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PREFACE.

TaovuaH the subjects treated of in this volume, have,
individually, and more especially in the relations which
subsist between them, engaged my attention more fre-
quently, more deeply, and I may add more delightfully,
than any other subjects of a scientific nature, which I
have made the object of thought ; and though very many
years have elapsed since I first felt the want and the desire
of possessing some such book —and even since I came to
the resolution of attempting its production, and had in
some sort sketched its plan—yet, I fear, and indeed feel,
that the execution of it stands more in need of a preface,
or explanation, or apology, than any work which I have
hitherto attempted.

I am aware that it is not a book for even the moderately
learned in systematic mathematics, far less for those whose
talents and acquirements do honour to the science and
extend its boundaries. I am somewhat apprehensive, too,
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take hold of a vast majority, even of students, before they
have arrived at the commencement of this, the truly men-
tal and most useful part of Geometry.

Having felt this very severely in my own case—and
there is too much of the bitterness of regret mingled with
it to allow me to forget it—I have endeavoured to start
with generalisation at the very outset of this volume, and
to hold fast by it on every occasion, regardless how much
it might break in upon the symmetry of the book, or the
smoothness of its execution.

Such being the case, this work is not to be considered
as a book of reference, from which particular truths, or
formule for the solution of particular problems, are to be
borrowed, without reasoning, and often I may add without
instruction ; neither is it a task-book, to be conned by
rote in successive fragments, and parroted without know-
ledge, until active employment of the mind cause them to
be forgotten. It is strictly, (that is to say in so far as I
can judge of it, destitute as I am of an external standard
of judgment,) what its title expresses— PopuLaR Ma-
THEMATICS ;” that is to say, a book which is meant to be
read through, and which is intended to inspire those who,
from too tender age or want of opportunities and means,
have not acquired a knowledge of mathematical science,
with a general perception of its nature, a feeling of its power
as an instrument both of wisdom and of working, and the
love of a farther acquaintance with it. Every one who
has caught cven one little ray of the glorious light of this
science, must feel that it is as powerful as it is brilliant ;
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and that when we come to work our way to the knowledge
of things around us, from the sod on which we stand, to
the most remote luminary in the heavens upon which two
hundred millions of miles will tell as a measurable frac-
tion, will readily admit, that mathematics is not only the
line wherewithal to measure, and the balance wherein to
weigh, but that it is the wedge to cleave asunder what-
ever is too gnarly and stubborn, and the lever to heave
aside whatever is too weighty for the other apparatus of
thinking and executing.

Those who have formed their notions from those nominal
mathematicians, who idle with the disjointed bones of the
science in the absence of the life, are apt to suppose, and
sometimes to say, that mathematical science has a tendency
to curb the fancy, and pedantify the mind. Among all
the blunders of ignorance there is not one more gross than
this ; and we might appeal with triumph to mathemati-
cians of every age as leaving recorded in their writings,
abundant evidence of the most exalted and expanded
imagination, and the most chaste and lively fancy. I shall
mention only one or two names ; and these of the last and
the present generation. 'Who in his time excelled or even
equalled the late John Playfair of Edinburgh, (with
whom I have again and again discussed the subject and
plan of this work,) in power, in purity, and in beauty of
style? And who, in our own times, writes like Whewell
or Herschel? Find me the unmathematical man that
shall set an idea before the mind, as a mental and tangible
solid, with the same power and truth as either of them,
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and I shall abandon my argument, and join ever after “the
herd of gentlemen who write with ease.”

So much for the plan and purpose of the work; and
the execution can be best seen and judged of in the work
itself ; therefore I shall only state further that I have been
careful to bring forward the three branches in such an
order of succession, as that the reader who reads for
instruction, (as I sincerely hope many will,) may call them
all to his aid whenever he fecls it necessary. I have
dwelt longest upon those general points which appeared to
me to posscss in the highest degree the two qualities of
furnishing the greatest number of inferential truths and
stimulating the reader to seek out those truths; and I
have been more anxious to crcate a love of the science,
than to carry the particular departments of it to a great
extent. To use a homely simile, if a man gets lamed
before he commences a journey, it is far better to cure him
and let him start in his own strength, than to carry him
half way and lcave him in his lameness. DBut this simile,
homely though it is, applies to every branch of education,
and to mathematics in an especial manner. To talk about
teaching a person a science, is like talking about a lame
man’s performing a journey when he is carried ; but, if we
can succeed in awaking the desire and arousing the capa-
city, the party will learn, not only without our teaching,
but in spite of our opposition; and this is the grand object
which should be aimed at by every well-wisher to the
mental and moral character of the human race.

I cannot say that I shall conclude this preface—for the
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same train of thought is continued in the introduction—
but I shall conclude the present writing by claiming the
suffrages of the public in favour of my purpose, how much
soever they may blame the execution of it,—only adding,
that if the present volume shall meet with a reception at
all proportionate to the labour it has cost me, I purpose
following it up by another, carrying the three branches of
the science as far as they are required by those who are
" not professional mathematicians.

ROBERT MUDIE.

Grove Cottage, Chelsea,
July, 1836.
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POPULAR MATHEMATICS.

SECTION 1.

GENERAL REMARKS, AND DEFINITIONS.

THE common opinions of mankind upon a subject are fre-
quently at very remarkable variance with the nature of that
subject ; and this variation is not perhaps more striking in any
one case than in that of Mathematics. Those who have never
studied any portion of mathematical science, however acute
they may naturally be, and however well informed upon other,
and in themselves more difficult subjects, generally, if not in-
variably, turn away from every mathematical expression, as if
it were an adder in their path ; and even they who, to use the
homely but most appropriate expression, have ‘gone through”
that which is called mathematics at the common schools, shake
their heads at the subject, with a silent expression of, “ These
matters are beyond our depth.” - The conduct of such parties
puts one very much in mind of that of the porter in a northern
University. This porter was a very “ whale” of books, and
one of the professors, whose particular attention he claimed,
found the supplying of his appetite from the University library
no easy task. At length he tried him with ¢ Euclid’s Elements
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of Geometry,” to see how far sheersappetite would be able to
digest that. The porter came not for an exchange till after
two weeks had elapsed ; and at last he came, somewhat crest-
fallen, saying,  Docter, I hae read a’ the wirds, an’ leukit at
@ the pikters, but it’s the maist puzzleanimous beuk I hae seen,
an’ I dinna onderstand se wird o't; sae yell jeust hae the
gudeness to gie me & beuk that has nae As nor Bs in’t.”

It is probable that some part of this general dread of mathe-
matics may have been occasioned by the reply of Euclid to
Ptolemy Philadelphus, the Egyptian monarch. The king
wished to know if there was not an easier method of learning
goometry than that which was practised in the schools; and
the mathematician bluntly, but somewhat ambiguously replied,
“There is no royal road to geometry.” Now, all that was
meant by these words was, that geometry must be studied by
man as man, and not as monarch ; that it must be conquered
by the mental exertions of the individual alone, and not by any
subjects which he can command, or any armies that he can
muster ; so that, if we take it in its true meaning, the saying
of Euclid is an express declaration, by one of whose judgment
no one can doubt, that any man might be a geometer if he would
bring his own mind to bear upon the subject ; and that in this
science, the civil and political distinctions of mankind go for
nothing, for it is as open and as plain to the humblest peasant
as to the proudest king.

Sixty-three generations of men, at the average allowance of
one-third of a century for each, have been born and have died
since this reply was given by the Alexandrian geometer ; and
during this long period, men of all ranks, from the monarch to
the peasant, have studied and promoted geometry, and the
other branches of mathematical science ; but this reply has
been brought forward as a sort of bar in the way, not of kingly
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power, but of intellectual ability, and the consequence has been
that, even at this day, and in this country—the foundation of
whose greatness has been mathematical science, the great body
of the people know less of the principles of mathematics than
of those of almost any other subject. And even that love of
reading which has of late years been so generally diffused, and
which may be made the instrument of so much good, has not
embodied anything like a fair proportion of mathematical know-
ledge, neither have they who have gone about to cherish this
love by the multiplication of books of small size and easy price,
done anything like justice to the public in this respect. The
mathematical tracts which they have produced are few in num-
ber, and as to their value, it is to be feared that it is still less.
With the cause of this deficiency we have no immediate
concern : but the probability is, that it is found impossible to
compile mathematical books—to take a little bit of one, and a
little bit of another, and tack them together into an amusing
miscellany, any page of which may be read with at least some
sort of understanding, without reference to the rest. Or it may
be that we possess no mathematicians but such as are profes-
sionally so ; and thus, however able they may be in a profes-
sional point of view, they can treat the subject only in a pro~
fessional manner, and would consider their labours deteriorated
and themselves degraded, if they were to abate one iota of the
technicality of the schools. Now we are very ready to acknow-
ledge the full value of this technicality, and to admit that every
apparent difficulty in mathematics, is essentially a simplifica-
tion. We do this confidently ; because mathematics is, as we
shall show by and by, the only portion of science which has
hitherto stood, and must for ever stand, impregnable to the
mere book-maker ; and that no man can put a single pin to
this fabric without putting the right one, and putting it in the
B2



4 OUR IGNORANCE

right place. But still, perfect and beautiful as is this technical

‘structure, and proudly as it towers over the rest of human
knowledge, as the noblest conquest and heritage of intellect,
and frowning defiance and scorn against every species of im-
posture, it is too mighty for any but those who are to give
themselves wholly up to it. At the same time, as it is the
purest exercise of the mind, the real instrument of discernment,
that in which the individual must be thrown wholly on his own
strength, it is desirable that some portion at least should be
accessible by every one who can read, and that this general
portion should not be those insulated scraps of the applica-
tions which are useful to men in particular professions, but at
least as much of the principles, as shall give a mathematical
turn to the mind, which is but another name for precision and
accuracy of thought. '

It may seem paradoxical, but it is nevertheless true, that
however ignorant we may be of the forms of mathematics, and
how much soever we may regard the technical expressions of
the different branches of mathematical science as puzzles or
mysteries, we are all mathematicians in reality ; and the pro-
cess by which we arrive at the precise and accurate knowledge
of any one subject whatever, is really a mathematical process,
whether we know it to be so or not. The only difference,
indeed, between one who understands the principles of mathe-
matics, and can apply those principles to the finding of results,
and one who must get at the results the best way that he can,
without any knowledge of the principles, is, that the first pro-
ceeds with ease and certainty, while the other proceeds with
great labour, and is doubtful of the result when he has arrived
atit. Mathematics, to use a homely comparison, may be com-
pared to tools and the capacity of using them ; while the sub-
jects upon which mathematics are exercised are the materials,
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out of which that which is desired is to be formed by meansof
the tools ; so that a mathematician stands to a man who is no
mathematician in the same relation as a clever workman well
furnished with tools stands to a man who has no tool and ne
knowledge of the use of one ; and when we look at the accom-
modations of civilised men, and compare them with those of
men at the bottom of the scale of savagism, we are able to
judge of the difference between the man who possesses the
instrument and knows how to use it and the man who is igno-
rant of both. The disparity is even greater than this ; because ‘
mechanical operations, valuable though they be, are only one
particular case, whereas mathematics reach every operation of
the mind, give clearness to every thought, and regulate with
certainty every action.

