for all
t >t the problem (5.47) has at least two solutions.

This result extends [77, Theorem 2.1] dealing with Lagrangians of the type

(r,5,6) = %Z (o, 9)6iE; — G, 3)

for a.e. € Q and for all (s,£) € R x R™.
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In this particular case, existence of at least three solutions has been proved in
[77) assuming o > pe where ug is the second eigenvalue of the operator

n
Uur— — Z DJ(A”Dlu)
ij=1
In our general setting, since %, is not quadratic with respect to £, we only
have the existence of the first eigenvalue \; and it is not clear how to define higher

order eigenvalues Az, As, . ... Therefore in our case the comparison of o with higher
eigenvalues has no obvious formulation.

5.8. The bounded Palais-Smale condition. In this section we shall consider
the more general variational inequalities (5.36]). To this aim let us now introduce
the functional f: W, P(Q) — RU {400}

Flu) = JoZ (@, u,Vu)de — [, G(z,u)de — (w,u) ue Ky
—+00 u ¢ Kﬁ.

Definition 5.15. Let ¢ € R. A sequence (up) in Ky is said to be a concrete
Palais-Smale sequence at level ¢, ((C'PS).-sequence, for short) for f, if f(un) — ¢
and there exists a sequence (pp,) in W12 (2) such that ¢, — 0 and

/ VeZ(x, up, Vug) - V(v — up) de + / DL (x,up, Vup) (v —up,) de
Q Q

— / g(z,up)(v —up) de — {(w,v —up)
Q

> <g0h,1) 7uh> Yov € I?ﬁ.

We say that f satisfies the concrete Palais-Smale condition at level ¢, ((CPS)., for
short), if every (CPS).-sequence for f admits a strongly convergent subsequence
in WyP(Q).

Theorem 5.16. Let u in Ky be such that |df|(u) < +o0o0. Then there exists ¢ in
WP (Q) such that ||@|| 1, < |df|(u) and

/ VeZ(2,u,Vu) - V(v —u)de + / D;ZL(xz,u,Vu)(v —u)dz
Q Q

- / glx,u)(v—u)dr — (w,v — u)
Q
> (pv—u) YveKy.
For the proof of the above theorem, we argue as in [77, Theorem 4.6].

Proposition 5.17. Let ¢ € R and assume that [ satisfies the (CPS). condition.
Then f satisfies the (PS). condition.

The above result is an easy consequence of Theorem [5.16}
Let us note that by combining (5.38)) with the convexity of £ (z, s, ), we get

Ve (@,5,8) - &= v[E (5.48)
for a.e. € Q and for all (s,¢) € R x R™. Moreover, there exists M > 0 such that
|Ds & (x,5,8)] < MVeZ(x,s,6) - & (5.49)

for a.e. € Q and for all (s,£) € R x R™.
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We point out that assumption (5.41)) may be strengthened without loss of gen-
erality. Suppose that ¥(z) > —R for a.e. z € ) and define

—~ I EACKERY s>—R
(@ 5,8) = {.i”(x, —-R,¢) s<-R.

Such . satisfy our assumptions. On the other hand, if u satisfies
/ {Vg(i,;(a:, u, V) - V(v —u) + Dy 2 (x,u, V) (v — u)} dx
Q

f/ g(z,u)(v —u) da:thP*l/ o —wde >0 Yue Ky, (5.50)
2 Q

u € Ky,

then wu satisfies (5.47). Therefore, up to substituting £ with .,27, we can assume
that . satisfies 1) for any s € R with |s|] > R. (Actually .Z is only locally

Lipschitz in s but one might always define .Z(x, s,¢) = Z(x,0(s), ) for a suitable
smooth function o).

Now, we want to provide in Theorem [5.19| a very useful criterion for the veri-
fication of (C'PS). condition. Let us first prove a local compactness property for
(CPS)-sequences.

Theorem 5.18. Let (uy) be a sequence in Ky and (pn) a sequence in W12 (Q)
such that (up) is bounded in Wy P(Q), on — ¢ and

Vel (z,up, Vuy) - V(v — up) de + / D, Z(z,up, Vup)(v — up) dx
2 Q (5.51)
> {pn,v —up) Yo e Ky.

Then it is possible to extract a subsequence (up, ) strongly convergent in Wol’p(Q).

Proof. Up to a subsequence, (uy) converges to some u weakly in WO1 P(Q), strongly
in LP(Q2) and a.e. in Q. Moreover, arguing as in step I of [7, Theorem 4.18] it
follows that

Vup(z) — Vu(z) for ae x€Q.

We divide the proof into several steps.
I) Let us prove that

lim sup/ Vel (z, up, Vup) - V(—u;)e_M(“h_Rr dz
hooJe (5.52)
< / Vel (2,u,Vu) - V(—u")e MR gy
Q
where M > 0 is defined in (5.49) and R > 0 has been introduced in hypothesis
(5.41)). Consider the test functions
v =up + Ce*M(“thR)+
in (5.51) where ¢ € W, P(Q) N L>=(Q) and ¢ > 0. Then

)+

/ vEg(xvuhy VUh) . VCQ_M(uh+R dx
0

+ / [DsZ(z,up, Vup) — MV Z(z,up, Vup) - V(up + R)ﬂCe_]\/[(“’”rR)+ dz
12,
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> (ipn, Ce™MuntRT),
From and we deduce that
[Dsf(z,uh, Vup) — MV Z(x, up, Vug) - V(up, + R)*] CG*M(uh+R)+ <0,
so that by the Fatou’s Lemma we get

/ VeZ(z,u, Vu) - Ve MEtRT gy

2

+ / [DsZ(x,u,Vu) — MV Z(x,u, Vu) - V(u+ llf)Jr]CefM(“JrR)Jr dr  (5:53)
9]

> (ip, Ge” MUY v e WP (Q) N LX(Q), ¢ 2 0.
Now, let us consider the functions
e = neM(u+R)+,§k(u)’

where 77 € W, P(Q)NL>(Q) with 1 > 0 and 95, € C°°(R) is such that 0 < ¥4(s) < 1,
Uy =1 on [k, k], 95 = 0 outside [—2k, 2k] and |¥},| < ¢/k for some ¢ > 0.
Putting them in (5.53)), for each k£ > 1 we obtain

/ Ve (x,u, Vu) - V(ndy(u)) de + / D, 2 (x,u, Vu)ndy(u) dz
Ie; Ie)

> (0, 19x(w) ¥ € Wy (@) N L=(Q), n = 0.
Passing to the limit as £k — 400 we obtain

/ VeZ(z,u, Vu) - Vnde +/ D, Z(x,u, Vu)ndx > (p,n) (5.54)

I7) o)
for all n € Wy (Q)NL=(Q), n > 0. Taking n = (9~ —u" e~ ME—R" ¢ W P(Q)N
L>(Q) in (5.54) we get

/ Vel (x,u, V) - V(9™ —u)e MO=R" gy
7

> —/Q (D& (2, u,Vu) — MV¢Z (2, u,Vu) - V(u— R)~] (5.55)

x (97 —u”)e MR gy 4 (o, (97 —uT)e MumRTy,
On the other hand, taking
v=up— (¥ — u;)e*M(“h*R)_ >up — (07 —uy ) =uf —9°
in we obtain

Vfi’ﬂ('xa Up,, Vuh) . V(’Lg7 — u}:)efM(“hr*R)i dx
2

+/Q [Ds.i”(m, Up, Vup) — MV Z(z,un, Vup) - V(up — R)f} (5.56)

x (97 — u,:)efM(“"fR)idm
< (pn, (07 =y, Je Mlun =Ry,

From (5.41) and (5.49) we deduce that
D, Z(x,un, Vu) — MV L (x,up, Vug) - V(ur, — R)™ > 0.
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From ([5.56)), using Fatou’s Lemma and ([5.55|) we obtain

limsup/ Vel (2, up, Vug) - V(O —uy e M= dg
h 0

(5.57)
< / Vel (x,u,Vu) - V(0™ —u)e MO=R" ga
2
Since
liirln/ Vel (2, un, Vuy) - VO~ e Mun=R" gy
Ie;
= / Ve (x,u,Vu) - Ve Mu=R)" ga.
e
then from (5.57)) we deduce (5.52]).
IT) Let us now prove that
limsup/ Vel (x,un, Vug) - Ve M@n=R)" gg
hooJa (5.58)
< / Vel (x,u, Vu) - Vute M@= gy
Q
We consider the test functions
v=up— [(uf — ") Ak e Mun=R" > 9 4 (97 —uy)
in (5.51). By Fatou’s Lemma, we get
/ Vel (2, un, Vuy) - V(u —9F)e Mn=R" gg
Q
+/ [Dsf(amuh, Vup) — MV 2 (x,un, Vug) - V(up — R)_} (5.59)
o :

x (uf —9F)e Mun=R)" gy

S <30h7 (U‘Z _ 19+)6—M(uh—R)7>
from which we deduce that
[Dy & (x,up, Vup) — MV e L (x,up, Vuy) - V(uy, — R) ™| (uff —9F)e™Mun=R)"
belongs to L!(Q). Using Fatou’s Lemma in (5.59) we obtain
lim sup/ Ve (x,up, Vuy) - V(u: _ 19+)6—M(u;L—R)’ da
h (9]
< */ [DS.Z(Q:,U, Vu) — MV (z,u,Vu) - V(u— R),] (5.60)
Q
> (u+ _ 19+)67M(“7R)_d13 + (¢, (u+ _ 19+)67M(u73)_>7

from which we also deduce that

[DsZ(x,u,Vu) = MV Z (x,u,Vu) - V(u— R)™] (u™ —9T)e MR (561)
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belongs to L*(Q). Now, taking n, = [(ut — 97) A k]e= M@0 in , we have
/Q Vel (w,u,Vu) -V [(u™ —9F) A k] e ME=R7 gy
+ /Q (D% (x,u,Vu) — MV Z (2, u,Vu) - V(u—R)™|

(5.62)
x [(ut —9%) Ak e~ Mu=R)" gy

> <g0, [(ut —9") Ak efM(“*R)7> .
Using and passing to the limit as K — 400 in , it results
/Q Vel (x,u, Vu) - V(ut — 9T )e Mu—R" gy
+ /Q (D2 (x,u,Vu) — MV L (2,u,Vu) - V(u— R)” | (ut — 9 )eMu=R)" gy

> (g, (ut —9F)e MumRT),

(5.63)
Combining (5.63]) with (5.60) we obtain
lim Sup/ Vel (x,un, Vug) - V(u —9F)e MR gg
hooe (5.64)
< / Vel (z,u,Vu) - V(ut —9F)e MU=R" gg
Q
Since
li}rbn/ Ve (2, up, Vuy) - Vote Mun=R" gy
Q
= / Ve (x,u, Vu) - Vte MU—R" gy
Q
from ([5.64) we deduce (5.58)]).
III) Let us prove that u;, — u strongly in Wol’p(Q). We claim that
lim sup/ VeZ(x, un, Vup) - Vupe  MEn=R" gg
h Q
< | VeZ(x,u,Vu) - Vue M@= gy,
17
In fact using (5.52)) and (5.58) we get
lim sup/ VeZ(x, un, Vup) - Vupe MEn=R" gg
h Q
< lim sup/ Vel (z, up, Vup) - Vu;e_M(“h'_Rr dx
h QN{up >0} (565)

+ limsup/ Ve (z,up, Vuy) - v(_u}:)e—M(uh—RT dr
h QN{un <0}

< / Vel (2,u, V) - Vue MO~ R" gy
o)
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From ([5.65) using Fatou’s Lemma we get

li}lin/ Ve (@, up, Vuy) - Vupe Mun=F)" g
Q

:/ Véf(m,qu)-Vue—M(u—Rr da.
Q

Therefore, since by (5.48) we have
vexp{—M(R+ |97 ||oo) }Vun|P < Ve L (2, un, Vuy) - Vupe =R

It follows that
lim/ [V, |P dx:/ |Vul? dz,
b Jo I?)

namely the strong convergence of (up) to u in Wy ?(Q). O

Theorem 5.19. For every ¢ € R the following assertions are equivalent:
(a) f satisfies the (CPS). condition ;
(b) every (CPS).-sequence for f is bounded in W™ (£2).
Proof. Since the map {u +— g(z,u)} is completely continuous from W,*(Q) to

L%P’(Q), the proof goes like [77, Theorem 4.37]. O

5.9. The Palais-Smale condition. Let us now set
go(z,s) = g(x,s) — a(s*)pfl, Go(z,s) = / go(z,t)dx.
0

Of course, gg is a Carathéodory function satisfying

lim 90(2, 5)
s——+00 310—1

for a.e. 2 € Q and all s € R where a € L7177 (Q) and b € L# (). Then (5.47)
is equivalent to finding u € Ky such that

=0, |go(x,s)| < a(z) +b(x)|s["~",

/Vfg(x,u,Vu)-V(v—u)dx—&—/ D, Z(z,u,Vu)(v —u)dz
7 7

- a/ (uT)P~ v — u) de — / go(z,u)(v —u) dr + P71 / o (w —wu)dz >0

Q 17} 7
for all v € Ky. Let us define the functional f : Wy "*(9) — R U {400} by setting
Flu) = Jo L (@, u,Vu) = < [ ut? — [ Go(z,u) + 771 [ W ifue Ky
+00 ifué¢ Ky.

In view of Theorem any critical point of f is a weak solutions of (P;). Let us
introduce a new functional f; : Wy "*(€2) — R U {400} by setting for each ¢ > 0

fo(u) = Jo 2 (@, tu, Vu) — < [, ut? — L [ Go(w,tu) + [, 87 Tu ifu € K,
+00 if u gKt
where we have set
K = {ue WyP(Q) :tu>10 ae. in Q}

From Theorem [5.16] it follows that if u is a critical point of f; then tu satisfies

(6-17).
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Lemma 5.20. Let (up,) a sequence in Wy P(Q) and o5, CJ0,+o00| with op — +oo.
Assume that the sequence (Z—}h) is bounded in Wol’p(Q). Then
go(xvuh) Go(x,Uh)
o oh
To prove the above lemma, we argue as in [31, Lemma 3.3]. In view of (5.48)

and (5.39), we can extend 1 to [—N, +oo[ where N is such that |07 || < N, so
that assumption (5.42)) becomes

s> —=N= D,ZL(x,5&) <Y'(s) Ve L (2,5,8) - €. (5.66)
Theorem 5.21. Let o > Ay, ¢ € R and let (up) in Ky be a (CPS).-sequence for
f. Then (uy) is bounded in Wy (52).
Proof. By Definition there exists a sequence () in W12 (Q) with ¢, — 0

and

/ Ve (@, up, Vuy) - V(v — up) do + / D, Z(x,up, Vup) (v — up) de
Q 2

—0 in L7 (Q), —0 inL'(Q).

—a [ @iyt - w)de = [ gleu)o—w)der e [ o o —w) de

> (pn,v—up) Yo e Ky :(v—up) € L™®(Q).
(5.67)
We set now g, = ||up||1,p, and suppose by contradiction that g, — +oo. If we
set zp, = g;luh, up to a subsequence, z; converges to some z weakly in Wol’p(Q),
strongly in LP(Q)) and a.e. in Q. Note that z > 0 a.e. in Q.
We shall divide the proof into several steps.
I) We firstly prove that

/ VeLoo(x,Vz) - Vzdr > a/ 2P dz. (5.68)
o 7

Consider the test functions v = up, + (z A k) exp {—¢(up)}, where ¢ is the function
defined in 1D Putting such v in 1} and dividing by Qz_l, we obtain

/Q Vel (x,un, Var) - V(z A k) exp {—9(up)} dx
1

p—1
op,

X (z NE)exp {—v(up)}dx
>a [ @ enR e (ot b+ [ PO k) exp ()} do
(9] (9}

O

+ / [Ds.Z (@, up, Vup) — ' (up) Ve L (2, up, Vup) - Vup)
Q

— P / ¢§:1 (z N k) exp {—t(up)}dx + %Qﬂh, (2 A k) exp{—1(un)}).
0y Oh

Observe now that the first term
/ VeZ(x,un, Vay) - V(z A k) exp {—9(up)} dx
0
passes to the limit, yielding

/Q VeLoo(x,V2) - V(z N k)exp {—1)} dx.
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Indeed, by taking into account assumptions (5.45) and (5.40), we may apply [64,
Theorem 5] and deduce that, up to a subsequence,

a.e. in Q\{z=0}: Vz(z) - Vz(x).
Since of course uy(z) — 400 a.e. in Q\ {z = 0}, again recalling (5.45)), we have
a.e. in Q\{z=0}: V. Z(z,un(x), Vzp(z)) = VeLoo(z, Vz(2)).
Since by the sequence (Ve.Z(x,un(z), Vzu(x))) is bounded in LP (), the

assertion follows. Note also that the term

%(@h, (z NE)exp{—(un)}),

goes to 0 even if 1 < p < 2. Indeed, in this case, one could use the Cerami-Palais-
Smale condition, which yields gnen — 0 in Wo_l’p Q).
Now, by (5.66]) we have
D2 (z,up, Vuy) — ¢ (up)Ve L (x, up, Vuy) - Vuy, <0,

then, passing to the limit as h — +o0, we get
/ VeLoo(x,V2) - V(2 ANk)exp{—t} dz > a/ Pz NE)exp {0} da.
0 0

Passing to the limit as kK — 400, we obtain (5.68]).

IT) Let us prove that z, — z strongly in Wy?(Q), so that of course ||z];, = 1.
Consider the function ¢ : [-R, +00o[— R defined by

MR ifs>R
((s) = :
Ms if|s|<R
where M € R is such that for a.e. z € ), each s € R and £ € R™
|D3$(ZL',S,£)‘ < MV&X(IE,S,E) : E

If we choose the test functions

(5.69)

uh—ﬂ

oxp(ME) exp(((un))

v =uy —
in (5.67)), we have
/Q Vel (x,un, Vup) - V(up, — 9) exp{C(up)} da
+ /Q (D2 (x, un, Vup) + ¢ (un)VeZ (@, un, Vun) - Vug] (up — 09) exp{C(up)} da
<o [ by un = 0) exp{clun) b o+ | ol un)(un = 9) exp{Cun)} da

e /Q 0 (ur, — 0) exp{Cun) } da + (gn, (un — 9) exp{C(un)})
Note that
[DsZ (z,un, Vup) + ¢ (un) Ve L (2, un, Vug) - Vug) (up — 9) > 0.

Therefore, after division by g}, we get

/ Vel (w,un, Vap) V(zn — ﬁ) exp{¢(un)} dz
Q Oh
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+\p—1 v
<a | ()P (2 — —) exp{¢(up)} dz
Q o
1 Y
+ == [ go(w,un)(zn — —) exp{C(un)} dx
0 Q on

h
tr—1

i 9 1 9
[ e o) el o + = (om (on = ) explcCun)})

On
which yields

lim sup/ VeZ (2, un, Var) - Vzp exp{((up)} dz < aexp{MR}/ 2Pdx. (5.70)
h Q Q
By combining (5.70) with (5.68]) we get

lim Sup/ VeZ(x,un, Var) - Vzp exp{((up)} dz
h Q

< exp{MR}/ VeLoo(x,Vz) - Vzda
Q
In particular, by Fatou’s Lemma, it results

exp{MR}/ VeLoo(x,Vz) Vzdx
Q
< limhinf/ VeZ(x,un, Var) - Vap exp{((up)} dx
Q
< lim sup/ Vel (x,un, Vay) - Vap exp{((up)} dx
h Q

< exp{MR}/ VeLoo(x,V2) - Vzdz,
Q
namely, we get
/ VeZ (2, un, Var) - Vzp exp{((up)} dz — / exp{M R}V L (2,Vz) Vzdz.
Q Q

Therefore, since
vexp{—MR}Vzp|P < VeZ(x,un, Van) - Vap exp{((up)},

thanks to the generalized Lebesgue’s theorem, we conclude that

lim/ \Vzh\pdac:/ |V 2P de,
hJa Q

: 1
and zj, converges to z in W, ().

IIT) Let us consider the test functions v = uj, + @exp {—¥(up)} such that ¢ in
Wy N L=(Q) and ¢ > 0. Taking such v in (5.67) and dividing by ¢} ' we obtain
/ Ve (x,un, Vzy) - Voexp {—t(up)} do
o
1

on

+ T /Q [DsZ (x,up, Vup) — ' (up) Vel (2, up, Vup) - Vup] g exp {—(up)} dz

>q /Q (P pexp {—b(un)} da + /Q %Sﬁ’ﬁ%exp{—wuh)}dm

h
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L[ oeP 1
— P~ / =1 exp {—¥(un)} dz + —— (pn, pexp {1 (un)}).

Note that, since by step IT we have z;, — z in Wy?(Q), the term

| Ve (., V) - Vipexp (vl do
passes to the limit, yielding
/Q VeLoo(,V2) - Vpexp {—1} da.
By means of (5.66), we have
D% (x,un, Vup) — ' (up)VeL (2, up, Vuy) - Vuy, <0,

then passing to the limit as h — 400, we obtain
/ VeLoo(,V2) - Vipexp {—} dz — a/ P pexp{—1pldr >0,
Ie) 2
for each ¢ € Wy'* N L>=(Q) with ¢ > 0 which yields

/ VeLoo(x,Vz) - Vodr > a/ P o dr (5.71)
fe) 7

for each ¢ € W'*(€) with ¢ > 0.

In a similar fashion, considering in (5.67) the admissible test functions

zn — 9/ on
exp(¥)

with ¢ € Wol’p N L>(Q) and ¢ > 0 and dividing by QZ_I, recalling that z;, — z
strongly, we get

) exp(t ()

vzuh—(gp/\

z

[ Vet v Vlon Zldr<a [ oo
@ 0

exp

z

]dz,

exp

for each ¢ € Wol’p N L () with ¢ > 0. Actually this holds for any ¢ € Wol’p(Q)
with ¢ > 0. By substituting ¢ with tp with £ > 0 we obtain

/Y@ZA%V@'VWA ;adefa/ZWWWA
§ texp o

f] dx.
texp

Letting t — +o00, and taking into account ([5.71)), it results
/ VeLoo(x,V2) - Vodr = a/ P o dr (5.72)
Q Q

for each ¢ € WP (2) with ¢ > 0. Clearly (5.72) holds for any ¢ € Wy?(Q2), so that
z is a positive eigenfunction related to «. This is a contradiction by [94] Remark
1, pp. 161]. O

Theorem 5.22. Let ¢ € R, a > Ay and t > 0. Then f; satisfies the (PS).-
condition.

Proof. Since f;(u) = £ (t';u), it is sufficient to combine Theorem Theorem
and Proposition [5.1 ]
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5.10. Min-Max estimates. Let us first introduce the “asymptotic functional”
foo : Wy P(Q) — RU {400} by setting

Foolu) = fQ Loz, Vu) dx — %fQ uP dx + fQ ¢11]_1u dr ifuée Ky
- 00 if u g Koo
where

Kooz{ueWOl’p(Q):uZO a.e. inQ}.

Proposition 5.23. There exist r > 0, 0 > 0 such that

(a) for every u € Wy(Q) with 0 < ||ul|1, <7 then fo(u) > 0;
(b) for every u € Wy (Q) with |ully, =7 then foo(u) > o > 0.

Proof. Let us consider the weakly closed set

K*:{UEKOO:/foo(x,Vu)d:cfg/upd:c §1/$OO($,Vu)dx}.
Q P Ja 2 Jo

In K \ K* the statements are evident. On the other hand, it is easy to see that
inf{/ vy tdr v e K*, o, =1} =¢>0
Q
arguing by contradiction. Therefore for each v € K* we have

foolu) = / Loz, Vu) dx — g/ uP dx —|—/ o ude > cllullf , + ellull1p
Q P Ja 2 ’
where ¢ € R is a suitable constant. Thus the statements follow. O

Proposition 5.24. Letr > 0 be as in the Proposition[5.23|. Then there exist t > 0,
o’ > 0 such that for every t >t and for every u € Wy'*(Q) with |lull1, = r, then
ft(u) 2 O'/.

Proof. By contradiction, we can find two sequences (t,) C R and (up,) € Wy ?(Q)
such that tj, > h for each h € N, [Jup||1,, = r and fy, (up) < £. Up to a subsequence,

(up,) weakly converges in Wy () to some u € Ku. Using (b) of [79, Theorem 5|,
it follows that

foolu) < limhinf S, (up) <0.
By (a) of Proposition we have u = 0. On the other hand, since

limhsup Jn(up) <0 = foo(u),

using (c) of [79, Theorem 5] we deduce that (us,) strongly converges to u in W, * (1),
namely |lull1,, = r. This is impossible. O

Proposition 5.25. Let o', as in Proposition m Then there exists t > T such
that for every t > there exist vy, w; € Wo'P(Q) such that |[vg|yp < 7, |Jwill1p > 7,
fe(v) < %/ and fi(wy) < %/ Moreover we have

sup {ft((1 — s)ve + swy) : 0 < s < 1} < +o0.
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Proof. We argue by contradiction. We set £ = ¢ + h and suppose that there exists
(t) such that t, > h+t and such that for every vy, ,wy, in Wy*() with ||vs, [|1., <

T, |lwy, ||1,p > 7 it results fi, (vy,) > "7, and fy, (wy,) > % It is easy to prove that

there exists a sequence (up) in K3, which strongly converges to 0 in WO1 P(Q) and

therefore ||up|l1, < 7 and fi, (ug,) < %’ eventually as h — +oo. This contradicts

our assumptions. In a similar way one can prove the statement for w;, while the
last statement is straightforward. [

5.11. Proof of the main result.

Proof of Theorem|5.14 By combining Theorem [5.22] propositions and we
can apply Theorem [2.9] and deduce the assertion. O

6. PROBLEMS WITH L0OSS OF COMPACTNESS

The material in this section comes from [127, [130} [107], to which refer the reader.
Some parts of these publications have been slightly modified to give this collection
a more uniform appearance.

6.1. Positive entire solutions for fully nonlinear problems. In the last few
years there has been a growing interest in the study of positive solutions to vari-
ational quasi-linear equations in unbounded domains of R", since these problems
are involved in various branches of mathematical physics (see [20]). Since 1988,
quasi-linear elliptic equations of the form

—div (¢(Vu)) = g(z,u) in R, (6.1)

have been extensively treated, among the others, in [14} [45] [69], 93] 143] by means
of a combination of topological and variational techniques. Moreover, existence of
a positive solution v € H'(R") for the more general equation

n 1 n
— Z Dj(a;j(x,u)D;u) + 3 Z Dga;j(x,u)D;uDju+ b(xz)u = g(x,u) in R",

1,j=1 1,j=1
behaving asymptotically (|a| — +00) like the problem
—Au+u=u"t inR",

for some suitable A\ > 0 and ¢ > 2, has been firstly studied in 1996 in [48] via
techniques of non-smooth critical point theory. On the other hand, more recently,
in a bounded domain € of R™ some existence results for fully nonlinear problems
of the type

—div (Ve ZL(x,u, Vu)) + D L (x,u, Vu) = g(x,u) in Q

u=0 on 09, (6.2)

have been established in [6, 112} [132]. The goal of this section is to prove existence
of a nontrivial positive solution in W?(R") for the nonlinear elliptic equation
—div (VeZ (2, u, Vu)) + D2 (z,u, Vu) + b(z)[ulP~?u = g(z,u) inR", (6.3)
behaving asymptotically like the p-Laplacian problem
—div (|[VuP?Vu) + AjufPPu=u?"" inR",
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for some suitable A > 0 and ¢ > p. In other words, equation (6.3 tends to regularize
as || — 400 together with its associated functional f: W1P(R") — R

1
flu) = f(z:,u,Vu)derZ;/

Rn

b(x)|ul? dx — / G(z,u)dx. (6.4)

n n

Since in general f is continuous but not even locally Lipschitzian, unless .Z does
not depend on u or the growth conditions on .Z are very restrictive, we shall refer
to the non-smooth critical point theory developed in [36] 50, [58] [R6, [87] and we
shall follow the approach of [4§].

We assume that 1 < p < n, the function .Z : R® x R x R® — R is measurable
in z for all (s,£) € R x R", of class C! in (s,&) for a.e. z € R™ and Z(z,s,-) is
strictly convex and homogeneous of degree p. Take b € L°°(R"™) with b < b(z) <b
for a.e. x € R™ for some b,b > 0. We shall assume the following:

e There exists v > 0 such that
VIEP < Z(o.5,6) < P (6.5)
for a.e. z € R™ and for all (s,£) € R x R™;
e there exists ¢; > 0 such that:
DL (x,5,8) < i€, (6.6)

for a.e. z € R™ and for all (s,£) € R x R™.
Moreover, there exist c; > 0 and a € LP (R™) such that
Ve (2,5,6)| < alx) + cals| 7 + calelP ", (6.7)

for a.e. z € R™ and for all (s,£) € R x R™;
e there exists R > 0 such that

$s>R=D;%(x,5,&)s>0, (6.8)

for a.e. z € R™ and for all (s,£) € R x R™.
e uniformly in s € R and §,7 € R® with [{| < 1 and |n| <1

m Ve (ws.6)n = e, (6.9)
fim D (a5, 6)5 =0, (6.10)
x|—+o0

lim b(z) =\, (6.11)
|z|—+oc0

for some A > 0 and with b(z) < X for a.e. x € R™.
e G :R" xR — R is a Carathéodory function, G(z,s) = [; g(x,t)dt and
there exist > 0 and ¢ > p such that

§>0=0<q¢G(z,s) <g(z,s)s, (6.12)
(¢ —p)ZL(z,5,8) — DL (z,5,8)s =2 Bl (6.13)

for a.e. € R™ and for all (s,£) € R x R". Moreover there exist o € |p, p*|
and ¢ > 0 such that:

l9(@, s)] < d(z) +¢ls|]”7", (6.14)

for a.e. z € R™ and all s > 0, where d € L"(R"™) with r € [;f;, 0 [
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e Also (2,5)
) g(z,s
1 AL | 6.15
|x\i>151-oo s7—1 ’ ( )
uniformly in s > 0 and
im Gl s) =0, (6.16)
|s|]—0 |S|p

uniformly in z € R” and g(z,s) > s9~! for each s > 0.
Under the above assumptions, the following is our main result.
Theorem 6.1. The Euler’s equation of f
—div (Ve ZL (2, u, Vu)) + Dy (z,u, Vu) + blulPu = g(z,u) nR™  (6.17)
admits at least one nontrivial positive solution u € WHP(R™).

