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Chapter 1

Preliminaries

Preface to the Student

This book is intended to be used as a text for a second semester of linear
algebra either at the senior or first-year-graduate level. It is written for you
under the assumption that you already have successfully completed a first
course in linear algebra and a first course in abstract algebra. The first
short chapter is a very quick review of the basic material with which you are
supposed to be familiar. If this material looks new, this text is probably not
written for you. On the other hand, if you made it into graduate school, you
must have already acquired some background in modern algebra. Perhaps all
you need is to spend a little time with your undergraduate texts reviewing the
most basic facts about equivalence relations, groups, matrix computations,
row reduction techniques, and the basic concepts of linear independence,
span, and basis in the context of R".

On the other hand, some of you will be ready for a more advanced ap-
proach to the material covered here than we can justify making a part of the
course. For this reason I have included some starred sections that may be
skipped without disturbing the general flow of ideas, but that might be of
interest to some students. If material from a starred section is ever cited in
a later section, that section will necessarily also be starred.

For the material we do cover in detail, we hope that you will find our pre-
sentation to be thorough and our proofs to be complete and clear. However,
when we indicate that you should verify something for yourself, that means
you should use paper and pen and write out the appropriate steps in detail.

One major difference between your undergraduate linear algebra text and
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8 CHAPTER 1. PRELIMINARIES

this one is that we discuss abstract vector spaces over arbitrary fields instead
of restricting our discussion to the standard space of n-tuples of real numbers.
A second difference is that the emphasis is on linear transformations from one
vector space over the field F' to a second one, rather than on matrices over
F. However, a great deal of the general theory can be effortlessly translated
into results about matrices.

1.1 Fields

The fields of most concern in this text are the complex numbers C, the real
numbers R, the rational numbers Q, and the finite Galois fields GF(q),
where ¢ is a prime power. In fact, it is possible to work through the entire
book and only use only the fields R and C. And if finite fields are being
considered, most the time it is possible to use just those finite fields with a
prime number of elements, i.e., the fields Z, ~ Z/pZ, where p is a prime
integer, with the algebraic operations just being addition and multiplication
modulo p. For the purposes of reading this book it is sufficient to be able
to work with the fields just mentioned. However, we urge you to pick up
your undergraduate abstract algebra text and review what a field is. For
most purposes the symbol F' denotes an arbitrary field except where inner
products and/or norms are involved.

Kronecker delta When the underlying field F' is understood, the symbol
d;; (called the Kronecker delta denotes the element 1 € F if ¢ = j and the
element 0 € F'if ¢ # j. Occasionally it means 0 or 1 in some other structure,
but the context should make that clear.

If you are not really familiar with the field of complex numbers, you should
spend a little time getting acquainted. A complex number o = a + bi, where
a,b € R and i = —1, has a conjugate @ = a — bi, and a- @ = a? + b? = |a|%.
It is easily checked that .- 3 = @- 3. Note that || = 0 if and only if o = 0.
You should show how to compute the multiplicative inverse of any nonzero
complex number.

We define the square-root symbol Vs usual: For 0 < z € R, put
\V/z = |y| where y is a real number such that y? = .

The following two lemmas are often useful.

Lemma 1.1.1. Every complex number has a square root.
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Proof. Let a« = a + bt be any complex number. With the definition of V
given above, and with v = v/a? + b2 > |a|, we find that

2
(,/wr“ii,/u) = a+ |bli.
2 2

Now just pick the sign + so that +|b| = b. O

Lemma 1.1.2. Fvery polynomial of odd degree with real coefficients has a
(real) zero.

Proof. 1t suffices to prove that a monic polynomial
Piz)=2"+az" ' +---+a,

with some a; # 0, with a;,...,a, € R and n odd has a zero. Put a = |a1| +
lag|+-+-+|an|+1> 1, and e = £1. Then |ay(ea)” ' +- -+ a,_1(€a) +a,| <
lai(@)" ' + -+ |an_1]a + |an| < (@ —1)(a™') < a™. Tt readily follows that
P(a) > 0 and P(—a) < 0. Hence by the Intermediate Value Theorem there
is a A € (—a,a) such that P(\) = 0. O

1.2 Groups

Let G be an arbitrary set and let o : G X G — G be a binary operation on G.
Usually we denote the image of (g1, 92) € G X G under the map o by g; o gs.
Then you should know what it means for (G, o) to be a group. If this is the
case, (G is an abelian group provided g; o g, = g9 0 g1 for all g1, go € G. Our
primary example of a group will be a vector space whose elements (called
vectors) form an abelian group under vector addition. It is also helpful if you
remember how to construct the quotient group G/N, where N is a normal
subgroup of G. However, this latter concept will be introduced in detail in
the special case where it is needed.

1.3 Matrix Algebra

An m X n matriz A over F' is an m by n array of elements from the field F'.
We may think of A as an ordered list of m row vectors from F™ or equally
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well as an ordered list of n column vectors from F™. The element in row ¢
and column j is usually denoted A;;. The symbol M, ,,(F) denotes the set
of all m x n matrices over F. It is readily made into a vector space over F.
For A, B € M, ,(F) define A + B by

(A + B)i,j == Aij + Bzg
Similarly, define scalar multiplication by
(U,A)Z] = aA,j

Just to practice rehearsing the axioms for a vector space, you should show
that M, ,(F') really is a vector space over F. (See Section 2.1.)

If A and B are m X n and n X p over F, respectively, then the product
AB is an m X p matrix over F' defined by

(AB)Z] = Z AikBlcj-
k=1

Lemma 1.3.1. Matriz multiplication, when defined, is associative.

Proof. (Sketch) If A,B,C are m X n, n X p and p X ¢ matrices over F,
respectively, then

p p n
((AB)C)i; = > (ABu)Ciy =Y (D AiBu)Cij =
=1 =1 k=1
== Z Aik:Bk:lClj - (A(BC))Z]
1<k<m1<I<p

O

The following observations are not especially deep, but they come in so
handy that you should think about them until they are second nature to you.

Obs. 1.3.2. The ith row of AB 1is the ith row of A times the matriz B.

Obs. 1.3.3. The jth column of AB is the matrix A times the jth column of
B.

If Ais m X n, then the n X m matrix whose (i, j) entry is the (j,4) of A
is called the transpose of A and is denoted A7
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Obs. 1.3.4. If A ism x n and B is n x p, then (AB)" = BT A”.

Obs. 1.3.5. If A is mxn with columns Cy,...,Cy, and X = (z1,...,2,)" is
nx1, thenAX is the linear combination of columns of A given by Z?Zl z;C;.

Obs. 1.3.6. If A is m x n with rows az, ...,y and X = (T1,...,%m), then
XA is the linear combination of rows of A given by Y i* | ;0.

At this point you should review block multiplication of matrices.

1.4 Linear Equations Solved with Matrix
Algebra

For each 7, 1 <17 < m, let

n
E CI,ij.Tj = bj
Jj=1

be a linear equation in the indeterminates x1, ..., z, with the coefficients a;;
and b; all being real numbers. One of the first things you learned to do in
your undergraduate linear algebra course was to replace this system of linear
equations with a single matrix equation of the form

AZ = b, where A = (a;;) is m x n with m rows and n columns,

and & = (21,...,7,)", b= (biy. .. b))t

You then augmented the matrix A with the column b to obtain

aipr ... Qi b1

ag1 ... Qopn bQ
A=

aml --- Qmn bm

At this point you performed elementary row operations on the matrix A’
so as to replace the submatrix A with a row-reduced echelon matrix R. You
then used this matrix (R ‘ b) to read off all sorts of information about the
original matrix A and the system of linear equations. The matrix R has r
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nonzero rows for some r, 0 < r < m. The leftmost nonzero entry in each row
of Ris a 1, and it is the only nonzero entry in its column. Then the matrix
(R ‘ b ) is used to solve the original system of equations by writing each of the
“leading variables” as a linear combination of the other (free) variables. The
r nonzero rows of R form a basis for the row space of A, the vector subspace
of R™ spanned by the rows of A. The columns of A in the same positions as
the leading 1’s of R form a basis for the column space of A, i.e., the subspace
of R™ spanned by the columns of A. There are n —r free variables. Let each
of these variables take a turn being equal to 1 while the other free variables
are all equal to 0, and solve for the other leading variables using the matrix
equation RZ = 0. This gives a basis of the (right) nullspace of A, i.e., a basis
of the space of solutions to the system of homogeneous equations obtained
by replacing b with 0. In particular we note that r is the dimension of both
the row space of A and of the column space of A. We call r the rank of A.
The dimension of the right null space of A is n — r. Replacing A with its
transpose A, so that the left null space of A becomes the right null space
of AT, shows that the left null space of A has dimension m — 7.

A good reference for the basic material is the following text: David C.
Lay, LINEAR ALGEBRA AND ITS APPLICATIONS, 3rd Edition, Addison
Wesley, 2003.



Chapter 2

Vector Spaces

Linear algebra is primarily the study of linear maps on finite-dimensional
vector spaces. In this chapter we define the concept of vector space and
discuss its elementary properties.

2.1 Definition of Vector Space

A wvector space over the field F is a set V' together with a binary operation “+”
on V such that (V,+) is an abelian group, along with a scalar multiplication
on V (i.e., amap F x V — V) such that the following properties hold:

1. For each a € F and each v € V, av is a unique element of V' with
1v=wforallveV. Here 1 denotes the multiplicative identity of F.

2. Scalar multiplication distributes over vector addition: a(u + v) =
(au) + (av), which is usually written as au + av, for all @ € F and all
u,v € V.

3. (a+b)u =au+bu, for all a,b € F and all u € V.

4. a(bv) = (ab)v, for all a,b € F and allv € V.

2.1.1 Prototypical Example

Let S be any nonempty set and let F' be any field. Put V =F% = {f:S —
F : fis afunction}. Then we can make V into a vector space over F as
follows. For f,g € V, define the vector sum f+¢:S — F by

(f+9)(s)=f(s)+g(s) for all s € S.

13



14 CHAPTER 2. VECTOR SPACES
Then define a scalar multiplication F' x V' — V as follows:

(af)(s)=a(f(s)) forallae F, feF, s€S.

It is a very easy but worthwhile exercise to show that with this vector ad-
dition and this scalar multiplication, V' is a vector space over F. It is also in-
teresting to see that this family of examples includes (in some abstract sense)
all the examples of vector spaces you might have studied in your first linear
algebra course. For example, let ' = R and let S = {1,2,...,n}. Then
each f:{1,2,...,n} — R is given by the n-tuple (f(1), f(2),..., f(n)). So
with almost no change in your point of view you can see that this example
is essentially just R™ as you knew it before.

2.1.2 A Second Example

Let F be any field and let = be an indeterminate over F'. Then the ring F'[z]
of all polynomials in « with coefficients in F' is a vector space over F'. In
Chapter 4 we will see how to view F[z] as a subspace of the special case of
the preceding example where S = {0,1,2,...}. However, in this case, any
two elements of F[x] can be multiplied to give another element of F'[z], and
F[z] has the structure of a commutative ring with 1. It is even an integral
domain! In fact, it is a linear algebra. See the beginning of Chapter 4 for
the definition of a linear algebra, a term that really ought to be defined
somewhere in a Linear Algebra course. (Look up any of these words that
you are unsure about in your abstract algebra text.) (Note: Our convention
is that the zero polynomial has degree equal to —o0.)
If we fix the nonnegative integer n, then

Pn={f(2) € Flz] : degree(f(z)) < n}
is a vector space with the usual addition of polynomials and scalar multipli-
cation.
2.2 Basic Properties of Vector Spaces

We are careful to distinguish between the zero 0 of the field F' and the zero
vector 0 in the vector space V.
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Theorem 2.2.1. (Properties of zero) For a € F and v € V we have the
following:
av=0if and only ifa=0€ F orv=0€V.

Proof. First suppose that a = 0. Then 0v = (0+0)v = Ov + 0v. Now adding
the additive inverse of Qv to both 31des of this equatlon ylelds 0 = Ov, for all
v € V. Similarly, if v = 0, we have a0 = a(0 + 0) = a0 4 a0. Now add the
additive inverse of a0 to both sides to obtain 0 = a0.

What remains to be proved is that if av = 0, then either ¢ = 0 or v = 0.
So suppose av = 0. If a = 0 we are done. So suppose a # 0. In this case a
has a multiplicative inverse a™! € F. So v = (a"'a)v = a }(av) = a0 =0
by the preceding paragraph. This completes the proof. O

Let —v denote the additive inverse of v in V', and let —1 denote the
additive inverse of 1 € F.

Lemma 2.2.2. For all vectorsv € V, (—=1)v = —v.

Proof. The idea is to show that if (—1)v is added to v, the the result is 0,
the additive identity of V. So, (-1)v+v = (-1)v+1lv=(—-1+1)v =00 =10
by the preceding result. O

2.3 Subspaces

Definition A subset U of V is called a subspace of V' provided that with
the vector addition and scalar multiplication of V' restricted to U, the set U
becomes a vector space in its own right.

Theorem 2.3.1. The subset U of V' is a subspace of V if and only if the
following properties hold:

(i) U # 0.
(i) If u,v € U, then u+v € U.
(ii) If a € F and u € U, then au € U.

Proof. Clearly the three properties all hold if U is a subspace. So now suppose
the three properties hold. Then U is not empty, so it has some vector u. Then
Ou=0¢€ U. For any v € U, (=1)v = —v € U. By these properties and
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property (ii) of the Theorem, (U,+) is a subgroup of (V,+). (Recall this
from your abstract algebra course.) It is now easy to see that U, with the
addition and scalar multiplication inherited from V', must be a vector space,
since all the other properties hold for U automatically because they hold for
V. O

2.4 Sums and Direct Sums of Subspaces

Definition Let Uy, ..., U, be subspaces of V. The sum U; +Us+---+ U,
is defined to be

ZUZ :{U1+U2++UmUZ€UZfOI“1S’LSm}
i=1

You are asked in the exercises to show that the sum of subspaces is a
subspace.

Definition The set {Uj,...,U,} of subspaces is said to be independent
provided that if6:u1+u2+---+um with u; € U;, 1 <1 <m, then u; =0
foralli=1,2,...,m.

Theorem 2.4.1. Let U; be a subspace of V for 1 < i < m. Fach element
v € Y " Ui has a unique expression of the form v = Y "" u; with u; € U;
for all i if and only if the set {Us,...,Uy,} is independent.

Proof. Suppose the set {Uy,...,Uy} is independent. Then by definition 0
has a unique representation of the desired form (as a sum of zero vectors).
Suppose that some v = " u; = > * | v; has two such representations with
u, v; €U;; 1<i<m. Then0=v—v= o (ug — vy)with u; —v; € U;
since U; is a subspace. So u; = v; for all . Conversely, if each element of the
sum has a unique representation as an element of the sum, then certainly 0
does also, implying that the set of subspaces is independent. O

Definition If each element of > ., U; has a unique representation as
an element in the sum, then we say that the sum is the direct sum of the
subspaces, and write

SUi=Uiolho - 0Un=0) U
=1

=1
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Theorem 2.4.2. Let Uy, ..., Uy, be subspaces of V' for which V = >"1" U;.
Then the following are equivalent:

(1t) Ui N Y21 cicmin; Ui = {0} for each j, 1 < j <m.
Proof. Suppose V. =& 37" Ui. fu € UjN Y, ic iz Uis 52y u = —u; € Uj
and u = 37, i i Wi, then D00 u; = 0, forcing all the u;’s equal to 0. This
shows that (i) implies (ii). It is similarly easy to see that (i) implies that 0

has a unique representation in ", Uj. O

Note: When m = 2 this says that U, + Uy, = U; & U, if and only if
U NUy; ={0}.

2.5 Exercises

1. Determine all possible subspaces of F? = {f : {1,2} — F : f is a function}.

2. Prove that the intersection of any collection of subspaces of V' is again
a subspace of V.

3. Define the sum of a countably infinite number of subspaces of V' and
discuss what it should mean for such a collection of subspaces to be
independent.

4. Prove that the set-theoretic union of two subspaces of V' is a subspace
if and only if one of the subspaces is contained in the other.

5. Prove or disprove: If Uy, Uy, W are subspaces of V' for which U;+W =
U2 + W, then U1 = U2.

6. Prove or disprove: If Uy, Uy, W are subspaces of V' for which Uy W =
U2 ©® W, then U1 = UQ.
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Chapter 3

Dimensional Vector Spaces

Our main concern in this course are the finite dimensional vector spaces, a
concept that will be introduced in this chapter. However, in a starred section
of the Appendix and with the help of the appropriate axioms from set theory
we can show that every vector space has a well-defined dimension. The key
concepts here are: span, linear independence, basis, dimension.

We assume throughout this chapter that V' is a vector space over the field
F.

3.1 The Span of a List

For the positive integer N let N be the ordered set N = {1,2,..., N}, and let
N be the ordered set {1,2,...,} of all natural numbers. Definition: A list
of elements of V is a function from some N to V or from A to V. Usually
such a list is indicated by (v1,ve,...,v,) for some positive integer m, or
perhaps by (vq,vs,...) if the list is finite of unknown length or countably
infinite. An important aspect of a list of vectors of V' is that it is ordered.
A second important difference between lists and sets is that elements of lists
may be repeated, but in a set repetitions are not allowed. For most the work
in this course the lists we consider will be finite, but it is important to keep
an open mind about the infinite case.

Definition: Let L = (vy,v,...) be a list of elements of V. We say
that v € V is in the span of L provided there are finitely many scalars
ai,Q9,...,0, € F such that v = Z:il a;v;. Then the set of all vectors in
the span of L is said to be the span of L and is denoted span(v, vy, ...). By

19
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convention we say that the span of the empty list () is the zero space {0}.
The proof of the following lemma is a routine exercise.

Lemma 3.1.1. The span of any list of vectors of V is a subspace of V.

If span(vy,...,v,) =V, we say (v1,...,0,) spans V. A vector space is
said to be finite dimensional if some finite list spans V. For example, let F"
denote the vector space of all column vectors with n entries from the field
F, and let ¢€; be the column vector (0,...,0, 1, 0...,0)T with n — 1 entries
equal to 0 € F and a 1 € F in position 7. Then F™ is finite dimensional
because the list (e, e, ..., €,) spans F™.

Let f(z) € F[z] have the form f(z) = ag + a1z + - - - a,2™ with a, # 0.
We say that f(z) has degree n. The zero polynomial has degree —oo. We let
P,.(F) denote the set of all polynomials with degree at most n. Then P, (F)
is a subspace of F[z] with spanning list L = (1,x,2?%,...,z").

3.2 Linear Independence and the Concept of
Basis

One of the most fundamental concepts of linear algebra is that of linear
independence.

Definition: A finite list (vy, ..., v,,) of vectors in V is said to be linearly
independent provided the only choice of scalars aq,...,a, € F for which
Yo = 0isa; =ap = -+ = ay, = 0. An infinite list (vy,vs,...) of
vectors in V' is said to be linearly independent provided that for each positive
integer m, the list (v, ..., v,,) consisting of the first m vectors of the infinite
list is linearly independent.

A finite set S of vectors of V is said to be linearly independent provided
each list of distinct vectors of S (no repetition allowed) is linearly indepen-
dent. An arbitrary set S of vectors of V is said to be linearly independent
provided every finite subset of S is linearly independent.

Any subset of V' or list of vectors in V is said to be linearly dependent
provided it is not linearly independent. It follows immediately that a list
L = (v1,v9,...) is linearly dependent provided there is some integer m > 1
for which there are m scalars aq,...,a, € I such that ZZL a;v; = 0 and
not all the a;’s are equal to zero.

The following Linear Dependence Lemma will turn out to be ex-
tremely useful.
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Lemma 3.2.1. The nonempty list L = (vy,v,...) of vectors in V with
vy # 0 is linearly dependent if and only if there is some integer j such that
the list (vq,...,v;) is a list consisting of the first j vectors of L for which the
following hold:

(1) v; € span(vy,...,vj_1);

(1) If the jth term v; is removed from the list L, the span of the remaining
list equals the span of L.

Proof. Suppose that the list L = (vq, vg, .. .) is linearly dependent and v; # 0.
For some m there are scalars aq, ..., a,, for which Z;’;l a;v; = 0 with at least
one of the a; not equal to 0. Since v; # 0, not all of the scalars as, . .., an
can equal 0. So let 7 > 2 be the largest index for which a; # 0. Then

v = (—CL1UL]-_1)U1 + (—(ZQ%-_I)UQ + o+ (—aj_1a; i,

j
proving (i).

To see that (ii) also holds, just note that in any linear combination of
vectors from L, if v; appears, it can be replaced by its expression as a linear

combination of the vectors vy,...,v; ;.
For the converse, it should be immediately obvious that if (i) and (ii)
hold, then the list L is linearly dependent. O

The following theorem is of major importance in the theory. It says that
(finite) linearly independent lists are never longer than (finite) spanning lists.

Theorem 3.2.2. Suppose that V' is spanned by the finite list L = (wy, . . ., wy)
and that M = (vq,...,v) is a linearly independent list. Then m < n.

Proof. We shall prove that m < n by using an algorithm that is interesting
in its own right. It amounts to starting with the list L and removing one w
and adding one v at each step so as to maintain a spanning list. Since the
list L = (wy,...,wy,) spans V, adjoining any vector to the list produces a
linearly dependent list. In particular,

(vl,wl, .. .,U]n)

is linearly dependent with its first element different from 0. So by the Linear
Dependence Lemma we may remove one of the w’s so that the remaining list
of length n is still a spanning list. Suppose this process has been carried out
until a spanning list of the form

B = (vy,...,v5,wy,...,w,_;)
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has been obtained. If we now adjoin v;;; to the list B by inserting it imme-
diately after v;, the resulting list will be linearly dependent. By the Linear
Dependence Lemma, one of the vectors in this list must be a linear combina-
tion of the vectors preceding it in the list. Since the list (v, ..., v;4+1) must
be linearly independent, this vector must be one of the w'’s and not one of
the v’s. So we can remove this w’ and obtain a new list of length n which still
spans V' and has vq,...,v;41 as its initial members. If at some step we had
added a v and had no more w’s to remove, we would have a contradiction,
since the entire list of v’s must be linearly independent. So we may continue
the process until all the vectors vy, ...,v,, have been added to the list, i.e.,
m < n. O

Definition A vector space V over the field F' is said to be finite dimen-
stonal provided there is a finite list that spans V.

Theorem 3.2.3. If U is a subspace of the finite-dimensional space V', then
U is finite dimensional.

Proof. Suppose that V' is spanned by a list of length m. If U = {6}, then
certainly U is spanned by a finite list and is finite dimensional. So suppose
that U contains a nonzero vector v;. If the list (v;) does not span U, let vo
be a vector in U that is not in span(v;). By the Linear Dependence Lemma,
the list (v1, v9) must be linearly independent. Continue this process. At each
step, if the linearly independent list obtained does not span the space U, we
can add one more vector of U to the list keeping it linearly independent. By
the preceding theorem, this process has to stop before a linearly independent
list of length m + 1 has been obtained, i.e., U is spanned by a list of length
at most m, so is finite dimensional. O

Note: In the preceding proof, the spanning list obtained for U was also
linearly independent. Moreover, we could have taken V' as the subspace U on
which to carry out the algorithm to obtain a linearly independent spanning
list. This is a very important type of list.

Definition A basis for a vector space V over F'is a list L of vectors of
V' that is a spanning list as well as a linearly independent list. We have just
observed the following fact:

Lemma 3.2.4. Each finite dimensional vector space V has a basis. By con-
vention the empty set () is a basis for the zero space {0} .
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Lemma 3.2.5. If V is a finite dimensional vector space, then there is a
unique integer n > 0 such that each basis of V' has length ezxactly n.

Proof. It B; = (v1,...,v,) and By = (ug,...,uy) are two bases of V', then
since By spans V and B is linearly independent, m < n. Since B is linearly
independent and B, spans V', n < m. Hence m = n. O

Definition If the finite dimensional vector space V has a basis with
length n, we say that V' is n-dimensional or that n is the dimension of V.
Moreover, each finite dimensional vector space has a well-defined dimension.

For this course it is completely satisfactory to consider bases only for finite
dimensional spaces. However, students occasionally ask about the infinite
dimensional case and we think it is pleasant to have a convenient treatment
available. Hence we have included a treatment of the infinite dimensional
case in an appendix that treats a number of special topics. For our general
purposes, however, we are content merely to say that any vector space which
is not finite dimensional is infinite dimensional (without trying to associate
any specific infinite cardinal number with the dimension).

Lemma 3.2.6. A list B = (v1,...,v,) of vectors in 'V is a basis of V if and
only if every v € V can be written uniquely in the form

V= a0 + -+ ApUy. (3.1)

Proof. First assume that B is a basis. Since it is a spanning set, each v € V
can be written in the form given in Eq. 3.1. Since B is linearly independent,
such an expression is easily seen to be unique. Conversely, suppose each
v € V has a unique expression in the form of Eq. 3.1. The existence of the
expression for each v € V implies that B is a spanning set. The uniqueness
then implies that B is linearly independent. O

Theorem 3.2.7. If L = (vy,...,v,) is a spanning list of V', then a basis of
V' can be obtained by deleting certain elements from L. Consequently every
finite dimensional vector space has a basis.

Proof. If L is linearly independent, it must already be a basis of V. If not,
consider v;. If v; = 6, discard v;. If not, then leave L unchanged. Since
L is assumed to be linearly dependent, there must be some j such that
v; € span(vy,...,vj—1). Choose the smallest j for which this is true and
delete that v; from L. This will yield a list L; of n — 1 elements that still
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spans V. If L, is linearly independent, then L; is the desired basis of V. If
not, then proceed as before to obtain a spanning list of size n — 2. Continue
this way, always producing spanning sets of shorter length, until eventually
a linearly independent spanning set is obtained. O

Lemma 3.2.8. FEvery linearly independent list of vectors in a finite dimen-
stonal vector space V' can be extended to a basis of V.

Proof. Let V' be a finite dimensional space, say with dim(V) = n. Let
L = (v1,...,v) be a linearly independent list. So 0 < k < n. If £k < n we
know that L cannot span the space, so there is a vector vg,; not in span(L).
Then L' = (vy, ..., vk, vk+1) must still be linearly independent. If k =1 <n
we can repeat this process, adjoining vectors one at a time to produce longer
linearly independent lists until a basis is obtained. As we have seen above,
this must happen when we have an independent list of length n. O

Lemma 3.2.9. If V is a finite-dimensional space and U 1is a subspace of
V', then there is a subspace W of V such that V. = U & W. Moreover,
dim(U) < dim(V') with equality if and only if U = V.

Proof. We have seen that W must also be finite-dimensional, so that it
has a basis By = (vi,...,vx). Since By is a linearly independent set of
vectors in a finite-dimensional space V, it can be completed to a basis
B = (vi,...,0,Vks1,.-.,0,) of V. Put W = span(vgy1,...,v,). Clearly
V=U+W,and UNW = {0}. It follows that V = U @ W. The last part
of the lemma should also be clear. O

Theorem 3.2.10. Let L = (vq,. .., vg) be a list of vectors of an n-dimensional
space V. Then any two of the following properties imply the third one:

(i) k =n;

(i) L is linearly independent;

(#i) L spans V.

Proof. Assume that (i) and (ii) both hold. Then L can be completed to a
basis, which must have exactly n vectors, i.e., L already must span V. If
(ii) and (iii) both hold, L is a basis by definition and must have n elements
by definition of dimension. If (iii) and (i) both hold, L can be restricted to
form a basis, which must have n elements. Hence L must already be linearly
independent. ]
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Theorem 3.2.11. let U and W be finite-dimensional subspaces of the vector
space V. Then

dim(U + W) = dim(U) + dim(W) — dim(U N W).

Proof. Let By = (v1,...,v;) be a basis for U N W. Complete it to a ba-
sis By = (v1,..., Uk, U1,...,u,) of U and also complete it to a basis By =
(v1,...,wy,...,w) for W. Put B = (v1,...,0, U1, ..., U, W1,..., w). We
claim that B is a basis for U + W, from which the theorem follows.

First we show that B is linearly independent. So suppose that there
are scalars a;, b;,c¢; € F for which Zle aiv; + >y biu; + 2221 ciw; = 0.
It follows that Zle aiv; + Yoy biu; = —Z:Zl cw; € UNW. Since By
is linearly independent, this means all the b;’s are equal to 0. This forces
Zle a;v; + Zle c;w; = 0. Since By is linearly independent, this forces all
the a;’s and ¢;’s to be 0. But it should be quite clear that B spans U + V', so
that in fact B is a basis for U + W. O

At this point the following theorem is easy to prove. We leave the proof
as an exercise.

Theorem 3.2.12. Let Uy, ..., U, be finite-dimensional subspaces of V with
V=U +---U, and with B; a basis for U;, 1 < i < m. The the following
are equivalent:

() V=U& - ®Up;

(i1) dim(V') = dim(Uy) + dim(Us) + - - - + dim(Uy,);

(15i) (B1, Ba, ..., Bn) is a basis for V.

(iv) The spaces Uy, ..., Uy, are linearly independent.

3.3 Exercises

1. Write out a proof of Lemma 3.1.1.

2. Let L be any list of vectors of V', and let S be the set of all vectors in
L. Show that the intersection of all subspaces having S as a subset is
just the span of L.

3. Show that any subset 7' of a linearly independent set S of vectors is
also linearly independent, and observe that this is equivalent to the
fact that if 7" is a linearly dependent subset of S, then S is also linearly
dependent. Note: The empty set () of vectors is linearly independent.
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10.

11.

12.
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Show that the intersection of any family of linearly independent sets of
vectors of V' also linearly independent.

Give an example of two linearly dependent sets whose intersection is
linearly independent.

. Show that a list (v) of length 1 is linearly dependent if and only if

v=20.

Show that a list (v1,vs) of length 2 is linearly independent if and only
if neither vector is a scalar times the other.

Let m be a positive integer. Let V = {f € Fz] : deg(f) =mor f =
0}. Show that V is or is not a subspace of F[z].

Prove or disprove: There is a basis of P,,(z) all of whose members have
degree m.

Prove or disprove: there exists a basis (pg, p1, p2, p3) of P3(F) such that

(a) all the polynomials pg, ..., ps have degree 3.

(b) all the polynomials pg, ..., ps give the value 0 when evaluated at
3.

(c) all the polynomials py, ..., p3 give the value 3 when evaluated at
0.

(d) all the polynomials pg, ..., ps give the value 3 when evaluated at

0 and give the value 1 when evaluated at 1.

Prove that if Uy, Uy, ---, U, are subspaces of V then dim(U; +---+
Un) < dim(Uy) + dim(Us) + - - - + dim(Uy,).

Prove or give a counterexample: If Uy, U,, U; are three subspaces of
a finite dimensional vector space V', then

lel(U1 + U2 + Ug) =

—d1m(U1 N UQ) - dlm(U2 N Ug) - dlm(U3 N Ul)
+d1m(U1 N U2 N Ug)
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Linear Transformations

4.1 Definitions and Examples

Throughout this chapter we let U, V and W be vector spaces over the field
F.

Definition A function (or map) 7 from U to V is called a linear map or
linear transformation provided T satisfies the following two properties:

(i) T(u+v) =T(u) + T(v) for all u,v € U.
and

(ii)) T(au) = aT'(u) for all a € F and all u € U.

These two properties can be combined into the following single property:

Obs. 4.1.1. T : U — V s linear provided T (au+bv) = aT (u)+bT (v)Va,b €
F, u,vel.

Notice that T is a homomorphism of the additive group (U, +) into the
additive group (V,+). So you should be able to show that 7(0) = 0, where
the first 0 is the zero vector of U and the second is the zero vector of V.

The zero map: The map 0: U — V defined by 0(v) = 0 for all v € U
is easily seen to be linear.

The identity map: Similarly, the map I : U — U defined by I(v) = v
for all v € U is linear.

For f(z) = ap + a1 + aaz® + - - - apx™ € F[x], the formal derivative of
f(z) is defined to be f'(z) = a; + 2asz + 3azz® + - - - + na,z" "

Differentiation: Define D : F[z] — F[z] by D(f) = f', where f’ is the
formal derivative of f. Then D is linear.

27
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The prototypical linear map is given by the following. Let F™ and F™ be
the vector spaces of column vectors with n and m entries, respectively. Let
A € My, (F). Define Ty : F* — F™ by

Ty: X — AX for all X € F".

The usual properties of matrix algebra force 74 to be linear.

Theorem 4.1.2. Suppose that U is n-dimensional with basis B = (uy, ..., Uy),
and let L = (vq,...v,) be any list of n vectors of V. Then there is a unique
linear map T : U — V such that T(u;) = v; for 1 <i<mn.

Proof. Let u be any vector of U, so v = Z?:n a;u; for unique scalars a; € F.
Then the desired 7" has to be defined by T'(u) = Y0, a;T(u;) = D i, a;v;.
This clearly defines 7" uniquely. The fact that 7" is linear follows easily from
the basic properties of vector spaces. O

Put L(U,V)={T:U — V : T is linear}.

The interesting fact here is that £(U, V) is again a vector space in its own
right. Vector addition S + T is defined for S,T € L(U,V) by: (S+T)(u) =
S(u) + T (u) for all w € U. Scalar multiplication oT is defined for a € F' and
T € LU, V) by (aT)(u) = a(T(u)) for all w € U. You should verify that
with this vector addition and scalar multiplication £(U, V) is a vector space
with the zero map being the additive identity.

Now suppose that 7€ L(U,V) and S € L(V,W). Then the composition
SoT : U — W, usually just written ST, defined by ST (u) = S(T(u)),
is well-defined and is easily shown to be linear. In general the composition
product is associative (when a triple product is defined) because this is true
of the composition of functions in general. But also we have the distributive
properties (S1 + So)T = ST + SoT and S(T1 + Ty) = STy + ST, whenever
the products are defined.

In general the multiplication of linear maps is not commutative even when
both products are defined.

4.2 Kernels and Images

We prefer the following language. If f : A — B is a function, we say that A
is the domain of f and B is the range of f. But f might not be onto B. We
define the image of f by Im(f) = {b € B : f(a) = b for at least one a € A}.
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And we use this language for linear maps also. The null space (or kernel) of
T € L(U,V) is defined by null(T) = {u € U : T(u) = 0}.

In the exercises you are asked to show that the null space and image of a
linear map are subspaces of the appropriate spaces.

Lemma 4.2.1. Let T € L(U,V). Then T is injective (i.e., one-to-one) if
and only if null(T) = {0}.

Proof. Since T(0) = 0, if T is injective, clearly null(T) = {0}. Conversely,
suppose that null(7") = {0}. Then suppose that T'(u;) = T'(us) for uy,us €
U. Then by the linearity of T we have T'(uy — up) = T'(uy) — T(ug) = 0, so
uy — ug € null(T) = {0}. Hence uy = uy, implying 7" is injective. O

The following Theorem and its method of proof are extremely useful in
many contexts.

Theorem 4.2.2. If U is finite dimensional and T € L(U,V), then Im(T) is
finite-dimensional and

dim(U) = dim(null(T)) + dim(Im(T)).

Proof. (Pay close attention to the details of this proof. You will want to use
them for some of the exercises.)

Start with a basis (u1,...,ux) of null(T). Extend this list to a basis
(U1, .. Uk, v1,...,0,) of U. Thus dim(null(7)) = k and dim(U) = k+r. To
complete a proof of the theorem we need only show that dim(Im(7")) = r.
We will do this by showing that (T'(v;),...,T(v,)) is a basis of Im(7"). Let
u € U. Because (u,..., U, v1,--.,v,) spans U, there are scalars a;,b; € F
such that

U= aiUy + - - - agy + b1vy + - - - byv,.

Remember that ui,...,u, are in null(7") and apply T to both sides of the
preceding equation.

T(u) =bT(wy) + -+ -b,T(w,).

This last equation implies that (T'(w1),...,T(w,)) spans Im(7T'), so at least
Im(T) is finite dimensional. To show that (7(w),...,T(w,)) is linearly
independent, suppose that

Z c;T(w;) = 0 for some ¢; € F.

=1
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It follows easily that Y., c;w; € null(T), so Y., ciw; = > v, diu;. Since

(U1, .., Up, W1, ..., w,) is linearly independent, we must have that all the
¢;’s and d;’s are zero. Hence (T'(w1),...,T(w,)) is linearly independent, and
hence is a basis for Im(7T"). O

Obs. 4.2.3. There are two other ways to view the equality of the preceding
theorem. If n = dim(U), k = dim(null(T)) and r = dim(Im(T)), then the
theorem says n = k + r. And if dim(V) = m, then clearly r < m. So
k=n—r>n—m. If n >m, then k > 0 and T is not injective. If n < m,
then r < n <m says T is not surjective (i.e., onto).

Definition: Often we say that the dimension of the null space of a linear
map T is the nullity of T.

4.3 Rank and Nullity Applied to Matrices

Let A € M,,,(F). Recall that the row rank of A (i.e., the dimension of
the row space row(A) of A)equals the column rank (i.e., the dimension of
the column space col(A)) of A, and the common value rank(A) is called the
rank of A. Let Ty : F* — F™ : X +— AX as usual. Then the null space of
T, is the right null space rnull(A) of the matrix A, and the image of T, is
the column space of A. So by Theorem 4.2.2 n = rank(A) + dim(rnull(A)).
Similarly, m = rank(A) + dim(Inull(A)). (Clearly Inull(A) denotes the left
null space of A.)

Theorem 4.3.1. Let A be an m X n matriz and B be an n X p matriz over
K. Then

(1) dim(rnull(AB)) < dim(rnull(A)) + dim(rnull(B)),

and

(i) rank(A) + rank(B) - rank(AB) < n.

Proof. Put V = rnull(AB) = {# € K? : ABZ# =0 € K™}. So dim(V) =
dim(rnull(AB)) = p — rank(AB).

Put W = col(B) Nrnull(A) C K". Define T : V — W : ¥ — BZ.
As null(T') is a subspace of rnull(B), we have the following: dim(V) =
dim(rnull(AB)); dim(W) < dim(rnull(A4)); and dim(null(7)) < dim(rnull(B)) =
p—rank(B). Then dim(V) = dim(null(7T"))+dim(Im(7")) implies dim(rnull(AB)) =
dim(null(T")) + dim(Im(7")) < dim(rnull(B)) + dim(rnull(A)), proving (i
This can be rewritten as p — rank(AB) < (p — rank(B)) + (n — rank(A)),
which implies (ii). O
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4.4 Projections

Suppose V =U @ W. Define P : V — V as follows. For each v € V, write
v=u-+w with u € U and w € W. Then u and w are uniquely defined
for each v € V. Put P(v) = u. It is straightforward to verify the following
properties of P.

Obs. 4.4.1. (i) P € L(V).
(ii) P? = P.
(iii) U = Im(P).
(iv) W = null(P).
(v) U and W are both P-invariant.

This linear map P is called the projection onto U along W (or parallel to
W) and is often denoted by P = Py . Using this notation we see that

Obs. 4.4.2. [ = PU,W + PW,U-

As a kind of converse, suppose that P € L(V) is idempotent, i.e., P> = P.
Put U = Im(P) and W = null(P). Then for each v € V we can write
v=P()+ (v—P(v)) € Im(P) +null(P). Hence V = U + W. Now suppose
that w € U N W. Then on the one hand v = P(v) for some v € V. On
the other hand P(u) = 0. Hence 0 = P(u) = P?(v) = P(v) = u, implying
UNW ={0}. Hence V = U & W. It follows readily that P = Py . Hence
we have the following:

Obs. 4.4.3. The linear map P is idempotent if and only if it is the projection
onto its tmage along its null space.

4.5 Bases and Coordinate Matrices

In this section let V' be a finite dimensional vector space over the field F'.
Since F' is a field, i.e., since the multiplication in F' is commutative, it turns
out that it really does not matter whether V is a left vector space over F
(i.e., the scalars from F are placed on the left side of the vectors of V') or V
is a right vector space. Let the list B = (u1, ..., u,) be a basis for V. So if v
is an arbitrary vector in V' there are unique scalars ¢y, ..., ¢, in F' for which
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v =Y ¢v;. The column vector [v]g = (ci,...,¢,)" € F™ is then called
the coordinate matriz for v with respect to the basis B, and we may write

C1

n Co
U:ZCZ'UZ'Z (vi,esvm) | = Blv]s.

i=1 :

Un

Perhaps we should discuss this last multiplication a bit.

In the usual theory of matrix manipulation, if we want to multiply two
matrices A and B to get a matrix AB = C, there are integers n, m and p
such that A is m x n, B is n x p, and the product C' is m x p. If in general
the entry in the ith row and jth column of a matrix A is denoted by A;j,
then the (¢, j)th entry of AB = C'is (AB);; = Y p_, AixByj. If Ais a row or
a column the entries are usually indicated by a single subscript. So we might
write

A= (ay,...,a,); B= A AB:Zakbk.
k

In this context it is usually assumed that the entries of A and B (and hence
also of C') come from some ring, probably a commutative ring R, so that in
particular this sum ), axby is a uniquely defined element of R. Moreover,
using the usual properties of arithmetic in R it is possible to show directly
that matrix multiplication (when defined!) is associative. Also, matrix ad-
dition is defined and matrix multiplication (when defined!) distributes over
addition, etc. However, it is not always necessary to assume that the entries
of A and B come from the same kind of algebraic system. We may just as

easily multiply a column (cy,...,c,)? of scalars from the field F by the row
(v1,...,v,) representing an ordered basis of V over F' to obtain
C1
Co "
v=(v1,...,0p) : =Zcivi.
: i=1
Cn

We may also suppose A is an n x n matrix over F' and write
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(U1, Ug,y ..., Uup) = (v1,02,...,0,)A, s0u; = ZAU’U,

Then it follows readily that (uq,...,u,) is an ordered basis of V if and
only if the matrix A is invertible, in which case it is also true that

(V1,02 -+, 0g) = (Ur, U, ..., up) A7, 80 v; = ZA Us.

4.6 Matrices as Linear Transformations

Let By = (uq,...,u,) be an ordered basis for the vector space U over the
field F, and let By = (v1,...,v,) be an ordered basis for the vector space
V over F. Let A be an m X n matrix over F. Define Ty : U — V by
[Ta(u)|s, = A-[ulp, for all u € U. It is quite straightforward to show that
T4 € L(U,V). Tt is also clear (by letting u = u;), that the j% column of A
is [T'(u;)]s,. Conversely, if T'€ L(U,V), and if we define the matrix A to be
the matrix with j column equal to [T'(u;)]s,, then [T'(u)]z, = A - [u]s, for
all w € U. In this case we say that A is the matriz that represents T with
respect to the pair (B, By) of ordered bases of U and V, respectively, and we
write A = [T|p, 5,-

Note that a coordinate matrix of a vector with respect to a basis has a
subscript that is a single basis, whereas the matrix representing a linear map
T has a subscript which is a pair of bases, with the basis of the range space
listed first and that of the domain space listed second. Soon we shall see why
this order is the convenient one. When U = V and B; = B, it is sometimes
the case that we write [T']g, in place of [T, 5,- And we usually write £(V)
in place of L(V, V), and T € L(V) is called a linear operator on V.

In these notes, however, even when there is only one basis of V' being
used and T is a linear operator on V', we sometimes indicate the matrix that
represents 7" with a subscript that is a pair of bases, instead of just one basis,
because there are times when we want to think of 7" as a member of a vector
space so that it has a coordinate matrix with respect to some basis of that
vector space. Our convention makes it easy to recognize when the matrix
represents 7" with respect to a basis as a linear map and when it represents T’
as a vector itself which is a linear combination of the elements of some basis.

We give an example of this.
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Example 4.6.1. Let V = M,3(F). Put B = (vy,...,vs) where the v; are

defined as follows:
oy, _ (010} [0 I
0/ \oo00)" \oo0o0)

o (1

=V o

(000 {000\ (00O
““=l100)% " \o10/)" Voo 1)

It is clear that B is a basis for My3(F), and if A € My3(F'), then the
coordinate matriz [Alg of A with respect to the basis B is

o O o O
o o O

[A]B = (A117 A127 A137 A?l) A227 A23)T'

Given such a matriz A, define a linear map Ta : F? — F? by Ta(u) = Au
for allu € F3. Let 8 = (e, eq,e3) be the standard ordered basis of F3,
and let Sy = (hy, hy) be the standard ordered basis of F?. So, for example,
ho = (0,1). You should check that

[TA]S2,S1 = A

For1<i<3;1<j<2 letfi; € LF? F?) be defined by fi;(er) =
5zkh] Let 83 = (fll; f21, f31, f12, f22, f32). We want to ﬁgure out what is the
coordinate matriz [Ta]gs,.

We claim that [Tals, = (a11, a1, @13, G21, Aoz, az3)T. Because of the order
in which we listed the basis vectors f;;, this is equivalent to saying that Ty =
i @ijfii- If we evaluate this sum at (ex) we get

D aiifiiler) = awfriler) =D awhi = Taler).
ij i i

This establishes our claim.

Recall that By = (u1,...,u,) is an ordered basis for U over the field F,
and that By = (vy,...,vy) is an ordered basis for V' over F. Now suppose
that W has an ordered basis Bs = (w1, ..., w,).

