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PREFACE

This book is intended to explain the nature of irra-

tional numbers, and those parts of Algebra which depend

on what is usually called The Theory of Limits.

Many of our text-books define irrational numbers

by means of sequences; but to the author it has seemed

more natural to define a number, or at least to con-

sider a number as determined, by the place which it

occupies among rational numbers, and to assume

that a separation of all rational numbers into two

classes, those of one class less than those of the other,

always determines a number which occupies the point

of separation. Thus we have the definition of Dede-

kind, which is adopted by Weber in his Algebra. With-

out attempting to inquire too minutely into the sig-

nificance of this definition, we have endeavored to

show how the fundamental operations are to be per-

formed in the case of irrational numbers and to define

the irrational exponent and the logarithm.

Defining the irrational number by the place which it

occupies among rational numbers, we proceed to speak

of its representation by sequences; and when we have

proved that a sequence which represents a number is

regular and that a sequence which is regular repre-
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sents a number, we are in complete possession of the

theory of sequences and their relation to numbers.

The representation of a number by a sequence is

essentially the same as its representation as the limit of

a variable, and the notion of sequence seems to be

simpler than that of variable and limit. A section

has been added on Limits (Chap. II, IV) to bring out

the relation of the two points of view. But this sec-

tion may be omitted without any break in the con-

tinuity of the book, and the words "variable" and
" hmit " are used nowhere else.

The infinite series is defined as a sequence written in

a particular way. Theorems are given on the con-

vergency and use of infinite series sufficient to develop

the exponential, binomial, and logarithmic series.

The theory of irrational numbers given in Chapter I

has been adopted by Professor Fine, as stated else-

where (p. 56). Perhaps I may be permitted to add

that I did not see Professor Fine's book imtil after my
manuscript was in the hands of the printer.

In addition to the references on page 56, mention

may be made of two important articles on "The Con-

tinuum as a Type of Order," by Dr. E. V. Huntington,

in the Annals of Mathematics for July and October, 1905,

and "Introduction to the Real Infinitesimal Analysis

of One Variable," by Professors Oswald Veblen and

N. J. Lennes (John Wiley & Sons).

I am indebted to Mrs. Elsie Straffin Bronson, A.M.,

of Providence, for many criticisms and suggestions.

Henry P. Manning.
Providence, February, 1906.
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2 IRRATIONAL NUMBERS

With reference to a given set of objects the phrase is

used as defined above, to express the fact that any in-

teger n is the number of only a part of the objects of

the set.

Each integer except 1 is preceded by a finite number

of others in the order of counting, and each integer is

followed by an infinite number of others.

3. When we have two infinite sets of objects we can

often make them correspond; that is, we can pair them,

associating with each object of one set one and only

one of the other set.

Thus the even numbers can be paired with the odd

numbers.

The integers which are the squares of integers can

be paired with those which are not squares, although

the latter occur more frequently in counting. In this

way we have pairs of numbers as follows

;

1 and 2, 4 and 3, 9 and 5, 16 and 6, etc.

In this arrangement every number of either kind is

associated with one and only one of the other kind.

There is no place where the set of squares is exhausted

and the numbers which are not squares have to stand

alone.*

In Geometry the points of two circles may be asso-

ciated in this way, each point of one being associated

with one and only one of the other. We can do this,

* This illustration was used by Galileo. " Galileo and the Modern
Concept of Infinity," Dr. Edward Kasner, Bulletin of the American

Mathematical Society, June, 1905, p. 499.
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for example, by making the centres of the two circles

coincide and associating points which lie on the same

radius.

We may have a correspondence between two infinite

sets of objects when one set is a part of the other set.

Thus we can associate the set of even positive integers

with the set of all positive integers. In Geometry

we can associate the points on two segments of straight

lines even when one segment is longer than the other.

We can do this by making the two segments two sides

of a triangle and associating the points in which they

intersect any line parallel to the third side.

3. A rational number is any number which is a posi-

tive or negative integer or fraction, or zero.

We shall assume that we know how to add or mul-

tiply any two rational numbers, to subtract any rational

number from any other or the same rational number,

and to divide any rational number by any other or the

same rational number, with the single exception that

we cannot divide any number by zero.

The result of any of these operations will be a rational

number.

Between any two rational numbers there are others.

We get one such number by adding to the smaller some

part of their difference. Between this and each of the

other two another can be found, and so on.

Between any two rational numbers, therefore, there

is an infinite number of rational numbers.

If a is any positive rational number, there is an

integer n which is greater than a. For, if a is a posi-

tive integer any integer that comes after a in counting
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will be greater than a, and if a =—, where p and q are

positive integers, any integer greater than p will be

greater.

If a and b are any two positive rational numbers,

there is an integer n such that n6>a;* namely, any

integer greater than the rational number r-.

If any particular integer n satisfies either of these

conditions, every integer beyond will satisfy the same

condition.

4. If we suppose all rational numbers arranged in

order of magnitude, then no one is followed by another

which comes next after it. For any two of them are

separated by others.

We cannot realize by our imagination this arrange-

ment of rational numbers. We can only reason about

it. Thus we can say of any two numbers in this

arrangement that one comes before the other, or of

any three that one comes between the other two.

It is possible, however, to arrange the set of all posi-

tive rational numbers so that one of these numbers

comes first and each of the others is preceded by only

a finite number of them, each one having a definite

numbered position. That is, it is possible to make

this set of numbers correspond to the set of positive

integers, one number of each set to be associated with

one and only one number of the other set.

One way of doing this is to arrange these numbers

* This is called the Law of Archimedes.
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in the order of magnitude of the sum of the numerator

and denominator, those in which the sum is the same

being arranged in their own order of magnitude and

integers being regarded as fractions with 1 for denomi-

nator. This arrangement will be

il9l-^12 3,1.12 3^_5
2-"3T32'*5"'6 5"T3 2^----

II. Definition of Irrational Numbers

5. Any rational number a separates all others into

two classes, those which are smaller being in one class

and those which are larger in the other, and every

number of the first class is less than every number of

the second class. We may put the number itself

into one of the two classes and then we have separated

all rational numbers into two classes, every number

of the first class less than every number of the second

class.

If we have put a into the first class, it is the largest

number in this class. In this case there is no number

in the second class which is the smallest number in

the second class. For any number b in the second class

is larger than a, and there are rational numbers between

a and b. These numbers are in the second class because

larger than a, and they are smaller than b, so that b is

not the smallest number in the second class.

If we have put a into the second class, it is the small-

est number in the second class and there is no number

in the first class which is the largest number in the

first class.
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In either case a occupies the point of separation of the

two classes, and we may think of a as determined by

the separation.

Now there are ways in which we can separate all

rational numbers into two classes, those of the first

class less than those of the second, with no rational

number occupying the point of separation, that is,

with no number in the first class which is the largest

number in the first class, and no number in the sec-

ond class which is the smallest number in the second

class.

For example, there is no rational number whose

square is 2* If we separate all rational numbers

into two classes, putting into the first class all negative

rational numbers and all positive rational numbers

whose squares are less than 2, and into the second

class all positive rational numbers whose squares are

greater than 2, the numbers in the first class will be

less than those in the second class, and there is no
rational number which will be the largest number in

the first class or the smallest number in the second

class.

For, let a be any positive number in the first class,

that is, any positive rational number whose square

is less than 2. Let p be any other positive rational

number. 2 - a^ is positive, and (a+ p)^ or a^

+

p(2o+ p)

will be less than 2 if

p(2a+ p)<2-a2.

* This is a proposition of Euclid (Elements, X, 117).
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This will be true if p is less than some positive number
p', and at the same time less than

2-a2

2a + p'"

Suppose we take p equal to a half of the smaller of

the two numbers

a-Vp will be a rational number greater than a and its

square will be less than 2.

Again, let a' be any number in the second class and

p some other positive rational number less than a'.

o'2—2 is positive, and {a' —pf will be greater than 2 if

p(2a'-p)<a'2-2.

This will be true if

a'2-2
p<

2a'

If we take p equal to a half of this fraction, a' —p will

be a positive rational number less than a' and its square

will be greater than 2.

We assume:

In any separation of all rational numbers into two

classes, those of the first class less than those of the

second class, there is a number which occupies the point

of separation.
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This is the definition of continuity. We assume that

the system of all numbers is continuous.

The number is determined by the separation. A
number thus determined, if not a rational number,

is called an irrational number.

6. An irrational number separating all rational

numbers into two classes is to be regarded as greater

than those of the first class and less than those, of the

second class.

Two irrational numbers are different if they do

not separate rational numbers into the same two

classes. There are numbers which are in the second

class in one case and in the first class in the other case.

They are greater than one and less than the other of the

two irrational numbers.

If a rational number c lies between two irrational

numbers, that irrational number which is less than c

is to be regarded as the smaller of the two and the

other as the larger of the two.

We have, then, the following theorem:

Theorem.

—

a, /3, and j being any three numbers, rational

or irrational, if a<,8 and /?<?, then a<y.

Proof.—Any rational number c lying between a and

P is less than a rational number c' between /? and y,

c being in one of the two classes which determine /?

and c' in the other. But either of these numbers is

greater than a and less than y. Therefore, a<x.

In any separation of numbers into two classes deter-

mining a number, rational or irrational, we may include
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all irrational numbers in the two classes. An irrational

number less than a rational number of the first class

belongs in the first class, and an irrational number
greater than a rational nimaber of the second class

belongs in the second class. The number which occu-

pies the point of separation may be put into either

class. If it is in the first class, it will be the largest

number in this class and there will be no smallest

number in the second class, rational or irrational. If

it is in the second class, it will be the smallest num-
ber in the second class and there will be no largest

number in the first class.

7. In Geometry any line commensurable with a

given line a has a ratio to a which is a rational number,

and any positive rational number is the ratio of some

line to a. If the rational number is —, where m and n
n

are positive integers, we have but to divide a into n

equal parts and lay off one of these parts m times on

another line to get a line whose ratio to a is —

.

If we take a for unit of length, the ratio of the other

line to a is called the length of the other line.

If a line h is not commensurable with a, we may
divide all lines which are commensurable with o into

two classes, putting those which are shorter than h in

the first class and those which are longer in the second.

All rational numbers are thus separated into two

classes and an irrational number is determined which

we call the ratio of h to a.

"We may think of all lines as laid off on some in-
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definite line L from some fixed point on L. a being

the unit line, the distance of the end-point of any line

from will be the ratio of this line to a. We may let

points to the right of have a positive distance and

points to the left of a negative distance. The dis-

tance of itself will be zero. Every point, then, on

the line L will have a distance from which is a rational

or an irrational number.

A'oiy we assume in Geometry:

In any separation of the points of a line into two

classes, those of the first class being to the left of those

of the second class, there is a definite point of separa-

tion, a point whose distance from a given point on

the line, with respect to a given wnit of length, is either

a rational or an irrational number.

That is, we assume that the points of the line form a

continuous system.

Making this assumption, we have the following

theorem

:

Theorem.—We can establish a correspondence (Art. 2)

between the points of a line and the set of all rational and

irrational numbers, associating each point with one and

only one number, and with each number one and only one

point.

Proof.—Taking a point on the line and a unit of

length, we have proved that every point on the Une has

a distance from which is a rational or an irrational

number, and that every rational number is the distance

from of some point on the line.

Any irrational number separating all numbers into

two classes determines a separation of the points of
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the line into two classes, and so determines a point

whose distance from is this irrational number. There-

fore, every irrational number, also, is the distance from

of some point on the line.

If, then, we associate each point of the line with the

number which expresses its distance from 0, we have

a correspondence between the points and the system

of all rational and irrational numbers.

Every line has a ratio, rational or irrational, to a

given line a, and every rational or irrational number

is the ratio of some hne to a.

We make the same assumption of angles, of arcs on

the same or equal circles, and of many other magni-

tudes of Geometry.

8. There are several theorems in which geometrical

magnitudes are associated in such a way that any two

magnitudes of one set are in the same ratio as the

corresponding magnitudes of the other set.

Such a theorem is first proved when the two magni-

tudes of each set are commensurable. Then, when

the two magnitudes of each set are incommensurable,

their incommensurable ratios divide all rational num-

bers into the same two classes, and are, therefore, the

same irrational number.

For example, aasume it to have been proved that

when a line parallel to one side of a triangle cuts off

on the other two sides parts which are commensurable

with the whole sides, these parts have the same ratio to

the whole sides. When the line cuts off parts which

are not commensurable with the whole sides, these

parts also have the same ratio to the whole sides.
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Let A'B' be parallel to the ade AB of the triangle

ABC and cut off on CA and CB parts CA' and CB'

not commensurable with CA and CB, to prove that the

incommensurable ratios of CA' to CA and of CB' to

CB are the same irrational number.

Any positive rational number which is less than the

ratio of CA' to CA is the ratio to CA of a commensurable

line shorter than CA', and a parallel to AB cutting

off this line, since it cannot cross the parallel A'B',

must cut off on CB a line shorter than CB'. But the

line so cut off has for ratio to CB the same rational

number. Therefore, any positive rational number less

than the ratio of CA' to CA, and so any rational number

less than the ratio of CA' to CA, is less than the ratio

of CB' to CB. In the same way we prove that any

r&tional number less than the ratio of CB' to CB is less

than the ratio of CA' to CA.

That is, these two ratios divide all rational numbers

into tlie same two classes, and are, therefore, the same

irrational number.
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9. Theorem.—Given a separation of all rational num-
bers into two classes, those of the first class less than

those of the second, and any positive rational number s,

there are two numbers, one in each class, whose difference

is less than e.

Proof.—Let k and k' be two numbers in the first and
second class, respectively. There is a positive integer

k' —k
n greater than (Art. 3). If we divide k'-k into

n equal parts, each of these parts will be less than e.

Let p be one of these parts and add it to fc n times in

succession. We get the numbers

k k+p k+2p . . . k'.

Some of these numbers will be in the first class and the

rest in the second class. Let a be the last one in the first

class and let a' be the number which comes next after

a in this set of numbers, and which is, therefore, in

the second class. Then

a' —a=p< e.

There are, indeed, an infinite number of numbers in

each class, any one of those in one class differing from

any one of those in the other class by less than e.

10. Theorem.—Given a set of rational numbers sepa-

rated into two classes, those of the first class less than

those of the second, if for every positive rational number

e there are two numbers, one in each class, whose differ-

ence is less than e, ire can by means of this separation

determine a separation of all rational numbers, and a
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number, rational or irrational, which occupies the point

of this separation.

Proof.—To determine a separation of all rational

numbers that will include the given separation we must

put any rational number into the first class if it is less

than a number already in the first class, and into the

second class if it is greater than a number already in

the second class. There can be only one rational num-

ber whose position is not in this way determined. For

the difference between any two different rational num-

bers is a positive number, a value of e, and there are

two numbers in the given set, one in each class, whose

difference is less than this value of e.

If there is one rational number which is not less than

any nmnber already in the first class nor greater than

any mraiber already in the second class, we may put

it into either class. Every rational number is, then,

assigned to one or the other class, and a number, rational

or irrational, is determined by this separation.

Any separation of numbers into two classes, those of

the first class less than those of the second, is called

a cvi. We shall, however, use the phrase separation

into two classes.

III. Operations upon Irrational Numbers

11. Addition.—If, a, b, c, and d are rational num-

bers, and if a< b and c< d, then a + c<b+d.
Now let a and /? be two numbers, one or both irra-

tional. Let a be any number in the first and a' any
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number in the second of two classes of rational numbers

determining the number a. Let b and b' in the same

way denote numbers of two classes determining ^.

Theorem.

—

We can determine a separation of all num-

bers into two classes by putting numbers of the form a+b
into the first class and numbers of the form a' +b' into

the second class.

Proof. a + b<a'+b'.

Now, e being any given positive rational number, there

are numbers a and a' whose difference is less than -

,

and numbers b and b' whose difference is less than-.

Thus there are numbers a-Vb and a' +6' whose differ-

ence is less than s, and a separation of numbers is

determined.

The number determined by this separation is called

the sum of a and ^ and is written a +j3.

Cor. I.—c being a rational number and a irrational,

we can determine the sum a+c by the separation of

numbers of the form a-^c and ol -^-c.

Proof.—The separation of the numbers a+c and a' -Vc

is sufficient to determine a number, since for any given

positive rational number e we can determine numbers

a and a' so that

{a:^c)-{a^c)<s.
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Now, given any number a, if k is the difference be-

tween a and some rational nimiber lying between a

and a, then

a + c = (a+ k) + (c—k),

and by definition {a+k)+(c-k) is a number in the

first of two classes determining the sum a+c. Similarly

we prove that a' + c is a number in the second of two

classes determining a + c.

The number determined by the separation of the

rational numbers a+c and a' +c must, therefore, be the

same as the sum a+c.

Cor. 2.—^The commutative and associative laws hold

in the addition of irrational numbers, since they hold

in the addition of the rational numbers used in defining

the sum of irrational nimibers.

That is,

(a+/?) + r=a + (/?+ r).

12. Theorem.

—

a, /?, and y being any three numbers,

rational or irrational, if a<p, then a + j<p + j.

Proof.—Take a' and b so that a'< b, and let c and c'

be rational numbers of two classes determining y, c

and c' taken so that c' —c<b—a'. Then we have in

succession the inequahties

a + r<a'+c'<b + c<j3+ r;

whence a + r<^+ y. (Art. 6)
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Cor.—If also r<^, then a + yK^ + d.

13. Subtraction.—We can define a—j3 as the number

which added to /3 will give a for sum. For all num-

bers may be separated into two classes, those which

added to /? give a sum less than a being in the first class

and those which give a sum not less than a in the second

class.

Theorem.—We can separate all numbers into two

classes by putting numbers of the form a — b' into the first

class and numbers of the form a' — b into the second class,

and this separation will determine the number a—jS.

Proof.— a-b'<a'-b,

and as in the proof of the theorem of Art. 11 we can

determine the numbers a, a', b, and b' so that the

difference of the numbers a — b' and a' — b shall be

less than e, this difference being the same as the differ-

ence of the numbers a + b and a'+b'.

Now, given any a and b', a-V + b' is a number in

the second of two classes determining the sum of the

rational number a-b' and /? (Art. 11, Cor. 1). But,

being equal to a, this number is in the first of two

classes determining a, and the sum of the rational

number a-b'. and /? is a number less than a.