This result extends to a more general setting [48, Theorem 2] dealing with the

case
n

Z aij($7 S)Slgj )
ij=1
and Theorem 2.1 of [45] involving integrands of the type:
1
f(x,g) = Ea($)|§‘p ’

where @ € L*®(R) and 1 < p < n. Let us remark that we assume for large
values of s, while in [48] it was supposed that for a.e. € R™ and all £ € R™

ZL(x,5,8) =

N |

n
VseR: Z staij(x, S)fzfj > 0.
i,j=1

This assumption has been widely considered in literature, not only in studying
existence but also to ensure local boundedness of weak solutions (see e.g. [6]).

Condition ([6.13) has been already used in [6, 112, [132] and seems to be a natural
extension of what happens in the quasi-linear case [36].

We point out that in a bounded domain, condltlons 6. 1 and 6.13) may be
assumed for large values of s (see e.g. [132]). Fmally 1@) 0), (6.11 -Hnd (6.15))

fix the asymptotic behavior of (6.3). By (6.9) and (6.10) there exist two maps
51:R"XRXR”XR”—MRandez:R"xRxR"aRsnchthat

ng(l‘, 875) = |£‘P—2§ -1 + 51(33, S, §7 77)‘§|p_1|77| (618)

D Z(x,5,8)s = ea(x,5,§)[€]" (6.19)

where €1(z,s,£,m7) — 0 and e2(x,s,£) — 0 as || — +o0o uniformly in s € R and
&,neR".

6.2. The concrete Palais-Smale condition. Let us now set for a.e. x € R"™ and
for all (s,£) € R x R™

~ L(x,s8,8) ifs>0 _ glx,s) ifs>0
P(w,5,6) = 5) = 6.20
(@,5,8) {z(x,o,g) s Y@ {0 ifs<o, (020
We define a modified functional f : W1P(R") — R by setting
flu) = ,?(x, u, Vu) do + ! / b(z)|ul? dx — G(z,u) da. (6.21)
R™ P Jgrn R"
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Then the Euler’s equation of J?is given by :
—div (Vg.,é”v(x, u, Vu)) + Dscé”v(as, u, Vu) + b(x)[ulP?u = g(z,u) in R". (6.22)
Lemma 6.2. Ifu € WYP(R™) is a solution of (6.22)), then u is a positive solution

of (6.17).
Proof. Let @ : R — R the Lipschitz map defined by:

0 ifs>0
Q(s)=1<(s if —1<s<0
-1 ifs<—1.

Testing f'(u) with Q(u) € WP N L>®(R™) and taking into account (6.20) we have:

0= f"(u)(Q(u))
— /n Vgﬁx, u, Vu) - VQ(u) dz

z,u, Vu)Q(u) dz ) [ulP~?uQ(u) dr — g(z,u)Q(u) dx
+ [ DZlaVuQuyde+ [ W@l u@u)ds = [ Gl wQ)d

= / VeZ(2,0,Vu) - Vudz + / D,Z(z,u,Vu)Q(u) dx
{—1<u<0} {u<0}

+/Rn b(2)|u|P*uQ(u) dx —/ g(z,u)Q(u) dx

{u<0}

z/ pZL(x,0,Vu) dx—|—/ b(x)|ulP~?uQ(u) dx
{—1<u<0} {u<0}

> b/]R |ulP~2uQ(u) dz > 0.
In particular, it results Q(u) = 0, namely u > 0. O
Therefore, without loss of generality we shall suppose that
Vs <0: g(z,s) =0, ZL(z,s¢&) =L(x,0,§)
for a.e. x € R™ and all £ € R™.
Lemma 6.3. Let c € R. Then each (CPS).-sequence for f is bounded in WP (R™).

Proof. If (up,) is a (CPS).-sequence for f, arguing as in [48, Lemma 2], since
) = () (w) = -+ o(1)
as h — +o0, by and we get:
B A |Vup|? dz + %b/ lup [P dx < C

n

for some C > 0, hence the assertion. (I

Let us note that there exists M > 0 such that:
|D5$($,S,§)| < MV§$($,S,§)£ (623)

for a.e. € R™ and for all (s,&) € R x R™.
We now prove a local compactness property for (CPS).-sequences. In the fol-
lowing, 2 € R™ will always denote an open and bounded subset of R"™.
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Theorem 6.4. Let (uy,) be a bounded sequence in WHP(R™) and for each v €
C(R™) set
(wp,v) = Vel (z,up, Vug) - Vodz + D, 2 (x,up, Vup)v dz. (6.24)
R™ Rn
If (wy,) is strongly convergent to some w in W=7 () for each Q € R™, then (up)

admits a strongly convergent subsequence in WP(§) for each ) € R™.

Proof. Since (uy) is bounded in W1?(R"), we find a u in W1P(R") such that, up
to a subsequence, uy — u in W1P(R™). Moreover, for each 2 € R™ we have:

up, = u in LP(Q), wup(x) — u(z) for a.e. x € R™.

By a natural extension of [22) Theorem 2.1] to unbounded domains, we have
Vup(xz) — Vu(z) for a.e. z € R™. Then, following the blueprint of [132, The-
orem 3.2] we obtain for each v € C2°(R™)

(w,v) = VeZ(x,u, Vu) - Vode + D,Z(z,u, Vu)v dz. (6.25)
Rn Rn
Choose now 2 € R™ and fix a positive smooth cut-off function n on R™ with n =1

on ). Moreover, let ¥ : R — R be the function defined by

Ms ifo0<s< R

3(s) = MR ifs>R (6.26)
) -Ms if —R<s<0 '

MR ifs<—R,
where M is as in (6.23). Since by [I32 Proposition 3.1] vy, = nup exp{d(up)} are
admissible test functions for (6.24)), we get

Ve (x,un, Vuy) - Vupnexp{d(up)} de — (wp, nup, exp{d(un)})
Rn

+ Ve (@, up, Vuy) - Viuy, exp{d(up)} dx
R’ﬂ.

+ / [DsZ (x,un, Vup) + 9" (up) Vel (x, up, V) - Vup] nuy, exp{d(uy)} dz
= 0. )
Let us observe that
Vel (z,up, Vug) - Vuy, — Ve Z(z,u, Vu) - Vu for a.e. z € R™.
Since for each h € N we have
[—Ds.Z(x, up, Vup) — ¥ (up) Ve L (x,un, Vuy) - Vug] nuy, exp{d(up)} <0,

Fatou’s Lemma yields

lim Sup/ [—Ds.Z(x,up, Vup) — ¥ (up) Ve L (z, un, Vup) - Vug)
h n

x nup, exp{¥(un)} dx
< /n [—Ds.Z(z,u, Vu) — ¥ (u)VeZ (z,u, Vu) - Vu] nuexp{d(u)} dz.
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Therefore, we conclude that

lim sup Ve (x,up, Vuy) - Vupnexp{d(up)} dz
h R"

< lim sup { / [—Ds 2z, un, Vup) — 9 (up)Ve L (x,un, Vup) - Vup]
h n

x nup, exp{9(up)} dx + (wp, nup, exp{I(up)})

- Vel (z,up, Vuy) - Viuy, exp{ﬂ(uh)}dx}
R’Vl

< { /n [—Ds.Z(z,u, Vu) — ¥ (u)Ve L (z,u, Vu) - Vu] nuexp{d(u)} dx

VeZ(x,u, Vu) - Vnuexp{d(u)} dx}

n

T fw, puexp{d(u)}) — /

= Vel (z,u, Vu) - Vunexp{d(u)} dz,
Rn

where we used (6.25) with v = nuexp{d(u)}. In particular, we have

Ve (x,u, Vu) - Vunexp{d(u)} dz
R‘VL

< limhinf Ve L (x, up, Vuy) - Vupnexp{9(up)} dx
R’!L

< lim sup Ve L (x, up, Vuy) - Vupnexp{9(up)} dx
h R

< Ve (x,u,Vu) - Vunexp{d(u)} dz,
Rn

namely

li}ILn Ve (x,up, Vuy) - Vupnexp{d(up)} dz
]Rn

= Ve (x,u, Vu) - Vunexp{d(u)} dx.
]Rn

Since .Z(x, s, -) is p-homogeneous, by (6.5]) for each h € N we have
vp|Vup|P < nexp{d(un)}VeZ (2, un, Vur) - Vup,
by the generalized Lebesgue’s theorem we deduce that:

lim/ n|Vup|? dﬂc:/ n|Vul? dz.
h Jgrn R

Up to substituting n with nP, we get:
lim/ InVuy|P de = / InVulP dz,
h R’n RTL

nVup, — nVu in LP(R™),
namely Vup, — Vu in LP(Q). O

which implies that

Let us remark that, in general, since the imbedding W1?(R") < LP(R") is not
compact, we cannot have strong convergence of (C'PS). sequences on unbounded
domains of R™. Nevertheless, we have the following result.
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Lemma 6.5. Let (uy,) be a (CPS).-sequence for f. Then there exists u in W1P(R™)
such that, up to a subsequence, the following facts hold:

(a) (up) converges to u weakly in WHP(R™) ;

(b) (up) converges to u strongly in WHP(Q) for each Q € R™;

(c) u is a positive weak solution to (6.3).

Proof. Since by Lemma the sequence (uy,) is bounded in WP(R™), of course
(a) holds. Now, fixed Q2 € R", if we set

wp, = Y + g(x,up) — blup|P2uy € W_l’p/(Q), v — 0 in WL (Q),

(b) follows by Theorem [6.4 with w = g(z, u) — blu|P~?u. Finally by Lemma (¢)
is a consequence of equation (6.25]). O

Let us now prove a technical Lemma that we shall use later.

Lemma 6.6. Let ¢ € R and (up) be a bounded (CPS).-sequence for f. Then for
each € > 0 there exists ¢ > 0 such that

/ [Vup|Pde <e
{lunl<e}
for each h € N.

Proof. Let €, 0 > 0 and define for § €]0, 1] the function ¥5 : R — R by setting
s if |s|] <o
o+dp—0s ifp<s<o+%
—0—0p—0ds if —p—$¢<s<—p
0 if [s| > o+ %.

Since ¥5(up) € WHP(R™) N L*°(R"™), we get

(wp, Is(up)) = / VeZ(x, un, Vuy) - Vis(up) de

n

Us(s) = (6.27)

+ Dsg(x,uh,Vuh)ﬁg(uh)dm—i-/ b|uh|p_2uh195(uh)
R‘n, R'n

—/ g(x, up)9s(up) dz.
Then condition (6.8), b(z) > 0 and |[Js(up)| < o yield

Ve (x,un, Vuy) - VOs(up) de
Rﬂ.

1 ’
< [ otoun)dsun) do -+ ol + —g—r lunlls + Bl

P
ppror
Since (up) is bounded in W'P(R™), there exists 6 > 0 such that dfusl|}, < ev/8
and

1) Ve L (x, up, Vuy) - Vup dr < %/, (6.28)
R7l

uniformly with h € N so large that ——[lwn|”, , < . Now, since

P
p'pP o

P
P

/n g(x, up)9s(up) de < /{ - +g}g(x,uh)uh dx
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, /7'
< ||d||r</ lup|” dx) —|—c/ |up|? de,
lun|<o+% lun|<o+%
{ } { ¢}

5
we can find o > 0 such that
%

/ g(x,up)s(up) de < 3

and gllus|]} , < %¢. Therefore we obtain

1,p =
ev
/ Ve L (x, up, Vug) - VIs(up) de < —,
{|“h|§9+g} 2
namely, taking into account (6.28))
/ VeZ(x, un, Vug) - Vup de < ev.
{lunl<e}
By (6.5) the proof is complete. O

Let us now introduce the “asymptotic functional” f., : W1HP(R™) — R by setting

1 1
Faolu) = 7/ IVl do + 5/ |u|de—f/ |7 da
P Jrn P Jrn q Jrn

and consider the associated p-Laplacian problem
—div (|[VuP?Vu) + AufP?u =u?""  in R

(See [45] for the case p > 2 and [19] for the case p = 2).
We now investigate the behavior of the functional f over its (C'PS).-sequences.

Lemma 6.7. Let (up) be a (CPS).-sequence for f and u its weak limit. Then
flun) = f(u) + foo(un —u), (6.29)

[ (un)(un) = f(u)(u) + fo (un — u)(up —u) (6.30)
as h — +o00, where the notation Ay =~ By, means Ay, — B, — 0.

Proof. By [37, Lemma 2.2] we have the splitting:

/n Gz, up) dx — / G(z,u) dz — é/ (up — u)*]9dz = o(1),

as h — +o0o0. Moreover, we easily get:

/ blup|P dx — / blulP dx — )\/ lup, — ulP dx = o(1),
R™ R™ R™
as h — +o00. Observe now that thanks to (6.18)) we have

/ VeZ(x, up, Vug) - Vuy, de — / |Vup|P de — 0, as ¢ — +oo,
{lz|>e} {lz|>e0}
uniformly in h € N and
/ VeZ(x,u, Vu) - Vudr — / |[Vu|P de — 0, as o — +o0.
{lz|>e} {lz|>0}

Therefore, taking into account that for each o > 0 there exists ¢, > 0 with

[Vun|P < ¢, |Vul? + (1 + 0)|Vu, — Vul?,
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we deduce that for each € > 0 there exists ¢ > 0 such that for each h € N

/ Vel (x,up, Vug) - Vuy, do — / VeZ(z,u, Vu) - Vudz
{lz[>e} {lz>e}

—/ |V (up — w)|P de < ¢e,
{lz|>e}

for some ¢ > 0. On the other hand, since by Lemma [6.5| we have
Vup, — Vu in LP(B(0,0),R"),

we deduce

/ Ve (x,un, Vuy) - Vuy do = / VeZ(x,u,Vu) - Vudr + o(1),
{lz|<e} {lz|<e}

as h — +o0o. Then, for each £ > 0 there exists h € N such that

/ Vel (x,up, Vug) - Vuy, do — / VeZ(z,u, Vu) - Vudz
{lz[<e} {lz|<e}

—/ |V (up —w)|P de < ¢,
{lz|<e}
for each h > h, for some ¢ > 0. Putting the previous inequalities together, we have

VeZ(x,un, Vup) - Vuy de
]Rn

= Ve (x,u,Vu) - Vude + / IV (up, — w)|P dz + o(1)
R’n

n

as h — +oo. Taking into account that Z(z, s, -) is homogeneous of degree p, (6.29)
is proved. To prove ((6.30)), by the previous step and condition (6.15)), it suffices to
show that

D, % (x,up, Vup)up de = D% (x,u, Vu)udz + o(1), (6.31)
R‘IL Rn
as h — 4oo. By (6.19), we find b1,b2 > 0 such that for each € > 0 there exists
o > 0 with

/ D% (x,up, Vup)up de < bye, / D; % (x,u, Vu)udr < bye,
{lz|>o} {

x>0}
uniformly in & € N. On the other hand, combining (b) of Lemma [6.5] with (6.13)),
the generalized Lebesgue’s Theorem yields

/ D2 (x,up, Vup)up de = / D% (x,u, Vu)udz + o(1),
{lz|<e}

{lz|<e}

as h — +o0. Then, (6.30) follows by the arbitrariness of &. O
Let us recall from [97, Lemma I.1] the following result.

Lemma 6.8. Let 1 < p < oo and 1 < g < oo with q # p*. Assume that (up) is a
bounded sequence in L1(R™) with (Vuyp,) bounded in LP(R™) and there exists R > 0
such that:

sup / lup|?dx = o(1),

yER™ Jy+Bpr
as h — 4o00. Then up, — 0 in L(R™) for each o €]q, p*|.
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Let (up) denote a concrete Palais-Smale sequence for f and let us assume that

/

its weak limit u is 0. If 22, < r < p/, recalling that by 1) it results

n+p’

DL (x,up, Vup)up dx = o(1),
R"L

as h — 400, we get

pc = pf(up) — f'(up)(up) +o(1) < /n g(z, up)uy, do+

+o(1) < |ld]|r[lunllr + ellunllz + o(1).

Hence, either |lup||,» or |lupl|, does not converge strongly to 0. If we now apply
Lemma [6.8 with p = ¢ (note also that p < r’,o < p*), taking into account that (us)
is bounded in W?(R") we find C' > 0 and a sequence (y) C R™ with |y,| — 400

such that
/ |up|P dx > C',
yn+BRr

for some R > 0. In particular, if 7,up(x) = up(xz — yp), we have

/ |ThuplP doe > C
Br

and there exists u # 0 such that:

Thup, — 1 in WHP(R™). (6.32)
Ifr= #pg),, the same can be obtained in a similar fashion since for each € > 0 there
exist
di. € LYR"Y) (e ]Lp/ Pl doe € LEE (RY)

\E n + p, ) ) ,E

such that
d= dl,e + d2,57 ||d2,6 _np’_ <e.
ntp’

We now show that @ is a weak solution of

—div (|VuP?Vu) + AjulPPu=u?"" inR" (6.33)

Lemma 6.9. Let (up) a (CPS).-sequence for f with up, — 0. Then U is a weak
solution of (6.33)). Moreover w > 0.

Proof. For all ¢ € C(R™) and h € N we set
Yz € R™: (thp)(x) := o(x + yn).
Since (up) is a (C'PS).-sequence for f, we have that
Vo e CXR™) : ['(un)(rp) = o(1),

namely, as h — 400

/ Vel (@, un, Vup) - Vr'ode + | Do (x,up, Vup)r"p do
. .

+/ b(x)|uh\p_2uh7hgodx—/ gz, up) o dx = o(1).

n

Of course, as h — 400 we have

/ b(z)|uh|p72uh7'h<p dx = / b(x — yh)|Thuh|p727huhga dzx
" supp ¢
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— A [a|P~27 o dz,
R"'L

/ g(@, up)m" o da = / 9(@ — yn, mun)pdr — | [at|" o da.
n supp ¢ R
Next, we have

Ve (@, up, Vuy) - Vrhedx
]R'n.

= / VE,,?(:C — Yn, ThUp, VTrup) - Vo da
supp ¢

— |Va[P=2Va - Vo de.
Rn

Now, for each € > 0, Lemma [6.6] gives a o > 0 such that

D% (x,up, Vuh)Thcp dx < ce+ / DL (x,up, Vuh)Thgo dx.

R {lun|>e}

On the other hand, by (6.10) we have

/ Dsf(x,uh,Vuh)Thgodx
{lun|>eo}

= / Dy ZL(x — yn, Thun, VTrup)p de = o(1),
supp N {|Trun|>0}

as h — +oo. By arbitrariness of € we conclude the proof. Finally w > 0 follows by
Lemma [6.2] and @ > 0 follows by [142, Theorem 1.1]. O
Lemma 6.10. Let (up) be a (CPS).-sequence for f with up, — 0. Then

foo(@) < limhinf foo(Thup).

Proof. Since (uy) weakly goes to 0, Lemma [6.7] gives f2, (us)(up) — 0 as b — +oo,
so that
fio(thup) (thup) — 0 as h — +oo,

namely
/ |V Thup|P de + )\/ |Thun P do — / (thuf)?dz — 0
n Rn R‘IL

as h — +o00. Therefore

1 1

foo(Thuh) - (; - 5) /H(Thu;)q dx — 0.

Similarly, Lemma yields

*—171 ul? dx
folw) = (o= 2) [ fulvae,

and the assertion follows by Fatou’s Lemma. O
Lemma 6.11. If (up) is a (CPS).-sequence for f with up, — 0, then foo () < c.
Proof. Since Lemma yields

flun) = foo(Thun), as h — +oo,

by the previous Lemma we conclude the proof. [
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We finally come to the proof of the main result of this section.

Proof of Theorem[6.1]. Since G is super-linear at +oo, , for all u in the space
whP(R")\{0},
u>0 = lim f(tu) = —o0.
t——+o0
Let v € C°(R™) positive be such that for all ¢ > 1 : f(tv) < 0, and define the
min-max class
I'={yeC(0,1,W'"([R") :7(0) =0, ~(1)=v},

and the min-max value

= inf t)).
c erelrtren[gﬁ]f(v( )

Let us remark that for each u € WHP(R™)
b
@) = vVl + 2l = [ Glo) e

Then, since by (6.16]) it results

G
hmf . Gz, wy)

=0
e Jwnl

P
1,p

for each (wy,) that goes to 0 in WHP(R™), f has a mountain pass geometry, and by
the deformation Lemma of [36] there exists a (CPS).-sequence (uy) C WhP(R™)
for f. By Lemma it results that (up) converges weakly to a positive weak
solution u of . Therefore, if u # 0, we are done. On the other hand, if u =0
let us consider u. We now prove that uw is a weak solution to our problem. Since
we have for each u € WP (R™)\{0}

u>0= tligloo foo(tu) = =00,
we find R > 0 so large that
Va,b>0: a+b=R= fo(au+bv) <O0.
Define the path « : [0,1] — W1P(R") by
3Rtu ift € [0,31]
y(t) =< (Bt —1)Rv+ (2—3t)Ru ift € [, 2]
]

s foo(1(1)) = foo (@).

'3
Hence, by Lemma (/6.11)) and the assumptions on .Z and g, we have

c< nax f(v(®) < Jnax fo(7(1) = foo (@) < c.

Therefore, since 7 is an optimal path in I, by the non-smooth deformation Lemma
of [36], there exists ¢ €]0, 1[ such that (%) is a critical point of f at level c. Moreover

~(t) = @, otherwise
fO@) < fo (V1) < foo(W) = ¢,
in contradiction with f(v(f)) = ¢. Then @ is a positive solution to (6.3]). O
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Remark 6.12. Let 1 <p <n, ¢ >pand A > 0. As a by-product of Theorem [6.1]

taking

1 A 1
$($7s7£) = 7|§‘p + 7|s|p - 7|S|q7
p p q
we deduce that the problem

—div (|VuP?Vu) + AufP?u = [u[?%u  inR", (6.34)

has at least one nontrivial positive solution u € WHP(R™). (see also [45] [143]).
In some sense, Theorem [6.1] implies that the e-perturbed problem

—div (1 + &(z, u, Vu))|[VulP72Vu) + MufP e = [u|! e in R", (6.35)
has at least one nontrivial positive solution v € WP(R™).
Remark 6.13. By [0, Lemma 1.4] we have a local boundedness property for solu-
tions of problem (6.3), namely for each Q € R" each weak solution u € WP(Q) of

(6.3) belongs to L>(£2) provided that in (6.14)) is d € L*(Q2) for a sufficiently large
s. (see [6l, B6]).

6.3. Fully nonlinear problems at critical growth. Let Q2 C R" be a bounded

domain, 1 < p<nandp < q<p* = n”—_’;?. In this section we are concerned with

the existence of two nontrivial solutions in W,"*(€2) of the problem (6.36)),
—div (Ve Z(x,u, Vu)) + D& (z,u, Vu) = |u
u=0 on 00

P2y 4 Mu|f2u+eh in Q

(6.36)
with h € LPI(Q), h # 0, provided that € > 0 is small and A > 0 is large.
Motivations for investigating problems as come from various situations in
geometry and physics which present lack of compactness (see e.g. [28]). A typical
example is Yamabe’s problem, i.e. find u > 0 such that

_4n
n

—1
2AMu = R'u("2/("=2) _ R(z)u on M,

for some constant R’, where M is an n-dimensional Riemannian manifold, R(z)
its scalar curvature and —Aj; is the Laplace-Beltrami operator on M. Since p*
is the critical Sobolev exponent for which the embedding W, * () < LP"(Q) fails
to be compact, as known, one encounters serious difficulties in applying variational
methods to . As known, in general, if A =0 and A = 0, to obtain a solution
of

—Ayu=|ul "2u inQ
=0 on 0,
one has to consider in detail the geometry of Q (see e.g. [16]) or has to replace
the critical term u? ~! with «?” ~1~¢ and then investigate the limits of u. as e — 0
(nearly critical growth, see [72] and references therein). Let us now assume that
h =0 and A # 0. As we showed in Corollary [0.2I] by the general Pohozéev identity
of Pucci and Serrin [I16], if
PV L (x,8,8) -2 —nD; L (x,8,&)s > 0,

a.e. in Q and for all (s,§) € R x R™, then (6.36) admits no nontrivial smooth
solution for each A < 0 when the domain (Q is star-shaped and .Z is sufficiently
smooth. Therefore, in this case we are reduced to consider positive A. Let us briefly
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recall the historical background of existence results for problems at critical growth
with lower-order perturbations. In 1983, in a pioneering paper [28], Brézis and
Nirenberg proved that the problem
—Au = oD/ LNy in Q
u>0 in{)
u=0 on N

has at least one solution u € H{ () provided that

N e (O,)\l) ifn24,
(A1/4, A1) ifn=3and Q= B(0,R),
where )\ is the first eigenvalue of —A in 2. The extension to the p-Laplacian was

achieved by Garcia Azorero and Peral Alonso in [70, [7I] (see also [1I]). Namely,
they proved the existence of a nontrivial solution of:

—Ayu = |ulP "2u+ M| %u in Q
u=0 on Jf

provided that

0,\1) ifl<p=gq<p*andp?<n;
Ao,00) if1<p<q<p*andp?>n;
ifl<p<qg<pandp?<n;
if max{p,p* — 2} <q<p*,
where A is the first eigenvalue of —A, and A is a suitable positive real number.
Finally, for bifurcation and multiplicity results in the semi-linear case (p = 2), we
refer to the paper of Cerami, Fortunato and Struwe [3§].

Let us now assume h # 0. Then, a natural question is whether inhomogeneous
problems like have more than one solution. For bounded domains one of the

first answers was given in 1992 by Tarantello in [I40], where it is shown that the
problem

—Au=|u* 2u+h(z) nQ
u=0 ondf

admits two distinct solutions uy,uy € HE(Q) if ||h]|2 is small. The existence of two
nontrivial solutions for the p-Laplacian problem

—Apu = |ulP "2u+ A" %u + h(z) in Q
u=0 on df

for 1 < p < q < p*, Xlarge and ||h]|,y small enough, has been proven in 1995 by
Chabrowski in [4I]. This achievement has been recently extended by Zhou in [148]
to the equation:

—Aju+clulPu = [uP 2+ f(e,w) + hiz)

on the entire R”, where f(x,u) is a lower-order perturbation of |u[P"~2u. This
case involves a double loss of compactness, one due to the unboundedness of the
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domain and the other due to the critical Sobolev exponent. Now, more recently,
some results for the more general problem

—div (Ve Z(x,u, Vu)) + D Z(x,u, Vu) = g(z,u) in Q
u=0 on Jf

with g subcritical and super-linear have been considered in [6l [112] and [I32]. It is
therefore natural to see what happens when ¢ has a critical growth.

A first answer was given in 1998 by Arioli and Gazzola in [I0], where they proved
the existence of a nontrivial solution u € H} () for a class of quasi-linear equations
of the type

n n
- Z Dj(ai;(z,u)D;u) + % Z Dgagj(x,u)DiuDju = |u* ~2u+ M,  (6.37)
i,j=1 ,5=1

where the coefficients (a;;(x, s)) satisfy some suitable assumptions, including a semi-
linear asymptotic behavior as s — 400 (see remark .

Now, in view of the above mentioned results for —A, —A,, we expect that
problems (2 ) admits at least two nontrivial solutions for € small and A large.
To prove this, we shall argue on the functional f; j : Wol’p () — R given by

1 .
fE’A(u):/f(x,u,Vu)dx——*/ |ul? dx—é/ |u|qd:c—5/hudx, (6.38)
Q P Ja qJq Q

where W, ?(€) will be endowed with the norm |[ul|;, = (J;, |Vul? dx)l/p.

The first solution is obtained via a local minimization argument while the second
solution will follow by the mountain pass theorem without Palais-Smale condition
in its non-smooth version (see [36]).

In general, under reasonable assumptions on .2, f. » is continuous but not even
locally Lipschitzian unless . does not depend on u or is subjected to some very
restrictive growth conditions. Then, we shall refer to the non-smooth critical point
theory developed in [36, 50} 58].

We assume that Z(z,s,£) : @ x R x R" — R is measurable in z for all (s,§) €
R x R", of class C! in s and of class C? in ¢ and that .Z(x, s, -) is strictly convex
and p-homogeneous with £ (x, s,0) = 0. Moreover, we shall assume that:

e There exists v > 0 such that
v
L(x,5,6) > ;Iﬁl”

a.e. in  and for all (s,£) € R x R"™;

e there exists c¢1,co € R such that
|DsZ(,5,8)] < cr|€]P
a.e. in  and for all (s,&) € R x R™ and
Vi L (,5,6)| < el (6.39)

a.e. in  and for all (s,£) € R x R"™;
e there exist R > 0 and v €]0, ¢ — p[ such that

|s| > R= D;%(x,s,§)s >0 (6.40)
a.e. in  and for all (s,£) € R x R™ and
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a.e. in  and for all (s,£) € R x R™.

Assumptions (6.40) and (6.41)) have already been considered in literature (see [0,
112, [132]). Under the previous assumptions, the following is our main result:

Theorem 6.14. There exists N\g > 0 such that for all A > Ay there exists eg > 0
such that (6.36) has at least two nontrivial solutions in Wol’p(Q) foreach0 < e < gg.

This result extends the achievements of [4I] [I40] to a more general class of
elliptic boundary value problems. We stress that, unlike in [41], we proved our
result without any use of concentration-compactness techniques. Indeed, to prove
the existence of the first solution as a local minimum of f. ), we showed that our
functional is weakly lower semi-continuous on small balls of WO1 P(Q). From this
point of view, our approach seems to be simpler and more direct. Furthermore,
we gave in Theorem a precise range of compactness for f. x. This, to our
knowledge, has not been previously stated for fully nonlinear elliptic problems and
not even for the quasi-linear elliptic equation . In fact, in [I0] it was only
found a “nontrivial energy range” for the functional, inside which weak limits of
Palais-Smale sequences are nontrivial and are solutions of (6.37).

Remark 6.15. Note that no asymptotic behavior has been assumed on Z(z, s, §)
and Ds.Z(x,s,£)s when s goes to +o00, while in [I0], to prove that problem (6.37)
has a solution, it was assumed that

lirJP ai;(x,s) = 0;5, lir+n sDsa;j(x,s) =0, (4,j=1,...,n)

uniformly with respect to x € 2, namely problem ((6.37) converges “in some sense”
to the semi-linear equation —Au = |u|> ~2u + u.