Let S € L(U,V)and T € L(V,W), so that ToS € L(U,W), where T'o S
means do S first. Then we have

[(T o S)(u)]BB = [T(S(u))]Bs = [T]BS,BZ[S(U’)]Bz = [T]33,52[S]B2,31 [U]Bl =
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= [T @) S]Bs,Bl [U]Bl for all uw € U.

This implies that
[T © S]B3;Bl = [T]B-37B2 ’ I:S]BZ)BI'

This is the equation that suggests that the subscript on the matrix repre-
senting a linear map should have the basis for the range space listed first.

Recall that £(U,V) is naturally a vector space over F with the usual
addition of linear maps and scalar multiplication of linear maps. Moreover,
for a,b € F and S,T € L(U,V), it follows easily that

[aS + bT)g,,5, = a[S]s,,, + b[T]p,,5,-

We leave the proof of this fact as a straightforward exercise. It then
follows that if U = V' and By = By, the correspondence T' — [T, 5, = [T]5,
is an algebra isomorphism. This includes consequences such as [T7'|z =
([T]5)~" when T happens to be invertible. Proving these facts is a worthwhile
exercise!

Let fi; € L(U,V) be defined by
fij(ur) = 0apvy, 1<id,k<n; 1<j<m.

So fi; maps u; to v; and maps uy to the zero vector for k # ¢. This
completely determines f;; as a linear map from U to V.

Theorem 4.6.2. The set B* = {f;; : 1 <i < m;1 < j < n} is a basis for
L(U,V) as a vector space over F.

Note: We could turn B* into a list, but we don’t need to.

Proof. We start by showing that B* is linearly independent. Suppose that
Zij cijfij = 0, so that 0 = Zij cijfij(ug) = Zj cijv; for each k. Since
(v1,...,Vn) is linearly independent, cg; = ¢k = -+ = €y, = 0, and this holds
for each k, so the set of f;; must be linearly independent. We now show that it
spans L(U, V). For suppose that S € L(U,V) and that [S]g, 5, = C = (¢;),
ie, S(u;) =Y 0 cjv;. Put T = > ik Cikfri- Then T'(uj) = - i fri(u;) =
>, Cijvi, implying that S = T since they agree on a basis. O

Corollary 4.6.3. If dim(U) = n and dim(V) = m, then dimL(U,V) = mn.



36 CHAPTER 4. LINEAR TRANSFORMATIONS

4.7 Change of Basis

We want to investigate what happens to coordinate matrices and to matrices
representing linear operators when the ordered basis is changed. For the
sake of simplicity we shall consider this question only for linear operators
on a space V, so that we can use a single ordered basis. So in this section
we write matrices representing linear operators with a subscript which is a
single basis.

Let F' be any field and let V' be a finite dimensional vector space over
F, say dim(V) = n. Let By = (uy,...,u,) and By = (vq,...,v,) be two
(ordered) bases of V. So for v € V, and for i« = 1, say that [v]zg, =
(c1,¢0y . ycn)t, Lo, v = D0 ciu;. We often write this equality in the
form

v =(U1,...,u,) V], = Bi[v]s,-
Similarly, v = Bs[v]g, -

Since B; and By are both bases for V, there is an invertible matrix @
such that

Bl - BQQ and Bg = BlQ_l.
The first equality indicates that

U; = ZQijvi' (41)
=1

This equation says that the jth column of () is the coordinate matrix of
u; with respect to B,. Similarly, the jth column of @ ! is the coordinate
matrix of v; with respect to B;.

For every v € V we now have

v = Bivls, = (B2Q)[v], = Ba[v]s,.

It follows that
Qs = [v]s,- (4.2)
Now let T € L(V). Recall that the matrix [Tz that represents T with
respect to the basis B is the unique matrix for which

T (v)]s = [T]s[v]s for all v € V.
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Theorem 4.7.1. Let B; = ByQ as above. Then [T)s, = Q[T]5,Q".
Proof. In Eq. 4.2 replace v with T'(v) to get

QIT ()]s, = [T(v)]s, = [T5,[v]s, = [T]5,Q[v]s,
for all v € V. It follows that

Q[T]Bl [U]B1 = [T]BQQ[U]BI

for all v € V, implying
Q[T]B1 = [T]BzQa (43)
which is equivalent to the statement of the theorem. O
A Specific Setting

Now let V' = F™, whose elements we think of as being column vectors.
Let A be an n x n matrix over F and define Ty € L(F™) by

Ta(v) = Av, for all v € F™.

Let S = (e1,...,e,) be the standard ordered basis for F", i.e., e; is the
column vector in F™ whose jth entry is 1 and all other entries are equal to
0. It is clear that we can identify each vector v € F™ with [v]s. Moreover,
the jth column of A is Ae; = [Ae;|s = [Taejls = [Ta]slejls = [Ta]se; = the
jth column of [T4]s, which implies that

A =[Tyls. (4.4)

Theorem 4.7.2. Let S = (ey,...,e,) be the standard ordered basis of F™.
Let B = (vq,...,v,) be a second ordered basis. Let P be the matriz whose

jth column is v; = [vj]ls. Let A be an n x n matriz over F and define
Ta: F" — F" by Ty(v) = Av. So [Tals = A. Then [T4]s = P~'AP.

Proof. Since v; = [v;]s = S[v,]s, it follows that
(’Ul, ceey Un) = S([’Ul]g, ceey [’l)n]g) = SP,

i.e., B = SP, which is equivalent to S = BP~!. So if S plays the role of B;
above, and B plays the role of By, and P~! plays the role of @, we have

[v]s = P~ [v]s, (4.5)
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[Tals = P~ [T4]sP = P~ AP. (4.6)
0

Definition Two n x n matrices A and B over F' are said to be similar

(written A ~ B) if and only if there is an invertible n X n matrix P such that
B = P 'AP. You should prove that “similarity” is an equivalence relation
on M, (F).
Corollary 4.7.3. If A, B € M,(F), and if V is an n-dimensional vector
space over F, then A and B are similar if and only if there are bases By and
By of Vand T € L(V) such that A = [Tz, and B = [Tg,.

The Dual Space*!

We now specialize to the case where V = F' is viewed as a vector space
over F'. Here L(U, F) is denoted U* and is called the dual space of U. An
element of L(U, F) is called a linear functional. Write B = (u,...,u,) for
the fixed ordered basis of U. Then 1 € F'is a basis of F' over F', so we write
1 = (1) and m = 1, and there is a basis B* of U* defined by B* = (fi, ..., fa),
where f;(u;) = 6;; € F. This basis B* is called the basis dual to B. If f € U*
satisfies f(u;) = ¢; for 1 < j < n, then

[f]i,Bl = [01, .- -;cn] = [f(ul)a . ’f(un)]

As above in the more general case, if g = ), ¢; fi, then g(u;) = >, ¢ifi(u;) =
¢cj, 80 f =g, and [f]g- = [c1,- .., ca]” = ([f]1,5,)"- We restate this in general:

For f e U, [f]s = ([f]i,Bl)T-

Now we suppose that T € GL(U), i.e., T is an invertible element of
L(U,U). We define a map T : U* — U* by
T(f)=foT™, forall feU".
We want to determine the matrix [7]3- 5-. We know that the j* column of

this matrix is [T(fj)]g* = [f;oT g = ([fj 0 T_l]i,B)T = ([filis- [T_I]B,B)T =
0

T

((O, e, 1j, cee ,0) ([T]B,B)_l) = ([T]B,B)_T' 1.]' = jth column of ([T]B,B)_T .

0

!Note that this subsection on the dual space may be omitted.
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This says that

[T]s 5 = (Tls8) " -

4.8 Exercises

1. Let T € L(U,V). Then null(T) is a subspace of U and Im(7T) is a
subspace of V.

2. Suppose that V' and W are finite-dimensional and that U is a subspace
of V. Prove that there exists a T' € L(V, W) such that null(T") = U if
and only if dim(U) > dim(V') — dim(W).

3. Let T € £L(V). Put R = Im(T) and N = null(T). Note that both R
and N are T-invariant. Show that R has a complementary 7-invariant
subspace W (i.e., V=R@®W and T(W) C W) if and only if RN N =
{6}, in which case N is the unique 7T-invariant subspace complementary
to R.

4. State and prove Theorem 4.3.1 for linear maps (instead of for matrices).
5. Prove Corollary 4.6.3

6. If T =€ L(U,V), we know that as a function from U to V, T has an
inverse if and only if it is bijective (i.e., one-to-one and onto). Show
that when T is invertible as a function, then its inverse is in £(V,U).

7. If T € L(U,V) is invertible, and if B, is a basis for U and B is a basis
for V', then ([T]Bz,Bl)_l = [T_l]B1,Bz-

8. Two vector spaces U and V are said to be isomorphic provided there is
an invertible T € L(U, V). Show that if U and V are finite-dimensional
vector spaces over F, then U and V are isomorphic if and only if
dim(U) = dim(V).

9. Let A € My, ,(F) and b € M, 1(F) = F™. Consider the matrix

-

equation AZ = b as a system of m linear equations in n unknowns
x1,...,%,. Interpret Obs. 4.2.3 for this system of linear equations.



40

10.

11.

12.

13.

14.

15.

16.
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ba1 oo
and also that C' € M;3(F') with (4, j)-entry equal to c;;. Write £(V)
for L(V,V) and define T c € L(V) by

Let V = M 3(F). Suppose that B € M, (F'), say that B = < b bia >

Tpc: A BAC for all A € Mys(F).

First verify that Tgc € L£(V). Then construct a basis By of L(V)
and determine the coordinate matrix [T ¢]s,. Let Bs be the basis of
L(F3, F?) used in Example 4.6.1. Then compute the matrix [T ¢|s, 5,
that represents T ¢.

Let By, By be bases for U and V, respectively, with dim(U) = n and
dim(V) = m. Show that the map

M : ,C(U, V) — Mm’n(F) T — [T]BQ,Bl
is an invertible linear map.
Suppose that V' is finite-dimensional and that 7" € £(V). Show that
the following are equivalent:
(i) T is invertible.
(ii) 7T is injective.
(iii) T is surjective.
Suppose that V' is finite dimensional and S,T" € L£(V). Prove that ST
is invertible if and only if both S and 7" are invertible.

Suppose that V is finite dimensional and 7" € L£(V). Prove that T

is a scalar multiple of the identity if and only if ST = T'S for every
SeL(V).

Suppose that W is finite dimensional and T" € L(V,W). Prove that T
is injective if and only if there exists an S € L(W, V) such that ST is
the identity map on V.

Suppose that V is finite dimensional and 7' € L(V,W). Prove that T
is surjective if and only if there exists an S € L(W, V) such that T'S is
the identity map on W.



Chapter 5

Polynomials

5.1 Algebras

It is often the case that basic facts about polynomials are taken for granted as
being well-known and the subject is never developed in a formal manner. In
this chapter, which we usually assign as independent reading, we wish to give
the student a somewhat formal introduction to the algebra of polynomials
over a field. It is then natural to generalize to polynomials with coefficients
from some more general algebraic structure, such as a commutative ring. The
title of the course for which this book is intended includes the words “linear
algebra,” so we feel some obligation to define what a linear algebra is.

Definition Let F' be a field. A linear algebra over the field F is a vector
space A over F' with an additional operation called multiplication of vectors
which associates with each pair of vectors u,v € A a vector uv in A called
the product of v and v in such a way that

(a) multiplication is associative: u(vw) = (uv)w for all u,v, w € A,;

(b) multiplication distributes over addition: u(v + w) = (uv) + (uw) and
(u+v)w = (uw) + (vw), for all u,v, w € A;

(c) for each scalar ¢ € F, c(uv) = (cu)v = u(cew) for all u,v € A.

If there is an element 1 € A such that lu = ul = u for each u € A, we
call A a linear algebra with identity over F', and call 1 the identity of A. The
algebra A is called commutative provided uv = vu for all u,v € A.

Example 5.1.1. The set of n X n matrices over a field, with the usual op-
erations, s a linear algebra with identity; in particular the field itself is an
algebra with identity. This algebra is not commutative if n > 2. Of course,

41



42 CHAPTER 5. POLYNOMIALS

the field itself is commutative.

Example 5.1.2. The space of all linear operators on a vector space, with
composition as the product, is a linear algebra with identity. It is commutative
if and only if the space is one-dimensional.

Now we turn our attention to the construction of an algebra which is
quite different from the two just given. Let F' be a field and let S be the set
of all nonnegative integers. We have seen that the set of all functions from
S into F' is a vector space which we now denote by F'*°. The vectors in F'*°
are just infinite sequences (i.e., lists) f = (fo, f1, f2,...) of scalars f; € F. If
9 = (90,91, 92,-..) and a,b € F, then af + bg is the infinite list given by

af +bg = (afo + bgo,afr + bgy,...) (5.1)

We define a product in F'* by associating with each pair (f, g) of vectors
in F'*° the vector fg which is given by

n
(f9n = fign—i» n=0,1,2,... (5.2)

i=1
Since multiplication in F' is commutative, it is easy to show that multi-
plication in F'*° is also commutative. In fact, it is a relatively routine task
to show that F'*° is now a linear algebra with identity over F'. Of course the
vector (1,0,0,...) is the identity, and the vector z = (0,1,0,0,...) plays a
distinguished role. Throughout this chapter z will continue to denote this
particular vector (and will never be an element of the field F'). The product
of z with itself n times will be denoted by z", and by convention z° = 1.

Then
z?=(0,0,1,0,...), 2*=(0,0,0,1,0,...), etc.

Obs. 5.1.3. The list (1,x,22,...) is both independent and infinite. Thus the
algebra F*° is not finite dimensional.

The algebra F'*° is sometimes called the algebra of formal power series
over F. The element f = (fo, fi1, fo,-..) is frequently written as

F=> faz™ (5.3)
n=0

This notation is very convenient, but it must be remembered that it is
purely formal. In algebra there is no such thing as an ‘infinite sum,’ and the
power series notation is not intended to suggest anything about convergence.
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5.2 The Algebra of Polynomials

Definition Let F'[z] be the subspace of F* spanned by the vectors 1, x, 22, . .. .
An element of F[z] is called a polynomial over F.

Since F[z] consists of all (finite) linear combinations of z and its powers,
a non-zero vector f in F'*° is a polynomial if and only if there is an integer
n > 0 such that f, # 0 and such that f, = 0 for all integers £ > n. This
integer (when it exists) is called the degree of f and is denoted by deg(f).The
zero polynomial is said to have degree —oo. So if f € F|[z]| has degree n, it
may be written in the form

f=fox® + fiz + fox® + - 4 foz®, fu #0.

Usually foz° is simply written fy and called a scalar polynomial. A non-zero
polynomial f of degree n such that f, = 1is called a monic polynomial. The
verification of the various parts of the next result guaranteeing that A is an
algebra is routine and is left to the reader.

Theorem 5.2.1. Let f and g be non-zero polynomials over F'. Then

(i) fg is a non-zero polynomial;

(i) deg(fg) = deg(f) + deg(g) ;

(#ii) fg is a monic polynomial if both f and g are monic;

(iv) fg is a scalar polynomial if and only if both f and g are scalar
polynomials;

(v) deg(f + g) < maz{deg(f), deg(g)}-

Corollary 5.2.2. The set F[z] of all polynomials over a given field F with
the addition and multiplication given above is a commutative linear algebra
with identity over F.

Corollary 5.2.3. Suppose f, g, and h are polynomials over F such that
f#0and fg= fh. Then g = h.

Proof. Since fg = fh, also f(g —h) = 0. Since f # 0, it follows from (i)
above that g — h = 0. O

Let f =", fiz* and g = 377 ;g;27, and interpret fy = 0, g; = 0, if
k > m, t > n, respectively. Then

m+n 7
fg= Zfz‘gjﬂfiﬂ = Z (Z fjgi—j) z,

i,j i=0 \j=0
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where the first sum is extended over all integer pairs (4,7) with 0 < i < m
and 0 < j <n.

Definition Let A be a linear algebra with identity over the field F'. We
denote the identity of A by 1 and make the convention that u® = 1 for each
u € A. Then to each polynomial f = Y ", fiz" over F and u € A, we
associate an element f(u) in A by the rule

flu) = Z fiu'.
i=0
Example 5.2.4. Let C be the field of complex numbers and let f = 2% + 2.

(a) If A=C and z € C, f(z) = 2% + 2, in particular f(3) =11 and

1+i
f(l—z') =1

(b) If A is the algebra of all 2 x 2 matrices over C and if

p-(42)
=25 1)(L3) -(50)

(c) If A is the algebra of all litnear operators on C* and T is the element
of A given by

then

T(Cla C2, 03) = (i\/icla Co, i\/§c3)a

then f(T) is the linear operator on C* defined by
f(T)(c1,c2,¢3) = (0, 3¢, 0).

(d) If A is the algebra of all polynomials over C and t = x* + 31, then f(g)
is the polynomial in A given by

f(g) = =7+ 6iz* + z°.
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Theorem 5.2.5. Let F' be a field, A a linear algebra with identity over F,
fig€ Flz],u€ A and c € F. Then:

(1) (cf +9)(u) = cf (u) + g(u);
(i) (fg9)(u) = f(u)g(u) = (9f)(u).

Proof. We leave (i) as an exercise. So for (ii), suppose

m n
f= Zfixi and g = Zgjxj.
=0 §=0

Recall that fg =", ; figjz**/. So using (i) we obtain
(fo)(u) = _ figiu™ = (Z f) (Z wuﬂ') = fu)g(u).
irj =0 =0

Fix u € A and define E, : F|z] - A by

Bu(f) = f(u). (5.4)

Using Theorem 5.2.5 it is now easy to see that the map E, : F[z] — A

is an algebra homomorphism, i.e., it preserves addition and multiplication.

There is a special case of this that is so important for us that we state it as
a separate corollary.

Corollary 5.2.6. If A=L(V) and T € A, and if f,g € F|x],then
(f-9)(T) = f(T)og(T).

5.3 Lagrange Interpolation

Throughout this section F'is a fixed field and ¢, %1, ...,%, are n+ 1 distinct
elements of F. Put V = {f € Flz] : deg(f) < n}, and define E; : V — F
by Ei(f) = f(t), 0< i <n.

By Theorem 5.2.5 each Ej is a linear functional on V. Moreover, we show
that B* = (Fy, F1, ..., E,) is the basis of V* dual to a particular basis of V.

Put
T —1;
pz’ZH(t__tj.).
g#i Nt
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Then each p; has degree n, so belongs to V', and

E;(pi) = pi(t;) = 04 (5.5)

It will turn out that B = (po, ..., ps) is a basis for V, and then Eq. 5.5
expresses what we mean by saying that B* is the basis dual to B.

If f=>"",cpi, then for each j
Ft) = epilty) = ¢ (5.6)

So if f is the zero polynomial, each ¢; must equal 0, implying that the list
(po, - - -, Pn) is linearly independent in V. Since (1,z,z?, ...,2") is a basis for
V, clearly dim(V) = n+ 1. Hence B = (py, . ..,p,) must be a basis for V. It
then follows from Eq. 5.6 that for each f € V, we have

= Z f(ti)pi. (5.7)

The expression in Eq. 5.7 is known as Lagrange’s Interpolation For-
mula. Setting f = 27 in Eq. 5.7 we obtain

n
i=0
Definition Let A; and A, be two linear algebras over F. They are said
to be isomorphic provided there is a one-to-one mapping u — u’ of A; onto
A, such that
(a) (cu+dv) = cu' + dv'
and
(b) (wv) ="'
for all u, v € A; and all scalars ¢, d € F. The mapping u +— v’ is called
an isomorphism of A; onto A,. An isomorphism of A; onto A, is thus a
vector space isomorphism of A; onto Ay which has the additional property
of preserving products.

Example 5.3.1. Let V' be an n-dimensional vector space over the field F'. As
we have seen earlier, each ordered basis B of V determines an isomorphism
T — [T)p of the algebra of linear operators on V onto the algebra of n x n



5.4. POLYNOMIAL IDEALS 47

matrices over F'. Suppose now that S is a fized linear operator on 'V and that
we are giwen a polynomial
n
=3 as
=0

with coefficients ¢; € F. Then
£(8) =) s
i=0

Since T +— [T is a linear mapping,

n

[F(S)ls =) cilSs.

i=0
From the additional fact that
[T1T3]s = [T1]5[To]s
for all Ty, Ty € L(V), it follows that
[SYp = ([S]B)i, 2<1<n.
As this relation is also valid for 1 = 0 and 1, we obtain the result that

Obs. 5.3.2.
f(S)]s = f(5]n)-

In other words, if S € L(V'), the matriz of a polynomial in S, with respect
to a given basis, is the same polynomial in the matriz of S.

5.4 Polynomial Ideals

In this section we are concerned primarily with the fact that F[z] is a prin-
cipal ideal domain.

Lemma 5.4.1. Suppose f and d are non-zero polynomials in F|x] such that
deg(d) < deg(f). Then there exists a poynomial g € F[x] for which

deg(f — dg) < deg(f).
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Note: This includes the possibility that f = dg so deg(f — dg) = —oc.

Proof. Suppose

f=anpx™ + Zaix’, O # 0
i=0
and that )
d=0bpz"+» bia', by #0
i=0

Then m > n and

f— (i—m) 2™ "d=0or deg {f — (a_m> fvm_nd] < deg(f).

Thus we may take g = (‘2—:) ™", O

This lemma is useful in showing that the usual algorithm for “long divi-
sion” of polynomials works over any field.

Theorem 5.4.2. If f,d € F[z] and d # 0, then there are unique polynomials
q,r € Flz]| such that

(i) f=dq+r;

(ii) deg(r) < deg(d).

Proof. 1f deg(f) < deg(d) we may take ¢ = 0 and » = f. In case f # 0
and deg(f) > deg(d), the preceding lemma shows that we may choose a
polynomial g € F[z] such that deg(f — dg) < deg(f). If f —dg # 0 and
deg(f — dg) > deg(d) we choose a polynomial h € F|z] such that

deg[f — d(g+ h)] < deg(f — dg).

Continuing this process as long as necessary, we ultimately obtain polynomi-
als ¢, r satisfying (i) and (ii).

Suppose we also have f = dg; +r; where deg(r1) < deg(d). then dg+r =
dg1 +r and d(g—¢q1) =r1 —r. Iif ¢ —ay # 0, then d(¢ — ¢1) # 0 and

deg(d) + deg(q — q1) = deg(ri — 7).

But since the degree of r; — r is less than the degree of d, this is impossible.
Hence ¢ = a; and then r = ry. O
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Definition Let d be a non-zero polynomial over the field F. If f € F[z],
the preceding theorem shows that there is at most one polynomial ¢ € F[z]
such that f = dg. If such a q exists we say that d divides f, that f is divisible
by d, and call ¢ the quotient of f by d. We also write ¢ = f/d.

Corollary 5.4.3. Let f € F|z|, and let c € F. Then f is divisible by x — ¢
if and ony if f(c) = 0.

Proof. By the theorem, f = (x — ¢)q + r where r is a scalar polynomial. By
Theorem 5.2.5,

f(e) =0q(c) +r(c) = r(c).
Hence r = 0 if and only if f(c) = 0. O

Definition Let F' be a field. An element ¢ € F' is said to be a root or a
zero of a given polynomial f € F[z] provided f(c) = 0.

Corollary 5.4.4. A polynomial f € F[z] of degree n has at most n roots in
F.

Proof. The result is obviously true for polynomials of degree 0 or 1. We
assume it to be true for polynomials of degree n — 1. If a is a root of f,
f = (x — a)q where ¢ has degree n — 1. Since f(b) = 0 if and only if a = b
or ¢(b) = 0, it follows by our induction hypothesis that f has at most n
roots. ]

Definition Let F' be a field. An ideal in F[x] is a subspace M of F|x]
such that fg belongs to M whenever f € F[z] and g € M.

Example 5.4.5. If F is a field and d € F|x], the set M = dF[z] of all
multiples df of d by arbitrary f in F[x] is an ideal. This is because d € M
(so M is nonempty), and it is easy to check that M is closed under addition
and under multiplication by any element of F|z]. The ideal M is called the
principal ideal generated by d and is denoted by dF|x]. If d is not the zero

polynomial and its leading coefficient is a, then di = a 'd is monic and

Example 5.4.6. Let di,...,d, be a finite number of polynomials over F'.
Then the (vector space) sum M of the subspaces d;F|x] is a subspace and is
also an ideal. M is the ideal generated by the polynomials d., ..., d,.

The following result is the main theorem on ideals in F[z].
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Theorem 5.4.7. Let M be any non-zero ideal in F|z|. Then there is a
unique monic polynomial d € F[x] such that M is the principal ideal dF [x]
generated by d.

Proof. Among all nonzero polynomials in M there is (at least) one of minimal
degree. Hence there must be a monic polynomial d of least degree in M.
Suppose that f is any element of M. We can divide f by d and get a
unique quotient and remainder: f = gd + r where deg(r) < deg(d). Then
r = f—qd € M, but deg(r) is less than the smallest degree of any nonzero
polynomial in M. Hence r = 0. So f = gd. This shows that M C dF|z].
Clearly d € M implies dF|z] C M, so in fact M = dF[z]. If d; and ds
are two monic polynomials in F[z] for which M = d;F[z] = doF|z], then
dy divides dy and dy divides d;. Since they are monic, they clearly must be
identical. O

Definition If p;,...,px € F[z] and not all of them are zero, then the
monic generator d of the ideal p; F[z] + --- + pF[z] is called the greatest
comon divisor (ged) of py,--- ,pp. We say that the polynomials py, ..., p
are relatively prime if the greatest common divisor is 1, or equivalently if the
ideal they generate is all of F[z].

The exercises at the end of this chapter are to be considered an integral
part of the chapter. You should study them all.

Definition The field F' is called algebraically closed provided each poly-
nomial in F'[z] that is irreducible over F' has degree 1.

To say that F' is algebraically closed means the every non-scalar irre-
ducible monic polynomial over F' is of the form = — ¢. So to say F' is alge-
braically closed really means that each non-scalar polynomial f in F[z]| can
be expressed in the form

f=clx—c))™ - (x—cp)™

where c is a scalar and cq, ..., ¢ are distinct elements of F'. It is also true
that F' is algebraically closed provided that each non-scalar polynomial over
F has a root in F'.

The field R of real numbers is not algebraically closed, since the polyno-
mial (z? + 1) is irreducible over R but not of degree 1. The Fundamental
Theorem of Algebra states that the field C of complex numbers is algebraically
closed. We shall prove this theorem later after we have introduced the con-
cepts of determinant and of eigenvalues.
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The Fundamental Theorem of Algebra also makes it clear what the possi-
bilities are for the prime factorization of a polynomial with real coefficients. If
f is a polynomial with real coefficients and ¢ is a complex root of f, then the
complex conjugate ¢ is also a root of f. Therefore, those complex roots which
are not real must occur in conjugate pairs, and the entire set of roots has the
form {by,...,by,c1,¢1,-..,Ck, C }, Where by, ..., b, are real and ¢, ..., ¢, are
non-real complex numbers. Thus f factors as

f:C(l'—b1)...(l‘—br)p1...pk

where p; is the quadratic polynomial

pi=(x—q¢)r—5).

These polynomials p; have real coefficients. We see that every irreducible
polynomial over the real number field has degree 1 or 2. Each polynomial
over R is the product of certain linear factors given by the real roots of f
and certain irreducible quadratic polynomials.

5.5 Exercises

1. (The Binomial Theorem) Let() = k,(%k), be the usual binomial co-

efficient. Let a,b be elements of any commutative ring. Then
" (m
a+b)" = a™ Ry,
@i =3 (%)

Note that the binomial coefficient is an integer that may be reduced
modulo any modulus p. It follows that even when the denominator of

(7,?) appears to be 0 in some ring of characteristic p, for example, this

binomial coefficient can be interpreted modulo p. For example

6
<3> =20 = 2 (mod 3),
even though 3! is zero modulo 3.
The derivative of the polynomial

f=cotcar+---+cpa”
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is the polynomial

f'=Df =ci+2cx +- - +nc,z" "

Note: D is a linear operator on F[z].

. (Taylor’s Formula). Let F' be any field, let n be any positive integer,

and let f € F have degree m < n. Then

P A /T

Be sure to explain how to deal with the case where k! is divisible by
the characteristic of the field F'.

If f € Flz] and ¢ € F, the multiplicity of ¢ as a root of f is the largest
positive integer r such that (z — ¢)" divides f.

. Show that if the multiplicity of ¢ as a root of f is r > 2, then the

multiplicity of ¢ as a root of f’ is at least r — 1.

a b
d
a nonzero ideal. (Hint: consider the polynomial f(z) = 2? — (a+d)z +

(ad — be).)

Definition Let F' be a field. A polynomial f € F|z] is said to be
reducible over F' provided there are polynomials g, h € F[z] with degree
at least 1 for which f = gh. If f is not reducible over F, it is said to
be irreducible over F. A polynomial p(z) € F[z] of degree at least 1
is said to be a prime polynomial over F' provided whenever p divides
a product gh of two polynomials in F[z] then it has to divide at least
one of g and h.

). Let M = {f € F[z]: f(A) = 0}. Show that M is

. Show that a polynomial p(z) € F[z] with degree at least 1 is prime

over F'if and only if it is irreducible over F.

. (The Primary Decomposition of f) If F'is a field, a non-scalar monic

polynomial in F|z] can be factored as a product of monic primes in
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F[z] in one and, except for order, only one way. If py,...,py are the
distinct monic primes occurring in this factorization of f, then

f=p1"p5% - pik,

where n; is the number of times the prime p; occurs in this factorization.
This decomposition is also clearly unique and is called the primary
decomposition of f.

7. Let f be a non-scalar monic polynomial over the field F', and let
f=p" Dt

be the prime factorization of f. For each j, 1 < j <k, let

f n
li= b sz- '
7]
Then fi,..., fx are relatively prime.

8. Using the same notation as in the preceding problem, suppose that
f =p1---pg is a product of distinct non-scalar irreducible polynomials
over F. So f; = f/pj. Show that

[ =p1fi +pofo+ -+ DS

9. Let f € F[z] have derivative f’. Then f is a product of distinct irre-
ducible polynomials over F'if and only if f and f’ are relatively prime.
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Chapter 6

Determinants

We assume that the reader has met the notion of a commutative ring K with
1. Our main goal in this chapter is to study the usual determinant function
defined on the set of square matrices with entries from such a K. However,
essentially nothing from the general theory of commutative rings with 1 will
be used.

One of the main types of application of the notion of determinant is
to determinants of matrices whose entries are polynomials in one or more
indeterminates over a field F. So we might have K = F|[z], the ring of
polynomials in the indeterminate x with coefficients from the field F. It is
also quite useful to consider the theory of determinants over the ring Z of
rational integers.

6.1 Determinant Functions

Throughout these notes K will be a commutative ring with identity. Then
for each positive integer n we wish to assign to each n X n matrix over K a
scalar (element of K) to be known as the determinant of the matrix. As soon
as we have defined these terms we may say that the determinant function is
n-linear alternating with value 1 at the identity matrix.

Definition Let D be a function which assigns to each n x n matrix A
over K ascalar D(A) in K. We say that D is n-linear provided that for each
1, 1 <17 <mn, D is a linear function of the ¢th row when the other n — 1 rows
are held fixed.

Perhaps this definition needs some clarification. If D is a function from

95
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M, ,(K) into K, and if oy,...,q, are the rows of the matrix A, we also
write

D(A) = D(ay,. .., o),

that is, we think of D as a function of the rows of A. The statement that D
is n-linear then means

D(ay,...,cop+ ... 0n) = eD(on,..., Q... 00) + (6.1)
+ D(ag,...,0h ..., qp).

2

If we fix all rows except row ¢ and regard D as a function of the 7th row, it
is often convenient to write D(q;) for D(A). Thus we may abbreviate Eq. 6.1
to

D(ca; + o) = eD(o;) + D(c),

so long as it is clear what the meaning is.

In the following sometimes we use A;; to denote the element in row ¢ and
column j of the matrix A, and sometimes we write A(%, j).

Example 6.1.1. Let k1, ..., k, be positive integers, 1 < k; < n, and let a be
any element of K. For each n x n matriz A over K, define

D(A) = aA(1, k) A2, ky) - - - A(n, k). (6.2)

Then the function defined by Eq. 6.2 is n-linear. For, if we regard D as
a function of the ith row of A, the others being fized, we may write

D(a;) = A(3, k;)b
where b is some fized element of K. Let of = (A}, ..., Al). Then we have
D(ca; + ) = [cA(i, ki) + A (3, k;)]b
= ¢D(w) + D(a).
Thus D is a linear function of each of the rows of A.

A particular n-linear function of this type is just the product of the diag-
onal entries:

D(A) == A11A22 .t Ann
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Example 2. We find all 2-linear functions on 2 X 2 matrices over K. Let
D be such a function. If we denote the rows of the 2 x 2 identity matrix by
€1 and €y, then we have

D(A) = D(A11€1 + Ajaeg, Agr€1 + Agges).
Using the fact that D is 2-linear, we have

D(A) = Ai1D(€1, Agr€1 + Aggea) + A1aD(€a, Azr€1 + Agoer) =
= A1 Ao D€, €1) + A11 A D(€1, €2) + A1pAs1 D(eg, €1) + A12A2D(€, €2).
This D is completely determined by the four scalars

D(€1’ 61)5 D(El’ 62), D(GQa 61)1 D(62: 62)-
It is now routine to verify the following. If a, b, ¢, d are any four scalars
in K and if we define
D(A) = Aj1Agra + A1 Agob + AjpAgic+ Ao Agod,

then D is a 2-linear function on 2 X 2 matrices over K and

D(61,61) = a, D(61,62) = b
D(ey,€1) = ¢, D(eg, €3) =d.

Lemma 6.1.2. A linear combination of n-linear functions is n-linear.

Proof. Tt suffices to prove that a linear combination of two n-linear functions
is n-linear. Let D and E be n-linear functions. If ¢ and b are elements of K
the linear combination aD + bE is defined by

(aD + bE)(A) = aD(A) + bE(A).
Hence, if we fix all rows except row ¢,
(aD + bE)(coy + @) = aD(ca; + ) + bE(cay + )

= acD(o;) + aD(c}) + beE(a;) + bE ()
= c¢(aD +bE) () + (aD + bE)(c).
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NOTE: If K is a field and V is the set of n xn matrices over K, the above
lemma says the following. The set of n-linear functions on V' is a subspace
of the space of all functions from V into K.

Example 3. Let D be the function defined on 2 x 2 matrices over K by

D(A) - A11A22 - A12A21. (63)

This D is the sum of two functions of the type described in Example 1:

D = D]_ + D2
Dl (A) = A11A22
DQ(A) = _A12A21

(6.4)

Most readers will recognize this D as the “usual” determinant function
and will recall that it satisfies several additional properties, such as the fol-
lowing one.

6.1.3 n-Linear Alternating Functions

Definition: Let D be an n-linear function. We say D is alternating provided
D(A) = 0 whenever two rows of A are equal.

Lemma 6.1.4. Let D be an n-linear alternating function, and let A be nxn.
If A" is obtained from A by interchanging two rows of A, then D(A') =
—D(A).

Proof. 1f the ith row of A is « and the jth row of A is 3, 7 # 7, and all other
rows are being held constant, we write D(c, ) in place of D(A).

D(a+ B, + B) = D(a, @) + D(e, B) + D(B, ) + D(B, B).
By hypothesis, D(a+ g,a+ ) = D(a, ) = D(5,8) = 0. So

0= D(a, 8) + D(B, ).
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If we assume that D is n-linear and has the property that D(A") = —D(A)
when A’ is obtained from A by interchanging any two rows of A, then if A
has two equal rows, clearly D(A) = —D(A). If the characteristic of the ring
K is odd or zero, then this forces D(A) = 0, so D is alternating. But, for
example, if K is an integral domain with characteristic 2, this is clearly not
the case.

6.1.5 A Determinant Function - The Laplace
Expansion

Definition: Let K be a commutative ring with 1, and let n be a positive
integer. Suppose D is a function from n x n matrices over K into K. We say
that D is a determinant function if D is n-linear, alternating and D(I) = 1.

It is clear that there is a unique determinant function on 1 x 1 matrices,
and we are now in a position to handle the 2 x 2 case. It should be clear that
the function given in Example 3. is a determinant function. Furthermore,
the formulas exhibited in Example 2. make it easy to see that the D given
in Example 3. is the unique determinant function.

Lemma 6.1.6. Let D be an n-linear function on n X n matrices over K.
Suppose D has the property that D(A) = 0 when any two adjacent rows of A
are equal. Then D is alternating.

Proof. Let B be obtained by interchanging rows ¢ and j of A, where 7 < j.
We can obtain B from A by a succession of interchanges of pairs of adjacent
rows. We begin by interchanging row ¢ with row 7 4+ 1 and continue until the
rows are in the order

Oy ey Q1 Gy 1y - - o Oy Oy O, - -5 Ol

This requires £k = j — ¢ interchanges of adjacent rows. We now move «;
to the ith position using (k — 1) interchanges of adjacent rows. We have
thus obtained B from A by 2k — 1 interchanges of adjacent rows. Thus by
Lemma 6.1.4,

D(B) = —D(A).

Suppose A is any n x n matrix with two equal rows, say a; = «; with
i <j.Ifj=1i+1, then A has two equal and adjacent rows, so D(A) = 0.
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If 7 >4+ 1, we intechange ;;; and «; and the resulting matrix B has two
equal and adjacent rows, so D(B) = 0. On the other hand, D(B) = —D(A),
hence D(A) = 0. O

Lemma 6.1.7. Let K be a commutative ring with 1 and let D be an alter-
nating n-linear function on n X n matrices over K. Then

(a) D(A) = 0 if one of the rows of A is 0.

(b) D(B) = D(A) if B is obtained from A by adding a scalar multiple of
one row of A to a different row of A.

Proof. For part (a), suppose the ith row «; is a zero row. Using the linearity
of D in the ith row of A says D(«o; + «;) = D(o;) + D(ey), which forces
D(A) = D(o;) = 0. For part (b), if ¢ # j, write D(A) = D(w, o), with
all rows other than the ith one held fixed. D(B) = D(o; + coj, ;) =
D(a, o) + e¢D(ey, o) = D(A) +0. O

Definition: If n > 1 and A is an n X n matrix over K, we let A(i|j)
denote the (n—1) x (n — 1) matrix obtained by deleting the ith row and jth
column of A. If D is an (n — 1)-linear function and A is an n X n matrix, we
put Dy (A) = D[A(i[7)]-

Theorem 6.1.8. Let n > 1 and let D be an alternating (n—1)-linear function
on (n — 1) x (n — 1) matrices over K. For each j, 1 < j < n, the function
E; defined by

Ej(4) =) (-1)""7Ay;Dy(A) (6.5)
i=1
is an alternating n-linear function on nxn matrices A. If D is a determinant
function, so is each Ej.

Proof. If A is an n x n matrix, D;;(A) is independent of the ith row of A.
Since D is (n— 1)-linear, it is clear that D;; is linear as a function of any row
except row i. Therefore A;;D;;(A) is an n-linear function of A. Hence E;
is n-linear by Lemma 6.1.2. To prove the F; is alternating it will suffice to
show that E;(A) = 0 whenever A has two equal and adjacent rows. Suppose
ap = agq1. If i # k and 7 # £+ 1, the matrix A(i[j) has two equal rows, and
thus D;;(A) = 0. Therefore,

E;(A) = (—1)* Ak Dj(A) + (= 1) Agei1y; Der) (A).
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Since O = Og41,

Apj = Ay and A(klj) = A(k +1]5).

Clearly then E;(A) = 0.

Now suppose D is a determinant function. If I is the n x n identity
matrix, then I™(j|5) is the (n — 1) x (n — 1) identity matrix 7("~1. Since
Igl) = 04, it follows from Eq. 6.5 that

E;(I™) = D11, (6.6)

Now D(I"Y)) = 1, so that E;(I"™) =1 and E; is a determinant function.
U

We emphasize that this last Theorem (together with a simple induction
argument) shows that if K is a commutative ring with identity and n > 1,
then there exists at least one determinant function on K™*". In the next
section we will show that there is only one determinant function. The de-
terminant function Ej is referred to as the Laplace expansion of the deter-
minant along the jth column. There is a similar Laplace expansion of the
determinant along the ith row of A which will eventually show up as an easy
corollary.

6.2 Permutations & Uniqueness of Determi-
nants

6.2.1 A Formula for the Determinant

Suppose that D is an alternating n-linear function on n x n matrices over

K. Let A be an n x n matrix over K with rows oy, g, ..., a,. If we denote
the rows of the n x n identity matrix over K by €, ¢€9,...,€,, then
n
Q; = ZAijGj, 1 S 1 S n. (67)
=1

Hence
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D(A) = D(ZAUGJ',OJQ,...,O!“>

J
= ZAUD(GJ"O'/Q’ “e ,O,/n).
J

If we now replace oy with >, Agier, we see that
D(A) = ZAleQkD(eja €ky-e -y Ojn).
gk

In this expression replace a3 by >, As€;, etc. We finally obtain

D(A) = Z AllclAka s AnknD(ekl, ey Ekn). (68)
k1,k2,..kn
Here the sum is over all sequences (ki, ko, ..., k,) of positive integers not

exceeding n. This shows that D is a finite sum of functions of the type de-
scribed by Eq. 6.2. Note that Eq. 6.8 is a consequence just of the assumption
that D is n-linear, and that a special case was obtained earlier in Example
2. Since D is alternating,

D(le,sz, .. .,Gkn) =0

whenever two of the indices k; are equal. A sequence (ki, ko, ..., k,) of pos-
itive integers not exceeding n, with the property that no two of the k; are
equal, is called a permutation of degree n. In Eq. 6.8 we need therefore sum
only over those sequences which are permutations of degree n.

A permutation of degree n may be defined as a one-to-one function from
the set {1,2,...,n} onto itself. Such a function o corresponds to the n-tuple
(01,02,...,0n) and is thus simply a rule for ordering 1,2,...,n in some
well-defined way.

If D is an alternating n-linear function and A is a n X n matrix over K,
we then have

D(A) = Z Al(al) e An(an)D(eala sy ean) (69)

where the sum is extended over the distinct permutations o of degree n.
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Next we shall show that

D(es1y- .-y €mm) = ED(€1,. .., €,) (6.10)

where the sign + depends only on the permutation o. The reason for this is
as follows. The sequence (01,02, ...,0n) can be obtained from the sequence
(1,2,...,n) by a finite number of interchanges of pairs of elements. For
example, if 01 # 1, we can transpose 1 and o1, obtaining (o1,...,1,...).
Proceeding in this way we shall arrive at the sequence (c1,...,0n)) after n
or fewer such interchanges of pairs. Since D is alternating, the sign of its
value changes each time that we interchange two of the rows ¢; and ¢;. Thus,
if we pass from (1,2,...,n) to (01,02,...,0n) by means of m interchanges
of pairs (i, j), we shall have

D(eala .- -;ean) = (—1)mD(€1, .. .,Gn).

In particular, if D is a determinant function

D(eot, -, eom) = (=1)™, (6.11)

where m depends only on ¢, not on D. Thus all determinant functions assign
the same value to the matrix with rows €,1, ..., €,,, and this value is either
1 or -1.

A basic fact about permutations is the following: if ¢ is a permutation
of degree n, one can pass from the sequence (1,2,...,n) to the sequence
(61,02,...,0n) by a succession of interchanges of pairs, and this can be
done in a variety of ways. However, no matter how it is done, the number of
interchanges used is either always even or always odd. The permutation is

then called even or odd, respectively. One defines the sign of a permutation
by

|1, if o is even;
S 0= 1, ifois odd.

We shall establish this basic properties of permutations below from what
we already know about determinant functions. However, for the moment
let us assume this property. Then the integer m occurring in Eq. 6.11 is

always even if o is an even permutation, and is always odd if ¢ is an odd
permutation. For any alternating n-linear function D we then have

D(és1y. .- €mm) = (sgn o)D(ey, ..., €,),
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and using Eq. 6.9 we obtain

D(A) = Z(Sgn O')Al(gl) e An((m) D(I) (6.12)
From Eq. 6.12 we see that there is precisely one determinant function on
n X n matrices over K. If we denote this function by det, it is given by

det(A) = Z(sgn U)Al(al)Az(UQ) T An((m), (6.13)
the sum being extended over the distinct permutations o of degree n. We
can formally summarize this as follows.

Theorem 6.2.2. Let K be a commutative ring with 1 and let n be a positive
integer. There is precisely one determinant function on the set of n X n
matrices over K and it is the function det defined by Eq. 6.13. If D is any
alternating n-linear function on M,(K), then for each n x n matriz A,

D(A) = (det A)D(I).

This is the theorem we have been working towards, but we have left a gap
in the proof. That gap is the proof that for a given permutation o, when we
pass from (1,2,...,n) to (o1,...,0n) by interchanging pairs, the number of
interchanges is always even or always odd. This basic combintaorial fact can
be proved without any reference to determinants. However, we now point
out how it follows from the ezistence of a determinant function on n X n
matrices.

