
TEXT PROBLEM
WITHIN THE
BOOK ONLY



r

[< OU_1 60525 >m















HIGHER ELEMENTARY

GEOMETRY
(AN INTRODUCTION)

For

PRE-UNIVERSITY STUDENTS

VENUGOPAL







First Edition 900 Copies

August 1958.

Printed at the
Imperial Printing Works,

Tellicherry.



PREFACE.

this geometry text is written for the Pre-university

students and also to serve as an introduction to Higher

Elementary Geometry for the three year degree students

offering Geometry either as a subsidiary or as a main

Subject. I bdieve that the elementary is the most vital

and the object of Writing this book is to give to the

Students certain Elementary ideas about the subject.

Endeavours have been made to make everything as

simple as possible without losing rigour.

A good number of worked examples are given

to illustrate the theorems. As there are only a few theorems

all exercises are given together at the end. Students can

try these riders after they finish reading the entire text.

I hope that this text book will lay down a good
foundation for students who intend to pursue their

studies in geonietry. It is my sincere wish that students

must acquire that taste for Geometry without which
the Greeks thought and rightly, in my opinion, that there

is no real culture. If the book is found to be suitable for

the class of students for whom it is intended the author

.vill feel amply rewarded.

For any corrections and suggestions for the
*
nprovement of the book, I shall be thankfull .

VALSARAJ VILLA,
{LAKK66L, TELLICHERRY. K. C. VENUGOPAL.

August 15, 1058.

NOTE.
(As per Government Regulations)

This is neither an official nor an officially-sponsored
Publication. 'The authbr is working in Government Brennen

College, "Pplllcherry, as Tutor in Mathematics.
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HIGHER ELEMENTARY GEOMETRY

(AN INTRODUCTION)

Chapter 1

PLANE FIGURES,

Plane figures are figures lying in a plane
and not in a curved surface. Every plane figure

with which we deal in Geometry is only an aggre-

gate of points, though the point in itself is

undefined. However a vague definition of a point
can be ^iven. A point is a geometrical entity

which has position and nothing else. From points

we cense to curves. A curve is a collection of

infinite (a very large) number of points arranged

closely one after the other. We easily see that

this definition of a curve also applies to circles and

straight lines. So we conclude that circles and

straight lines are particular cases of curves. Jn

order to get a circle the points must be arranged
in a particular order. If all the points taken are

equidistant from a fixed point, we get a circle.

Similarly to get a straight line the points must be

arranged in another particular order. But this

particular cider cannot be easily described, though



we are sure that a straight line can be obtained by
arranging a mmber of points in a particular order.

As a matter of fact stiaight line is only a special
case of a circle. If we take a piece of wire of a

definite length in the foim of an arc of a circle

and also a number of ?uch pieces having the same

shape and size it will be possible for us to get a

complete circle of which each fruch piece is a part,

by placing the piece? ^uitably on a table. This is

the principle adopted by masons in shaping the

stones for the puipcse ol erectirg the lound walls

of a well. In fact, 1he circle mentioned above can

be generated by cne piece of such wire, shifting it

frcm place to place in a particular order, till the

C( mplete circle is obtained. Now, by decreasing
the cuivature (amount of bending) of this piece

(i. e., by increasing the length of the bounding
chord of the arc. formed out of this piece of wire,)

we can generate a circle of radius greater than that

of the previous cne. Thus, as the cuivature

decreases, radius of the circle generated increases.

Hence a circle of infinite radius can be generated
with the help of the same piece of wire, by making
its curvature zero i. e. by making it straight

(a straight line). So this time the piece of the

wire in the form of a straight line is a part of a

very great circle. This shows that a straight line

rs a eirele of infinite radius. If a mason uses



ordinary stones which are used for ordinary build-

ings, he will be actually erecting the round wall

of a well of infinite radius. In this case, if he

&>tarts construction from a particular point, he

won't be able to corne back to the original position,

completing the construction.

It is because a straight line is a particular

case of a circle, we find certain properties, common
to circles and straight lines. For example, the

student can compare Apollonius' theorem men-

tioned elsewhere in this text, and the elementary
theorem that the locus of a point equidistant from

two fixed points A, B is the perpendicular bisector

of AB.

If we have a piece of wire in the form of

any curve, at our disposal, we can make it either

in the form of a circle or in the form of a straight
line according as we wish. This itself is sufficient

to show that circles and straight lines are both

particular cases of curves, A curve may be a

closed curve (like the circle) or may not be a

closed one. If it is H closed one we can talk of its

area. The area of a plane closed curve is the

superficial space whose boundary is the closed

curve. So we can talk of the area of a circle, for

it is a closed ourve.



In Elementary Geometry we deal only with

the two particular cases of curves, viz., circle ani

straight line and the cDmpound figures forand out

of these two independently or together. Straight

lines independently form what is known as Poly-

gons. We shall discuss the diff^raab typ33 of

polygons in the following paragraphs.

Polygon: A polygon is a geometrical figure

formed by any number of straight lines. The

point of intersection of two adjacent straight lines

forming a polygon is called a vertex of the

polygon. The segment, between two consecutive

vertices, of a straight line forming a polygon is

called a side. Line joining any two vertices other

than consecutive vertices is called a diagonal of

the polygon- The area af a polygon is the super-

ficial space whose boundaries are the sides of the

polygon.

A polygon in which each angle is less than

two right angles is called a convex polygon. In a

polygon if any angle is greater than two right

angles it is called a re-entrant polygon.

A polygon in which all the sides are equal
is called an equilateral polygon. If all the angles
are equal in a polygon it is called an equiangular



polygon. A regular polygon is one in which both

these conditions are satisfied, viz, sides are equal

and angles are equal.

T\vo or more polygons are said to be similar

if (i) their angles are equal and (2) their corres-

ponding sides are proportional. Two or more

polygons are said to be similar and similarly

situated or homothetic if (1) their angles are

equal, (2) corresponding sides ate proportional

and (3) corresponding sides are parallel.

Polygon of sides 10, 9, 8, 7, 6, 5 are

respectively called Decagon, Nonagon, Octagon,

Heptagon, Hexagon and Pentagon. If these are

also regular, they will be called Regular Decagon

Regular Nonagon etc.
*

A polygon of four sides is known as a

quadrilateral. Jf one pair of opposite sides of a

quadrilateral are parallel it is called a Trapezium.
If the two pairs of opposite sides are parallel, the

quadrilateral is called a parallelogram. If all the

sides of a parallelogram are equal it is called a

Rhombus. If all the angles of a parallelogram are

equal (right angles) it is called a rectangle. If all

the sides of a rectangle are equal it is called a

square, It is easy to see that Rhombus and
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tectangta are special cases of a parallelogram

and that square is a special special case of a

parallelogram.

A polygon of three sides is called a Triangle.

From the definition of equilateral polygons,

equiangular polygons etc. it follows that a triangle

is equilateral if its sides are equal, equiangular if

its angles are equal etc. (Note that equilateral

triangles are equiangular and that equiangular

triangles are equilateral). If two sides of a triangle

are equal (or if two angles of a triangle are equal)
it is known as an isosceles triangle. A triangle is

said to be (1) acute angled if each angle is less

than a right angle (2) right angled if one of the

angles is a right angle (3) obtuse angled if one of

the angles is greater than a right angle.
*
The side facing the right iangle is called

the hypotenuse of the right angled triangle.

Hypotenuse is the unique feature of a right angled

triangle and so if mention is made of a hypotenuse
of a triangle it will follow that the triangle in

question is a right angled triangle, the angle

opposite to the hypotenuse being necessarily a

right angle.

Two or more Geometrical figures are said to

be congrueht if they agree in shape as well as in
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size. Hence if there are two congruent figures

one can be completely superposd on the other.

Students will note that two similar figures agree
in shape only. So if there are two similar figures

one cannot be superposed on the other. But two

similar figures can be placed such that their

corresponding sides are parallel, if they are not

already so, by rotating one of them. Then they
become similar and similarly situated figures.

Therefore if the positions of two similar figures

are not given, they can always be made homothetic

or similar and similarly situated. But the student

must realise that in Geometry position is also

very often important and that it is only the

position that draws a line of demarcation between

similar figures and homothetic figures.

As an exercise, students are advised to

diaw all Geometrical figures one after the other,

strictly following the definition of each given above.

Chapter 2

RATIO AND PROPORTION.

Ratio: Ratio is merely a relation between

two quantities of the same kind, showing how
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many times one quantity is greater than the other,

both of them being measured in the same unit of

measurement.

If A B and C D p li5*q R
are two lengths, A B

~
being equal to 4 inch- c ^a**fe* D
es and C D equal to Fig. 1 (a)

2 inches the ratio of A B to C D (usually written as

^S)is|or4;2i e the ratio is f or 2:1. This shows
V^ jLJ f

that A B is two times greater than C D.

In general if the length A B is a inches and

the length C D is b inches the ratio of A B to C D is

A orarb. This relation shows that A B is (~\
b * b /

(*i

**

l b and hence
t) / *

A B= ( \ CD. Here a and b are called the terms
^ b /

fi

of the ratio
b

If a and b arc both multiples of tlie same

quantity, say, k so that a^=pk and b = qk, the

ratio of A B to C D /.]?) becomes A * ~r ~ P
-

\CD/ b qk q

So tie ratio of A B to C D is-?- c p and q are
q

i

alled tte terms of the ratio --
* From this it is
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clear that it is always customary to express a ratio

in its simplest form.

If A B is a inches aud C D is b centimeters

the ratio of A B to C D is not ^ for by definition
b

the lengths must be measured in the same unit

of measurement.

Also, if A B is a length equal to a inches and

P Q R is a triangle whose area is equal to b square
inches we cannot talk of the ratio between A B and

APQR, since by definition for the existence of a

ratio the two quantities must be of the same kind.

Proportion: If two ratios are equal the

four terms taken in order are called proportionals
and are said to be in proportion.

If
J?Ls=~-^- a, b, c, d are proportionals. The

proportion is written as a:b: : c:d and is read "a is

to b as c is to d" Here b and c are called the

means and a and d are called extremes of the

proportion, d is called the fourth proportional to

&, b and c.

If a, b, c are connected by the relation

a b
-= [b

2
ssac] b is called the mean proportionalD C

or geometric mean between a and c and c is called

2
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the third proportional to a and b. Also a, b, c in

this case are said to be in continued proportion.

If a, b, c, d are connected by the relation

= JL then a, b, c, d *

d
continued proportion and so on.

. = = then a. b, c, d are said to be inbed

SIMPLE RESULTS IN RATIO AND PROPORTION.

(I) If A =*-5 each ratio is equal to ^t- Let
b d ^

b-fd
O A

-J. = s=k so that as=bk and ca^dk then to
b d

prove that ^~- is also equal to k.
-

c=dk

addmg a+ c=^k (b-f-d)

b-fd
_ r _ a c

In the following results also, the method of

proof "will be the same and therefore the proofs*

are left to the students.