One other cause of the ignorance in which mankind suﬁ'er
themselves to remain of mathematics, may possibly be want of
knowledge of what the term means ; and this is rendered. the
more probable by the fact that, in the ordinary way of teaching
the individual branches of mathematical science, such as arith~
metic, or the elements of geometry, the student is sent to the
details of the subject at once, and without any preliminary ex-
planation of the use, or even the general nature of what he is
called upon to do. The conseqlience is, that there is no goal
before him, nothing to keep alive his hope, or rouse his mental

» ambition ; and so he drudges on like a slave, measuring his
labour by the day, and his pleasure by the smallness of the
quantity of the day’s labour. Upon yourg minds especially
this has a most baneful influence ; as it not only destroys the
possibility of progress in mathematics, which must either be a
labour of the willing mind or no labour at all, but becomes &
habit, which is transferred to and which destroys every other
branch of education, and perverts and poisons every course of
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future life. How much of this preliminary explanation should
be given in any case must depend on the nature of that case
itself,—on the age, ability, and previous knowledge of the
student ; but in every case the danger is that it shall be too
little, and not that it shall be too much.

It is perhaps difficult to convey in writing even the simplest
outline of what should be done in such cases, because it belongs
to the province of colloquial instruction—that in which the
instructor can lay hold of present and visible illustrations, and
vary, and reiterate again and again, with a tediousness which
no ordinary reader would tolerate in print, but which in prac-
tice is the only sure way of “ trying for the vein” which will
make the mine of instruction work easily, certainly, and profit-
ably. The few sentences which follow must therefore bé con-
sidered, not as furnishing what is to be done, but merely as
giving a hint that, in order to insure success, something ought
to be done.

" MaraemaTics (Mafnsis) contains in the name itself no bad
general definition of the whole science, or rather the mode, so
to express it. 7Thesis means a position, that which can be
either true or false, but it leaves the mode of arriving at the
truth or falsehood perfectly general, although it always does
involve in it the notion that there is some sort of proof; and as
the discovery of a falsehood is a truth, though the falsehood
itself is not, every useful thesis may be considered as the state-
ment of a truth; and the truth which amounts to a thesis must
not be one which is perfectly apparent to every body without
any proof or argument. Thus, if we were to say It rains,”
to a person whom we met out of doors during a shower, the
saying would be no thesis ; neither would it be a thesis to say
“ The sun shines,” to one whom we met in the fields at noon
on a cloudless day. In both these cases the party whom we
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addressed would understand the fact just as well as ourselves,
and therefore our observation would be an idle waste of words.
But if we were to say “ The apparent motion of the sun west-
ward is owing to the real rotation of the earth eastward,” it
would be a thesis ; because it is a truth which cannot be arrived
at by simple observation of the sun, but quite the reverse ; and
therefore, to a person ignorant of the motions of the earth, we-
would require to bring forward proofs before we could call upon
him to believe it. Thus we may consider every truth which
requires to be established by reasoning, by evidence, or in any
way whatever, as a thesis; and it is not, properly speaking, a
thesis until the proof is given, for this simple reason, that no
truth can be regarded as such until it is known to be so. :

When no proof has been given, but there is still some pro-
bability that a position may be true, it is a proposition, or hypo-
thesis, which means something which precedes, or is inferior
to, a thesis ; and which requires to be proved before it can be
elevated to that character. If the proof shall afterwards be
obtained, the hypothesis takes its rank as a thesis, and beeomes
a portion of knowledge; but if the proof fail, the hypothesis falls
to the ground as a vain and unsuccessful attempt.

The methods of proof employed for the establishment of
different truths are so exceedingly numerous, that a list of them
would be long, not very interesting, and out of place here ; but
still, in order to see clearly the nature and use of mathematical
proofs, or which is the same thing, the mathematical modes of
establishing truths and rejecting falsehoods, it is necessary to
know something about the general divisions of proof. The
simplest view which can be taken of this subject is that which
divides the whole into three great classes—observation, testi-
mony, and proof by reasoning, Observation is only another
name for. that of which we have the evidence of the senses ;
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but it applies equally to that which we observe .as existing,
or happening in nature, and to that which is the result of art
or experiment. This kind of proof can of course extend.no
farther than the senses extend ; and it must be subject not only
to all the natural imperfections of the senses, but to all the
effects of carelessness in the use of them. But still, one obser-
vation or experiment can be made the means of correcting ano-
ther ; and thus, this species of proof, though it is not so simply
and originally, can be corrected and improved, so as to be the
standard, or at least the foundation of every other kind of proof:
The truths at which we arrive by observation form what we
are said to know, “of our own knowledge ;” and as this is the
standard by which we judge of the second kind of truths,
correctness and extent of observation are of the greatest value
to us.” .

Testimony or evidence is our reliance upon the knowledge of
others; as told to us in speech or in writing, and it necessarily
comprehends a very large portion of all that we know. = The
kind of truths which can be fully established by evidence are
exactly the same as those which we establish by our own obser-
vation, with this difference, that evidence gives us a command
of time and place which we ourselves cannot personally enjoy.
All history, whether of the common events of nature, or of
liuman society, rests upon proof of this kind ; and this proof,
though it may have a high degree of probability, never partakes
of the absolute certainty of what we know of our own know-
ledge. There are many ways however of correcting testimony,
by reasoning on the probability of what is asserted, and also by
comparing one testimony with another ; but still in this part of
our knowledge we stand greatly in need of means of correction;
and, both in this and in our personal knowledge, we require to
exercise the utmost caution when we attempt to turn that
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which we already know into an instrument of future know-
ledge. .
. Proof by reasoning is of a mixed nature: because we may.
reason from correct observation, from authentic testimony, or
from hypothesis which admits of proof ; and we may also reason
from inaccurate observation, from false. testimony, or from
unfounded hypothesis; and we may do so, in the firm belief
that all the three rest on the surest foundation. Not only this,
but our knowledge of every thing, as derived from personal
observation or from testimony, is imperfect, and we are apt to
make false comparisons ; and thus, with every desire and every.
endeavour to be right, we are in constant danger of going
wrong ; and it is to help us in this difficulty that mathematical-
truth becomes, in a general point of view, and independently of
all its practical applications, of so very great value to us.
Mathematical truth means that which is something more
than thesis, and which does not depend either upon observation
of what exists or upon testimony. It is what we may call
absolute or abstract truth ; and would remain the same, though
all history were forgotten, and every thing of which the senses
can take note were destroyed. No doubt it applies to the
objects of sense ; but still in its principles it is altogether inde-
pendent of them ; and whatever is mathematically true of any
object of the senses would be mathematically true to the mind,
whether the object of the senses had ever existed or not. And
there are many subjects of mathematical science for which there
are no counterparts in the world .of reality; and yet mathe-
matical speculations grounded on these are as true, and in
almost every instance as useful, as if there were an object of
the senses answering to each. For example, a mathematical
point, the mark of position in space, has no magnitude, that is,
occupies no space, and therefore it can have no real existence ;
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and yet it is one of the foundations of geometrical reasoning,
and one without which we should be unable to perform even
the simplest operation in measuring. So also a mathematical
line has neither breadth nor thickness, and therefore has no
more real existence than a point has, but merely marks direc-
tion and distance in space in the same way as a point marks
position. Farther we may say, that there is no such thing
in nature as a perfect circle or a perfect square, neither can
we make one by art; and yet upon these figures there is
founded a very great deal of useful truth, both in mathematics
and in the application of mathematics to other matters. We
need not add that there neither is nor can be in nature any
thing or quantity less than nothing; and yet, as we shall see
by and by, the consideration of quantities in this light is of as
much value in mathematics, and leads as certainly to the truth,
as the consideration of quantity as being greater than nothing.

Mathematics admits of so many and so varied applications that
it is not easy to give a technical definition at once fully descrip-
tive of the subject and useful to the reader ; and it is upon the
whole to be doubted whether short technical definitions of very
general subjects are not as often productive of harm as of ad--
vantage. When we have said that mathematical truths are per-
fectly independent of place, time,and material existence, that they
stand in no need of observation, experiment, testimony, or argu-
ment, but that they have an inherent power of producing con-
viction, which nobody that understands, or that ever shall
understand them, can by possibility resist, and that thus they
ean occasion no doubting, and lead to no disputes, we have per-
haps said as much as can be said in the way of general defini-
tion. With the individual parts it is however very different,
for the definitions of them can be made as precise as that of the
general science is vague.



WHAT WE REMEMBER. 11

But it happens in this case, as in many others, that illustra-
tion supplies the place of definition, and this is always an advan-
tage, because, while definition gives us words only, and we are
in some danger of resting satisfied with them, illustration leads
us to the reality.

Now, for the purpose of illustration here, let any one think
over the number of subjects of which he has, or, which answers
our purpose quite as well, fancies he has, a competent and even
a correct knowledge ; when he has done so let him consider of
what number of these subjects he has acquired all the know-
ledge that he possesses by his own unassisted observation and
experience, and he will, if he has not made the estimate before,
be perfectly astonished at the small number of the latter. Next
let him tax his memory to bring to remembrance all that he
has seen ; and, however short his life may have been and however
observant his habit, he will be struck with the singular fact,
that he has not one recorded observation which he can fairly
set down as a new and separate truth for every day, or even for
every year of his life ; and that, of the few that he does remem-
ber, there is not one in a hundred which he understands half so
well as he does many of those other matters of which he has
had no personal observation whatever. Farther than this, when
we think over these subjects, and attempt to turn them into
the means of knowledge of whatever kind, we find that those of
them of which we have read or heard come back to the memory
as vividly, and if they be scenes, have all their parts as well
brought out, and all their colours as warm and rich as those
which we have personally visited ; and if the scenes have been
rendered and the characters delineated with sufficient force and
truth, we are absolutely more familiar with them, even if they
never had any real existence, than we are with places which
we have actually v:glted, and persons whom we have actually
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seen. If we change our place of residence, and have no per-
sonal cause of remembering the place or the people, they fade
away from our memory in brief space ; but nobody ever forgets
Robinson Crusoe and his man Friday and the island; and
nobody that has read Scott’s novels ever forgets the Baron of
Braidwardine, or Meg Merrilies, or Balfour of Burley, or
Jeanie Deans pleading for her sister before queen Caroline.
. Now why, we may ask, are these romances so much more
deeply impressed upon the mind, and so much more ready and
vivid to the recollection, than hundreds of realities that have
passed under our notice every day? Many will answer, “it is
because they are so natural, 8o true to nature.” We rejoin, that
cannot be, for they cannot surely be more natural than nature
itself, and yet they are remembered, while real, positive, prac-
tical nature, scenes in which we ourselves played a part, and
had our feelings interested at the time, are forgotten. And if
they are natural, what nature is it. that they represent, and
where have we seen the original of one of the characters above
enumerated? The charm consists in their not being real per-
sons, but merely the mental embodiment of persons; and
because they are so, all the relations between action and action
are perfect, and the whole character is before us, which it can-
not, in the nature of things, be in the case of real beings, as
they have the power of concealing part, and actually exercise
that power. If these delineations were copied tamely after
individuals, they would be admired only by those who knew the
originals, and by them only in proportion as they admired
them. It is because they are general that their force is felt by
everybody ; and it is for the very same reason that so much of
what we read and hear makes an impression upon us in com-
parison with what we see.

When we read or hear, the subjects of which we get the



INTELLECTUAL PERCEPTION. 13

information are not before us, we merely have the abstract
mental conceptions of them expressed by certain conventional
symbols, the letters of the book, or the sounds of the words
which_ are spoken; and it is because the mental conception
comes home at once to our own minds, without any of that
laborious examination in detail which objects of the senses
require, that the knowledge is both so powerful and so per-
manent. In the real object we can see but one side at a time ;
and the story of that which we observe does not extend either
way beyond the time of our actual observation, without draw-
ing our attention from the reality. But the mental embody-
ment is transparent : we can see all sides of it at once; we can
view it in all its succession of states; and we can bring it for-
ward and study it whenever we please.