Remark 6.16. We point out that we assumed (6.40)) just for |s| > R, while in [I0],
for problem (6.37)), it was assumed that:

VseR: Z sDsa;j(x, )& >0
ij=1

for a.e. x € Q and each £ € R™.

6.4. The first solution. Let us note that by combining .Z(z, s,0) = 0 and (6.39),
one finds by, b > 0 such that:

f(x,s,f) < b1|£|pa (6.42)
for a.e. € Q and each (s,£) € R x R" and
Vel (x,5,6)] < bol€[P~ (6.43)

for a.e. & € Q and each (s,§) € R x R®. We now prove a weakly lower semi-
continuity property for f. .

Theorem 6.17. There exists o > 0 such that the functional f. \ is weakly lower
semi-continuous on {u € WoP(Q) : [Jull1, < o}, for each A € R and £ > 0.

Proof. Let (up,) € Wy (Q) and u with us, — u in Wy ?(Q) and |Jup||1,, < o. Taking
into account that up to a subsequence we have

up, —u in LP(Q?), Vu, = Vu in LP(Q), (6.44)
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and up(z) — u(x) for a.e. z € Q, by the growth condition (6.42)), it results:

/Z(x,uh,Vu)dx:/Z(a:,u,Vu)dz—i—o(l),
Q Q

as h — +o0o. Also note that

/|uh|qdw:/|u\qu+o(1),

Q Q
/huhdm:/hudx—l—o(l),
Q Q

as h — +o0. In particular, it suffices to show that for o small:

liminf{/f(a:,uh,Vuh)dx—/f(a:,uh,Vu)dx
h Q Q

1 . 1 .
——*/ |up P da:+7/ |ulP da:} >0
P Jo P Ja

Let us now consider for each £ > 1 the function T : R — R given by

(6.45)

-k ifs< -k
Ti(s) =< s if —k<s<k
k ifs>k

and let Rg : R — R be the map defined by Ry = Id — T}, namely

s+k ifs<—k
Ri(s) =40 if —k<s<k
s—k ifs>k.

It is easily seen that

/i”(m,uh,Vuh)dacz/f(m,uh,VTk(uh))dx—&—/.i”(x,uh,VRk(uh)) dx,
Q Q Q
(6.46)

for each k € N. Of course, we also have
/ L(z,up, Vu)de = / L(z,up, VT (u))de +/ ZL(z,up, VRi(u)) dz, (6.47)
Q Q Q
for each k € N. Now, taking into account that

/ [ul” " up, — ul da = o1)
Q

as h — +o00, and that for any £ € N

/ Te(un) — Te(u)|P” d = o(1)
Q
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as h — 400, there exist ¢, co, c3 > 0 such that
1 « 1 .
—*/ lup|P dx — —*/ |u|? dx
P Ja P Ja
< / (\uh|p*71 + |u|p*71) |up, — u| dz
Q
< / lup, — ul?” da + o(1) (6.48)
Q
= / T (un) = Ti(u)|P" da + e / | Ric(un) — Ri(u)|”" dz + o(1)
Q Q
= 03/ |Ry.(up) — Ri(u)|P” dz + o(1)
Q
for any k fixed, as h — +o00. For each h,k € N we have

/f(x,uh,VRk(uh))de 5/ IV Ry, (up)|P da.
Q pJa

On the other hand, by the definition of R; we have

.,sf(x,uh,mk(u))dxgcl/ IV Ry (u)|P dz < < g/ VR ()P dz + o(1),
Q Q Q

as k — 400, uniformly in h € N. In particular, since for each k € N it holds
liminf{/ L(z,up, Ty (Vug)) de — / f(x,uh,Tk(Vu))dx} >0,
h Q Q
by (6.46)), (6.47) and (6.48) there exists ¢, > 0 such that:
liminf{/ Z(x,up, Vuy) de — / Z(x,up, Vu) dx
h Q Q
— [ dos [l d)
P Ja P Ja
> limhinf { / ZL(x,up, VR (up))dx — / Z(z,up, VRE(u)) dx
Q Q
—03/ [Bu(un) — i)} der}
@ , , (6.49)
> limi _ p — _ p
> limn {p /Q IV Rlun)? do = * /Q IV Ry (u)]P da
- 03/ Ry (up) — Ry ()] dx} —o(1) >
Q
Zlimhinf{cp / IV Ry (up) — V Ry (w)|P do
Q
~ o [ [Ru(un) ~ R do} ~ o(1)
Q

as k — 4o00. Now, by Sobolev inequality, we find b1, by > 0 with
lim inf {c,,/ IV Ri(un) — V Ry ()| dar — 03/ (Bi(un) — i) e}
h o) Q

> lim inf || R (un) — R () 3 {bl — by|| Ri(un) — Ris(u)

P —p
. } >0
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provided that ||up||1,, < o with o sufficiently small and independent of € and A. In
particular, (6.45) follows by (6.49) by the arbitrariness of k. O

Lemma 6.18. For each A € R there exist € > 0 and o,n > 0 such that
Vu € Wo(Q) : |lullip = 0 = fer(u) > 1.

Proof. Since

1 -
fea(u) > Z/ |Vu\de——*/ |ul? dx—é/ |u|qu—5/ hu dx,
P Ja P Ja qJo Q

arguing as in [4I Lemma 2], one gets

Fenw) = ullp {1l ol p) = 2lhllye™@) 5} (6.50)

where @) : [0, +00[— R is given by

v 8P, A .
pA(r) = £ = Zg? P = Seagn(@) 5 pap
p p q
for some ¢ > 0. The assertion now follows. O

Proposition 6.19. For each A € R there exists g > 0 such that (6.36]) admits at
least one nontrivial solution uy € Wol’p(Q) for each e < eg. Moreover fe x(u1) < 0.

Proof. Let us choose ¢ € W, () in such a way that: Jo h¢dx > 0. Therefore,
since for each ¢ > 0 it results

p~ . q
Fon(te) = tp/ P16,V ) d — L/ 6" da — Ai/ 167 dr — st/ ho da,
Q P Ja q Jo Q
there exists te » > 0 such that f. \(¢¢) < 0 for each ¢ €]0,t. A[. In particular,

i u) <0,

<o

for each o > 0 sufficiently small. Now, by Theorem [6.17] there exist ¢ > 0 and
uy € Wy (Q) with |Juy]|1,, < o such that:

fea(ur) = min  foa(u) <O.
llull1p<e
Moreover, up to reducing o, it has to be |Jui]1,, < ¢ if € > 0 is small enough,
otherwise by Lemma we would get f x(u1) > 0. In particular, u; is a solution

of ([630). O

Remark 6.20. Note that by (6.50)), one can get a weak solution of (6.36)) for each
e > 0 on domains Q with £7(€2) sufficiently small.

Remark 6.21. Following Lemmas 3 and 4 in [41], one obtains existence of a weak
solution also in the case p > ¢. On the other hand we remark that if p > ¢ and
A > 0 one has to require that £™(f) is sufficiently small.
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6.5. The concrete Palais-Smale condition. In this section we prove that f; x
satisfies the concrete Palais-Smale condition at levels ¢ within a suitable range of
values.

Lemma 6.22. Let c € R. Then each (CPS).-sequence for f. x is bounded.
Proof. Let ¢ € R and let (uy) be a (CPS).-sequence for f; x. Set:

(wh,<p>z/Vgoﬁf(m,uh,Vuh)~V<pdac—l—/ D% (x,up, Vup)p dx
Q Q

- / ge (T, up)p dr —/ |Uh|p*_2uhg0 dx
Q Q
for all ¢ € C°(2) where ||wp| -1, — 0 as b — 400 and
gen(,8) = Ns|7%s + eh(z).

for a.e. x € Q and all s € R. It is easily verified that for each a € [p,p*| there
exists b, € L1(2) such that:

« A 1 .
gen(z,8)s + [s]P > a{g|s|q + E\s|p + eh(z)s} — ba ()

FLoa(un)(un)

Tunllt, o(1) as h — +oo, one

a.e. in  and for each s € R. Now, from
deduces that

/p.i”(a:,uh,Vuh) da:—l—/Dsi”(m,uh,Vuh)uhdx
Q Q
2/957,\(x,uh)uhda:—|—/ lun|P” da + (wp, up)
o Q
A 1 .
204{7/ \uh|qu+—*/ |up|P dm+5/huhdw}
q.Ja P Jo Q
—/ba(x)dx—i—(wh,uh)
Q

> a/ L(x,up, Vup) de — afe x(up) — / bo(z) dx + (wp,up).
Q Q
On the other hand, by (6.41)) one obtains

(o —v—p)/ Vunl? de < (a—v—p)/ L, un, Vun) da
Q Q

<aferun) + [ bale)do+ Junl-sp 1
Q
Choosing now a > p in such a way that o —~—p > 0, one obtains the assertion. [

Remark 6.23. By exploiting the proof of Lemma [6.22] one notes that
sup{| / hu dx’ :u is a critical point of f. x at level c € R} <o
Q

for some ¢ > 0 independent on € > 0 and A > 0.

Remark 6.24. Let 1 < p < oo. It is readily seen that the following proposition
holds: assume that u, — u strongly in LP(Q) and v, — v weakly in L () and
a.e. in Q. Then u,vy, — uv strongly in L(Q).
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Let now S denote the best Sobolev constant (cf. [I38])
S =inf {||Vul? :ue WyP(Q), [ull,- =1}
The next result is the main technical tool of this section.

Theorem 6.25. There exist K > 0 and €9 > 0 such that f.  satisfies (CPS),
with
pr—y-p
0<ce<—1 ZWwS)"P - Ke 6.51
¢W+m( ) (651

for each € < ey and A > 0.

Proof. Let (up) be a concrete Palais-Smale sequence for f. x at level c¢. Since (up)
is bounded in VVO1 P(Q) by Lemma up to a subsequence we have

up, —u in LP(Q), Vu, = Vu in LP(Q).
Moreover, as shown in [22], we also have:
for a.e. x€Q:Vup(z) — Vu(z).
Arguing as in [I32, Theorem 3.2] we get

(We x, u) + ||u g: = / VeZ(x,u,Vu) - Vudw—i—/ D, Z(z,u,Vu)udz,
Q Q

where w. x € W1 (Q) is defined by

(we x, v) :)\/ |u|q_2uvdx+€/ hv dx.
Q Q

This, following again [132, Theorem 3.2], yields the existence of d € R with

lim sup {/ VeZ(x,un, Vuy) - Vup, — / |up|P dx}
Q Q

h
<d< {/ VeZ(x,u,Vu) - Vu —/ ulP” dz}.
Q Q
Of course, we have

{ng(x,uh, Vup) — Ve Z(x,up, V(up — u))} — Ve Z(x,u, Vu)

(6.52)

in L* (Q). Let us note that it actually holds the strong limit
{ng(x,uh, Vup) — Ve Z(x,up, V(up — u))} — Ve Z(x,u, Vu)

in L*' (Q), since by there exist 7 €]0, 1] and ¢ > 0 with
Vel (z, up, Vuy) — Vel (z,up, V(up, — u))|
< Vi L (@ un, Vuy, + (1 — 1)Vu)| [Vul
< | Vup P3|Vl 4 ¢|VulP~
Therefore, by Remark [6.24] we have
Ve (x,un, Vuy) - Vuy
=VeZ(z,un, V(up —w)) - Vup, + Ve (2, u, Vu) - Vuy, + o(1)
= Ve L (z,un, Vup —u)) - V(up —u) + Ve L (x,u,Vu) - Vu+o(1) in L*(Q),
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as h — +o00, namely

Ve (x,un, Vuy) - Vup, — Ve '(z,u, Vu) - Vu (6.53)

= Ve L (z,up, V(up —u)) - V(up —u) +o(1) in L'(Q), (6.54)
as h — +o00. In a similar way, since there exists ¢ > 0 with

7 = b= = ] <@ [l G+ )]
one obtains
{unl?™ = Jun " ~PJun = ul’ } — Jul”"in L1(Q). (6.55)

In particular, by combining (6.52)), (6.53) and (6.55)), it results:

limsup/ {Vgg(x,uh, V(up —u)) - V(up —u) — |up|? Plup — u|p} dx < 0. (6.56)
o Ja

On the other hand, by Holder and Sobolev inequalities, we get

/Q [ng(a:, un, V(up —u) - Vup —u) — |up? "Pluy — u|p] dz (6.57)

1 .
> v[|V(un —u)l}) — g\IUhHZ* PIV (up = w)|[h (6.58)
1 *_
={v— gIIUhllﬁ* PHIV (un —u)lp (6.59)
which turns out to be coercive if
limhsupHuh P.< (S)"/. (6.60)

Now, from f. x(up) — ¢ we deduce
1 A
/ L (z,up, Vup) de — EHuhHZ* = EHUHZ + 5/ hudx + ¢+ o(1), (6.61)
Q Q

as h — +00. On the other hand, by using (6.41)), from f. , (uz)(un) — 0 we obtain

1, A
L“’/ L (@, un, Vup) dz — ~||up|[5: > = ul|? + 5/ hudz +o(1),  (6.62)
p Q p p PJa

as h — +oo. Multiplying 1' by ”Tfp, we obtain

1Ep / L@, un, Vup) dz — 252y 22 (6.63)
p Q P
= TPy e + L“’e/ hu+ X2 4 o(1)) (6.64)
pq p Q p

as h — +o00. Therefore, by combining (6.63)) with (6.62)), one gets

p_il_pﬂ”%”ﬁi s et S\ /TN c’g/ hudr + 2 Pe 1 o(1)  (6.65)
pp 2 2 b

< c'a/ hudz + mc—i—o(l), (6.66)
Q p

as h — +o0o. Now, taking into account Remark we deduce

ZI < chr Ke +o(1),

T pf—v—p

[|un
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as h — +oo for some K > 0. In particular, condition is fulfilled if

]1(77—’—]9)0 + Ke < (uS)™/?

p=7-p
which ylelds range - ) for € small and a suitable K > 0. By combining (6
and we conclude that wuj goes to u strongly in W P(Q). D

Remark 6.26. We observe that for the equation
—Apu = |ulP "2u+ Mu|T2u+eh in Q,
being v = 0 and v = 1, our range of compactness (6.51)) reduces to:

Sn/p

0<e< — Ke.
See also the results of [41].
6.6. The second solution. Let us finally come to the proof of Theorem [6.14

Proof. Let us choose ¢ € W, N L°(£2) such that

16

=1 and /h¢dw<0.
Q

It is easily seen that

lim fea(tg) = —o0,
t——+oo
so that there exists ¢y . > 0 with
fer(tacd) = sup fea(tg) > 0. (6.67)
t>

Taking into account (6.41)), the value ¢ . must satisfy
e [ o=t {80 [ p2tn0 Vo do
Q Q
+ / D2 (2,126, Vo)r crd] — 1771 / ol dz}

<t} tp ‘ZM/ VP do — 15 7 — / |¢|de ,
Q
for some M > 0. Now, being
{70 [ o
it has to be ty . — 0 as A — +oo. In particular, by (6.67)) we obtain

lim su t¢ =0 ;
A—+o0 t>18 fEA( )
so that there exists )\0 > ( such that:

Pr—y-p n/
0 <sup fea(td) < ——— (vS)"'? — Ke 6.68
for each A > X\g and ¢ < gg. Let w = t¢ with t so large that f. x(w) < 0 and set

& = {y € C((0,1],Wy(Q)) : 7(0) =0, (1) = w}

and

= inf
B = 1ol 133 For 00))
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Taking into account Lemma by Theorem one finds (up) C Wy (Q) with:

Jea(un) = Bex,  dfexl(un) — 0,
0<n< Ba,)\ = inf max fa,k(’y(t» < sup fa,A(t¢)' (669)
YEP te(0,1] t>0

By Theorem Jex satisfies (CPS)g, ,, since by (6.68) and

pr—7—p
A> A= 0<fBor < — L2 WS)P — Ke
0 A p*(7+p)( )

for each € < 9. Therefore there exist a subsequence of (uz) C W1P(Q) strongly
convergent to some ug which solves (6.36)). Since f: x(u1) < 0 and f. x(u2) > 0, of
course ui # us. O

Remark 6.27. In the case 1 < ¢ < p < p*, in general, our method is inconclusive
since it may happen that

lim sup f(t6) #0.
A——+o0 t>0
See section 4 of [4I] where this is discussed for the p-Laplacian.

6.7. One solution for a more general nonlinearity. Assume that Z(x,s,£) :
QxR xR" — R is measurable in x for all (s,£) € R x R", of class C! in (s,£) and
that Z(z, s, -) is strictly convex and p-homogeneous with .Z(z, s,0) = 0. Moreover:

e there exist v > 0 and ¢1, ¢ > 0 such that:
v
X(I,S,g) > 5|§|pa |D6$(Ia37§)| < Cl‘§|pa (670)

a.e. in  and for all (s,£) € R x R™ and
Vel (,5,6)] < eal€P7, (6.71)

a.e. in  and for all (s,£) € R x R"™;
e there exist R, R" > 0 and v € (0,p* — p) such that:

|s| > R= D;%(x,s,&)s >0, (6.72)

|s| > R' = Ds.Z(x,5,8)s < 7L (2, 5,€), (6.73)
a.e. in  and for all (s,£) € R x R"™;
e Let A; be the first eigenvalue of —A, with homogeneous boundary condi-

tions.
Let g: Q x R — R be a Carathéodory function such that
Ve >0 3a. € L7077 (Q) : |g(x, s)| < ac(z) +els[? 7, (6.74)
. G(z,s) v\
lim su —, G(x,s) >0, 6.75
msup — ’ (z,5) (6.75)

uniformly for a.e. z € Q and each s € R. Moreover, we assume that there exists a
nonempty open set o C 2 such that

e if n < p? (critical dimensions),

lim Gl ) = too (6.76)

s—400 Sp(np-i—p—Qn)/(p—l)(n—p) N

uniformly for a.e. x € Q.
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e if n = p?: I > 0, there exist u,a > 0 such that
Vs € [0,a] : G(x,8) > u|s|P or Vs>a:G(x,s) > u(|s|P —aP), (6.77)
for a.e. x € Q.
e if n > p?, there exists p > 0 and b > a such that
Vs € [a,b] : G(x,s) > 1 (6.78)
for a.e. x € Q.

Conditions (6.70), (6.71)), (6.72 ave already been considered in [6], [132],
while assumptions (6.74)), (6.75), (6.76)), (6.77) and (6.78) can be found in [I1]. Note
that g(x, ) is neither assumed to be positive nor homogeneous in w.

Under additional assumptions and , that will be stated in the next
sections, we have the following result.

Theorem 6.28. 6, admits at least one nontrivial solution.

This result extends the achievements of [I0, [I1] to a more general class of elliptic
boundary value problems. We remark that we assume (6.72)) and (6.73) for |s| > R,
while in [I0] these assumptions are requested for each s € R.

6.8. Existence of one nontrivial solution. Let us first prove that the concrete
Palais-Smale sequences of

flw)= [ ZL(z,u,Vu)dr — i* lulP” dx — / G(z,u)dx (6.79)
Q P Jo Q

are bounded. We will make a new choice of test function, which also removes some
of the technicalities involved in [I32].

Lemma 6.29. Let ¢ € R. Then each (CPS).-sequence for f is bounded.

Proof. Let ¢ € R and let (up) be a (CPS).-sequence for f. In the usual notations,
one has ||wp||—1, — 0 as h — 4o0. It is easily verified that for each a € [p, p*|
there exists b, € L'(Q) with

* 1 .
g(@,s)s +[s]” > a{G(z,5) + EISI” } = ba(2)
a.e. in 2 and for each s € R. Let now M >0, k> 1 and ¥ : R — R,

s if s> kM

M_IS—ML/{ ifk<s<kM

0 if —k<s<k

Mos4+ Mok if —kM <s<—k

if s <—-kM

Since for each k € N we have f'(up)(Wx(up)) = o(l) as h — 400, there exists
Ck v > 0 such that

M
/ P2 un, V) + P, Vup)
{Jun|>kM} M =1 J<jun <y

+ / DL (x,up, Vup)up
{lun|>kM}
M

+
M =1 Jig<iuy, 1 <krmy

D, 2 (x,up, Vup)(un, £ k)
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M
= / g(x, up)up de + / g(z,up)(up £ k)
{Jun|=kM} M =1 J{p<un<kmy

*

M x
el g unl?” 2 = ) + G, ()
{lun|>kM} M -1 {k<|un|<kM}

Z/g(x,uh)uh—kM/ l9(@, up)|
Q {lun|<EM}

M «
g($7uh)(uh + k) + / |Uh|p dx
M =1 Jin<iun <k o
M .
— kM lup|P " + lun|P ~up(up £ k) dz
{lun|<kM} M =1 Jigp<jup|<kr}

+ (wp, Vx(un))

>a[/G$uh +f/|uh|p dx}/ ba(x)

M
- kM/ |9z, un)ldz + 57— / gz, up) (up + k)
{Jun|<kDM} = L Jk<iuni<knry

. M
— kM ‘uh|p —1 +
{lun|<kM} M -1 {k<|un|<kM}

+ (wp, Vg (un))

> a/ﬂ.i”(x,uh,Vuh) —af(up) — /Q bo(z) — Crnr + (wh, Ok (up)).

|uh\p*_2uh(uh + k‘)

On the other hand, by (6.73)) and (6.72]) one obtains

/ Dy Z(x,up, Vup)up dx < fy/ ZL(x,up, Vuy,) dz, (6.80)
{lurn|>k}

{lunl>k}

and

—k D% (x,up, Vup) dx <0,
{k<un<kM}

E/ D, % (z,up, Vup) dx <0,
{-kM<up<-k}

for some k > 1 so that & > max{R, R'}. Therefore, we find 6E,M > 0 with

v M M
z _ _ p
) (a 717 — p)/IV’uhI dx
M
< —
_(a M—lry M_l)/fxuh,Vuh)d

< oof (un) + / ba(@) dz + T g + lwnll 1 pr [95(un) [1,p-

To conclude, choose a €]p, p*[ and M > 0 so that o — %7 — %p > 0. O

Remark 6.30. It has to be pointed out that with the choice of test function 9
there is no need of using [132, Lemma 3.3], which involves lots of very technical
computations.
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Lemma 6.31. Let ¢ € R and let (up,) be a (CPS).-sequence for f such that up, — 0.
Then for each € > 0 and o > 0 we have

/ ZL(x,up, Vuy) de < 5/ ZL(x,up, Vup) dx + o(1),
{lunl<e}

{lun|>e}

uniformly as h — 4o0.

Proof. Tt is a consequence of [I32, Lemma 3.3], taking into account that
/(Q(I,Uh) + Jun P )05 (un) de — 0
Q

as h — 400 (where Y5 is the bounded test function defined in the proof). O

Assume now furthermore that (asymptotic behavior):

1
1 = — p
SEIJ&(}X(:U,S,&) p\§| , (6.81)
liIil D, %(x,s,§)s =0, (6.82)

uniformly with respect to z €  and to { € R™ with |£| < 1. This means that there
exist e1 : @ X RxR™ - R and g5 : 2 x R x R® — R such that

L(a,5,6) = %w’ +er(a s, €l
Dsg(’ra Sa 5)5 = 62(:177 57 £)|€|p

where €1 2(z,5,£) — 0 as s — +o0 uniformly in z € Q and £ € R™. Let S denote
the best Sobolev constant
o)

S — inf {||vu||g Lue WEP(Q), lu
Lemma 6.32. Let (uy) C Wy P(Q) be a concrete Palais-Smale sequence for f at
level ¢ with

1
0<e< —SmP,
n
Assume that up, — u. Then u # 0.

Proof. Assume by contradiction that v = 0. In particular, © — 0 in L*(2) for each
1 < s < p*. Therefore, taking into account (6.74) and the p-homogeneity of £
with respect to &, from f(up,)(up) — 0 we obtain

/pf(x,umVuh) dac+/ D, L (x, up, Vup)up, dx—/ lup|[P" dz = o(1), (6.83)
Q Q Q

as h — +o0o. Let us now prove that for each o0 > 0

O//

lim / D% (x,up, Vup)up dac‘ < —, (6.84)
bV {unl<e} 4

for some C” > 0. Indeed, since up — 0, by Lemma and (6.70]), one has

‘/ DL (x,up, Vup)up, dx‘ < C’g/ ZL(x,up, Vuyp,) dr
{lunl<e}

{lun|<e}

< CQE/ L (x,up, Vuy,) dz + o(1)
{lunl>e}
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< C/QE/ |Vup|P de + o(1) < C"ge + o(1),
Q

for each ¢ > 0 and & > 0 uniformly as h — +oo. Then (6.84] follows by choosing
e = 1/0%. In particular, since condition (6.82)) yields

lim D, Z(x,up, Vup)up dx =0, (6.85)

0=+ J{up >0}

uniformly in h € N, by combining with , one gets
liilin/QDSi”(oc,uh7 Vup)up dz = 0. (6.86)
In a similar way, by 7 one shows that, as h — +o0,
[ 2w V) da = %/ﬂ VunlP dz + o(1). (6.87)

Therefore, by (6.83)) one gets
unlly p = llunllp- = o(1),
as h — +oo. In particular, from the definition of S, it holds
lunll?, (1= 77 P lunlF,7) < (1),
as h — +o00. Since ¢ > 0 it has to be
lunlly, = S™/7 4 0(1), lunllh: = S™7 +o(1),
as h — +o0. Hence, by (6.86) and one deduces that

1 1 . 1,
flun) = —lunllt, + E(Iluhllﬁ’,p + lJunllpe) +o(1) = =5 v,

contradicting the assumption. (I

Proof of Theorem[6.28 Let us consider the min-max class
r={yec(0.1,Wy*(Q) :7(0) =0, (1) =w}

with f(tw) < 0 for t large and

— inf ).
B erelmren[gﬁ]f(v( )

Then, by the mountain pass theorem in its non-smooth version (see [36]), one finds
a Palais-Smale sequence for f at level 5. We have to prove that

1
0<pB< =8P
n
Consider the family of maps on R”
cndﬁ
T57€U0 (.I) = n—p

((Spp%l + IQ? —$0|%> i

with § > 0 and 9 € R™. Tj,, is a solution of —Ayu = u? =1 on R™. Taking a
function ¢ € C°(Q) with 0 < ¢ < 1 and ¢ = 1 in a neighborhood of zy and setting
vs = @15 4., it results

losll?, = SnP 1 (5(nfp)/(p71)) 7 ||v5||§: —Sn/P 4, (En/(pfl)) (6.88)
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as 0 — 0, so that, as § — 0,

tp p* N 1 " e B
Lol — olusllye < 2 8V 4o (0 070) (6:89)
Assume by contradiction that for each § > 0 there exists ts > 0 with

¥ 1
ftsvs) = Est'UtSHIl),p + tg/ﬂ {g(l‘,t(s’()g, VU5) — E|V’U5|p} dx (6.90)

tg* P~ 1 n/
— [ G(x,tsvs) dr — °=||lvs||[p. > —S™'P (6.91)

Q p n

In particular, there exist My, My > 0 with My < ts; < M. Moreover, as proved in
[11, Lemma 5], there exists 7 : [0,1] — R with 7(¢) — 400 and

/ Gz, tsvs) da > ()P (P=1), (6.92)
Q
as ¢ — 0. By (6.72) and (6.81]) one also has
1
/ {L(z,tsvs, Vvs) — =|Vus|P } dz < 0 (6.93)
Q p

for each § > 0. By putting together (6.89), (6.90)), (6.92), (6.93)), one concludes

1
fltsvs) < ﬁS”/p +(C - 7-(5))5(”*17)/(17*1)
which contradict for € sufficiently small. 0

6.9. Problems with nearly critical growth. Let {2 be a bounded domain of
R™ 1 < p < n and p* = %. In 1989 Guedda and Veron [81] proved that the
p-Laplacian problem at critical growth
—Apu = w? "t in Q
u>0 inQ (6.94)
u=0 on 0%,

has no non-trivial solution u € VVO1 P(Q) if the domain ( is star-shaped. As known,
this non-existence result is due to the failure of compactness for the critical Sobolev
embedding Wy ?(Q) < L?" (), which causes a loss of global Palais-Smale condition
for the functional associated with (6.94). On the other hand, if for instance one
considers annular domains
Qo ={ €R": 0 <y < |z| <712},
then the radial embedding
Wolﬁ)ad(QTlﬂ"z) - Lq(Q?”lJ’Q)

is compact for each ¢ < +00 and one can find a non-trivial radial solution of ((6.94))
(see [88]). Therefore, we see how the existence of non-trivial solutions of (6.94) is

related to the shape of the domain and not just to the topology. In the case p = 2,
the problem
—Au = umt2/(n=2) 5 Q
u>0 1in§ (6.95)
u=0 on 01,
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has been deeply studied and existence results have been obtained provided that 2
satisfies suitable assumptions. In a striking paper [I6], Bahri and Coron have proved
that if  has a non-trivial topology, i.e. if €2 has a non-trivial homology in some
positive dimension, then always admits a non-trivial solution. Moreover,
Dancer [56] constructed for each n > 3 a contractible domain §2,,, homeomorphic
to a ball, for which has a non-trivial solution. See also [I11] and references
therein for more recent existence and multiplicity results.

We remark that, to our knowledge, this type of achievements are not known
when p # 2. In our opinion, one of the main difficulties is the fact, that differently
from the case p = 2, it is not proven that all positive solutions of —A,u = w1
in R™ are Talenti’s radial functions, which attain the best Sobolev constant (see
Proposition .

Now, there is a second approach in the study of problem , which in gen-
eral does not require any geometrical or topological assumption on 2, namely to
investigate the asymptotic behavior of solutions u. of problems with nearly critical
growth

—Apu=|ulP "2y in Q
uw=0 on 01,

as € goes to 0. If Q is a ball and p = 2, Atkinson and Peletier [I2] showed in 1987
the blow-up of a sequence of radial solutions. The extension to the case p # 2
was achieved by Knaap and Peletier [89] in 1989. On a general bounded domain,
instead, the study of limits of solutions of was performed by Garcia Azorero
and Peral Alonso [2] around 1992.