(2) If _- = -. each ratio is equal to L
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If -
a
-=* -?- each ratio is equal to A /

-

b d V

(4) If -t =
-4-

each ratio is equal to -

(5) If-=
,

--= -- (Alternando)

(6 > If *

, J_ ..__ .

for a = c t-

,

X
b-i.e.L

d c c

a

for ..
b a b d

If t"-d-> ^= C

7^ (Divideudo)

_-l---li.e.*^--!.b d b d

(Conapoaendo et

DividendoJ

t
. _^

- a+b c-fd
tor ---==--- i.e. t

=-
ja , c _. ^-fe c d

"b d

All these resalts though simple are very

important. Hence the students must always bear

fthese results in their mind.
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Definition: i 2 is called the duplicate ratio of
^;

?~is called the triplicate ratio of f ;
: is called

b 3 b Vb
Q

the sub-duplicate ratio of
b '

POINTS OF DIVISION

It AB is a straight
line and P any a f p
point on it (whether
between A and B fig. 1 (b)

as shown in the figure, on A B produced or on B A
AP

produced) then - is the ratio in which the
r B

point P divides the straight lim AB. Though the

segments A B and B A are equal in magnitude

they are opposite in sign For, the direction A B

(i e. the direction from left to right) is taken as

positive and the direction BA (consequently)
as negative. Thus A B^ B A, but A B=^ B A or

A B + B A =s Again the segments A P and P B

by our convention are positive and, B P and P A
negative. If the point P lies within A and B on



the straight line A B by oar convention AP and

AP
P B are both positive ani hence the ratio - -_- is

positive. If P lUs without A and B i. e. on AB
or B A produced either A P or P B will be negative

and hence the ratio will be negative. When
PB

the ratio ^ is positive (i. e. when P lies within
P B

A and B) the point P is said to divide AB interna-

lly. In' this case P is called the internal point of

A P
division. If the ratio -- is negative (i. e. when

the point P lies without A and B) the point P is

said to divide A B externally. Here P is called

the external point of division. Hence the sign of

a ratio will decide whether the point of division in

question is an internal or external point of division.

Note 1: The ratio ia which the point P divides

B P
the straight line B A is -~ wherever may be the

Jr A.

position of the point P on tlia straight line

(whether between A and B, on AB produced or

on BA produced)

Note 2: If there are two points PandP 1
,
P lying

within A and B and P 1

lying without A and B
AP

(either on A B produced or on B A produced)
--



is the ratio in which P divides A B (internally) and
AP 1

pi~r>is
the ratio in which P1 divides A B (externally)

A P A P 1

It is evident that ^ is positive and that -- -

V P
as such is negative. Henje

*

can never be
PB

A pi
equal to

p-y-n (f r a P^^ive quantity can never

be equal to a negative quintiby). B'lt it may

happen that .4^
= 1

'-^1 which is positive

i
A1P

. - A P l _ AP 1

PBj ""- P~iB~" BP 1

In this case i. e. whan a point P divides a straight
line A B internally and a point P 1 divides thesam j

straight line externally in the same ratio, P and P*

are said to divide AB harmonically. Also

(APBP 1
) is called a harmonic range. The student

must note that if Pand P r divide AB harm onically

the internal ratio -^-5- and the external ratio
P D

A P 1

T
are only equal in magnitude and not in

sign. In sign also if they -are equal P and P 1 will

coincide. This will be the truth of our first-

theorem.

Note 3: Approximate position of the external

point of division when the internal point of division
is given;
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If P, the internal point of division lies

between O and B, where O is the middle point of

line A B, P 1
,
the external point of division (or the

harmonic conjugate of P, as it is usually called)

will lie on A B produced. For, ~ IB this case
lr B

A P 1

is clearly greater than one and ^^ as long as P 1

JD Jr

lies on BA produced will be less than one; Hence

there won't be any possibility of -=- and
r B JS 1.

becoming equal if P 1 lies on B A produced. So

we conclude that PT must be on A B produced.

Conversely if the external point P 1 lies on A B

produced, P the internal point of division (or the

harmonic conjugate of P 1 as it is usually called)

must lie between and B where is the middle

point of AB.

Similarly it can be shown that if P the

internal point of division lies between A and O
where is the middle point of A B, P 1 its harmonic

conjugate must lie onBA produced. Conversely
if P 1

,
the external point of division lies on B A

produced, P its harmonic conjugate will lie between

A and where is the middle point of A B.

Note 4: If the harmonic conjugate of 0, the

middle point of A B is represented by O 1
,
O 1 must
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be a point either on AB produced or on B A

produced such that^ - 1 i e. AO 1 =* BO 1

Hence OT must be a point either on A B produced

or on B A produced such that the distance A B

becomes negligible when compared to the

distance of O 1 from A and B i e. the distance

of O T from A and B must be sufficiently great or

in other words O l must b3 the p^infc at infinity on

the line A B.

In chapter 1 it has been already slio\\rn that

a straight line is a circle of infinite radfius. It is

also easy to see that the tangent at any point to a

straight line is itself. Hence the perpendicular

erected at any point on a given straight line to

itself is a radius of the straight line. Therefore the

centre of the straight line (regarded as a circle of

infinite radius) must be the point at infinity in a

direction perpendicular to the straight line. Since

the centre itself is at infinity, the other end of the

diameter through the foot of any perpendicular to

the given line, will also be at infinity in tbe same

direction. So any straight line in a plane passes

through tbe point at infinity in a direction

perpendicular to the line or in other words &

straight line i a circle passing through the point



at infinity Since this is so, we note that there is

only one point at infinity on a straight line. Hence

the question, whether O 1
, the harmonic conjugate

of should be on A B produced or on B A produced
does not arise. The two ends of the straight line

A B when indefinitely produced will be coming to

the point O 1
. So we simply say that the harmonic

conjugate of 0, the middle point of AB is the

point at infinity oil the line A B.

Students will get some more ideas about

the internal and external points of division when

they study inverse points with respect to a circle

under properties of circles.

THEOREM 1.

A straight line cannot be divided in the

ratio in more p pf
than one point (either fl i i

< B
internally or externa-

lly.) Fig (2)

Let P be a point on A B dividing A B

internally in the ratio
-j~

Then it is evident that

P must lie within A and B. Since P is a point on



AP
A B that too within A and B, istlte ratio in

PB

which the point P divides the straight HIH> AB

internally. But this ratio is given to be ~

. AP I

If there is any other point dividing A B

internallylin the same ratio -
, let it be P' Theu

AP 1
I AP I

pTB ^T bllt'TB &V
AP AP 1

pp = urnr Adding one fco both sides

<njd cancelling A B in the numerators of the two

ratios, we get,

/. P 1 coincides with P. (V Both of them

internal points of division lie within A and Bj
I. e. there is only one point dividing AB internally

iu the ratio~.
k

Similarly there is only one point dividing
AB externally iu the ratio Z:k. Her.ee th#

theorem,
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THEOREM 2.

A straight line drawn parallel to one side of

& triangle cuts the

uther two sides or

those sides produced
proportionally. Let
MN be parallel to the

side BC of A ABC
cutting AB at M and
AC at N. Divide AM

equal
B

into p equal parts
nnd MB into q such equ-
al parts. Draw parallels
fro BC through these

points of division. Then
AN will be divide.} into

p equal parts and NC
will be divided into q
such equal parts (by a

theorem)

Fig 3,

AN P
NC"

=
q

AN AM~

AM
MB

Fig. 4

,u
theorem.

Conversely: If a straight line cuts two

sides of a triangle (both internally or both extern-

ally) in the same ratio it is parallel to the third

side.



Let MN be a st line cutting the sides AH,
AC of A ABC at M and N respectively such that

AM AN
Prove MNBC,

If MN is not parallel to BC let a parallel

to BC be drawn through M cutting VC at N 1 tlien

AM AN 1

by the previous theorem, ^ NrCT ^ut ^

,
. AM AN AN AN 1

hypothesis MB- NO '- so ^NT0"
i. e. N and N 1 divide AC (both internally or both

externally) in the same ratio which is impossible

by theorem 1. .', N 1 ninat coincide with N*

i. e. MN is parallel to BC.

CONSTRUCTION.

1. Divide a straight
line A B in the ratio

I : k internally. Take

any line through A
and mark A Q = / and

QP=k along that line

in the same direction.

Join P, B. Then draw
Q C parallel to P B
to meet A B at C. fig. 5,



Then C will be the required point. For, since

^C || PB, cT = QP (By theorem 2> whcre

A Q is exactly equal to I and QP exactly equal to

k (by construction)

2. Divide a straight line A B externally in

fche ratio I : k.

A slight modification is necessary in this

case.

Instead of

taking Q P in the

same direction as

A Q take Q P in the

opposite direction

and proceed as bo
Pore.

v

AC_ A_Q_
I

CB QP ~k
""

(By theorem 2 <as before)

Thus C divides A K externally in the ratio

Wbett. the word ^extetnaily' is removed, we

will have to say that C divides AB in the

i,

fatio - - . The negative sign indicates that

the point of division is external.
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3. To find a fourth proportional to throe

given lengths a, b, c.

Take two straight
lines ABC and APQ
intersecting at A at

any angle, on A B C,

step off a length
AB = a and BC=b.
Along APQ measure
a length AP = c. Join

B, P. Draw a line

through C parallel to

BP to meet APQ at Q. Then ?Q is the fourth

proportional to a, b, c.

AB AP . a c

Hence the result.

4. To find a third proportional to two

given lengths a, b.

As in the previous
r,ase take any two

ft ^

straight lines ABC
and APQ cutting
each other at A at a
convenient angle. On
ABC mark off a length
AB=aand a length

BCs=b. Also step off a length AP=bon AQ.
Join B, P and draw a line through C parallel to



-23-

B P to cut A P Q at Q. Then P Q will be the third

proportional.

Proof: 6<H
= -*.- (construction)D \s U

B.. 45 -
-il

"

P
=

b"
^ e> -iH PQ

HenCe the rCSUlfc

THEOREM 3.

Triangles and parallelograms of equal alti-

tnth ,s are to one another as their bases.

1. Triangles;

Let As ABC and
P Q R standing on
bases BC and QR
have equal altitudes 8 * ' "

c 'o R
h -

Fig. 7

Then A ABC a | h>BC
li. QB
i. BC BC

APQR lib. QRIQR
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2. Parallelograms:

Let parallelogr-

ams ABCD and PQRS
standing on bases AB
and PQ have equal
altitudes h.

Join A, C; P, B
Then CUABCD =2AABC

^7ABCD 2AABC
"2APQR

AABC=ACDA)
A I QREIAR&P)

_
AB

"
- J l '

WORKED EXAMPLE.

Three concurrent Hne& through the

rertices A, B, C of a /^ ABC meet the

opposite sides in D, E, F respectively. Prov:

that BD. CE. AF=DC. EA. FB (Ceva's Theorem)
Let the three lines

concur at O. The

altitudes from the

vertex A for A
BAD and DAC are
AL ^ D W
tae same,

Fig. 9
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Same

*'* DC'" ABAC * Also ' As BOD and DOC

have a common altitude, viz, the altitude from O.

**5L A BOD BD ABAD ABOD
" DC

""
ADOC ihus DC

~ADAC = A DOC
ABAD - ABOD _ ABAO

"ABAC - ADOC
~

AOAC
(by ratio and proportion)

. .,
,

CE ACBO ,AF A AGO
Similarly - - and

Multiplying the three,

BD CE AF ABAO ACBO AACO
DC* EA* FB~AOAC' AOBA'

A Ti
1

i. e. . -. - 1 or BD. CE. AF-DC. E A.

