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RIEMANNIAN GEOMETRY

RICHARD L. BISHOP

Preface

These lecture notes are based on the course in Riemannian geometry at the Uni-
versity of Illinois over a period of many years. The material derives from the course
at MIT developed by Professors Warren Ambrose and I M Singer and then refor-
mulated in the book by Richard J. Crittenden and me, “Geometry of Manifolds”,
Academic Press, 1964. That book was reprinted in 2000 in the AMS Chelsea series.
These notes omit the parts on differentiable manifolds, Lie groups, and isometric
imbeddings. The notes are not intended to be for individual self study; instead
they depend heavily on an instructor’s guidance and the use of numerous problems
with a wide range of difficulty.

The geometric structure in this treatment emphasizes the use of the bundles
of bases and frames and avoids the arbitrary coordinate expressions as much as
possible. However, I have added some material of historical interest, the Taylor
expansion of the metric in normal coordinates which goes back to Riemann. The
curvature tensor was probably discovered by its appearance in this expansion.

There are some differences in names which I believe are a substantial improve-
ment over the fashionable ones. What is usually called a “distribution” is called
a “tangent subbundle”, or “subbundle” for short. The name “solder form” never
made much sense to me and is now labeled the descriptive term “universal cobasis”.
The terms “first Bianchi identity” and “second Bianchi identity” are historically
inaccurate and are replaced by “cyclic curvature identity” and “Bianchi identity”
— Bianchi was too young to have anything to do with the first, and even labeling
the second with his name is questionable since it appears in a book by him but was
discovered by someone else (Ricci?).

The original proof of my Volume Theorem used Jacobi field comparisons and
is not reproduced. Another informative approach is to use comparison theory for
matrix Riccati equations and a discussion of how that works is included and used
to prove the Rauch Comparison Theorem.

In July, 2013, I went through the whole file, correcting many typos, making
minor additions, and, most importantly, redoing the index using the Latex option
for that purpose.

Richard L. Bishop
University of Illinois at Urbana-Champaign
July, 2013.
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1. RIEMANNIAN METRICS

Riemannian geometry considers manifolds with the additional structure of a
Riemannian metric, a type (0,2) positive definite symmetric tensor field. To a
first order approximation this means that a Riemannian manifold is a Euclidean
space: we can measure lengths of vectors and angles between them. Immediately we
can define the length of curves by the usual integral, and then the distance between
points comes from the glb of lengths of curves. Thus, Riemannian manifolds become
metric spaces in the topological sense.

Riemannian geometry is a subject of current mathematical research in itself. We
will try to give some of the flavor of the questions being considered now and then in
these notes. A Riemannian structure is also frequently used as a tool for the study
of other properties of manifolds. For example, if we are given a second order linear
elliptic partial differential operator, then the second-order coefficients of that oper-
ator form a Riemannian metric and it is natural to ask what the general properties
of that metric tell us about the partial differential equations involving that opera-
tor. Conversely, on a Riemannian manifold there is singled out naturally such an
operator (the Laplace-Beltrami operator), so that it makes sense, for example, to
talk about solving the heat equation on a Riemannian manifold. The Riemannian
metrics have nice properties not shared by just any topological metrics, so that in
topological studies they are also used as a tool for the study of manifolds.
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The generalization of Riemannian geometry to the case where the metric is not
assumed to be positive definite, but merely nondegenerate, forms the basis for
general relativity theory. We will not go very far in that direction, but some of
the major theorems and concepts are identical in the generalization. We will be
careful to point out which theorems we can prove in this more general setting. For
a deeper study there is a fine book: O’Neill, Semi-Riemannian geometry, Academic
Press, 1983. I recommend this book also for its concise summary of the theory of
manifolds, tensors, and Riemannian geometry itself.

The first substantial question we take up is the existence of Riemannian metrics.
It is interesting that we can immediately use Riemannian metrics as a tool to shed
some light on the existence of semi-Riemannian metrics of nontrivial index.

Theorem 1.1 (Existence of Riemannian metrics). On any smooth manifold there
exists a Riemannian metric.

The key idea of the proof is that locally we always have Riemannian metrics
carried over from the standard one on Cartesian space by coordinate mappings, and
we can glue them together smoothly with a partition of unity. In the gluing process
the property of being positive definite is preserved due to the convexity of the set
of positive definite symmetric matrices. What happens for indefinite metrics? The
set of nonsingular symmetric matrices of a given index is not convex, so that the
existence proof breaks down. In fact, there is a condition on the manifold, which
can be reduced to topological invariants, in order that a semi-Riemannian metric
of index v exist: there must be a subbundle of the tangent bundle of rank v. When
v = 1 the structure is called a Lorentz structure; that is the case of interest in
general relativity theory; the topological condition for a compact manifold to have
a Lorentz structure is easily understood: the Euler characteristic must be 0.

The proof in the Lorentz case can be done by using the fact that for any simple
curve there is a diffeomorphism which is the identity outside any given neighbor-
hood of the curve and which moves one end of the curve to the other. In the
compact case start with a vector field having discrete singularities. Then by choos-
ing disjoint simple curves from these singularities to inside a fixed ball, we can
obtain a diffeomorphism which moves all of them inside that ball. If the Euler
characteristic is 0, then by the Hopf index theorem, the index of the vector field on
the boundary of the ball is 0, so the vector field can be extended to a nonsingular
vector field inside the ball.

Conversely, by the following Theorem [[.2] a Lorentz metric would give a nonsin-
gular rank 1 subbundle. If that field is nonorientable, pass to the double covering
for which the lift of it is orientable. Then there is a nonsingular vector field which
is a global basis of the line field, so the Euler characteristic is 0.

In the noncompact case, take a countable exhaustion of the manifold by an
increasing family of compact sets. Then the singularities of a vector field can be
pushed outside each of the compact sets sequentially, leaving a nonsingular vector
field on the whole in the limit. Thus, every noncompact (separable) manifold has
a Lorentz structure.

Theorem 1.2 (Existence of semi-Riemannian metrics). A smooth manifold has a
semi-Riemannian metric of index v if and only if there is a subbundle of the tangent
bundle of rank v.
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The idea of the proof is: the subbundle will be the directions in which the
semi-Riemannian metrics will be negative definite. If we change the sign on the
subbundle and leave it unchanged on the orthogonal complement, we will get a
Riemannian metric. The construction goes both ways.

Although the idea for the proof of Theorem is correct, there are some non-
trivial technical difficulties to entertain us. One direction is relatively easy.

Proof of “if” part If M has a smooth tangent subbundle V' of rank v, then M
has a semi-Riemannian metric of index v.

Definition 1.3. A frame at a point p of a semi-Riemannian manifold is a basis of
the tangent space M, with respect to which the component matrix of the metric
tensor is diagonal with —1’s followed by 1’s on the diagonal. A local frame field is
a local basis of vector fields which is a frame at each point of its domain.

Lemma 1.4 (Technical Lemma 1). Local frames exist in a neighborhood of every
point.

TL 1 is important for other purposes than the proof of the theorem at hand.
For the proof of TL 1 one modifies the Gramm-Schmidt procedure, starting with a
smooth local basis and shrinking the domain at each step if necessary to divide by
the length for normalization.

Remark 1.5. If we write g = g;jw’w’, then a local frame is exactly one for which
the coframe of 1-forms (') satisfies

g=—() = = () -+ (M)
The Gramm-Schmidt procedure amounts to iterated completion of squares, view-
ing g as a homogeneous quadratic polynomial in the w’. The modifications needed
to handle the negative signs are probably easier in this form.

Lemma 1.6 (Technical Lemma 2). If V is a smooth tangent subbundle of rank
v and g is a Riemannian metric, then the (1,1) tensor field A and the semi-
Riemannian metric h given as follows are smooth:

-1 onV
1 A:
(1) {1 on VL.

h(v,w) = g(Av,w).

(Their expressions in terms of smooth local frames adapted to V for g are con-
stant, hence smooth.)

Now the converse.

Proof of “only if” part If there is a semi-Riemannian metric h of index v, then
there is a tangent subbundle V' of rank v.

The outline of the proof goes as follows. Take a Riemannian metric g. Then h
and g are related by a (1, 1) tensor field A as above. We know that A is symmetric
with respect to g-frames, and has v negative eigenvalues (counting multiplicities)
at each point. Thus, the subspace spanned by the eigenvectors of these negative
eigenvalues at each point is v-dimensional. The claim is that those subspaces form
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a smooth subbundle, even though it may be impossible to choose the individual
eigenvectors to form smooth vector fields.

Lemma 1.7 (Technical Lemma 3). If A: V — V is a symmetric linear operator,
smoothly dependent on coordinates x',...,x", and \g is a simple eigenvalue at the
origin, then Ao extends to a smooth simple eigenvalue function in a neighborhood
of the origin having a smooth eigenvector field.

Let P(X) = det(XI — A). Use the implicit function theorem to solve P(X) = 0,
getting X = A(z!,...,2™). Then we can write P(X) = (X — A\)Q(X), and any
nonzero column of Q(A) is an eigenvector, by the Cayley-Hamilton theorem.
Lemma 1.8 (Technical Lemma 4). Suppose that W : R™ — A"V is a smooth
function with decomposable, nonzero values. Then locally there are smooth vector
fields having wedge product equal to W.

For w € /\U_1 V*, the interior product i(w)W is always in the subspace carried
by W. Choose v of these w’s which give linearly independent interior products with
W at one point; then they do so locally.

Lemma 1.9 (Technical Lemma 5). If A:V — V is a symmetric linear operator
of index v, smoothly dependent on coordinates x*, then the extension of A to a
derivation of the Grassmann algebra \*V — A"V has a unique minimum simple
eigenvalue Ay + -+ + A, on \” V. The (smooth!) eigenvectors W : R" — N\"V
are decomposable.

Problem 1.10. Generalize the result of TL’s 3, 4, 5: If there is a group of v
eigenvalues A1,..., A, of A : V. — V which always satisfy a < A\; < b, then the
subspace spanned by their eigenvectors is smooth.

(Consider B = (al — A)(bI — A). Can a, b be continuous functions of z!,..., 2"
t0o0?)

Problem 1.11. Now order all of the eigenvalues of symmetric smooth A : V —
V, A1 < XAy <--- < \,, defining uniquely n functions ); of z',...,2". Prove that
the \; are continuous; on the subset where \;—1 < A; < Ajy1, A; is smooth and has
locally smooth eigenvector fields.

Problem 1.12. Construct an example

_ <f(w7y) g(%y))

~\9l@y) hlzy)
for which A;(0,0) = A2(0,0) = 1 and neither A;, Ay nor their eigenvector fields are
smooth in a neighborhood of (0, 0).

Remark 1.13. I have had to referee and reject two papers because the proofs were
based on the assumption that eigenvector fields could be chosen smoothly. Take
care!

Hard Problem. In Problem [[.12] can it be arranged so that there is no smooth
eigenvector field on the set where A; < A27 If that set is simply connected, then
there is a smooth vector field; and in any case there is always a smooth subbundle
of rank 1. However, in the non-simply-connected case, the subbundle may be
disoriented in passing around some loop.
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1.1. Finsler Metrics. Let L : TM — R be as continuous function which is posi-
tive on nonzero vectors and is positive homogeneous of degree 1:

for « € R,v € TM, we have L(av) = |a|L(v).

Eventually we should also assume that the unit balls, that is , the subsets of the
tangent spaces on which L < 1, are convex, but that property is not required to
give the initial facts we want to look at here. In fact, it is usually assumed that L2
is smooth and that its restriction to each tangent space has positive definite second
derivative matrix (the Hessian of L?) with respect to linear coordinates on that
tangent space. This implies that the unit balls are strictly convex and smooth.

A function L satisfying these conditions is called a Finsler metric on M. If g is
a Riemannian metric on M, then there is a corresponding Finsler metric, given by
the norm with respect to g: L(v) = /g(v,v). We use the letter L because it is
treated like a Lagrangian in mechanics.

Finsler metrics were systematically studied by P. Finsler starting about 1918.

1.2. Length of Curves. For a piecewise C* curve 7 : [a,b] — M we define the
length of v to be

b
m=/waw.

The reason for assuming that L is positive homogeneous is that it makes the length
of a curve independent of its parametrization. This follows easily from the change
of variable formula for integrals.

Length is clearly additive with respect to chaining of curves end-to-end. Not
every Finsler metric comes from a Riemannian metric. The condition for that to
be true is the parallelogram law, well-known to functional analysts:

Theorem 1.14 (Characterization of Riemannian Finsler Metrics). A Finsler met-
ric L is the Finsler metric of a Riemannian metric g if and only if it satisfies the
parallelogram law:

L (v +w) + L*(v — w) = 2L2(v) + 2L*(w),

for all tangent vectors v,w at all points of M. When this law is satisfied, the
Riemannian metric can be recovered from L by the polarization identity :

2g(v, w) = L*(v 4+ w) — L*(v) — L*(w).

1.3. Distance. When we have a notion of lengths of curves satisfying the additivity
with respect to chaining curves end-to-end, as we do when we have a Finsler metric,
then we can define the intrinsic metric (the word metric is used here as it is in
topology, a distance function) by specifying the distance from p to g to be

d(p,q) = inf{]v| : 7is a curve from p to ¢}.

Generally this function is only a semi-metric, in that we could have d(p, ¢) = 0 but
not p = q. The symmetry and the triangle inequality are rather easy consequences
of the definition, but the nondegeneracy in the case of Finsler lengths of curves is
nontrivial.

Theorem 1.15 (Topological Equivalence Theorem). If d is the intrinsic metric
coming from a Finsler metric, then d is a topological metric on M and the topology
gien by d is the same as the manifold topology.
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If M is not connected, then the definition gives d(p,q) = co when p and ¢ are
not in the same connected components. We simply allow such a value for dj; it is a
reasonable extension of the notion of a topological metric.

Lemma 1.16 (Nondegeneracy Lemma). If ¢ : U — R" is a coordinate map, where
U is a compact subset of M, then there are positive constant A, B such that for
every curve vy in U,

V1= Alporl,  lperl= Bl
Here |p o 7| is the standard Euclidean length of ¢ o 7.

The key step in the proof is to observe that the union EU of the unit (with
respect to the Euclidean coordinate metric) spheres at points of U forms a compact
subset of the tangent bundle T'M. Since L is positive on nonzero vectors and
continuous on TM, on EU we have a positive minimum A and a finite maximum
1/B for L on EU.

The result breaks down on infinite-dimensional manifolds modeled on a Banach
space, because there the set of unit vectors EU will not be compact. So in that
case the inequalities L(v) > A||v||, and ||v|] > BL(v) must be taken as a local
hypothesis on L.

The nondegeneracy of d uses the lemma in an obvious way, although there is a
subtlety that could be overlooked: the nondegeneracy of the intrinsic metric on R™
defined by the standard Euclidean metric must be proved independently.

Aside from the Hausdorff separation axiom, the topology of a manifold is deter-
mined as a local property by the coordinate maps on compact subsets U. Since the
nondegeneracy lemma tells us that there is nesting of d-balls and coordinate-balls,
the topologies must coincide.

Problem 1.17. Prove that the intrinsic metric on R"™ defined by the standard
Fuclidean metric is nondegenerate, and, in fact, coincides with the usual distance
formula.

Hint: For a curve v from p to ¢, split the tangent vector 4/ into components
parallel to pg and perpendicular to pg. The integral of the parallel component is
always at least the usual distance.

1.4. Length of a curve in a metric space. If we have a topological metric space
M with distance function d and a curve 7 : [a,b] — M, then the length of 7 is

V| =sup Y d(y(t:), (L)),

where the supremum is taken over all partitions of the interval [a, b]. Due to the tri-
angle inequality, the insertion of another point into the partition does not decrease
the sum, so that in particular the length of a curve from p to ¢ is at least d(p, q).
If the length is finite, we call the curve rectifiable. It is obvious from the definition
that the length of a curve is independent of its parametrization and satisfies the
additivity property with respect to chaining curves. Following the definition of the
length of a curve, we can then define the intrinsic metric generated by d, as we
defined the intrinsic metric for a Finsler space. Clearly the intrinsic metric is at
least as great as the metric d we started with.
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2. MINIMIZERS

A curve whose length equals the intrinsic distance between its endpoints is called
a minimizer or a shortest path. In Riemannian manifolds they are often called
geodesics, but we will avoid that term for a while because there is another definition
for geodesics. One of our major tasks will be to establish the relation between
minimizers and geodesics. They will turn out to be not quite the same: geodesics
turn out to be only locally minimizing, and furthermore, there are technical reasons
why we should require that geodesics have a special parametrization, a constant-
speed parametrization.

2.1. Existence of Minimizers. We can establish the existence of minimizers for
a Finsler metric within a connected compact set by using convergence techniques
developed by nineteenth century mathematicians to show the existence of solu-
tions of ordinary differential equations by the Euler method. The main tool is
the Arzela-Ascoli Theorem. Cesare Arzela (1847-1912) was a professor at Bologna,
who established the case where the domain is a closed interval, and Giulio Ascoli
(1843-1896) was a professor at Milan, who formulated the definition of uniform
equicontinuity.

Definition 2.1. A collection of maps F = {f : M — N} from a metric space
M to a metric space N is uniformly equicontinuous if for every e > 0, there is
d > 0 such that for every f € F and every x,y € M such that d(z,y) < § we have

d(f(x), f(y)) <e.

The word “uniform” refers to the quantification over all z, y, just as in “uniform
continuity”, while “equicontinuous” refers to the quantification over all members
of the family. The definition is only significant for infinite families of functions,
since a finite family of uniformly continuous functions is always also equicontinuous.
Moreover, the application is usually to the case where M is compact, so that uniform
continuity, but not uniform equicontinuity, is automatic. If M and N are subsets
of Euclidean spaces and the members of the family have a uniform bound on their
gradient vector lengths, then the family is uniformly equicontinuous. Even if those
gradients exist only piecewise, this still works, which explains why the theorem
below can be used to get existence of solutions by the Euler method.

Theorem 2.2 (Arzela-Ascoli Theorem). Let K, K' be compact metric space and
assume that K has a countable dense subset. Let F be a collection of continuous
functions K — K'. Then the following properties are equivalent:

(a) F is uniformly equicontinuous.

(b) Every sequence in F has a subsequence which is uniformly convergent on K.

There is a proof for the case where K and K’ are subsets of Euclidean spaces
given in R. G. Bartle, “The Elements of Real Analysis”, 2nd Edition, Wiley, page
189. No essential changes are needed for this abstraction to metric spaces.

Theorem 2.3 (Local Existence of minimizers in Finsler Spaces). If M is a Finsler
manifold, each p € M has nested neighborhoods U C V' such that every pair of
points in U can be joined by a minimizer which is contained in V.

To start the proof one takes V' to be a compact coordinate ball about p, and
U a smaller coordinate ball so that, using the curve-length estimates from the
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Nondegeneracy Lemma, any curve which starts and ends in U cannot go outside V'
unless it has greater length than the longest coordinate straight line in U. Now for
two points ¢ and r in U we define a family of curves F parametrized on the unit
interval [0,1] = I (so that K of the theorem will be I with the usual distance on
the line). We require that the length of each curve to be no more than the Finsler
length of the coordinate straight line from ¢ to r. We parametrize each curve so
that it has constant “speed”, which together with the uniform bound on length,
gives the uniform equicontinuity of 7. We take K’ to be the outer compact ball V.

By the definition of intrinsic distance d(q, r) there exists a sequence of curves from
q to r for which the lengths converge to the infimum of lengths. If the coordinate
straight line is already minimizing, then we have our desired minimizer. Otherwise
the lengths will be eventually less than that of the straight line, and from there
on the sequence will be in F. By the AA Theorem there must be a uniformly
convergent subsequence. It is fairly easy to prove that the limit is a minimizer.

