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0O Preliminaries

We consider Euclidean space R, n > 1 with elements = = (21, ..., 2,). The Euclidean
length of z is defined by

2| = /ai 4+ a2
and the standard inner product by
(z,y) = 2191 + -+ + TnYn.
We use the Cauchy-Schwarz-Bunjakovskii inequality in R™
(@, y)| <l - [yl.
By Bg(z) we denote the ball of radius R > 0 with center =
B(x) = {y €R": |s — y| < R}.

We say that (2 C R™,n > 2 is an open set if for any x € Q) there is R > 0 such that

BR(J,’) C Q.
If n =1 by open set we mean the open interval (a,b),a < b.
An n-tuple o = (v, ..., ;) of non-negative integers will be called a multi-index.
We define

(i) fol =220 oy
() @t 8= (on+Br... o+ ) with |a+ 8] = [a] +|3]
(iii) ol = ay! - ap! with 0l =1
)

(iv) @ > B if and only if o; > f; for each j = 1,2,...,n. Moreover, a > [ if and
only if @ > 8 and there exists jo such that a;, > ﬁjo.

(V) ifaZﬁthena_B:(041_61;'--70411_671) and |a_6|:|a|_|ﬂ|'

(vi) for x € R™ we define

=t
with 00 = 1.
We will use the shorthand notation
o olel
0j=—, =01 - 0"= ——-——.
7 Oz, ! " Ox{" -+ - 0o

This text assumes that the reader is familiar also with the following concepts:

1) Lebesgue integral in a bounded domain 2 C R™ and in R™.
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2)

Banach spaces (L?, 1 < p < oo, C*) and Hilbert spaces (L?): If 1 < p < oo then
we set

1/p
LP(Q) :={f : @ — Cmeasurable : |||, = (/Q |f(x)|pdx) < oo}

while
L>() :=={f : @ — Cmeasurable : || f|| ;o q) := esssup | f(z)| < oo}
e
Moreover
CHQ) = AF: 2= C: fllow = max > |07 ()] < oo},
| <k

where Q is the closure of . We say that f € C>°(Q) if f € C*(Q,) for all k € N
and for all bounded subsets 2; C Q. The space C*(£2) is not a normed space.
The inner product in L*(Q) is denoted by

mmg@zzf@mmm

Also in L*(), the duality pairing is given by

mmm@zlj@mww

Holder’s inequality: Let 1 < p < co,u € L? and v € L¥ with
1 1
p p

Then wv € L' and

1
7/

/|u |dm<</ u( |pdx> (/ o(x |pdx> ,

where the Holder conjugate exponent p’ of p is obtained via

g P
p—1

with the understanding that p’ = oo if p=1and p' =1 if p = 0.
Lebesgue’s theorem about dominated convergence:

Let A C R" be measurable and let { f;}7°; be a sequence of measurable functions
converging to f(x) point-wise in A. If there exists function g € L'(A) such that
|fr(z)] < g(x) in A, then f € L'(A) and

jim | s = [ o



5) Fubini’s theorem about the interchange of the order of integration:

| Aapldedy = [ as ( / |f<x,y>|dy) ~ [ ( / |f<x,y>|dx),

if one of the three integrals exists.
Exercise 1. Prove the generalized Leibnitz formula
0*(fg) =) Clo"fo 'y,
BLa
where the generalized binomial coefficients are defined as

5 _ o! _ B
= Bila—py ~ G

Hypersurface

A set S C R is called hypersurface of class C* k= 1,2,..., 00, if for any zy € S there
is an open set V' C R" containing zy and a real-valued function ¢ € C*(V) such that

Vo =(01p,...0,p) #0 on SNV
SNV ={xeV:px)=0}.

By implicit function theorem we can solve the equation p(z) = 0 near z, to obtain

Tp=U(x1,. .., Ty 1)
for some C* function 1. A neighborhood of x in S can then be mapped to a piece of
the hyperplane z,, = 0 by

x> (22, —P(2')),
where 2’ = (x1,...,2,-1). The vector Vy is perpendicular to S at z € SNV. The
vector v(z) which is defined as

Vo
v(zr) = +t——
Vel
is called the normal to S at z. It can be proved that
Vi, —1
v(z) = iu‘
VIVY[2+1
If S is the boundary of a domain 2 C R, n > 2 we always choose the orientation so
that v(z) points out of ) and define the normal derivative of u on S by
ou

ou=v-Vu=v1—+--+u,
81’1

u
ox,
Thus v and 9,u are C*~! functions.

Example 0.1. Let S,(y) = {x € R": |z —y| =r}. Then

n

x — 1 0
v(z) = Y and 0, = . Z(a:] —Y) =

r Ox;

j=1



The divergence theorem

Let  C R™ be a bounded domain with C*! boundary S = 92 and let F' be a C! vector
field on . Then
/V-Fda::/F~l/da(:c).
Q s

Corollary (Integration by parts). Let f and g be C* functions on Q. Then

/Qajf~gd:z::—/gf~8jgd:c+/Sf~gujda(:c).

Let f and g be locally integrable functions on R”, i.e. integrable on any bounded
set from R™. The convolution f x g of f and g is defined by

(f*g)(x) = . flx—y)gy)dy = (9% )(x),

provided that the integral in question exists. The basic theorem on the existence of
convolutions is the following ( Young’s inequality for convolution):

Proposition 1 (Young’s inequality). Let f € LY(R") and g € LP(R"),1 < p < oc.
Then f«g e LP(R") and
1f* gl < WAl llgllze -

Proof. Let p = o00. Then

[(f*g)(z)] < - |f(x—=y)llgw)ldy < l|gll - |f(x = y)ldy = |lgll e 1 £l 11 -

Let 1 < p < oo now. Then it follows from Holder’s inequality and Fubini’s theorem
that

dro@ras [ ([ 1= lala) @

n

p/pY
< [ (L) [ 1=l i
< [ [ 1= ullotdyie

<Y [ lowPdy [ \rte = plas

/ / 1
= 1A Mgl 1 e = A gl

|
Rn

Thus, we have finally

1/p'+1
1F# gl < IFIE P Ngl e = 1o gl o -



Exercise 2. Suppose 1 < p,q,r < oo and % —I—% = % + 1. Prove that if f € LP(R")
and g € LY(R"™) then fxg € L"(R") and
1+ gll, < WA, gl -

In particular,
1 gl e < 1f1 o N9l o -

Definition. Let v € L'(R") with

/n u(z)dr = 1.

Then u.(z) := e "u(z/e),e > 0 is called an approzimation to the identity.

Proposition 2. Let u.(x) be an approzimation to the identity. Then for any function
© € L>®°(R™) which is continuous at {0} we have

lim ue(z)p(z)dz = ¢(0).

e—0+ R™

Proof. Since u.(x) is an approximation to the identity we have

| u@yplalde = ¢0) = [ uo)pla) - p(0))ds

and thus

[ wetrptayie - @(0)’ </  lo)lote) = (0
U (T z) — (0)|dx
+/.x>ﬁ’ (@)lle(x) - 9(0)]
su x) — (0 U () |dr + 2 Loo ug () |dx
< w0 6@ O] [ @l 200l [ o)

< sup () = @(0)] - [|ul . +2||<P|!Loo/ |u(y)|dy — 0
2<VE lyl>1/vz

as € — 0. L]

Example 0.2. Let u(z) be defined as



Fourier transform

If f e LYR") its Fourier transform for F (f) is the bounded function on R"™ defined
by

fioy = em e [ e

~

Clearly f(&) is well-defined for all £ and HfH (2m) 2| ]I, -

The Riemann-Lebesgue lemma

If f € LY(R"™) then fis continuous and tends to zero at infinity.

Proof. Let us first prove that F f() is continuous (even uniformly continuous) in R™.
Indeed,

\FF(E+h)—FFE) < (2m) "2 @)l e~ — 1]dw

x)||z||h|dx x)|dz
g/|wlh|§m|f< eliggo +2 [ 176

<Vl +2 [ if@lds o

|z|>1/+/1h|

as |h] — 0 since f € L*(R").
To prove that Ff(£) — 0 as || — 0 we proceed as follows. Since e™ = —1 then

2716 = m) ™ [ fla)e 0o — ) [ et g
= (2m) ™" . flx)e @ dg — (2m) /2 5 Fly + €/ |€P)e @Oy
=) [ (fa+ag/lEP) - f@)e 9.
Hence

AFFOI < @m™ | |f(@+7E/I) = f(o)lda
= @2m) 2| f( A+ 7E/IEP) = FO)|| 0 — 0
as |¢| — oo since f € L}(R™). m
Exercise 3. Prove that if f,g € L'(R") then f * g = (27)"/2 /3.
Exercise 4. Suppose f € L'(R"). Prove that

1. If fu(x) = f(x + h) then fp = €<t



2. If T : R" — R" is linear and invertible then f o7 = |det 7|~ F (T~1)¢), where
T’ is the adjoint matrix.

3. If T is rotation, that is 7" =T~ (and |det T| = 1) then f/o\T =FoT.

Exercise 5. Prove that

o~ —_— —

0°f = (=ix)rf, 0 = (&) .
Exercise 6. Prove that if f,g € L'(R") then

~

[ J©aec= | Tegec

For f € L'(R") define the inverse Fourier transform of f by

F )= 2m) " [ empee

n

It is clear that
F (@) =Ff(-2), F'f=F()
and for f,g € L'(R")
(Ff9)ee = (f,F ' g)e.
The Schwartz space S(R™) is defined as

S(R") = {f € C=(R™) : sup |z°0° f(z)| < oo, for any multi—indicesaandﬁ} )

xER™
The Fourier inversion formula
If f € S(R™) then (]—"’1]-")f = f.

Exercise 7. Prove the Fourier inversion formula for f € S(R™).

The Plancherel theorem

The Fourier transform on S extends uniquely to a unitary isomorphism of L?(R") onto

itself, i.e.
171, = 10,

This formula is called the Parseval equality.
The support of a function f : R"™ — C, denoted by supp f, is the set

supp f = {z € R": f(z) # 0}.

Exercise 8. Prove that if f € L'(R") has compact support then fextends to an entire
holomorphic function on C".



Exercise 9. Prove that if f € C°(R™) ie. f € C*(R™) with compact support, is
supported in {x € R" : |x| < R} then for any multi-index o we have

(&) F(&)] < (2m) /e el oo f|

that is, f(§) is rapidly decaying as |Re&| — oo when |Im €| remains bounded.

Distributions

We say that ¢; — ¢ in C§°(Q),Q C R" open, if ¢; are all supported in a common
compact set K C {2 and

su[g |0%p(x) — 0% (z)| = 0, j— o0
xTe

for all a. A distribution on € is a linear functional u on C§°(€2) that is continuous, i.e.,

L. u:C§e(Q2) — C. The action of u to ¢ € C§°(Q?) is denoted by (u, ). The set of
all distributions is denoted by D’(2).

2. (u, crep1 + cogpa) = ci{u, p1) + ca{u, v2)

3. If o; — ¢ in C5°(2) then (u, ¢;) — (u,¢) in C as j — oo. It is equivalent to the
following condition: for any K C ) there is a constant C'x and an integer Nk
such that for all ¢ € C§°(K),

(u,0)| < Cx D 10| -

la| <Nk

Remark. If u € LL (Q),Q C R" open, then u can be regarded as a distribution (in

loc
that case a regular distribution) as follows:

(4, ) = / w(e)p(z)dr, o € C°(Q).

The Dirac d-function

The d-function is defined as
(0,0) = ©(0), e Q).

It is not a regular distribution.

Example 0.3. Let u.(z) be an approximation to the identity. Then

@) = (2m) " |

In particular,

e "u(z/e)e @) dr = (2#)_"/2/ u(y)e WD dy = u(ef).

n n

. ~ — . -~ — 7’I’L/2
Jim 2.(6) = lim A(c6) = (2m) "2

Applying Proposition 2 we may conclude that
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1) lime04 (ue, ) = ¢(0) i.e. lim._,o4 u. = 0 in the sense of distributions, and

2) 6 = (2m)""/2 . 1.

We can extend the operations from functions to distributions as follows:

(0%u, p) = (u, (1) 15%p),
(fu,0) = (u, feo), [ eC™(Q),
(ux ) = (upx1), ¢ eCR(Q)
where J(x) = ¢(—x). It is possible to show that u * 1 is actually a C*° function and
0*(u* 1) =u*x 0.

A tempered distribution is a continuous linear functional on S(R™). In addition to the
preceding operations for the tempered distributions we can define the Fourier transform
by

~

(U, 0) = (u, ), ¢€S.
Exercise 10. Prove that if u is a tempered distribution and ¢ € S then
Wk = (2m)" ),
Exercise 11. Prove that
1. 6= (2m) ™21, 1= (2m)"%
2. 976 = (i€)™(2m) /2

A~

3. 1% = ildlga(1) = il (2m)"/29°.



1 Local Existence Theory
A partial differential equation of order k € N is an equation of the form
F (z,(0%)ja1<k) =0, (1.1)

where [ is a function of the variables x € @ C R",n > 2,Q an open set, and (uq)a|<k-
A complex-valued function u(z) on €2 is a classical solution of (1.1) if the derivatives
0%u occurring in F' exist on €2 and

F (:1:, (3au(x))‘a|§k) =0

pointwise for all x € Q. The equation (1.1) is called linear if it can be written as

Y aa(@)du(x) = f(x) (1.2)

o<k

for some known functions a,, and f. In this case we speak about the (linear) differential
operator

L(z,0) = Z Ao ()0

o<k

and write (1.2) simply as Lu = f. If the coefficients a, () belong to C*(2) we can apply
the operator L to any distribution u € D'(Q2) and w is called a distributional solution
(or weak solution) of (1.2) if the equation (1.2) holds in the sense of distributions, i.e.

> ()1 u, 8% (aap)) = (f.0),

lo| <k

where ¢ € C§°(2). Let us list some examples. Here and throughout we denote
U = %,utt = % and so forth.

1. The eikonal equation
|Vul? = ¢,

where Vu = (01, . .., 0,u) is the gradient of w.

2. a) Heat (or evolution) equation

u = kAu
b) Wave equation
Uy = Au
c) Poisson equation
Au = f,

where A =V -V = 02+ .-+ 9?2 is the Laplacian (or the Laplace operator).

10



3. The telegrapher’s equation
uy = AU — oy — mu
4. Sine-Gordon equation
Uy = AAu — sinu

5. The biharmonic equation

A?u=A(Au) =0
6. The Korteweg-de Vries equation

U + CU - Uy + Uggr = 0.

In the linear case, a simple measure of the ”strength” of a differential operator is
provided by the notion of characteristics. If L(z,0) = 3, <; @a()0* then its charac-

teristic form (or principal symbol) at x € € is the homogeneous polynomial of degree
k defined by

xXo(,§) = Z ao(2)€*, £ eR™

|laf=k

A nonzero £ is called characteristic for L at x if xp(z,€) = 0 and the set of all such &
is called the characteristic variety of L at x, denoted by char,(L). In other words,

charg (L) = {§ # 0 : xr(z, ) = 0}

In particular, L is said to be elliptic at z if char,(L) = () and elliptic in § if it is elliptic
at every x € Q.

Example 1.1. 1. L = 010y,char, (L) ={£ €R?: & =00r& =0, 4+ & > 0}.
2. L = £(d +i0s) is the Cauchy-Riemann operator on R?. Tt is elliptic in R?
3. L = A is elliptic in R™.
4. L=y =" ,0%, char, (L) ={£ e R"\{0}:& =0,7=2,3,...,n}.

j=29
5. L=0} =Y, 0, char(L) = {€ € RN\ {0} : & =37, €2}

Let v(x) be the normal to S at x. A hypersurface S is called characteristic for L
at x € S if v(z) € char,(L), i.e.

xw(@,v(z)) =0

and S is called non-characteristic if it is not characteristic at any point, that is, for
any r € S

xro(z,v(z)) #0.

11



Let us consider the linear equation of the first order
Lu_Za] )Oju+ b(x)u = f(z), (1.3)

where a;, b and f are assumed to be C'' functions of z. We assume also that a;,b and f
are real-valued. Suppose we wish to find a solution u of (1.3) with given initial values
u = g on the hypersurface S (g is also real-valued). It is clear that

charx(L):{«S;éO:fT-f:O},

where A = (ay,...,ay,). It implies that char,(L)U {0} is the hyperplane orthogonal to

A and therefore, S is characteristic at z if and only if A is tangent to S at = (A' v =0).
Then

n n

Zaj(x)aju(x) = Z aj(x)0;9(x), = €S8,

=1 j=1
is completely determined as certain directional derivatives of ¢ (see the definition of
S) along S at z, and it may be impossible to make it equal to f(x) — b(x)u(x) (in
order to satisfy (1.3)). Indeed, let us assume that u; and uy have the same value g on
S. This means that u; —us = 0 on S or (more or less equivalently)

Uy — Uz =@ -7,
where ¢ = 0 on S (@ defines this surface) and v # 0 on S. Next,
(A V)ur = (A- V)uz = (A- V) (1) = WA= V)p+ (A V)y =0,

since S is characteristic for L ((A- V) =0 < (A- ‘gl)go —0«< A-v=0). That’s
why to make the initial value problem well-defined we must assume that S is non-
characteristic for this problem.

Let us assume that S is non-characteristic for L and u = g on S. We define the

integral curves for (1.3) as the parametrized curves z(t) that satisfy the system

—

= A(z), x=uxz(t)= (x1(t),...,2,(t)) (1.4)

of ordinary differential equations, where

12



or J
u

i f—bu. (1.5)
By the existence and uniqueness theorem for ordinary differential equations there is a
unique solution (unique curve) of (1.4) with x(0) = 2. Along this curve the solution
u(z) of (1.3) must be the solution of (1.5) with u(0) = u(z(0)) = u(ze) = g(xo).
Moreover, since S is non-characteristic, x(t) ¢ S for ¢t # 0, at least for small ¢, and the
curves z(t) fill out a neighborhood of S. Thus we have proved the following theorem.

Theorem 1. Assume that S is a surface of class C' which is non-characteristic for
(1.3), and that a;,b, f and g are C* and real-valued functions. Then for any sufficiently
small neighborhood U of S in R™ there is a unique solution u € C* of (1.3) on U that
satisfiesu =g on S.
Remark. The method which was presented above is called the method of characteristics.
Let us consider some examples where we apply the method of characteristics.
Example 1.2. In R3, solve x101u + 2220u + Osu = 3u with u = g(xy, x3) on the plane
T3 = 0.
Since S = {z € R®:z3 =0} then v(z) = (0,0,1) and since x(x,&) = z:& +
2x9& + &3 we have

xo(z,v(x) =21-0+225-04+1-1=1#0
so that S is non-characteristic. The system (1.4)-(1.5) to be solved is
[tl =T, ZtQZQIQ, i’gz ]_, u = 3u

with initial conditions

($1,$2,1’3)’t:0 = (x(l)axgvo)a u(O) = g(x(f?mg)

on S. We obtain

0t 0,2t 0 .0y,3t
x1 =1x7€", Ty =1x9e”, myg=1t, u=g(x],xy)e”.

These equations imply

t x3 2t —2x3

x? =rie =116 7, xg = x9e 7 = X19€

Therefore

—I3 —2%3)631'3

U(x) - u(xla Zo, Jl‘g) - g('rle , Lo€

Example 1.3. In R3, solve d1u + 210ou — O3u = u with u(zy,22,1) = 21 + 5.
Since S = {x € R?: 23 = 1} then v(z) = (0,0,1). That’s why

xp(z,v(@)=1-0+21-0—1-1=—-1#0

13



and S is non-characteristic. The system (1.4)-(1.5) for this problem becomes

j,’l:]_, jfgle, j,’g:—]., U =1u
with
($1,$2,$3)|t:0 = (.%?,I‘g, 1), U,(O) = x(l) + Slfg
We obtain
0 t? 0 0 0 0yt
r1 =t+ 27, $2:§+t$1+x2, r3=—t+1, u=(r]+zy)e".
Then,
t=1— a3, x?:xl—t:xl—l—xg—l,
1 — x3)? 1 x2
$g=$2—%—(1—m3)(x1+x3—1) :§—I1+$2—l‘3+$1l‘3+§3
and, finally,

2
_ (%3 _1 l—=z3
u—(2+m1x3+x2 2)6 .

Now let us generalize this technique to quasi-linear equations or to the equations
of the form

Zaj(x,u)ﬁju = b(z,u), (1.6)

j=1
where a;,b and u are real-valued. If u is a function of z, the normal to the graph of u
in R"™! is proportional to (Vu, —1), so (1.6) just says that the vector field

A(z,y) == (ay,...,a,,b) € R"

is tangent to the graph y = w(z) at any point. This suggests that we look at the
integral curves of A in R"*! given by solving the ordinary differential equations

t;=aj(z,y), j=12,...,n, y=>b(z,y).
Suppose u is a solution of (1.6). If we solve
t; =a;(z,u(x)), j=12,...,n,

with 2;(0) = 29 then setting y(t) = u(z(t)) we obtain that

Y= Zaju ST = Z aj(z,u)0;u = b(x,u) = b(x,y).
j=1 j=1

Suppose we are given initial data u = g on S. If we form the submanifold
5% ={(z,g9(x)) : v € 5}

14



in R™*! then the graph of the solution should be the hypersurface generated by the
integral curves of A passing through S*. Again, we need to assume that S is non-
characteristic in a sense that the vector

(a1(z,9(x)), .- an(z, 9(2))), = €5,

should not be tangent to S at z. If S is represented parametrically by a mapping

G : R — R" (for example (21, ..., 20 1) = (T1,. .., Tp_1,(21,...,2,1))) and we
have the coordinates 2/ = (1, ..., 2, 1) € R""! this condition is just
g e a (P, 9(B())
det | .. ; £0.
dpn dpn - -
et ety an (P(), 9(A(x)))

Remark. 1f S is parametrized as
xn:¢(m17"‘7xn—l)7 x/:<x17"'7xn—1) GS/CRn_l

then S can be represented also by

¢($1, e ,xn) = 0,
where ¢(x1,...,2,) = ¥(2') — x, and v(z) is proportional to
oY oY
= =,... —-1].
Vo ( R )
Then S is non-characteristic if and only if
o oY
alﬁ_xl—Fm—Fan_laxn,l —an#O
or
I 0 0 ar (z,9(z))
0 1 0 az (z,g9(z))
det : D : : # 0,
0 0 1 ap—1 (I’,g(l’))
6871!}1 6:?:}_1 n (SL‘, (*T )
where x € S.