* THEOREM 4.

If an angle of a triangle is bisected internally

(or externally), the bisector divides the opposite
side internally (or externally) in the ratio of the

other two sides of the triangle.

Let AD bisect LA of A ABC

Then to prove that
TJ>T

* The method of proof adopted here for this theorem was first (i. e. i

October 1956) given to Mr. Broadbent of Royal Naval college,
Greenwich,
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Fig. 10.

Fig. II

Draw D P perpendicular to A B and D Q
perpendicular to AC.

Then A
(/. PAD = QAD; APD - AQP -= 90'; ADi*
common)

A BAD AB
'

ADAC^AC (by ^eorem 3)

But A BAD BD o^ (by theorem 3

tli altitude from A for both As is common)
. BD = AB" DC AC
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Conversely, if a side of a triangle is divided

internally (or externally) in the ratio of the other

t\vo sides, then, the line joining the point of

division to the opposite vertex bisects the angle
at that vertex internally (or externally.)

(Figure and construction the same as before)

<*iven that
-g
= to prove that A D is a

bisector of Z A.

AD_ AB.DP. DP _
AU AC.D"D

orDP=DQ; Further AD is the common hypo-
tenuse for AS APD and AQD /. right angled As
APD and AQD are congruent

/. /PAD /QAD
i. e. AD is a bisector of / A (internal bisector in

figure 10 and external bisector in fig. II)

Nate 1: If AD, AE are respectively the

internal and ext-

ernal bisectors of

Z A of A A B C

meeting the base

BC atD and E
then D and E
divide BC ift the
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A T^

same ratio -
A-yr one internally and the other
A. \^>

externally, i. e. D and E divide BC harmonically.

Hence (EDGE) is a harmonic range. D and E are

called harmonic conjugates with respect to B
and C. In the figure note that E, the external

point of division lies on BC produced as D, the

internal point of division lies between and C

where is the middle point of BC.

Note 8:- If D and E divide BC harmonically,

(i) B and C divide DE harmonically

(use Fig. 12 where line BC is divided har-

monically at D and E)

(by

BD -BE
" DC CE
DB EB
DC CE
. DB DC

(alternando)' ' EB C E

i. e. B and C divide DE harmonically,

(ii) BD, BC and BE are in harmonical progression.

BD BE_
"DC CE

BD BE
'

(BD+DCJ-BC
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Bl), BC, BE are in Harmonical progression.

b r
( i

DB = PG
E B C E

. DB ^ -DC CD
' '

EB
^

CE' EC
'

/. C and B divide ED harmonically.

Hence as before EC, ED, EB aro also in harmonical

progression.

So if (EDGE) is a harmonic range BD
? BC,

BE are in Harmonical progression and EC, ED, EB
are also in Harmonical progression.

(iii) OD. OE = OB a = OC a where is

the midpoint of BC.
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BO+OD
80=00"

BO+OE
OE BO

BO + QD +BO-OD _ BO+OE+OE-BO
D-YBO-OD)~BO+OE-(OE-BO)

(componendo et dividendo)

i.e. OD.

conversely if is the midpoint of BC and D, E two

points on it (on the same side of 0) such that

CD. OE = OB 2 =OC2
, then (BDCE) is a harmonic

range.

OD. OE=B03

BO OB
1>e ' -

I.e.

BO+OD _ OE+ BO
BO OD

~
OE B 6

BO D - OE+BO
OC OD OE OC

JfP. - _BE
DC

~~
CE

.*. D and E divide BC internally and externally in

the same ratio. Hence by definition (BDCE) is a

harmonic range.
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Note 3: In fig. 12, if ABC is an isosceles

triangle (AB AC) D will coincide with and AD
will be perpendicular to BC. / DAE=90 always.

Hence AB will be parallel to BC, i. e. E in this

case is the point at infinity on the line BC. (or

more generally the point at infinity in a direction

parallel to BC). So we note that the harmonic

conjugate of the middle point of BC is the point
at infinity on the line BC.

WORKED EXAMPLE,

1. If A,B are fixed points and P a variable

point such that the ratio of PA to PB is always
constant prove that the locus of P is in general
a circle.

[ This is called Apollonius* Theorem. The

student in future when he studies the Geometry of

the conic, will note that the loons of a point which

moves such that the ratio of its distance from a

focus to its distance from the foot of the corfes*

ponding directrix is a constant equal to the

eccentricity of the conic, is its auxiliary circle*

Hence auxiliary circle of a conic may be appro-

priately called Apollonian circle of the conicj
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Let P be a point such

that^-lDivideAB
internally and extern-

ally in the same T

fixed ratio
f

. Let C
k

be the internal point of

division and D the

external point of division.

~~ D

Fig. 13

Then
PA
PB

1

CB
AD
BD

_ AC
*' 6 *

P B
~

CB
.*. PC is the internal bisector

of /APB.

PA AD
/. PD is the external bisector

&v
of ZAPB
Hence /CPD = 90

Now if we describe a circle on CD as din-

meter this circle passes through the point P.

(/CPD= 90). But P is any point satisfying the

given condition. Thus any point satisfying the

given condition f namely - - =
\ P B k

circle on CD as diameter and this circle is a fixed

circle ( y A and B are fixed points and the points

C, D which divide the line joining these fixed points

1
/

lie?4 on this
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in the fixed ratio - are also fixed. Consequently

the circle on CD as diameter is also a fixed circle)

Hence the locus of P is this circle on CD as

diameter.

[ Locus is by definition the aggregate of all

points satisfying any geometrical condition. AH
loci however are found to be curves. Students

must note that any point lying on a locus will

satisfy the condition for the locus and that any

point satisfying the condition for a locus will lie

on the locus,]

Definition: The circle on CD as diameter

(fig. 13) is called the Apollonius' circle of the two

fixed points A and B for the constant ratio -
'

.

[ Note that Apollonius
5

circle reduces to a

straight line (a circle of infinite radius or a circle

passing through the point at infinity ) when the

constant ratio is unity ].

2. CA, CB are two tangents to a circle

A and B being the points of contact. E is the foot

of the perpendicular from B to AD the diameter

through A. Prove that BA, BD bisect angle

CBE. Deduce that CD bisects BE (March 1948)
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Let BA and BE meet CD in

L and K respectively. CA, CB

being tangents from A are equal

/CAE-f zBEA=90-h90c= 180 Fig- >4

/. CA
||
BE

/. ZCAB=ZABE
Hence ZCBA=ABE

i. e. BA is the internal bisector of Z CBE.

Z ABD= 90 (since AD is a diameter;

Hence BD is the other bisector

. KD _ LK
cb 'CL

Then to prove that EK= KB
Now A a DEK and DAC are ||| (V EK

|| A)
. EK _ KD"

"AC CD"

|| ly AS KBL and CAL are similar.

TTf> T T7"
J\.JEjT JjJV"
CA"

**
"ClT

KD ^ LK
CD

**
CL

. EK KB
or
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(1939 M. U.)

3, AE bisects the angle A of a A ABC
and meets BC in B. If O and O1 be the

circumcentres of A8 ABB and ACE prove that

OE BE_
O'E

J
"EC

JoinO,B;0,E;O l
E; O'C.

In A s QBE and (PEG

=E0 1C (Since

BAE EAC)
!9 (say)

also QBE=OE B = QBE+OEB

lllly O 1EC

2

:180-

180-9
2

Fig. 15

9

.'. OBE^=O 1CE and OEB:
Hence As QBE and 1CE are Equiangular

BE OE
'*' EC

'**
(VE (

'' ^ fcvvo *^s are Equiangular

corresponding sides are proportional).
In the figure prove that AS BEO 1 and CEO

have the same area. (Proof is left to the student).
Aliter: Let OP and
O'Q be J_rs to BE
and EC respectively
fromO and 0\]
Let

/EAC=9
Then LBOE-=

ZEO xC= 2e
and Fig 16
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From rt. angled A
PE-BE=OE sin or BE= 2 OE sin

EC=2O 1Esin9
BE__ OE
"EC

~
1E

CHAPTER 3.

SIMILAR TRIANGLES.

Definition: Two AS are said to be similar

if (I) their angles are equal and (2) their corres-

ponding tides (sides opposite to equal angles) are

proportional. But it is found that if any one of

the above conditions is satisfied the other will

be automatically satisfied. This is indicated in

the following two theorems.

THEOREM 1 .

If two As are equiangular their correspon-

ding sides are proportional.

A

Fig. 18
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In AsABCandPQR, let ZA
(Then the third set of angles are obviously equal)

Place the APQR so that /P coincides with

ZA and PQ coincides with AB. Then since

Z P^ Z A, PR coincides with AC.

Let AQ XR 1 be the new position of A
Since ZB^ZQ-ZQ 1

(or since LC= LR = Z

Q ^

1 B
AdT

^
:==ART a(^^n8 * * both sides;

A?L _ AC^ . AB _ CA
AQ 1 ^AR^ Le '

PQ^- RP*

1R 1
being the new position o

Similarly by placing the A PQR so that

coincides with ZC and RP coincides with CA
CA BO

*

we can prove that = - -
RP QR-

But
^-r=

- (already proved)

AB'_ BC _ CA^
PQ QR RP

Note: The student should take care in

writing down the corresponding sides in the two

triangles. Sides opposite to equal angles in the
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t\vo triangles are corresponding sides. Note also

that the two triangles are now similar (by

definition).

Conversely, if the sides of one triangle be

proportional to the sides of another, the two

triangles are equiangular.

Let ABC and PQR be two AS in which

AE_ _ BC ^ CA
PQ

*
QR

*
RP

Fig. 19 Fig. 20.

Required to prove that they are equiangular

Let D be a point on the side opposite to P,

of QR such that ZDQR=/ABCand LDRQ=
/ACB

Then As ABC and DQR are equiangular

(by construction)

"'

DQ
"
^R

^

K f BC CA ABBut ""
RP

="

p<r
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AB AB , CA _ CA
~~P

ana
110""" RP

Hence PQ-DQ and RP=RD
QR is common to APQR and ADQR

/. A PQB = A DQR and hence they are

equiangular.

But As ABC and DQR are equiangular.

As ABC and PQR are equiangular.
Note that the two triangles are now similar

(by definition).

CONSTRUCTION,

Divide a straight line AB internally and

externally in the ratio Z:k.

Erect a perpendicular AP, at A to line AB
such that APs=i units. Also, ^erect a perpendicular

BQ at B to Hoe AB in the same side of AB as

AP, such thatBQ=k units. Produce QB to Q*
such that QB=BQ 4

. Join P, Q 1 to meet AB at C
Then C will be the required internal point of

division. Join P, Q and produce it to meet AB or

BA produced as the case may be at D. Then T*

will be the required external point of of division.

(Draw the figure and supply proof)

The student \vill note that this method is

very useful in dividing a straight line internally

externally in the same ratio.
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WORKED EXAMPLE.

Two circles cut orthogonally at A and B

A diameter of one of the circles is drawn cutting

the other in C andD. Show that BC. AD= AC* BD.