Every one must see the advantage of thus being able to bring
the mind to bear upon the whole of a subject, in all its parts, in
all their connexions and relations, and in succession of time ;
because we are thereby enabled to “see the end from the be-
ginning.” In the forming of any plan we can not only see
whether the ultimate object is attainable, but we can see the
shortest way to it, press into our service all that can promote
its success, and remove all that would occasion hindrance or
failure ; whereas those who can take no such mental view,
but must at every step ¢ wait till they see,” are constantly
bungling and blundering, and really have more trouble in cor-
recting their own errors than in all the rest of the business of
life. We do not mean to say that every one who has this
capacity of forming skilful plans, either does form them or
carry them into execution ; but it is abundantly clear that the
capacity must exist before the plans can be formed.

It is not to the projecting, or planning, of any one thing that
this capacity applies; for it applies to every thing, from the
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greatest action in which men can be engaged to the simplest
project of the humblest individual; and it applies as well to
the conduct of the execution as to the formation of the plan ; so
that it is in truth the grand rule of life. If it were possible to
impart this capacity to every individual, or rather to train every
individual to this habit, (for after all it is merely a habit, and a
habit which calls for no extraordinary power of mind, but would
adapt itself to the mind of every individual,) it would cost less
labour in the learning and the observance than people must
necessarily undergo in consequence of the want of it, and not only
80, but the life of man would in point of efficiency be greatly
lengthened. As things are managed at present, a large portion
of the time of most people is occupied in returning from the
wanderings, and rectifying the blunders of the rest of it ; and it
is perfectly evident that, if they could be spared this useless
labour, they would have all the time it occupies as leisure,
during which they might increase their gains, or improve their
minds, or enjoy themselves, just as suited their fancies; and
thus, while there would be an end of much needless labour and
real suffering, there would be a corresponding increase of effi-
cient labour and real enjoyment ; for it must be remembered
that the value of labour is not measured by time, but by pro-
ductive power ; and that the enjoyment of labour is never so
sweet and so satisfactory as when we feel that we have earned
it by doing our duty to ourselves and our country in the most
perfect and effective manner.

This mental power, in the extended sense in which we have
viewed it, cannot be said to be mathematics or mathematical ;
because it applies to all subjects, while the subjects of mathe-
matics are limited. But the difference is one of subject rather
han of principle, and the conduct of the mind in the cases
alluded to is in strict accordance with its conduct in mathema-
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tical investigations. Indeed, there is 80 much of similarity, that
if we take out those portions of any particular case which are
contingent, all that remains is strictly mathematical. The con-
tingent parts are the data obtained from without—the results of
experience and of testimony; and though these, taken in the
general sense, are not mathematical, yet that keen scrutiny into
the truth or the falsehood of everything which a mathematical
habit produces, is of great use in estimating the worth both of
observation and of that which rests upon evidence. Thus we
are to consider the strictly mathematical habit in the mind,
which is the most valuable part of the science, to consist in
arranging according to their proper relations all deductions which
the mind itself is capable of drawing from self-evident principles,
and in discovering truth and detecting error in every possible
combination which can thus be formed. In the doing of this,
there can be no half measures; for to what extent soever we
may arrive in the combination, we must be able at every instant
to look back to the very outset and make sure that every single
step, whatever may be the number, has been taken rightly.
Thus, for instance, if the subject of immediate inquiry is the
distance of the sun, we must be able to see our way backward
from this great distance to the measuring of a straight board
with a foot rule, and how we have been able to find our way
from so short a measure to one which is so vast. In like man-
ner, if the question be to what height the attraction of the moon
shall raise the tide of the ocean, we must be able to connect this
with the weighing of a pound or an ounce by the means of a
common balance. Generally, whenever we are to apply our
mathematics to the ascertaining of anything which we wish to
know, however great or however complicated, we must see our
way not only from some operation which we ourselves could
actually perform, but from some principle so simple and soclear
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that nobody who understood the words could refuse to give their
assent to the truth.

These are great advantages—advantages which, in a mental
point of view, we seek for in vain in any other department of
‘human knowledge ; and it will readily be admitted that if we are
trained and habituated to this extent and transparency of mental
vision upon a number of subjects, we will endeavour as a matter
of course to exercise the same, as far as it may be practical, upor
every subject. Then in addition to this there are the practical
applications, which include all calculating, and weighing and
measuring, and comparing, and estimating, and determining
value of every kind. In a word, if we take mathematics from
all the practical knowledge which we find of so much use to us
in the occupation and business of life, we should leave nothing
behind but uncertain guesses and conjectures, and could not by
pomibility be cither a successful or civilised people. Thus we
cannot, and whether we know it or not we do not, manage mat-
tors without the virtual aid of mathematics; and why should
wo not got the real aid? There are no doubt a great many
tochnicalities, and mathematical writing has the appearance of
being in a strange tongue. But this isa mistake ; the difficulty
is not so formidable as it scems, and the language is not only
our lunguage, but the language of all nations who will give
themselves the trouble of learning that which every child learns
first, namely, an alphabet.
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SECTION II.

SUBJECTS, OBJECTS, AND PRINCIPAL DIVISIONS OF MATHE-
MATICS.

QuanTITy is the subject of all mathematical investigations
and proceedings, whether theoretical or practical, that is, whether
relating to the discovery of general principles and relations, or
to the application of these to particular cases. Therefore, before
we can enter upon the science with any chance of success, it is
necessary that we should clearly and perfectly understand what
is meant by quantity. _

Quantity, from the Latin quantus, literally means *as much
as there is;” and it is easy to see that the words  many, large,
great, long, quick,” and an endless variety of others, may be
used instead of the word “much,” or that the word “much”
may be retained, and the other word added to it, being at the
same time changed to a noun. Thus, “as much of largeness as
there is,” and so in all cases. But we cannot thus turn the
word “much” into a noun, and use any of the other words that
satisfy the meaning of the sentence when alone as an adjective
before it. Thus we can see that the word “much” is a more
general one than any of the others, and can be applied to every
kind of quantity, while the rest apply to particular kinds or
particular modifications.

We could with equal propriety use the word *little,” which
refers to quantity in the same general sense as “much” does,
and the difference between them is a matter of relation and not
of reality. This will readily be perceived when we consider
that the very same quantity can and would be considered as
much by one party and little by another. Thus five pounds in
money would be much to.a poor labourer for a week or even a

°
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month of hard toil ; but a lawyer in first-rate practice would
consider it little for speaking some hundred words which cost
him no labour at all. A wagon and horses would not only be
much for a man to carry, but too much for being carried by a
score of the strongest men in any parish. But all the wagons
and horses, and all other things, moveable and immovealle, on
the surface of the earth, are so very little for the earth to carry,
that they do not in the least hinder its motion round the sun,
which is at the rate of more than seventy thousand miles in the
hour.

As the words much and little are thus equally expressive of
quantity, the simplest and most general definition of quantity
which we can obtain is, that which we can call either much or
little. ’

It will follow from this definition that there is almost an end-
less variety of quantities, not only of individaal quantities but
of kinds of quantities; and these quantities consist, not only
of things, but of the relations of things, and of all sorts of
changes and successions, whenever we can call them either
much or little. Thus time is a quantity, mere distance from
place to place is a quantity, motion is a quantity, and even the
change of motion is a quantity : for, in respect of time we can
say, It is much longer;” of distance, It is much greater;”
of motion, It is much quicker ;” and of change of motion, * It
is much quicker now than it was before.” We can also apply
the word “little,” or some word having a similar meaning, in
each of these cases, and therefore they answer the whole defini-
tion of the word quantity.

In order to be able to use quantities in practice, it is neces-
sary that we should have the means of answering the question,
“ How much ?” or “ How little ?” with regard to them; and
thus the next consideration is, how this is to be done. In the
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simplest view of the matter, we may suppose the quantity
respecting which we wish to answer the question to be known
a8 & whole ; as, for instance, how much money is in the purse,
how much measure is in the table, and so of other cases. Now
it will be immediately felt that in order to answer these ques-
tions, simple as they are, there is an element wanting ; for when
we put the question, “ How much money is in the purse?”
ahother question immediately rises to the mind, and demands
an answer before the first one: “ What kind of money ?—
sovereigns? shillings? or what?” If we took any quantity
whatever, a similar question would arise ; so that in all cases
where we asked, “ how much ?” we would be met by the ques~
tion, *of what ?”

The answer to this question must be made in something that
we know already; for if not, the very same question would
arise a second time. Let us take an instance: “ How much
money is in the purse?” ¢“Of what money?” British
money.” And then comes the question, “What kind of British
money ?” and if the answer be, “sovereigns,” or “shillings,” or
anything else that we name, and know as a kind or denomina-
tion of British money, we are in a condition for getting an
answer to the first question, but not till then.

The shilling or sovereign, or whatever else the denomination
may be, is the standard or measure which we are to apply to
the money in the purse; and in the case of every quantity, we
must have a standard or measure before we can find how much
the quantity is, and this measure must be known to us, and

" must be of exactly the same kind as the quantity. This, though
a simple consideration, is an important one, and it may not be
amiss to see what would be the effect of referring to a standard
not of the same kind with the quantity we intended to measure,
Perhaps none is better than the traveller's ironical question to

c2
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the Irish ditcher, and the ditcher’s reply. The traveller was
going toward the town of Mullingar, and asked a ditcher by the
road-side, * Pray, my good fellow, how far is it from Mullingar
to Martinmas?” ¢ Plase you, yer honour, and it’s just as far
as from Christmas to the ace of spades.”

But we have not only to determine how large single quanti-
ties are in terms of some known measure, for we often have
occasion to compare the whole of one quantity with the whole
of another, without any reference to the particular measuring
of either of them, and therefore it becomes necessary to have
some general means of determining when quantities are of the
same kind with each other and when they are not. In the case
of quantities which really exist and are palpable to the senses,
we are never at much loss to find out, at least in a general way,
which are of the same kind with each other and which not;
but in our mathematical inquiries, we make use only of the
relations of quantities and not of the actual quantities them-
selves, and therefore it becomes necessary that we should have
a standard whereby to determine generally when they are of
the same kind and when they are not. Now the simplest test
of sameness that we can have is that of being able to say that
the quantities are either equal, or that the one of them is greater
than the other; and simple as this seems, it is all which we
require, only we must be careful to view each of them in its
whole character, and not to estimate both in any one quality
which is common to the two. Thus if the comparison were one
hour of time and four miles of a road, and it were asked whe-
ther these were of equal length, or which were the longer, no
answer could be given, and the quantities are clearly not of the
same kind. If, however, we referred the hour and the four
miles to something travelling along the road, they might be equal,
or either of them might be the greater. For instance, to a man
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walking four miles an hour, the hour of time and the four miles:
of road would be of exactly the same length ; to a coach running-
twelve miles an hour, the hour would be three times as long as
the four miles of road ; and to a pig getting on at the rate of a
mile an hour, the four miles of road would be four times as long
as the hour. Thus when we speak of quantities, as being of
the same kind or of different kinds, it must always be under-
stood that we speak of them as independent quantities and not
as relations of other quantities, even though they can exist only
in the latter sense. Thus the strength of a man, the strength
of a horse, the motion of the wind, the weight of falling water,
and the elastic force of steam, are in one sense all quantities of
the same kind, and the effects of them, and consequently they
themselves, admit of being measured by the very same standard,
though the substantive existences are all different, and no two
of them admit of any comparison.