Let K be the ring of rational integers. Let D be a determinant function
on the n x n matrices over K. Let o be a permutation of degree n, and
suppose we pass from (1,2,...,n) to (o1,...,0n) by m interchanges of pairs
(i,7), i # j. As we showed in Eq. 6.11

(=1)™ = D(€és1,---»€om),
that is, the nuber (—1)™ must be the value of D on the matrix with rows

€oly---5€0n- If
D(Gala-' '76077,) = ]-7

then m must be even. If

D(eolv . '760n) =-1,
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then m must be odd.
From the point of view of products of permutations, the basic property
of the sign of a permutation is that

sgn (o7) = (sgn o)(sgn 7). (6.14)

This result also follows from the theory of determinants (but is well known
in the theory of the symmetric group independet of any determinant theory).
In fact, it is an easy corollary of the following theorem.

Theorem 6.2.3. Let K be a commutative ring with identity, and let A and
B be n x n matrices over K. Then

det (AB) = (det A)( det B).

Proof. Let B be a fixed n x n matrix over K, and for each n x n matrix A
define D(A) = det (AB). If we denote the rows of A by ay, ..., ay,, then

D(oy,...,a,) = det (i B,...,a,B).

Here o; B denotes the 1 X n matrix which is the product of the 1 x n matrix
a; and the n X n matrix B. Since

(ca; + &})B = co;B + ;B

and det is n-linear, it is easy to see that D is n-linear. If a; = «;, then
;B = a;B, and since det is alternating,

D(al,...,an) = 0.

Hence, D is alternating. So D is an alternating n-linear function, and by
Theorem 6.2.2

D(A) = (det A)D(I).
But D(I) = det (IB) = det B, so

det (AB) = D(A) = (det A)(det B).
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6.3 Additional Properties of Determinants

Several well-known properties of the determinant function are now easy con-
sequences of results we have already obtained, Eq. 6.13 and Theorem 6.2.3,
for example. We give a few of these, proving some and leaving the others as
rather routine exercises.

6.3.1 If Ais a unit in M, (K), then det(A) is a unit in
K.

If A is an invertible n X n matrix over a commutative ring K with 1, then
det (A) is a unit in the ring K.

6.3.2 Triangular Matrices

If the square matrix A over K is upper or lower triangular, then det (A) is
the product of the diagonal entries of A.

6.3.3 Transposes

If AT is the transpose of the square matrix A, then
det (AT) = det (A).

Proof. 1f o is a permutation of degree n,
(AD)itoty = A(iyi-

Hence

det (AT) = Z(Sgn U)A(Ul)l T A(Un)n-

[

When i = O_lj, A((m’)i = Aj(a—lj). Thus

A(O’l)l T A(Un)n = Al(al) T An(on)-

Since oo~ is the identity permutation,

(sgn o)(sgn o ') =1, sosgn (o ') =sgn (o).
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Furthermore, as o varies over all permutations of degree n, so does o~ 1.

Therefore,

det (AT) = Z(sgn 0 A1) -+ Apgo-1n) = det (A).

[

6.3.4 Elementary Row Operations

If B is obtained from A by adding a multiple of one row of A to another (or
a multiple of one column to another), then det(A) = det(B). If B = cA,
then det (B) = c"det (A).

6.3.5 Triangular Block Form
Suppose an n x n matrix A is given in block form
B C
=(0 %)
where B is an r X r matrix, F is an s X s matrix, C is r X s, and 0 denotes
the s X r zero matrix. Then

det ( b ) — (det B)(det E). (6.15)

Proof. To prove this, define

B C
D(B,C, E) = det ( 0 E)

If we fix B and C, then D is alternating and s-linear as a function of the
rows of E. Hence by Theorem 6.2.2

D(B,C,E) = (det E)D(B,C, 1),

where [ is the s X s identity matrix. By subtracting multiples of the rows of
I from the rows of B and using the result of 6.3.4, we obtain

D(B,C,I) = D(B,0,I).
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Now D(B,0, 1) is clearly alternating and r-linear as a function of the rows
of B. Thus

D(B,0,1) = (det B)D(I,0,1) = 1.

Hence

D(B,C,E) = (det E)D(B,C,1I)
= (det E)D(B,0,I)
= (det E)(det B).

By taking transposes we obtain

det ( P ) = (det A)(det C).

It is now easy to see that this result generalizes immediately to the case
where A is in upper (or lower) block triangular form.

6.3.6 The Classical Adjoint and the Laplace Expansion
Since the determinant function is unique and det(A) = det(A”), we know
that for each fixed column index 7,

det (A) = Xn:(—l)Hinjdet A(il5), (6.16)

i=1
and for each row index i,

det (A) = zn:(—1)i+jA,-jdet A(il§). (6.17)

j=1
As we mentioned earlier, the formulas of Eqs. 6.16 and 6.17 are known as

the Laplace expansion of the determinant in terms of columns, respectively,
rows. Later we will present a more general version of the Laplace expansion.

The scalar (—1)*™/det A(i|7) is usually called the i, j cofactor of A or the
cofacor of the 7, j entry of A. The above formulas for det (A) are called the
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expansion of det (A) by cofactors of the jth column (sometimes the expansion
by minors of the jth column), or respectively, the expansion of det (A) by
cofactors of the ith row (sometimes the expansion by minors of the ith row).
If we set

Cyj = (=1)"det A(il),
then the formula in Eq. 6.16 says that for each j,

=1

where the cofactor C;; is (—1)**7 times the determinant of the (n—1) x (n—1)
matrix obtained by deleting the ith row and jth column of A.
Similarly, for each fixed row index i,

j=1

If 7 # k, then

i AikCij - 0
=1

To see this, replace the jth column of A by its kth column, and call the
resulting matrix B. Then B has two equal columns and so det(B) = 0.
Since B(i|j) = A(i|j), we have

0 = det (B)

n

= Z(—l)i“szdet (B(il7))

= Z(_1)i+inkdet (A(il5))

=1
n
= E AikCij.
=1

These properties of the cofactors can be summarized by
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ZAikCij = jkdet (A) (618)
i=1
The n xn matrix adj A , which is the transpose of the matrix of cofactors
of A is called the classical adjoint of A. Thus

(adj A)y; = Cji = (—1)*det (A(jli). (6.19)
These last two formulas can be summarized in the matrix equation
(adj A)A = (det (A))I. (6.20)
We wish to see that A(adj A) = (det A)T also. Since AT (i]7) = (A(j]7))7,
we have
(=1)"™det (A" (il5)) = (=1)"det (A(j]2)),
which simply says that the 4, j cofactor of AT is the j,4 cofactor of A. Thus
adj (A7) = (adj A)T. (6.21)
Applying this last equation to AT, we have
(adj AT)AT = (det (AT))I = (det A)I.
Transposing, we obtain
A(adj AT)" = (det (A4))I.
Using Eq. 6.21 we have what we want:
A(adj A) = (det (A))I. (6.22)
An almost immediate corollary of the previous paragraphs is the following:

Theorem 6.3.7. Let A be an n x n matriz over K. Then A is invertible
over K if and only if det (A) is invertible in K. When A is invertible, the
unique inverse for A is

Al = (det A) tadj A.

In particular, an n x n matrix over a field is invertible if and only if its
determinant is different from zero.
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NOTE: This determinant criterion for invertibility proves that an n X n
matrix with either a left or right inverse is invertible.

NOTE: The reader should think about the consequences of Theorem 6.3.7
in case K is the ring F[z] of polynomials over a field F, or in case K is the
ring of rational integers.

6.3.8 Characteristic Polynomial of a Linear Map

If P is also an n X n invertible matrix, then because K is commutative and
det is multiplicative, it is immediate that

det (P~'AP) = det (A). (6.23)

This means that if K is actually a field, if V' is an n-dimensional vector
space over K, if T': V — V is any linear map, and if B is any basis of V,
then we may unambiguously define the characteristic polynomial cp(x) of T
to be

er(z) = det(zI — [T)5).

This is because if A and B are two matrices that represent the same
linear transformation with respect to some bases of V', then by Eq. 6.23 and
Theorem 4.7.1

det(zl — A) = det(zI — B).

6.3.9 Coefficients of the Characteristic Polynomial

Theorem 6.3.10. Let K be a commutative ring with 1, and let A be annxn
matrix over K. The characteristic polynomial of A is given by

f(z) =det(z] — A) = Z cix™ ™ (6.24)

where co = 1, and for 1 < i <n, ¢; =) det(B), where B ranges over all the
1 X 1 principal submatrices of —A.
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For an n x n matrix A, the trace of A is defined to be
i=1

Note: Putting ¢ = 1 yields the fact that the coefficient of z"~! is
-y A; = —tr(A), and putting ¢ = n says that the constant term is
(=1)"det(A).

Proof. Clearly det(xI — A) is a polynomial of degree n which is monic, i.e.,
¢g = 1, and and with constant term det(—A) = (—1)"det(A). Suppose
1 < i < n—1 and consider the coefficient ¢; of 2"~* in the polynomial
det(z] — A). Recall that in general, if D = (d;;) is an n X n matrix over a
commutative ring with 1, then

det(D) = Z (—1)Sgn(7r) “dir)d2x2)  * Anyr(n)-

TES,

So to get a term of degree n — i in det(zl — A) = Zwesn(—l)s-"”(“)(mf —
A)1zq) -+ (2] = A)p (n) We first select n —i indices jy, . . ., jn—;, With comple-
mentary indices k1, . .., k;. Then in expanding the product (z/—A)1 q) - - (21—
A)prny When 7 fixes ji,...,jn—;, we select the term z from the factors
(@l = A)jyjis---s (@I = A)j,_j._i» and the terms (—A)k, x(kr)s - - -5 (—A) kir(k:)
otherwise. Soif A(k1,...,k;) is the principal submatrix of A indexed by rows
and columns kq, ..., k;, then det(—A(kq,...,k;)) is the associated contribu-
tion to the coefficient of z"~*. It follows that ¢; = > det(B) where B ranges
over all the principal ¢ X 7 submatrices of —A. O

Suppose the permutation 7 € §,, consists of k£ permutation cycles of sizes
li,...,l, respectively, where »_l; = n. Then sgn(n) can be computed by

sgn(ﬂ) — (_1)l1—1+lz—1+---lk—1 — (_1)n—lc — (_1)n(_1)k.

We record this formally as:

sgn(m) = (=1)"(=1)F if € S, is the product of k disjoint cycles. (6.25)
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6.3.11 The Companion Matrix of a Polynomial

In this section K is a field and f(z) = 2" +ap_12™ '+ -+ a1z +ag € K|z].
Define the companion matriz C(f(z)) by

(00 00 —ap
1000 —-a
01 -+ 00 -—a
C(f(x)): P . P :
00+ 10 —ay
\0 0 - 01 —a,y )

The main facts about C'(f(z)) are in the next result.

Theorem 6.3.12.
det (I, — C(f(z))) = f(z)

is both the minimal and characteristic polynomial of C(f(z)).

Proof. First we establish that f(z) = det(xI, —C(f(z))). This result is clear
if n =1 and we proceed by induction. Suppose that n > 1 and compute the
determinant by cofactor expansion along the first row, applying the induction
hypothesis to the first summand.

( r 0 -~ 0 0 ao \
-1 z --- 0 0 ax
0 -1 .- 0 0 (05}
det(zI, — C(f(z))) = det L . )
o o -~ -1 z a,—2
\ 0 0 - 0 -1 z4a,
T 0 0 ay
-1 0 0 a
=z det :
o --- -1 =« Ap—2

0 P 0 _1 $+G/n71
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-1 =z 0 0

0 -1 0 0
+ao(—1)"det : :

0 0 -1 =z

0 O - -1

=2(z" ' + a1 2" 2+ +ay) +ag(=1) T (=1)" !
=2"+ a1 2"+ T+ ag = f(x).

This shows that f(z) is the characteristic polynomial of C'(f(z)).

Now let T be the linear operator on K™ whose matrix with respect to the
standard basis S = (e, ey,...,e,) is C(f(x)). Then Te; = ey, T?e; = Tey =
es, ..., Tle; = T(ej) = ej41 for 1 < j <n—1, and Te, = —ape; — ajey —
e — Gp_1€y, SO

(T" + ap T" ' +---+a;T+a+0I)e, =0.

Also

(Tn —+ -4 CL1T+CL()I)€J'+1 = (Tn + - +011T+CL0_[)Tjel
=TI(T" +- -+ a;T + agl)e; = 0.

It follows that f(7") must be the zero operator. On the other hand,
(e1,Tey,...,T" 'e;) is a linearly independent list, so that no nonzero poly-
nomial in 7" with degree less than n can be the zero operator. Then since

f(z) is monic it must be that f(z) is also the minimal polynomial for 7" and
hence for C(f(x)). O

6.3.13 The Cayley-Hamilton Theorem

Let dim(V) = n and let T € L(V). If f is the characteristic polynomial for
T, then f(T) = 0. This is equivalent to saying that the minimal polynomial
for T" divides the characteristic polynomial for 7.

Proof. This proof is an illuminating and fairly sophisticated application of
the general theory of determinants developed above.

Let K be the commutative ring with identity consisting of all polynomials
in T. Actually, K is a commutative algebra with identity over the scalar
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field F. Choose a basis B = (v1, ..., v,) for V and let A be the matrix which
represents 7T’ in the given basis. Then

=1

These equations may be written in the equivalent form

i=1

Let B € M, (K) be the matrix with entries
Bij == 6Z]T - A]zI

Note the interchanging of the ¢ and j in the subscript on A. Let f(x) =
det (zI — A) = det (zI — A"). Then f(T) = det(B). Our goal is to show
that f(7') = 0. In order that f(7") be the zero operator, it is necessary and
sufficient that det(B)(v;) = 0 for 1 < k < n. By the definition of B, the
vectors vy, ..., v, satisfy the equations

i=1 i=1
Let B be the classical adjoint of B, so that BB = BB = det(B)]. Note
that B also has entries that are polynomials in the operator T. Let By;
operate on the right side of Eq. 6.26 to obtain

0=Bx > Bji(vi) = (b;Bji) (v3).
i=1 i=1
So summing over j we have

0=> ( Bijji) (v:) =Y _ (Sridet(B)) (v;) = det(B)(vy).

i=1 =1

O

At this point we know that each irreducible factor of the minimal poly-
nomial of 7" is also a factor of the characteristic polynomial of 7. A converse
is also true: Each irreducible factor of the characteristic polynomial of T is
also a factor of the minimal polynomial of 7. However, we are not yet ready
to give a proof of this fact.
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6.3.14 Cramer’s Rule

We now discuss Cramer’s rule for solving systems of linear equations. Sup-
pose A is an n X n matrix over the field F' and we wish to solve the system
of linear equations AX =Y for some given n-tuple (yi,...,y,). If AX =Y,
then

(adj A)AX = (adj A)Y

implying
(det A)X = (adj A)Y.

Thus

n

i=1

— Z(—l)”jyidet A(ilg)-

1=1

This last expression is the determinant of the n X n matrix obtained by
replacing the jth column of A by Y. If det A = 0, all this tells us nothing.
But if det A # 0, we have Cramer’s rule:

Let A be an n x n matrix over the field F' such that det A # 0. If
Y1, ..., Yn are any scalars in F, the unique solution X = A~'Y of the system
of equations AX =Y is given by

'_detBj
YT et A

7=1,...,n,

where B; is the n X n matrix obtained from A by replacing the jth column
of Aby Y.

6.4 Deeper Results with Some Applications*

The remainder of this chapter may be omitted without loss of continuity.

In general we continue to let K be a commutative ring with 1. Here
Mat,,(K) denotes the ring of n X n matrices over K, and |A| denotes the
element of K that is the determinant of A.
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6.4.1 Block Matrices whose Blocks Commute*

We can regard a k x k matrix M = (A®)) over Mat, (K) as a block matriz,
a matrix that has been partitioned into k? submatrices (blocks) over K, each
of size n x n. When M is regarded in this way, we denote its determinant
in K by |M|. We use the symbol D(M) for the determinant of M viewed as
a k x k matrix over Mat, (K). It is important to realize that D(M) is an
n X n matrix.

Theorem. Assume that A is a k x k£ block matrix of n x n blocks
A7) over K that pairwise commute. Then

M| = [D(M)] = |3 (sgn o) Ao ACo) . gl (6.27)

0€ESy

Here Sy is the symmetric group on k£ symbols, so the summation is the
usual one that appears in a formula for the determinant. The first proof
of this result to come to our attention is the one in N. Jacobson, Lectures
in Abstract algebra, Vol. 1II — Theory of Fields and Galois Theory, D. Van
Nostrand Co., Inc., 1964, pp 67 — 70. The proof we give now is from I.
Kovacs, D. S. Silver, and Susan G. Williams, Determinants of Commuting-
Block Matrices, Amer. Math. Monthly, Vol. 106, Number 10, December
1999, pp. 950 — 952.

Proof. We use induction on k. The case k = 1 is evident. We suppose that
Eq. 6.27 is true for £ — 1 and then prove it for k. Observe that the following
matrix equation holds:

I 0 0 I 0 ALy
—AGY T 0 0 ALY 0 0

) ) M =

: Toeee : : : : N
A& o ... T 0 0 oo AGD 0

where N is a (k—1) x (k— 1) matrix. To simplify the notation we write this
as

PQM = R, (6.28)
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where the symbols are defined appropriately. By the multiplicative property
of determinants we have D(PQM) = D(P)D(Q)D(M) = (ABD)=1D(M)
and D(R) = AWYD(N). Hence we have (AGDYE1D(M) = AGYD(N).
Take the determinant of both sides of the last equation. Since |[D(N)| = |N|
by the induction hypothesis, and using PQM = R, we find

ACDFDM)] = [ABD|ID(N)| = [ABV]|N]
Rl = [Pl|QI[M] = [ACD 1M,

k—1

If |A®MD)] is neither zero nor a zero divisor, then we can cancel |A(:V)
from both sides to get Eq. 6.27.

For the general case, we embed K in the polynomial ringK[z]|, where z is
an indeterminate, and replace A(4Y) with the matrix zI + ALY, Since the
deterinant of 2I+A®"") is a monic polynomial of degree n, and hence is neither
zero nor a zero divisor, Eq. 6.27 holds again. Substituting z = 0 (equivalently,
equating constant terms of both sides) yields the desired result. O

6.4.2 Tensor Products of Matrices*

Definition: Let A = (a;j) € Mp, n,(K), and let B € By, ,(K). Then
the tensor product or Kronecker product of A and B, denoted A ® B €
Mo my man, (K), is the partitioned matrix

an B a2 B -+ ayp, B
anB axpB --- ay,B

A®B=| > ? (6.29)
amllB am12B o a’mlnlB

It is clear that I, ® I, = L.

Lemma Let A, € My, »,(K), Ay € My, ., (K), By € My, ,(K), and
By € My, ,,(K). Then

(Al ® Bl)(AQ ® BQ) - (AlAQ) ® (B1B2) (630)

Proof. Using block multiplication, we see that the (i,j) block of (4;45) ®
(Ble) is
> (A1) Br) ((A2)iBa) =

k=1
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= (Z(Al)ik(A2)kj) B, By,

k=1
which is also seen to be the (i, j) block of (41 A42) ® (B1Bz). O

Corollary Let A € M,,(K) and B € M,(K). Then
A®B=(A®I,)(I, ® B). (6.31)

and
|A® B| = |A["|B|™. (6.32)

Proof. Eq. 6.31 is an easy consequence of Eq. 6.30, and then Eq. 6.32 follows
easily from the theorem in 6.3.5. U

6.4.3 The Cauchy-Binet Theorem-A Special Version*

The main ingredient in the proof of the Matrix-Tree theorem (see the next
section) is the following theorem known as the Cauchy-Binet Theorem. It
is more commonly stated and applied with the diagonal matrix A below
taken to be the identity matrix. However, the generality given here actually
simplifies the proof.

Theorem 6.4.4. Let A and B be, respectively, r x m and m X r matrices,
with r < m. Let A\ be the m x m diagonal matriz with entry e; in the (i,1)-
position. For an r-subset S of [m], let As and B® denote, respectively, the
r x r submatrices of A and B consisting of the columns of A, or the rows of
B, indexed by the elements of S. Then

det(A A B) = det(Ag)det(B%) [ ] e,

where the sum is over all r-subsets S of [m].

Proof. We prove the theorem assuming that eq, . . ., e, are independent (com-
muting) indeterminates over F. Of course it will then hold for all values of
€1,...,6my in F.

Recall that if C' = (¢;;) is any r x r matrix over F', then

det(C) = Z 39”(0)010(1)020(2) ** Cro(r)-

€S,
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Given that A = (a;;) and B = (b;;), the (i,j)-entry of AAB1is > )" | aixerby;,
and this is a linear form in the indeterminates ey, .. ., e,,,. Hence det(AA B) is
a homogeneous polynomial of degree r in ey, ..., e,,. Suppose that det(AAB)
has a monomial el'el? ... where the number of indeterminates e; that have
t; > 0 is less than r. Substitute 0 for the indeterminates e; that do not
appear in ef'e? ..., i.e., that have t; = 0. This will not affect the monomial
efrel? ... or its coefficient in det(A A B). But after this substitution A has
rank less than 7, so A A B has rank less than r, implying that det(A A B)
must be the zero polynomial. Hence we see that the coefficient of a monomial
in the polynomial det(A A B) is zero unless that monomial is the product
of r distinct indeterminates e;, i.e., unless it is of the form [],_ e; for some
r-subset S of [m].

The coefficient of a monomial [], s e; in det(A A B) is found by setting
e; =1fori e S, and e; =0 for 7 € S. When this substitution is made in
A, A A B evaluates to AgB®. So the coefficient of [], s €; in det(A A B) is
det(Ag)det(B%). O

1€S

Exercise 6.4.4.1. Let M be an n X n matriz all of whose linesums are zero.
Then one of the eigenvalues of M is Ay = 0. Let Ao, ..., )\, be the other
eigenvalues of M. Show that all principal n — 1 by n — 1 submatrices have
the same determinant and that this value is %)\2/\3 e A

Sketch of Proof: First note that since all line sums are equal to zero, the
entries of the matrix are completely determined by the entries of M in the
first » rows and first n columns, and that the entry in the (n,n) position is
the sum of all (n — 1)? entries in the first n — 1 rows and columns.

Clearly A\; = 0 is an eigenvalue of A. Observe the appearance of the
(n —1) x (n — 1) subdeterminant obtained by deleting the bottom row and
right hand column. Then consider the principal subdeterminant obtained by
deleting row j and column 7, 1 < j7 < n — 1, from the original matrix M. In
this (n — 1) x (n — 1) matrix, add the first n — 2 columns to the last one, and
then add the first n — 2 rows to the last one. Now multiply the last column
and the last row by -1. This leaves a matrix that could have been obtained
from the original upper (n — 1) x (n — 1) submatrix by moving its jth row
and column to the last positions. So it has the same determinant.

Now note that the coefficient of = in the characteristic polynomial f(z) =
det(zI—A)is (—1)" !Xz - - - Ay, since A\; = 0, and it is also (—1)"' 3" det(B),
where the sum is over all principal subdeterminants of order n — 1, which by
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the previous paragraph all have the same value. Hence det(B) = %)\2/\3 <o Ay
for any principal subdeterminant of order n — 1.

6.4.5 The Matrix-Tree Theorem*

The “matrix-tree” theorem expresses the number of spanning trees in a graph
as the determinant of an appropriate matrix, from which we obtain one more
proof of Cayley’s theorem counting labeled trees.

An incidence matrix N of a directed graph H is a matrix whose rows
are indexed by the vertices V' of H, whose columns are indexed by the edges
E of H, and whose entries are defined by:

0 if x is not incident with e, or e is a loop,
N(z,e)=<¢ 1  if zis the head of e,
—1 if x is the tail of e.

Lemma 6.4.6. If H has k components, then rank(N) = |V | — k.

Proof. N has v = |V| rows. The rank of N is v —n, where n is the dimension
of the left null space of NV, i.e., the dimension of the space of row vectors g for
which gV = 0. But if e is any edge, directed from z to y, then g/N = 0 if and
only if g(z) — g(y) = 0. Hence gN = 0 iff ¢ is constant on each component
of H, which says that n is the number k£ of components of H. O

Lemma 6.4.7. Let A be a square matriz that has at most two nonzero entries
i each column, at most one 1 in each column, at most one -1 in each column,
and whose entries are all either 0, 1 or -1. Then det(A) is 0, 1 or -1.

Proof. This follows by induction on the number of rows. If every column
has both a 1 and a -1, then the sum of all the rows is zero, so the matrix is
singular and det(A) = 0. Otherwise, expand the determinant by a column
with one nonzero entry, to find that it is equal to 1 times the determinant
of a smaller matrix with the same property. O

Corollary 6.4.8. FEvery square submatriz of an incidence matriz of a di-
rected graph has determinant 0 or £1. (Such a matriz is called totally
unimodular.)
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Theorem 6.4.9. (The Matrix-Tree Theorem) The number of spanning trees
in a connected graph G on n vertices and without loops is the determinant of
any n— 1 by n — 1 principal submatriz of the matriz D — A, where A is the
adjacency matriz of G and D is the diagonal matriz whose diagonal contains
the degrees of the corresponding vertices of G.

Proof. First let H be a connected digraph with n vertices and with incidence
matrix N. H must have at least n — 1 edges, because it is connected and
must have a spanning tree, so we may let S be a set of n—1 edges. Using the
notation of the Cauchy-Binet Theorem, consider the n by n — 1 submatrix
Ng of N whose columns are indexed by elements of S. By Lemma 6.4.6, Ng
has rank n—1 iff the spanning subgraph of H with S as edge set is connected,
i.e., iff S is the edge set of a tree in H. Let N’ be obtained by dropping any
single row of the incidence matrix N. Since the sum of all rows of N (or of
Ng) is zero, the rank of N§ is the same as the rank of Ng. Hence we have
the following:

+1 if S is the edge set of a spanning tree in H,

o
det(Ng) = { 0 otherwise. (6.33)

Now let G be a connected loopless graph on n vertices. Let H be any
digraph obtained by orienting G, and let N be an incidence matrix of H.
Then we claim NNT = D — A. For,

(NNT)yy = ZeEE(G) N(z,e)N(y,e)
| deg(z) if z =y,
- { —t if z and y are joined by t edges in G.

An n — 1 by n — 1 principal submatrix of D — A is of the form N'N'T
where N’ is obtained from N by dropping any one row. By Cauchy-Binet,

det(N'N') = " det(N§)det(NG) =) (det(Ng))?,
s S
where the sum is over all n — 1 subsets S of the edge set. By Eq. 6.33 this is
the number of spanning trees of G. O

Exercise 6.4.9.1. (Cayley’s Theorem) In the Matriz-Tree Theorem, take G
to be the complete graph K,. Here the matric D — A is nl — J, where I is
the identity matriz of order n, and J is the n by n matriz of all 1’s. Now
calculate the determinant of any n — 1 by n — 1 principal submatriz of this
matriz to obtain another proof that K, has n™2 spanning trees.
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Exercise 6.4.9.2. In the statement of the Matriz-Tree Theorem it is not
necessary to use principal subdeterminants. If the n — 1 x n — 1 submatriz
M is obtained by deleting the ith row and jth column from D — A, then
the number of spanning trees is (—1)**det(M). This follows from the more
general lemma: If A is an n — 1 X n matriz whose row sums are all equal

to 0 and iof A; is obtained by deleting the jth column of A, 1 < j <n, then
det(AJ) = —det(Aj+1).

6.4.10 The Cauchy-Binet Theorem - A General Version*

Let 1 < p < m € Z, and let ()p,, denote the set of all sequences o =
(41,92, ,Jp) of p integers with 1 < i3 < 45 < --+ < 4, < m. Note that

|Qpm| = ( )

Let K be a commutative ring with 1, and let A € M, ,(K). If o € Qp,m
and € Qjn, let A[a|f] denote denote the submatrix of A consisting of the
element whose row index is in & and whose column index isin 5. If & € Qp 1,
then there is a complementary sequence & € @Qp,—p,m consisting of the list of
exactly those positive integers between 1 and m that are not in «, and the
list is in increasing order.

Theorem 6.4.11. Let A € M,,,(K) and B € M, ,(K). Assume that 1 <
t <min{m,n,p} and let @ € Qm, B € Qip. Then

det(AB[o|B]) = Y det(Alaly]) - det(B[y|B)).

76Qt n

Proof. Suppose that a = (a4, ...,), 8= (b1,..-,5:), and let C = ABJa|f].
Then

n
Cz] = Z aaikbkb’j-
k=1

So we have

D kot Garkbg ot Doy big,
C= : . :
Dbt Gackbrgr T Dk Gackbis,
To calculate the determinant of C' we start by using the n-linearity in the
first row, then the second, row, etc.
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N bklﬂl T " bklﬁt
n
_1Q kbk _4Q kbk
det(C) = 3 aayp, - det 2= sk iy .an‘ S
k1=1 n : e 27{6:1 a’a2kbkﬁt
D k=1 Gackbrpy <0 Dy Gaukbig,
n n bepy o brup,
=3 > g et | ; (6.34)
ki=1 k=1 beg, - brs,
If kl = kj for 1 7é j, then
bk1,31 e bklb’t
det : : = 0.
bktb’l e bktﬂt
The the only possible nonzero determinant occurs when the (kq,...,k;)

is a permutation of a sequence v = (y1,...,%) € Qin. Let 0 € S; be the
permutation of {1,2,...,t} such that v; = k,(;) for 1 <i <¢. Then

bk1ﬁ1 bklﬁt

det sgn(o)det(Blv|0]). (6.35)

bk‘t,Bl bktﬂt

Given a fixed v € Q4 all possible permutations of  are included in the
summation in Eq. 6.34. Therefore Eq. 6.34 may be rewritten , using Eq.
6.35, as

det(C) = Z <Z sgn(a)aal%(l) . -aat%(t)> det(B[v|0]),

YEQt,n 0ES;

which is the desired formula. O

The Cauchy-Binet formula gives another verification of the fact that
det(AB) = det(A) - det(B) for square matrices A and B.
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6.4.12 The General Laplace Expansion*

For Y= (717 .. 77?5) € Qt,TlJ PUt 8(7) = E;’:l ’7]

Theorem 6.4.13. Let A € M, (K) and let @ € Qi (1 <t < n) be given.
Then

det(4) = 3 (“1)* @O det(Aal]) - det(A[a]3]).  (6.36)
YEQt,n

Proof. For A € M,,(K), define

Da(A) = ) (=1 @0 det(Alaly]) - det(A[a]4]). (6.37)
YEQtn

Then D, : M,(K) — K is easily shown to be n-linear as a function on
the columns of A. To complete the proof, it is only necessary to show that
D, is alternating and that D,(I,,) = 1. Thus, suppose that the columns of A
labeled p and ¢, p < ¢, are equal. If p and ¢ are both in v € Qy,, then Ala|y]
will have two columns equal and hence have zero determinant. Similarly, if
p and ¢ are both in ¥ € Q,_1,, then det(A[&|7) = 0. Thus in the evaluation
of D,(A) it is only necessary to consider those v € @, such that p € v and
g € 7, or vice versa. So suppose p € 7, ¢ € 7, and defind a new sequence
7' in @, by replacing p € v by g. Thus 4’ agrees with 4 except that ¢ has

been replaced by p. Thus

s(v) —s(v)=q-»p. (6.38)
(Note that s(v) — p and s(y') — ¢ are both the sum of all the things in ~y
except for p.) Now consider the sum

(=1)*Pdet(Alaly))det(Alal3]) + (=1)*7det(Alaly])det(AlalY]),

which we denote by S(A). We claim that this sum is 0. Assuming this,
since v and 7' appear in pairs in @ ,, it follows that D,(A) = 0 whenever
two columns of A agree, forcing D, to be alternating. So now we show that
S(A) =0.

Suppose that p = 7, and ¢ = 4;. Then « and +' agree except in the range
from p to ¢, as do 4 and 4'. This includes a total of ¢ — p + 1 entries. If r of
these entries are included in vy, then

NM< o <Y%=DP<Ve+1 < < Vetr-1 << Vptr < - <Nt
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and

Alaly] = Alaly]Py-1,
where w is the r-cycle (k+r—1,k+r —2,... k). Similarly,

Alaly'] = Ala|y] P
where w' is a (¢ — p+ 1 — r)-cycle. Thus,

(1) det(Alal det(Ala17]) =
= (1) DD et (Aol det(Ala] )

Since s(7v') + (¢ —p) —1 —s(y) = 2(¢ — p) — 1 is odd, we conclude that
S(A) = 0. Thus D, is n-linear and alternating. It is routine to check that
D,(I,) =1, completing the proof. O

Applying this formula for det(A) to det(A”) gives the Laplace expansion
in terms of columns.

6.4.14 Determinants, Ranks and Linear Equations*

If K is a commutative ring with 1 and A € M, ,(K), and if 1 < ¢t <

min{m, n}, then a ¢t X t minor of A is the determinant of any submatrix

Ala|f] where « € Qtm, B € Qin. The determinantal rank of A, denoted

D-rank(A), is the largest t such that there is a nonzero ¢ x ¢ minor of A.
With the same notation,

Fy(A) = ({detA[a|f] : @ € Qum, B € Qua}) C K.

That is, F3(A) is the ideal of K generated by all the ¢ x ¢ minors of A. Put
Fo(A) = K and F,(A) = 0if ¢ > min{m,n}. Fy(A) is called the ¢'! Fitting
ideal of A. The Laplace expansion of determinants along a row or column
shows that F;1(A) C F;(A). Thus there is a decreasing chain of ideals

K =F(A) 2 Fi(A) 2 F2(4) 2---.

Definition: If K is a PID, then F;(A) is a principal ideal, say Fi(A) =
(di(A)) where di(A) is the greatest common divisor of all the ¢ x ¢t minors of
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A. In this case, a generator of F;(A) is called the t_determinantal divisor
of A.

Definition If A € M,,,(K), then the M-rank(A) is defined to be the
largest t such that {0} = Ann(Fy(A)) ={k € K :kd =0 for all d € Fi(A)}.

Obs. 6.4.15. 1. M-rank(A) = 0 means that Ann(Fi(a)) # {0}. That
is, there is a nonzero a € K with a - a;; = 0 for all entries a;; of A.
Note that this is stronger than saying that every element of A is a zero
divisor. For example, if A = (2 3) € M,5(2s), then every element of
A is a zero divisor in Zg, but there is no single nonzero element of Zg
that annihilates both entries in the matriz.

2. If A € M,(K), then M-rank(A) = n means that det(A) is not a zero
divisor of K.

3. To say that M-rank(A) = t means that there is an a # 0 € K with
a-D =0 forall (t+1)x (t+1) minors D of A, but there is no nonzero
b € K which annihilates all t X t minors of A by multiplication. In
particular, if det(Ale|B]) is not a zero divisor of K for some o € Qg m,

B € Qsn, then M-rank(A) > s.

Lemma 6.4.16. If A € M,,,(K), then

0 < M — rank(A) < D — rank(A) < min{m,n}.
Proof. Routine exercise. O

We can now give a criterion for solvability of the homogeneous linear
equation AX = 0, where A € M,,,(K). This equation always has the
trivial solution X = 0, so we want a criterion for the existence of a solution
X #£0€e M,:(K).

Theorem 6.4.17. Let K be a commutative ring with 1 and let A € My, o (K).
The matriz equation AX =0 has a nontrivial solution X # 0 € M,1(K) if

and only if
M — rank(A) < n.

Proof. Suppose that M-rank(A) = ¢ < n. then Ann(F,;1(4)) # {0}, so
choose b # 0 € K with b- Fy11(A) = {0}. Without loss of generality, we may
assume that ¢t < m, since, if necessary, we may replace the system AX = 0
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with an equivalent one (i.e., one with the same solutions) by adding some
rows of zeroes to the bottom of A. If ¢ = 0, then ba;; = 0 for all a;; and we
may take

Then X #0 € M,,;(K) and AX = 0.

So suppose that ¢ > 0. Then b ¢ Ann(F;(A)) = {0}, so b-det(A[(|5]) # 0
for some o € Qim, B € @Qipn. By permuting rows and columns, which
does note affect whether AX = 0 has a nontrivial solution, we can assume
a=(1,...,t)=B For1<i<t+1let fi=(1,2,....%...,t +1) € Quss1,
where 7 indicates that i is deleted. Let d; = (—1)'*'det(A[a|B;]). Thus
dy,...,dsy1 are the cofactors of the matrix

A=A, b+ 1), +1)]

obtained by deleting row ¢ 4+ 1 and column 2. Hence the Laplace expansion
gives

>t ayd; =0, if1<i<t, (6:39)
Zt“amd =det(A[(1,...,t,9)|1,...,.t,t+1)]), ift<i<m.
T
Let X = : , where
Tn

{xizo, ift+2<i<n.
Then X # 0 since 24,1 = b - det(A[a|B]) # 0. But Eq. 6.39 and the fact
that b € Ann(Fi;1(A)) show that

b Z§+11 a15d;
AX =

t+1
bZJ 1 Gmjd;
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0
bdet(A[(1,....t, ¢t +1)|(1,....t,t+1)])

\ bdet(A[(1,....t;m)|(1,....t,t+1)]) )
Thus X is a nontrivial solution to the equation AX = 0.

Conversely, assume that X # 0 € M, ;(K) is a nontrivial solution to
AX =0, and choose k with z; # 0. We claim that Ann(F},(4)) # {0}. If
n > m, then F,(A) = {0}, and hence Ann(F,(A)) = K # (0). Thus we
may assume that n < m. Let a = (1,...,n) and for each § € Q,n, let
Bs = Ala|B]. Then since AX = 0 and since each row of By is a full row of
A, we conclude that Bz = 0. The adjoint matrix formula (Eq. 6.20) then
shows that

(det(Bs))X = (Adj Bs)BsX =T,

from which we conclude that z;, det(Bs) = 0. Since 8 € Qn is arbitrary,
we conclude that x - F,(A) = 0, i.e., 2x € Ann(F,(A)). But zx # 0, so
Ann(F,(A)) # {0}, and we conclude that M-rank(A) < n, completing the
proof. O

In case K is an integral domain we may replace the M-rank by the ordi-
nary determinantal rank to conclude the following:

Corollary 6.4.18. If K is an integral domain and A € My ,(K), then
AX =0 has a nontrivial solution if and only if D-rank(A) < n.

Proof. If I C K, then Ann(I) # {0} if and only if I = {0} since an integral
domain has no nonzero zero divisors. Therefore, in an integral domain D-

rank(A) = M-rank(A). O
The results for n equations are in n unknowns are even simpler.

Corollary 6.4.19. Let K be a commutative ring with 1.

1. If A € M,(K), then AX = 0 has a nontrivial solution if and only if
det(A) is a zero divisor of K.

2. If K is an integral domain and A € M,(K), then AX = 0 has a
nontrivial solution if and only if det (A) = 0.
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Proof. If A € M, (K), then F,(A) = (det(A)), so M-rank(A) < n if and
only if det(A) is a zero divisor. In particular, if K is an integral domain then
M-rank(A) < n if and only if det(A) = 0. O

There are still two other concepts of rank which can be defined for ma-
trices with entries in a commutative ring.

Definition Let K be a commutative ring with 1 and let A € M,, ,(K).
Then we will define the row rank of A, denoted by row-rank(A), to be the
maximum number of linearly independent rows in A, while the column rank
of A, denoted col-rank(A), is the maximum number of linearly independent
columns.

Corollary 6.4.20. 1. If K is a commutative ring with 1 and A € A, (K),
then

maz{row-rank(A), col-rank(A) < M — rank(A) < D — rank(A).

2. If K is an integral domain, then
row-rank(A) = col-rank(A) = M — rank(A) = D — rank(A).

Proof. We sketch the proof of the result when K is an integral domain. In
fact, it is possible to embed K in its field F' of quotients and do all the
algebra in F'. Recall the following from an undergraduate linear algebra
course. The proofs work over any field, even if you did only consider them
over the real numbers. Let A be an m x n matrix with entries in F. Row
reduce A until arriving at a matrix R in row-reduced echelon form. The first
thing to remember here is that the row space of A and the row space of R
are the same. Similarly, the right null space of A and the right null space of
R are the same. (Warning: the column space of A and that of R usually are
not the same!) So the leading (i.e., leftmost) nonzero entry in each nonzero
row of R is a 1, called a leading 1. Any column with a leading 1 has that
1 as its only nonzero entry. The nonzero rows of R form a basis for the
row space of A, so the number 7 of them is the row-rank of A. The (right)
null space of R (and hence of A) has a basis of size n — r. Also, one basis
of the column space of A is obtained by taking the set of columns of A in
the positions now indicated by the columns of R in which there are leading
1’s. So the column rank of A is also r. This has the interesting corollary
that if any r independent columns of A are selected, there must be some



6.4. DEEPER RESULTS WITH SOME APPLICATIONS* 91

r rows of those columns that are linearly independent, so there is an r x r
submatrix with rank r. Hence this submatrix has determinant different from
0. Conversely, if some r x r submatrix has determinant different from 0, then
the “short” columns of the submatrix must be independent, so the “long”
columns of A to which they belong must also be independent. It is now clear
that the row-rank, column-rank, M-rank and determinantal rank of A are all
the same. O

Obs. 6.4.21. Since all four ranks of A are the same when K is an integral
domain, in this case we may speak unambiguously of the rank of A, denoted
rank(A). Moreover, the condition that K be an integral domain is truly
necessary, as the following example shows.

Deﬁne A € M4(Zgl()) by

N

I
o wn o
cocow
o wo w
S o o wm

It is an interesting exercise to show the following:
1. row-rank(A) = 1.
2. col-rank(A) = 2.
3. M-rank(A) = 3.
4. D-rank(A) = 4.

Theorem 6.4.22. Let K be a commutative ring with 1, let M be a finitely
generated K-module, and let S C M be a subset. If |S| > p(M) = rank(M ),
then S is K-linearly dependent.

Proof. Let u(M) = m and let T = {wy, ..., wy,} be a generating set for M

consisting of m elements. Choose n distinct elements {v1,...,v,} of S for
some n > m, which is possible by hypothesis. Since M = (wy,..., w,), we
may write

m
v = Zaijwi, with aij € K.

=1
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Let A = (a;j) € My, ,(K). Since n > m, it follows that M-rank(A)
< m < n, so Theorem 6.4.17 shows that there is an X # 0 € M, ;(K) such
that AX = 0. Then

j=1 j=1 =1
=1 j=1

=0, since AX =0.
Therefore, S is K-linearly dependent. O

Corollary 6.4.23. Let K be a commutative ring with 1, let M be a K-
module, and let N C M be a free submodule. Then rank(N) < rank(M).

Proof. If rank(M) = oo, there is nothing to prove, so assume that rank(M)
=m < oo. If rank(N) > m, then there is a linearly independent subset
of M, namely a basis of N, with more than m elements, which contradicts
Theorem 6.4.22. O

Theorem 6.4.24. If A € M, ,(K) and B € M, ,(K), then

D — rank(AB) < min{D — rank(A), D — rank(B)}. (6.41)

Proof. Let t > min{D — rank(A), D — rank(B)} and suppose that o € Qy ,,
B € Qp. Then by the Cauchy-Binet formula

det(AB[a|B]) = > det(Alaly])det(B[v|B]).

7€Qt n

Since t > min{D — rank(A), D — rank(B)}, at least one of the determinants
det(Alc|f]) or det(B][y|f]) must be 0 for each v € Q. Thus det(AB[«|f]) =
0, and since « and [ are arbitrary, it follows that D-rank(AB) < t, as
required.

U

The preceding theorem has a useful corollary.
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Corollary 6.4.25. Let A € M,,,(K), U € GL(m,K), V € GL(n,K).
Then

D — rank(UAV) = D — rank(A).

Proof. Any matrix B € M, ,(K) satisfies D-rank(B) <min{m,n}. Since
D-rank(U) = m and D-rank(V') = n, it follows from Eq. 6.41 that

D — rank(UAV) < min{D — rank(A),n,m} = D — rank(A)
and
D —rank(A) = D — rank(U ' (UAV)V™!) < D — rank(UAV).

This completes the proof. O

6.5 Exercises

1. (Vandermonde Determinant)

Let ¢1,...,t, be commuting indeterminates over K, and let A be the
n X n matrix whose entries are from the commutative ring K[t1, ..., t,]
defined by
1t & ... ¢!
an| b
1 t, & --- !
Then

det A= H (tz — t])

1<5<i<n
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Chapter 7

Operators and Invariant
Subspaces

Throughout this chapter F' will be an arbitrary field unless otherwise re-
stricted, and V will denote an arbitrary vectors space over F. Much of our
work will require that V' be finite dimensional, but we shall be general as
long as possible. Given an operator 7' € L£(V'), our main interest will be in
finding T-invariant subspaces Uy,...,U, such that V =U, @ Uy & --- ® U,.
Since each Uj is invariant under 7', we may consider the restriction 7; = T'|y,
of T' to the subspace U;. Then we write I' =T &---®T,. It is usually easier
to analyze T" by writing it as the sum of the operators 7; and then analyzing
the operators 7; on the smaller subspaces U;.