[Sept, 1950M. U]

Def: Two circles are said to cut ortho-

gonally if the angle between the tangents to the

two circles at a common point is a right angle (or

if the radius of one through a common point i

the tangent to the other at that common point),

Let a diameter
of circle I cut the
circle II at C and
IX Let be the

centre of circle I. Join

O,A; O,B. Since OA
l>y definition of orth-

ogonal circles is a ^

Tangent to circle II.

ZOAC=/ODA.
Hence AS OAC and ODA are

__" AD
""
OD

Similarly since As OBCf and ODB ate (It

DB
"
QD
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But OA=OB
- =j_ i. e. AC. BD = AD. BC.

THEOREM 2.

If two A have one angle of tlie one equal
to one angle of the other and the sides about these

equal angles proportional, the two As are

similar.

Fig. 11 tig. ^
In the two AS ABC and PQR let

it and ,
_

: Place tke AVQR on AABC
such that Z P coincides with Z A and PQ falls along

AB. Since ZA Z?, PR \viJl coincide With AC.

Let Q 1

,
R 1

, be the new positions of Q and R
respectively*
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.'. AQ 1 - PQ; AR 1 = PR.

AB AC ,
. v . AB AC

PQ--TR (glven) '- 6 -

AB AC . AB AC
AB-AQ'

*
AC- Aft"1

"
' e

OH* ~R'C or

.'. (^R 1

|i
BC (by Theorem 2. ch. 2.)

/. ZQ'^/B; /R 1 - /C i.e. /Q= /B
and ZR=/C.

Thus AS ABC and PQR are equiangular
and hence their corresponding sides are proportional

(by Theorem 1, Ch. 3.)

i. e. The two AS are similar,

WORKED EXAMPLE,

In a quadrilateral which is not cyclic prove'
that the rectangle contained by the diagonal*
is always less than the sum of the rectangles
contained by pairs of opposite sides.

ABCD is a qnadri- _^^\
lateral which is not

cyclic. Let be a

point within the quadr

riJateral guch that

ss /CAB and
~ c

- ZACB. By
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coustruction As AOD and ABC are equiangular.

' W (Thsorem 1. Ch. 3)

Hence AD. BC=*OD. AC. I

Now in As D^C and \B

Evidently zDAC=zOAB

Further -- = ^~ by (A)

A A DAC HI AOAB (by Theorem 2. Ch. 3)

= i. e. AB. CD.=AC. OB. II.

Adding I and If,

AB. CD+ AD. BC=AC (OD+ OB)

But OD +OB>BD
/. AB. CD 4- AD. BC.> AC. BD

When the quadrilateral is cyclic ZACB=
(Angles in the same segment)

But / ACB - ,/ODA (by construction)

A ZADB=ZADO. Hence lies on BD
/. OD-r-OB=BD.

Thus when the quadrilateral is cyclic

AB.CD+AD. BC=AC. BD which is knowa

as Ptolemy's Theorem.
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Def: If a, b, c are three quantities con-

nected by the relation ~ = (b
2
=ac) the three

b c

quantities, a, b, c are said to be in continued

proportion. Also, b is called the mean proportional
between a and c.

THEOREM 3.

If from the right angle A of a right angled

triangle ABC, AD is drawn perpendicular to BO
then (i) AD is the mean proportional between
BD and DC (ii) BA is the mean proportional
between BD and BC (iii) CA is the moan pro-

portional between CD and CB.

Let ABC be a A right angled at A and Al)

JLto BCfrom A.

Proof: Q

ZABC+/ACB= 90

/. /BAD=ZACB B "
cT

Fig. 25
Also Z B is common to AS ABD and CBA

Hence AS ABD and CBA are similar.

Ill ly A? CAD and CBA are similar.

As ABD and CAD are also similar,

(i) From similar AS ABD and CAD
T>T\*u

or AD a = BD. DC.
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(ii)
From similar AS ABD and CBA

J^^J31^ rBA'2 =BD. BC.
BC BA

(iii) From similar AS CAD and CBA

-U^=L or CA*=CD. CB.
CB CA

[ An alternate method of proof is given
below for these three results so that the student

may recollect them easily to his memory without

any confusion].

(i) Describe a circle on BC as diameter.

Since /BAG ==90 this passes through A. If AD
meets this circle again atA ! ,BC the diameter

bisects this perpendicular chord ADA 1
. Hence

By a property of the circle,

AD.DA r=BD. DO
i. e. AD a = BD. DC. (AD-DA 1

).

(ii) If we describe a circle on CA as dia-

meter this passes through D (
/ ADC - 90). Further

since BA is perpendicular to CA, BA becomes the

tangent to this circle on CA as diameter at A.

Hence BA* = BD. BC.

(iii) Similarly by describing a circle on

BA as diameter we get CA* = CD. CB.
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[The student will note that Pythagoras'
Theorem follows from (ii)

and (iii), on addition] .

Def: If the values of two quantities

vary, subject to the condition that their product i

always constant those two quantities are said to be

in inverse proportion.

WORKED EXAMPLE.

1. PA, PB are Tangents to a circle whose

centre is from any external point P. AB cuts

OP in Q Prove that OP and OQ are in inverse

proportion.

Join to A. Then

/ OAP - 90.

Also AQ is to OP
(v AOAP-AOBP
and hence A QAP?E
A QBP.

A A

Thus ZAQP = ZBQP =AQPt BQP2 ^

Henoe by theorem 3 chapter 3,

OA 2 -OQ. OP.
i. e. OQ. OP= (radius of the circle)

2

~a constant.

.". OP and OQ are in inverse proportion.

= 90)



2 C is a point on the semi-circle on the

line AB as diameter. Semi-circles are outwardly

(described on AC and BC as diameters. Prove that

the sum of the crescent shaped areas lying outside

the semi-circle ACB is equal to the area of the

A ACB. (Inter March 1956)

The area of semi-

circle on AB as diameter is

li|ly the Areas of semi-

circles on AC and BC as

diameters are respectively ^ AC'2 and ~ BC2

o o

Since AB is a diameter / ACB=-90 and hence by

Pythagoras' Theorem,

AB 8 =AC*+BC fl
. Multiplying throughout by y

- AB !"" AC* + ^ BC*
O O "

i. e. Area of semi-circle on AB as diameter

is equal to the sum of the areas of seftri-circles on

AC and BC as diameters. Now let the area of the

semi-circle ACB excluding ^ ACB be S

Then, ( 1L AB'J -S
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i. e. A ACB = Sum of the crescent shaped area*

lying outside the semi-circle ACB.

3. Prove that the common tangent to two

circles having external contact is a mean pro-

portional between the diameters of the circles.

[
Inter 1925 M. U. ]

Let two circles, centres

AandB touch exteinally

at M. Also let FQ Le

one of their common tan-

gents. (The other common

tangent will also be equal

in length by symmetry.)

Produce PA and QB to meet the circles again

at P 1 and Q 1
. Then PP 1

is a diameter of the circle

A and QQMs a diameter of the circle B.

Join P, M; Q, M; P T
,
M and QT

,
M.

/PMP 1 =90. Also ZPMQ- 90 (For, if we draw

the common Tangent at M to the two circles, cutting

tilly Q>MPiP*MQ is a straight line.

a bt. line.

In AsPPTQandQPQ*
P 1PQ=PQQ 1 =90
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Hence

3 = zPP rM = zQPM
(Property of the circle)

APP JQ III AQPQ 1

PQ
QQ 1

= or =PP. QQ*

Aliter:

Let the radii of

the two circles centres

A and B and touching

externally at M, be a

and b respectively;

Also let PQ be one Fig. 29

of the two common tangents. Join P, A; Q, B.

Draw a perpendicular from A to QB cutting it

at L. Then evidently PQLA is a rectangle.

/. PQ =AL and PA =QL = a

.-. BL=BQ-LQ= (b-a) (vBQ=b)

AB=(a+b)

From right angled A ALB,

AB a =AL a + BL a

(a-(-b)
2 -PQ 2 + (b-a)*

.-. PQ 2 =(a+b) 2 -(b-a) 2

= (2a) (2 b)
7

i. e.
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Construction: Find the mean proporti-

onal between two given lengths a and b.

Take any straight line AB.

Let be a point on it.

Measure out OA = a and

OB b on opposite sides of
.

on the straight line AB. pig 30

Draw the circle on AB as diameter. Through
draw a perpendicular to cut the circle in K and K 1

(K
1

is not shown in the figured Then OK or OK 1

will be the mean proportional between AO and OB.

Join A, K; B, K.

Proof: Z AKB = 90
C and KO is JLr to AB.

Hence applying Theorem 3, Chapter 3.

AO. OB-OK 2 i.e. ab=rOK 2

Hence OK is the mean proportional between a and b.

Note 1: This construction geometrically

illustrates the algebraic proposition that, if the

sum of two positive quantities ia given the product
of them is greatest when the two quantities are

equal. For, for all positions of the straight line

OK (0 lying between A and B) the relation

AO. OB=*OK* is true. The left hand side will be

greatest when the right hand side is greatest. The
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ll. H, S evidently will be greatest when coincides

with the centre of the circle. Then AO= OB.

Note 2: If OB and OA (OA<OB) are

taken in the same side of 0, the construction will

be as follows:

Draw the circle on OB
as diameter and erect a J_r

to OB at A to meet the

circle at one of the two

points (say) at K. Join

O, K and B, K Fig. 31

Then OK will be the mean proportional

between OA and OB.

Proof:
- L 0KB = 90 and KA is lr to OB.

By applying Theorem 3, Chapter 3,

OK a =OA OB.
i. e. OK 2 =ab

/. OK is th<a mean proportional between

a and b.

TEOREM 4.

Similar /y* are to one another as the

squares on their corresponding sides. (Areas of
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two similar triangles are in the duplicate ratio of

corresponding sides).

Fig. 32 Eig. 33

Let A ABC be similar to A PQR. Also let

AD be j_ to BC and PS be J_ to QR. Then in the

two right angled A* ADC and PSR.

ADC = PSR = 90

ACD

So

PRS (LC=LR)
A ADC II! A PSR
AD AC
PS PR
AD CA AB

But
BC CA AB
QR
BC
QR

RP

PS RP PQ
tudes to two corresponding sides of two

in the ratio of corresponding sides).

A ABC \ BC. AD BG BC / AD
~AQR.PS- O.R'QRV'"' PS

PQ

(Thus alti-

are

QR'QRV
JBC*
QR 2

BC \
QR/

AB
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WORKED EXAMPLE.

1 . The tangent at A to the circumcircle

of a triangle ABC meets BC produced at D. Show

that -^-=4? (Inter

In As ABD arid CAD

Z D is common.

/ABD=ZCAD
(angle between a

tangent to a circle

and any chord thr-

ough the point of Fig-

contact is equal to the angle subtended by that

chord in the alternate segment),

Hence the two As are similar.

A ABD AB 2
"

from A

to the two /\s is Common.

A ABP BD BD AB*
Hence "-=-' A CAL>

"" CD

Aliter: Since the two AS ABD and CAD are

equiangular, corresponding sides are proportional %

AD
Tl

BD
' "AC

*
AD

_
CD VAD.CD V "CD"
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BD AB a
,. ,

.'.
~~Cf)

==
~AG*

or taking the two values of

- and multiplying together we get the result.

2. In two similar triangles corresponding lines

such as (a) *mediaris (b) altitudes (c) circurn-

radii (d) in-radii etc. are in the ratio of correspond-

ing sides.