Similarly we prove that all numbers of the form

a' —b added to /? give a sum which is greater than a.

The numbers a-b' and a' -h, therefore, determine

by their separation the number which added to /?

gives the sum a; they determine the number a-/?.
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14. If a and b are any two rational numbers, and if

a<b, then —b< —a.

If we have all rational numbers separated into two

classes and we change the signs of all these numbers,

we shall get a new separation of all rational numbers,

those in either class in the first separation becoming

those in the other class in the second separation. Unless

these separations determine the number zero they will

determine two different numbers, one greater than zero,

or positive, and the other less than zero, or negative.

These two nimibers are said to be numerically equal

with opposite signs. Each is the negative of the other,

and that one which is positive is the numerical value of

both.

The numerical value of a number is also called its

modulus, and is often denoted by placing the number

between vertical lines. Thus, we write \a\ for the

numerical value of a.

a and /? being any two numbers,

a-^=a + (-/?);

for both members of this equation are determined by

a separation of rational numbers of the form

a — b' and a' —b,

which can also be written

a+ {-b') and a' + i-b).

In a similar way we prove that the numbers a—/?
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and /?—a are numerically equal with opposite signs,

so that we may write

/9-«=-(«-/8),

|/9-ai = |a-/?|.

ja— jS] is called the difference of the two numbers

a and ^.

The difference of two numbers may always be obtained

by changing the sign of one of them and adding, and

since the numerical value of the sum of two numbers

is equal to the svun or difference of their nimierical

values, we can say that the nimierical value of the

sum or difference of two numbers is equal to or less

than the sum and equal to or greater than the differ-

ence of their numerical values.

That is, we may write

\a±p\l\a\ + \^\,

and >l«|-l/?l.

and either letter in the last expression may be written

in the first term.

In particular, if |x-cl<a and \y-c\<p, then

\x— y\<a-\-p.

iS. Multiplication.—If o, h, c, and d are positive

rational numbers, a<h and c<d, then ac<bd.

Now let a and P be two positive numbers, one or

both irrational. Let a be any positive number in the

first and a' any number in the second of two classes
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of rational numbers determining a, and let h and h'

represent in the same way two classes determining /?.

Theorem.

—

We can determine a separation of all num-

bers into two classes by putting numbers of the form ab

into the first class and numbers of the form a'V into the

second class.

Proof. ab<a'b'.

Now let e be any positive rational number, p being

any other positive rational number, there are numbers

a and o' whose difference is less than p, and numbers

h and b' whose difference is less than p. That is, there

are numbers for which

a' <a+p and 6'<&+p;

therefore, a'b' <ab+p{a+b-\-p).

If p is taken less than some particular positive

rational number pi and we let oi and b\ be two

particular rational numbers greater than a and p,

respectively, so that

a + 6 + p<oi+6i+pi,

and if we also take p less than

ai+bi+pi

we shall have a'b' <ab-\-e,

or a'b'-ab<u
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The number determined by this separation is called

the product of a and ^ and is written a/3.

If one of the two numbers is zero, we shall say that

the product is zero. If one of the numbers is negative,

or if both are negative, the numerical value of the

product will be the product of their numerical values,

and the product itself will be positive or negative

according as they have like or unlike signs.

Cor. I.—c being a rational number and a irrational,

we can determine the product ac by the separation of

numbers of the form ac and a'c.

Proof.—^The separation of the numbers ac and a'c

is sufficient to determine a number, since we can

make

a'c—ac<£

by taking a and a' so that

a' —a<—

.

c

Now, given any a, if A; is the ratio to a of some rational

number lying between a and a, so that the number

between a and a may' be written ak, then

ac=ak-j,

and by definition this is a number in the first of two

classes detei'mining the product ac.

Similarly we prove that a'c is a number in (he second

of two classes determining ac.
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Therefore, the number determined by the separation

of the numbers ac and a'c must be the same as the

number ac.

Cor. 2.—The commutative, distributive, and associa-

tive laws hold in the multiplication of irrational num-

bers, since they hold in the multiplication of the rational

numbers used in defining the product of irrational

numbers.

That is, a^=pa,

(a/?)r=«(,5r),

16. Theorem.—a, /?, and y being any three positive

numbers, rational or irrational, if a<p, then ayK^y.

Proof,—Take a' and b so that a' <b; let ci be some
particular rational number less than y and take c and
c' rational numbers of two classes determining y, c and

c' taken so that

c>Ci and at the same time c'—c<——-.— .

a

We shall then have

,
c(b-a')

or a'c' < be.

That is, ay<a'c'<bc<^y.

Cor.—If also y<3. then ay < 1^3.
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17. Division.

—

a and /? being any two numbers, one

or both irrational and a not zero, we can define the

quotient - as the number which multiplied by a will

give /? for product.

For, if a and p are positive, we can separate all num-

bers into two classes by putting into the first class

those numbers which multiplied by a give a product

less than /?, and into the second class those which mul-

tiplied by a give a product not less than /?. Thi?

separation determines a nxmiber which multiplied by

a gives /? for product.

If ^ is zero, the quotient will be zero.

If one number is negative, or if both numbers arc

negative, the numerical value of the quotient wiU b(

the quotient of their numerical values, and the quo-

tient itself will be positive or negative according a?

they have like or unlike signs.

a and /? being positive, let k be some positive rational

number less than a, and for the moment restrict a to

rational numbers which are greater than k in the first

of the two classes determining a. a', b, and b' being

defined as before, we have the following theorem:

Theorem.

—

We can separate all numbers into two classes

by putting numbers of the form -,- into the first class and

numbers of the farm — into the second class, and this sep-

aration will determine the number -.
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b h'

V b a'b'-ab

Now as in the proof of the theorem for multiplication

we have

a'b'-ab<p{ai+bi+pi),

and if we take p also less than

ai+bi+pi'

b' b
we shall have -7 < «•

a a

But, given any a' and b, —a' is a number in the

second of two classes determining the product of the

rational number -7 and a (Art. 15, Cor. 1); and, being

equal to b, this number is in the first of two classes

determining /?. Thus the product of the rational num-

ber -7 and a is a number less than 3.
a

Similarly we prove that all numbers of the form —

multiplied by a give a product which is greater than /?.

The numbers — and — , therefore, determine by their
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separation the number which multiplied by a gives the

g
product |8: they determine the number -.

IV. Exponents and Logarithms

18. We obtained an example of an irrational number

by separating all rational numbers into two classes,

those of the first class comprising all negative rational

numbers and all positive rational numbers whose

squares are less than 2, those of the second class com-

prising all positive rational numbers whose squares are

greater than 2. We can now say that the irrational

number so determined is a number whose square is

equal to 2, and that it may be called the square root

of 2.

In general we have the following theorem

:

Theorem.—a being any positive rational or irrational

number and n any positive integer, there exists a positive

number /? whose nth power equals a.

Proof.—We can separate all positive numbers into

two classes according as their nth powers are less than

a or not less than a. Let a be any positive number

whose nth power is less than a, and b any positive

number whose nth power is not less than a. Then a

must be less than b; for, otherwise, the nth power of

a would not be less than the nth power of b (Art. 16).

Putting negative numbers into the first class we have,

therefore, a separation in which all numbers of the
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first class are less than those of the second class, and

a number /? is determined by this separation.

Now a can be determined by the separation into two

classes of numbers of the form a" and &". Therefore,

the nth power of p is equal to a.

fi is called the nth root of a and is written y'a.

19. Theorem.

—

If a number a is greater than 1, and e

is any positive number, there is an integer n such that

a">£.

Proof.—Let a = l + d.

Then we can prove by induction

a"f l+n5.

For, assuming that this is true for n, we have

a"+'f{l+nd){l+d)

>l + in+ l)d,

so that what we have assumed, if true for n, is true

for n+ 1, and, being true for n = l, is true for all values

of n.

Therefore, for all values of n

a''>nd.

Now by Art. 3 there is an integer n for which n8> s

(if 5 or £ is irrational, n may be any integer greater
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than some rational number in the second of two classes

ndetermining y\. For any such integer

Cor.—If a number a is greater than 1 and e is any

positive number, there is an integer n such that

Proof.—Let /? be a number lying between 1 and

1 + e. There is, then, an integer n such that

and for this number n

V'a</?<l + e;

that is, v^a - 1< e.

\/a is greater than 1 and differs from 1 by less than e.

If a particular integer n satisfies the theorem or the

corollary, the same will be true of any integer beyond.

20. Theorem.— I, r, and s being positive integers and a

a positive number,

{%)''= (i/ay.

Proof.—Let a denote the kth root of a, so that a'' = a.

Then a = '\ a and a =(ya) .
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But a}" and a''' may be regarded, respectively, as the

product of s factors and the product of r factors each

equal to a'. Therefore, in the first place,

I »/
a =ya,

and then, a'"" = (-/a)'".

That is, i%y'= {i/ay.

Using fractional exponents we write the last theorem

That is, if p denotes any positive rational number, we

have a definite meaning for the expression aP.

We shall understand that a negative exponent is

defined by writing

a"

and that a° = l.

21. Theorem.—o being a positive number, rational or

irrational, and p and q any rational numbers,

Proof.—First, when p and q are both positive, let

s be their common denominator, so that we can write

r
, /p=- and q= -.
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Then, if a' = a,

aP=a'; a^=a'", and aP+9=a'"+'"'.

But a''a'''=a'"+'"',

our theorem for positive integer exponents being a
particular case of the associative law. Therefore,

aPo«=aP+«.

Suppose one of these exponents negative and numer-
ically smaller than the other, say q=—q', where q'

is positive and less than p. Then

aPa,''=~r=aP~^;
a''

'

for a^'aP~i'=aP.

If both exponents are negative, or if one exponent

is negative and numerically greater than the other, let

p== —p' and 5= —q".

Ill
aPfflS =—;—, = , , . == aP"*"'.

ap'a''' aP'+«'

The formula reduces to an identity when either

exponent is zero.

22. Theorem.

—

a being a positive number, rational or

irrational, and p and q any rational numbers, p<q,

aP<a'' when a>l,

and aP>a'i " a<l.
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Proof.—First, when o is greater than 1.

Using the same notation we have, when p and q are

positive,

aP=a^ and a' =«'"', r</.

But when o>l, a>\ and a'' KaJ" , the latter power

being obtained from the former by additional factors

a greater than 1. Therefore,

If p and q are negative, say 'p=—'p' and q=—q',
g' < p', then

a^'<aP' and aP<a^.

If p is negative and q positive,

aP<l and a''>l; hence, aP<a^.

If either exponent is zero, we have

l<a« or a''<l.

Second, when a<l put a=T, so that 6>1. Then

?)P<6« and aP>a^.

Cor.—If p and g have the same sign, |p|<|g|, then

laP-l|<|a9-ll.

23, Theorem.—a being a positive number different

from 1, and p and q any rational numbers each numer-

V
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ically less than some given number M, to every positive

number e corresponds a positive number d such that

\a^—af\<E when \q— p\<d.

Proof.—^Take p<q, say q-p=r. Then

oa-aP=aP(a''-l),

andifa>l, \a''-ap\<a^'ia'-l).

Now there is a positive integer n such that

fl^-l<i (Art. 19, Cor.)

and if we take 5=— , we shall have, for values of r less
lb

than d,

\ai-ap\<e. (Art. 22, Cor.)

If a< 1, put a=-T so that 6> 1, and

\a9-aP\==\b-^-b-p\<e

when \-q+ P\<^>

d bemg equal to the fraction — determined so that

1 £
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34. Theorem.

—

a being a positive number different

from 1, the separation of all rational numbers p into two

classes determining an irrational number X produces a

separation of all the numbers af, and so of all numbers,

into two classes, determining a number, rational or irra-

tional, which we may call a^.

Proof.—Let pi be any number in the first and p2

any number in the second of two classes of rational

numbers determining A. Then

aP'Ka"' when a>l,

and a^>a^' " a<l.

Thus in either case the numbers a" are separated into

two classes, those of one class less than those of the

other class.

Moreover, there are numbers a''' and a*^ whose dif-

ference is less than any given positive number e, since

there are numbers pi and pz whose difference is less

than the number 8 of the last theorem.

Therefore, the separation of the numbers a^ into two

classes determines a separation of all numbers into two

classes, and a number, rational or irrational, which

occupies the point of this separation.

The preceding theorems, stated only for rational

exponents, can be proved true also of irrational expo-

nents.

For example, let pi and p2 be any two numbers of

two classes of rational numbers determining X, and gi
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and 52 rational numbers of two classes determining //,

X and /i being one or both irrational.

The separation of the numbers a^'a^^ and a^a^' into

two classes determines the same number, the product

a^a", as the separation of the same numbers written
aPi+«i and aP'+'"' into the same two classes, which de-

termines the number a^^". Therefore

35. Theorem.—a and b being any two positive num-
bers, a different from 1, there is a number A such that

a^ = b.

Proof.—We can separate all rational numbers into

two classes, putting a number p into one class if a^ < b,

and into the other class if aP>6. By the theorem of

Art. 22 the numbers p of one class will be less than

those of the other class. This separation determines a

number X, and b is the number denoted by a\

X is called the logarithm of b to the base a.



CHAPTER II

SEQUENCES

I. Representation of Numbers by Sequences

26. A sequence is an infinite set of numbers arranged

so that each one has a definite numbered position;

that is, one comes first, each is followed by one that

comes next after it, each except the first is preceded

by a finite number of others, and each is followed by

an infinite number of others.

A sequence is a set of numbers placed in correspond-

ence with the set of positive integers (Art. 2).

The numbers of a sequence are called its elements.

A sequence may be expressed by a formula which

gives the nth element for every value of n, or by a

statement which indicates in some way how each ele-

ment is determined.

A sequence is often indicated by a certain number of

the elements at the beginning followed by dots, but we
ought always to give a formula or to state the law by

which the elements are determined. The formula or

law need apply, however, only to those numbers not

given. Indeed, we may put for any finite number of

the elements any numbers we please, and give a for-

mula which applies only to the numbers not written.

34
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We will give the following examples of sequences:

(1) The sequence
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which from any element a we get the next by adding

to a the largest integer not greater than y/a. The first

ten elements of this sequence will be

1 2 3 4 6 8 10 13 16 20.

(7) We may suppose a sequence to consist of one

number or certain numbers repeated. For example,

2 2 2 ... 2 ... .

27. It is possible to arrange a set of numbers in

a way that will form a sequence, and in another way
that will not form a sequence. We may, for example,

select an infinite set from the elements of a sequence

and let the remaining elements come after them. Thus,

taking the set of positive integers, we might suppose

all odd numbers to come first, in order, and then all

even numbers. In this arrangement there is a num-
ber, 1, which comes first, and each number is followed

by one which comes next after it; but any even num-
ber is preceded by an infinite number of other num-
bers. The numbers in this arrangement do not form

a sequence.

We have already seen that the set of all positive

rational numbers may be arranged so as to form a

sequence although these numbers do not form a se-

quence when arranged in order of magnitude (Art. 4).

Indeed, the set of positive integers, and consequently

the numbers of any sequence, may be arranged so that

between any two there are others,—so that no num-
ber of the set is followed by one which comes
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next after it. To do this we have but to establish

a correspondence between the set of positive integers

and the set of all positive rational numbers, as is done

on page 5, and then to arrange the set of positive

integers in the order of magnitude of the correspond-

ing rational numbers. In such an arrangement of

integers each integer is preceded by an infinite num-

ber of others, as well as followed by an infinite num-

ber of others.

38. An irrational number is determined by the place

which it occupies among rational numbers, but it is

often most conveniently represented by a sequence.

The sequence

01 Oz . . . On • • .

represents a nmnber a if for every positive number s

there is a place in the sequence beyond which all the

elements differ from a by less than e.

Thus the sequence

12 n

2 3 •
• ^m • *

•

n
represents the number 1.

For, the difference between the number 1 and
^y^,

the nth element of this sequence, is —^, and this

is less than s if n>--l. Now there is a positive
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integer n which is greater than — 1, and all integers

beyond are greater still. Therefore, there is a place

in the given sequence beyond which all the elements

differ from 1 by less than e.

A sequence cannot represent two different numbers,

for no element could differ from both by less than

a half of their difference.

If a sequence represents a number a, we may speak

of a as the value of the sequence, or say that the sequence

is equal to a.

We sometimes say that a sequence is convergent

if it represents a number.

39. Theorem.

—

A sequence represents the number zero

if for every positive number s there is a place in the

sequence beyond which all its elements are numerically

less than e.

Proof.—The difference between a number and zero

is the numerical value of the number.

Thus the sequence

1 I 1
2 n

represents the number zero. For, -<s if n > -, andn e

given any value of e, there is a point beyond which
this is true for all values of n.

30. We often use the expression " any given num-
ber", "any assigned number", "an arbitrary num-
ber", or "any number", meaning every number.
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That is, the theorem in which such an expression is

used is true for every number.

The expression " any number " may be used with
certain restrictions. In fact, we generally restrict it

to positive numbers, and we sometimes restrict it to

positive rational numbers.

We have made use of expressions of this kind in

Arts. 9 and 10 and in Arts. 19 and 23.

We shall generally use the letter e to represent
" any positive number ".

31. When a sequence represents a number a, the

place beyond which all the elements differ from a by
less than e will depend, in general, on the value of e.

We may say, however,

(1) If a particular place satisfies the condition for

a particular value of e, any place beyond will satisfy

the condition for the same value of e.

(2) If a particular place satisfies the condition for

a particular value of e, it will satisfy the condition

for any larger value of e.

Given two values of e, the first place which satisfies

the condition for the smaller value of e will generally,

though not always, be farther along than the first place

which satisfies the condition for the larger value of e.

There is no place which satisfies the condition

for all values of e unless there is a place beyond

which the elements of the sequence are all equal

to a.

A place in the sequence beyond which all the ele-

ments differ from a by less than e may be called a

place corresponding to e with respect to a. If a sequence
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represents a number a, then to every e corresponds

some place in the sequence with respect to a.

If a sequence does not represent o, there must be

at least one value of s for which the above condition

is not satisfied. By Aartue of (2) the same is true of

every smaller value of e. Let ei be a value of e to

which no place corresponds with respect to a. Then

there are in the sequence an infinite number of ele-

ments which differ from a by as much as £i. For,

beyond some particular place there is at least one,

say ai] beyond ai there is at least one, a2] beyond az

another, and so on without end.