7.1 Eigenvalues and Eigenvectors

Let T € L(V). Then {0}, V, null(T), and Im(T) are invariant under 7.
However, often these are not especially interesting as invariant subspaces,
and we want to begin with 1-dimensional 7T-invariant subspaces.

Suppose that U is a 1-dimensional T-invariant subspace. Then there
exists some nonzero vector v € U. Since T'(u) € U, there is some scalar
a € F such that T(u) = au. By hypothesis (u) is a basis for U. If bu is any
vector in U, then T'(bu) = bT(u) = b(au) = a(bu). Hence for each v € U,
T(v) = av. If a € F satisfies the property that there is some nonzero vector
v € V such that T(v) = av, then a is called an eigenvalue of T. A vector
v € V is called an eigenvector of T belonging to the eigenvalue A provided

95
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T(v) = v, i.e., (T — AI)(v) = 0. Note that the eigenvalue A could be the

zero scalar, but it is an eigenvalue if and only if there is a nonzero eigenvector

belonging to it. For this reason many authors restrict all eigenvectors to be

nonzero. However, it is convenient to include 0 in the set of eigenvectors

belonging to any particular eigenvalue so that the set of all eigenvectors

belonging to some eigenvalue is a subspace, in fact a T-invariant subspace.
We have the following:

Obs. 7.1.1. If X is an eigenvalue of T, then null(T — A\ ) is the T-invariant
subspace of V' consisting of all eigenvectors belonging to \.

Consider the example T € L(F?) defined by T(y,z) = (2z,—y). Then
T(y,z) = Ay, z) if and only if 2z = Ay and —y = Az, so 2z = A(—\z).
If (y,2z) # (0,0), then \? = —2. If F = R, for example, then T has no
eigenvalue. However, if F' is algebraically closed, for example, then T has
two eigenvalues )\ where ) is one of the two solutions to \?> = —2. If
F = Z5, then —2 = 3 is a non-square in F', so T has no eigenvalues. But if
F = Z;, then \ = 43 satisfies \2 = —2 in F.

Nonzero eigenvectors belonging to distinct eigenvalues are linearly inde-
pendent.

Theorem 7.1.2. Let T € L(V) and suppose that X1, ..., Ay, are distinct
eigenvalues of T with corresponding nonzero eigenvectors vy, ...,V,. LThen
the list (vy,...,vn) is linearly independent.

Proof. Suppose (v1, ..., vy,) is linearly dependent. By the Linear Dependence

Lemma we may let j be the smallest positive integer for which (vq,...,v;)
is linearly dependent, so that v; € span(vy,...,vx_1). So there are scalars
ai, - ..,a; 1 for which

V; = a1V 4+ 4 Aj—1V5—1. (71)

Apply T to both sides of this equation to obtain

/\jvj = CL1A1U1 + CI/QAQ/UQ + -+ aj,l/\j,lvj,l.

Multiply both sides of Eq. 7.1 by A; and subtract the equation above from
it. This gives

6 = ai ()\j — /\1)’01 + -+ Clj_l(Aj - )\j—l)'Uj—l-
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Because j was chosen to be the smallest integer for which v; € span(vy, ..., v,_1)
we now have that (vq,...,v;_1) is linearly independent. Since the \’s were
all distinct, this means that a; = --- = a;_; = 0, implying that v; = 0 (by
Eq. 7.1), contradicting our hypothesis that all the v;’s are nonzero. Hence
our assumption that (v, ..., v;) is linearly dependent must be false. O

Since each linearly independent set of a finite dimensional space has no
more elements than the dimension of that space, we obtain the following
result.

Corollary 7.1.3. If dim(V) = n < oo, then V' can never have more than n
distinct eigenvalues.

7.2 Upper-Triangular Matrices

In Chapter 5 we applied polynomials to elements of some linear algebra over
F. In particular, if T € L(V) and f,g,h € F[x] with f = gh, then by
Theorem 5.2.5 we know that f(T') = g(T)h(T).

Theorem 7.2.1. Let V' be a nonzero, finite dimensional vector space over the
algebraically closed field F'. Then each operator T on V' has an eigenvalue.

Proof. Suppose dim(V) = n > 0 and choose a nonzero vector v € V. Let
T € L(V). Then the set

(v, T(v), T*(),...,T"(v))

of n 4+ 1 vectors in an n-dimensional space cannot be linearly independent.
So there must be scalars, not all zero, such that 0 = agv+a;T(v) +asT?(v) +
-+ +a,T"(v). Let m be the largest index such that a,, # 0. Since v # 0, the
coefficients ay, . .., a, cannot all be 0, so 0 < m < n. Use the a's to construct
a polynomial which can be written in factored form as

Ao+ a1z + a2 + -+ anZ™ = c(z — M) (2 — X2) - (2 — Am),

where ¢ € F' is nonzero, each \; € F', and the equation holds for all z € F..
We then have

0 = aov+a,T(W)+ -+ anT™(v)
(agl +a;T + -+ -a,T™)(v) (7.2)
= (T =MI)T =)+ (T = M) (v),

I
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which means that T'— ); is not injective for at least one 7, i.e., T has at least
one eigenvalue. 0

Theorem 7.2.2. Suppose T € L(V) and B = (v1,...,v,) is a basis of V.
Then the following are equivalent:

(i) [T)5 is upper triangular.

(i) T(vg) € span(vi, ..., vg) for each k =1,...,n.

(#1i) The span(vy,...,vy) is T-invariant for each k =1,...,n.

Proof. By now the proof of this result should be clear to the reader. O

Theorem 7.2.3. Let F' be an algebraically closed field and let V' be an n-
dimensional vector space over F with n > 1. Then there is a basis B for V
such that [Tg is upper triangular.

Proof. We use induction on the dimension of V. Clearly the theorem is true
if n = 1. So suppose that n > 1 and that the theorem holds for all vector
spaces over F' whose diminsion is a positive integer less than n. Let A\ be any
eigenvalue of 7' (which we know must exist by Theorem 7.2.1). Let

U =Im(T — ).

Because T'— AI is not injective, it is also not surjective, so dim(U) < n =
dim(V). If u € U, then

T(u) = (T — \I)(u) + \u.

Obviously (T — M )(u) € U (from the definition of U) and Au € U. Thus
the equation above shows that 7'(u) € U, hence U is T-invariant. Thus
T|y € L(U). By our induction hypothesis, there is a basis (u1, ..., uy) of U
with respect to which 7| has an upper triangular matrix. Thus for each j
we have (using Theorem 7.2.2)

T(uj) = (T|v)(u;) € span(uy, ..., u;). (7.3)

Extend (u1,...,un) to a basis (uy, ..., Un,v1,...,v,) of V. For each k,
1 <k <r, we have

T(Uk) = (T — /\I) (’Uk) + /\Uk.
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The definition of U shows that (T — A)(vg) € U = span(uq, ..., Upy)-
Clearly
T(vg) € span(uy, ..., Upm, V1, ..., Ug)-

It is now clear that that 7" has an upper triangular matrix with respect
to the basis (U1, - -, U, V1, - - -, Up)- O

Obs. 7.2.4. Suppose T € L(V') has an upper triangular matriz with respect
to some basis B of V. Then T is invertible if and only if all the entries on
the diagonal of that upper triangular matriz are nonzero.

Proof. We know that 7T is invertible if and only if [T]5 is invertible, which
by Result 6.3.2 and Theorem 6.3.7 is invertible if and only if the diagonal
entries of [T]z are all nonzero. O

Corollary 7.2.5. Suppose T € L(V) has an upper triangular matriz with
respect to some basis B of V. Then the eigenvalues of T consist precisely of
the entries on the diagonal of [T|.

Proof. Suppose the diagonal entries of the n X n upper triangular matrix [Tz
are A\,...,\,. Let A € F. Then [T — Az is upper triangular with diagonal
elements equal to Ay — A\, Ao — A, ..., A\, — A. Hence T'— AI is not invertible
if and only if A equals one of the A;’s. In other words, A is an eigenvalue of
T if and only A equals one of the A;’s as desired. O

Obs. 7.2.6. Let B = (v1,...,v,) be a basis for V.. An operator T € L(V)
has a diagonal matriz diag(\y, . . ., A,) with respect to B if and only if T'(v;) =
A\iv;, t.e., each vector in B is an eigenvector of T.

In some ways, the nicest operators are those which are diagonalizable, i.e.,
those for which there is some basis with respect to which they are represented
by a diagonal matrix. But this is not always the case even when the field
F' is algebraically closed. Consider the following example over the complex
numbers. Define T € £(C?) by T'(y, z) = (2,0). As you should verify, if S is
the standard basis of C?, then [T]s = (0) (1)
is 0. But null(7 — 0I) is 1-dimensional. So clearly C? does not have a basis
consisting of eigenvectors of T

One of the recurring themes in linear algebra is that of obtaining condi-
tions that guarantee that some operator have a diagonal matrix with respect
to some basis.

), so the only eigenvalue of T’
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Theorem 7.2.7. If dim(V) =n and T € L(V') has ezxactly n distinct eigen-
values, then T has a diagonal matriz with respect to some basis.

Proof. Suppose that T" has distinct eigenvalues Aq,..., A,, and let v; be a
nonzero eigenvector belonging to A;, 1 < j < n. Because nonzero eigenvec-

tors corresponding to distinct eigenvalues are linearly independent, (v1, ..., v,)
is linearly independent, and hence a basis of V. So with respect to this basis
T has a diagonal matrix. O

The following proposition gathers some of the necessary and sufficient
conditions for an operator 7" to be diagonalizable.

Theorem 7.2.8. Let Ay, ..., A, denote the distinct eigenvalues of T € L(V).
Then the following are equivalent:

(i) T has a diagonal matriz with respect to some basis of V.

(1) V has a basis consisting of eigenvectors of T.

(#i) There exist one-dimensional T-invariant subspaces Uy, ..., U, of V
such that

V=U&---aU,.

() V = null(T — M\I)® - B null(T — A\, 1).
(v) dim(V') = dim(null(T — M\ 1)) + - - - dim(null(T — A\, 1)).

Proof. At this stage it should be clear to the reader that (i), (ii) and (iii) are
equivalent and that (iv) and (v) are equivalent. At least you should think
about this until the equivalences are quite obvious. We now show that (ii)
and (iv) are equivalent.

Suppose that V has a basis B = (vi,...,v,) consisting of eigenvec-
tors of 7. We may group together those v;’s belonging to the same eigen-
value, say vq,...,04, belong to A; so span a subspace U; of null(T — A\, T);
Vdy+1y - - -, Vd; +d, DelONg to A9 so span a subspace U of null(T'— Ay 1); ..., and
the last d,,, of the v;’s belong to \,,, and span a subspace U, of null(T'— A, I).
Since B spans all of V, it is clear that V = U; 4+ --- + U,,. Since the sub-
spaces of eigenvectors belonging to distinct eigenvalues are independent (an
easy corollary of Theorem 7.1.2), it must be that V =U; & --- @ U,,. Hence
each U; is all of null(T" — X\;1).

Conversely, if V =U; & - - - ® U,,, by joining together bases of the U;’s we
get a basis of V' consisting of eigenvectors of T'. O
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7.3 Invariant Subspaces of Real Vector Spaces

We have seen that if V' is a finite dimensional vector space over an alge-
braically closed field F' then each linear operator on V has an eigenvalue in
F. We have also seen an example that shows that this is not the case for real
vector spaces. This means that an operator on a nonzero finite dimensional
real vector space may have no invariant subspace of dimension 1. However,
we now show that an invariant subspace of dimension 1 or 2 always exists.

Theorem 7.3.1. Every operator on a finite dimensional, nonzero, real vector
space has an invariant subspace of dimension 1 or 2.

Proof. Suppose V is a real vector space with dim(V) =n > 0 and let T €
L(V). Choose v € V with v # 0. Since (v, T(v),...,T™(v)) must be linearly
dependent (Why?), there are scalars ag, a1, . ..,a, € F such that not all the
a;’s are zero and

0= apv + a,T(v) + - - - a, T"(v).

Construct the polynomial f(z) = >, a;z" which can be factored in the
form

fl@)y=clzx—X)--(z—N)@*+ax+ 1) - (2* + oz + Br),

where ¢ is a nonzero real number, each \;, «;, and §; is real, r + k > 1,
aJQ- < 4f; and the equation holds for all x € R. We then have

0 = aw+aTW)+---+a,T"(v)
= (agl + 1T +---+a,T")(v) (7.4)
= o(T=MI)--(T=ND)(T?+ T+ BI) - (T? + T + Bel) (v),

which means that 7— ), is not injective for at least one j or that T?+a; T+ ;1
is not injective for at least one j. If T'— A;I is not injective for some j, then
T has an eigenvalue and hence a one-dimensional invariant subspace. If
T? + o, T + ;I is not injective for some j, then we can find a nonzero vector
v for which

T*(v) + oy T(v) + Bjv = 0. (7.5)

Using Eq. 7.5 it is easy to show that span(v,T(v)) is T-invariant and it
clearly has dimension 1 or 2. If it had dimension 1, then v would be an
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eigenvector of T belonging to an eigenvalue A that would have to be a root
of 2> + a;x + B; = 0, contradicting the assumption that o < 4f;. Hence T
has a 2-dimensional invariant subspace. O

In fact we now have an easy proof of the following:

Theorem 7.3.2. Every operator on an odd-dimensional real vector space has
an eigenvalue.

Proof. Let V be a real vector space with dim(V) odd and let T € L(V'). We
know that the eigenvalues of T" are the roots of the characteristic polynomial
of T which has real coefficients and degree equal to dim(V'). But every real
polynomial of odd degree has a real root by Lemma 1.1.2, i.e., T has a real
eigenvalue. O

7.4 Two Commuting Linear Operators*

Let V be a finite-dimensional vector space over the field F', and let T" be a
0 1
-1 0
to some basis. If 4 is an element in F' (or in some extension of F') for which
i = —1, then the eigenvalues of T are +i. So T has eigenvectors in V if and
only if ©+ € F. For example, if FF =R, then T has no eigenvectors. To avoid
having to deal with this kind of situation we assume from now on that F' s
algebraically closed, so that each polynomial that has coefficients in F' splits
into linear factors over F'. In particular, any linear operator 7' on V will have
minimal and characteristic polynomials that split into linear factors over F'.
Our primary example of an algebraically closed field is the field C of complex
numbers.

linear operator on V. Suppose T has matrix A = with respect

Recall that the ring F[z] of polynomials in the indeterminate z with
coefficients from F' is a principle ideal domain. This means that if I is an
ideal of F[z], it must consist of all multiples of some particular element of
F[z]. Our chief example is the following: Let W be a T-invariant subspace of
V', T any linear operator on V', and let v be any vector in V. Put T'(v, W) =
{f(z) € Flz] : f(T)(v) € W}. It is easy to show that T'(v, W) is an ideal
of Flz]. (This just means that the sum of any two polynomials in 7T'(v, W)
is also in T'(v, W), and if f(z) € T(v,W) and g(z) is any polynomial in
F[z], then the product f(z)g(x) is back in T'(v, W).) Hence there is a unique
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monic polynomial g(x) of minimal degree in T'(v, W) called the T'-conductor
of v into W. For this conductor g(z) it is true that f(z) € T (v, W) if and
only if there is some h(z) € F|z] for which f(z) = g(z) - h(z). If W = {0},
then g(z) is called the T-annihilator of ¥. Clearly the minimal polynomial
p(z) of T is in T'(v, W), so g(x) divides p(xz). All these polynomials have
coefficients in F', so by hypothesis they all split into linear factors over F'.

The fact that p(z) divides any polynomial ¢(z) for which ¢(7) = 0 is
quite important. Here is an example. Suppose W is a subspace invariant
under 7', so the restriction 7’|y of T to vectors in W is a linear operator on
W. Let g(x) be the minimal polynomial for T'|y.. Since p(T) = 0, clearly
p(T|w) =0, so g(x) divides p(x).

Theorem 7.4.1. Let V' be a finite-dimensional vector space over (the alge-
braically closed) field F, with n = dim(V) > 1. Let S and T be commuting
linear operators on V. Then every eigenspace of T is invariant under S, and
S and T have a common eigenvector in V.

Proof. Since dim(V) > 1 and F is algebraically closed, T has an eigenvector
vy in V with associated eigenvalue c € F',i.e., 0 #v; € V and (T'—cl)(v1) =
0. Pt W={veV:(T-cl)(v) =0}, so W is the eigenspace associated
with the eigenvalue c.

To see that W is invariant under S let w € W, so T'(w) = cw. Then since
S commutes with 7', it also commutes with 7' — ¢I, and (T — cI)(S(w)) =
(T — cD)S|(w) = [S(T — c)](w) = S((T — el)(w)) = S(0) = 0. This says
that S(w) is in W, so S acts on W, which has dimension at least 1. But
then S|y is a linear operator on W and must have an eigenvector w; in W.
So w; is a common eigenvector of S and 7. O

Note: In the above proof we do not claim that every element of W is an
eigenvector of S.

We need to use the concept of quotient spaces. Let W be a subspace of
V. From Algebra we know that the quotient group V/W (considering the
additive groups of V and W) is also an abelian group. We can make it into a
vector space over the same field by defining a scalar multiplication as follows:
force Fand v+ W € V/W, put c¢(v+ W) = cv + W. It is routine to show
that this makes V/W into a vector space. Moreover, if By = (vq,..., ;)
is a basis for W, and By = (vy,...,0,,Ur41,...,0,) is a basis for V| then
(py1 + W, ..., v, + W) is a basis for V/W. Hence dim(V) = dim(W) +
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dim(V/W). Moreover, if W is invariant under the operator 7' € L(V'), then
T induces a linear operator 1" on V/W as follows:

T:VIW = V/W: v+ W T(v)+W.

Clearly if T,S € L(V)and S-T=T-S, then T-S=S5-T.
We are now ready for the following theorem on two commuting operators.

Theorem 7.4.2. Let S and T be two commuting operators on V owver the
algebraically closed field F'. Then there is a basis B of B with respect to which
both [T and [S]g are upper triangular.

Proof. We proceed by induction on n, the dimension of V.

By the previous theorem there is a vector v; € V such that Tv; = A\jv;
and Sv; = pyv; for some scalars A; and py. Let W be the subspace spanned
by v;. Then the dimension of V/W is n — 1, and the operators T and S
on V/W commute, so by our induction hypothesis there is a basis By =
(vg + W,v3 + W, ..., v, + W) of V/W with respect to which both T and S
have upper triangular matrices. It follows that B = (v, v9,...,v,) is a basis
of V' with respect to which both 7" and S have upper triangular matrices. [

Theorem 7.4.3. Let T be a diagonalizable operator on'V and let S € L(V).
Then ST =TS if and only if each eigenspace of T is invariant under S.

Proof. Since T' is diagonalizable, there is a basis B of V' consisting of eigen-
vectors of 7. Let W be the eigenspace of 1" associated with the eigenvalue
A, and let w € W. If S(w) € W, then (T'S)(w) = T(Sw) = ASw =
S(\w) = S(Tw) = ST(w). So if each eigenspace of T is invariant un-
der S, S and T commute at each element of B, implying that ST = TS
on all of V. Conversely, suppose that ST = T'S. Then for any w € W,
T(Sw) = S(Tw) = S(Aw) = AS(w), implying that Sw € W. So each
eigenspace of 7" must be invariant under S. O

Note that even if T' is diagonalizable and S commutes with T, it need not
be the case that S must be diagonalizable. For example, if T'= I, then V is
the only eigenspace of 7', and if S is any non-diagonalizable operator on V,
then S still commutes with 7. However, if both 7" and S are known to be
diagonalizable, then we can say a bit more.
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Theorem 7.4.4. Let S and T both be diagonalizable operators on the n-
dimensional vector space V' over the field F. Then S and T commute if and
only if S and T are simultaneously diagonalizable.

Proof. First suppose that S and T are simultaneously diagonalizable. Let B
be a basis of V' with respect to which both [T]z and [S]z are diagonal. Since
diagonal matrices commute, [Tz and [S]|s commute, implying that 7" and S
commute.

Conversely, suppose that 7" and S commute. We proceed by induction
on n. If n = 1, then any basis is equivalent to the basis consisting of any
nonzero vector, and any 1 x 1 matrix is diagonal. So assume that 1 < n
and the result holds over all vector spaces of dimension less than n. If T is
a scalar times the identity operator, then clearly any basis that diagonalizes
S will diagonalize both S and 7. So suppose T is not a scalar times the
identity. Let A be an eigenvalue of 7" and put W = null(T — AI). So W is
the eigenspace of T associated with A, and by hypothesis 1 < dim(W) < n.
By Theorem 7.4.3 W is invariant under S. It follows that 7’|y and S|y are
simultaneously diagonalizable. Let By be a basis for W which consists of
eigenvectors of both T'|; and S|y, so they are also eigenvectors of both T
and S. Repeat this process for each eigenvalue of 7" and let B be the union
of all the bases of the various eigenspaces. Then the matrices [T]z and [S]z
are both diagonal. O

Theorem 7.4.5. Let T be a diagonalizable operator on V', an n-dimensional
vector space over F. Let S € L(V). Then there is a polynomial f(x) € F|x]
such that S = f(T) if and only if each eigenspace of T is contained in a
single eigenspace of S.

Proof. First suppose that S = f(T) for some f(z) € Flz]. If T(v) = Av,
then S(v) = f(T)(v) = f(A)v. Hence the entire eigenspace of T associated
with ) is contained in the eigenspace of S associated with its eigenvalue f(X).
This completes the proof in one direction.

For the converse, let A{,..., A, be the distinct eigenvalues of T', and let
W; = null(T — \;I), the eigenspace of T associated with A;. Let u; be
the eigenvalue of S whose corresponding eigenspace contains ;. Note that
the values pq, ..., u, might not be distinct. Use Lagrange interpolation to
construct the polynomial f(z) € F[z] for which f()\;) = p;, 1 <4 <r. Then
define an operator S’ € L(V) as follows. Let B be a basis of V' consisting of
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the union of bases of the eigenspaces W;. For each v € B, say v € W;, put
S'(v) = f(T)(v) = f(A)v = piv = S(v). Then since S’ and S agree on a
basis of V, they must be the same operator. Hence S = f(T). O

Corollary 7.4.6. Let T € L(V) have n distinct eigenvalues where n =
dim(V'). Then the following are equivalent:

(i) ST =TS.

(i1) S and T are simultaneously diagonalizable.

(i1) S is a polynomial in T.

Proof. Since T has n distinct eigenvalues, its minimal polynomial has no
repeated factors, so 7' is diagonalizable. Then Theorem 7.4.3 says that ST =
TS iff each eigenspace of 7' is invariant under S. Since each eigenspace of T’
is 1-dimensional, this means that each eigenvector of 7" is also an eigenvector
of S. Using Theorem 7.4.5 we easily see that the theorem is completely
proved. O

We note the following example: If 7" is any invertible operator, so the con-
stant term of its minimal polynomial is not zero, it is easy to use the minimal
polynomial to write I as a polynomial in 7". However, any polynomial in [
is just some constant times I. So if T is any invertible operator that is not a
scalar times I, then [ is a polynomial in 7', but 7" is not a polynomial in 1.

7.5 Commuting Families of Operators*

Let V' be an n-dimensional vector space over F', and let F be a family of
linear operators on V. We want to know when we can simultaneously trian-
gulate or diagonalize the operators in F, i.e., find one basis B such that all of
the matrices [T’ for T' € F are upper triangular or diagonal. In the case of
diagonalization, it is necessary that F' be a commuting family of operators:
UT = TU for all T,U € F. That follows from the fact that all diagonal
matrices commute. Of course, it is also necessary that each operator in F be
a diagonalizable operator. In order to simultaneously triangulate, each oper-
ator in F must be triangulable. It is not necessary that F be a commuting
family; howefver, that condition is sufficient for simultaneous triangulation
as long as each 7" in F can be individually triangulated.
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The subspace W of V' is invariant under (the family of operators) F if
W is invariant under each operator in F.

Lemma 7.5.1. Let F be a commuting family of triangulable linear operators
onV. Let W be a proper subspace of V' which is invariant under F. There
exists a vector v € V' such that:

(a) v is not in W;

(b) for each T in F, the vector T (v) is in the subspace spanned by v and
W.

Proof. Since the space of all linear operators on V is a vector space with
dimension n?, it is easy to see that without loss of generality we may assume
that F has only finitely many operators. For let {71,...,7,} be a maxi-
mal linearly independent subset of F, i.e., a basis for the subspace of L(V)
spanned by F. If v is a vector such that (b) holds for each T}, then (b) holds
for each each operator which is a linear combination of 73,...,7,.

First we establish the lemma for one operator T. To do this we need
to show that the T-conductor of v into W is a linear polynomial. Since
T is triangulable, its minimal polynomial p(x), as well as its characteristic
polynomial, factor over F into a product of linear factors. Say p(z) = (z —
1) (x —c2)®®---(x — ¢,). Let w be any vector of V' that is not in W,
and let g(x) be the T-conductor of w into W. Then g divides the minimal
polynomial for 7. Since w is not in W, g is not constant. So ¢g(z) = (z —
c1)'(x — )2 --- (z — ¢.)/" where at least one of the integers f; is positive.
Choose j so that f; > 0. Then (z — ¢;) divides g(z):

g = (z —c¢j)h.
By definition of g, the vector u = h(T)(w) cannot be in . But

(T —¢;D)(u) = (T — ¢ HMT)(w) (7.6)
= g(T)(w) e W.

Now return to thinking about the family . By the previous paragraph
we can find a vector v; not in W and a scalar ¢; such that (T3 —ciI)(v1) € W.
Let Vi be the set of all vectors v € V such that (77 — ¢1I)(v) € W. Then V4
is a subspace of V' that properly contains W. Since T' € F commutes with
T, we have

(Tl - Cll)(T(U)) = T(T1 - 61[)(’1)).
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If v € Vi, then (71 — c1I)v € W. Since W is invariant under each 7" in F, we
have T(Ty — c1I)(v) € Wie., Tve Vi, forallv € Vi and all T € F.

Note again that W is a proper subspace of Vi. Put Us = Ts|y;, the oper-
ator obtained by restricting 75 to the subspace Vi. The minimal polynomial
for Uy divides the munimum polynomial for 7. By the second paragraph
of this proof applied to U; and the invariant subspace W, there is a vector
ve € V7 but not in W, and a scalar ¢y such that (1o — col)(v2) € W. Note
that

(a) v & W;

(b) (Ty — e 1) (vg) € W

(C) (TQ — CQI)(’UQ) ew.

Let Vo = {v € Vi : (T, — coI)(v) € W}. Then V; is invariant under F.
Apply the same ideas to Us = T3|y,. Continuing in this way we eventually
find a vector v = v, not in W such that (T, —¢;I)(v) e W,for 1 <j<r. O

Theorem 7.5.2. Let V be a finite-dimensional vector space over the field
F. Let F be a commuting family of triangulable linear operators on 'V (i.e.,
the minimal polynomial of each T € F splits into linear factors). There
exists an ordered basis for V' such that every operator in F is represented by
a triangular matriz with respect to that basis.

Proof. Start by applying Lemma 7.5.1 to the F-invariant subspace W = {0}
to obtain a nonzero vector v; for which T'(vy) € Wy = (vq) for all T € F.
Then apply the lemma to W; to find a vector vy not in W; but for which
T(ve) € Wy = (v1,v9). Proceed in this way until a basis B = (v1, ve,...) of
V has been obtained. Clearly [T'|s is upper triangular for every T € B. O

Corollary 7.5.3. Let F be a commuting family of n X n matrices over an
algebraically closed field F'. There exists a nonsingular n X n matriz P with
entries in F' such that P~YAP is upper-triangular, for every matriz A in F.

Theorem 7.5.4. Let F be a commuting family of diagonalizable linear op-
erators on the finite-dimensional vector space V. There existws an ordered
basis for V such that every operator in F is represented in that basis by a
diagonal matriz.

Proof. If dim(V) = 1 or if each T € F is a scalar times the identity, then
there is nothing to prove. So suppose 1 < n = dim(V') and that the theorem
is true for vector spaces of diimension less than n. Also assume that for
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some T' € F, T is not a scalar multiple of the identity. Since the operators
in F are all diagonalizable, we know that each minimal polynomial splits
into distinct linear factors. Let c¢q,...,c; be the distinct eigenvalues of T,
and for each index i put W; = null(T' — ¢;I). Fix i. Then W; is invariant
under every operator that commutes with 7. Let F; be the family of linear
operators on W; obtained by restricting the operators in F to the invariant
subspace W;. Each operator in JF; is diagonalizable, because its minimal
polynomial divides the minimal polynomial for the corresponding operator
in F. By hypothesis, dim(W;) < dim(V’). So the operators in F; can be
simultaneously diagonalized. In other words, W; has a basis B; which consists
of vectors which are simultaneously characteristic vectors for every operator
in ;. Then B = (By,...,By) is the basis of V that we seek. O

7.6 The Fundamental Theorem of Algebra*

This section is based on the following article: Harm Derksen, The Funda-
mental Theorem of Algebra and Linear Algebra, The American Mathematical
Monthly, vol 110, Number 7, August-September 2003, 620 — 623. We start
by quoting from the third paragraph of the article by Derksen.

“Since the fundamental theorem of algebra is needed in linear algebra
courses, it would be desirable to have a proof of it in terms of linear algebra.
In this paper we prove that every square matrix with complex coefficients has
an eigenvector. This statement is equivalent to the fundamental theorem of
algebra. In fact, we will prove the slightly stronger result that any number of
commuting square matrices with complex entries have a common eigenvector.
The proof lies entirely within the framework of linear algebra, and unlike
most other algebraic proofs of the fundamental theorem of algebra, it does
not require Galois theory or splitting fields. ”

Preliminaries

Several results we have obtained so far have made the assumption that
the field F' was algebraically closed. Moreover, we often gave the complex
numbers C as the prototypical example. So in this section we have to be care-
ful not to quote any results that might have hidden in them the assumption
that C is algebraically closed.

For the proof we use only the following elementary properties of real and
complex numbers that were established much earlier.
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Lemma Every polynomial of odd degree with real coefficients has a (real)
7€ero.

Lemma Every complex number has a square root.

Theorem 7.3.2 If A is real, n xn, with n odd, then A has an eigenvector
(belonging to a real eigenvalue).

An Induction Argument

Keep in mind that we cannot use results that might have hidden in them
the assumption that C is algebraically closed.

For a field K and for positive integers d and r, consider the following
statement:

P(K,d,r): Any r commuting linear transformations A, As,..., A, of a
K- vector space V of dimension n such that d does not divide n have a
common eigenvector.

Lemma 7.6.1. If P(K,d, 1) holds, then P(K,d,r) holds for all r > 1.

It is important to realize that the smallest d for which the hypothesis of
this lemma holds in a given situation might be much larger than d = 1.

Proof. The proof is by induction on r. The case of P(K,d, 1) is true by
hypothesis. For r > 2, suppose that P(K,d,r — 1) is true and let A,..., A,
be commuting linear transformations of V' of dimension such that d does not
divide n. Because (K,d,1) holds, A, has an eigenvalue A in K. Let W be
the kernel and Z the image of A, — AI. It is now easy to show that each of
W and Z are left invariant by each of A;,..., A, ;.

First suppose that W # V. Because dim W + dim Z = dim V/, either d
does not divide dim W or d does not divide dim Z. Since dim W < n and
dim Z < n, we may assume by induction on n that A;,..., A, already have
a common eigenvector in W or in Z.

In the remaining case, W = V. Because P(K,d,r — 1) holds, we may
assume that Aq,...,A,_; have a common eigenvector in V', say v. Since
Apv = M (because W = V), v is a common eigenvector of Aq,..., A,. O

Lemma 7.6.2. P(K,2,r) holds for all r > 1. In other words, if Ay, ..., A,
are commuting linear transformations on an odd dimensional R-vector space,
then they have a common eigenvector.
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Proof. By Lemma 7.6.1 it is enough to show that P(R,2,1) is true. If A is
an linear transformation of an odd dimensional R-vector space, det(z] — A)
is a polynomial of odd degree, which has a zero A by Lemma 1.1.2. Then A
is a real eigenvalue of A. O

We now “lift” the result of Lemma 7.6.2 to the analogous result over the
field C.

Definition If A is any m x n matrix over C we let A* denote the transpose
of the complex conjugate of the matrix A, i.e., (A*);; = A;;.

Lemma 7.6.3. P(C,2,1) holds, i.e., every linear transformation of a C-
vector space of odd diimension has an eigenvector.

Proof. Suppose that A : C" — C" is a C-linear map with n odd. Let V be
the R-vector space Herm,(C), the set of n x n Hermitian matrices. Define
two linear operators L; and Ly on V by

AB + BA*

L) = 282 B

and AB — BA*
Lo(B) = 2225

It is now easy to show that dim V = n?, which is odd. It is also routine
to check that L; and L, commute. Hence by Lemma 7.6.2, P(R,2,2) holds
and implies that L; and L, have a common eigenvector B, say L;(B) = AB
and Ly(B) = uB, with A and p both real. But then

(L1 +iLy)(B) = AB = (A + 1) B,

and any nonzero column vector of B gives an eigenvector for the matrix
A. O

Lemma 7.6.4. P(C,2* 1) holds for all k > land r > 1.

Proof. The proof is by induction on k. The case k£ = 1 follows from Lem-
mas 7.6.3 and 7.6.1. Assume that P(C,2!,7) holds for [ < k. We will establish
that P(C,2*,r) holds. In view of Lemma, 7.6.1 it suffices to prove P(C, 2¥,1).
Suppose that A : C* — C™ is linear, where n is divisible by 2¥~! by not by 2F.
Let V' be the C-vector space Skew,,(C) = {B € M, (C) : B* = — B}, the set of
n X n skew-symmetric matrices with complex entries. Define two commuting
linear transformations L; and Ly of V' by
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Li(B) = AB — BAT

and

Lo(B) = ABA”.

Note that dim V = n(n — 1)/2, which ensures that 2¥~! does not divide
dim V. By P(C,2%7!,2), L, and L, have a common eigenvector B, say
Li(B) = X(B) and Ly(B) = uB, where )\ and p are now complex numbers.
It follows that

uB = ABA" = A(AB — \B),

SO

(A2 = MNA — ul)B = 0.

Let v be a nonzero column of B. Then

(A2 = MNA — pl)v = 0.

Since each element of C has a square root, there is a § in C such that
6% = A2 +4pu. We can write 22 — Az —p = (z—a)(z — ), where @ = (A+46)/2
and S = (A —9)/2. We then have

(A—al)w =0,

where w = (A—fBI)v. If w = 0, then v is an eigenvector of A with eigenvalue
B; if w # 0, then w is an eigenvector of A with eigenvalue a. O

We have now reached the point where we can prove the main result for
commuting operators on a complex space.

Theorem 7.6.5. If Ai, Ay, ..., A, are commuting linear transformations of
a finite dimensional nonzero C-vector space V', then they have a common
etgenvector.

Proof. Let n be the dimension of V. There exists a positive integer k such
that 2% does not divide n. Since P(C,2*,7) holds by Lemma 7.6.4, the theo-
rem follows. 0
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Theorem 7.6.6. (The Fundamental Theorem of Algebra) If P(x) is a non-
constant polynomial with complex coefficients, then there exists a A in C such
that P(\) = 0.

Proof. 1t suffices to prove this for monic polynomials. So let

P(z) = 2" + a12" ' + ag2z™ % + - + a,.

Then P(x) =det (zI — A), where A is the companion matrix of P:

00 --- 0 =—a,
1 0 0 —Qp—1
A=|lo1 - 0 —a
00 --- 1 -

Theorem 7.6.5 implies that A has a complex eigenvalue A in C, from which
it follows that P(\) = 0. O

7.7 Exercises

1.

Let V be finite dimensional over F' and let P € L(V) be idempotent.
Determine the eigenvalues of P and show that P is diagonalizable.

. T,S e L(V)and TS = ST, show that

(i) null(T) is S-invariant; and
(ii) If f(z) € Flz], then null(f(T)) is S-invariant.

Suppose n is a positive integer and T € L(F™) is defined by
T(z1,20,. - y2n) = (21 4+ + 2,21+ 4 2Znyee ey 21+ + 2)-

Determine all eigenvalues and eigenvectors of 7.

Suppose T € L(V) and dim(Im(7)) = k. Prove that T has at most
k + 1 distinct eigenvalues.

. Suppose that S,7 € L(V), A € F and 1 < k € Z. Show that (T'S —

AFT = T (ST — M)*.
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Suppose that S;T € L(V). Prove that ST and T'S have the same
eigenvalues but not necessarily the same minimal polynomial.

Suppose that S,T € L£(V) and at least one of S, T is invertible. Show
that ST and T'S have the same minimal and characteristic polynomials.

Suppose that F' is algebraically closed, p(z) € F[z] and a € F. Prove
that a is an eigenvalue of p(T') if and only if @ = p(A) for some eigenvalue
Aof T. (Hint: Suppose that a is an eigenvalue of p(T’). Factor p(z)—a =
c(z—A1) + -+ (z—Am). Use the fact that p(7') —al is not injective. Don’t
forget to consider what happens if ¢ = 0.)

Suppose that S, T € L(V) and that T is diagonalizable. Suppose that
each eigenvector of 1" is an eigenvector of S. Show that ST =T'S.



Chapter 8

Inner Product Spaces

8.1 Inner Products

Throughout this chapter F' will denote a subfield of the complex numbers C,
and V will denote a vector space over F'.

Definition An inner product on V is a scalar-valued function ( , ) :
V x V — F that satisfies the following properties:

(i) (u +v,w) = (u,w) + (v,w) for all u,v,w € V.

(ii) (cu,v) = c{u,v) for allc € F, u,v € V.

(iii) (v,u) = (u,v) for all u,v € V, where the overline denotes complex
conjugate .

(iv) (u,u) > 0if u # 0.

It is easy to check that the above properties force
(u, cv + w) = ¢y, v) + (u,w) Yu,v,w eV, ce F.

Example 8.1.1. On F™ there is a "standard” inner product defined as fol-
lows: for &= (x1,...,2,) and § = (y1,---,Yn), put

n
(&0 =) =l
=0

It is easy enough to show that the above definition really does give an
inner product on F". In fact, it is a special case of the following example.

115
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Example 8.1.2. Let A be an invertible n X n matriz over F. Define { , )
on F™ (whose elements are written as row vectors for the purpose of this
example) as follows. For u,v € V put

(u,vy = uAA*v*, where B* denotes the complexr conjugate transpose of B.

It is a fairly straightforward exercise to show that this definition really gives
an inner product. If A = I the standard inner product of the previous example
s obtained.

Example 8.1.3. Let C(0,1) denote the vector space of all continuous, real-
valued functions on the interval [0,1]. For f,g € C(0,1) define

(f,9) = /0 f()g(t)dt.

Again it is a routine exercise to show that this really gives an inner product.

Definition An inner product space is a vector space over F' (a subfield
of C) together with a specified inner product on that space.

Let V' be an inner product space with inner product (, ). The length of
a vector v € V is defined to be ||v|| = \/(v, v).

Theorem 8.1.4. IfV is an inner product space, then for any vectorsu,v € V
and any scalar c € F,

(1) lleul| = lcf [lul[;

(i) [[ul| > 0 for u # 0;

(iii) [(u, v)| < |[ul| [[o]];

(1) [|u+vl[ < [Jul| +[[v]].

Proof. Statements (i) and (ii) follow almost immediately from the various
definitions involved. The inequality in (iii) is clearly valid when v = 0. If
u # 0, put

)

[Jul[?

It is easily checked that (w,u) =0 and

w=v—
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0% flulf = (o= - Sy
(o)
N [

HUHQ _ |<U’>U>‘2_
[[ull®

Hence |(u,v)|? < ||u|?||v||%. It now follows that

Re(u, v) < [(u, v)| < ul] - |lv]l;

and
u+o|? = |[ul|*+ (u,v) + (v,u) + [|v]|?
= |ul* 4+ 2Re(u, v) + ||v|[?
< lul? + 2/ul] [[o]] + [Jv]?
= (l[ul| +lv]])%
Thus ||u+ v|| < ||ul| + ||v]]- O

The inequality in (iii) is called the Cauchy-Schwarz inequality. It has
a very wide variety of applications. The proof shows that if u is nonzero,
then |(u,v)| < [|u|| ||v|| unless

(v, u)

V= U
[ful[>

which occurs if and only if (u,v) is a linearly dependent list. You should try
out the Cauchy-Schwarz inequality on the examples of inner products given
above. The inequality in (iv) is called the triangle inequality.

Definitions Let v and v be vectors in an inner product space V. Then
u is orthogonal to v if and only if (u,v) = 0 if and only if (v, u) = 0, in which
case we say v and v are orthogonal and write v L v. If S is a set of vectors
in V, S is called an orthogonal set provided each pair of distinct vectors in S
is orthogonal. An orthonormal set is an orthogonal set S with the additional
property that ||u|| = 1 for every u € S. Analogous definitions are made for
lists of vectors.
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Note: The standard basis of F™ is an orthonormal list with respect to
the standard inner product.

Also, the zero vector is the only vector orthogonal to every vector. (Prove
this!)

Theorem 8.1.5. An orthogonal set of nonzero vectors is linearly indepen-

dent.
Proof. Let S be a finite or infinite orthogonal set of nonzero vectors in a
given inner product space. Suppose vy, ...,V are distinct vectors in S and
that

W = C1V1 + CoV2 + - - - + Cpy U
Then

(w,vg) = (Zcﬂ)ja“/c)
= ch<vjvvk>

J

= ¢V, Ug)-
Since (v, vg) # 0, it follows that
o = (w,ka)’ <k<m.
[|vk ]

When w = 0, each ¢z = 0, so S is an independent set. O
Corollary 8.1.6. If a vector w is a linear combination of an orthogonal list
(v1,-..,vm) of nonzero vectors, then w is the particular linear combination

o~ (w, v)
» Uk
w = Vk- (8.1)
2Tl
Theorem 8.1.7. (Pythagorean Theorem) If u | v, then
[+ |* = [Ju]* +[[v][. (8.2)

Proof. Suppose u L v. Then
u+v|? = (u+wv,u+0)
= [Jull* + [[ol* + (u, v) + (v, u)
[[u?[] + [ [l [*.
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Theorem 8.1.8. (Parallelogram Equality ) If u, v are vectors in the inner
product space V', then

[l o] + [fu = o] = 2(|[ul* + [Jv]*).
Proof. The details are routine and are left as an exercise (see exercise 1). [

Starting with an inner product (, ) on a vector space U over F' (where
F is some subfield of C), we defined a norm on U by ||v|| = 1/(v,v), for all
v € U. This norm function satisfies a variety of properties as we have seen
in this section. Sometimes we have a norm function given and would like
to know if it came from an inner product. The next theorem provides an
answer to this question, but first we give an official definition of a norm.

Definition A norm on a vector space U over the field F' is a function

| I|: U —[0,00) € R such that

(i) ||u|| = 0 iff u = 0;
(ii)l|au|| = |a| - |u|| Va € F, u € U;
(iii) |Ju 4+ o[ < [|ul| + [Jv]].

Theorem 8.1.9. Let || || be a norm on U. Then there is an inner product

(, ) onU such that ||u|| = (u, u}é for allw € U if and only if || || satisfies
the parallelogram equality.

Proof. We have already seen that if the norm is derived from an inner prod-
uct, then it satisfies the parallelogram equality. For the converse, now sup-
pose that || || is a norm on U satisfying the parallelogram equality. We will
show that there must have been an inner product from which the norm was
derived in the usual fashion. We first consider the case F' = R. It is then
clear (from the real polarization identity - see Exercise 10) that { , ) must
be defined in the following way:

_ w0l = flu— vl

(u,v) = 1 . (8.3)

It is then clear that (u,u) = w = [|u||?, so [Ju|| = (u,u)2 for all

u € U. but it is not at all clear that (, ) is an inner product. However, since
(u,u) = ||u||?, by the definition of norm we see that

(a) (u,u) > 0, with equality if and only if u = 0.
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Next we show that ( , ) is additive in the first slot. We use the parallel-
|2 = llutol® | Hu—;\P
5 .

ogram equality in the form ||u||? + ||v
Let u,v,w € U. Then from the definition of { , ) we have:
4((u + v, w) — (u,w) — (v,w) (which should be 0)
= |lutv+w|* = llutv—w|* = |Jutw|[*+Ju—wl]* - [[v+w|[*+[Jv—w|]*
= |lutv+w|*+([Ju—w|]+[[o—w|]*) = [Jutv—w|* = ([Jutw]]*+[[v+w]|?)

lu+v—2w|? |u—uv|? Cuto+ 2w fJu—v]?

_ 2 - - 2
= |lu+v+wl||*+ 5 5 ||lu+v—wl| 5 5
— 2wl|? 2wl |?
= (a2l P42 2O g o ) - 22200
u+v+2w|*  |lu+o[?  |lu+v-—2w|?
= + +
2 2 2
utolP Jlutv=2w[?  [lutv+2w]?
2 2 2

= 0.
Hence (u + v, w) = (u, w) + (v, w), proving
(b) {, ) is additive in the first slot.

