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PREFACE.

This geometry text is written for the Pre-university
students and also to serve as an introduction to Higher
Elgmentary Geometry for the three year degree students
offering Geometry either as a subsidiary or as a main
Subject. I believe that the elementary is the most vital
dnd the object of writing this book isto give to the
students certain Elementary ideas about the subject.
Endeavours have been made to make everything as
simple as possible without losing rigour.

A good number of worked examples are given

to illustrate the theorems. As there are only a few theorems
all exercises are given together at the end. Students can
try these riders after they finish reading the entire text.
. I hope that this text book will lay down a good
foundation for students who intend to pursue their
studies in geometry. It is my sincere wish that students
must acquire that taste for Geometry without which
the Greeks thought—and rightly, in my opinion,—that there
is no real culture. If the book is found to be suitable for
the class Of students for whom it is intended the author
~ill feel amply rewarded.

For any corrections and suggestions for the
i aprovement of the book, I shall be thankfull.

VALSARAJ VILLA,
({LAKKOOL, TELLICHERRY. K. C. VENUGOPAL.
August 15, 1958.

NOTE.
(As per Government Regulations)

. This is neither an officlal nor an officially-sponsored
Publication. "The auth?r is working in Government Brennen
College, Tellicherry, as Tutor in Mathematics.
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HIGHER ELEMENTARY GEOMETRY

(AN INTRGDUCTION)
Chapter 1
PLANE FIGURES.

Plane figures are figures lying in a plane
and not in a curved surface. Every plane figure
with which we deal in Gecmetry is only an aggre-
gate of points, though the point in itself is
undefined. However a vague definition of a point
can be given. A point is a geometrical entity
which has position and nothing else. From points
we come to curves. A curve is a collection of
infinite (a very large) number of points arranged
closely one after the other. We easily see that
this definition of a curve also applies to circles and
straight lines. So we conclude that circles and
straight lines are particular cases of curves. In
order to get a circle the points must be arranged
in a particular order. If all the points taken are
equidistant from a fixed point, we get a circle.
Similarly to get a straight line the points must be
arranged in ancther particular order. But this
particular order cannot be easily described, though
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we are sure that a straight line can be obtained by
arranging a number of points in a particular order.
As a matter of fact straight linc is only a special
case of a circle. If we take a piece of wire of a
definite length in the fuum of an arc of a circle
and alse a number of such pieces having the same
shape and size it will be possible for usto get a
ccmplete circle of which each such piece is a part,
by placing the pieces suitably on a table. This is
the principle adopted by masons in shaping the
stones for the purpcse of erecting the 1ound walls
of a well. In fact, the circle mentioned above can
be generated by cne piece of such wire, shifting it
frcm place to place in a particular order, till the
ccmplete circle is obtained. Now, by decreasing
the cuivature (smount of bending) of this piece
(i. e, by increasing tke lcngth of the bounding
chord of the arc. formed out of this piece of wire)
we can generate a circle of radius greater than that
of the previous ocne. Thus. as the curvature
decreases, radius of the circle generated increases.
Hence a circle of infinite radius can be generated
with the help of the same piece of wire, by making
its curvature zero i. e. by making it straight
(a straight line). So this time the piece of the
wire in the form of a straight line is a part of a
very great circle. This shows that a straight line
is a circle of infinite radius. 1f a mwason wuses
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ordinary stones which are used for ordinary build-
ings, he will be actually erecting the round wall
of a well of infinite radius. In this case, if he
starts construction from a particular point, he
won’t be able to come back to the original position,

completing the construction.

It is because a straight line is a particular
case of a circle, we find certain properties, common
to circles and straight lines. For example, the
student can compare Apollonius’ theorem men-
tioned elsewhere in this text, and the elementary
theorem that the locus of a point equidistant from
two fixed points A, B is the perpendicular bisector
of AB.

If we have a piece of wire in the form of
any curve, at our disposal, we can make it either
in the form of a circle or in the form of a straight
line according as we wish. This itself is sufficient
to show that circles and straight lines are both
particular cases of curves. A curve may be a
closed curve (like the circle) or may not be a
closed one. If it is a closed one we can talk of its
area. The area of a plane closed curve is the
superficial space whose boundary is the closed
curve. So we can talk of the area of a circle, for
it is a closed curve.
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In Elementary Geometry we deal only with
the two particular cases of curves, viz., circle and
straight line and the compound fizures formsd ous
of these two independently or togather. Straight
lines independently form what is known as Poly-
gons. We shall discuss the diff:raat typass of
polygons in the following paragraphs.

Polygon: — A polygon is a geomstrical figure
formed by any number of straight lines. The
point of intersection of two adjacent straight lines
forming a polygon is called a vertex of the
polygon. The segment, between two consecutive
vertices, of a straight line forming a polygon is
called a side. Line joining any two vertices other
than consecutive vertices is called a diagonal of
the polygon. The area af a polygon is the super-
ficial space whose boundaries are the sides of the
polygon.

A polygon in which each angle is less than
two right angles is called a convex polygon. In a
polygon if any angle is greater than two right
angles it is called a re-entrant polygon.

A polygon in which all the sides are equal
is called an equilateral polygon. If all the angles

are equal in a polygon it is called an equiangular
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polygon. A regular polygon is one in which both
these conditions are satisfied, viz, sides are equal
and angles are equal.

Two or more polygons are said to he similar
if (i) their angles are equal and (2) their corres-
ponding sides are proportional. Two or more
polygons are said to be similar and similarly
gituated or homothetic if (1) their angles are
equal, (2) corresponding sides are proportional
and (3) corresponding sides are parallel.

Polygon of sides 10, 9, 8, 7, 6, 5 are
respectively called Decagon, Nonagon, Octagon,
Heptagon, Hexagon and Pentagon. If these are
also regular, they will be called Regular Decagon
Regular Nonagon etc.

A polygon of four sides is known as a
quadrilateral. If one pair of opposite sides of a
quadrilateral are parallel it is called a Trapezium.
If the two pairs of opposite sides are parallel, the
quadrilateral is called a parallelogram. If all the
sides of a parallelogram are equal it is called a
Rhombus. If all the angles of a parallelogtam are
equal (right angles) it is called a rectangle. If all
the sides of a rectangle are equal itis called a
square, It is easy to see that Rhombus and
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rectangle are special cases of a parallelogram
and that squaré is a special special case of a
parallelogram.

‘ A polygon of three sides is called a Triangle.
From the definition of equilateral polygons,
equiangular polygons ete. it follows that a triangle
is equilateral if its sides are equal, equiangular if
its angles are equal etc. (Necte that equilateral
triangles are equiangular and that equiangular
triangles are equilateral). If two sides of a triangle
are equal (or if two angles of a triangle are equal)
it is known as an isosceles triangle. A triangle is
said to be (1)acute angled if each angle is less
than a right angle (2)right angled if one of the
angles is a right angle (3) obtuse angled if one of
the angles is greater than a right angle.

“The side facing the right angle is called
the hypotenuse of the right angled triangle.
Hypotenuse is the unique feature of a right angled
triangle and so if mention is made of a hypotenuse
of a triangle it will follow that the triangle in
question is a right angled triangle, the angle

opposite to the hypotenuse being necessarily a
right angle.

Two or more Geomctrical figures are said to
be congruent if they agree in shape as well as in
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size. Hence if there are two congruent figures
one can be completely superposd on the other.
Students will note that two similar figures agree
in shape only. So if there are two similar figures
one cannot be superposed on the other. But two
similar figures can be placed such that their
corresponding sides are parallel, if they are not
already so, by rotating one of them. Then they
become similar and similarly situated figures.
Therefore if the positions of two similar figures
are not given, they can always be made homothetic
or similar and similarly situated. But the student
must realise that in Geometry position is also
very often important and that it is only the
position that draws a line of demarcation between
similar figures and homothetic figures.

As an exercise, students are advised to
diraw all Geometrical figures one after the other,
strictly following the definition of each given above.

Chapter 2
RATIO AND PROPORTION.

Ratio:— Ratio is merely a relation between
two quantities of the same kind, showing how



-8

many times one quantity is greater than the other.
both of them being measured in the same unit of
measurement,

IfABand CD g U Onefss 8
are two lengths, A B
being equal to 4 inch- c_ 2ok,
es and CD equal to Fig. 1 (a)
2 inches the ratio of A B to CD (usually written as
ABy.

CD
that A B is two times greater than C D.

isdor4:21 e the ratiois § or2:1. This shows

In general if the length A B is a inches and
thelength CD is b inches the ratioof A B to CD is

a . . Lt ] . a

o or a:b. This relation shows that A B is (_b_)
times greater than CD. for a= (_:3 ) b and hence
A B_(—b-) CD. Here a and b are called the terms

. a
of the ratio -

1f a and b arc both maltiples of the same
quantity, say, k so that a=pk and b=qk, the

: B) ~PE_P
ratioof ABtoCD (C becomes F "

So the ratioof AB to CD 13_5.. p and q are

called the terms of the ratio —g, From this it is
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clear that it is always customary to express a ratio
in its simplest form.

If ABis a inches aud CD is b centimeters
the ratio of A B to CD is not si for by definition

the lengths must be measured in the same unit
of measurement.

Also, if A B is a length equal to a inches and
PQR is a triangle whose area is equal to b square
inches we cannot talk of the ratio between A B and
APQR, since by definition for the existence of a
ratio the two quantities must be of the same kind.

Proportion:— If two ratios are equal the
four terms taken in order are called proportionals
and are said to be in proportion.

If %:—dc— a, b, ¢, d are proportionals. The

proportion is written as a:b:: ¢:d and is read ‘‘a is
to b as ¢ is to d” Here b and c are called the
means and a and d are called extremes of the
proportion. d is called the fourth proportional to
a, b and c.

If a, b, c are connected by the relation

—g’— =’E} [b?=ac] b is called the mean proportional
or geometric mean between a and ¢ and c is called
*2
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the third proporticnal toa and b. Alsoa, b, ¢ in
this case are raid to be in continued proportion.

If a, b, ¢, d are connected by the relation

g‘_ =% then a, b, ¢, d are said to be in
continued proportion and so on.

b
c

SIMPLE RESULTS IN RATIO AND PROPORTION.

(1) If - --_a each ratio is equal to %} Let
% = d =k sothat a=bk and c=dk thento
a+4c .
prove that brd alse equal to k.
a=bk
e=dk

adding a+e=k (b+d)
. a-ec _ k=2_°C

- — = [ — —_—

b+d b d

In the following results also, the method of
proef will be the same and therefere the preofs’
are left to the students.

a—cC

a‘
2 If +=3 © each ratio is cqual to =— oy

d



—11-

(3) f2 = g_ each ratio is equal to v’—&}-.
e
4) If -% _d each ratio is equal to wl/ l:-"‘:__-{‘-{-—d?? .
a _¢ a _b
(5) IfT— 4 b° 4 (AI:’ernando)
a ¢ a
for*‘;X——-——d— e —=
a _ ¢ b _d
(6) If e (Invertendo)
1 1
for 3 =¢ i.e. — = _‘_i_
’b‘ ',‘d_" a C
(7) It _a,__ Z N %——:—lz=c—t—é (Componendo)
e _ T . a+b_c+4d
tor ¢+1 d+ll.e. b ="
8) It .= ailg (Dwmlendo)
( b d> b d
S _c _ a—b_c~d
for b_—-l_.~d~ li.e. b 4
@) If a _ ¢ a+b_c+d (Componendo et
b d’a-b t~d Dividendo}
a C
1 +1
fOl‘ P :d ie q:j:b c+d
a1 T a-b  c~d
b d

All these resalts though simple are very
important. Hence the students must always bear
these results in their mind.
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2
Definition:— ?)2 is called the duplicate ratio of —g;

i; % is called

aa
b3
the sub-duplicate ratio of %‘

is called the triplicate ratio of

E————

POINTS OF DIVISION

It AB is a straight

line and P any a :P B
point on it (whether

between A and B fig. 1 (b)
as shown in the figure, on A B produced or on B A

produced) then 1 is the ratio in which the

point P divides the straight lin» AB. Though the
segments AB and B A are equal in magnitude
they are opposite in sign  For, the direction A B
(i e. the direction from left to right) is taken as
positive and the direction BA (consequently)
as negative. Thus AB=BA, but AB= — BAor
AB + BA = O Again the segments AP and PB
by our convention are positive and, BP and P A
negative. If the' point P lies within A and B on
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the straight line A B by our convention AP and

P B are both positive an1 hence the ratio %—g_ is

positive. If P lics without A and B i. e.on AB
or B A produced either A P or P B will be negative

and hence the ratio %_E_ will be negative. When
the ratio AP is positive (i. e. when P lies within

PB
A and B) the point P issaid to divide A B interna-

lly. I this case P is called the internal point of

division. If the ratio ﬁg— is negative (i. e. when

the point P lies without A and B) the point P is
said to divide A B externailly. Here P is called
the external point of division. Hence the sign of
a ratio will decide whether the point of division in
question is an internal or external point of division.