33. Theorem.—// a is a number numerically less than

1, the sequence

a a^ . . . a" . . .

represents ike number zero.

Proof.—Since
| « 1 < 1 ,

j

number e there is an integer n such that

Proof.—Since |n'l<l, j—r>l, and for any positive

(^)">^. (Art. 19)

or \a\''<£.

This, being true for a particular integer n, is true for

all greater integers.

Again, since |a|" is the same as ja"] (Art. 15, just

before Cor. 1), there is a positive integer corresponding
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to e such that for all integers greater than this integer

la"|<s.

That is, for any positive number s there is a place

in the sequence of powers of a beyond which these

powers are numerically less than £.

33. Theorem.

—

Any number may be represented by a

sequence of rational numbers.

Proof.—Let

«! a2 . . . a„ . . .

be a sequence of rational numbers representing zero,

none of the numbers being themselves zero. To form

a sequence representing a number a we may take for

oi the greatest multiple of ai which is not greater than

a, for 02 the greatest multiple of a2 which is not greater

than a, and so on. Then the sequence

oi a2 . . . an .

will represent the number a. For, a„ differs from a by

less than a„, and for any e there is a place in the se-

quence of a's beyond which they are all numerically

less than e.

Suppose we wish to form a sequence representing the

square root of 2 and we take for the a's the sequence

1 '- '- .'-
2 3 n
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The largest multiple of - less than \/2 will have

for numerator the largest integer whose square is less

than 2n2. The largest squares less than the numbers

2 8 18 32 50 . . .

are 1 4 16 25 49 . . .

Therefore, the square root of 2 is repiesented by the

sequence

2 4 5 7

2 3 4 5 • •

The diagram opposite will serve to show how these

numbers represent the square root of 2.

To represent a rational number we may take a

sequence all of whose elements are equal to this

number.

On the other hand, we may have sequences whose

elements are irrational numbers.

34. Theorem.—// a sequence represents a number a, the

numerical values of its elements form a sequence repre-

senting the numerical value of a.

Proof.—If ]a„ - fl
]
< £,

then
]
|a„l — |a|| < £,

the latter difference being equal to or less than the

former (Art. 14). Therefore, if any place in the origi-



REPRESENTATION OF NUMBERS BY SEQUENCES 43

io
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Cor. 2.—If M<a, there is a place beyond which all

the elements are greater than M.

Cor. 3.—If a is not zero, there is a place beyond

which all the elements have the same sign as a.

For, if o is not zero, we can take zero for M, and any

number between zero and a has the same sign as a.

36 Theorem.—Given two convergent sequences, if there

is a place beyond which the elements of the first are greater

than the corresponding elements of the second, the num-

ber represented by the first is equal to or greater than the

number represented by the second.

Proof.—Let the two sequences be

ai a2 . . . a„ . . . representing a,

and bi b2 . . • bn • • b,

and suppose for all values of n

If a<b, take ff = i(6-a). For all values of n beyond

a certain place we have

an<a + B and bn>b — £;

and, therefore, an—bn<a— b+2e=0;

that is, an < bn,

which is contrary to hypothesis. Therefore,

a^b.
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Cor.—If in a convergent sequence there is a place

beyond which all the elements are greater than a

certain fixed number b, then the number -which the

sequence represents is equal to or greater than b; or

if there is a place beyond which all the elements are

less than b, the number which the sequence represents

is equal to or less than b.

37. Theorem.—// each element of a sequence is greater

than the preceding and less than some number M, the

sequence represents a number, either M or some smaller

number.

Proof.—^We can separate all numbers into two

classes, putting any number into the first class if there

is a place in the sequence beyond which the elements

are greater than this number, into the second class

if there is no place beyond which the elements are

greater than this number. The elements themselves

are numbers in the first class, each being less than

any that come after it. M is a number in the second

class. This separation of all nimibers determines a

number a, rational or irrational.

Now, e being any positive number, o— £ is a num-

ber in the first class, and there is a place in the sequence

beyond which the elements are all greater than a-e.

But no element is greater than a. Therefore, there

is a place beyond which the elements differ from a

by less than e, and hence the sequence represents a.

a belongs to the second class and is the smallest

number in the second class. Therefore, a is equal to

or less than M.
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In the same way we may prove

Theorem.—// each element of a sequence is less thai,

the preceding and greater than some number M, tht

sequence represents a number, either M or some larger

number.

II. Regular Sequences

38. The sequence

Oi 02 . . a„ . . .

is regular if for every e there is a place in the sequence

beyond which all the elements differ from one another

by less than s.

39. Theorem.—// a sequence represents a number a, it

is regular.

Proof.—If a sequence represents a number a, there

is a place beyond which all the elements differ from a

by less than -, and beyond this place they will differ

from one another by less than e.

40. Theorem.

—

Conversely, a regular sequence repre-

sents a number.

Proof.—Given a regular sequence

Ql 02 ... On ... ,

we can by means of this sequence determine a separa-

tion of numbers as follows:
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Let any number c be in the first class if there is a

place in the sequence beyond which all the elements

are greater than c; otherwise let c be in the second

class.

There are numbers in each class. For, there is a

place in the sequence beyond which all the elements

differ from one another by less than e. a„ being an

element beyond this place, a„ - £ is a number in the

first class and a„ + £ is a number in the second class.

This separation of numbers into two classes deter-

mines a number a, rational or irrational.

Now a — e belongs to the first class, and there is a

place in the sequence beyond which all the elements

are greater than a-e.

Again, a + ^ belongs to the second class, and beyond

any place in the sequence there are elements not greater

than this number. But there is a place beyond which

all the elements differ from each other by less than

^, and if some of them are not greater than a+-x, they

must all be less than a + e.

We have, then, a place in the sequence beyond which

the elements are all greater than a-e, and a place

beyond which they are all less than a + e. Beyond

the farther of these two places they will all differ from

a by less than e.

Therefore, the sequence represents the number a.
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III. Operations upon Sequences

41. Theorem.—// a sequence represents a number a,

any sequence formed hy taking a part of its elements will

represent the same number a.

Proof.—Each element of the new sequence is at

least as far along in the original sequence, and a place

which corresponds to e in the original sequence will

certainly correspond to e in the new sequence.

In this theorem we suppose that the order of any

two elements in the new sequence is the same as in

the original sequence, that the elements taken form a

sequence and are not simply some finite number of

elements, and that no element taken is repeated except

as it may have been repeated in the original sequence.

The theorem may also be stated as follows:

Theorem.—// a sequence represents a number a, any

sequence which we get by leaving out a part of its elements

will represent the same number a.

Cor. I. The value of a regular sequence is not changed

by interpolating elements if the new sequence is regular.

Cor. 2. If two regular sequences have an infinite

number of elements in common, they represent the

same number.

42. Theorem.—// a sequence represents a number a,

we may change the order of its elements in any manner,

and it will still represent (lie number a if the elements in
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the new arrangement actually form a sequence, each ele-

ment having a definite numbered position with only a
finite number of elements coming before it (see Art. 27).

Proof.—Let us suppose that all the elements of the
original sequence beyond the first n differ from a by
less than £. These first n elements will occupy certain

definite positions in the second sequence, and beyond
the farthest of them the elements of the new sequence
will all differ from a by less than s. Therefore, the

new sequence represents the same number a.

The number represented by a sequence does not

depend on the particular order of the elements. In

fact, we may represent a number a by an infinite set

of numbers not thought of as arranged in any order

whatever, the set being defined so that it is deter-

mined of every number that it is a number of the

set or that it is not a number of the set.

To do this we should have the following definition:

An infinite set of numbers represents a if for every e

it is true that all but a certain number of them differ

from a by less than e.

Thus we may dispense with the element of order,

but any set of numbers which represents a number a

may be arranged as a sequence,* and for us it will

be simpler and in many theorems necessary to con-

sider the set as so arranged.

* For example, when an infinite number of them are less than a

and an infinite number of them are greater than a, we might take

the numbers of the two sets alternately, those less than a in order

of magnitude and those greater than a in descending order of mag-

nitude.
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43. Theorem.—// the differences of corresponding ele-

ments of two sequences form a sequence equal to zero, and

one of the sequences represents a number a, the other

sequence represents the number a, and the two sequences

are equal.

Proof.—Let the sequences be

ai 02 . . . ttn . . . representing o,

and bi 62 ...&«.•• .

If there is a place beyond which the b's differ from the

corresponding o's by less than r-, and a place beyond

which the a's differ from o by less than ^, then beyond

the farther of these two places the b's will differ from

a by less than £. This being true for every e, the b's

must form a sequence representing a.

44. Theorem.—// two sequences represent two num-
bers a and b, the sums of their corresponding elements

form a sequence representing the sum a+b.

Proof.—There is a place in the first sequence beyond

which its elements differ from a by less than — and a

place in the second sequence beyond which its elements

differ from b by less than ^. Beyond the farther of

these two places the sum of corresponding elements
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from the two sequences will differ from a + b by less

than £.

45. Theorem.—// the two sequences

fll 02 . . . fi„ . . .

and bi b2 . . . bn . .

represent the numbers a and b, respectively, the sequence

a-i—bi 02-62 . . . ttn—bn . . .

mil represent the number a — b.

Proof.—(a„-6„)- (a- 6)= (o„- a) -(&„-&).

Therefore,

|(a„-6„)-(a-6)| <la„-a| + |6n-6|- (Art. 14)

Now there is a place in the first sequence beyond

which its elements differ from a by less than -, and a

place in the second sequence beyond which its elements

differ from b by less than ^. That is, beyond the

farther of these two places

|an-a|<2> |On-o. <2'

and, therefore,
|
(a„- 6„) - (a - 6)

' < i.
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46. Theorem.—// two sequences represent two numbers

a and b, the products of their corresponding elements mil

form a sequence representing the product ab.

Proof.—Let the sequences be

fli 02 . a-n representing a,

and bi b.2 . . . bn . . .

"
b.

We are to prove that the sequence

aibi 02^2 • • • ci„bn • . .

represents the product ab.

anbn —ab = a„6„ — a„b + a-nb — ab.

Therefore,

la„6„-o6|<|a„||6„-6| + |6||a„-a|.

Now if M is some number larger than \a\, there is a

place in the first sequence beyond which its elements

are numerically less than M.
Again, for any positive ntmiber e.' there is a place in

the first sequence beyond which its elements differ

from a by less than e' and a place in the second sequence

beyond which its elements differ from b by less than e'

Beyond the farthest of all these places we have

\an\<M, |a„-a|<e', and \bn-b\<s'.
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Hence there is a place beyond which

\anbn-ab\<M£' + \b\e',

and if e' is taken so that

Me' + \b\e'<c,

that is, if

''<Jf^l'

we shall have a place in the product sequence beyond

which its elements differ from ab by less than e.

47. Theorem.—If the two sequences

Qi 0,2 . . . Cln • • •

and bi b2 • • bn • •

represent the numbers a and b, respectively, and if the

number a is not zero and none of the elements of the first

sequence is zero, then the sequence

bi bi bn

Ol 02 an

represents the quotient —

.

bn b (abn — ab) — (anb—ab)
Proof. =

On CI aan

Therefore
bn_b_

a,, a

= \a\\bn-b\ +\b\\an-a\
<

a Un
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a is not zero, and if M is a number lying between zero

and \a\, tiiere is a place in the sequence of a's beyond

which all the elements are numerically greater than

M. That is, there is a place beyond which

_L JL

Again, for any positive number e' there is a place in

the first sequence beyond which its elements differ from

a by less than e', and a place in the second sequence

beyond which its elements differ from b by less than e'.

Beyond the farthest of these three places

bn_b_

an a
<-

\a\B' + \b\e'

\a\M

Now if e' is taken so that the last expression shall be
less than e, that is, if

e'<
\a\Me

a\ + \b\'

we shall have a place beyond which

bn_b_

an a
<s.

48. In other words, the operations of addition, sub-
traction, multiplication, and division of numbers repre-

sented by sequences, can be performed by performing
these operations on corresponding elements of the
sequences.
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Any sequence may first be changed in accordance with

the preceding theorems (Arts. 41 and 42), and thus the

result may be presented in a great variety of forms.

In particular, if we wish to divide by a number a which is

not zero, and a is represented by a sequence some of

whose elements are supposed to be zero, there can be

only a finite nimiber of these elements zero, and these

may be omitted or changed into other numbers differ-

ent from zero.

We can sometimes combine the corresponding ele-

ments of two sequences by addition, subtraction,

multiplication, or division and produce a sequence

which is regular, when the two given sequences are not

regular.

Or we may divide the elements of a sequence by the

corresponding elements of a sequence representing zero,

if zero does not itself occur among the elements of

the latter sequence, and when both sequences repre-

sent zero the resulting sequence may be regular and

represent a number. But this number will have no

special relation to the number zero, which the two

sequences represent.

For example, dividing the elements of the sequence

1
'

3 2n-l

by the corresponding elements of the sequence

^ 2 • n • • • '
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both representing zero, we have a sequence

o

1 ^ . .

n

3 • • • 2n-l ' ' ° '

which represents ^.

Note.—The theory of irrational numbers given in

Chapter I is due to Richard Dedekind; or, at least,

most of its developments are due to Dedekind, and the

writings of Dedekind have done the most to bring

about its adoption at the present time. The reader

will find the theory explained in an essay, " Continuity

and Irrational Numbers," translated by W. W. Beman,

and published by the Open Court Publishing Company.

This theory has been adopted by Professor Fine in his

" CoUege Algebra."

There is another theory of irrational numbers in which

the numbers are defined as regular sequences and the

addition, multiplication, etc., of regular sequences serve

as definitions of these operations on irrational numbers.

This theory is due to Georg Cantor; some exposition of

it may be found in Chapter IV of Professor Fine's

"Number System of Algebra," and a detailed treat-

ment in Professor Pierpont's "Theory of Functions

of Real Variables."

The latter theory is more artificial than the theory

of Dedekind. We naturally think of an irrational

number as occupying a certain position among num-
bers, and in describing this position we mention other

numbers between which it lies. Thus we say that the

square root of 2 is greater than 1.414 and less than
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1.415. We know the square root of 2 by being able

to determine the position of any rational number with

reference to it.

IV. The Theory of Limits

49. We naturally think of a variable as varying con-

tinuously, varying through a continuous set of values

in a continuous interval of time; but in cases con-

sidered when we first study Algebra and Geometry there

is no continuous set of values, nor is there any question

of time. The values which the variable takes are dis-

tinct, each followed by one which comes next after it;

in other words, they form a sequence, and when the

variable in this way approaches a number a as limit its

values form a sequence representing a. Thus it simpli-

fies the subject to dismiss the idea of variable and fix

our attention on the sequence.

However, as the language of variable and Umit

permeates nearly all of our mathematics, it may be well

to consider a little in detail the meaning and use of

these terms. What we shall say applies for the most

part both when the variable is supposed to vary con-

tinuously and when it varies through a sequence of

values.

50. A variable approaches a niuivber a as limit if for

every positive number e there is a place among the

values of the variable beyond which they all differ

from o by less than e.
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51. The earliest application of the theory of hmits that

we meet is in connection with the ratio of incommen-

surable lines.

B'

Let AB be a line incommensurable with a given line

a. We divide a into some number of equal parts, say

n equal parts. If AB is shorter than a, we suppose

that n is taken large enough so that one of the n equal

parts of a is shorter than AB.

One of these parts applied to AB will be contained

in AB a certain number of times. Let it be contained

m times, reaching to a point B' and leaving a remainder

B'B less than one of these parts. The line AB' is

commensurable with o, and its ratio to a is the rational

number —

.

n

We repeat this process, each time dividing a into

a larger number of parts. Each time the equal parts

of a are smaller than before; and we can make them

less than any given length by dividing a into a suffi-

ciently large number of parts.

The remainder B'B is always less than one of the

equal parts of a, and, therefore, the remainder is a

variable which approaches zero as limit.

The line AB' approaches AB as limit, and the ratio of

AB' to a, the rational number — , is a variable which
n
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approaches as limit the incommensurable ratio of yl5
to a.

In reality, we are simply forming a sequence of rational

numbers in accordance with the theorem of Art. 33
to represent the irrational number which is the ratio

of AB to a. If the incommensurable lines are the

side and diagonal of a square, we have the very ex-

ample of that article.

53. Certain things may be pointed out as not in-

cluded in the above definition of hmit.

(1) It is not necessary that the variable shall be

always less or always greater than the limit.

Those who are familiar with continued fractions

will recognize in the convergents a sequence of num-
bers alternately less and greater than the number
represented. We may say that the nth convergent

is a variable approaching a limit, its values alter-

nately less and greater than the limit.

We shall have a similar illustration in Art. 71.

(2) It is not necessary that the variable shall be

always approaching the limit, each value nearer than

any which precedes.

In the case of the two incommensurable lines, we

increase the number of parts into which a is divided,

so that each part is made smaller. If the part is not

made enough smaller to be contained one more time

in AB, the Une AB' will be smaller and the remainder

B'B larger than before. In fact, if we let the values

of n be the successive integers, we may find that our

variables move away from their limits more frequently

than they approach them. This is shown in the ex-
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ample of Art. 33. We can avoid this by taking n

each time so large that one of the n equal parts of a

shall be less than the last remainder, but this is not

necessary in order that the line AB' shall approach AB
and that the remainder shall approach zero as limit.

(3) It is not necessary that the variable shall never

equal its limit.

This does not mean that in all cases a variable

approaching a as limit will come finally to equal a,

but that we are not to exclude by the definition certain

cases where a is found among the values which the

variable takes, or even certain cases where all of its

values or all beyond a certain point are equal to a.

We can form a sequence representing a in which

the number a occurs an infinite number of times among
the elements of the sequence, by taking any sequence

that represents a and interpolating elements equal

to a. Such a sequence taken by itself would be in

no way distinguishable from a sequence in which the

number represented does not occur. A variable whose

values are the elements of such a sequence would

serve as a variable having a for limit just as well as if

the number a were not found among its values.

53. We will change a little the illustration of the

incommensurable lines.

Let us suppose that a hne a diminishes continuously

to the hmit zero, varying through all values in order

from some given length, each value which it takes

being less than any preceding but not equal to

zero.

If we apply o to a line AB as many times as it will
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go, we shall usually get a line AB' which is a multiple

of a and a remainder B'B less than a.