Remark 2.4. The minimizers do not have to be unique, even locally. For an
example consider the [ or o norm on R? to define the Finsler metric (the “taxicab
metric”). Generally the local uniqueness of minimizers can only be obtained by
assuming that the unit tangent balls of the Finsler metric are strictly convex. We
won’t do that part of the theory in such great generality, but we will obtain the
local uniqueness in Riemannian manifolds by using differentiability and the calculus
of variations.

The result on existence of minimizers locally can be abstracted a little more. In-
stead of using coordinate balls we can just assume that the space is locally compact.
Thus, in a locally compact space with intrinsic metric there are always minimizers
locally. The proof is essentially the same.

2.2. Products. If we have two metric spaces M and N, then the Cartesian product
has a metric das« n, whose square is d?\/[ —i—d?\,. We use the same idea to get a Finsler
metric or a Riemannian metric on the product when we are given those structures
on the factors. When we pass to the intrinsic distance function of a Finsler product
there is no surprise, the result is the product distance function.

Problem 2.5. Prove that the projection into each factor of a minimizer is a min-
imizer. Conversely, if we handle the parametrizations correctly, then the product
of two minimizers is again a minimizer.

3. CONNECTIONS

We define an additional structure to a manifold structure, called a connection.
It can be given either in terms of covariant derivative operators Dx or in terms of
a horizontal tangent subbundle on the bundle of bases. Both ways are important,
so we will give both and establish the way of going back and forth. Eventually our
goal is to show that on a semi-Riemannian manifold (including the Riemannian
case) there is a canonical connection called the Levi-Civita connection.

3.1. Covariant Derivatives. For a connection in terms of covariant derivatives
we give axioms for the operation (X,Y) — DxY, associating a vector field DxY
to a pair of vector fields (X,Y).

1. If X and Y are C*, then DxY is C*~1.



RIEMANNIAN GEOMETRY 11

2. DxY is F-linear in X, for F = real-valued functions on M. That is, DyxY =
fDXy and Dx+X/Y = DXy + DX/Y.

3. Dx is a derivation with respect to multiplication by elements of F. That is,
Dx(fY)=(Xf)Y + fDxY and Dx(Y +Y')=DxY + DxY".

We say that DxY is the covariant derivative of Y with respect to X. It should
be thought of as an extension of the defining operation f — X f of vector fields so
as to operate on vector fields Y as well as functions f.

3.2. Pointwise in X Property. Axiom 2 conveys the information that for a
vector x € M, we can define D,Y € M,. We extend x to a vector field X and
prove, using 2, that (DxY")(p) is the same for all such extensions X.

3.3. Localization. If Y and Y’ coincide on an open set, then DxY and DxY’
coincide on that open set.

3.4. Basis Calculations. If (Xi,...,X,,) = B is a local basis of vector fields, we
define n? 1-forms <p§» locally by

n
DxX; =) (X)X,
i=1
These cpj— are called the connection 1-forms with respect to the local basis B. If we
let w!,...,w" be the dual basis to B of 1-forms, and arrange them in a column w,
and let ¢ = (cpj»), then we can specify the connection locally in terms of ¢ by

DxY = B(X 4 o(X))w(Y).

3.5. Parallel Translation. If D, Y = 0, we say that Y is infinitesimally parallel
in the direction z. If v : [a,b] — M is a curve and DY = 0 for all ¢ € [a, ], we
say that Y is parallel along v and that Y (v(b)) is the parallel translate of Y (y(a))
along ~.

Theorem 3.1 (Existence, Uniqueness, and Linearity of Parallel Translation). For
a given curve 7y : [a,b] — M and a vector y € My, there is a unique par-
allel translate of y along v to v(b). This operation of parallel translation along
v My ay = My @y, is a linear transformation.

If ~ lies in a local basis neighborhood of B, then the coefficients w(Y o v) of
Y along 7, when Y is parallel, satisfy a system of linear homogeneous differential
equations:

dw(Y o)
— = P () o).
Globally we chain together the local parallel translations to span all of 7 in finitely
many steps, using the fact that v([a, b]) is compact.

3.6. Existence of Connections. It is trivial to check that for a local basis B we
can set ¢ = 0 and obtain a connection in the local basis neighborhood. Then if
{Uq4} covers M, D is a connection on U,, and {f,} is a subordinate partition of
unity (we do not even have to require that 0 < f, <1, only that the sum > f, =1
be locally finite), then the definition

DxY =) faD%Y

defines a connection globally on M.
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3.7. An Affine Space. If D and FE are connections, then for any f € F we
have that fD + (1 — f)E is again a connection. As f runs through constants
this gives a straight line in the collection of all connections on M. Moreover,
SxY = DxY — ExY is F-linear in Y, and so defines a (1,2) tensor field S such
that E = D + S. Conversely, for any (1,2) tensor field S, D + S is a connection.
We interpret this to say:

The set of all connections on M is an affine space for which the associated vector
space can be identified with the space of all (1,2) tensor fields on M.

3.8. The Induced Connection on a Curve. If v is a curve in a manifold M
which has a connection D, then we can define what we call the induced connection
on the pullback of the tangent bundle to the curve. This is a means of differentiating
vector fields Y along the curve with respect to the velocity of the curve. Thus, for
each parameter value ¢, Y (t) € M, ), and D./Y will be another field, like Y, along
~. There are various ways of formulating the definition, and there is even a general
theory of pulling back connections along maps (see Bishop & Goldberg, pp.220—
224), but there is a simple method for curves as follows. Take a tangent space
basis at some point of v and parallel translate this basis along v to get a parallel
basis field (F1,. .., E,) for vector fields along . Then we can express Y uniquely in
terms of this basis field, Y = Y f'E;, where the coefficient functions f? are smooth
functions of t. We define D Y = > fi/EZ-. From the viewpoint of the theory of
pulling back connections it would be more appropriate to write Dg/4;Y instead of
D.,. In fact, the Leibnitz rule for this connection on v is
daf

D,Y/fY = EY + fl),y/}/7

and we also have the strange result that even if 7/(¢) = 0 it is possible to have
(D, Y)(t) # 0. Even a field on a constant curve (which is just a curve in the tangent
space of the constant value of the curve) can have nonzero covariant derivative along
the curve.

3.9. Parallelizations. A manifold M is called parallelizable if the tangent bundle
T M is trivial as a vector bundle: TM =~ M x R™. For a given trivialization (%) the
vector fields X, ..., X,, which correspond to the standard unit vectors in R™ are
called the corresponding parallelization of M. Conversely, a global basis of vector
fields gives a trivialization of TM. If we set ¢ = 0, we get the connection of the
parallelization. For this connection parallel translation depends only on the ends of
the curve. The parallel fields are Y a’X;, a’ constants.

An even-dimensional sphere is not parallelizable.
Lie groups are parallelized by a basis of the left-invariant vector fields.

We shall see that for any manifold M its bundle of bases BM and various frame
bundles F'M are parallelizable.

3.10. Torsion. If D is a connection, then
T(X,Y)=DxY —DyX — [X,Y]

defines an F-linear, skew-symmetric function of pairs of vector fields, called the
torsion of D. Hence T is a (1,2) tensor field. For a local basis B with dual w and
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connection form ¢, the torsion T'(X,Y’) has B-components
AUX,)Y)=dw(X,Y)+ o Aw(X,Y).
The R"-valued 2-form (2 is called the local torsion 2-form and its defining equation
D=dw+pAhw
is called the first structural equation.
A connection with 7' = 0 is said to be symmetric.

For any connection D, the connection £ = D — %T is always symmetric.

3.11. Curvature. For vector fields X,Y we define the curvature operator Rxy :
Z — Rxvy Z, mapping a third vector field Z to a fourth one Rxy Z by

Rxy = Dix,y) — DxDy + Dy Dx.

(Some authors define this to be —Rxy.) As a function of three vector fields Rxy Z
is F-linear and so defines a (1,3) tensor field. However, the interpretation as a
2-form whose values are linear operators on the tangent space is the meaningful
viewpoint. For a local basis we have local curvature 2-forms, with values which are
n X n matrices:

P=dp+pAp,

which is the second structural equation. The sign has been switched, so that the
matrix of Rxy with respect to the basis B is —®(X,Y). The wedge product is
a combination of matrix multiplication and wedge product of the matrix entries,
just as it was in the first structural equation, so that (¢ A ¢)(X,Y) = o(X)p(Y) —

P(Y)e(X),

Problem 3.2. Calculate the torsion tensor for the connection of a parallelization,
relating it to the brackets of the basis fields.

Problem 3.3. Calculate the law of change of a connection: that is, if we have a
local basis B and its connection form ¢ and another local basis B’ = BF and its
connection form ¢, find the expression for ¢’ on the overlapping part of the local
basis neighborhoods in terms of ¢ and F'. In the case of coordinate local bases the
matrix of functions F' is a Jacobian matrix.

Problem 3.4. Check that the axioms for a connection are satisfied for the con-
nection specified by the partition of unity and local connections, in the proof of
existence of connections.

Problem 3.5. Verify that the definition of T'(X,Y") leads to the local expression
for 2 given by the first structural equation; that is, T" and {2 are assumed to be
related by T' = BX).
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3.12. The Bundle of Bases. We let
BM ={(p,z1,...,@n) :p € M, (x1,...,2,) is a basis of M,}.

This is called the bundle of bases of M, and we make it into a manifold of dimension
n +n? as follows. Locally it will be a product manifold of a neighborhood U of a
local basis (X1, . .., X,,) with the general linear group Gl(n, R) consisting of all nxn
nonsingular matrices. Since the condition of nonsingularity is given by requiring
the continuous function determinant to be nonzero, Gi(n,R) can be viewed as an
open set in R"2, so that it gets a manifold structure from the single coordinate
map. Then if p € U and g = (¢9]) € Gl(n,R), we make the element (p,g) of the
product correspond to the basis (p,>_; X (g, ..., >, Xi(p)g})- Tt is routine to
prove that if M has a C* structure, then the structure defined on BM by using
C*~1 local bases is a C*~1 manifold structure on BM.

The projection map © : BM — M given by (p,x1,...,2,) — p is given locally
by the product projection, so is a smooth map. The fiber over p is 7~ 1(p), a
submanifold diffeomorphic to GI(n, R).

Each local basis B = (X1, ..., X,) can be thought of as a smooth map B : U —
BM, called a cross-section of BM over U. The composition with 7, 7 o B is the
identity map on U.

3.13. The Right Action of the General Linear Group. Each matrix g €
Gl(n,R) can be used as a change of basis matrix on every basis of every tangent
space. This simultaneous change of all bases in the same way is a map R, : BM —
BM, given by (p,21,...,%n) — (p,zjxjg{,...,zj z;g)). For b € BM we will
also write R4b = bg. It is called the right action of g on BM. For two elements
g,h € Gl(n,R) we clearly have (bg)h = b(gh), that is, R, o Ry = Rgp.

3.14. The Universal Dual 1-Forms. There is a column of 1-forms on BM, ex-
isting purely due to the nature of BM itself, an embodiment of the idea of a dual
basis of the basis of a vector space. These 1-forms are called the universal dual
1-forms, are denoted w = (w'), and are defined by the equation:

(V) = Z w(v)z;,

where v is a tangent vector to BM at the point (p, z1,...,z,) = b. We can also use
multiplication of the row of basis vectors by the columns of values of the 1-forms to
write the definition as 7, (v) = bw(v). Thus, the projection of a tangent vector v to
BM is referred to the basis at which v lives, and the coefficients are the values of
these canonical 1-forms on v. (The canonical 1-forms are usually called the solder
forms of BM.)

It is a simple consequence of the definition of w that if B is a local basis on M,
then the pullback B*w is the local dual basis of 1-forms. This justifies the name
for w.

We clearly have that mo Ry = 7, so that
e 0 Ry (V) = bgw(Ry, (v)) = bw(v),

where v is a tangent at b € BM. Rubbing out the “b” and “(v)” on both sides of
the equation leaves us with an equation for the action of R, on w:

g-Ry"w =w, or R,jw =g 'w.



RIEMANNIAN GEOMETRY 15

3.15. The Vertical Subbundle. The tangent vectors to the fibers of BM, that
is, the tangent vectors in the kernel of ,, form a subbundle of TBM of rank n2.
This is called the vertical subbundle of TBM, and is denoted by V.

3.16. Connections. A connection on BM is a specification of a complementary
subbundle H to V which is smooth and invariant under all right action maps R,.
The idea is that moving in the direction of H on BM represents a motion of a
basis along a curve in M which will be defined to be parallel translation of that
basis along the curve. We can then parallel translate any tangent vector along the
curve in M by requiring that its coefficients with respect to the parallel basis field
be constant. The invariance of H under the right action is needed to make parallel
translation of vectors be independent of the choice of initial basis.

3.17. Horizontal Lifts. Since H is complementary to the kernel of 7, at each point
of BM, the restriction of m, to H(b) is a vector space isomorphism to M. Hence
we can apply the inverse to vectors and vector fields on M to obtain horizontal lifts
of those vectors and vector fields. We usually lift single vectors to single horizontal
vectors, but for a smooth vector field X on M we take all the horizontal lifts of all
the values of X, thus obtaining a smooth vector field X. These vector field lifts are
compatible with = and all R, so that if Y is another vector field on M, then [)_( , 17]
is right invariant and can be projected to [X,Y]. However, we have not assumed
that H is involutive, so that [X,Y] is not generally the horizontal lift of [X,Y].

The construction of the pull-back bundle and its horizontal subbundle is the
bundle of bases version of the induced connection on the curve . More generally,
the induced connection on a map has a bundle of bases version defined in just the
same way.

We can also get horizontal lifts of smooth curves in M. This is equivalent to
getting the parallel translates of bases along the curve. If the curve is the integral
curve of a vector field X, then a horizontal lift of the curve is just an integral curve
of X. However, curves can have points where the velocity is 0, making it impossible
to realize the curve even locally as the integral curve of a smooth vector field. Thus,
we need to generalize the bundle construction a little to obtain horizontal lifts of
arbitrary smooth curves v : [a,b] — M. We define the pull-back bundle v* BM to be
the collection of all bases of all tangent spaces at points (t), and give it a manifold
with boundary structure, diffeomorphic to the product [a, b] X Gl(n,R), just as we
did for BM, along with a smooth map into BM. The horizontal subbundle H can
also be pulled back to a horizontal subbundle of rank 1. Then we have a vector
field d/dt on [a, b] whose horizontal lift has integral curves representing the desired
horizontal lift of . This structure on v*BM corresponds to the connection on y
given above.

When we relate all of this to the other version of connections in terms of covari-
ant derivative operators, we see that the differential equations problem for getting
parallel translations has turned into the familiar problem of getting integral curves
of a vector field on a different space.

3.18. The Fundamental Vector Fields. Corresponding to the left-invariant vec-
tor fields on Gl(n, R) we have some canonically defined vertical vector fields on BM;
each fiber is a copy of Gl(n,R) and these canonical fields are carried over as copies
of the left invariant fields. Generally on a Lie group the left-invariant vector fields
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are identified with the tangent space at the identity: in one direction we simply
evaluate the vector field at the identity; in the other direction, if we are given a
vector at the identity as the velocity 7/(0) of a curve, then we can get the value at
any other point g of the group as the velocity of the curve g-~ at time 0. Note that
whereas g multiplies the curve on the left, which is what makes the vector field left
invariant, what we see nearby g is the result of multiplying g on the right by ~.
It is this process of multiplying on the right by a curve through the identity that
we can imitate in the case of BM, since we have the right action of Gi(n,R) on
BM. Tt is natural to view the tangent space of Gl(n,R) at the identity matrix I
as being the set of all n x n matrices, which we denote by gl(n,R). If we let E; be
the matrix with 1 in the 5 position and 0’s elsewhere, we get a standard basis of
the Lie algebra. For a curve with velocity E} we can take simply (t) = I 4 tE}.
The fundamental vector fields on BM are the vector fields E; defined by

E(b) =+/(0), where y(t) =b- (I +tE}).

We sometimes also call the constant linear combinations of these basis fields fun-
damental.

3.19. The Connection Forms. If we are given a connection H on BM, we define
a matrix of 1-forms ¢ = (¢}) to be the forms which are dual to the vector fields E?
on the vertical subbundle V' of TBM and are 0 on the connection subbundle H.
This means that if y(t) = b- (I +ta), where a is an n X n matrix, then ¢(7/(0)) = a.

Clearly the connection forms completely determine H as the subbundle they an-
nihilate. Thus, in order to give a connection it is adequate to specify the connection
form . In order to say what matrices of 1-forms on BM determine a connection,
besides the property that the restriction to the vertical V' gives forms dual to the
fundamental fields E7, we have to spell out the condition that H is right invariant
in terms of ¢. The name for this condition is equivariance, and things have been
arranged so that it is expressed easily in terms of the differential action of R, and
matrix operations:

R, p =g g for all g € Gi(n,R).

3.20. The Basic Vector Fields. The universal dual cobasis is nonzero on any
nonvertical vector, so that if we restrict it to the horizontal subspace of a connection
it gives an isomorphism: w : H(b) — R™. If we invert this map and vary b, we get
the basic vector fields of the connection. In particular, using the standard basis of
R"™, we get the basic vector fields F;; they are the horizontal vector fields such that

3.21. The Parallelizability of BM. Since a connection always exists, we now
know that BM is parallelizable; specifically, {E}, E;} is a parallelization.

Theorem 3.6 (Existence of Connections (again)). There exists a connection on
BM.

Locally we have that BM is defined to be a product manifold. We can define a
connection locally by taking the horizontal subspace to be the summand of the tan-
gent bundle given by the product structure, complementary to the tangent spaces
of Gl(n,R). In turn this will give us some local connection forms which satisfy the
equivariance condition. Then we combine these local connection forms by using a
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partition of unity for the covering of M by the projection of their domains. (This
is no different than the previous proof of existence of a connection.)

3.22. Relation Between the Two Definitions of Connection. If we are given
a connection on BM and a local basis B : U — BM, then we can pull back the
connection form on BM by B to get a matrix of 1-forms on U. This pullback B*p
will then be the connection form of a connection on U in the sense of covariant
derivatives. It requires some routine checking to see that these local connection
forms all fit together, as B varies, to make a global connection on M in the sense
of covariant derivatives.

Conversely, if we are given a connection on M in the sense of covariant deriva-
tives, then we can define ¢ on the image of a local basis B by identifying it with
the local connection form under the diffeomorphism. Then the extension to the
rest of BM above the domain of B is forced on us by the equivariance and the fact
that ¢ is already specified on the vertical spaces. The geometric meaning of the
relation between the local connection form and the form on BM is clear: on the
image of B the form ¢ measures the failure of B to be horizontal; by the differential
equation for parallel translation the local form measures the failure to be parallel.
But “parallel on M” and “horizontal on BM” are synonymous. A form on BM is
horizontal if it gives 0 whenever any vertical vector is taken as one of its arguments.
This means that it can be expressed in terms of the w? with real-valued functions
as coefficients. A form 7 on BM with values in R" is equivariant if R,*n = g~ 1.
A form 1 on BM with values in gl(n,R) is equivariant if R,*¢ = g~ '4g. The
significance of these definitions is that the horizontal equivariant forms on BM
correspond to tensorial forms on M: 7 corresponds to a tangent-vector valued form
on M, 1 corresponds to a form on M whose values are linear transformations of
the tangent space. The rules for making these correspondences are rather obvious:
evaluate 77 or ¥ on lifts to a basis b of the vectors on M and use the result as
coeflicients with respect to that basis for the result we desire on M. The horizontal
condition makes this independent of the choice of lifts; the equivariance makes it
independent of the choice of b.

For example, the form w corresponds to the 1-form on M with tangent-vector
values which assigns a vector x to itself.

Theorem 3.7 (The Structural Equations). If ¢ is a connection form on BM, then
there is a horizontal equivariant R™-valued 2-form Q) and a horizontal equivariant
gl(n,R)-valued 2-form ® such that

dw=—p Aw + €,

and
do=—pNp+ .