To prove that (, ) is homogeneous in the first slot is rather more involved.
First suppose that n is a positive integer. Then using additivity in the first
slot we have (nu,v) = n(u,v). Replacing u with Lu gives (u,v) = n(zu,v),
SO %(u, v) = (%u, v). So if m,n are positive integers,

(o) =20

Using property (ii) in the definition of norm we see || —u|| = | —1|||u|| = ||u]|.
Then using the definition of { , ), we have

[ —utolP =l —u—vf| _[[=(=0)* |- (ut+v)|f
4 4

—[lu+v[[* + [Ju —v[]?
= 1 :—<U,U>.

This shows that if r is any rational number, then

<—U, U) =

(ru,v) = r{u,v).
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Now suppose that A € R is any real number (with special interest in the
case where )\ is not rational). There must be a sequence {r,}5°, of rational
numbers for which lim,,_,,,r, = A. Thus

Mu, v) = limy, 007 (U, v) = limy, o0 (rpu, v) =

_ |Irnw + 0| ? — [[rau — o]
= My 500 1 .

We claim that lim, ,.o||ru + v||* = [[Au + v|[* and lim, e ||rau — v|]* =
[|M\u — v||?. Once we have shown this, we will have

du4vl]? = [[Au— vl
N 4

Mu, v) = (Au, v),

completing the proof that { , ) is homogeneous in the first slot.

Forz,y € U, |lz|| = [ly+(z—y)l| < llyll+[ly—=[], so [|=[|=Ilyl| < [|z—y]l.
Interchanging the roles of z and y we see that also ||y — z|| < ||y — z|| =
||z — y||. Hence |||z]| — [ly||| < |ly — z||. With 2 = ru+ v and y = Au + v,
this latter inequality gives

[lrnw + o] = [[Mu + o] < [[(rn = Nul| = [ro = Al [|ull.

Since r, — A — 0, we have ||r,u + v|| = ||Au + v||. Replacing v with —v
gives lim,,_,||r,u — v|| = [|Au — v||. So indeed ( , ) is homogeneous in the
first slot. Fiinally, we show that

(d) (u,v) = (v, u).

So:

[lu+ o] = llu—of* _ [lo+ull®—|lv—ul* _

(u,v) = 2 = 1 (v,u).

This completes the proof in the case that F' = R.

Now consider the case F' = C. By the complex polarization identity (see
Exercise 12) we must have

4
1
(u,v) = ZZi”|\u+i”v|\2. (8.4)
n=1

Then putting v = u we find



122 CHAPTER 8. INNER PRODUCT SPACES

4 4

1 1
() = 3 D0l P = 5 3 L+l
n=1 n=1
P

[2i — 0 — 2i + 4] = [|u]],

4

as desired. But we must still show that ( , ) has the properties of an inner
product.

Because (u,u ) = ||ul|?, it follows immediately from the properties of a
norm that (u,u) > 0 with equality if and only if u = 0.

For convenience define { , )% to be the real inner product defined above,

SO ) )
[lu+][* — |lu—of"

4

(u,v)r =

Note that
<U'a U) = <U’a U)R + ’L(U, ZU>’R
We have already proved that ( , )}z is additive in the first slot, which can
now be used in a routine fashion to show that ( , ) is also additive in the
first slot. It is even easier to show that (au,v) = a(u,v) for a € R using the
homogeneity of (, )% in the first slot. However, we must still extend this to
all complex numbers. Note that:

(tu,v) =

3w+ v||? = ||iu — v||? + i||iu + v||? — i]|iu — v]||?

4
_ iCu+0) [P — Jli(u — )i — [[i(u + )| [* + ||i(u — )|
4
_ M+ ol — fJu — o] % — [Ju+ iv][* + [|u — v
B 4
= i(u, v).

Combining this with additivity and homogeneity with respect to real
numbers, we get that

((a + bi)u,v) = (a + bi){u,v) Va,b € R.
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Hence ( , ) is homogeneous in the first slot. The only thing remaining to
show is that (v,u) = (u,v).

[l + v[]” = llu = of* + [Ju + iv[|* — |Ju — iv[[*

<U,U> = 4
_ ol = v =l + Ji(v — ug) |2 — [[(=4) (v + ui)||*
4
v ulP = v = uflP + v+ [P = v — dul[*
N 4

= (v,u).
U

Now suppose that F' is a subfield of C and that V' = F™. There are three
norms on V' that are most commonly used in applications.

Definition For vectors z = (z1,...,7,)T € V, the norms || - ||1, || - |2,
and || - ||, called the 1-norm, 2-norm, and co-norm, respectively, are defined
as:

lzlli = |21] + |zo| + -+ + |2nl;
lzlle = (Jaf”+ w2+ - + |za]) 7 (8.5)
]l = max{|zi],|z2l,...,|zal|}

Put z = (1,1)T € F? and y = (—1,1)T € F?2. Using these vectors z and y
it is routine to show that || - ||; and || - ||c do not satisfy the parallelogram
equality, hence must not be derived from an inner product in the usual way.
On the other hand, all three norms are equivalent in a sense that we are
about to make clear. First we pause to notice that the so-called norms really
are norms. The only step that is challenging is the triangle inequality for the
2-norm, and we proved this earlier. The details for the other two norms are
left to the reader.

Definition Let || - || be a norm on V. A sequence {v;}2, of vectors is
said to converge to the vector vy provided the sequence {||v; — veol||} of real
numbers converges to 0.

With this definition we can now talk of a sequence of vectors in F™ con-
verging by using norms. But which norm should we use? What we mean
by saying that all three norms are equivalent is that a sequence of vectors
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converges to a vector v using one of the norms if and only if it converges to
the same vector v using either of the other norms.

Theorem 8.1.10. The 1-norm, 2-norm and oo-norm on F™ are all equiva-
lent in the sense that

(a) If a sequence {x;} of vectors converges to x, as determined in one of
the norms, then it converges to x, in all three norms, and for fized index j,
the entries (x;); converge to the entry (o );. This is an easy consequence of

(0) llzlly < [lzllav/n < nflzlle < nllzf]:.

Proof. It v = (u1,-..,up), put = (Ju1],..., |u,)" and y = (1,1,...,1)T.
Then by the Cauchy-Schwarz inequality applied to = and ¥, we have

2,y =D fuil = Nl < Nlallzllylle = /D luil? - v = Jlullav/n.

So [|z||; < ||z][2y/n for all x € F™.

Next, [[z]3 = 21 +-- -+ 27 < n(max{|z;[})* = n- |||, implying ||z} <
Vn||z||co. This proves the first and second inequalities in (b), and the third
is quite obvious. O

In fact, any two norms on a finite dimensional vector space over F' are
equivalent (in the sense given above), but we do not need this result.

8.2 Orthonormal Bases

Theorem 8.2.1. Let L = (vy,...,v,) be an orthonormal list of vectors in
V' and put W = span(L). If w = Y .-, a;v; is an arbitrary element of W,
then

(i) a; = {w,v;), and

(ii) [Jw|[> = 322, lail? = 3252, Kw, vi) 2.

Proof. If w =" a;v;, compute (w,v;) = (3 ir, a;v;,v;) = a;. Then apply
the Pythagorean Theorem. O

The preceding result shows that an orthonormal basis can be extremely
handy. The next result gives the Gram-Schmidt algorithm for replacing a
linearly independent list with an orthonormal one having the same span as
the original.
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Theorem 8.2.2. (Gram-Schmidt method) If L = (vy,...,vn) is a lin-
early independent list of vectors in V, then there is an orthonormal list
B = (e1,...,en) such that span(es,...,e;) = span(vy,...,v;) for each j =
1,2,...,m.

Proof. Start by putting e; = v;/||v1]], so e; has norm 1 and spans the same
space as does v;.

We construct the remaining vectors e, ..., e, inductively. Suppose that
ei,---,ex have been determined so that (es,...,ex) is orthonormal and
span(es,...,e;) = span(vi,...,v;) for each j = 1,2,..., k. We then con-
struct ex4q as follows. Put e, = vpq1 — Zf:1<vk+1, e;)e;. Check that e},
is orthogonal to each of ey, ..., e,. Then put exy1 =€) /||e}4]]- O

At this point we need to assume that V' is finite dimensional.

Corollary 8.2.3. Let V be a finite dimensional inner product space.

(i) V has an orthonormal basis.

(i) If L is any orthonormal set in'V it can be completed to an orthonormal
basis of V.

Proof. We know that any independent set can be completed to a basis to
which we can then apply the Gran-Schmidt algorithm. U

Lemma 8.2.4. If T € L(V) has an upper triangular matriz with respect to
some basis of V, then it has an upper triangular matriz with respect to some
orthonormal basis of V.

Proof. Suppose that B = (v1,...,v,) is a basis such that [T]z is upper tri-
angular. Basically this just means that for each 7 = 1,2, ..., n the subspace
span(vy, ..., v;) is T-invariant. Use the Gram-Schmidt algorithm to construct
an orthonormal basis S = (ey,...,e,) for V such that span(vi,...,v;) =
span(ey, . ..,e;) for each j =1,2,...,n. Hence for each j, span(ey,...,€;) is
T-invariant, so that [T]s is upper triangular. O

Using the fact that C is algebraically closed we showed that if V is a
finite dimensional complex vector space, then there is a basis B for V' such
that [T]s is upper triangular. Hence we have the following result which is
sometimes called Schur’s Theorem.

Corollary 8.2.5. (Schur’s Theorem) If T € L(V) where V is a finite di-
menstonal complex vector space, then there is an orthonormal basis for V
with respect to which T has an upper triangular matriz.
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We now apply the preceding results to the case where V = F™. First
we introduce a little more language. If P is an invertible matrix for which
P~! = P* where P* is the conjugate transpose of P, then P is said to be
unitary. If P is real and unitary (so P~! = PT), we say P is an orthogonal
matrix. Let A be an n xn matrix over C. View C™ as an inner product space
with the usual inner product. Let S be the standard ordered (orthonormal)
basis. Define Ty € L(C") by T4(Z) = AZ. We know that [T4]s = A. Let
B = (v1,...,v,) be an orthonormal basis with respect to which 74 has an
upper triangular matrix. Let P be the matrix whose jth column is v; = [v;]s.
Then [T4]z = P7'AP by Theorem 4.7.2. Since B is orthonormal it is easy
to check that P is a unitary matrix. We have proved the following.

Corollary 8.2.6. If A is an n X n complex matriz, there is a unitary matrizc
P such that P~YAP is upper triangular.

8.3 Orthogonal Projection and Minimization

Let V be a vector space over the field F', F' a subfield of C, and let { , ) be
an inner product on V. Let W be a subspace of V', and put

Wt ={veV:(wwv)y=0forall we W},

Obs. 8.3.1. W is a subspace of V and W NW+ = {0}. Hence W + W+ =
Wewt

Proof. Easy exercise. O

We do not know if each v € V has a representation in the form v =
w4+ w' with w € W and w' € W+, but at least we know from the preceding
observation that it has at most one. There is one case where we know that

V=WweWw
Theorem 8.3.2. If W is finite dimensional, then V =W @ W+.

Proof. Suppose W is finite dimensional. Then using the Gram-Schmidt pro-
cess, for example, we can find an orthonormal basis D = (v1,...,v,) of W.
For arbitrary v € V, put a; = (v, v;). Then we know that

m
w = E a;v;
=1
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is in W, and we write

m m
v=w+w = E a,-vi—i-(v—g a;v;).
=1 i—1

We show that v — Y 7" a;0; € W
So let u € W, say u=>_"", bjv;. Since D is orthonormal,

m m m
(v — Zaivi, u) = (v — Zaivi, ijvj>
1 i=1 j=1

So with w =Y, a;v; and w' = v — w, v = w + w' is the unique way to
write v as the sum of an element of W plus an element of W+. 0

Now suppose V = W @& W+, (which we have just seen is the case if W
is finite dimensional). A linear transformation P : V — V is said to be an
orthogonal projection of V onto W provided the following hold:

(i) P(w) = w for all w € W,

(i) P(w') =0 for all w' € W+,

So let P be an orthogonal projection onto W by this definition. Let
v = w+ w' be any element of V with w € W, w' € W+. Then P(v) =
Pw+w') = P(w)+ Pw') =w+0=w e W. So P(v) is a uniquely defined
element of W for all v.

Conversely, still under the hypothesis that V = W@ W, define P’ : V —
V as follows. For v € V, write v = w +w', w € W, w' € W+ (uniquely!),
and put P'(v) = w. It is an easy exercise to show that P’ really is linear,
P'(w) = w for all w € W, and P'(w') = P'(0 +w') = 0 for w' € W+. So
P':v=w+w — w is really the unique orthogonal projection of V onto W.
Moreover,

Obs. 8.3.3. P2 = P; P(v) = v if and only if v € W; P(v) = 0 if and only
ifve W
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Obs. 8.3.4. I — P is the unique projection of V onto W+.

Both Obs. 8.3.3 and 8.3.4 are fairly easy to prove, and their proofs are
worthwhile exercises.

Obs. 8.3.5. W C Wi+,

Proof. W+ consists of all vectors in V orthogonal to every vector of W. So
in particular, every vector of W is orthogonal to every vector of W+, i.e.,
each vector of W is in (W), But in general we do not know if there could
be some vector outside W that is in W+, O

Theorem 8.3.6. If V=W & W+, then W = (W+)+.

Proof. By Obs. 8.3.5, we must show that W++ C W. Since V=W @ W+,
we know there is a unique orthogonal projection P of V onto W, and for
each v € V, v — P(v) € W+. Keep in mind that W C (W+)+ and P(v) €
W C (W)L, so (v — P(v), P(v)) = 0. It follows that for v € W+ we have

[v=P()|* = (v—P(v),v—P(v)) = (v,v=P(v))—(P(v),v—P(v)) = 0-0 = 0

by the comments just above. Hence v = P(v), which implies that v € W,
ie., Wt CW. Hence W+ =W. O

Note: If V.= W & W+, then (W+)+ = W, so also V = Wt @ (W),
and (W4t =w+.

Given a finite dimensional subspace U of the inner product space V and
a point v € V, we want to find a point u € U closest to v in the sense that
||lv — ul| is as small as possible. To do this we first construct an orthonormal
basis B = (eq,...,ey) of U. The unique orthogonal projection of V' onto U

is given by
m

Py(v) = Z(v,ei>e,~.

i=0
We show that Py (v) is the unique u € U closest to v.

Theorem 8.3.7. Suppose U is a finite dimensional subspace of the inner
product space V and v € V. Then

llv — Py(v)|| < ||lv —ul|| VueU.

Furthermore, if u € U and equality holds, then u = Py(v).
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Proof. Suppose u € U. Then v— Py(v) € Ut and Py(v) —u € U, so we may
use the Pythagorean Theorem in the following:

o= Po@)|P < llo— Pu()|P + [|Po(v) — ull (8.6)
= 1o~ Py(v)) + (Po(v) - u)|
= Jv—ul?,

where taking square roots gives the desired inequality. Also, the inequality
of the theorem is an equality if and only if the inequality in Eq. 8.6 is an
equality, which is if and only if u = Py (v). O

Example 8.3.8. There are many applications of the above theorem. Here
is one example. Let V = R[x], and let U be the subspace consisting of all
polynomials f(x) with degree less than 4 and satisfying f(0) = f'(0) = 0.
Find a polynomial p(x) € Usuch that fol 12 4+ 3z — p(z)|*dx is as small as
possible.

Solution: Define an inner product on R[z] by f, fo
Put g(x) = 2 + 3z, and note that U = {p(z) = asz® + a3x3 : ag,a3 6 R}
We need an orthonormal basis of U. So start with the basis B = (22, z?)
2

and apply the Gram-Schmidt algorithm. We want to put e; = ”22”. First

compute ||z?%||? = fo ztde = 1, so
=5 2. (8.7)

Next we want to put

ey = .
C e = (@ eed]|

Here (22, ¢,) = V/5 [ 2%dz = f Then z° — (23, e1)e; = 2° — 222

6
Now [[z? — 322|]2 = [ (a® — 32°)%dz = -L-. Hence

ey = 6v7(ax® — gf) = V7(62% — 522). (8.8)

Then the point p € U closest to g = 2 + 3z is
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b = <g,€1>61+<g,62>€2

- [\/5/01(2 + 3x)x2dm} Vba? + (8.9)
+ [\ﬁ/ol(Q + 37)(62° — 5x2)dx} V(62 — 52?),

(8.10)
so that after a bit more computation we have
203
p = 24z — ﬁxf‘. (8.11)

8.4 Linear Functionals and Adjoints

Recall that if V' is a vector space over any field F', then a linear map from
V to F (viewed as a vector space over F) is called a linear functional. The
set V* of all linear functionals on V is called the dual space of V. When
V is an inner product space the linear functionals on V' have a particularly
nice form. Fix v € V. Then define ¢, : V — F : u — (u,v). It is easy to
see that ¢, is a linear functional. If V' is finite dimensional then every linear
functional on V arises this way.

Theorem 8.4.1. Let ¢ € V*. Then there is a unique vector v € V such that
¢(u) = (u,)v
for every u € V.

Proof. Let (e1,...,e,) be an orthonormal basis of V. Then for any u € V,

we have
n

U= Z(u, €i)e;.

i=1
Hence

n n

du) = 60O (uede) = (u,edles)

i=1 i=1

= Z(UaMM

(8.12)
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So if we put v = Y | d(e;)e;, we have ¢p(u) = (u,v) for every u € V.
This shows the existence of the desired v. For the uniqueness, suppose that

o(u) = (u,v1) = (u,v9) Yu € V.

Then 0 = (u, v; — v9) for all u € V, forcing v; = vs. O

Now let V and W both be inner product spaces over F. Let T € L(V, W)
and fix w € W. Define ¢ : V. — F by ¢(v) = (T'(v),w). First, it is easy to
check that ¢ € V*. Second, by the previous theorem there is a unique vector
(that we now denote by T*(w)) for which

¢(v) = (T'(v),w) = (v, T*(w)) VoeV.

It is clear that T* is some kind of map from W to V. In fact, it is routine
to check that T* is linear, i.e., T* € L(W,V).

Theorem 8.4.2. Let Vand W be inner product spaces and suppose that
S, T € L(V,W) are both such that S* and T* exist. Then

(i) (S+T) =S*+T*

(i) (aT)* = aT™.

(1ii) (T*)* =T.

(iv) I* = 1.

(v) (ST)* = T*S*.

Proof. The routine proofs are left to the reader. O

Theorem 8.4.3. Let V and W be finite dimensional inner product spaces
over F. Suppose TL(V,W). Then

(i) null(T*) = (Im(T))*;

(ii) Im(T*) = (null(T))*;
(iii) null(T) = (Im(T*))*;

(iv) Im(T) = (null(T*))*.
Proof. For (i), w € mull(T*) iff T*(w) = 0 iff (v, T*(w)) = 0 Vv € V
iff (T'(v),w) =0 Vv € V iff w € (Im(T))*+. This proves (i). By taking
orthogonal complements of both sides of an equality, or by replacing an
operator with its adjoint, the other three equalities are easily established. [

Theorem 8.4.4. Let V be a finite dimensional inner product space over F
and let B = (ey,...,e,) be an orthonormal basis for V. Let T € L(V) and
let A= [T]B Then Aij = <T(€j), 6,’).
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Proof. The matrix A is defined by

T €]) = iAZ]ez
i=1

Since B is orthonormal, we also have

n

T(e;) = ) (T(e)), ex)es.

i=1
Hence A;; = (T'(ej), ;). O

Corollary 8.4.5. Let V be a finite dimensional inner product space over F
and let B = (ey,...,e,) be an orthonormal basis for V. Let T € L(V) and
let A=[T)g. Then [T*|p = A*, where A* is the conjugate transpose of A.

Proof. According to Theorem 8.4.4, A;; = (T'(e;), e,) and if B = [T*], then
Bj; = (T"(e)), &) = (&1, T*(e;)) = (T(e:), e5) = Ajs O

8.5 The Rayleigh Principle*

All matrices in this note are over the field C of complex numbers, and for any
matrix B, B* denotes the conjugate transpose of B. Also, { , ) denotes the
standard inner product on C" given by: (z,y) = 27y = y*z. Let Aben xn
hermitian, so A has real eigenvalues A\; < Ay < --- < A, with an orthonormal
set {v1,...,v,} of associated eigenvectors: Av; = v, (vj,v;) = v 0; =
U;‘Uj = (5,]

Let @ = (v1, ..., v,) be the matrix whose jth column is v;. Then Q*Q =
I, and Q*AQ = Q* (M1, ..., A\pn) = Q*QA = A = diag(Aq, ..., \), and Q
is unitary (Q* = Q71).

For 0 # z € C™ define the Rayleigh Quotient pa(x) for A by

_ (Az,z) Az
pal®) ="y~ TalE

(8.13)

Put O = {z € C" : (z,z) = 1}, and note that for 0 #k € C,0 # z € C",

pa(kz) = pa(z). (8.14)
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Hence
{pa(z) : x #0} = {pa(z) : 2 € O} = {z* Az : z € O}. (8.15)

The set W(A) = {pa(z) : z € O} is called the numerical range of A.
Observe that if z = Qy, then z € O iff y € O. Since W (A) is the continuous
image of a compact connected set, it must be a closed bounded interval
with a maximum M and a minimum m. Since Q) : C" — C" : z — Qx is
nonsingular, @) maps O to O in a one-to-one and onto manner. Hence

M = mazzeo{z" Ar} = mazyco{(Qy) A(Qy) = y" Q" AQy} =

n
= mazyeco{y Ay} = maxyeo{z )\j|?/j|2}a
i=1

where Y= (ylayZa .. ':yn)T € Cn, Z ‘yl‘2 =1
Similarly,

m = mingeo{pa(x)} = mingeo{ D> \jly;|*}-
=1

By the ordering of the eigenvalues, for y € O we have

M=) 1l <) Nyl = ealy) < XD Iyl = A (8.16)
j=1 j=1

Furthermore, with y = (1,0,...,0)* € O and z = (0,...,0,1)* € O, we
have pa(y) = A1 and pa(z) = A,. Hence we have almost proved the following
first approximation to the Rayleigh Principle.

Theorem 8.5.1. Let A be an n X n hermitian matriz with eigenvalues Ay <
Ao < -+ < \,. Then for any nonzero x € O",

A < palz) < A, and (8.17)
A1 = Mingeopa(r); An = mazzeopa(x). (8.18)
If 0 # x € C™ satisfies pa(x) = \; for either i =1 or i = n, (8.19)

then x is an eigenvector of A belonging to the eigenvalue A;.
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Proof. Clearly Egs. 8.17 and 8.18 are already proved. So consider Eq. 8.19.
Without loss of generality we may assume z € O. Suppose z = Y -

=1
so that pa(z) = z* Az = (2?21 Ejv;-‘) (Z?Zl cj/\jvj) =D 51 Ajleg?.
Clearly Ay = A1 37 [¢;7 < D77 Ajlej|? with equality iff A; = A, when-
ever ¢; # 0. Hence ps(z) = Ay iff 2 belongs to the eigenspace associated with
A1. The argument for A, is similar. O

€jVj5

Recall that @ = (v,...,v,), and note that if z = Qy, so y = Q*z,
then x = v; = Qy iff y = Q*v; = €. So with the notation z = Qy,
Y= (y1,...,Yn)", we have

(z,v;) = 2"v; = 2" QQ; = y'e; = 7;.

Hence x L v; iff y = Q*z satisfies y; = 0.
Def. Tj={x#0: (z,00) =0for k=1,...,5} = {v1,...,v;}+\ {0}

Theorem 8.5.2. pa(x) > Ajjq for all x € T}, and pa(z) = A\jy1 for some
x € T} iff v is an eigenvector associated with \j11. Thus

Aj+1 = minger; {pa(x)} = pa(vj+1).

Proof. 0 # x € Tj iff v = Qy where y = Y70 . wex iff 2 = D70 yevy.
Without loss of generality we may assume z € O N7Tj. Then y = Q*z € O
and z € T;N O Mf pa(x) = Y50 Aelvel® 2 A Dok [kl 2 Aj,s
with equality iff y, = 0 whenever Ay > A;;1. In particular, if y = €;,1, so
T = Vj41, pA(QT) = )‘j+1' O

Theorem 8.5.3. Put S; = {z #0 : (z,v,) =0 fork =n,n—-1,...,n —

(=1} SoS;={vn, Un-1,-- -, Vp_-1)} \ {0}. Then pa(x) < Au_j for all
z € S, and equality holds iff x 1s an eigenvector associated with \,_;. Thus

)‘n—j = MaTges; {pA(;L‘)} = pA(Un—j)-

Proof. We leave the proof as an exercise for the reader. O

The Rayleigh Principle consists of Theorems 8.5.2 and 8.5.3.
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8.6 Exercises

1. Parallelogram Equality: If u,v are vectors in the inner product
space V', then

[lu +vl? + [lu = of[* = 2(][ul* + [[] ).
Explain why this equality should be so-named.

2. Let V and W be inner product spaces over F', and let T € L(V,W). If
there is an adjoint map 7% : W — V such that (T'(v), w) = (v, T*(w))
for all v € V and all w € W, show that 7™ € L(W, V).

3. Let T : V — W be a linear transformation whose adjoint 7* : W — V
with respect to (, )v, (, )w does exist. So for allv € V, w € W,
(T(v), wyw = (v, T*(w))y. Put N =null(T) and R* = Im(T*).

(a) Show that (R*)* = N.
(b) Suppose that R* is finite dimensional and show that N+ = R*.

4. Prove Theorem 8.4.2.
5. Prove Theorem 8.5.3.

6. On an in-class linear algebra exam, a student was asked to give (for ten
points) the definition of “real symmetric matrix.” He couldn’t remem-
ber the definition and offered the following alternative: A real, n x n
matrix A is symmetric if and only if A2 = AAT. When he received no
credit for this answer, he went to see the instructor to find out what was
wrong with his definition. By that time he had looked up the definition
and tried to see if he could prove that his definition was equivalent to
the standard one: A is symmetric if and only if A = A”. He had a
proof that worked for 2 x 2 matrices and thought he could prove it for
3 x 3 matrices. The instructor said this was not good enough. However,
the instructor would give the student 5 points for a counterexample,
or the full ten points if he could prove that the two definitions were
equivalent for all n. Your problem is to determine whether or not the
student should have been able to earn ten points or merely five points.
And you might consider the complex case also: show that A? = AA* if
and only A = A*, or find a counterexample.
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7. Suppose V and W are finite dimensional inner product spaces with
orthonormal bases B; and Bs, respectively. Let T € L(V,W), so we
know that T* € L(W, V) exists and is unique. Prove that [T*]g, 5, is
the conjugate transpose of [Tz, 5,.

8. Suppose that V is an inner product space over F'. Let u,v € V. Prove
that (u,v) = 0 iff |ju|| < ||lu+ av|| Va € F.

(Hint: If u L v, use the Pythagorean theorem on u + av. For the con-
verse, square the assumed inequality and then show that —2Re(a(u, v)) <
la|?||v|| for all @ € F. Then put a = —1/||v|| in the case v # 0.)

9. For arbitrary real numbers aq,...,a, and by,...,b,, show that

10. Let V be a real inner product space. Show that
(u,0) = 5w+ o2 = = vl (8.20)

(This equality is the real polarization identity.)

11. Let V be a complex inner product space. Show that

(u,v) = Re({u,v)) + i Re((u,iv)). (8.21)

12. Let V be a complex inner product space. Show that

4
1
(u,v)y = 1 E i"[|u+ "] (8.22)
n=1

(This equality is the complex polarization identity.)

For the next two exercises let V be a finite dimensional inner product
space, and let P € L(V) satisfy P? = P.

13. Show that P is an orthogonal projection if and only if null(P) C
(Im(P))*.
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14.

15.

16.

17.

18.

19.
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Show that P is an orthogonal projection if and only if ||P(v)|| < ||v]|
for all v € V. (Hint: You will probably need to use Exercises 8 and
13.)

Fix a vector v € V and define T' € V* by T'(u) = (u,v). Fora € F
determine the formula for 7*(a). Here we us the standard inner product
on F given by (a,b) = ab for a,b € F.

Let T € L(V,W). Prove that
(a) T is injective if and only if 7™ is surjective;

(b) T is surjective if and only if 7* is injective.

If T € £(V) and U is a T-invariant subspace of V, then Ut is T*-
invariant.

Let V be a vector space with norm || - ||. Prove that

[ el = {lol] | < lu = vl

Use exercise 18 to show that if {v;}°, converges to v in V, then
{llusll}&2, converges to ||v||. Give an example in R? to show that the
norms may converge without the vectors converging.
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Chapter 9

Operators on Inner Product
Spaces

Throughout this chapter V' will denote an inner product space over F'. To
make life simpler we also assume that V is finite dimensional, so operators
on V always have adjoints, etc.

9.1 Self-Adjoint Operators

An operator T € L(V) is called Hermitian or self-adjoint provided T' = T*.

Theorem 9.1.1. Let F' = C, i.e., V is a complex inner product space, and
suppose T € L(V). Then

(a) If (T(v),v) =0 Vv €V, then T = 0.

(b) If T is self-adjoint, then each eigenvalue of T is real.

(c) T is self-adjoint if and only if (T (v),v) € R Vv € V.

Proof. 1t is routine to show that for all u,w € V,

(T(u),w) = (T(u+w),u+w) ; (T(u—w),u—w)

" (T(u+iw), u + iw) ; (T(u—iw),u — 2w>z

Note that each term on the right hand side is of the form (7T'(v),v) for an
appropriate v € V, so by hypothesis (T'(u),w) = 0 for all u,w € V. Put
w = T(u) to conclude that 7" = 0. This proves part (a).

139
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For part (b), suppose that 7" = T*, and let v be a nonzero vector in V
such that T'(v) = Av for some complex number A. Then

Mv,v) = (T(v),v) = (v, T(v)) = AMv, v).

Hence \ = ), implying A € R, proving part (b).
For part (c) first suppose that (T'(v),v) € R forallv € V, and let v € V.
Then

(T(),v) = (T(v),v) = (T(v),v) = (v, T(v))
= (T(v),v) = (T"(v), v)

(T =T7)(v),v).

If (T'(v),v) € R for every v € V, then the left side of the equation equals
0, so {(T — T*)(v),v) = 0 for each v € V. Hence by part (a), T — T* = 0,
i.e., T is self-adjoint.

Conversely, suppose T is self-adjoint.Then the right hand side of the
equation above equals 0, so the left hand side must also be 0, implying
(T'(v),v) € R for all v € V, as claimed. O

Now suppose that V is a real inner product space. Consider the operator
T € L(R?) defined by T'(z,y) = —y, x) with the standard inner product on
R?2. Then (T(v),v) = 0 for all v € R? but T # 0. However, this cannot
happen if T is self-adjoint.

Theorem 9.1.2. Let T be a self-adjoint operator on the real inner product
space V' and suppose that (T (v),v) =0 for allv € V. Then T = 0.

Proof. Suppose the hypotheses of the theorem hold. It is routine to verify

(T(u+w),u+w) — (T(u—w),u—w)
4

(T'(u), w) =

using (T'(w),u) = (w,T(uv)) = (T (u), w) because T is self-adjoint and V is a
real vector space. Hence also (T'(u), w) =0 for all u,w € V. With w = T'(u)
we see 7' = 0. O

Lemma 9.1.3. Let F be any subfield of C and let T € L(V') be self-adjoint.
If o, B € R are such that 2% + ax + B is irreducible over R, i.e., o < 413,
then T? + oT + BI is invertible.
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Proof. Suppose o < 48 and 0 # v € V. Then

((T°+aT + BI)(v),v) = (T°(v),v) +(T(v),T) + B{v,v)
= (T(v),T(v)) + (T(v),v) + B[] |"
> TP = el [|T)]] llvll + Bllv][*

= (Ir@ ""”) (5= )i

> 0, (9.1)

where the first inequality holds by the Cauchy-Schwarz inequality. The last
inequality implies that (T?+aT+ 8I)(v) # 0. Thus T?+aT + 1 is injective,
hence it is invertible. O

We have seen that some operators on a real vector space fail to have
eigenvalues, but now we show that this cannot happen with self-adjoint op-
erators.

Lemma 9.1.4. Let T be a self-adjoint linear operator on the real vector space
V. Then T has an eigenvalue.

Proof. Suppose n = dim(V') and choose v € V' with 0 # v. Then

(v, T(v),...,T"(v))

must be linearly dependent. Hence there exist real numbers ay, ..., a,, not
all 0, such that

0=apv+aT(W) + -+ a,T"(v).
Construct the polynomial f(z) = ag+ a1z + agx® + -+ - - + a,2"™ which can
be written in factored form as

f@)=cl@®+az+B1) (2 + oz + Be) (@ — A - (2 — An),

where c is a nonzero real number, each «;, 3; and ); is real, each oz? < 4p;,
m + k > 1, and the equation holds for all real . Then we have

0 = aww+a,T(w)+---+a,T"(v)
((1,0] + alT + -+ anT") (U)
= C(T2 + alT + ,81[) st (T2 + O[kT + Bk)(T - Alf) s (T - /\mI)(’U)
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Each T?+ ;T + B;1 is invertible by Lemma 9.1.3 because T is self-adjoint
and each 04]2- < 4p;. Also ¢ # 0. Hence the equation above implies that

0= (T = MI) (T — Mud)(v).

It then follows that 7" — A;I is not injective for at least one j. This says that
T has an eigenvalue. O

The next theorem is very important for operators on real inner product
spaces.

Theorem 9.1.5. The Real Spectral Theorem: Let T be an operator on
the real inner product space V. Then V has an orthonormal basts consisting
of eigenvectors of T if and only if T s self-adjoint.

Proof. First suppose that V' has an orthonormal basis B consisting of eigen-
vectors of T. Then [T]5 is a real diagonal matrix, so it equals its conjugate
transpose, i.e., T' is self-adjoint.

For the converse, suppose that 7 is self-adjoint. Our proof is by induction
on n = dim(V'). The desired result clearly holds if n = 1. So assume that
dim(V) = n > 1 and that the desired result holds on vector spaces of smaller
dimension. By Lemma 9.1.4 we know that 7" has an eigenvalue A with a
nonzero eigenvector u, and without loss of generality we may assume that
llul| = 1. Let U = span(u). Suppose v € U™, i.e. (u,v) =0. Then

(u, T(v)) = (T(u),v) = Au,v) =0,

so T'(v) € UL whenever u € UL, showing that U~ is T-invariant. Hence the
map S =T|y. € LUL). If v,w € UL, then

(5(v),w) = (T (), w) = (v, T(w)) = (v, 5(w)),

which shows that S is self-adjoint. Thus by the induction hypothesis there
is an orthonormal basis of U* consisting of eigenvectors of S. Clearly every
eigenvector of S is an eigenvector of T. Thus adjoining u to an orthonormal
basis of U1 consisting of eigenvectors of S gives an orthonormal basis of V'
consisting of eigenvectors of 7', as desired. O

Corollary 9.1.6. Let A be a real n X n matrixz. Then there is an orthogonal
matriz P such that P~ AP is a (necessarily real) diagonal matriz if and only
if A is symmetric.
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Corollary 9.1.7. Let A be a real symmetric matriz with distinct (necessarily
real) eigenvalues A1, ..., Ay. Then

V=nulT—MI)&--- & null(T — M\, 1).

9.2 Normal Operators

Definition An operator 7' € L(V) is called normal provided TT* = T*T.
Clearly any self-adjoint operator is normal, but there are many normal op-
erators in general that are not self-adjoint. For example, if A is an n X n
nonzero real matrix with AT = —A (i.e., A is skew-symmetric , then A # A*
but A is a normal matriz because AA* = A*A. It follows that if T € L(R")
is the operator with [T]|s = A where § is the standard basis of R", then T
is normal but not self-adjoint.

Recall Theorem 7.1.2 (A list of nonzero eigenvectors belonging to distinct
eigenvalues must be linearly independent.)

Theorem 9.2.1. Let T € L(V). Then ||T(v)|| = ||[T*(v)|| Yv € V iff T is
normal.

Proof.

<— T'T-TT*=0

— (T"T —-TT")(v),v) =0Vv eV

— (T"T(v),v)={(TT*(v),v) Vv eV

= [T =|T"(v)|] Vv e V. (9-2)

T is normal

Since T*T —TT™ is self-adjoint, the theorem follows from Theorems 9.1.1
part (a) and 9.1.2. O

Corollary 9.2.2. Let T € L(V) be normal. Then

(a) If v € V is an eigenvector of T with eigenvalue X\ € F', then v is also
an eigenvector of T* with eigenvalue \.

(b) Eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

Proof. Note that (T'— M\)* = T* — M, and that T is normal if and only if
T — X is normal. Suppose T'(v) = Av. Since T is normal, we have

0=[[(T = AD)@)|| = (v, (T" = MA)(T = M)(v)) = [[(T" = AI)(v)|l-
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Part (a) follows.

For part (b), suppose A and p are distinct eigenvalues with associated
eigenvectors u and v, respectively. So T(u) = Au and T'(v) = pv, and from
part (a), T*(v) = fv. Hence

(A= p){u,v) = (Au,v) = {u, )

(T'(u), v) = (u, T"(v))
0.

Because A # u, the above equation implies that (u,v) = 0. O

The next theorem is one of the truly important results from the theory of
complex inner product spaces. Be sure to compare it with the Real Spectral
Theorem.

Theorem 9.2.3. Complex Spectral Theorem Let V be a finite dimen-
sional complex inner product space and T € L(V). Then T is normal if and
only if V' has an orthonormal basis consisting of eigenvectors of T .

Proof. First suppose that V' has an orthonormal basis B consisting of eigen-
vectors of T, so that [T']z = A is a diagonal matrix. Then A* is also diagonal
and is the matrix A* = [T*]z. Since any two diagonal matrices commute,
AA* = A*A. This implies that T is normal.

For the converse, suppose that 7" is normal. Since V' is a complex vector
space, we know (by Schur’s Theorem) that there is an orthonormal basis
B = (e1,...,en) for which A = [T is upper triangular. If A = (a;;), then
ai; = 0 whenever i > j. Also T'(e1) = ai1€1, 50

1T (en)||* = lau|*
1T (e = lan® + |awz* + - - + [ain]*.
Because T is normal, ||T'(e1)|| = ||T*(e1)]||- So the two equations above imply

that all entries in the first row of A, except possibly the diagonal entry a;;,
equal 0. It now follows that T'(es) = a12€1 + agres = ages, SO

1T (e2)[]” = Jaz?,
1T (e2)|* = aga|” + lagal* + - - + |aga |
Because T is normal, ||T(es)|| = ||T*(e2)||- Thus the two equations just
above imply that all the entries in the second row of A, except possibly the

diagonal entry ase, must equal 0. Continuing in this fashion we see that all
the nondiagonal entries of A equal 0, i.e., A is diagonal. O
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Corollary 9.2.4. Let A be a normal, n X n complexr matriz. Then there is
a unitary matriz P such that

P7YAP is diagonal.

Theorem 9.2.5. Let A be n X n. Then A is normal if and only if the
eigenspaces of AA* are A-invariant.

Proof. First suppose that A is normal, so AA* = A*A, and suppose that
AA*Z = MZ. We show that AZ also belongs to A for AA* : AA*(AZ) =
A(AA*Z) = A- \¥ = M AZ). For the converse, suppose the eigenspaces of
AA* are A-invariant. We want to show that A is normal. We start with the
easy case.

Lemma 9.2.6. Suppose BB* = diag(\1,..., ,0...,0) is a diagonal ma-
triz, and suppose that the eigenspaces of BB* are B-invariant. Then B is
normal.

Proof of Lemma: @ = (0,...,0,ug 1,...,u,)" is a typical element of the
null space of BB*i.e., the eigenspace belonging to the eigenvalue 0. First note
that the bottom n — k rows of B must be zero, since the (i, 7) entry of BB* is
the inner product of the ith row of B with itself, which must be 0 if i > k+1.
So by hypothesis B(0,...,0, ugi1,- - un) = (0,...,0,0%41,---,v,)". Since
the top k entries of B(0,...,0,ux;1,--.,u,)T must be zero, the entries in the
top k£ rows and last n — k£ columns must be zero, so

B,y 0
5=(0 1),
where By is k x k with rank k.

For 1 < ¢ < k, the standard basis vector €; is an eigenvector of BB*
belonging to A;. And by hypothesis, BB* - Be; = \;Bé;. So B - BB*¢; =
B - \&, implying that [B2B* — BB*B]é; = 0. But this latter equality is
also seen to hold for ¥k +1 < i < n. Hence B2B* = BB*B. Now using
block multiplication, B?Bf = B;B;j B, implying that B;Bf = BfB,. But
this implies that BB* = B*B. So B is normal, proving the lemma.

Now return to the general case. Let y,..., 4, be an orthonormal basis
of eigenvectors of AA*. Use these vectors as the columns of a matrix U,
so that U*(AA*)U = diag(Ay,..., 6,0 = Agg1,...,0 = A,), where 0 #
A1+ Ap and k£ = rank(A). Our hypothesis says that if AA*@; = \; A}, then
AA*- At = M\jii;. Put B=U*AU. So BB* = U*AUU*A*U = U*(AA*)U =
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diag()\l, ceey )\n) Compute BB*(U*’JJ) = U*AA*’IZJ =U*- )\j’lfj = )\]U*ﬁj
So U*il; = €; is an eigenvector of BB* belonging to A;.

Also (BB*)BU*u; = U*AUU*A*UU*AUU*u; = U*AA*Ad; = U* -
NAt; = Nj - U*AUU*G; = N\jB(U*i;). So the eigenspaces of BB* are
B-invariant. Since BB* is diagonal, by the Lemma we know B is normal.
But now it follows easily that A = UBU* must be normal O

9.3 Decomposition of Real Normal Operators

Throughout this section V' is a real inner product space.

Lemma 9.3.1. Suppose dim(V) =2 and T € L(V). Then the following are
equivalent:
(a) T is normal but not self-adjoint.

(b) The matriz of T with respect to every orthonormal basis of V has the

b

form _a ), with b # 0.

a
b
(¢) The matriz of T with respect to some orthonormal basis of V' has the

a —b .
form(b a ),wzthb>0.

Proof. First suppose (a) holds and let S = (e1, e3) be an orthonormal basis

of V. Suppose
a c

Then ||T(e1)||? = a® + b and ||T*||> = a® + ¢*. Because T is normal,

by Theorem 9.2.1 ||T(e1)|| = |[T*(e1)||. Hence b* = ¢2. Since T is not
self-adjoint, b # ¢, so we have ¢ = —b. Then [T"]s = ( —ab 2) S0

. [ a*+b ab—bd o 24 —ab+ bd .
" _(“b—bd b2+a’2>’andTT_<—ab+bd v+ d ) Hince

T is normal it follows that b(a — d) = 0. Since T is not self-adjoint, b # 0,
implying that a = d, completing the proof that (a) implies (b).

Now suppose that (b) holds and let B = (e, e2) be any orthonormal basis
of V. Then either B or B’ = (e;, —es) will be a basis of the type needed to
show that (c) is satisfied.

Finally, suppose that (c) holds, i.e., there is an orthonormal basis B =
(e1,€2) such that [T]s has the form given in (c¢). Clearly T # T*, but a
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simple computation with the matrices representing 7" and 7™ shows that
TT* =T*T, i.e., T is normal, implying that (a) holds. O

Theorem 9.3.2. Suppose that T € L(V) is normal and U is a T-invariant
subspace. Then

(a) Ut is T-invariant.

(b) U is T*-invariant.

() (Tlo)* = (T)].

(d) Ty is a normal operator on U.

(e) T|yv is a normal operator on U+.

Proof. Let B' = (e1,...,en) be an orthonormal basis of U and extend it to an
orthonormal basis B = (eq, ..., em, f1,---, fn) of V. Since U is T-invariant,

A B
T = ( 0 C ) , where A = [T|y]g.

For each j, 1 < j < m, ||T(e;)||* equals the sum of the squares of the
absolute values of the entries in the jth column of A. Hence

(9.3)

zm: 1T (e;)|]2 = the sum of the squares of the absolute
- 77117 values of the entries of A.
J=

For each j, 1 < j < m, ||T"*(e;)||* equals the sum of the squares of the
absolute values of the entries in the jth rows of A and B. Hence

“ 2 the sum of the squares of the absolute
Zl 1T (eI = values of the entries of A and B. (94)
]_

Because T is normal, ||T'(e;)|| = ||T*(e;)|| for each j. It follows that the

entries of B must all be 0, so

Wm=(§g).

This shows that U+ is T-invariant, proving (a).

But now we see that
- (A0
[T ]B - ( 0 C* ) 3
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implying that U is T*-invariant. This completes a proof of (b).
Now let S =T|y. Fix v € U. Then

(S(u),v) =(T(u),v) = (u, T*(v)) Yu € U.