While the number of times that a is contained in

AB remains the same, though a grows smaller, the

line AB' will be continuously decreasing and the

line B'B will be continuously increasing. When a

becomes just small enough to be contained one more

time in AB the line AB' will become the same as AB
and there will be no remainder. Then, as a con-

tinues to decrease, AB' will again diminish continu-

ously, and there will be a remainder increasing con-

tinuously until a becomes small enough again to be

contained in AB one more time without a remainder.

The line AB' and the remainder B'B are in this case

variables which take the values AB and zero an infi-

nite number of times, and which at all other times are

constantly moving away from these values. Yet they

are variables approaching these values as limits; for,

given any length, there is a point in the process beyond

which they always differ from these hmits by less

than the given length.

The following diagram represents the way in which

these variables approach their limits.
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54. There are certain things which are essential to

an understanding of the Theory of Limits, and which

should be emphasized.

(1) It must be
i
ossible not only to make the differ-

ence between the variable and its limit less than any

assigned positive number, but also to make it remain

less than the assigned number.

(2) The " assigned positive number " * means every

positive number, and the place beyond which the vari-

able differs from its limit by less than the assigned

number is not necessarily the same for two different

numbers. Indeed, no one value of the variable differs

from its limit by less than any number whatever unless

it is equal to the hmit itself.

(3) We must distinguish between the question

whether a variable approaches some given number as

limit and the question whether the variable approaches

a limit. In one case we have to consider the differ-

ences between the given number and the values of

the variable; in the other case we must first determine

Sometimes the words "however small" are added. It is not

correct, however, to say of any number that it is a small number
or that it is a large number. We can only say of two different

numbers that one is smaller than the other and that one is larger

than the other. We must not think that our system contains,

besides ordinary numbers, another class of numbers that are in-

definitely small, and that the difTerence between a variable and its

limit finally gets out of the region of ordinary numbers and into

the region of these numbers. A variable approaching zero as

limit is sometimes called an infinitesimal, but its values are not

infinitesimal numbers; they are all ordinary numbers, like 2 or .^3
or ^-. We have used £ to denote every positi\-e number, and when
we might say "every positive number however large" (e.g., in

Art. 19) we mean the same thingtand so we use the same symbol.
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a number which we can then prove is the Umit, or

we must prove that there is no such number.

Thus we prove, in particular, the two following

theorems (see Arts. 37 and 40)

:

Theorem.—// a variable is constantly increasing and is

always less than some fixed number M, the variable ap-

proaches a limit, either M or some smaller number.

Theorem.

—

A variable approaches a limit if for every

e there is a place among its values beyond which they all

differ from one another by less than e.

55. In some of our text-books much stress is laid

on what is called The Theorem of Limits: If two

variables are constantly equal and approach Umits

their limits are equal. This only means that the same

variable cannot approach as limit two different num-

bers—that the variable determines the limit. In

fact, the variable could never differ from both of two

different numbers by less than a half of their difference

(see Art. 28).

In proving what is called the "incommensurable

case" of certain propositions of geometry we have two

incommensurable ratios which we wish to prove equal.

"\^"e may do this by constructing for each a sequence

of commensurable ratios as explained in Art. 51, every

ratio in one sequence being the same rational number

as the corresponding ratio in the other; that is, we

construct a single sequence of rational numbers which

represents both incommensurable ratios. Therefore,

as a sequence cannot represent two different numbers,
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the two incommensurable ratios must be the same

irrational number. In the language of limits we say

that a single variable has both of these ratios for limit,

and that these ratios are therefore equal, since a variable

cannot have two different limits. However, if we de-

fine the ratio of two incommensurable magnitudes as

the irrational number which occupies the point of

separation of all rational numbers into two classes, we

can prove the proposition directly, making no use of

sequences or of the theory of limits (see Art. 8).



CHAPTER III

SERIES

I. CONVERGENCY OF SeRIES

56. A SERIES is a sequence written in a form which

presents the differences of successive elements as a suc-

cession of terms.

Suppose we have a sequence

and put

Ol a2 . . . On

u>=U2—a\

Un==an — a„-i

then
Oi=Ml

a2 = Wl+W2

a„=Wi+W2+ . . . +Wn

and we express the sequence by writing

65
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This is called a series. The numbers ui ua • . • Wn • • •

are called its terms.

The sequence

dl 0,2 . . . On • ' •

written in the form of a series becomes

ai + {a2—ai)+ . . . +(a„— a„_i)+ . . 4 »

The series

U1+U2+ . . . +Un+ . . .

written in the form of a sequence becomes

Ui, U1+U2, . . . , U1+U2+ . . . +u„, ....

Since the nth element of the sequence is the sum of

the first n terms of the series, it will often be conve-

nient to write this s„. Thus we shall say that the series

U1+U2+ . . . +Un+ . . .

is the same as the sequence

Si $2 . . . Sn • . > ^

where

Sn =Ui+U2+ . . . +Un.

A series is convergent when the corresponding se-

quence represents a number, and this number is called

the value of the series.
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For example, the sequence

1 2 n

2 3 n + 1

is the same as the series

J_ J_ 1

1.2 "^2.3"^ • • • "^n(n + l)"^

The sequence represents 1 (p. 37) ; therefore the series

is convergent and its value is 1.

A series which is not convergent is divergent.

57. Theorem.—The geometrical series

a + ar+ . . . +ar'^~'^+ . . .

is convergent when r is numerically less than 1, and its

value is z .

1— r

Proof.—The sum of the first n terms is

a—ar'^

That is, the series is the same as the sequence

a - ar^ a-ar"
« -JZ^ l_r

The difference between the nth element of this sequence
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and the number j^ is the numerical value of the

fraction

ar"

There is a place among" the powers of r beyond which

they are all numerically less than s', s' being any given

positive niunber. By taking s' so that

that is, so that

1-r

e'<e

s'<^,

1-r

we have a place in the sequence beyond which its ele-

ments all differ from ,
by less than e.

i —r

58. Theorem.—// a series is convergent, its terms them-

selves farm a sequence equal to zero.

Proof.—In a sequence which represents a number

and so is regular, there is a place for each s beyond

which all the elements differ from each other by less

than s. Now the terms of the series are the differ-

ences of successive elements of the corresponding

sequence. Therefore if the series is convergent, there

is for each £ a place in the series beyond which all the

terms are numerically less than ;.
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The converse is not necessarily true. For an exam-

ple see Art. 61.

59. Theorem.—// a series is convergent, then for every

e there is a place in the series beyond which any sum of

successive terms is less than e.

Proof.—Any sum of successive terms is the difference

between some two elements of the sequence ; and if the

sequence represents a number and so is regular, there

is a place beyond which any two elements differ by

less than £.

Thus if the series is

U1+U2+ . . . +Un+ ...»

and the corresponding sequence

Si S2 . . . 5„ . . . ,

the sum of p successive terms beginning with the

(n + l)th will be

60. Theorem.—Conversely, a series is convergent if for

every b there is a place in the series beyond which every

sum of successive terms is less than e.

Proof.—Every difference of elements of the corre-

sponding sequence is a sum of successive terms of the

series; and if for every e there is a place beyond which
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these differences are all less than e, the sequence is

regular and the series convergent.

61. Theorem.—The series

1+77+ • • • +-+
2 n

is not convergent.

Proof.—The sum of p successive terms beginning with

the (n + l)th is

1 1 1+-^^+ . . . +
n+ 1 71+2 n+p'

The last of these being the smallest, their sum is greater

P
than —;— . Therefore for a value of s less than 1

n+ p
there is no place in the series beyond which every

sum of successive terms is less than s. For example,

whatever the value of n, if we take p greater than n

V 1
we shall have —;— greater than 7:.

n + p
* 2

If we take two or more terms of this series, and

then take as many more, we shall increase what we

had obtained before by more than •^. If we take as

many more as we have now, we shall again increase

what we have by more than -. Since there is no limit

to the number of times this may be done, there is no
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limit to the number which we may obtain by taking

a sufficient number of terms of this series.

This series is called the harmonic series.

63. Theorem.—A series is convergent if the series

formed by taking the numerical values of its terms is

convergent.

Proof.—The sum of any number of successive terms

is numerically equal to or less than the sum of the

numerical values of these terms. Since the series of

numerical values is convergent, there is a place in

it beyond which any sum of successive terms is less

than e. The same must be true of the given series,

and the given series is convergent.

This theorem may also be stated as follows:

Theorem.—// a series of positive terms is convergent,

it will remain so after the signs of any portion of its terms

have been changed.

Another proof will be given on page 89.

A series which remains convergent when we replace its

terms by their numerical values is called an absolutely

convergent series.

A convergent series which becomes divergent when its

terms are replaced by their numerical values is called

a semi-convergent series.

Cor.—An absolutely convergent series is numerically

equal to or less than the series of numerical values

of its terms.

For the sum of its first n terms is numerically equal



72 SERIES

to or less than the sum of their numerical values (see

Art. 36). .

63. Theorem.—It does not affect the convergence of a

series to change any finite number of its terms.

Proof.—If the ?ith term of the series is the last term

changed, all the elements of the sequence beyond the

nth, containing as they do the first n terms, are increased

or diminished by the same quantity, and their differ-

ences, which alone determine whether the sequence is

regular, are not changed.

Thus many of our theorems will be true when the

conditions do not hold throughout the series, but only

beyond a certain place.

64. Theorem.—A series of positive terms is convergent

if the elements of the corresponding sequence are all less

than some fixed number M.

Proof.—In a series of positive terms each element

of the corresponding sequence is greater than the

preceding. If, then, each element is also less than M,
the sequence represents a number equal to M or less

than M (Art. 37).

In other words, if the sum of the first n terms of a

series of positive terms is less than some number M,
the same for all values of n, the series is convergent.

Cor.—If a series of positive terms is not convergent,

then for every e there is a place in the corresponding

sequence beyond which all the elements are greater

than £.
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Such a series may especially be called a divergent

series, but we usually call any series divergent which

is not convergent.

G J. Theorem.

—

The series

1 + 2^+ ••• +;^+ •••

is convergent when p is any number greater than 1.

Proof.—Let s„ denote the sum of the first n terms

of this series ; that is, let the corresponding sequence be

Si S2 . . . S„ . . . .

The sum of m terms beginning with the mth is

1 1

S2m-1-Sm-1=—r+ . . . +;
TOP (2w-l)p

The first of these terms is the largest. Therefore

. , ,
TO 1

their sum is less than —- or
TOP TOP"'

Putting TO = 2, 4, 8, . . . , we have

1 , 1

1 , 1 ( I y
S7<S3+4;rT<l+2^i + (^2^i/ ,

Sis < 1 + 2P-1 + (o^j + (^j ,

etc.
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If ?l<2^ Sn is less than the sum of the first r terms of

the geometrical series

1
l +.^i+ . . . +[i^.) +\2p-7

which is convergent, p being greater than 1. What-

ever the value of n, we can take r so that 2'">n

(Art. 19) ; and, therefore, for all values of n, s„ is less

than the value of this geometrical series, namely,

1
Sn < —J- .

1 " '5^1

This is a fixed number, and the given series, being

a series of positive terms, is convergent.

66. Theorem.—// a series of positive terms is conver-

gent, the sum of any terms selected from it is less than the

value of the series.

Proof.—I^et i<„ be the last of those selected, and $„

the sum of the first n terms. The terms selected

are all included in s„ and their sum is equal to or lefs

than s„. But s„ is less than the number represented

by the series (see proof on page 45). Therefore the

sum of the terms selected is less than the value of the

series.

67. Theorem.—// a series of positive terms is conver-

gent, any series formed by takiiuj a part of its terms is

convergent.
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Proof.—The first n terms of such a series are foiind

somewhere in the original series, and their sum is less

than the value of the original series. Therefore, as

the sum of the first n terms is less than a certain fixed

number, the series is convergent.

By virtue of Art. 62 the theorem may be stated as

follows

:

Theorem.

—

If a series is absolutely convergent, any

series formed by taking a part of its terms is absolutely

convergent.

Cor,—If a series of positive terms is convergent,

or if a series is absolutely convergent, there is a place

beyond which the sum of any terms selected from

it, or the value of any series formed by taking a part

of its terms, is nimierically less than e.

Proof.
—

^The spries formed by omitting the first n

terms of a convergent series is equal to the difference

between the nth element of the corresponding sequence

and the number which the sequence represents, and

there is a place beyond which this difference is less

than e. When a series is absolutely convergent this

is true of the series of numerical values of its terms,

and there is a place beyond which the remainder series,

the sum of any terms selected from it, or any series

formed by taking a part of its terms, will have a value

numerically less than s.

68. Theorem.—// the terms of a series of positive terms

are equal to or less than the corresponding terms of another
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series of positive terms which is convergent, then the given

series is convergent.

Proof.—The sum of the first n terms of the given

series is equal to or less than the simi of the first n

terms of the series which is convergent, and there-

fore less than the value of the latter series. That

is, we have a series of positive terms, and the sum
of the first n terms is less than a certain fixed num-

ber. Hence the series is convergent.

Cor.—If the terms of a series of positive terms are

equal to or greater than the corresponding terms of

another series of positive terms which is divergent,

the given series is divergent.

For if the given series were convergent, the other

series would be convergent by the theorem.

The theorem and corollary are true whenever there

is a place in the series beyond which the conditions are

satisfied (Art. 63).

In most cases we determine the convergence of a

series by comparing it with other series. Two of the

simplest series for purposes of comparison are the

series

- 1 1

which is divergent, and the series

which is convergent.
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By virtue of Art. 62 the theorem may also be stated

as follows

:

Theorem.—// in any series there is a place beyond

which the terms are numerically eqval to or less than the

corresponding terms of another series which is absolutely

convergent, the given series is absolutely convergent.

69. Theorem.—The series

, 1 1

1 + 2-.+
•

• • +^+ •
•

•

is divergent for any value of p equxd to or less than 1.

Proof.—When p = l the series is the harmonic series

already proved divergent, and when p<\, whether

positive or negative, all the terms of the series are

greater than the corresponding terms of the harmonic

series, except the first, which is the same in the two

series.

70. Theorem.—A series of positive terms is convergent

if the ratio of each term to the preceding is less than

some fixed positive number which is itself less than 1.

Proof.—T.et the series be

U1+U2+ . . . +Wn+ . . . ,

with all of its terms positive, and suppose we have

— <r, - <r, . . . , <r, . . .
,

7(1 M2 Ur,-\

where r is a fixed number less than 1.
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Multiplying together the corresponding members of

the first n— 1 of these inequahties (Art. 16, Cor.), we

have

1(2 .. • Uj,

Ml . . . W„_i
<r"-i,

or — <r"~':
Wi

'

whence, since ui is positive.

The terms of our series are, therefore, less than

the corresponding terms of the geometrical series

ui+uir+ . . . +Mir''~i+ . . .
,

except that the first terms are the same in the two

series. The latter series is convergent, since r<l;
therefore the given series is convergent.

By virtue of Arts. 62 and 63 the theorem may be

stated as follows

:

Theorem.—// in any series there is a place beyond

which the ratio of each term to the preceding is numer-

ically less than some fixed number which is itself less

than 1, the series is absolutely convergent.

Cor.—If in the series

U1+U2+ . . . +Un+ . .
~.
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when we add a number u we then subtract a smaller

number. Thus each element of the sequence lies be-

tween the preceding two, and between any two suc-

cessive elements of the sequence lie all that follow.

Now the difference between any two successive ele-

ments of the sequence is a term of the series, and from

the last part of our hypothesis it follows that there

are terms of the series numerically less than e. Hence

there is a place in the sequence beyond which the

elements differ from each other by less than e, and the

sequence is regular.

Another proof is given on page 83.

The odd-numbered elements of the sequence form by
themselves a sequence of elements each less than the

preceding and greater than any one of the even-numbered

elements of the sequence, and the even-numbered

elements of the sequence form by themselves a se-

quence of elements each greater than the preceding and

less than any one of the odd-numbered elements.

This would be true, and the two sequences would be

convergent, even if the terms of the series did not

form a sequence equal to zero, but the two sequences

would then represent different numbers.

Cor.—The value of the series of the theorem lies

between any two successive elements of the sequence;

thus the sum of any number of terms from the begin-

ning differs from the value of the series by less than

the next term.
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An example is the series

^-2+3- •• +2^i-r.+ ••••

By 'virtue of Art. 63 the theorem and corollary may
be stated as follows:

Theorem.—// there is a place in a series beyond which

the terms are alternately positive and negative, each term

less than the preceding, and if the terms form a sequence

equal to zero, the series is convergent.

Cor.—The value of the series lies between any two

successive elements of the sequence beyond the place

where the conditions of the theorem become true.

II. Operations upon Series

72. Theorem.—// a series is convergent, its terms may
be grouped in parentheses in any manner without destroy-

ing its convergence or changing its value.

Proof.—This is the same as omitting elements from

the corresponding sequence (Art. 41).

73. Theorem.—When the terms of a convergent series

are grouped in parentheses it does not change its value to

remove the parentheses.

Proof.—This is but another way of stating the pre-

ceding theorem.
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Removing the parentheses is the same as interpolating

elements in the corresponding sequence.

In particular, if a series of parentheses is convergent

we may remove the parentheses

(1) When all the terms in each parenthesis have

the same sign, or

(2) When the number of terms in each parenthesis is

less than some fixed number and the terms of the new

series form a sequence equal to zero.

Proof.—Let m be the number of terms of the series

of parentheses included entirely in the first n terms of

the new series. That is, the first n terms of the new

series include all of the terms of the first m parentheses

and perhaps some of the terms from the next parenthesis.

The sum of the first n terms of the new series will

differ from the sum of the first m parentheses by zero or

by a sum of terms from the (m + l)th parenthesis.

Now, in case (1), there is a place in the series of

parentheses beyond which they are numerically less

than -, and any sum of terms from a single parenthesis,

being equal to or less than the entire parenthesis, will

be less than —

.

Again, in case (2), where the number of terms in

each parenthesis is less than a fixed number, say p,

since the terms form a sequence equal to zero, there is

a place beyond which they are numerically less than

— , and beyond Avhich, therefore, any sum of terms
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from a single parenthesis will be numerically less

than -.