The structural equations have already been proved in the form of pullbacks of
the terms of the equations by a local basis. This shows how the forms 2 and ®
are given on the image of a local basis. The fact that these local forms yield the
tensors T and R which live independently of the local basis can be interpreted
as establishing the equivariance properties of £ and ® since they are horizontal.
It is also not difficult to prove the structural equations directly from the specified
equivariance of . If we restrict the structural equations to vertical vectors, or one
vertical and one horizontal vector, we get information that has nothing to do with
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connections. The first one tells how Gi(n,,R) operates on R™. The second one
is more interesting: it is the equations of Maurer-Cartan for Gi(n,R), which are
essentially its Lie algebra structure in its dual packaging.

3.23. The Dual Formulation. The dual to taking exterior derivatives of 1-forms
is essentially the operation of bracketing vector fields. If we bracket two fundamen-
tal fields or a fundamental and a basic field, we obtain nothing new, only a repeat of
the Lie algebra structure and its action on Euclidean space. The brackets that actu-
ally convey information about the connection are the brackets of basic vector fields.
By using the exterior derivative formula da(X,Y) = Xa(Y) - Ya(X) — a([X, Y]),
we see that the first structural equation tells what the horizontal part of a basic
bracket is and the second tells us what the vertical part is. Most of the terms are
0:
dw(E;, Ej) = Eiw(E;) — Ejw(E;) — w([E:, Ej])
= —w([Ei, Ej))
= Q(E;, Ej).
Similarly,
—o([Ei, Ej]) = ©(Ei, Ej).
We can immediately get some important geometrical information about a connec-
tion. The condition for the subbundle to be integrable is that the brackets of its
vector fields again be within the subbundle. The basic fields are a local basis for
H, so the condition for H to be integrable is just that curvature be 0. This means
that locally there are horizontal submanifolds, which are local bases with a very
special property: whenever we parallel translate around a small loop the result is
the identity transformation; or, parallel translation is locally independent of path.
The fact that setting curvature to 0 gives this local independence of path is not
very obvious from the covariant derivative viewpoint of connections. If we go one
step further and impose both curvature and torsion equal 0, then the result is also
easy to interpret from basic manifold theory applied to the fields on BM. Indeed,
when a set of independent vector fields has all brackets vanishing, there are coor-
dinates so that these fields are coordinate vector fields. When these are the E; of
a connection on BM the coordinates correspond to coordinates on the leaves of H,
which get transferred down to coordinates on M such that the coordinate vector
fields are parallel along every curve. The geometry is exactly the same as the usual
geometry of Euclidean space, at least locally.

3.24. Geodesics. A geodesic of a connection is a curve for which the velocity field
is parallel. Hence, a geodesic is also called an autoparallel curve. Notice that the
parametrization of the curve is significant, since a reparametrization of a curve can
stretch or shrink the velocity by different factors at different points, which clearly
destroys parallelism. (There is a trivial noncase: the constant curves are formally
geodesics. But then a reparametrization does nothing.)

If we are given a point p and a vector x at p, we can take a basis b = (z1,..., )
so that x = x1. Then the integral curve of F; starting at b is a horizontal curve,
so represents a parallel field of bases along its projection v to M. Moreover, the
velocity field of « is the projection of E; at the points of the integral curve; but the
projection of E(b) always gives the first entry of b. We conclude that « has parallel
velocity field. The steps of this argument can be reversed, so that the geodesics of
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M are exactly the projections of integral curves of E;. Any other basic field could
be used instead of Ej.

Geodesics do not have to go on forever, since the field F; may not be complete.
If E; is complete, so that all geodesics are extendible to all of R as geodesics, then
we say that M is geodesically complete.

Theorem 3.8 (Local Existence and Uniqueness of Geodesics). For every p € M
and x € My, there is a geodesic vy such that v'(0) = x. Two such geodesics coincide
in a neighborhood about 0 € R. There is a maximal such geodesic, defined on an
open interval, so that every other is a restriction of this mazimal one.

This theorem is an immediate consequence of the same sort of statements about
vector fields.

3.25. The Interpretation of Torsion and Curvature in Terms of Geodesics.
Recall the geometric interpretation of brackets: if we move successively along the
integral curves of X,Y, — X, —Y by equal parameter amounts ¢, we get an endpoint
curve which returns to the origin up to order ¢2, but gives the bracket in its second
order term. We apply this to the vector fields E1, Es on BM. The meaning of the
construction of the “small parallelogram” on BM is that we follow some geodesics
below on M, carrying along a second vector by parallel translation to tell us what
geodesic we should continue on when we have reached the prescribed parameter
distance t. If we were to do this in Euclidean space, the parallelogram would always
close up, but here the amount it fails to close up is of order ¢> and is measured
by the horizontal part of the tangent to the endpoint curve in BM above. But we
have seen that the horizontal part of that bracket is given by —Q(E;, F») relative
to the chosen basis. When we eliminate the dependence on the basis we conclude
the following:

Theorem 3.9 (The Gap of a Geodesic Parallelogram). A geodesic parallelogram
generated by vectors x,y with parameter side-lengths t has an endgap equal to
—T(x,y)t? up to terms of order t3.

The other part of the gap of the bracket parallelogram on BM is the vertical part.
What that represents geometrically is that failure of parallel translation around the
geodesic parallelogram below to bring us back to the identity. That failure is what
curvature measures, up to terms cubic in t. We can’t quite make sense of this as
it stands, because the parallel translation in question is not quite around a loop;
however, if we close off the gap left due to torsion in any non-roundabout way,
then the discrepancies among the various ways of closing up, as parallel translation
is affected, are of higher order in ¢. That is the interpretation we place on the
following theorem.

Theorem 3.10 (The Holonomy of a Geodesic Parallelogram). Parallel transla-
tion around a geodesic parallelogram generated by vectors x,y with parameter side-
lengths t has second order approzimation I + Ry, - t2.

It seems to me that a conventional choice of sign of the curvature operators to
make the “+” in the above theorem turn into a “—” is in poor taste. The only
other guides for which sign should be chosen seem to be merely historic. The
word “holonomy” is used in connection theory to describe the failure of parallel
translation to be trivial around loops. By chaining one loop after another we get
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the product of their holonomy transformations, so that it makes sense to talk about
a holonomy group as a measure of how much the connection structure fails to be
like Euclidean geometry.

Problem 3.11. Decomposition of a Connection into Geodesics and Torsion. Prove
that if two connections have the same geodesics and torsion they are the same.
Furthermore, the geodesics and torsion can be specified independently.

In regard to the meaning of the last statement, we intend that the torsion can
be any tangent-vector valued 2-form; the specification of what families of curves
on a manifold can be the geodesics of some connection has been spelled out in an
article by W. Ambrose, R.S. Palais, and I.M. Singer, Sprays, Anais da Academia
Brasileira de Ciencias, vol. 32, 1960. But for the problem you are required only to
show that the geodesics of a connection to be specified can be taken to be the same
as some given connection.

Problem 3.12. Holonomy of a Loop. Prove the following more general and precise
version of the Theorem on Holonomy of Geodesic Parallelograms. Let h : [0,1] x
[0,7] = M be a smooth homotopy of the constant loop p = h(0,v) to a loop v(v) =
h(1,v) with fixed ends, so that h(u,0) = h(u,7) = p. Fix a basis b = (p, z1,...,Tn)
and let g(u) € Gl(n,R) be the matrix which gives parallel translation bg(u) of b
around the loop v — h(u,v). Let X = %,Y = % and let h : [0,1] x [0,7] = BM
be the lift of h given by lifting each loop v — h(u,v) horizontally with initial point
b. In particular, h(u,7) = bg(u). Prove that

/01 9(w) 7' (w) du = /01 /OT h(u,v)™" o Rxy o h(u,v) dv du.

The meaning of the integrand on the right is as follows: We interpret a basis
v = (q,y1,-..,Yn) to be the linear isomorphism R"™ — M, given by (a*,...,a") —

>, a'y;. Thus, for each u,v, we have a linear map
ﬁ(u,v)_l o RX(u,v)Y(u,v) o B(u, v): R" — Mh(u,v) — Mh(u,v) — R".

As a matrix this can be integrated entry-by-entry. Hint: Pullback the second
structural equation via h and apply Stokes’ theorem on the rectangle.

Problem 3.13. The General Curvature Zero Case. Suppose that M is connected
and that we have a connection H on BM for which ® = 0, that is, H is completely
integrable. Let M be a leaf of H, that is, a maximal connected integrable sub-
manifold. Show that the restriction of 7 to M is a covering map. Moreover, if we
choose a base point b € M, then we can get a homomorphism of the fundamental
group m (M) — Gl(n,R) as follows: for a loop based at m(b) we lift the loop into
M, necessarily horizontally, getting a curve in M from b to bg. Then g depends
only on the homotopy class of the loop.

A connection with curvature zero is called flat and the homomorphism of Problem
B.13]is called the holonomy map of that flat connection.
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3.26. Development of Curves into the Tangent Space. Let v : [0,1] —» M
and let D be a connection on M. We let 7 : [0,1] — BM be a parallel basis field
along ~y starting at b = 7(0) and express the velocity of -y in terms of this parallel
basis, getting a curve of velocity components 8(t) = ¥(t)~*9/(t) € R™. Then we
let o(t) = bfot B(u) du. Thus, the velocity field of o in the space M., ) bears the
same relation to Euclidean parallel translates of b as does the velocity field of v to
the parallel translates of b given by the connection. We call ¢ the development of
v into M. (o)-

Problem 3.14. Show that the development is independent of the choice of initial
basis b.

Problem 3.15. Show that the lift 4 of v in the definition of the development is
the integral curve of the time-dependent vector field 3 B%(t)E; on BM starting at
b.

3.27. Reverse Developments and Completeness. Starting with a curve o in
M, such that o(0) = 0, we choose a basis b and let 3 = b~'¢’. By ProblemB.IH we
can then get a curve v in M whose development is o, at least locally. We call v the
reverse development of o. Since the vector field > 3'(t)E; need not be complete,
it is not generally true that every curve in M, can be reversely developed over its
entire domain.

We say that (M, D) is development-complete at p if every smooth curve o in M,
such that o(0) = 0 has a reverse development over its entire domain.

Problem 3.16. Suppose that M is connected. Show that the condition that
(M, D) be development-complete at p is independent of the choice of p.

Problem 3.17. Show that the development of a geodesic is a ray with linear
parametrization, and hence, if M is development complete, then M is geodesically
complete.

Problem 3.18. For the connection of a parallelization (X1, ..., X,,) show that the
geodesics are integral curves of constant linear combinations » a*X;.

Problem 3.19. For the connection of a parallelization B = (Xq,...,X,,) show
that the reverse development of ¢ for which 8 = b~1¢’ is an integral curve of BJ.

Problem 3.20. Show that if f > 0 grows fast enough along a curve v in R?, then
the development of v with respect to the parallelization (f %, f 8%) is bounded.
Hence there is no reverse development having unbounded continuation.

Problem 3.21. Show that the geodesics of the parallelization of Problem [3.20] are
straight lines except for parametrization, and on regions where f = 1 even the
parametrization is standard. Then by taking v to be an unbounded curve with
a neighborhood U such that any straight line meets U at most in a bounded set,
and f a function which is 1 outside U and grows rapidly along ~, it is possible
to get a connection (of the parallelization) which is geodesically complete but not
development-complete.
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Remark 3.22. Parallel translation along a curve + is independent of parametriza-
tion.

Remark 3.23. The only reparametrizations of a nonconstant geodesic which are
again geodesics are the affine reparametrizations: o(s) = v(as + b).

A curve which can be reparametrized to become a geodesic is called a pregeodesic.

Problem 3.24. Show that a regular curve v is a pregeodesic if and only if Dy =
f~/' for some real-valued function f of the parameter.

3.28. The Exponential Map of a Connection. For p € M, x € M, let , . be
the geodesic starting at p with initial velocity v, ,(0) = z. The erponential map at
p is defined by

exp, : U - M by erppT = Yp z(1),
where U is the subset of € M, for which v, 5 (1) is defined.

Proposition 3.25. The domain U of exp, is an open star-shaped subset of M,,.
Ezxponential maps are smooth.

It is called the exponential map because it generalizes the matrix exponential
map, and also the exponential map of a Lie group. These are obtained when
the connection is taken to be the connection of the parallelization by a basis of
the Lie algebra (the left-invariant vector fields or the right invariant vector fields;
both give the same geodesics through the identity, namely, the one-parameter sub-
groups). More specifically, the multiplicative group of the complex numbers is a
two-dimensional real Lie group for which the ordinary complex exponential map co-
incides with the one given by the invariant (under multiplication) connection. The
geodesics are concentric circles, open rays, and loxodromes (exponential spirals).

3.29. Normal Coordinates. Since M, is a vector space, the tangent space (M,)o
is canonically identified with M, itself. Using this identification, it is easily seen
that the tangent map of exp, at 0 may be considered to be the identity map. In
particular, by the inverse function theorem, there is a neighborhood V of p on
which the inverse of exp, is a diffeomorphism. Referring M,, to a basis b gives us
an isomorphism b~! to R™, and the composition gives a normal coordinate map at
p:
b lo expp_1 :V —>R"

For normal coordinates it is clear that the coordinate rays starting at the origin

of R™ correspond to the geodesic rays starting at p.

Problem 3.26. Suppose that torsion is 0 and that (z°) are normal coordinates at
p. For any « € M, show that DJC% = 0, and hence the operation of covariant
differentiation of vector fields with respect to vectors at p reduces to operating on
the components of the vector fields by the vectors at p.

3.30. Parallel Translation and Covariant Derivatives of Other Tensors.
We have so far only been concerned with parallel translation and covariant deriva-
tives of vectors and vector fields. For tensors of other types we simply reduce to
the vector field case: a tensor field is parallel along a curve ~y if the components of
the tensor field are constant with respect to a choice of parallel basis field along ~.
We calculate D, A, where A is a tensor field and z € T'M by taking a curve v with
~v(0) = z, referring A to a parallel basis along v, and differentiating components at
t = 0. These definitions are independent of the choice of basis.
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4. THE RIEMANNIAN CONNECTION

4.1. Metric Connections. We now return to the study of semi-Riemannian met-
rics, and in particular, Riemannian metrics. If g is such a metric, then we say that
a connection is a metric connection if parallel translation along any curve preserves
inner products with respect to g. It is easy to see that there are several equivalent
ways of expressing that same condition:

Equivalent to a connection being metric are:

(1) The parallel translation of a frame is always a frame.

(2) The tensor field g is parallel along every curve.

(3) D,g =0 for all tangent vectors x.

(4) z(9(Y,Z)) = g(D,Y, Z)+g(Y, D, Z) for all tangent vectors = and all vector
fields Y and Z.

(5) Let FM be the frame bundle of g, consisting of all frames at all points
of M. Tt is easily shown that F'M is a submanifold of BM of dimension
n(n 4+ 1)/2. The condition equivalent to a connection H being metric is
that at points of F'M the horizontal subspaces are contained in T'F' M.

4.2. Orthogonal Groups. The frame bundle is invariant under the action of the
orthogonal group with the corresponding index v. This is the group of linear
transformations which leaves invariant the standard bilinear form on R™ of that

index:
n

n—v
go(z,y) =Y aly' = Y alyl

=1 i=n—v—+1
Thus, A € O(n,v) if and only if g,(Ax, Ay) = g, (z,y) for all z,y € R™. In case
v = 0 this reduces to the familiar condition for orthogonality: AT - A = I. For
other indices the matrix transpose should be replaced by the adjoint with respect
to g, which we will denote by A’. The corresponding Lie algebra consists of the
matrices which are skew-adjoint:

so(n,v) ={A: A" = —-A}.

No matter what v is, the dimension of O(n,v) is n(n—1)/2, and since F'M is locally
a product of open sets (the domains of local frames!) in M times O(n,v), F'M has
dimension n(n 4+ 1)/2.

4.3. Existence of Metric Connections. In general, the definition and existence
of a connection on a principal bundle (this means that the fiber is a Lie group
acted on the right by a model fiber) can be carried out by imitating the case of
BM. However, for FM we can obtain a connection by restricting a connection on
BM and then retaining only the skew-adjoint part. Thus, if ¢ is a connection form
on BM, then for x € TFM we let

For the Riemannian case this means that we decompose the matrix ¢(z) into its
symmetric and skew-symmetric parts and discard the symmetric part. Since the
decomposition into these parts is invariant under the action of the orthogonal group
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by conjugation (similarity transform), it follows that the form ¢, on FM satisfies
the equivariance condition:
Ry"¢a = 97 pay,

for all g € O(n,v). On the vertical subspaces of TFM the values of ¢ were already
skew-adjoint, so that ¢, is an isomorphism of each vertical space onto so(n,v). The
number of independent entries of ¢, is n(n — 1)/2. Consequently, the annihilated
subspaces are a complement to the vertical ones, and by the equivariance condition,
they are invariant under R, . That is, we have a connection on F'M.

What this means in terms of covariant derivatives on M is that we can start with
any connection Dj; then for any frame field (E;) with respect to the metric g we
have D, E; = 3 ¢! (x)E;, defining the local connection forms ¢]. Then the local
connection forms of a metric connection are obtained by taking the skew-adjoint
part of .

4.4. The Levi-Civita Connection.

Theorem 4.1 (The Fundamental Theorem of Riemannian Geometry). For a semi-
Riemannian metric g there exists a unique metric connection with torsion 0.

In fact, the metric connections are parametrized bijectively by their torsions. To
see this it is necessary to make the correspondence between the torsion form §2 and
the form 7 = ¢ — o, where ¢ is an arbitrary metric connection form and ¢g will
be the one with torsion 0. According to the first structural equation (which pulls
back to F'M unchanged in appearance) we would have

dw=—pAw+Q=—py Aw,
or
Q=7TAw.

It is clear that 7 determines €2, so the problem reduces to showing that €2 determines
7. The condition that the values of the connection forms, and hence, of 7, are skew-
adjoint with respect to the standard bilinear form g, must be used.

The trick used to determine 7 in terms of  is to alternately apply the skew-
adjointness: g, (7(z)w(y),w(z)) = —gu(w(y), 7(x)w(z)) and first-structural equa-
tion relation: Q(x,y) = 7(z)w(y) — 7(y)w(x) three times:

gu(T(@)w(y),w(z)) = —gv(w(y), 7(x)w(2))
— g (w(y), 2a, 2)) — gu(w(y), (=) (@)
= —gu(w(y), 2z, 2)) + g,,(T(Z) (y), w(z))
= —gu(w(y), 2z, 2)) + 9,2z, ), w(x)) + 90 (T(y)w(2), w(z))
= —gv(w(y), Uz, 2)) + 9, (U2, y), w(x)) — gv(w(2), 7(y)w(2))
= —gv(w(y), 2z, 2))+9. (U2, y), w(x))—gu (w(2), Q(y, ))=gu(w(2), 7()w(y))-
By symmetry of g,, the expression we began with and last term are the same, so
2g0(T(z)w(y),w(2)) = —gu(w(y), Uz, 2)) + 9 (U2, y), w(x)) — gv(w(2), Ay, z)).
This establishes the unique determination of 7 by € since g, is nondegenerate and
the tangent vectors y, z to F'M can be chosen freely to give all possible values for
w(y),w(z). We can use this formula in both directions: we can start with ¢ and
determine 7 and hence ¢q; or we can start with ¢y and a given torsion 2 and
determine .
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There are several variants on the trick used to determine the Levi-Civita connec-
tion. Levi-Civita used it to determine the Christoffel symbols for a local coordinate
basis. There is a basis-free version of it known as the Koszul formula for covariant
derivatives:

29(DXYa Z) = Xg(Y, Z)+Y9(X7 Z)—Zg(.%‘,Y)—i-g([X, Y]v Z)—i—g([Z, X]7Y)+9(X7 [Zv Y])

If we restrict attention to X,Y, Z chosen from a local frame, then the first three
terms of the Koszul formula vanish; for coordinate basis fields the last three vanish
and we recapture Levi-Civita’s formula.