Note 1:— The ratio in which the point P divides

the straight line B A is %E wherever may be the

position of the point P on the straight line
(whether between A aud B. on A B produced or
on B A produced)

Note 2: — If there are two points P and P!, P lying
within A and B and P! lying without A and B

(either on A B produced or on B A produced) —?—g
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is the ratio in which P divides A B (internally) and

AP? . . . .
pipis the ratioin which P divides A B (externally)

AP AP
B is positive and that . TR

. - AT
as such is negative. Hence | — can never be

P3
A P! . .
PiR (for a positive quantity can never

be equal to a negative quintity). Bnat it may
AP _(-AY 1) which is positive
PE

AP _ Ap'_ A P!

PB] "~ P'B~ BP!

In this casei. e. when a point P divides a straight
line A B internally and a point P! divides thesam:
straight line externally in the same ratio, P and P*
are sald to divide A B harmonicaily. Also
(APBP?) is called a harmonic range. The student

must note that if Pand PT divide AB harm onically
the internal ratio éf- and the external ratio

PB
AP tod )
pig e ouly equal in magnitude and not in
sign. In sign also if they-are equal P and P will
coincide. This will be the truth of our first
theorem.

It is evident that

equal to

happen that

1. e

Note 3:— Approximate position of the external
point of division when the internal point of division
is given:
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[f P, the internal point of division lies
between O and B, where O is the middle point of
line A B, P, the external point of division (or the
harmonic conjugate of P, asitis usually called)

will lie on A B produced. For, —AP% ir this case

AP
BP!
lies on B A produced will be less than one; Hence
AP AP
f B and BPT

becoming equal if P! lies on B A produced. So
we conclude that P! must be on A B produced.
Conversely if the external point P lies on A B
produced, P the internal point of division (or the
harmonic conjugate of P! as it is usually called)
must lie between O and B where O is the middle
point of A B.

is clearly greater than one and as long as P?

there won’t be any possibility o

Similarly it can be shown that if P the
internal point of division lies between A and O
where Oisthe middle point of A B, P! its harmonic
conjugate must lie on BA produced. Conversely
if P!, the external point of division lieson B A
produced, P its harmonic conjugate will lic between
A and O where O is the middle point of A B.

Note 4:— If the harmonic conjugate of O, the
middle point of A B is represented by O, O! must
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be a point either on AB produced or on BA

AOT _ . V- 1
produced such that BO1 lie AO'=BO

Hence OT must be a point either on A B produced
or on BA produced such that the distance AB
becomes nmegligible when compared to the
distance of O' from A and B i e. the distance
of OT from A and B must be sufficiently great or
in other words O! must bz the point at infinity on
the line A B.

In chapter 1 it has been alrcady shown that
a straight line is a circle of infinite radius. It is
also easy tosee that the tangent at any point to a
straight line is itself. Hence the perpendicular
erected at any point on a given straight line to
itself is a radius of the straight line. Therefore the
centre of the straight line (regarded as a circle of
infinite radius) must be the point at infinity in &
direction perpendicular to the straight line. Since
the centre itself is at infinity, the other end of the
diameter through the foot of any perpendicular to
the given line, will also be at infinity o the same
direction, 8o any straight line in a plane passes
through the point at infinity in a direction
perpendlcu]ar to the line or in other words g
straight line is a circle passing through the pomt
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at infinity . Since this is so, we note that there is
only one point at infinity on a straight line. Hence
the question, whether Ot, the harmonic conjugate
of O should be on A B produced or on B A produced
does not arise. The two ends of the straight line
A B when indefinitely produced will be coming to
the point O'. So we simply say that the harmonic
conjugate of O, the middle point of AB is the
point at infinity on the line A B.

Students will get some more ideas about
the internal and external points of division when
they study inverse points with respect to a circle
under properties of circles.

THEOREM 1.

A straight line cannot be divided in the

same ratio in more p Pt

than one point (either A ot B
internally or externa-

lly.) Fig (2)

Let P be a point on A B dividing AB
internally in the ratio ZY‘ Then it is evident that

P must lic within A and B. Since P is a point on
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AB that too within A and B, ig; is the ratio in
which the point P divides the straight line AB
internally. But this ratio is given to be --lk-
AP 1
PB k
If there is any other point dividing AB

internallylin the same ratio i ,let it be P Then

AP' 1 AP ]
PIB =% P pp =7
AP AP?

P = pip Adding one to both sides

aud cancelling A B in the numerators of the two
tesulting ratios, we get, ,
1 1 . _
PR =Pig !« PB=P'B or BP=BP?,
=~ P coincides with P. (*.© Both of them
being internal points of division lie within A and B}
i. e. there is only one point dividing AB internally

. l
in the ratio-..
m the ratio %
Similarly there is only one point dividing

A B externally in the ratio I:k. Heree the
theorem.
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THEOREM 2.

A straight line drawn parallel to one side of
& triangle cuts the
other two sides or
those sides produced
proportionally.  Let
MN be parallel to the
side BC of A ABC
cutting AB at M and
AC at N. Divide AM
into p equal parts
and MB into q such equ-
al parts. Draw parallels
to BC through these
points of division. Then
AN will be divided into
p equal parts and NC
will be divided into q
such equal parts (by a
theorem)

Fig. 4
AN _ ] { =P i
NG G ub \ep q (construction)

AN AM
NC = M Hence the theorem.

I

Conversely:— If a straight line cuts twe
sides of a triangle (both internally or both extern-

ally) in the same ratio it is parallel to the third
side.
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Let MN be a st line cutting the sides AR,
AC of A ABC at M and N respectively such that

%= gg Required to prove that MN!BC.

If MN is not parallel to BC let a parallel

to BC be drawn through M cutting \C at N* then
. AM N1

by the previous theorcm, M = I%ITC‘ But by
; . AM AN AN AN!
hypothesls MB= NC « NC =N‘TU—
i. e. N and N divide AC (both internally or both
externally) in the same ratio which is impossible
by theorem 1. . N' must coincide with N.
i. e. MN is parallel to BC.

CONSTRUCTIONN.

1. Divide a straight
line A B in the ratio
l:kinternally. Take
any line through A
and mark AQ=(and
QP =k along that line
in the same direction.
Join P, B. Then draw
Q C parallel to PB
to meet AB at C.
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Then C will be the required point. For, since

AC _AQ
QC| PB, CE= Qp
A Q isexactly equal to [ and QP exactly equal to
k (by construction)

(By theorem 2), where

2. Divide a straight line A B externally in
the ratiol : k.

A slight modification is necessary in this
case.

Instead of
taking Q P in the
same direction as
AQ take QP iu the
upposite  direction
and proceed as he-
fore.

Since QC || PB
AC_AQ_ 1 _ _ 1 Fig. 6
CB~ QP X k
{By theorem 2 as before)

Thus C divides A RB externally in the ratio
i . When the word ‘externally’ is removed, we
will kave to say that C divides AB in the
ratio — —i_ . The negative sign indicates that

the point of division is external.
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3. Tofind a fourth proportional to three
given lengths a, b, e.

Take two straight
linesABCand APQ af-—M B r-—-—-\ c

intersecting at A at
any angle. on ABC,
step off a length
AB=a and BC=b.

Along APQ measure

a length AP =c. Join

B,P. Draw a line Fig. T(a)
through C parallel to &

BP to meet APQ at Q. Then 1 Qis the tourth

proportional to a, b, c.

. AB _ AP . a _ ¢
Proof —yc = pq "¢ 5 rpq"

Hence the result.

4, To find a third proportioual to two
given lengths a, b.
As in the previous

case take any two
straight lines A B C

n o B % o

and A P Q cutting *

each other at A ata R
convenient angle. On

ABC mark off a length @
AB=aand a length Fig. 7 (b)

BC=b. Also step off a length AP=Db on AQ.
Join B, P and draw a line through C' parallel to
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BPtocut APQ at Q. Then PQ will be the third
proportional.

Proof *‘:g = _:4_ (construction)

AP _ AB
But 545 = B¢

. AP _ a ie. 2 = b Hence the result

=

"PQ T b "7 b T PQ

THEOREM 3.

Triangles and parallelograms of equal alti-
tudcs are to one another as their bases.

1. Triangles:—

Let As ABC and a -
PQR standing on
bases BC and QR b A
have equal altitudes 8% ceo R
h. Fig. 7 (¢)

Then A ABC =} h. BC

" APQR =3h QR
AABC; }h BC BC
APQR = Th QRIQR
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2, Parallelograms:—

o, c_ .S R,
Let parailelogr- \ ;
ams ABCD and PQRS \ e h\
standing on bases AB N A
A B P @

and PQ have equul
altitudes h. Fig 8
Join A,C; P, R
Then /~—7ABCD=2AABC (- AABC=ACDA)
—7 PQRI=2ATQR (. A1QR= ARSP)
. L—T7ABCD 2AABC AALC AB
- 7=7PQRS =2APQR = APQR=FQ PV E:

WORKED EXAMPLE.

Three concurrent lines through the
vertices A, B, C of a A ABC meet the
opposite sides in D, E, F respectively. Prove
that BD. CE. AF =DC. EA. ¥B (Ceva’s Theorem)
Let the three lines

(4]
concur at O. The \
altitudes from the ~ \ o \\Q’
vertex A for As / T

BAD and DAC are gé/" \D ) “L_.Lc

the same.
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Same
og - %——M%‘?\Ié . Also, As BOD and DOC
have a common altitude, viz, the altitude from O.
BD ABOD BD ABAD ABOD
DC = ADOC 18 Dy =ADAC™ ADOC
ABAD — ABOD ABAO
=ADAC — ADOC = AOAC
(by ratio and proportion)
s CE ACBO AF A ACO
Similarly EA= AOBA and FB= AOCB
Multiplying the three,
BD CE AF ABAO ACBO AACO_1
DC* EA* FB~ AOAC* AOBA* AOCB™

) BD CE AF i
Leno-RAFB™ 1or BD. CE. AF=DC.EA. FB.

* THEOREM 4.

If an angle of a triangle is bisected internally
(or externally), the bisector divides the opposite
side internally (or externally) in the ratio of the
other two sides of the triangle.
Let AD bisect [_A of A ABC

, BD _AB
Then to prove that DC =10

* The method of proof adopted here for this theorem was first (i. e. iR
(c)ictober. 1:56) given to Mr. Broadbens of Royal Naval colleges
reenwich,

*4
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& ' c D Fig. 11

Draw DP perpendicular to AB and DQ

perpendicular to AC.
Then AAPD=AAQD

(. PAD = QAD; APD = AQD = 90°; AD is
eommon)
S DP=DQ
BAD B
Tﬁ iC = i(l’ (by theorem 3)
But Y BAD__B_D
"ADAC TDC
the altitude from A for both As is common)
. BD _ AB
“*DC  AC

(by theorem 3 for
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Conversely, if a side of a triangle is divided
internally (or externally) in the ratio of the other
two sides, then the line joining the point of
division to the opposite vertex bisechs the angle
at that vertex internally (or externally.)

(Figure and construction the same as before)

: BD _ AB .
given that DC = aAc 'O Prove that AD is a
bisector of £ A.