All quantities, which can exist, or of which we can form any
notion as being either much or little, whether we can express
them exactly in terms of any standard or not, can become sub-
Jjects of mathematics, and so can all those relations of quantities
to each other which we can in any way understand or express;
and when we speak precisely of a quantity, or name that which
we call the value of it, we always name a relation—the relation
which it bears to the known standard in which we estimate that
kind of quantity. In quantities of daily occurrence, we generally
have a considerable number of standards or denominations, as
we term them ; as in money we have pounds, shillings, pence,
and farthings, and any one quantity of money we can express
in any one of those denominations with equal accuracy, though
for convenience we express large quantities in the larger ones,
and small quantities in the smaller, and the relation of any
known or measured quantity to the standard in which it is



22 NUMBER AND QUANTITY.

measured is expressed by a number. Thus five pounds expresses-
the relation of a known quantity of money toa pound, considered
as the standard ; and it is of no consequence as to mathematical
value, whether this five pounds be five pieces of gold coin, each
equal to a pound, or anything else which would at the public
market readily and always exchange for those five pieces.

In the case of two such standards, as, for instance, one pound
and one shilling, it is evident that we can express the value in
terms of either of them, provided we know the relation between
them ; and from the common way of measuring by means of a
standard, with which everybody is acquainted, it will be per-
ceived that the relation of any quantity to any other of the
same kind is the number of times that the first is contained in
the second. Thus the relation of a shilling to a pound is one to
twenty, and the relation of a pound to a shilling is twenty to
one; and it must be understood in all cases that the number
which results from this comparison is the measure or value of
the second, in terms of the first or standard, considered as one
whole. 8o also, upon the same principle, it is evident that if
any two quantities of the same kind are in this way compared
with a standard, which is the same in the case of both, the
results of the comparisons with this standard would accurately
express the relation of the two quantities to each other. This
is called the proportion or ratio of the two quantities, and though
simple when viewed in this light, it is, in a praetical point of view,
one of the most important principles in the whole range of
mathematical science. We must readily admit this, when we
consider that we can obtain no knowledge of the value of any
thing but by referring it to some standard which we already
know ; and not only this, but that we can get no knowledge of
anything whatever but by comparing it with what we already
know. This comparison, this finding of the ratio, or relation,
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or proportion, between one thing and another, is therefore the
most valuable of all operations; the only means which we have
of understanding it fully is the stady of mathematics, and did
that study lead to nothing else, it would be worthy of all the
attention we can bestow upon it.

But we Lave not only to examine and understand quantities
and the relations of quantities which can or which do exist ;
we have to consider those that have no existence, and even those
of which the existence is utterly impossible. Every plan or
scheme which we form is a quantity which does not exist until
we have put it in execution; and, even with every desire and
every effort on our part to carry those plans into execution, they
very frequently fail because they involve impossible quantities
of which we were not aware when we formed them. In the
common business of life, where we have not all the elements
under our controul—within ourselves as it were, but must be
controlled by other people and by the general events of the.
world, which never give us full warning of their coming, we
cannot in the nature of things avoid all these impossible ele-
ments; but still it is of the utmost advantage to be “in the
way ” of doing it, and there is nothing which puts us so much
in this way as a mathematical habit—that of estimating the
value of every circumstance and every probability in terms of
some known standard.

Even when we ourselves have or should have perfect controul
over all the elements which enter into our scheme, there is often
some lurking impossible quantity which insinuates itself into the
chain, and mars the purpose of the whole ; and we may be sure
that when any scheme fails, without negligence on our part or
Prevention from any external cause, there has been an impossible
element in that scheme at its formation. Of the vast number
of inventions and projects which are every day brought before
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the public, not as mere bubbles or impostures, but with perfect
honesty and zeal on the part of the projectors, we speak with
most charitable liberality when we say that not one in the hun-
dred proves to be of any use, and nine out of every ten are alto-
gether impracticable. The reason clearly is, that neither the
projectors, nor those by whom they are encouraged, are able to
see the impossible elements which their schemes involve ; that
they look at the possible and promising ones only ; and thus a
large quantity of well-meant labour and ingenuity is constantly
wasted. )

It may be worth while to mention one case by way of illus-
tration ; but before we do this, we may mention that every
scheme, process in reasoning, and other plan or project, whatever
it may be, is like a machine, no stronger than its weakest part,
or like a chain, of which if one link is broken the whole is
broken. This consideration is as universal as it is important,
and it is the want of attention to this which causes so many sad
failures after long and arduous labour with every prospect of
success. If the study of mathematics (we speak of the mode of
mathematical reasoning, and not of any one branch or applica~
tion of the science) had no other value than that of enabling us
to detect the one cause of failure amid the thousand prospects
and promises of success, the time and labour bestowed upon the
study would be amply repaid; but this, though a great and
perhaps the greatest advantage, is an indirect one, and accom-
panies the others without our pursuing it as one of our specifia
purposes, at least if we go to the general principles of the science,
and do not confine ourselves to the mere details and mechanical
operations,

Now for our case in illustration:—Perhaps we cannot select a
befter one than that of the * Perpetual Motion,” that is, a self-
moving machine which shall not involve any cause of stoppage



- PERPETUAL MOTION. 25

save theé wearing out of the materials of which it is composed.
We believe that the fonder votaries of this visionary project do
not take even the wearing out of the materials into the account;
but it is necessary to do this; and even this necessity, when
analysed, involves the necessity of the machine stopping before
the parts are worn out.

It may be useful to those who are not acquainted with the
method of analysis, er of separating the parts of compound sub-
jects and estimating their values singly, and not taking them
simply in the mass, when the favourable ones are sure to hide
the unfavourable, to point out by how little either of thought
or of trouble we arrive at the truth of this case. Every thing
on or near the surface of the earth gravitates towards the earth’s
centre, and this gravitation, which depends on the mass or
quantity of matter of the earth, is a power acting constantly and
uniformly, so that the tendency of it is to bring every piece and
combination of pieces of matter to a state of rest. Thus if an
animal walks or a wheel rolls along, this gravitation is continu-
ally attempting to stop it, in the proportion of the weight of
the animal or the wheel. It is this gravitation which causes
animals to make hoof-prints and wheels to make ruts in soft
ground ; and though we make the surfaces ever so hard or so
smooth, though we could get rid of the' mere friction or rubbing
as not arising from weight, yet the weight is not thereby les-
sened, that is, the gravitation toward the earth is not one jot the
less. Thus in the case of a rail-road, the same power can pull
far more upon a level than where the surface is rough or soft,
or both ; and if there is even a very small declivity, the weight
alone will bring down the load without any pull, and bring it
down the faster the smoother that both the rails and the wheels
are. But when we come to an ascent, even a very trifling one,
the disadvantage is just as great, and one horse would pull
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more up the natural slope of a hill, than a steam engine of a
thousand horse’ power could do upon wheels and rails up the
same, :

The power which tends to stop the motion of all machines
upon the earth’s surface is, then, a power which acts constantly
and uniformly, never pausing an instant, nor abating a jot ; and
therefore, in order to get the better of this gravitation, we must
have a counteracting power as continually new as itself; and
we are not acquainted with any such power, or any kind of
matter in which such a power could reside. It is not difficult
to calculate (upon mathematical principles), that if we could
give any piece of matter a motion round the earth at the rate
of about five miles in a second, or one thousand eight hundred
miles in an hour, and keep up the motion at this rate, we should
overcome the gravitation of that piece of matter. This is what
may be regarded as the possible case of the perpetual motion ;
in this case, the piece of matter must move round the earth,
and in no other direction, and it must move unconnected with
anything else ; and, taking all these circumstances into the
account, it will be admitted that the accomplishment is hope-
less, and would be useless if it were not.

In the case of a fixed machine,—and the more complicated
that the machine is, it is the less likely to succeed,—the impos-
sible element, in the most simple view we can take of it, is
this :—to find a piece of matter which, of itself, shall be alter-
nately greater and less than itself, and which shall also remain
equal to itself all the time ; and if this is not an impossibility,
it is not easy to see where impossibility is to be found.

The knowledge of impossible or absurd quantities, and the
method of readily discovering them, are often of great use to us,
not only in preventing us from wasting our time in attempting
to do that which cannot in the nature of things be done, but in
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enabling us to prove or demonstrate truth in cases where that
cannot be done directly ; for it is easy to see, that if an impos-
sibility or an absurdity would be the necessary consequence of
anything else than one particular state of things, then that par-
ticular state is the true one. This method of proof is, of course,
not so simple as the direct method, but it is often not less con-
vincing ; and we shall see afterwards that, in many cases, it is
the only species of proof which we can obtain.

The use of Mathematics, as a general exercise for the mind,
and a general guide to the art of thinking correctly, may be in
part seen from what has been stated in this section; and the
more direct and immediate uses of the different parts can be
better explained when we notice those parts themselves; there-
fore we shall close this section with the names and very short
definitions of the principal branches into which mathematical
science is divided. Of these, in the very simplest view of the
matter, there are three :—

First, ALGEBRA, or the science of quantity in its most general
sense, applying equally to every quantity, whatever may be its
nature, and whether possible or impossible ; and also to all rela~
tions of one quantity to another; and being, on this account, the
proper foundation of the whole.

Secondly, GEoMETRY, or the science of extended quantity
or magnitude ; that is, quantity considered as existing in and
occupying space. Geometry is thus a particular branch of that
general science which Algebra comprises ; and though, so far as
. Geometry extends, both it and Algebra may be applied to the
very same quantities, yet geometrical quantities are always
such, that we can imagine them to exist and be visible, which
is not the case with all quantities to which Algebra applies.
It very often happens, however, that the very same mode of
reasoning applies to quantities which have a geometrical form
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and existence, and to those which have not. Thus, for instance,
the globe of the earth, considered as a piece of matter of a cer-
tain form and magnitude, is not only a geometrical quantity,
but the very name, Geometry, means ‘ measuring the earth ”.
(it originally meant what we now call land-measuring) ; but
the attraction of gravitation, by means of which bodies fall to
the earth, and are retained on its surface, is not in itself a'
geometrical quantity, because we cannot say that it has either
size or shape, and yet the law according to which it acts is a
geometrical law. Thus all geometrical quantities must be such
as that we can imagine them to exist in space ; but it is not
necessary that they should actually fill any portion of that
space. Thus, the surface of the table is a geometrical quantity,
and so is the length or the breadth of the table ; and these quan-
tities are so related, that we can find the extent of the surface
if we know the length and the breadth. But none of these
quantities occupies any space, for the surface of the table
merely separates the table from the air over it, and the length
and breadth are mere expressions for how far it extends in two
directions across each other.

Thirdly, ARITHMETIC, or the science of quantities expressed
in numbers, either exactly or as nearly so as may be possible.
This is the practical application of both Algebra and Geometry ;
and while those sciences express quantities in a general manner,
and in such a way as that any conclusion at which we arrive
concerning them, is equally applicable to all quantities of the
same kind, Arithmetic takes with it the particular values of
quantities ; and thus arithmetical conclusions have not that
general character which belongs to Algebra and Geometry.