Let now € > 0 and consider the following general class of Euler-Lagrange equa-
tions with nearly critical growth

(6.96)

—div (VeZ (2, u, Vu) + Do.Z(z,u, Vu) = [ulP "2y in Q

(6.97)
u=0 on 0f,

associated with the functional f : VVO1 P(Q) — R given by

Pe g, (6.98)

As noted in [I32], in general these functionals are not even locally Lipschitzian
under natural growth assumptions. Nevertheless, via techniques of non-smooth
critical point theory (see [132] and references therein) it can be shown that
admits a non-trivial solution u. € Wy*(2).

Let (uc)e>o denote a sequence of solutions of (6.97). The main goal of this
section is to prove that if the weak limit of (|Vuc|P)e>0 has no blow-up points in
Q, then the limit problem

—div (Ve L (2, u, V) + Do & (2,4, Vu) = |ulP "2u  in Q

(6.99)
u=0 on Jf.

has a non-trivial solution (the weak limit of (uc)e>0), provided that f.(uc) — ¢
with

%(VS)”/” <c< 2%(1/5)”/”, (6.100)
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where v > 0 and v € (0,p* — p) will be defined later. In our framework (6.100))
plays the role of a generalized second critical energy range (if vy =0 and v = 1, one

finds the usual range %/p <c< 2%” for problem )

The plan is as follows: in Section [6.10| we shall state our main results; in Sec-
tion we shall collect the main tools, namely the lower bounds on the non-
vanishing Dirac masses and on the non-trivial weak limits; in Section [6.12] we shall
prove our main results; finally, in Section we shall see that at the mountain
pass levels the sequence (u;)e~o blows up. Moreover, we shall state a non-existence
results obtained via the Pucci-Serrin variational identity.

In the following, we shall always consider the space WO1 P(Q) endowed with the
standard norm |[lull} ) = [, [Vu|P dz and we shall denote by || - ||, the usual norm
of LP(Q).

6.10. The main results. Let (2 be any bounded domain of R™ and assume that
Z : QxR xR" — R is measurable in z for all (s,£) € R x R™, of class C! in (s, §)
a.e. in , that Z(x, s, -) is strictly convex and p-homogeneous with Z(z, s,0) = 0.
Moreover:

e There exist by > 0 and v > 0 such that
%|§|p < ZL(x,s,€) < bols]P + bol¢|P (6.101)
for a.e. z € Q and for all (s,£) € R x R™;
e there exists by > 0 such that for each § > 0 there exists a5 € L'(Q) with
D2, 5,6)] < as(x) + 85l + bil€]? (6.102)
for a.e. x € Q and for all (s,£) € R x R™, and

Vel (x,5,6)| < ar(z) + bals| ¥ + bal€P~! (6.103)

for a.e. = € Q and for all (s,¢) € R x R", where a; € L¥' (Q);
e for a.e. z € Q and for all (s,§) € R x R",

D% (x,8,€)s >0 (6.104)

and there exists v € (0,p* — p) such that:
D, Z(x,s,8)s <~v.ZL(x,s,) (6.105)

for a.e. € Q and for all (s,£) € R x R™.

The previous assumptions are natural in the quasi-linear setting and were con-
sidered in [I32] and in a stronger form in [6].

We stress that although as noted in the introduction f. fails to be differentiable
on Wy*(2), one may compute the derivatives along the L*°-directions; namely
Yu € Wy (Q), Yo € WyP N L=(Q):

fe(u)(e)
:/Vgﬁ(w,u,Vu)~chdx+/Dsf(x,u,Vu)godx—/ [ulP" 2 ugp d.
Q Q Q

By combining the following proposition with (3.25)), one can also compute f.(u)(u).
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Proposition 6.33. Let u,v € W, *(Q) be such that D% (x,u, Vu)v > 0 and
(w, ) = / VeZ(x,u,Vu) - Vodr + / D, Z(x,u, Vu)pdx. (6.106)
Q Q

for all o € C(Q) and with w € W=7 (Q). Then D% (x,u, Vu)v € LY(Q) and
one can take ¢ = v in (6.106)).

For the proof of the above proposition, see [132] Proposition 3.1].

Under the preceding assumptions, by [I32, Theorem 1.1], for each € > 0 one
deduces that admits at least one non-trivial solution u. € Wy?(Q) (by
solution we shall always mean weak solution, namely f/(u.) = 0 in the sense of
distributions). We point out that the technical aspects in the verification of the
Palais-Smale condition are, in our opinion, interesting and not trivial. As a starting
point, let us show that (u.) is bounded in W, (Q).

Lemma 6.34. Let (uz)es0 C WyP(Q) be a sequence of solutions of such
that

lir% felue) < 4o0.
E—
Then (uz)eso is bounded in Wy ().

Proof. If u. is a solution of (6.97), we have f!(u:)(¢) = 0 for each p € C°(Q). On
the other hand, taking into account (6.104)), by Proposition one can choose

¢ = u.. Therefore, in view of (6.105) and the p-homogeneity of Z(x,s,-), one
obtains

iig%fs(uf) = ili% (fE(UE) - *l_gf;(ua)(ug)>

p
= lim (/ L(z,ue, Vue) dx — P / L(z,ue, Vue) dx
=0\ Jo p*—¢€Ja
1
- — / D, L (x,ue, Vue)ue dx)
P =€ Ja
> lim w/ Z(x,ue, Vue) dz
e—0 p*—¢ Q
> P P70 lim [Vue|P de.
pp* e—0 Jq
In particular, (u.)e>o is bounded in Wol’p(Q). O

As a consequence, one may apply P.L. Lions’ concentration-compactness prin-
ciple (see [95, 96]) and obtain a subsequence of (uc).s0, u € Wy ?(Q) and two
bounded positive measures 1 and o such that:

ue —u in WyP(Q), wu.—u inLi(Q), 1<gq<p, (6.107)
|Vue|P = p,  |uc/’” — o (in the sense of measures) (6.108)
w2 |Vl + ) s, py 20, (6.109)

j=1

o=uf" + 0;0a,, 0;>0, (6.110)
j=1
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P
> St (6.111)

where d,, denotes the Dirac measure at ; € Q and S denotes the best Sobolev
constant for the embedding W, (Q) < LP"(Q) (see e.g. [138]).
The following is our main result.

Theorem 6.35. Let (u:).>0 be any sequence of solutions of (6.97) with f.(us) — ¢
and

W(Vg)n/p <c<? W(Vg)n/p_
pp pp
Then pj =0 for j > 2 and the following alternative holds:

(a) p1 =0 and u is a non-trivial solution of ;
(b) p1 #0 and u=0.

This result extends [72, Theorem 9] to fully nonlinear elliptic problems.

Theorem 6.36. Let (u:)e~o be any sequence of solutions of (6.97)) with
, _ P P =Y qyn/p
tay 1. () = E L= sy

Then v = 0.

As we shall see in section (6.13]), this is also the behavior when one considers
critical levels of mountain-pass type.

6.11. The weak limit. Let us briefly summarize the main properties of the best
Sobolev constant.

Proposition 6.37. Let 1 < p <n and S be the best Sobolev constant, i.e.

S—inf{/ |VulP do : u € WP (), / lulP” da = 1}. (6.112)
Q Q

Then, the following facts hold:

(a) S is independent on Q C R™; it depends only on the dimension n ;

(b) the infimum is never achieved on bounded domains Q@ C R™ ;
(¢c) the infimum 18 achieved if Q = R"™ by the family of functions on R™

Ts oo (T) = (né(z:f)pﬂ)?(é + oz —zo|7 1) (6.113)

with § > 0 and ¢ € R™. Moreover for each 6 > 0 and xg € R", T5 4, is a
solution of the equation —Apu = u? 1 on R™.

For the proof of the above proposition, see [I38]. The next result establishes
uniform lower bounds for the Dirac masses.

Lemma 6.38. If o; #0, then o; > v5 S and i > v ST

Proof. Let z; € Q the point which supports the Dirac measure of coefficient o; # 0.
Denoting with B(x;,d) the open ball of center z; and radius § > 0, we can consider
a function 15 € C2°(R") such that 0 < ¢s < 1, |[Viys| < 2, ¢s(x) = 1if z € B(x;,0)
and ¥s(z) = 0 if = & B(x;,20).
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By Proposition and the p-homogeneity of £ (z, s, -), we have

0= f(ue)(suc)

= /QuEV§$(x,us, Vue) - Vips dx +p/ﬂ"/}6$(xa ue, Vue) dv (6.114)

+/w5DS$(x,ug,Vug)u5dx—/ |u€|p*_ew5dx
Q Q

Applying Holder inequality and (6.103]) to the first term of the decomposition and
keeping into account that (u.).o is bounded in W, *(€2) and u. — u in LI(Q) for
every q < p*, one find ¢; > 0 and ¢y > 0 with

e—0

lim | / ueVeZ (2, ue, Vue) - Vs dx|
Q

1

p—1 1 1
< (/ jar |77 dz) 7 (/ fult” do)” (/ (Vass|" o) "
B(CE]',2§) B(I]‘,25) B(CE]',2§)

1

+b1(/B(a:j,26) |U|p* dm)TLTL(/B(wj726) V5" dx)%
ol 1
+gl(/B(m,~,26) i dx) P~ (/B(%%) |V¢5\"dl‘) 5

A n—1
< cl(/ |ulP” dx) T4 02(/ ul?” dm) " =0
B(I]‘,Q(s) B(zj725)
(6.115)

with Bs — 0 as 6 — 0. Then, taking into account (6.104]) and (6.101)) one has

*
—&
E3

0> —fs + lim u/ |Vue |Pps da — lim £ ()7~ (/ luc|P" s dx)
e—0 9] e—0 Q

2—55+V/91/J5du—/9¢5d0~

Letting 0 — 0, it results vp1; < 0;. By means of ((6.111)) one concludes the proof. [

Next result establishes uniform lower bounds for the non-zero weak limits.
Lemma 6.39. Ifu # 0, then [, |VulPdz > ves S™MP and Jo lulP” da > v/Pgn/p,
Proof. By Lemma/[6.38] we may assume that p has at most r Dirac masses p1, .. ., fi
at @1,...,2,. Let now 0 < § < Lmin;4; |z; — 2;] and 15 € C°(R™) be such that

0 <5 <1, [Vys| < 3, ¢s(2) = 1if o € B(xy,6) and ¢5(z) = 0 if @ ¢ B(z;,20).
Taking into account ((6.104]), for each £, > 0 we have

/ D, % (x,us, Vue)ue (1 — 1s) dx > 0.
Q
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Then, since one can choose (1 — 1)s)uc as test, one obtains
0= fl(ue)((1 = 1s)uc)
= / pL(x,ue, Vue ) (1 —1s) do — / Vel (x,ue, Vue) - Vihsue da
Q Q

+/QDS$(:£,uE,Vu€)u5(1 — 1ps) da — /Q luc [P 5 (1 — 1bs) da

(6.116)
> 1// |Vue |P(1 = 1ps) da — / VeZ (2, ue, Vue) - Vihsue do
Q Q
— L () (/ luelP” (1 — t5) dx)
Q
On the other hand, arguing as for (6.115)), one gets
lir%|/u5VE$(x,u5,Vug)~V¢5 dz| < Bs (6.117)
E— Q

for each 6 > 0. Now, it results

lim /Q VuelP(1 — pp) dx = /Q (1 — ) dp
> [ IVuP(1 - da)do+ Yy -vs(e))  (6.018)
Q =
:/ |Vul? dz 4 o(1)
Q
as § — 0 and
ggrg)/ﬂluew*(l—wa)dw:/g(l—%)da
- / P (1= ) dz+ 3 o5 (1 = s(z;)  (6.119)
j=1

:/ lulP” dz + o(1)
Q

as § — 0. Therefore, in view of (6.117)), (6.118]) and (6.119)), by letting § — 0 and
€ — 0 in (6.116]), one concludes that

u/ |Vu|pdx§/ [ulP” d. (6.120)
Q Q

As Q is bounded, by (b) of Proposition one has

“ p/p"
/ |Vul? de > S’(/ |ul? d:c) )
Q Q
which combined with (6.120)) yields the assertion. O

In the next result we show that weak limits of (u.)c>o are indeed solutions of

(6.99)-

Lemma 6.40. Let (u:).0 C W *(Q) be a sequence of solutions of and let
u be its weak limit. Then u is a solution of .
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Proof. For each € > 0 one has for all ¢ € C°(Q):

/ng(z,uE,VuE)-Vgadx—F/Ds.,f(x,ug,VuE)godx
Q

Q
= / luc|P "2 Fucp da.
Q

Since (uz)eso is bounded in W"*(2), up to a subsequence, as ¢ — 0, u satisfies

Vu. = Vu in LP(Q), wu.—u in LP(Q), wu(z) — u(x) for ae. €.

(6.121)

Moreover, by [22, Theorem 1], up to a subsequence, we have Vu.(z) — Vu(z) for
a.e. x € Q). Therefore, in view of (6.103|) one deduces that

Vel (2,ue, Vue) = Vel (z,u,Vu) in L¥ (Q,R™). (6.122)
By (6.101)) and (6.102)) one finds M > 0 such that for each é > 0
|D,Z(x,5,6)| < MV L (2,5, 6) - €+ as(x) + 8|s|P (6.123)

for a.e. z € Q and for all (s,£) € R x R™. If we test equation (6.121)) with the
functions

p- = pexp{-Mul}, @eW;?NL>®(Q), ¢>0

for each € > 0 we obtain

/ Vel (x,ue, Vue) - Vpexp{—Mul } dz — / luc | =2 fu.p exp{—Mu} dx
Q Q

—|—/ [DsZ (%, ue, Vue) — MV e L (x,ue, Vue) - Vul | g exp{—Mul} dz = 0.
Q

Since by inequalities (6.104]) and (6.123)) for each € > 0 and ¢ > 0 we have
[DsZ (%, ue, Vue) — MV e L (z,ue, Vue) - Vul | pexp{—Mul} < as(x) + Suel?,

arguing as in [I32] Theorem 3.4], one obtains

lim Sup/ (DL (x,ue, Vus) — MV L (z,ue, Vue) - Vul | pexp{—MuZ} dx
Q

e—0

< / (D& (z,u,Vu) — MV (x,u,Vu) - Vut| pexp{—Mu™} dz.
Q
Therefore, taking into account (6.122)) and since as € — 0,

/|u5|p*727€u€<pdx~>/|u|p*72u<pdx
Q Q

for each ¢ € Wy'* N L>(Q) positive, one may conclude that
/Qng(l‘,u, Vu) - Vyexp{—Mu"}dzx — /Q [ulP” ~2ugp exp{—Mu*} dzx
+ /Q [Ds.iﬂ(m, u, Vu) — MV 2 (z,u, Vu) - Vuﬂ pexp{—Mut}dz > 0.
for each o € W,"* N L°°() positive. Testing now with
-

o = U k)exp{MW}, peCX(), ¢>0,
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where ¥ is smooth, ¥ = 1 in [—3, 3] and ¥ = 0 in ] — 0o, —1] U [1, +00], it follows
that
/ Vel (z,u,Vu) - Vi exp{—MuT} dz — / lulP” ~2up 1‘}(%) dx
Q Q

—|—/ [Ds & (x,u,Vu) — MV¢Z (x,u,Vu) - Vu' | gm?(%) dx > 0.
Q
which, arguing again as [132, Theorem 3.4], yields as k — +o0
/Vg.,?(x,u,Vu) ~V<pdx—|—/ D, % (xz,u,Vu)pdz 2/ lulP” ~2up da.
o Q Q

for each ¢ € C°(£2) positive. Working analogously with ¢, = g exp{—Mu_ }, one
obtains the opposite inequality, i.e. u is a solution of . (I

6.12. Proof of the main results. Let us now consider a sequence (ug)esq of
solutions of (6.97) with f(u.) — ¢ and
W(,ﬂg)n/ﬁ ce< QW(VS)MP. (6.124)
pp pp

Then, there exist a subsequence of (uc)eso and two bounded positive measures p
and o verifying (6.107)), (6.108]), (6.109), (6.110) and (6.111)).

Proof of Theorem [6.35, Let us first show that there exists at most one j such that
w; # 0. Suppose that p; # 0 for every j =1,...7; in view of Lemma one has
that u; > 17" S7. Following the proof of Lemma [6.34]) we obtain

* j— —
c= lirr%) felue) > wy lim [ |Vu|Pdz
E— Q

pp e—0
* J— J—
5P kay/dﬂ
pp Q

T
pr-p—v
s
Pp =

* - - n
> TW(VS)F.
pp
Taking into account ([6.124)) one has

2]7 _p*_ ’V(Us)n/p >c> ,,,p _p*_ 7(1/5)% ’
pp pp

hence r < 1. Now, arguing as in Lemma [6.34] one obtains

20 )" M > o = lim o (ue)

)]

= lim {fg(ug) -
e—0
* — p—
> p p—=7
pp*

S e ek ( / |vu|pdm+wl) .
pp Q

vim [ |Vue|P dz
e—0 Jo
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If both summands were non-zero, by Lemma[6.38 and Lemma [6.39 we would obtain
1// \VulP de > vS)™?, vy > (vS)7»
Q
and thus a contradiction. Viceversa, let us assume that v = 0 and g3 = 0. Let

Y € CHR) with ¢» > 0. By testing our equation with ¢u. and using Holder
inequality, one gets

/uEV5$(x,uE,Vug)-Vz/)dx +p/ VL (x,ue, Vue) dx
Q Q
—l—/ D, % (x,us, Vue)pu. do
Q
:/ |ue|”” 5 dw
Q

< ([l vas) T L@
Q
Since (ue)eso is bounded in Wol’p(Q), by (6.103)) there exists C' > 0 such that

(6.125)

/ ueVeZ (2, ue, Vue) - Vip da
Q

which, by u. — 0 in LP(Q), yields

< Clluellp

lim [ w.VeZ(x,u., Vue) - Vipdo = 0.

e—0 Jo

Moreover, since by we get
/QDS.,f(x,uE, Vue)pue de > 0,
taking into account and passing to the limit in , we get
VwGCC(Q):wZO:>V/de,u§/deU. (6.126)

On the other hand p; = 0 and v = 0 imply o = 0. Then, since ¢ > 0, by (6.126)),
we get u = 0. In particular, one gets

¢ = lim f(u.)
e—0

f_p— 1
= lim {w/f(x,ug,v%) de — /Dsf(x,ug,Vus)usdm}
e—0 p*—¢ Q p*—¢Jo
b
< P20 iy (/ |ue|? dz —|—/ |Vu5|pdx>
n —0 Q Q
pbo di —
n Jo

which is not possible. Therefore, either yy =0 and u £ 0, 0or 3 #0and u =0. O
Remark 6.41. If (6.124)) is replaced by the (k + 1)-th critical energy range

kﬂp_ip*_'y(yg)n/p <c< (k+ 1)1’_711_7(,,5)71/17
pp pp
for k € N, k > 1, in a similar way one can prove that p1; = 0 for any j > £+ 1 and

(a) if p; = 0 for every j > 1, then u is a non-trivial solution of ;
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(b) if p; # 0 for every 1 < j <k, then u = 0.

Remark 6.42. Let fo : W;?(Q) — R be the functional associated with and

ue WyP(Q), u# 0, a solution of (obtained as weak limit of (u¢)esg). Then

folu) > %(yswp. (6.127)

Indeed,
1
Jo(w) = fo(u) — ];fé(U)(U)
EZLI:_’Y/D?(:C,U,Vu)da:
p Q
ror-y, / VP dz,
pp Q

which yields (6.127) in view of Lemmam This, in some sense, explains why one
chooses ¢ greater than %(VS)"/I’ in Theorem

Y

Let now (uc)e>o be a sequence of solutions of (6.97) with f(u.) — ¢ and

. . p* —pP—7 n/p
tny £ () = 2= s,

Proof of Theorem[6.36 Let us first note that

folw) < limy fo(u) + 2 305 (6.128)
j=1

Indeed, taking into account that by [53, Theorem 3.4]

/.f(amu,Vu) de < lim | Z(z,uc, Vu,)dz,
Q

e—0 Jo

(6.128)) follows by combining Holder inequality with (6.110]).

Now assume by contradiction that v #Z 0. Then, there exists jo € N such that
Wi, # 0 and o, # 0 otherwise, by Remark and (6.128)) we would get

pF—p—7 n/ . pr—p—7 n/p
—— WP < fo(u) < lim fo(u.) = ——— (S .
p* (vS) Jo( )_E Of( ) o (vS)

Then, arguing as in Lemma and applying Lemma we obtain

w(ys)n/z’ — limo fo(ue)

pp*
o il ok (,,/ |W|pdx+%>
pp Q

* _ * _
5P p* vy/ Vul? do + 2 p* T (wsyniv |
pp Q pp

which implies v = 0, a contradiction. (]
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6.13. Mountain-pass critical values. In this section, we shall investigate the
asymptotics of (u.) in the case of critical levels of min-max type. We assume that
& satisfies a stronger assumption, i.e.

1
ZL(z,5,8) < Elil” (6.129)
for a.e. x € Q and for all (s,£) € R x R™. In particular, it results that v < 1. Let

u. be a critical point of f. associated with the mountain pass level

ce = Inf Jnax, fe(n(?)), (6.130)

where

¢. ={n e C([0,1], WOLP(Q)) :n(0) =0, n(l)=w:}
and w. € Wy*(Q) is chosen in such a way that f.(w.) < 0. If u is the weak limit of
(ue)e>0, as before one can apply P.L. Lions’ concentration-compactness principle.

Lemma 6.43. lir% felue) < %S’”/p.
E—
Proof. Let zp € 2 and 6 > 0 and consider the functions T ., as in (6.113]). By (c¢)
of Proposition [6.37} one has:
19T e = [T o = S5

Moreover, taking a function ¢ € C°(Q) with 0 § ¢ <1 and ¢ =1 in a neighbor-
hood of zy and setting vs = ¢T5 4, it results

IVosllh = S7 +o(1), [uslhe =S¥ +o(1), (6.131)
as 0 — 0 (see [81, Lemma 3.2]). We want to prove that, for any ¢t > 0,

1 »
1 < —S7»r
lim fe(tvs) < —S7 +o(1)
as 6 — 0. By (6.129) one has

p —e
hm fe(tvs) = /3 x,tvs, Vus) do — hm / lus|P" % d

g—/ |Vv5|pdx——*/ \v(;\p* dx.
P Ja P Ja

K(zeping into account (6.131]) and the fact that % — t;*
gets

< % for every t > 0, one
lim f.(t )<ﬁsﬂfisﬁ+ (1)<lsﬂ+ (1)
lim fe(tvs) < ) p= o(l) = ~ o)

as 0 — 0. Now choose ¢y > 0 such that f.(tovs) < 0; by we have that

hm fe(ue) < lim max fe(stovs) < Sp + o(1)
e—0s€[0,1]

and conclude the proof letting § — 0. O

Theorem 6.44. Suppose that the number of non-zero Dirac masses is

pp*
el

where [z] denotes the integer part of x. Then u = 0.
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Proof. Taking into account the previous lemma and arguing as in Lemma[6.34] one
obtains

1 n
~S% > i
55 = lim )
* o "
> B[P de Y o)
bp Q =1

A p*— ’Yu/ |VulP dx + ot p*— Tynivg ,
pp Q pp
where r denotes the number of non-vanishing masses. Hence it must be

pp
(p* —p—)nvr
In particular, if r is maximum and u % 0, by virtue of Lemma [6.39| one obtains

* _ " * _ * _ "
A S S e e / Vupde > PP ings
pp pp Q pp

which is a contradiction. O

Y

*

0§r§[

7. THE SINGULARLY PERTURBED CASE, 1

Let Q be a possibly unbounded smooth domain of RY with N > 3. Since the
pioneering work of Floer and Einstein [68] in the one space dimension, much interest
has been directed in the last decade to singularly perturbed elliptic problems of the
form

—?Au+V(z)u = f(u) inQ
u>0 inQ (7.1)
u=0 on 0N

for a super-linear and subcritical nonlinearity f with f(s)/s nondecreasing.

Typically, there exists a family of solutions (uc)e>o which exhibits a spike shape
around the local minima (possibly degenerate) of the function V(z) and decade
elsewhere as € goes to zero (see e.g. [3][62] [63] [64] R3] 108, 109, 119, 125, 126 145]
and references therein). A natural question is now whether these concentration
phenomena are a special feature of the semi-linear case or we can expect a similar
behavior to hold for more general elliptic equations which possess a variational
structure.

In this section we will give a positive answer to this question for the following
class of singularly perturbed quasi-linear elliptic problems

N 9 N
-2 Z Dj(a;j(z,u)D;u) + % Z Dga;j(z,uw)DiuDju+ V(z)u= f(u) inQ

ij=1 i,j=1
u>0 in
u=0 on 0N

(7.2)
under suitable assumptions on the functions a;;, V and f. Notice that if a;;(z, s) =
0;; then equation reduces to , in which case the problem originates from
different physical and biological models and, in particular, in the study of the so
called standing waves for the nonlinear Schrédinger equation.
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Existence and multiplicity results for equations like have been object of a
very careful analysis since 1994 (see e.g. [6] [7, 33, B6, 132] for the case where 2
is bounded and [48] [130] for 2 unbounded). On the other hand, to the author’s
knowledge, no result on the asymptotic behavior of the solutions (as & vanishes)
of can be found in literature. In particular no achievement is known so far
concerning the concentration phenomena for the solutions u. of around the
local minima, not necessarily non-degenerate, of V.

We stress that various difficulties arise in comparison with the study of the semi-
linear equation (see Section for a list of properties which are not known
to hold in our framework).

A crucial step in proving our main result is to show that the Mountain-Pass
energy level of the functional J associated with the autonomous limiting equation

N N
— S Dy(ay (@ u)Dyu) + % " Doay (@ u)DsuDyu + V(@) = f(u) in RY
i,j=1 i,j=1

(7.3)
with Z € RY, is the least among other nontrivial critical values (Lemma .
Notice that, no uniqueness result is available, to our knowledge, for this general
equation (on the contrary in the semi-linear case some uniqueness theorems for
ground state solutions have been obtained by performing an ODE analysis in radial
coordinates, see e.g. [44]). The least energy problem for is also related to the
fact:

uw e HY(RYN), u > 0 and u solution of (7.3)) implies that J(u) = max J(tu) (7.4)

Unfortunately, as remarked in [48, section 3], if one assumes that condition
holds, then property cannot hold true even if the map s — f(s)/s is
nondecreasing.

To show the minimality property for the Mountain-Pass level and to study the
uniform limit of u. on @A, inspired by the recent work of Jeanjean and Tanaka [82],
we make a repeated use of the Pucci-Serrin identity [116], which has turned out to

be a very powerful tool (Lemmas and [7.11]).

Notice that the functional associated Wi (see ) is not even locally
Lipschitz and tools of non-smooth critical point theory will be employed (see [50} 58]
and references therein). Also the proof of a suitable Palais-Smale type condition
for a modification of the functional I, becomes more involved.

We assume that f € C'(RT) and there exist 1 < p < % and 2 <9 <p+1
with

lim fs) =0, lim fls) =0, (7.5)
s—+oo SP s—0t S
0 <VF(s) < f(s)s forevery s € R, (7.6)

where F(s) = [ f(t)dt for every s € RT.
Furthermore, let V : RV — R be a locally Holder continuous function bounded
below away from zero, that is, there exists a > 0 with

V(z) > a for every z € RV, (7.7)

The functions a;;(z,s) :  x Rt — R are continuous in x and of class C!' with
respect to s, a;;(x, s) = a;i(x, s) for every 4,5 = 1,..., N and there exists a positive
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constant C with
|aij(z,5)| < C, [Dsaij(z,5)| < C
for every x € Q and s € RT. Finally, let R,v > 0 and 0 < v <9 — 2 be such that

N
Z A5 (.1?, 3)§1§] Z V|€|2a (78)
ij=1

N N
> sDeaij(x,9)€& < v Y aij(@,9)&E;, (7.9)
ij=1 ij=1
J N J
s> R = Z Dsa;j(z,5)6:€ >0 (7.10)
=1

for every x € Q, s € RT and £ € RV,

Hypothesis , and on f and V are standard. Observe that neither
monotonicity assumptions on the function f(s)/s nor unigueness conditions on the
limiting equation are considered. Finally, and have already been
used, for instance in [0 [7), B3] 36, 48], in order to tackle these general equations.

Let Hy () be the weighted Hilbert space defined by

H() = {ue HI(Q) : / V(o) < +ool,
Q
endowed with the scalar product (u,v)y = [, DuDv + V(z)uv and denote by

| - [l 77y (@) the corresponding norm.
Let A be a compact subset of €2 such that there exists zg € A with

V(zg) = mAan < nal}\nV, (7.11)
N N
-Zl aij (Io, S)gi&j = Iznel}\l .Zl CL,L'j (l‘, 5)§i§j (712)
2,)= ,)=

for every s € RT and £ € RV. Let us set
o:=sup{s>0: f(t) < tV(xg) for every t € [0,s]}, (7.13)
Mo={xeN:V(z)=V(x)}. (7.14)

The following is the main result of the section.

Theorem 7.1. Assume that conditions (7.5)), (7.6), (7.7), (7.8), (7.9), (7.10),
(7.11), (7.12)) hold. Then there exists g > 0 such that, for every ¢ € (0,¢&p),
there exist u. € Hy () N C(Q) and z. € A satisfying the following properties:

(a) ue is a weak solution of the problem

N , N
g2 ”2231 Dj(a;j(z,u)Diu) + % ”2-231 Daij(z,u)DauDju+ V(z)yu = f(u) in Q
u>0 in
u=0 ondQ;
(7.15)
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(b) there exists o' > 0 such that

ue(ze) =supue, o <u(x:) <o, lin(l)d(xg,///) =0
Q

E—

where o is as in (7.13) and A is as in (7.14) ;

(¢) for every o > 0 we have
312% l[tel| Lo @\B,(z.)) = 0

(d) we have
tim [ 1y ) = 0

and, as a consequence, lin% lluel|Lag) = 0 for every 2 < g < +o0.
E—

The proof of the theorem is variational and in the spirit of a well-known paper
by del Pino and Felmer [62], where it was successfully developed into a local setting
the global approach initiated by Rabinowitz [119].

We will consider the functional I, : Hy(2) — R associated with the problem

(7.15),
2 & 1 )
I.(u) := 5 E /Qaij(x,u)DiuDju—i—g/QV(a:)u —/QF(u) (7.16)

i,j=1
and construct a new functional J. which satisfies the Palais-Smale condition (in
a suitable sense) at every level (I. does not, in general) and to which the (non-
smooth) Mountain-Pass Theorem can be directly applied to get a critical point u.
with precise energy estimates.