BD_A BAD BD _AB, .
—Dﬁ()_zAwD_A‘C But DU AC (given)
.AB_ABAD_}AB.DP, DP _
" ACTADAC }ACDQ'DQ”
or DP=DQ; Further AD is the common hypo-
tenuse for As APD and AQD ., right angled As
APD and AQD are congruent
s, 2LPAD= /QAD
i. e. AD is a bisector of /A (internal bisector in
figure 10 and external bisector in fig. 11)

Now

1

Note 1:— 1f AD, AE are respectively the

internal and ext-

ernal bisectors of @
LA of AABC
meeting the base
BC at D and E
then D and E B ) c E
divide BC in the Fig. 12
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same ratio —‘I:—CB~ one internally and the other

externally. i.e. D and E divide BC harmonically.
Hence (BDCE) is a harmonic range. D and E are
called harmonic conjugates with respect to B
and C. In the figure note that I, the external
point of division lies on BC produced as D, the
internal point of division lies between O and C
where O is the middle point of BC.

Note 2:-1f D and E divide BC harmonically,
(1) B and C divide DE harmonically
(use Fig. 12 where line BC is divided har-
monically at D and E)

BD _ BE .
BE=CE (by hypothesis)
. —BD _ —-BE
*"DC T CE
DB _ EB
DC CE
DB _ DC
- BB = CE (alternando)
i. e. B and C divide DE harmonically.

(i) BD, BC and BE are in harmonical progression.

BD BE
DC T CE
BD BE

** (BD+DC)~BD ~ (BC+ CE)—BC
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o ~BD  BE
"BC—BD  BE —BC
BC—-BD _ BE-BC

Inverting ==

1.

BD BE
1. e. -E(’ —1 =1 BC
BC ( BE ) =2
.1 ; 1 1
“Bp T BE Bc - & BD+BE scT BC
orto— 1 ol 1 Hence by definition

BD BC BC BE
BD, BC, BE are in Harmonical progression.

. DB DC
by () gg = CcE
. DB _ —DC _ CD '
"' EB —CE ~ EC
Inverting - gi = gg 1. e. »(F:}% = .g%

*. C and B divide ED harmonically.
Hence as before EC, ED, EB ara also in harmonical
progression.

So if (BDCE) is a harmonic range BD, BC,
BE are in Harmonical progression and EC, ED, EB
are also in Harmonical progression.

(i) OD.OE = OB? = OC? where O is
the midpoint of BC,



—30—

BD _ BE :
PC = CE (hypothesis)
i e, BO+OD _ BO+OE g . py_oc

OC—0D OE —OC
BO+0D _ BO+OE
BO—OD OE — BO
BO+0D+BO—-0D _ BO4+OE+OE~BO
BO+0OD—(BO—-0OD) BO+OE—(OE-BO)
(componendo et dividendo)
2BO _ 20E

1L e. 20D = 2B6 BO2=0D. OE

i.e. OD. OE=B0?=(—-0B)? = OB2 = 0C?
conversely if Ois the midpoint of BC and D, E two
points on it (on the same side of O) such that
0D, OE = OB%2=0C?2, then (BDCE) is a harmonic
range.

OD. OE=B0?

] e. ,_B_O = .()p_

(0))) BO

BO+0D _ OE+BO
BO—OD =~ OE—BO
BO+OD _ OE+BO (-
OC OD =~ OE —OC :
B> _ me

DC =~ CE

*. D and E divide BC internally and externally in
the same ratio. Hence by definition (BDCE) is a
harmonic range.

Hence

* BO - OC)

i.e.
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Note 3:— In fig. 12, if ABC is an isosceles
triangle (AB = AC) D will coincide with O and AD
will be perpendicular to BC, Z4DAE=90° always.
Hence AE will be parallel to BC. i.e. Ein this
case is the point at infinity on the line BC. (or
more generally the point at infinity in a direction
parallel to BC). So we note that the harmeonic
conjugate of the middle point of BC is the point
at infinity on the line BC.

WORKED EXAMPLE.

1. If A,B are fixed points and P a variable
point such that the ratio of PA to PBis always
constant prove that the locus of P isin general
a circle.

[ This i3 called Apollonius’ Theorem. The
student in future when he studies the Geometry of
the conic, will note that the locus of a point which
moves such that the ratio of its distance from a
focus to its distance from the foot of the corres-
ponding directrix is a constant equal to the
eccentricity of the conic, is its auxiliary circle:
Hence auxiliary circle of a conic may be appro-
priately called Apollonian circle of the conic.]
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Let P be a point such
PA 1 °

that —— = —Divide AB T
PB Kk T \\

internally and extern-

Y -
ally in the same '~ '"‘bc Y
.1
— . L )] \
fixed ratio o Let C \\\_/

be the internal point of .
division and D the Fig. 13

external point of division.

PA I _ AC _AD
Then 4= -—="cg = 8D
COPA _AC . b e
Le 55 = cp - PC is the internal bisector
of /APB.
PA __AD . . - . ,
and PR = BD PD is the external bisector
of /APB

Hence /CPD = 90°

Now if we describe a circle on CD as dia-
meter this circle passes through the point P.
(£CPD=90°). But P is any point satisfying the
given condition. Thus any point satisfying the
FA _1 ) lies on this
PB k
circle on CD as diameter and this circle is a fixed
circle (*.' A and B are fixed points and the points
C, D which divide the line joining these fixed points

given condition (namely
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in the fixed ratio —ll(— are also fixed. Consequently

the circle on CD as diameter is also a fixed circle)
Hence the locus of P is this circle on CD as

diameter.

[ Locus is by definition the aggregate of all
points satisfying any geometrical condition. All
loci however are found to be curves. Students
must note that any point lying on a locus will
satisfy the condition for the locus and that any
point satisfying the condition for a locus will lie
on the locus.]

Definition: — The circle on CD as diameter
(fig. 13) is called the Apollonius’ circle of the two

fixed points A and B for the constant ratio -li( .

[ Note that Apollonius’ circle reduces to a
straight line (a circle of infinite radius or a circle
passing through the point at infinity) when the
constant ratio is unity ].

2. CA,CB are two tangents to a circle
A and B being the points of contact. E is the fooes
of the perpendicular from B to AD the diameter
through A. Prove that BA, BD bisect angle

CBE. Deduce that CD bisects BE (March 1948)
*3
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Let BA and BE meet CD in R A
L and K respectiveiy. CA, CB ‘ .
being tangents from A areequal ~ e
. /CAB= /CBA o
Z/CAE+ 2 BEA =90°490°=180° Fig.
.. CA || BE
. Z.CAB= / ABE
Hence s CBA=ABE
i. e. BA is the internal bisector of / CBE.
£ ABD=90° (since AD is a diameter)
Hence BD is the other bisector
. ED _ IK
" "CD T CL
Then to prove that EK= KB
Now A s DEK and DAC are |} (- EK | AC)
. BK _ KD
** "TAC T Cp
fily As KBL and CAL are similar.

. KB _ LK
“ cA T e

KD _ LK
b - €L
% = _Iéii or EK—KB

14
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3, AE bisects the angle A of a A ABC
and meets BC in E. If O and O! be the
circumcentres of As ABE and ACE prove that

S = e (1939 M. U.)
Join O, B; O, E; O'E; O'C.
In as OBE and O'EC
BOE=EO1C (Since /.
BAE=EAC) %¥

(&
=@ (say)
also OﬁE:Oﬁ B= OﬁE+0ﬁB=180—.g Fig. 15
2 2
wly 0'fc=0'CE=180—¢
2

A A A A
s. OBE=O0'CE and OEB=0'EC
Hence As OBE and O'CE are Equiangular

—g%z*——(?lﬁ g (. It two As are Equiangular
corresponding sides are proportional).

In the figure prove that As BEO! and CEO
have the same area. (Proof is left to the student).
Aliter:—Let OP and
01Q be Lrs to BE
and EC respectively
from O and O]

Let Z BAE =

Then LBOE =
LEO'C=29

and /POE= /QO'E=9 Fig 16
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From rt. angled A POE
PE=1BE=O0E sin @ or BE=2 OE sin ¢
Illy EC=2 O'Esin 9
. BE OE
- EC = O'E

CHAPTER 3.
SIMILAR TRIANGLES.

Definition:— Two As are said to be similar
if (1) their angles are equal and (2) their corres-
ponding sides (sides opposite to equal angles) are
proportional. But it is found that if any one of
the above conditions is satisfied the other will
be automatically satisfied. This is indicated in
the following two theorems.

THEOREM 1.

If two As are equiangular their correspon-
ding sides are proportional,




—_37 —

In As ABC and PQR, let £A=/P, LB=LQ.
(Then the third set of angles are obviously equal)

Place the APQR so that /P coincides with
/A and PQ coincides with AB. Then since
,P= /A, PR coincides with AC.

Let AQ'R! be the new position of A PQR
Since /B=/Q= £Q?! (orsince LC=LR = £/R!)

Q'R | BC .. AQ! AR!

Q'B ~R'C
1 1 |
b ng‘s _ER(E adding 1 to both sides;
AB AC . AB CA

AQ"TARY "% pg T Rrp

(AAQR! being the new position of APQR,
AAQ'R'=APQR)

Similarly by placing the A PQR so that
/ R coincides with /C and RP coincides wnt;h CA
CA _ BC
RP QR
But i}%: ?{‘: (already proved)
AB _ BC _ CA
PQ QR RP

we can prove that — .

Note:— The student should take care in
writing down the corresponding sides in the two
triangles. Sides opposite to equal angles in the
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two triangles are corresponding sides. Note also
that the two triangles are now similar (by
definition).

Conversely, if the sides of one tri:fmgle be
proportional to the sides of another, ‘the two
triangles are equiangular.

Let ABC and PQR be two As in which

AB _ BC _ CA
PQ QR RP

—— =R
Bdé\c ® jo

Fig. 19 Fig. 20,

Required to prove that they are equiangular
Let D be a point on the side opposite te P,

of QR such that /DQR= /ABC and LDRQ=
£,/ ACB

Then As ABC and DQR are equiangular
(by construction)

AB _ BC _ CA .
DQ = OR = RD" (by theorem 1, Chapter 3)

BC _ CA _ AB .
But QR™= RP = PQ (Hypothesis)
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. AB _ AB CA _CA
> pQ TP and RE5= RP
Hence PQ=DQ and RP=RD
QR is common to APQR and ADQR
A PQR = A DQR and hence they are
equiangular.
But As ABC and DQR are equiangular.
As ABC and PQR are equiangular.
Note that the two triangles are now similar
(by definition).

‘CONSTRUCTION.

Divide a straight line AB internally and
externally in the ratio I:k.

Erect a perpendicular AP, at A to line AB
such that AP =] units. Also, erect a perpendicular
BQ at B to line AB in the same side of AB as
AP, such that BQ=k units. Produce QB to Q*
such that QB=BQ!. Join P, Q! to meet AB at ('
Then C will be the required internal point of
division. Join P, Q and produce it to meet AB or
BA produced as the case may be at D. Then D
will be the required external point of of division,

(Draw the figure and supply proof)

The student will note that this method is

very useful in dividing a straight line internally
and externally in the same ratio,
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WORKED EXAMPLE.

Two circles cut orthogonally at A and B.

A diameter of one of the circles is drawn cutting

the other in C and D. Show that BC. AD=AC. BD.
[Sept. 1950 M. U |

Def:— Two circles are said to cut ortbo-
gonally if the angle between the tangents to the
two cireles at a common point is a right angle (or
if the radius of one through a common point is
the tangent to the other at that common point),

Let a diameter
of eircle I cut the
circle II at C and
D, Let O be the
centre of circle I. Join
0.A; O,B. Since OA
by definition of orth-
evonal circles Is a

Yangent to circle II.
£OAC= /ODA.
Hence As OAC and ODA are |}
. CA_oOaA
" AD oD
Similarly since As OBC aud ODB are (i

BC _ OB
DB~ OD
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But OA=0B

CA _BC . _ '
S =22 i e AC. BD=AD.BC.

THEOREM 2.

(R

If two As have one angle of the one equal
to one angle of the other and the sides about these

equal angles proportional, the two As are
similar.

Fig. 22 Fig. 23

In the two As ABC and PQR let

- AB _ AC
AA AP &nd &Pioi = T’T{—'

Construction:— Place the APQR on AABC
such that /P coincides with £ A and PQ falls along
AB. Since /A = /P, PR will coincide with AC.
Let Q', R', be the new positions of Q and R
respectively.