Because T*(v) € U (by (b)), the equation above shows that S*(v) = T*(v),
ie, (Ty)* = (T*)|y, completing the proof of (¢). Parts (d) and (e) now
follow easily. O

At this point the reader should review the concept of block multiplication
for matrices partitioned into blocks of the appropriate sizes. In particular,
if A and B are two block diagonal matrices each with k& blocks down the
diagonal, with the jth block being n; X n;, then the product AB is also block
diagonal. Suppose that A;, B; are the jth blocks of A and B, respectively.
Then the jth block of AB is A;B;:

A 0 -+ 0 B, 0 --- 0 A1B; 0 0
0 Ay --- 0 0 By --- 0 0 AyB, 0
0 -+ - A 0 --- --- B 0 N

We have seen the example T'(z,y) = (—y, ) of an operator on R? that
is normal but has no eigenvalues, so has no diagonal matrix. However, the
following theorem says that normal operators have block-diagonal matrices
with blocks of size at most 2 by 2.

Theorem 9.3.3. Suppose that V is a real inner product space andT € L(V).
Then T is normal if and only if there is an orthonormal basis of V' with respect
to which T has a block diagonal matriz where each block is a 1-by-1 matrix
or a 2-by-2 matriz of the form

( Z _ab ) : (9.5)

Proof. First suppose that V' has an orthonormal basis B for which [Tz is
block diagonal of the type described in the theorem. Since a matrix of the
form given in Eq. 9.5 commutes with its adjoint, clearly 7T is also normal.

with b > 0.

B,
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For the converse, suppose that 71" is normal. Our proof proceeds by in-
duction on the dimension n of V. For n = 1 the result is obvious. For
n = 2 if T is self-adjoint it follows from the Real Spectral Theorem; if T is
not self-adjoint, use Lemma 9.3.1. Now assume that n = dim(V’) > 2 and
that the desired result holds on vector spaces of dimension smaller than n.
By Theorem 7.3.1 we may let U be a T-invariant subspace of dimention 1 if
there is one. If there is not, then we let U be a 2-dimensional 7T-invariant
subspace. First, if dim(U) = 1, let e; be a nonzero vector in U with norm
1. So B’ = (ey) is an orthonormal basis of U. Clearly the matrix [T'|y]s
is 1-by-1. If dim(U) = 2, then T'|y is normal (by Theorem 9.3.2, but not
self-adjoint (since otherwise T'|;;, and hence T, would have an eigenvector
in U by Lemma 9.1.4). So we may choose an orthonormal basis of U with
respect to which the matrix of 7’|y has the desired form. We know that
U+ is T-invariant and T'|,. is a normal operator on U~+. By our induction
hypothesis there is an orthonormal basis of U+ of the desired type. Putting
together the bases of U and U+ we obtain an orthonormal basis of V' of the
desired type. O

9.4 Positive Operators

In this section V' is an inner product space. An operator T € L(V) is said
to be a positive operator provided

T=T"and (T(v),v) >0VveV.

Note that if V' is a complex space, then having (T'(v),v) € R for allv € V
is sufficient to force T to be self-adjoint (by Theorem 9.9.1, part (c)). So
(T(v),v) > 0 for all v € V is sufficient to force T to be positive.

There are many examples of positive operators. If P is any orthogonal
projection, then P is positive. (You should verify this!) In the proof of
Lemma 9.1.3 we showed that if 7 € £(V) and if a, 8 € R are such that o? <
443, then T?+aT+ 1 is positive. You should think about the analogy between
positive operators (among all operators) and the nonnegative real numbers
among all complex numbers. This will be made easier by the theorem that
follows, which collects the main facts about positive operators.

If S, T € L(V) and S? =T, we say that S is a square root of T.

Theorem 9.4.1. Let T € L(V). Then the following are equivalent:
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(a) T is positive;

(b) T is self-adjoint and all the eigenvalues of T are nonnegative:
(¢) T has a positive square root;

(d) T has a self-adjoint square root;

(e) There exists an operator S € L(V') such that T = S*S.

Proof. We will prove the (a) = (b) = (¢) = (d) = (e) = (a).
Suppose that (a) holds, i.e., T is positive, so in particular 7 is self-adjoint.
Let v be a nonzero eigenvector belonging to the eigenvalue A\. Then
0 < (T'(v),v) = (Av,v) = Mo, v),
implying that A is a nonnegative number, so (b) holds.
Now suppose that (b) holds, so T is self-adjoint and all the eigenvalues
of T" are nonnegative. By the Real and Complex Spectral Theorems, there is

an orthonormal basis B = (eq,...,e,) of V consisting of eigenvectors of 7.
Say T'(e;) = Aje;, where each A; > 0. Define S € L(B) by

S(e]-) = \/)\jej, 1 S _] S n.

Since S has a real diagonal matrix with respect to the basis B, clearly S is self-
adjoint. Now suppose v = Y7, aje;. Then (S(v),v) = 7 \/Asla;|* > 0,
so S is a positive square root of 7. This shows (b) = (c¢).

Clearly (c) implies (d), since by definition every positive operator is self-
adjoint. So suppose (d) holds and let S be a self-adjoint operator with
T = S2. Since S is self-adjoint, T = S*S, proving that (e) holds.

Finally, suppose that 7' = S*S for some S € L(V). It is easy to check
that 7* = T, and then (T'(v),v) = (S*S(v),v) = ((S(v), S(v)) > 0, showing
that (e) implies (a). O

An operator can have many square roots. For example, in addition to =7
being square roots of I, for each a € F' and for each nonzero b € F', we have
that

a

A= ( A b ) satisfies 4% = I.
5

However, things are different if we restrict our attention to positive operators.

Theorem 9.4.2. Each positive operator on V has a unique positive square
T00%.
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Proof. Let T € L(V) be positive with nonnegative distinct eigenvalues
Alye-vy Ap. Since T is self-adjoint, we know by Theorem 7.2.8 (and the
Spectral Theorems) that

V =nul(T — \I) @ -+ - @ null(T — ).

By the preceding theorem we know that 7" has a positive square root S.
Suppose « is an eigenvalue of S. If v € null(S — al). Then T'(v) = S%(v) =
a?v, so a? is some eigenvalue of T, i.e., a = /); for some i. Clearly

null(S — y/A; € null(T — A\ 1).

Since the only possible eigenvalues of S are v/, ...,V Ay, and because
S is self-adjoint, we also know that

V= null(S — /A1) ®---® null(S — /A, I).
A dimension argument then shows that
null(S — /A1) = null(T — A1)

for each j. In other words, on null(7'— A, 1), the operator S is just multiplica-
tion by /A;. Thus S, the positive square root of T, is uniquely determined
by T. O

9.5 Isometries

An operator S € L(V) is called an isometry provided
1S@)[| = [[vl] Vv € V.

For example, AI is an isometry whenever A\ € F satisfies |\| = 1. More
generally, suppose that A, ..., \, are scalars with absolute value 1 and S €
L(V) satisfies S(e;) = Aje; for some orthonormal basis B = (eq,...,e,) of

V. For v € V we have
v={(v,e1)e; + -+ {v,ey)e, (9.6)
and (using the Pythagorean theorem)

[0[* = (v, e))[* + - + [{v, &) |- (9-7)
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Apply S to both sides of Eq. s9.6:
S(v) = Ai(v,er)er + -+ -+ A\ (v, en)en.
This last equation along with |\;| = 1 shows that
1S@)II* = [{v, en)[* + - -~ + (v, en) [ (9-8)

If we compare Egs. 9.7 and 9.8, we see that ||v|| = [|S(v)|], i.e., S is an
isometry. In fact, this is the prototypical isometry, as we shall see. The next
theorem collects the main results concerning isometries.

Theorem 9.5.1. Suppose V' 1is an n-dimensional inner product space and
S € L(V). Then the following are equivalent:

(a) S is an isometry;

(b) (S(u),S(v)) = (u,v) Yu,v € V;

(c) S*S =1;

(d) (S(e1),-..,S(en)) is an orthonormal basis of V. whenever (e, ..., e,)
1s an orthonormal basis of V;

(e) there exists an orthonormal basis (e1, ..., e,) of V' for which
(S(e1),--.,S(en)) is orthonormal;

(f) S* is an isometry;

(9) (S (u), S*(v)) = (u,v) Vu,v € V;

(h) SS* = 1.

(i) (S*(e1),...,S*(en)) is orthonormal whenever (ei,...,e,) is an or-
thonormal list of vectors in V';

(j) there exists an orthonormal basis (e, - ..,e,) of V for which

(S*(e1),...,S*(en)) is orthonormal.

Proof. To start, suppose S is an isometry. If V' is a real inner-product space,
then for all u,v € V, using the real polarization identity we have

15 (u) + S@)[12 — [1S(u) = S@)]”

(S(u),5()) = .
_ ISP 1S = vl
4
_ ol = =l
4

= (u,v).
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If V' is a complex inner product space, use the complex polarization iden-
tity in the same fashion. In either case we see that (a) implies (b).
Now suppose that (b) holds. Then

((5"S = D)(u),v) = (S(u),S(v)) = (u,v)
=0

for every u,v € V. In particular, if v = (S*S — I)(u), then necessarily
(S*S —I)(u) =0 for all u € V, forcing S*S = I. Hence (b) implies (c).

Suppose that (c) holds and let (e, ...,e,) be an orthonormal list of vec-
tors in V. Then

(S(ej), S(ex)) = (S*S(ej), er) = (e, ex)-

Hence (S(e1), ..., S(ey,)) is orthonormal, proving that (c) implies (d).
Clearly (d) implies (e).
Suppose that (e, ...,e,) is a basis of V' for which (S(e1),...,S(e,)) is
orthonormal. For v € V,

n

IS@IF = [ISQ (v, eeill?

i=1

= HZ|\<v,ei>5(6i)l\2

n

= > l(v,e))
i=1

= |l

Taking square roots we see that (e) implies (a).

We have now shown that (a) through (e) are equivalent. Hence replacing
S by S* we have that (f) through (j) are equivalent. Clearly (c) and (h) are
equivalent, so the proof of the theorem is complete. O

The preceding theorem shows that an isometry is necessarily normal (see
parts (a), (¢) and (h)). Using the characterization of normal operators proved
earlier we can now give a complete description of all isometries. But as usual,
there are separate statements for the real and the complex cases.
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Theorem 9.5.2. Let V' be a (finite dimensional) complex inner product space
and let S € L(V). Then S is an isometry if and only if there is an orthonor-
mal basis of V consisting of eigenvectors of S all of whose corresponding
ergenvalues have absolute value 1.

Proof. The example given at the beginning of this section shows that the
condition given in the theorem is sufficient for S to be an isometry. For the
converse, suppose that S € L£(V) is an isometry. By the complex spectral
theorem there is an orthonormal basis (e, ..., e,) of V consisting of eigen-
vectors of S. For 1 < j < m, let \; be the eigenvalue corresponding to e;.
Then

Ml = Igell = 1Sl = llesll = 1.

Hence each eigenvalue of S has absolute value 1, completing the proof. [

The next result states that every isometry on a real inner product space
is the direct sum of pieces that look like rotations on 2-dimensional subpaces,
pieces that equal the identity operator, and pieces that equal multiplication
by -1. It follows that an isometry on an odd-dimensional real inner product
space must have 1 or -1 as an eigenvalue.

Theorem 9.5.3. Suppose that V is a real inner product space and S € L(V).
Then S s an tsometry if and only if there is an orthonormal basis of V
with respect to which S has a block diagonal matriz where each block on the
diagonal is a 1-by-1 matriz containing 1 or -1, or a 2-by-2 matriz of the form

cos(0) —sin(0) ,
( sm(ﬁ) 008(9) ) 5 wzth 0 € (0,7‘(’). (99)

Proof. First suppose that S is an isometry. Because S is normal, there is an
orthonormal basis of V' such that with respect to this basis S has a block
diagonal matrix, where each block is a 1-by-1 matrix or a 2-by-2 matrix of
the form

a —b .
( b g ) , with b > 0. (9.10)

If X is an entry in a 1-by-1 block along the diagonal of the matrix of S (with
respect to the basis just mentioned), then there is a basis vector e; such that
S(ej) = Ae;. Because S is an isometry, this implies that [A\| = 1 with A real,
forcing A = £1.
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Now consider a 2-by-2 matrix of the form in Eq. 9.10 along the diagonal
of the matrix of S. There are basis vectors e;, e;y1 such that

S(ej) = aej + bejir.
Thus
L= [les|l? = IS(e)| = a2 + 2

This equation, along with the condition that b > 0, implies that there exists
a number 6 € (0,7) such that a = cos(f) and b = sin(f). Thus the matrix
in Eq. 9.10 has the required form. This completes the proof in one direction.

Conversely, suppose that there is an orthonormal basis of V' with respect
to which the matrix of S has the form stated in the theorem. There there is
a direct sum decomposition

V=U& --0U,,

where each subspace U; is a subspace of V' having dimension 1 or 2. Fur-
thermore, any two vectors belonging to distinct U’s are orthogonal, and each
S|y, is an isometry mapping U; into U;. If v € V, write

m
v = Zui, u; € Uj.
i=1
Applying S to this equation and taking norms gives

ISP = [1S(u1) + - + S (um)|[*
= |IS@)l* + - + 1S (um)lI”

=l + -+ |l

= [Pl

This shows that S is an isometry, as desired. O

9.6 The Polar Decomposition

Theorem 9.6.1. Polar Decomposition If T € L(V), then there exists an
isometry S € L(V) such that

T=SovVT*T.



156 CHAPTER 9. OPERATORS ON INNER PRODUCT SPACES

Proof. Let T € ( ). Then for each v € V, ||T(v)|> = (T'(v),T(v)) =
(TT(v),0) = (VT*T(0), VT*T(v)) = |VT-T(v) |2

So we have established

T )| = [VT*T(v)[| Vv e V. (9.11)

The next step is to construct a map
Sy : In(VT*T) — Im(T) : VT*T(v) — T(v),
and show that it is a well-defined isometry.
1T (v1) = T(v) || = [|T(v2—v2)|| = [IVT*T (v1~v2) || = [[VT*T (01)~VT*T (wo))-

This shows that T'(v1) = T'(vq) if and only if VT*T(v1) = VT*T(ve). In
fact it shows that S is well-defined and is a bijection from I'm(v/T*T) onto
Im(T). One consequence of this is that

dim(Im(vT*T)) = dim(Im(7)) and
dim(Im(vT*T))* = dim(Im(7T))".

It is also easy to check that S; is linear. Moreover, if v = VT*T'(u), then
151 (0)[| = [T ()| = [[VT*T (u)[| = [lv]], implying that 5, is an isometry.

Now construct an orthonormal basis (e, ..., €,) of (range(v/T*T)* and
an orthonormal basis (fi,. .., fm) of (Im(T))L. Define

Sy : (Im(\/T*T)L — (Im(T))L

by: Sa(e;) = f; (and extend linearly). It follows that |[Sy(w)|| = ||w|| for all
€ (Im(v/T*T)*. Here S, is an isometry by part (e) of Theorem 9.5.1.
We know that

V = Im(VT*T) L (Im(VT*T))".

For v € V, write v = u + w with v € Im(vVT*T), w € (Im(v/T*T))*.
Define S : V.— V by S(v) = Si(u) + Sz2(w). It is easy to check that
S € L(V). Moreover, [[S(v)* = |81 (u) + Sz (w)||* = [|S1(u)|[* +|[Sa(w)|]* =
l|lu||?+ [|w||? = ||v||?, implying S is an isometry. (Here we used the fact that
Si(u) € Im(T) and Sy(w) € (Im(T))*.) The only thing left to check is that
T =S o+/T*T, but this is obvious by the way S; is defined on the image of
VT*T. O



9.7. THE SINGULAR-VALUE DECOMPOSTITION 157

We can visualize this proof as follows. Start with 7" e L(V).

Im(VT*T) L (Im(\/T*—T))L e en
V() .
Syl Sy 1 \x
T(v) fi

S=5 & Sy — S isan isometry.

And
Polar Decomposition: 7= S o vT*T.

If T is invertible, then S =T o (\/t*—T )~! is unique. If T is not invertible,
then Im(7") # V, so Sy # —S;. Hence S' = S; & —S; yields s a polar
decomposition of 7" distinct from that given by S’.

The polar decomposition states that each operator on V' can be written
as the product of an isometry and a positive operator. Thus we can write
each operator on V' as the product of two operators, each of which is of a
type that we have completely describe and understand reasonably well. We
know there is an orthonormal basis of V' with respect to which the isometry
S has a diagonal matrix (if ' = C) or a block diagonal matrix with blocks of
size at most 2-by-2 (if F' = R), and there is an orthonormal basis of V' with
respect to which v/7T*T has a diagonal matrix. Unfortunately, there may
not be one orthonormal basis that does both at the same time. However,
we can still say something interesting. This is given by the singular value
decomposition which is discussed in the next section.

9.7 The Singular-Value Decompostition

Statement of the General Result

Let F' be a subfield of the complex number field C, and let A € M, ,,(F).
Clearly A*A is self-adjoint, so there is an orthonormal basis (v1, ..., v,) for
F™ (whose elements we view as column vectors) consisting of eigenvectors
of A*A with associated eigenvalues Ay,...,A,. Let (, ) denote the usual
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inner product on F™. Since ||Av;||*> = (Av;, Av;) = (A*Av;, v;) = (\wi, v3) =
Ai||vi]|?2 = i, we have proved the following lemma.

Lemma 9.7.1. With the notation as above,

(i) Each eigenvalue \; of A*A is real and nonnegative. Hence WLOG we
may assume that Ay > Xg > --- > X\, > 0.

(ii) With s; = \/A; for 1 <i < n, we say that the s;, 1 <14 < n, are the
singular values of A. Hence the singular values of A are the lengths of the
vectors Avy, ..., Av,.

This is enough for us to state the theorem concerning the Singular Value
Decomposition of A.

Theorem 9.7.2. Given A € My, ,(F) as above, there are unitary matrices
Ue My(F) andV € M,(F) such that

S1 0
A=UXV", where ¥ = sy (9.12)
0
0
is a diagonal m X n matriz and s; > sy > --- > s, are the positive (i.e.,

nonzero) singular values of A.

(i) The columns of U are eigenvectors of AA*, the first r columns of U
form an orthonormal basis for the column space col(A) of A, and the last
m — 1 columns of U form an orthonormal basis for the (right) null space of
the matriz A*.

(ii) The columns of V are eigenvectors of A*A, the last n —r columns of
V' form an orthonormal basis for the (right) null space null(A) of A, and the
first r columns of V' form an orthonormal basis for the column space col(A*).

(#ii) The rank of A isr.

Proof. Start by supposing that Ay > Ao > -+ A\, > A\yy = -+ =\, = 0.
Since ||Av;|| = Vi = sy, clearly Av; # 0 iff 1 <4 < r. Also, if i # j, then
(Av;, Av;) = (A*Av;, v;) = Ni(vi, vj) = 0. So (Avy, ..., Av,) is an orthogonal
list. Moreover, Av; # 0 iff 1 < i < r, since ||[Av;|| = VA = s;. So clearly
(Avy, ..., Av,) is a linearly independent list that spans a subspace of col(A).
On the other hand suppose that y = Az € col(A). Then z = > ¢v;, so
y=Azx ="  cAv; =Y ., c;Av;. Tt follows that (Avy,... Av,) is a basis
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for col(A), implying that r =dim(col(A)) = rank(A). Of course, then the
right null space of A has dimension n — r.

For1<i:<r, putu; = IIﬁ—ZiII = sii-sz-, so that Av; = s; - u;. Now extend
(u1,...,u,) to an orthonormal basis (u1, ..., u,) of F™. Let U = [uq, ..., U]
be the matrix whose jth column is u;. Similarly, put V = [vy,...,v,], so U

and V are unitary matrices. And

AV = [Avy, ..., Av,.,0,...,0] = [s1u1, ..., 87U, 0,...,0] =
S1 0
= (U1, ..., Up] A = U,

0
where ¥ is diagonal, m X n, with the singular values of A along the diagonal.
Then AV = UX implies A = UXV*, A* = V3*U*, so A*A = VX*U* -
UXV* = VEXV*

Then
At
(ATA)V =VI'SVV =VE'E =V = (AMv1, ..o, A0y, 0, -
Ar
Since (A*A)v; = 0 for j > r, implying viA*Av; = 0, forcing Av; = 0,
it is clear that v,1,...,v, form an orthonormal basis for null(A). Since
Ajvj = (A*/a)v; = A*\/Aju;, we see A*u; = s;v;. It now follows readily that
v1,...,0, form a basis for the column space of A*.

Similarly, AA* = UX¥*U*, so that

(AAYU = USE* = (M, .. ., My, 0, -+, 0).

(=]

It follows that (u1, . .., u,) consists of eigenvectors of AA*. Also, Uy 41, ..., Un
form an orthonormal basis for the (right) null space of A*, and uy, ..., u, form
an orthonormal basis for col(A). O

Recapitulation

We want to practice recognizing and/or finding a singular value decom-
position for a given m X n matrix A over the subfield F' of C.
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A=UXV" if and only if A* = VE*U". (9.13)

Here 3. is m x n and diagonal with the nonzero singular values s; > s9 >
..., 8 down the main diagonal as its only nonzero entries. Similarly, >*
is n x m and diagonal with s; > .-+ > s, down the main diagonal as its
only nonzero entries. So the nonzero eigenvalues of A* A are identical to the
nonzero eigenvalues of AA*. The only difference is the multiplicity of 0 as
an eigenvalue.

For 1 <i<r, Av; = s;u; and A*u; = s;v;. (9.14)
(V1. VpyUpy1,...,V,) is an orthonormal basis of eigenvectors of A*A.

(9.15)

(Ui, .y UpyUpst,-..,Up) is an orthonormal basis of eigenvectors of AA*.
(9.16)

(vi,...,v,) is a basis for col(A*) and (vyy1,--.,vy,) is a basis for null(A).
(9.17)

(u1,...,u,) is a basis for col(A) and (uy41, ..., Uy) is a basis for null(A¥).
(9.18)
We can first find (v1,...,v,) as an orthonormal basis of eigenvectors of
A*A, put u; = Si - Av;, for 1 <4 < r, and then complete (uq,...,u,) to an
orthonormal basis (u1, ..., u.,) of eigenvectors of AA*. Sometimes here it is
efficient to use the fact that (u,41,...,u,) form a basis for the null space of

AA* or of A*. If n < m, this is the approach usually taken.
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Alternatively, we can find (uy,...,u,) as an orthonormal basis of eigen-
vectors of AA* (with eigenvalues ordered from largest to smallest), put
v = siiA*ui for 1 <4 < r, and then complete (vy,...,v,) to an orthonormal
basis (v1,...,v,) of eigenvectors of A*A. If m < n, this is the approach
usually taken.

9.7.3 Two Examples

1 -1
Problem 1. Find the Singular Value Decomposition of A= | —2 2
2 =2

9 -9
-9 9
an orthonormal basis of R? consisting of eigenvectors of A*A. Put v; =

_ 1 1
i/ﬁ y U2 = f ) V: [UlaUQ]-
V2 V2

Then A*A[vy, vs] = [18v1,0 - vy]. So put u; = 4% = L 2v/2 =

Solution: A*A = ATA = ( ) In this case it is easy to find

% = the first column of U.

It is now easy to see that w; =

, Wy = 0 form a basis of

O = N
N

u; . We apply Gram-Schmidt to (wy, ws) to obtain

Uo =

SRS
&
|
Shesiogh

Now put U = [uq, ug, us).
It follows that A = UXV* is one singular value decomposition of A, where
3vV2 0
Y= 0 0
0 0
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01 —2
Solution: In this case AA* is 2 x 2, while A*A is 3 x 3, so we start with

AA* = ( 2 -1 > Here AA* has eigenvalues A\; = 3 and A\, = 1. So the

Problem 2. Compute a singular value decomposition of A = L0 ) .

-1 2
singular values of A* (and hence of A) are s; = v/3 and s, = 1. It follows

V3 0
that = V300 gosi—( o 1
0 10 -

In this case we choose to compute an orthonormal basis (u1, ug) of eigen-

vectors of AA*. It is simple to check that AA* — 31 = ( :1 :1 ), and we

1
may take u; = ( V2 ) Similarly, AA* — I = < L. ), and we may

7 -1 1
take uy = (

S-Sl

). Then U = [uy, us]. At this point we must put

1
1 0 1 NG
1 1 L 6
vn=—Au=—1| 0 1 (@): % |
VAR 7
and
1
Lo 1 V)
vg =1-A'uy = 0 1 )= %
—i 1 V2 0

At this point we know that (v3) must be an orthonormal basis for
{span(vi, vs)}*. Sowe want vz = (z,y, 2)T with 0 = {(1, =1, —2i), (z,y,2)) =
T—7y— 2z and 0 = ((1,1,0), (z,y,2)) = T + 7. It follows easily that
(Z,y,Z) = (iz,—iz,Z), where we must choose z so that the norm of this

vect%); is 1. If we put 2= =, ie., 2 = %, then (z,y, 2) = (J, \_/—%, 75)-
en
11 2
1 1
NESIENIE TN
~L 1 0 10 gove ]
Ve 5TV TV

which is a singular value decomposition of A.
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THE REMAINDER OF THIS SECTION MAY BE CONSIDERED TO
BE STARRED.

Definition If ) is an eigenvalue of the matrix A, then dim(null(7' — AI))
is called the geometric multiplicity of the eigenvalue .

Theorem 9.7.4. Let M be my X mq1 and N be mi X mo. Put

A:(]& fg)

Then the following are equivalent:
(i) A # 0 is an eigenvalue of A with (geometric) multiplicity f.
(11) —X # 0 is an eigenvalue of A with (geometric) multiplicity f.
(iii) A2 # 0 is an eigenvalue of MN with (geometric) multiplicity f.
(iv) N2 # 0 is an eigenvalue of NM with (geometric) multiplicity f.

Proof. Step 1. Show (i) <> (ii) Let AU = AU for some matrix U of rank

f. Write U = < 51 ), and put U = ( U[} ), where U; has m; rows for
2 —Us

t=1,2. Then AU = AU becomes

(o) () = (i ) =2 (52)

so NU, = AU; and MU, = \U,.

e -~ 0 N Uy _ (AU A :
This implies AU = (M 0 ) < —U2> = < AU, ) = —AU. Since

rank(U) = rank(U), the first equivalence follows.

Step 2. Show (iii) +> (iv). Let MNU' = X2U’ for some matrix U’ of
rank f. Then (NM)(NU') = N>NU’, and rank(NU') = rank(U’), since
rank(A\2U") = rank(MNU') < rank(U'), and X\ # 0. So NM has )\? as
eigenvalue with geometric multiplicity at least f. Interchanging roles of N
and M proves (iii) <> (iv).

Step 3. Show (i) <> (iii) Let AU = AU with U having rank f, and
U= ( Ui > as in Step 1. Put n = m;+msy. Then A2<U; U) = AZ(U;U>.

~U,
since NUy = AU; and MU; = AU,, U; and U, have the same row space. So
row(U) = row(U;) = row(Us). This implies rank(U;) = rank(Us) = f.
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) . U, U : Ur 0
Using column operations we can transform ( U, —U, > nto ( 0 U )7

which has rank 2f. So A\? is an eigenvalue of A? with geometric multiplicity
at least 2f.
On the other hand, the geometric multiplicity of an eigenvalue A\? # 0 of

A% equals n — rank(A%? — X2I) = n — rank((A — AXD)(A+ X)) < n+n—

rank(A — AI) — rank(A + \I) = 2f. O
Note: The singular values of a complex matrix N are sometimes de-
fined to be the positive eigenvalues of ]3* ](\)7 By the above result

we see that they are the same as the positive square roots of the nonzero
eigenvalues of NN* (or of N*N) as we have defined them above.

9.8 Pseudoinverses and Least Squares*

Let A be an m X n matrix over F' (where F is either R or C) and suppose
the rank of A is r. Let

A =UXV"™ be a singular value decomposition of A.

So ¥ is an m x n diagonal matrix with the nonzero singular values s; >
S9 > ...,> s, down the main diagonal as its only nonzero entries. Define X7

to be the n x m diagonal matrix with diagonal equal to (35, .. ., i, 0,...).
Then both ¥¥X* and ¥+ have the general block form

I, 0
0 0)°

but the first product is m x m and the second is n x n.
Definition The Moore-Penrose generalized inverse of A (sometimes just
called the pseudoinverse of A) is the n x m matrix A" over F' defined by

At =VEtU*.

Theorem 9.8.1. Let A be an m x n matriz over F' with pseudoinverse A*
(as defined above). Then the following three properties hold:

(a) AATA = A;

(b) ATAAT = AT,

(c) AAT and AT A are hermitian (i.e., self-adjoint).
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Proof. All three properties are easily shown to hold using the definition of
A™. You should do this now. O

Our definition of “the” Moore-Penrose generalized inverse would not be
valid if it were possible for there to be more than one. However, the fol-
lowing theorem shows that there is at most one (hence exactly one!) such
pseudoinverse.

Theorem 9.8.2. Given an m X n matriz A, there is at most one matriz
satisfying the three properties of AT given in Theorem 9.8.1. This means
that A has a unique pseudoinverse.

Proof. Let B and C' be pseudoinverses of A. i.e., satisfying the three prop-
erties of A* in Theorem 9.8.1. Then

CA = C(ABA) = CA(BA)" = CAA*B* = (A(CA)*)*B* = (ACA)*B*

= A*B* = (BA)" = BA,

ie.,
CA = BA.
Then
B =BAB = B(AB)* = BB*A*,
so that

B = BB*(ACA)* = BB*A*(AC)* = BAC = CAC =C.
O

At this point we want to review and slightly revise the Gram-Schmidt
algorithm given earlier. Let (vy,...,v,) be any list of column vectors in F™.
Let these be the columns of an m x n matrix A. Let W = span(vq,...,vy,)
be the column space of A. Define u; = v;. Then for 2 < ¢ < n put

Ui =V — Q13U — QiU — *** — Q—1,,Ui—1,

where «aj; = ézl?jé, if u; # 0, and aj; = 0 if u; = 0. Hence
R}

V; = QU+ QiU + Qgu3 + v+ QG U1+ U (9.19)
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Let Qg be the m xXn matrix whose columns are uy, us, . . ., u,, respectively,
and let Ry be the n x n matrix given by

1 ap -+ aiy
0 1 - a
R=1\|. . . | (9.20)

The u; in Qg are constructed by the Gram-Schmidt method and form an
orthogonal set. This means that )y has orthogonal columns, some of which
may be zero. Let () and R be the matrices obtained by deleting the zero
columns from )y and the corresponding rows from Ry, and by dividing each
nonzero column of )y by its norm and multiplying each corresponding row
of Ry by that same norm. Then Eq. 9.20 becomes

A = QR with R upper triangular and ¢ having orthonormal columns.
(9.21)
Eq. 9.21 is the normalized @ R-decomposition of A. Note that if A has
rank k, then () is m x k with rank £ and R is k x n and upper triangular
with rank k. The columns of ) form an orthonormal basis for the column
space W of A.
If we compute Q*Q, since the columns of () are orthonormal, we get

QQ =1

Since (uq,...,u;) is an orthonormal basis for W, if P, € L(F™) is the
orthogonal projection onto W, then for v € F™ we have

k (v, u1) u}
Py(v) = Z(U,Uz)ui = (u1, ..., u) : =Q- : v = QQ™.

=1 <U’ uk) UZ

So QQ* is the projection matriz projecting v onto W = col(Q). Hence QQ*v
is the unique vector in W closest to v.

Lemma 9.8.3. Suppose that the m X n matriz A has rank k and that A =
BC, where B is m X k with rank k and C is k X n with rank k. Then

ATt =C*(Cco*)"Y(B*B)"' B

1s the pseudoinverse of A.
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Proof. 1t is rather straightforward to verify that the three properties of The-
orem 9.8.1 are satisfied by this A**. Then by Theorem 9.8.2 we know that
a matrix AT satisfying the three properties of Theorem 9.8.1 is uniquely
determined by these properties.) O

Corollary 9.8.4. If A = QR is a normalized Q) R-decomposition of A, then
AT = R*(RR*)™'Q* is the pseudoinverse of A.

Given that A = UX V"™ is a singular value decomposition of A, partition
the two matrices as follows: U = (Uy,Up—g) and V = (Vi, V,,_x), where Uy
is m x k and its columns are the first £ columns of U, i.e., they form an
orthonormal basis of col(A). Similarly, V} is £ x n and it columns are the
first £ columns of V, so they form an orthonormal basis for col(A*). This is
the same as saying that the rows of V;* form an orthonormal basis for row(A).
Now let D be the k x k diagonal matrix with the nonzero singular values of

A down the diagonal, i.e., ¥ = ( D0

0 0 ) Now using block multiplication

we see that

D 0 Vi N
A = (UkaUmfk) ( O O ) < V*kik ) = Uk:Dk:Vk .

This expression A = U D, V)’ is called the reduced singular value decompo-
sition of A. Here Uy is m x k with rank k, and D,V,’ is k x n with rank
k. Then A = QR = Uy, - DV}} where Q = Uy is m x k with rank £, and
R = D,V is k x n with rank k. The columns of () form an orthonormal
basis for col(A), and the rows of R form an orthogonal basis for row(A). So
a pseudoinverse Atis given by

AT = R*(RR*)HQ*Q)™'Q* = V;.D; 'U;, after some computation.
Suppose we are given the equation
Ax = b, (9.22)

where A is m x n and b is m x 1. It is possible that this equation is not
consistent. In this case we want to find Z so that Az is as close to b as
possible, i.e., it should be the case that Az is the projection b of b onto the
column space of A. Put

# = A*b = Vi Dy 'Upb.
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Then

Az = (UpDeVi)ViD; 'Uih
= U,DD™'U;b (9.23)
= UUpb,

which by the paragraph preceding Lemma 9.8.3 must be the projection b of
b onto col(A). Thus Z is a “least-squares solution” to Az = b, in the sense
that £ minimizes ||AZ — b|| (which is the square root of a sum of squares).
Moreover, it is true that & has the smallest length among all least-squares
solutions to Az = b.

Theorem 9.8.5. Let A be mxn with rank k. Let A = UXV™* be a normalized
singular value decomposition of A. Let U = (Ug,Up—g) and V = (Vi, V)
be partitioned as above. Then AT = ViD'Uy, as above, and & = A*b is a
least-squares solution to Ax = b. If xy is any other least-squares solution,

i.e., ||Azg — b|| = ||AZ — bl|, then ||Z|| < ||xo]|, with equality if and only if
Ty = z.
Proof. What remains to be shown is that if ||Azq — b|| = ||AZ — b||, then

l|Z|| < ||zo]|, with equality if and only if 2o = 2. We know that ||Az — b|| is
minimized precisely when Az = b is the projection UxUjb of b onto col(A).
So suppose Azg = b = Az, which implies A(zg—2) =0, i.e., zy—2 € null(A).
By Eq. 9.17 this means that o = 2+V},_;z for some z € F"~*. We claim that
T=Ath= Vka_lU,’:b and V,,_xz are orthogonal. For, (V,D'Uib,V,, 1z) =
2* (Vi Vi)Di'Ugb = 0, because by Eq. 9.15, V* ,V; = Otn—k)xk- Then
lzol |2 = ||Z + Vaerzl|? = ||2]12 + || Vaerzl|?> > ||2]|?, with equality if and only
if ||V—z||> = 0 which is if and only if V,_xz = 0 which is if and only if
g = z. O

Theorem 9.8.6. Let A be m x n with rank k. Then A has a unique (Moore-
Penrose) pseudoinverse. If k = n, AT = (A*A)7LA*, and AT is a left
inverse of A. If k = m, AT = A*(AA")™L, and A* is a right inverse of A.
Ifk=m=mn, AT =A"1,

Proof. We have already seen that A has a unique pseudoinverse. If k£ = n,
A = B, C = I, yields a factorization of the type used in Lemma 9.8.3,
so AT = (A*A)~'A*. Similarly, if &k = m, put B = I, C = A. Then
AT = A*(AA*)~L. And if A is invertible, so that (A*A4)™! = A~1(A4*)7}, by
the k = n case we have AT = (A*A)71A* = A71(A*)71A* = AL O
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9.9 Norms, Distance and More on Least Squares®

In this section the norm ||A|| of an m X n matrix A over C is defined by:

1/2
|A|| = (tr(A*A)'/2 = (Zm) .

(Here we write tr(A) for the trace of A.)
Note: This norm is the 2-norm of A thought of as a vector in the mn-
dimensional vector space M, ,(C). It is almost obvious that ||A|| = ||A*|.

Theorem 9.9.1. Let A, P, QQ be arbitrary complex matrices for which the
appropriate multiplications are defined. Then

IAP|* + (I = AAT)QI]* = [IAP + (I — AAN)Q|”.
Proof.
|AP + (I — AANQ||*> = tr {[AP + (I — AANQI'[AP + (I — AA+)Q]}

= [[AP|P+tr {(AP)"(I = AAT)Q}+tr {((I - AAT)Q)" AP }+(|(I-AAT)Q]"

We now show that each of the two middle terms is the trace of the zero
matrix. Since the second of these matrices is the conjugate transpose of the
other, it is necessary only to see that one of them is the zero matrix. So for
the first matrix:

(AP)"(I — AA*)Q = (AP)*(I - AA*)'Q = (I — AA)AP)'Q =

= (AP — AATAP)*Q = (AP — AP)*Q = 0.
O

Theorem 9.9.2. Let A and B be m x n and m x p complex matrices. Then
the matriz Xq = AT B enjoys the following properties:

(i) |AX — B|| > ||AXo — B|| for alln x p S. Moreover, equality holds if
and only if AX = AATB.

(i) || X|| > || Xol| for all X such that ||[AX — B|| = ||AXo — B||. with
equality if and only if X = X,.
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Proof.
|AX — B||* =
= |[A(X = AT B)+((I - AAT)(=B)|” = | A(X - A" B|P +||(I - AA")(-B)|I”
= ||AX — AATB|> + ||AA™B — B||* > |AATB — B|?,

with equality if and only if AX = AA*B. This completes the proof of (i).
Now interchange A" and A in the preceding theorem and assume AX =
AA™B so that equality holds in (i). Then we have

IX|IP=||ATB+ X — AT(AATB)|? = ||ATB+ (I — ATA)X|?

= |ATB|” + |X — ATAX|* = |A*B|* + | X — A*B|]* > || A B|?,
with equality if and only if X = AT B. O

NOTE: Suppose we have n (column) vectors vy, ..., v, in R™ and some
vector y in R™, and we want to find that vector in the space span(vy,...,v,) =
V' which is closest to the vector y. First, we need to use only an independent
subset of the v;’s. So use row-reduction techniques to find a basis (wy, . . ., wg)
of V. Now use these w; to form the columns of a matrix A. So Ais m X k
with rank k, and the pseudoinverse of A is simpler to compute than if we
had used all of the v;’s to form the columns of A. Put zyp = A*y. Then
Axy = AAty is the desired vector in V closest to y. Now suppose we want
to find the distance from y to V, i.e., the distance

d(y, AATy) = |ly — AA™y].

It is easier to compute the square of the distance first:

ly — AAYyY||* = [|(T — AAT)y||* = y"(I — AAT)(I — AAT)y =
=y (I-—AATY I - AAN )y = y* (I — AAT — AATAAT AAY )y = y* (I - AAY)y.
We have proved the following:

Theorem 9.9.3. The distance between a vector y of R™ and the column
1
space of an m X n matriz A is (y*(I — AA")y)z.
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Theorem 9.9.4. AXB = C has a solution X if and only if AATCB*B = C,
in which case for any Y,

X =ATCBY+Y — ATAYBB™ is a solution.
This gives the general solution.

Proof. If AXB = C, then C = AXB = AATAXBB'B = AATCB™'B.
Conversely, if C = AATCB*B, then X = ATCB™ is a particular solution
of AXB = C. Any expression of the form X =Y — AT AY BB™ satisfies
AXB = 0. And if AXB = 0, then X =Y — ATAYBB* for Y = X.
Put Xy = ATCB™ and let X; be any other solution to AXB = C. Then
X = X; — X, satisfies AXB = 0, so that

X, —Xo=X=Y - ATAYBB" for some Y.
O

Ifz = (z1,...,2,)7 and y = (y1,...,¥.)T are two points of C", the
distance between x and y is defined to be

day) =l —oll = (E o~ ul) "

A hyperplane H in C" is the set of vectors z = (z1,...,z,)" satisfying an
equation of the form )  az; +d =0, ie.,

H={zeC": Az +d =0}, where A= (ai,...,a,) #0.

A=1-(ay,...,a,), where 1is 1 x 1 of rank 1 and (ay,...,a,) is 1 X n of
rank 1, so
1
AT = A*(AAY) ! = A",
1]
For such an A you should now show that ||AT|| = m.

Let y = (y1,---,¥n)T be a given point of C" and let H : Ar +d =0 be a
given hyperplane. We propose to find the point zy of H that is closest to yq
and to find the distance d(zo, yo)-

Note that z is on H if and only if Az +d = 0 if and only if A(z — yo) —
(—d — Ayo) = 0. Hence our problem is to find zy such that

(i) A(zo — yo) — (—d — Ayo) = 0, (i.e., o is on H),
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and
(ii) ||zo — yol| is minimal (so z is the point of H closest to yj).

Theorem 9.9.2 says that the vector x = zq — yo that satisfies Az — (—d —
Ayo) = 0 with ||z|| minimal is given by

1 %
Hence
—d 1
To = Yo + AT - A" Ayo.
Al 1Al
And

d(yo, H) = d(yo, 0) = ||lzo — yoll = |AT(—d — Ayo)|

|Ayo + d|

= |d + Ao - | AT|| =

Note: This distance formula generalizes well known formulas for the
distance from a point to a line in R? and from a point to a plane in R3.

We now recall the method of approximating by least squares. Suppose
y is a function of n real variables ™), ... (™ and we want to approximate
y as a linear function of these variables. this means we want to find (real)
numbers zy, ..., z, for which

1. 2o+ 21t 4+ 2,t™ is as “close” to the function y = y(t™1), ..., t™)
as possible.

Suppose we have m measurements of y corresponding to m different
sets of values of the () : (y;; tgl), ...,t™), i=1,...,m. The problem

1

is to determine zy, ..., x, so that

2. y; = xltz(l) + -+ 2,t™ + ;1 < i < m, where the r;’s are small in
some sense.
Put tz(-]) =aij, Y= W1y, Ym)", T = (To, -, )’ r = (r1y .o rm)?,

and
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1 an - aun

1 an -+ ao
A=

1 aml e Gmn

Then 2. becomes:

3. y=Ax+r.

A standard interpretation of saying that “r is small” is to say that for

some some weighting constants wy, . . ., Wy, the number S = Y7 w;r? =

rTWr, where W = diag(wy, . ..,w,,) is minimal.

As S =377 wi(y; — so — T1ai1 — TaGip — ++ - — TpQin)?, to minimize S
as a function of zy, ..., z,, we require that 8% = 0 for all &.

Then

—__25 wz CEO_xla'il_"'_xna'in):0
8370

implies

(Z w;)To + (Z Wi )T + -+ (Z Wilin )Ty = szyz
i=1 i=1 i=1

Andfor1 <k <n: = =23 " wi(Yi—To— L1051 —+ - - TnGip )i =0
implies

m m
(E wz-aik)fcoJr(E WG i) T1 + + - - E Wi Win Wik )T E W;Yi ik
=1 =1

It is easy to check that

aix - Om

Qi =" Omn
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wl “ e wm
11w . Am1Wm
U1pWy " GppWn

So putting together the right hand sides of 4. and 5., we obtain

Z W;iY;

(ATW)y = > a'i.lwiyi
> GinW;Y;
Also we compute
w - w
a11111)1 T amlTUm Loan - ain
ATWA =
A1pW1 - QpmpWp ! mt w7t Gmn

Comparing the above with the left hand sides of 4. and 5., and putting
the above equations together, we obtain the following system of n + 1
equations in n + 1 unknowns:

(ATW Ay = ATWy.

We now reconsider this problem taking advantage of our results on
generalized inverses. So A is a real m x n matrix, y is a real m x 1
matrix, and z € R" is sought for which (y— Az)T (y— Az) = || Az —y||?
is minimal (here we put W = I). Theorem 9.9.2 solves this problem by
putting z = Aty. We show that this also satisfies the above condition
AT Az = ATy, as should be expected. For suppose A = BC with B
m x k, C k x n, where k = rank(A) = rank(B) = rank(C). Then

AT Ay = ATAA Yy = CTBTBCCT(CCT)y"Y(BTB)'BTy = CT BTy = ATy.

So when W = I the generalized inverse solution does the following:
First, it actually constructs a solution of the original problem that,
second, has the smallest norm of any solution.
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9.10 Exercises

1. Prove that if 7 € £(V) is normal, then Im(7) = Im(7™).

2. Prove that if 7€ £(V) is normal, then
null(7%) = null(T") and Im(7%) = Im(T)
for every positive integer k.

3. Prove that a normal operator on a complex inner product space is
self-adjoint if and only if all its eigenvalues are real.

4. Prove that AT = A=! when A is nonsingular.

5. Determine all singular value decompositions of I with U = V. Show
that all of them lead to exactly the same pseudoinverse.

6. Prove:
(a) The rank of A* is the same as the rank of A.

(b) If A is self-conjugate, then A" is self-conjugate.

(c) (cA)t = tAT for c #0.