Thus, in either case, there is a place beyond which
we can say that the simi of the first n terms of the new
series differs from the sum of the first m terms of the

series of parentheses by less than -. But as the series

of parentheses is convergent there is a place beyond

which we can say that the sum of its first m terms

differs from the value of the series by less than -.

Beyond the farther of these two places we can say

that the sum of the first n terms of the new series

differs from the value of the series of parentheses by

less than £.

As an illustration we may give the following proof

of the theorem of Art. 71

:

The series

(Mi-M2)+ . . . +(M2n-l-W2n)+ . . .

is a series of positive terms. The sum of its first n

terms may be written

ttl-(tt2-«3)-- . .-(ti2n-2-W2n-l)-M2ni

where the expression in any parenthesis represents a

positive number. Hence this sum is less than the

fixed number u\ and the series of parentheses is con-

vergent.
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Now, if the w's form a sequence equal to zero, the

parentheses may be removed by the second case above.

Therefore the given series is convergent.

74. Theorem.

—

The series formed by adding the corre-

sponding terms of two convergent series is convergent and

equal to the sum of their values; and the series formed by

subtracting the terms of one convergent series from the cor-

responding terms of a second convergent series is conver-

gent, and its value is the difference obtained by subtracting

the value of the first series from the value of the second.

Proof.—This is the same as adding or subtracting the

corresponding elements of two regular sequences; the

resulting sequence represents the sum or difference

of the numbers represented by the two sequences.

We may group the terms of two convergent series in

parentheses in any manner and after adding or sub-

tracting remove the parentheses, and the resulting series

will still be convergent and represent the sum or differ-

ence of the two given series.

For the sum of any number of terms of the final

series will differ from the sum of a certain number of

terms before the parentheses are removed by zero or by
a sum of terms from a single parenthesis. But the sum
of terms from a single parenthesis here is in any case

the sum of a certain number of successive terms from
one or the other of the original series, and there is a

place in each of the original series beyond which any
such sum of terms is numerically less than e. There-

fore we may remove the parentheses, as in the second

case considered in the last article.
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Cor.—If we combine by addition or subtraction a

convergent and a divergent series, the resulting series

will be divergent.

For that one of the two series which is divergent

could be obtained by combining the resulting series with

the other given series, and if the resulting series were

convergent, we should have a divergent series as the

difference or sum of two convergent series, which is

contrary to the theorem.

75. Theorem.—// a series is convergent and equal to a

number S, the series formed by multiplying all of its terms

by a number m mil be convergent and equal to mS.

Proof.—This is the same as multiplying together two

sequences, one representing S and the other composed

of elements all equal to m.

Cor.—A convergent series equal to S becomes a con-

vergent series equal to —Sii we change the signs of

all of its terms.

76. Theorem.—// a series of positive terms is conver-

gent, the series will be convergent which we form when we

multiply its terms by the corresponding elements of a

sequence of positive numbers all less than some positive

number m.

.Proof.—The sum of n terms of the new series will

be less than the sum of n terms of a series formed by

multiplying the terms of the original series by ?n, and

so less than mS, where S is the value of the original

series. Therefore the new series will be convergent.
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By virtue of Art. 62 we may state the theorem as

follows

:

Theorem.—// a series is absolutely convergent, the series

will be absolutely convergent which we get when we multi-

ply its terms by the corresponding elements of a sequence

of numbers all numerically less than some fixed num-

ber m.

Cor.—An absolutely convergent series will remain so

if we multiply its terms by the corresponding elements

of a regular sequence.

77. Theorem.—// two series are absolutely convergent, a

series can be formed by multiplying every term of one

with every term of the other that will be absolutely con-

vergent and will equal the product of the valves of the

given series.

Proof.—Let the two series be

U1+U2+ . . . +i<„+ . . :

and V1+V2+ . . . +Vn+ . . .
,

and let the corresponding sequences be

fli 02 . . . a„ . . .

and 61 b2 • bn . . . .

The ]:)rodiict of these sequences is the sequence

Oihi 02^2 . . . ('„h.„ ....
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and this is equivalent to the series whose successive

terms are

aibi a2b2-aibi . . . a„?)„ - o„_ ib„_ i . . .
,

that is, to the series

UiVi + {UiV2+U2Vi+U2V2)+ •

+ (Ml?;„ + ?/2l'r,+ . . . +Wn-lVn

(a) +1lnVl+UnV2+ +U„Vn-l

+ Vr,T„)+ ....

Now the series of numerical values

|mi1+|w2|+ . . . +\Un\ + . . .

and |t>i|+|'y2l+ ... +|fn|+ ...

are equivalent to two sequences which we will write

ai a-z . . . an . .

and 61' 62' . . • ?>n • • . •

The product is the sequence

ai'bi' a2'b2' • • cin'bn ...»

f-quivalent to the series

|MiVil + (|wi'y2| + |w2i'i| + h*2f2|)+ • . :

+ (lwii)„| + |u2i;„|+ . . . +|M„-l'ynI

(a') +
I

W„T;1
I
+

I
MnT'2

I

+ • • • +|Mn1'„_i|

+ |MnV„|)+ . • • •
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In the series (a') all the terms in any parenthesis

have the same sign. Therefore the parentheses may
l>e removed without destroying its convergence or

changing its value.

The following series is, therefore, convergent:

|uii;i| + |wir2| + |M2ri| + |W21'2|+ . • •

(/?') +|WiD„l + |u2t''n|+ . . .

+ |m„i)i|+ . . . +|w„?J„l+ ....

The terms of (/?') are the numerical values of the

terms of the series

U1V1+U1V2+U2V1+U2V2+ . . .

(jff) +UiVr,+ U2Vn+ . . .

+U„Vi+ . . . +UnVn+ ....

The series (P) is, then, absolutely convergent. Its

value is not changed if we group the terms in any man-

ner, for example, in the manner of the series (a). The

value of the series (^) is, therefore, the same as that of

the series (a); it is the product of the values of the

two given series.

The series (a) represents the product of two given

series when they are convergent, even if they are not

both absolutely convergent.



ABSOLUTE CONVERGENCE 89

III. Absolute Convergence

78. We have proved that a convergent series of

positive terms will remain convergent after the signs

of any portion of its terms have been changed (Art. C2j.

We may also prove this theorem as follows

:

The terms which are not changed form by them-

selves a convergent series, and the terms which are

changed form by themselves a convergent series (Art.

67). The original series is the sum of these two series,

and the new series is formed by subtracting the second

from the first.

79. Theorem.

—

In a semi-convergent series the positive

terms taken by themselves form a divergent series and the

negative terms taken by themselves form a divergent series.

Proof.—If the two part-series were both convergent,

the series formed by taking all the terms with positive

sign would be convergent and would be equal to

the sum of the numerical values of the two series.

If one of the part-series were convergent and the

other divergent, the given series, formed by taking

them with positive and negative signs, respectively,

would be divergent (Art. 74, Cor.), which is contrary

to the hypothesis that the given series is convergent.

Therefore both part-series must be divergent.

80. Theorem.—// in each of two divergent series of

positive terms the terms themselves form a sequence equal

to zero, the two series may be put together, one with positive

signs and the other with negative signs, in such a manner
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as to form a semi-convergent series equal to any given

number M.

Proof.—^We may, for example, take just enough

positive terms from one series to make more than M,
then just enough negative terms from the other series

to make less than M, then just enough positive terms

from the first series again to make more than M, and

so on (Art. 64, Cor.). The result at each stage will

differ from M by an amount equal to or less than

the larger of the last terms taken from the two series.

Therefore the series so formed will equal M.

Although it might be quite impossible to write down
a formula for the nth term of the resulting series, the

term in each place is determined by the above process.

When two series contain the same terms in different

orders, every term of one being found somewhere in

the other, one series is said to be obtained from the

other by changing the order of its terms. This

does not mean a change of order like that referred

to on page 36. In any change in the order of the

terms, the terms in the new arrangement must still

form a sequence, each term having a definite numbered
position with only a finite number of terms coming
before it.

In the proof of the theorem the order of the terms

in each of the two given series is supposed to be un-

changed. But a divergent series of positive terms

can never become convergent by a change in the order

of its terms (see next theorem), and therefore it is not
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necessary to suppose the order of the terms in the

two given series to be unchanged.

Cor.—A semi-convergent series may be made to

take any value M, by properly changing the order

of its terms.

For examples see Art. 83.

81. Theorem.—We may change the order of terms in

an ahsotulely convergent series in any manner without de-

stroying its convergence or changing its value.

Proof.—First let all the terms of the series be posi-

tive, and let S be its value. If we form a new series

by changing the order of its terms, the first n terms

of the new series will be found somewhere in the origi-

nal series, and their sum will be less than S (Art. 66).

The new series is, then, convergent, and its value,

say S' , is equal to or less than S.

But we may obtain the original series from the new

series by changing the order of its terms. Thus S
must also be equal to or less than S' . Both of these

conditions can only be true if S and S' are equal. There-

fore any change in the order of terms of a convergent

series of positive terms does not change its conver-

gence or its value.

Now an absolutely convergent series of positive and

negative terms is equal to the difference of two con-

vergent series of positive terms. Any change in the

order of its terms may produce a change in the

order cf the terms of one or both of these two series,

but such a change does not affect their convergence
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or their values. Therefore the new series is convergent

and its value is the same as that of the original series.

The expression "conditional convergence" is some-

times used with reference to the relation which the

order of the terms of a series has to its convergence

and value. A series which is convergent and has the

same value whatever the order of its terms is uncon-

ditionally convergent. A series which sometimes loses

its convergence, or at least changes its value when
the order of its terms is changed, is conditionally con-

vergent.

88. The product of two absolutely convergent series

as given in Art. 77 is an absolutely convergent series,

and its terms may be written in any order. One arrange-

ment which is often useful is obtained by putting in

succession those terms for which the sxmi of the subscripts

of It and V is the same number.

That is, the two given series being

U1+U2+ . . . +Un+ .
~.

:

and Vi+r2+ . . . +Vn+ . . .
,

both absolutely convergent, their product may be

written

U1V1+U1V2+U2V1+U1V3+U2V2+U3V1+ ....

Any number of absolutely convergent series may be

multiplied together in the same way. The product

forms an absolutely convergent series whose terms

may be arranged in any order.
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83. Examples of changes in the order of terms of

semi-convergent series.

First we will consider some cases where there is no

change in the order of the positive terms among them-

selves or of the negative terms among themselves, but

only in the order in which they are put together.

Take the series

, 1 1 1
1 7=-|- . . . -I- , 7=+ ....

\/2 V2n-1 V2n

(Arts. 69 and 71).

Let s„ denote the sum of the first n terms and S the

value of this series, and let s„' denote the sum of the

first n terms when the series is arranged in some other

order.

Let n' denote the number of positive terms and n

the number of negative terms in the first n'+n terras

of the new arrangement. The values of n' and n are

determined for each value of n'+n.

In s'n'+n the positive terms are

J_ 1

and the negative terms

1 1

\^2 V4 '
' " ^27^

If n' >n, S2„' will contain all of these terms and in
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addition the negative terms

1 1

V2{n + 1) '
' ' V2n''

Hence

1 1

v2(n + l) v2n

These terms are n' -n in number. They are all

less than ,

—

and their sum is less than—=r. The
V2n V2n

smallest of these terms is the last, and their sum is

greater than ,

—

~ . (Serret)

Suppose, for example,

n'—n^y/an and <\/an+ l,

a being some positive number. Then

V2n \'2h ^2 V'2n

and

n'-ri.~ Van la in

^^2^'^v'2^'^^2 '
y^'

2n

or, as n' <n + 1 +Van,

V2n' "^2'yn +l+Vm ^2 I i 1^

n
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That is,

and

\a 1

„'+„-S2n'<S|g+-7=,
\/2r

la 1

Both of these expressions, for integer values of n, form

sequences representing >^-. Therefore the sequence of

s"s is regular and its value is

S'=S +4
If a = 2, corresponding values of n and n' are

n =12345 6 7 8 9..

n' =3 4 6 7 9 10 11 12 14 . .

1 J 1_ J L.J-
^'°^V3"V5 V2"^V7 V4 V9

1 _ 1

Vn Ve"^

=s+i.

Again, take the series

1 1 1,
1-2+ • • +2W-1 2n^
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Using the same notation, if we suppose, for example,

n' — n'y.an and <an+ l,

where o is some positive number, we shall find that

S'<5+^ and >S+
"

2 - - ' 9(1+a)-

With this particular series we may proceed also as

follows

:

Write

1 1 1
o:»=l+n+ . : : +-.

Ji n

Then y=2+4+ " ' ' +2^1'

a2n-ir = l + o+ . . . +

and

2 - '3 ' • • • ^2n-l'

S2n=a2n-an.

Suppose we change the order, taking two positive

terms and then one negative term; We have the series

,11111
1+3-2 + 5+7-4+ • • •

•

In s'sb there are 2n positive terms and n negative
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terms. Therefore

S3»=(^a4n-^j—2"

= {ain-0C2n) +;^(a2n -«„)

—S4n + (jS2n'

Here are three sequences,

S3' se' . . . s'sn . . . representing S',

S4 Sg . . . S4n ... o,

and 2^2 g** • • • 2^2n ... g*^'

and the value of the new series is

U 3,
5'. (See .

(Harkness and Morley)

<S'=5+-5=-S. (See Arts. 41 and 44.)

If we take one positive and two negative terms we

have the series

1_1 1_1_1
2~4'^3 6 8"^ • • • '

and we shall find S' = :^^. In fact the series may be
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written

1111 /T .^
2-4+6-8+ • • • • (^^"''"*^

One positive term taken with four negative terms

will give a series

1_1_1J.
2 4 6 8+ •

•

equal to zero.

Now, with the terms of the same series alternately

positive and negative, change the order of the negative

terms among themselves, taking first a fraction whose

denominator is not divisible by 4 and then two frac-

tions whose denominators are divisible by 4. This

change produces the series

,11111
1 1

+-—— +2^3 4 5 8

and the sum of the first 6n terms is

/ a3n\ 1/ an\ 1
a2n

- (a'e,, — asn) +:^('a3n — «2n) —j(a2n— ««)•

The first parenthesis is equal to .sg,,. The rest may be
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written

ir 2 2
_2_

4L2n+ l'^2n + 2"^ • ' " +3n
1 1 1

n+ 1 n+2 2nS

Every other term in the first Une is cancelled by a

term in the second line. Letting n be odd, there is left

Ir 2 2 _2

4L2rH-l +2n+3^ ' ' • ^3n

__2 2__ __2-|

371 + 1 3n+3 •
• • 4n.J

nP 1 1
"I

~2L(2n+ l)(3n+ l)"^ " " " "^3n.4nJ*

n+ 1
Here the number of terms in the brackets is

^
.

The first is the largest and the last the smallest. There-

fore this expression is

n(n + 1) n + 1

^4(2n+ l)(3M + l)'^^4n'

n(n + l) 1

^d > 4.3n.4n ^48*

It follows that

S'^S+^ and fS+^. (Art. 36)



CHAPTER IV

POWER SERIES

I. The Radius of Convergence

84. A power scries is a series whose terms contain

as factors the successive powers of some number.

A power series is a series written in the form

U1+U2X+ . . . +u„x"'~^+ . .
~.

:

An example is the geometrical series

a+ax+ . . . +ax"'~^+ ....

This is absolutely convergent if x is any number numer-

ically less than 1.

85. Theorem.—// the series

U1+U2X+ . . . +M„a;"-» . . :

is convergent for a particular value of x, it is absolutely

convergent for any value of x numerically less.

Proof.—Let Xi be a particular value of x for which

the series is convergent, and let x be some number

numerically less.

100
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The geometrical series

X
is absolutely convergent, since — is numerically less

than 1. This series will still be absolutely convergent

if we multiply its terms respectively by

Ui U2X1 . . . lt„Xi"~^ • • • >

numbers which form a sequence equal to zero, since

they are the terms of the given series when x has the

particular value for which by hypothesis the series

is convergent (Art. 76, Cor.)-

Therefore the series

U1+U2X+ . . .
+'U„2;"~i+

. . ;

is absolutely convergent, x being numerically less

than Xi.

Cor.—If a power series is divergent for a particular

value of x, it is divergent for any value of x numer-

ically greater.

For if there were some value of x numerically greater

for which the given series was convergent, it would also

be convergent for the given value of x, for which by

hypothesis it is divergent.

86, Theorem.—// a power series is convergent for some

particular value of x and divergent for another value of x,

there is a positive number r such that the series is abso-
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lutely convergent for all values of x numerically less than

r and divergent for all values of x numerically greater

than r.

Proof.—The series is always convergent or divergent,

and if it is convergent for a value of x, a, and diver-

gent for another value of x, b, then a is numerically

less than b unless they are positive and negative num-

bers numerically equal. We can separate all numbers

into two classes, putting into the first class all nega-

tive numbers and all positive numbers for which the

series is convergent, and into the second class all posi-

tive numbers for which the series is divergent. The

number determined by this separation is the number r.

The number r is called the radius of convergence.

If a series has a radius of convergence r it may be

absolutely convergent or semi-convergent or divergent

for x=r or x= —r.

If a series has no radius of convergence it is either

absolutely convergent for all values of x or divergent

for all values of x except a;=0.

For the geometrical series the radius of convergence

is 1, and the series is divergent when x = l and when
x=-l.

For other examples see Art. 88.

87. Theorem.

—

Given the series

U1+U2X+ . . . -|-M„a;"-i+ . . .
,

if the sequence

V2 Vs u„

Ul U2 Un-l
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represents a number a, then the series has a radius of con-

vergence equal to the reciprocal of the numerical value of a.

Proof.—The ratios of the terms of the series, each

to the preceding, form the sequence

11 2X U3X u„x

Hi U2 ' ' ' lh,_i

representing the number ax. This number is numerically

less than 1, and the series is absolutely convergent, if

M)n the other hand, if

the terms of the series will not form a sequence equal

to zero and the series will not be convergent.

88. Examples.

(1) The series

1+^+2+ ••• +"^+ "'•

has 1 for radius of convergence. For a; = l the series

'[s divergent, being the harmonic series; for a;=-l

it is semi-convergent.
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(2) The series

1+,+ + . . . .,

has no radius of convergence. It is absolutely con-

vergent whatever the value of x. In fact, the ratio

of the (n+ l)th term to the preceding is — , and for

different values of n this fraction will form a sequence

equal to zero whatever the value of x.