*g



— 42—

S AQ' = PQ; AR! = PR.

AB _AC . Lo AB _ AC
P_Q_ = —ﬁ—R— (glven) e, AQ] I&R]A
AB AC . AB AC

——e e . .

e AB_AQ' =AC-AR' e QB R o
BQr “CRT Q'R* |, BC (by Theorem 2. ch. 2.}

S LQ'=/B; LR'= (Clie £Q=/B
and /R= /C.

Thus As ABC and PQR are equiangular
and hence their corresponding sides are proportional
{by Theorem 1, Ch. 3.)

i. e. The two As are similar,

WORKED EXAMPLE.

In a quadrilateral which is not cyelic prove
that the rectangle contained by the diagonals
is always less than the sum of the rectangles
contained by pairs of opposite sides.

ABCD is a quadri-
lateral which is not
cyclic. Let O be a
point within the guad-
riluteral  sueh that
LOAD = /CAB and
£{ODA = £ACB. By Fig. 24
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construction As AOV and ABC are equiangular.

AD OD A0 :
4 " BE " AB (A) (Theorem 1. Ch. 3)

Hence AD. BC=0D. AC. I
Now in As DAC and O\B

Evidently £ DAC=/0AB

AD _ AO
Further ac " AR by (A)

~ A DAC|Il AOAB (by Theorem 2. Ch. 3)
. A D€ i AB.CD.=AC.0B. Ii
Adding I and II,
AB.CD+AD. BC=AC (OD+0B)
But OD+0B>BD
AB. CD+AD. BC.> AC. BD
When the quadrilateral is cyclic / ACB= /7 ADB
(Angles in the same segment)
But £ ACB = Z00JA (by construction)
/ADB= 7 ADO. Hence O lies on BD
OD+O0B = BD.
Thus when the quadrilateral is cyclic

AB.CD+AD. BC=AC. BD which is known
as Ptolemy’s Theorem,
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Def:— 1If a, b, ¢ are three quantities con-
nected by the relation %.—_% (b2 =ac) the three

quantities, a, b, ¢ are said to be in continued
proportion. Also, b is called the meaun proportional
between a and c.

THEOREM 3.

If from the right angle A of a right angled
triangle ABC, AD is drawn perpendicular to BC
then (i) ADis the mean proportional between
BD and DC (ii) BA is the mean proportional
between BD and BC (iii) CA is the mean pro-
portional between CD and CB.

Let ABC be a A right angled at A and A
L to BC from A.

Proof: — A
ZABD+ /BAD=90° :
LABC+ 7 ACB=90° é ‘ >
. LZBAD= /ACB B ) c
Fig. 25

Also. /B is common to AAs ABD and CBA
Hence As ABD and CBA are similar.
_litly As CAD and CBA are similar.
As ABD and CAD are also similar.
(i) From similar As ABD and CAD
AD _ BD

20 . BY 2 _
oc -~ ap- ° AD?=BD. DC.
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(ii) From similar As ABD and CBA

BA _ BD 2

e = pa O BA2=BD. BC.
(i) From similar As CAD and CBA

CA _CD o

B " ea CA%2=CD. CB.

[ An alternate methnd of proof is given

below for these three results so that the student

may recollect them easily to his memory without
any confusion].

(i) Describe a circle on BC as diameter.
Since £ BAC=90° this passes through A. If AD
meets this circle again at A', BC the diameter
bisects this perpendicular chord ADA!. Hence
AD=DA".

By a property of the circle,
AD. DAT=BD. DU
i. e. AD2=BD. DC. (AD =DA*).

(ii) If we describe a circle on CA as dia-
meter this passes through D ( Z/ ADC = 90°), Further
since BA is perpendicular to CA, BA becomes the
tangent to this circle on CA as diameter at A.
Hence BA?=BD. BC.

(iii) Similarly by describing a circle on
BA as diameter we get CA? =CD. CB.
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[The student will note that Pythagoras’
Theorem follows from (ii) and (iii), on addition].

Def:— If the values of two quantities
vary, subject to the condition that their product is
always constant those two quantities are said to be
in inverse proportion.

WORKED EXAMPLE.

1. PA, PBare Tangents to a circle whose
centre is O from any external point P. AB cuts
OPin Q Prove that OP and OQ are in inverse

proportion.
a
_-" T~
5 =~ p

Join O to A. Then

/ OAP = 90°.

Also AQ is t to OP
(.. A OAP=A OBP
and hence A QAP=

A QBP. Fig. 26
A A
Thus £ AQP = £BQP =AQP+2'BQP=: lg" =90°)
Hence by theorem 3 chapter 3,
0A2=0Q. OP.
1. e. 0Q. OP =(radius of the circle)®
=a constant.

OP and OQ are in inverse proportion.
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2 Cis a point on the semi-circle on the
line AB as diameter. Semi-circles are outwardly
described on AC and BC as diameters. Prove that
the sum of the crescent shaped areas lying outside
the semi-circle ACB is equal to the area of the

A ACB. (Inter March 1956)
The area of semi-

circle on AB as diameter is ¢

m fAB):_ W . &

B (T) = § AB A

l|ly the Areasof semi- @ B

circles on AC and BC as Ffg. 27

diameters are respectively 1—;; AC? and =3 BC?
Since AB is a diameter £ ACB=90° and hence by
Pythagoras’ Theorem,

AB? =AC? + BC?. Multiplying throughout by :;t

w ? - '“. 2 l‘I 2

T AB 8 AC" + 5 BC

i. e. Area of semi-circle on AB as diameter
is equal to the sum of the areas of semi-circles on
AC and BC as diameters. Now let the area of the
semi-circle ACB excluding A ACB be 8

Then, ( T AB*-8 )a(% Acz+ BC?) -
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i.e. A ACB = Sum of the crescent shaped areis
lying outside the semi-circle AC'B.

3. Prove that the common tangent to two
circles having external contact is a mean pro-
portional between the diameters of the circles.

[ Inter 1925 M. U. ]

Let two circles, centres
A and B touch externally
at M. Also let FQ be
cne of their common tan-
gents. (The other common
tangent will also be equal

Q!
in length by symmetry.) Fig. 28

Produce PA and QB to meet the circles again
at P! and Q. Then PP’ is a diameter of the circle
A and QQ'is a diameter of the circle B.

Join P, M; Q M; P', Mand QY, M.
£ PMP*=90°. Also £/ PMQ-=90° (For, if we draw
the common Tangent at M to the two circles, cutffng

PQ at K, KP=KM=KQ)
s, PIMQ is a straight line. [||ly Q'MP is

a »t, line,
In As PPIQ and QPQ?
P1PQ=PQQ?! =9¢°
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/PPQ = /PP'M = £QPM = ZQPQ!
(Property of the circle)
A PPQ )l A QPQ!

PQ _ 2a_PpP1. QOt
Hence Q0T =rpg PQ?=PP!. QQ

Aliter:—

Let the radii of
the two circles centres
A and B and touching
externally at M, bea
and b respectively;

Also let PQ be one Fig. 29
of the two common tangents. Join P, A; Q, B.
Draw a perpendicular from A to QB cutting it
at L. Then evidently PQLA is a rectangle.
o PQ=AL and PA=QL=a
. BL=BQ-LQ=(b—a) ("."BQ=Db)
AB=(a+Db)
From right-angled A ALB,
AB?=AL? + BL?
i.e. (a+b)2=PQ%4(b—a)?
PQ*=(a+b)*—(b—a)*
=4ab=(2a) (2b)
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Construction:— Find the mean proporti-
onal between two given lengths a and b.

Take any straight line AB.
Let O be a point on it.
Mecasure out OA = a und ) .
OB =D on opposite sides of A ’f(’:lmou——}—ff‘--\ =
O on the straight line AB. Fig. 30
Draw the circle on AB as diameter. Through O
draw a perpendicular to cut the circle in K and K*
(K?* is not shown in the figure). Then OK or OK*
will be the mean proportional between AO and OB.
Join A, K; B, K.

Proof:— / AKB=90° and KO is Lr to AB.
Hence applying Theorem 3, Chapter 3.
AO.O0OB=0K? i.e. a b=0K?

Hence OK is the mean proportional between a and b.

Note 1:— This construction geometrically
illustrates the algebraic proposition that, if the
sum of two positive gquantities is given the product
of them is greatest when the two quantities are
equal. For, for all positions eof the straight line
CK (O lying between A and B) the relation
AO. OB=OK?"* is true. The left hand side will be
greatest when the right hand side is greatest. The
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R. H. S evidently will be greatest when O coincides
with the centre of the circle. Then AO=O0B.

Note 22— If OB and OA (OA<OB) are
taken in the same side of O, the construction will
be as follows:

Draw the circle on OB K
as diameter and erect a 1T ';\\\
to OB at A to meet the /J .
circle at one of the two ©O ”’\,"»\n: TR B
. . N’
points (say) at K. Join 00
0O.Kand B, K Fig. 31

Then OK will be the mean propostional
between OA and OB.

Proof: — /OKB=90° and KA is Lr to OB.

By applying Theorem 3, Chapter 3,
OK2=0A OB.
i.e. OK2=a b
s, OK is the mean proportional between
a and b.

TEOREM 4.

Similar A3 are to one another as the
squares on their corresponding sides. (Areas of
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two similar triangles are in the duplicate ratio of
corresponding sides).

oy

I\

Fig. 32 Eig. 33

Let A ABC be similar to A PQR. Also let
AD be 1 toBC and PS be L to QR. Then in the
two right angled Ax ADC and PSR.

A A
ADC=PSR =90°

ACD=PRS (LC=LR)
A ADC ||l A PSR
So AD_ AC g5, BC_CA_ AB
PS PR QR RP PQ
AD _ CA _ AB _ BC .
55 = —Iﬂi—z-ﬁ)— OR (Thus alti-
tudes to two corresponding sides of two || As are
in the ratio of corresponding sides).
AABC 3 BC.AD BC BC ¢ AD BC
APQR T4 QR.PST QR QR\ - PS T QR
BC2 CA2 AB?®
QR? =RpPz™ PQZ
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WORKED EXAMPLE.

1. The tangent at A to the circumcircle
of a triangle ABC meets BC produced at D. Show

4
%‘;_____%gi (Inter 1934 M. U.)

In As ABD and CAD

/2 D is common. o
/ABD = £CAD m
(angle between a b\
t . B -4 - rc D
angent to a circle N /
and any chord thr- ~
ough the point of Fig. 34

contact is equal to the angle subtended by that
chord in the alternate segment),

that

e

Hence the two As are similar.
N\ ABD 3 AB?
AN CAD — AC#
to the two As is Common.

AABD _BD . BD _AB
"ACAD =°CD ence "tp T ACE

The altitude from A

Aliter:—Since the two As ABD and CAD are
cquiangular, corresponding sides are proportional,
AB BD _ AD _ /BD.AD_ [/ BD

Thus, & ~AD = b —A/ AD.CD—4/ CD
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BD _ AB®
CD ~ AC?

AB nd multiplying together we get the result.

AC

or taking the two values of

2. In two similar triangles corresponding lines
such as (a) *medians (b) altitudes (c) circum-
radii (d) in-radii etc. are in the ratio of correspond-
ing sides,

-

g /\ /§ ‘\“}%

D (o= “ P S
»

Fig. 35 Fig 36

(a) Let ABC and PQR be two similar triangles
and AD, PS medians to the sides BC and QR
respectively.

Proof:— Since A ABCl A PQR

BC_CA . 3BC_CA ,  DC_CA

QR T RP 7 iQRr RP . SR RP
Further /C=/R

<. AACD and APRS are similar by theorem 2,
chapter 3.

* For definition of nedians of a plane triangle sec appencix IL
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AD CA _ AB _ BC
Hence PS  RP ~ PQ QR

Similarly the other medians are also in the

ratio of corresponding sides.

(b) Already p e chapter 3.

-

~a.