Example 1.4. In R?, solve udyu + Oou = 1 with u = s/2 on the segment z; = x5 = s,
where s > 0, s # 2 is a parameter.
Since F(s) = (s, s) then (2/ =z = s)

a—xsl ai(s,s,s/2) \ _ 1 s/2\
det(% ag(s,s,s/Q))_det<1 1 )—1—3/27&0,

15



for s > 0,s # 2. The system (1.4)-(1.5) for this problem is
1"1 = U, Ztg = 17 uw=1

with
0

X
($1,$2,U)‘t:0 = (x?,mg, ?1) = (57575/2)'

Then
u=t+s/2, wxp=t+s, i3=1t+s/2

so that 1 = % + %t + s. This implies
Tl — X = t2/2+t<8/2— 1)

For s and ¢ in terms of x; and x5 we obtain

1 t? 2(zq —
le‘Fg(ﬂfl—[L’g——), t:M

2 2 Ty — 2
Hence
2(%1—$2)+1+ZE1—1’2 t
u = _— — =
I‘Q—Q t 2
2(271 — [L’Q) T — 2 Tr1 — T2
= — -7 1 —
172—2 T 2 172—2
T| — X9 To—2 Ty — Ty Xy
= 1 = _—
I2—2+ + 2 ZL‘Q—Q 2
2wy —dap + a3
21— 2)

Exercise 12. In R? solve 220,u + 220yu = u? with u = 1 when x5 = 2.
Exercise 13. In R?, solve udyu + x90yu = 1 with u(zy,1) = 2.
Example 1.5. Consider the Burgers equation

uohu + Gu =0

in R? with u(z;,0) = h(z;), where h is a known C' function. It is clear that S :=
{z € R?: x5 = 0} is non-characteristic for this quasi-linear equation, since

det((l) h(f1>):17é0,

and v(z) = (0,1). Now we have to solve the ordinary differential equations

i‘lzu, i?gzl, =0
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with
(1, 22, ) |e=0 = (23,0, h(2Y)).

We obtain
o=t u=h(a)), x=nh(z)t+a?

so that
r1 — 2oh(2)) — 29 = 0.

Let us assume that

—xoh) (2V) — 1 £ 0.

By this condition last equation defines an implicit function 29 = g(z;, x5). That’s why
the solution u of the Burgers equation has the form

u(z, r2) = hig(x1, 22)).
Let us consider two particular cases:

1. If h(zY) = az¥ + b,a # 0, then

u(wy, xa) =

2. If h(29) = a(29)? + b2l + ¢,a # 0, then

2axo

'U/(l'l, SCQ) = q <_x2b -1+ \/(‘TQb + ]-)2 - 40/5[72(61‘2 — xl))

o (—m 1+ /(b T 1P damgler, - fﬂ) e

2azo

with D = (230 + 1)? — daxs(cre — 1) > 0.

Let us consider again the linear equation (1.2) of order & i.e.

> aa(@)0"u(z) = f(x).

o<k
Let S be a hypersurface of class C*. If u is a C* function defined near S, the quantities
w, Oyu, ..., 08ty (1.7)

on S are called the Cauchy data of w on S. And the Cauchy problem is to solve (1.2)
with the Cauchy data (1.7). We shall consider R",n > 2, as R"~! x R and denote the
coordinates by (z,t), where © = (x1,...,2,-1). We can make a change of coordinates
from R™ to R"™! x R so that 2y € S is mapped to (0,0) and a neighborhood of z; in

17



S is mapped into the hyperplane t = 0. In that case 9, = 2 on S = {(z,t) : t = 0}

ot
and equation (1.2) can be written in the new coordinates as
N (@, )00u = f(x,t) (1.8)
lal+j<k

with the Cauchy data
Hu(x,0) = p;(z), j=01,....k—1. (1.9)

Since the normal v = (0,0,...,0,1) then the assumption ”S is non-characteristic”
means that

xL(z,0,v(x,0)) = agx(z,0) # 0.

Hence by continuity ag(z,t) # 0 for small ¢, and we can solve (1.8) for 9Fu:

Opu(z,t) = (aou(x, ) [ F= D aa;000Hu (1.10)

lal+j<k,j<k
with the Cauchy data (1.9).

Example 1.6. The line ¢ = 0 is characteristic for 9,0,u = 0 in R?. That’s why
we will have some problems with the solutions. Indeed, if w is a solution of this
equation with Cauchy data u(z,0) = go(z) and du(x,0) = g1(z) then 0,1 = 0,
that is, g = constant. Thus the Cauchy problem is not solvable in general. On
the other hand, if ¢g; is constant, then there is no uniqueness, because we can take

u(z,t) = go(x) + f(t) with any f(¢) such that f(0) =0 and f'(0) = ¢;.

Example 1.7. The line ¢ = 0 is characteristic for 9*u — dyu = 0 in R?. Here if we are
given u(z,0) = go(z) then du(x,0) is already completely determined by Ouu(x,0) =
go(z). So, again the Cauchy problem has "bad” behaviour.

Let us now formulate and give ”a sketch” of the proof of the famous Cauchy-
Kowalevski theorem for linear case.

Theorem 2. If a, ;(z,t), 00(x), ..., vx—1(z) are analytic near the origin in R™, then
there is a neighborhood of the origin on which the Cauchy problem (1.10)-(1.9) has a
unique analytic solution.

Proof. The uniqueness of analytic solution follows from the fact that an analytic func-
tion is completely determined by the values of its derivatives at one point (see the
Taylor formula or the Taylor series). Indeed, for all & and j =0,1,...,k —1

0 ulz,0) = 9 (x).
That’s why

Oulizo = (aop) " | f@,0) = Y aa(w,0)05¢;(x)

lol+j<k.j<k

18



and moreover

8tku(xat) = (aO,k)il f(l’,t) - Z aa,j(w7t)8§agu

la|+j<k,j<k
Then all derivatives of u can be defined from this equation by
afﬂu = 8t (8fu) .

Next, let us denote by ya; = 0%0u and by Y = (ya;) this vector. Then equation
(1.10) can be rewritten as

Yo = (aos)” | f— Z Ua,jYa,j

lo|+5<k,j<k

or

O (ou—1) = (aoe) " | f = D CaiOniasy,

loe|+5<k,j<k

and therefore the Cauchy problem (1.10)-(1.9) becomes

Y(2,0) = ®(z), zcR" (1.11)

{aty =" A0,Y + B
where Y, B and ® are analytic vector-valued functions and A;’s are analytic matrix-
valued functions. Without loss of generality we can assume that ® = 0. Let ¥V =
(Y1, yn), B=(b1,...,bN), A; = (afflg)%’l:l. We seek a solution Y = (y1,...,yy) in
the form

Ym = ZCSZ)Q:D‘#, m=1,2,...,N.

The Cauchy data tell us that ngé) = 0 for all @ and m, since we assumed ¢ = 0. To
7-7

determine Cé ) for j > 0, we substitute y,, into (1.11) and get form =1,2,... N

Oty = Z a%@x].yl + by (2, y)

Z Cgr;)jx“tj_l = Z Z (a%)ﬁr Pt Z C’g’;)ajxo‘_;tj + Z b((x";)xo‘tj.

b B

or

It can be proved that this equation determines uniquely the coefficients C’(()Z) and
therefore the solution Y = (y1,...,yn). O
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Remark. Consider the following example in R?, due to Hadamard, which sheds light
on the Cauchy problem:

Au=0, u(z,0)=0, 0su(xy,0)= ke_\/Esin(xlk:), ke N.

This problem is non-characteristic on R? since A is elliptic in R?. We look for
u(zy, xe) = uy(x1)ug(zs). Then

ufus + ugu; =0

which implies that

U u//
L — 2 — _\ = constant.
(75} U2
Next, the general solutions of
uf = —Auy
and
uy = g
are
uy = Asin(vVAzy) + Bcos(V ;)
and

uy = C'sinh(V/Ax3) 4+ D cosh(V/Ax,),

respectively. But uy(0) = 0,u,(0) = 1 and uy (x1) = ke ¥ sin(kxy). Thus D = 0, B =
0,k =vV\A=keVkand C = % = \%\ So we finally have
1
~Vk sin(k:xl)E sinh(kzy) = e VF sin(kx ) sinh(kz,).
As k — +o0, the Cauchy data and their derivatives (for 5 = 0) of all orders tend
uniformly to zero since e~V decays faster than polynomially. But if x5 # 0 (more
precisely, x3 > 0) then

uw(zy, o) = ke

vk

lim e V¥sin(kz)sinh(kzy) = oo,

k—4o00
at least for some 7 and some subsequence of k. Hence u(xy,x5) is not bounded. But
the solution of the original problem which corresponds to the limiting case k = oo is
of course u = 0, since u(xy,0) = 0 and dyu(zy,0) = 0 in the limiting case. Hence the
solution of the Cauchy problem may not depend continuously on the Cauchy data. It
means by Hadamard that the Cauchy problem for elliptic operators is ”ill-posed”, even
in the case when this problem is non-characteristic.

Remark. This example of Hadamard shows that the solution of the Cauchy problem
may not depend continuously on the Cauchy data. By the terminology of Hadamard
"the Cauchy problem for the Laplacian is not well-posed or it is ill-posed”. Due to
Hadamard and Tikhonov any problem is called well-posed if the following are satisfied:
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1. existence
2. uniqueness
3. stability or continuous dependence on data

Otherwise it is called ll-posed.

Let us consider one more important example due to H. Lewy. Let L be the differ-
ential operator of the first order in R?® ((x,y,t) € R?) given by

= ——H'ﬁ—%(x—l—iy)—. (1.12)
Y

Theorem 3 (The Hans Lewy example). Let f be a continuous real-valued function
depending only on t. If there is a C' function u satisfying Lu = f, with the operator
L from (1.12), in some neighborhood of the origin, then f(t) necessarily is analytic at
t=0.

Remark. This example shows that the assumption of analyticity of f in Theorem 2
in the linear equation can not be omitted (it is very essential). It appears necessarily
since Lu = f with L from (1.12) has no C' solution unless f is analytic.

Proof. Suppose z° + 32 < R? |[t| < R and set z = z + iy = re?’. Denote by V(¢) the
function

27
V(t) ::/ u(z,y,t)do(z) = ir/ u(r,0,t)e®do,
|z|=r 0
where u(z,y,t) is the C! solution of the equation Lu = f with L from (1.12). We keep

denoting u in polar coordinates also by u. By the divergence theorem for F' := (u,iu)
we get

Ju  Ou
i V. Fdxdy = 2/ <—+i—)dxdy:i/ u,1u) - vdo(z
/|,;<r |z|<r Ox 8y \z|:r( ) ( )

= i/z|r (u% + zu%) do(z) = z/l ue?do(2)

z|=r

27
= ir/ uedf =V (t).
0

But on the other hand, in polar coordinates,

ou ou T Ou ou
Vit Ei/ (—Jrz'—)dxd —z// (——H’—) .0, ) pdpdo.
(t) o \aw Ty y ) \az Ty (p,0,t)pdp
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This implies that

ov [ (Oou  Ou ou  Ou do(z)
5 = zr/o (% +Za—y> (r,0,t)do = /|z|:r <%—|—Za—y) (x,y,t)2r 5

= 2r /|er (i% + %) do(z) = 2r (@'88_‘; ) /|er dﬁ;))

= 2r (z%—‘t/ + iﬂf(t)) :
That’s why we have the following equation for V:
1oV [0V

Let us introduce now a new function U(s,t) = V(s)+ 7 F(t), where s = r? and F’ = f.
The function F exists because f is continuous. It follows from (1.13) that

L9V _9V U 9V 9U U

o or _ ds’ s 9s 0s ot
Hence
ou U
AT
Since (1.14) is the Cauchy-Riemann equation then U is a holomorphic (analytic) func-
tion of the variable w = t + s, in the region 0 < s < R? || < R and U is continuous
up to s = 0. Next, since U(0,t) = 7F(t) (V =0 when s =0 < r =0) and f(¢) is real-
valued then U(0,t) is also real-valued. Therefore, by the Schwarz reflection principle
(see complex analysis), the formula

0. (1.14)

U(=s,t) :=U(s,t)

gives a holomorphic continuation of U to a full neighborhood of the origin. In partic-
ular, U(0,t) = wF(t) is analytic in ¢, hence so is f(t) = F'(t). O
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2 Fourier Series

Definition. A function f is said to be periodic with period T' > 0 if the domain D(f)
of f contains x + T whenever it contains x, and if

fle+T) = f(z), xeD() (2.1)

It follows that if T" is a period of f then mT is also a period for any integer m > 0.
The smallest value of 7" > 0 for which (2.1) holds is called the fundamental period of

mnx

For example, the functions sin ** and cos ™F*,m = 1,2,... are periodic with

fundamental period T = % Note also that they are periodic with the common period
2L.

Definition. Let us assume that the domain of f is symmetric with respect to {0}, i.e.
if x € D(f) then —z € D(f). A function f is called even if

f(=x) = f(x), =€ D(f)

and odd if
f(=z)=—f(z), z€D(f).

Definition. The notations f(c 4 0) are used to denote the limits

flc£0)= lim f(x).

r—c£0

Definition. A function f is said to be piecewise continuous on an interval a < x < b if
the interval can be partitioned by a finite number of pointsa =zo <21 < --- <z, =b
such that

1. f is continuous on each subinterval z;,_; < z < ;.
2. f(x; £0) exists for each j =1,2,...,n—1 and f(x¢ +0) and f(x, — 0) exist.

The following properties hold: if a piecewise continuous function f is even then

/ f(a)de = 2/: f(x)dz (2.2)

and if it is odd then

/_a f(x)dx = 0. (2.3)

Definition. Two real-valued functions v and v are said to be orthogonal ona < x <b
if

/abu(a:)v(x)da: = 0.

A set of functions is said to be mutually orthogonal if each distinct pair in the set is
orthogonal on a < z < b.
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Proposition. The functions 1,sin % and cos =, m = 1,2, ... form a mutually or-

thogonal set on the interval —L < x < L. In fact,

L
0
/ cos T cos g = % ™ 7n (2.4)
I L L L, m=n
L mrr | nmx
/_L cos — sin Tdm =0 (2.5)
L
0
/ sin - i gy =4 7 (2.6)
I L L L, m=n
L L
/ sin 272 gy = / cos 7% gz = 0, (2.7)
LT )

Proof. Let us derive (for example) (2.5). Since
1
cosasin f = i(sin(oz + ) —sin(a — f))

we have for m # n

L L I _
[ oo™~ 4 [ n M ERITT L [ s (m—n)me
-L L L 2J1 L 2)_

If m = n we have

L L

1 2

/ CoS mre sin @dx = — / sin mre de =0
_I L L 2 J_

since sine is odd. Other identities can be proved in a similar manner and are left to
the reader. 0

Let us consider the infinite trigonometric series

% -I—mz::l (cmwzos? + b, sin mmc) )
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This series consists of 2L—periodic functions. Thus, if the series (2.8) converges for all
x, then the function to which it converges will be periodic of period 2L. Let us denote
the limiting function by f(x), i.e

mmrx
— . 2.
+Z<amcos +bmsn 7 ) (2.9)

To determine a,, and b,, we proceed as follows: assuming that the integration can be
legitimately carried out term by term, we obtain

L 00 L
nmwx ao nwx mmx nmwx
) cos —d:c = — cos —dx Am COS cos —dx
/ e 2 /_ LT mzzl /_L L 71

+ Zb / sin mre Cos?dm

for each fixed n. It follows from the orthogonality relations (2.4),(2.5) and (2.7) that
the only nonzero term on the right hand side is the one for which m = n in the first
summation. Hence,

L
/ f(z) cos ?dw = La,
—L

or

/ f(z)cos md:c (2.10)
A similar expression for b, may be obtained by multiplying (2.9) by sin “%* and inte-
grating termwise from —L to L. Thus,
1 L
b, = /., f(z)sin n—z%dm. (2.11)

To determine ag we use (2.7) to obtain

/_LLf(x)dx = —/ d:c—l—Zam/ cos

Hence -
= z/_L f(z)dx. (2.12)

Definition. Let f be a piecewise continuous function on the intervel [—L, L]. The
Fourier series of f is the trigonometric series (2.9), where the coefficients ay, a,, and
by, are given by (2.10), (2.11) and (2.12).

dJE + Z bm / sin mwxdl_ = agL.
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It follows from this definition and (2.2)-(2.3) that if f is even on [—L, L] then the
Fourier series of f has the form

a mmx
f(x) = 5 T m§:1 A CO8 — (2.13)
and if f is odd then
- mmrx
= by, si . 2.14

The series (2.13) is called the Fourier cosine series and (2.14) is called the Fourier
sine series.

Example 2.1. Find the Fourier series of
-1, —7<x<0
sgn(z) =40, x=0
1, O<z<m

on the interval [—m, 7].
Since L = m and sgn(z) is odd function we have a Fourier sine series with

by = % / " sgn(s) sin(ma)de = 2 /0 " sin(ma)dz = > {_M} )

o T T m 0
_ g{_cos(mﬂ)+i}:g{1—(—1)m}:{0, m=2kk=12,...
7 m m 7 m L om=2k-1k=12,....
That’s why

sgn(z) = Zl #_) sin((2k — 1)x).

In particular,

T =sin((k—1/2)1) o= (—1)F!
2 =2 k—1/2 _Zk—l/Q'
k=1 k=1
Example 2.2. Let us assume that f(z) = |z|,—1 < x < 1. In this case L = 1 and
f(z) is even. Hence we will have a Fourier cosine series (2.13), where

1 1
|z|de = 2/ xdr =1
-1 0
and

Ay, = 2/ xcosmﬂxdyc—Q{ M}
0 mm

cos mmnx) cos(mm) 1
(mm)? (m)?
2((-1 )_ 0, m=2kk=12,...
( ) B (mﬂ')2’ mZQk_l,k:1,2,

! B 2/1 sin(mwx)dx
0 0

mm
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So we have

14 S cos((2k — V)7z)
o= 5= 2 (2k — 1)2
k=1
In particular,
w2 - 1
A Z —
8 = (2k-1)

Exercise 14. Find the Fourier series of f(z) =x,—1 <z < 1.

Let us consider the partial sums of the Fourier series defined by

ML b, si
m SN
7 i

™ m’TFCL’)

N
Sy(z) = % + Z (am cos
m=1

We investigate the speed with which the series converges. It is equivalent to the
question: how large value of N must be chosen if we want Sy(z) to approximate
f(z) with some accuracy € > 07 So we need to choose N such that the residual
Rn(z) := f(x) — Sy(z) satisfies

[Rn(x)] <e

for all x, say, on the interval [—L, L]. Consider the function f(x) from Example 2.2.
Then

4 X cos((2k — D)
By =15 2. (2k — 1)?

and

IN

4 & 1 4 1 1
[y ()] Fk§+l k1P "2 { GNN+1) @GNt DeN+2) }

4 1 1 1 1 4 2
- F{W ON+1 2N 1 2N+2+"'}_ ON7Z  NaZ o~ °©
if and only if N > E% Since 7% & 10 then if € = 0.04 it is enough to take N = 6, for
e = 0.01 we have to take N = 21.
The function f(z) = |z| is "good” enough with respect to "smoothness” and the
smoothness of |z| guarantees a good approximation by the partial sums. We would
like to formulate a general result.

Theorem 1. Suppose that f and f' are piecewise continuous on the interval —L <
x < L. Suppose also that f is defined outside the interval —L < x < L so that it is
periodic with period 2L. Then f has a Fourier series (2.8) whose coefficients are given
by (2.10)-(2.12). Moreover, the Fourier series converges to f(x) at all points where f
is continuous, and to 3(f(z + 0) + f(z —0)) at all points x where f is discontinuous
(at jump points).
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Corollary. When f is a 2L—periodic function that is continuous on (—oo,00) and has
a piecewise continuous derivative, its Fourier series not only converges at each point
but it converges uniformly on (—oo,00), i.e. for every e > 0 there exists No(e) such
that

|f(z) = Sn(z)] <e, N >Ny(e), x€(—00,00).

Example 2.3. For sgn(z) on [—m, 7) we had the Fourier series
4 sin((2k — 1))
gnle) =7 ; 2dk—1

Let us extend sgn(z) outside the interval —m < z < 7 so that it is 2r-periodic. Hence,
this function has jumps at x, = mn,n =0,£1,£2,... and

sin((2k — 1)mn) 1
= Z or 1 é(sgn(ﬂn +0) +sgn(mn —0)) = 0.

Example 2.4. Let

0, —L<x<0
f(x)—{L, O<az<l

and let f be defined outside this interval so that f(x +2L) = f(x) for all x, except at
the points x = 0, =L, +2L,.... We will temporarily leave open the definition of f at
these points. The Fourier coefficients are

1 [* 1 [*
ag = z/_Lf(:L‘)d:L‘:Z/O Ldx = L,

1 /L (@) mwxd /L mwxd sin =7 L 0
Uy = — x) cos xr = cos T = — =
L) L 0 L =,
and
1 L L . mmnx | L
by, = —/ f(x)sinmmcdx—/ sin L gy = %
LJ_; L 0 L o 0
L L 0 m=2kk=1,2,...
= —(1—cos(mm))=—(1—=(-1)")=< ’ T
m7r< (mm)) mw( (=1)") {%7 m=2k—-1k=1,2,....
Hence o
L 2L sin ~=—"F
f(x)_§+7r k-1
It follows that for any x # nL,n =0,+1,£2,..
N . (2k—1)mz
L 2L sin ~=——
= -+ — — N
Sw(e) = 5+ = 3 T S (), N os,
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where f(x) =0 or L. At any x = nL,

By(x) = f(x) = Sn(x)

cannot be made uniformly small for all x simultaneously. In the neighborhood of

points of discontinuity (z = nL), the partial sums do not converge smoothly to the

mean value % This behavior is known as the Gibbs phenomenon. However, if we

consider the pointwise convergence of the partial sums then Theorem 1 still applies.

Complex form of the Fourier series
Since , , . :
6104 + e*’LOé elOé _ 671&

cos o= ———— and sino = ——

then the series (2.8) becomes

where '
Gm—ibm o =1,2,...
cm = § 9 m=20
Gomtom = 1,2, ...
If f is real-valued then ¢,, = ¢_,, and
Com / f(x)e ™ dx, m=0,%1,+2,....

In solving problems in differential equations it is often useful to expand in a Fourier
series of period 2L a function f originally defined only on the interval [0, L] (instead
of [-L, L]). Several alternatives are available.

1. Define a function g of period 2L so that

. f(l')? 0<z<L
9@) = {f(—x), —L<x<0

(f(—=L) = f(L) by periodicity). Thus, g(z) is even and its Fourier (cosine) series
represents f on [0, L.
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2. Define a function h of period 2L so that

f(z), 0<z<lL
h(z) =40, r=0,L
—f(—=z), —L<z<0.