Then we will prove that u. goes to zero uniformly on OA as e goes to zero (this
is the hardest step, here we repeatedly use the Pucci-Serrin identity in a suitable
form) and show that u. is actually a solution of the original problem with all of the
stated properties.

Remark 7.2. We do not know whether the solutions of problem ([7.15) obey to
the following exponential decay

uc(z) < aexp{ — g\x — x|} for every x € , for some o, 8 € RT, (7.17)

which is a typical feature in the semi-linear case. This fact would follow if we had a
suitable Gidas-Ni-Nirenberg [76] type result for the equation to be combined
with some results by Rabier and Stuart [I17] on the exponential decay of second
order elliptic equations.

As pointed out in [64], the concentration around the minima of the potential is,
in some sense, a model situation for other phenomena such as concentration around
the maxima of d(x,0Q). Furthermore it seems to be the technically simplest case,
thus suitable for a first investigation in the quasi-linear case.

7.1. The del Pino-Felmer penalization scheme. We now define a suitable
modification of the functional I. in order to regain the (concrete) Palais-Smale
condition at any level and apply the Mountain Pass Theorem. Let us consider the
positive constant

ft)

E::sup{s>0:—§

¥ % foreveryogtgs}
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for some k > 19/(9 — 2). We define the function f : Rt — R by setting
~ s ifs> 4
fls)=q5" .
f(s) if0<s<¢
and the maps ¢,G : Q x RT — R,

gler8) == xa(@)(5) 4 (1 = xa@)F(s), Glas) = [ glarydr
0
for every x € Q. Then the function g(z, s) is measurable in z, of class C! in s and
it satisfies the following assumptions:

9(z,s) 9(z,s)

lim =0, lim =0 uniformly in z € Q, (7.18)
s—+oo  sP s—0t S
0 < 9G(x,s) < g(x,s)s for every x € A and s € RT, (7.19)

0 <2G(x,s) < g(x,s)s < %V(m)sQ for every x € Q\ A and s € RT.  (7.20)
Without loss of generality, we may assume that
g(x,s) =0 for every z € Q and s <0,
a;j(z,s) = a;;(x,0) foreveryx €, s<0andi,j=1,...,N.
Let J. : Hy(2) — R be the functional

Je(u) ;:% i\’: /Qaij(:c,u)DiuDju—k%/QV(m)u?—/QG(x,u).

i,j=1
The next result provides the link between the critical points of the modified
functional J. and the solutions of the original problem.

Proposition 7.3. Assume that u. € Hy () is a critical point of J. and that there
exists a positive number g such that

ue(x) <€ for every e € (0,e9) and z € Q\ A.
Then u. is a solution of (7.15)).

Proof. By assertion (a) of Corollary [2.25] it results that w. is a solution of the
penalized problem. Since u. < £ on Q\ A, we have

G(z,us(r)) = F(ue(z)) for every z € Q.
Moreover, by arguing as in the proof of [I30, Lemma 1], one gets u. > 0 in 2. Then

ue is a solution of ([7.15)). O

The next Lemma - which is nontrivial - provides a local compactness property
for bounded concrete Palais-Smale sequences of J.. For the proof, we refer the
reader to [I30, Theorem 2 and Lemma 3].

Lemma 7.4. Assume that conditions (7.5)), (7.6}, (7.7), (7.8), (7.9), (7.10) hold.

Let € > 0. Assume that (up) C H*(RY) is a bounded sequence and

N 9 N
€
(wp, @) = € Z /RN aij(x, up)Diup Do + 5 Z /]RN Dsaij(x, up)DiupDjune

,j=1 4,j=1
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for every p € C°(RY), where (wy,) is strongly convergent in H=(Q) for a given
bounded domain of RV,

Then (up) admits a strongly convergent subsequence in Hl(ﬁ) In particular,
if (un) s a bounded concrete Palais-Smale condition for J. at level ¢ and u is its
weak limit, then, up to a subsequence, Duy — Du in LQ(Q,RN) for every bounded
subset Q of Q.

Since €2 may be unbounded, in general, the original functional I. does not satisfy
the concrete Palais-Smale condition. In the following Lemma we prove that, instead,
the functional J. satisfies it for every € > 0 at every level ¢ € R.

Lemma 7.5. Assume that conditions , , , , , ) hold.

Let ¢ > 0. Then J. satisfies the concrete Palazs Smale condmon at every level
ceR.

Proof. Let (up) C Hy () be a concrete Palais-Smale sequence for J. at level c. We
divide the proof into two steps:
Step I. Let us prove that (up) is bounded in Hy (). Since J.(up) — ¢, from

inequalities ([7.19)) and ( -, we get
0,
Z aljxuh )D;upD; uh+ V( Yus
By=1 (7.21)
0
< [ gtwyun+ 5 [ Vi +ve+ o)
A 2k Ja\a

as h — 4o00. Moreover, we have J.(uy)(un) = o(||un | m, ) as h — +oo. Then,
again by virtue of (7.20)), we deduce

2Z/a”xuhDuhDuh+ Z/Da”wuhuhDuhDuh—&—/V
i,j=1 1,j=1

> /Ag(x,Uh)Uh+0(Huh\|Hv(Q)),
as h — +o0, which, by (7.9), yields

(2—|—1 Z/awzuh)DuhDuh—F/V( Juz

ij=1 @ (7.22)
> [ gt w)un + olunlln o)
A

as h — +o0o. Then, in view of (7.8]), by combining inequalities (7.21]) and (7.22)
one gets

: v v 2 U0 2 2
mln{(2 5 1)ve '3 T o 1}/Q (\Duh| + V(:v)uh) (7.23)
< e+ ollunllmy @) +o(1)

as h — 400, which implies the boundedness of (uz) in Hy ().

Step II. By virtue of Step I, there exists u € Hy () such that, up to a subsequence,
(up,) weakly converges to u in Hy (2).
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Let us now prove that actually (uy) converges strongly to u in Hy (). By taking
into account Lemma (applied with Q = B,(0) for every o > 0), it suffices to
prove that for every d > 0 there exists ¢ > 0 such that

lim sup/ <|Duh\2 + V(x)u%) < 0. (7.24)
k Q\B,(0)

We may assume that A C B,/2(0). Consider a cut-off function ¢, € C*°(Q2) with
Yo = 0 on B,5(0), ¥, = 1 on Q\ B,(0), [Dip,| < ¢/o on Q for some positive
constant ¢. Let M be a positive number such that

N N
1
‘5 Z Dsaij(x,s)&gj‘ S M Z aij(x,s)figj (725)
i,5=1 i,j=1
for every z € Q, s € RT, £ € RV and let ¢ : R — R be the map defined by
0 ifs<0
C(s):=<X Ms if0<s<R (7.26)
MR if s> R,
being R > 0 the constant defined in (7.10). Notice that
o1
> [5Deaii(w,8) + ¢ ()ay (@, 9)] & > 0. (7.27)
ij=1

for every z € Q, s € R, £ € RY. Of course J.(up)(¥oup exp{C(us)}) can be
computed. Since (up,) is bounded in Hy () and (|7.27)) holds, we get

(1) = JL(un) (gt exp{C (un)})
=30 [ ay(ew) DDy exp{Clun)}

ij=1

N
+ &2 Z/Q[%Dsaij(m7uh)+Cl(uh)aij(irauh)}DiuhDjUhthgeXp{C(uh)}

i,j=1

N
+e2 > /Q aj (2, up)up Dyup Dyjtbg exp{C(un)} + /Q V(x)u3 b, exp{C(un)}

ij=1

—Lﬂ%mﬂWﬁ@KW&
> / (2| Dun? + V(2)u}) 1y exp{((un)}
Q

N
+e2 ) /Q aij (@, un)un Dyun Djpo exp{C(un) }

i,j=1

f/pmmewmmM»
Q

Therefore, in view of ([7.20)), it results

o(l) > /Q (52u|Duh|2 + V(x)u%) o exp{C(up)}
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N
#6830 [ e w)un Doun Dy expl G}

ij=1
1
-1 [ V@nti,emicm)
as o — +oo. Taking into account that

N _
exp{ M R}\C
‘ E /QClij(mvuh)uhDiuhDj¢QeXp{C(uh)}‘ < p{g ) [ Dugll2|un |2,

ij=1

there exists C’ > 0 (which depends only on &, v and k) such that, as ¢ — 400,

Cl
limsup/ <|Duh|2 + V(x)u%) <=,
h Q\B,(0) o
which yields ([7.24)). Therefore u;, — u strongly in Hy (2) and the proof is complete.

(]

7.2. Energy estimates and concentration. Let us now introduce the functional
Jo : HY(RY) — R defined by

N
1 1
Jo(u) = 5 E / aij(xo,u)DiuDju + 5/ V(.Io) u2 7\/ F(u)
i1 RN RN RN

where z¢ is as in (7.11). Let us set

c:= inf sup Jo(v(t)),
e o(v(1))

where 2 is the family defined by
Py = {7 € C(10,1], Hy(RY)) :7(0) =0, Jo(y(1)) <0}  (7.28)
Let us also set
P ={y€C([0,1],Hy(Q)) : v(0) =0, J.(y(1)) <0}. (7.29)

In the following, if necessary, we will assume that, for every v € &2., for every
t € [0,1] the map (¢) is extended to zero outside 2.

In the next Lemma we get a critical point u. of J. with a precise energy upper
bound.

Lemma 7.6. For ¢ > 0 sufficiently small J. admits a critical point u. € Hy ()
such that

Jo(us) < Ve o(eM). (7.30)

Proof. Let € > 0. By Lemma the functional J. satisfies the concrete Palais-
Smale condition at every level ¢ € R. Moreover, since g(z,s) = o(s) as s — 0
uniformly in z, it is readily seen that J. verifies the Mountain-Pass geometry.
Finally, if z is a positive function in Hy (2) \ {0} such that supt(z) C A, by
it results J.(tz) — —oo as t — +oo. Therefore, by minimaxing over the family
, the functional J. admits a nontrivial critical point u. € Hy () such that

= ] f S N
Je(ue) nf ZE)I,)H Je(v(2))
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Since ¢ is the Mountain-Pass value of the limiting functional Jy, for every § > 0
there exists a continuous path « : [0,1] — Hy (RY) such that

o< s h((0) SEH5 A0 =0, () <0 (7.31)

Let ¢ € C°(RY) be a cut-off function with ¢ = 1 in a neighborhood U of z( in
A. We define the continuous path I : [0,1] — Hy () by setting I.(7)(z) =
C(x)y(r)(£=22) for every 7 € [0,1] and 2 € Q. Then, for every 7 € [0,1], after
extension to zero outside €2, we have

JT-(7))
=‘fi; [ (a: (@)() (7 xo)) DD () (F)

+ ;i_ /R i (%C(Sﬂ)’y( >(xff°)) (D) (=) D) (=2 ¢
+ sf_j [ (x JERGIE fO)) Dil(Dy(r) ()6 () ()
b3 [ Va0 - [ o (adenmnE2).

Then, after the change of coordinates, for every 7 € [0, 1], we get

€N+2

Je(Ie(r)) = B

N
S° [ sy an.Cley + a0 (7)) D+ 20)

ij=1
x Dj¢(ey + x0) 7 () (y)

N
e S0 [ ey, ey + 20 (1)) Didley + )

ij=1

x Dy (1) (y)¢(ey + 20)v(T)(y)

N X
LS [ o eutan Gy 20 (7)) D))

ij=1 .
< DA+ a0+ G [ Viey+ )¢y + ()
]RN

LN /  Gley+ w0, ey + 20)1(T)(v)):

Taking into account that for every 7 € [0, 1],

fim [ View+aer+ar* 0o = [ Vo),

e—0 RN

iny [ Glew+ 20,y + 2 ()) = [ FOO)).

e—0 RN
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and

N
tim 32 [ aig(en+ a0, Cley + 20 () ) Dy (D)) Dy () ey + )
i,j=1

N
=% [ as@nmw)PammDar)e).

,j=1

we obtain

L) =5 2 [ au@ma @) DA D))

5 [ Vo = [ Fa@w)}+ o)
as € — 0, namely
J(1L(7)) = N Iy (4(7) + 0fe™) (7.32)

as € — 0, where o(¢") is independent of 7 (by a compactness argument). Then, by

(7.31) and (7.32), it follows that I'. € &2, for every € > 0 sufficiently small and,
Je(ue) = inf sup Jo(y(t)) < sup Je(I(t))

YEP, te[0,1] te(0,1]
=" sup Jo(v(t)) + o(e™)
t€(0,1]

<eNeto(eN) + 0N for every 6 > 0.

By the arbitrariness of § one concludes the proof. O

In the following result we get some priori estimates for the rescalings of u..

Corollary 7.7. Let (ep) CRT, (z) C A and assume that (ue, ) C Hy(Q) is as in
Lemma[7.6 Let us set

vp € Hy (), QU i=e, (2 —z1), on(x) :=ue, (5 + en2)

and put vy, = 0 outside Q. Then there exists a positive constant C such that for
every h € N,

||1}h||H1(RN) S C. (733)

Proof. We consider the functional Jj, : Hy (Qp,) — R given by

N
1
Jp(v) == 5 Z / a;j(zp + epx,v)DyvDjv (7.34)
i,j=1" 5
1
+ 7/ V(xp + epz)v? — / G(zp +epz,v). (7.35)
2 Qh Qh

Since Jy,(vy) = en, N Je, (ue, ), by virtue of Lemma [7.6| we have Jp,(v,) < ¢+ o(1)
as h — +o0o. Therefore, if we set Ay, = £, ' (A — x), from inequalities (7.19) and
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(7.20), we get

N
0 9
5 Z / a;j(zn + epx, vp)Divp Doy, + 5/ Vixp + 5hx)v}2l
B RN ]RN
J=1 (7.36)

v
< / g(xp + epx,vp)op + — / V(zp + epx)vi +9¢+ o(1)
An 2k RN\Ap,

as h — 4o00. Moreover, since it results J} (v)(vy) = 0 for every h € N, again by

(720, we get

E / aij(xn + enx, vp)Divp Djvy
,j=1

+ = Z / Dgaij(xp, + enx, vp)vpDivpDjvy, —|—/ Vxp —|—6h:l:)vi

i,j=1 RN
Z/ g(xp + enx, vp)vp,
An

which, in view of (7.9)), yields

N
(Z 4 1) Z / aij(zn + enx, vp)Divp Djup, + Vixn + shm)v,%
2 j=17R" RN (7.37)

2/ g(xh + enx, Up)Vp.
Ap

Then, recalling ([7.7) and ( . by combining inequality (7.36)) and - one gets

) 9 9 0 _
mln{(§—%—1)y7 (5—%—1) }/RN (|Dvh\2+v}%) <de+o(l) (7.38)
as h — 400, which yields the assertion. O

Corollary 7.8. Assume that (u.)e>o C Hy(Q) is as in Lemma[7.6, Then
lim [Jue [y () = 0.

Proof. We may argue as in Step I of Lemma [7.5] with u, replaced by u. and c¢
replaced by Jc(uc). Thus, from inequality (7.23)), for every ¢ > 0 we get

U
/Q(|Du5|2 +V(x)u§> < min (27D, I— 2 - 1}

By virtue of Lemma this yields

2 2 2v¢ N-2 N-2
< - 77
/ (|Du€\ +V (J:)u€> ( 2 € +o(e )

for every e sufficiently small, which implies the assertion. O

Let .Z : RY xRxRY — R be a function of class C! such that the function V%
is of class C! and let ¢ € L (RY). We now recall the Pucci-Serrin variational
identity [116].
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Lemma 7.9. Let u:RY — R be a C? solution of
—div (DeZ (2, u, Du)) + D& (x,u, Du) = ¢ in 2'(RY).
Then for every h € CHRN RY),

N
> | Dil'D¢,#(x,u, Du)Dju
ij=1"RY (7.39)

- / [(divh) L(z,u, Du) + h - D% (x,u, Du)| = / (h- Du)p.
RN RN

We refer the reader to [59], where the above variational relation is proved for C'!
solutions. We now derive an important consequence of the previous identity which
will play an important role in the proof of Lemma
Lemma 7.10. Let y > 0 and h, H : Rt — R be the continuous functions defined
by

h(s) = s+ f(s), H(s)= / h(t) dr,

where f satisfies (7.5) and (7.6). Moreover, let b;; € C*(RT) N L>®(R™") with
bi; € L*(R") and assume that there exist v/ >0 and R’ > 0 with

N N
> ()68 = VIEP, s> R o= > b(s)68 =0 (7.40)

i,j=1 i,5=1

for every s € RT and £ € RN, Let u € HY(RYN) be any nontrivial positive solution
of the equation

N 1 N
= D Di(bi;(w)Dyu) + 5 Y b (w) DyuDju = h(u) in RY. (7.41)

i,j=1 i,j=1

We denote by J the associated functional

N
J(u) := % -Zl /RN bi;j(u)DyuDju — - H(u). (7.42)

o~

Then it results J(u) > b, where

~

b:= inf sup J(y(t)),
yEZ t€]0,1]

—

7= {yeC(o.1, H'®") :4(0) =0, J(3(1)) <0}.
Proof. By condition ([7.40]),

~ 1 .

J(v) > > min {v/, u} ||v||§{1(RN) - /]RN F(v) for every v € H'(RY).
Then, since for every ¢ > 0 there exists C. > 0 with
0< F(s) <es? + CE‘S‘% for every s € R,

~

it is readily seen that there exist go > 0 and dy > 0 such that J(v) > &y for every
v with ||v]|1,2 = 0o. In particular J has a Mountain-Pass geometry. As we will see,
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Z # 0, so that b is well defined. Let u be a nontrivial positive solution of ([7.41))
and consider the dilation path

() (z) = {U(f) ift>0

0 ift=0.

Notice that [|[v(t)[|%: =tV ~2||Du||3 + tV|ju||3 for every ¢t € R*, which implies that
the curve 7 belongs to C([O, +oof, HL(RY)). For every t € R* it results that

1]1
tNQ

Z/ i (w)DiuDju — H(u)

1,7=1

which yields, for every t € R

%j('y(t)) N=2n-s Z/ (W DuDju— NNV [ H(u).  (7.43)

1,7=1 RN

By ([7.40)), arguing like at the end of Step I of Lemma (namely using the local
Serrin estimates) it results that « € LS (RY). Hence by the regularity results of

loc

[90], it follows that u is of class C2. Then we can use Lemmaby choosing ¢ = 0,

N
= % Z bij(s)&:&; — H(s) for every s € RT and € € RY, (7.44)

4,5=1

W) = hi(a) = T(5)

being T € CHRY) such that T(z) = 1if |[z| < 1 and T(x) = 0 if [2| > 2. In
particular, it results that hy € C}(RN,RY) for every k > 1 and

z for every z € RN and k > 1, (7.45)

D;hl(z) = DT(}?)? +T(k)5ij for every x € RN and i,j =1,...,N
(div by ) (z) = DT(%) : % + NT(%) for every = € RY.
Then, since D,.%(u, Du) = 0, it follows by (7.39) that for every k > 1
Z %9 DuDe, & (u, Du) + / T(2)De.#(u, Du) - Du
) k k vk
- DT(E) 2 P, Du)— | NT(3)ZL(u,Du) = 0.
v Kk ex K
Since there exists C' > 0 with
DT(Z)wkj<C for every x € RV, k>1andi,j=1,...,N,

by the Dominated Convergence Theorem, letting £ — +00, we obtain

/RN [N.Z(u, Du) — De.%(u, Du) - Du] —0,
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nameIYa by ‘ )

N-2 &

— > bij(u)DiuDju= N [ H(u). (7.46)
2 ij:1 RN RN

By plugging this formula into (7.43), we obtain

%fww)=Nﬂ—fﬂ“3RNHW)

which yields %j('y(t)) >0fort<1and %j(v(t)) <O0fort>1,ie.

~

sup J(y(t)) = J(4(1)) = J(u).

p
te[0,L]

Moreover, observe that

~

~v(0) =0 and J(y(T)) < 0 for T > 0 sufficiently large.
Then, after a suitable scale change in ¢, v € 2 and the assertion follows. O

The following is one of the main tools of the section.

Lemma 7.11. Assume that (u.)es0 C Hy (Q) is as in Lemma[7.6, Then
li =0. A4
im max u. 0 (7.47)

e—0

Proof. The following auxiliary fact is sufficient to prove assertion (7.47): if e, — 0
and (xp) C A are such that u,, (z,) > ¢ for some ¢ > 0, then

h{bn Vzp) = min V. (7.48)

Indeed, assume by contradiction that there exist (g) € R* with ¢, — 0 and
(zp) C OA such that ug, (xp) > ¢ for some ¢ > 0. Up to a subsequence, we have
xp — T € OA. Then by (7.48) it results

minV <V(z) =limV(zp) =minV
A h A
which contradicts assumption (7.11)).
We divide the proof of ([7.48)) into four steps:

Step L. Up to a subsequence, z;, — 7 for some 7 € A. By contradiction, we assume
that

V(z) > mj&nV =V (zo).

Since for every h € N the function u,, solves (P,

., ), the sequence

vn € Hy (), Qn=¢," (Q—m3), vp(2) =ue, (zh +enm)

satisfies
N | X
— Z Dj(a;;(zp + epx, vp)Divp) + 3 Z Dgaij(xp + enx,vn)DivpDjvy, = wy,
i,j=1 t,5=1

in Qp, v, > 0in Qp and v, = 0 on 08y, where we have set
wp, = g(xp + epx,vp) — V(xp + epz)v,  for every h € N.

Setting v, = 0 outside RY, by Corollary up to a subsequence, v, — v weakly
in HY(RY). Notice that the sequence (xa(xn + €nz)) converges weak* in L
to a measurable function 0 < x < 1. In particular, taking into account that
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lwn| < crlon] + ealonlP, (wp) is strongly convergent in H! ((NZ) for every bounded
subset Q of RN, Therefore, by a simple variant of Lemma | we conclude that (vp,)

is strongly convergent to v in H'(Q) for every bounded subset Q c RY (actually,
as we will see, v, — v uniformly over compacts). Then it follows that the limit v
is a solution of the equation

N N
1
- Z Dj(a;;(Z,v)Dv) + 3 Z Dga;j(Z,v)DyvDjv + V(Z)v = go(w,v) in RY
i,j=1 i,5=1
(7.49)
where go(z, s) := x(x)f(s) + (1 — x(x))f(s) for every z € RY and s € Rt
We now prove that v # 0. Let us set

{V(xh +epz) — 9(%&()"”)) if vp(z) #0
0

dh(ﬂf) . 0 if vh(x) =

9

Aj(z,s,€) Za” xp +epr,8)& forj=1,... N,

i=1

X
C(z,s) = 3 Z Dga;j(xp + epx, s)Divp(x) Djon ()
ij=1

for every x € RV, s € RT and ¢ € RY. Taking into account the assumptions on
the coefficients a;;(x, s), it results that

Az, 5,6)- € > v[E?, Az, s,6)| < clé],  |Blx,s5,8)] < dn()]s].
Moreover, by ([7.10)) we have
s>R = C(z,5)s >0

for every x € RY and s € R*. By the growth condition on g, dj, € LfNé(ng(O))
for every o > 0 and
S = d N < D,s N <+
buPH h”w 5 (Bay(0)) gi‘égﬂvhﬂm (B2,(0)) oS
for some § > 0 sufficiently small. Since div(A(z,vpn, Dvp)) = B(x,vp, Dvp) +
C(z,vp) for every h € N, by virtue of [122] Theorem 1 and Remark at p.261] there

exists a positive constant M (8, N, ¢, 0°S) and a radius ¢ > 0, sufficiently small, such
that

sup max |vp(z)] < M(4, N,e, Q(SS)(QQ)iN/Q sup ||Uh||L2(BQQ(0)) < 400
heNT€B,(0) heN

so that (vp) is uniformly bounded in B,(0). Then, by [122] Theorem 8], (vy)
is bounded in some C1*(B,/5(0)). Up to a subsequence this implies that (v,

)
converges uniformly to v in B,/2(0). This yields v(0) = limy, v, (0) = limy, u., (z5) >
c> 0.

In a similar fashion one shows that v, — v uniformly over compacts.
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Step II. We prove that v actually solves the following equation

N N
- Z Dj(a;j(Z,v)Djv) + % Z Dya;j(Z,v)DivDju + V(Z)v = f(v) in RY.
i,j=1 ij=1

(7.50)
In general the function x of Step I is given by x = xr,(z), Wwhere TA(Z) is the
tangent cone of A at Z. On the other hand, since we may assume without loss of
generality that A is smooth, it results (up to a rotation) that x(z) = x{z, <0} ()
for every x € RY. In particular, v is a solution of the problem

N N
1
— Z Dj(ai;(z,v)D;v) + 3 Z Dsa;j(Z,v)DivDjv + V(Z)v
ij=1 ij=1 (7.51)

= X{a1 <0} () F(0) + Xga, 50y (#) f(v)  in RY.
Let us first show that v(z) < £ on {z; = 0}. To this aim, let us use again Lemmal7.9]
by choosing this time

0(2) = X{21<0} () f (0(@)) + X{ay 501 () f(v(@))  for every z € RY

N ~
1
Z(s,€) = 3 Z a;;(Z, 8)&&; + Véx)sz for every s € R and £ € RY,
i,j=1
z N
h(z) = hi(z) = (T(E)’O’ . .,O) for every x € R™ and k > 1.

Then hy, € CLHRY ,RY) and, since D, (v, Dv) = 0, for every k > 1, it results

Z(v, Dv)}

x| =

)

RS

N
1 T
/RN [E ;:1 DT () D1vDe, £ (v, Dv) = DiT(

- [ 7Geta)D.

Again by the Dominated Convergence Theorem, letting k& — —+o00, it results

/ o(z,v)D1v =0,
RN

that is, after integration by parts,
/ [F(v(o,x’)) - ﬁ(v(o,x’))} dz’ = 0.
RN-1

Taking into account that F(s) > F(s) with equality only if s < £, we get v(0,2) < £
for every o’ € RN~1. To prove that actually v(z1,2’) < £ for every x; > 0 and
' € RV~ we test (7.51) with

(fE) L 0 ifx1 <0
T (o, ) — 0)F exp{C(o(an, 7))} if 21 > 0
where ((s) is as in ([7.26)) and then we argue as in Section [7.3| (see the computations
in formula (7.58))). In particular,
o(x,v(x)) = f(v(x)) for every x € RY, (7.52)

so that v is a nontrivial solution of ([7.50]).
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Step III If J, : Hy(Qp) — R is as in (7.34)), the function vy, is a critical point
of Jy, and Jy(vy) = e, N, (uc,) for every h € N. Let us consider the functional
Jz : HY(RY) — R defined as

Z/ a;;(Z,u)D;uDju + - / V(ﬁs\)uzf/ F(u).
]RN

Zj 1

‘We now want to prove that

Jz(v) < limhinf Jn(vn). (7.53)

Let us set for every h € N and = € Q,

N
Z i(xn + enx,vp)Divp Djvy + V(xh + epx)v), 2 — G(zp, + epx,vp).
i,j=1

&n(x)

M\H

(7.54)
Since vy, — v in H' over compact sets, in view of (7.52)), for every o > 0 one gets

N
1
lim En(x) = 7/ aij(%,v)DyvDjv + V(Z)v? 7/ F(v).
h B, 0) 2 JB,(0) (jz_:l ) B, (0)
Moreover, as v belongs to H'(RY),
1 N
f/ ( 3" ay(@,v)DywDyo + V(E)v2> —/ F(v) = J2(v) — o(1)
2 /B, 00 N 52 B, (0)

as 0 — +o0o. Therefore, it suffices to show that for every § > 0 there exists 0 > 0
with

liminf/ &n(x) > —0. (7.55)
h 2\ B, (0)

Consider a function n, € C*°(R") such that 0 <7, < 1,7, =0on B,_1(0), n, = 1
on RV \ B,(0) and |Dn,| < c. Let us set for every h € N,

N
AOEDY / aij(xn + enx, vy) Divp Dj(novn)
ij=17B 0(0)\B,-1(0)
+ = Z / Dsaij(xh+6hz,vh)ngthithjvh
1] 1 2(0\Bo—1(

+ / Vixn + 5hx)v}2mg — / g(xp + enx, Up)NoUs.
BQ(O)\Bgfl(O) BQ(O)\Bgfl(O)

After some computations, in view of (7.9) and (7.54)), one gets
— Bn(0) + J4(vn) (novn)
~

<(v+2) / ()~ 1 / V(wn + ena)o?
Qp\B,(0) Qr\B,(0)

+(v+ 2)/ G(zp + epz,vp) — / g(xn + epx,vp)op
Qp\B,(0) Q\B,(0)
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Notice that, by virtue of (7-19), for o large enough, setting A, = &, ' (A — z3), we
get

3 Vintaod+ ) [ Gt e
2 JA\B,(0) AR\B,(0)

- / g(xn +enz,vp)vp
Ah\BQ(O)
§—(19—2—7)/ G(zp +epz,vp) <0.
Ap\B,(0)

Analogously, in view of ([7.20)), we obtain
’Y

/ V(zp +enz)vi + (v +2) / G(xp + enx,vp)
2 Jan\(B,)uan)

Qr\ (B (0)UAR)

- / gz + enx, vp)vn
Qn\(Bo(0)UAR)
<7 / V(xp + epx)vi + lk
2 Ju\(B,(0)uAn) 2k Jou\(B,(0)uAL)

Therefore, since J; (vi,)(n,vn) = 0 for every h € N and

V(zp +epz)vi <0.

limsup By (0) = o(1) as o — o0,
h

inequality (7.55)) follows and thus (7.53)) holds true.