Each of those great branches of mathematical science admits
of many subdivisions, according to the nature of the quantities,
and the relations in which they are viewed ; and it may be said,
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generally, that the grand object of Algebra and of Geometry,
besides their great use in teaching the art of accurate thinking,
is the preparation of all subjects of which the values can be
expressed in numbers, in such a manner as that we can apply
Arithmetic to them, and thus ascertain their real values in
terms of that known standard by which we are accustomed to
measure the kind of quantities to which they belong.

In a civilised country, there is nobody so humble or so illite-
rate as not to have occasion for a little arithmetic; that is, to
be able to express the values of a few quantities in terms of
some standard, and therefore a little of the practice of Arith-
metic forms a necessary part of every body’s education, whether
it is acquired at school, or picked up by ourselves in the same
way as we learn to speak, and whether it is or is not accom-
panied by the capacity of reading and writing. Such arithme-
ticians do not, however, understand any of the principles of that
science of which they can thus make a little use ; neither are
they aware of the advantages which they derive from the
science, even in their humble way. It is a fact, however, that
the inhabitants of countries in which there never has been any
science, or any scientific men, find counting, even to a very
limited amount, an operation altogether beyond their power. It is
generally said, that many tribes of the North American Indians,
when they were first known to Europeans, were quite incapable
of counting beyond the number three ; and yet it is admitted
that these tribes were exceedingly shrewd people, and much
more dexterous in the use of their senses than the peasantry of
civilised countries. Indeed, even if we take those beginnings
which are obtained in our own schools, and in consequence of
which the possessor is considered qualified for being a counting-
house calculator, we should find it to be exceedingly difficult to
arrive, by means of them, at the establishment of any one arith-
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metical truth, to say nothing of truths of a more general nature ;
and therefore, in order to understand the principles, we must
make another and a more general beginning.

But, in order to do this properly, it is necessary that we
should understand the simpler operations of Arithmetic—the
way of expressing quantities arithmetically, and of performing
on them those few general changes of which Arithmetic admits.
This is necessary, for the very same reason that it is necessary
to learn the alphabet, the spelling, and the words of a language,
before we begin to study the grammar of that language, so as to
understand its structure, its power, its beauty, and its deficien-
cies, and make ourselves master of its spirit and its extent, so as
to express what we wish to say or write in the clearest, most
forcible, and most impressive manner; and perhaps it is as
desirable that we should not attempt to mix up any of the
principles with the learning of this first and simplest alphabet
of Mathematics, as it is to avoid confounding the infant which
is drudging at its Christ-cross row, with lectures about adverbs
and pronouns. We shall assume that the least informed reader
whose attention is drawn to this volume, is in possession of this
arithmetical alphabet, and of a good deal more, and consequently
we shall pass very lightly over this part of the subject.

SECTION III.

ARITHMETICAL NOTATION, AND SCALE AND DISTINCTIONS
OF NUMBERS.

LirTLE a8 we are accustomed to think of our common arith-
metical notation, and lightly as we esteem the value of that
classification of numbers which it represents, it is really, (second
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only to the alphabet of language, and second to that only be-
cause it is more confined in its application,) among the most
wonderful contrivances of human ingenuity. Let us take an
instance, and consider in what situation we should have been
placed, if we had been without our arithmetical scale of arrange-
ment, and our corresponding method of notation, or expressing
numbers by a limited number of characters applicable to that
purpose, and that purpose only. From what has been said of
the state of the American Indians, it is not at all probable that
we could have had any means of arriving, not at the knowledge
only, but even at the name of any such number as we are to
instance ; but, for the sake of the argument, let us suppose the
thing possible. Well, the average distance of the sun from the
earth, expressed in words according to our scale of numbers, is,
ninety-five millions of miles ; and the same in the notation of
Arithmetic is, 95,000,000. Both of these expressions are very
short ; but if we had had no system, and so had been obliged to
express this distance by a repetition of a separate name for
every individual number, from 1 to 95,000,000, these names
alone would have filled nearly four hundred volumes of about
the same size and style of printing as the present one ; and
therefore, to have made any use of the number, or even to have
formed any guess respecting its nature or amount, would have
been wholly out of the question.

It is worthy of remark, as a proof of the value of Mathematics,
even in the very alphabet of Arithmetic, that we are enabled to
get the better of the difficulty by means of what we may strictly
call a geometrical principle. Thus, in the expression

111111111,

each of the characters has a different value ; this value is smallest
in the character nearest our right hand, and it increases at a
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regular series of fen times in all the others. The second from
the right is ten times the first, the third ten times the second,
the fourth ten times the third, and so of the others, whatever
may be their number; for as there is nothing to limit it except
space to write the characters on, we may make it as extended
as we please. This character, while it preserves the same form,
and always means one of something, may thus have an endless
variety of meanings, according to the characters that are on the
right of it ; and it is evident that it is the number of those cha-
racters only, and not their particular values considered in them-
selves, upon which this second element of the value of the
character depends. Thus, if we take a character which in
itself stands for no number, and thus marks place in the expres-
sion, but not value, we shall be enabled to express any one of
the above characters singly, with exactly the same value as it
has in the combination. What character we use for this pur-
pose is of no consequence, provided it be one to which we never
attach value as a number; and thus 0 has been used, probably
because it is a character which can be very easily written. By
means of 0, we can express the above nine repetitions of the
character 1, by the following nine expressions, all of which taken
together would have exactly the same value as the expression
from which they were all derived. Thus:—

100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1.

This is what we may term the system or series of the scale
of numbers, and the root, or ratio; that is, the relation of any
one term, or place, to the one next it, is fen. But we must
understand that it is not the number ten counted in individual
ones, as we count when we wish to know “how many ;” it is
ten times greater, if the place is next on the left hand, and
ten times less if it is next on the right.
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But as all numbers, considered merely as such, and without
any reference to real quantities or things which actually exist,
must be considered as quantities of the same kind ; and as such
we require to have one common measure, or standard, to apply
to them all, and in terms of which we may understand them all
to be expressed. The number 1 is at once the simplest and the
best which we can use for this purpose; and we apply other
names expressive of the other places, or terms, of the scale, as
measured by the number 1. Thus, 10 is ten, 100 is one hun-
dred, 1000 is one thousand, 10000 is ten thousand, 100000 one
hundred thousand, 1000000 one million, 10000000 ten millions,
100000000 one hundred millions, and so on till we come to
1000000000000, which is one billion, it being understood that
the words “ of 1's,” or * of times 1,” may be added to the name
of each number.

From this structure of the scale, it is evident that, besides 0,
which marks place only, we require but nine characters, and
nine original words, in order to be able to note, or mark down,
and to name, all numbers whatever. These characters are, in
their order from 1 to 9 inclusive,

1,2,3,4,56,7,8,9;

and every character in & number expressed by more than one
character, is understood to express as many times the value of
1 in the place which it occupies, as it stands for when original
and alone. Thus, in the expression 365, 3 is three times 100,
6 is six times 10, and 5 is five times 1; and so in all other cases.
The number 1 may be called a unit or unity, because it repre-
sents that which is entire, simple, and not, in our common
notion of it, in any way made up of parts; and from this, the
right hand figure of every number may be called the unif's
place, and is the beginning, or rather, as we shall see afterwards,

D
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the middle of the arithmetical scale; and, for a reason after-
wards to be mentioned, it were perhaps as well that we shonld
affix a point (.) on the right of every number ending at this
place, independently altogether of the commen use of the same
mark for dividing language into sentences.

From what has been said, it necessarily follows that it is
only those figures or characters, in numbers, which are equally
distant from the unit’s place, which can be considered as quan-
tities arithmetically of the same kind, or having 1 in the one of
them exactly equal to 1 in the other. It is necessary to attend
carefully to this in all arithmetical operations, because, when
we come to Arithmetic, we are always understood to deal with
the exact values of things ; and we cannot strictly call one thing
and another by the common name two, unless they are precisely
of the same kind. Thus, though a bird and a quadruped are
two beings, and even two animated beings, they are not two of
any one kind of beings.

As each place or term in the scale of numbers is obtained by
taking ten times the place or term on the right of it, or, which
is the same thing, multiplying the term next on the right by
ten; so conversely we may obtain the next term to the right
by taking a tenth part of any term, that is, by dividing it by
ten. When we take this view of the matter, it immediately
becomes apparent that there is no necessity for stopping our
scale of numbers at the unit’s place; but that we may extend
it downwards without limit, as well as upwards, and still pre~
serve the same ratio, or relation, of ten times as taken upward,
and one-tenth as taken downward, between term and term;
and this is what is called the complete DeciMaL ScaLE of Num-
bers, or of Arithmetic, from the Latin, decem, ten. An intimate
acquaintance with this scale is of the utmost consequence tor
every one who wishes to use Arithmetic readily, easily, and,
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correctly, even in the most common business of life; we shall,
therefore, make one or two further remarks on it.

On looking back to the analysis of the number 111111111,
into the nine numbers of which it is composed, it will be per-
ceived that every tenfold increase, or multiplication by ten, is
expressed by the adding of one 0 to the next lower term ; and
if we begin with the highest, we perceive that every term is
reduced to one-tenth of what it was, by taking away or sub-
tracting one O from it. We may mention, in the meantime
(for we shall explain afterwards), that when the operation of
adding is expressed, but not performed, this is done by prefixing
to whatever is to be added the sign 4, which is called plus,
-and may be read “more;” and that when subtraction is ex-
pressed, but not performed, it is done by prefixing to whatever
is to be subtracted, the sign —, which is called minus, and may
be read “less.,” Thus, 542, is 5 and 2 more, or 7; and 5—2,
is 5 and 2 less, or 3.

‘When we represent the terms of the scale of numbers, and
use the number 10 for each of them, we bring it into shorter
compass, with still the same meaning, if we use the common
figures or numerals instead of the numbers of 0’s; but we must
write them in a different form, so that they may not be con-
founded with the common figures of Arithmetic. They are
usually written, in much smaller characters, over the right hand
of the other figures; and, for a reason which will presently
appear, they are called indices, exponents, or exponential num-
bers. Thus, instead of 1 eight 0's, we may write 108 ; instead
of 1 seven 0’s, we may write 107, and so of all the others, as
follows :—

108, 107, 108, 10%, 10¢, 103, 10, 101, 10°.

It must be carefully borne in mind, that these exponential
D2
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characters which are placed over the right of the others, do not
mean numbers, either as added to or as multiplying the others,
or as in any way connected with them. They mean numbers
of times multiplied by 10; the right hand one, 10°, not multi-
plied by 10 at all ; the second, 10!, once multiplied by 10; the
third, 102, twice multiplied by 10; and so of the others. If we
take them from¥ight to left, we find that the exponents increase
by the constant addition of 1; and if we take them from left to
right, we find they diminish by the constant subtraction of 1;
the addition of 1 in the one case, being equivalent to a multiplica-
tion by 10; and the subtraction of 1, in the other case, equal to
a division by 10. 'We may, therefore, continue our subtraction
of 1, and our series, as far as we please, only after 1° we can only
indicate the division by the sign —. Thus,

101, 10-9, 10-3, 10-*, 10-%, 10-9, &c.;

and the point (.) which is put after the unit’s place of the
former part of the series, must be put before the whole of this
one. The above, collected into one expression, is,

J11111, &e.

and resolving it into as many parts as there are terms or places
in it, as we did in the case of the other, it becomes—

.1, .01, .001, .0001, .00001, .000001, &c.

100 is the number 1, or it is 1 neither multiplied nor divided;
10! is one-tenth of 1, or 1 divided by 10; 102 is one hun-
dredth part of 1, or 1 divided by 100; and so of the others.