Thus, h is the odd periodic extension of f and its Fourier (sine) series represents
fon (0,L).

3. Define a function K of period 2L so that
K(z)=f(z), 0<a<L

and let K (x) be defined on (—L,0) in any way consistent with Theorem 1. Then
its Fourier series involves both sine and cosine terms, and represents f on [0, L].

Example 2.5. Suppose that

flx) =

l—2z, 0<z<1
0, 1<ax<2.

As indicated above, we can represent f either by a cosine series or sine series. For
cosine series we define an even extension of f as follows:

1l—z, 0<x<1

(z) 0, l<zx <2

xT) =

g 1+z, —-1<x<0
0, —2<z< -1,

see Figure 1.

NN S

Figure 1: The extension of f.

This is an even 4-periodic function. The Fourier coefficients are

aozé/}@w:AZ@mzAh—@mz%
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and

dx

1 /2 1
Ay = —/ g(x)cosm;xdx:/(1—:v)cosm7m
0

2./,
2 / L o
+ — sin dx
mm J, 2

mmz |1

sin
= (1 - .T) m7r2
2

2 cos%

1
4 mm
— = 22(1—(}087)
2 o VT

{ 4 m=2%—1,k=12,...

0

mi

m2x2)

m27'('2 (1_(_1)k)7 m=2k,k=12....

Hence the Fourier cosine series has the form

9) (2k—1)7x 9) k
1 4 COS “——-— 4 1— (-1
1T Z Ok 17 + 3 Z ( 2h)? ) cos(kmx)
k=1 k=1
or
1 N 4 cos && 2”” N 2 i cos((2k — V)mz)
4w~ (2k-1) 72 (2k —1)2

1 N 4 icos (%_l)m 2 = cos((2k — 1)7x) _ 9
4 72 (2k:—1 7r2k:1 2k —1)2 7

Exercise 15. Find the corresponding Fourier sine series of f.
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3 One-dimensional Heat Equation

Let us consider a heat conduction problem for a straight bar of uniform cross section
and homogeneous material. Let = 0 and = L denote the ends of the bar (z-axis
is chosen to lie along the axis of the bar). Suppose that no heat passes through the
sides of the bar. We also assume that the cross-sectional dimensions are so small that
temperature u can be considered the same on any given cross section.

=0 u(z,t) x=1L
a e A )
\/ \/ \/

Then u is a function only of the coordinate x and the time t. The variation of temper-
ature in the bar is governed by a partial differential equation

gy (2, t) = w(z,t), 0<x<L,t>0, (3.1)

where o? is a constant known as the thermal diffusivity. This equation is called the

heat conduction equation or heat equation.
In addition, we assume that the initial temperature distribution in the bar is given
by
u(z,0) = f(z), 0<z<IL, (3.2)

where f is a given function. Finally, we assume that the temperature at each end of
the bar is given by

w(0,t) = go(t), wu(L,t)=aq(t), t>0, (3.3)

where gy and g; are given functions. The problem (3.1), (3.2), (3.3) is an initial value
problem in time variable . With respect to the space variable z it is a boundary value
problem and (3.3) are called the boundary conditions. Alternatively, this problem can
be considered as a boundary value problem in the xt-plane:

t

A

u(0,t) = go(t) P, = uy u(L,t) = g1(t)

=0 u(z,0) = f(x) r=1L

We start by considering the homogeneous boundary conditions when the functions go(t)
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and ¢1(t) in (3.3) are identically zero:

Uy, = Uy, O<xz<L,t>0
uw(0,t) =u(L,t) =0, t>0 (3.4)
u(z,0) = f(x), 0<z<L.

We look for a solution to the problem (3.4) in the form
u(z,t) = X(x)T'(t). (3.5)
Such method is called a separation of variables. Substituting (3.5) into (3.1) yields
2 X" (2)T(t) = X (2)T'(t)

or
X"(x) 11'(t)
X(z) a2 T(t)
in which the variables are separated, that is, the left hand side depends only on x and
the right hand side only on ¢. This is possible only when both sides are equal to the
same constant:

X// 1 T/
— === =—A\
X a7
Hence, we obtain two ordinary differential equations for X (x) and 7'(t)
X"+ XX =0,
T + AT = 0. (3.6)

The boundary condition for u(z,t) at = 0 leads to
u(0,t) = X (0)T'(t) = 0.
It follows that
X(0) =0

(since otherwise T'= 0 and so u = 0 which we do not want). Similarly, the boundary
condition at x = L requires that
X (L) =0.

So, for the function X (x) we obtain the homogeneous boundary value problem

X'"+AX =0 O<ax<lL
{ N ’ v (3.7)

X(0) = X(L) = 0.

The values of A for which nontrivial solutions of (3.7) exist are called eigenvalues and
the corresponding nontrivial solutions are called eigenfunctions. The problem (3.7) is
called an eigenvalue problem.
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Lemma 1. The problem (3.7) has an infinite sequence of positive eigenvalues

2.2
nem
)\n:F, n:1,2,...
with the corresponding eigenfunctions

nmx
Xn(r) = csin —,
(r) = csin 7

where ¢ is an arbitrary nonzero constant.

Proof. Suppose first that A > 0, i.e. A = p?. The characteristic equation for (3.7) is
r? + pu? = 0 with roots r = %ipu, so the general solution is

X (x) = ¢ cos px + co sin px.

Note that p is nonzero and there is no loss of generality if we assume that g > 0. The
first boundary condition in (3.7) implies

X(O) =C = O,
and the second reduces to
cosinpul =0
or
sinpuL =0

as we do not allow ¢y = 0 too. It follows that

pL=nm, n=12 ...

or -
nem
/\n:?7 7121727....
Hence the corresponding eigenfunctions are
nmx
X, (x) = csin A

If \ = —p? <0, > 0, then the characteristic equation for (3.7) is r> — p? = 0 with
roots r = +u. Hence the general solution is

X (z) = ¢ cosh pzx + co sinh px.

Since . . . p
eh e~ b ehT _ o—pz
cosh px = +T and sinh puxr = — 5
this is equivalent to

X(x) = e + che ™.
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The first boundary condition requires again that ¢; = 0 while the second gives
cosinh uL = 0.

Since pu # 0 (u > 0), it follows that sinh uL # 0 and therefore we must have ¢, = 0.
Consequently, X = 0, i.e. there are no nontrivial solutions for A\ < 0.
If A = 0 the general solution is

X(z) =1z + co.

The boundary conditions can be satisfied only if ¢; = ¢o = 0 so there is only the trivial

solution in this case as well. O
Turning now to (3.6) for 7'(¢) and substituting "27;2 for A we have
T(t) = ce("E*),
Hence the functions , -
up(x,t) = e ("I*) " sin - (3.8)

satisfy (3.1) and the homogeneous boundary conditions from (3.4) for eachn = 1,2, .. ..
The linear superposition principle gives that any linear combination

N
_(nma)?, . NTX
U(x,t) = che ( L ) tSlHT
n=1
is also a solution of the same problem. In order to take into account infinitely many
functions (3.8) we assume that

oo
_(nma)2, | MTX
u(z,t) = che (") sin < (3.9)
n=1
where the coefficients ¢, are yet undetermined, and the series converges in some sense.
To satisfy the initial condition from (3.4) we must have

u(z,0) = ch sin? =f(z), 0<z<L. (3.10)
n=1

In other words, we need to choose the coefficients ¢, so that the series (3.10) converges
to the initial temperature distribution f(x).

It is not difficult to prove that for ¢t > 0,0 < = < L, the series (3.9) converges (with
any derivative with respect to x and ¢) and solves (3.1) with boundary conditions (3.4).
Only one question remains: can any function f(x) be represented by a Fourier sine
series (3.10)7 Some sufficient conditions for such representation are given in Theorem
1 of Chapter 2.
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Remark. We can consider the boundary value problem for any linear differential equa-
tion

y' +p(x)y +q(r)y = g(x) (3.11)
of order two on the interval (a,b) with the boundary conditions
y(a) =yo, y(b) =u, (3.12)

where 1o and y; are given constants. Let us assume that we have found a fundamental
set of solutions y; (z) and yz(x) to the corresponding homogeneous equation

y' + @)y +q(z)y = 0.
Then the general solution to (3.11) is
y(@) = ciyi () + caa(x) + yp(2),

where y,(z) is a particular solution to (3.11) and ¢; and ¢, are arbitrary constants.
To satisfy the boundary conditions (3.12) we have the linear nonhomogeneous al-
gebraic system

(3.13)

ciyr(a) + cya(a) = yo — yp(a)
c1y1(b) + cay2(b) = y1 — yp(D).

If the determinant

yi(a) ya(a) ‘
y1(b)  y2(0)

is nonzero, then the constants ¢; and ¢y can be determined uniquely and therefore the
boundary value problem (3.11)-(3.12) has a unique solution. If

) |

then (3.11)-(3.12) either has no solutions or has infinitely many solutions.
Example 3.1. Let us consider the boundary value problem

Y+ ity =1, 0<zx<l1

y(0) = yo, y(1) = 1,

where p > 0 is fixed. This differential equation has a particular solution y,(z) = /%

Hence, the system (3.13) becomes

0

c18in 0+ cycos0 = g — L
clsinu—l—czcosu:yl—l%

or

CQZ?JO—/%
clsinu:yl—l%— (yo—%) COS .
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It

Lo
ie. sinpu # 0 then ¢; is uniquely determined and the boundary value problem in

question has a unique solution. If sin g = 0 then the problem has solutions (actually,
infinitely many) if and only if

1 1
y—— = (Y% — — | cosp.
Il T

If p = 27k then sin u = 0 and cos i = 1 and the following equation must hold

sing  cos

1 1
Uy —— =Y — —
12 112

ie. y1 = yo. If p =7+ 27k then sin p = 0 and cos p = —1 and we must have

2
Y1+ % = —

Suppose now that one end of the bar is held at a constant temperature 7} and the
other is maintained at a constant temperature 75. The corresponding boundary value
problem is then

Uy = Uy, O<az<L,t>0
U(O, t) = ThU(L,t) =T, t>0 (314)
u(z,0) = f(z).

After a long time (t — 0o) we anticipate that a steady temperature distribution v(x)
will be reached, which is independent of time and the initial condition. Since the
solution of (3.14) with 7} = T3 = 0 tends to zero as t — oo, see (3.9), then we look for
the solution to (3.14) in the form

u(z,t) = v(x) + w(z,t). (3.15)
Substituting (3.15) into (3.14) leads to

% (Vg + Wayp) =
(0) + w(0,t) T v( )+ w(L,t) =T,
(z) +w(z,0) = f(x).

Let us assume that v(z) satisfies the steady-state problem

v

<

{v’(’(m):O, O<z<lL (3.16)

v(0) =Ty, v(L)="T.
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Then w(x,t) satisfies the homogeneous boundary value problem for the heat equation:

AP Wey = Wy, O<z<L,t>0
w(0,t) =w(L,t) =0 (3.17)
w(z,0) = f(x),
where f(z) = f(z) — v(z). Since the solution of (3.16) is
Ty =T
v(z) = 2—r4+ Ty (3.18)
the solution of (3.17) is
= nra )2 nmx
=3 ¢,e (%) t g 1T 3.19
w(x,t) ;ce sin ——, (3.19)

where the coefficients ¢, are given by

2 [* T, —T
cn:—/ [f(:v)— 2 11‘—T1:| sinn—zmdas.
0

L

Combining (3.18) and (3.19) we obtain

T _T > nnTo 2
u(z,t) = 2L lx—i-Tl—i-che_(T)tsin?.

n=1

Let us slightly complicate the problem (3.14), namely assume that

gy = ug + pa), O<x<L,t>0
U(O, t) = Tl,U(L,t) = TQ, t>0 (320)
u(z,0) = f(z).

We begin by assuming that the solution to (3.20) consists of a steady-state solution
v(x) and a transient solution w(x,t) which tends to zero as t — oo:

u(z,t) = v(x) + w(x,t).

Then for v(x) we will have the problem

{v’%x) = Epla), 0<a<l (321)

v(0) = T1,v(L) = To.

To solve this, integrate twice to get

1 [ Y
v(x) = —2/ dy/ p(s)ds + crx + co.
a” Jo 0
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The boundary conditions yield ¢; = T} and

1 I v

Therefore, the solution of (3.21) has the form

v(z) = T2 /dy/ ds+—/ dy/ s)ds + T.

For w(x,t) we will have the homogeneous problem

APwy =wy, 0<z<L,t>0
w(0,t) = w(L,t) =0,t >0
w(z,0) = f(z) = f(z) —v().

A different problem occurs if the ends of the bar are insulated so that there is no
passage of heat through them. Thus, in the case of no heat flow, the boundary value
problem is
Uy, =u,, 0<ax<L,t>0
uz(0,t) = ugy(L,t) = 0,t >0 (3.22)
u(z,0) = f(z).
This problem can also be solved by the method of separation of variables. If we let
u(zx,t) = X(x)T(t) it follows that

X"+ XX =0, T+’ T =0. (3.23)
The boundary conditions yield now
X'(0)=X'(L) = 0. (3.24)

If A= —p? < 0,p0 > 0, then (3.23) for X(z) becomes X” — u?X = 0 with general
solution
X(x) = ¢; sinh px + ¢ cosh pz.

Therefore, the conditions (3.24) give ¢; = 0 and ¢y = 0 which is unacceptable. Hence
A cannot be negative.
If A =0 then
X(x) =z + ca.

Thus X'(0) = ¢ = 0 and X'(L) = 0 for any ¢, leaving ¢, undetermined. Therefore
A = 0 is an eigenvalue, corresponding to the eigenfunction Xy(z) = 1. It follows from
(3.23) that T'(¢) is also a constant. Hence, for A = 0 we obtain the constant solution
uo(x,t) = co.
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If \=p? >0 then X” + p?X = 0 and consequently

X (x) = ¢y sin px + ¢5 cos px.

The boundary conditions imply ¢; = 0 and p = F,n = 1,2,... leaving ¢, arbitrary.
Thus we have an infinite sequence of positive elgenvalues Ap = ”2752 with the corre-

sponding eigenfunctions

Xn(ac):cosT, n=12....

If we combine these eigenvalues and eigenfunctions with zero eigenvalue and Xo(z) = 1
we may conclude that we have the infinite sequences

Ap = nLZ , Xn(x) :cosm, n=20,1,2,
and N ,
U (z, 1) :cosTef(%) Loon=0,1,2,....

Each of these functions satisfies the equation and boundary conditions from (3.22). It
remains to satisfy the initial condition. In order to do it we assume that u(zx,t) has
the form

_ % nra)?
u(z,t) iy ch cos —e (") : (3.25)
where the coefficients ¢, are determmed by the requirement that

———l—chcosm:f(x), 0<zxz<L.

Thus the unknown coefficients in (3.25) must be the Fourier coefficients in the Fourier
cosine series of period 2L for even extension of f. Hence

9 L
:Z/ f(x)cosn_zxdxy n:O71727
0

and the series (3.25) provides the solution to the heat conduction problem (3.22) for a
rod with insulated ends. The physical interpretation of the term

= %/OLf(ZB)d:B

is that it is the mean value of the original temperature distribution.

Exercise 16. Let v(x) be a solution of the problem

V() =0, 0<z<L
V(0) =Ty, v/'(L) = To.
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Show that the problem
QPuge =u;, 0<z<L,t>0
uw(O,t) = Tl,ux(L,t) = Tg,t >0
u(z,0) = f(z)
has a solution of the form u(z,t) = v(z) + w(x,t) if and only if 7} = Ts.

Example 3.2.
Upe = U, O0<x<1,t>0
u(0,t) =u(l,t) =0
u(z,0) =Y Lsin(nrz) = f(x).

As we know the solution of this problem is given by

oo
2
g Cp sin(nmx) e ()7t

n=1
Since
oo o0 1
u(z,0) = g Cp sin(nmx) E —; sin(nmz)
n
n=1 n=1

then we may conclude that ¢, = n—12 necessarily (since the Fourier series is unique).

Hence the solution is -

1
u(z,t) Z n(nmx) ("”)Zt.
n?

n=1

Exercise 17. Find a solution of the problem

Upe = U, O<x <, t>0
uz(0,t) = ug(m,t) =0,t >0

u(z,0) =1—sinx
using the method of separation of variables.

Let us consider a bar with mixed boundary conditions at the ends. Assume that
the temperature at x = 0 is zero, while the end x = L is insulated so that no heat
passes through it:

Pug, =u,, 0<az<L,t>0
uw(0,t) = ugy(L,t) =0,t >0
u(z,0) = f(z).

Separation of variables leads to

X"4AX =0, O<az<L
{ N ’ g (3.26)

X(0)=X'(L) =0
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and
T +XT =0, t>0.

As above, one can show that (3.26) has nontrivial solutions only for A > 0, namely

_ (2m —1)*x? . (@2m =D
Am = E , Xm(x) =sin 5T :

The solution to the mixed boundary value problem is

m=1,23,....

(2m — 1)z —({zmobimay?,

u(z,t) = Z Cpp SIN ¢

m=1

with arbitrary constants c,,. To satisfy the initial condition we have

s . (2m — 1)z
= - <z <L.
f(z) E Cym SID 5T , 0<z<

m=1
This is a Fourier sine series but in some specific form. We show that the coefficients
¢ can be calculated as

(2m — 1)z

2/Lf<>s' —mr,
cm—L0 x) sin 5T T

and such representation is possible.

In order to prove it, let us first extend f(z) to the interval 0 < x < 2L so that
it is symmetric about z = L, i.e. f(2L —xz) = f(x) for 0 < & < L. Then extend
the resulting function to the interval (—2L,0) as an odd function and elsewhere as a
periodic function fof period 4L. In this procedure we need to define

F(0) = f(2L) = f(—2L) = 0.

Then the Fourier series contains only sines:

~ = nmx
f(z) = ;cnsmi
with the Fourier coefficients
2 2L
=57 i f(z)sin %dm
Let us show that ¢, = 0 for even n = 2m. Indeed,
1 2L -
Com = — (x) sin mzx dx

L Jo
1 /L 1 2L
= Z/o f(x)sinmgxdx—l—z/L f(2L—:c)sinm7m

7 dx
1 [ mnx I mn(2L — y)
= E/o f(z)sin 7 dx——/L f(y)sinfdy

L
1 [t I
= Z/0 f(x)sinmgxdaj—l—z/]: f(y)sinmzydy:().
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That’s why

where

Com—1 = Z .]?(‘T) sin de
0

1 [t (2m — )7z 1 [ (2m — )7z
- - in 2 T G 2 oL — z)sin ot — T
/0 (x) sin 5T x + L/L f( x) sin 5T T

L 2m — 1
= E/o (x)sin%dm

as claimed. Let us remark that the series

o0

Z . (2m — D)7z
Cpp SIN ~—————
— 2L

represents f(z) on (0, L].

Remark. For the boundary conditions
uz(0,t) = u(L,t) =0

the function f(z) must be extended to the interval 0 < z < 2L as f(z) = —f(2L — x)
with f(L) = 0. Furthermore, f is an even extension to the interval (—2L,0). Then
the corresponding Fourier series represents f(x) on the interval [0, L).
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4 One-dimensional Wave Equation

Another situation in which the separation of variables applies occurs in the study of a
vibrating string. Suppose that an elastic string of length L is tightly stretched between
two supports, so that the z-axis lies along the string. Let u(z,t) denote the vertical
displacement experienced by the string at the point x at time ¢. It turns out that if
damping effects are neglected, and if the amplitude of the motion is not too large, then
u(z,t) satisfies the partial differential equation

gy, =uy, 0<z<L,t>0. (4.1)

Equation (4.1) is known as the one-dimensional wave equation. The constant a® = T'/p,
where 7" is the force in the string and p is the mass per unit length of the string material.

u(z,t)

To describe the motion completely it is necessary also to specify suitable initial and
boundary conditions for the displacement wu(x,t). The ends are assumed to remain

fixed:

u(0,t) =u(L,t) =0, t>0. (4.2)
The initial conditions are (since (4.1) is of second order with respect to t):
u(z,0) = f(z), w(z,0)=g(x), 0<z<L, (4.3)

where f and ¢ are given functions. In order for (4.2) and (4.3) to be consistent it is
also necessary to require that

f(0) = f(L) = g(0) = g(L) = 0. (4.4)

Equations (4.1)-(4.4) can be interpreted as the following boundary value problem for
the wave equation:

u(0,t) =0 A Ugy = Uy u(L,t) =0




Let us apply the method of separation of variables to this homogeneous boundary
value problem. Assuming that u(x,t) = X (2)T'(t) we obtain

X"+XX =0, T'+d°’XT=0.
The boundary conditions (4.2) imply that

X'+XX=00<z<L
X(0)=X(L)=0.

This is the same boundary value problem that we have considered before. Hence,

2.2

An = nL—Z, Xn(x) :sin$, n=12,....

Taking A = A, in the equation for T'(¢) we have

nmwa\ 2

T(t) + (T) T(t) = 0.

The general solution to this equation is

nmat n . nmat
sin ,
L 2 L

T(t) = ky cos

where k; and ko are arbitrary constants. Using the linear superposition principle we
consider the infinite sum

t
Zsm— (an cos L n SIN m;a ) : (4.5)

where the coefficients a,, and b, are to be determined. It is clear that u(x,t) from (4.5)
satisfies (4.1) and (4.2) (at least formally). The initial conditions (4.3) imply

N, sin 22 o<a<L,
f(x) Zla sin — x
. (4.6)
g@)zgnzabnsm nzx’ 0<z<L

Since (4.4) are fulfilled then (4.6) are the Fourier sine series for f and g, respectively.
Therefore,

et

nw
b, = — 2
- i g(a:) sin 7 d.
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Finally, we may conclude that the series (4.5) with the coefficients (4.7) solves (at least
formally) the boundary value problem (4.1)-(4.4).
Each displacement pattern

( t) . nmx nmat b si nmat
Up(2,t) = sin — | a,, cos , SIN
L L L

is called a natural mode of vibration and is periodic in both space variable x and time
variable t. The spatial period % in z is called the wavelength, while the numbers “7*
are called the natural frequencies.

Exercise 18. Find a solution of the problem

Uge = Uy, 0 < x <1, >0
u(0,t) =u(l,t) =0,t >0
u(z,0) = z(1 — ), u(z,0) = sin(77x)

using the method of separation of variables.