Step IV. In this step we get the desired contradiction. By combining Lemma
with the inequality (7.53]), one immediately gets

Jz(v) <= inf sup Jo(v(¢)). (7.56)
YEZ0 te(0,1]

Since v is a nontrivial solution of (7.50)), by applying Lemma with
p=V(@), vV =v, R =R, bj(s)=ayT,s),
being 2 C Py, V(Z) > V(zo) and, by (7.12)),

N N
Z a;; (T, s)&:& > Z aij(zo,5)&€;  for every s € RT and ¢ € RY,
i,j=1 i,j=1
it follows that
Jz(v) > inf sup Jz(y(t)) > inf sup Jo(y(t)) =¢, (7.57)
yeZ te[0,1] YEP0 te(0,1]
which contradicts ([7.56)). O

7.3. Proof of the main result. We are now ready to prove Theorem
Step I. We prove that (a) holds. By Lemma there exists €9 > 0 such that

ue(x) < £ for every € € (0,e0) and z € JA.
Then, since u. € Hy(Q), for every € € (0,e0), if ¢ is defined as in (7.26]), the

function
v(x)._{o itweA
) (e (@) — O exp{Cuc(x))} ifxeQ\A
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belongs to HE () and it is an admissible test for the equation

N 5 N
e
_52 i ]Ezl Dj(aij(x,ua)Diug) + EijE:l Dsaij(x, UE)DiUEDjUS + V(J,‘)UE = g(l‘,ue).

After some computations, one obtains

N
g2 Z /Q\A aij(x,us)Di[(us — £)+]Dj [(Us _ g)+] exp{C(u)}

ij=1
al 1
+ &2 Z / {2Dsaij(x,u5) + ¢ (ue)aij(z, ug)] DiusDjuc(us — €)1 exp{¢(uc)}
PRIV

[ @l - 0P expfoa) + [ Bt — 0 exp{C(us)} =
Q\A Q\A
(7.58)
where @, : ) — R is the function given by
9(z, ue(x))
D, (z) = _ ALY
Notice that, by virtue of condition ([7.20]), one has
O () >0 forevery x € Q\ A.

Therefore, taking into account ([7.27)), all the terms in (7.58)) must be equal to zero.
We conclude that (ue —£)* =0 on Q\ A, namely,

ue(z) < € for every € € (0,e9) and x € Q\ A. (7.59)

Hence, by Proposition is a positive solution of the original problem ([7.15]).

Moreover, by virtue of (7.10]), using again the argument at the end of Step I of
Lemma [7.11] it results that u. € L{< (€2), which, by the regularity results of [90],

loc

yields u. € C(Q). Notice that by arguing in a similar fashion testing with

v@y_{o itweA
) (ue (@) — supgp ue) T exp{Cuc(z))} ifzeQ\A

it results u. — 0 uniformly outside A.

Step II. We prove that (b) holds. If z. denotes the maximum of u. in A, since
1. — 0 uniformly outside A, it results that u.(z.) = supg u.. By arguing as at the
end of Step I of Lemma [7.11] setting v () = u. (2. +¢x) it results that the sequence
(v:(0)) is bounded in R. Then there exists ¢’ > 0 such that uc(z:) = v:(0) < o’.
Assume now by contradiction that u.(z.) < o for some ¢ € (0,eg). Then, taking
into account the definition of o and that u. — 0 uniformly outside A, it holds (with
strict inequality in some subset of (2)

fue(z))
ue(x)

Let ¢ : R* — R be the map defined in (7.26)). Then the function u. exp{¢(us)} can
be chosen as an admissible test in the equation

V(z) — >0 for every x € Q. (7.60)

N 9 N
—g? Z Dj(a;j(z, ue)Djus) + % Z Dga;ij(x,ue)DiucDijue + V(2)us = f(ue).

4,j=1 ,j=1
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After some computations, one obtains

N
&2 Z/aij(l',us)DiusDjuEeXp{C(uE)}
Q

ij=1

N
w2y [;Dsam—(ws)+<’<ue>az-j<x,us> Djus Djuzus exp{¢(uc)} (76D

i,7=1

+ [ (v - ) et o,

€

Then, by (7.8]), (7.27) and (7.60) all the terms in equation (7.61) must be equal to

zero, namely u. = 0, which is not possible. Then u.(z:) > o for every ¢ € (0, &)
and by (7.48) we also get d(ze, . #) — 0 as € — 0.

Step ITI. We prove that (¢) holds. Assume by contradiction that there exists ¢ > 0,
0>0,e, — 0and y, € A\ By(x,) such that

lim sup ., (yn) > 9. (7.62)
h
Then, arguing as in Lemma we can assume that y, — y, =, — y and

vr(y) = ue, (Yn + ny) — v, Vp(y) = ue, (ze, + epy) — U strongly in Hlloc(RN),
where v is a solution of

N N
1 .
— Z Dj(a;;(y,v)D;v) + 3 Z Dgai;j(y,v)DivDju+V(y)v = f(v) in RN
i,j=1 i,5=1

and v is a solution of

N N
N 1 _ .
— Y Dj(ai;(§,v)Div) + 3 > Diaij(§,v)DywDjv + V(i = f(v) in RY.

ij=1 i,5=1

Observe that v £ 0 and v # 0. Indeed, arguing as in Step I of Lemma it results
that (vp) and (¥p,) converge uniformly in a neighborhood of zero, so that from ([7.62)

and u., (z¢,) > o we get v(0) > ¢ and ¥(0) > 0. Now, setting zj, := % and
N
1 1 )
&nly) =5 > aij(yn + eny, vi) Diva Djvn + 3V (yn +eny)vi — Glyn +eny, on),
ig=1

ifpy e CP(R),0< 1 <1, ¢(s) =0 for s <1 and (s) =1 for s > 2, arguing as in
Lemma by testing the equation satisfied by v;, with

o) = () [0 (D) + (L2 1,

taking into account that
im| [ &ly)] = o(1)
h 1) Byr(0)UB2g (21)\(Br(0)UBR(21))
as R — 400, it turns out that for every § > 0 there exists R > 0 with

lim inf

! / enly) = —0.
QIL\(BR(O)UBR(Z)L))
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Moreover, for every R > 0, we have

lim inf &n(y) = hmlnf/ Z a;j(yn + eny, vn)Divp Djvy,
h Bgr(0)UBR(z1) BR(O)

i,j=1
1
+ §V(yh +eny)vip — Glyn + eny, vn)
+ hmlnf/ Z aij(xe, + eny, Un)Divp D,y
Zj 1

1 -
+ QV(%;L + eny); — G(ze, + €nY, On)
N

1 ~
+/BR(O)2 ]z:: (¥, 0)D;vD;v + V(N)v — F(v).

1
aij (y,v)DjvDjv + §V(y)v2 - F(v)

l\.’)\»—~

Therefore, we deduce that
limhinf en NI, (ue,) = limhinf En(y) > Jy(v) + J5(0).
Qp
Let b and by be the Mountain-Pass values of J, and J;. By Lemma [7.10] -, -
and (7.12) we have Jy,(v) > b, > ¢ and Jy(v) > b~ > C. Therefore we conclude that
limhinf en NI, (ue,) > 26,

which contradicts Lemma

Step IV. We prove that (d) holds. By Corollary we have |uc| g, () — 0. In
particular, u. — 0 in LZ(Q) for every 2 < ¢ < 2*. As a consequence u. — 0 in
L1(Q) also for every ¢ > 2*. Indeed, if ¢ > 2*, we have

/‘us‘q:/ ‘ue‘q72*|u€|2* SU/L]*Q*
Q Q

as € — 0. The proof is now complete. ([l

7.4. A few related open problems. We quote here a few (open) problems related
to the main result.

Problem 7.12. Under suitable assumptions, does a Gidas-Ni-Nirenberg [76] type
result (radial symmetry) hold for the solutions of autonomous equations of the type

N
— Y Dj(bij(u) Z b, (w)DiuDju = h(u) in RN? (7.63)
,j=1 4,j=1
Problem 7.13. Under suitable assumptions on b;; and h, is it possible to prove,
as in the semi-linear case, a uniqueness result for the solutions of equation ([7.63))?

Problem 7.14. Is it true that for each € > 0 the solution wu. of problem ([7.15)
admits a unigue maximum point inside A?

Problem 7.15. Is it true that the solutions u. of problem (7.15)) decay exponen-
tially as for the semi-linear case (see formula (7.17))?
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8. THE SINGULARLY PERTURBED CASE, 11

In this section we turn to a more delicate situation, namely the study of the
multi-peak case, also for possibly degenerate operators. We refer the reader to [74].
Some parts of this publication has been slightly modified to give this collection a
more uniform appearance.

Assume that V : RN — R is a C! function and there exists a positive constant
« such that

V(z) >a forevery z € RY. (8.1)
Moreover let Aq, ..., Ax be k disjoint compact subsets of 2 and z; € A; with
V(xi):n}\inV<%1ji\?K i=1,...,k (8.2)
Let us set forallt=1,...,k
Mi={x e V(z)=V(x)}. (8.3)
Let 1<p< N, p* = NN—Z) and let Wy, () be the weighted Banach space

Wy (Q) = {u e WIP(Q) - /QV(x)|u|P < tool

endowed with the natural norm [lul|fy, = [, [Dul? + [, V(x)|u[?. For all A, B C

RY | let us denote their distance by dist(A4, B).
The following is the first of our main results.

Theorem 8.1. Assume that (8.1) and (8.2) hold and let 1 <p <2, p < q < p*.
Then there exists €9 > 0 such that, for every e € (0,e0), there exist uc in

Wy () NCEP(Q) and k points Te; € N; satisfying the following properties:

loc
(a) ue is a weak solution of the problem

—ePApu+ V(z)uP ™t =u?t in Q
u>0 1in{) (8.4)
u=0 on 0
(b) there exist 0,0’ €]0,+00[ such that for every i =1,...,k we have

ue (T i) =supue, o < uc(ze;) <o, lir% dist(z. 4, #;) =0
A. E—

i

where M; is as in (8.3));
(¢c) for every r < min{dist(.;, #;) : i # j} we have
lin fluel e @i, By = 0
(d) it results
lim |Jue||w, = 0.
e—0
Moreover, if k =1 the assertions hold for every 1 < p < N.
Actually, this result will follow by a more general achievement involving a larger
class of quasi-linear operators. Before stating it, we make a few assumptions. As-

sume that 1 < p < N, f € CY(RT) and there exist p < ¢ < p* and p < ¥ < ¢
with

lim /(s)

s—0+ sp~1

_ o f(s)
=0, lim o5 =0, (8.5)
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0 <9F(s) < f(s)s for every s € RT, (8.6)

where F(s) = [ f(t)dt for every s € RT.

The function j(z,s,¢) : @ x RT x R¥Y — R is continuous in = and of class
C' with respect to s and &, the function {¢ — j(z,s,€)} is strictly convex and
p-homogeneous and there exist two positive constants ¢y, co with

sz, 5. < calélP, |je(x, 5,€)| < ol (8.7)

for a.e. 7 € Q and every s € RT, £ € RY (j; and j¢ denote the derivatives of j with
respect of s and £ respectively). Let R,v > 0 and 0 < v < ¢ — p with

i(z,s,8) > v[¢]F, (8.8)
Js(@,8,8)s < 7j(x,s,8) (8.9)

a.e. in Q, for every s € Rt and £ € RV, and
Js(z,s,6) >0 for every s > R (8.10)

a.e. in Q and for every ¢ € RY. For every fixed Z € Q, the limiting equation
— div(je (z,u, Du)) + js(Z,u, Du) + V(2)uP~' = f(u) in RY (8.11)
admits a unique positive solution (up to translations). Finally, we assume that

j(xiasag) = Hli/{lj(l’,s,é), i = 17"'ak (812)
TEN;

for every s € RT and ¢ € RY, where the z;s are as in (8.2)).

We point out that assumptions (8.1), (8.2), (8.5) and are the same as in
[62, [63]. Conditions (8.7)-(8.10]) are natural assumption, already used, throughout
this monograph.

The following result is an extension of Theorem

Theorem 8.2. Assume that , , , , , , , ,
, hold. Then there exists €9 > 0 such that, for every ¢ € (0,&p),
there exist ue in Wy (Q) N Cllocﬁ(ﬂ) and k points x.; € A; satisfying the following
properties:

(a) ue is a weak solution of the problem

—eP div(je(w,u, Du)) + P55 (x,u, Du) + V(2)uP~' = f(u) in Q

u>0 inQ (8.13)
u=0 ondQ;
(b) there exist 0,0’ €]0,+00[ such that for every i =1,...,k we have

ue(Te ;) =supue, o < uc(ze;) <o, liné dist(z. 4, #;) =0
A, e—

i

where M; is as in (8.3));
(¢) for every r < min{dist(.#;, #;) : i # j} we have

lim JJuell o @yt B, (o) = 05

(d) it results

lim [Jue||w, = 0.
e—0
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Notice that if &k = 1 assumption can be dropped: in fact following the
arguments of [I31] it is possible to prove that the previous result holds without
any uniqueness assumption, which instead, as in the semi-linear case, seems to be
necessary for the case k > 1. This holds true for the p-Laplacian problem and
for more general situation we refer the reader to [123].

Various difficulties arise in comparison with the semi-linear framework (see also
Section 5 of [I31]). To study the concentration properties of u. inside the A;s
(see Section , inspired by the recent work of Jeanjean and Tanaka [82], we
make a repeated use of a Pucci-Serrin type identity [59] which has turned out to
be a very powerful tool (see Section . It has to be pointed out that, in our
possibly degenerate setting, we cannot hope to have C? solutions, but at most C'+#
solutions (see [65, [I41]). Therefore, the classical Pucci-Serrin identity [I16] is not
applicable in our framework. On the other hand, it has been recently shown in [59]
that, under minimal regularity assumptions, the identity holds for locally Lipschitz
solutions, provided that the operator is strictly convex in the gradient, which, from
our viewpoint, is a very natural requirement (see Theorem . Under uniqueness
assumptions this identity has also turned out to be useful in characterizing the exact
energy level of the solution of . More precisely, we prove that admits
a least energy solution having the Mountain-Pass energy level (see Theorem [8.7)).

8.1. Penalization and compactness. In this section, following the approach of
del Pino and Felmer [63], we define a suitable penalization of the functional I, :
Wy (©2) — R associated with the problem (8.13)),

I.(u) := ep/Qj(fmu,Du)—i-%/QV(:E)MP—/QF(U).

By the growth condition on j, it is easily seen that I. is a continuous functional.
Let oo > 0 be as in (8.1) and consider the positive constant

ft) _ «
proes < - for every 0 <t < s} (8.14)

for some fixed x > /(9 — p). We define the function f : Rt — R by setting

N a1 if 5>
Js)= {f(s) if0<s<t

E::sup{s>0:

and the map g: Q x Rt — R as
k

gle,s) = (@) f() + (1 - La@)fls), A=|JA,

i=1

for a.e. z € Q and every s € R*. The function g(x, s) is measurable in z, of class
C' in s and it satisfies the following properties:

lim g(xas) g(x’s)

Jm == 0, sli}g)lJr o1 = 0 uniformly in z, (8.15)
0 < 9G(z,s) < g(x,s)s forx € Aand s € RT, (8.16)
1
0 <pG(z,s) < g(z,s)s < EV(x)sp for € Q\ A and s € RT, (8.17)

where we have set G(z, s) := [ g(x,7) dr.
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Without loss of generality, we may assume that
g(x,8) =0 for a.e. z € Q and every s <0, (8.18)
gz, 5,6) = j(x,0,6) forevery z € Q, s <0and & € RV, (8.19)
Let now J. : Wy () — R be the functional defined as

1
Lwi=e [ gD+ [ Ve - [ G,
Q P Ja Q
If 7 is in one of the A;s, we also consider the “limit” functionals on W1P(RY),
1
Iz (u) := / J(Z,u, Du) + f/ V(Z)|ulP — / F(u) (8.20)
RN D Jry RN

whose positive critical points solve equation (8.11]). We denote by ¢z the Mountain-
Pass value of Iz, namely

cz = inf sup Iz(v(t)), (8.21)
1€EPs te(0,1]
Zs = {7 € CL0 LW RY)) :9(0) =0, L:(3(1)) < 0}. (8.22)
We set ¢; := ¢y, for every ¢ =1,..., k. Considering o; > 0 such that

. 1
Zai< imin{ci: izl,...,k},
i=1

we claim that, up to making A;s smaller, we may assume that

c; <cz<c¢i+o; forallzeA,. (8.23)
In fact ¢; < ¢z follows because z; is a minimum of V' in A; and (8.12)) holds. On
the other hand, let us consider T, — z; such that limj ¢z, = limsup;_,,. cz. Let

v € Pz be such that max, ¢ 1] I, (7(7)) < ¢; + 04. Since Iz, — I, uniformly on
v, we have that for h large enough, v € &z, and there exists 73, € [0, 1] such that
¢z, < Iz, (Y(7h)) < Lo, (v(7h)) + 0(1) < ¢i 4 03 4 0(1).

We deduce that limsup; ., ¢z < ¢; + 0; so that the claim is proved.

If A; denote mutually disjoint open sets compactly containing A;, we introduce
the functionals J.; : WHP(A;) — R as

Jos(u) = sp/ j(a:,u,Du)—l—;/Ai V(a:)|u|p—/Ai Glau)  (8.24)

i

for every i =1,... k.
Finally, let us define the penalized functional E. : Wy (2) — R by setting
E.(u) = J:(u) + P-(u), (8.25)
k
2
P(u):=MY" ((Js,i(u)gl/2 — N2 + oi)1/2) , (8.26)
; +
i=1
where M > 0 is chosen so that
Cc1 + e + Ck
M > .
ming—1. x {(2Ci)1/2 — (e + 01)1/2}

The functionals J., J; ; and E. are merely continuous.
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The next result provides the link between the critical points of F. and the weak
solutions of the original problem.

Proposition 8.3. Let u. € Wy (Q) be any critical point of E. and assume that
there exists a positive number g such that the following conditions hold

ue(z) <€ for every e € (0,e9) and x € Q\ A, (8.27)
67NJ57Z‘(U5) <c+o; foreverye € (0,e09) andi=1,... k. (8.28)
Then, for every e € (0,20), ue s a solution of (8.13)).

Proof. Let ¢ € (0,g0). By condition (8.28)) and the definition of P(u.), u. is actually
a critical point of J.. In view of (a) of Proposition u, is a weak solution of

—eP div(je(w, u, Du)) + P55 (z, u, Du) + V(2)|ulP~?u = G(z, u).
Moreover, by (8.27) and the definition of f, it results G(z,uc(z)) = F(uc(x)) for

a.e. x € Q. By (8.18) and (8.19) and arguing as in the proof of [I130, Lemma 1],
one gets ue > 0 in Q. Thus u. is a solution of (8.13]). O

The next Lemma is a variant of a local compactness property for bounded con-
crete Palais-Smale sequences (cf. [I30, Theorem 2 and Lemma 3]; see also [48]).

Lemma 8.4. Assume that (8.7), (8.8), (8.10) hold and let (1) C L>(RY) bounded
with ¥y (z) > X > 0. Let € > 0 and assume that (up) C WHP(RY) is a bounded

sequence such that
<wh7 ()0> = 8p /N ¢h($)j£(x7uha Duh) : DSO + ap /N wh(x)js('ra Up, DU}])QO
R R

for every ¢ € O (RN), where (wy,) is strongly convergent in W*I’p/(ﬁ) for a given

bounded domain  of RN. Then (up) admits a strongly convergent subsequence in

Wir(Q).

Since 2 may be unbounded, in general the original functional I. does not satisfy
the concrete Palais-Smale condition. In the following Lemma we prove that, instead,
for every € > 0 the functional E. satisfies it at every level ¢ € R.

Lemma 8.5. Assume that conditions (8.1]), (8.5), , (18.7), (8.8)), , (8.10)
hold. Let € > 0.

Then E. satisfies the concrete Palais-Smale condition at every level ¢ € R.

Proof. Let (up) C Wy (Q2) be a concrete Palais-Smale sequence for E. at level c.
We divide the proof into two steps:

Step I. We prove that (up,) is bounded in Wy (€2). From (8.16) and (8.17)), we get

s
9P / S Dup) + 2 / V(@) unl?
¢ “ (8.29)

9
< / g(x,up)up + — V(z)|up|P + 9J:(up)
A PE Jo\A

for every h € N. Moreover, for every h € N we can compute J.(up)(up); in view of

we obtain
/ g, un)un + JL(up)un)
A
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Sep/jg(a:,uh,Duh)-Duh+6p/js(a:,uh,Duh)uh—|—/V(x)|uh|p
Q Q Q

for every h € N. Notice that by and the p-homogeneity of the map {£ —
j(z,s,€)}, it results

Js(@, un, Dup)un < vj(x, un, Duy),
Je(x,un, Duy) - Duy, = pj(x,up, Dup,)

for every h € N. Therefore,
/ gl un)un + Joun)un] < (v + p)e? / 3@ un, Dup) + / V(@)unl?  (8.30)
A Q Q

for every h € N. In view of (8.8), by combining inequalities (8.29) and (8.30)) one
gets

p ) p u P
mln{ (9 — v — p) ve®, 5_1;_1}/ | Dunl? + V(x)|u| ) (8.31)
< IJ(up) — JL(up)[un]

for every h € N. In a similar fashion, arguing on the functionals J. ;, it results

9
min { (J — v — p) ve?, E—Z)—Hfl}/ |Dup|P + V(x )\uh|p)

< O (up) — Jéﬂv(uh)[uh] forevery h€ Nandi=1,...,k.

(8.32)

In particular, notice that one obtains
O Jei(un) = JL i(un)up] >0 for every he Nandi=1,...,k
and every v + p < ¥ < 9. Then, after some computations, one gets

OP (up) — PL(up)[up]
k
> —OMENEY e+ i) 2 (Jeilun) )2 = e/ 4+ 0) 1)
i=1
> —C’aN/2P5(uh)1/2

+

which implies, by Young’s inequality, the existence of a constant d > 0 such that
ﬁg@w—Pmmmﬂz—@N (8.33)
for every h € N. By combining (8.31)) with (8.33)), since
Bo(un) = c+o(1),  EL(un)fun) = olllunlwy,)

as h — 400, one obtains

| (1w + Vi)
Je+ dev (8.34)

< +o(llunllwy ) +o(1)
. )
mln{(ﬁ v — p) vep, f—p—ﬁ—l}

as h — 400, which yields the boundedness of (up) in Wy ().
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Step II. By virtue of Step I, there exists u € Wy (2) such that, up to a subsequence,
(up,) weakly converges to u in Wy (). Let us now prove that actually (up) converges
strongly to uw in Wy (2). If we define for every h € N the weights

Oni = M [(Jei(un) )2 = NP e+ o) 2] (Joa(un) )™V, i=1,.. 0k

and put 6p(z) = Zle On,il;, (x) with 0 < 6j,; < M. After a few computations,
one gets

(wh, @) ZEP/(1+9h)J'£($,Uh7Duh)'D@+€p/(1+9h)js($7uh,Duh)90
Q Q

for every ¢ € C2°(Q), where

wy, = (14 03)g(z,upn) — (L + 0,)V(2)|un P 2up + &,
with &, — 0 strongly in W’Lp'(Q). Since, up to a subsequence, (wp,) strongly
converges to w = (1 4 0)g(z,u) — (1 4+ 0)V (2)|u[r~2u in W=1¢'(B,) for every
0 > 0, by applying Lemma with Q = B, N Q and ¢p(x) = 1+ (), it suffices
to show that, for every § > 0, there exists g > 0 such that

lim sup / (\Duh|p + V(x)|uh|p> <. (8.35)
h Q\B,

Consider a cut-off function x, € C°°(RN) with 0 < x, < 1, x, = 00n Byja, Xo =1
on RN\ B, and |Dx,| < a/o for some a > 0. By taking g large enough, we have
k

U A; Nsupt(x,) = 0. (8.36)
i=1
Let now ¢ : R — R be the map defined by

0 if s <0
((s):=qMs if0<s<R (8.37)
MR ifs> R,

being R > 0 the constant defined in (8.10) and M a positive number (which exists
by the growths (8.7) and (8.8)) such that
ljs(@, 8,)] < pMj(z,5,€) (8.38)

for every z € Q, s € R and ¢ € RY. Notice that, by combining (8.10) and (8.38),
we obtain

Gs(x,5,6) +pC'(s)j(x,5,€) >0 forevery z € Q, s € Rand £ € RY. (8.39)

By (8:36) it is easily proved that P!(up)(x,uneS™)) = 0 for every h. Therefore,
since the sequence (x,upe¢(*)) is bounded in Wy (Q2), taking into account (8:39)
and (8.19) we obtain

o(1) = JL(un) (xpunet ™)

= sp/ jg(x,uh,Duh) . Duhxgec(uh)
Q
+ z—:p/ Je(z, up, Duy,) - nguheg(uh)
Q

+Ep/ [js($7uh7DUh) +p<l(uh)j(l',uh,Duh)]uhXQeC(uh)
Q
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+/ V(x)|uh‘ng€C(uh) _ / g(JU,Uh)Uthec(“”)
2 Q
> / (pgpj(z,uh, Duy,) + V(I’)|uh|p)xge<(uh)
Q
+€p/ jg(x,uh,Duh) . DXguheC(uh) _ / g(x7uh)utheC(uh)
Q Q
as h — +o0. Therefore, in view of (8.17) and (8.36)), it results
o) [ (Pl Dunl? + V@) unl? )
Q

1
+€p/j§($,uh,Duh) - Dy upet ™) — */ V(@) un|Pxpet )
Q Kk Ja

as h — +oo for g large enough. Since by ({8.7)) we have

. c _ C
‘/ je(@, un, Dup) - Dxquae ™| < = | Dup |5~ unll, < =,
Q o [
there exists a positive constant C’ such that
Cl
limsup/ (|Duh\p —|—V(x)|uh|p> < —
h O\ B, 0
which yields (8.35)). The proof is now complete. O

8.2. Two consequences of the Pucci-Serrin identity. Let .Z : R¥ xRxRY —
R be a function of class C! such that the function {¢ — £ (z, s, £)} is strictly convex
for every (z,s) € RN x R, and let ¢ € L (RY).

We now recall a Pucci-Serrin variational identity for locally Lipschitz continuous
solutions of a general class of Euler equations, recently obtained in [59]. Notice that
the classical identity [116] is not applicable here, since it requires the C? regularity
of the solutions while in our degenerate setting the maximal regularity is C’llo’f (see

[65, [T41]).

Theorem 8.6. Let u: RY — R be a locally Lipschitz solution of
—div (DeZ (2, u, Du)) + Dy &L (z,u, Du) = ¢ in 2'(RY).

Then for every h € CHRN RY),

N

> Dih D¢, (z,u, Du)Dju

i.j=1"R" (8.40)

- / [(divh) L(z,u, Du) + h - D% (x,u, Du)| = / (h- Du)p.

RN RN
We want to derive two important consequences of the previous variational iden-

tity. In the first we show that the Mountain-Pass value associated with a large class
of elliptic autonomous equations is the minimal among other nontrivial critical val-
ues.

Theorem 8.7. Let 7 € RY and assume that conditions (8.1)), (8.5)), , (18.7),
(8.9), , (8.10) hold. Then the equation

— div(je(Z,u, Du)) + js(Z,u, Du) + V(2)uP~" = f(u) in RY (8.41)
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admits a least energy solution w € WYP(RYN), that is

Iz (u) = inf {I3(w) : w € W"P(RN)\ {0} is a solution of (8-41)},

where Iz is as in (8.20). Moreover, Iz (u) = cz, that is u is at the Mountain-Pass
level.

Proof. We divide the proof into two steps. Step I. Let u be any nontrivial solution
of , and let us prove that I;(u) > c¢z. By the assumptions on V and f, it
is readily seen that there exist go > 0 and §y > 0 such that I;(v) > dy for every
v € WHP(RY) with [jv]|1, = 0o. In particular I; has a Mountain-Pass geometry.
As we will see, &5 # (), so that cz is well defined. Let now u be a positive solution
of and consider the dilation path

u(z/t) ift>0

TS

Notice that [|y(t)[[} , = " P||Dul|h + t"[Jul|b for every ¢ € RF, which implies that
the curve v belongs to C(RT, WL?(RM)). For the sake of simplicity, we consider
the continuous function H : RT — R defined by

H(s) = / h(t)dt, where h(s) = —V(z)s*~! + £(s).
0
For every t € RT it results that

OO = [ i@ao.Dv) - [ Hew)

RN
= thp/ §(z,u, Du) — tV H(u)
RN RN
which yields, for every t € R
d
SL0w) = W -p [ g -ne T [ aw. )
RN RN

By virtue of (8.8) and (8.10)), a standard argument yields u € L (RY) (see [122]
Theorem 1]); by the regularity results of [65, 141], it follows that u € CL7(RN)
for some 0 < 8 < 1. Then, since {£ — j(x,s,£)} is strictly convex, we can use

Theorem by choosing in (8.40) ¢ = 0 and

L(s,€) :=j(z,s,6) — H(s) for every s € RT and ¢ € RY,
x v (8.43)
h(z) = hg(z) := T(E)az for every z € R and k > 1,

being T € CHRY) such that T(z) = 1 if |z| < 1 and T(x) = 0 if |2| > 2. In
particular, for every k we have that hy € C}(RY,RY) and

Dihi(z) = DlT(%)% +T(%)(5ij for every x € RY i, j=1,...,N,
(divhe)(z) = DT(Z) - £ + NT(Z)  for every = € RV,

k' ok k
Then, since D,.%(u, Du) = 0, it follows by (8.40) that

3 DiT(%)%DjuDgif(u,Du)—i- / T(%)Dgf(u,Du). Du
ij—=17RY RN
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— | pr%). L 2w, Du)~ | NT(E)L(u, Du) =0
]RN k k RN k

for every k > 1. Since there exists C > 0 with

%)%g(}' for every z e RN, k>1andi,j=1,...,N,

by the Dominated Convergence Theorem, letting £ — +00, we obtain

DT

/ [NZ(U, Du) — D¢ Z(u, Du) - Du] =0,
RN
namely, by (8.43) and the p-homogeneity of {£ — j(z,s,£)},

(N —p)/ j(Z,u,Du) = N H(u). (8.44)
RN RN

In particular notice that f]RN H(u) > 0. By plugging this formula into (8.42)), we

obtain
d

(1) = N =)=t | H(u)
dt RN
which yields 2 I;(y(t)) > 0 for 0 < t < 1 and £ 1;(v(t)) <0 for ¢ > 1, namely

sup  Iz(y(t)) = Iz((1)) = Iz (w).
te[0,4o0[

Moreover, observe that v(0) = 0 and Iz(y(T)) < 0 for T" > 0 sufficiently large.
Then, after a suitable scale change in ¢, v € &z and the assertion follows.