(3) The series

H-a;+ J2x2+ . . . +|nx"+ . . :

has no radius of convergence. It is divergent for all

values of x except zero.

(4) The series

l+C]X+C2x2+ . . . +c„x"+ . . ;
,

where Ci= p and, in general.

yif-X) . . . (p-n+1)
''"~

In

has 1 for radius of convergence except when p is zero

or a positive integer. The ratio of coefficients is

Cm 7)-r) + l v+ 1

Cn- 1 n n
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and for different values of n this forms a sequence

equal to —1.

When x = l or —1 the convergence depends on the

value of p.

89. Theorem.—If each of two power aeries has a radius

of convergence or is convergent for all values of x, their

product can be written as a power series; this mil be

absolviely convergent for any value of x which makes both

of the given series absolutely convergent.

Proof.—If the series are

UI+U2X+ . . . +UnX"~'^+ . . .

and i)i + r2X+ . . . +Vr,x"~'^ i- . . . ,

the product will be

UlVi + {UiV2+U2Vi)x+ . . .

+ {UiVn+ U2Vn-l+ • • +U„Vi)x''-^ + . . .

(Art. 82)

Any number of power series may be multiplied

together if each has a radius of convergence or is con-

vergent for all values of x, and the product series will

be absolutely convergent for any value of x which

makes all the given series absolutely convergent.

90. Theorem.—// the series

U1+U2X+ . . .+i<„x"~^+ . . .

is convergent for a value of x irhose numerical value is p,
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then there is a positive nuviber M such that for all valves

of n

Proof.—For the given value of x the terms of the

series form a sequence equal to zero and are all niuner-

ically less than a certain positive number M. Hence

|M„|iO"-l<M,

or

\Un\<—,.

91. Theorem.—Conversely, if there are two positive

numbers M and p such that for all values of n

then for any value of x numerically less than p the power

series is absolutely convergent and has a value which is

numerically less than

Mp

Proof.—The terms of the power series are numerically

less than the corresponding terms of the geometrical

series

,, M\x\ .¥.r"-i

p p-^ 1
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which equals

M Mp
i—I, or r—f,

i_N p-\x\'
,

p

when \x\<p. Therefore, when \x\<p, the given series

is absolutely convergent and its value is numerically less

than—rn (see Art. 68).
p-\x\ '

The series

-^ Mx Mx"-!

p p^ 1

is a series of comparison for the given series.

Cor.—If u\ is zero, that is, if a power series begin ~

with a term in x or some power of x, and if there ar

two positive numbers M and p such that for all vaUu -

of n greater than 1 the coefficient of a;""' is numerically

M
less than -;pij, then for values of x numerically lo-

than p the value of the series is nimierically less than

M\x\

For the terms of the series are numerically less

than the corresponding terms of the series

M|zl M\xY-^
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which equals

M\x\

p-\x\-

II. " Undetermined Coefficients "

93. Theorem.—A power series having a radius of con-

vergence or convergent for all values of x cannot equal

zero for values of x forming a sequence equal to zero

but not themselves zero.

Proof.—As we may suppose some of the coefficients

zero we will write the series

uixP+ . . . +w„a;P+"-i+
, . .

,

where p is zero or a positive integer, and where wi

is not zero.

Write

P=Ui+U2X+ . . . +«„a;»~i+
. . .

,

and P'=U2+V3X+ . . . +i(„+ia;"~i+ ....

Both of these series are convergent for any value of x

that makes the original series c^vergent, and
\

P=ui+xP'.

P is zero for any value of x except zero, which makes
the original series zero, but P is not zero when x = 0.

Since P' has a radius of convergence or is conver-



UNDETERMINED COEFFICIENTS 109

gent for all values of x, there are two positive num-
bers, M and p, such that for \x\<p

\xF'\<^\
p-\x\

Therefore

£ being some positive number less than |ui|, this

expression will be greater than £, that is,

if
|^|<|(bq.l:iiL.

We will call this fraction e'. e' is less than p, since

|wil-£

M+|wi|-e
<1.

Then P is numerically greater than t when x is

numerically less than e'. But in a sequence equal to

zero there is a place beyond which all the elements are

numerically less than e', and for none of these num-

bers as values of x can P be zero, nor can the original

series if these numbers are not themselves zero.

93. Theorem.—// iv:o series in powers of x, having radii

of convergence or convergent for all values of x, represent
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the same numbers for valves of x forming a sequence equal

to zero and not themselves zero, then the two given, series

must be identically the same series, each coefficient of one

eqvxil to the corresponding coefficient of the other.

Proof.—If any of the corresponding coefficients were

different we could, by subtracting one of the given series

from the other, get a series equal to zero for values of

X forming the given sequence, which is contrary to

the last theorem.

Cor.—If two power series are convergent and equal

for all values of x numerically less than a certain num-

ber not zero, they are equal term by term, each coeffi-

cient of one equal to the corresponding coefficient of

the other.

For out of all values of x numerically less than the

number we can select values to form a sequence equal

to zero, and the two series, being equal for these values

of X, have the same coefficients, by the theorem.

This form of the theorem is given in most of our

Algebras as the " Theorem of undetermined coefficients.

"

94. Since a polynomial in x may be regarded as a

power series with all the coefficients zero beyond a

certain place, these theorems are true of such poly-

nomials.

There is, however, a theorem concerning polynomials,

proved in our Algebras in connection with the theory

of equations, which is more general, and which we
will state here for convenience of reference:

Theorem.

—

A 'polynomial in x of degree n cannot equal

zero for more than n different values of x.
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Cor.—If two polynomials of degree n are equal for

more than n different values of x they are identically

the same polynomial, equal for all values of x, each

coefficient of one equal to the corresponding coefficient

of the other.



CHAPTER V

THE EXPONENTIAL, BINOMIAL, AND LOGARITHMIC
SERIES

I. The Exponential Series

95. We shall assume in this chapter that the bi-

nomial theorem has been proved for positive integer

exponents.

In particular, r being any positive integer less than n,

the (r+ l)th term in the expansion of (a+a;)" may be

written

In

n—r r

96. Theorem.—x being any rational number,

x^ a;"
=l+x+|2+ . . . +^+ . . . .

Proof.—Write

5,=l+x+^+ . . . +^+ . .

112
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SO that, y being any other niunber,

'S„= l+2/+^+ . . . +P+ ....

The product of these two series is the series

l + (a;+2/) + (|+a;2/+^)+ . . .

+
l|n

+ [^^T|i+ • • • +j^;+ • ••

, . . {x+yY (x+ y)"= l + (x+ y) +'^^+ . . . +'—^+

That is, we may write it Sx+y and say

These series are convergent and this relation holds

true for all values of x and y.

If we' put y=x, 2a;, ... ra;, ... we shall have

Sx^=S2x,

and by induction S^=Srx,

r being any positive integer.

TX
In this formula put — for x and s for r:
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or, taJdng the sth root,

«

That is, for positive fractional values of r

If in the product series we put ^= — x, it will reduce

to its first term, 1 ; that is,

or S-x=g-'

Now S^'^st'sZ'

and from what we have just shown this is equal to 5_„.

Hence, for negative rational values of r and, there-

fore, for all rational values of r.

If we put x= l the series becomes

/S = l + l + |-7^+ . . . +]-+ . , . .

This series represents a number which is denoted by

the letter e. It is a positive number greater than 2.
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Putting also x in place of r, we have for all rational

values of x

e-= l+x+^+ . . . +f-+2 \n

97. Theorem.

—

The same relation holds true for irra-

tional values of x.

Proof.—If X and y are any two numbers, rational

or irrational, x<y, then Sx<Sy.
For, in the first place, if x and y are both positive,

the terms in both series are positive and the terms in

Sx are less than the corresponding terms in Sy, except

the first, which is the same in both series. Again,

if x and y are both negative, say x= —x' and y= —y',

x'>y', then

Sx=-^ and Sy=-^—.
Ox' ^y'

Sx'>Sy' and, therefore, Sx<Sy.

Finally, if a; is negative, say x=—x', and y positive,

<Sx = -5-<l and Sy>l.
Ox'

Let a be an irrational number separating all rational

numbers into two classes, and for the moment let x stand

for any rational number in the first class and y any

rational number in the second class. The number e° occu-

pies the point of separation of the numbers e" and e"

into two classes and is determined by this separation
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(Art. 24). The same numbers written in the form Sx

and Sy determine the same point of separation, which

is, therefore, occupied by the number Sa.

That is, writing now x in place of a, we have proved

for irrational values of x, also,

|2 \n

II. The Binomial Theorem for any Rational

Exponent

98. Theorem.

—

p being any rational number and x any
number numerically less than 1,

il+x)P = l+pCiX+ . . . +pCnX''+ . . .
,

where pCi = p, and, in general,

p(p-l) . . . (p-n+ 1)
'^"~

\n

Proof.—We assume that the theorem has already-

been proved for positive integer values of p.

Write

5p = l + pCiX+ . . . +pCnX"+ . . . ,

so that, q being some other number,

Sg = l + qCix+ . . . +gCna;"+ ....
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The product of these two series is the series

l + (pCi+gCi)a;+ . . .

+ (pc„ + pc„_i,ci+ . . . +5C„)a;"+ . . . ;

When p and q are positive integers we know that this

is the same as the series

l + p+<2Ci2:+ . . . +p+^„a;"+ ....

If p is a positive integer less than n, pCn=0; and if q
is a positive integer less than n, ^„ = Q. But even

for such values of p and q, as well as for all integer

values greater than n, we have the relation

pCn + pCn_ ijCi + . . . -\- (fn^^ p+^n,

n being any positive integer.

The two members of this equation are polynomials

of degree n in p and q. For any positive integer values

of p and q they are equal. If we put for q any posi-

tive integer they become polynomials of degree n in

p, equal for all positive integer values of p; that is,

equal for more than n values of p, and, therefore,

for all values of p.

The two members of this equation are, then, equal

for any positive integer value of q combined with

any value whatever of p. If we put for p any value

whatever they become polynomials of degree n in q,

equal for all positive integer values of q; that is, equal

for more than n values of q, and, therefore, for all

values of q.
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That is, for any value whatever of p and any value

whatever of q we have

Putting q=p, 2p, etc., and proceeding as in the case

of the exponential series, we prove for every positive

or negative rational number r the relation

For p=l the relation becomes

Si = l+x.

Therefore, putting also p in place of r, we have for all

rational values of p, x being numerically less than 1,

(l+x)P= l + pCia;+ . . . +pC„a;'»+ ....

This proof and the proof of the last section for the

series representing e* are due in part to Euler.

III. The Binomial Theoeem for an Irrational

Exponent and the Logarithmic Series

99. In what follows we shall take e for the base of

all logarithms.

If l+x=e'', so that /(=log (l+x), then the formula

e'"'=l + fiy+ . . . +^+ . . :
n
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becomes

(1) (l+i)''=i+ilog(i+x)!2/+ . . :

+ ll0g(l+T)|''|'^ +

But if X is numerically less than 1, and ?/ is a rational

number, we have also

{\+x)y= \+yx+ '^%r^x^+ . .

y(y-l) . . . (y-n + 1)+"~
i

—

-I" +

= l+?y.r + (^]|-g)+ ...

/7/"T" Ui.— 1 \

+ (^-...+(-1)-^./.")+....

This series is convergent when x is numerically

less than 1, whatever the value of y. Now in each

parenthesis the terms of even degree in x and y taken

together have plus signs and the terms of odd degree

have minus signs. If we put for x and y the negative

numbers which have, respectively, the same numerical

values, we shall be putting for these terms their numer-

ical values. X being numerically less than 1, the series

will be convergent and the parentheses may be removed

(Art. 73 (1)).
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That is, whatever the values of x and y, |
a;

|
< 1, the

parentheses in the above series may be removed and

the series as then written will be absolutely convergent,

namely,

l+2/x +^-Y+ • • •

(a)

+n • • •
+(-1)"-'^—+

. . : ,\n ' n '

representing {1+x)^ when y is also rational.

If from the series (a) we select all the terms that

contain y", we have a series from which we can take

the factor y", say u„y", Un being a power series in x

convergent for values of x numerically less than 1 (Art.

i"
67). The first term of w„ is-j— , and its coefficients are

alternately positive and negative.

In particular,

"1=^-2+3- ••• +(-l)""'n+ ••••

Consider the series

(i8) l+i'iy+ . . . +w„y"+ . .

The terms of this series are numbers represented by

part-series taken from the series (a). If in the series

(a) we replace the terms by their numerical values, we
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have the convergent series of positive terms

(«')

+—, '+ . . .
4-'-^—

^ +

and corresponding to the series (/?) the series

(/?') l+ui'\y\+ . . . +w„'|2/"|+ . . .
,

where w„' is the series of numerical values of the terms

of Un.

The sum of the first n terms of (/?') is the sum of a

certain number of part-series from («')> ^.nd as a whole

may be regarded as a part-series taken from (a').

Its value is less than the value of {a'), and therefore

the series (/?') is convergent and its value is equal to

or less than the value of the series (a').

But all the terms of (a') are found in the different

series which represent the terms of (^'), and therefore

the svun of any number of terms of (a') is less than

the sum of a certain number of terms of (/?')• That is,

the value of the series (a') is equal to or less than the

value of the series (/?')•

It follows that the two series must have the same

value.

Since \un\^Un (Art. 62, Cor.), the series (j9) is

absolutely convergent whenever the series (/?') is conver-

gent.

If we take from the series (a') the part-series corre-

sponding to the sum of the first n terms of the series
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(/?') we shall have a remainder series fl„' of positive

terms whose value will be less than e when n is taken

sufficiently large (Art. 67, Cor.).

If in the same way we take from the series (a) the

part-series corresponding to the sum of the first n

terms of the series (/?) we shall have a remainder series

R„ whose terms have for numerical values the cor-

responding terms of the series fl„'. Therefore the

numerical value of Rn will also be less than e, and the

sum of the first n terms of the series (/?) will differ from

the value of the series (a) by less than e.

This proves that the series (/9) has the same value as

the series (a).

Now for rational values of y, x being numerically

less than 1, the series (a) represents (l+x)*, which is

also represented by the series (1). That is, for any

value of X numerically less than 1 the series (/?) and the

series (1) are convergent power series in y, equal for

all rational values of y.

But from all rational values of y we can select a se-

quence equal to zero. Therefore, by the theorem of

Art. 93, the two series (/?) and (1) are identical, each

coefficient of one equal to the corresponding coefficient

of the other.

100. Since the series (a) has the same value as the

series (/3) for all values of ?/, I^:] <1, and since the scries

(ifl) is identical with the series (1), which for all values

of y represents (1+x)'', it follows that the series (a)

represents (1+a;)^ for all values of j/, |2:|<1.

Thus we prove the binomial theorem for irrational

values of the exponent; namely, writing p for y,
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Theorem.—For irrational values of p, x being numer-

ically less than 1,

{l+x)P = l + fCiX+ . . . +^c„x"+ ....

101. The coefficient of y in (1) is log (l+x) ; therefore

we have the following theorem:

Theorem.—For all values of x numerically less than 1

,

\og{l+x)=x-^+ . . .
+(-l)"-i^+ ....
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Brdmann's Introduction to Chemical Preparations. (Dunlap.)., i2mo, i 25

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe
zamo* morocco, x 50

Fowler's Sewage Works Analyses ismo, 2 00

Fretenius's Manual of Qualitative Chemical Analysis. (Wells.) 8vo, 5 oo

Manual of Qualitative Chemical Analysis. Parti. Descriptive. (Wells.) 8vo, 3 oa

System of Instruction in Quantitative Chemical Analysts. (Cohn.)
a vols. 8vo, 12 50

Fnertes's Water and Public Health lamo. i so
Furman's Manual of Practical Assaying 8vo, 3 oa
Oetman't Exercises in Physical Chemistry lamo.

Gill's Gas and Fuel Analysis for Eneineers lamo, i 25

Orotenfelt's Principles of Modem Dairy Practice. (Woll.) zamo, 2 00

Hammarsten's Text-book of Physiological Chemistry. (MandeL) 8vo, 400
Helm's Principles of Mathematical Chemistry. (Morgan.) lamoi i 50
Berisg's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Hinds's Inorganic Chemistry 8vo. 3 00

* Laboratory Manual for Students i2mo, 75
Holleman'B Text-book of Inorganic Chemistry. (Cooper.) 8vo, 2 so

Text-book of Organic Chemistry. (Walker and Mott.) 8vo. 2 50
** Laboratory Manual of Organic Chemistry. (Walker.) lamo, i oa
Hopkins's Oil-chemists' Handbook 8vo, 3 oo
Jackson's Directians for Laboratory Work in Physiological Chemistry. .8va, i 25
Keep's Cast Iron 8vo, 2 50

Ladd'* Manual of Quantitative Chemical Analysis i2mo, i oo
Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 00
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.) i2mo. i 00

Application of Some General Reactions to Investigations in Organic
Chemistry. (Tingle.) i2mo, i 00

Leach's The Inspection and Analysis of Food with Special Reference to State

Control 8vo, 7 50
LSb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) lamo, i oo
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. . . . 8vo, 3 00
Lunge's Techno-chemical Analysis. (Cohn.) lamo, i 00
Mandel's Handbook for Bio-chemical Laboratory lamo, z so
• Martln't Laboratory Guide to Qualitative Analysis with the Blowpipe . . zamo, 60
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)

3d Edition, Rewritten 8vo, 4 00
Examination of Water. (Chemical and BacteriologicaL) zamo, z 25

Matthews's The Textile Fibres gvo,

Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . zamo, i 00
Miller's Manual of Assaying z2mo, i 00
Hixtei*s Elementary Text-book of Chemistry z2mo. i so
Morgan's Outline of Theory of Solution and its Results i2mo, z 00

Elements of Physical Cheiziistry zamo.
Hone's Calcnlationa used in Cane-sugar Factories z6mo, morocco.
Hulliken's General Method for the Identification of Pure Organic Compounds.

VoL I Large 8vo,
O'Brine's Laboratory Guide in Chemical Analysis 8vo,
O'Driscoll's Notes on the Treatment of Gold Ores gvo,
Ostwald's Conversations on Chemistry. Part One. (Ramsey.) (In press.)

* Penfield's Notes on Deterzninative Mineralogy and Record of Mineral Tests.