If we compare the two series

nmwy nmat nmwat
u(z,t) =) sin— | a, cos + by, sin
L L
n=1
u(z,t) = chsm—e (=52
n=1

for the wave and heat equations we can see that the second series has the exponential
factor that decays fast with n for any ¢ > 0. This guarantees convergence of the series
as well as the smoothness of the sum. This is not true anymore for the first series
because it contains only oscillatory terms that do not decay with increasing n.

The boundary value problem for the wave equation with free ends of the string can
be formulated as follows:

Uy = Uy, 0 <z < L, t >0
uz(0,t) = uy (L, t) =0,t >0
u(z,0) = f(z),u(z,0) = g(x),0 <z < L.

Let us first note that the boundary conditions imply that f(x) and g(x) must satisfy
f'0) = f(L) =4¢'(0) =4'(L) =0.

The method of separation of variables gives that the eigenvalues are

2
A, = (%) =012, ...
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and the formal solution u(x,t) is

bot = t t
w(z,t) = = ;— 4 2 cos ? (an cos m;a + by, sin m;a ) .
The initial conditions are satisfied when
f(z) = % —i—;ancos?
and
bo >, nrma nmwx
g(x) = B + nz:l bnT cos ——,
where
o (L
an = 7 i f(x) cos?d:c, n=20,1,2,
2 L
by = E/o g(x)dx
and
2 L nme
b, = — ——dxz, =1,2,....
! g(x) cos 7dr, n

Let us consider the wave equation on the whole line. It corresponds, so to say, to
the infinite string. In that case we no more have the boundary conditions but we have
the initial conditions:

{agum:utt,—oo<a:<oo,t>0 (4.)
u(@,0) = f(z), u(z,0) = g(x).
Proposition. The solution u(x,t) of the wave equation is of the form
u(z,t) = p(r — at) + Y(x + at),
where ¢ and v are two arbitrary C? functions of one variable.
Proof. By the chain rule
Oyt — a0y = 0
if and only if
Oc0pu = 0,
where ¢ =2 +at and n =z — at (and so 0, = 0¢ + 0y, 29, = O — 0,). It follows that
Ogu = V(¢)
or
u= 1) + ¢(n),
where ¢/ = . m
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To satisfy the initial conditions we have

f(x) =o(@) +¢(x), g(x) = —ag'(z) + a'(z).

It follows that

1 1
2a

[ ates e wta) = 3@+ g [ ats)is e

1
x
2
where ¢; and ¢y are arbitrary constants. But ¢(x) 4+ () = f(x) implies ¢; + ¢2 = 0.
Therefore the solution of the initial value problem is

N | —

u(z,t) = = (f(zr —at) + f(x + at)) + L /Hatg(s)ds. (4.9)

2a —at
This formula is called the d’Alembert formula.

Exercise 19. Prove that if f is a C? function and g is a C! function, then u from
(4.9) is a C? function and satisfies (4.8) in the classical sense.

Exercise 20. Prove that if f and ¢ are merely locally integrable, then u from (4.9) is
a distributional solution of (4.8) and the initial conditions are satisfied pointwise.

Example 4.1. The solution of

Upy = U, —00 < T < 00,t >0
U(I,O) - f(‘T)?ut(I?O) = 07

where
1, |z <1

Jw) = {O, lz| > 1

is given by the d’Alembert formula

u(z,t) == (f(x —t)+ f(x +1t)).

DN | —

Some solutions are graphed below.
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u(z,t)

1 t=0
} } } xT
—1 1
u(z,t)
1 1
t: 5
: 1 1 1 'T
—1 1
u(z,t)
t=2
1
2
} } } } } } } } €T
—1 1

We can apply the d’Alembert formula for the finite string also. Consider again the
boundary value problem with homogeneous boundary conditions with fixed ends of the
string.
a*Upy = uy,0 <2 < L, t >0

uw(0,t) =u(L,t) =0,t >0

u(z,0) = f(x), u(2,0) = g(x),0 <z < L
f(0) = f(L) = g(0) = g(L) = 0.

Let h(z) be the function defined for all z € R such that

h(x) = {Ji(;()L@ O_i i i ﬁ 0

k(x):{g(x), 0<z<L
—g(—x), —-L<x<0



and 2L-periodic. Let us also assume that f and g are C? functions on the interval
[0, L]. Then the solution to the boundary value problem is given by the d’Alembert
formula

u(z,t) = % (h(x — at) + h(z + at)) + L /x ' k(s)ds.

20’ rx—at

Remark. Tt can be checked that this solution is equivalent to the solution which is given
by the Fourier series.
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5 Laplace Equation in Rectangle and in Disk

One of the most important of all partial differential equations in applied mathematics
is the Laplace equation:

Ugg + Uyy = 0 2D-equation (5.1)
Ugy + Uyy + Uy, =0 3D-equation '

The Laplace equation appears quite naturally in many applications. For example, a
steady state solution of the heat equation in two space dimensions
02 (U + Uyy) = Uy

satisfies the 2D-Laplace equation (5.1). When considering electrostatic fields, the elec-
tric potential function must satisfy either 2D or 3D equation (5.1).
A typical boundary value problem for the Laplace equation is (in dimension two):

Uy + Uyy = 0, (z,y) € Q CR?
u(r,y) = f(x,y), (z,y)€0Q,

where f is a given function on the boundary 0f2 of the domain €. The problem (5.2)
is called the Dirichlet problem (Dirichlet boundary conditions). The problem

Uz + Uyy = 0, (x,y) € Q
Gola,y) = glay), (z,y) € 09,
where ¢ is given and g—z is the outward normal derivative is called the Neumann problem

(Neumann boundary conditions).

Yy

(5.2)

v lv| =1

o0

Dirichlet problem for a rectangle
Consider the boundary value problem in most general form:

Weg + Wyy = 0, 0<z<a,0<y<b
w(z,0) = gi(z),w(z,b) = fi(z), 0<z<a
w(0,y) = g2(y), wla,y) = foly), 0<y <o,

ol



for fixed @ > 0 and b > 0. The solution of this problem can be reduced to the solutions
of

Ugg + Uyy = 0, 0<zr<a,l<y<bd
u(zx,0) = u(x,b) =0, 0<z<a (5.3)
u(0,y) = g(y), u(a,y) = f(y), 0<y <o,
and
Uzz + Uyy = 0, 0<zr<a0<y<bd
u(z,0) = g1 (x),u(x,b) = fi(z), 0<z<a
u(0,y) = 0,u(a,y) =0, 0<y<h.

Due to symmetry in x and y we consider (5.3) only.

y
b u(x,b) =0
u(0,y) = g(y) Q u(a,y) = f(y)

u(z,0) =0 a

The method of separation of variables gives for u(z,y) = X (2)Y (y),

Y'"+AY =0 0<y<b
+ 7 y Y (5.4)
Y(0)=Y(b) =0,
and
X"-AX =0, 0<z<a. (5.5)
From (5.4) one obtains the eigenvalues and eigenfunctions
2
Ap = (n_7r> . Y(y) :sin@7 n=12,....
b b
Substitute A, into (5.5) to get the general solution
X(z) = ¢; cosh n_z:z: + ¢o sinh n_zx
As above, represent the solution to (5.3) in the form
:w'@( b 22 4 b, sinh ) 5.6
u(z,y) ;sm 7~ \ancosh —— by sinh —— ). (5.6)
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The boundary condition at x = 0 gives

= i @, Sin nry
n=1 b
with ,
. nmy
n= = sin —=dy.
a bég@)mb y
At z = a we obtain

nm

_ N i Y TG ik
fly) = sin — (ancosh ; + by, sinh 3 )

n=1

It is a Fourier sine series for f(y). Hence,

ancosh% + by, smhm = / fly sm—dy = b
It implies _
b, — a, cosh =72
b, = —" b 5.7
sinh =% (5:7)
Substituting (5.7) into (5.6) gives
> b, — a,, cosh 7@
u(z,y) = sin °0¥ a, cosh nre + ———2L ginh nre
! b b sinh #7¢ b
B Sl nmy~ sinh e
N Zsm b bnsinhm
n=1 b
= . nmy [ cosh™Zsinh ™% — cosh 27 sinh =
+ nz:lsm p On ( smh ma
9) nr(a—x)
. nmy~ sinh =7 nmy  sinh —3—
= b n )
; i b sinh 74 + Z sin b “ sinh 74
because cosh arsinh 8 — sinh o cosh § = sinh(5 — «).
Exercise 21. Find a solution of the problem
Ugg + Uyy = 0, 0<r<20<y<l1
u(z,0) = u(x,1) =0, O<z<2

u(0,y) =0,u(2,y) =y(l-y), 0<y<1

using the method of separation of variables.
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Dirichlet problem for a disk

Consider the problem of solving the Laplace equation in a disk {z € R?: |z| < a}
subject to boundary condition

u(a,d) = f(0), (5.8)

where f is a given function on 0 < # < 27. In polar coordinates x = rcosf,y = rsin @,
the Laplace equation takes the form

1 1
e+ =ty + —ugp = 0. 5.9
Upy + TU + T2U99 ( )

We apply again the method of separation of variables and assume that
u(r,0) = R(r)T'(0). (5.10)
Substitution for w in (5.9) yields
/! 1 / ]' /!
RT+-RT+ S RI" =0
r r
or

rR"4+rR — AR =0
T" + \T = 0.

There are no homogeneous boundary conditions, however we need T'(f) to be 27-
periodic and also bounded. This fact, in particular, leads to

T(0) = T(2r), T'(0) = T'(2r). (5.11)

It is possible to show that (5.11) require A to be real. In what follows we will consider
the three possible cases.
If \ = —p? < 0,u > 0, then the equation for T becomes T" — u?T = 0 and
consequently
T(0) = c1e" + coe™.

It follows from (5.11) that

-2

c1 + ¢y = c1e¥H 4 cye I
c1 — ¢y = c1e”™ — coe

so that ¢; = ¢ = 0.

If A\ =0 then 7" = 0 and T'(0) = ¢; + cof. The first condition in (5.11) implies
then that ¢ = 0 and therefore T'(f) = constant.

If \=pu? >0, >0, then

T(0) = ¢y cos(ub) + cosin(ub).
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Now the conditions (5.11) imply that

c1 = ¢1 cos(2mp) + cosin(2mp)
cy = —c18in(2mp) + co cos(2mp)
or
cysin?(um) = ¢y sin(pr) cos(um)
o sin?(um) = —cy sin(u) cos(um).
If sin(pm) # 0 then
{01 = ¢y cot(pm)

¢y = —cq cot(pm).

Hence ¢ + ¢3 =0 i.e. ¢; = ¢cg = 0. Thus we must have sin(ur) = 0 and so

Ao =n% T,(0) = cycos(nf) + cysin(nf), n=0,1,2,....

(5.12)

Turning now to R, for A = 0 we have r*R"” + rR' = 0 i.e. R(r) = k; + kologr. Since
logr — —oo as r — 0 we must choose ks = 0 in order for R (and u) to be bounded.

That’s why
Ry(r) = constant.

For A\ = p? = n? the equation for R becomes
rR"+rR —n’R = 0.
Hence
R(r) = kyr™ + kor™".
Again, we must choose ky = 0 and therefore
R.(r)=kr", n=1,2....
Combining (5.10),(5.12), (5.13) and (5.14) we obtain

u(r,0) = % + Z r"(a, cos(nd) + by, sin(nb)).

n=1

The boundary condition (5.8) then requires

oo

u(a,b) = % + Z a"(ay, cos(nf) + b, sin(nb)) = f(6).

n=1
Hence the coefficients are given by

w = L / " 1(6)db,

T
1 2w
a, = — f(8) cos(nd)db
0

ma”
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and

1 27
b, = 0) sin(nd)deo.
/0 £(6) sin(no)

wa”

This procedure can be used also to study the Neumann problem, i.e. the problem
in the disk with the boundary condition

ou
5, (@0) = 1(0). (5.16)

Also in this case the solution u(r,6) has the form (5.15). The boundary condition
(5.16) implies that

ou
E(r, 9) Zna (a, cos(nf) + b, sin(nd)) = f(0).
Hence .
U = —— /0 f(0) cos(nb)db
and
! " 0) sin(nd)do
b, = a1, f(6) sin(nd)do.

Remark. For the Neumann problem a solution is defined up to an arbitrary constant
. Moreover, f must satisfy the consistency condition

[ s~

Z na""*(a, cos(nd) + b, sin(nf))

since integrating

termwise gives us zero.
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6 The Laplace Operator

We consider what is perhaps the most important of all partial differential operators,
the Laplace operator (Laplacian) on R", defined by

A:iajzvv.
j=1

We will start with a quite general fact about partial differential operators.
Definition. 1. A linear transformation 7" on R" is called a rotation if T" = T~

2. Let h be a fixed vector in R™. The transformation T}, f(z) := f(z + h) is called
a translation.

Theorem 1. Suppose that L is a linear partial differential operator on R™. Then L
commutes with translations and rotations if and only if L is a polynomial in A, that

is, L=""ga;A.

Proof. Let
L(z,0) = Z o (z)0"

|a|<k

commute with a translation 7j,. Then

D aa(@)0f(z+h) =Y aalx+h)0" f(z +h).

lor| <k || <k

This implies that a,(z) must be constants (because a,(x) = ao(x + h) for all h), say
aq. Next, since L now has constant coefficients we have (see Exercise 5)

Lu(€) = P(&)a(e),

where the polynomial P(§) is defined by

P(&) =) aq(i€).
lor| <k
Recall from Exercise 4 that if T" is a rotation then

woT(€) = (@o T) (€).

Therefore

—

(Lu)(Tx)(€) = Lu(T¢)

or

—

Pu(Tx)(&) = P(TE)u(TE).
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This forces
P(&) = P(TY).
Write ¢ = |¢]0, where § € S"! = {x € R" : |z| = 1} is the direction of £. Then
T¢ = |€|¢" with some 6 € S"~!. But
0=P(§) — P(TE) = P(|£]0) — P(I£]0")
shows that P(&) does not depend on the angle 6 of £. Therefore P(§) is radial, that is,
P(€) = Pi(lg) = ) aqlel.
|| <K
But since we know that P(£) is a polynomial then |a| must be even:
P(&) = a;lef*.
J
By Exercise 5 we have that .
Au(g) = —[€*a(€).
It follows by induction that
Adu(€) = (—1Y[¢[¥a(g), j=0,1,....

Taking the inverse Fourier transform we obtain
Lu=F(PO©) = F' Y ayleal(e) = F~' Y aiAu(§) = Y ajddu.
J J J

Conversely, let
Lu = Z ajAj U.
J

It is clear by the chain rule that Laplacian commutes with a translation 7, and a
rotation 7'. By induction the same is true for any power of A and so for L as well. [

Lemma 1. If f(z) = ¢(r),r = |z|, that is, f is radial, then Af = ©"(r) + =2 (r).

.
Proof. Since 2- = % then

Af - é@(@@(?‘))=§@ (L)
- jzi;go'maj (2)+ 5 o)
SO CEE)ECED o= NE
= 29— S a0+ ) =0+ )
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Corollary. If f(x) = o(r) then Af =0 on R"\ {0} if and only if

a+br¥ " n#£2
p(r) =
a+blogr, n=2,

where a and b are arbitrary constants.

Proof. If Af =0 then by Lemma 1 we have

n—1

o"(r) + #'(r) =0.

Denote ¥(r) := ¢'(r). Since 1 solves the first order differential equation

n—1

W(r) + ¥(r) =0

n—1

it can be found by the use of integrating factor. Indeed, multiply by e~ Dler —
to get
P (r) 4 (n = 1)r" () = 0

or

It follows that

Integrate once more to arrive at

2 ar + b, n=1
G +tc, n#2
o(r) = 1" N 5= alogr+0b, n=2
clogr4+c¢;, n=
& ! ar* ™ +b, n>3.
In the opposite direction the result follows from elementary differentiation. [l

Definition. A C? function u on an open set 2 C R" is said to be harmonic on § if
Au =0 on .

Exercise 22. For u,v € C*(Q) N CY() and for S = 09, which is a surface of class
C!, prove the following Green’s identities:

a)
/Q (vAu — ulv) de = / (00, — ud) do

S

/ (vAu+ Vv - Vu)dr = / vo,udo.
0 S
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Exercise 23. Prove that if u is harmonic on Q and u« € C*(Q) then

/ O,udo = 0.
S

Corollary (from Green’s identities). If u € C'(Q) is harmonic on Q and
1. u=0o0nS, thenu=0
2. 0,u =0 on S, then u = constant.

Proof. By resorting to real and imaginary parts it suffices to consider real-valued func-
tions. If we let u = v in part b) of Exercise 22 we obtain

/|Vu|2dx:/u&,uda(x).
Q S

In the case 1) we get Vu = 0 or u = constant. But « = 0 on S implies that v = 0. In
the case 2) we can conclude only that u = constant. ]

Theorem 2 (The mean value theorem). Suppose u is harmonic on an open set @ C R™.

If x € Q and r > 0 is small enough so that B,(x) C €, then

1 1
u(x) = u(y)do(y) = — w(x 4+ ry)do(y),
) [ o= - [ et raaoty

— n—1
T Wn ly|=1

where w,, = lg(wn_”//;) is the area of the unit sphere in R™.

Proof. Let us apply Green’s identity a) with u and v = |y|>™™, if n # 2 and v = log |y|
if n = 2 in the domain

B.(z)\B:(z) ={yeR":e < |z —y| <r}.

Then for v(y — x) we obtain (n # 2)

0 = / (vAu — uAv)dy
Br(x)\

B (z)
= / (vO,u — udyv)do(y) — (vO,u — ud,v)do(y)
lz—y|=r lz—y|=e¢
= 7‘2_”/ dyudo(y) — (2 —n)r't™" udo(y)
|lz—y|=r |lx—y|=r

— g /x_y|:£ dyudo(y) + (2 —n)e' ™" /|$_y|:5 udo(y). (6.1)

In order to get (6.1) we took into account that

ayzy.vzx—yx—yi: d

T r dr dr
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for the sphere. Since u is harmonic then due to Exercise 23 we can get from (6.1) that

for any € > 0,e < r,
61_”/ udo(y) = 7"1_”/ udo(y).
ja—yl== ja—yl=r

That’s why

limal_”/ u(y)do(y) = lim u(x + €6)df
lz—yl=e

e—0 e—0 ‘9‘:1
= wu(e) = / u(y)do(y).
jo—y|=r

This proves the theorem because the latter steps hold for n = 2 also. [l

Corollary. If u and r are as in Theorem 2 then

u(z) = nn / u(y)dy = i u(z 4+ ry)dy, x € Q. (6.2)
W Jije—y|<r Wn Jlyl<t
Proof. Perform integration in polar coordinates and apply Theorem 2. ]

Remark. Tt follows from the latter formula that

Wn
vol{y:Jyl <1} =-—".

Exercise 24. Assume that u is harmonic in Q. Let x(z) € C§°(B1(0)) be such that
x(z) = xa(Jz|) and [, x(z)dz = 1. Define an approximation to the identity by
Xe(+) = e "x(¢7!). Prove that

for x € Q. :={x € Q: B.(z) C Q}.
Corollary 1. If u is harmonic on §2 then u € C*°(9Q).

Proof. The statement follows from Excercise 24 since the function x. is compactly
supported and we may thus differentiate under the integral sign as often as we please.
O

Corollary 2. If {uy},-, is a sequence of harmonic functions on an open set @ C R"
which converges uniformly on compact subsets of 2 to a limit w, then u is harmonic

on €.

Theorem 3 (The mazimum principle). Suppose Q@ C R™ is open and connected. If u

is real-valued and harmonic on Q@ with sup,.qu(x) = A < oo, then either u < A for
all x € Q oru(x) = A in Q.
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Proof. Since u is continuous on 2 then the set {x € Q : u(z) = A} is closed in Q. On
the other hand due to Theorem 2 (see (6.2)) we may conclude that if u(x) = A in
some point z € €2 then u(y) = A for all y in a ball about z. Indeed, if yo € B! (z) and
u(yo) < A then u(y) < A for all y from small neighborhood of yo. Hence, by Corollary
of Theorem 2,

n
= d
u(z) — /HKTU(y) y

n

n
= — / u(y)dy + — / u(y)dy
Wi Jlz—y|<r,lyo—y|>e T Wn Jly—yo|<e
n n
T Y S
T Wn Jlz—y|<r.|yo—y|>e T Wn Jly—yo|<e

- 4" / dy = A,
r"Wn Jiz—y|<r

that is, A < A. This contradiction proves our statement. This fact also means that
the set {z € Q : u(x) = A} is also open. Hence it is either € (in this case u = A in Q)
or the empty set (in this case u(z) < A in ). O

Corollary 1. Suppose 2 C R™ is open and bounded. If u is real-valued and harmonic
on  and continuous on €1, then the mazximum and minimum of u on € are achieved
only on 0S2.

Corollary 2 (The uniqueness theorem)._Suppose Q is as in Corollary 1. If uy and
us are harmonic on Q_and continuous in  (might be complez-valued) and u; = ug on
091, then uy = us on €.

Proof. The real and imaginary parts of u; — us and us — 1y are harmonic on 2. Hence
they must achieve their maximum on 0€2. These maximum are, therefore zero, so
Up = Us. ]

Theorem 4 (Liouville’s theorem). If u is bounded and harmonic on R™ then u =
constant.

Proof. For any x € R" and |z| < R by Corollary of Theorem 2 we have

/BR@u(y)dy_/BR(o) uly)dy < - /DIU(y)Idy,

R w,
D = (Br(x)\Br(0)) U (Br(0)\Bg(z))
is the symmetric difference of the balls Bg(z) and Br(0). That’s why we obtain

R+|z|
R'Wn ) p—jal<ly|<R+]a| Ry JR—faf 6=1

Hence the difference |u(z) — u(0)| vanishes as R — oo, that is, u(z) = u(0). O

n
R w,

|u(x) = u(0)] =

where
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Definition. A fundamental solution for a partial differential operator L is a distribu-
tion K € D’ such that
LK =.

Remark. Note that a fundamental solution is not unique. Any two fundamental solu-
tions differ by a solution of the homogeneous equation Lu = 0.

Exercise 25. Show that the characteristic function of the set
{(Il,l’g) € R2 x> O,.TQ > O}

is a fundamental solution for L = 0,0,.

1
T1+ix2

i

&1+ "

in R? is equal to —

Exercise 26. Prove that the Fourier transform of

Exercise 27. Show that the fundamental solution for the Cauchy-Riemann operator
L = (0, +1id,) on R? is equal to

1 1
T X+ iTs
Since the Laplacian commutes with rotations (Theorem 1) it should have a radial
fundamental solution which must be a function of |z| that is harmonic on R™\ {0}.

|x|27’n
K(z) = {(2_"””’ ", (6.3)

> loglz|, n=2.