Frequently the most efficient way to calculate the Levi-Civita connection is to
use a local coframe (w?) and the first structural equation with Q assumed to be
zero and ¢ forced to be skew-adjoint. The fundamental theorem tells us that
the information contained in the first structural equation is enough to determine
. Often the equations can be manipulated so as to apply Cartan’s Lemma on
differential forms:

If Y 0w =0

and the w’ are linearly independent 1-forms, then the 1-forms #* must be expressible
in terms of the w* with a symmetric matrix of coefficients.

4.5. Isometries. An isometry between metric spaces is a mapping which preserves
the distance function and is 1-1 onto. In particular, it is a homeomorphism be-
tween the underlying topological spaces. If it is merely 1-1, then it is called an
isometric imbedding. We use the same words for the mappings which preserve a
semi-Riemannian metric:

An isometry F' : M — N from a semi-Riemannian manifold M with metric tensor
g onto a semi-Riemannian manifold N with metric tensor h is a diffeomorphism
such that for all tangents v,w € M, for all p € M, we have h(F,v, Fyw) = g(v, w).

An isometric imbedding is a map satisfying the same condition relating the tan-
gent map and the metrics, but requiring only that it be a differentiable imbedding;
this does not mean that the topology has to be the one induced by the map, only
that the map be 1-1 and regular. Finally, for an isometric immersion we drop the
requirement that it be 1-1.

Since covariant tensor fields (those of type (0, s)) can be pulled back by tangent
maps in the same way that differential forms are, we can also write the condition
for isometric immersions as: F*h = g.

We have seen that there are auxiliary structures uniquely determined by a semi-
Riemannian metric or a Riemannian metric. Thus, the Levi-Civita connection is
uniquely determined by the metric tensor g, and in the Riemannian case, lengths
of curves and Riemannian distance are determined by the metric tensor g. More-
over, the curvature tensor is uniquely determined by the Levi-Civita connection.
These additional structures are naturally carried from one manifold to another by
a diffeomorphism. Thus, it is obvious that these auxiliary structures are preserved
by isometries.

In particular, geodesics of the Levi-Civita connection are carried to geodesics by
an isometry; this includes their distinguished parametrizations. Immediately we
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have that isometries commute with exponential maps:
Foexp, = exprp o Fiyp.

Theorem 4.2. On a connected semi-Riemannian manifold an isometry is deter-
mined by its value and its tangent map at one point. The group of isometries is
imbedded in F'M.

Corollary 4.3. The group of isometries of a semi-Riemannian manifold into itself
is a Lie group. The dimension of the group of isometries is at most n(n + 1)/2,
where n is the dimension of the original manifold.

4.6. Induced semi-Riemannian metrics. If we have a differentiable immersion
F : M — N and N has a semi-Riemannian metric h, then we get an induced
symmetric tensor field of type (0,2) on M, F*h. In the Riemannian case F*h is
always positive definite, hence a Riemannian metric on M; in the semi-Riemannian
case it could even happen that F*h is degenerate, or even if we assume that doesn’t
happen, on different connected components of M, F*h could have different indices.
When F*h is indeed a semi-Riemannian metric, we say that it is the metric on M
induced by F. Of course, then F' becomes an isometric immersion (or imbedding
or isometry, depending on what other set-theoretic properties it has).

Example 4.4 (Euclidean and semi-Euclidean spaces). When we consider R™ with
its standard coordinate vector fields X; = %, we have first of all a parallelization,
and hence the connection of that parallelization. It serves to give the usual iden-
tification of each tangent space of R™ with R"™ itself. In turn, the standard inner
product g, of index v can be considered as defined on each tangent space, so that
we have a semi-Riemannian structure of index v, called the semi-Fuclidean space
of index v. We denote this by R}}. When v = 0 it is Euclidean space. When v =1
it is called Minkowski space (although there are other things, Finsler manifolds,
called Minkowski space).

The dual 1-forms of the parallelization X; are the coordinate differentials w? =
dr®. When we put them into a column w and take exterior derivative we get
dw = 0. Setting ¢ = 0 clearly gives us the connection forms of the parallelization;
but parallel translation also clearly preserves g,,, and torsion is obviously 0. By the
fundamental theorem it follows that this same connection is also the Levi-Civita
connection for all of these semi-Riemannian metrics.

It is obvious that all of the translations T, : * — x + a are isometries of g, .
They form a subgroup of dimension n of the isometry group. Almost as obvious
(compute the tangent map!), for any orthogonal transformation A € O(n,v) the
inner product g,, viewed as a semi-Riemannian metric, is preserved by A. This gives
another subgroup of isometries, of dimension n(n — 1)/2. Together the products of
these two kinds of isometries form the full isometry group of R}

The semi-Euclidean motion group: {T,0A:x — Ax+a:a € R", A e O(n,v)}.
The motion group is transitive on R™, and at each point, the tangent maps of
isometries which fix that point are transitive on the frames at that point. Thus,
the induced group on the bundle of frames is transitive; in fact, if we fix a base
point of FR}., then the motion group becomes identified with F'R] with the base
point as the identity of the group.
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Example 4.5 (Round spheres). The points at distance R from the origin in E" =
Rp form the n — 1-dimensional sphere S"~! of radius R. The induced Riemannian
metric has O(n) as a group of isometries, and it easy to check that it is transitive
on points and transitive on frames at (some conveniently chosen) point. Thus, we
can identify F'S"~! with O(n); the bundle projection can be taken to be the map
which takes an orthogonal matrix to R-(first column). Since the isometry group
is transitive on frames, and isometries preserve the curvature tensor of the Levi-
Civita connection, the curvature tensor has the same components with respect to
every frame. Along with symmetries shared by every Riemannian curvature, the
invariance under change of frame is enough to determine the curvature tensor up to
a scalar multiple. Certainly this is enough excuse to say that S”~! has “constant
curvature”. However, we shall amplify the meaning of constancy of curvature when
we discuss sectional curvature.

Problem 4.6. Assume the symmetries of the general Riemannian curvature tensor
with respect to a frame:
. . . h
R;‘hk = _R]'hk = _R;‘kh = Rkij
and
For a curvature tensor which has the same components with respect to every frame,
discover what these components must be, up to a scalar multiple.

In the case R = 1, the unit sphere, the structural equations of the Levi-Civita
connection on the bundle of frames O(n) are just the Maurer-Cartan equations of
O(n). One has to separate the left-invariant 1-forms on the group into those which
correspond to the universal coframe and those which correspond to the connection
forms. This gives a way of calculating the curvature components for problem 23,
except for the multiple.

Example 4.7 (Other quadric hypersurfaces). Analogously to what we did with
round spheres, we consider quadric surfaces {z : g,(x,z) = R}. For nonzero R
this always gives a submanifold for which the induced semi-Riemannian metric is
nondegenerate and of constant index. That new index is v — 1 if R < 0 and v
if R > 0. In any case this gives us examples of metrics having a maximal group
of isometries and “constant curvature” in the sense that the components of the
curvature tensor are the same relative to any frame.

Especially important is the case v = 1, R < 0, for then we get a Riemannian
manifold “dual” to the round sphere, with constant curvature (which we will call
negative curvature). There are two connected components; retaining only the upper
component, we get the quadric surface model of hyperbolic n — 1-space.

There is an elementary argument to show that the geodesics of any of the quadric
hypersurfaces are the intersections of the hypersurface with planes through the ori-
gin of R™. We use the fact that the isometries are so plentiful and they are induced
by linear transformations of the surrounding space, which take planes into planes.
Moreover, for any such plane, the isometries which leave it invariant are transitive
on the intersection with the quadric surface. Thus, the parallel field generated by
a tangent to that intersection must be carried into another parallel field tangent
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to that intersection, which can only be itself or its negative. In particular, the
geodesics of a round sphere are the great circles.

Problem 4.8. Describe examples of submanifolds of a semi-Riemannian manifold
such that the metric induces tensor fields on the submanifolds which are degenerate,
or are nondegenerate but not of constant index.

Remark 4.9 (Geodesics of quadric hypersurface). The idea of using the plethora
of isometries to show that the geodesics of a quadric hypersurface g, (z,z) = R are
the intersections with planes through the origin is valid, but the argument given in
the last paragraph does not work. Here is a correct argument. We show that there
is an isometry leaving the intersection of the plane and hypersurface pointwise fixed,
but taking every tangent vector perpendicular to the intersection into its negative.
We must assume that the tangent vectors v to the intersection are not null vectors
(for which g, (v,v) = 0). The desired isometry is described in terms of a frame for
the vector space R™ with the bilinear form g,. The first frame vector is a normal
to the hypersurface grad g, (as a quadratic form g, can be considered to be a real-
valued function on R"™, and the gradient is taken relative to the inner product g,)
at some point of the intersection. The second frame member is to be tangent to
the intersection at that same point. Then the frame is filled out in any way. The
isometry then takes this frame into the frame having the same first two members
(so that it fixes the plane) and the remaining members of the frame replaced by
their negatives.

The existence of such an isometry forces the intersection curve to be a geodesic.
The parallel field along that intersection generated by the tangent to the geodesic
at the base point, i.e., the second frame member, must be carried to a parallel field
along the (fixed) intersection curve by the isometry. Since one vector, at the base
point, of the parallel field is fixed, the whole field is fixed. But the only vectors
fixed by the isometry are tangent to the intersection. Hence the (unit) tangent field
along the intersection is parallel, making that curve a geodesic.

In case the induced metric on the quadric hypersurface has nonzero index, there
will be null vectors, and the proof given will not apply to planes through the origin
tangent to those null vectors. But the result is still true, since the limit of geodesics
is still a geodesic, and the excluded planes can be obtained as limits of the others.

4.7. Infinitesimal isometries—Killing fields. A one-parameter subgroup in the
isometry group of a semi-Riemannian manifold is, in particular, a one-parameter
group of diffeomorphisms of the manifold. Hence, it is the flow of a complete vector
field. More generally there will be vector fields whose local flows will be isometries of
the open sets on which they are defined. These are called infinitesimal isometries
or Killing fields. We give an equation which describes Killing fields, derived by
using the idea of a Lie derivative. When we differentiate tensors carried along by
a flow with respect to the flow parameter, we get the Lie derivative of the tensor
field with respect to the vector field generating the flow. When the flow consists of
local isometries and the tensor field is the metric tensor g itself, the tensors being
differentiated are constant, so the derivative is 0 Hence, we have:

Proposition 4.10. If J is a Killing field, then L;g = 0. Consequently, a Killing
field is characterized by the fact that the linear map on each tangent space given by
v — Dy J is skew-adjoint with respect to g.
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We derive the consequence of L ;g = 0, the equation of a Killing field, namely,

9(DgJ,y) = —g(x, DyJ), as follows:
0=(Lsg)(X,Y) =Jg(X,Y) —g(L;X,Y) — g(X,L;Y)
=g9(D;X,Y) +g(X,Dy) — g([J, X],Y) — g(X, [/, Y])
=g9(D;X,Y)+9(X,D;Y) - g(D;X — DxJ,Y) — g(X,D;Y — Dy J)

In terms of a local coordinate basis, applied with x,y chosen from all pairs of
coordinate vector fields, the equation of a Killing field becomes a system of linear
first order partial differential equations for the coefficients of J. Since the group of
isometries has dimension at most n(n + 1)/2, we know a priori that there are at
most that many linearly independent solutions for J. In the case of Euclidean space
we already know all the isometries, and hence can calculate the Killing fields from
that knowledge too, but it is an interesting exercise to calculate them as solutions
of a system of PDE.

The Killing fields are named after Wilhelm Killing (1847-1923), who discovered
the above equations.

Problem 4.11. For E", calculate the Killing fields by solving the system of PDE’s.

There is a simple, but useful, relation between geodesics and Killing fields, gen-
eralizing a theorem of Clairaut on surfaces of revolution.

Lemma 4.12 (Conservation Lemma). Let v be a geodesic and J a Killing field.
Then g(v',J) = ¢, a constant along . If v has unit speed, then ¢ is a lower bound
on the length |J| of J along v, and hence, v lies in the region where |J| > c. If v
is perpendicular to J at one point, then it is perpendicular to J along its extent.

Corollary 4.13 (Clairaut’s Theorem). If~ is a geodesic on a surface of revolution,
r is the distance from the azis, and @ is the angle v makes with the parallels, then
rcosp = 1o 18 constant along v. Hence, ~v can never pass inside the “barrier”
T=T7T0.-

Of course, the proposition can be interpreted as saying that the level hypersur-
faces of |J| form barriers to geodesics even in the general case. For the surface of
revolution we take J = %, where 6 is the angular cylindrical coordinate about the
axis of revolution in space; J is a Killing field of Euclidean space and its restriction
to any surface of revolution is tangent to that surface.

Clairaut’s theorem is a very powerful tool for analyzing the qualitative behavior
of geodesics on a surface of revolution. We develop this theme in the following
problems, in which we suppose that the profile curve is expressed parametrically in
terms of its arclength u by giving r and z as functions of u: r = f(u), z = h(u).

Problem 4.14. If ug is a critical point of f, then the parallel corresponding to
this value of u is a geodesic. If ug is not a critical point of f, then on any geodesic
tangent to the corresponding parallel » has a nondegenerate local minimum at the
point of tangency.

Problem 4.15. The meridians § = constant are geodesics. On the other geodesics,
6 is strictly monotonic, and w is strictly monotonic on arcs which contain no barrier
point.
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Example 4.16. On the usual donut torus r is not monotonic between barriers for
most geodesics.

Problem 4.17. Classify the geodesics according to whether w is periodic or not
along the geodesic, and, if not, according to how it behaves relative to its barrier
parallels.

Problem 4.18. Suppose that we have a geodesic which traverses the gap between
its barriers, neither of which are geodesics. Show that the angular change A6 in 6
between successive collisions with barriers is a continuous function of the geodesic
for nearby geodesics (obtained, say, by varying the angle ¢ at a point through which
we assume they all pass). Hence, either A6 is constant or there are nearby geodesics
which fill up the barrier strip densely and others which are periodic (closed) with
arbitrarily long periods. The case of A# constant can actually occur. How?

5. CALCULUS OF VARIATIONS

An important technique for discovering the extremal properties of functionals
(usually looking for minimums of length, energy, area, etc.) is the calculus of
variations. A putative extremum is presumed to be within a family, whereupon
the derivative of the functional with respect to the parameter(s) of the family must
be zero. Using the arbitrariness of the choice of family, we then obtain the Fuler
equations for extremals of the functional. These are usually differential equations
which the mapping representing the extremal must satisfy. It is also called the first
variation condition; “first” refers to “first derivate with respect to the parameter”.
Once the condition for the first variation to be zero is satisfied, the analogue of the
second derivative test for a minimum is often employed; hence we must calculate
the “second variation”, similar to the Hessian of a function at a critical point.
Thus, the second variation is a quadratic form on the (infinite-dimensional) tangent
space to the space of all mappings in question. The condition for a nondegenerate
minimum is then that the second variation be positive definite. More subtle results
are obtained by determining the index of the second variation, that is, the maximal
dimension of a subspace on which the second variation is negative definite. If the
Euler equations are elliptic, then the index will usually be finite. We won’t get
into this subtler analysis very much; it is known as “Morse theory”, named after
Marston Morse, who developed it for the length functional on the space of paths
with remarkable success.

5.1. Variations of Curves—Smooth Rectangles. . For a given curve v : [a, b] —
M a wvariation of v is a one-parameter family of curves such that v is the curve
obtained by taking the parameter value 0. Formally this is a mapping Q : [a, b] X
[0,e] = M, smooth as a function of two variables, such that y(s) = Q(s,0). We
call Q a smooth rectangle with base curve . The curves we get by fixing the second
variable t and varying s are called the longitudinal curves of @Q; the curves obtained
by fixing the first variable s are called the transverse curves of Q). The velocity
fields of the longitudinal curves are united in the longitudinal vector field, which is
formally a vector field on the map @ [see Bishop and Goldberg, §5.7], and can be
denoted either %—g or Q*(%). Similarly, we have the transverse vector field %—? or
Q*(%). The variation vector field is the vector field on « obtained by restricting
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%—? to the points (s,0). The first variation of length or energy depends only on
the variation vector field; and when the base curve is critical with respect to these
functionals, and we restrict to variations which satisfy reasonable end conditions,
then the second variation also depends only on the variation vector field. (This is
analogous to the situation where a smooth function has a critical point, whereupon
the second derivative becomes tensorial.)

5.2. Existence of Smooth Rectangles, given the Variation Field. . If we
are given a vector field V' on a curve v, then we can obtain a rectangle having V'
as its variation field by using the exponential map of some connection:

Q(s,t) = exp, (5 (tV (s)).

5.3. Length and Energy. If we have a Riemannian metric, we have already de-
fined the length of a curve v as the integral |y| of its speed. The energy of ~
is

b
E(v) :/ 97, ) ds.

By Schwartz inequality applied to the functions f = 1 and \/g(y«,7«) on the
interval [a, b] we obtain
[? < (b—a)E®).

The condition for equality is that g(7«,7«) be proportional to f = 1 in the
sense of integration, i.e., at all but a set of measure zero. Thus, we are allowed to
apply this condition on piecewise smooth curves, so the conclusion is that we have
equality for piecewise smooth curves if and only if the speed is constant. Hence,
if we reparametrize curves so that they have constant speed, which doesn’t change
their lengths, then the energy functional becomes practically the same as the length
functional for the purposes of calculus of variations. There is a technical advantage
gained from using energy instead of length because the formulas for derivatives are
simplified—similar to what happens in calculus when you choose to differentiate the
square root of a function implicitly.

Proposition 5.1. If M is a Riemannian manifold, then a curve has minimum
enerqgy if and only if the curve has minimum length and is parametrized by constant
speed. (The comparison is among smooth curves connecting the same two points,
parametrized on the same interval [a,b].)

In semi-Riemannian manifolds the concept of length does not have a meaning,
so that the significant functional for the calculus of variations of curves is energy.
However, in a Lorentz manifold of index n — 1 the curves « for which g(v',~") > 0,
which are called time-like curves, have a special significance: they represent paths
of “events” which an object could experience as time passes. For these curves the
usual expression for length is called the “elapsed time”, measuring the amount that
a clock would change as it moved with the object. In a Lorentzian vector space the
direction of the Cauchy-Schwartz and triangle inequalities, restricted to time-like
vectors, is reversed. Thus, in Lorentz geometry we find that the time-like geodesics
are the curves which locally maximize energy among nearby time-like curves. If
one person moves on a geodesic while a second person starts out at the same time
and place, accelerates away, and then steers backs to join the first person, the first
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person will age more than the second! A discussion of the inequalities is given in
O’Neill, Semi-Riemannian Geometry, p 144.

Theorem 5.2. [First Variation of Energy and Arclength] Let Q be a smooth rec-
tangle in a semi-Riemannian manifold, with base curve v and variation field V.
Denote the longitudinal curves by Q¢ : s — Q(s,t). Then the first variation of
energy is given by

dE(Q:)
dt

b

(0) =2 g(V(b)w’(b))—g(V(a)r/(a))—/

a

g(V(S), Dv/(s)'}/) dS] .

If g(+,~') = C? is positive, then the first variation of arclength also makes sense
and is given by
_ dE(Q1)

aL(Q)
—2(0) = SR 0) /2.

Remark 5.3. Covariant derivatives of vector fields along curves are defined in
terms of parallel frames along curves. This amounts to lifting the curves to the
bundle of frames, pulling back the universal coframe w and connection form ¢,
then using the usual formula (w(DxY) = (X + ¢(X))w(Y)). For an alternative
approach which does not use bundles, but instead develops the idea of connections
on maps and their pullbacks, see Bishop and Goldberg, Chapter 5. In particular,
the fact that the torsion 0 exchange rule D 2 %—S =D 2 %—? has meaningful terms

and is true follows from the invariance of exterior calculus under pullbacks.