Step II Let us now prove that (8.41)) has a nontrivial solution u € W1?(RY) such
that ¢z > Iz(u). Let (up) be a Palais-Smale sequence for I at the level ¢z. Since

(up) is bounded in WP(RN), considering the test uje¢(*») with ¢ as in (8.37), and
recalling (8.39)), we have

pez +o(1) = plz(un) — I;(uh)[uhe““h)]
= / p(1 — <) j(@, up, Duy,) +/ (1= )V (&) up P
RN

RN

— [p('(uh)j(i, Up , Duh) + js(f, Up, Duh)] ’U,hec(uh)
RN
= [ pFn) & [ e
RN RN
§—/ pF(uh)—i—/ f(uh)uheﬁ(uh)
RN RN

<C [ e+ ul
RN

for some C' > 0. By [07, Lemma I.1], we conclude that (up) may not vanish in LP,
that is there exists z, € RN, R > 0 and A > 0 such that for h large

/ . lupl? > A (8.45)
zp+Br

Let vy (x) == up(xp + 2) and let u € WHP(RY) be such that v, — u weakly in
WLP(RN). Since vy, is a Palais-Smale sequence for I at level cz, by Lemma
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we have that v, — wu strongly in Wll’p(RN). By (8.45)), we deduce that u is a

ocC

nontrivial solution of (8.41). Let § > 0; we claim that there exists ¢ > 0 such that
1

mmﬁ/ P@mem+—W@MW—ﬂwﬂz—& (8.46)
h RN\ B, p

In fact, let o > 0, and let 7, be a smooth function such that 0 <n, <1, 7, =0 on
By—1,m, =1 0on RN\ B, and ||Dn,|ls < 2. Testing with n,vy,, we get

<wh777971h> - / I:jg(‘favh7D/Uh) 'D(ngvh)
BQ\BQ—l
+ js(Z,vn, Dvp)ngvn + V(Z)|vn[Pn, — f(vn)vnm,)
= / [e(Z, v, Dvp) - D(novp) + js(Z, vn, Dup)ngvn
RN\ B,

+ V(&) |vn|Pne — f(vn)vnn,]

where wy, — 0 strongly in Ww—Lp (RY). For the right hand side we have
[ lie@.on. Don) - Dlgen) + Gz, Donmgon
RN\ B,
+ V(@) onlPng — f(vn)vnn,)
= /N I:pj(i.7 Vh,s D’Uh) + js(‘/z.a Vhs D’Uh)'l)h + V(‘f)|vh|p - f(Uh)’U}J,
RN\ B,
and by we have

/ \ [pj(f,vh,Dvh) + Js(Z, vp, Dop)vp, + V(Z)|op|? — f(vh)vh]
RN\ B,
s@+wy/ j@mme»+/“ V(@) [onl? — f(on)on
RN\ B, RN\ B,
:4p+w/“ (@, vn, Duw) + V(@) |onl? — F(un)]
RN\ B, p

+ _ -
S V@l [ Vi
p RN\ B, RN\ B,

+ /]RN\BQ [(p+7)F(vn) = f(vn)on]

<o+ [

o Lo,
[§(@,vn, Dvn) + ~V(Z)|val” — F(vp)]
RN\ B, p

+/' [(p+7)F(un) — 9F(on)]
RN\ B,

L 1
<) [ [0 Do)+ S V@enl? — Flon)].
RN\ B, p
We conclude that

0+ [ L@ Do)+ V@l = Fon)]

e

> (wp, Nvn) —/ [je(Z, v, Dog) - D(novp) + js(Z, vn, Dop)ngon
BQ\Bgfl
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+ V(£)|”h|pn9 - f(”h)vhng]-
Since by Lemma we have v, — u strongly in W1P(B,), we get
lim [jg(a’c7 Vh, Do) - D(novn) + Js(Z, vn, Dop)nevs

h JBo\B,_1
+ V(@) onlPng — f(vn)vnn,]

= /B \B []f(j’u7Du) D(ngu) +]s(£vuvDU)’l7@’LL+V(.’E)|U|p’]79 —_ f(u)ungL
4 o—1

and so we deduce that for every § > 0 there exists g > 0 such that for all o > g we
have

limy in (3@, vn, Do) + ~V(@)[onl” = F(on)] > —o.
h RN\ B, p

Furthermore we have

. L 1
h}rln [J(:E,vh, Duy,) + 5V(x)|vh|p - F(vh)} = Iz(u, By),
BQ

where

I3 (u, By) := /B [j(:i,u, Du) + %V(i)|u|p — F(u)],

e

and so we conclude that for all p > g
Cz Z Ii(u, BQ) — 0.

Letting ¢ — +oo and since 0 is arbitrary, we get ¢z > Iz(u), and the proof is
complete. 0

The second result can be considered as an extension (also with a different proof)
of [63, Lemma 2.3] to a general class of elliptic equations. Again we stress that, in
this degenerate setting, Theorem [8.6] plays an important role.

Lemma 8.8. Let u € WHP(RY) be a positive solution of the equation

— div(je(Z, u, Du)) + js(%, u, Du) + V(z)u?

~ N (8.47)
= 1z, <o} (2) f(0) + Lz, 501 (@) f(u) in RT.
Then w is actually a solution of the equation
— div(je (z,u, Du)) + js(Z,u, Du) + V(2)uP~! = f(u) in RV, (8.48)

Proof. Let us first show that u(z) < ¢ on the set {x; = 0}. As in the proof of
Theorem it follows that u € Cl"@(RN) for some 0 < 8 < 1. Then we can apply

loc

again Theorem by choosing this time in (8.40):
Z(s,€) = j(z,s,8) + @sp for every s € R* and ¢ € RY,
p

() := 1z, <oy (@) f(u(z)) + 1{I1>0}(x)f(u(z)) for every x € RY,
h(z) = hg(z) = (T(%),O, . .,O) for every € RN and k > 1
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being T € C}(RY) such that T(z) = 1 if |z| < 1 and T(x) = 0 if |z| > 2. Then
hiy € CLHRYN RY) and, taking into account that D, (u, Du) = 0, we have

Z(u, Du)]

el

N
/RN E Z DiT(3)DyuDe, < (u, Du) — DiT(7)

X

- [ Te@Diu

for every k > 1. Again by the Dominated Convergence Theorem, letting & — +o0,
it follows f]RN o(z) Dy, u = 0, that is, after integration by parts,

/ ) [F(U(O,x’))—ﬁ(u(o,x'))} dz’ = 0.
RN-1

Taking into account that F(s) > F(s) with equality only if s < £, we get

u(0,2") < ¢ for every 2/ € RN 7L, (8.49)
To prove that actually
u(zy,z’) <L for every z; > 0 and 2/ € RV (8.50)
let us test equation with the function
0 ifx; <0
niw) = {(u(xl,:r’) — O)Fellul@a) if gy >0,

where ¢ : Rt — R is the map defined in (8.37)). Notice that, in view of (8.49)), the
function 7 belongs to W1P(RY). After some computations, one obtains

/ pj(@,u, D(u — £)+)eS®
{z1>0}

+ / [js(Z, u, Du) + p¢’ (w)5 (%, u, Du)] (u — £)*et™ (8.51)
{z1>0}

K

By (8.1) and (8.39)) all the terms in (8.51]) must be equal to zero. We conclude that
(u—4£)T =0 on {z; > 0}, namely (8.50) holds. In particular ¢(z) = f(u(z)) for
every x € RV, so that u is a solution of ([8.48). O

+/ {V(a’c) - g}up_l(u —)tes =,
{z1>0}

8.3. Energy estimates. Let d. ; be the Mountain-Pass critical value which corre-
sponds to the functional J; ; defined in (8.24). More precisely,

ds,i = inf sup Js,i(r}/i(t)) (852)
7€l te(0,1)

where
L := {v; € C([0,1], W"P(A;)) : 7:(0) = 0, Jei(7i(1)) < 0}.
Then the following result holds.

Lemma 8.9. Fori=1,...,k, we have

lim+ E_ng’i =c.
e—0
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Proof. The inequality

dei < eNey+o(eN) (8.53)
can be easily derived (see the first part of the proof of Lemma . Let us prove
the opposite inequality, which is harder. To this aim, we divide the proof into two
steps.
Step I. Let w. be a Mountain-Pass critical point for J; ;. We have w. > 0, and by

regularity results w. € L°(A;) N CL%(A;). Let us define

loc

M, = sup we(x) < 400,
xef\,i

and for all § > 0 define the set
Us .= {m eA;: we(z) > M, — 5}.
We may use the following nontrivial test for the equation satisfied by w,
s = [we — (Mz — 8)]Tet(e),
where the map ¢ : RT — R is defined as in (8.37). We have
Dyps = ) Dw. 1y, + ¢s¢’ (w.) D,

and so we obtain

ep / pj(z, we, Dw, )es ) + &P / [p¢’ (we)j (2, we, Dwe) + js(z, we, Dw.)] s
U,s U6

— [ Vit + g .
Us
Then, by (8.39), it results

/ [~V (2)wl™" + g(z,w:)] s > Ep/ pi(x,we, Dw,)es ™) > 0. (8.54)
Ug U&

Suppose that Us N A; = () for some & > 0; we have that g(z,w.) = f(w) on Uy, so
that

/ [fV(x)wQ’*l + f(ws)] s > 0. (8.55)
Us
On the other hand, we note that by construction f(w.) < +V(z)wP~! with strict
inequality on an open subset of Us. We deduce that cannot hold, and so
UsNA; # 0 for all §. Since A; is compact, we conclude that w. admits a maximum
point z. in A;. Moreover, we have w(x.) > ¢, where ¢ is as in 7 since otherwise
(8.54)) cannot hold.

Let us now consider the functions v, (y) := we(z. +¢ey) and let €; — 0. We have
that, up to a subsequence, z., — T € A;. Since w. is a Mountain-Pass critical
point of J. ;, arguing as in Step I of Lemma there exists C' > 0 such that

[, (pwl + vole.) < cd..
R

which, by (8.53)) implies, up to subsequences, v.; — v weakly in W“’(RN ). We
now prove that v # 0. Let us set
(e +ejy,ve. (y)) .
i) e | Ve FEaw) = TS i (y) £ 0
9 Cha J
0 if v, (y) = 0,
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Aly, s,€) = Je(ze; +€59,5,6),
By, s,€) = d;(y)s* ",
Cly, s) = js(ae; + €5y, 8, Dve, (y))
for every y € RV, s € Rt and ¢ € RY. Taking into account the growth of condition
on je¢, the strict convexity of j in § and condition , we get
Aly,5,8)-€>v[ElP, |Aly,s,6) < calélP™h, |Bly,s,6)] < |dj(y)l]s[P~"

Moreover, by condition we have

s>R = C(y,s) >0

for every y € RY and s € RT. By the growth of conditions on g, we have that for
N
¢ sufficiently small d; € L?=3 (By,) for every ¢ > 0 and
S=s dill ~ < D(1+sup ||ve, || 7p* < 400
< DO s 1 )

for some D = D, > 0. Since we have div(A(y,ve;, Dve;)) = B(y,ve,, Dve;) +
C(y,ve,) for every j € N, by virtue of [122, Theorem 1 and Remark at p.261] there
exists a radius ¢ > 0 and a positive constant M = M (v, cz, So%) such that

(y)] < M(20)~N/P . <
sup mag [ve, (y)] < M(20)" 77 sup fJve, 1 5, < +o0

so that (v.;) is uniformly bounded in B,. Then, by [122, Theorem 8], up to a
subsequence (v¢;) converges uniformly to v in a small neighborhood of zero. This
yields v(0) = lim; v, (0) = lim; w,, (z,) > L.

Up to a rotations and translation, it is easily seen that v is a positive solution of

— div(je(, v, Dv)) + js(Z,0, Dv) + V(2)0P "t = 114, <01 f(0) + 150y F(0).
By Lemma [8:8]it follows that v is actually a nontrivial solution of
— div(je(Z, v, Dv)) + js(Z,v, Dv) + V(Z)oP~ = f(v).
Then, by Theorem and , we have Iz (v) = ¢z > ¢;. To conclude the proof,
it is sufficient to prove that

limj infe; N, ; = limj infe; NI, i(we,) = Iz(v). (8.56)

Step II. We prove (8.56)). It results

€;NJ€j,i(w€j) = / j(xEj + €jy,1}5j,D'U€j)

A,

1
b [ Ve et - [ Gl s,
P JA. 2

it
where /A\EN- ={yeRVN: xe; +E5Y € /A\l} By Lemma we have ve; — v strongly

in Wlf)’f (RN). Following the same computations of Theorem Step II, we deduce
that for all 6 > 0 there exists g > 0 such that for all p > g we have

. . 1
hm_lnf/ |:j (e, +e5y, v, Dvsj)—i—]—yv(xgj —|—sjy)v§j —G(xe, +e5y,ve, )} > —0.
i JA. \B,
i
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Furthermore,
. . 1
hm/B I:j(xé‘j + €5Y, U&‘ja Dvé‘j) + EV('TEJ' + Ejy)'Ugj - G(x&‘j + &Y, U&‘j)]

= Iﬂf(va BQ)7
where

I:(v, B,) ;:/B [j(:f,v,Dv)+%V(:E)vp—F(v)].

e

We conclude that for all o > o

limjinfej_ Je;i(we;) > Iz(v, By) — 6,

and (8.56) follows letting o — +o0 and 6 — 0. O

Let us now consider the class
I. :={veC(o, 1%, Wy (Q)) : ~ satisfies conditions (a), (b), (c), (d)},
where:

(a) v(t) = Z ., 7i(t;) for every t € 9]0, 1]%, with ~; € C([0, 1], Wy (2)) ;
(b) supt(~i(t;)) C A; for every t; € [0,1] and i = 1,...,k;
(e) ¥ ( )—OandJ( (1)) <O foreveryi=1,...,k;

) €

(d E-(y(t)) < Z¢:1 c; + o for every t € 90, 1]*,
where 0 < o < 2 min{c; : i =1,...,k}. We set
ce:= inf sup E.(y(t)). (8.57)
Y€l 4ef0,1]*

Lemma 8.10. For e small enough T'c # 0 and

k
lim e Ve, = Zci. (8.58)
i=1

e—0t

Proof. Firstly, let us prove that for € small T, # @) and
ce <N e+ o(e). (8.59)

By definition of ¢;, for all § > 0 there exists v; € &; with

¢ < max I, (vi(7)) < ¢ + 9 (8.60)

elo,1] ° - 2k
where the x;s are as in (8.2]) and
P = {7 € C([0,1, W'P(RY)) : 7,(0) = 0, L, (i(1)) < 0}
We choose § so that § < min{o, ko;}. Let us set
Ai(T)(z) = m(x)'yz(T)(%) for every 7 € [0,1] and z € Q,
where 1; € C°(RY), 0 <n; <1, suppn; C Ay, and x; € int({n; = 1}). We have
. RN . 1
16 = [ it Due) + 5 [ V@RGP = [ 6. 660

Since it results

DAi(1) = Dni()yi(7)(

xr —x;

)

)+ i) D) (2
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and for all £1,&; € RY there exists ¢ € [0, 1] with
J(@, 8,81+ &) = j(w, 8,&) + je(w, 8,161 + &§2) - &1,
taking into account the p-homogeneity of j, the term
o [ de.Aun). D))

has the same behavior of

i (st () 0 () (5.62)
up to an error given by
e /Q e, 5(2), H2)61 (2) + &(2)) - €1 (), (3.63)

where we have set

s(x) :=i(7)(2),

&1(2) = Dip(a)(r) (),
(o) == Zn (@)D (F),

and t(z) is a function with 0 < t(x) < 1 for every z € Q. We proceed in the
estimation of (8.63]). We obtain

[ detasta). @ @) + a(a) - ()|

eP

< Ger /Q €1(2) [P + Eae? /Q (@) P e ()]

T—T;
e

[ detas(a@). @) @) + a(a) - ()

Making the change of variable y = we obtain

P

<@ [ Dae+ el ()l

+ eVt /RN ni(xi + y) [P~ Dy () (w) [P~ D (s + €)1y (7) ()]
= o(N)

where o(¢V) is independent of 7, since 7; has compact values in W1P(RY). Chang-
ing the variable also in (8.62) yields

/Q j (am-(m(ﬂ(””‘fi),m(x)DW)(””‘”“”))

€
=V [ it et en)n (0 ) (e + e D))
By the Dominated Convergence Theorem we get

lim [ j(@; + ey, ni(zi +ey)vi(T)(y), ni(zi +ey) Dvi(7)(y))

e—0 RN

_ / (@) (), DY) ()
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uniformly with respect to 7. Reasoning in a similar fashion for the other terms in
(8.61)), we conclude that for £ small enough

Je(3i(7)) = eV L, (i (7)) + o(e™) (8.64)

for every 7 € [0,1] with o(¢") independent of 7. Let us now set

k
Yo (T, vy T) = Z’%(TZ)
i=1

Since supp¥;(7) C A; for every 7, we have that J. ;(§:(7)) = J(%:(7)); then, by
the choice of §, we get for £ small

[ei(i(m)4]2 — % (s +00)F = [Jo(5:(1))4]2 — €% (ci +04)%
= e % [L, (i(7)) + o(1)]2 — €% (c; +0y)%
<e? lci + % +0(1)]% —e% (¢ +07)? <0,
and .
E.(vo(r1,---57)) = Je(yo(71, ..., k) = ZJa(%(Ti))-

By (8.60)) and (8.64) we obtain that for € small enough
k 5 k

E <N L+ —) < N( ; )

c(v0(7)) <e ;(c +2k)_€ ;c +0o

so that the class I'. is not empty. Moreover, we have
. k
limsup — < ¢ +0
e—0t eN ; '
and, by the arbitrariness of ¢, we have conclude that (8.59)) holds. Let us now prove
that

k
ce >V Zci + o(eM). (8.65)
i=1

Given v € I', by a variant of [51, Proposition 3.4] there exists # € [0, 1]* such that

Je,i('}/({)) Z de,z’
for all i =1,...,k, where the d. ;s are as in (8.52]). Then we have by Lemma

k k k
sup J(v(t) = sup D Jei(y(1) =D dei =N e +o(eN),
i=1 i=1

te0,1]k tel0,1]k ;7
which implies the assertion. (]

Corollary 8.11. For every € > 0 there exists a critical point u. € Wy (Q) of the
functional E. such that c. = E.(u:). Moreover ||uc||w, — 0 as e — 0.

Proof. By Lemma [8.5] it results that E. satisfies the Palais-Smale condition for
every ¢ € R (see Definition [2.15)). Then, by Lemma for every e > 0 the (non-
smooth) Mountain-Pass Theorem (see [50]) for the class I'c provides the desired
critical point u. of E.. To prove the second assertion we may argue as in Step I of
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Lemma [8.5| with uj, replaced by u. and c replaced by E.(u.). Thus, from inequality
(8.34), for every € > 0 we get

IE deN
/ (1Duel + V@)l < clle) + d¢ . (8.66)
Q min{(ﬂ—’y—p)yei’,%—%—l}
By virtue of Lemma this yields

Hey + - +ex)+d) N N—
Du P +V(x usf’)g{ e TP 4 o(e™ TP,

[ (1pucl + vt C——" ()
as € — 0, which implies the assertion.

O
Let us now set

Q. = {y eRY :eye Q}, v (y) := ue(ey) € WHP(QL),

/A\w- = {yERN: 5y€[&i}, A = {yERN: 5y€A}
Lemma 8.12. The function v. is a solution of the equation
— div (1 + 0:(ey)) e (ey, v, Dv)) + (1 + 0=(ey))js(ey, v, Dv)
+ (14 0c(ey))V (ey)v? ™!

(8.67)
= (1 +0:(ey))g(ey,v) in Qe,
where for every e > 0

k
Oc(z) := ZﬁmlAi(x), 0., € [0, M],
i=1

(8.68)
Oci = M[(Joi(ue) ) = N2 (ci + 00) ], (Jea(ue) 1) ™2

Proof. Tt suffices to expand E’(u.)(p) = 0 for every ¢ € C°(Q). O
Corollary 8.13. The sequence (v.) is bounded in W1P(RY).
Proof. Tt suffices to combine Lemma [8.10] with the inequality
Ve Ne.+d

L (e Vi) < i
which follows by . O

The following lemma “kills” the second penalization term of F..
Lemma 8.14. Fori=1,...,k, we have

lin% E_NJE’Z‘(UE) =c. (8.69)
E—
Proof. Let us first prove that, as ¢ — 400,

limsup/ (\Dve|p + |v€|p) = o(1), (8.70)
e—0+ Q\NG(Ae)

where N, (A:) := {y € RY : dist(y,A.) < o}. We can test equation (8.67) with
1/15)91156((“5), where ¢, , =1 — Zle ¢§7g, 29 € C®(RV),

vo= 1 if dist(y, Aey) < 0/2,
¢ )0 if dist(y,A.,) > 0



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 191

and the function ( is defined as in (8.37). By virtue of (8.1), (8.7), the boundedness
of (ve) in WHP(RY) and (8.39) there exist C,C’ > 0 such that

c Do+ Juel7)

Q\Np(Ae) (
; f(vs) y4 C(vs)

S QA (1 + 06(5y)) [p](gya vs,Dvs) + {V({:‘y) - F}Us]ws,ge

= — /Q " (1 + 95(€y)) [.73 (5y7 Ve, D'Ue) + PC'(ve)j(€y7 Ve, Dve)] Ued’e,geg(vs)

- / . (1 + 95(€y))j§(€yyve, D'UE) : D%,gvs@((%)
QAL

!

v : C _ c
<26 [ Dy lli(eysve, Dec)foe < Dl ol < <
QE = g Q
which implies (8.70). Now, to prove (8.69)), we adapt the argument of [63 Lemma
2.1] to our context. It is sufficient to prove that
lir% e NI i(ue) < ¢+ oy (8.71)
£—
for every ¢ = 1,...,k. Then (8.69) follows by arguing exactly as in [63 Lemma
2.4]. By contradiction, let us suppose that for some €; — 0 we have

lim sup sj_NJsj,i(uej) > ¢; + 0;. (8.72)
j :

Then there exists A > 0 with

[ (Do) =
Asj,i

and so by (8.70]) there exists ¢ > 0 such that for j large enough

A
Jo  (Duel ) = 5.
NQ(AEJ'J)

Following [63] Lemma 2.1], P.L. Lions’ concentration compactness argument [97]
yields the existence of S > 0, p > 0 and a sequence y; € A, ; such that for j large

enough
/ vt > p. (8.73)
Bs(y;)

Let us set v;(y) = ve,;(y; +v), and let €59, — T € A;. By Corollary we
may assume that v; weakly converges to some v in WP(RN). By Lemma [8.4] we
have that v; — v strongly in W,"?(RN); note that v # 0 by (8.73). In the case

loc
dist(y;, 0A., i) — +o0, since v; satisfies in —y; + A, ; the equation

— div(je(e5y5 + 5, v5, Dvy)) + s (€55 + €59, v, Dvg) + V(g +9)0" 1 = f(vy),
v satisfies on RY the equation
—div(je(Z,v, Dv)) + js(Z, v, Dv) + V(z)vP™t = f(v). (8.74)

If dist(y;, 0Ac; i) < C < 400, we deduce that v satisfies an equation of the form

(8.47), and by Lemma we conclude that v satisfies equation (8.74]). Since
v is a nontrivial critical point for I, by (8.11) and Theorem recalling that
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R; — +oo such that

¢ < ¢z < ¢+ oy, we get ¢; < Iz(v) < ¢; + 0;. Then we can find a sequence

. . 1
lim J(gjyvveszvsj) + 7V(€jy)‘vsj ‘p - G(E:jy7v8j) = Iﬁ:(v) < ¢+ o;.
7 JBr; (y5) b

Then by (8.72) we deduce that for j large enough

/ (IDve, 7 + e, I7) = A > 0.
Ac; i\Br; (v;)

Reasoning as above, there exist S, p > 0 and a sequence y; € A, ; \ Bg,(y;) such
that

/ @ >0, (8.75)
Bz(¥;)
Let €5y; — T € Ay; then we have v;(y) := ve,(y; +y) — v weakly in Whe(RN),
where v is a nontrivial solution of the equation

— div(je(7, v, Dv)) + js(Z, v, Dv) + V(T)0oP~ = f(v).
As before we get Iz(V) > ¢;. We are now in a position to deduce that

limj infe; NI, i(ue) > Iz (v) + I(0) > 2.

In fact, v, satisfies in [\EN' the equation

—div(je(ejy, ve;, Dve;)) + js(€jy, ve,, Dve,) + V(Ejy)ygj—l = g(gjy,ve;).  (8.76)
Since y;,y; € A., ;, for j large enough B; r := B(y;, R) U B(y;,R) C /A\EN-, and so
we can test (8.76) with

where ¢ € C°(R) with 0 < ¢ < 1, 9(s) = 0 for s < 1 and ¥(s) = 1 for s > 2.
Reasoning as in Lemma we have that for all § > 0 there exists R such that for
all R > R we have

. 1
/ [7(gjy,ve,, Dvs,) + =V (ey)|ve, P — Glejy, ve,)] = =6
Asj,i\Bj,R p

so that

limjinf e NI, ilue,) = Iz (v, Br) + I3(U, BR) — 6.

Letting R — 400 and § — 0, we get

limj infe; NI, i(ue,) > 2¢. (8.77)

The same arguments apply to the functional J.: we have that
limjinf E]-_NJEJ. (ue,;) > 2¢;. (8.78)
Then by combining (8.77)) and (8.78) we obtain

2
limjinfgijEEj (ue;) > 2¢; + M {(201')1/2 — (e + O‘i)l/2]+ .



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 193

By Lemma [8.10] we have
, K
M {(201')1/2 — (i + Ui)l/ﬂ <> e,
R

against the choice of M. O

8.4. Proofs of the main results. We are now ready to prove the main results of
the section.

Proof of Theorem[8.2. Let us consider the sequence (u.) of critical points of E.
given by Corollary We have that ||uc||w, — 0. Since u. satisfies

— div ((1 + 0.(2))je(z, v, Dv)) + (1 + 0=(2))js (2, v, Dv) + (1 + 0. (z))V (z)oP "
=(140.(x))g(z,v) inQ,

with 6. defined as in (8.68)), by the regularity results of [90] u. is locally Holder
continuous in 2. We claim that there exists o > 0 such that

Ue(Te;) =supus >0 >0 (8.79)
A
for every e sufficiently small and ¢ = 1,..., k: moreover
liH(l) dist(zc 4, ;) =0 (8.80)
E—
for i = 1,...,k, where the .#;s are the sets of minima of V' in A;. In fact, let
us assume that there exists ig € {1,...,k} such that u.(z.;) — 0 as e — 0.
Therefore, u. — 0 uniformly on A;, as € — 0, which implies that
sup v:(y) =0 ase —0, (8.81)
YEAL i

where v (y) := u:(gy). On the other hand, since by (8.69) we have
iil’% e NI i (us) = ¢y >0,

considering INXZ'O relatively compact in A;,, following the proof of Lemma we
find S > 0 and ¢ > 0 such that

sup / vZ >0
y€Ac iy Y Bs(v)
for every € € (0,eq), which contradicts (8.81). We conclude that (8.79) holds. To
prove (8.80)), it is sufficient to prove that
lim V(z.;) = mi
L
for every i = 1,..., k. Assume by contradiction that for some g

lim V(2. ,) > minV = b;,.
e—0 Aig

Then, up to a subsequence, x.; ;, — 2, € Ay, and V(2;,) > bi,. Then, arguing as
in the proof of Lemma and using Theorem we would get

limjinf sijJEjyiO (ue,;) > I, (v) = Casy > Cig

which is impossible, in view of (8.69).
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We now prove that
k
liH(l) ue =0  uniformly on €\ U int(A;). (8.82)
E—
i=1
Let us first prove that
limsupue =0 fori=1,... k.
=0 g,
By contradiction, let ig € {1,...,k} and o > 0 with uc,(2;) > o for (x;) C OA4,.
Up to a subsequence, z; — xo € A;,. Therefore, taking into account Lemma
and the local regularity estimates of [122] (see also the end of Step I of Lemma8.9)),
the sequence v;(y) := uc,;(z; + ;) converges weakly to a nontrivial solution v €
WLP(RY) of

— div(je (z0, v, Dv)) + js(20,v, Dv) + V(20)vP ™t = f(v) in RY.
As V(zg) > V(x;,), we have

limjinf ej_NJEM-O (ue;) > L2y (v) > c4,

which violates (8.69). Testing the equation with

(ue — Max sup u5)+1Q\AeC(“E),

i

as in Lemma this yields that u.(z) < max;supy,, ue for every x € Q\ A, so

that (8.82) holds.
By Proposition ue is actually a solution of the original problem (8.13)) be-

cause the penalization terms are neutralized by the facts J; ;(u:) < ¢; + 0; and

u. < € on Q\ A for € small. By regularity results, it follows u. € C’ﬁf(Q),

and so point (a) is proved. Taking into account (8.79) and (8.82)), we get that
ue has a maximum Z. €  which coincides with one of the x.;s. Considering

V:(y) = uc(xe; + €y), since U is uniformly bounded in VVI})’CP(RN), by the local
regularity estimates [122], there exists ¢’ with

us(-ra,i) < o

forall i = 1,... k. In view of (8.79)), (8.80) and Corollary we conclude that

points (b) and (d) are proved. Let us now come to point (¢). Let us assume by
contradiction that there exists 7, J, iy and €; — 0 such that there exists y; €
Aio \B'F(m&‘j’io) with
lim sup ue, (y;) > 6.
J

We may assume that y; — ¢, xc,, — &, and v;(y) = uc, (y; +€5y) — 0, v;(y) :=
U, (e, iy + €5y) — v strongly in Wli’f(RN): then, arguing as in Lemma it
turns out that

limj infe; NIz, i (ue) > Iz (v) + I5(0) > 2¢;,

which is against (8.69). We conclude that point (¢) holds, and the proof is con-
cluded. g

Proof of Theorem[8. If 1 <p <2 and p < ¢ < p*, the equation
~Apu+V(@)uP ™t =u?t in RY (8.83)
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admits a unique positive C* solution (up to translations). Indeed, a solution u €
CHRN) of exists by Theorem By [93, Theorem 1] we have u(z) — 0
as |xz| — oo. Moreover, by [55, Theorem 1.1], the solution w is radially symmetric
about some point zo € R and radially decreasing. Then u is a radial ground state
solution of (8.83). By [123, Theorem 1], u is unique (up to translations). Then
is satisfied and the assertions follow by Theorem [8.2| applied to the functions
i(@,5,6) = el and f(s) = 571, 0

9. NONEXISTENCE RESULTS

Some parts in this section have been slightly modified to give this collection a
more uniform appearance. We refer the reader to source in [59].