Theorem 5. Let

Then K is a fundamental solution for A.
Proof. For ¢ > 0 we consider a smoothed out version K. of K as
(laf24<2) *2"
Kg(x) = (2—njwn n#2 (6.4)
= log(|z]* 4+ €?), n=2.

Then K. — K pointwise (z # 0) as ¢ = +0 and K. and K are dominated by a fixed
locally integrable function for ¢ < 1 (namely, by |K| for n > 2, |log|z|| 4+ 1 for n = 2
and (|z|? + 1)*/2 for n = 1). So by the Lebesgue’s dominated convergence theorem
K. — K in L{. (or in the topology of distributions) when € — +0. Hence we need to
show only that AK. —  as ¢ — 0 in the sense of distributions, that is,

(AK., @) = ©(0), €—0

for any ¢ € C5°(R™).

Exercise 28. Prove that
AK, (z) = nw, e (|z|* + 82)_<%+1) = e "Y(e )
for 9(y) = nwy (Jyf* + 1)~ (5+1),
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Exercise 28 allows us to write

@Kp) = [ pwemienie = [ i) pl0) [ v

n

as € = +0. So it remains to show that

W(z)dz = 1.
]Rn
Using Exercise 28 we have
Y(x)dx = v (|z|* + 1)7(%+1)dx - " r? + 1)(g+1)dr/ do
R Wn Jrn Wn Jo |6|=1

_ X oali2 —(2+1 _n [% (n—1)/2 g 4
=n r r“+1 (5 )dr——/ t 14+t) 27 —=dt

o0 1 n/2—1
- 2/ 2711 4 )" E Nt = E/ L ands
2 Jo 2 Jo \'s 52

1 1
S T ey
0 0

It means that e '¢(¢7x) is an approximation to the identity and
AK, — 0.
But K. — K and so AK = § also. O
Theorem 6. Suppose that
1. f e LY(R") ifn >3
2. Ja2 lF W) (Nog lyl| + 1) dy < o0 if n =2

S Jolf@ (14 Jyl)dy < oo if n=1.

Let K be given by (6.3). Then f* K is well-defined as a locally integrable function and
A(f = K) = f in the sense of distributions.

Proof. Let n > 3 and set
1, x € Bl(O)

ale) = {o, v ¢ Bi(0).

Then y; K € L*(R") and (1 — x;)K € L>®(R"). So, for f € L'(R") we have that
fx(uK) € LYR™) and f* (1 — 1)K € L>®(R") (see Proposition 1 of Chapter 0).
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Hence f * K € L] _(R") by addition and we may calculate

loc

(A(f+ K), ) = (f = K, Ap), ¢ € CF(R)
- [ R@as@de= [ [ )K= pipdpaa

~ [ 1w | Ke—pap@ddy= [ )=, @)y
= /. FWIAK(z —y), () dy = . FW)(o(x —y), p(x))dy

= /. fWey)dy = (f,v).

Hence A(f * K) = f.

Exercise 29. Prove Theorem 6 for n = 2.
Exercise 30. Prove Theorem 6 for n = 1.

Theorem 7. Let 2 be a bounded domain in R"™ (for n =1 assume that Q = (a,b))
with C* boundary 00 = S. If u € CY(Q) is harmonic in Q, then

u(z) = / ()0, Kz — y) — K(x — y)ouly)) do(y), x€Q  (65)

where K (x) is the fundamental solution (6.3).

Proof. Let us consider K from (6.4). Then since Au = 0 in 2, by Green’s identity a)
(see Exercise 22) we have

/QU(?J)Ast(l‘ —y)dy = / (u()d,, K.(x — y) — K.(z — y)d,u(y)) do(y).

S

As ¢ — 0 the right hand side of this equation tends to the right hand side of (6.5)
for each = € ). This is because for x € 2 and y € S there are no singularities in K.
On the other hand, the left hand side is just (u* AK,) (z) if we set u = 0 outside (.
According to the proof of Theorem 5

(ux AK.) () = u(x), €—0,
completing the proof. [l

Remark. If we know that u = f and 0,u = g on S then

u(z) = / (P, K (x — ) — K(z — y)g(y)) do(y)

is the solution of Au = 0 with Cauchy data on S. But this problem is overdetermined
because we know from Corollary 2 of Theorem 3 that the solution of Au = 0 is uniquely
determined by f alone.
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The following theorem concerns spaces C*(2) and C*%(Q) which are defined by

CU Q) = Q) ={ue L) : Ju(z) —u(y)] < Clz —y|* 2,y € O}
choQ) = Q) ={u:0°ue C*(),|8] <k}

for 0 < o< 1and k € N.

Theorem 8. Suppose k > 0 is an integer, 0 < a < 1 and Q C R™ open. If f € C*T(Q)

and u is a distributional solution of Au = f in Q, then u € CEF*T(Q).

Proof. Since A(0°u) = 0°Au = 0°f we can assume without loss of generality that
k = 0. Given Q; C Q such that Q; C Q pick ¢ € C5°(€2) such that » = 1 on € and
let g = ¢f.

Since A(g * K) = g (see Theorem 6) and therefore A(g x K) = f in €, then
u — (g * K) is harmonic in €; and hence C* there. It is therefore enough to prove
that if g is a O function with compact support, then g * K € C?*™. To this end
we consider K (z) and its derivatives. Straightforward calculations lead to following
formulae (n > 1):

0

— K. () = w, 'a;(|x]* + ¥/

3xj

2 2 _2\-n/2—1 L (6.6)

P () = oot [rmasllal +22) i
Oy = | (jal? + & = naf)(faf? + 22, =

Exercise 31. Prove formulae (6.6).

Since K. € C* then g * K. € C* also. Moreover, 0;(g * K.) = g * 0;K. and
0;0j(g * K.) = g x 0;0; K.. The pointwise limits in (6.6) as ¢ — 0 imply

0
a—ij(x) = wy, gl
0? —nw, tzx e, i#j (6.7)
K(z) = o
Ox;0x; wy (|z]? = nad)|z[ "2, Q=4

for  # 0. The formulae (6.7) show that 0;K(z) is a locally integrable function
and since ¢ is bounded with compact support then g x 0;K is continuous. Next,
g * 0;K. = g 0;K uniformly as ¢ — +0. It is equivalent to 0; K. — 0;K in the
topology of distributions (see the definition). Hence 0;(g * K) = g * 0; K.

This argument does not work for the second derivatives because 0;0;K () is not
integrable. But there is a different procedure for these terms.

Let i # j. Then 0,0; K. (z) and 0;0,K(x) are odd functions of z; (and x;), see (6.6)
and (6.7). Due to this fact their integrals over any annulus 0 < a < |z| < b vanish.
For K. we can even take a = 0.

Exercise 32. Prove this fact.
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That’s why for any b > 0 we have

9+ 00K() = [ gla )00 K.()dy—gla) [ 00,K.(s)dy

ly|<b

_ /| (96 =)~ oI Ky + [

ly|>b

If we let € — 0 we obtain

ly|<b

(mx—w—y@D@@Kwﬂy+/‘ g(z —y)0:0;K (y)dy.

ly|>b

This limit exists because

9(x —y) — g(2)|[0:0; K (y)| < ely|*[y[™"

(g is C*) and because g is compactly supported. Then, since b is arbitrary, we can let
b — 400 to obtain

0:9;(g * K)(z) = lim (9(z —y) — g(2))0:0; K (y)dy

b—o00 |y‘<b

+ lim 9(x — y)0,0;K (y)dy
=0 Jly|>b

= lim (9(r —y) — g(2))0:0; K (y)dy. (6.8)
b—o0 |y\<b

A similar result holds for ¢ = j. Indeed,
1 —n — €
O K(x) = —e (e ) + K (),

where ¥(z) = nw; (Jz|? + 1)™/27! and Ks = w, M (|z]? — nad)(|z* + e2)77/271 (see
(6.6)). The integral I; of K5 over an annulus a < |y| < b vanishes. Why is it so? First
of all, I; is independent of j by symmetry in the coordinates, that is, I; = I; for ¢ # j.
So nl; is the integral of > 7 | K5. But > 7 | K5 = 0. Hence [; = 0 also. That’s why
we can apply the same procedure. Since

g (e x) =g, =0,

(because e ™p(e~'z) is an approximation to the identity) then

(g K)(z) = 9(@) + lim

n b—oo

(g9(z —y) — g(2))0F K (y)dy. (6.9)

ly|<b

Since the convergence in (6.8) and (6.9) is uniform then at this point we have shown
that g x K € C?. But we need to prove more.
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Lemma 2 (Calderon-Zigmund). Let N be a C' function on R"\ {0} that is homoge-
neous of degree —n and satisfies

/ N(y)dy =0
a<|y|<b

forany 0 <a <b<oo. Then if g is a C function with compact support, 0 < o < 1,
then

h(zx) = lim (9(z — 2) — g(x))N(z)dz

b—o0 ‘Z|<b
belongs to C“.

Proof. Let us write h = hy + ho, where
ma) = [ (gla=2) - gl@) Nz,
2| <3|yl

ho(z) = lim (9(x — 2) — g(x))N(z)dz.

b=00 J31y1<|2|<b

We wish to estimate h(x + y) — h(x). Since a > 0 we have

hi(z)] < o / 2] ]e] "z = ¢yl
|z| <3|y

and hence
|hi(z 4 y) — ha(z)] < [ha(z + )|+ [ha(z)| < 2¢ Y|

On the other hand
ho(xz +y) — ho(z) = lim (9(z —2) —g(x))N(z +y)d=
b=00 J3|y|<|2+y|<b

— Jlim (9(z — 2) — g(x))N(z)dz

b=00 J3|y|<|z|<b

= lim (9(z = 2) = g(2))(N(z +y) — N(2))dz

b=00 J3|y|<|z|<b
+ lim (9(x — 2) - g(&))N(= + y)dz
b=00 ) (3ly|<|z+y|<b}\ {3yl <|=|<b}
= [+ Is.
It is clear that
Blyl <lz+ylF\Blyl < [=} < {2yl < [2[}\ {3ly| <[]}
= {2lyl <[z < 3[yl}.
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That’s why

Ll < / 9(x — 2) — g@)|IN(z + y)ldz
2|y|<|2|<3|y|

< c/ |2|%|z + y| "dz
2ly|<|=|<3ly|

< C// |Z’a_ndZ:C”|y|a.
2ly[<|2|<3[y]

Now we observe that for |z| > 3|y|
IN(z+y) = N(2)| < |yl sup [VN(z +ty)]
0<t<1

<yl sup |z +ty| "<yl Y
0<t<1

because VN is homogeneous of degree —n — 1, since N is homogeneous of degree —n.
Hence

L < e / 27 yll= "z = ¢yl / - 2dp = ¢yl
|z|>3]y] 3|y|

Note that the condition v < 1 is needed here. Collecting the estimates for I; and I,
we can see that the lemma is proved. [l

In order to end the proof of Theorem it remains to note that 9;0,K () satisfies all
conditions of Lemma 2. Thus the Theorem is also proved. O

Exercise 33. Show that a function K; is a fundamental solution for A? = A(A) on
R™ if and only if K satisfies the equation

AKl = K,
where K is the fundamental solution for the Laplacian.

Exercise 34. Show that the following functions are the fundamental solutions for AZ
on R™:

1. n=4:
log ||
4(,04
2. n=2
|2|* log ||
8T
3. n#2,4:
|x|4fn

24 —n)(2 —n)w,

Exercise 35. Show that (47|z|)~'e~"l is the fundamental solution for —A 4 ¢? on R?
for any constant ¢ € C.
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7 The Dirichlet and Neumann Problems

The Dirichlet problem

Given functions f in © and g on S = 99, find a function v in Q = Q U 99 satisfying
{Au =f, inQ

u =g, on S.

(D)

The Neumann problem

Given functions f in Q and g on S, find a function w in Q satisfying

{Au = f inQ )

d,u=g, onbS.

We assume that ) is bounded with C! boundary. But we shall not, however, assume
that €2 is connected. The uniqueness theorem (see Corollary of Theorem 3 of Chapter
6) shows that the solution of (D) will be unique (if it exists), at least if we require
u € C(Q). For (N) uniqueness does not hold: we can add to u(z) any function that is
constant on each connected component of {2. Moreover, there is an obvious necessary

condition for solvability of (N). If €’ is a connected component of €2 then
/ Audr = Oyudo () :/ g(x)do(z) = | fdz,
’ o o o
that is,

. f(z)dx = /m/ g(x)do(x).

It is also clear (by linearity) that (D) can be reduced to the following homogeneous
problems:

Av=f, inQ
D
{U =0, onS (Da)
Aw =0, in{
{ (Dg)
w=yg, on S
and u := v + w solves (D). Similar remarks apply to (N), that is
Av=f  inQ2
o, v=0, onS
Aw =0, inQ
dw=g, onS

and ©v = v + w.



Definition. The Green’s function for (D) in 2 is the solution G(z,y) of the boundary
value problem

{AxG(w,y) =d(z—y), zyeq (7.1)

G(z,y) =0, x €S,y e

Analogously, the Green’s function for (N) in € is the solution G(z,y) of the boundary
value problem

0,,G(x,y) =0, x €S yel '
This definition allows us to write
G(z,y) = K(x —y) + v,(x), (7.3)

where K is the fundamental solution of A in R™ and, for any y € €, the function v,(z)

satisfies
{Avy(x) =0, in

vy(z) =—-K(x—y), onS (7.4)

in the case of (7.1) and

Avy(z) =0, inQ
0y, 0y(z) = =0, K(x —y), onS

in the case of (7.2). Since (7.4) guarantees that v, is real then so is G corresponding
to (7.1).

Lemma 1. The Green’s function (7.1) exists and is unique.

Proof. The uniqueness of G follows again from Corollary 2 of Theorem 3 of Chapter
6, since K (z —y) in (7.4) is continuous for all z € S and y € Q (x # y). The existence
will be proved later. O]

Lemma 2. For both (7.1) and (7.2) it is true that G(x,y) = G(y,x) for all z,y € .

Proof. Let G(z,y) and G(z, z) be the Green’s functions for € corresponding to sources
located at fixed y and z, y # z, respectively. Let us consider the domain

Qo= (Q\{z: o -yl <ePh\{z: [z -2 <e},

see Figure 2.
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7

Figure 2: The domain ()..

If x € Q. then x # 2z and x # y and, therefore, A,G(x,2) = 0 and A,G(z,y) = 0.
These facts imply

o::/fm%w&ﬁ@ﬂ—G@@&G@wwm
ztémgwaﬁ@@—G@@%ﬁmwﬂd@
_LAﬂ:JG@wW%Guﬁy—G@JﬁMG@w»mﬂ@
_(LZZ;G@wﬁ%G@J)—G@Jﬁ%G@ﬂnﬁﬂ@-
Hence, by (7.1) or (7.2), for arbitrary ¢ > 0 (small enough)
l@ﬂhﬁa@wxuamﬂy—G@Jm%amw»mﬂ@
_ / (6620 Glwy) = Gle.9)0,. 6w, 2)) do (o),

Let n > 3. Due to (7.3) for £ — 0 we have

/|— - (G(l’,y)ayzG(x, Z) — G(gj’ Z)ayIG(.CE, y)) CZO'(.’E)

~ ¢, /| " £ <(2 N Gt TE kI a,,zvz(@) do(z)

|z = ylle = 2"

_/:G@d%G@wWW

1 6,e6 —
~cp(2 —n)e? e = / (6.6 +y z)dQ — I ~ -1,
eJy le0+y— 2"

where we have denoted

I = /xy:s G(z,2)0,,G(x,y)do(z).
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The same is true for the integral over |z — z| = ¢, that is,
[ (@90.Gla) - Gw.0)0, Gl 2) o)~ =50,
|x—2z|=¢
where
I = / G(£E7y)any(fL‘,Z)dO'($)
|z—z|=¢

But using the previous techniques we can obtain that
I ~ (2 —n)c,et e ! / G(ed +y,z)dd — (2 —n)c,w,G(y,z), €—0
16]=1

and

I = (2 —n)cet e ! / G(ed + z,y)df — (2 — n)c,w,G(2,y), € — 0.
16]=1
It means that G(y, z) = G(z,y) for all z # y. This proof holds for n = 2 (and even for
n = 1) with some simple changes. O

Lemma 3. In three or more dimensions
K(r—y) <G(r,y) <0, z,ycQa#y
where G(x,y) is the Green’s function for (D).

Proof. For each fixed y, the function v,(z) := G(z,y) — K(x —y) is harmonic in €, see
(7.4). Moreover, on S = 0%, v,(x) takes on the positive value

|z —y|* "

—K(:c—y)z—wn@_n).

By the minimum principle, it follows that v,(x) is strictly positive in . This proves
the first inequality.

Exercise 36. Prove the second inequality in Lemma 3.

Exercise 37. Show that for n = 2 Lemma 3 has the following form:

1 |z =y

o <G,y <0, zyel,

where h = max, qg|r — yl.
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Exercise 38. Obtain the analogue of Lemma 3 for n = 1. Hint: show that the Green’s
function for the operator % on Q=(0,1) is

Remark. G(z,y) may be extended naturally (because of the symmetry) to € x Q by
setting G(x,y) =0 for y € S.

Now we can solve both problems (D,) and (Dg). Indeed, let us set f =0 in (Dy)
outside € and define

v(z) = /QG(-'E,y)f(y)dy = (f*K)(z) + /Q (G(2,y) — K(z —y)) f(y)dy.

Then the Laplacian of the first term is f (see Theorem 6 of Chapter 6), and the second
term is harmonic in z (since v,(x) is harmonic). Also v(x) = 0 on S because the same
is true for G. Thus, this v(x) solves (Dx).

Consider now (Dg). We assume that ¢ is continuous on S and we wish to find
w which is continuous on Q. Applying Green’s identity a) (together with the same
limiting process as in the proof of Lemma 2) we obtain

mmzlkmwm@mw—awammwmy

= [ 0w, G ot = [ 90, Gl v)doty)

S

Let us denote the last integral by (P). Since 0,, G (z,y) is harmonic in 2 and continuous
iny for x € Q and y € S then w(x) is harmonic in €. In order to prove that this w(x)
solves (Dg) it remains to prove that w(w) is continuous in Q and w(z) on S is g(x).
We will prove this general fact later.

Definition. The function 0,,G(z,y) on © x S is called the Poisson kernel for {2 and
(P) is called the Poisson integral.

Now we are in the position to solve the Dirichlet problem in a half-space. Let
Q=R = {(z’,mn+1) eR"™ 2 e R", 211 > 0} ,
where n > 1 now, and let x,.1 =t. Then
Api1 =0, +02 n=12,...
Denote by K(z,t) a fundamental solution for A, ;1 in R that is,
y plon
K(x,t) = {iﬂll—g—iof:i Lt
i log(|z]? +1%), n=1
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Let us prove then that the Green’s function for ]R?rJrl is
G(z,y;t,s) = K(zr —y,t —s) — K(x —y,—t — s). (7.5)
It is clear (see (7.5)) that G(z,y;t,0) = G(x,y;0,s) = 0 and
Ni1G=0(r—y,t—s)—0(x—y,—t—s)=0(x—y)i(t—s)
because for t,s > 0, —t — s < 0 and, therefore, §(—t — s) = 0. Thus G is the Dirichlet

Green’s function for R”™. From this we immediately have the solution of (D) in
R™ as

u(z,t) = /n /OOO G(z,y;t,s)f(y, s)dsdy.

To solve (Dg) we compute the Poisson kernel for this case. Since the outward normal
derivative on IR is —% then the Poisson kernel becomes

0 0
_%G(x7y7tas)‘s=0 - _% (K(l‘-y,t—8>—K($—y, —t—S))|8:0
2t

W[z — y[2 +12)"5

Exercise 39. Prove (7.6).

Note that (7.6) holds for any n > 1. According to the formula for (P), the candidate
for a solution to (Dp) is:

u(z,t) = 2 /R"( t9(y) ——dy. (7.7)

Wn41 |z —y|2—|—752)%1

In other words, if we set
2t
.Pt(l‘) = n+1l 9 (78)
wni1(|z|* +12) 2

which is what is usually called the Poisson kernel for R’}fl, the proposed solution (7.7)
is simply equal to

u(z,t) = (g * P)(x). (7.9)
Exercise 40. Prove that Py(x) =t "P;(t"'z) and
| ptway=1.

Theorem 1. Suppose g € LP(R"),1 < p < oo. Then u(x,t) from (7.9) is well-defined
on Riﬂ and is harmonic there. If g is bounded and uniformly continuous, then u(x,t)

is continuous on R and u(z,0) = g(x), and

Ju(-t) —9( )l =0

as t — +0.
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Proof. Tt is clear that for any t > 0, P(x) € L'(R") N L*(R"), see (7.8). Hence
P,(z) € LI(R™) for all ¢ € [1, 00] with respect to = and for any fixed ¢ > 0. Therefore,
the integral in (7.9) is absolutely convergent and the same is true if P, is replaced by
its derivatives A, P or 92P; (due to Young’s inequality for convolution).

Since G(x,y;t, s) is harmonic for (z,t) # (y,s) then Pi(z) is also harmonic and

Agu+ 0Pu=g* (A, + 0P, = 0.
It remains to prove that if ¢ is bounded and continuous then

Ju(-,t) =g( )]l =0

as t — +0 and, therefore, u(z,0) = g(r) and u is continuous on R
We have (see Exercise 40)

lg* P —gll, = sup
rER™

[ sta=nman- [ arway
< sw | lg(z—y) = g(@)l[Ply)ldy

— sup [ lgle - t2) — g(@)||Py(2)|dz
zeR™ JRn

— sup ( /| o= 1) o)At

z€R™

+ /z|2R lg(x —tz) — g(x)||P1(z)|dZ)

IN

sup gl —t2) — g(@)| +2|lgll / IPy(2)|dz < ¢

z€R™ |z|<R |z|>R
for t small enough.
The first term in the latter sum can be made less than £/2 since ¢ is uniformly

continuous on R™. The second term can be made less than /2 for R large enough
since P, € L*(R™). Thus, the theorem is proved. O

Remark. The solution of the considered problem is not unique: if u(z,t) is a solution
then so is u(x,t) 4 ct for any ¢ € C. However, we have the following theorem.

Theorem 2. If g € C(R™) and lim,_,o, g(z) = 0 then u(x,t) := (g * P)(z) — 0 as
(x,t) = 00 in ]qul and it 1s the unique solution with this property.

Proof. Assume for the moment that g has compact support, say g = 0 for |z| > R.