We define a curve to be energy-critical or length-critical within spaces of curves
by the requirement that for all variations @ of the curve in the space the first
variation of energy or length is 0. By elementary calculus it then follows that energy-
minimal and length-minimal curves in the space are also critical. The space of
curves used can be the smooth curves connecting two fixed points and parametrized
on a fixed interval [a, b]. More generally, we can let the ends of the curves vary on
submanifolds. The generality of the domain interval [a,b] is convenient because
it allows us to apply results to subintervals immediately: if a curve is critical or
minimal for certain endpoint conditions on the interval [a,b], then its restriction
to [@/,b'] C [a,b] is critical or minimal for fixed endpoint variations over [a’,¥’].
Thus, after analyzing the fixed endpoint case we can easily discover what additional
condition is needed for the variable endpoint case.

Theorem 5.4. If v is energy-critical (length-critical) for smooth curves from p to
q, then 7y is a geodesic (pregeodesic).

There is a subtle mistake which should be avoided at this point in the develop-
ment: we cannot immediately assert from the theorem that minimizing curves are
geodesics. There are two gaps in the argument: minimizers may not exist, or if
they do they may not be smooth. For the case at hand, dealing with the length of
curves, we have taken care of the existence problem using the Arzela-Ascoli Theo-
rem. However, the example of the taxicab metric shows that we are still required
to establish smoothness. Moreover, the failure to take care of these gaps in other
contexts has generated some famous mistakes: recall the 19th century dispute over
the Dirichlet principle; and in our era, the Yamabe “theorem” turned into the Yam-
abe problem precisely because the convergence to a critical map failed, yielding a
nonsmooth object which was a generalized function, not a smooth map.
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For the length functional on curves we handle the difficulty by imbedding the
geodesic in a field of geodesics and applying Gauss’s Lemma. For the special case
of Euclidean space Problem [[L.T7 and its hint shows how this works by using as the
field of geodesics a field of parallel lines.

Lemma 5.5 (Gauss’s Lemma). Let Q be a variation of a geodesic v such that all
the longitudinal curves Q¢ are geodesics with the same speed and having variation
field V.. Then g(v',V) is constant. In particular, if V is orthogonal to v at one
point, it is orthogonal everywhere.

Remark 5.6. We have already seen a special case of Gauss’s Lemma, namely, the
proposition on Killing fields which we specialized to get Clairaut’s Theorem. Given
a Killing field J and a geodesic segment -y, we generate a variation ) by applying
the flow of J to ; this @ satisfies the hypotheses of Gauss’s Lemma. The fact that
the variations of geodesics generated by the flow of a Killing field always yields
geodesics for the longitudinal curves shows that a Killing field, restricted to any
geodesic, is always a Jacobi field, defined as follows.

Definition 5.7 (Jacobi fields). If v is a geodesic, a Jacobi field along ~ is a vector
field J on v such that on each subinterval of v, J is the variation field of a variation
for which the longitudinal curves are geodesics.

The longitudinal curves in this definition do not all have to have the same speed,
so that the Jacobi fields dealt with by Gauss’s Lemma are a little special. It is rather
trivial to analyze the Jacobi fields which come from variations which don’t move the
base curve out of its trace, instead simply sliding and stretching the geodesic along
itself. We have already stated how a geodesic can be reparametrized to remain a
geodesic, and that’s all there is to it. Thus, a Jacobi field which is tangent to the
geodesic it sits on has the form J(s) = (as+b)~'(s) for some constants a and b. We
also have a clear idea of how freely we can vary geodesics in general: we can move
the initial point to any neighboring point and the initial velocity to any neighboring
velocity. Thus, the geodesic variations correspond to a neighborhood of the initial
velocity in the tangent bundle, and the Jacobi fields, in turn, correspond to the
tangents to the tangent bundle at that point.

Proposition 5.8. The Jacobi fields along a given geodesic form a space of vector
fields of dimension 2n.

Problem 5.9. (Rather trivial) Show that a vector field J on M is a Killing field if
and only if along every geodesic J has constant inner product with the geodesic’s
velocity.

In fact, we shall soon calculate that the Jacobi fields satisfy a homogeneous linear
second-order differential equation, so that the space of them is actually a vector
space of dimension 2n. The tangential ones form a subspace of dimension 2, and
Gauss’s Lemma says, in effect, that the ones orthogonal to the base at every point
form a subspace of dimension 2n — 2, complementary to the tangential ones.

Proposition 5.10. In a normal coordinate neighborhood of p the images under
exp, of the hypersurfaces g(v,v) = ¢ form a family of hypersurfaces orthogonal to
the radial geodesics from p. The tangent map exp,,  takes vectors orthogonal to the
rays from the origin of M, to vectors orthogonal to the corresponding geodesic from

p.
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Note that both Gauss’s Lemma and the above Proposition hold in the semi-
Riemannian case. In the Riemannian case the local minimizing property of geodesics
now follows by using as a field of geodesics the radial geodesics of the same speed
starting from the initial point and applying the property given about that field in
the Proposition. The local maximizing property of time-like geodesics in a Lorentz
manifold of index n — 1 is done in just the same way, using the fact that removing
the orthogonal component of the tangent to a nearby curve then increases rather
than decreases the elapsed time.

Theorem 5.11. Let M be a Riemannian manifold, p € M, and R the radius of
a normal coordinate ball B at p. Then for any q € B the radial geodesic segment
from p to q is the shortest smooth curve from p to q.

The “radius” referred to in the theorem is the distance measured in terms of the
Euclidean formula with the normal coordinates. The value of that radius function
at ¢ is the length of the radial geodesic. Hence we have

Corollary 5.12. If the ball of radius R is normal, then the distance function
q — d(p,q) is smooth on B — {p}, and its square is smooth at p as well.

Theorem 5.13 (The Jacobi equation). Let J be a Jacobi field along a geodesic .
We denote covariant derivatives with respect to v by a prime. Then

J" + R’Y/J’}/ = 0.

The proof proceeds in a straightforward fashion by applying the first and second
structural equations to a smooth rectangle generating the Jacobi field.

Example 5.14. In Euclidean space or in R} the connection is flat, R = 0. Thus,
the Jacobi equation is J” = 0. But covariant differentiation is just differentiation of
components with respect to the standard Cartesian coordinates. Hence the Jacobi
fields are linear fields, J(s) = sA + B, where s is a linear parameter on a straight
line.

Example 5.15. In a sphere of radius 1 the curvature tensor is given for a unit
speed geodesic v by

. /.
Ry = J, i J LA
0, if J is tangent to ~.

Hence the Jacobi differential equation splits into uncoupled second order differential
equations for the components of J with respect to a parallel frame along v: J/'+J; =
0 for the components orthogonal to 7, and J/ = 0 for the component tangent to .

Example 5.16. For hyperbolic geometry the curvature is opposite in sign from
that on the sphere: J!' — J; =0, if i <n, J) = 0.

Example 5.17. On a surface the curvature operator is expressed in terms of one
component, the Gaussian curvature K. If J is orthogonal to unit vector v we have
R, ;v = KJ. Thus, the Jacobi equation for a Jacobi field orthogonal to a geodesic
is J’ + KJ = 0, which is regarded as a scalar differential equation for the one
component of J.



RIEMANNIAN GEOMETRY 35

6. RIEMANNIAN CURVATURE

6.1. Curvature Symmetries. The matrix of Rxy is given by the value —®(X,Y)
of a 2-form, so that it is skew-symmetric in X,Y: (skew-symmetry in arguments)

(2) Rxy = —Ryx.

The matrices —® have values in so(n,v), so on M, the operators are skew-adjoint
with respect to g:

(3) 9(RxyZ,W) = —g(Z, RxyW).

If we take the exterior derivative of the first structural equation and substitute,
using both structural equations, for dw and dy, we get

0=d*w=—dpAw+pAdw

=pANpANw—PAW—pAPpAw=—DAw.
Evaluating this on X,Y, Z, using the shuffle permutation rule for exterior products,
gives

(4) RxvZ + RyzX + RzxY =0.

We call this the cyclic curvature symmetry. Many references call it the “first
Bianchi identity” (or even worse, “Bianchi’s first identity”), but that name is solely
due to its formal resemblance to the Bianchi identity (see below). It was known to
Christoffel and Lipschitz in 1871 (when Bianchi was 13) and probably to Riemann
in 1854.

A fourth identity, bivector symmetry or symmetry in pairs, is a consequence of
@), @), @:
() 9(RxyZ,W) = g(Rzw X.Y).
The name “bivector symmetry” comes from a standard identification of /\2 M, with

so(Mp, g), the skew-adjoint endomorphisms of M,. We extend ¢ to bivectors by
the usual determinant method:

Q(X/\YaZ/\W) = g(X, Z)g(Y, W) —g(X,W)g(Y, 7).

Then if A: M, — M, is skew-adjoint, we can interpret A as a (1,1) tensor, then
raise the covariant index to get a skew-symmetric (2,0) tensor, also labeled A; this
amounts to

g(A, X ANY) =g(AX.)Y).
Thus, R : X ANY — Rxy is interpreted as a linear map /\2 M, — so(Mp,g) ~
A’ M, for which (B) yields
(6) 9(Rxy, ZANW) =g(X NY, Rzw).
In this way we have an interpretation of R as a self-adjoint linear map of /\2 M),

Problem 6.1. Let S : M, — M, be a symmetric (with respect to g) linear transfor-
mation. Extend S to act on the Grassmann algebra over M, as a homomorphism,
which we denote on A\® M, by S A S. Show that R = S A S, turned into a (1,1)
tensor-valued 2-form by equation (G]) satisfies all the identities of a curvature tensor.
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6.2. Covariant Differentials. If T is a tensor field of type (r,s), then we define
a tensor field DT of type (r, s + 1) by letting DT(..., X) = DxT(...). For example,
the Riemannian Hessian of a function f is Ddf, given explicitly by Ddf (X,Y) =
XY f—(DxY)f. At a critical point of f this coincides with the natural Hessian,
and it is always symmetric.

6.3. Exterior Covariant Derivatives. If a tensor field T is skew-symmetric in
some of its vector arguments, say the last ¢ of the s arguments, then after forming
DT we can skew-symmetrize on the last t + 1 vector arguments, obtaining a tensor
field which we denote dT'. This is called the exterior covariant derivative of T
viewed as an (r, s —t) tensor valued t-form. The second exterior derivative satisfies
an identity d?*T = R A -T, which requires an explanation, so although it is not 0, it
does not depend on derivatives of components of 7', only the pointwise value of T’
and the curvature of the space.

Problem 6.2. (a) Explain how the explicit expression for Ddf comes from a prod-
uct rule for the “product” (df,X) — df(X). (b) Find the corresponding explicit
expression for (DR(X,Y, Z))W, taking as conventional: X,Y are the 2-form argu-
ments of R which appear in Rxy, W is the vector on which Rxy operates, and Z
is the additional argument for D.

Remark 6.3. In the semi-Riemannian case, keeping track of the signs g(e;, e;) = ¢;
is a source of considerable irritation. In what follows we do not generally sum on
a repeated index when it is attached only to ¢ and one other letter; sometimes we
use the sum convention in other settings, sometimes we stick in sum signs. Usually
it should be clear from context whether a sum is intended.

Theorem 6.4 (The Bianchi Identity). The exterior covariant derivative of the
curvature 2-form is 0. The formulation dR = 0 can be expanded to give the usual
expressions as follows. The covariant differential DR is already skew-symmetric in
the 2-form arguments it inherited from R, so that in order to skew-symmetrize on
those two and the additional one we only need to throw in the cyclic permutation
of the three. Thus, we get the equation

DR(X,Y,Z)+ DR(Y,Z,X)+ DR(Z,X,Y) =0,

for all vector fields X,Y,Z. In terms of components with respect to a basis (not
necessarily a frame), we take the first two indices of R to be the indices of its matriz
as a linear operator, so that one is up the other down, then the mext two are its
indices as a 2-form, hence subscripts. Taking the covariant differential adds another
subscript, which is customarily separated from the others by a semicolon 7 or a
solidus “”. Thus, in index notation the Bianchi identity is written

R jpipn + R + R i = 0.
The usual application of the Bianchi identity is to prove Schur’s theorem that
a semi-Riemannian manifold with pointwise constant curvature and dimension at

least 3 has constant curvature. We state it precisely and then combine the proof
with a proof of the Bianchi identity.

Theorem 6.5 (Schur’s Theorem). Let M be a connected semi-Riemannian mani-
fold of dimension > 2 such that there is a function K : M — R such that the local
expression for the curvature forms is ®% = e;Kw' Aw?. Then K is constant.
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The local coframe expression given is what we call “pointwise constant” curva-
ture.

Proof. The hypothesis about local coframe expression passes over to a claim that
the global expression for the curvature forms on F'M looks the same, ®} = ¢; Kw' A
w’, where now K is the pullback to F'M of the former K. Thus, K is a real-valued
function which is constant on fibers, so that to show it is constant we only need to
show that its derivatives in the horizontal directions are 0, i.e., Ex K = 0.

In general we have
AP’ = d(del + ¢ A @)

= dei, A @f — ¢l Ndel.

Now the general procedure for calculating the exterior covariant derivative of a
tensor-valued form is to pass to the corresponding equivariant form on F'M, take
exterior derivative, and then take the horizontal part. We note that every term
of d@;- has vertical factors, so the horizontal part is 0. This proves the Bianchi
identity.

Now we continue the calculation supposing that the curvature forms have the
pointwise constant curvature expression.

dKw' Aw?) = dK Aw' Aw? + K (=@ Ak Awd + b A gl Awh)
= (B K)wF Al Aw? + K(—¢b AwP Awd +wi A goi Awh).
Now we see that in order for this expression to have no horizontal component the

first term must vanish for all ¢ and j. If n > 2, we can choose i and j different from
any given k, so that we must have E K = 0 for all k, as required. ([

6.4. Sectional Curvature. The curvature tensor is the major invariant of Rie-
mannian geometry; it entirely determines the local geometry in a sense spelled out
precisely by the Cartan Local Isometry Theorem. However, it is too complicated to
use directly in the formulation of local hypotheses which have significant geometric
consequences. Thus, it is important to repackage the information it conveys in a
more tractable form, the sectional curvature function. In two-dimensional spaces
this reduces to a function on points, since there is only one 2-plane section at each
point, namely, the tangent plane; the sectional curvature is then just the Gaussian
curvature, K = Rj212, which is a component of R with respect to a frame. In
higher dimensions the sectional curvature is still a real-valued function, but the
domain consists of all 2-dimensional subspaces of all the tangent spaces, which we
call sections.

Let o be a section and let (v, w) be a frame for o. Then the sectional curvature
of o is

(7) K(0) = g(Ruwv, w).

In the semi-Riemannian case this must be modified slightly: it is not defined if the
section o is degenerate, so there is no frame for it; but even in the case where the
metric is indefinite on ¢ we change the sign, so that the result will conform to the
more general formula for K (o) in terms of an arbitrary basis (z,y) of 0. Then we
can write v = ax + by, w = cx + dy, and we get, using the symmetries of R

(8) K(0) = (ad — be)?g(Rayz, y).
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A straightforward calculation, starting with the inverse expressions for x and y in
terms of v and w, gives

9) 9(z,2)9(y,y) — g(x,y)* = £(ad — be) 2.

The sign is positive if g is definite (positive or negative) on o, and negative if g is
indefinite. In the Riemannian case the geometric meaning of the expression (@) is
that it is the square of the area of the parallelogram with edges x,y. If we take
another frame for (z,y), then the calculation shows that the result for K (o) is the
same whether we use () or (), showing that we have really defined K. Following
the prescription given for the sign, the general formula given for sectional curvature
in terms of an arbitrary basis is thus

g(nyIay)
g(z,2)g(y,y) — g(x,y)?’

K(o) =

For sections in the direction of pairs of frame vectors, o;; spanned by e;, e;, we
introduce the signs ¢; = g(e;, e;) and get expressions for sectional curvature in
terms of curvature components:

Kij = K(0ij) = g(Re.e, i, €5)€i€; = €i€jRijij = €1y, = Ry
Remark 6.6. If the curvature at p € M is constant in the sense of having the
same components with respect to every frame, then as a map R : /\2 My, — /\2 M,
it must be a constant multiple K - I of the identity map. (A priori this claim is true
for possibly different multiples depending on the signature of the section, but one
checks that it works in general by making some Gallilean boost change of frames.)
Hence the sectional curvature is that same constant K for all sections.

6.5. The Space of Pointwise Curvature Tensors. Let R denote the subspace
of (1, 3) tensors over a semi-Euclidean vector space V of dimension n satisfying the
curvature symmetries (2), @), @), and hence [). Let W = A*> V. By lowering the
first index we identify R with the symmetric tensors of degree 2 over W satisfying
@). The dimension of W is N = n(n — 1)/2, so that dim(S?(W)) = N(N +1)/2;
here S denotes the space of symmetric tensors. In terms of a basis we get an
independent linear restriction from the cyclic symmetry @] for each choice of 4
distinct indices ¢ < j < h < k. Hence,

dimR = N(N +1)/2 - (Z) =n?(n?—1)/12.

6.6. The Ricci Tensor. For R € R, for all v,w € V, we consider the linear map
Apw 1V = V,z = Ry,,w. The trace gives us a bilinear form t¢rA,,, = Ric(v,w) on
V x V called the Ricci tensor of R. In terms of components R{hk with respect to
a basis the components of Ric are the contraction Ric;, = > j Rf ih With respect
to a frame e; we write Rjjpr = g(Reiej en, er), which makes the superscript index
correspond to the fourth index of the covariant form. To take care of the indefinite
case we use the signs €;, whereupon Rjjnr = ekajh, hence Ric;, = Ej € Rijn; =
Zj €;Rnji; = Ricp;. That is, Ric is a symmetric bilinear form.
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6.7. Ricci Curvature. The Ricci tensor is determined by the corresponding qua-
dratic form v — Ric(v,v). For a unit vector v, Ric(v,v)g(v,v) is called the Ricci
curvature of v. We can then take v to be a frame member v = ¢e;, so that

Ric(v,v)g(v,v) = & Y _ €;Rijij = Y Kij,
J J#i

the sum of sectional curvatures of frame sections containing v. When the normal
space to v is definite with respect to g we could average the sectional curvatures
of planes containing v over the whole normal unit sphere, obtaining a standard
multiple (depending only on dimension) of Ric(v,v).

The geometric content of the Ricci curvature is that it measures the acceleration
of volume contraction with respect to the flow along certain fields of geodesics. We
formulate this precisely as follows.

Definition 6.7. The divergence of a vector field V' is a concept which depends only
on an unsigned volume element, that is, a density p. If € is an n-form such that
locally p = ||, then div V' is defined by taking the Lie derivative of €Q:

LyQ = (div V).
For any given unit vector v we define a canonical unit vector field extension V/,

by forcing V to satisfy

(1) The integral curves of V are unit speed geodesics.
2) If vt is the hyperplane in M, orthogonal to v, then V is orthogonal to the
yperp P g g
hypersurface exp,, vt

Theorem 6.8 (Theorem on Volume and Ricci Curvature). The divergence of the

canonical extension V of v is 0 at p; its derivative in the direction of v is

vdivV = —Ric(v,v).

Problem 6.9. [The Divergence Theorem.] Suppose that M is compact and ori-
entable. Prove that for any smooth vector field V/

/ (divV)Q = 0.
M
6.8. Scalar Curvature. If we contract the curvature a second time, we get the

scalar curvature N
S = ZRE = ZK(O’U) = tr Ric.
4,J i#£j
It is twice the sum of all the frame sectional curvatures, independent of the choice
of frame. In Riemannian geometry it gives the discrepancy of the measure of a
sphere or ball from the Euclidean value:

tn—1(S(p,7)) = "1 Q1 (1 =, S(p)r? +--+),

pn(B(p, 7)) = /OT fin—1(S(p,t)) dt = %T"Qn_1(1 _ nLchs(p)ﬁ Fo),

where Q,,_1 is the n — 1-dimensional measure of the Euclidean unit sphere in E™
and ¢, is another constant depending only on n. The argument to prove these
approximations is based on the fact that S is the only linear scalar invariant of R,
as well as expressions for the second-order terms of the metric in normal coordinates
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which we develop later. (Cartan, Lecons sur la Géométrie des Espaces de Riemann,
discusses this, pp 255-256.)