Fig. 37 Fig. 38

(¢) [Circumcentre of a triangle is the point of
concurrence of the perpendicular bisectors of the
sides of the A. Hence it is evident that the
circumcentre of a traiangle is equidistant from the
vertices .of the triangle. i e. with the circumcentre
as centre a circle can be drawn to pass throusk the
vertices of the triangle This circle is. calleh the
circumecircle. The radius of this ciypate’ ¥. Galled
the circum-radius.]

Let O and O' be-tha®irctmcentres of two
similar triangles ABC. and PGR.
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Join B,0; C,0; Q, 0 R, O,
Proof:— Since /A= /P

/. BOC= /QO0'R
("~ £BOC—2LA and LQO'R—2LP)
BO QO
Further oo= o~ !
BO _ OC
or Q0" =OR

Hence ABOC Il AQO'R by Theorem 2, Chapter 3.
. OB BC _CA _ AB
" 0Q QR T RP T PQ
(d) [Tncentre of a triangle is the point of
concurrence of the internal bisectors of the angles

Fig. ‘39 Fig. 40
of the triangle. Hence .it is evident that the
perpendicular distances of the incentre of a triang-
le from the three sides are equal. i. e. We can draw
a circle with the incentre as centre to touch the
three sides of the triangle. This circle is called the
incircle and the radius of this circle is called the
in-radius.]
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Let I and I, be the incentres of two
similar triangles ABC and PQR. Let 1F be
perpendicular to AB and I, T perpendicular to
PQ. Then, evidently Fis the point of contact of the
side AB of a ABC with the incircle of AABC
and T is the point of contact of the side PQ of
A PQR with the incircle of APQR. i.e. IF and
I, T are the in-radii of the two As ABC and PQR.

Proof:— Tn As ABC and PQR,
LA=42P . /BAI=/£QPI, and
similarly £ ABI= £PQI,
OABI i APQI,
IF and I,T are altitudes to the corres-

ponding sides AB and PQ of these similar As.

IF _AB _ BC CA
Hence by (b) T = PQ’ =5k " “RP

3. In two As if one angle of the one
equals one angle of the other, their areas are in
the ratio of the rectangles contained by sides

about equal angles.
*8



— 88—

Fig. 41 Fig. 42

Let ABC and PQR be two triangles such
that /BAC= /QPR=¢9 (say)

Cunstruction: — Diaw BL., QM perpend:-
cnlars to AC and PR from B and Q respccetively. '
Then A ABC=3 AC. BL; A TQR=1] PR. QM.

But BL=AB Sin g; QM =P(Q Sin 9.

. OABC 1 AC. ABSing AB. AC
** .. PQR™ 3 PR. PQ Sin ¢~ PQ. PR
Since, Sin @ = Sin (180 — @) it follows that in
two As if one angle of the ome is a supplement
of one angle of the other their areas are in the

(Sin @ =0)

ratio of the rectangles contained by sides about
these supplementary angles. '

From this problem it easily follows that.
the areas of two similar triangles are in the dupli-
cate ratio of corresponding sides. For if ABC and
PQR are two similar As.
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N ABC AB. AC

“APQR — PQ.PR (- 4A=4D)
AB AB .AB __AC
PQ - PQ PQ PR
AB?
-— - PQz—
CONSTRUCTIONS.

I. Divide a triangle ABC into two parts
whose areas are in the ratio 1: m by drawing a

straight line parallel to the side BC.

It is required to draw K
a line which is such that /‘
it divides the A inte two

portions whose areas are \ W
in the ratio I:m and which . ,,'/

\
must at the same time be 8

parallel to BC.

Fig. 43

To fix up a tine either two points on it or
any one point on it and its direction must be
known. Here since the straight line must have to be
parallel to BC its direction can be taken as glven
Hence it is suflicient if we find a point on it.
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Analysis:— Suppose MN is the required
parallel line cutting AB and AC at M and N
respectively.

AAMN 1
Then 3NCB = m |
, A AMN 1
o A AMN ; OMNCB — I¥m
. AAMN_ 1
i AABC “l4m

But as AMN and ABC are also similar (MN !} BC)

. aAMN  AM:
** BABC AB?

Hence é‘Mj s J—

AB? l4+m
i. e. M is a point on AB such that %%—: == l“-’ﬁlﬁl
( il ly N will be a point on AC such that %—2——: = _{_Lm )
Now if T is a perfact square the ratio ‘:Lg can

be easily found out and hence the point M can be
eagily fixed up on AB. If lTl“ is not a perfect
mn

square M will have to be found out, employing
some other geometrical result. In this case if P is a
point on AB such that AM? =AP. AB. (i. e. AM be-
comes the mean proportional between AP and AB)-
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AM: _ AP. AB. AP. 1
ABZ  AB. AB. T AB. ~ Il4m

. . AP _ 1
So if we find a point P such that AB = itm the

point M can he found out by finding, AM the mean
proportional between AP and AB.

Construction: — Let P be a point on AB

AP l . AP 1 )
such that B = Iin (1. e. Find

the mean proportional between AP and AB. (use
construction under Theorem 3, Chapter 3). Let it be
AM. Then M is the point through which the requi-
red parallel line passes. Hence draw a line through
M parallel to BC. This will be the required line,

AMN AM2 3
Proof: — %XB—C‘ = (7 (Since the two

As are similar)
But AM?=AP. AB (construction)

. AM? AP AB AP aAMN AP
"+ AB? TAB.AB "AB - 2ABC TABTI+m

A AMN l
Hence A4BE— A AMN= lim=1
AAMN 1

e OMNCB =m "
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2. Divide a triangle ABC into two purts
whose areas are in the ratio lim by drawinga
perpendicular to BC.

Analysis:— Let MN
be the required perpendi-
cular to BC. Draw AK
perpendicular to BC.

CACMN
OMNBA = m
(Hypothesis)
. ACMN [
* ACAB T l4m
N ACMN CNz A
oW ACAK = OKx (1) (MN [[AK)
ACAK CK

ACAB = CB (2) (Altitude AK is common)

ACMN  ON?
A CAB ~ CK.CB
ON” _ 1
CK.CB 14+m
¢N? 1

P M .
CK I+m CB

i. e CN is the mean proportional hetween CK and

CP where CPis equal to ——l~ CB.

(1) x (2) gives

ve
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_(_j}.’_ = — l__ - __C_P. —'.L
CB I+m "~ PB m
So P divides CB in the ratio I:m.

Construction.— Divide CB in the ratiol:m
at P (this is the same thing as dividing BC in the
vatio m:l at P). Find the mean proportional
between CP and CK, where K is the foot of the
rerpendicular from A on BC. Letit be CN. Then
N is the point at which the required perpendicular
will have to be erected to BC. Hence draw a line
through N perpendicular to BC, cutting AC at M.
Then MN will be the required line.

cp 1 . Cp_ 1
Proof =% == " BT iim
(by ratio and proportion)
ACMN ACMN ACAK
ACAB = ACAR' AUAB

2
But ﬁgrg ON (*." they are similar)
and AA%%I; _gg (they have the same altitude)

. ACMN CN:? CK CN*  CP.CK
" ACAB=CK:** (B~ CK.CB~ CK.CB
(CN is the mean proportional between CP and CK.)

. ACMN_CP _ACMN 1
"+ ACAB=CB® "% TMNBA ™ m
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3. Draw a triangle equal in area to a given
triangle and similar to another given A.

Let PQR and ABC be two given tiiangles.
Then it is required to construct another triangle
which is equal in alea to A AEC and similar to

A PQR.

Fig. 45

B ‘ < Fig 46
»

Construction:— On BC construct a triangle
DBC equiangular to A PQR. Through A draw a
parallel to BC, cutting DC at P. Find the mean
proportional between CP and CD. Let it be CK.
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Through K draw a parallel to DB, cutting BC at L.
Then A KLC will be the required triangle.

Proof:— APQR and ADBC by construction
are equiangular and hence similar.

Since LK i BD, AKLC and ADBC are
equiangular and hence similar.

~ APQR and A KLC are also similar... (1)

If we draw DRS 1 to parallel lines AP and
BC cutting them at R and 8 respectively

cp
= W (by parallels)

AKLC_CK?* _CP.CD_CP
ADBC ~ CD3~ CD.CD CD

proportional between CP and CD)

2}%3 gﬁ Q_A%Q(AABC and ADBC

have got the same base BC)
o AKLC= aABC......... (2)

But

(CK is the mean

L
From (1) and (2) it follows that AKLC is
the required triangle. -

*9
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EXCERCISES.

1. If a straight line m inches in length i
divided internally and externally in the ratio [ : k
find the lengths of the segments in each case.

2 A, B, ¢, D are four collinear points
(points lyirg in a line) such that AC is divided at
B and D in the ratio k:1. Show that DB is
divided at Cand A in the ratio (k41): (k—1}

3. AB is divided internally and externally
in the same ratio at C and D: 1f O is the middle
point of AB, prove that 0C. OD=0A2 =0OB?%.

4. Two diameters AB and (D of a cirele are
divided in the same ratio internally and externally
at P, Q; R, 8 respeetively, the ratio for AB and
(D being the same or different. Prove that P, Q,
R, 8, are coneyelic.

5. Bhow that three or more parallel lines cut
any two transversals proportionally.

6. ABC is a triangle inscribed in g circle.
Show that the perpendicular from A on BC is a mean
proportional between the perpendiculars from B
and C ou the tangent at A,
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[Hint. — If AP is the ir from A to BC and
BQ, CR Lrts tothe tangent at A from B and C, then

. . P P .
figure AP BQ is cyclic .'.—%Q-—%Q- where O 1s
the point of intersection of the tangent at A and

. . . . CR _ OC
BC. ' lily since figure ARCP is eyclic P = OA-
But since OA is a tangent at A, AC||QP
. £=29_, Hence _%?W_ ~C_3Lm; AP2=BQ.CR].
oQ OA BQ AP

7. ABCD is a quadrilateral; show that if the
bisectors of the angles A and B meet in the diagonal
BD, the bisectors of the angles B and D will meet
on AC,

8. The bisector of angle A of AABC meets
BCin D and DE is drawn parallel to AC to cub
AB at E and DF parallel to AB to cut AC at F.

BE _AB*
Prove that ——- F —a0%

9. The median AD of a AABC meets BC in
D. Theinternal bissctors of angles ADB and ADC

meet AB and AC in P and Q respectively. Prove
that PQ is parallel to BC.

10, CA, CB are two tangents to a circle, A and
B being the points of contact, K is the foot of the
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perpendicular from B to AD, the diameter through
A. Prove that BA, BD bisect angle CBE. Deduce
that CD bisects BE.

11. The straight line BCis divided in the
same ratio at D and E. DE subtends aright angle
at P. Show that PD and PE bisect /BPC.

12. Show how to construct a triangle on a
a given base so as to have its vertical angle
bisected by a given straight line.

[Hint:— Let the given straight line cut the
given base, say BC or the base BC produced at the

point D Then D divides BC in the ratio —BD—DC-

Find the point E on BC or BC produced as the

BE _ BD
<E = b Draw the

circle on DE as diameter to cut the straight line
again at A. Then ABC will be the required triangle,
The teacher is expected to explain the property of
Apollonius’ circle. ]

case may be, such that

13. Construct a parallelogram whose sides
are 3'5", 2 7" and whose diagonals are in the ratio
of 2:1.
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14. Tis the in-centre of the AABC. A straight
line drawn through T perpendicular to AT meets
AB, AC in D, E respectively. Show that
BD. CE=T1D2.

15. Two circles of radii a and b touch each
other externally at the point k. ABis one of their
common tangents, A and B being the points of
contact. Show that AB subtends ‘a right angle at
k and that AB2 =4 ab.

16. PM and QN are the parpendiculars from
two given points P and Q to a given straight line
AB. PN and QMintersect in R. If RS. be drawn
perpendicular to AB, show that PS and QS make
equal angles with AB

17 ABC is an isosceles triangle right angled
at A. Any point P is taken on AB and BD is
drawn perpendicular to BC on the side of BC

i sue BD _ AP
opposite to A, of such length that BE = AC

Prove that CPD is a right angle and CP?=DP,

18. AB is a diameter of a circle. PQ
is a parallel chord. The tangent at A meets
BP, BQ in R and 8 respectively. Preve that
BP. BR=BQ. BS=ABz.
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13. AB is a diameter of a circle and C is
any point on the circumference. From a point on
AB the perpendicular to AB is drawu cutting CA,
CB and the circuniference at D, E, F respectively.
Prove that PF? = PD. PE,

20. ABC is a triangle right angled at A, The
bisector of the angle A meets the circumcircle in D.
Show that 2 AD? = (AB4AC)2.