Then g € L'(R™) and
lg * Pl < llglly 1P2ll o < ct™,
so u(z,t) — 0 as t — oo uniformly in z. On the other hand, if 0 <t < T, then
2t

u(z, 1) < llglly sup [Pz —y)| = [|g]l, sup o < Tl
! ly|[<R ! ly|<R wn+1(|x - y|2 + tQ)%l
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for || > 2R. Hence u(x,t) — 0 as  — oo uniformly for ¢t € [0,7]. This proves
that u(z,t) vanishes at infinity if g(x) has compact support. For general g, choose a
sequence {gx} of compactly supported functions that converges uniformly (in L>°(R"))
to g and let

ug (e, t) = (gn * P)(x).

Then
lug = ull oo gnsny = sup / (9x — 9) (W) Pz — y)dy‘
< Slzp (||9k — gHLOO(R”) SUP/ | Py — y)|dy)
- mwﬂmmm@wg/|a@wwzu%—gmﬂwyéo
t>0 JRn
as k — oo.

Hence u(x,t) vanishes at infinity. Now suppose v is another solution and let w :=
v —u. Then w vanishes at infinity and also at ¢ = 0 (see Theorem 1). Thus |w| < € on
the boundary of the region {(z,?) : |z| < R,0 <t < R} for R large enough.

------

------

But since w is harmonic then by the maximum principle it follows that |w| < & on this
region. Letting ¢ — 0 and R — oo we conclude that w = 0. [

Let us consider now the Dirichlet problem in a ball. We use here the following
notation:

B=D(0)={zeR": |z| <1}, OB=S.

Exercise 41. Prove that
T

|x—m:-——ym\
2

for x,y e R, x #0, |y| = 1.
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Now, assuming first that n > 2, define

Glry) = K(@—y)—|aP"K (W_ >

1 9—n x
= m |z =y —m—?/m

Exercise 41 shows that G(x,y) from (7.10) satisfies G(z,y) = 0,2 € B,y € S. It is
also clear that G(z,y) = G(y ) This is true because

—”) , x#0. (7.10)

2
T

— ylz| 2(x,y) + lylPle)? = 1= 2(z,y) + |y|*|=|

Jz]

)
—%%m+m%F=}~—

|y

Next, for x,y € B we have that

X

_ =1
ERE

2> a]

and y # - Hence,

Gloy) = Ko~ ) =~ (55 - 0)

is harmonic in y. But symmetry of G and K shows also that G(z,y) — K(z — y) is
harmonic in z. Thus, G(z,y) is the Green’s function for B. It also makes clear how
to define G at x =0 (and at y = 0):

G(0,y) = (ly* ™ -1

(2 — n)wy,
since

—1

x
— — Yl
|z
as x — 0.
For n = 2 the analogous formulae are:

G(x,y) =

1 1
— (loglx —y| — log ) , G(0,y) = %log Y.

Lyl
— —y|T
on ] Y

Now we can compute the Poisson kernel P(z,y) := 0,,G(v,y),x € B,y € S. Since
Oy, =1y -V, onS, then

Y

L () Qﬂymym)__l_m2

P[L‘,y = —— == 3

n>2  (7.11)

L
|z
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Exercise 42. Prove (7.11).
Theorem 3. If f € L'(S) then

u(z) = / P(e.y)f(y)do(y). =€ B,

is harmonic. If f € C(S) then u extends continuously to B and u = f on S.

Proof. For each x € B (see (7.11)), P(x,y) is a bounded function of y € S, so u(z) is
well-defined for f € L'(S). It is also harmonic in B, because P(x,y) is harmonic for
x # y. Next, we claim that

/S Pla, y)doly) = 1. (7.12)

Since P is harmonic in z then the mean value theorem implies (y € 5)

1 =w,P(0,y) = /S P(ry’,y)do(y')

for any 0 < r < 1. But
P(ry',y) = P(y,ry’) = P(ry,y’)
if y,yy/ € S. The last formula follows from
ry' —yl? =" =20y y) + 1= lry =y

That’s why we may conclude that

1=/SP(7“y’,y)d0(y’) :/SP(x,y’)da(y')

with @ = ry. This proves (7.12). We claim also that for any y, € S and for the
neighborhood B, (yg) C S,

lim P(ryo,y)do(y) = 0. (7.13)
r—1-0 S\Bo (y0)

Indeed, for yg,y € Sand 0 <r < 1,

ry0 — y| > rlyo — vl
and therefore
Iryo =yl ™" < (rlyo —y)) ™" < (ro)™"

if y € S\ By (), 1-e., |[y—yo| > 0. Hence |ryo—y|~™ is bounded uniformly for » — 1—0
and y € S\B,(y). In addition, 1 — |ryg|* =1 — 7> — 0 as r — 1 — 0. This proves
(7.13).
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Now, suppose f € C(S). Hence f is uniformly continuous since S is compact.
That’s why for any € > 0 there exists 0 > 0 such that

If(x) — fly)| <e, xyeS |z—y|l <.

For any z € S and 0 < r < 1, by (7.12),

u(rz) — f(z)] =

[uw- f(x))P(rx,y>do<y>\

< / F@) — F@)|[P(rz, y)|do(y)
lz—y|<d

+ / @) — F@)|Pere, y)ldo(y)
S\B;s(z)

< . / P(re,y)ldo(y) + 2 £ / [P(rz,y)|do(y)

Bs ()

< ce20fl [ Plreg)dots) 0,
S\Bs(x)

ase — 0and r — 1 — 0 by (7.13). Hence u(rxz) — f uniformly as r — 1 — 0. O
Corollary (without proof). If f € L*(S),1 < p < oo, then
[u(r) = fFC)Il, =0
asr —1—0.
Exercise 43. Show that the Poisson kernel for the ball Bg(x) is

R?* — |z — x]?

P =
('I?y) wnR‘:L‘—y‘" )

n > 2.

Exercise 44 (Harnack’s inequality). Suppose u € C(B) is harmonic on B and u > 0.
Then show that for |z| =r < 1,

Tt € ) € (o)

Theorem 4 (The Reflection Principle). Let @ C R"™ n > 1, be open and carry
the property that (x,—t) € Q if (x,t) € Q. Let Qp = {(z,t) € Q:t >0} and Qy =
{(z,t) € Q:t =0}. Ifu(z,t) is continuous on 4 UQq, harmonic in Q4 and u(z,0) =
0, then we can extend u to be harmonic on Q by setting u(x,—t) := —u(x,t).

Definition. If v is harmonic on Q\ {z¢}, € C R™ open, then u is said to have a
removable singularity xo if u can be defined at xy so as to be harmonic in €.
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Theorem 5. Suppose u is harmonic on Q\ {z} and u(x) = o (|x — 2o|*™") forn > 2
and u(x) = o (log |x — xy|) for n =2 as x — xg. Then u has a removable singularity
at xy.

Proof. Without loss of generality we assume that (1 = B := B, (0) and zg = 0. Since
u is continuous on 0B then by Theorem 3 there exists v € C(B) satisfying

{Av =0, inB

v =u, on.sS.

We claim that u = v in B\ {0}, so that we can remove the singularity at {0} by setting
u(0) := v(0). Indeed, given € > 0 and 0 < § < 1 consider the function

0.(0) = {u(x) —o(z) —e(jzrm = 1), n>2

—v(z) + elog |z|, n=2
in B\B;(0). These functions are real (we can assume without loss of generality),
harmonic and continuous for 6 < |z| < 1. Moreover g.(x) = 0 on 9B and g.(x) < 0
on 0Bs(0) for all § small enough. By the maximum principle, it is negative in B\ {0}.
Letting ¢ — 0 we see that u —v < 0 in B\ {0}. By the same arguments we may
conclude that also v —u < 0 in B\ {0}. Hence u = v in B\ {0} and we can extend u
to the whole ball by setting «(0) = v(0). This proves the theorem. O
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8 Layer Potentials

In this chapter we assume that {2 C R" is bounded and open, and that S = 92 is a
surface of class C%. We assume also that both Q and Q' := R™\ Q are connected.

Definition. Let v(z) be a normal vector to S at x. Then

0, u(x) = lim v(z) - Vu(x + tv(z))

Oy, u(x) := lim v(z) - Vu(z + tv(z))

+ t——+0

are called the interior and exterior normal derivatives, respectively, of u.

The interior Dirichlet problem (ID)
Given f € C(S), find u € C?*(Q) N C(Q) such that Au=01in Q and u = f on S.

The exterior Dirichlet problem (ED)

Given f € C(S), find u € C?(Y) N C(Y) such that Au = 0 in Q" and at infinity and
u=fonS.

Definition. We say that u is harmonic at infinity if

|x|2_”u (i) — 0(|$|27n)7 n 7é 2
) " \o(loglal), n=2
as r — 0.

The interior Neumann problem (IN)

Given f € C(S), find u € C?(2) N C(Q) such that Au =0 in Q and 9, u = f exists
on S.

The exterior Neumann problem (EN)

Given f € C(S), find u € C?(Y) N C(Y) such that Au = 0 in Q" and at infinity and
0, u = f exists on S.

Theorem 1 (Uniqueness). 1. The solutions of (ID) and (ED) are unique.

2. The solutions of (IN) and (EN) are unique up to a constant on Q and €, re-
spectively. When n > 2 this constant is zero on the unbounded component of

.
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Proof. If u solves (ID) with f = 0 then u = 0 because this is just the uniqueness
theorem for harmonic functions (see Corollary 2 of Theorem 3 of Chapter 6). If u

solves (ED) with f = 0 we may assume that {0} ¢ Q. Then @ = |z|>"u <i> solves

ER
ID) with f = 0 for bounded domain 2 = < x : 2> e V%, Hence w =0 so that u =0
||
and part 1) is proved.

Exercise 45. Prove that if u is harmonic then @ = |z|* "u (ﬁ) ,x # 0, is also

harmonic.

Concerning part 2), by Green’s identity we have

/]Vu]Qd:v:—/uAudx—l—/u&,_udo(x).
Q Q s

Thus Vu = 0 in € so that u is constant in 2.
For (EN) let » > 0 be large enough so that Q2 C B,.(0). Again by Green’s identity
we have

/ \VulPde = —/ uAudx—l—/ uaruda(x)—/uay+ud0(x)
H(O\G H(O\G 9B,(0) s

= / udyudo(x),
B, (0)

where 9,u = Lu. Since for n > 2 and for large |z| we have
u(@) =0 (|zP™") . du(x) = O (|=['™)

then

/ udrudo(z)| < CT‘Q_nTl_n/ do(z) = cr® 2"t = cr?™ = 0
0B (0) 9B,(0)

as r — 00. Hence
|Vul*dz = 0.
Q/

It implies that u is constant on ' and v = 0 on the unbounded component of
because for large |z|,
w(@) =0 (™), n>2.

If n = 2 then d,u(x) = O (r~2) for function u(x) which is harmonic at infinity.

Exercise 46. Prove that if u is harmonic at infinity then u is bounded and 0,u(x) =
O(r=2)asr — oo if n =2 and du(z) = O(Jz|'™),r = oo, if n. > 2.

Due to Exercise 46 we obtain

/ udyudo ()
0Br(0)

Hence Vu = 0 in € and u is constant in (each component of) €. O

<ecr*r=cr' =0, r— o0
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We now turn to the problem of finding the solutions (existence problems). Let us
try to solve (ID) by setting

i) = [ 100, Kla = )iy, (8.1)

where K is the (known) fundamental solution for A.

Remark. Note that (8.1) involves only the known fundamental solution and not the
Green’s function (which is difficult to find in general) as in the Poisson integral

mmzéﬂw%amww@. (P)

We know that u(x) is harmonic in €2, because K (z—vy) is harmonic for z € Q,y € S.
It remains to verify the boundary conditions. Clearly u will not have the right boundary
values but in a sense it is not far from right. We shall prove (very soon) that on S,

ﬂngrTf,

where T is a compact operator on L?(S). Thus, what we really want is to take

ue) = [ )oK =)o), ¢ 5. (52
where ¢ is the solution of
1

Similarly, we shall try to solve (IN) (and (EN)) in the form

wwzéwwxu—ww@»a¢s. (3.3)

Definition. The functions u(x) from (8.2) and (8.3) are called the double and single
layer potentials with moment (density) ¢, respectively.

Definition. Let I(z,y) be continuous on S x S, x # y. We call I a continuous kernel
of order a,0 < a<n—1,n>2,if

|](:L‘,y)|§c|x—y|_a, O0<a<n-—1,

and
|](:L‘,y)|§01+02|10g|$—y||, a=0,

where ¢ > 0 and ¢, ¢y > 0.

Remark. Note that a continuous kernel of order 0 is also a continuous kernel of order
a, 0 <a<n—1.
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We denote by T the integral operator

Tf(x) = / I(z,9)f(y)do(y), z €8S

with kernel 1.
Lemma 1. If I is a continuous kernel of order a,0 < a <n — 1, then
1. T is bounded on LP(S),1 <p < 0.

2. T is compact on L*(S).
Proof. Tt is enough to consider 0 < o < n — 1. Let us assume that f € L'(S). Then

71, = [ [ Galiswlaotine
< [Ufwldoto) [ ool do(a)

L(S)

d
< elflls / 2l = ¢ fll s,
0

where d = diam S = sup, ¢ |7 — y|.
If f e L>*(S) then

d
71,y < el [ 722 = ¢ s
0

L (5)

For 1 < p < oo part 1) follows now by interpolation.
For part 2), let € > 0 and set

[(l’ y): I(Q?,y), ’$—y’>€
= 0, |z —y| <e.

Since I. is bounded on S x S then I, is a Hilbert-Schmidt operator in L?(S) so that
I, is compact for each € > 0.

Exercise 47. Prove that a Hilbert-Schmidt operator i.e. an integral operator whose

kernel I(x,y) satisfies
//|](x,y)|2dxdy < 0
sJs

On the other hand, due to estimates for convolution,

o S € ( [ (f - y|ad0(y)>2da(:p)>

€
< lfllg [ A0, 0
0

is compact in L?(S).

1/2
|Tr -1y

Thus, I as limit of 1., is also compact in L2(S). O
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Lemma 2. 1. If I is a continuous kernel of order a,0 < o <n — 1, then T trans-
forms bounded functions into continuous functions.

2. If T is as in part 1 then u + Tu € C(S) for u € L2(S) implies u € C(S).
Proof. Let |x —y| <. Then

) =Tl < [ 12) = 1.2l 2ldo(:)

< [ @l ) el
lx—z|<28

s @) - Il
S\{|z—z|<26}
c x—z —z|7) do(z

< el (el =) dot)

s [ ) = ) = 1
S\{|z—z|<25}

Since |z —y| < |z — 2| + | — y| then
36
L<e ||f||oo/ 20dr 50, 5 0.
0

On the other hand for |z — y| < ¢ and |z — 2| > 2§ we have that
ly—z| >z —2|—|lz—y|>20—6=4.
So the continuity of I outside of the diagonal implies that
I(x,z) = I(y,2) = 0, z—y,

uniformly in z € S\ {|z — 2| < 26}. Hence, I; and I will be small if y is sufficiently
close to x. This proves part 1.
For part 2, let € > 0 and let ¢ € C(S x S) be such that 0 < ¢ <1 and

(o, y) = {1, lr —y| <e/2

0, |z—vy|l>e.

—

Write Ju = gﬁu + (1 =p)lu = Z)u + flu By the Cauchy-Schwarz-Buniakowsky
inequality we have

1/2
[Lu(z) = Lu(y)] < lull, (/ |12, 2) = fl(y,Z)IQdU(Z)) =0, y—ua,
s
since I; is continuous (see the definition of ). Now if we set

g::u—i—fu—fluzu—i—fou
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then g is continuous for v € L?(S) by the conditions of this lemma. Since the operator
norm of Iy can be made on L?*(S) and L>(S) less than 1 (we can do it due to the
choice of € > 0 small enough), then

N -1
u = (I—I—Io> g,

where [ is the identity operator. Since g is continuous and the operator norm is less
than 1, then

> j
u= Z (—Io) g.
j=0
This series converges uniformly and therefore u is continuous. O]

Let us consider now the double layer potential (8.2) with moment ¢,

M@=iéw@WWK@—yﬂdw, z € R™\S.

First of all ( W)
r—y vy
8, K(x—y) = —~— S 8.4
(o —y) = ) (8.4
Exercise 48. Prove that (8.4) holds for any n > 1.

It is clear also that (8.4) defines a harmonic function in z € R"\ S,y € S. Moreover,
it is O (|z|*™™) as  — oo (y € S) so that u is also harmonic at infinity.

)
Exercise 49. Prove that (8.4) defines a harmonic function at infinity.
Lemma 3. There exists ¢ > 0 such that
(@ =y, v <clz—yl*, zyeS
Proof. 1t is quite trivial to obtain
|z =y, v(W)| < o —yllv(y)] = [z -yl

But the latter inequality allows us to assume that |z —y| < 1. Given y € S, by
a translation and rotation of coordinates we may assume that y = 0 and v(y) =
(0,0,...,0,1). Hence (z —y, v(y)) transforms to x,, and near y, S is the graph of the
equation z,, = ¥ (x1,..., 2, 1), where ¥» € C*(R"1),4(0) = 0 and V)(0) = 0. Then
by Taylor’s expansion

(@ —y,v(y) = lzal < cl(@1,. .o 20a)* < 2 = clz —yf”.

We denote 0, K (x —y) by I(z,y).
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Lemma 4. [ is a continuous kernel of order n — 2,n > 2.

Proof. If x,y € S then I(x,y) is continuous, see (8.4), for x # y. It follows from
Lemma 3 that

2
clr —y .
1y < LU _ gy
wn‘w _y‘
O]
Lemma 5.
1, z€Q
[ 1@ast) =0, e (8.5)
S 1
2 res.

Proof. 1If x € ) then K(x — y) is harmonic in « ¢ S,y € S and it is also harmonic in
y € Q,x € Q. Hence (see Exercise 23)

[ 0t~ yyin(y) =0

or
/I(az,y)da(y) =0, ze.
s

If x € Q,let § > 0 be such that Bs(xz) C Q. Then K (x—y) is harmonic in y in Q\ Bs(z)
and therefore by Green’s identity

0 = [ (8K y) - K- y)A1dy
O\Bjs(z)

= / 0y, K (z — y)do(y) — / Oy, K (x — y)do(y)
S |z—y|=0

~ [ eagpinty - [

- / Iz, y)do(y) 1

or

/](x,y)da(y) =1
S

Now suppose z € S and S5 = S\ (S N Bs(z)). In this case

/S Ia)dor(y) =i [ 1 )doty) (5.6)
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Q/

S5l Qs 835‘

If y € Q5 := Q\Bs(x) then for x € S we have that = # y. It implies that
0 = / AyK(z —y)dy
Qs
— [ K- doty) - [ 8, K(e - p)io(y)
Ss BBg
That’s why, see (8.4),

lim [ 0,,K(x —y)do(y) = lim 0y, K(x —y)do(y)
Ss

6—0 6—0 OBy
51—71
= lim / do(y)
1-n
I nflﬁ n—1 _ 1
= e (5 y 1+l >) )
It means that the limit in (8.6) exists and (8.5) is satisfied. O

Lemma 6. There exists ¢ > 0 such that
/ 0, K(x —y)|do(y) <e¢, xe€R"
s

Proof. 1t follows from Lemma 4 that

/ 10, K(x —y)|do(y) < i/ lz —y|* "do(y) < e, wES.
S Wn Js

Next, for = ¢ S define dist(z, S) = inf eg |z — y|.

There are two possibilities now: if dist(z,S) > 6/2 then |[x —y| > §/2 for ally € S
and therefore

/ 10, K (z —y)|do(y) < 0(51”/ do(y) =, (8.7)
S S

where ¢ does not depend on § > 0 (because 0 is fixed).

Suppose now that dist(z, ) < §/2. If we choose § > 0 small enough then there is
unique zy € S such that

r =19+ tv(zg), te(—0/2,6/2).
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Denote Bs = {y € S: |zg —y| < 0}. We estimate the integral of |I(x,y)| over S\Bs
and Bjs separately. If y € S\ Bs then

|l —y| > |xo—y| — |z — 20| >0 —0/2=17/2

and
[I(z,y)| < co'7"

so that the integral over S\ Bs satisfies (8.7), where again ¢ does not depend on §.
To estimate the integral over Bs we note that (see (8.4)),

Ty = L@ Br )] 1@ = w0, vy) + @ — y.viy)]
wnle = yI" walz =y
|£L‘—1‘0| +C|J}0—y|2 (8 8)
- wn|x — y|" .

The latter inequality follows from Lemma 3 since g,y € S. Moreover, we have (due
to Lemma 3)

lz—y> = |z —xo|®+ |0 — y|* + 2(z — 20, T0 — ¥)
xr—X
— o — 2ol + w0 — yf* + 2z — ol (xo—y, ’ j,)
- 40
> o — mo2 4 |zo — y|? — 2|z — 20| | (20 — Y, ¥(20))]
> |z — 2> + |z — y* — 2¢|z — 20|70 — Y|
> \x—a:o\2+!$o—y|2_|$—950H$0—?J‘7

if we choose 6 > 0 such that |zo — y| < 5=, where constant ¢ > 0 is from Lemma 3.
Since |z — zol|zo — y| < & (J# — zo|* + |zo — y[*) then finally we obtain

1
2 —yl> > 3 (Jo — @0l + |20 — y[?)

and (see (8.4) and (8.8))

[z — xo| + |20 — y|? |z — 0 c

(|2 — o2 + oo — g™ ™ (Jw = wol? + |zg —y|»)"? o~y

[I(z,y)l <c

This implies

é o 0 ,.n—2
I(z,y)|do(y) < ¢ [= = 2ol 2+ ¢ | —ar
2
0 ( Q)n/ n—2

Bs |z — xol2 + 7 o’
o] n—2
< c’5—|—c’/ ZW—dT,
o (a2 +r2)n/2
where a := |z — xo|. For the latter integral we have (t = r/a)

/oo aran p /oo tn72 gt <
— _dr = —_— Q.
0 (CL2 _|_r2)n/2 0 (1 + t2)n/2
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If we combine all estimates then we may conclude that there is ¢y > 0 such that

/ 0, K (z — y)ldo(y) < co, = €R",
S

and this constant does not depend on x. [l

Theorem 2. Suppose ¢ € C(S) and u is defined by the double layer potential (8.2)
with moment ¢. Then for any x € S,

tl_iglou(:c—i—ty(x)) = —|—/Sf(sc,y)<p(y)d0(y)

t—+40 2

lim u(z + tv(z)) = _pla) + /Sf(x,y)w(y)da(y)

uniformly on S with respect to x.