We thus obtain, by means of the decimal scale, three kinds
of numbers, which are still all simple or abstract numbers,
equally applicable to all quantities, of whatever kind they
may be. ’
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First, INTEGER NUMBERS, or whole numbers, the smallest of
which is 1; and which, in the scale, read, from right to left,
units, tens, hundreds, thousands, and so on. The different
places in these numbers are found by multiplying the unit as
often by ten as the number expressed by the exponent, they
therefore express 1 and all numbers greater than, whatever may
be their amount.

Secondly, pEciMAL NUMBERS, the largest of which is never
exactly as much as the integer number 1, though it may approach
nearer to this than any difference which we can name, These
numbers have, that is, require to have, the distinguishing point
on the left of them ; they are read from the left to the right,
tenths, hundredths, thousandths, and so on; and the values of
the places or terms are found by dividing 1 by 10 as often as
the number of the exponent. By means of these decimal num-
bers we can express all values which are less than 1; and
though, as we can better explain in a future section, we cannot do
this with perfect exactness except in particular cases, yet we can
in all cases approach or approximate the value so nearly as that
the difference shall be less than any thing that can be named.

It may be proper to give an example in illustration here.
Well, the earth which we inhabit is a very large piece of
matter; but if we take a tenth part of it,a tenth of that,a
tenth of the result again, and continue this dividing by 10
for a sufficient number of times, we shall at last arrive at 4.
quantity not only less than the smallest grain of sand, but less
than any quantity which can result from the continued division
of this grain by 10; for, if we name any quantity we must stop
at some number of times dividing by 10; and there is nothing
to prevent us from taking this quantity and dividing it again by
10 as often as we please. It is true that, in the case of the
earth, we cannot perfbrm éven one of these divisions, but it is
the beauty and advantage of arithmetic that we can count by
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means of the representations of numbers, instead of the things
which we have occasion actually to number.

That this is a very great advantage we may see by the fol-
lowing case :—suppose that we had no arithmetic beyond
simply counting one, two, three, and so on (and even this, as
we have already seen, is not attainable without science), and
that it were required to find the whole price of any num-
ber of pounds of goods at one shilling, one penny, and one
farthing for each pound. The only way that we could go about
even this very simple case would be to lay out the goods in
single pounds in a row, place one shilling, one penny, and one
farthing against every single pound, and then count the money
thus placed.

Decimal numbers, or, as they are shortly named, ‘“decimals,”
are merely a continuation of the very same scale as integer
numbers; and by merely shifting the decimal point we may
express the multiplication or the division of any number by 10 as
often as may be necessary. Thus, in the following numbers,
though each contains the very same figures or characters, in
the same order, yet if we take them from the first to the last,
each is one-tenth part of the one above it ; and if we take them
in the opposite order, or from the last to the first, each is ten
times the one below it :—

879456321.
87945632.1
8794563.21
879456.321
87945.6321
8794.56321
879.456321
87.9456321
8.79456321
870456321
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The first of these numbers is read eight hundred and seventy-
nine millions, four hundred and fifty-six thousand, three hun-
dred and twenty-one ; its exponent is®, because there are eight
figures besides the units. Ther¢ are nine divisions by 10 in the
succeeding lines, and therefore the exponent of the last line is
9 less than 8, or —'. The last line is read eight hundred and
seventy-nine millions, four hundred and fifty-six thousand,
three hundred and twenty-one, thousand millionth parts. The
exponent of the last figure of the first line is %, that of the last
figure is °; the exponent of the first figure of the last line is =,
and that of the first figure of the same is —°; thus there are 18
different exponents, answering to the 18 different places of
figures. .

‘We may farther remark, that every number expressed by thc
common figures or characters of arithmetic, may be considered
a8 expressing & number of times 1 of its right hand figure ; and
that any number of 0s on the left of an integer, or on the right
of a decimal number, do not in the least affect the value of the
figures, or that of the number itself.

Thirdly, expoNeNTIAL NUMBERS.—These are altogether
different in their nature from integer and decimal numbers ;
for, while both of these stand for numbers, or numbers of
things, according as they are applied, exponential numbers
stand for numbers of times multiplying or dividing, and never
can be made to stand for numbers of things, or to be in any
way expressive of the value of real quantities or existences.
They are thus not numbers, but expressions for the relations
of numbers to some one particular number ; and this number,
in our scale of arithmetic, is the number 10. If the exponent
has not the sign — before it, the number of which it is the
exponent always contains integers, and always one place more
of them than the number of times 1 in the exponent. If the

-
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exponent has the sign — the corresponding number never con-
tains any integers, but is wholly decimal, and there are always
as many 0s on the left, or between it and the decimal point, as
the number of times 1 in the exponent, wanting one. Thus, if
we take the eighteen places of the first and last lines of num-
bers in the preceding example, with 1 in place of each of the
figures, and mark the exponent of each, we shall have the fol-
lowing expression :—

108, 10 7, 105, 10, 104, 10%, 10%, 10', 10°. 10—!, 10—, 10-S,
10—+, 10—, 10—%, 10—7, 10—8, 10—,

It will be seen, from this expression,—which goes as far both
ways as there is ever much occasion for in practice, but which
may be extended at pleasure both ways, by adding 1 to every
succeeding exponent both on the left and the right, and taking
care to continue the sign — before those on the right; that;
read from right to left, this is a regular series of multiplications
by 10; but that if we read it from left to right, it is & regular
series of divisions by 10; and, as 1 in the exponent when it has
ot the sign — answers to one multiplication by 10, and when
it has the sign — to one division by 10, it follows that there is
no common addition or subtraction of those exponential num«
bers, for the addition of them is evidently the same as the mul+
tiplication of the numbers of which they are the exponents,
and the subtraction of them is the same as the division of those
numbers.

Farther, 0 in these exponential numbers means 1, and not
nothing, as it means in common numbers; and the exponents
which have the sign — before them do not mean imaginary
numbers, that is, numbers less than nothing, they mean num<
bers of times divided by 10.

It is necessary to pay particular attention to the difference
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in meaning hetween those exponential numbers and common
numbers, as used in ordinary arithmetic ; because, though they
have exactly the same forms, their meanings are altogether
different. Exponential numbers are called LocariTaMs, which
means “the voices of numbers,” that is, what they express, or
the account which they can give of themselves; and this ex-
pression is always the number of times which 10 requires to be
multiplied by itself, or divided by itself, in order to produce the
common or natural number answering to the logarithm.

Those logarithms, or voices of numbers, are of vast use in
many of the more elaborate parts of mathematical science, both
in the investigation of principles and in the application of those
principles to practical cases. But it requires more general
views than any upon which we have hitherto entered, fully to
explain even as much of their nature as is necessary for popular
purposes ; and therefore we shall need to revert to them in a
future section, after we are in possession of the other elements
which are necessary. We shall only add here, that by means
of logarithms, calculations which required days before this
invention, can be performed in minutes in consequence of it,
and that they have enabled us to perform many calculations
‘with ease which without their aid were altogether impossible.
‘We have deemed it necessary to give the general definition, and
also some short explanation of the nature of those exponential
or logarithmic numbers along with the explanation of the
notation and scale of the natural numbers; because when the
meanings of the natural numbers are once rooted in the mind
without any explanation, it becomes somewhat difficult to
convey a clear and distinct notion of the same characters used
as exponents,
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SECTION 1IV.

COMMON OPERATIONS IN ARITHMETIC.

TaE use of arithmetic, and indeed of all branches of mathe-
matics, consists in enabling us to find that which we wish to
know but do not, and to do this by means of that which is
already known to us ; and the process by which this is obtained
is called an operation. Or we may say that an operation is any
process by which we are enabled, from known quantities, to
arrive at the knowledge of quantities which are not known.
In order to do this in any ¢ase we must have always one known
quantity of the same kind with that unknown one which we
are to find by the operation ; and in arithmetical operations we
must have this known quantity expressed in the very same
unit of measure, or denomination, as the one whose value we
seek. Thus if our object is to ascertain how many pounds will
-require to be paid under conditions which are given, we must
have a pound, or something expressible in terms of a pound,
among the data which we are to use in our operation; and in
like manner, if we seek for the value of any quantity whatever,
we must have either the unit in which that quantity is to be
expressed, or something convertible into this unit, among the
data. Thus if length of time were the quantity sought, we
eould not find it unless a quantity expressing time were given ;
and the same in all other cases. It is not necessary, however,
that the given quantity should be in the same denomination
with that which is sought, provided we know the relation
between them. For instance, if 8 certain number of pounds
sterling were the given quantity, and a number of Fremch
francs the quantity sought, we could find it with little less
labour than if francs had been given, provided we knew the
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relation between a pound and a franc, or the number of any
one of the two species of coin which is equal to a known
number of the other species.

In the simple operations of common arithmetic this necessity
for having among the data a representative of the quantity
sought, seems so obvious a matter, a8 not to require being
stated. But when we come to the more intricate parts of ma-
thematics, and especially when we come to mixed problems—or
things to be done—in which mathematics form only a part, it
becomes a considération of considerable difficulty as well as
importance. The difficulty increases, too, in proportion as the
mathematical part becomes smaller in respect of the whole
case ; and thus it is of great importance not in matters of calcu-
lation only, but in all matters generally, to make ourselves sure
at the outset, that the data, or terms and conditions, by means
of which we attempt to arrive at any result, contain elements suffi-
cient for determining that result. We must bear in mind that any
one of the conditions which are involved in the data by means of
which we endeavour to find an unknown quantity may become the
unknown quantity in a problem of another description; and that
thus not only all sorts of quantities, but all sorts of relations of
‘quantity to quantity, may become that element among the data,
which is the virtual representative of the result; and we may add,
that there are many cases in which the relations of quantities are
not only all that we can obtain, but that those relations are
often indeterminate, or inexpressible by our ordinary means of
notation. This is not the place for entering into any particular
explanation of when we have or have not data sufficient for the
.obtaining of the result which we seek ; but we mention the

“subject at the outset, because it is one of great importance, and
one which everybody who wishes to study mathematics easily
and profitably must bear constantly in mind. To use a homely
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expression, the representative of the quantity sought among the
data is of nearly the same importance as money in the purse is
to a man who would buy a horse at a ready money market.
The man may know exactly the place and hour of the sale,
may have the means of arriving there in perfect time, may
know who has got to sell exactly the horse which he wishes,
he may have the blacksmith ready to put new shoes on the
horse, and saddle, bridle, and portmanteau all in perfect order
for a journey ; but not one mile of that journey shall he ride if
he is without the cash, the real element which represents the
horse: and it is even so in all cases, whether mathematical or
not.

" Inthe arithmetic of simple or abstract numbers, viewed in
its most elementary form, there are only four general pro-
blems, or kinds of results. The first is to find the sum of two
or more numbers, and that is nothing more than finding one
number which shall contain the number 1, the standard by
which we measure all simple numbers, as often as it is con-
tained in all the numbers whose sum is sought. The second is
to find the difference between two numbers ; and ‘tltis difference
is nothing more than a number which added to the less of the
two given ones would make a sum equal to the greater, or
which taken away from the greater would leave a remainder
equal to the less.