9.1. A general Pucci-Serrin type identity. In 1965 Pohozaev discovered a very
important identity for solutions of the problem

Au+g(u)=0 inQ
u=0 on Jf.

This variational identity enabled him to show that the above problem has no non-
trivial solution provided that €2 is a bounded star-shaped domain of R™ and g
satisfies
VseR: s#0= (n—2)sg(s) —2nG(s) >0

where G is the primitive of g with G(0) = 0.

Let 2 be a bounded open subset of R™ with smooth boundary and outer normal
v. Assume that & is a function of class C! on  x R x R with .Z(z,0,0) = 0 and
that the vector valued function

0L 0L
Vfg(m7s7£) = (a&($78,£)7 T 7%(3;7875))

is of class C' in Q@ xR x R™. Moreover, let ¢ be a continuous function in Q x R x R™.
Consider the problem

—div (Ve ZL(x,u, Vu)) + D L (x,u, Vu) = Y (z,u, Vu) in Q

uw=0 on 0. (9-1)

Let us recall the celebrated identity proved by Pucci and Serrin [I16].
Theorem 9.1. Assume that u € C*(Q) N CY(Q) is a solution of (9.1)). Then

/ [Z(2,0,Vu) — VeZ(2,0,Vu) - Vulh-vds™"
o

= / [Z (2, u, Vu) div h+ h -V, 2L (z,u, Vu)] dv
Q

_ Z / [DjuDihj +uD¢a]D§i$(x,u, Vu)dx (9.2)
Q

1,j=1

— / a[VeZ (x,u,Vu) - Vu+uDs Z (2, u, Vu)| dz
Q

+ / (b Vu+ au]9(z,u, Vu) dz
Q

for each a € C1(Q) and h € C1(Q,R™).
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Remark 9.2. Identity (9.2 follows by testing the equation with h-Vu+ au. More
generally, it is satisfied by solutions v € C1(Q) N W22(Q).

loc

Theorem generalizes a well-known identity of Pohozaev [I15] which has
turned out to be a powerful tool in proving non-existence of solutions of prob-
lem . On the other hand, in some cases the requirement that u is of class
C?(Q) seems too restrictive, while C1(Q) is not (cf. [I41]). See e.g. problems in
which the p-Laplacian operator is involved [8T].

The aim of this section is to remove the C?(£2) assumption on u, by imposing
the strict convexity of Z(z,s,-). The main result is the following:

Theorem 9.3. Assume that u € C*(Q) is a solution of (9.1) and that the map
5 — X(LE, S’ 6)

is strictly convex for each (x,s) € Q x R. Then (9.2) holds for all a € C*(Q),
h e CYQ,R").

Let us observe that the strict convexity of £ (z,s,-) is indeed usually assumed
in the applications and it is also natural if one expects the solution u to be of class
C1(Q). In some particular situations (see Section , we are also able to assume
only the convexity of £(z,s,-). This is the case, for instance, if one takes

ZL(x,5,8) = a(x,5)B(E) + (2, 5).

Note that if the test functions ¢ and h have compact support in €2, we obtain the
variational identity also when w is only locally Lipschitz in 2. This seems to be
useful in particular when #(x, s, -) is merely convex, as a C'* regularity of u cannot
be expected.

Finally, we refer the reader to [I16] for various applications of the previous result
to non-existence theorems.

9.2. The approximation argument. Let ) be an open subset of R™, not nec-
essarily bounded. Assume that & — Z(z,s,£) is strictly convex for each (x,s) €
Q x R.

Lemma 9.4. Let u: Q — R be a locally Lipschitz solution of
—div (Ve ZL(x,u, Vu)) + D L (x,u, Vu) = Y (x,u, Vu) in Q. (9.3)
Then

/ (Z(z,u,Vu) divh + h -V, L (x,u, Vu)) dz
Q

" (9.4)
= Z / D;h;De, 2 (x,u, Vu)Djudr — / Y (x,u, Vu)h - Vudz
ij=1"% Q

for every h € CL(Q,R™).

Proof. Since h has compact support, without loss of generality we may assume that
Q2 is bounded. Let R > 0 with |Vu(z)| < R for every x € supt h and let ¥ € C*(R)
be such that ¥ = 1 on [-R, R] and ¥ = 0 outside [~ — 1, R + 1]. Define now

Z(x,s,&) by B
L@, s,8) = ZL(x,5,9(1))€)
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for each (z,5,€&) € Q x R x R™. Then there exists w > 0 such that
Z Végj?(xasaf)ﬁmj > 7w|77|2
i,j=1
for each (r,s,£) € 2 x R x R" and € R™. Let us now introduce A € C*([0, +-o0[)
by
0 ifo<7<R
AMr) =4, )
o(r—R)* ifr >R,
where w’ > w. Moreover, let Z:QxR" =R be given by
L(x,€) = ZL(w,u(z), &) + A(€]) (9.5)
for each (z,£) € Q@ x R™. Then oi;/(x, -) is strictly convex and there are v, ¢ > 0 with

L(x,6) > vIE) —c

for each (z,£) € Q x R™. In particular, since u solves (9.3), then it is the unique
minimum of the functional f: H}(2) — R given by

= / .,?(:c, Vw)dr + / (D% (z,u, Vu) — 9 (z,u, Vu)|wdz.
Q Q
On the other hand, if ux, € HE () denotes the minimum of the modified functional
1
filw) = fw)+ 1 [ [Fuf e

by standard regularity arguments, ux € C1(Q) N VVIQOE( ). Since f(ur) — f(u) as
k — 400, we get up — w in Hg(2) and

/.,E?/(x,Vuk)dzH/.,?(x,Vu) dz
Q Q

which by [144, Theorem 3] implies ux — u in HZ(2). In particular, Vuy(z) —
Vu(z) a.e. in €, up to a subsequence. Put now

_ — 1
Since uy, satisfies the Euler’s equation of f

diV(Vg.i/”\(x, Vug)) = D& (x,u,Vu) — 4 (x,u, Vu),
by (9.2)) it results

/ (.,2/”\(;16 V) divh + h -V, 2z, Vuk)> dw
Q

/ D;h;De, f(x Vug)Djuy dx
3,=1

+ / (D& (x,u, Vu) — 9 (z,u, Vu)| h - Vuy, dz,
Q

/.,2” (z, u(z), (| Vug|) Vug) dlvhdx—l—/ A(|Vuyg|) divhdx
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1 N
+ E/ |Vu|? divhdx+/ h-V, 2L (x,Vuy)dx
Q Q

— Z/Dithgiy(x,u(x),Vuk)Djukdx— Z/Dith&AﬂVukDDjukdx
Q Q

i,j=1 ij=1
2 n
% / D;h;DyupDjuy do — / [Dsf(z, u, Vu) — 9 (x, u, Vu)]h - Vuy dx
=10 Q
=0.
Notice that
1 2 —
f/ |Vug|* divhdr — 0, = Z / D;h;D;upDjuy dz — 0
k Jq k o)

as k — +oo. Moreover, since Djui, — Dju and D¢, A(|Vug|) = D¢, A(|Vul) in
L2(Q),

Z/DithEiA(\Vuk|)Djukdm—> Z/DithEiA(\VuDDjuda::O
Q Q

ij=1 i.j=1

as k — +oo and
/A(\Vuﬂ)divhdx — / A(|Vul)divhdz =0
Q Q
as k — +4o00. Since

/ h- Vm(,?(:r, Vuy)de = / h -V, 2 (z,u(x),d(|Vug|) Vug) de
Q Q

+/ D% (z,u(z),V(|Vug|)Vug)h - Vudx
Q

and being
|Vl (x,u(z), d(|Vug|)Vug)| < c1, |DsZ(x,u(z),d(|Vug|)Vug)| < co

for some c1,cy > 0, one obtains
/ h- Vz.i,”v(x, Vug)de — / h-V.%L(x,u,Vu)dr + / D, % (x,u,Vu)h - Vudzx.
Q Q Q

Furthermore, since there exists ¢s > 0 with |.Z(x, u(z), 9(|Vug|)Vug)| < cs, one
gets

/f(x,u719(|Vuk|)Vuk) divhdxﬂ/g(x,u,Vu) div hdx.
Q Q

Taking into account that there exists ¢4 > 0 with

Ve +19(|vuk\>ei}

’D&X(Jc,u(x),19(|Vuk|)Vuk) ||V ]) <

and that Dju, — Dju in L?(£2), one deduces

> / Dih; D¢, 2 (x,u, Vug) Djuy, dz — Z/Dithgif(x,u, Vu)Djudzx
Q Q

,j=1 i,j=1

as k — 4o00. Noting that, of course

/ (D& (x,u,Vu) — 9 (z,u, Vu)| h - Vugdz
Q
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converges to
/ [Ds,f(x, u, Vu) — 4 (x, u, Vu)]h - Vudzx
Q
as k — oo, the proof is complete. O

Remark 9.5. Let us observe that a (different) approximation technique was also
used by Guedda and Véron [81] to deal with the particular case Z(z,s,§) = %|§|p.

Let us now assume that 2 is bounded with Lipschitz boundary and let v(x)
denote the outer normal to 9 at = (which exists for " !-a.e. z € 99Q).

Lemma 9.6. Let u € C1(Q) be a weak solution of (9.1). Then

/ (ZL(z,u,Vu) divh + h -V, L (x,u, Vu)) dx
Q

= Z/Dithgif(x,u,Vu)Djudx—/%(x,mVu)h-Vudm
Q Q

4,j=1

+/ [Z(2,0,Vu) — Ve L(2,0,Vu) - V] (h-v)d#"!
o0

for every h € C*(Q,R™).
Proof. Let k> 1 and ¢ : R — [0, 1] be given by

and define the Lipschitz map ¢y : R™ — [0, 1] by setting

Yi(z) = @r(d(z,R™ \ Q).
Applying Lemma [0.4] on R™ with ¢k in place of h, one deduces
YL (x,u, Vu) div hdx + Z(x,u, Vu) Vi), - hdx
R’Vl RW,
+ Yrh - VL (x,u, Vu) dx

Rn

= Z/ h; Dby D¢, & (x,u, Vu) Dju da

i,j=1

+ Z Y Dih;De, L (x,u, Vu)Djudr — Y (x,u, Vu)rph - Vudz.
i,j=17R" R
Taking into account that (¢x) is bounded in BV(R™) and

VT]EC’(R”,R"):/ Vw;fndxﬂ—/ n-vdA"
o

n

one has

/ L(x,u, Vu) Vi - hdx — — | L(x,0,Vu)(h-v)daA"?
n o0
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as k — o0 and

> / hj Dithy De, & (w4, Vu) Djuda — — » / vih;De, £ (2,0, Vu)Dju da.
ij=17R" =109
As observed in [I16], clearly one has

> vihiDe, L (2,0, Vu)Dju = VL (2,0,Vu) - Vu (h-v) on 0.

ij=1

Since of course ¥ (x) — xqo(x) for each z € R™, the proof is complete. O
Proof of Theorem[9.3, Clearly, if u € C'(Q) is a solution of (9.1 one has

/ a[VeZ (z,u,Vu) - Vu+ uDs Z (2, u, Vu) — u¥(z,u, Vu)| dz

@ (9.7)

+ / uVa-VeZ(x,u,Vu)der =0
Q

for each a € C'(Q). The assertion follows by combining (9.7) with Lemmal[9.6f O

Remark 9.7. Let N > 2. It is easily seen that Theorem has a vectorial
counterpart for solutions u € C*(€2, RY) of the system

—div (V¢, Z(z,u, Vu)) + D, L(x,u, Vu) = Y(x,u, Vu) in Q
u=0 on 0N
k=1,...,N.
See also [I16], Proposition 3].

9.3. Non-strict convexity in some particular cases. In this section we will
see that, in some particular cases, the assumption of strict convexity of Z(z, s, -)
can be relaxed to the weaker assumption of convexity. Let €2 be a bounded open
subset of R™ with Lipschitz boundary.

Lemma 9.8. Let .7 : Q x R" — R be a function with F (z,-) convex and C* and
Z (-, €) measurable. Assume that there exist ag € L' (), a1 € v (Q), 1< p< +oo,
and b,d > 0 with

VeZ (2,6)] < ai(x) + blg[P™, (9-8)
F (2,€) = dl¢]” — ao(x)

for a.e. x € Q and all £ € R™. Let (wy) C LP(2,R™) and w be such that
w = w i LP(Q,R"), /9(w,wk)dx—>/ﬂ(x,w)d$
Q Q
as k — 4o00. Then
F(z,wy,) = F(x,w) in L' (Q), (9.10)
VeZ (z,wy) — Ve (z,w) in L () (9.11)

as k — +o0o0. Moreover, up to a subsequence, |wy|P < 1 for some 1 € L*(Q).
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Proof. Let us define .Z : Q x R™ — R by setting

F(2,8) = F(z,w(x) + &) — F(2,w(x) = VeI (x, w(2)) - €.
Note that .Z > 0, . (z,0) = 0, Ve.Z(z,0) = 0 and
/ Z (v, wp, — w)dr — 0 as k — +oo. (9.12)
Therefore, since for eacssl p e L>®(Q)
/ Ve F (z,w) - (wp, —w)de — 0 as k — +oo,
one has i
/an[ﬂ(x,wk) — F(z,w)]dz — 0 as k — +oo0,

which proves (9.10]).

Note that, in view of (9.12)), up to a subsequence one has Z (z, wy(z)—w(z)) — 0
for a.e. z € Q. Fix now such an x; then by up to a subsequence wy(x) — y
for some y € R™, which yields #(x,y —w(x)) = 0. In particular, y — w(x) is a local
minimum for % (z, ), so that V% (z,y — w(z)) = 0. Hence we conclude

VeZ (x,w(z)) — Ve F (x,w(x)). (9.13)
Now, since by (9.12)) there exists zz € LY(Q) such that
F(z,wg) — F(x,w) — VeF (z,w) - (wp —w) < 0,
by and Young’s inequality one finds c¢1,co > 0 such that
ci|lwgl? < ap+ F(z,w) — Ve F(z,w) - w+ b+ CQ|V§ﬁ(:E,w)|p/

In particular, in view of (9.8) one deduces |V¢.Z (z, wy)| < g for some g € LP (),
which combined with (9.13) yields the second assertion. O

9.4. The splitting case. In this subsection we shall deal with the case when
Z(x,s,§) is of the form a(z, s)B(€) + v(z, s).

Lemma 9.9. Let a,y € WH*°(Q) with a > 0 and 8 € CY(R™) convex such that
F(2,8) = a(2)B(E) + ()

with d|§JP —b < B(§) < b1+ |£P), 1 < p < 400, for some b,d > 0. Let (wy) and
w with

wp —=w i LP(Q,R"), /ﬁ(m,wk)dxa/ﬁ(x,w)dx
Q Q
as k — +oo. Then
Blwy)Va(z) = B(w)Va(z) in LY(Q), (9.14)
as k — +o0.

Proof. If Q¢ denotes the set where o = 0, one may argue on

+oo 1
Q\QO=UQh, Qh:{xEQ:a(m)>E}.
h=1

By Lemma [9.8| there exists 1 € L1(£2) such that
xa\e, () B(wi (7)) Va(z) < ¢(x)
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up to a subsequence; hence for each € > 0 one finds hg > 1 such that
/ Blwg(x))Va(x)dr < e
Q\Q,

uniformly with respect to k. On the other hand, again by Lemma [0.8 one knows
that

F(z,wy,) = F(z,w) in L'(Q,)
as k — 400, which implies
a(x)flwy) = a(x)B(w) in LY(Qp,).
Then since 1/a € L*(Qp,) one gets B(wy) — B(w) in L1(Qy,), which yields
(9-14). O

Theorem 9.10. Let u : Q@ — R be a locally Lipschitz solution of (19.3). Assume
that there exist o,y € CH(Q2xR) and 8 € C*(R™) convez such that o > 0, 3(0) = 0
and

ZL(x,5,8) = a(x,s)B() +7(x,5).
Then
Z / [DjuD;h; + uD;a| D¢, £ (z, u, Vu) dx
Q

4,j=1

+ / a[Vg.,?(:lc7 u, Vu) - Vu + uDs. L (x, u, Vu)] dx
o (9.15)

= / [Z(z,u, Vu) div h+ h -V, ZL(z,u, Vu)] dz
Q

= / [h- Vu+ aul¥ (z,u, Vu) dz
Q
holds for each a € CL(2) and h € CL(Q2,R™).
Proof. Let 0, A, £ and (ug) C HY(Q) be as in Lemma We apply Lemma

choosing
wr = Vug, F(z,§) =A(§]) or F(z,§) = BO(IE)E)-
By one has

Z/DithgiA(|Vuk|)Djukda:—> Z/Dith&AﬂVu\)Djuda::O,
Q Q

i,j=1 1,5=1

and the term

Z / D;hjo(z,u)De, B(9(|Vug|)Vur)Djuy dx
ij=1"%

goes to

Z / D;h;a(x,u)De, f(Vu)Djudz
Q

ij=1

as k — +o00. Moreover, by (9.10) one obtains

/ A(|Vugl|) div hdz — / A(JVu|) div hdx = 0,
Q Q
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/a(a:,u)ﬂ(ﬁﬂVuk\)Vuk) divhdr — / a(z,w)B(Vu) divhdx
Q Q

as k — +oo. Finally, by (9.14) of Lemma one gets
/ h-VoL(x, V) de — / [h - Vea(z,u) + Dya(z, u)h - Vu| 3(Vu) dx
Q Q

+ [ (W) + Darte ] - Tuda
Q
as k — +oo. Then (9.15) follows by exploiting the proof of Lemma O

At this point, arguing as in Lemma and taking into account (9.7, we obtain
the following result.

Theorem 9.11. Let u € CY(Q) be a weak solution of (9.1). Let o,y € C1(Q2 x R)
and 3 € C*(R™) convex such that o > 0, 3(0) =0 and

ZL(x,5,€) = a(,s)B(E) +(x,5).
Then holds for each a € C*(Q) and h € C*(Q,R™).

9.5. The one-dimellsional case. In this subsection we assume that ) is an in-
terval in R and . : @ x R x R — R is of class C! with .Z(z, s, ) convex and D¢.#
of class C1.

Theorem 9.12. Let u : Q@ — R be a locally Lipschitz solution of (9.3). Then
(9.15) holds for each a € CL() and h € CL().

Theorem 9.13. Let u € CY(Q) be a weak solution of (9.1). Then (9.2)) holds for
each a € C1(Q) and h € C1(Q).

Taking into account next result, the above theorems follow arguing as in the
proof of Lemmas [9.4] and
Lemma 9.14. Let % : Q x R — R be a C! function with F(x,-) convexr. Let
(w) C LP(Q) and w be such that

wr = w in LP(2), /ﬁ(x,wk)dxﬁ/ﬁ(x,w)dx
Q Q

as k — +oo and assume that (D% (xz,wy)) is bounded in L for some g > 1. Then

D,.F (x,wy) = DT (x,w) in L*(Q) (9.16)
as k — +o0.
Proof. Let us set, for each x € (2,

y(z) = limkinf wi(z), yi(z) = limsup wi(z).
k

Notice that one has

Yo (2) < w(x) < yy(x) (9.17)
for a.e. € Q. Without loss of generality, one can replace wg(z) by its projection
onto [y, (x),ys(x)]; in particular

Yo () < wi(x) < yy(x) (9.18)
for a.e. x € Q. Arguing as in the proof of Lemma one obtains

T (, gy () —w(x)) =0, F(x,ys(x) —w(x)) =0
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for a.e. x € Q. Then, by §2 0 and the convexity of ﬁ(x, -) one has

F(x, (1= 0)yy(x) + Oys () — w(x)) =0
for every 6 € [0,1] and a.e. z € Q. This yields
F (2, (1= )y (2) + Dyz(2)) = (1 = 9)F (2, y5(2)) + 0F (2, y3()) (9.19)
for a.e. z € Q. For each m > 1 let us set
Q= {2 € Qyy(z) —yola) > —}.

By Lusin’s theorem, for each € > 0 there exists a closed subset Cp, . C €1, such
that

1
m

yb|c , yﬁ|c are continuous, £'(Q,, \ Che) <e,

where £! denotes the one-dimensional Lebesgue measure. We also cut off from Cy, -
the negligible set of isolated points. Let us now take z € C,, . and (x) C Cp, ¢
with zp — x. If § > 0 is sufficiently small, by continuity one has

Yo (k) < () +0 <yg(a) — 0 < yy(we) (920)
for each k € N large enough. By (9.19), for each ¢ € [0, 1] one obtains
F (@, (1= 0)(yp(x) 4 6) + Iy (x) — 5))
= (1-9)F(z,y,(z) +6) + V.F (x,y(x) — 6).
Moreover, (9.20]) implies
F (@, (1= 0)(ys(x) + 6)+ O(yg(x) = 9))
=(1-9)F(xr, yp(x) + 0) + OF (x1, yg(x) — 0).
Therefore, combining the previous identities yields
Dy (, (1 = 9)(ys(x) + 6)+ Hys(x) — 9))
=(1—-9)D,.Z (x,yp(x) + 9) + 9Dy F (z,y;(x) — 0)
for each ¥ € [0, 1]. Letting § — 0 one obtains
Dy (2, (1 = D)y, (2)+0ys(x)) = (1 = ) Do (2, 95 (x)) + VD27 (2, ()

for each ¥ € [0,1]. By (9.17) and (9.18]) we can choose
5 w@) —y(x) 5 wk(@) =y ()
V=—""=, Up=—F"7+.
ys(x) — o () ys(x) — o ()
Then one gets

) — w(x) w(z)

D, (z,w(x)) = el D, F (z,y,(x)) +

ue(2) — s () — (@) x,ys(x
ys(z) — () )Dwy( y1(2))

ys(x) — yp (@

and

_ (@) —we(@)
ys(x) — ()

In particular, one concludes

D, F (xz,wr(z))

N
s
=
~—
~—
+
g
e
8
~—
|
&
—
8
)
8
X
&
S
=
~—
~—

D, (z, w(x))

x

= Do (o, 0(w) + (o) — wia)) 2D BE) = Do P2 ()
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for all z € Cy, ¢, which implies that

Vo e L% (Chpe) / D, F (x,w)pdr — / D, (x,w)pdx
c c

m,e m,e

as k — +o00. On the other hand, since (D,.% (z,wy)) is bounded in L4(£2), for any
¢ € L*(C,y, <) there exists ¢ > 0 such that

‘ / D, F (x,wy)p dm‘ <L\ Cme) < ce.
Qi \Cin
Letting € — 0, one gets
Vo € L) :/ Dmy(x,wk)wdwa/ D, F(z,w)pdx
Qm, Qo

for each m > 1. Moreover, since on the set

Qoo = {x €N:yyx) = yb(;v)}

one has wy, — w pointwise, then
Vo € L) : / D,F (x, w)pdr — / D, (z,w)pdx
Qoo Qoo

which concludes the proof. O

9.6. Non-existence results. In the following we want to recall from [116] a gen-
eral variational identity that holds both for scalar-valued and vector-valued ex-
tremals of multiple integrals of calculus of variations that will allow us to get non-
existence results for various classes of problems.

Let © be a bounded open subset of R™, n > 3 and k > 1. For each a € N™ we

set |
§¥ =& &, Coi= & Lea = CaDg, L.

CM1! te an! ’
Let now f: WéC P(Q) — R be the k-th order functional of calculus of variations

flu) = /Q,,S,”(J:,U,Vu,...,vku) dz.

By direct calculation, the Euler-Lagrange’s equation of f is given by
k
> ()DL, u,. .., VFU) =0 in Q. (9.21)
|| =0
Ifue W(f’p(Q) is a weak solution to 1D and A € C*(Q), v € C*(Q,R"), we set
V:=v-Vu+u, ¢ := Z§a+5§i7 0%, =[D%wv-D+X) = (v-D)D"].
i=1
We now recall the following Pohozaev-type identity for general lagrangians.
Proposition 9.15. Assume that u € C*(Q) is a weak solution to (9.21). Then
k—1

div {vf(a:,m o, V) — Z (—I)WI%D‘W‘D{Z@ (z,u,..., Vku)}
|a+B]=0 v

= div(v)ZL(z,u, ..., Vi) +v -V, 2L(z,u,..., V)
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k
- Z 0N - Lea(w,u,. .., Vku)

|| =0
for a.e. x € Q and for each v € CF(Q,R").

The proof of the above identity follows by direct computation. See [116] section
5].

We now come to the main non-existence result for first order scalar-valued ex-
tremals.

Theorem 9.16. Assume that ) is star-shaped with respect to 0. Suppose also that

for a.e. x € Q and all £ € R™ and that there exists A € R such that
nZ(x,s,6)+x-Vy L (x,5,8) —AsDs ZL(x,5,8) —(A+1)E- Ve L (,5,8) >0 (9.23)

for a.e. x € Q and each (s,€) € R x R™. Let s = 0 or £ = 0 whenever equality
holds in (8.65). Then the elliptic boundary value problem

—div (Ve Z(z,u, Vu)) + Dy ZL(z,u, Vu) =0 in Q (9.24)
has no weak solution u € C*(€).

Proof. Let u € C*(Q) be a weak solution of (9.21). By applying the divergence
Theorem to identity of Proposition choosing v(z) = z and k = 1, since u = 0
on 0f), we get

/ L2 (2,0, V) — VeZ (2,0, V) - V] (- v) dH"?
o0
/ {n.,?(x,u, Vu) +z -V, L (x,u, Vu)

Q

— D, Z(x,u,Vu) — (A +1)Vu - Ve Z (2, u, Vu)} dx.

Taking into account that on 02 it is (x - v) > 0, conditions (9.22)) and (9.23) yield
a contradiction. (]

Corollary 9.17. Assume that there exists X\ € R such that

n

Z ((n —2X —2)a;i(x, s) + x - Vyaii(x,s) — AsDsa;;(z, 5))§i§j >0

i,j=1
for a.e. x € Q and each (s,£) € R x R™ and
Asg(z, s) —nG(x,s) —x -V ,G(z,s) >0
and for a.e. x € Q and each s € R\{0}. Then the quasi-linear problem
n 1 n
— Y Dj(aij(z,u)Diu) + 3 > Diajj(w,u)DiuDju = g(z,u) nQ  (9.25)
i,j=1 i,j=1

has no weak solution u € C*(Q).
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Proof. It comes straightforward from the previous result taking

L(x,s,8) = % Z aij(x, 8)&&;
ij=1

for a.e. x €  and each (s,£) € R x R™. O

‘We now come to the main non-existence result for first order vector-valued ex-
tremals.

Theorem 9.18. Assume that ) is star-shaped with respect to 0. Suppose also that

for a.e. x € Q and each € € R™ and that there exists X € R such that
nZ(x,s,6)+x- VL (x,8,§) =MV L(x,5,6) —(A+1)E- Ve L(x,5,¢) >0 (9.27)

for a.e. x € Q and each (s,&) € RY x R™W. Assume further that equality holds
only when either s =0 or £ = 0. Then the nonlinear elliptic system

div(VeZ(x,u, Vu)) + Vo ZL(x,u, Vu) =0 (9.28)
has no weak solution u € C*(Q,RY) N C1(Q,RY).
Proof. Arguing as in the scalar case we obtain the following variational identity
D; {Ui.i”(x, u, Vu) — (v;Dju” + M) Dee Z (2, u, Vu)}
= Div;.L(z,u, Vu) + v; Dy, L (2, u, Vu) — (Djuf Dyv; + uFD;\) Der Z(x,u, Vu)
—A (DiukDgff(x, u, Vu) +u*D,, L (x,u, Vu))

where 1, j are understood to be summed from 1 to n and k from 1 to N. Therefore,
it suffices to argue as in Theorem [9.16 O

Corollary 9.19. Assume that there exists A € R such that

n N
Z Z ((n—2x— Z)afjk(:r, s)+x- Vma?jk(x, S) — As - Dsa?jk(z, s))ﬁfff >0

ij=1h,k=1
for a.e. x € Q and each (s,&) € RN x R™Y and
As-g(z,s) —nG(x,s) —x - V,G(z,s) > 0.

and for a.e. x € Q and each s € RN\{0}. Then the quasi-linear system (¢ =
1,...,N)

n N n N
1
- E g Dj(a} (x,u)Dyup) + = 5 g g Dsga?jk(x,u)DiuhDjuk = go(z,u)
i,j=1h=1 4,j=1h,k=1

(9.29)
has no weak solution u € CQ(Q,RN) NCHQ,RY).

Proof. 1t follows by Theorem choosing

L(x,s,8) = ZZ 11355153 G(z,s)

1] 1 h,k=1
for a.e. x € Q and each (s,£) € R™ x R™V, O
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Theorem 9.20. Let € be star-shaped with respect to the origin and
Vol (2,8,6) x— ]%Dgf(x,s,f)s + {]% - S}A 5|7 >0, (9.30)

for a.e. x € Q and all (s,§) € R x R™. Then (P ) has no nontrivial solution
u € CHQ).

Proof. If we define .% : 2 x R x R™ — R by setting

A 1 .
V(ZL'7S,£) EQXRxR": ﬁ(x,s,f) :j(xﬂsag) - 7|S|q - 7|sp )
q
the first assertion follows, after some computations, by the inequality
nF +VyF -z —aDgFs— (a+1)VeF -£>0
where we have chosen a = (n — p)/p (see [116, Theorem 1]). O

Corollary 9.21. Let Q) be star-shaped with respect to the origin, A < 0 and
PV, L (x,8,8) -2 —nD;L(x,8,&)s > 0, (9.31)

for a.e. x € Q and all (s,£) € R x R™. Then (Pp.n) admits no nontrivial solution
u e CH(Q).

Proof. Since ¢ < p* and A < 0, condition (9.31)) implies condition (9.30). O

Assume that A <0 and .Z does not depend on x. Then, by the previous result,
the non-existence condition becomes D;.Z(s,£)s < 0. Note that this is precisely
the contrary of our assumption (6.40)). Then, from this point of view (6.40) seems
to be natural.
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