8vo, paper, 50
Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) 8vo. 5 00
Pinner's Introduction to Organic Chemistry. (Austen.) Z2mo, z so
Poole's Calorific Power of Fuels gyo 3 00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis ' ijmo. z 25
4

50

00

50

00
00
00



• Reisis's Guide to Piece-dyeing 8vo, 25 00
RldurdsondWoodman'BAiriWater.andFoodframaSanitaryStandpoint.STO, 2 00
Kicbards'i Cost of Living as Modified by Sanitary Science i2mo i 00

Cost of Food a Study in Dietaries i2mo, i 00
• Richards and Williams's The Dietary Computer 8vo, i so
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistrr. rPart I.

—

Ron-metallic Elements.) 8to, morocco. 75
Ricketts and Miller's Rotes on Assaying 8vo, 3 00

Rldeal's Sewage and the Bacterial Purification of Sewage 8vo, 3 50
Disinfection and the Preservation of Food Svo. 4 00

Riggs's Elementary Manual for the Chemical Laboratory 8vd. i 25
Rostoski's Serum l)iagnosis. (Bolduaa.) i2mo, i 00

Ruddiman's Incompatibilities in Prescriptions. Svo, 2 00

Sabin's Industrial and Artistic Technology of faints and Varnish Svo, 3 00

Salkowski's Physiological and Pathological Chemistry. (OmdorS.).. ..Svo. 2 so
Schimpf's Text-book of Volumetric Analysis i2mo, 2 50

Essentials of Volumetric Analysis lamo, i 25

Spencer's Hanabook for Chemists of Beet-sugar Houses i6mo« morocco, ^ 00

Handbook for Sugar Manufacturers and their Chemists.. j6mo> morocco, 2 00

Stockbridge'i Rocka and Soils Svo, 2 50
• Tillman's Elementary Lessons in Heat Svo, i 50

• Descriptive General Chemistry Svo, 3 oo

Treadwell's Qualitative Analysis. (Hall.) a Svo, 3 00

Quantitative Analysis. (HaH.) Svo, 4 00

Tomeaure and Russell's Public Water-supplies Svo, s 00

Tan Deventer's Physical Chemistry for Beginners. (Boltwood.) ismo, i 50

• Walke's Lectures on Explosives Svo, 4 00

Washington's Manual of the Chemical Analysis of Rocks Svo, 2 00

Wassermann's Immune Sera: Hsemolysins, Cytotoxins, and Precipitins. (Bol-
duan.) i3mo, 1 00

Wells'i Laboratory Guide in Qualitative Chemical Analysis Svo, i so

Short Course in Inorganic Qualitative Chemical Analysis for Engineering

Students i2mo, i 50

WUpple'i Microscopy of Drinking-water Svo, 3 so

Wiechmann's Sugar Analysis Small Svo. 2 50

Wilson's Cyanide Processes. i2mo, i 50

Chlorioation Process. ., i2mo, i so

Wulling's Elementary Course in Inorganic Pharmaceutical and Medical Chem-
istry i2mo, 2 00

CIVIL ENGIIfEERIH6>

BRIDGES AlID ROOFS. HYDRAULICS. MATERIALS OF EKGINEERIHO
RAILWAY ENGIHEERinG.

taker's Engineers' Surveying Instruments i2mo, 3 00

Eixby's Graphical Computing Table Paper 19^X24^ inches. 25

*• Burr's Ancient and Modem Engineering and the Isthmian CanaL (Postage,

37 cents additionaL) Svo, net, 3 so

Comitock's Field Astronomy for Engineers. Svo, 2 50

Davis's Elevation and Stadia Tables Svo, i 00

EUiotfs Engineering for Land Drainage i2mo, 1 so

Practical Farm Drainage "™o, i 00

Folwell's Sewerage. (Designing and Maintenance.) Svo, 3 00

Freitag'a Architectural Engineering. 2d Edition Rewrinen Svo 3 50

French and Ives's Stereotomy 8vo, 2 so

Goodhue's Municipal Improvements "™0' ' 7S

Goodrich's Economic DisposBi of Towns' Refuse Svo, 3 50

(Sore's Elemente of Geodesy ?™' ^ so

Hayford's Text-book of (Seodetic Astronomy Svo, 3 00

Bniag'a Ready Reference Table* (Conversion Factors) i6mo, morocco, a 50
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Howe's Retaininc Walls for Earth i2nio, z 25
Johnson's (J. B.) Theory and Practice 01 Surveying Small 8vo, 4 00

Johnson's (L. J.) Statics by Algebraic and Graphic Methods 8vo, 2 00

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) ismo. 2 00

Uahan's Treatise on Civil Engineering. (1873.) (Wood.) 8vo. s 00
* Descriptive Geometry Svo, 1 50

Herriman's Elements of Precise Surveying and Geodesy JSvo, 2 50
Elements of Sanitary Engineering 8v0) 2 00

Uerriman and Brooks's Handbook for Surveyors i6mo> morocco, 2 co
Hngenfs Plane Surveying Svo 3 5°
Ogden'f Sewer Design. i2mo, 2 00

Patton's Treatise on Civil Engineering Svo half leather, 7 50
Reed's Topographical Drawing and Sketching 4tOi 5 00

Rideal's Sewage and the Bacterial Purification of Sewage Svo, 3 SO
Siebett and Biggin's Modem Stone-cutting and Masonry Svo, i so

Smith's Manual of Topographical Drawing. (McMillan.) Svo, 2 So

Sondericker's Graphic Statics, with Applications to Trusses. Beams, and
Arches .,8va, 2 00

Taylor and Thompson's Treatise on Concrete,^lau and Reinforced. (In prat.)
* Trantwine's Civil Engineer's Pocket-book i6mo, morocco, 5 00

Walt's Engineering and Architectural Jurisprudence 8v6, 6 00
Sheep, 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture Svo, 5 00
Sheep, 5 50

Law of Contracts Svo, 3 00
Warren's Stereotomy—Problems in Stone-cutting Svo, 2 50
Webb's Problems in the Use and Adjustment of Engineering Instruments.

i6mo, morocco, i 25
* Wheeler's Elementary Course of Civil Engineering Svo, 4 00

Wilson's Topographic Surveying Svo, 3 50

BRIDGES KS-D ROOFS.
BoUar's Practical Treatise on the Construction of Iron Highway Bridges, .Svo, 2 00
* Thames River Bridge 4to, paper, 5 00

Burr's Course on the Stresses in Bridges and Roof Trusses. Arched Ribs, and
Suspension Bridges Svo, 3 50

Du Bols's Mechanics of Engineering. Vol. U Small 4to, i o 00

Foster's Treatise on Wooden Trestle Bridges 4to, 5 00

Fowler's Cofier-dam Process for Piers : Svo, 2 so
Ordinary Foundations Svo, 3 50

Oreene's Roof Trusses Svo, i 25

Bridge Trusses Svo, 2 so
Arches in Wood, Iron, and Stone Svo, 2 50

Howe's Treatise on Arches Svo, 4 00
Design of Simple Roof-trusses in Wood and Steel Svo, 2 00

Johnson^Bryan, and Tumeaure's Theory and Practice in the Designing of
Modern Framed Structures Smfil 4to, 10 00

Herriman and Jacoby's Text-book on Roofs and Bridges

:

Partl.—Stresses in Simple Trusses Svo, 2 50

Part n.—Graphic Statics Svo, 2 so
Part ni,—Bridge Design. 4th Edition, Rewritten Svo, 2 so

Part IV.—Higher Structures Svo, 2 So

Horison's Memphis Bridge 4to, 10 00

Waddell's De Pontibus, a Pocket-book for Bridge Engineers. . . i6mo. morocco^ 3 00

Specifications for Steel Bridges lamo, i 25

Wood's Treatise on the Theory of the Construction of Bridges and Roofs. Svo, 2 00

Wright's Designing of Draw-spans:

Part L —Plate-girder Draws '.Svo, 2 50

Part n.—Riveted-tniss and Pin-connected Long-span Draws Svo, 2 50

Two parts in one volume 8vO| 3 50
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HYDRAULICS.
Bazlii's Ezperiments upon the Contraction of the Liquid Vein Issuing from an

Orifice. (Trautwine.) 8vo, 2 00
BoTey*! Treatise on Hydraulics 8vo, 5 00
Cbnrch's Mechanics of Engineering 8vo, 6 00

Diagrams of Mean Velocity of Water in Open Channels paper, i so
Coffin's Graphical Solution of Hydraulic Problems idmo. morocco, 2 50
Vlather's Dynamometers, and the Measurement of Power zamo, 3 00
Folwell's Water-supply Engineering 8vo, 4 00
Viizell's Water-power 8vo, 5 00
Vuertes's Water and Public Health i2mo, i 50

Water-filtration Works i2mo, 2 so
Oangnillet and Kutter's General Formula for the Uniform Flow of Water in

Rivera and Other Channels. (Hering and Trautwine.) 8vo, 400
Hazen's Filtration of Public Water-supply 8yo, 3 00

Hazlehorst's Towers and Tanla for Water-works 8to, 2 50
Herschel's 1 15 Ezperiments on the Carrying Capacity of Large, Riveted, Metal

Conduits 8vo, 2 00

Mason's Water-supply. (Considered Principally from a Sanitary Stand-

point) 3d Edition, Rewritten 8vo, 4 00

Mertiman's Treatise on Hydraulics. 9th Edition, Rewritten 8vo, s 00

* Michie's Elements of Analytical Mechanics 8vo, 4 00

Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply Large 8vo, s 00

•* Thomas and Watt's Improvement of Riyen. (Post., 44 c. additional), 4to, 6 00

Tnmeaure and Russell's Public Water-supplies 8vo, 5 00

Wegmann's Desisn and Construction of Dams 4to, 5 00

Water-supplyof the City of New York from 1658 to 1895 4to, 10 00

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.) 8vo, 5 00

Wilson's Manual of Irrigation Engineering Small 8vo, 4 00

Wolff's Windmill as a Prime Mover 8vo, 3 00

Wood's Turbines 8vo, 2 50

Elements of Analytical Mechanics 8vo, 3 00

MATERIALS OP ERGIKEERIIIG.
Baker's Treatise on Masonry Construction 8vo, 5 00

Roads and Pavements. 8vo, s 00

Black's United States Public Works Oblong 4to, s 00

Bovey's Strength of Materials and Theory of Structures 8vo, 750
Bnrr's Elastic!^ and Resistance of the Materials of Engineering. 6th Edi-

tion, Rewritten 8vo, 7 50

Byrne's Highway Construction Svo, s 00

Inspection of the Materials and Workmanship Employed in Construction.
x6mo, 3 00

Church's Mechanics of Engineering Svo, 6 00

Du Bois's Mechanics of Engineering. VoL I Small 4to, 7 so

Johnson's Materials of Construction Large Svo, 6 00

Fowler's Ordinary Foundations 8vo, 3 so

Keep's Cast Iron 8vo, 2 50

Lanza's Applied Mechanics 8vo, 7 so

Marteni's Handbook on Testing Materials. (Henning.) a vols. Svo, 7 so

Merrill's Stones for Building and Decoration 8vo, s 00

Merriman's Teit-book on the Mechanics of Materials 8vo, 4 00

Strength of Materials "mo, i 00

Metcalf's Steel. A Manual for Steel-users "mo. 2 00

Patton's Practical Treatise on Foundations 8vo, s 00

Richey's Handbook for Building Superintendents of Construction. (.In press. )

Rockwell's Roads and Pavements in France i2mo, i 25

1



Sabin*s Industrial and Artistic TechnologT of Paints and Varnish 8to, 3 00

Smith's Materials of Machines i2mo» x 00

Snow's Principal Species of Wood 8vo, 3 50

Spalding's Hydraulic Cement i2mo, 2 00

Text-book on Roads and Pavements x2mo, 2 00

Taylor and Thompson's Treatise on Concrete* Plain and Reinforced. (In

press.

)

Thtu'ston's Materials of Engineering:. 3 Parts 8vo, 8 00

Part 1.—Non-metallic Materials of Engineering and Metallurgy 8to» a 00

Part II.—Iron and SteeL 8vo, 3 50

Part III.—A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50

Thurston's Text-book of the Materials of Construction 8to» 5 00

Tillson's Street Pavements and Paving Materials 8vo, 4 00

Waddell's De Pontibus. (A Pocket-book for Bridge Engineers.) . . x6mo, mor., 3 00

Specifications for Steel Bridges X2mo, i 25

Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on

the Preservation of Timber 8vo, 2 00

Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 00

Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and
SteeL 8vo, 4 00

RAILWAY ENGINEERING.
Andrews's Handbook for Street Railway Engineers 3x5 inches* morocco, i 25
Berg's Buildings and Structures of American Railroads 4to, 5 00

Brooks's Handbook of Street Railroad Location idmo* morocco, i 50
Butts's Civil Engineer's Field-book z6mo, morocco, 2 50
Crandall's Transition Curve i6mo, morocco, i 50

Railway and Other Earthwork Tables 8vo, i 50
Dawson's "Engineering" and Electric Traction Pocket-book. z6mo, morocco, 5 00

Dredge's History of the Pennsylvania Railroad: (1879) Paper, 5 on
* Drinker's TunneHng, Explosive Compounds, and Rock Drills, 4to, half mor., 25 00
Fisher's Table of Cubic Yards Cardboard, 25
Godwin's Railroad Engineers* Field-book and Explorers' Guide .... i6mo, mor., z 50
Howard's Transition Curve Field-book i6mo, morocco, i 50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-

bankments 8vo, I 00
Molitor and Beard's Manual for Resident Engineers i6mo, x 00
Nagle's Field Manual for Railroad Engineers x6mo, morocco, 3 00
Philbrick's Field Manual for Engineers i6mo, morocco, 3 00
Searles's Field Engineering x6mo, morocco, 3 00

Railroad Spiral x6mo, morocco, x 50
Taylor's Prismoidal Formulee and Earthwork 8vo, z 50
* Trautwine's Method ot Calculating the Cubic Contents of Excavations and

Embankments by the Aid of Diagrams 8vo, 2 00
The Field Practice of Laying Out Circular Curves for Railroads'.

x2mo, morocco, 2 50
Cross-section Sheet Paper, 25

Webb's Railroad Construction. 2d Edition, Rewritten x6mo, morocco, 5 00
WeUington's Economic Theory of the Location of Railways Small 8vo, $ 00

DRAWING.
Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 00
* " Abridged Ed 8vo, x 50
Coolidge's Manual of Drawing 8vo, paper, i 00

Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-

neers Oblong 4to. 2 50

Diirley's Kinematics of Machines 8vo, 4 00
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• Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and IL 8vo, each, 600
• Hicbie. Elements of Wave Motion Relating to Sound and Light. 8vo, 4 00

Niaudet's Elementary Treatise on Electric Batteries. (Fishoack.) izmo, 2 50

• Rosenberg^ Electrical Engineering. (Haldane Gee—Kiszbrunner.) 8to, i 50

Ryan, Ilorris, and Hozie's Electrical Machinery. VoL L 8to, 2 50

Thurston's Stationary Steam-engines 8to, 2 50

• Tillman's Elementary Lessons in Heat. 8to, i 50

Tory and Pitcher's Manual of Laboratory Physics Small Svo, 2 00

Ulke',^ Modern Electrolytic Copper Refining Svo, 3 00

LAW.
• Davis's Elements of Law 8vo, 2 50

• Treatise on the Military Law ol United States Svo, 7 00
• Sheep, 7 50

Manual for Courts-martial i6mo, morocco, i 50

Waifs Engineering and Architectural Jurisprudence Svo, 6 00
Sheep, 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture Svo, 50a
Sheep, 5 so

Law of Contracts Svo, 3 00

Winthrop's Abridgment of Military Law tamo, 2 so

MAHUFACTURES.

Bemadou's Smokeless Powder—Nitro-cellulose and Theory of the Cellulose

Molecule i2mo, 2 50

Holland's Iron Founder iimo, 2 so

"The Iron Founder," Supplement i3mo, 2 50

Encyclopedia of Founding and Dictionary of Foundry Terms Used in the

Practice of Moulding ismo, 3 00

Bissler's Modem High Explosives Svo, 4 00

BSront's Enzymes and their Applications. (Prescott.) Svo 300
Fitzgerald's Boston Machinist iSmo, i 00

Ford's Boiler Making for Boiler Makers iSmo, x 00

Hopkins's Oil-chemists' Handbook Svo, 3 00

Keep's Cast Iron Svo, 2 so

Leach's The Inspection and Analysis of Food with Special Reference to State

Control. (In preparation.)

Matthews's The Textile Fibres Svo, 3 50
Metcatf's Steel. A Manual for Steel-users i2mo, 2 00

Metcalfe's Cost of Manufactures—And the Administration of Workshops,
Public and Private Svo, 5 00

Meyer's Modern Locomotive Construction 4to, 10 00

Morse's Calculations used in Cane-sugar Factories. i6mo, morocco, i 50
• Reisig's Guide to Piece-dyeing Svo, 25 00
Sabin's Industrial and Artistic Technology of Paints and Varnish Svo, 3 00
Smith's Press-working of Metals Svo, 3 00

Spalding's Hydraulic Cement i2mo, 2 00

Spencer's Handbook for Chemists of Beet-sugar Houses i6mo,morocco, 3 00

Handbook for Sugar Manufacturers and their Chemists.. .x6mo morocco, 2 00

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced, (/n
press.)

Thurston's Manual of Steam-boilers, their Designs, Construction and Opera-

tion Sto, 5 00
• Walke's Lectures on Explosives Svo, 4 00

West's American Foundry Practice xamo, 2 so
Moulder's Tezt-book izmo, 2 50
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Wolff*! Windmill as a Prime Hover 8vo, 3 oo

Woodbury's Fire Protection of Mills 8vo, 2 so

Wood's Rustless Coatings: Corrosion and ElectrolTsis of Iron and Steel. . .Svo, 4 00

MATHEUATICS.