The process by which we find a sum is called App1TION, and
that by which we find a difference is called suBTRACTION. We
shall very shortly notice the leading principles of these opera-
tions, before we proceed to the two remaining ones; because
addition and subtraction are in some respects, though not alto-
gether, the converse, or opposite each other. The operation of
adding, and that of subtracting, are exactly the reverse of each
other; but the result of addition is not exactly the opposite of



SUBTRACTION, 45

that of subtraction in all cases, for the result of an addition
must be equal to the whole of all the given quantities, and
therefore it must be greater or less according as they, taken in
their whole amount, are greater or less; whereas the result of
a subtraction expresses merely the difference of the quantities,
and thus it has no necessary reference to the entire value of the
one or the other, or of both, but merely to the difference, or
how much the one is greater and the other less. This consi-~
deration is worthy of some attention, simple as it is, and it will
readily be understood when we consider that the difference of
any two numbers, however large, that have all their figures the
same with each other except the units, is exactly the same as
the difference of these unit figures, and that if their difference
is 1, then the difference between the numbers is exactly the
same as that between 0-and 1. Thus the difference between
31587926 and 31587925 is equal to the difference between 0O
and 1, that is, it is 1.

From this it follows that, when our object is to discover the
difference of two quantities, we may take away as much of them
as ever we please, if we take exactly the same from each; and
that we may add as much to them as ever we please, if we add
exactly the same to each. The first part of this very obvious
power that we have over them is often of great use when we
soek the difference of complicated quantities which contain
many elements; and the second is the foundation of that
borrowing and paying in common subtraction which is not
unfrequently an unexplained puzzle to beginners in the arith-
metical art.

The simple process of adding can hardly be made plainer by
any explanation, and taken in detail it is not a difficult one, a8
we never have to add more than 9 at any one step ; and there~
fore the only considerations in simple addition are, to take care
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that we do not call quantities equal, which are not so according
to our scale of numbers, and then to express the sum in terms
of the scale; or it may simply be expressed thus:—figures
equally distant from the unit’s place, or from the decimal point,
whether in integers or in decimals, are quantities of the same
kind, and can be directly added together ; but figures situated at
different distances from the unit’s place or the decimal point, are
not quantities of the same kind, and consequently cannot be
directly added together. Farther, when the sum of any column
of figures, that is, any row of them, equally distant from the
unit’s place, amounts to two figures in the common way of
expressing numbers, the right hand one, or unit’s figure of
these, considered as a separate number, belongs to the same
place as the column added, while the ten’s figure belongs to the
next place on the left, and must be carried there, and added in
with whatever figures may be, or written down there if there ara
none. This is so simple as hardly to admit of explanation, for
we have only to recollect that tens of units are tens, tens of
tens are hundreds, and generally that 10 in any one place of
the scale is always exactly equal to 1 in the place next on the
left. It is usual to arrange the numbers with like places under
each other, before proceeding to sum them ; but this is a matter
of convenience, not of necessity ; and it gives considerable facility
in calculation to practice the adding of numbers, when written
the one after the other in the usual manner of writing, -

The simple act of subtracting, like that of adding, can hardly
be made plainer by words: the rationale of it consists in either
beginning at the larger number, and counting downward to the
less, or beginning at the less number, and counting upward to
the greater; and the number counted, which would be the
same both ways in the case of the same numbers, will be the
difference. Thus, the difference between 16 and 9 is 7; for
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if we begin at the end of 16, and count down to 9, we have
7 to count ; and if we begin at 9, and count up to 16, we have
also 7 to count.

In subtracting simple or abstract numbers, we can actually
subtract only the less from the greater; and if they consist of
several figures, we must subtract from each other those places
which are equally distant from the unit’s place or the decimal
point. Of course, in integer numbers, or numbers consisting
partly of integers, or partly of decimals, the greater number is
always that which contains the greater number of integer
places; and of two numbers which have the same number of
integer places, that which has the greater left-hand figure is
the greater. If the numbers consist of decimals as well as
integers, the greater is determined by the integer places, exactly
as above stated ; and if they consist wholly of decimal places,
the greater is that of which the significant figures begin nearest
the point; and if they begin at the same distance from the
point, the greater is that which has the greater first figure.
This depends upon the necessary and obvious conclusion from
the nature of the scale of numbers, that 1, in any place of the
scale, is greater than all figures which can possibly be written
to the right of that place.

But although the whole of the greater number and the whole
of - the less are thus easily discovered, that is, though it is easily
seen which is greatest and which least as a whole, it may happen
that all the figures of the greater number, except the left hand
one, are less than the corresponding figures of the smaller
number; and that thus, though the whole of the one will,
when taken from the whole of the other, leave a remainder,
yet that the differences of the individual figures appear to be
the other way. Thus 1000 is a greater number than 789,
because it contains a figure more; but 9, 8, and 7 are all



48 SUBTRACTION.

respectively greater than the figures which occupy the same
places in 1000. But it will be recollected, that, if we add 10
to any figure of a number, and one to the next left-hand figure
of any other number, we add the same thing to both numbers,
and consequently do not alter their difference. Hence, when-
ever the figure in the larger number is the less of the two, we
call it 10 more than it really is; and when we come to the
next on the left of the smaller number, we call it 1 more than
it really is, and thus we obtain the difference with perfect
accuracy. The difference of the above numbers, taken this
way, is 211.

In the subtracting of one number from another, or, which is
the same thing, finding the difference of two numbers, we never,
however large the numbers may be, have occasion at any one
step of the operation, to subtract a number larger than 10, or
to subtract it from a number larger than 19 ; so that the largest
difference we have to count at any one time is 9, and the average
is about 5, which is a very simple matter. But we may sub-
tract a considerable number of lines of numbers, with nearly
the same facility as one line; and in doing this we may have
occasion to add several 10’s to the figure of the larger number.
It is of no consequence, however, how many there may be, if
we compensate them by the adding of the same number of 1's
to the mext place to the left of the numbers which we are
subtracting.

When numbers which are added or subtracted contain deci-
mals, there are always as many places of decimals in the sum
or the difference, as there are in that one of the given numbers
which has the most, except in cases in which the adding or the
subtracting changes some of the figures on the right hand of the
sum or the difference into 0’s, and then the result is shortened
by as many figures as there are of these 0’s.
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There still remain two simple operations in Arithmetic, of
which we shall now very shortly consider the principles ; and
these, of course, form the third and fourth in the order in which
we have taken them.

MurrrrLioaTion (literally, “many-folding,”) is the process by
which we find the product of two numbers, that is, the result
which arises from repeating the one of them as often as is ex-
pressed by the other. If both are simple numbers, that is, num-
bers to which no particular values, expressive of real existences,
are attached, it is of no consequence in what order they are
taken; but in the case of real quantities there is a distinction, and
a very important one. In all cases the two numbers are called
the factors (the workers or producers) of the result or product ;
and in the proper understanding of them, the one factor, which
is called the multiplicand, is a number, and the other, which is
called the multiplier, is a number of times. As we have already -
said, the distinction between these is of no practical importance
in the case of simple or abstract numbers, because they do not,
in any case, express anything which has a real existence; but
still the difference between a multiplicand and a multiplier is
worthy of being borne in mind, even in them, because, if we do
not attend to the distinctions of things in the most simple cases,
they are sure to embarrass us in the more complicated ones.

We are, therefore, to understand, in all cases of multiplica-
tion, either that the multiplier is simply an expression for a
number of times, and the product, after it is obtained, is of
the same kind, and in the same denomination, or equal, unit for
unit, with the multiplicand; or that the factors are both real
quantities, and that the product is not any number of times either
of them, but a new quantity, of a kind different from both.

.There are only two common cases applicable to real quanti-
ties in which the product thus becomes a new quantity, alto-

E
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gether different in its nature from either of the factors; but
those cases are so important, that we require to bear them in
mind in all our reasonings about multiplications and products ;
we shall, therefore, very shortly advert to them here. ’

In the first place, every body who has at all thought on the
subject is aware that, if we wish to know how much measure
is in the surface of anything,—say of a rectangular table, that
is, a four-sided table, the opposite sides of which are equal in
length, and which also measures the same both ways from corner
to corner in the diagonal direction—one takes the length and
the breadth, both in the same measure, and multiplies them
together ; the result of which multiplication is the surface of
the table in squares of that measure in which the length and
breadth were taken. Thus, if the table in question were five
feet long, and four feet broad, it is easy to see that the surface of
it would contain twenty square feet, and that it would be of no
consequence whether we called this twenty square feet, four
times five, or five times four. But nobody will pretend to say
that this twenty square feet is either four times the length, or
five times the breadth of the table ; for length and breadth are
merely lines, and though we were to multiply either of them by
the largest number that could be imagined, the product would
still be a line ; for there is no more surface in a mile, or a thou-
sand millions of miles of mere line, in what direction soever it.
may lie, than there is in the ten thousandth part of an inch, or
in any other line, however short.

The product, in this case, is not, therefore, of the same kind with
either of the factors ; for neither of these, however it might be
multiplied, would produce the produet, or anything which could
be a part of it, however small. Neither are the two factors quan-
tities of the same kind, though they are expressed in the same
denomination, and obtained by the same kind of measurement.
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It is true that each of them, taken singly and without reference to
the other, is a measure of length, that is, the measure of a line ;
but in this sense neither of them can be a multiplier, in a8 much
as there is no meaning whatever in any such expression as “a foot
times,” or ““an inch times.” If we were to suppose that both the
four feet and the five feet, to which we have alluded in this
instance, mean either length or breadth, both meaning the same,
we could not, in terms of them, find the content or area of any
surface whatever; for if it were said that the table is five feet
long, and also other four feet long, or that it is five feet broad,
and also four feet broad, all the conclusion to which we could
possibly come from such data would be, that the length of the
table was nine feet in the one case, and the breadth of it nine
feet in the other. That the product of these two numbers of
feet represents a quantity having any meaning at all, is, there-
fore, owing to the fact of the two lines of which the measures
are given standing to each other in the geometrical relation of
length and breadth ; and the product of no two measures of
lines ever actually expresses a surface, or otherwise has a
definite meaning as a real quantity, unless the lines stand to
each other in this geometrical relation.

If two measures of lines which stand in the relation of length
and breadth, are both expressed in the same unit or denomina-
tion, the product always represents squares having all their sides
equal to that denomination ; but if they are in different denomi-
nations, the product expresses rectangles as long as the greater
denomination, and as broad as the less.

The other case requiring particular notice is that in whmh
there are three measures of lines which stand to each other in
the geometrical relations of length, breadth, and thickness. The
product of any two of those represents a surface of which these
two are the length and breadth. Thus, for instance, if a brick

E2
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is 9 inches long, 4 inches broad, and 2 inches thick, the content
or solidity is the product of 9, 4, and 2, or 72 solid inches.
Such a solid, which has its opposite faces and edges all equal to
each other, and all its angles or corners equal, is called a
parallelopiped, or rectangular prism. If the length, breadth,
and thickness, which ‘are called the three dimensions, are all
different, as we have supposed them to be in the case of the
brick ; the six faces consist of three pairs, which are all dif-
ferent, but the two that form each pair are equal, and oppo-
site to each other. Thus, if the brick is laid on one of its
largest faces, as it usually is in building, the top and bottom
are rectangles, expressible by the product of the length and
breadth, or they contain each 36 square inches in the example
which we have taken; the two sides are each the rectangle of
the length and thickness, or 18 square inches in our example ;
and the two ends are each the rectangle of the breadth and
thickness, or 8 square inches in our example.