HP S *

Fig 36

(a) Let ABC and PQR be two similar triangles

and AD, PS medians to the sides BO and QR

respectively.

Proof:
- Since A ABC ||| A PQR

BC
-

^RP "
i'QA RP "-" SR RP

Further /C^=ZR

/. AACD andAPRS are similar by theorem 2,

chapter 3.

* For definition of nedians of a plane triangle see appendix II.
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AD CA AB BC
PS RP PQ QR

Similarly the other medians are also in the

ratio of corresponding sides .

(b) Already raftTvad^a ^fiedrbtt^kchapter 3.

Fig. 37 Fig. 38

(c) [Circumcentre of a triangle is the point of

concurrence of the perpendicular bisectors of the

sides of the A. Hence it is evident that the

circumcentre of a traiangle is equidistant from the

vertices <of the triangle, i e. with the circumcentre

as centre a circle can be drawn to pass throuA the

vertices of the triangle This circle is cailtetl 'the

circumcircle. The radius of this ci^ateC^ Sailed

the circum-radius.]

Let and O 1 be^I^^irottincentres of two

similar triangles
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Join B, 0; C, 0; Q, 0'; R, O1
.

Proof: Si nee /_ A= Z P

ZBOCWQO'R
(V ZBOC=2LA and LQO'El

OH'
= 1

or
BO OC
QO 1

-
O'R

Hence A BOG III AQO'R by Theorem 2, Chapter 3.

OB BC CA AJL"
O'Q

""

QR
- RP -

PQ

(d) [Tneentre of a triangle is the point of

concurrence of the internal bisectors of the angles

Fig. '39 Fig. 40

of the triangle. Hence at is evident that the

perpendicular distances of the incentre of a triang-

le from the three sides are equal, i. e. We can draw

a circle with the incentre as centre to touch the

three sides of the triangle. This circle is called the

incircle and the radius of this circle is called

in-radius.]
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Let I and Ij be the incentres of two

similar triangles ABC and PQR. Let IF be

perpendicular to AB and 1,7 perpendicular to

PQ Then, evidently Fis the point of contact of the

side AB of A ABC with the incircle of AABC
and T is the point of contact of the side PQ of

,PQR with theincircleof APQR. i.e. IF and

I x T are the in-radii of the two As ABC and PQR.

ProoJ; Jn As ABC and PQR,

similarly Z A BI= ^ PQI ,

/. AABI Hi A PQI,

IF and I
X
T are altitudes to the corres-

ponding sides AB and PQ of these similar AS.

, ,, IF AB BC CA
Hence by (b) -j^.-^

3. In two As if one atigle of the one

equals one angle of the other, their areas are in

the ratio of the rectangles contained by sides

about equal angles.
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Fig. 41 Fi. 42

Let ABC and PQR be two triangles such

that Z BAG- Z QPR - (say)

Construction: Diaw 13L, QM perpendi-

culars to AC and PR from B and Q respectively.

Then A ABC- J AC. BL; A PQR-i PP. QM.

Bat BL=AB Sin 6; QM- PQ Sin 0.

A ABC j AC. AB Sin AB._AC ,-
ft Q

v

' L PQR- 4 PR. PQ Sin 0~PQ: PR V ;

Since, ISin 9 =s Sin (180 9) it follows that in

two As if one angle of the one in a supplement

of one angle of the other their aieas are in the

ratio of the rectangles contained by sides about

these supplementary angles.

From this problem it easily follows that-

the areas of two similar triangles are in the dupli-

cate ratio of corresponding sides. For if ABC and

PQR are two similar
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AC^
PR

CONSTRUCTIONS.

1\ Divide a triangle ABC into two parts

whose areas are in the ratio I : m by drawing a

straight line parallel to the side BC.

It is required to draw

a line which is such that

it divides the A into two

portions whose areas are

in the ratio 2: in and which

must at the same time be

parallel to BC. Fig. 43

To fix up a line either two points on it or

viny one point on it and its direction must be

known. Here since the straight line must have to be

parallel to BC its direction can be taken as given.
He-nce it is sufficient if we find a point on it.
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Analysis: Suppose MM is the required

parallel line cutting AB and AC at M aud N

respectively.

Then A AMN .._
I

lhen
D~MNCB

~
m

A AMN l_"
A AMN + DMNCB

~~
l+m

AABC
=
Z+m

But AS AMN and ABC ace also similar (MS \\ BO)

. A AMN AM 2

"
A ABC

r
AB 2

AM 2
I

Hence Trsir --
AB 2

"

l+m
AM2

I

i. e. M is a point on AB such that
TRSJ

"
1 4.

( III ly N will be a point on AC such that -^5 ==,
J

Now if-- is a perfact square the ratio - can
AB

be easily found out and hence the point M can be

easily fixed up on AB. If - is not a perfect

square M will have to be found out, employing
some other geometrical result. In this case if P i$ a

point on AB such that AM* = AP. AB. (i.
e. AM be-

comes the mean proportional between AP and AB)
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AM* = AP. AB. AP. __l_
A B' AB. AS!

*
AB.

~
Z-fm

AP I

So if we find a point P such that-^ir = T\ tlier AB J-f-w*

point M can he found out by finding, AM the mean

proportional between AP and AB.

Construction: Let P be a point on AB

such that e - -2^-= ).
Find

* PB m /*AB I-fm
the mean proportional between AP and AB. (use

construction under Theorem 3, Chapter 3). Let it be

AM. Then M is the point through which the requi-

red parallel line passes. Hence draw a line through

M parallel to B(J. This will be the required line,

AM*
rt .

Proof: - ~r7 -
1 (kuice the two

are similar)

But AiI*=AP. AB (construction)

AM^AP AB AP^ f
AAM>J AP

ABa ^AB.AB \4B /-
A ABC

A AMN
Hence

AAMN
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2. Divide a triangle ABC into twa p-,ttte

whose areas are in the ratio- l:m by drawing a

perpendicular to BC.

Analysis: Let MN
be the required perpendi-

cular to BC. Draw AK

perpendicular to BC.

. _
nMNBA m

(Hypothesis)

ACMN I

Fig. 44

= -

(2) ( Altitude AK is common)

.,. ,
. . ACMN CM*

(l)x(2)gm A-cAg---ol5;7cS
..

CK.CB

CK
i. e CN is the mean proportional between CK and

OP where CP is equal to 7
-
rL CB.
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CP
CB l+m

**
PB m

o P divides CB in the ratio l:m.

Construction: Divide CB in the ratio I :m
at P (this is the same thing as dividing BC in the

ratio m:l at P). Find the mean proportional

between CP and CK, where K is the foot of the

perpendicular from A on BC. Let it be CN. Then

N is the point at which the required perpendicular

will Lave to be erected to BC. Hence draw a line

through N perpendicular to BC, cutting AC at M.

Then MN will be the required line.

_J CP =J
PB

-
m
-

CB
-

HTW
(by ratio and proportion)

ACMN
ACAB

"
ACAK-

, CN a
t

..
But ACAK ClT* ^

''
y are siml

the same

ACMN CN 2 CK CN a
_ CP. CK

" ACAB
=
CK a * CB

=
CK. CB

~
CKT CB

(ClN is the mean proportional between CP and CK.)

ACMN CP _Hence DMNBAm



3. Draw a triangle equal in area to a given

triangle and similar to another given A*

LetPQR and ABC be two given triangles.

Then it is required to construct another triangle

which is equal in aiea to A AEC and similar to

\

Fig. 45

8
Fig. 46t

Construction: On BC construct a triangle

DBC equiangular to A PQR* Through A draw Ji

parallel to BC, cutting DC at P. Find the mean

proportional between CP and CD. Let it be CK.



65--

Through K draw a parallel to DB, cutting BC at L

Then A KLC will be the required triangle.

Proof: APQR and ADBC by construction

are equiangular and hence similar.

Since LK BD, AKLC and ADBC are

equiangular and hence similar.

' APQR and AKLC are also similar... (1)

If we draw DRS.L to parallel lines AP and

BC tutting them at R and S respectively

L=|L. (by parallel.) .

CK* CP.CD CP -,:
CD- CDLTS CD

proportional between CP and CD)

<AABC

have got the same base BC)

A AKLC^AABC (2)
*
s

From (1) and (2) it follows that AKLC is

the required triangle.



EXCERCISES.

1. If a Straight line m inches in length iV

divided internally and externally in the ratio / : k

find the lengths of the segments in each case*

2 A, B, C, D are four collinear points

(points lyirg in a line) siuh that AC is divided at

B and I) in the ratio k : 1. Show that DB is

divided at C and A in the ratio (k+ 1) : (k 1)

3. AB is divided internally and externally

in the same ratio at C and D: If is the middle

point of AB, prove that OC. OD-OA 2 ^OB*.

4. Two diameters AB and (D of a circle are

divided in the same ratio internally and externally

at P, Q; R, S respectively, the ratio for AB and

CD being the same or different. Prove that P, Q,

K, S, are coneyclic-

5. Show that three or more parallel lines cut

any two transversals proportionally,

6. ABC is a triangle inscribed i a; circle.

Show that the peipendicular from A on EG is a mean

proportional between the perpendiculars from B
C on the tangent at A*
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[Hint. If AP is the J_r from A to BC and

BQ, CR J_rs to the tangent at A from B and C, then

OP
figure APBQ is cyclic /.-_= where O is

the point of intersection of the tangent at A and

BC. Ill ly since figure ARC? is cyclic

Bat since OA is a tangent at A, AC||QP

sr-

7. ABCD is a quadrilateral; show that if the

bisectors of the angles A and B meet in the diagonal

BD, the bisectors of the angles B and D will meet

on AC.

8. The bisector of angle A of AABC meets

BC in D and DE is drawn parallel to AC to cut

AB at E and DP parallel to AB to cut AC at F.

BE
Prove that

CF

9. The median AD of a AABC meets BC in

D. The internal bisectors of angles ADB and ADC
meet AB and AC in P and Q respectively. Prove

that PQ is parallel to BC.

10. CA, CB are two tangents to a circle, A and

B being the points of contact, E is the foot of the
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perpendicular from B to AD, the diameter through

A. Prove that BA, BD bisect angle CBE. Deduce

that CD bisects BE.

11. The straight line BC is divided in the

same ratio at D and E. DE subtends a right angle

at P. Show that PD and PE bisect

12. Show how to construct a triangle on a

a given base so as to have its vertical angle

bisected by a given straight line.

[Hint: Let the given straight line cut the

given base, say BG or the base BC produced at the

"RF)

point D Then D divides BC in the ratio .

DC
Find the point E on BG or BC produced as the

case may be, such that ~ . Draw the
L/C

circle on DE as diameter to cut the straight line

again at A. Then ABC will be the required triangle.

The teacher is expected to explain the property of

Apollonius' circle. ]

13. Construct a parallelogram whose sides

are 3' 5", 2 7" and whose diagonals are in the ratio

of 2: 1.



1 4. mis the in-centre of the AABC. A straight

line drawn through IE perpendicular to Al meets

AB, AC in D, E respectively. Show that

BD.

15. Two circles of radii a and b touch each

other externally at the p3int k. ABis one of their

common tangents, A and B being the points of

contact. Show that AB subtends a right angle at

kand that AB 2 =4 ab.