21. PA, PB are tangents from any point
P on a circle to a concentric circle lying
within it. AB and PB are produced to cut
the outer circle in C and D. Show that
CB:CA=CD?:CP2,

[ Hint:— Use that the length of a tangent
drawn from any point on the onter circle to the
inner concentric circle is constant]

22. Two circles intersect at A and B. The
tangents at A meet the circles again in X and Y.
Prove that AABX : AABY= (AB2? + BX?):
(AB2 +BY?)

23. If from the vertex of a A, a perpendicular
be drawn to the base, prove that the rectangle
contained by the two sides is equal to the rectangle
contained by the altitude of the base and the
circumdiameter.
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Hence deduce that in any triangle, abc=4R A

24. A transversal PQR cuts the sides BC, CA,
AB of a AABC in P, Q, R respectively. Prove that

CQ

— X - A >< "z « ] (Menelaus’ Theorem)

{Hint'—~ Draw perpendiculars from the
vertices of the AABC to the transversal and con-
sider a set of similar triangles ]

25. If one diagonal of a qua;hilateral bisects
the angle between two of the sides and be a mean
proportional between them prove that the segments
of the other diagonal are in the duplicate ratio of
the other sides.

[ Hint:— If ABCD is a quadrilateral in
which AC bisects angle A and AC?=AB. AD,
AsDAC and CAB are similar.

 AD _ DC _CA .DC* _AD _ DO
Hence S = 56 =25 ""Bor = AB ~ OB

where O is the intersection of AC and BD]

26. ABCD is a cyclic quadrilateral. If
AB. BC=CD, DA prove that AC bisects BD.
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[Hint:— Draw Lrs BP, DQ on AC from B
and D respectively. Then AB. EC=BP. 2R and
CD. DA=DQ. 2R where R is the circum-radius,
Since AB. BC=(D. DA, BP=TQ. Hence As GDQ
and OBP are ccngruent, where O is the point of
intersection of AC and BD.

e OB=0D ]

27. The tangent at A to the circumcircle of
a triangle ABC meets 1 C produced at D. Show
that BD . AB”
DC  AC2
Hence deduce that, if the tangents at
A, B, C of a ANABC to the cireumcircle meet
the opposite sides in D, E, F respectively, then
BD CE AF _ 1
DCEA* FB ~

28. ABis a diameter, of a circle and AM,
BN are drawn perpendicular to the tangent at any
point C on the cirele. Show that the area ABC is
the sum of the areas of ACM and CBN.

29. Prove that the opposite angles of a
quadrilateral inscribed in a cirele are together
equal to two right angles. Deduce the following:—
The sides AB, DC of a quadrilateral ABCD meet at
E and the sides AD, BC meet at F. Prove that
the circles circumscribed to the four triangles
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ABF, BCE, CDF and DAE have a common point,
say, K. Prove further that if ABCD is cyclic, K
lies on EF. '

30 Draw a AABC, having AB=4'2 cm;
AC=53cm; and 2 ABC=62°., Construct a A
similar to AABC so as to have its greatest side less
than the sum of the remaining two sides by 1-2 cm.
Ixplain your construction.

31. Construct an equilateral triangle equal in
area to a APQR having PQ=2'5", QR =3" and the
/ Q=40°.

32. Given that AB=3-2",C=75%and %—g =5:3
show how to construct the triangle.

[Hint:— Construct a segment containing the
angle 75° on AB. Divide AB internally and
externally in the ratio 5 :3 (say) at D and E and
describe the circle on DE as diameter to cut the
segment at C, Then ABC is the required triangle-
The circle en DE as diamecter becomes the
Apollonius’ circle of the two fixed points A and B
for the ratio §. In numerical problems like this
the alternate method is advisable. Draw a
AAC,B, such that C,A=5", C;B,=3" and
[LAC,B,=175°. Then take a point B on AB, or
AB, produced if necessary such that AB=3'2"

«10
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Through B draw a line parallel to B,C; meeting
AC; at C. Then ABC is the required triangle]

33. Draw a AABC given a:b:c=3:4:6
and R =2". Measure the sides and angles of the /.

[Hint:— Draw a APQR such that p=3",
q=4" andr=6". Find the circumcentre T of APQR.
With T as centre and 2 as radius draw a circle
meeting TP, TQ, TR in A, B, C respectively. Then
ABC is the required triangle]

34. ABC is a A in which a=12", b=1-6¢"
and ¢c='9",

Praw an isosceles a of equal area having
the vertical angle equal to A. Measure its sides.

35. Draw a A ABC having AB=9 cm;
BC=8 cm; £ABC=60° Construct a triangle equal
in area to a ABC and having -its sides in the ratio
4:5:17. State the construction and prove it.

[Hint: — Draw a o whose sides are 4 om,
8cm and 7cem and call it APQR. Then
construct a A similar to APQR and equal in area
to AABC]

36. The 'sides of a A-are 3,5 and 7 cm,
Bisect the area of the A by a line drawn
(1) perpendicular to (2) parallel to the longest side.
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37. Construct an equilateral A which is
equal in area to a triangle ABC in which a =2-6",
b=3", B = 48°. Measure its sides.

38. Constructa parallelogram ABCD in which
AB=25",AD=2", AC==3"4". Divide the parallelo-
grain into three equal parts by straight lines
parallel to the diagonal AC.

39. Construct a A whose sides have the
ratios 5:7 : 9 and whose area is 10 sq. 'nches.

[Hint:— Apply abc=4RA, find. R and.
proceed as in exercise No. 33].

40. Draw a AABC having the sides a=2"5"
b=2"and c=15". Construct a similar triangle
having two-thirds of the area of the AABC.

41. Construct a parallelogram of area equal
to 6 square inches and having its sides in the ratio
3:2 and having an angle 70°,

42. The sides of a A are 5,12 and 13 cm.
respectively. Show how to trisect the area of the
A\ by a line drawn parallel to the longest side.

[Hint:— Divide the-area of the a into two
portions whose areas are in the ratio 1: 2 (this is
trisection) by a straight line parallel to the- longest
side, as in construction 1.]
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43. In a triangle ABC, AP and AQ are drawn
perpendicular to the internal bisectors of the
angles B and C. Prove that PQ is parallel to EC.

[Hint:— Apply angle chasing method]

44. One circle touches another internally
at P. A straight line touches the inner circle at A
and meets the outer circle at B and C. Prove that
PB: PC=AB: AC

[Hint:— Apply, angle between the tangent
at a point on a circle and the chord through the
point of contact is equal to the angle subtended
by that chord in thealternate segment of the circle,
repeatedly and prove that PA is a bisector of
£, CPB].

45. The tangent to a circle at a point A
on it, meets two parallel tangents at B and C.
If O is the centre of the circle prove that
0A2=AB. AC.

[The points of contact of parallel tangents
and the centre O are collinear. Hence OB, OC
become bisectors of supplementary angles and
are therefore at right angles. 1. e. £BOC=90°.
Further, OA is perpendicular to BC, the hypotenuse.
. OA?=AB. AC.]
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* APPENDIX L

THEOREM 1.

If two triangles have one angle of the one
equal to one angle of the other and the sides
about one other angle in each proportional, then
the third angles of the two triangles are either
equal or supplementary and in the former case
the two friangles are similar.

In triangles ABC and PQR let /C= /R
AB _CA
PQ ~ RP '
2 Q are either equal (in which case the two
triangles will be similar) or supplementary.

and Then to prove that /B and

One of the two things may happen for the
two as ABC and PQR. /A will either be equal
to /P or will not be equal to £P. (These are the
only possibilities).

If /A and /P are equal (as in fig. 47 and
fig. 48(a)) since £Cand LR are already equal
/ B will be equal to £Q 1. e. the two As become
equiangular and hence similar.

* This may be omitted by the Pre-university students.
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P
Fig. 48 (a)
P
B M c
Fig. 47
® R
Fig. 48 (b)

If /A £LP (as in fig. 47 and fig. 48(b))
draw a line AK through A meeting BC at K such
that LCAK =LRPQ.

{Construction must be so effected that
A CAK formed includes £C ]

LCAK= £ RPQ (construction).
£/ KCA = £ QRP (given)

A CAKIIl ARPQ
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CA _ AK
RP T PQ

AB _ CA
But 5o-=%p

AK _ AB
PQ - PQ

i.e. AK=AB
LABK = £/ AKB
i.e. /ABC= £ AKB
£PQR=ZAKC ("~ aRPQII ACAK

Now /AKB and /AKC are evidently
supplementary angles.

(given)

~. 2 ABCand £ PQR are also supplementary
angles.

Note:— In fig. 47, AB<CA. Therefore in
figures 48(a) and 48(b) PQ is less than RP in order

AB _CA . AB _P
P9 = ® -° in order that —_— =Rp

This point must be borne in mind whlle drawing

that

the three figures.
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SECOND METHOD.

(figure is not necessary)

Given that in triangles ABC and PQR

O — AB _CA .
/C=/R and PQ T RP to prove that /B and

£ Q are either equal (in which case the two
triangles will be equiangular and hence similar) or
supplementary, '

Proof:— Since £LC=/R
AABC _ BC.CA .
APQR T QR.RP '°
the one is equal to an angle of the other, their arcas

are proportional to the rectangles contained by the
sides about those equal angles.)

*In two Asif an angle of

CA _AB
But RP =BG — (given)
AABC_BC. CA_ CA )
APQR  QR.RP (

) ( AB ) _ AB.BC
T PQ. QR

NABC _ 4 AB. BC. Sin AABC
APQR 1 PQ. QR, Sin £PQR
(From Trigonometry)
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AB.BC_AB. BC. Sin 2 ABC
PQ. QR PQ. QR. Sin 2/ PQR
Sin £ ABC_ . a: POR
Hence Sin , PQR 1orSin 7/ ABC = Sin £/ PQ

*. either / ABC= 7/ PQRor £ ABC=180°—- /ZPQR

(each angle of a £\ is less than 180°)
i.e either /B=/Qor /B+ £Q=180°

If /B=£Q, as /C= LR already, the two
As ABC and PQR will be equiangular and hence
similar.

EXERCISES.

1. Aand B are the centres of two circles
whose radii are respectively r, and ry. IfSisa
point dividing AB internally in the ratio :1- prove

2
that any secant through 8 cuts the circles at the

extremities of parallel radii one in each circle.

[Hint:— If a secant cuts the circle A at P,

Q and circle B at P?, Q! (draw a figure and in it

take Q, Q' within P, P! or P, P! within Q, Q')

consider As SAP and SBP!, To rule out the

possibility of the third set of angles in the two
+11
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triangles becoming supplementary use that the
base angles of any isosceles triangle are acute angles
and that two angles which are both acute or both
obtuse cannot be supplementary. A SAP||| A SBPT,
. APy BP!'. Similarly consider As SAQ and
SBQ!. They are similar. .. AQ| BQ!'. Hence
the result. The point 8 is usually called the internal
centre of similitude of the two circles A and B.]

2. Prove the above result for a point S'

dividing AB externally in the ratio_:_’—.
2
[ This point S' is usually called the external
centre of similitude of the two circles A and B.

3. A and B are the centres of two circles
whose radii are respectively r, and r,. S and S?
are points dividing AB internally and externally

. 1

in the ratlo-:;—. Prove that the lengths of the
2

tangents drawn from any point on the circle on

SS as diameter to the two circles A and B are in

. T
the ratio T,
ry

[Hint:— Use that the circle on SS? as diameter
is the Apollonius’ circle of the two fixed points
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A, B for the constant ratio 1!. Now, if Pis any

/ 1'2
point on this circle,ﬂ- =11 Let PL, PM be
tB T,

the tangents from P to the two circles A and B.
PA I, _ AL
Then BB 1. T B
Further /PLA= /PMB=90°
.. ZAPL and /BPM are either equal or
Supplementary. But these two angles being both
acute, cannot be supplementary. Hence they
are equal and therefore A ALP ||| A BMP
_PL _ AL 1,
SeM T B T,
is usually called the circle of similitude of the two

circles A and B]

. The circle on SS! as diameter

The application of theorem 1 given in
appendix I will also be found in the Geometry of
the conic while proving the theorem that the
tangent at any point on a central conic is equally
inclined to the focal distances of the point.