Proof. If x € S and t < 0, with [¢| small enough, then z; := z + tv(z) € Q and
u(x + tv(z)) is well-defined by

watt@) = [ o)Iennot) = [ (o) = ) n)ins) + ola)

S

S o)+ / o)1 (z,y)do () — p(2) / I(z,y)do(y)
= p(x)+ / o)z, y)doly) — o(a)/2, - 0.

Ift > 0, the arguments are the same except that

[ 1wzt =o.

S

The uniformity of convergence follows from the fact that S is compact and ¢ € C(S5).
O

Corollary. Forx € S,
o(x) =u_(x) —uy(x),

where uy = limy_,1ou(xy).

We state without a proof that the normal derivative of the double layer potential
is continuous across the boundary in the sense of the following theorem.

Theorem 3. Suppose ¢ € C(S) and u is defined by the double layer potential (8.2)
with moment ¢. Then for any x € S,

lim (v(z) - Vu(x + tv(z)) — v(z) - Vu(z — tv(x))) =0

t—+0

uniformly on S with respect to x.
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Let us now consider the single layer potential

with moment ¢ € C(5).
Lemma 7. The single layer potential u is continuous on R".

Proof. Since u is harmonic in x ¢ S we need only to show continuity for x € S. Given
zo€ Sand 6 >0, let By ={y €S :|ryg—y| <0} Then

u() — u(ze)] < / (K (@ — )] + 1K @0 — )]) |0(3)|do(y)
T / K(x — ) — K(zo— 9)llo()ldo(y)
5\Bs
< cd(orélog%forn:Q)
+ el / K(x—y) — K(zo— y)ldo(y) — 0
S\Bs

as ¢ — g and & — 0. [l

Exercise 50. Prove that

0, n>2
(5log%, n=2.

/B (K (z = y)[ + [K(zo = y)]) lp(y)ldo(y) < cllell {

Definition. Let us set

I'(z,y) =0, K(x —y) = %

Theorem 4. Suppose ¢ € C(S) and u is defined on R™ by the single layer potential
(8.3) with moment . Then for xz € S,

Jlim 8,u(z,) = —@ + /SI*(x,y)w(y)dU(y),
lim 8,u(xz;) = %w) /ql*(x7y)w(y)d0(y)-

t—+0

Proof. Consider the double layer potential on R™\S with moment ¢

o(z) = / o), K (z — y)do(y)
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and define the function f on the tubular neighborhood V' of S by

f() = {v(a:) + du(x), xeV\S

fgo(x) + f*go(x), reSs, (8.9)

where u is defined by (8.3).
Here the tubular neighborhood of S is defined as
V=Ao+tv(zx):x €S|t <d}.

We claim that f is continuous on V. It clearly is (see (8.9)) continuous on V'\S and
S, so it suffices to show that if zy € S and © = z + tv(xy) then f(z) — f(xy) — 0 as
t — £0. We have

f(@) = f(xo) = wv(x)+0, U(f) p(x0) — I*p(wo)

:/ o(y)d */f )0, K (1 — y)do (y)

— /[ Lo, Y I* an dU( )
_ / (I(@,y) + () — I(z0,y) — I* (20, 9)) @(y)do (y).

n

—

Write this expression as an integral over B; = {y € S : |zg — y| < d} plus an integral
over S\ Bs. The integral over S\ Bs tends uniformly to 0 as  — xg, because |y —z| > §
and |y — xo| > § so that the functions I and I* have no singularities in this case.

On the other hand, the integral over Bs can be bounded by

HSOIIOO/ (M, y) + I (2, y)| + U (0, y) + I (20, y)]) do(y).

Bs

Since
&~y vy)

f(x,y)z— w |x—y|’”

and v(z) = v(zg) for © = xg + tv(zg) € V we have

(z —y,v(z) _ (r—=y,v(20))

I"(z,y) = I(y,z) = = . (8.10)
Wnlz —y[" wnlr —y|®
Hence

x—y,v(xg) — v x—yl||lv(xg) — v

L)+ oy = |G —v@)] o= yllvie) — v)

wy |z — Y| wy |z — Y|
= = gl — y </ 7o _y’_1 g —y[*"
wylz —y[" o — y|"

because |xg — y| < |xrg — x| + |z — y| < 2|z — y|. Here we have also used the fact that
lv(zo) — v(y)| < c|zg — gyl since v is C*.
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Zo

This estimate allows us to obtain that the corresponding integral over Bs can be
dominated by

5
c/ lzo — y|* "do(y) = c// r2 2 dr = 6.
ly—zo|<d 0

Thus f := v + J,u extends continuously across S. That’s why for z € S,

o~

To(z) + IFo(z) = v_ () + 0,_u(z) = %gp(m) + To(z) + 8,_u(x).

It follows that

Oy_u(zx) = —@ + ﬁ‘g@(m)

By similar arguments we obtain

fcp(x) + ]A*go(x) =v4(x) 4+ 0y u(x) = —%go(x) + f(p(x) + 0y, u(x)

and therefore

This finishes the proof. [
Corollary.

where u is defined by (8.3).

Lemma 8. If f € C(S) and
tlp=f

wazéﬁm

Proof. 1t follows from (8.10) and Lemma 5 that

[ fa@ota) = 5 [ w@iro)+ [ ptiis) [ 1@ io)

S S

- ;L@@m@+34¢@M@%iLMwM@)

ro 6

then
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Lemma 9. Let n = 2.

1. If o € C(S) then the single layer potential u with moment y is harmonic at
infinity if and only if

/S olz)do(z) = 0.

2. Let ¢ € C(S) with
/Sap(x)da(x) =0

and u as in part 1. If u is constant on Q then ¢ = 0, and hence u = 0.

Proof. Since n = 2 then

u(r) = %/Slog!x—y!w(y)da(y)

1

= 5. [ logle—y —1og|x|)¢(y)da(y)+%1og|x|/sw(y)dg(y),

But log | — y| — log |x| — 0 as x — oo uniformly for y € S and therefore, this term is
harmonic at infinity (we have a removable singularity). Hence u is harmonic at infinity
if and only if [, ¢(x)do(x) = 0 and in this case u(x) vanishes at infinity. This proves
part 1.

In part 2, u is harmonic at infinity. If u is constant on  then it solves (ED) with
f = constant on S. But a solution of such problem must be constant and vanish at
infinity. Therefore this constant is zero. Thus ¢ = 0 and, hence, u = 0. [

We assume (for simplicity and without loss of generality) that 2 and 2 are simply-
connected, that is, 9Q has only one C? component. For f € C(S) consider the integral
equations

1 .

top+lo =], (14)
1 ~

o+ I'p = I, (1%)

where I(z,y) = 0,,K(x —y) and I*(x,y) = I(y,x). Theorems 2 and 4 show that the
double layer potential u with moment ¢ solves (ID) (respectively (ED)) if ¢ satisfies
(1;) (respectively (1_)) and the single layer potential u with moment ¢ solves (IN)
(respectively (EN)) if ¢ satisfies (1*) (respectively (1%)). For n = 2 we need the extra
necessary condition for (EN) given by Lemma 9.

We proceed to study the solvability of (15) and (1%). Let us introduce

~ 1
Vi = {so o= i§<ﬂ}
(8.11)

~ 1
Wy = {sorf*sozi§s0},

where ¢ is allowed to range over either L?*(S) or C(S).
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Fredholm’s Theorem
Let A be a compact operator on a Hilbert space H. For each \ € C, let
Vi={x € H: Az = \z}

and
Wy={z € H:Ax=\z}.

Then

1. The set {A € C: V, # {0}} is finite or countable with only one possible accumu-
lation point at {0}. Moreover, dimV, < oo for A # 0.

2. dimVj = dimWy if A # 0.
3. R(A—\I) and R(A* — \I) are closed if A # 0.

Here and throughout the use of symbol I for the identity operator is to be distinguished
from a function I = I(z,y) by the context in which it appears.

Corollary 1. Suppose A # 0. Then
1. (A= X))z =y has a solution if and only if yLWs.
2. A — X is surjective (onto) if and only if it is injective (invertible).

In other words, either (A—\)¢ =0 and (A* — X )t = 0 have only the trivial solutions
@ =1 =0 for X\ # 0 or they have the same number of linearly independent solutions
Olye s Py ULy - -y U, Tespectively. In the first case (A—X ) = g and (A* =N )p = f
have unique solutions (A — NI and A* — X are invertible) for every g, f € H. In the
second case (A— M) = g and (A* — XI)y = f have the solutions if and only if ¢; Lg
and Y; Lf for every j =1,2,...,m.

Proof. 1t is known and not so difficult to show that
R(A— ) =Ker (A*=XI)", (8.12)
where M+ denotes the orthogonal complement of M C H defined by
M*+={yeH:(y,x)g =0,v € M}.
Exercise 51. Prove (8.12)

But by part 3 of Fredholm’s theorem (A # 0) we know that R(A — AI) = R(A—A\I)
and, therefore R(A — \I) = Ker (A* — A\I)*. It is equivalent to the fact that

y € R(A— ))& ylKer (A* — \I)

or
(A= XNz =y, € He ylW;.

For the second part, A — Al is surjective if and only if R(A — M) = H, that is,
Ker (A* — AI) = 0. But this is equivalent to A* — AI being invertible or A — A\I being
invertible (injective). O
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Corollary 2.

L*(S) = VieW,=VieWw.
= V,eWwlt=V_ow

where V. and Wy are defined by (8.11) and the direct sums are not necessarily orthog-
onal.

Proof. By Lemma 5 we know that

/S[(x,y)da(y) _ % res.

It can be interpreted as follows: ¢(x) = 1 belongs to V.. Hence dimV, > 1. But

by part 2 of Fredholm’s theorem dimV, = dimW,. Since the single layer potential

uniquely solves the (EN) and (IN) then dimW, < 1. Hence dimV, = dimW, = 1.
Therefore, in order to prove the equality

L*(S)=V5iew,

it is enough to show that V2 N W, = {0} (because V= is a closed subspace of codi-
mension 1).

Suppose ¢ € Vi- N W,. Then I = 2o (¢ € Wy) and there is ¢ € L?(S) such
that ¢ = —% + I (¢ € VH), see Corollary 1 for A = 1/2 and A = I*. Next, since
I — 2o =0 and ¢ € L*(S) then part 2 of Lemma 2 gives that ¢ is continuous and
hence v is continuous too.

Let u and v be the single layer potentials with moments ¢ and 1, respectively.
Then by Theorem 4

O, u = —§+1'A"g0:0
R S T
O, v = —§+Iw—c,0—§+[gp—ay+u.

It follows that

0= /Q (uAv — vAu)dz — /S (udy v — v, u)do(z) = / By, udo(x).

s
But on the other hand

/u&,+uda(x) = —/ (uAu + |Vul?)dz.
S U

Hence
|Vul*dz = 0
Q/

and so u is constant in €'. This gives finally ¢ = 0,, u = 0. The other equalities can
be proved in a similar manner. ]
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Remark. Since we know that
Wi e (e ir) —r(Tels
== T —_ e —
OO 2 2
(see (8.12) and part 3 of Fredholm’s theorem) we can rewrite Corollary 2 as
) -1 -1
L (S)=V.®R I—§I =V_oR I+§I :
Theorem 5. [Main theorem]
1. (ID) has a unique solution for any f € C(S)

2. (ED) has a unique solution for any f € C(5)

8. (IN) has a solution for any f € C(S) if and only if [, fdo = 0. The solution is
unique up to a constant.

4. (EN) has a solution for any f € C(S) if and only if fS fdo = 0. The solution is
unique up to a constant.

Proof. We have already proved uniqueness (see Theorem 1) and the necessity of the
conditions on f (see Exercise 23). So all that remains is to establish existence. It turns
out that in each case this question is reduced to the question of the solvability of an

integral equation.
Note first that
/ fdo =0
S
(f, D)2 =0

or f € VI since 1 € Vi and dimV, = 1. But f € Vi' is necessary and sufficient
condition (see Corollary 1) to solve the integral equation

if and only if

SO ~
—=+I*p =f.
5 tle=1{
If ¢ is a solution of this equation, ¢ is continuous (see part 2 of Lemma 2). Hence, by
Theorem 4 the single layer potential with moment ¢ solves (IN)
Similarly, for (EN), we have that [ fdo = 0 if and only if f € V. In this case we
can solve the equation
(p ~
RS [*o =
g tle=1{
and then solve (EN) by the single layer potential with moment ¢, see again Theorem
4,
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Consider now (ID). By Corollary 2 of Fredholm’s Theorem and Remark after it we
can write for f € C(S) C L?(S),

f=(5+T¢) +v, (8.13)
where ¢ € V_ C C(5) and ¢ is continuous since f —1) is continuous (part 2 of Lemma
2).

Since ¢ € V_ then %1/1 + T ¥ = 0. Let us prove that this condition implies that
1 = 0. Consider the double layer potential

o(z) = / b (x.y)do(y), ¢S

It is harmonic outside of S and v_ = ¢ + Tty = 0 (see Theorem 2). Hence v € C(Q)
and the uniqueness result for the interior Dirichlet problem ensures that v = 0 in .
Therefore 0,_v = 0 and hence 9, v = 0 follows from the jump relation 9, , v—0, v =10
(Theorem 3). It means that v is constant in R™\Q. If n > 2 the uniqueness theorem
for the exterior Neumann problem implies that v = 0 in R™\Q. If n = 2 the argument
is slightly different. We know that Av = 0 in R*\Q and 9, v = 0. By part 4 the

unique solution of this problem is
o) = [ i) K (e =)o),

with [g11(y)do(y) = 0 since otherwise v is not harmonic at infinity and we do not
even have uniqueness. Thus Lemma 9 implies that v = 0.

So v = 0 which means that ¢ = v_ — v, = 0. We have also proved above that
the operator %I + I is injective. Hence it is surjective too and the integral equation
(8.13) is solvable for any f € C(S). By Theorem 2, the double layer potential v with
moment ¢ now solves (ID).

Exercise 52. Prove part 2 of Theorem 5.
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9 The Heat Operator

We turn our attention now to the heat operator
L=0—A,;, (z,t)eR"xR.

The heat operator is a prototype of parabolic operators. These are operators of the

form
Oy + Z ao(z,t)05,
|| <2m
where the sum satisfies the strong ellipticity condition

(D)™ > aalz, )€ = v|gm,

|a|=2m

for all (z,t) € R" x R and £ € R™\ {0} with v > 0 constant.
We begin by considering the initial value problem

u(z,0) = f(x).

This problem is a reasonable problem both physically and mathematically.
Assuming for the moment that f € S, the Schwartz space, and taking the Fourier
transform with respect to x only, we obtain

{&;u —Au=0, inR"x (0,00)

] (9.1)

atﬂ(£>t> + |£‘2ﬂ(£>t> =0
u(¢,0) = f(8).

If we solve the ordinary differential equation (9.1) we obtain
a(s,1) = e ).
Thus (at least formally)
u(z,t) = F! (e"é‘ztf(£)> = (2m) "2 f « F (e’|5|2t> (x,t) = f * Ki(2),

where ,
Ky(z) = (2m) "2 F ! (e’|§‘2t> = (47rt)’”/267%,t >0 (9.2)

is called the Gaussian kernel. We define Ky(x) =0 for t < 0.

Exercise 53. Prove (9.2).
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Let us first prove that
Ki(x)dx = 1.
]Rn
Indeed, using polar coordinates,

z2 o0 r2
Ki(x)dx = (47rt)”/2/ e~ dz = (47Tt)"/2/ r”leudr/ do
R" R" 0 10]=1
o r2
wn(4mf)"/2/ e wdr
0
ds
wy (4t / 4st) 2 _5— 4t—
(4mt) i (4st)"F e~ 7

—n/2

_ uﬁﬂ_—n/Q/ 8n/2—16—sd8
2 0

w 1 2772
— S (n/2) =
2 2T(n/2)
Theorem 1. Suppose that f € L®(R"™) is uniformly continuous. Then u(x,t) =
(f = Ki)(2) satisfies Oyu — Au =0 and

[u(t) = FOll poe@ny = 0

7 "°I'(n/2) = 1.

ast — 0.
Proof. For fixed t > 0

2
n/2 —‘m_z’|2 |'I — y| . n
AmKt(l' — ) (47Tt) 4 < 12 %

=2 [z —y> n
4¢2 2t )
Therefore (0; — A,)Ki(z —y) = 0.
But we can differentiate (with respect to x and t) under the integral sign since this
integral will be absolutely convergent for any ¢ > 0. That’s why we may conclude that

Owu(z,t) — Agu(z,t) = 0.

and for fixed |z —y| #0

0 Ki(x —y) = (4mt)”

It remains only to verify the initial condition. We have

u(z,t) = flz) = (fxK)(x) = flz)= | fly)Kilz —y)dy — f(z)

= 5 flz —2)K(2)dz — . flz)Ky(2)dz
= [ (=2 - fa)K)a:
= [ =)~ s@) Kl
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The assumptions on f imply that

u(z,t) = f(o)] < sup  [flz—nVE) = fx)] [ Ki(n)dy

z€R |n|<R R™
2l [ Kaldn < /2422
In|>R
for small ¢ and for R large enough. So we can see that u(x,t) is continuous (even
uniformly continuous and bounded) for (z,t) € R" x [0,00) and u(zx,0) = f(x). O
Corollary 1. u(z,t) € C*(R" x R, ).

Proof. We can differentiate under the integral defining u as often as we please, because
the exponential function decreases at infinity faster than any polynomial. Thus, the
heat equation takes arbitrary initial data (bounded and uniformly continuous) and
smooths them out. O

Corollary 2. Suppose f € LP(R"),1 < p < co. Then u(x,t) := (f * K¢)(x) satisfies
ou — Au =0 and
Ju(-, 1) — f(')HLP(]R") —0

ast — +0. And again u(x,t) € C*°(R" x R, ).

Theorem 2 (Uniqueness). Suppose u(x,t) € C*HR" x R.)NC(R" x R,) and satisfies
Ou—Au =0 fort >0 and u(x,0) = 0. If for every € > 0 there exists c. > 0 such that

lu(z,t)| < e | Vau(z, )] < cesl® (9.3)
then u = 0.
Proof. For two smooth functions ¢ and %) it is true that
PO — M) + (Do + D) = Y 0;(0;0 — 90;0) + 0(pv)) = Vi - F,
j=1

where F = (0810 — 0011, . .., 0dpp — 01, o1b). Given zy € R™ and ¢y > 0 let us
take

¢(l’,t) = u(x, t)a gp(x,t) = Kt07t<x - $0).
Then

8tw—Aw:0, t>0
oo+ Ap =0, t<tg.

If we apply the divergence theorem in the region

Q={(z,t) eR" xRy : || <r,0<a<t<b<ty}
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we obtain

=3

0 = /‘Fwda:/;j(xMKwﬂx—me—/‘ (@, ) Koy o — z0)da

|z|<r

/ dt/ w(x,t)0; Kyy—t(x — x0) — Kyy—t(x — 20)0ju(z, 1)) %da(m).
|z|=r
Letting r — oo the last sum vanishes by assumptions (9.3). That’s why we have

0:/;ML@KWAx—me—/;MLMKWﬂx—%Mm

As we know from the proof of Theorem 1 for b — t3 — 0 the second term tends to
u(zo, to) and for a — +0 the first term tends to

/;MLWKMx—%Mx:O

because u(x,0) = 0. Hence we have finally that u(zg,?y) = 0 for all zp € R", ¢, > 0. O
Theorem 3. The kernel K,(x) is a fundamental solution for the heat operator.

Proof. Given € > 0, set

0, t <e.

K. (z,t) = {Kt(ﬂﬁ), t>e

Clearly K.(z,t) — Ki(x) as ¢ — 0 in the sense of distributions. Even more is true,
namely, K.(z,t) — K;(z) pointwise as ¢ — 0 and

| K (x,t)| de = K. (x,t)dx < Ky(x)dx = 1.

R™ R™ R™

That’s why we can apply the dominated convergence theorem and obtain

lim K (x,t)dx = Ki(x)dx.

e——+0 Rn

So it remains to show that, as ¢ — 0,
O K (x,t) — ALK (z,t) — 0(x,t),

or

<8tKa - Asza §0> — (10(0)7 90 € Cgo(Rn+l)
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Using integration by parts we obtain
OK. = MK = (Kot =) = [t [ Kiw)(-0 - Mela.tda
= —/R dx /00 K(z)0pp(z, t)dt
- /OO dt s Ki(x)App(z, t)dz

= Ka(x)gp($,5)dx+/ dt | 0K (z)p(x,t)dz
€ R

— /OO dt ALKy (x)p(z, t)dz
= /L. K. (2)p(z,€)dx + /OO dt /n(at — A)Ky(x)p(x, t)dx

= K.(x)p(x,e)dx — ©(0,0), —0

R’ﬂ
as we know from the proof of Theorem 1. ]

Theorem 4. If f € LY(R™), then

u(z,t) = (f * K)(z) = / ds K s(x —y)f(y,s)dy

—00 Rn
is well-defined almost everywhere and is a distributional solution of Oyu — Au = f.
Exercise 54. Prove Theorem 4.

Let us now consider the heat operator in a bounded domain €2 C R"™ over a time
interval ¢ € [0,7],0 < T < oo. In this case it is necessary to specify the initial

temperature u(z,0),z € 2, and also to prescribe a boundary condition on 02 x [0, T7].

0N}
< t="T

Q t=0

The first basic result concerning such problems is the mazimum principle.

Theorem 5. Let Q be a bounded domain in R" and 0 < T < oo. Suppose u is a
real-valued continuous function on Q x [0,T], that satisfies Opu — Au =0 in Q x (0,T).
Then u assumes its maximum and minimum either on 2 x {0} or on 92 x [0,T].

104



Proof. Given e > 0, set v(x,t) := u(z,t) +¢|x|*. Then dyv — Av = —2ne. Suppose 0 <
T < T. If maximum of v in Q x [0, '] occurs at an interior point of 2 x (0,7") then the
first derivatives V, ;v vanish there and the second derivative 8]21) forany j =1,2,...,n
is nonpositive (consider v(xz,t) as a function of one variable z;,j = 1,2,...,n). In
particular, dyv = 0 and Av < 0, which contradicts with 0;v — Av = —2ne < 0 and
Av = 2ne > 0.

Likewise, if the maximum occurs in 2 x {7"}, then dyv(x,T7") > 0 and Av(z,7") <0
which contradicts with d,v — Av < 0. Therefore,

max u < max v < max u + e max |x|%
ax(0.17] Ox[0.17] (@x{0)U@Rx[0,17]) 5

It follows that for e =+ 0 and 7" — T,

max u < max U.
Qx[0,T7 (@x{0})u(92x[0,T7)

Replacing © by —u we can obtain the same result for the minimum. O]

Corollary (Uniqueness). There is at most one continuous function u(z,t) in Q x
[0,7],0 < T < oo, which agrees with a given continuous function f(x) in Qx {0}, with
g(z,t) on 0 x [0,T] and satisfies Oyu — Au = 0.