16. PM and QN' are the perpendiculars from

two given points P and Q to a given straight line

AB. PN and QM intersect in R. If RS. be drawn

perpendicular to AB, show that PS and QS make

equal angles with AB

17 ABC is an isosceles triangle right angled
at A. Any point P is taken on AB and BD is

drawn perpendicular to BC on the side of BC

opposite to A, of such length that --_=:_.
UCr /VClx

Prove that CPD is a right angle and CP=DP.

18. AB is a diameter of a circle. PQ
is a parallel chord. The tangent at A meets

BP, BQ in R and S respectively. Prove that

BP. BR=BQ.BS=AB2
.
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19. AB is a diameter of a circle and C is

any point on the circumference. From a point on

AB the perpendicular to AB is drawn cutting CA,
CB and the circumference at D, B, F respectively.

Prove that PF 2 - PD. PE.

20. ABC is a triangle right angled at A. The

bisector of the angle A meets the circumcircle in D.

Show that 2 AD 2 - (AB+ AC)
a

.

21. PA, PB are tangents from any point
P on a circle to a concentric circle lying

within it. AB and PB are produced to cut

the outer circle in C and D. Show that

CB:CA-CD 8
: CPa

.

[ Hint: Use that the length of a tangent
drawn from any point on the onter circle to the

inner concentric circle is constant]

22. Two circles intersect at A and B. The

tangents at A meet the circles again in X and Y.

Prove that AABX : AABY-= (AB
a + BX 2

) :

(AB'-hBY
2
)

23. If from the vertex of a A> a perpendicular

be drawn to the base, prove that the rectangle

contained b> the two sides is equal to the rectangle

contained by the altitude of the base and the

circumdiameter.



Hence deduce that in any triangle, abc= 4R A

24. A transversal PQR cuts the sides BC, CA,

of a AABC in P, Q> R respectively. Prove that

AR
-* 1 (Meneiaus* Theorem)-

PC QA RB

[Hint- Draw perpendiculars from the

vertices of the AABC to the transversal and con-

sider a set of similar triangles ]

25. If one diagonal of a quadrilateral bisects

the angle between two of the sides and be a mean

proportional between them prove that the segments

of the other diagonal are in the duplicate tatio of

the other sides.

[ Hint: If ABCD is a quadrilateral in

which AC bisects angle A and AC*=AB. AD,

AsDAC and CAB are similar.

AD DC CA .DC* AD DO
i_ --J ^_,_

* ___ _ ~p __ ac__*

AC BC AB "BC* AB OB

where O is the intersection of AC and BD]

26. ABCD is a cyclic quadrilateral. If

AB. BCcCD. DA prove that AC bisects BD.
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[Hint: Draw J.rs BP, DQ on AC from B
and D respectively. Then AB. ECa=BP. 2li and

CD. DA= DQ. 2R where R is the circum-radius.

Since AB. EC- CD. DA, EP= EQ. Hence s ODQ
and OBP are ccngiuent, where is the point of

intersection of AC and BD,

/. OB-=OD]

27. The tangent at A to the cireutncirele of

a triangle ABC meets 1C produced at D. Show
BD AB 3

Hence deduce that, if the tangents at

A, B, C of a AABC to the circtimcircle meet

the opposite sides in D, E, F respectively, thef*

BD_ CE JiF
DC ' EA '

FB
- 1.

28. AB is a diameter, of a circle and

BN are drawn perpendicular to the tangent at any

point C on the circle. Show that the area ABC i

the sum of the areas of ACM and

29. Prove that the opposite angles of a

quadrilateral inscribed in a circle are together

eqtjal to two right angles. Deduce the following:

The sides AB, DC of a quadrilateral ABCD meet at

E and the sides AD, BC meet at F. Prove that

the circles circumscribed to the four triangle
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ABF, BCE, CDF and DAE have a common point,

say, K. Prove further that if ABCD is cyclic, K
lies on EF.

30 Draw a A ABC, having AB= 4'2 cm;

AC = 5-3cm; and ZABC= 62. Construct a A
similar to AABC so as to have its greatest side less

than the sum of the remaining two sides by 1*2 cm.

Explain your construction.

31. Construct an equilateral triangle equal in

area to a APQR having PQ^2'5
//

, QR = 3" and the

32. Given that AB=3'2", C=75 and 4S - 5 : 3
BC

show how to construct the triangle.

[Hint: Construct a segment containing the

angle 75 on AB. Divide AB internally and

externally in the ratio 5 : 3 (say) at D and E and

describe the circle on DE as diameter to cut the

segment at C. Then ABC is the required triangle-

The circle on DE as diameter becomes the

Apollonius' circle of the two fixed points A and B
for the ratio . In numerical problems like this

the alternate method is advisable. Draw a

AAC!^ such that C 1A=6 //
,

C
1
B 1 =3 // and

LAC 1
B 1
= 75. Then take a point B on AB X or

AB ! produced if necessary such thatAB= 3'2"

10
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Through B draw a line parallel to B^ meeting

atC. Then ABC is the required triangle]

33. Draw a AABC given a : b : c - 3 : 4 : 6

and R=2". Measure the sides and angles of the A-

[Hint: Draw a APQR such that p = 3",

q 4" and r= 6". Find the circumcentre T ofAPQR-
With T as centre and 2" as radius draw a circle

meeting TP, TQ, TR in A, B, C respectively. Then

ABC is the -required triangle]

34. ABC is a A in which a~l'2", b= l'8"

and c=-9''.

Draw an isosceles A of equal area having
the vertical angle equal to A, Measure its sides.

35. Draw a AABC having AB= 9 cm;

BC = 8 cm; L ABC = 60. Construct a triangle equal
in area to AABC and having its sides in the ratio

4 : 6:7. State the construction and prove it.

[Hint: Draw a A whose sides are 4 om,
6 cm and 7 cm and call it APQR. Then
construct a A similar to APQR and equal in area

to AABC]

36. The sides of a A are 3, 5 and 7 cm,

Bisect the area of the A by a line drawn

(1) perpendicular to (2) parallel to tke longest side.



-75

37. Construct an equilateral A which is

equal in area to a triangle ABC in which, a =2'6",
b= 3", B =48. Measure its sides.

3&. Construct a parallelogram ABCD in which

AB = 2 5", AD^=2", AC 3*4". Divide the parallelo-

gram into three equal parts by straight lines

parallel to the diagonal AC.

39. Construct a A whose sides have the

ratios 5:7:9 and whose area is 10 sq. Inches.

[Hint: Apply abc=-4RA, find- R and.

proceed as in exercise No. 33].

40. Draw a AABC having the sides a= 2*5"

b = 2" and c= 1 5". Construct a similar triangle

having two-thirds of the area of the AABC.

41. Construct a parallelogram of area equal

to 6 square inches and having its sides in the ratio

3 : 2 and having an angle 70.

42- The sides of a A are 5, 12 and 13 cm.

respectively. Show how to trisect the area of the

A by a line drawn parallel to the longest side.

[Hint: Divide the area of the A into two

portions whose areas are in the ratio 1 : 2 (this is

trisection) by a straight line parallel to the longest

side, as in construction 1.]
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43. In a triangle ABC, AP and AQ are drawn

perpendicular to the internal bisectors of the

angles B and C. Prove that PQ is parallel to EC.

[Hint: Apply angle chasing method]

44. One circle touches another internally

at P. A straight line touches the inner circle at A
and meets the outer circle at B and 0. Prove that

PB:PC=AB:AC

[Hint: Apply, angle between the tangent
at a point on a circle and the chord through the

point of contact is equal to the angle subtended

by that chord in the alternate segment of the circle,

repeatedly and prove that PA is a bisector of

ZCPB].

45. The tangent to a circle at a point A
on it, meets two parallel tangents at B and C.

If is the centre of the circle prove that

OA 2 =AB. AC.

[The points of contact of parallel tangents
and the centre are col linear. Hence OB, 00
become bisectors of supplementary angles and

are therefore at right angles, i.e. /BOG = 90.

Further, OAis perpendicular to BC, the hypotenuse*

/. OAa =AB. AC.]
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* APPENDIX I.

THEOREM 1.

If two triangles have one angle of the one

equal to one angle of the other and the sides

about one other angle in each proportional, then

the third angles of the two triangles are either

equal or supplementary and in the former case

the two triangles are similar.

In triangles ABO and PQR let /C= /R

and _ ==-.. Then to prove that /B and
PQ RP

/Q are eitber equal (in which case the two

triangles will be similar) or supplementary.

One of the two things may happen for the

two A s ABC and PQR. / A will either be equal

to /P or will not be equal to /P. (These ate the

only possibilities).

If Z A and / P are equal (as in fig. 47 and

fig, 48(a)) since /Cand /R are already equal

/B will be equal to /Q u e. the two AS become

equiangular and hence similar.

* This may be omitted by the Pre-university students,
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Fig. 48 (a)

Fig. 47

If ZA^ ZP (as in fig. 47 and
fig. 48(b) )

draw a line AK through A meeting BC at K such

thatLCAK=LRPQ.

{Construction must be so effected that

A CAK formed includes / C ]

LCAK= ZRPQ (construction).

ZKCA=/QRP (given)

A CAK HI ARPQ



CA AK
RP PQ

AK AB
PQ PQ

i. e. AK=AB

/. LABK=/AKB

i.e. /ABC=AKB

ZPQR=/AKC(Y ARPQIIIACAK

Now /AKB and ZAKC are evidently

supplementary angles.

.*. / ABC and / PQR are also supplementary

angles.

Note: In fig. 47, AB<CA. Therefore in

figures 48(a) and 48(b) PQ is less than RP in order

This point must be borne in mind while drawing

the three figures*
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SECOND METHOD.

(figure is not necessary)

Given that in triangles ABC and PQB

Z C = Z R and
A
^-

=-^ to prove that Z B and

ZQ are either equal (in which case the two

triangles will be equiangular and hence similar) or

supplementary.

Proof: Since / C= Z R

AABC BC. CA ,.. T . . .e ,

APQR
-

QR7RF ( ' In tw AS lf an angle f

the one is equal to an angle of the other, their areas

are proportional to the rectangles contained by the

sides about those equal angles.)

AABC_BC. CA / EG \/ CA \
APQR QR. RP V QR '\ RP J

_ AB. BC
QR PQ PQ. QR

AABC _j AB. BC. Sin ZABC
APQR PQ. QR. Sin

(From Trigonometry)



AB. BC^AB. BC. Sin /ABC
PQ7 QR

~
PQ7QR. Sin Z PQR

Hence ^!
n Z

r^
B
r
?= 1 or Sin Z ABC = Sin /PQR

Sin z PQR
/. either Z ABC = Z PQR or Z ABC- 180 - /PQR

(each angle of a A is less than 180)

i. e either /B= /Q or ZB+ ZQ-=180

If ZB= ZQ.as ZC=^R already, the two

As ABC and PQR will be equiangular and hence

similar.

EXERCISES.

1. A and B are the centres of two circles

whose radii are respectively r t and ra . If Sis a

point dividing AB internally in the ratio ri- prove
r 2

that any secant through S cuts the circles at the

extremities of parallel radii one in each circle.