THEOREM 2,

In equal circles, angles whether at the
centres or at the circumferences, are in the ratio
of the arcs on which they stand.



Fig. 49 Fig. 50

Let APB and CQD be two equal circles
whose centres are X and Y respectively; Also let
AXB, CYD be the angles at the centres and APB,
CQD those at the circumferences, standing on the
arcs AB and €D respectively.

Then to prove that
.. ZAXB Arc AB
) ZCYD ~AwcCD

... LAPB _ Arc AB
(i) ~EQD = Are CD

Proof:— Suppose there is a common
measure, say, k for the lengths of the two arcs
AB and CD. [Making the two arcs straight, suppose
we measure themr and find AB to be 5 inches and
CD to be 3 inches. This moplies that Arc AB can:
be divided into 5 equal parts each equal to 1 inch.
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and that arc CD can be divided into 3 equal parts
each equal to 1 inch. If this is sc, the common
measure of the two arcs AB and CD is aa inch and
the ratio of AB to CD is ;. Now, if AB=4'5 inches
and CD =3 inches the common measure for the
two is '5 of an inch, for, AB in this case can be
divided into 9 equal parts each equal to ‘5 of an
inch and CD can be divided into 6 equal parts
each equal to 5 of an inch. The ratio of AB

. . . 45
to CD in this case is 2 ( -3 ) Hence whatever

may be the lengths of the two arcs AB and CD it
will be quite possible to find out a common

measure for the two and so our supposition is
justified ]

Let the arc AB be divided into p equal
arcs each equal to k and arc CD be divided' into
q such equal arcs (each equal to k).

In each circle, let radu be drawn through
the peints of division of the arcs AB and CD.

Then, £/ AXB is divided into p equal angleg
each equal to @ (say) and ZCYD is divided into q
such equal angles (each equal t0 9). [ In equal
circles, equal arcs subtend equal angles at the
centres. This theorem is also true in the same circle. ]
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- /AXB=pg; LCYD=q8
S £ZAXB _p _p
® ZCYD Tq9 ™ q
But Arc AB=pk and Arc CD -qk and henca

Arc AB pk p

AcCD=yk =q
/AXB  Arc AB
ZCYD T Arc CD

Now /APB=}/AXBand /CQD=},/CYD.
[ The angle subtended by an arc of a circle at
the centre is equal to double the ancle subtended
by that arc at any point on the circumference ]

. LAPB 1/AXB /AXK  ArcAB
- 20QDT31,/CYD T Z/CYD = Arc CD

Note:— This theorem is true in the same
circle also.

WORKED EXAMPLE.

Prove that a radian is a constant angle.

Radian by definition is an angle subtended
at the centre of any circle by an arc equal in length.
to the radius of the circle.
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This definition does not explicitly tell us
that rdian is a constant angle. Ifradian is not a
constant angle we won’t be able to accept radian
as a unit of measurement for angles. So it is
imperative to prove that radian is a constant
angle. It is because right angle is a constant
angle (all right angles are equal) that we accept
right angle as a unit of measurement for angles.
Any angle can be measured in terms of right
angles and their parts.

(1 degree =g th of a right angle, 1 minute=
&oth of a degree and 1 second =5';th of a minute).
When we say that an angle is equal to (say) 240
degrees, this statement actually means that the
angle measured is equal to 2 right angles plus 60
degrees or is equal to 2% right angles. We will
have to note that radians are not divided and
subdivided like right angles.

All right angles are equal (this is axiomatic).
Hence we can say that right angle is a constant
angle. In the case of radians, if it is possible to
prove that all radians are equal, it will follow that
radian is a constant angle. Suppose OA and OB
are two radii of a circle whose centre is O, such
that Arc AB=0A=0B =r where r is the radius of
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the circle. Producing O\ and OB to meet a
cencentric circle of radius r, at A, and B, if we
are able to prove that arc A, B, =0A, =0B, =r,,
then it will follow that radian is » constant angle.
But it is not very easy to establish this result.
Hence we shall proceed with a circle and find out
the value of a radian defined ir terms of the radius
and arc, equal to the radius, of this circle, in
degrees and thus see that the value of a radian has
nothing to do with the radius of the circle taken to
define it.

Let OA and OB be two radii of a circle,
centre O and radius r, such that arc AB=r. (Draw
a fizure). Then by definition £ AOB is a radian.
Produce AO to meet the circle again at the point K.

Then, arc AK= _‘{;(_1‘_____ T T.

Z/AOK  Arc AK (Vide note given under

Hence /AOB ™ Arc AB theorem 2, appendix I)

a radian T I
s LAOK=1r of a radian or qr radians.
But £/ AOK=180°,
Hence 180°=1rradians.
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(Tr represents only a number whose approxi-
mate value is 2% and hence the student must
not try to 'replace w by 180°. The equation
180 degrees=1Tr radians implies that an angle
measured in degrees and found to be 180° when
measured in radians will be equal to 7 radians.
It is important to remember that the value or
magnitude of an angle does not change whether it
is measured in degrees or in radians. So there
must have a relationship between degrees and
radians and that relationship is given above.)

7 radians =180°
180°

a radian=

(I ly starting with another circle we can

o
prove that, a radian = l'sn(_) 1. e, this result is in-

dependent of the radius of the circle, taken)
Hence a radian is a constant angle.

The value of a radian is approximately
equal to 57° 17’ 45" (taking the approximate value
of m =3 14159) — [ The ratio of the circumference
to the diameter is found to be the same for all

12
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circles 1. e. thisratio is a constant, This constaut
ratio (a number) though its value cannot be actually
found out is represented by 1. Since its value
cannot be found out, this number w (this number
represented by 1) is calle] a transcendental number}

Thus we have proved that a radianis a
constant angle and henceforth we can talk of
“the radian”

7 radian = 180°
S. 29 radians = 360°

So, if equal arcs each equal to the radius
are cut off from the circumference of a eircle we
vill be getting six such equal arcs each subtending
& radian at the centre of the circle. The remaining
portion r (217 —6) of the circumference will be
subtending an angle equal to (21w—6) of a radian
at the centre.

Now if OA, OB are two radii of a circle,
eentre O and radius r such that arc AB =t and OC
is any other radius, as before,

2 AOC _Arc AC
LAOB T Arc AB
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_AAOC. zArc AC

a radian r

o 2AOC - ( Arc AC ) of a radian

r

1. e.

Result 1:— From this it follows that the
length of an arc of a circle divided by the radius
of the circle gives the magnitude of the angle which
the arc subtends at the centre in radians.

Result 2:— When two straight lines meet
they are said to contain an angle. Suppose, two
straight lines OX and OY meet at O and that we
want to measure the angle which they contain, viz,
£ XOY inradians. For this, draw a circle with O
as centre and any length as radius to cut OX at A
and OY at B. Measure the length of the
arc AB and also the radius of the circle
drawn, both in the same units of measurement.

m the length of the arc AB _ .., .
Then — ius of the circle drawn — " 8ive the

magnitude of the angle XOY in radians.

Resuit 3.— The length of an arc of a
circle is equal to the product of its radius and the
rodian measure of the angle the arc subtends at the
centre of the circle,
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APPENDIX II

NEDIANS OF A PLANE TRIANGLE.

——

Definition of medians has been recently
extended by Mr. John Satterly, thus: ‘“If the
sides of a triangle are, in order, divided such that

the short section of each side is —é—th the length

of the side, and the points of subdivision are
joined to the opposite angular points, the joining
lines may be called the Nedians of the triangle
(the name recalls the n) and the triangle formed by
the nedians may be called the nedian triangle”.
We get the medians from this definition of nedians
by putting n=2.

Again according to Satterly if A, B,, C,
are points on the sides BC, CA, AB respectively of

BA, _CB,_AC, 1
a AABC such that e = CA = AR = —n—(where

BA,, CB,, AC, are short sections of the sides BC,
CA, AB respectively) then AA,, BB,, CC, are the
forward nedians and the triangle formedby them is
the forward nedian triangle; If A, B,, C,are points
on the sides BC, CA, AB respectively such that

* This may be omitted by“the Pre-university students.
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CA, BC, AB,_1
CBa = BAa = Acq _.T(where CA,, BC,, AB,, are

short sections of the sides CB, BA, AC respectively)
then AA,, BB,, CC, are the backward nedians and
the triangle formed by them is the backward nedian
triangle. When n=2, A, and A, both coincide with
the middle point of BC. Hence AA,, AA, both
coincide with the median through the vertex A.
ily BB,, BB,, both coincide with the median
through the vertex B and CC,, CCy both coincide
with the median through the vertex C. So the
medians can be regarded both as forward nedians

and as backward nedians. It is interesting to note
that in two similar triangles corresponding nedians
are also in the ratio of corresponding sides.

THEOREM 1

(Satterly’s Theorem)

It AA,, BB,, CC; are Nedians (either
forward nedians or backward nedians) to the sides
BC, CA, AB respectively, of AABC, then
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AA,%*+ BB,?4CC,° = (“ "““) (AB24.
BO? 4-CA?)

B
(©,0)

Let us suppose that AA,, BB,, CC, are the
forward nedians so that

BA, _OB, _ AC, 1
BC CA AB n

BA,_ CB,_ AC, _ 1
A\ CTBA CB

from this,

1 e. (D—I)BA|=A|C; (n“"l) CB|=B|A;
)n—l) AC|=C|B0
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If 2AA,B=@, /AA,C=(180—9)
.AB*=AA,24+BA,?—24A,.BA,.Cos 9 (1)and
(A% =AA,?+A,07+24A,. A,C.Cos @ (2)
Multiplying (1) by (n—1) and then adding to (2),
we get, (n—-1) AB2+4+CA® =nAA %+

(n—1) BA,24+A,C

But BA, = B and 4,0=2=1 p0.
[ (n-1)BA,=A,C]
S (n—1) AB°+CA’—-nAA, +
(n 1y B¢ +(n"” BC?

= nAA,? + 2= 1 Bee [1+n 1]

= nAA,? +Ln‘ BC?
i e. (n—1)AB? +CA? =nAA ? +(1 L
lllly(n-—l)BC’+AB’=nBBl’+(1-—1~)CA2 -
and (n=1) CA? +BC? =nCC,” +(1 —-——)AB2

I+ 114111 gives,
n[AB?+BC®+CA] = n[AA,24+BB,* +CC,*]+
(1=7) (AB*+Be*+CA?)
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i.e. (AB?4BC?4CA%) (ot —1)=n (44,4
BB,24CC,?)

AB 4 BO +CA? = (o ) (AA*+
+ n?—n+1 1
BB,?+CC,?)

i.e. 4,34 BB, 4¢C,*= (“5H ) (aB+
BC24+CA?).
If the lengths of the nedians AA,, BB,, CC,
are respectively represented by n,, n,, n,,

2~
n,%4n,24n,2= (n n+l) (a24b?+c?)
where a, b, ¢ as usual denote the lengths of the
sides BC, CA and AB, respectively, of A AB('

3_
or Enlﬁz( n n+,_4_l._)2a2

Aa a particular case, if AA,, BB,, CC, are the
medians (n=2) .

AA,?+BB,*4CC,?=2% (AB*4+BC3+CA?)
(This result can also be proved separately as
in the case of nedians).

Note:— The result is true in the ecase
of backward nedians also.
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THEOREM 2.

(Satterly’s Theorem)

The area of a triangle whose sides are
vqual to the lengths of the nedians of a triangle is

n*—n+1y\ . , . . ;
( — ) times the area of the original triangle.

h
(4
0
"

ABC is the original triangle and AA,. BB,,
CC! are its nedians to the sides BC, CA, AB
respectively.

Draw a line through B, parallel to BC and
another line through C parallel to AB. Let these
two lines meet at the point T. Join A, T A,,T.