6.9. Decomposition of R. Tensor spaces over an inner product space are nat-
urally inner product spaces, with the induced action of O(n,v) leaving the inner
product invariant. That is, if e; is a frame of V| then we get a frame for the tensor
space by forming all the products of the e;. When the tensor space involves the
Grassmann algebra over V, then it is customary to use the determinant inner prod-
uct, so that for e;Ae; = e;®e; —e; ®e; (in conformity with the shuffle-permutation
definition of A), we have g(e; Aej,e; Aej) = gei,ei)glej, ej) — glei,e;)?, not twice
that.

The operations of raising and lowering indices and contractions are equivariant
under the action of O(n,v). Thus, the kernel of the Ricci contraction Cric : R —
S?, R — Ric, is a subspace ker Crie = W C R invariant under O(n,v). The
orthogonal projection of R onto W gives us the Weyl conformal curvature tensor.
It is easy to show that Cg;. is onto, so that we have an orthogonal direct sum
R=WaS§%

The second contraction to get scalar curvature, tr : S? — R splits the Ricci
curvature summand further into a constant-curvature tensor and a trace-free Ricci
tensor in 83 = ker tr. Thus, we always have an orthogonal direct sum decomposi-
tion

R=WeaR®S].

This decomposition is irreducible under SO(n,v) except when n = 4. Then there
is a Hodge *-operator x* : /\2 V — /\2 V satisfying % o x = I, which has a natural
isometric extension to R, and consequently gives an a further splitting of R into
the +1 and —1 eigenspaces of *, invariant under the orientation-preserving maps
SO(n,v). Curvature tensors which are eigenvalues of  are called self-dual and anti-
self-dual; they have become very important in recent years because the Yang-Mills
extremals are just the connections with self-dual or anti-self-dual curvature tensor,
and there were surprising relations with the multitude of differentiable structures
on 4-manifolds.

Problem 6.10. (a) Calculate the dimensions of the summands in the splitting of R.
(b) For self-adjoint linear transformations A, B : M, — M, we have seen in Problem
EIthat ANA € R, hence ANB+BAA=(A+B)A(A+B)—ANA—BABE€ER.
Taking B = I, the identity transformation, show that

Cric(ANIT+INA)=(n—-2)A+ (tr AL
(c) Hence,
1 1
CmA;j?AAI+IAA—EtT@m@IAU)_A,

and

W(A) =

(ANT+INA- 11@m®IAD

n—2 n—
gives a monomorphism W+ : §2 — R equivariant under O(n, v).

From the problem we conclude that the Weyl conformal curvature tensor is given
by
W(R) = R — W*(Ric).



RIEMANNIAN GEOMETRY 41

6.10. Normal Coordinate Taylor Series. It was Riemann who invented Rie-
mannian geometry and defined normal coordinates, calculated the second-order ex-
pressions for the metric coefficients. Maybe that’s how he discovered the Riemann
tensor (i.e., the curvature tensor); but anyway he knew that those second-order
coeflicients are given in terms of curvature components.

Theorem 6.11 (Riemann’s Normal Coordinate Expansion of Metric Coefficients).
The second-order Taylor expansion of the metric in terms of normal coordinates x*
is give in terms of components of R as follows:

o 0 1
9ij = 9(@7 @) =0y — 3 Z Rinjralak + ...
h.k

An interesting feature is how sparse these quadratic parts are, as well as the fact
that there are no linear terms. The components of R are supposed to be evaluated
at the origin, with respect to the frame which defines the normal coordinates.
There is probably a version for semi-Riemannian geometry, but as it stands the
formula given is only for the Riemannian case. We can now continue by obtaining
the Christoffel symbols of the normal coordinate vector field basis, stopping at the
linear terms. It is quite easy to use the Koszul formula for this, since the inverse
of the matrix g;; which is needed is just the identity matrix, up to second-order
terms.

6.11. The Christoffel Symbols. The Christoffel symbols for the coordinate vec-
tor field local basis have as the linear terms of their Taylor expansions

- 1
b = = (Rjikn + Riign)z” + - .

ik = 3
On a normal coordinate neighborhood we define a canonical frame field (E;) as
follows. At the origin p the frame coincides with the coordinate basis 0; = %.

Then we obtain F; at other points by parallel translation along the radial geodesics
from p. Thus, D,ip,E£; = 0. These canonical frames are vital in the proof of the
Cartan Local Isometry Theorem.

Problem 6.12. Show that the second order Taylor expansion of the canonical
frame is given by

1 _
Bi=) (0 45> Riynea/a" + ) 0n,
h 7,k
the coframe by
_ 1 .
wh=> (3, - 6 Z R’ a® + - ) da”.
h 7,k
Moreover, the connection forms of this frame field are

;1
gﬁj = Z ; Rijhk(xhdxk — xkdiﬂh) + e

Problem 6.13. Explain why for each h, k, along every radial geodesic 20y, — 2*0),
is a field.
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We can prove Riemann’s theorem by doing the 2-dimensional case first. Let
ds? = Edx? + 2F dxdy + G dy? be the metric in terms of Riemannian normal
coordinates z,y. Then the result to be proved is that the second order Taylor
expansions are

E:1—%Ky2+---,

1
F:§Ka:y+-~-,

1
G:1—§Kx2+~--,

where K is the Gaussian curvature at the origin p. Once we have the 2-dimensional
case, we can prove the general case by a multitude of polarizations; that is, we
apply the 2-dimensional case to surfaces obtained by exponentiating tangent planes
spanned by (9;,9;), (0;,0; + k), and (0; + On,d; + ). To make this approach
work we need to know that the Gaussian curvature of these surfaces is the sectional
curvature of their tangent planes, and that the normal coordinates of these surfaces
are the restrictions to the surfaces of the appropriate normal coordinates of the
space.

In the Riemannian case, the fact that a geodesic of the ambient space which lies
in a submanifold is a geodesic of the induced metric on that submanifold follows
immediately from the characterization of geodesics as locally length-minimizing
curves. However, we also would like to have the results in the semi-Riemannian
case, so a more computational proof that geodesics are inherited is in order. In
fact, we need to know how the Levi-Civita connections are related.

Theorem 6.14 (Theorem on the Connection of an Isometric Imbedding). Let N C
M be a submanifold such that the induced metric from M on N is nondegenerate.
(This is automatic in the Riemannian case.) Then the Levi-Civita connection of N
is given by projecting the covariant derivatives for the Levi-Civita connection of M
orthogonally onto the tangent planes of N. That is, if A is the connection of N,
D s the connection of M, and I : M, — N, is the orthogonal projection for each
p € N, then for vector fields X, Y on N

AxY =1IDxY.

The theorem can be proved by a straightforward verification of the axioms and
characteristic properties for A (connection axioms, torsion 0, metric). It can also
be done by using adapted frame fields: these are frames of M at points of N such
that the first ¢ = dim N of the fields are a frame for N. Locally we can always
extend adapted frame fields to a frame field of M in a neighborhood. Then the
local coframe w?, when restricted to NN, satisfies

is a coframe of N, and
witt =0, ,w” =0

on N. Now consider the connection forms ¢} of w’. The first ¢ x ¢ block is skew-
adjoint with respect to the semi-Euclidean metric induced on the tangent spaces of
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N by (w?, -+ ,wY). The restriction of the first structural equation of M to N then
gives

q

i _ i j

w ——E s Aw?,
=1

which shows that the g x ¢ block is that connection form of NV and that torsion is
0. Then we have that orthogonal projection of Z € M, to N, is the vector with
components w'(Z), i =1,...,q, and hence

W (BXY) = X' () + 3 @ (X0l (1)

=w(DxY), i=1,...,q.
This verifies the formula AxY =IIDxY.

Corollary 6.15. A geodesic of N is a curve v in N such that the M -acceleration
D' is always orthogonal to N.

This suggests a numerical algorithm for approximate geodesics on a surface N in
3-space. Given a velocity tangent to IV, move a small distance on N in the direction
of that velocity. Then rotate the velocity in the normal plane to N at the new point
so that the velocity will be tangent to N again. Then repeat the procedure. It is
not hard to show that as the “small distance” goes to 0, the sequence of points
generated converges to a geodesic.

Corollary 6.16 (Riemann’s Theorem-Pointwise Realizability of Curvature Ten-
sors). If we are given components Rijnk satisfying the symmetries (@), (3), @),
then there exists a metric on a neighborhood of O € R™ such that these R;jni are
the components of the curvature tensor at the origin.

Corollary 6.17 (to the Proof of Riemann’s Theorem). Sectional curvatures deter-
mine the curvature tensor.

Of course, the fact that the sectional curvatures determine the curvature tensor
can be proved easily directly. See Bishop and Crittenden, Corollary 2, p 164, and
the explicit polarization formula of Problem 2, p 165.

We give an outline of the proof of the 2-dimensional case of Riemann’s theorem.
We know that the vector field 20, + yd, is radial, so that the normal coordinate
parametrization, which is a numerical realization of the exponential map, preserves
its square-length 2% 4+ y2. Thus, we obtain an identity:

(10) 22F + 22yF + y*G = 2% + 2.

By Problem [6.13] we know that y0, — 20, is a normal Jacobi field along every
radial geodesic. We do not need the Jacobi equation, but the fact that the two
vector fields are orthogonal gives:

(11) zy(E — G) + (y* — 2*)F = 0.

The classical formulas for the Christoffel symbols, which can be calculated from the
Koszul formulas by plugging in coordinate vector fields give us equations expressing
the first derivatives of E, F,G in terms of linear expressions in those Christoffel
symbols. (The coefficients of those linear equations are each E, F, or G.) But we
have seen that the Christoffel symbols all vanish at the origin. Hence, F, F', G have
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linear coefficients 0; of course, they have constant terms 1, 0, 1, respectively. Now
match up the fourth order terms in (I0) and ([Il). The result is that at the origin
all of the second derivatives vanish except three, which are themselves equal as
follows:

Eyy = —2F;y = Gy
Finally, by the classical equations for the curvature tensor in terms of the Christoffel
symbols we calculate that the Gaussian curvature at the origin is K = —3E,,/2.

Problem 6.18. For the indefinite case, for which E(0,0) = —1 and G(0,0) = 1,
show that the proof outlined still goes through with only some sign changes.

7. CONJUGATE POINTS

Let p € M and let v be a geodesic through p. A point ¢ on v, ¢ # p, is a
conjugate point of p along vy if there exists a Jacobi field J # 0 on ~ such that J
vanishes at both p and q. We could equivalently define a conjugate point ¢ of p to
be a singular value of exp,, for if we had v € (Mp)., v # 0, such that exp, v =0,
then J(s) = exp, sv defines a Jacobi field along the geodesic s — exp, s such
that J(0) = 0 and J(1) = 0. (To interpret sv € (Mp)s, we use the canonical
isomorphism of M,, with its tangent spaces.)

Both viewpoints of conjugate points are important. The definition as given
shows that the relation “is a conjugate point of” is symmetric, and on the other
hand, by applying Sard’s Theorem to exp, we obtain that the set of all conjugate
points of p forms a set of measure 0. Moreover, the singular value property gives
us the following theorem, which is half of the property of local nonminimization
beyond a first conjugate point ¢ of p along . In a more general setting, such as a
locally compact intrinsic metric space, we would take this geometrically significant
property as the definition of a conjugate point.

Theorem 7.1 (Local Nonminimization Implies Conjugate Point). Let v([0, s]) be a
nonselfintersecting geodesic segment such that for every neighborhood U of v([0, s])
there is s’ > s such that there is a shorter curve in U from ~(0) to ~(s') than
~([0, s]). Then ~([0, s]) has a conjugate point of v(0).

Proof. Suppose there are no conjugate points of p = v(0) on ([0, s]). Then exp,, is
a diffeomorphism of some neighborhood V' of s7/(0) onto a neighborhood of ~(s).
Moreover, we may assume that V' is so small that exp, is also a diffeomorphism
on the “cone” U{tV : 0 < t < 1} = W. We can also take a central normal ball
B C M, so small that exp, B intersects ([0, s]) only in an initial radial segment
of v. Let X = BUW. Then exp, : X — exp, X = U is a diffeomorphism onto
a neighborhood of ([0, s]) which is thereby filled with a field of radial geodesics
uniquely connecting points to p. Now we use the proof of the minimization theorem,
page 25, to show that if y(s") € U, then ([0, §]) is the shortest curve in U from p
to y(s). O

Remark 7.2. To turn the local nonminimizing property into a characterization of
first conjugate points it is necessary to free ourselves of the restriction that ([0, s])
be nonselfintersecting. We do this by taking the neighborhoods U in question to
be a neighborhood in the space of rectifiable curves starting at p. To topologize
the space of curves we parametrize them with constant speed on [0, 1] and use the
topology of uniform convergence. We construct W as we did above, and take B
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to be any central normal ball, so that for some € > 0, exp, is a diffeomorphism
of some neighborhood of #7/(0) within X onto the e-ball centered at ~y(t) for every
t,0 < t < 1. Then any rectifiable curve which is uniformly e-close to v can be lifted
uniquely to a curve in X. This means that we can define a unique radial geodesic
to each point of the curve, so that we can carry out the comparison of lengths as
in the proof of Theorem

7.1. Second Variation. We have seen that when we vary a geodesic to nearby
curves with the same endpoints, then the first derivative of energy or arclength is
0. Moreover, if there is no conjugate point, then the critical value of energy or
length actually is a local minimum. As in calculus, to gain information about what
is happening at a critical point we need to look at second derivatives. We will
only do the simple case for which the endpoints are fixed; the more general case in
which we study the distance to a submanifold would require some notions that we
have not defined, focal points and the second fundamental form of a submanifold.
The details of the more general case can be found in Bishop & Crittenden or other
references.

We assume that the geodesic base curve and the longitudinal curves of the vari-
ations we consider are normalized in their parametrization, so that they have con-
stant speed and are parametrized on [0,1]. Intuitively it is clear that we don’t
lose anything by such a restriction. It makes energy equal to the square of the
length among the curves under consideration, so that there is no difference which
we choose to calculate with. Moreover, the restriction is fitting to the conclusion
we want to draw: by showing that some second derivative is negative we conclude
that the value is not a minimum. Thus, it is some particular special variations that
we want to discover from a calculation of second variation, and great generality is
not required as long as what we do points to the special variations needed.

So suppose that @) is a smooth rectangle with base geodesic and constant end
transversal curves, and longitudinal parameter s,0 < s < 1. Let X be the longi-
tudinal vector field and Y the transverse vector field. We will use such facts as
DxY = Dy X and Rxy = —DxDy + Dy Dx without going through some formal
justification. Our starting point is the formula for first variation of energy:

dE !
0
Differentiating with respect to t again:
d’E !
W = 2/ [g(DyDXy, X) + g(DXY, DyX)]dS
0

1
= 2/ [9(DxDyY + RxyY,X) + g(DxY,DxY)|ds
0

1

d

= 2/ [_asg(DYY’ X)—g(DyY,DxX) — g(RxyX,Y) + g(DxY, DxY)]ds.
0

Now we evaluate at t = 0, so that Dx X = 0 because the base curve is a geodesic,
and the term which can be integrated drops out because the end transverse curves
are constant: DyY = 0, at s = 0,1. For the term ¢g(DxY,DxY) we have an
alternative form %g(DXY, Y)—g(DxDxY,Y), and again the direct integration of
the derivative drops out because of the fixed end condition. We also simplify the
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notation, writing Y/ = DxY and Y = DxDxY when ¢ = 0. Thus, we get Synge’s
formula for second variation:

o 1
Cfin(o) - 2/0 [g(Y",Y") — g(Rxy X,Y)]ds

1
= —2/ g(Y”—i—nyX, Y)dS
0

There are several interesting features to note. The result only depends on the
variation vector field Y along the base, not on other properties of . This is
an illustration of the rule that when a first derivative vanishes, then the second
derivative becomes tensorial. The formula is a quadratic form in Y, so that it
makes sense to consider the corresponding bilinear form, which is called the index
form for variations of the base curve. The formulas for the index form are rather
transparent; just replace one of the Y’s in each term by a Z to get 1(Y, Z).

From the second expression we see that if we can take Y to be a Jacobi field,
so that the two ends of the base geodesic are conjugate points of each other, then
the second variation vanishes. In fact, I(Y, Z) = 0 for every Z, which tells us that
the Jacobi field is in the nullspace of the index form. Conversely, if I(Y, Z) = 0 for
every Z, then we must have Y + Rxy X = 0, that is Y is a Jacobi field. Hence we
have identified the nullspace of I: it consists of Jacobi fields which vanish at both
ends.

Theorem 7.3 (Nonminimization Beyond Conjugate Point). If a geodesic segment
v has an interior conjugate point, then it is not minimal.

Proof. Make the parametrization be such that (1) is a conjugate point of v(0),
and ~ extends beyond to some y(s),s > 1. Using the nontrivial Jacobi field which
vanishes at 7(0) and (1) as a variation field, we obtain a variation of that first
part of  for which the change in arclength is O(t3). These varying curves form
angles at (1) with v looking backwards proportional to ¢, up to higher order. If
we cut across the obtuse angles formed, the saving in length is on the order of ¢2,
so that saving is greater in magnitude than the gain in length O(#3) that we have
from the variation. Hence there must be shorter curves nearby 7 connecting v(0)
and 7(s). O

The claim in the proof that “the saving in length is on the order of 27 requires
a proof, for which we introduce some second variations of vector fields which are
not 0 at the ends. For a vector field Y along ~ we still define an index form

1
(12) 10) =2 [ 1" Y") = gl Ry X V)] ds.

To interpret I(Y) as a second derivative of the energy of some rectangle we note
that in leading up to ([I2]) when we had a fixed-end variation, we integrated terms
%g(X, DyY). Thus, the weaker condition DyY = 0 at s = 0 and 1 would also
suffice to derive (I2)). For any given Y this condition can be attained by letting the
initial and final transverse curves be geodesics. In fact, that was how we showed
the existence of a variation attached to a given variation field anyway.

Moreover, we also want to interpret (I2) as a second derivative in the case where
Y is only continuous and piecewise C'. We can do so if we require that at the finite
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number of places where Y’ = DxY does not exist we have Dy'Y = 0; in particular,
it is again enough to make the transverse curves at those places be geodesics.

Theorem 7.4 (The Basic Inequality). Suppose that there are no conjugate points
of v(0) on ~((0,1]). Let V be a piecewise C* wvector field on ~ orthogonal to
such that V(0) = 0. Let Y be the unique Jacobi field such that Y(0) = 0 and
Y(1)=V(1). Then I(V) > I(Y) and equality occurs only if V=Y.

Proof. The inequality I(V) > I(Y) is actually an immediate consequence of the
minimization of energy by geodesics: if we take a rectangle @Q such that V = %—?
and the final transversal t — Q(1,t) is a geodesic, then we can define another
rectangle Q by making Q; : s — Q(s, t) be the geodesic from (0) to Q(1,t). Then
E(Q;) < E(Qy), so also I(Y) < I(V).

To show that the case of equality requires V' =Y we make a calculation involving
a basis of Y7,...,Y,_1 of the Jacobi fields which are 0 at s = 0 and perpendicular

to v at s = 1. The we can write V =" f;Y;, where the coefficients f; are piecewise
C'. We let

V=D fYi+ Y SY =W+ 2,

Lemma 7.5. If Y and Z are Jacobi fields along a geodesic vy, then g(Y', Z) —
9(Y,Z") is constant. If Y and Z vanish at the same point, then the constant is 0,
so that gY', Z) = g(Y, Z").