Let us look now more closely at the following problem:
Owu—Au=0, inQ x (0,00)

u(z,0) = f(z), inQ (9.4)
u(z,t) =0, on 02 x (0, 00).

This problem can be solved by the method of separation of variables. We begin by
looking for solution of the form

u(z,t) = F(x)G(t).
Then
ou—Au=FG —GA,F =0

if and only if
g = E = )2
G F

or

G'+ NG =0, AF+MNF=0,

for some constant A. The first equation has the general solution

G(t) = ce N,
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where ¢ is an arbitrary constant. Without loss of generality we assume that ¢ = 1. It
follows from (9.4) that

(9.5)
F=0, on 0,
because u(x,t) = F(z)G(t) and G(0) = 1.
It remains to solve (9.5) which is an eigenvalue (spectral) problem for the Laplacian
with Dirichlet boundary condition. It is known that the problem (9.5) has infinitely

%s) .

many solutions {F}(z)};Z, with corresponding {x };’i .- The numbers —\} are called

{AF — _)\2F inQ

eigenvalues and Fj(x) are called eigenfunctions of the Laplacian. It is also known that
A >0,7=1,2,..., )\? — oo and {F](m)};il can be chosen as complete orthonormal

set in L2(2) (or {F;(x)};2, forms an orthonormal basis of L3(f2)). This fact allows us
to represent f(z) in terms of Fourier series

f@) =3 [Fa), (9.6)

where f; = (f, Fj)12() are called the Fourier coefficients of f with respect to {F}};’il
If we take now

ula,t) = 3 fiFs()e ™, (9.7)

then we may conclude (at least formally) that
Opu = — ij)\?Fj(I)e_Ait = Z fjAFj(x)e_A?t = Au,
j=1 j=1

that is, u(x,t) from (9.7) satisfies the heat equation and u(z,t) = 0 on 9 x (0, 00). It
remains to prove that u(z,t) satisfies the initial condition and to determine for which
functions f(x) the series (9.6) converges and in what sense. This is the main question
in the Fourier method.

It is clear that the series (9.6) and (9.7) (for ¢ > 0) converge in the sense of
L*(Q). Tt is also clear that if f € C'(Q) vanishes at the boundary then u will vanish
on 09 x (0,00) and one easily verifies that u is a distributional solution of the heat
equation (¢ > 0). Hence it is a classical solution since u(z,t) € C°(€2 x (0,00)) (see
Corollary 2 of Theorem 1).

Similar considerations apply to the problem

Ou—Au=0, inQ x (0,00)
u(z,0) = f(z), inQ
dyu(z,t) =0, ond x (0,00).
This problem boils down to finding orthonormal basis of eigenfunctions for Laplacian

with the Neumann boundary condition. Let us remark that for this problem, {0} is
always an eigenvalue and 1 is an eigenfunction.

106



Exercise 55. Prove that u(x,t) of the form (9.7) is a distributional solution of the
heat equation in © x (0, c0).

Exercise 56. Show that [ |u(x,t)[*dz is a decreasing function of ¢ > 0, where u(z, t)

is the solution of
Up — Ugy = 0, O<z<mt>0

u(0,t) = u(m,t) =0, ¢t>0.
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10 The Wave Operator

The wave equation is defined as
Otu(z,t) — Agu(z,t) =0, (x,t) € R" x R. (10.1)

The wave equation is satisfied exactly by the components of the classical electromag-
netic field in vacuum.
The characteristic variety of (10.1) is

char,(L) = {(§,7) e R"™™ : (§,7) # 0,77 = |¢[*}
and it is called the light cone. Accordingly, we call
{(§,7) € char,(L) : T > 0}

and
{(&,7) € char,(L): 7 <0}

the forward and backward light cone, respectively.
The wave operator is a prototype of hyperbolic operators. It means that the main

symbol
Z oz, 1)E¥T7
la|+i=k

has k distinct real roots with respect to 7.

Theorem 1. Suppose u(z,t) is C* function and that O}u — Au = 0. Suppose also that
u =0 and dyu = 0 on the ball B = {(z,0) : |x — xo| < to} in the hyperplane t = 0.
Then u = 0 in the region Q = {(x,t) : 0 <t < tg, |z — x| < to—t}.

Proof. By considering real and imaginary parts we may assume that u is real. Denote
by By = {z : |z — xo| <ty —t}. Let us consider the following integral

B(t) = % /B (u)? + |Voul?) de

which represents the energy of the wave in B, at time t. Next,

E'(t) = /B (ututt + znzﬁju(é?ju)t) dx

j=1
1
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Straightforward calculations using the divergence theorem show us that

L = /B (Z O;[(Qsuyuy] = > (Dru)uy + ututt> dx

=1

= / ut(utt—Axu)der/ Z(ﬁju)yjutda(x)
By OBt

J=1

1
< [l addo) < [ (4 V) do) =
0B

OB,
Hence iE
— < -+ 1,=0.
g =TT
But E(t) > 0 and E(0) = 0 due to Cauchy data. Therefore E(t) =0if 0 <t < ¢, and
thus V,,u =0 in Q. Since u(z,0) = 0 then u(x,t) = 0 also in €. O
(2o, to)

PN

4 N

Remark. This theorem shows that the value of u at (o, ty) depends only on the Cauchy
data of u on the ball {(z,0) : |x — zo| < to}.

Conversely, the Cauchy data on a region R in the initial (¢{ = 0) hyperplane influ-
ence only those points inside the forward light cones issuing from points of R. Sim-
ilar result holds when the hyperplane t = 0 is replaced by a space-like hypersurface
S ={(x,t) : t = p(x)}. A surface S is called space-like if its normal vector v = (v, 1)
satisfies |vy| > || at every point of S, i.e., if v lies inside the light cone. It means that
V| < 1.

Let us consider the Cauchy problem for the wave equation:

Ofu— Au=0 R", ¢t >0
{tu U , T &€ ) (10.2)

u(z,0) = f(z), Owu(x,0)=g(x).

Definition. If ¢ is a continuous function on R” and r > 0, we define the spherical
mean My(x,r) as follows:

Voter) o= e [ e@in) = o [ et s rapaots)

Wn

109



Lemma 1. If ¢ is a C* function on R", then M,(z,0) = ¢(z) and

n—1

A My(x,r) = <8f + &) My(z, 7).

Proof. 1t is clear that

M, (z,0) = — /  el@doly) = plz).

Wn

For the second part we have, by the divergence theorem, that

w
1 j=1 n

1 - 1
O My(z,r) = W_/II > (x4 ry)do(y) = —/||<17”As0(x+ry)dy
n Yyl= LIRS
1

= / Ap(x + 2)dz
|z[<r

rn—lwn

1 T
= / p"dp /| | Ap(z + py)do(y).
0 yl=1

—1
T w,

That’s why we have

n—1

0, (r"’laTM@(x,r)) =

/ Ap(z +ry)do(y) = r" A My(z, 7).
ly|=1
It implies that

(n— )" 20, M,(z,r) + " 102 My(x,r) = " ' A, M, (2, 1)

and proves the claim. O

Corollary. Suppose u(z,t) is a C? function on R" and let

-1
T, Wn

My (2, t) = — /| PRGLLCE L / ey o).

Then u(x,t) satisfies the wave equation if and only if

(a,% + = ; 1@) My (z,r,t) = 02 M, (z,r,t). (10.3)

Lemma 2. If ¢ € C*(R),k > 1, then
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Proof. We employ induction with respect to k. If £ =1 then

1 k—1
% (—ar) (1 (r)) = D2(r) = By + 1) = 26 + 1"

(@)k (r?*y') = (@) (r*¢’) =2¢ +r¢".

r r

o7 (lary_l (r* () = (Q)k (r**¢").

and

Assume that

= e (2) e+ (2) e

g

k
) ((2/6—1— 1)7"2kg0’+7'2k(7“g0/)/)

e

((2k 4+ 1)r** + 12 + r?M 1)

((2/€+2)7’2kg0/—|—7°2k+1g0”)

ol
+
=

(T2k+2g0/) )

Sl Se S Sye

Il
TN N N
N~ N

ol

]

Corollary of Lemma 1 gives that if u(x,t) is a solution of the wave equation (10.1)
in R™ x R then M, (z,r,t) satisfies (10.3), i.e.,

—1
(83 + 0 ar) M, = 9*M,,
r
with initial conditions:
M, (x,r,0) = M¢(x,r), O0:My(z,r,0)= My (x,1), (10.4)

since u(z,0) = f(x) and dyu(z,0) = g(z).
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Let us set

u(x,rt):

I
/|\
~——

—~
=
3
&
5
SN—

Il

~

=

(10.5)
flz,r):=TM;, gz, r):=TM,

forn=2k+1,k=1,2,....
Lemma 3. The following is true:
0?u = 0%
{ = al (10.6)

ﬂ|t:0 = }V., aﬂft:o = ga

where i, f and § are defined in (10.5).

Proof. Since n = 2k + 1 then ”T_?’ =k —1and n—2 =2k — 1. Hence we obtain from
Lemmata 1 and 2 that

o\ k1 o\ F
i = PTM, = (_) (=10, = (_) (r0,M,)
r r
k1
= (Q) (2kr?* 720, M, + r** 192 M,)
T
k—1 k-1
_ @) (r%—l (@?Mu 40 1@%)) - (8_) (- 102,)
r r r
5.\ 1
_ 2 (7) (=101, = O
Moreover, the initial conditions are satisfied due to (10.4) and (10.5). O

But now, since (10.6) is a one-dimensional problem, we may conclude that u(x,r,t)
from Lemma 3 is equal to

1 . . r+t
u(x,rt) = §{f(m,7"—|—t)+f(x,r—t)+/ g(x, s)ds}. (10.7)
r—t
Lemma 4. Ifn=2k+1,k=1,2,..., then

L u(z, )
Mu('rv 07t) - }’1—13(1) (TL o 2)”7”,

where (n —2)Il = 1-3-5---(n —2), is the solution of (10.2). We have even more,
namely,

ﬁ (aTﬂr:t +§(x,t)) . (10.8)

u(z,t) =
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Proof. By (10.5) we have

5.\ k1 5.\ k2
u(z,rt) = (—T> (r**'M,) = (—T> ((2k — D)r** M, + r*720,M,,)

T T

= (2k—1)(2k—3)---1- Myr + O(1?)

or

% = M, +O(r).

Hence

. u(x,rt)
M, 0.1) = lim = 5
But by definition of M, we have that M, (z,0,t) = u(x,t), where u(x,t) is the solution
of (10.2). The initial conditions in (10.2) are satisfied due to (10.5). Next, since
u(z,r,t) satisfies (10.7) then

. 6($, T, t) - 1 . f(x) r -+ t) + jfv($7 r— t) 1 r+t~

iy (n—2)!1r  2(n—2)!! (113% ’ + lim - - g(z, s)ds
_ L (o] d, f| Gz, t) — Gz, —t
~ 2(n—2)! ( r flr=t + 0 fle=—s + g(2, 1) — g(z, )>,

because f(x,t) and g(x,t) are odd functions of ¢. That’s why we finally obtain

u(z,rt) 1

Py T i I (0rTlet +32.1))

Now we are in the position to prove the main theorem for odd n > 3.

Theorem 2. Suppose thatn = 2k+1,k=1,2,.... If f € C"2 (R") and g € C"z (R")

then
u(z,t) = m {&e (%) - (tH - flz+ ty)da(y))

+ (%)23 (tH /Iy|zlg(x+ty)d0(y))}

Proof. Due to Lemmata 3 and 4 u(z,t) given by (10.8) is the solution of the wave
equation. It remains only to check that this u satisfies the initial conditions. But
(10.9) gives us for small ¢ that

(10.9)

solves (10.2).

u(z,t) = My(z,t) + tM,(z,t) + O(t%).
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It implies that
u(z,0) = My(2,0) = f(z), Ow(z,0)=0Ms(x,0)+ My(z,0) = g(x).

The last equality follows from the fact that My (z,t) is even in ¢t and so its derivative
vanishes at ¢ = 0. H

Remark. If n =3 then (10.9) becomes

u(x,t) = yym {at ( - f(z +ty)d0(y)> —|—t/|y|:1g(x +ty)da(y)}

1

et [ 9s ) piot)

+ t/|y:1g($+ty)da(y)}.

The solution of (10.2) for even n is readily derived from the solution for odd n by
"the method of descent”. This is just the trivial observation: if u is a solution of the
wave equation in R"™! x R that does not depend on z,,; then u satisfies the wave
equation in R™ x R. Thus to solve (10.2) in R™ x R with even n, we think of f and g
as functions on R"™! which are independent of z,,,;.

Theorem 3. Suppose that n is even. If f € C"% (R") and g € C"= (R™) then the
function

O, . flz +ty)
ult) = (n = D)wnir —1 Mawn 1 { <7> (t yl<1 ﬁdy>
ONT [ [ gz+ty)
' <t) (t lyl<1 \/1—y2dy>}

solves the Cauchy problem (10.2).

(10.10)

Proof. If n is even then n + 1 is odd and n + 1 > 3. That’s why we can apply (10.9)
in R"* x R to get that

n—2
2
) ot / f(z +ty + typs1)do(y)
Yt tyityn =1

2
a 2 _
+ (f) " 1/ 9(x +ty + tyny1)do(y) | ¢,
Vit YRy =1

(10.11)

=
s
=
|
=
|
=
g
3
+
—N—
ASH
N

where ¥ = (y,Yn+1), solves (10.2) in R"™ x R (formally). But if we assume now
that f and g do not depend on z,; then u(z,t) does not depend on z, either and

114



solves (10.2) in R™ x R. It remains only to calculate the integrals in (10.11) under this
assumption. We have

/ o+ ty + tysa)do () = / f(@ + ty)do ()
ly|2+y2 =1 ly|2+y2, =1

=2 )L

yl<1 VI=Tyl?’

because we have the upper and lower hemispheres of the sphere |y|> + 32 g =1
Similarly for the second integral in (10.11). This proves the theorem. O

Remark. If n =2 then (10.10) becomes

_1 flatty) 9(z +ty)
e = 5 {at (t yl<1 ﬂdy> i \/1—7y2dy}'

Now we consider the Cauchy problem for the inhomogeneous wave equation

2 — =
Oiu — Azu = w(x,t) (10.12)
u(z,0) = f(z), Ow(zx,0)=g(z).
We look for the solution u(z,t) of (10.12) as u = uy + us, where
(9t2u1—Au1:O (A)
ul(x,O) :f<l’>, atu1<x70) :g<l’>,

and

2 — A —
{8t Us Uy = W (B)

us(z,0) = dyug(z,0) = 0.

For the problem (B) we will use a method known as Duhamel’s principle.

Theorem 4. Suppose w € C'[%]H(R" x R). For s € R let v(x,t;s) be the solution of

OPv(x,t;8) — Agv(z,t;8) =0
v(x,0;5) =0, Ow(z,0;s) =w(x,s).
Then

solves (B).
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Proof. By definition of u(x,t) it is clear that u(x,0) = 0. We also have
¢
Owu(z,t) = v(x,0;t) + / O (z,t — s;8)ds.
0
It implies that dyu(x,0) = v(x,0;0) = 0. Differentiating once more in ¢ we can see that
¢
Otu(x,t) = O(v(z,0;t)) + dv(x,0;t) + / Ofv(z,t — s;8)ds
0
t
= w(z,t) —I—/ Ayv(x,t — s;8)ds
0
¢
= w(x,t)+ AI/ vz, t — s;8)ds = w(x, t) + Agu.
0

Thus u solves (B) and the theorem is proved. ]

Let us consider again the homogeneous Cauchy problem (10.2). Applying the
Fourier transform with respect to x gives

GFU(E, 1) + €PT(E ) = 0

But this ordinary differential equation with initial conditions can be easily solved to
obtain

a(e.1) = (&) cos([€]t) +§<s>sm|(§'f D~ fera, (%W) +a<s>%.
It implies that
ot (00 S0 | o (o sinED)
(1) = F (f(»:)at—‘€| )+J—" (g(&) q )
N /2 -1 sin([&]t) N /2 -1 sin([¢[t)
f @((2) d ( € >>+g <<2> d ( € >)
= [f*x0,P(x,t) + g P(x,1), (10.13)

where ®(z,t) = (27) /2 F ! (Si“ff‘f'”)

The next step is to try to solve the equation
OFF(z,t) — AL F(z,t) = 6(x)6(t).
By Fourier transform in x we obtain

ORF(E,1) + [EPF (€, 1) = (2m) /25 (1).
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That’s why F must be a solution of O?u + [€]*u = 0 for t # 0. Therefore

Fle.t) = {a@ cos([¢]t) + b(€) sin((€]t), ¢ <0
’ c(€) cos([€[t) + d(€) sin(|€[t), ¢ > 0.

To obtain the delta function at t = 0 we require that F is continuous at ¢ = 0 but 8,5}?
has a jump of size (27)™/2 at t = 0. So we have

a(€) = c(€), [€/(d(&) —b(&)) = (2m) /2.

This gives two equations for the four unknown coefficients a,b,c and d. But it is
reasonable to require F'(z,t) =0 for t < 0. Hence, a =b=c =0 and d = (27?)_”/2%.
That’s why

. or)~n/2slél) 4 -
Fe,t) = {é ™) R (10.14)

If we compare (10.13) and (10.14) we may conclude that

F(x,t) = (2m) "2 F; ! (Singf't)) , >0

and

O(z,t), t>0

is the fundamental solution of the wave equation, i.e., F(z,t) with ¢t > 0.

There is one more observation. If we compare (10.9) and (10.10) with (10.13) then
we may conclude that these three formulae are the same. Hence, we may calculate the
inverse Fourier transform of

—n/QSln(‘gyt)

ST

in odd and even dimensions respectively with (10.9) and (10.10). Actually, the result
is presented in these two formulae.

When solving the wave equation in the region €2 x (0,00), where Q is a bounded
domain in R, it is necessary to specify not only Cauchy data on 2 x {0} but also some
conditions on 02 x (0, 00) to tell the wave what to do when it hits the boundary. If the
boundary conditions on 92 x (0, 00) are independent of ¢, the method of separation of
variables can be used.

Let us (for example) consider the following problem:

0P — Ayu =0, inQ x (0,00)
u(z,0) = f(z), Owu(x,0)=g(r), nQ (10.15)
u(z,t) =0, on d) x (0, 00).
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We can look for solution u in the form u(x,t) = F(z)G(t) and get

2 . .
AF(z)+ N NF(z) =0, inQ (10.16)
F(z) =0, on 0€2,
and
G"(t) + N2G(t) =0, 0<t<oo. (10.17)

The general solution of (10.17) is
G(t) = acos(At) + bsin(At).

Since (10.16) has infinitely many solutions {F;}>2, with corresponding {)\2} AT

+00 (A; > 0) and {F}}7Z, can be chosen as an orthonormal basis in L3(9), the solution
u(z,t) of (10.15) is of the form

Z F;(z) (aj cos(A;t) + bjsin(A;t)) . (10.18)

At the same time f(z) and g(z) have the L*() representations

T) = Z fili(x), g(z)= Zngj(f)a (10.19)

where f; = (f, F}) 2 and g; = (g, Fj) 2. It follows from (10.15) and (10.18) that

0) = Zaij(x), w(z,0) = Z \bi F(z). (10.20)

Since (10.19) must be satisfied also we obtain

1

aj=fi, b =95
J

Therefore, the solution u(z,t) of (10.15) has the form

ZF (fj cos(A;t) + /\1‘gj sin()\jt)> :

It is clear that all series (10.18),(10.19) and (10.20) converge in L?(£2), because {Fj}~,
is an orthonormal basis in L*(Q2). It remains only to investigate the convergence of
these series in stronger norms (which depends on f and g, or more precisely, on their
smoothness).

The Neumann problem with d,u(z,t),x € 0f2, can be considered in a similar
manner.
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d-function, 8

a translation, 57
approximation to the identity, 5

biharmonic equation, 11
Burgers equation, 16

Cauchy data, 17
Cauchy problem, 17
Cauchy-Kowalevski theorem, 18

Cauchy-Riemann operator, 11, 63

characteristic, 11
characteristic form, 11
characteristic variety, 11
continuous kernel, 84
convolution, 4

d’Alembert formula, 48
differential operator, 10
Dirichlet problem, 51
distribution, 8
distributional solution, 10
divergence theorem, 4
double layer potential, 84
Duhamel’s principle, 115

eigenvalue problem, 33

eikonal equation, 10

elliptic differential operator, 11
even function, 23

evolution equation, 10

exterior Dirichlet problem, 82
exterior Neumann problem, 82

Fourier cosine series, 26
Fourier inversion formula, 7
Fourier series, 25

Fourier sine series, 26
Fourier transform, 6
fundamental period, 23
fundamental solution, 63

Gaussian kernel, 100
Gibbs phenomenon, 29
gradient, 10

Green’s function, 71
Green’s identities, 59

Hans Lewy example, 21
harmonic function, 59
Harnack’s inequality, 80
heat equation, 10, 32
heat operator, 100
hyperplane, 3
hypersurface, 3

ill-posed problem, 21

integral curves, 12

interior Dirichlet problem, 82
interior Neumann problem, 82

Korteweg-de Vries equation, 11

Laplace equation, 51
Laplace operator, 10, 57
Laplacian, 10, 57

linear superposition principle, 35
Liouville’s theorem, 62

maximum principle, 61, 104
mean value theorem, 60
method of characteristics, 13
multi-index, 1

mutually orthogonal functions, 23

Neumann problem, 51
non-characteristic, 11
normal, 3

odd function, 23
orthogonal complement, 96
orthogonal functions, 23

periodic function, 23

piecewise continuous function, 23
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Plancherel theorem, 7
Poisson equation, 10
Poisson integral, 74
Poisson kernel, 74
principal symbol, 11

quasi-linear equation, 14

Reflection Principle, 80
regular distribution, 8
removable singularity, 80
Riemann-Lebesgue lemma, 6
rotation, 57

Schwartz space, 7
separation of variables, 33
Sine-Gordon equation, 11
single layer potential, 84
spherical mean, 109
support, 7

telegrapher’s equation, 11
tempered distribution, 9
tubular neighborhood, 93

wave equation, 10, 44, 108
wave operator, 108

weak solution, 10
well-posed problem, 20

Young’s inequality for convolution, 4
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