(d) (A7) = <A*)

(e) (A%)* =

(f) Show by a counterexample that in general (AB)* # BTA™T.

(g) If Ais m x r, B is r x n, and both matrices have rank k, then
(AB)t = BTA*.

7. Suppose that x is m x 1 and y is 1 X m. Compute

(@) =% () y*5 (o) (zy)"
CHECK OUT PAGE 159 IN AXLER.
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Chapter 10

Decomposition WRT a Linear
Operator

To start this chapter we assume that F' is an arbitrary field and let V' be an
n-dimensional vector space over F. Note that this necessarily means that we
are not assuming that V' is an inner product space.

10.1 Powers of Operators

First note that if 7 € £(V), if k is a nonnegative integer, and if 7% (v) = 0,
then T**!(v) = 0. Thus null(T*) C null(T*). It follows that

{0} = null(7° C null(7?) C --- null(7*) C null(T*) C---.  (10.1)

Theorem 10.1.1. Let T € L(V) and suppose that m is a nonnegative integer
such that null(T™) = null(T™). Then null(T™) = null(T*) for all k > m.

Proof. Let k be a positive integer. We want to prove that
null(T™1F) = null(T™F+1).

We already know that null(7™*) C null(T™"**1). To prove the inclusion in
the other direction, suppose that v € null(Z7+5+1). Then 0 = T+1(T*)(v).
So T*(v) € null(T™+!) = null(7T™), implying that 0 = T™(T*(v)) = T™*(v).
Hence null(7™+1) C null(T™*), completing the proof. O

177
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Corollary 10.1.2. If T € L(V), n = dim(V), and k is any positive integer,
then null(T™) = null(T™*F).

Proof. 1f the set containments in Eq. 10.1 are strict for as long as possible, at
each stage the dimension of a given null space is at least one more than the
dimension of the preceding null space. Since the entire space has dimension
n, at most n + 1 proper containments can occur. Hence by Theorem 10.1.1
the Corollary must be true. O

Definition: Let 7" € L£(V) and suppose that A is an eigenvalue of 7.

A vector v € V is called a generalized eigenvector of T corresponding to A
provided _

(T — M)’ (v) = 0 for some positive integer j. (10.2)

By taking j = 1 we see that each eigenvector is also a generalized eigen-

vector. Also, the set of generalized eigenvectors is a subspace of V. Moreover,
by Corollary 10.1.2 (with 7T replaced by T'— AI) we see that

Corollary 10.1.3. The set of generalized eigenvectors corresponding to A\ is
exactly equal to nulll(T — A\I)™], where n = dim(V').

An operator N € L(V) is said to be nilpotent provided some power of N is
the zero operator. This is equivalent to saying that the minimal polynomial
p(z) for N has the form p(x) = 27 for some positive integer j, implying that
the characteristic polynomial for NV is z". Then by the Cayley-Hamilton
Theorem we see that N™ is the zero operator.

Now we turn to dealing with images of operators. Let 7" € L(V) and
k> 0. If we Im(TF?1), say w = TF+1(v) for some v € V, then w =
T*(T(v) € Im(T*). In other words we have

V =Im(T% D ImT" D --- D Im(T*) D Im(T*™)-- - . (10.3)

Theorem 10.1.4. If T € L(V), n = dim(V'), and k is any positive integer,
then
Im(T™) = Im(T™).

Proof. We use the corresponding result already proved for null spaces.
dim(Im(T™**)) = n — dim(null(7™*))
n — dim(null(7™))
= dim(Im(7™)).
Now the proof is easily finished using Eq. 10.3 O
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10.2 The Algebraic Multiplicity of an
Eigenvalue

If the matrix A is upper triangular, so is the matrix zI — A, whose deter-
minant is the product of its diagonal elements and also is the characteristic
polynomial of A. So the number of times a given scalar A\ appears on the
diagonal of A is also the algebraic multiplicity of A as a root of the character-
istic polynomial of A. The next theorem states that the algebraic multiplicity
of an eigenvalue is also the dimension of the space of generalized eigenvectors
associated with that eigenvalue.

Theorem 10.2.1. Let n = dim(V), let T € L(V) and let A € F. Then
for each basis B of V' for which [T|p is upper triangular, \ appears on the
diagonal of [T|g exactly dim(null[(T — \I)"]) times.

Proof. For notational convenience, we first assume that A = 0. Once this
case is handled, the general case is obtained by replacing 7" with T" — AI.
The proof is by induction on n, and the theorem is clearly true when n = 1.
We assume that n > 1 and that the theorem holds on spaces of dimension
n—1.

Suppose that B = (v1,...,v,) is a basis of V' for which [Tz is the upper
triangular matrix

)\1 %
' 10.4
- (10.4)
0 An
Let U = span(vy, ..., v,). Clearly U is invariant under 7" and the matrix
of T'|y with respect to the basis (vy,...,v,_1) is
/\1 *
5 (10.5)
0 )\n—l

By our induction hypothesis, 0 appears on the diagonal of the matrix in
Eq. 10.5 exactly dim(null((T'|y)™™"))) times. Also, we know that null((T|y)"™!) =
null((7|y)™), because dim(U) = n — 1. Hence

0 appears on the diagonal of 10.5 dim(null((7|y)"))) times. (10.6)
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The proof now breaks into two cases, depending on whether A, = 0 or
not. First consider the case where )\, # 0. We show in this case that

null(T™) C U. (10.7)

This will show that null(7™) = null((7'|)"), and hence Eq 10.6 will say that 0
appears on the diagonal of Eq. 10.4 exactly dim(null(7™)) times, completing
the proof in the case where )\, # 0.

It follows from Eq. 10.4 that

[T"]5 = ([T]s)" = . (10.8)

This shows that
T"(v,) = u+ ALy,

for some u € U. Suppose that v € null(7™). Then v = @ + av,, where & € U
and a € F. Thus

0=T"(v) = T"(@t) + aT™(v,) = T"(@) + au + aX v,,.

Because 7"(u) and au are in U and v, ¢ U, this implies that a\ = 0. Since
A # 0, clearly a = 0. Thus v = u € U, completing the proof of Eq. 10.7,
and hence finishing the case with A, # 0.

Suppose A, = 0. Here we show that

dim(null(7™)) = dim(null((T|y)")) + 1, (10.9)

which along with Eq. 10.6 will complete the proof when ), = 0.
First consider

dim(null(7™)) = dim(U N null(7T™) + dim(U + null(7")) — dim(U)
= dim(null((7'|¢y)")) + dim(U + null(T™)) — (n — 1).

Also,

n =dim(V) > dim(U + null(7™)) > dim(U) =n — 1.
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It follows that if we can show that null(7™) contains a vector not in U, then
Eq. 10.9 will be established. First note that since A\, = 0, we have T'(v,,) € U,
hence

T"(va) = T"H(L(vn)) € Im[(T|y)"""] = Im[(T1))"].

This says that there is some u € U for which 7" (u) = T™(v,). Then u— v, is
not in U but T"(u—wv,) = 0. Hence Eq. 10.9 holds, completing the proof. [

At this point we know that the geometric multiplicity of A is the dimension
of the null space of T — A1, i.e., the dimension of the eigenspace associated
with A, and this is less than or equal to the algebraic multiplicity of A\, which
is the dimension of the null space of (T'—\)™ and also equal to the multiplicity
of A as a root of the characteristic polynomial of T, at least in the case that
T is upper triangularizable. This is always true if F' is algebraically closed.
Moreover, in this case the following corollary is clearly true:

Corollary 10.2.2. If F is algebraically closed, then the sum of the algebraic
multiplicities of of all the eigenvalues of T equals dim(V).

For any f(x) € Flz], T and f(T) commute, so that the null space of p(T")
is invariant under 7.

Theorem 10.2.3. Suppose F is algebraically closed and T € L(V). Let
AL, - - -, A be the distinct eigenvalues of T, and let Uy,...,U,, be the corre-
sponding subspaces of generalized eigenvectors. Then

(a))V=U,&...0U,;

(b) each U; is T-invariant,

(c) each (T — X)) is nilpotent.

Proof. Since U; = null(T" — A\;I)" for each j, clearly (b) follows. Clearly
(c) follows from the definitions. Also the sum of the multiplicities of the
eigenvalues equals dim(V'), i.e.

dim(V) = Z dim(U;).

Put U =U; + -+ U,. Clearly U is invariant under 7". Hence we can
define S € L(U) by
S = T‘U



182 CHAPTER 10. DECOMPOSITION WRT A LINEAR OPERATOR

It is clear that S has the same eigenvalues, with the same multiplicities,
as does T, since all the generalized eigenvectors of T" are in U. Then the
dimension of U is the sum of the dimensions of the generalized eigenspaces
of T, forcing V.= U, and V = @} 7", U;, completing the proof of (a). [

By joining bases of the various generalized eigenspaces we obtain a basis
for V conisting of generalized eigenvectors, proving the following corollary.

Corollary 10.2.4. Let F' be algebraically closed and T € L(V). Then there
s a basis of V' consisting of generalized eigenvectors of T.

Lemma 10.2.5. Let N be a nilpotent operator on a vector space V over any
field F'. Then there is a basis of V' with respect to which the matriz of N has
the form

, (10.10)

Proof. First choose a basis of null(NV). Then extend this to a basis of
null(N?). Then extend this to a basis of null(N?®). Continue in this fashion
until eventually a basis of V' is obtained, since V' = null(N™) for sufficiently
large m. A little thought should make it clear that with respect to this basis,
the matrix of NV is upper triangular with zeros on the diagonal. O

10.3 Elementary Operations

For 1 <1 < n, let e; denote the column vector with a 1 in the 7th position
and zeros elsewhere. Then eieJT is an n X n matrix with all entries other than
the (7, ) entry equal to zero, and with that entry equal to 1.
Let
Eij(c) = T+ cese; .

We leave to the reader the exercise of proving the following elementary
results:

Lemma 10.3.1. The following elementary row and column operations are
obtained by pre- and post-multiplying by the elementary matriz E;;(c):
(i) Eij(c)A is obtained by adding c times the jth row of A to the ith row.
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(i1) AE;;(c) is obtained by adding c times the ith column of A to the jth
column.

(i11) E;j(—c) is the inverse of the matriz E;;(c).

Moreover, if T is upper triangular with diagonal diag(Aq, ..., \,), and if
Ai # Aj with i < j, then

(o \
T' = Eij(=c)TEy(c) = Eyj(—c) Eij(c),

\ Ry,

where T' is obtained from T by replacing the (i,j) entry ti; of T with t;; +
c(Ai — Aj). The only other entries of T that can possibly be affected are to
the right of ti; or above t;;.

Using Lemma 10.3.1 over and over, starting low, working left to right in
a given row and moving upward, we can transform 7" into a direct sum of
blocks
A

pPiTP = Az

A,

where each block A; is upper triangular with each diagonal element equal to
)\i; 1 S 1 S Tr.

Our next goal is to find an invertible matrix U; that transforms the block
A; into a matrix U; 'A;U; = M + N where N is nilpotent with a special
form. All entries on or below the main diagonal are 0, all entries immediately
above the diagonal are 0 or 1, and all entries further above the diagonal are
0. This matrix A\;I + N is called a Jordan block. We want to arrange it so
that it is a direct sum of elementary Jorday blocks. These are matrices of the
form \;I + N where each entry N just above the diagonal is 1 and all other
elements of NV are 0. Then we want to use block multiplication to transform
P~'TP into a direct sum of elementary Jordan blocks.
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10.4 Transforming Nilpotent Matrices

Let B be n x n, complex and nilpotent of order p: BP™! # (0 = BP. By
N(B’) we mean the right null space of the matrix B/. Note that if j > 1,
then N(B*) C N(B’). We showed above that if N(B") = N(B"™'), then
N(B') = N(B*) for all k > k.

Step 1.

Lemma 10.4.1. Let W = (wy,...,w,) be an independent list of vectors in
N(B*) with (W) N N(B?) = {0}. Then BW = (Buwy,...,Bw,) is an
independent list in N(B’) with (BW) N N(B’~1) = {0}.

Proof. Clearly BW C N(B7). Suppose > .._, ¢;Bw; +u; 1 =0, with u; ; €
N(B/=1). Then 0 = BI=1(3°,_, ¢;Bw; +uj_1) = Y ;_, ¢;Bw; + 0. This says
Yoi_ciw; € N(B?), so by hypothesis ¢; = ¢; = -+ = ¢, = 0, and hence also
uj—1 = 0. It is now easy to see that the Lemma must be true. O

Before proceeding to the next step, we introduce some new notation.
Suppose V; is a subspace of V. To say that the list (wy, ..., w,) is independent
in V'\ Vi means first that it is independent, and second that if W is the span
(wy,...,w,) of the given list, then W N V; = {0}. To say that the list
(wy,...,w,) is a basis of V' \ V] means that a basis of V; adjoined to the list
(w1, ...,w,) is a basis of V. Also, (L) denotes the space spanned by the list

Step 2. Let U, be a basis of N(B?) \ N(BP~™') = C™\ N(BP™'), since
B? = 0. By Lemma 10.4.1 BU, is an independent list in N(B?~')\ N(BP~?),
with (BU,) N N(B?~%) = {0}.

Complete BU, to a basis (BU,,U,_1) of N(BP™') \ N(BP~?). At this
point we have that

(BU,,U,_1,U,) is a basis of N(B?)\ N(B?™2) =C"\ N(B"™?).

Step 3. (B2%U,,BU, ;) is an independent list in N(BP?)\ N(BP?).
Complete this to a basis (B?U,, BU, 1,U, ) of N(BP~2)\ N(BF?). At this
stage we have that

(U,, BU,, U,_y, B2U,, BU,_1,U,_) is a basis of N(B?)\ N(B"®).
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Step 4. Proceed in this way until a basis for the entire space V' has been
obtained. At that point we will have a situation described in the following
array:

Independent set basis for subspace

(Uy) N(BP)\ N(BP') =C"\ N(B')
(Up—la BU, N(Bp_l) \ N(BP_Q)
(Up_2, BU, 1, B*U,) N(BP2)\ N(BP?) (10.11)
B,_s, BU,_,, B*U,_,, B*U, N(BP3)\ N(B"™
P P P p
(Uy, BU, ..., BP72U, 1, B"7'U,) N(BP~P=V)\ N(B°) = N(B)
Choose © = x; € BP7U,_;;; and follow it back up to the top of that
column: z, ; € Uy j; Bxp j =Tp j 15 ...; Bro =21. So BP 7 g, . =x.

We now want to interpret what it means for

O =
—_

H,
P'BP=H = with H; = ..
H, 1

This last matrix is supposed to have 1’s along the superdiagonal and 0’s
elsewhere. This says that the jth column of BP (which is B times the jth
column of P) equals the jth column of PH, which is either the zero column
or the (j — 1)st column of P. So we need

B(jth column of P) =0 or the (j — 1)st column of B.

So to form P, as the columns of P we take the vectors in the Array 10.11
starting at the bottom of a column, moving up to the top, then from the
bottom to the top of the next column to the left, etc. Each column of
Array 10.11 represents one block H;, and the bottom row consists of a basis
for the null space of B. Then we do have

H,
P 'BP=H=
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Suppose we have a matrix A = Al + B where B is nilpotent with all
elements on or below the diagonal equal to 0. Construct P so that P"!BP =
H,ie., P'AP = P7Y(B+ AI)P = A + H is a direct sum of elementary
Jordan blocks each with the same eigenvalue A along the diagonal and 1’s
just above the diagonal. Such a matrix is said to be in Jordan form.

Start with a general n x n matrix A over C. Here is the general algorithm
for finding a Jordan form for A.

1. Find P, so that P, AP, = T is in upper triangular Schur form, so

(o \

)\1 b
A2

A

\ Y

2. Find P, so that
Py'TP, =

3. Find P; so that P3_ICP3 = D + H where

(P,PyP3) ' - A-(P,P,P;) = D+ H is in Jordan form.

An nxn elementary Jordan block is a matrix of the form J,,(A) = AT+ N,
where A € C, N, is the n X n nilpotent matrix with 1’s along the superdiag-
onal and 0’s elsewhere. The minimal and characteristic polynomials of .J,, (A
are both equal to (z — A\)", and J,, has a 1-dimensional space of eigenvectors
spanned by (1,0,...,0)” and an n-dimensional space of generalized eigen-
vectors, all belonging to the eigenvalue A. If A has a Jordan form consisting
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of a direct sum of s elementary Jordan blocks, the characteristic polynomi-
als of these blocks are the elementary divisors of A.  The characteristic
polynomial of A is the product of its elementary divisors. If Ai,..., A, are
the distinct eigenvalues of A, and if for each i, 1 < i <'s, (z — ;)™ is the
largest elementary divisor involving the eigenvalue \;, then [, (z — A\;)™
is the minimal polynomial for A. It is clear that (x — A) divides the minimal
polynomial of A if and only if it divides the characteristic polynomial of A if

and only if A is an eigenvalue of A.

10.5 A “Jordan Form” for Real Matrices

Theorem 10.5.1. Let V' be a real vector space and T € L(V'). Then there
1 a basis B of V' for which

A1 %
[T]B = T )
0 Am

where each A; is a 1-by-1 matriz or a 2-by-2 matriz with no eigenvalues.

Proof. The result is clearly true if n = dim(V) = 1, so suppose n = 2. If
T has an eigenvalue A, let v; be any nonzero eigenvector of T' belonging to
A. Extend (v;) to a basis (vy,vs) of V. With respect to this basis 7" has an
upper triangular matrix of the form

(03)

In particular, if 7" has an eigenvalue, then there is a basis of V' with respect
to which 7" has an upper triangular matrix. If 7" has no eigenvalues, then
choose any basis (v, v2) of V. With respect to this basis, the matrix of 7" has
no eigenvalues. So we have the desired result when n = 2. Now suppose that
n = dim(V) > 2 and that the desired result holds for all real vector spaces
with smaller dimension. If 7" has an eigenvalue, let U be a 1-dimensional
subspace of V' that is T-invariant. Otherwise, by Theorem 7.3.1 let U be a
2-dimensional T-invariant subspace of V. Choose any basis of U and let A;
denote the matrix of 7’|y with respect to this basis. If A; is a 2-by-2 matrix
then 7" has no eigenvalues, since otherwise we would have chosen U to be
1-dimensional. Hence 7’|y and A; have no eigenvalues.



188 CHAPTER 10. DECOMPOSITION WRT A LINEAR OPERATOR

Let W be any subspace of V' for which V= U & W. We would like to
apply the induction hypothesis to the subspace W. Unfortunately, W might
not be T-invariant, so we have to be a little tricky. Define S € L(W) by

S(w) = Py (T(w)) Yw € W.
Note that

T(w) = Pyw(T(w))+ Pwu(T(w)) (10.12)

By our induction hypothesis, there is a basis for W with respect to which
S has a block upper triangular matrix of the form

82 %
0 Anm

where each A; is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.
Adjoin this basis of W to the basis of U chosen above, getting a basis of
V. The corresponding matrix of 7" is a block upper triangular matrix of the
desired form. O

Our definition of the characteristic polynomial of the 2 x 2 matrix A =
a c . .
( b d) is that it is
f(z) = (z — a)(x — d) — bc = 2° — (trace(A))z + det(A).

The fact that this is a reasonable definition (the only reasonable definition
if we want the Cayley-Hamilton theorem to be valid for such matrices) follows
from the next result.

Theorem 10.5.2. Suppose V is a real vector space with dimension 2 and
T € L(V) has no eigenvalues. Suppose A is the matriz of T with respect to
some basis. Let p(x) € R[z] be a polynomial of degree 2.

(a) If p(z) equals the characteristic polynomial of A, then p(T) = 0.
(b) If p(x) does not equal the characteristic polynomial of A, then p(T)
15 tnvertible.
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Proof. Part (a) follows immediately from the Cayley-Hamilton theorem, but
it is also easy to derive it iindependently of that result. For part (b), let
q(z) denote the characteristic polynomial of A with p(z) # ¢(z). Write
p(z) = 22 + aqx + B1 and ¢(z) = 2° + aux + B, for some oy, ay, B, B2 € R.
Now

p(T) =p(T) — q(T) = (1 — )T + (b1 — Ba)I.

If oy = aw, then B; # P, since otherwise p = ¢. In this case p(T) is some
multiple of the identity and hence is invertible. If a; # s, then

(1) = (a1 — )7 - 2=00p,

which is an invertible operator since 7" has no eigenvalues. Thus (b) holds.
0

Now suppose V' is 1-dimensional and T € L(V). For A € R, null(T — \I)
equals V if X is an eigenvalue of 7' and {0} otherwise. If a, 8 € R with
a? < 4, so that 22 + ax + 8 = 0 has no real roots, then

null(T? + oT + BI) = {0}.

(Proof: Because V is 1-dimensional, there is a constant A € R such that
Tv = Av for all v € V. (Why is this true?) So if v is a nonzero vector in V/,
then (T? + oT + BI)v = (\* + aX + B)v. The only way this can be 0 is for
v =0 or (\> +a\+ 3) = 0. But this second equality cannot hold because
we are assuming that o? < 43. Hence null(T? + oT + BI) = {0}.)

Now suppose that V' is a 2-dimensional real vector space and that 7' €
L(V) still has no eigenvalues. For A € R, null(T —\I) = {0} exactly because
T has no eigenvalues. If o, 8 € R with o? < 48, then null(T? + oT + BI)
equals all of V if 22 +ax+ 3 is the characteristic polynomial of 7' with respect
to some (and hence to all) ordered bases of V, and equals {0} otherwise by
part (b) of Theorem 10.5.2. It is important to note that in this case the null
space of T? + oT + I is either {0} or the whole space 2-dimensional space!

The goal of this section is to prove the following theorem.

Theorem 10.5.3. Suppose that V is a real vector space of dimension n and
T € L(V). Suppose that with respect to some basis of V', the matriz of T has
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the form

A= , (10.13)
0 A,

where each Aj is a 1 x 1 matriz or a 2 X 2 matriz with no eigenvalues (as in
Theorem 9.4).

(a) If X € R, then precisely dim(null((T—MXI)"™)) of the matrices Ay, . .., Am
equal the 1 X 1 matriz [A].

(b) If a, B € R satisfy o® < 43, then precisely

dim(null(T? + oT + BI)™)
2

of the matrices Ay, . .., A, have characteristic polynomial equal to x> +azx+b.

Note that this implies that null((7? 4+ o7 + 8I)™) must have even dimen-
sion.

Proof. We imitate Axler in constructing one proof that can be used to prove
both (a) and (b). For this, let A\, o, 3 € R with o? < 43. Define p(z) € R|x]
by

T — A, if we are trying to prove (a);
p(z) = 2 : :
x® + azx + B, if we are trying to prove (b).

Let d denote the degree of p(x). Thus d = 1 or d = 2, depending on
whether we are trying to prove (a) or (b).

The basic idea of the proof is to proceed by induction on m, the number
of blocks along the diagonal in Eq. 10.13. If m = 1, then dim(V) = 1 or
dim(V') = 2. In this case the discussion preceding this theorem implies that
the desired result holds. Our induction hypothesis is that for m > 1, the
desired result holds when m is replaced with m — 1.

Let B be a basis of V with respect to which 7" has the block upper-
triangular matrix of Eq. 10.13. Let U; denote the span of the basis vectors
corresponding to A;. So dim (U;) = 1if A;is 1 x 1 and dim(U;) = 2 if A4;
is a 2 X 2 matrix (with no eigenvalues). Let

U=U,+Uy+-- -+ U1 =U0,0U0,8 - B Uy,—-
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Clearly U is invariant under 7" and the matrix of T'|y with respect to the

basis B’ obtained from the basis vectors corresponding to A,..., A, 1 is
A1 >k
[Tlvls = ; (10.14)
0 Am—l

Suppose that dim(U) = n’, so n’ is either n—1 or n—2. Also, dim(null(p(T'|)™)) =
dim(null(p(7T'|y)™)). Hence our induction hypothesis implies that

Precisely 5 dim(null(p(T|y))") of the matrices

Ay, ..., Ap_1 have characteristic polynomial p. (10.15)

Let u,, be a vector in U,,. T'(u,,) might not be in U,,, since the entries of
the matrix A in the columns above the matrix A,, might not all be 0. But
we can project T'(u,,) onto U,. So let S € L(U,,) be the operator whose
matrix with respect to the basis corresponding to U,, is A,,. It follows that
S(tm) = Py,, vT(t,). Since V = UdU,,, we know that for any vector v € V
we have v = Pyy,, (v) + Py, v(v). Putting T'(u,,) in place of v, we have

T(um) = Puu,T(um)+ Py, vT(tm) (10.16)
“u+ S(um),

where *u denotes an unknown vector in U. (Each time the symbol *u is used,
it denotes some vector in U, but it might be a different vector each time the
symbol is used.) Since S(up,) € Up, 50 T(S(um)) = *u + S*(unm), we can
apply T to both sides of Eq. 10.16 to obtain

T? () = *u + S%(Upm). (10.17)

(It is important to keep in mind that each time the symbol *u is used, it
probably means a different vector in U.)
Using equations Eqgs. 10.16 and 10.17 it is easy to show that

P(T)(um) = “u~+p(S)tm. (10.18)

Note that p(S)(um) € Uy,. Thus iterating the last equation gives

p(T)" (um) = “u+ p(S)™(tm). (10.19)
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Since V = U@ U, for any v € V, we can write v = *u+uy,, with *u € U
and u,, € U,,. Then using Eq. 10.19 and the fact that U is invariant under
any polynomial in T, we have

p(T)"(v) = “u+p(S)" (um), (10.20)

where v = *u + u,, as above. If v € null(p(T)"), we now see that 0 =
*u+ P(S)"(ty,), from which it follows that P(S)"(u,,) = 0.

The proof now breaks into two cases: Case 1 is where p(z) is not the
characteristic polynomial of A,,; Case 2 is where p(z) is the characteristic
polynomial of A,,.

So consider Case 1. Since p(z) is not the characteristic polynomial of A4,,,
we see that p(S) must be invertible. This follows from Theorem 10.5.3 and
the discussion immediately following, since the dimension of U,, is at most
2. Hence P(S)™(u,) = 0 implies u,, = 0. This says:

The null space of P(T)" is contained in U. (10.21)
This says that

null(p(T)") = null(p(T[y)").

But now we can apply Eq. 10.15 to see that precisely (é) dim (null(p(7T")")
of the matrices A, ..., A, 1 have characteristic polynmial p(x). But this
means that precisely (1) dim(null(p(T)") of the matrices Ay, ..., A,, have
characteristic polynomial p(z). This completes Case 1. Now suppose that
p(x) is the characteristic polynomial of A,,. It is clear that dim(U,,) = d.

Lemma 10.5.4. We claim that
dim(null(p(T)™)) = dim(null(p(T|y)") + d.

This along with the induction hypothesis Eq. 10.15 would complete the
proof of the theorem.
But we still have some work to do.

Lemma 10.5.5. V = U + null(p(T)").
Proof. Because the characteristic polynomial of the matrix A,, of S equals

p(z), we have p(S) = 0. So if u,, € U, from Eq. 10.16 we see that
p(T)(um) € U. So
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P(T)"(um) = p(T)" "} (p(T) (um)) € range(p(T|y)"~") = range(p(T|v)"),
where the last identity follows from the fact that dim(U) < n. Thus we can
choose u € U such that p(T)"(up,) = p(T)"(u). Then

p(I) (um —u) = p(T)"(um) — p(T)"(u)
(Tv)" (w) = p(Tly)" (u) (10.22)

ol

This says that u,,—u € null(p(7T")"). Hence u,,, which equals u+ (u,,—u),
is in U + null(p(T)™), implying U,, € U + null(p(¢)"). Therefore V =
U + null(p(T)™) C V. This proves the lemma 10.5.5. O

Since dim(U,,) = d and dim(U) = n — d, we have

dim(null(p(7T)") = dim(U Nnull(p(T)") + dim(U + null(p(7T)") — diimU
= dim(null(p(T'|y)")) + dim(V) — (n — d) (10.23)
= dim(null(p(T|y)")) + d. (10.24)

This completes a proof of the claim in Lemma 10.5.4, and hence a proof
of Theorem 10.5.3 ]

Suppose V' is a real vector space and T' € L(V). An ordered pair («, )
of real numbers is called an eigenpair of T if o® < 43 and

T? + oT + BI

is not injective. The previous theorem shows that 7" can have only finitely
many eigenpairs, because each eigenpair correpsponds to the characteristic
polynomial of a 2 x 2 matrix on the diagonal of A in Eq. 10.13, and there is
room for only finitely many such matrices along that diagonal.

We define the multiplicity of an eigenpair (o, 8) of T to be

dim (null(7T? + oT + ﬁl)dim(v))
5 :
From Theorem 10.5.3 we see that the multiplicity of («, ) equals the
number of times that z? + ax + 8 is the characteristic polynomial of a 2 x 2
matrix on the diagonal of A in Eq. 10.14.
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Theorem 10.5.6. If V is a real vector space and T € L(V'), then the sum
of the multiplicities of all the eigenvalues of T plus the sum of twice the
multiplicities of all the eigenpairs of T equals dim(V ).

Proof. There is a basis of V' with respect to which the matrix of 7" is as
in Theorem 10.5.3. The multiplicity of an eigenvalue A equals the number
of times the 1 x 1 matrix [A] appears on the diagonal of this matrix (from
10.5.3). The multiplicity of an eigenpair (¢, ) equal the number of times
22+ ax + 3 is the characteristic polynomial of a 2 x 2 matirx on the diagonal
of this matrix (from 10.5.3). Because the diagonal of this matrix has length
dim(V), the sum of the multiplicities of all the eigenvalues of T plus the sum
of twice the multiplicities of all the eigenpairs of T must equal dim(V). O

Axler’s approach to the characteristic polynomial of a real matrix is to
define them for matrices of sizes 1 and 2, and then define the characteristic
polynomial of a real matrix A as follows. First find the matrix J = P~'AP
that is the Jordan form of A. Then the characteristic polynomial of A is
the product of the characteristic polynomials of the 1 x 1 and 2 X 2 matrices
along the diagonal of J. Then he gives a fairly involved proof (page 207)
that the Cayley-Hamilton theorem holds, i.e., the characteristic polynomial
of a matrix A has A as a zero. So the minimal polynomial of A divides the
characteristic polynomial of A.

Theorem 10.5.7. Suppose V is a real, n-dimensional vector space and T €
L(V). Let \i,..., A\ be the distinct eigenvalues of T, with Uy, ..., Uy, the
corresponding spaces of generalized eigenvectors. So U; = null(T — \;I)".
Let (o, B1), - - -, (an, Br) be the distinct eigenpairs of T. Let V; = null(T? +
o;T + B;)", for 1 < j <r. Then

() V=U,& - @UndVi® &V,

(b) Each U; and each V; are invariant under T .

(¢) Each (T — N\I)|y; and each (T? + oT + B;1)|v; are nilpotent.

10.6 Exercises

1. Suppose A is a block upper-triangular matrix
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where each A; is a square matrix. Prove that the set of eigenvalues of
A equals the union of the sets of eigenvalues of A, ..., A,,.

Solution: We first prove that 0 is an eigenvalue of A if and only if 0 is
an eigenvalue of at least one of the Ax’s. So suppose A is n x n and
each A; is n; x n;. Write a typical n X 1 matrix X in the form

A
Tm

where each x; is n; x 1. The product AX can be computed using block
multiplication. First suppose that 0 is an eigenvalue of A. Thus there
exists a nonzero n x 1 matrix X such that AX = 0. Write X in the
form given above and let k£ be the largest index with nonzero zy. Thus

(o)

X = Tk
0

Lo

(If £ = m, then the 0’s shown above at the tail of X do not appear.) If
we break AX into blocks of the same size as was done for X, then the
k' block of AX will equal Agzi. This follows from the block upper-
triangular form of A and the 0’s that appear in X after the kth block.
But AX =0, so the kW0 block of AX equal 0, so Ayzr = 0. Because
xr # 0, this implies that 0 is an eigenvalue of Ay, as desired.

For the converse, suppose that 0 is an eigenvalue of some Aj. This
means that the operator on M, ;(F) that sends z, € M, 1(F) to
Agxy is not injective, and hence is not surjective. Then the operator
Ty on My, 4nyteing1 (F) that sends
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T
T2
Tk
to
x
A1 k 1
T2
0 Qg
Tk

is not surjective (because the last block in the product above will be
Ay, which cannot be an arbitrary ny X 1 matrix).

Again, this means that the operator T} cannot be injective. Hence

there is a nonzero vector (zy,...,zx)T € M(ny + -+ + ng, 1)(F) such
that
A o« T
- .| =0.
0 Ak Tk

Now adjoinging an appropriate number of 0’s gives us
x

[ A *\ ( ! \

0

\ 0 .Am/\é}

In other words, 0 is an eigenvalue of A, as desired.

So at this point we know that 0 is an eigenvalue of A if and only if it is
an eigenvalue of at least one of the A;’s. Now let A be any real number.
We know that )\ is an eigenvalue of A if and only if 0 is an eigenvalue
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of A — AI. So replace A by A — Al and replace each Ay with Ay — A\J
to complete the proof.

2. Suppose V is a real vector space and T € L(V'). Suppose «, 3 € R are
such that o? < 4. Prove that

null(T? + oT + BI)*

has even dimension for every positive integer k.

Solution: Let k be a positive integer, and let U = null(7?+oT + BI)*.
We prove that dim(U) is even.

Because U is invariant under 7', we can define S € L(U) by S =T|y.
Clearly (S2+aS+B1)* is the zero operator on U. Thus S?+aS+31 is a

nilpotent operator on U, which implies that null(S2+aS+BI)dim(U) =
U (by 8.8). Now part (b) of 10.5.3 applied to S and U instead of T
and V, shows that dim(U) is an even integer as desired.

3. Suppose V is a real vector space and T € L(V'). Suppose «, 3 € R are
such that o < 48 and T? + oT + BI is nilpotent. Prove that dim(V)
is even and

(T2 + oT + 1)HMM/2 — g,

Solution: Let S = (T? + oT + BI). Because S is nilpotent, there is a
smallest postive integer m such that S™ = 0. Thus

{6} = null(SO) _,C,_ nul](S) g . _,C,_ null(Sm) -V

The previous exercise states that each null(S*) has even dimension (in
particular V', which equals null(S™), has even dimension). Hence the
dimension must increase by at least 2 in all the proper inclusions above.

Thus dim(V) = dim(null(S™)) is at least 2m, implying m < %
Because S™ = 0, this implies that gdim(v)/2 _ 0, as desired.
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Chapter 11

Matrix Functions™

11.1 Operator Norms and Matrix Norms*

Let V and W be vector spaces over F having respective norms ||-||y and ||- ||y
Let T € L(V,W). One common problem is to understand the “size” of the
linear map 7" in the sense of its effects on the magnitude of the inputs. For
each nonzero v € V, the quotient ||7'(v)||lw/||v||y measures the magnification
caused by the transformation 7 on that specific vector v. An upper bound on
this quotient valid for all v would thus measure the overall effect of 1" on the
size of vectors in V. It is well known that in every finite dimensional space
V, the quotient ||T'(v)||lw/||v||v has a maximum value which is achieved with
some specific vector vg. Note that if v is replaced by cv for some nonzero
¢ € F, the quotient is not changed. Hence if O = {x € V : ||z||y = 1}, then

we may define a norm for 7' (called a transformation norm) by
I [lvw = max{[|T(w)[lw/llvllv : 0 # v € V} = max{||T(v)|lw : v € ((9}- )
11.1

In this definition we could replace “max” with “supremum” in order to
guarantee that ||T||y,w is always defined even when V' and W are not finite
dimensional. However, in this text we just deal with the three specific norms
we have already defined on the finite dimensional vector spaces. The norm
of a linear map from V to W defined in this way is a vector norm on the
vector space L(V,W). (See Exercise 1.) We can actually say a bit more.

Theorem 11.1.1. Let U, V and W be vector spaces over F' endowed with

199
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vector norms || - ||v, || - llv, || - [|w, respectively. Let S,T € L(U,V) and
L € L(V,W) and suppose they each have norms defined by Eq. 11.1 Then:
(a) |T|lvv >0, and | T||p.v = 0 if and only if T(u) =0 for allu € V.
(b) llaT |lv,v = |a| |T||u,v for all scalars a.
() IS+ Tlloy < SNy + [ Tlwy-
(@) |T(W)llv < Tllvy - ully for allu e U.
(e) [ |lvw =1, where I € L(U) is defined by I(u) = u for allu € U.
(F) Lo Tllow < ILllvw - Tl
(9) If U=V, then [[T"|[vu < ([T]lvw)".

Proof. Parts (a), (d) and (e) follow immediately from the definition of the
norm of a linear map. Part (b) follows easily since |a| can be factored out
of the appropriate maximum (or supremum). For part (c), from the triangle
inequality for vector norms, we have

1(S+T)(W)[lv = [|S()+T (W)l[v < IS@)lv+IT@)llv < (ISloy+HITlloy)lullv,

from part (d). This says the quotient used to define the norm of S + T is
bounded above by (||S||v,v + ||T||v,v), so the least upper bound is less than
or equal to this. Part (f) follows in a similar manner, and then (g) follows
by repeated applications of part (f). O

Let A be an m x n matrix over F' (with F a subfield of C). As usual, we
may consider the linear map Ty : F™* — F™ : £ — Axz. We consider the norm
on L(F™, F™) induced by each of the standard norms || - [|1, || ||2; ||*]lc, and
use it to define a corresponding norm on the vector space of m X n matrices.
It seems natural to let the transformation norm of 74 also be a “norm” of
A. Specifically, we have

A -
|All: = max ||||$T||1|1 cx #0
A -
lAll, = maxqiggle g 0
A -
Ao = max{””zﬂlz" cx#0

Theorem 11.1.2. Let A be m x n over the field F'. Then:

(a) ||Allx = maz{d> ", |Aij| : 1 < j <n} (mazimum absolute column
sum).

(b)) |Allo = maz{d 7 [Ay| : 1 < i < m}  (mazimum absolute row
sum).

(c) ||A|la = mazimum singular value of A.
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Proof. To prove (a), observe

m

n m n
[Azlly = 01D Ay <D0 1Ayl Ll
i=1 [ j=1 =1 j=1

=D (Z A ) 251 <) (maxﬂ' > |Aif|) &l
j=1 1 j=1

1= %

m
— (masz |A“|) ||:E||1 = Oz||$||1

i=1
So ||Ali € @ = max; Y ", |A;|. To complete the proof of (a) we
need to construct a vector x € F™ such that ||Az|; = «fz||;. Put z =
(0,0,...,1,...,0)" where the single nonzero entry 1 is in column j,, and
the maximum value of > 7" |A;;| occurs when j = j;. Then ||z||; = 1, and
|Az|ls = >0, |Aijo| = = al|z||, as desired.
We now consider part (b). Define « by

o= max{z |41 <i<m}.
j=1

For an arbitrary v = (vy,...,v,)" € F" suppose that the maximum defining
« above is attained when 7 = 3. Then we have

ITa(0)lloo = [|Av]loo = max| (Av)i| = max; | Y _ Aijo;

j=1

n n

<max; Y (| Ayl [v5]) < max; Yy (|| maxg|og|)

j=1 j=1
< aft]|,

50 ||74(v)||co/]|V]|lo0 < « for all nonzero v. This says that this norm of 74 is
at most «. To show that it equals o we must find a vector v such that the
usual quotient equals o. For each j =1,...,n, chose v; with absolute value
1 so that A, ;v; = |A;;|. Clearly |[v||c =1, so that ||[T4(v)||s < @, which

we knew would have to be the case anyway. On the other hand
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|(Ta(0))so| =

= .

n n
D Aigvi| = D 1Ayl
j=1 j=1

This shows that ||74(v)||e = « for this particular v, and hence this norm of
TA is a.

Part (c) is a bit more involved. First note that ||v|| as used in earlier
chapters is just ||v]|e. Suppose that S is unitary and m x m, and that A is
m x n. Then |[(SA)(v)|]2 = [|S(A(v))]|2 = [|(A(v)|]2 for all v € F™. Tt follows
immediately that ||SA||2 = ||A|l2. Now let A be an arbitrary m X n matrix
with singular value decomposition A = UXV*. So ||Alls = |[UZV*||s =
|IZV*|]2. Since || - ||2 is a matrix norm coming from a transformation norm,
by part (f) of Theorem 11.1.1 ||[ZV*|la < [|Z]l2 [[V*]la = [|Z]le- If ¥ =
diag(oy,09,...,0%,0,...,0), with o1 > g9 > -+ > o, > 0, then [|[Zz|, =

||(0'1£171, o5 OfTk, Oa SRR 0)T||2 = \/O'%.’E% + - O',%.T% <op- ||£E||2 So ||E||2 < o1.
Suppose x = (1,0,...,0)". Then Xz = (0121,0,...,0)". So ||z]s = 1,
|12z||2 = |o1z1| = 01 = oy||z||2- This says ||X|| = 01. So we know that

|I=V*||; < 01. Let = be the first column of V', so V*z = (1,0,...,0)”. Then
IXV*z||2 = o1, showing that ||XV*||s = ||X]|2 = o1, so that finally we see
||A||2 =01. ]

11.2 Polynomials in an Elementary Jordan
Matrix*

Let N, denote the n x n matrix with all entries equal to 0 except for those
along the super diagonal just above the main diagonal:

0 1 0 0
0 0 1 0
N,=| 0 0 0 0 (11.2)
S 0 1
0 -« --- 0 0

1, ifj=i+1;
So (Nn)ij = { 0, otherwise.
The following lemma is easily established
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1, ifj=i+m

0, otherwise. Also,

Lemma 11.2.1. For 1 <m <n-—1, (N™);; = {
N? =1 and N" = 0.

Then let J,(A) be the elementary n x n Jordan block with eigenvalue A
given by J,(A) = AI + N,,. So

A1 0
0

L,o)=|0 0 A

>
—_

= M + N,,

> = O OO

: A
0 0
where NV, is nilpotent with minimal polynomial z".

Theorem 11.2.2. In this Theorem (and until notified otherwise) write J in
place of J,(N\). For each positive integer m,

At (e
Jm = A™ .' o (mTZ) )\m—n—l—? ’
\m

that 1s,

(J™)i; = (gTiLz))\m Ty 1<i,j<n.

Proof. 1t is easy to see that the desired result holds for m = 1 by the definition
of J, so suppose that it holds for a given m > 1. Then

(™) = (- T™) ZE:Jm (T™)ks = AT™)ig + 1 (T iy

=\ m )\m—j—f—i + m )\m—j—i—i—f—l
j—i j—i—1

_ ( m ))\m—f—l ]+z+ < m ))\m—f—l—j-{-i — (m+1>)\m+l ]+Z
j—1 j—i1—1 j—1
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Now suppose that f(z) = 3¢ _ a,2™, so that f(J) = aol +arJ +---+
ayJ*. Recall (or prove by induction on s) that for s > 0,

() Xk:a ( ) ™ so Zam( )Am S:f(s;(A). (11.3)

m=0

So for s > 0,

i 1
zz—f—s Zam< >/\m s:gf(s)(/\)

m=0

This says that

POV BFO0) RSP0 )
=1 0 0wy e 3).f<" 3<A> ()
A

Now suppose that J is a direct sum of elementary Jordan blocks:

J="h® LD D Js.
Then for the polynomial f(z) we have

F)=f(h) @ f(R) @ - f(J).

Here f(.J1),..., f(Js) are polynomials in separate Jordan blocks, whose val-
ues are given by Eq. 11.3. This result may be applied in the computation of
f(A) even when A is not originally in Jordan form. First determine a T for
which J = T7'AT has Jordan form. Then compute f(J) as above and use

f(A) = f(TJT™) =Tf())T™

11.3 Scalar Functions of a Matrix*

For certain functions f : F' — F (satisfying requirements stipulated below)
we can define a matrix function f : A — f(A) so that if f is a polynomial, the
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value f(A) agrees with the value given just above. Start with an arbitrary
square matrix A over F' and let \q,..., \; be the distinct eigenvalues of A.
Reduce A to Jordan form

TAT =008 J,,

where Jy, ..., J; are elementary Jordan blocks. Consider the Jordan block
A1 0 - 0
A1 - 0
Ji=Jn,(N) = | | A (11.5)
Ai

which has (z — ;)™ as its minimal and characteristic polynomials. If the
function f : FF — F is defined in a neighborhood of the point A; and has
derivatives fM()\;), ..., f™~D(),), then define f(J;) by

FOY RO B0 - Gl
0 FO) O0) el fea()
fJ)y=1] 0 0 FO) o G | aLe)
0 0 U £
This says that
(f(J,-))T,W-:;—‘fU)(A), for 0< j<n—r (11.7)

If f is defined in a neighborhood of each of the eigenvalues Ay, ..., A, and
has (finite) derivatives of the proper orders in these neighborhoods, then also

fW)=fJ) @ f(J)® & f(h), (11.8)
and
fAA =TfNT=TfI)T ®---aTf(J)T (11.9)

The matrix f(A) is called the value of the function f at the matrix A.
We will show below that f(A) does not depend on the method of reducing
A to Jordan form (i.e., it does not depend on the particular choice of T),
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and thus f really defines a function on the n X n matrices A. This matrix
function is called the correspondent of the numerical function f. Not all
matrix functions have corresponding numerical functions. Those that do are
called scalar functions.