[Hint: If a secant cuts the circle A at P,

Q and circle B at P 1
, Q 1

(draw a figure and in it

take Q, Q 1 within P, P 1 or P, P 1 within Q, Q1
)

consider AS SAP and SBP 1
.

To rule out the

possibility of the third set of angles in the two
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triangles becoming supplementary use that the

base angles of any isosceles triangle are acute angles

and that two angles which are both acute or both

obtuse cannot be supplementary. ASAP||| A SBP T
.

/. APflBP 1
. Similarly consider As SAQ and

SBQ 1
. They are similar. /. AQ||BQ f

. Hence

the result. The point S is usually called the internal

centre of similitude of the two circles A and B.]

2. Prove the above result for a point S 1

dividing AB externally in the ratio J

m

[This pointS
1

is usually called the external

centre of similitude of the two circles A and B.

3. A and B are the centres of two circles

whose radii are respectively r A and r 2 . S and S 1

are points dividing AB internally and externally
r 1

in the ratio Prove that the lengths of the

tangents drawn from any point on the circle on

SS 1 as diameter to the two circles A and B are in

the ratio -J.

[Hint: Use that the circle on SS 1 as diameter

is the Apollonius' circle of -the two fixed points
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A, B for the constant ratio - 1
. Now, if Pis any

PA r
point on this circle, ~= i. Let PL, PM be

t B r 2

the tangents from P to the two circles A and B.

Then ~*A = r
i

AL
PB r 2 ^BM

Further /PLA= (

.'. /APL and /BPMare either equal or

Supplementary. But these two angles being both

acute, cannot be supplementary. Hence they
are equal and therefore A ALP ||| A BMP

. The circle on SS 1 as diameter

is usually called the circle of similitude of the two

circles A and B]

The application of theorem 1 given in

appendix I will also be found in the Geometry of

the conic while proving the theorem that the

tangent at any point on a central conic is equally

inclined to the focal distances of the point.

THEOREM 2,

In equal circles, angles whether at the

centres or at the circumferences, are in the ratio

of the arcs on which they stand.
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Fig. 49 Fig- 50

Let APB and CQD be two equal circles

;\rhose centres are X and Y respectively; Also let

A.XB, CYD be tbe angles at the centres and APB,

DQD those at the circumferences, standing on the

arcs AB and CD respectively.

Then to prove that

/
ZAXB ArcAB

W /CYD ~~AicCD

ZAPB
ZCQD

^ArcjLB^
Are CD

Proof: Suppose there is a common

measure, say, k for the lengths of the two arcs

AB and CT>. [Making the two arcs straight, suppose
we measure them and fijad AB to be 5 inches and

CD to be 3 inche& This imrplies that Arc AB can*

be divided into 5 equal part* each equal to 1 inch-
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and that arc CD can be divided into 3 equal parts
each equal to 1 inch. If this is so, the common
measure of the two arcs AB and CD is an inch and
the ratio of AB to CD is . Now, if AB= 4*5 inches

and CD -3 inches the common measure for the

two is '5 of an inch, for, AB in this case can be

divided into 9 equal parts each equal to '5 of an

inch and CD can be divided into 6 equal parts
each equal to 5 of an inch. The ratio of AB

(4*5
\

33
~5" I. Hence whatever

may be the lengths of the two arcs AB and CD it

will be quite possible to find out a common
measure for the two and so oar supposition is

justified ]

Let the arc AB be divided into p eqjial

arcs each equal to k and arc CD be divided' into

q such equal ^rcs (each equal to k).

In each circle, let radii be drawn through
the points of division of the arcs AB and CD.

Then, ^ AXB is divided into p equal angleg
each equal to (say) and /CYD is divided into q
such equal angles (each equal to 0). [ v In equal

circles, equal arcs subtend equal angles at the

centres. This theorem is also true in the same circle.]
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ZAXB_p8_pbo
~ZCYD -qe~ q

But Arc ABpk and Arc CD -- qk aad hencd

ArcAB_pk p_

Arc CD~"qk
~~

q

ZAXB Arc AB_"
/CYD

^
Arc CD

Now ZAPB= l/AXBarid /CQD--^ /CYD.

[ / The angle subtended by an arc of a circle at

the centre is equal to double the an<>le subtended

by that arc at any point on the circumference
]

Z.APB JZAXR _ / AXj^_ Arc AB
/- ZCQD^IzCYD "/CYD "

Arc CD
"

Note: This theorem is true in the same

circle also.

WORKED EXAMPLE.

Prove that a radian is a constant angle.

Radian by definition is an angle subtended

at the centre of any circle by an arc equal in length .

to the radius of the circle.
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This definition does not explicitly tell us

that rdian is a constant angle. If radian is not a

constant angle we won't be able to accept radian

as a unit of measurement for angles. So it is

imperative to prove that radian is a constant

angle. It is because right angle is a constant

angle (all right angles are equal) that we accept

right angle as a unit of measurement for angles.

Any angle can be measured in terms of right

angles and their parts.

(1 degree = 9
L th of a right angle, 1 minute=

6Vh of a degree and 1 second= y
T th of a minute).

When we say that an angle is equal to (say) 240

degrees, this statement actually means that the

angle measured is equal to 2 right angles plus 60

degrees or is equal to 2 right angles. We will

have to note that radians are not divided and

subdivided like right angles.

All right angles are equal (this is axiomatic).

Hence we can say that right angle is a constant

angle. In the case of radians, if it is possible to

prove that all radians are equal, it will follow that

radian is a constant angle. Suppose OA and OB
are two radii of a circle whose centre is 0, such

that Arc AB OA^OB r where r is the radius of
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the circle. Producing 0\ and 0^ to meet a

concentric circle of radius r : at A
t
and BX if we

are able to prove that arc A! B
r
=OA 1 =OB 1

r lf

then it will follow that radian is a constant angle.

But it is not very easy to establish this result.

Hence we shall proceed with a circle and find out

the value of a radian defined in terms of the radius

and arc, equal to the radius, of this circle, in

degrees and thus see that the value of a radian has

nothing to do with the radius of the circle taken to

define it.

Let OA and OB be two radii of a circle,

centre and radius r, such that arc AB = r. (Draw

a figure). Then by definition AOB is a radian.

Produce AO to meet the circle again at the point K.

Then, arc AK= - - TT r.

/ AOK Arc AK (Vide note given under

ZAOB
~

"Arc AB~ theorem 2, appendix I)

i e
ZAOK ^ Tfr_ TT

a radian r I

= Tr of a radian or TT radians,

But Z AOK= 180,

Hence 180 = Trradians.
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(TT represents only a number whose approxi-

mate value is -2T
* and hence the student must

not try to replace ir by 180, The equation

180 degrees=TT radians implies that an angle

measured in degrees and found to be 180 when

measured in radians will be equal to ir radians.

It is important to remember that the value or

magnitude of an angle does not change whether it

is measured in degrees or in radians. So there

must have a relationship between degrees and

radians and that relationship is given above.)

TT radians= 180

/. a radian = 12-
TT

( HI ly starting with another circle we can

180
prove that, a radian == i. e. this result is in*

TT

dependent of the radius of the circle, taken)

Hence a radian is a constant angle.

The value of a radian Is approximately

equal to 57 17' 45" (taking the approximate value

of TT . 3 14159) [ The ratio of the circumference

to the diameter is found to be the same for all
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circles i e. this ratio is a constant. This constant

ratio (a number) though its value cannot be actually

found out is represented by IT. Since its value

cannot be found out, this number TT (this number

represented by IT) is calle 1 a transcendental number)

Thus we have proved that a radian is a

constant angle and henceforth we can talk of

"the radian
7'

IT radian *= 180

radians 36(f

So, if equal arcs each equal to the radius*

re cot off from the circumference of a Circle we

will be getting six such equal arcs each subtending

a radian at the centre of the circle. The remaining

portion r (2ir 6) of the circumference will be

subtending an angle equal to (2fr 6) of a radian

at the centre.

Now if OA, OB are two radii of a circle,

centreO and radius r such that arc AB -*-r and OC
i any other radios, as before,

ZAOC Arc AC



i. e.
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ZAOC. _Arc AC
a radian

~
r

Arc AC
.-. L AOC - (

Ar?-A2.
j

of a radian

Result 1: From this it follows that the

length of an arc of a circle divided by the radius

of the circle gives the magnitude of the angle which

the arc subtends at the centre in radians.

Result 2: When two straight lines meet

they are said to contain an angle. Suppose, two

straight lines OX and OY meet at and that we

want to measure the angle which they contain, vi#.

/XOY in radians. For this, draw a circle with O
as centre aijd any length as radius to cut OX at A
and OY at B. Measure the length of the

arc AB and also the radius of the circle

drawn, both in the same units of measurement*

Then J 1
? -. wai give the

radius of the circle drawn

magnitude of the angle XOY in radians.

Result 3: The length of an arc of a

circle is equal
fo the product of its radius and the

rodian measure of the angle the arc subtends at the

centre of the circle*
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APPENDIX II

NEDIANS OF A PLANE TRIANGLE.

Definition of medians has been recently

extended by Mr. John Satterly, thus: "If the

sides of a triangle are, in order, divided such that

the short section of each side is th the lengthn

of the side, and the points of subdivision are

joined to the opposite angular points, the joining

lines may be called the Nedians of the triangle

(the name recalls the n) and the triangle formed by
the nedians may be called the nedian triangle".

We get the medians from this definition of nedians

by putting n= 2.

Again according to Satterly if A 19 B n C^

are points on the sides BC, CA, AB respectively of

such that^= <1- *gl-
-1 (where

CBj, AC X are short sections of the sides BC,

CA, AB respectively) then AA X , BB15 CCj are the

forward nedians and the triangle formedby them is

the forward nedian triangle; If Aa , B a> C aare points

on the sides BC, CA, AB respectively such that

* This may be omitted by the Pre-university students.
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" AB>'

short sections of the sides CB, BA, AC respectively)

then AA 2 , BB2 , CC.2 are the backward nedians and

the triangle formed by them is the backward nedian

triangle. When n= 2, A x and A 2 both coincide with

the middle point of BC. Hence AA X , AA 2 both

coincide with the median through the vertex A.

|||lyBB l3 BB a , both coincide with the median

through the vertex B and GG 19 CCa both coincide

with the median through the vertex C. So the

medians can be regarded both as forward nedians

and as backward nedians. It is interesting to note

that in two similar triangles corresponding nedians

are also in the ratio of corresponding sides.

THEOREM 1

(Satterly's Theorem)

If AA X , BB 15 CCj are Neiians (cither

forward nedians or backward nedians) to the sides

BC, CA, AB respectively, of AABO, then



= *!r+J (ABM

A (<*-,-&)

Fig. 51

Let us suppose that AA
,, BBj> CCj are the

forward nedians so that

BA,_CB, AC,
BC CA AB n

from this, -?
A
-. =S CB,= AC, =

A,C B,A C,B

i. . (n-l)BA,=A,C; (n~J) CB,=B,A;

)a-J) AC,C,B.
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If zAA,B*0, ZAA,C=:(180-e)

(l)and

OA a
-AA,

a -hA l
C a+2AA l

. A,C. Cos (2)

Multiplying (1) by (n 1) and then adding to (2),

we get, (n-1) AB s+CA*-nAA, +
(n-l)BA,

e +A,C
2

But BA, - and A,C=^ BC.
1 n ' n

[(n-l)BA,s=A,C]

i. e. (n
- I)AB

2 -fCA
1 ^nAAt 2

-f l --BC5
...I

HI ly (n-1) BC1 +AB1

. J.J.