Then we shall first prove that AAA,T is a
*13
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triangle whose sides are equal to the lengths of
the nedians and further that the area of AAA,T

n’—n+ )

is equal to ( times the area of the

triangle ABC.

Proof (Analytical proof):— Let line LC be
taken as the x-axis and the perpendicular at B to
BC be taken as the y-axis. Also let the z and y
co-ordinates of the point A be & and b 1espectively
and the = co-ordinate of the point C be c. (The y
co-ordinate of the point C is evidently zero).

The point A, divides BC in the radio 1:n—1
__L:-ll;-) ~ The point A, is (%, O)
Mly the point B, is [ii_"_(gl’l g] and the

: . ra(n—1) b(~1)v
point C, is [_ —, m ]

Equation of the line B,T which is passing
atce (n ]) l;] and is

through the point B, [

rarallel to the x-axis is y=-£. T |

Slope of line CT is the same as that of AB

(CT y AB) and is equal te —':—
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Hence equation of the line CTis I =0 b
z—c a
ay =bx—be
s.bx=ay+be ...... II

Solving I and II we get the co-ordinates of
the point T

bz_—+bc
g =2ton
n
_b
Y =a
The point;'l‘is(a”'cu b
) n » I
b
=" ° _ b-nb

The slope of TAisequal to = —— g
+cn en o a.+n(c—a)

[b(n-—l) 0]
The slope of CC, = —_ Db-=b
[a.vn-:_l_)_ —c] n(a—c)—a
n
_ _b-nb
a-+n(c—a)

s TA}CC,. But CT| AB (Construction)
Hence TA C,C is a 7.
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("'"0 ) b
The slopeof A, T=_2N2 7 = 7 _
: a+ cn ) c(n—1)
o)
The slope of BB, = {?—ﬁ?(f—’—‘l')—' - ‘,)__}
n
e P___. N
a+4c(n—1)

A, THBB,. But B,T| BC (construction)
Hence TB; BA,isa /—72 .. A,T=BB,
The nedian AA, is already a side of the

ANAAT. Hence the sides of the A AA,T are
equal to the lengths of the nedians of the AABC.

By the formula, A=% =z, (y2—V3),
we get, area of the AAA |\ T=

;[a( 0_ ~)_‘_ (b<__ b) (aT—cn)(b 0)]
=%[_ ab _f%

n

.. onth
But area of AABC=} x BC x (altitude to the base BC)

=;xcxb-~-"2°.

.a.l)
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nz—n+

Hence, area of AAA|T = ( (area of the
AABC)
2 ——
Note the common foctor - n~2+1 in the

two theorems

As a particular case, the area of a/AA whose
sides are equal to the lengths of the medians
of a triangle is § times the arca of the original
triangle, for the nedians AA,, BB,, CC; become

medians when n=2.

(This result can also be separately proved

as in the previous case).

Def:— The triangle formed by the nedians
of a triangleis called the nedidn triangle of that

triangle.

In the figure, XYZ is the triangle formed
by the nedians A\,, BB,, €C; of AABC and
hence is the nedian triangle (Strictly speaking
it is the forward nedian triangle, as AA,, BB, CC,
are forward nedians.) of A ABC
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THEOREM 3

(Satterly’s Theorem)

The sum of the squares of the sides of the

—D)2
nedian triangle of a triangle is equal bo {o- 3)4-"1
times the sum of the squares of the mdes of the

original triangle.

B
(©,0)

Equation of line A4, is, nbw—(na.-c) y=be ..I
Equation of line BB, is, y-.-(

a+cn —c
Equation of line OC, is, z (nb—b)+y (a+cn—an)

=nbc- be .WIEL

Solving I and IIT we get the co-ordinates of the
point X.
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a(n—~1)2+c b(n—-1)2 ]

The point X is [_ﬁ?~-n+l P Sy

Solving I and Il we get the co-ordinates of the
point Y

. . pa+cn-1) b :
h The pOlntYlS [ n-z__.(n_*_l » n?_n+l]

Now AX, AY and AA,, are in the ratio of
the perpendicular distances of the points X, Y and
A, from the line through A perpendicular to BC.
(*.” Corresponding sides in similar triangles are
proportional )

—1\2
ie. AX:AY:AA, ::(?_(B__l). ro_ a)

n2—n+41
. a+c(n-—l)_ Y&l
‘(n2—-n+—l -a) 3 U )
: AV .. 1 . _n=1 1
1.e. AXAY.AA‘ ..ng__n+l . n’—n-{-l C
AY n-1 XY n=-2’
AX=TT Henee AX =T e (1)
AX n
AKT am Svestescscnone Arseconree (2)

. XY n(n—-2
(1) X (2) gives 33— = Jimar i
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If AA,, BB,. CC, are represented by n, n,. n,
and YZ, ZX, XY by «, y. z,
A,T=BB,=n,; TA=CC,=n,
Now As XYZ and AA,T are similar.
XY Vy7 ZX
AA, TA,TT TA

VA - y nin—2)

1. e n,  ng n, nf-n+l
. 21 u3i 3§ N(N-2) } 2 2

o +z _{ —— n n, I,
X +y n—'—u+l ( + 2 + )
2

But n,*+n,%24n,? = i_-..n? +1 )X
(a®+b*+c?)

where a, b, ¢ represcnt the sidqs BC, CA, AB of

AABC.  (by theorem | Appendix 1)

) n(n—-2 }2 (n?—n+1)
—n+1 n?

(a®-+b?+c*)
n-2 ,
R

a,2+y?+z2=_. {

)

Note:— When AA,, BB,, €C, become
the medians (n=2). 2*+y*+2°=0 S x=0),
y=90, z=0. Hence the medians form a ‘point
triangle’ or in other woirds, the medians of =
triangle are concurrent,
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THEOREM 4

(Satterly’s Theorem)
The area of the nedian triangle of a triangle

- (n—2)%
is equal to - — nrl times t,he arca of the origi-

nal triangle.

N
(4
0
X
{
'
1
’
)
I
1
,

- /

er ,-«"‘"‘-_‘ 4

B A C
AXYZ %2 >3 y? a*+y* +2*
AAAT T n2 T n,? T n,? T n ?24n,?+n,?

‘(>n_(n——2) 2
T n ~n+l}

n(n—2)

rr 2
5 Areaof AXVZ= { Tonif (ateaofa AA,T)

-n+1

But area of AAA,T= ( Y )(area nf trian-

gle ABC)
*14
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MMence, arca of AXYZ
{ n(n-—-2) } “(n‘-—n-{-l (area of

“({nt—-n+1 n? * triangle ABC)
—2)2 .
= { vn%r):n:}—i } (Area of triangle ABC!)

Notc:—~ When AA,, BB,, CC,, become the
medians (n=2), area of the triangle formed by
these three lines -i.e. area of A XYZ=0 ‘i. e.

the medians of a A\ are conourrent,

_ (n—=2) |
\JT N o N
Note the eommon factor N ntl W the

two theorems.

Definition:— 1f A;, B,, C; are points on
the sides BC, CA, AB respectively of a A ABC
BA, _ CB,_ AC, _ 1 .

BE = AT AR T the triangle

formed by the lines joining the points A,, B; and

such that

C, is called the Aliquot triangle or the -};— th
point-division triangle of AABC.

THEOREM 5.

(Satterly’s Theorem)
[}

The sum of the squares of the sides of
the aliquot triangle of a triangle is equal to



107 —

2 }n
( ? 3 ) times the sum of the squares of the

sides of the original triangle.

Join A}, By; B,, €, and C, A,.

From A AB, C, we get
3:C€,*=AB,?+AC,?-2AB,. AC,. cos A.

Ifa,, by, ¢, denote the lengths of the sides B,C,,
C1A, and A, B, respectively of the Aliquot triangle
ALB,C,,

n—1)? c? 2n-1
( ) o3 "‘l'ﬁ"g‘—‘) be cos A......... (1)

(.. AB, _n-1, AC, 1

AC n ? AB n

2 2 20—
ily b 2—~(~—;‘-l) %z- (x:lz_ cacos B...(2)
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n—1 bt 2n--1 ,
and e, ® =( "2 _) a’ + i i— 1) ab cos C...(3)

n?
(1) 4+ (2) + (3) gives,
‘l P
8,24+ h,2+c,2=(a W 1Lb2+(‘2){ 1 ) +n2} -

irl}—l:;—l») (2 be cos A+2 ca cos B -2 ab cos ()
. o -1 1
=t e O L
-1
(n )( 2 B2 ge?)

(' n“':b"’—{—c-—-? be cos A ete.)
lL.e. a 2—} b,%+e¢,*
=(a?4h2-4e?) { - -t

n? n2 " . n?

1)2 1 (n:_l_)}

n®—3 n+f¥)( 24 b2 4o?)

As o particular case, A\,, BB,, CC, Dbe-
coms medians (n=2),

4Dyt 4e,? =) (a?+Db? 4c?)

i, e. the sum of the squares of the sides of the
medial triangle of a triangle is }th of the sum of
the squares of the sides of the original triangle.
This result is even otherwise evident. (The A formed
by the lines joining the mid-points of the sides of a
A is called the medial triangle of that triangle.)
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THEOREM ¢

(Sam rly’s Theorem)

The area of the aliquot triangle of a triangle

. n? —-3n+‘3
is equal to

) times the area of the

original tria,ng'lu.

¥
» c,
B
(©,0)
Area of AC,B,A=1AB,. AC,. Sin A
(n—1) e .
_5 SR b. Y Sin A
= =g )—{; be Sin A ...(1)
(n

ily Area of AA,C,B = ——;1-;,-—-.5 ca Sin B ...(2)

and Arca of AB,A,C = (33_12. . 1 ab8Sin C (8)
(1)+(2)+(3) gives
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Area of A ABC - Area of AA, B,
=1
:(»“u, )13 be Sin A b4 ea Sin B4 jab Sin (4
But ¥ be Sin A=l!ea Sin B=]} ab Sin C=area of
AABC
Area of AABU — Area of A AL, C,

= §_(_';l_‘i_’l (area of A ABC)

N . 3(n—1 ) (area of
Area of A A B O = { = n4d } ( L\(AB(])
_ (l\:"’: 3u43 \ (area of
= n2 ) ANARO)

As a particular case, the area of the medial
triangle of a triangle is | th of the area of the
original A (Putn:==2). This result is even other-
wise evident.

n¢—3n-+4+3 .

Note the common factor 7 in the

above two theorems.

THEOREM 7.

)

(Pappus’ Theorem)

If A, B, ¢, are points on the sides
BC, CA, AB rvespectively of A ABC such tha*
BA, CR, AC, 1 .
BC =CA TAB =5 the centroids of th:r'
two triangles A,B,C, and ABC are one and tb"

same point. ¥
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(Note that A, B,C, by delinition, Dhecomes
the aliquot triangle of AABC)

N——
Y /j>-\ =N 'l’

B O -~ ”‘i \é

©:0) Ay € 0)

As the centroid of a triangle is a point of
trisection of each meadian, if the vertices of a
{riangle are given to be the points (z,, y,),
(2, ¥2), (v5.¥3), its centroid will be the point
(wl__'*’_"'z oy Yaty.tYs )

3 ’ 3 ¢

Applying this, we easily see that the centroid

a+4-c b
);f A ABC is the point [_.--’ 3 ]

1 ily the (‘Pntroxd of the A A 13; Cl is the point
;{B_+a+0(:—l) L Mn _1_) o2 +b(n——l)

e 3 3=
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i.e. il is the point [E\-}-t '];]

which 18 the same ag the centroid of AAB’

THEOREM 8§

(Satterly’s Theorem)

The centroids of the nedian triangle and th.
aliquot triangle of a triangle and that of the
original triangle are one and the same point,

By Pappus’ theorem, the centroids of the
aliquot triangle and the original triangle are one
and the same point. We have found that this
common centroid for the AABC and its aliquot

triangle A,B,C, is [2%, b
3 3
a4+c b
So prove that the same point [-'t--, ‘}*] 18

also the centroid of AXYZ.
(Proof is left to the student)

For more detalls about nedians, nedian
triangle, aliquot triangle etc., vide Mathematical
Gazette Vol. XXXVIII, No. 324 (May 1954) and
Vol. XLAEI32av 1956).
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