Here are some of the simplest properties of scalar functions.

Theorem 11.3.1. It is clear that the definition of scalar function was chosen
precisely so that part (a) below would be true.

(a) If f(N) is a polynomial in A, then the value f(A) of the scalar functioin
[ coincides with the value of the polynomial f()\) evaluated at A = A.

(b) Let A be a square matriz over F and suppose that fi(\) and fo(N\) are
two numerical functions for which the expressions fi(A) and fo(A) are
meaningful. If f(A) = fi(A) + fao(A), then f(A) is also meaningful and
f(A) = f1(4) + fo(4).

(c) With A, fi and fy as in the preceding part, if f(A) = f1(A)f2(N), then
f(A) is meaningful and f(A) = f1(A)f2(A).

(d) Let A be a matriz with eigenvalues A1, ..., \n, each appearing as often
as its algebraic multiplicity as an eigenvalue of A. If f : FF — F is
a numerical function and f(A) is defined, then the eigenvalues of the

matriz f(A) are f(A1),..., f(An).

Proof. The proofs of parts (b) and (c) are analogous so we just give the
details for part (c). To compute the values fi(A), f2(A) and f(A) according
to the definition, we must reduce A to Jordan form J and apply the formulas
given in Eqgs. 11.8 and 11.9. If we show that f(J) = fi(J)f2(J), then from
Eq. 11.8 we immediately obtain f(A) = f1(A)f2(A). In fact,

fW)=fh)&-- f(h),

and

Li(D) fo(J) = f1() f2(T) = fi(J1) fo(J1) @ -+ - @ f1( ) fa( ),

so that the proof is reduced to showing that

(L) = i) fo (i), (E=1,2,...,1),
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where J; is an elementary Jordan block.
Start with the values of fi(J;) and fo(J;) given in Eq. 11.6, and multiply
them together to find that

S

L1(Ja) fo(Ji)lrrs = Z(fl(Ji))r,r-l-j(f?(Ji))r-l-j,r-i-s =

J=0

1 1 o
=D Gy =
J1=

S

SLE S OIS

s—j 1 s
e AR = (00,

where the last equality comes from Exercise 2, part (i).

Thus fi(J;) f2(J;) = f(J;), completing the proof of part (c¢) of the theo-
rem. For part (d), the eigenvalues of the matrices f(A) and T~ f(A)T =
f(T7'AT) are equal, and therefore we may assume that A has Jordan form.
Formulas in Eq. 11.5 and 11.6 show that in this case f(A) is upper triangular
with f(A1),..., f(A\,) along the main diagonal. Since the diagonal elements
of an upper triangular matrix are its eigenvalues, part (d) is proved. O]

Similarly, if f and g are functions such that f(g(A)) is defined, and if
h(A) = f(g()), then h(A) = f(g(A)).

To finish this section we consider two examples.

Example 11.3.2. Let f(A) = A~'. This function is defined everywhere
except at A = 0, and has finite derivatives of all orders everywhere it is
defined. Consequently, if the matriz A does not have zero as an eigenvalue,
i.e., if A is nonsingular, then f(A) is meaningful. But X - f(\) = 1, hence
A-f(A) =1, so f(A) = A~'. Thus the matriz function A — A~ corresponds

to the numerical function X — A\~%, as one would hope.

Example 11.3.3. Let f()\) =V A. To remove the two-valuedness of v/~ it is
sufficient to slit the complex plane from the origin along a ray not containing
any eigenvalues of A, and to consider one branch of the radical. Then this
function, for A\ # 0, has finite derivatives of all orders. It follows that the
expression VA is meaningful for all nonsingular matrices A. Putting A = A
i the equation
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we obtain
f(A)f(A) = A

This shows that each nonsingular matriz has a square root.

11.4 Scalar Functions as Polynomials*

At this point we need to generalize the construction given in Lagrange inter-
polation (see Section 5.3).

Lemma 11.4.1. Let rqy,...,r; be distinct complex numbers, and for each i,
1 <i < s, let m; be a nonnegative integer. Let (a;;) be a table of arbitrary
numbers , 1 <1 < s, and for each fixed i, 0 < j < m;. Then there exists a
polynomial p(z) such that pY)(r;) = a;j, for 1 < i < s and for each fized i,
0< 7 <my.

Proof. Tt is convenient first to construct auxiliary polynomials p;(z) such
that p;(z) and its derivatives to the m;th order assume the required values
at the point r; and are all zero at the other given points. Put

gf)z(x) = bio + b,l(x - T'Z') +---+ bzmz(ﬁ — T'Z')mi = Zb”(l‘ - ’I“Z-)j,
j=0

where the b;; are complex numbers to be determined later. Note that qﬁz(j ) (1)
Set

Cbz((L‘) = (l‘ — Tl)mi-l-l ce (l‘ — Ti_l)mi-l-l(l. _ Ti+1)mi+1 L. ($ _ ’I‘s)mi—H,

and -
pz(l“) = ¢Z(I)<I>Z(x) = {i bz’j($ _ Ti)j} H_ (x _ Tj)m“Ll,
j=0 j#i

By the rule for differentiating a product (see Exercise 2),

W= (1) e ),
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or

i .
a= <=§>ubu<pgﬂ—l>(m. (11.10)
=0

Using Eq. 11.10 with j = 0 and the fact that ®;(r;) # 0 we find

Q40 .
bio = 1< <s. 11.11
20 (bi(ri)’ StsS ( )
For each i = 1,2,...,s, and for a given j with 0 < 57 < m;, once by is

determined for all [ with 0 <[ < j, we can solve Eq. 11.10 for

o= i _ S5 biz¢§j_l)(7“i)
T 1Dy (ry) (5 —D)'D;(rs)

This determines p;(x) so that p;(z) and its derivatives up to the m;th deriva-
tive have all the required values at r; and all equal zero at r, for ¢t # 4. It is
now clear that the polynomial p(z) = p1(x) + pe(x) + - - - + ps(x) satisfies all
the requirements of the Lemma. O

L 1<i<s. (11.12)

Consider a numerical function A — f(\) and an n x n matrix A for which
the value f(A) is defined. We show that there is a polynomial p(z) for which
p(A) equals f(A). Let A,..., A; denote the distinct eigenvalues of the matrix
A. Using only the proof of the lemma we can construct a polynomial p(z)
which satisfies the conditions

p(A) = F(A), D) = F1(N), ... pm V() = Fm D (), (11.13)

where if some of the derivatives f\)(r;) are superfluous for the determination
of f(A), then the corresponding numbers in Eq. 11.12 may be replaced by
zeros. Since the values of p(z) and f()\) (and their derivatives) coincide at
the numbers \;, then f(A) = p(A). This completes a proof of the following
theorem.

Theorem 11.4.2. The values of all scalar functions in a matriz A can be
expressed by polynomials in A.

Caution: The value f(A) of a given scalar function f can be represented
in the form of some polynomial p(A) in A. However, this polynomial, for a
given function f will be different for different matrices A. For example, the
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minimal polynomial p(x) of a nonsingular matrix A can be used to write A~
as a polynomial in A, but for different matrices A different polynomials will
occur giving A~! as a polynomial in A.

Also, considering the function f(\) = VA, we see that for every nonsin-
gular matriz A there exists a polynomial p(x) for which

P(A)p(A) = A,

VERY IMPORTANT: With the help of Theorem 11.4.2 we can now
resolve the question left open just preceding Theorem 11.3.1 concerning
whether f(A) was well-defined. If we know the function f()) and its deriva-
tives at the points Aj,..., As;, we can construct the polynomial p(z) whose
value p(A) does not depend on the reduction of the matrix A to Jordan form,
and at the same time is equal to f(A). Consequently, the value f(A) defined
in the preceding section using the reduction of A to Jordan form, does not
depend on the way this reduction is carried out.

Let f(A) be a numerical function, and let A be a matrix for which f(A)
is meaningful. By Theorem 11.4.2 we can find a polynomial p(x) for which
p(A) = f(A). For a given function f()), the polynomial p(x) depends only
on the elementary divisors of the matrix A. But the elementary divisors of
A and its transpose AT coincide, so p(AT) = f(AT). Since for a polynomial
p(z) we have p(AT) = p(A)7, it must be that f(A”) = f(A)" for all scalar
functions f(A) for which f(A) is meaningful.

11.5 Power Series*

All matrices are n X n over F', as usual. Let
o
G(z) = Z apx®
k=0

be a power series with coefficients from F. Let Gy(z) = Yp_, axz”® be the

Nh partial sum of G(z). For each A € M, (F) let Gn(A) be the element
of M, (F) obtained by substituting A iun this polynomial. For each fixed
1,7 we obtain a sequence of real or complex numbers cf-}’, N =0,1,2,... by
taking cjj to be the (7, 4) entry of the matrix Gy (A). The series

G(A) = Z akAk
k=0
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is said to converge to the matriz C in M, (F) if for each 4,j € {1,2,...,n}
the sequence {cjy}%_, converges to the (i,j) entry of C' (in which case we
write G(A) = C). We say G(A) converges if there is some C € M, (F) such
that G(A) = C.

For A = (ai;) € M,,(F) define

1Al =) lasl,

irj=1
i.e., ||A]| is the sum of the absolute values of all the entries of A.
Lemma 11.5.1. For all A,B € M,,(F) and alla € F
(a) |A+ Bl < Al + [IBIl;
(b) [[AB|| < [|A]l - [|BIl;
(¢) llaAll = |af - [[A]].

Proof. The proofs are rather easy. We just give a proof of (b).

|AB|| Z‘ AB ZJ‘ = Z ZAszkJ

Y]

<D Al Byl <

t,5,k

< Y Al [Bejl = |A] - ||BII-

ihj,k”r
U
Suppose that G(z) = Y 7, axz* has radius of convergence equal to R.
Hence if ||A]] < R, then Y ;2 ax||A||* converges absolutely, i.e., Y 7o |a] -
|| A||* converges. But then [a(A%);;] < |ag]|A¥||| < |ak|-]|A||*, implying that
>ore o lax(A¥)i;| converges, hence Y - ax(A*);; converges. At this point we
have shown the following:

Lemma 11.5.2. If ||A|| < R where R is the radius of convergence of G(x),
then G(A) converges to a matriz C.

We now give an example of special interest. Let f(A) be the numerical

function
2 )k
F(V) = exp(A =Z—.
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Since this power series converges for all complex numbers ), each matrix
A € M, (F) satisfies the condition in Lemma 11.5.2 so exp(A) converges to
a matrix C' = e?. Also, we know that f()\) = exp(\) has derivatives of all
orders at each complex number. Hence f(A) is meaningful in the sense of the
preceding section. We want to be sure that the matrix C' to which the series

o AP converges is the same as the value f(A) given in the preceding
section. So let us start this section over.

A sequence of square matrices

A17A27”' ;Am;Am—l—l;"' ) (11.14)

all of the same order, is said to converge to the matrix A provided the elements
of the matrices in a fixed row and column converge to the corresponding
element of the matrix A.

It is clear that if the sequences {A,,} and {B,,} converge to matrices A
and B, respectively, then {4,, + B,,} and {4,,B,,} converge to A+ B and
AB, respectively. In particular, if 7" is a constant matrix, and the sequence
{A.} converges to A, then the sequence {T~'A,,T} will converge to T-*AT.
Further, if

Apn=AVg...0 A8 (m=1,2,..),

m

where the orders of the blocks do not depend on m, then {A4,,} will converge

to some limit if and only if each block {A%)} converges separately.
The last remark permits a completely simple solution of the question of
the convergence of a matrix power series. Let

ao + a1z + aox® + -+ apr™ + - - - (11.15)
be a formal power series in an indeterminate x. The expression
aol + a1 A+ ayA2+ -+ a, A" +--- (11.16)
is called the corresponding power series in the matrix A, and the polynomial
fa(A) =aol + 1A+ -+ a, A"

is the nth partial sum of the series. The series in Eq. 11.16 is convergent
provided the sequence {f,(A)}22, of partial sums has a limit. If this limit
exists it is called the sum of the series.

Reduce the matrix A to Jordan form:
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T'AT=J=J,®--& J;,

where Jy,---,J; are elementary Jordan blocks. We have seen above that

convergence of the sequence {f,(A)} is equivalent to the convergence of the
sequence {T~'f,(A)T}. But

T_lfn(A)T = fn(T_lAT) = fn(‘]) = fn(Jl) S fn(Jt)a

and the question of the convergence of the series Eq. 11.16 is equivalent to
the following: Under what conditions is this series convergent for the Jordan
blocks Ji,---,J;7 Consider one of these blocks, say J;. Let it have the
elementary divisor (z — A;)™, i.e., it is an elementary Jordan block with
minimal and characteristic polynomlal equal to (z — \;)™. By Eq. 11.4

Fa) EETO0) EP ) - (n%) ")
0 fah) EATON) - ).fn" ()
fa(Ji) = 0 0 %) T 3)()\Z) . (11.17)
0 0 OV
Consequently, {f,(/, )} converges if and only if the sequences {f\()\;) <,
for each j =0,1,...,n; — 1 converge, i.e., if and only if the series Eq. 11.15

converges, and the series obtained by differentiating it term by term up to
n; — 1 times, inclusive, converges. It is known from the theory of analytic
functions that all these series are convergent if either A; lies inside the circle
of convergence of Eq. 11.15 or ); lies on the circle of convergence and the
(n; — 1)st derivative of Eq. 11.15 converges at );. Moreover, when \; lies
inside the circle of convergence of Eq. 11.15, then the derivative of the series
evaluated at \; gives the derivative of the original function evaluated at ;.
Thus we have

Theorem 11.5.3. A matriz power series in A converges if and only if each
eigenvalue X\; of A either lies inside the circle of convergence of the corre-
sponding power series f(X) or lies on the circle of convergence, and at the
same time the series of (n; — 1)st derivatives of the terms of f(\) converges
at A\; to the derivative of the function given by the original power series eval-
uated at \;, where n; is the highest degree of an elementary divisor belonging
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to \; (i.e., where n; is the size of the largest elementary Jordan block with
eigenvalue N;). Moreover, if each eigenvalue \; of A lies inside the circle of
convergence of the power series f()), then the jth derivative of the power
series in A converges to the jth derivative of f(\) evaluated at A.

Now reconsider the exponential function mentioned above. We know that
FO) =200 2—’: converges, say to e, for all complex numbers A. Moreover,
the function f(A\) = e has derivatives of all orders at each A\ € C and
the power series obtained from the original by differentiating term by term
converges to the derivative of the function at each complex number A. In fact,
the derivative of the function is again the original function, and the power
series obtained by differentiating the original power series term by term is
again the original power series. Hence the power series Y-, %Ak not only
converges to some matrix C, it converges to the value exp(A) defined in the
previous section using the Jordan form of A. It follows that for each complex
n x n matrix A there is a polynomial p(x) such that exp(A4) = p(A).

Let J, denote the n x n elementary Jordan block

A1 0 ... 0
0 A 1 ... 0

Sy = : el =AM+ N,.
0 A1
D\

If f(\) = ¢e*, then we know

A

|
>

1
€ 1¢ € n—1)1¢
A 1A 17 A
e Le e
1! n—2)!
f(I) = . "2
0 e e e)‘ ie)‘

Now let ¢ be any complex number. Let B, (t) = B, be the n x n matrix
defined by

t t2 tn—l
1! 2! (n—1)!
t tr
1 1 (n—2)!
n—
Bt = 0 1 L
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With f(A\) = e* put g(A) = f(tA) = . A simple induction shows that
g9 () =t7g()). Then
g(Jy) = e'r = e B,.

In particular,
e = e*By.

We can even determine the polynomial p(z) for which p(Jy) = e/>. Put

It follows easily that
pP(N) =1for0<j<n—1, and pi™(z) = 0.
From Eq. 11.6 we see that
Pu(Ju(N) = Bu(1), 50 €*pa(Ju(N)) = €*Bp(1) = ™.

We next compute B;B;, for arbitrary complex numbers ¢ and s. Clearly
the product is upper triangular. Then for ¢ < j we have
J

(Bt : Bs)ij = Z(Bt)ik : (Bs)kj) = Z (k — i)! ) (] —_k)!

k=i k=i

1 J ] _'L ) —(i— . 1 i—i
P (j—k)t(j T = Gt = B

k=i ’

Hence
Bt . Bs - Bt—l—s - Bs . Bt-

It now follows that

et.]A . eSJ/\ — et)\Bt . es)\BS — e(t+5))\Bt+s — e(t-l—s)J/\ — eSJA . etJ)\.

Fix the complex number s and put Ty = diag(s"™',s"2,...,s,1). It is
now easy to verify that
Tyt sdy - Ty = Jya (11.18)
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Hence Jj,, is the Jordan form of sJy. Also, (ToAT; )., = s7=*A;;. From this

ij
it follows easily that

T()BlTO_l - Bs.

It now follows that

e =f(sh)=f(To-Jn-Tg ") =T - f(JNTy ' =
=Ty-el - Tyt = Ty(e* By)Ty ! = e** B,

which agrees with an earlier equation.
Suppose A is a general n X n matrix with Jordan form

T_IAT - J)\l b---D J/\t7 J/\i € an, (F)

Let T be the direct sum of the matrices diag(s™~!,s"2 ... s,1). Then
Ty T sATTy = Joy, @ -+ D Iy,

SO
et =T (eMB,,(s) ® - ®e™MB,,(s)) T .

Several properties of the exponential function are now easy corollaries.

Corollary 11.5.4. Using the above descriptions of A and e*4, etc., we ob-
tain:

(a) Ae* = e A for all square A.

(b) esAet = e(sHDA = etAesA | for all s,t € C.

(c) €® = I, where 0 is the zero matrix.

(d) e? is nonsingular and e=* = (e?)~L.

(e) el =el.

(f) det(e”) = em = elTaCN)  from which it follows that det(e?) =
etmce(A)'

11.6 Commuting Matrices*

Let A be a fixed n X n matrix over C. We want to determine which matrices
commute with A. If A commutes with matrices B and C, clearly A commutes
with BC' and with any linear combination of B and C. Also, if A commutes
with every n x n matrix, then A must be a scalar multiple A = al of the
identity matrix I. (If you have not already verified this, do it now.)
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Now suppose
THAT=J=J,®---& J, (11.19)

is the Jordan form of A with each J; an elementary Jordan block. It is easy
to check that X commutes with .J if and only if TXT ! commutes with A.
Therefore the problem reduces to finding the matrices X that commute with
J. Write X in block form corresponding to Eq. 11.19:

X1 X -0 Xy
Xo1 Xgo -+ Xo
x=| """ ; (11.20)
X X -+ X
The condition JX = X .J reduces to the equalities
JpXpg = XpgJg (pog=1,--,5). (11.21)

Note that there is only one equation for each X,,. Fix attention on one
block X,, = B = (b;;). Suppose J, is r x r and J, is t x t. Then X,, = B is
rxt, Jp =Ml + Ny, Jg= A+ N;. From Eq. 11.21 we easily get

T t
)\pBuv + Z(Nr)ukBkv = )\unv + Z Buk(Nt)kva (1122)
k=1

k=1
for all p,q,u,v with 1<p,¢g<s,1<u<r; 1<v<Ht.

Eq. 11.22 quickly gives the following four equations:

(FOI' v 7é 1, u # 7'), )\me, + Bu+1,11 = )\un'u + Bu,v—l- (1123)
(FOT V= 1, u 7& T), /\pBul + Bu—|—1,1 = )\unl + 0. (1124)

(For v # L;u=7),A\Bry + 0 = Ay By + By y_1. (11.25)

(For u =7,v=1),\,B;1 + 0 = A\;B,1. (11.26)

First suppose that A\, # A,. Then from Eq. 11.26 B,; = 0. Then from
Eq. 11.24 (A\; — Ap)Bu1 = Byy11. Put u =r—1,7—2,...,1, in that order, to
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get B, =0 for 1 < u <7, ie., the first column of B is the zero column. In
Eq. 11.25 put v =2,3,...,tto get B,, =0 for 1 < v < ti.e., the bottom row
of B is the zero row. Put © = r—1 in Eq. 11.23 and then put v = 2,3, ...,t,
in that order, to get B,_;, = 0 for all v, i.e., the (r — 1)st column has all
entries equal to zero. Now put u =r—2 and let v =2, 3,...,t, in that order,
to get B,_o, = 0 for 1 <wv <¢?. Continue in this way for v =r — 3, r — 4,
etc., to see that B = 0.

So for A\, # A\, we have X, = 0.

Now consider the case A\, = A\;. The equations Eq. 11.23 through 11.25
become

(FOI‘ v 7é Liu 7é T)a Bu—l—l,v = Bu,v—l- (1127)
(For v = 1;u # r)Byt11 = 0. (11.28)
(For v # 1;u =1r)B,,_1 = 0. (11.29)

It is now relatively straightforward to check that there are only the follow-
ing three possibilities (each of which is said to be in linear triangular form:

1. r =t, in which case B = Z?ZO ¢;:IN} for some scalars ¢; € C.

2. r > t, in which case B has the form

B = ( Z::1<2Ntz )

Or—t,t
3. r < t, in which case B has the form

B = ( Or¢—r Z;:l CiNri ) :

Conversely, the determination of the form of B shows that if B has any
of the forms shown above then B commutes with X. For example, if

B:pI3+N3€BpIQ+NQEBO'Ig+N3 (1130)

for p # o, then the matrices X that commute with V have the form
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) 2 Az
Z’?:l a,ZN?Z’ 2161 CzN2 5
X = 12 &) AiNi,
. . i=1
Op0 o7 diNs | o7, biNj
where a;, b;, c;d;, \; are arbitrary scalars.

Polynomials in a matrix A have the special property of commuting, not

only with the matrix A, but also with any matrix X which commutes with
A.

Theorem 11.6.1. If C commutes with every matriz which commutes with
B, then C 1s a polynomial in B.

Proof. In the usual way we may assume that B is in Jordan form. Suppose

B=Y Bi=) Jo,(\)=>_ Xiln, + N,
=1 =1 =1
The auxiliary matrices
X=> al,
=1

where the a; are arbitrary numbers, are known to commute with B. So by
hypothesis X also commutes with C. From the preceding discussion, if we
take the a; to be distinct, we see that C' must be decomposable into blocks:

C=0,0---8C,.

Moreover, it follows from CB = BC that these blocks have linear trian-
gular form. Now let X be an arbitrary matrix that commutes with B. The
general form of the matrix X was established in the preceding section. By
assumption, C' commutes with X. Representing X in block form, we see that
the equality C'X = X is equivalent to the relations

CpXpg = XpsCq (P,a=1,2,...,5). (11.31)

If the corresponding blocks B,,, B, have distinct eigenvalues, then Eq. 11.31
contributes nothing, since then X,, = 0. Hence we assume that B, and B,
have the same eigenvalues. Let

T t
Cp =Y a;N}, Cg=) b
=1 =1
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For definiteness, suppose that r < t. Then Eq. 11.31 becomes

S ) RS (LR >R 8 o

where the (; are arbitrary complex numbers. Multiply the top row times the
right hand column on both sides of the equation to obtain:

(ats-eeyar) (G s G =(0,.,0, Gty oo, &) - (bt -5 01) T,
which is equivalent to
a1Gr + agGr1 + -+ arC = b1Gr + baGr1 + -+ 0:Cr.
Since the (; can be chosen arbitrarily, it must be that
a; =0b;, forl1<i<r. (11.32)

It is routine to verify that a similar equality is obtained for r > t.

Suppose that the Jordan blocks of the matrix B are such that blocks with
the same eigenvalues are adjacent. For example, let

B:(Bl@...@Bml)@(Bm1+1@...@Bm2)@...@(Bmk+1@...@Bs)’

where blocks with the sam eigenvalues are contained in the same set of paren-
theses. Denoting the sums in parentheses by BM) B®) ...  respectively ,
divide the matrix B into larger blocks which we call cells. Then divide the
matrices X and C' into cells in a corresponding way. The results above show
that all the nondiagonal cells of the matrix X are zero; the structure of the
diagonal cells was also described above. The conditions for the matrix C'
obtained in the present section show that the diagonal blocks of this matrix
decompose into blocks in the same way as those of B. Moreover, the blocks
of the matrix C' have a special triangular form. Equalities 11.32 mean that
in the blocks of the matrix C' belonging to a given cell, the nonzero elements
lying on a line parallel to the main diagonal are equal.
For example, let B have the form given in Eq. 11.30,
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(,0 10000 0O \
0 p1 00000
00 p0OO0O0O00O
000 p10O00O0
B= 000O0pO0O00O0 (11.33)
00000610
000O0O0¢0Ool
000O0O0O0O 0O c

Our results show that every matrix C that commutes with each matrix
which commutes with B must have the form

(Go ay a2 \

ag Q1
Qg
Gy a

(11.34)

\ |

We need to prove that C' can be represented as a polynomial in B. We
do this only for the particular case where B has the special form given in
Eq. 11.33, so that C' has its form given in Eq. 11.34. By Lemma 11.4.1 there
is a polynomial f(\) that satisfies the conditions:

flp) =ao, f'(p)=ai, [f"(p)=ay,
flo)=do, f'(o)=di, ["(0)=d>.

By applying Eq. 11.6 we see that f(B) =C O]

11.7 A Matrix Differential Equation*

Let F' denote either R or C. If B(¢) is an n X n matrix each of whose entries
is a differentiable function b;;(¢) from F' to F', we say that the derivative of
B with respect to t is the matrix % (B(t)) whose (4, j)th entry is (b;;)'(t).
Let z(t) = (x1(t), - - -, 7,(¢))” be an n-tuple of unknown functions F' — F.
The derivative of z(t) will be denoted #(t). Let A be an n X n matrix over

F, and consider the matrix differential equation (with initial condition):



222 CHAPTER 11. MATRIX FUNCTIONS*

z(t) = Az(t), z(0) = xo. (11.35)

Theorem 11.7.1. The solution to the system of differential equations in
Eq. 11.85 is given by x(t) = e'xy.

Before we can prove this theorem, we need the following lemma.

Lemma 11.7.2. p
@(e A) = AetA.

Proof. First suppose that A is the elementary Jordan block A = J = J,(\) =

M+ N, where N = N,,. If n =1, recall that the ordinary differential equation

7'(t) = Az(t) has the solution z(t) = ae* where a = z(0). Since N; = 0,

we see that the theorem holds in this case. Now suppose that n > 1. So

A=J =Xl + N where N" = 0. Recall that

n—1 )\t tJ

A _ td _eAtB Z

A simple calculation shows that

n-l Mt Atgj—1
j(t‘] —/\e)‘tI+Z<A€ t]+]€ t] )N]
On the other hand,
n—1
At v
Je' = (M + N) (e —'NJ)
J=0 J
n—2 t] tn—l L
j n—
L1(AM+ N) I+Z SN+ 5 -~ N
Jj= 1

/\t7 -1 .
e N + 1+)\tN+ < N — )N9+

(oo (ntn—;) )
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d
= (et‘] ) , as desired.
This completes a proof of the Lemma. Now turn to a proof of Theorem 11.7.1.
First suppose that A has the Jordan form J = P~ 'AP, where J =

Jy @@ J,. Since e is a polynomial in tA, eP™ AP = P=lelAP e
etA —P. etJ . P—l =T. (etJ1 D --- EBeth)P_l.

It now follows easily that

% (etA) = Ae.

Since 1o = z(0) is a constant matrix, % (e"zg) = Ao, so that z = ez
satisfies the differential equation z = Ax. O

It is a standard result from the theory of differential equations that this
solution is the unique solution to the given equation.

11.8 Exercises

1. Show that the norm of T' € L(V, W) as defined in Equation 11.1 is a
vector norm on L(V, W) viewed as a vector space in the usual way.

2. Let D denote the derivative operator, and for a function f (in our case a
formal power series or Laurent series) let f () denote the jth derivative

of f,i.e., DI(f) = fU),
(i) Prove that i
D(s 9= 3 (1) 1990
i=0
(ii) Derive as a corollary to part (i) the fact that

D= 3 (7, ).

\%1, %2

11+12=]
(iii) Now use part (i) and induction on n to prove that

pigfm =% (i1 3 i)f(il)"'f(in)'

i1+ bin=j
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3. The Frobenius norm ||A||r of an m x n matrix A is defined to be the

square root of the sum of the squares of the magnitudes of all the entries
of A.

(a) Show that the Frobenius norm really is a matrix norm (i.e., a vector
norm on the vector space of all m x n matrices).

(b) Compute ||I|| and deduce that || - || cannot be a transformation
norm induced by some vector norm.

(c) Let U and V' be unitary matrices of the appropriate sizes and show
that
|Allr = [[UAllF = [[AV]|r = [UAV||F.

. Let A — f(A) and A — g(A) be two numerical functions and let A be

an n X n matrix for which both f(A) and g(A) are defined. Show that
f(A)g(A) = g(A)f(A).



Chapter 12

Infinite Dimensional Vector
Spaces™

12.1 Partially Ordered Sets & Zorn’s Lemma*

There are occasions when we would like to indulge in a kind of “infinite
induction.” Basically this means that we want to show the existence of some
set which is maximal with respect to certain specified properties. In this text
we want to use Zorn’s Lemma to show that every vector space has a basis,
i.e., a maximal linearly independent set of vectors in some vector space. The
maximality is needed to show that these vectors span the entire space.

In order to state Zorn’s Lemma we need to set the stage.

Definition A partial order on a nonempty set 7 is a relation < on A
satisfying the following:

l.z<zforallz € A (reflexive) ;
2. iffzr<yandy<zthenzx=y foralz,ye A (antisymmetric);

3.ifzr<yandy<zthenz <z forall z,y,z€ A (transitive).

Given a partial order < on A we often say that A is partially ordered by
<, or that (A, <) is a partially ordered set.
Definition Let the nonempty set A be partially ordered by <.

1. A subset V of A is called a chain if for all z,y € B, either x < y or
y <.

225
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2. An upper bound for a subset B of A is an element u € A such that
b<uforall be B.

3. A mazimal element of A is an element m € A such that if m < z for
some x € A, then m = .

In the literature there are several names for chains, such as linearly ordered
subset or simply ordered subset. The existence of upper bounds and maximal
elements depends on the nature of (A4, <).

As an example, let A be the collection of all proper subsets of Z* (the
set of positive integers) ordered by C. Then, for example, the chain

{1y c{1,2yc{1,2,3} C---

does not have an upper bound. However, the set A does have maximal
elements: for example ZT \ {n} is a maximal element of A for any n € Z+.

Zorn’s Lemma If A is a nonempty partially ordered set in which every
chain has an upper bound, then A has a maximal element. It is a nontrivial
result that Zorn’s Lemma is independent of the usual (Zermelo-Fraenkel)
axioms of set theory in the sense that if the axioms of set theory are consistent,
then so are these axioms together with Zorn’s Lemma or with the negation
of Zorn’s Lemma. The two other most nearly standard axioms that are
equivalent to Zorn’s Lemma (in the presence of the usual Z-F axioms) are
the Aziom of Choice and the Well Ordering Principle. In this text, we just
use Zorn’s Lemma and leave any further discussion of these matters to others.

12.2 Bases for Vector Spaces®

Let V be any vector space over an arbitrary field. Let S = {A C V :
A is linearly independent} and let S be partially ordered by inclusion. If C'
is any chain in S, then the union of all the sets in C is an upper bound
for C. Hence by Zorn’s Lemma S must have a maximal element B. By
definition B is a linearly independent set not properly contained in any other
linearly independent set. If a vector v were not in the space spanned by B,
then B U {v} would be a linearly independent set properly containing B, a
contradiction. Hence B is a basis for V. This proves the following theorem:

Theorem 12.2.1. Fach vector space V' over an arbitrary field F' has a basis.
This is a subset B of V' such that each vector v € V' can be written in just
one way as a linear combination of a finite lis of vectors in B.
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12.3 A Theorem of Philip Hall*

Let S and I be arbitrary sets. For each i € I let A; C S. If a; € A; for all
i €1, we say {a; : 1 € I} is a system of representatives for A = (A; : 1 € I).
If in addition a; # a; whenever 7 # j, even though A; may equal A;, then
{a; : i € I} is a system of distinct representatives (SDR) for A. Our first
problem is: Under what conditions does some family A of subsets of a set S
have an SDR?

For a finite collection of sets a reasonable answer was given by Philip Hall
in 1935. It is obvious that if A = (A4; : 4 € I) has an SDR, then the union
of each k of the members of A = (4; : 7 € I) must have at least k£ elements.
Hall’s observation was that this obvious necessary condition is also sufficient.
We state the condition formally as follows:

Condition (H) : Let I = [n] = {1,2,...,n}, and let S be any (nonempty)
set. For each i € I, let A; C S. Then A = (S4,...,S,) satisfies Condition
(H) provided for each K C I, | Ugex Sk| > |K|.

Theorem 12.3.1. The family A = (S1,...,Sy,) of finitely many (not neces-
sarily distinct) sets has an SDR if and only if it satisfies Condition (H).

Proof. As Condition (H) is clearly necessary, we now show that it is also
sufficient. B, ; denotes a block of r subsets (Sj,,...,S;, ) belonging to A,
where s = |U{S;: S; € B,s}|. So Condition (H) says: s > r for each block
B,s. If s=r, B, is called a critical block. (By convention, the empty block
By, is critical.)

If Br,s = (Al, ceey Au, Cu+1, ceey C’r) and
Biy = (A1,..., Ay, Dyt1, ..., Dy), write B, ;N B, =
(A1,...,Ay); BysUBy = (A1,..., A4, Cysry. .., Cry Dyya, ..., D). Here
the notation implies that Aq,..., A, are precisely the subsets in both blocks.
Then write

B, sN B, = By, where w = |U{A4; : 1 <i<w}|,and B, ;UB,, = B, ,
where y =r+t—u, 2= |U{S;:S; € B,;UB,,}|.

The proof will be by induction on the number n of sets in the family A,
but first we need two lemmas.

Lemma 12.3.2. If A satisfies Condition (H), then the union and intersec-
tion of critical blocks are themselves critical blocks.
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Proof of Lemma 12.3.2. Let B,, and B,; be given critical blocks. Say
B,, N B,y = By,; B,, UB;; = B, ,. The z elements of the union will be
the r + t elements of B,, and B,; reduced by the number of elements in
both blocks, and this latter number includes at least the v elements in the
intersection: z < r+t¢—wv. Also v > u and z > y by Condition (H). Note:
y+u=r—+t Hencer+t—v>z>y=r+t—u>r+t—wv, implying that
equality holds throughout. Hence v = v and y = z as desired for the proof
of Lemma 12.3.2 .

Lemma 12.3.3. If By is any critical block of A, the deletion of elements
of By from all sets in A not belonging to By produces a new family A’ in
which Condition (H) is still valid.

Proof of Lemma12.3.5. Let B, be an arbitrary block, and (B,)" = B 4

the block after the deletion. We must show that s > r. Let B, ;N By = By,
and B, ;U By, = B, ,. Say

BT,S = (Ala .- 'aA’UJC’lH—la .- 'aC’r)a
Bk,k - (Al, . .,Au,Du+1, . ,Dk)

So Bu,’u = (Ala s aAu)a By,z = (Ala tee Aua C’u—l—la R CT) Du+la s aDk)'
The deleted block (B,;)" = B s is (A1,..., Ay, Cp iy, .-+, Cp). But Cyuyyy ..., Cr,
as blocks of the union B, ,, contain at least z — k elements not in By, ;. Thus
s>v+(zx—k)>ut+y—k=u+(r+k—u)—k=r. Hences >r, as
desired for the proof of Lemma 12.3.3.

As indicated above, for the proof of the main theorem we now use induc-
tion on n. For n = 1 the theorem is obviously true.

Induction Hypothesis: Suppose the theorem holds (Condition (H) implies
that there is an SDR) for any family of m sets, 1 < m < n.

We need to show the theorem holds for a system of n sets. So let 1 <
n, assume the induction hypothesis, and let A = (S5i,...,S5,) be a given
collection of subsets of S satisfying Condition (H).

First Case: There is some critical block By with 1 < k < n. Delete
the elements in the members of By from the remaining subsets, to obtain
a new family A" = By U B;,_; ,, where By and B;_; , have no common

elements in their members. By Lemma 12.3.3, Condition (H) holds in A’,

and hence holds separately in By, and in B;l_,m viewed as families of sets.
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By the induction hypothesis, By, and B, , , have (disjoint) SDR’s whose
union is an SDR for A.

Remaining Case: There is no critical block for A except possibly the
entire system. Select any S; of A and then select any element of S; as its
representative. Delete this element from all remaining sets to obtain a family
A'. Hence a block B, ; with r < n becomes a block B, , with s’ € {s,s —1}.
By hypothesis B, ; was not critical, so s > r + 1 and s’ > r. So Condition
(H) holds for the family A"\ {S;}, which by induction has an SDR. Add to
this SDR the element selected as a representative for S; to obtain an SDR
for A. O

We now interpret the SDR problem as one on matchings in bipartite
graphs. Let G = (X, Y, E) be a bipartite graph. For each S C X, let N(S)
denote the set of elements of Y connected to at least one element of S by
an edge, and put §(S) = |[S| — |[N(S)|. Put §(G) = maz{d(S) : S C X}.
Since 6() = 0, clearly §(G) > 0. Then Hall’s theorem states that G has an
X-saturating matching if and only if 6(G) = 0.

Theorem 12.3.4. G has a matching of size t (or larger) if and only if
t<|X|—=04(S) forall S C X.

Proof. First note that Hall’s theorem says that G has a matching of size
t = |X| if and only if 6(S) < 0 for all S C X iff | X| < |X| — §(S) for
all S C X. So our theorem is true in case ¢ = |X|. Now suppose that
t < |X|. Form a new graph G’ = (X, Y U Z, E') by adding new vertices
Z ={z,...,2x|—¢} to Y, and join each z; to each element of X by an edge
of G'.

If G has a matching of size ¢, then G’ has a matching of size | X |, implying
that for all S C X,

S| < [N'(S)] = [N(S)| + X[ -,

implying

NS =[S = X[+t =t = (X[ [S]) =t - [X\S].
This is also equivalent to t < | X|— (|S| = |N(S)|) = | X]| — (S5).
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Conversely, suppose [N(S)| > t—|X\S| =t—(|X]|—|S|). Then |N'(S)| =
IN(S)|+ | X|—t> (t—|X|+]|S|) +|X|—t =|S|. By Hall’s theorem, G' has
an X-saturating matching M. At most | X| — t edges of M join X to Z, so
at least t edges of M are from X to Y. O

Note that t < |X| —§(S) for all S C X iff t < mingcx(|X| —d(5)) =
| X| —mazscxd(S) = | X| - 0(G).

Corollary 12.3.5. The largest matching of G has size | X| — §(G) = m(G),
i.e., m(G) +0(G) = | X]|.

12.4 A Theorem of Marshall Hall, Jr.*

Many of the ideas of “finite” combinatorics have generalizations to situations
in which some of the sets involved are infinite. We just touch on this subject.

Given a family A of sets, if the number of sets in the family is infinite,
there are several ways the theorem of P. Hall can be generalized. One of the
first (and to our mind one of the most useful) was given by Marshal Hall, Jr.
(no relative of P. Hall), and is as follows.

Theorem 12.4.1. Suppose that for each i in some indexr set I there is a
finite subset A; of a set S. The system A = (A;)icr has an SDR if and only
if the following Condition (H’) holds: For each finite subset I' of I the system
A" = (A)ier satisfies Condition (H).

Proof. We establish a partial order on deletions, writing D; C D, for dele-
tions Dy and D, iff each element deleted by D; is also deleted by Dy. Of
course, we are interested only in deletions which preserve Condition (H’).
If all deletions in an ascending chain D; C Dy C --- C D; C --- preserve
Condition (H), let D be the deletion which consists of deleting an element
b from a set A iff there is some 7 for which b is deleted from A by D;. We
assert that deletion D also preserves Condition (H).

In any block B, ; of A, (r,s < 00), at most a finite number of deletions in
the chain can affect B, ;. If no deletion of the chain affects B, s, then of course
D does not affect B, s, and Condition (H) still holds for B, ;. Otherwise, let
D,, be the last deletion that affects B, ;. So under D,, (and hence also under
D) (B,)" = B, , still satisfies Condition (H) by hypothesis, i.e., s' > r. But
B, ; is arbitrary, so D preserves Condition (H) on \A. By Zorn’s Lemma,
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there will be a maximal deletion D preserving Condition (H). We show that
under such a maximal deletion D preserving Condition H, each deleted set
S; has only a single element. Clearly these elements would form an SDR for
the original A.

Suppose there is an a; not belonging to a critical block. Delete a; from
every set A; containing a;. Under this deletion a block B, ; is replaced by a
block B, , with s > s —1 > r, so Condition (H) is preserved. Hence after
a maximal deletion each element left is in some critical block. And if By is
a critical block, we may delete elements of By from all sets not in By, and
still preserve Condition (H) by Lemma 12.3.3 (since it needs to apply only
to finitely many sets at a time). By Theorem 12.3.1 each critical block By
(being finite) possesses an SDR when Condition (H) holds. Hence we may
perform an additional deletion leaving By as a collection of singleton sets
and with Condition (H) still holding for the entire remaining sets. It is now
clear that after a maximal deletion D preserving Condition (H), each element,
is in a critical block, and each critical block consists of singleton sets. Hence
after a maximal deletion D preserving Condition (H), each set consists of a
single element, and these elements form an SDR for A. 0J

The following theorem, sometimes called the Cantor-Schroeder-Bernstein
Theorem, will be used with the theorem of M. Hall, Jr. to show that any
two bases of a vector space V over a field F' must have the same cardinality.

Theorem 12.4.2. Let X, Y be sets, and let 0 : X — Y and ¢ :Y — X be
injective mappings. Then there exists a bijection ¢ : X — Y.

Proof. The elements of X will be referred to as males, those of Y as females.
For z € X, if 8(x) = y, we say y is the daughter of z and z is the father of
y. Analogously, if 1(y) = z, we say x is the son of y and y is the mother of
z. A male with no mother is said to be an “adam.” A female with no father
is said to be an “eve.” Ancestors and descendants are defined in the natural
way, except that each x or y is both an ancestor of itself and a descendant of
itself. If z € X UY has an ancestor that is an adam (resp., eve) we say that
z has an adam (resp., eve). Partition X and Y into the following disjoint
sets:

X; ={z € X : z has no eve};

Xy ={z € X : z has an eve};
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Y: = {y € Y : y has no eve};

Yo ={y € Y : y has an eve}.

Now a little thought shows that 6 : X; — Y] is a bijection, and ~! :
Xy, — Y, is a a bijection. So

¢ = 0|X1 U ¢_1‘Xz
is a bijection from X to Y. O

Corollary 12.4.3. If V is a vector space over the field F and if By and By
are two bases for V', then |B;| = |Ba].

Proof. Let By = {z; : 4 € I} and By = {y; : j € J}. For each i € I, let
I'; = {j € J : y; occurs with nonzero coefficient in the unique linear

expression for z; in terms of the yjs}. Then the union of any k (> 1) I'is, say
Iy, ..., T, each of which of course is finite, must contain at least k distinct
elements. For otherwise z;,...,2; would belong to a space of dimension
less than k, and hence be linearly dependent. Thus the family (T'; : i € I) of
sets must have an SDR. This means there is a function § : I — J which is
an injection. Similarly, there is an injection ¢ : J — I. So by the preceding
theorem there is a bijection J < I, i.e., |By| = | Bs|. O

12.5 Exercises*

Exercise 12.5.0.1. Let A = (A4, ..., An) be a family of subsets of {1,...,n}.
Suppose that the incidence matriz of the family is invertible. Show that the
family has an SDR.

Exercise 12.5.0.2. Prove the following generalization of Hall’s Theorem.:

Let A= (A4, ..., Ay) be a family of subsets of X that satisfies the follow-
wng property: There is an integer v with 0 < r < n for which the union of
each subfamily of k subsets of A, for all k with 0 < k <n, has at least k —r
elements. Then there is a subfamily of size n — r which has an SDR. (Hint:
Start by adding r “dummy” elements that belong to all the sets.)
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Exercise 12.5.0.3. Let G be a (finite, undirected, simple) graph with vertex
set V. Let C = {C, : x € V'} be a family of sets indexed by the vertices of
G. For X CV, let Cx = UgexCyp. A set X CV is C-colorable if one can
assign to each vertex x € X a “color” ¢, € Cy so that c; # ¢, whenever x
and y are adjacent in G. Prove that if |Cx| > |X| whenever X induces a
connected subgraph of G, then V is C-colorable. (In the current literature of
graph theory, the sets assigned to the vertices are called lists, and the desired
proper coloring of G chosen from the lists is a list coloring of G. When G 1is
a complete graph, this exercise gives precisely Hall’s Theorem on SDR’s. A
current research topic in graph theory is the investigation of modifications of
this condition that suffice for the existence of list colorings.

Exercise 12.5.0.4. With the same notation of the previous exercise, prove
that if every proper subset of V' is C-colorable and |Cy| > |V|, then V is
C-colorable.
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