Proof. Let X = ~'. Differentiating the difference we have

9" Z2)+g(Y', 2')~g(Y',Z") —g(Y,Z") = —g(Rxv X, Z) +0+g(Y, RxzX) = 0,

by the symmetry in pairs of R. (|
Now we have
(13) gV 1Y) =" fifje(¥i,Y))
=Y _fifjs(¥].Y;), by LemmallH
=g(W,2).
(14) gV, 2) =g(V',2) +g(V.Z')

=gW,Z)+9(2,2)+9(V. > fIY) +9(V, > fiY))
= 9W,2)+9(Z,2) + g(W,Z) = g(V,>_ fiRxv,X)
=29W,2)+9(Z,Z) — g(V, Rxv X).
The integrand in I(V) is thus
g(V',\ V') = g(RxvX,V) = gW + Z,W + Z) — g(RxvV., V)
=gW,W)+g(V.2), by ([,

Note that V and Z are continuous, piecewise C', so that we can integrate to get

(15) (V) —/0 g(W,W)ds +g(V (1), 2(1)) — g(V(0), Z(0))

_ /O g(W, W) ds + g(V(1), Z(1)).
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We make the same calculation with Y = Y f;(1)Y;, wherein the field corresponding
to WisOand V(1) =Y (1), Z(1) = f:(1)Y/(1) are the same. Thus,

(V) - I(V) = /1g(W, W)ds >0,
0

and the condition for equality is that the piecewise continuous field W = 0, hence
the f; are constant and V' =Y. This completes the proof of the Basic Inequality. [

Now we can give a precise version of the proof that geodesics do not minimize
beyond conjugate points.

Let ¢ = vy(s2) be a conjugate point of p = v(0), and let Y be a nonzero Jacobi
field vanishing at p and ¢. If we extend Y by a segment of 0-vectors beyond g,
we will still have I(Y) = 0. Let e be a positive number such that there is no
conjugate point of y(s2 —€) on y((s2 — €, s2 + €]). Reparametrize v (and scale ¢, so
correspondingly) so that so +€ =1, 59 — e = s1. We will indicate vector fields along
v by a triple designating what they are on each subinterval [0, s1], [s1, s2], [s2, 1].
For example, (Y,Y,0) denotes the vector field which is Y on [0,s1], Y on [s1, s,
and 0 on [sq, 1]. As long as we force the tranverse curves at the break points s1, o
to be geodesics, the summing of index forms for subintervals will represent a sum
of second derivatives of energies which gives the second derivative of the whole. Let
W be the Jacobi field such that W(s1) = Y (s1) and W (1) = 0. Then we satisfy
the condition for the basic inequality on the interval [s1, 1], so that

0=1I((Y,Y,0)) > I((Y,W,W)).

Since there is a vector field (Y, W, W) having negative second variation, the longi-
tudinal curves of any rectangle fitting it are shorter than +([0,1]) on the order of
t2. This completes the proof of the nonminimization beyond conjugate points.

Remark 7.6. In Problem the condition that the field be a Jacobi field along
every geodesic should be derived from the fact that it is a Killing field independently
of the other parts of the problem.

Example 7.7. The following kind of metric comes up in classical mechanics be-
cause the space of positions of a rigid body rotating about a fixed point is SO(3),
and the kinetic energy of the rigid body can be viewed as a Riemannian metric
having the left-invariance considered. A general theorem of mechanics of a freely
moving conservative system says that the free, unforced motions are geodesics of
the kinetic energy metric. See Bishop & Goldberg, chapter 6.

On SO(3) and S® we have parallelizations by left invariant vector fields X1, X2, X3
satisfying

[X1, Xo] = X5, [Xa, X3] = X1, [X35,X4] = Xo.
The dual basis w!, w?, w? satisfies the Maurer-Cartan equations
dw' = —w? Awd dw? = —w3 AW, dwd = —w! AW

We introduce a left-invariant metric for which the X; are orthogonal and have
constant lengths a, b, c:

d82 _ a2(w2)2 4 52(0.)2)2 4 02(0.)3)2

="+ )+ ()
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Hence dn' = —aw® Aw® = —&n* AP = —p5 An® — o3 An®, where the ¢} are the
Levi-Civita connection forms for our metric. By Cartan’s Lemma, 3 and o} are
linear combinations of 72 and 1>, hence have no n' term. By cyclic permutations
we conclude that each connection form is a multiple of a single basis element:

0y =—Cn’, 03 = —An', ¢} = —Bn’.

Then the first structural equations give us what A, B, C are, using a little linear
algebra:
b2+ c? —a?

2abc
and the cyclic permutations. We continue by calculating the curvature by using
the second structural equations.

®3 = (AC + BC — AB)n' An? = Kian* AP,

A:

and again cyclicly. Thus, the curvature as a symmetric operator on bivectors is

diagonal with respect to the assumed basis. We reduce the numerator to a sum

and difference of squares to see whether the curvatures can be negative:

3(u—v)?+ (u+v)? - Bw—u—v)?
12uvw

Ky =

3

2 2

where u = a?,v = b, w = .

7.2. Loops and Closed Geodesics. [This material is from Bishop & Crittenden,
Section 11.7, with little change.] A closed geodesic, or geodesic loop is a geodesic
segment for which the initial and final points coincide. A smooth closed geodesic, or
periodic geodesic is a geodesic loop for which the initial and final tangents coincide.

In a compact Riemannian manifold we can get convergent subsequences of a fam-
ily of constant speed curves uniformly bounded in length, using the Arzela-Ascoli
theorem. If we have a continuous loop with base point p, we can obtain a rectifi-
able curve in the same homotopy class by replacing uniformly confined subsegments
(which exist by uniform continuity) by unique minimal geodesic segments. Then
we can reparametrize the resulting piecewise smooth curve by its constant-speed
representative (all parametrized on [0, 1]). Applying the Arzela-Ascoli Theorem to
a sequence of such homotopic constant-speed curves with length descending to the
infimum length produces a loop of minimum length in the homotopy class. It is
obviously a geodesic loop. More generally, the same procedure works in a complete
Riemannian manifold. (Completeness is next on the agenda.)

Proposition 7.8. In a compact Riemannian manifold each pointed homotopy class
of loops contains a minimal geodesic loop.

If we allow the base point to float during homotopies, then we get free homotopy
classes of loops. If we connect a loop back and forth to a base point by a curve,
then the resulting pointed loops, as we vary the connecting curve, give conjugate
elements of the fundamental group. In this way we associate uniquely to a free
homotopy class of loops a conjugate class in the fundamental group.

Using the same trick, in a compact manifold we can extract a periodic geodesic
representative of a free homotopy class of loops. However, in the complete, but
noncompact, case the trick does not necessarily work because the length-decreasing
sequence can go off to infinity. For pointed loops that does not happen because
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closed bounded sets are compact, and everything takes place in a closed ball about
the base point.

Theorem 7.9 (Synge’s Theorem on Simple Connectedness). If M is compact, ori-
entable, even-dimensional, and has positive sectional curvatures, then M is simply
connected.

Proof. The idea is to use second variation to show that a nontrivial periodic geodesic
cannot be minimal in its homotopy class. By parallel translation once around such
a periodic geodesic, we get a map of the normal space to the geodesic at the initial
point into itself. Because that map has determinant 1 (Why?) and the normal
space is odd-dimensional, there must be an eigenvalue equal to 1, hence a fixed
vector v. This fixed vector v generates a parallel field V', joining up smoothly at
the ends since v is fixed by parallel translation. Thus, the second variation of an
attached rectangle is

1 1
1(v) = / (V' V") — g(Rxv X, V)] ds = — / 9(Rxy X, V)ds < 0,

so there are nearby homotopic shorter curves. O

We give some variations on the same theme as problems.

Problem 7.10. Let M be compact, even-dimensional, nonorientable, and have
positive curvature. Show that the fundamental group of M is Z,.

Problem 7.11. Let M be compact, odd-dimensional, and have positive curvature.
Show that M is orientable.

A method of Klingenberg gives us either geodesic loops or conjugate points. The
hypothesis can be weakened to completeness and an assumption that there is a cut
point. The definition of cut points and the facts used about them will be given
after we discuss completeness.

Theorem 7.12 (Klingenberg’s Theorem). Let M be compact, p € M and m a
point of the cut locus of p which is nearest to p. If m is not a conjugate point of p,
then there is a unique geodesic loop based at p through m and having both segments
to m minimal.

Proof. . If m is not a conjugate point, then there are at least two minimal segments
from p to m. We show that there are just two and that they match smoothly at m.
Let v and o be any two. By matching smoothly at m we mean that /(1) = —o’(1).
Otherwise, there will be local distance functions f and g, giving the distance from
p in neighborhoods of v and o, respectively. In a neighborhood of m, the equation
f = g defines a smooth hypersurface not perpendicular to v or o. (The proof given
in B & C has an error at this point.) In a direction on this hypersurface making
acute angles with both geodesics there are points which are nearer to p which can
be reached by distinct geodesics, one near 7, one near o. That is, there are cut
points of p closer than m. ([l
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Corollary 7.13. Let M be compact and let (p,m) be a pair which realizes the
minimum distance from a point to its cut locus. Then either p and m are conjugate
to each other, or there is a unique periodic geodesic through p and m such that both
segments are minimal.

Corollary 7.14. Let M be compact, even-dimensional, orientable, with positive
curvature, and let p,m be as in corollary [713 Then p and m are conjugate.

8. COMPLETENESS

In a topological metric space X, a sequence (z,) is a Cauchy sequence if for
every € > 0 there is ng such that for all n > ng, m > ng, we have d(x,, ) < €. A
convergent sequence is a Cauchy sequence. If every Cauchy sequence is convergent,
then X is a complete metric space. If some subsequence of a Cauchy sequence
converges, then the sequence itself converges. Hence a compact metric space is
complete.

A noncomplete metric space X has an essentially unique completion, a complete
metric space in which X is isometrically imbedded and no unnecessary identifica-
tions are made among the points added to make the space complete or among those
and the original points of X. There is a standard way of constructing the com-
pletion: start with the set of all Cauchy sequences; put an equivalence relation on
that set, requiring two sequences to be equivalent if the sequence which results from
interleaving them is still Cauchy; the metric is extended to the set of equivalence
classes by taking the limit of distances d(z,y,); we imbed X isometrically in this
set of equivalence classes as the classes represented by constant sequences.

The completion of a Riemannian manifold does not have to be a manifold. For
example, we can start with the Euclidean plane, make it noncomplete by punctur-
ing it; then we can take the universal simply connected covering manifold X. As a
manifold X is just diffeomorphic to the plane. However, as a metric space there is
only one equivalence class of Cauchy sequences which does not converge: the pro-
jection of a representative converges to the point we removed. In terms of Riemann
surface theory X is the Riemann surface of the complex logarithm function; that is,
the locally defined log can be defined as a single-valued complex-analytic function
on X. So we call X the logarithmic covering of the punctured plane.

Problem 8.1. Discover a topological property of the completion of the logarithmic
covering which shows that it is not a manifold.

Recall that a metric space is intrinsic if the distance between two points is the
infimum of lengths of curves between the points. We say that a metric space is
a geodesic metric space if it intrinsic and for every pair of points there is a curve
between the points whose length realizes the distance between the points. A space
is locally geodesic is every point has a neighborhood in which distances between
pairs from that neighborhood are realized by curve lengths. Thus, we have seen
that a Riemannian manifold is a locally geodesic space.

If we parametrize a geodesic in a Riemannian manifold by the arc length mea-
sured from some point on it, then it becomes an isometric immersion from an
interval to the Riemannian manifold. We have realized the geodesics as the pro-
jections of the integral curves of the vector field ;7 on FM. In particular we will
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have mazimal geodesics, ones which cannot be extend as geodesics to a larger in-
terval; the domain is always an open interval. If that interval is not all of R, then
there will be a Cauchy sequence in the interval converging to a finite end. The
image distances are no farther apart, hence also a Cauchy sequence. Thus, if the
Riemannian manifold is complete, the limit point of that sequence can be used to
extend the geodesic to one more point. We have called this ability to always extend
a geodesic to a finite end of its domain geodesic completeness. We have therefore
proved:

Proposition 8.2. A complete Riemannian manifold is geodesically complete. That
s, mazximal geodesics are defined on the whole real line.

The converse of this theorem is known as the Hopf-Rinow Theorem, proved in its
original form by H. Hopf and W. Rinow (On the concept of complete differential-
geometric surfaces, Comment. Math. Helv. 3 (1931), 209-225.) It was recognized
later, by de Rham, that it was important to weaken the hypothesis a little more: if
we assume that just those geodesics extending from a single point can be extended
infinitely, then the Riemannian space is complete. It was that form which has
become accepted as the classical form of the Hopf-Rinow Theorem. Strangely, an
even better version was proved in 1935: S. Cohn-Vossen, Existenz Kurzester Wege.
Doklady SSSR 8 (1935), 339-342. The Cohn-Vossen version is applicable to locally
geodesic spaces which have maximal shortest paths of finite length; the de Rham
improvement, requiring the extendibility of only those geodesics which originate
from some single point, is also valid for Cohn-Vossen’s version

Theorem 8.3 (The Hopf-Rinow-CohnVossen Theorem). If X is a locally geodesic
space such that there is a point p for which every maximal geodesic through p is
defined on a closed interval, then X is a complete metric space.

Of course, for locally compact spaces, the assumption that the space is locally
geodesic can be derived from the metric being intrinsic.

In the same context, of locally compact intrinsic complete metric spaces, it then
follows that the space is globally geodesic.

The modern form of the H-R-CV theorem specifies several equivalent conditions
and a consequence. This facilitates the proof of the main implication, which was
stated as the H-R-CV theorem above.

Theorem 8.4 (The Hopf-Rinow-CohnVossen Theorem). In a locally compact in-
trinsic metric space M, the following are equivalent:

(1): Every halfopen minimizing geodesic from a fized base point extends to a
closed interval.

(ii): Bounded closed subsets are compact. (This is often said: M is finite—
compact.)

(iii): M is complete.

(iv): Every halfopen geodesic extends to a closed interval.

Any of these implies: M is a geodesic space (i.e., any two points may be joined
by a shortest curve).

Proof. We start with an outline of proof. We establish a cycle (i) = (i) = (4i7) =
(iv) = (i), and then the final assertion is clear from (i).
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The implication (#4) = (4i%) is true in any metric space and we have already
noted the truth of (iié) = (iv) above; (iv) = (4) is trivial. Thus, the more difficult
part, (i) = (1) is left.

So let us assume (i) with base point p and define
E. ={q:d(p,q) <r and there is a minimizing geodesic from p to ¢},

B, = the closed metric ball of radius r with center p,
A={r:E.=B}.
The idea is to show that A is both open and closed in [0, 00).

(In the Riemannian case F, is the image under exp,, of the intersection of the
domain of exp, with the closed ball in M), of radius r. The proof of the fact that
E, is compact then follows by using the continuity of exp,,. From there the pattern
of proof was given by deRham, copied into Bishop & Crittenden.)

Now we give the details of the proof of the H-R-CV theorem.
(1) E, is compact for all r.

The set I of r for which E,. is compact is an interval: for if s < r and E, is
compact, let (g,) be a sequence in Es. A sequence of minimizing segments from p
to g, lies in the compact set E,., so by the Arzela-Ascoli Theorem has a convergent
subsequence. The limit curve is necessarily a minimizing geodesic, and its endpoint
is the limit of the corresponding subsequence of (g,) and is in Fj.

The interval I is open: for if E, is compact, then by local compactness we can
cover it by a finite number of open sets having compact closure. The union of these
closures will contain all points within distance ¢ > 0 of E,., so it will be a compact
set K containing E,... Repeating the above argument with E, replaced by K and
E, by E,. shows that the latter is compact.

Suppose that I = [0,r) where r is finite. Let (g,) be a sequence in E, and o,
a minimizing geodesic from p to ¢,. Using the compactness of F;, for s < r, we
construct successive subsequences o/ for each m which converge on [0, s,,] where
sm — 7. Then the diagonal subsequence o)} converges to a minimizing halfopen
geodesic segment on [0, 7). By hypothesis, this halfopen geodesic has an extension
to r, which provides a limit point of (g,) and a minimizing geodesic to it from p.
Thus, E, is compact, contradicting the assumption that r ¢ I. Hence, I = [0, 00),
that is, all E, are compact.

(2) The set A of all 7 for which E, = B, is an interval.

Indeed, if every point at distance r or less can be reached by a minimizing
geodesic from p, and if s < r, then certainly every point of distance s or less can
be so reached.

(3) A is closed. If 7 is a limit point of elements s in A, then g € B, is certainly
a limit of points g5 € Bs C E,.. Since E, is compact, ¢ € E,..

(4) Ais open. If E, = B, then we can cover B, by a larger compact set including
some Br+257 so the latter is compact. For g € BHE a sequence of curves from p to ¢
with lengths converging to d(p, ¢) will eventually be in B, o.. By the Arzela-Ascoli
Theorem there will be a subsequence converging to a minimizing segment from p
to g, so that ¢ € E,,.. Hence, F, ;. = BTJFE, showing that A is open. [l
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8.1. Cut points. In this section we consider Riemannian manifolds. The notion
of a cut point in a more general space, such as a complete locally compact interior
metric space, or even a complete Riemannian manifold with boundary, is difficult to
formulate so as to retain the nice properties that cut points have in complete Rie-
mannian manifolds. Also, they don’t make much sense in noncomplete Riemannian
manifolds.

If v is a geodesic, p = v(0), then ¢ = v(s) is a cut point (or minimum point) of
p along v if 7 realizes the distance d(p, q), but for every r > s, v does not realize
the distance d(p, y(r).

Theorem 8.5. If q is a cut point of p, then either there are two minimizing seg-
ments from p to q or q is a first conjugate point of p along a minimizing segment.

Proof. . Let ¢ = ~(s) and suppose that s, > s is a sequence converging to s and
that o, is a curve from p to y(s,) such that the length of o, is less than the length
of the segment of v from p to y(s,). Since we have assumed that the space is
complete, we may as well suppose that o, is a minimizing segment. We take a
convergent subsequence, the limit of which will be a minimizing segment from p to
q. If the limit is +, then exp, is not one-to-one in a neighborhood of s7'(0); this
shows that ¢ is a conjugate point of p along ~. (|

Corollary 8.6. The relation “is a cut point of” is symmetric.

This follows from the fact that both relations “has two or more minimizing
geodesic to” and “is a first conjugate point of” are symmetric. The symmetry of
the latter follows from the characterization of conjugate points by Jacobi fields.

It is not hard to show that the distance to a cut point from p along the geodesic
with direction v = 4/(0) is a continuous function of v to the extended positive reals.
The manifold is compact if and only if there is a cut point in every direction. If we
remove the cut locus of p from the manifold, then the remaining subset is diffeo-
morphic to a star-shaped open set in the tangent space via exp,. In particular, the
noncut locus is homeomorphic to an open n-ball. This shows that all the nontrivial
topology of the manifold is conveyed by the cut locus and how it is glued onto that
ball. The cut locus is the union of some conjugate points, which have measure 0 by
Sard’s Theorem, and subsets of hypersurfaces obtained by equating “local distance
functions from p”, the localization being in neighborhoods of minimizing geodesics
to the cut points. Thus, the cut locus has measure 0. Other than that it can be
very messy; H. Gluck and M. Singer have constructed examples for which the cut
locus of some point is nontriangulable.

9. CURVATURE AND TOPOLOGY

9.1. Hadamard manifolds. A complete Riemannian manifold with nonpositive
curvature is called an Hadamard manifold. The two-dimensional case was studied by
Hadamard, and then his results were extended to all dimensions by Cartan. There is
a further generalization to manifolds for which some point has no conjugate points.
We first show that nonpositive curvature implies that there are no conjugate points.