4nd (n-1) CA
2 +BC2

...III

1+ II-fHI gives,

^~ (AB
8 +BC 8 +CA 8

)
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.e.

<AA,H-

BB/4-CC,
4
)

(ri2

_ Tl

Sr

BC 2 +CA S
).

If the lengthsof ihe nedians AA 15 BB 15 CCj

are respectively reprefentcd by rij, n a , n s ,

)

where a, b, c as usual denote the lengths of the

sides BC, CA and AB, respectively, of A ABC

-

Aa a particular case, if AA 19 BBU CC X are the

medians n=2

(This result can also be proved separately a^

in the case of nedians).

Note: The result is true in the case

of backward nedians also.
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THEOREM 2.

1 -

*

(Satterly's Theorem)

The area of a triangle whose sides are

to the lengths of the nedians of a triangle i*>

1 times the area ol the original triangle.

ABC is the original triangle and AA V

CC 1 are its nedians to the sides BC\ CA, AB

respectively.

Draw a line through B^ , parallel to BC and

another line through C parallel to AB. Let these

two lines meet at the point T. Join A, T: A 15T.

Then we shall first prove that AAA A
T is a

*13
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triangle whose sides are equal to the lengths of

the nedians and further that the area of

(n*
n-f-J v-
a
-

/
times the area of the

triangle ABC.

Proof (Analytical proof): Let line bC be

taken as the x-axis and the perpendicular at B to

BC be taken as the y~axis. Also let the x and y
co-ordinates of the point A be a and b lespectively

and the x co-ordinate of the point C be c. (The y
co-ordinate of the point C is evidently zero).

The point A l
divides BC in the radio 1 :n 1

IHly the point B, is prMn-l) ^
Jll and the

point C, is ^D, k-(n

Equation of the line BjT which is passing

through the point B, [afcfn-lj^
bn

&^ .

g
n n J

parallel to the x-axi i y=S"

Slope of line CT is the same as that of AB

(CT || AB) and is equal to A



_99

Hence equation of the line CT is .2JL Act
1 x c a

ay bx be

.'.bx=ay4- be ......II

Solving I and II we get the co-ordinates of

the point T

n
+bc

' n

/. The point T is

The slope of TA is equal to
n _ b- nb

a-j-cn _ a+n(c a)

The slope
" " - nb ~ b

f"a n l) T n (a c) a
I 1 C v '

* n J

b-nb
a+n(c a)

.*. TA
i|
CC

t
. But CT

|j
AB (Construction)

Hence TA C^C is a
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The slope of A 1T= -jT*~ _ = __. b __
/ a+ cn _ c \ af-c(n 1)

V. n n /

Thereof BB.. .._
in )

_ b__
"a-fc(n-l)"

/.A tT !,
BB

A
. But B,T ||

BC (construction)

Hence TB
t BA, is a Z7 /- A^-BBi

The nedian AAj is already a side of the

A4,A|T. Hence the sides of the A AA,T are

equal to the lengths of the nedians of the AABC.

By the formula, A=i S^i (y

we get, area of the AAAjT =

ab
,

be be
,

ab- e e
,

a
,

, n- f_+bcj

But area of AABC=|XBCX (altitude to the base BC)

=
\ xcx b

C
.
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(
n 2 _ n + l

"n1
-

A ABC)

Note the common foctor --2

two theorems

As a particular case, the area of aA whose

sides are equal to the lengths of the medians

of a triangle is f times the area of the original

triangle, for th<3 nedians AA,, BB,, CCj become

medians when n= 2.

(This result can also be separately provej

as in the previous case).

Def: The triangle formed by the nedians

of a triangle is called the nedidn triangle of that

triangle.

In the figure, XYZ is the triangle formed

by the nedians AV,, JiB,, CO, of AABC and

hence is the nedian triangle (Strictly speaking

it is the forward nedian triangle, as AAj s BB|, CC
f

are forward nedians.) of A ABC
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THEOREM 3

(Satterly's Theorem)

The sum of the squares of the sides of the

ffl-*- ^\"^

nedian triangle of a triangle is equal to - -

times the sum of the squares of the sides of the

original triangle.

Equation of line A4, is, nb# (na c) y=bc ...I

Equation of line BB, is, y= ( r \ x II
a+cn c

Equation of line OC^ is, x (nb~b)+y (a-fcn an)

nbc- be ...III

Solving I and III we get the co-ordinates of the

point X.
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. ,. . v r^11- 1 )** b(n-l)
a

The point X ,s [-.-^ , nTHJ+I

Holviflg I and II we get the co-ordinates ol the

point Y

mu i. v
.-. The point Y JS

Now AX, AY and AA
, , are in the ratio of

the perpendicular distances of the points X, Y and

A, from the line through A perpendicular to BC.

(Y Corresponding sides in similar triangles are

proportional )

i.e.

^-c(n-l),

p^-c(Va*-

i.e. AX:AY:AA, ::
-
a_ n + i

:

jf^+'i : T
AY n-l XY n-2

-f Henee -

AX--|- ...... (1)

AX n

AA ~n*
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If AA|, BE,, CC
|
are represented by n

|
,
n 2 ,

and YZ, ZX, XY by x, y. z,

Now As XYZ and AA,T are similar.

XY YZ ZX
AAj A,T~TA
z ,/ y nfn 2)

'

n^+n.'-fn," =
(2L'_-^_+J )

xBut

i\ litre a, b, c represent the sides BC, CA, AB of

A ABC. (by theorem 1 Ajpetidix IT)

n (n-2> )
2

rnz-n-f 1)- -- -- " --- ''.

When AA n BB t? CC A become

the medians (n=-2). as^-fy^-fz'^srO ;. =sO,

ysiO, z = 0. Hence the medians form a l

poiut

triangle' or in other words, the medians of *

triangle are concurrent,
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THEOREM 4

(Satlerly's Theorem)

The. area, of the nedian triangle of u triangle

(n 2)
a

is equal to ~a"~""TT times the area of the origi-

nal triangle.

AXYZ
n,

/-

2

_ j" nil1^). )
*

~
(n a

~-n+~l )

/. Area of AXYZ= I
nT~Ji }

WaofA AA
t T)

But area of AAA,T= ( 3- J (area of trian-

gle ABO)



TTenco, area of AXYZ

{n(n
2) }

a /n* ~n-{~ 1\ (area of

n*-n + i } V n* /* triangle ABC)
r

(n 2)
a

)~
( ^""n+l j

(Area of triangle AB(!)

Nate: When AA
1 ,
BB L f CO t ,

become the

medians (n=^2), area of the triangle formed by

these three lines i.e. area of AXYZ=0 i.e.

the medians of a A are concurrent.

(n 2)
2

Note tho common factor ~T~I m the
n n "f" j

two theorems.

Definition: If A lf B 1? C\ are points on

the sides BC CA, AB respectively of a A ABC

such that ] = -.... -las. * = the triangleBO CA AB n

formed by the lines joining the points A I( Ba and

C, is called the Aliquot triangle or tke th* i o n

point-division triangle of AABC.

THEOREM f>.

(Satlerly's Theorem)

The sum of the squares of the sides of

the aliquot triangle of a triangle is equal to



(n*~3n4-3\
.

-.2 J tunes the sum oi the squares of the

sides of the original triangle.

Join A,,B i; B..C, andC
t , A t .

From A AB X C, we get
r 1C l

a =AB
t

a +AC 1

a ~2AB 1 . AC,, cos A.

If n lf b
1 ,

c t denote the lengths of the aides B,C a

C
tA, andA,Bj respectively of the Aliquot triangle

A.B.O,,

2n-l)a -(I- 1 )* u .

2 2n
'-1 1 n 2 O^- ~$ be oos A (1)

AC n

ffliy Vk^e- '

^i-I
AB n

[sf -^ Cacos B- (2 )



(1) -f (2) + (S) Rives,

(2 bo cos A+ 2 ca cos B f 2 ab cos 0)

a + o* 2 l)c cos A etc.)

i. o. aM-b + o

As a particular case, AA 15 BB,, CC, l>e-

come medians (n = 2),

a 1 --hb 1^c l

a -H^ 2
+^>"-f^*)

i. e. the sum of the squares of the sides of the

medial triangle of a triangle is Jth of the sum of

the squares of the sides of the original triangle.

This result is even otherwise evident. (TheAformed

by the lines joining the mid-points of the sides of a

/Xjs called the medial triangle of that triangle.)
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(Sullcrly's Theorem)

The area of the aliquot triangle of a triangle

is equal to ( 2

*

) times the area of the

original triangle.

Area of AC t . Sin A

Illly Area of

and Area of

(1) + (2)+ (3) gives

and Area of AB,AjC = r

bo Sin A ...(1)

. * ca Sin B ...(2)

~
- I abSin C (3)



1 III -

Area, of /\ AIJO~Arnji of AA, B,0,
^

,
sin A < -I (>

Hut | be Sin A=ini Sin B = i ab Sin C-area of

AA ltd

/. Area of AA BO Area of A A
,
1 J

,
C

,

= --
(n

ni~ (nrenof A A 1*0)

3(n
\rc'i of * V B (! - -.. Aruioi _A,b, , a AABO)

o f

As a ]>;ii'1imliir case, the are* of the medial

trianjjle of a 1-riangIe is j th of the area of the.

original A (I'ufcn -). This result is even other-

wise evident.

xr , P n* 3n + 3 . ,

oSolo the common factor-
;

--- in the

above two theorems.

THEOREM 7.

(Pappus' Theorem)

If A,, B,, C, are points on the sides-

BO, OA, AM respectively of A ABC such tha'

BA, OB, AC. f
,

y>7-r~
=

Q"4" =
\~B

e controias of the

two triangles A 1 B 1C ;
and ABC are one and to

same point. 5.
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(Note that A.BjCj. by iletinition, becomes

the aliquot triangle ofA ABC)

As tho nmi.roul of a triangle is a point, of

triseotion of e;i.<:h ma.lun, if the vertices of a

triangle are given to be the points (x t , yj),

(a
-

2 , y.,), (,r 3 , y 3 ), its centroid will be the point

('

Applying this, \ve easily se that the centroid

^f A ABC is the point [^- f ^-]

|,;ly the centroid of the A AjBjC, is the point



1 1
I I .J -

i. ft. it is (ho point 1

which is the same as the oentroid of A A FT

THEOREM 8

(Satterly's Theorem)

The centroids of the nedian triangle and thr

aliquot triangle of a triangle and that of tho

original triangle, are one and the same point.

By Pappus' theorem, the centroids of the

aliquot triangle and the original triangle are one

and the same point. We have found that this

common centroM for the AABC arid il aliquot

,
. , n n ra 4- c b n

triangle A^C, is
[ 3

,

3 J

n i -

So prove that the same point L~o ? ~J is

also the controid of AXYZ.
( Proof is left to the student]

For more details about nedians, nedian

triangle, aliquot triangle etc., vide Mathematical

Gazette Vol. XXXVIII, No. 324 (May 1954) and

Vol. XL*&r==3^^ 1956).
