Baker's Elliptic Functions 8vo, i 50
* Bass's Elements of Differential Calculus I2ma, 4 00
Briggs's Elements of Plane Analytic Geometry i2mo, i 00
Compton's Manual of logarithmic Computations i2mo, i so
DaTis's Introduction to the Logic of Algebra Svo, i 50
* Dickson's College Algebra Large i2mo, i so
* Answers to Dickson's College Algebra Svo, paper, 25
* Introduction to the Theory of Algebraic Equations Large izmo, i 25

Halsted's Elements of Geometry Svo, i 75
Elementary Synthetic Geometry 8vo> i 50

Rational Geometry i2mo,
* Johnson's (J. B.) Three-place Logarithmic Tables; Vest-pocket size, .paper, 15

100 copies for 5 00
* Mounted on heavy cardboard, S X 10 inches, 25

10 copies for 2 00

Johnson's (W. W.) Elementary Treatise on Differential Calculus. . .Small Svo, 3 00

Johnson's (W. W.) Elementary Treatise on the Integral Calculus. .Small Svo, i so
Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates i2mo, i 00

Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations.

Small Svo, 3 50
Johnson's (W. W.) Theory of Errors and the Method of Least Squares. . i2mo, 1 50
* Johnson's (W. W.) Theoretical Mechanics i2mo, 3 00

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) ijmo, 2 00
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables Svo, 3 00

Trigonometry and Tables published separately Each, 2 00
* Ludlow's Logarithmic and Trigonometric Tables Svo, i 00

Haurer's Technical Mechanics Svo, 4 00

Herriman and Woodward's Higher Mathematics Svo, 5 00

Herrimon's Method of Least Squares Svo, 2 00

Rice and Johnson's Elementary Treatise on the Differential Calculus. Sm., Svo, 3 00

Differential and Integral Calculus. 3 vols, in one Small Svo, 2 50

Wood's Elements of Co-ordinate Geometry Svo, 2 00

Trigonometry: Analytical, Plane, and Spherical i2mo, i 00

MECHAHICAL EKGIITEERIIIG.

MATERIALS OF ENGESTEERIHG, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice i2mo, .1 so

Baldwin's Steam Heating for Buildings i2mo, 2 50

Borr's Kinematics of Machinery Svo, 2 so

* Bartletfs Mechanical Drawing Svo, 3 00

* " " " Abridged Ed Svo, i 50

Benjamin's Wrinkles and Recipes i2mo, 2 00

Carpenter's Experimental Engineering Svo, 6 00

Heating and Ventilating Buildings Svo, 4 00

Cory's Smoke Suppression in Plants using Bituminous CoaL (7n prep-

anUioTu)

Clerk's Gas and Oil Engine SmaU Svo, 4 00

Coolidge's Manual of Drawing 8vo, paper, i 00

Coolidge and Freeman's Elements of General Drafting for Mechanical En-

gineers Oblong 4to, 2 50
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Cromwell's Treatise on Toothed Gearing X2mo i 50

Treatise on Belts and Pulleys i2mo. i so

Durley's Kinematics of Machines 8to, 4 00

Flather's Dynamometers and the Ueasnrement of Power lamo, i oo

Rope Driving i2mo, 2 00

Sill's Gas and Fuel Analysis for Engineers i2mo, i 25

Hall's Car Lubrication i2mo, i 00

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 so

Huiton's The Gas Engine 8vo,

Jamison's Mechanical Drawing .8vo,

Jones's Machine Design:

Part I.—Kinematics of Machinery 8vo,

Part IL—Form, Strength, and Proportions of Parts 8vo,

Kent's Mechanical Engineer's Pocket-book i6mo, morocco,

Ken's Power and Power Transmission 8vo,

Leonard's Machine Shops. Tools, and Methods. (In press.)

MacCord's Kinematics; or. Practical Mechanism 8vo,

Mechanical Drawing 4to.

Velocity Diagrams 8vo,

Hahan's Industrial Drawing. (Thompson.) 8vo,

Poole's Calorific Power of Fuels 8vo.

Reid's Course in Mechanical Drawing 8vo.

Text-book of Mechanical Drawing and Elementary Machine Design. .8vo,

Richards's Compressed Air X2mo,
Robinson's Principles of Mechanism 8vo,

Schwamb and Merrill's Elements of Mechanfsm 8vo,

Smith's Press-working of Metals 8vo,

Thurston's Treatise on Friction and Lost Work in Machinery and Hill

Work 8vo,

Animal as a Machine and Prime Motor, and the Laws of Energetic*. i2mo,
Warren's Elements of Machine Constructior and Drawing 8ro,

Weisbach's Kinematics and the Power of Transmission. Herrmann

—

Klein.) 8vo,

Machinery of Transmission and Governors. (Herrmann—Klein.). .8vo

Hydraulics and Hydraulic Motors. (Du Bois.) Svo,

Wolff's Windmill as a Prime Mover gvo.

Wood's Turbines , . . . ,8vo. 2 50

MATERIALS OF ENGINEERING.
Bovey's Strength of Materials and Theory of Structures Svo 7 so
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition

Reset Svo
Church's Mechanics of Engineering Svo.

Johnson's Materials of Construction Large Svo,

Keep's Cast Iron Svo,

Lanza's Applied Mechanics Svo.

Hartens's Handbook on Testing Materials. (Henning.) Svo,

Uerriman's Tezi-book on the Mechanics of Materials Svo,

Strength of Materials i2mo,
Metcalfs SteeL A Manual for Steel-users i2mo 2 00
Sabin's Industrial and Artistic Technology of Paints and Varnish Svo, 3 00
Smith's Materials of Machines i2mo, i 00
Thurston's Materials of Engineering 3 vols , Svo. 8 00

Part n.—Iron and Steel Svo, 3 50
Part III.—A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents Svo
TW-bsok of the MatarUla o( Cooatructlon. gve.

s



Wood's (De V.) Treatise on the Resistance of Materials and an Appt..dijt on
the Preservation of Timber 8vo, i oo

Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 00
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.

8vo, 4 00

STEAU-ERGmES AND BOILERS.

Cunot's Reflections on the Motive Power of Heft. (Thiimton.) 12110, i 50
Dawson's "Engineering" and Electric Traction Pocket-book. .i6moi mor., 5 00
Ford's Boiler Making for Boiler Makers iSmo, i 00
Boss's Locomotive SpKiss 8vo, 2 00
Hemenway's Indicator Practice and Steam-encine Economy lamo, 2 00
Button's Mechanical Engioseriiie of Power Plants 8vo, s 00

Heat and Heat-engines 8vo. s 00

Kent's Steam-boiler Economy 8vo, 4 00
Kneais's Practice and Theory of the Injector 8vo, i 50
HacCord's Slide-valves 8vo, 2 00

Meyer's Modem Locomotive Construction 4to. 10 00

Peabody's Manual of the Steam-engine Indicator i2mo, i 50
Tables of the Properties of Saturated Steam and Other Vapors Svo, i 00
Thermodynamics of the Steam-engine and Other Heat-engines Svo, 5 00

Valve-gears for Steam-engines Svo, 2 50

Peabody and Miller's Steam-boilers Svo, 4 00

Pray's Twenty Tears with the Indicator Large Svo, 2 50

Puplu's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.
(Osterberg.) lamo, i 25

Reagan's Locomotives : Simplei Compound, and Electric i2mo, ^ So

Rontgen's Principles of Thermodynamics. (Du Bois.) Svo, 5 00

Sinclair's Locomotive Engine Running and Management 12mo, 200
Smart's Handbook of Engineering Laboratory Practice i2mo, 2 50

Snow's Steam-boiler Practice Svo, 3 00

Spangler's Valve-gears Svo, 2 50

Notes on Thermodynamics i2mo, i 00

Spangler, Greene, and Marshall's Elements of Steam-engineering Svo, 3 00

Thurston's Handy Tables Svo, i so
Maniini of the Steam-engine 2 vols. Svo, 10 00

Part L—History. Structuce, and Theory Svo, 6 00

Part H.—Design, Construction, and Operation Svo, 6 00

Handbook of Engine and Boiler Trials, and the Use of the Indicator and
the Prony Brake Svo, s 00

Stationary Steam-engines Svo, 2 s"

Steam-boiler Explosions in Theory and in Practice i2mo, i 50

Manualof Steam-boilers, Their Designs, Construction.and Operation. Svo, 5 00

Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) Svo, s 00

nrhitham's Steam-engine Design Svo, s 00

Wilson's Treatise on Steam-boilers. (Flather,) i6mo, 2 50

Wood's Thermodynamics Heat Motors, and Refrigerating Machines Svo, 4 00

MECHAHICS AND MACHINERY.

Barr's Kinematics of Machinery Svo, 2 so

Bovey's Strength of Materials and Theory of Structures Svo, 7 50

Chase's The Art of Pattern-making i2mo, 2 50

ChordaL—Extracts from Letters "mo, 2 00

Church's Mechanics of Engineering Svo, 6 00
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Church's Rote* and Examples in Mechanics Sro, 2 oo

Compton's First Lessons in Metal-worlcini; i2mo, i so

Compton and De Groodfs The Speed Lathe izmo, i so

Cromwell's Tieatise on Toothed Gearing i2mo, i 50

Treatise on Belts and Pulleys i2mo, i 50

Dana's Text-book of Elementary Mechanics for the Use of Colleges and
Schools i2mo, I so

Dingey's Machinery Pattern Making i2mo, 2 00

Dredge's Record of the Transportation Exhibits Building of the World's

Columbian Exposition of 1893 4to half morocco, 5 oo

Du Boil's Elementary Principles of Mechanics:

VoL L—Kinematics 8vo, 3 So

Vol. n.—Statics 8to, 4 00

Vol. m.—Kinetics 8vo, 3 so

Mechanics of Engineering. Vol. I Small 4to, 7 50

VoL n. Small 4to, 10 00

Durley's Kinematics of Machines 8vo, 4 00

Fitzgerald's Boston Machinist i6mo, i 00

Flather's Dynamometers, and the Measurement of Power. lamo, 3 00

Rope Driving i2mo, 2 00

Goss's Locomotive Sparks 8vo, 2 00

Hall's Car Lubrication i2mo, i 00

Holly's Art of Saw Filing i8mo, 75
* Johnson's ("W. W.) Theoretical Mechanics izmo, 3 00

Johnson's (L. J.) Statics by Graphic and Algebraic Methods 8to, 2 00

Jones's Machine Design

:

Part I.—Kinematics of Machinery 8to, i so

Part n.—Form, Strength, and Proportions of Parts 8vo, 3 00

Kerr's Power and Power Transmission 8vo, 2 00

Lanza's AppUed Mechanics 8to, 7 50
Leonard s Machine Shops, Tools, and Methods, (/n press.)

MacCord's Kinematics; or. Practical Mechanism 8vo, 5 00

Velocity Diagrams 8vo, i so

Maorer's Technical Mechanics Bvo, 4 00

Merriman's Text-book on the Mechanics of Materials 8vo, 4 00
* Mlchie'i Elements of Analytical Mechanics Sn>, 4 00

Reagan's Locomotives: Simple, Compound, and Electric lamo, 2 so

Reid's Course in Mechanical Drawing 8vo, 2 00

Text-book of Mechanical Drawing and Elementary Machine Design. .8vo, 3 00

Richards's Compressed Air izmo, i 50

Robinson's Principles of Mechanism 8vo, 3 00

Ryan, Rorris, and Hoxie's Electrical Machinery. VoL 1 8vo, 2 50
Schwamb and Merrill's Elements of Mechanism

: 8vo, 3 00

Sinclair's Locomotive-engine Running and Management i2mo, 2 00

Smith's Press-working of Metals 8vo, 3 00
Materials of Machines xamo, x 00

Spangler, Greene, and Marshall's Elements of Steam-engineeiing 8vo, 3 00

Thurston's Treatise on Friction and Lost Work in Machinery and Mill
Work 8vo, 3 00

Animal asa Machine and Prime Motor, and the Laws of Energetics. i2mo, i 00

Warren's Elements of Machine Construction and Drawing 8vo, 7 so
Weisbach's Kinematics and the Power of Transmission. (Herrmann

—

Klein.) 8vo, s 00

Machinery of Transmission and Governors. (Herrmann—Klein.). 8vo, 5 00

Wood's Elements of Analytical Mechanics Svo, 3 00

Principles of Elementary Mechanics izmo, i 25

Turbines Svo, 2 50

The World's Columbian Exposition of i8g3 > 4to, i 00
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METALLURGY.
Egleston's MetallurEy of SilTer, Gold, and Menurj:

VoL 1.—Silver 8vo, 7 50
Vol. n.—Gold and Mercury 8vo, 7 so

•• Iles's Lead-smelting. (Postage cents additionaL) i2mo, 2 so
Keep's Cast Iron 8vo, 2 so
Kunhardt's Practice of Ore Dressing in Europe 8vo, i 50
Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.). lamo, 3 00
Hetcalf's Steel. A Manual for Steel-users i2mo, 2 00
Smith's Materials of Machines lamo, i 00
Thurston's Materials of Engineering. In Three Parts 8vo, 8 00

Part n.—Iron and Steel 8vo,
Part HL—A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo,
Olke'i Modem Electrolytic Copper Refining 8vo,

MIKERAL0G7.
Barringer's Description of Minerals of Commercial Value. Oblong, morocco,
Boyd's Resources of Southwest Virginia 8vo.

Map of Southwest Virginia Pocket-book form,

Bmsh'f Manual of DeterminatiTe Mineralogy. (Penfield.) 8vo,

Cbester'g Catalogue of Minerals 8vo, paper.
Cloth,

Dictionary of the Names of Minerals 8vo,

Dana's System of Mineralogy. Large 8to, half leather.

First Appendix to Dana's Bew "System of Mineralogy.'!.... Large 8to,

Text-book of Mineralogy 8to,

Minerals and How to Study Them lamo.
Catalogue of American Localities of Minerals Large 8to,

Mannal of Mineralogy and Petrography lamo,
Douglas's Untechnical Addresses on Technical Subjects i2mo,

Eakk's Mineral Tables. 8to,

Egleston's Catalogue of Minerals and Synonyms 8vo,

Hussak's The Determination of Rock-forming Minerals. (Smith.) Small 8vo, 2 00

Merrill's Bon-metallic Minerals; Their Occurrence and Uses. Svo, 4 00

* Penfield's Botes on Determinative Mineralogy and Record of Mineral Tests.
Svo, paper, o 50

Rosenbnsch's Microscopical Physiography of the Rock-making Minerals.

(Iddings.) Svo, 5 00

• Tillman's Text-book of Important Minerals and Docks Svo, 2 00

Williams's Manual of Lithology Svo, 3 00

Mmrno.
Beard's Ventilation of Mines lamo, 2 50

Boyd's Resources of Southwest Virginia Svo, 3 00

Map of Southwest Virginia Pocket-book form, 2 00

Douglas's Untechnical Addresses on Technical Subjects i2mo, 1 00

• Drinker's Tunneling, Explosive Compounds, and Rock Drills.

4to, half morocco, 25 00

Eissler's Modem High Explosives Svo, 4 oo

Fowler's Sewage Works Analyses ismo, 2 00

Goodyear's Coal-mines of the Western (^ast of the United States i2mo, 2 50

Ihlseng's Manniii of Mining Svo, 4 00

** Ues's Lead-smelting. (Postage pc. additional.) izmo, 2 50

Kunhardt's Practice of Ore Dressing in Europe Svo, i 50

O'Driscoll's Botes on the Treatment of Gold Ores Svo, 2 00

* Walke's Lectures on Explosives Svo, 4 00

Wilson's Cyanide Processes zsmo, i so

Chlorination Process ismo, i 5c
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Wilson's Hydraulic and Placer Mining l2mo, 2 oo
Treatise on Practical and Theoretical Mine Ventilation i2mo, i 25

SANITARY SCIENCE.

FolwelPs Sewerage. (Designing, Construction, and Maintenance.) Svo, 3 00

Water-supply Engineering 8vo, 4 00

Fuertes's Water and Public Health izmo, i 50
Water-filtration Works i2mo, 2 50

Gerhard's Guide to Sanitary House-inspection i6mo, x 00

Goodrich's Economical Disposal of Town's Refuse Demy 8to, 3 50

Hazen's Filtiation of Public Water-supplies 8vo» 3 00

Leach's The Inspection and Analysis of Food with Special Reference to State

ControL 8vo, 7 50
Mason's Water-supply. (Considered Principally from a Sanitary Stand-

point.) 3d Edition, Rewritten 8vo, 4 00

Examination of Water. (Chemical and BacteriologicaL) i2mo, z 25

Merriman's Elements of Sanitary Engineering 8vo, 2 00

Ogden's Sewer Design x2mo, 2 00

Prescott and Winslow's Elements of Water Bacteriology,with Special Reference

to Sanitary Water Analysis i2mo, z 25
* Price's Handbook on Sanitation Z2mo, i 50

Richards's Cost of Food. A Study in Dietaries X2mo, x 00
Cost of Living as Modified by Sanitary Science Z2mo, z 00

Richards and Woodman's Air, Water, and Food from a Sanitary Stand-

point 8vo, 2 00
* Richards and Williams's The Dietary Computer 8vo, z 50
Rideal's Sewage and Bacterial Purification of Sewage 8to, 3 50
Turneaure and Russell's Public Water-supplies 8vo, 5 00

Von Behring's Suppression of Tuberculosis. (Bolduan.) x2mo, z 00
Whipple's Microscopy of Drinking-water 8to, 3 50
Woodhull's Notes and Military Hygiene z6mo, x 50

MISCELLANEOUS.

Emmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists Large 8to,

Ferrel's Popular Treatise on the Winds 8vo,

Haines's American Railway Management Z2mo
Mott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart.

Fallacy of the Present Theory of Sound z6mo,
Ricketts's History of Rensselaer Polytechnic Institute, Z824-2894. Sznail 8vo,

Rostoski's Serum Diagnosis. (Bolduan.) i2mo,
Rotherham's Emphasized New Testament Large 8vo,

Steel's Treatise on the Diseases of the Dog 8vo,

Totten's Important Question in Metrology 8vo,

The World's Columbian Exposition of 1893 4to, z 00
Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, x 00
Worcester and Atkinson. Small Hospitals, Establishment and Maintenance-

and Suggestions for Hospital Architecture, with Plans for a Small
Hospital i2mo, z 25

HEBREW AND CHALDEE TEXT-BOOKS.
Green's Grammar of the Hebrew Language 8vo, 3 00

Elementary Hebrew Grammar i2mo. 1 25
Hebrew Chrestomathy 8vo, 2 00

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.

f Tregelles.) Small 4to, half morocco, s 00
Letteris'^ Hebrew Bible Svo, 2 25
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