Theorem 9.1. If M is a Riemannian manifold with nonpositive curvature, then
there are no conjugate points.
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Proof. We have to show that if Y is a nonzero Jacobi field such that Y'(0) = 0, then
Y is never 0 again. Note that Y'(0) # 0, since Y (0) and Y'(0) are deterministic
initial conditions for the second-order Jacobi differential equation. Now differentiate
g(Y,Y) twice:

g(Y, Y)/ = 2g(Y, Y/)v
which is 0 at time 0, and
gV, Y)" =29(Y",Y') + g(Y, —Rxy X),

which is positive at time 0. But we may assume that Y is perpendicular to the
base geodesic, and that the velocity field of that geodesic is a unit vector field X.
Then ¢g(Y, RxyX) = Kxyg(Y,Y) < 0. Hence, g(Y,Y)” > 0, so that g(Y,Y) only
vanishes at time 0. (|

Theorem 9.2 (The Hadamard-Cartan Theorem). If M is a complete Riemannian
manifold having a point p such that p has no conjugate points, then exp, is a
covering map. If curvature is nonpositive, then that is true for every p and every
fixed-end homotopy class of curves contains a unique geodesic segment. If M is
simply connected, then it is diffeomorphic to R,, via exp,.

Proof. We are given that exp, is a local diffeomorphism everywhere. From covering
space theory it is sufficient to show that it has the path-lifting property: given a
curve 7y : [0,1] — M and a point v such that exp,(v) = 7(0) we must show that
there is a curve 4 such that exp, oy = v and 5(0) = v.

We can pullback the metric on M to get a metric expy, g on M. The radial
lines from the origin are geodesics in this metric, so that by the H-R-CV Theorem
the new metric on M, is complete. We can use the local regularity of exp, to lift
an open arc of a curve about any point where we have it lifted already. Thus, it
becomes a matter of extending from a halfopen interval to the extra point. On a
large closed ball in M,,, which is compact, there will be a positive lower bound on the
amount distances will be stretched by exp,; hence a Cauchy sequence approaching
the open end in M will be lifted to a Cauchy sequence in M, providing the point
to continue the lift. (|

Theorem 9.3 (Myers’ Theorem). Let M be a complete Riemannian manifold such
that there is a positive number ¢ for which Ric(v,v) > (n—1)cg(v,v) for all tangent

vectors v. Then M is compact with diameter at most w/+/c.

Proof. We show that along every geodesic there must be a conjugate point within
distance m/+/c. Let v be a geodesic parametrized by arc length, and let (E;) be a
parallel frame field along v with E,, = +’. We define fields along v which would be
Jacobi fields vanishing at 0 and w/+/c if M had constant sectional curvature c:

Vi(s) = sin/cs E;(s),

fori=1,...,n—1.
Then the index form has value

T/ve
(Vi) = /0 (c-cos® \/cs — Ky, sin? \/cs) ds.
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We are given that > K.y, = Ric(y',7") > (n — 1)¢, so that if we add the index
forms we get

n—1
ZI(VZ-) < c-/COSQ\/Esds =0.
i=1

If there were no conjugate point on the interval in question, then the basic
inequality tells us that the index form would be positive definite. Hence there is
a conjugate point and there can be no point at distance from 7(0) greater than

/. O

Remark 9.4. We have proved a slightly better result than claimed. We don’t
have to assume that all Ricci curvatures are positively bounded below, but only
those for tangents along geodesics radiating from a single point. Then we still get
compactness, but not the estimate on the diameter.

Problem 9.5. The radius of a Riemannian manifold M is the greatest lower bound
of radii of metric balls which cover M. Prove that in general radius < diameter <
2 - radius. Moreover, the upper bound radius < 7/4/c can be obtained from com-
pleteness and the assumption that the Ricci curvatures of tangents along geodesics
radiating from a single point have the lower bound assumed in Myers’ Theorem.

When n = 2 the condition on Ricci curvature reduces to a lower bound K > ¢
on the Gaussian curvature; the conclusion of Myers’ Theorem was known for this
case much earlier and this result is called Bonnet’s Theorem.

9.2. Comparison Theorems. . There is an improved method of doing compar-
ison theorems, refining the technique of using Jacobi fields as in Bishop & Crit-
tenden, employing Riccati equations as well. A good reference for this approach
is

J.-H. Eschenburg, Comparison Theorems and Hypersurfaces, Manuscripta Math.
59(1987), 295-323.

One of the starting points of modern comparison theory is the Rauch Compar-
ison Theorem. It says that if we have an inequality on sectional curvatures at
corresponding points of two geodesics, then the opposite inequality holds for cor-
responding exponentiated tangent vectors. In effect we compare growth of Jacobi
fields when we are given a curvature comparison and the same initial conditions for
the Jacobi fields.

The reason that Riccati equations are sometimes more convenient is that they
come close to conveying just the right amount of information, while the Jacobi
equation has too much detail. If we are concerned with estimating the distance to
a conjugate point, we are interested in whether there is a one-dimensional subspace
of Jacobi fields with zeros at two points; the Jacobi equation determines individual
members of that subspace, while the Riccati equation is aimed at the subspace
itself. For the two-dimensional case the interest centers on the fields orthogonal
to a geodesic, so that the equations are given in terms of one scalar coefficient f.
The Jacobi equation is f” + Kf = 0, where K is the Gaussian curvature along
the geodesic. The Riccati equation is b’ + h? + K = 0, where h is related to f
by h = f’/f. The distance between conjugate points is the distance between two
singularities of h. Those singularities are all of the same sort, with i approaching
—oo from the left, +o0o from the right, and asymptotically h(s) behaves like £ (s —
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c)~! at a singularity c. For the higher dimensional case we deal with the vector
Jacobi equation, while the Riccati equation is a matrix Riccati equation whose
solutions package all the solutions of the Jacobi equation.

Geometrically the matrix of the Riccati equation represents the second funda-
mental forms of a wave front, so the Riccati equation itself expresses how the relative
geometry of those wave fronts evolve as one moves orthogonally to them. When we
radiate from a point the wave fronts are metric spheres, but the equations have the
same form for wave fronts radiating from any submanifold.

To describe a wave front, or family of parallel hypersurface all that is required
is a real-valued function having gradient of unit length everywhere: f : M — R,
such that g(df,df) = 1. Then the hypersurfaces are S; = {p : f(p) = t}, the level
hypersurfaces of f. We let X = grad f, the metric dual of df; that is, the vector
field such that g(X,Y) = df (Y) for all vector fields Y. Then we calculate for any
tangent vector y:

0=yg(X,X)=29(D,X,X).

We can take an extension Y of y such that [X,Y] = 0 and ¢g(X,Y) is constant,
hence 0 = X¢g(X,Y) = g(DxX,Y) + g(X, Dy X), so that

DxX =0.

Thus, the integral curves of X are geodesics. The distances between the hypersur-
faces S; are measured along these geodesics.

A case of particular importance is f(q) = d(p, q), the distance function defined
on a deleted normal neighborhood of p, for which the wave fronts are the concentric
spheres about p.

Let B = DX, the Hessian tensor of f. Then X is in the nullspace of B, so that
we will be mainly concerned with the restriction of B to the normal space X+. As
defined by B = DX, B is a linear map Y — Dy X, which is the shape operator
(Weingarten map) of the hypersurfaces S;. But we also can view B as the second
fundamental form, the symmetric bilinear form (Y, Z) — B(Y,Z) = g(Dy X, Z).
Usually it will be the operator version that occurs here.

Suppose that J is a vector field orthogonal to X such that [X,.J] = 0. Then
D;X = DxJ = BJ. Applying Dx again we get

Dx(BJ) = (DxB)J + BDxJ = (DxB)J + B*J
=DxD;jX=D;DxX — Rx;X =—-Rx;X.
Define the symmetric linear operator Rx by RxJ = Rx X. Since the vector field

J can have arbitrary pointwise values perpendicular to X, we get the following
operator Riccati equation for B:

DxB+ B?>+ Rx =0.
Still assuming that [X, J] = 0, we get
DxDxJ=DxD;X =D;DxX — Rx;X = —RxJ,
which is the Jacobi equation; so such a J must be a Jacobi field along the integral
curves of X. We can take n — 1 such fields Jq,...,J,—1 which are orthogonal to
X at some point, and use them to make a linear isomorphism R”~! — X+ which

we denote by J. The row of derivative fields DxJ = J " can also be regarded as
such a linear map, so that B = J'J~! makes sense as a linear operator on X=.
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Writing the definition of B as J' = BJ, the fact that B satisfies the same Riccati
equation is just a repeat of the previous calculation. Finally, we can rig J and J'
at one point so that B coincides with B at that point, hence everywhere. This
establishes the usual relation between the Riccati equation and the corresponding
second-order linear equation, here the Jacobi equation.

9.3. Reduction to a Scalar Equation. If we assume that B has a simple eigen-
value A, then locally A will be a smooth function and will have a smooth unit
eigenvector field U. We show that \ satisfies a scalar Riccati equation of the same
form, where the driving operator Rx is replaced by a sectional curvature function.

X\ =X =g(BU,U) = g(B'U+ BU',U) + g(BU,U")

= —g(B°U,U) — g(RxU,U) = —\* — Kxy.
We have used the symmetry of B and the fact that g(BU,U’) = A\g(U,U’) = 0,
since the derivative of a unit vector is always perpendicular to the unit vector itself.

We cannot generally assume that the eigenvalues of B will be simple. However,
we can always perturb an initial value of B so that the perturbed solutions of
the Riccati equation will have simple eigenvalues locally. Then an upper or lower
bound on the eigenvalues derived from the scalar equation can be applied to the
eigenvalues of the matrix equation by taking a limit as the perturbations go to 0.
This will serve our purposes even in case B has multiple eigenvalues.

9.4. Comparisons for Scalar Riccati Equations. We consider the Riccati equa-
tions of the form f’ = —f2— H, where f, H are real-valued functions of a real vari-
able. In our geometric applications H will be the sectional curvature of a section
tangent to a geodesic, and f has interpretations as a principal normal curvature
(eigenvalue of the second fundamental forms) of a wave front, or a connection co-
efficient for a frame field adapted to the setting.

A basic trick in dealing with the scalar Riccati equation is the change to the
corresponding linear homogeneous second order equation. We let f = j'/4, and
then easily calculate j” = —Hj. Conversely, a solution of the second order equation
leads to a solution of the Riccati equation. Of course, j is only determined up to a
ratio. The trick may be viewed as splitting the second order equation into two first
order steps, the Riccati equation and the linear equation 7 = —fj. We assume
that H is continuous.

Lemma 9.6. A solution f on (0,a) either extends continuously to a solution in a
neighborhood of 0, or limy_o4 tf(t) = 1. In either case f is uniquely determined on
(0,a) by its value f(0+), whether finite or +o00. Similarly, f on (—a,0) is uniquely
extendible to [ : (—a,0] = [—o0, +00).

Proof. . We must have a Taylor expansion j(t) = c+bt+O(#?) for the corresponding

linear equation solution. If ¢ # 0, f(t) = J%% gives us the continuous exten-
sion f(0) = b/c. T ¢ =0, then f(t) = prigiy — +00 as t — 0+ and tf(t) — 1.
The second order equation determines a solution j such that j(0) = 0 up to a
constant multiple, so that f is uniquely determined when 0 is a singularity. (|

Lemma 9.7. If we determine a unique solution f. for r #0 by f.(r) = 1/r, then
the unique solution singular f at 0 is given by f(t) = lim, o4+ fr(1).
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Proof. . Take the limit of the corresponding solution j, for j, which satisfies initial
conditions j.(r) =, j.(r) = 1. O

Theorem 9.8 (Driving Function Comparison Theorem). If f' = —f> — H, ¢’ =
—g%> — K, f(0) = g(0) [which may be +oo], and H > K, then g exists on at least
as great an interval [0,a) as does f, and f < g on that interval.

[Note that f continues until f(t) - —o0 as t — a—.]

Proof. . Let h=g— f. Then W' + (g + f)h = —K + H > 0. If f(0) is finite, we
multiply both sides of this inequality by exp([(f + g)(u)du = k to get (kh)" > 0.
Since h(0) = 0 and k > 0, we conclude that h(t) = g(t) — f(¢) > 0 on [0,a). But g
can only become singular by going to —oo, so that g must exist on [0,a) too. O

If f(0) = +oo, then we set f-(r) = g-(r) = 1/r, use the result just proved, and
take a limit as r — 04.

Theorem 9.9 (The Sturm Comparison Theorem). If j” = —Hj, k" = —Kk,
j(0) = k(0) =0, H > K, and these solutions are not trivial, then the next 0 of j
occurs at or before the next 0 of k.

Theorem 9.10 (Value Comparison Theorem). If f' = —f2— H, ¢’ = —g*> — H,
and f(0) < g(0), then f < g on the mazimal interval [0,a) on which f exists.

Proof. Again let h = g — f, so that ' 4+ (94 f)h =0. Clearly h > 0 on [0,a). O

Theorem 9.11 (Rauch Comparison Theorem). Let M and N be Riemannian man-
ifolds, v and o unit speed geodesics in each, X =~ and Y = o’ their unit tangent
vector fields. Suppose that for every pair of vector fields Z and W orthogonal to -y
and o, respectively, we have an inequality on sectional curvatures at corresponding
points: Kxz < Kyw. Let J and L be nonzero Jacobi fields orthogonal to v and o,
respectively, such that J(0) = 0, L(0) = 0, and J'(0), L'(0) have the same length.
Then gap(J,J)/gn(L, L) is nondecreasing for s > 0; in particular, J is at least as
long as L.

Proof. We start by calculating the logarithmic derivative of the length of a Jacobi
field J:
(logg(J,J))" =29(J",J)/g(J, J) = g(BJ, J)/g(J, J).

For Jacobi fields vanishing at an initial point the operators B are the shape op-
erators of the spherical wave front about that point. On both manifolds these
operators have a simple pole B ~ (1/s)I as their initial conditions. By the driving
function comparison theorem the eigenvalues of the operators for the spheres on
M and N are related oppositely to the relation for curvature. That inequality on
eigenvalues is then passed on to an inequality for the logarithmic derivatives, and
we have supposed that J and L are asymptotically the same at s = 0. O

Note that we did not have to assume that the dimensions are the same. The
most common application is a comparison to constant curvature spaces, which can
be stated conveniently as follows.

Theorem 9.12 (Constant Curvature Comparison Theorem). Suppose that the sec-
tional curvatures of M are bounded by constants: a < K <b. Let S(a) and S(b) be
the simply connected complete Riemannian manifolds of constant curvatures a and
b, of the same dimension as M. Let exp,, exp,, and exp, be exponential maps for
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S(a), S(b), and M, respectively, each restricted to a normal neighborhood. Then
exp,, © exp, ! is length nonincreasing and exp,, © epr_1 is length nondecreasing. (For
convenience we have identified the three tangent spaces by some Fuclidean isome-

try.)

To keep the directions of the inequalities correct you should always bear in mind
particular comparisons, say of the Euclidean plane with the unit sphere: it is easy
to visualize that the Euclidean lines spread apart faster than great circles making
the same initial angle.

An equivalent way of viewing the constant curvature comparison is in terms of
triangles. The triangles compared should be sufficiently small so that they lie in
a normal coordinate neighborhood and in the sphere are uniquely determined by
the three side lengths. For a given triangle in M the comparison triangle is the
triangle in the constant curvature surface S(a) having the same side lengths. Then
an inequality on curvatures, say, a < K, is conveyed by inequalities between the
angles and corresponding distances across the two triangles: the angles are smaller
and the distance shorter in the comparison triangle than in the given triangle.

Alternatively, instead of making the three sides the same, one can make two sides
and the included angle the same in the given triangle and the comparison triangle,
with obvious consequent inequalities between the other corresponding “parts” of
the triangles. This called hinge comparison

Alexandrov has turned these triangle comparisons into definitions, for geodesic
metric spaces, of what it means for the space to have curvature bounded above
or below by a constant. This allows an extension of many ideas of Riemannian
geometry to “singular” spaces. For example, he proves that if curvature is bounded
above, then the angle between two geodesic rays with a common starting point is
well-defined and satisfies many of the usual properties. However, an angle and its
supplementary angle has sum > 7, but equality may fail. The metric completion of
the logarithm spiral surface covering the punctured Euclidean plane has curvature
< 0, but geodesic rays starting at the singular point can have arbitrarily large angle
between them. Generally, in spaces with curvature bounded above geodesics may
bifurcate (which is an indication of some infinitely negative curvature), but locally
a geodesic segment is uniquely determined by its ends.

The opposite case of spaces with curvature bounded below has also been stud-
ied. Here again angles are meaningful; for the two-dimensional case, the sum of
angles about a point can be at most 27, and if it is less, the point is regarded as
having positive curvature measure. Geodesics cannot bifurcate, but local bipoint
uniqueness may fail and indicate positive infinite curvature. Examples of this sort
are obtain by gluing two copies of a convex Euclidean set along their boundaries
(the double of the set).

When a locally compact metric space has curvature bounded both above and
below then it is very close to being a manifold. To make it be a manifold we
only have to assume one further very natural property: geodesics must be locally
extendible. With this hypothesis, Nikolaev proved that there is a C*® manifold
structure and the metric is given by a C*® Riemannian metric. The number « is a
Holder exponent for the last derivatives, and can be any number between 0 and 1.



RIEMANNIAN GEOMETRY 61

Curvature bounds defined in Alexandrov’s way are easily seen to be inherited by
the limits of spaces, for some reasonable notions of such limits. Thus, Nikolaev’s
theorem has an important consequence that some limits of Riemannian manifolds
are actually Riemannian manifolds. There is a general compactness theorem of
Gromov which shows that many such limits exist.

Another kind of result which Alexandrov was able to abstract to spaces with
curvature bounded above was the proof that one could compare certain global
triangles, given that local ones could be compared. For example, he proved a gen-
eralization of the Hadamard-Cartan Theorem to locally compact complete geodesic
metric spaces with curvature bounded above by 0. Recently S. Alexander and I gen-
eralized this even more, using instead the weaker assumption of geodesic convexity
and eliminating the hypothesis of local compactness.

9.5. Volume Comparisons. For a Riemannian manifold we can get comparisons
between the volume of balls and spheres (and more generally, tubes) and corre-
sponding volumes in constant curvature spaces founded on curvature inequalities.
For lower bounds on volume it is hard to do much better than to assume upper
bounds on sectional curvature and apply the length nondecreasing maps that we
get from the Rauch comparison theorem. The more interesting case is to get upper
bounds on volumes from the weaker assumption of lower bounds on Ricci curvature.

Theorem 9.13 (Bishop’s Volume Comparison Theorem). If Ric(X,X) > (n—1)K
for all unit vectors X = grad(d(p,-)), then for each ball By(r) and sphereS,(r) =
O0B,(r) the Riemannian volume, n-dimensional and (n-1)-dimensional, respectively,
is less than or equal to that for a ball or sphere of the same radius in a space of
constant curvature K.

For K > 0 the result holds for all r < 7/ VK ; for K < 0 the result holds for all
r. In either case it is permissible to let exp, be noninjective while its counterpart
in the constant curvature space is injective, since counting parts of volume more
than once enhances the inequality. This refinement is now attributed to Gromov,
but I knew it and thought it was so trivial as to be unnecessary to say explicitly.
However, it turned out to be important in applications.

The method of proof is to estimate the Jacobian determinant of the exponential
map, by calculating the logarithmic derivative. That much is similar to the proof of
the Rauch theorem. We express that Jacobian determinant in terms of the length
of an (n — 1)-vector:

SN NIy = E1NAN O NE, .
This was done directly in the original proof, given in Bishop & Crittenden, Chap-

ter 11. Now the fashion is to use an operator Riccati equation as intermediary,
converting it to a scalar Riccati equation for j'/j by taking the trace.
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