Thus, in arriving at the content of the solid, we have three dis-
tinct kinds of quantities in succession ; first, the original multipli-
cand, which is a line, and it is of no consequence to the ultimate
result which of the three dimensions we use for this original
multiplicand ; secondly, we have a surface, as the result of the
multiplication of this by another of the lines, and it is of no con-
sequence which of the remaining two we use for this first
multiplier ; thirdly, we have the solid as the result of the
second multiplication, and in the multiplier for it we have no
choice, as the other two dimensions have been used in the
previous part of the operation. If, however, these three mea-
sures of lines did not stand to each other in the geometrical
relations of length, breadth, and thickness, the product would
not be a solid, or a quantity having any meaning. .

The numbers, of which the product representing the solid is
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composed, may have three distinct forms or values: first, if all
the lines are taken in the same unit or denomination, the pro-
duct will be cubes of that denomination; secondly, if two of
them are in the same, but the third different, every 1 in the
product will be a square of that denomination which occurs twice,
the one way, and the third or different denomination, the other
way ; and, thirdly, if all the measures are in different denomi-
nations, the product will consist of solids which have their three
dimensions respectively equal to their three denominations.
Though these correspondences between the product of two di-
mensions and a surface, and between the product of three dimen-
sions and a solid, are very simple, and also very obvious matters,
yet it is of importance to attend carefully to them, and notice
the difference which there is between the result in the case of
either of them, and, in any case of common multiplication con-
sidered in merely an arithmetical point of view. A clear
understanding of this becomes of the more importance when
we oonsider that this is the means by which Geometry and
Arithmetic are connected together ; and also, that the truths of
Geometry, how beautiful soever they may be in themselves, are
of no practical use, unless we can apply Arithmetic to them.
We have here three distinct kinds of arithmetical numbers,
answering to three equally distinct kinds of geometrical quanti-
ties. [First, we have simple or original numbers, which are not
the results of any arithmetical operation, and they answer to
lines ; secondly, we have products of two factors, which answer
to surfaces; and, thirdly, we have products of three factors,
which answer to solids. Though the fact of these products,
being really surfaces or solids, depends on the geometrical rela-
tion of the lines which the factors express, yet the products
themselves have exactly the same relations to the factors, and
arc found in exactly the same manner, whether the factors
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have the geometrical relation to each other or not. Therefore,
we may consider every product of two factors as representing a
surface, and every product of three factors as representing a
solid.

1t only remains to be shown how the product of two factors
is obtaimed, and what advantage we derive from the scale of
numbers in the performing of this operation. Here it is no¢
difficult to perceive and to understand that, on account of the
analogy or resemblance which there is between a product and &
geometrical relation, the geometrical element of the scale of
numbers—the exponents or indices of the different terms or
places—must be of far more use in multiplication, than it is
either in addition or in subtraction ; and upon this principle we
may resolve the operation of multiplying into two parts—the
particular product of the figures, and the exponent of that pro-
duct, or the place which it should havein the scale of numbers.
Both of these are necessary for determining the value of the
product ; and we shall see that it is of eonsiderable use to us te
be able to consider them separately.

If we had no way of considering the factors but as wholes;
the multiplication of even small numbers would be a* very
laborious matter. To multiply 6285 by 1000, would, in this
way, consist of counting 6285 a thousand times over; and this,
simple as it appears to be, would take a man just about feur
Yyears, counting 12 hours every day, at the rate of one number
per second ; but by Arithmetic it is done as fast as seven
characters can be written ; for we have, according to the ex-
planation given of the scale, only to make the 6285 thousands
instead of units; and this is done by adding three 0s on the
right, thus, 6285000. We are much accustomed to hear boast-
ings of the extent to which labour has been abridged by many
of the mechanical contrivances of modern times, and in most-
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cases these boasts are well founded ; but even the best of them
—the steam engine itself, which is “ the Lion” by way of
eminence—is absolutely nothing in power of abridgment to
the scale of numbers in Arithmetic ; and when we consider
that calculation is one of the essential elements, without which
not one of those mechanical contrivances could by possibility
have been arrived at, we must be careful not to lavish all that
praise and wonder upon the fruit, the greater part of which is,
in truth, due to the tree.

From the nature of the scale of numbers, every number
greater than 9 consists, in reality, of two or more numbers;
and every number consists of as many distinct numbers as there
are figures in it. It is of no consequence though some of the
right hand or the intermediate places should be occupied by 0;
for 0, when there are figures to the left of it in an integer
number, is an expression for ten times; and when there are
figures to the right of it in a decimal number, it is an expres-
sion for one-tenth, or division by ten.

In consequence of the advantages which we derive from the
acale of numbers, the largest single product that we need ever
to make use of, is 9 times 9; and this and all products of
smaller numbers are usually committed to memory from tables
in which they are inserted. But in this elementary part of the
business it is much better to learn these products by actual
counting, because it is more satisfactory, more convincing, and
more likely to be remembered with little trouble. Matters
which are committed to memory by mere drudgery, are rarely,
if ever, understood; and therefore it would be an excellent
rule for the elementary schools, to confine this labour to those
subjects which are not worth understanding; or not intended to
be understood.

When all the products of numbers under 10 have been
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learned, the next step of the business is to apply the principle
of the exponents ; and this principle is abundantly easy, because
the addition of the exponents, as has been already shown,
answers to the multiplication of the numbers; therefore, if
both figures are integers, or both decimals, the distance of the
product, or of its right-hand figure if it consists of two, from
the unit’s place, must be equal to the sum of those of the figures
from which it arises; but if the one figure is an integer, and
the other a decimal, then the distance of the right-hand figure
of the product from the unit's place will be the difference of
their distances, and on the same side with the greater, the nu-
merical product being exactly the same, whether the figures
multiplied are both integers, both decimals, or the one an.
integer and the other a decimal.

Also, each particular product of two figures is perfect in itself,
and independent of the others. As the whole of any quantity
is equal to all the parts, it of course follows, that, when all the
figures of the one of two factors have been multiplied by all the
figures of the other, and the results collected into one sum by
addition, this sum is the true product of the whole of the one
factor by the whole of the other, in the same way as if it were
obtained in one original amount by the process of counting,
withcut the aid of any scale of numbers, which, as has been'
already mentioned, would be so exceedingly tedious even in
the case of numbers which are not very large.

If the factors in multiplication consist wholly of integers,
then the product also is wholly integers, and the right hand
figure of it, whether it happens to be O or anything else, is
units ; but if there are decimals in either or both of the factors,
the product must obviously contain as many places of decim;l;
as there are in them both, though it may happen that one or
more of the right hand figures are changed into 0s by the mul-
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tiplication. If both numbers, or any of them, be wholly deci-

‘mal, it sometimes happens that the whole product does not
contain so many figures as there are decimal places in the
factors ; and when this happens to be the case, the deficiency
must be supplied by prefixing between the product and the
decimal point as many 0s as shall make the number of decimal
places equal to that in both factors.

As our present object is not to teach the practice of arith-
metic, but to explain the simplest elementary principles, and to
explain these only so far as that the advantage of the scale of
numbers in the simplest operations may be seen, we shall only
further remark on the operation of multiplying, that that opera-
tionmaymake the product greater than the multiplicand, or equal
to it, or less, according to circumstances. If the multiplier is
‘greater than 1, the product must be greater than the multiplicand ;
if the multiplier is less than 1, the product must be less than
the multiplicand ; and if the multiplier is equal to 1, the pro-
duct must be equal to the multiplicand. This follows from the
definition of multiplying, which means repeating a quantity as
often as is expressed by another. From this it will be seen
that in every case of multiplication the product must bear the
same proportion, or ratio, or relation (for in mathematics all these
words have nearly the same meaning,) to the multiplicand that
the multiplier bears to the number 1. This principle is one of
very extensive and important application ; but we shall be better
ablo to explain it and understand its use when we come to the
consideration of quantities generally, or unfettered by arith-
metical expressions. We shall therefore proceed very shartly
to notice the fourth arithmetical operation.

Daviston (literally “seeing as two, or, as parted.”}—The com-
mon notion that we have of the operation of dividing, is that of
separating a quantity into two or more parts; and hence the
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problem of which arithmetical division is the solution is often
enunciated in words similar in meaning to these:—*“To find any
proposed part of a given number.” But this definition is not
general enough, because we always consider a part as being less
than the whole, while the nurber which we find by division may
be less than the given number, equal to it, or greater, according
to circumstances.

The real problem is, *to express one quantity in terms of
another, this other being considered as one, whether it be arith-
metically expressed by the number 1 or by any other number.”

All simple or abstract numbers, whether integers or decimals,
are expressed in terms of the number 1, as. they are all brought
to the unit’s place, by adding 0s to integers and prefixing them
to decimals when necessary. The number which expresses the
one of two numbers in terms of the other must also be expressed
in terms of the number 1, otherwise its value would not be
known according to that standard by which we measure the
values of all simple numbers. Therefore the general problem
in division resolves itself into this: ¢ To find a number which
shall have the same relation, or ratio, or proportion, to the num-
ber 1, which the one of two given numbers has to the other.”

The number in terms of which the other is to be expressed
is enabled the divisor, which means the ¢ divider,” the measure
or instrument of division ; the number which is to be expressed
in terms of the divisor is called the dividend, which means
the “ divided,” the subject of the division ; and the resulting
number, which expresses the dividend in terms of the divisor,
is called the quotient, which means * as much, or as many, as
there shall be.”

This last is a vague or indeterminate expression ; and that it
should be so is necessary in order to include all cases. The
reason of this will become apparent when we consider that two
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conditions are required in this quotient,and these two condi-
tions may or may not agree exactly with each other, according
to the particular case. The quotient must express the dividend
in terms of the divisor ; and this is the quantity actually sought,
80 that no deviation from it can be admitted. But again, the
quotient must be esfpressed in terms of the number 1, in order
that it may come within the limits of common arithmetic, and be
of use in practice. Now, though these two modes of expression
are in many cases perfectly compatible ; yet any one will readily
see that it is not necessary they should be so; for, the number 1
is & fixed and invariable standard in the case of abstract or
gimple numbers,—though it does not represent one of any par-
ticular kind of quantities, but stands ready to express all oned,
of what kind soever they may be, and whether in themselves of
greater value or of less. A divisor, on the other hand, may be
any thing: it may be 1, a number of times 1, less than 1, an ex-
pression which is not 1, or a nameable number of times or part of
1; and in the last case the quotient cannot of course be expremed
in terms both of 1 and of the divisor.

A very simple instance will illustrate this: the number 10,
a8 it is written, is expressed in terms of the number 1 only,
because, according to our common notation, it expresses ten 1’s.
Now, suppose that it were required to express this 10 in terms
also of the number 2, it is evident that the expression would be
5, because 5 times 2 and 10 times 1 are exactly the same. The
number 10 is therefore capable of being expressed both in terms
of 2and 1. But let us endeavour to express it in terms of the
number 3, and we find that the quotient is not expressible in
terms of the number 1; the nearest expression which we can
find is 3, but three 3's make only 9, and we want a number
of 3's that shall make 10 ; 4 will not do, because four 3's make
12, which is 2 more than 10. Therefore, in integer numbers,
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all that we can arrive at is three 3's, and 1 over or remaining.
But we can get some more of the expression in decimals, for
upon the same principle that 1 ten is 10 ones, 1 unit is 10
tenths, and the result of this is 3 and 1 tenth over: 1 tenth is
10 hundredth parts, so that we again have 3 hundredth parts
and 1 over; and if we continue to ever so many places of deci-
mals we shall always have the same number 3 and 1 over ; so
that the number which expresses 10 in terms of 3 cannot be
exactly expressed in terms also of the number 1, so as to be
brought within the scale of arithmetic, either in integers or in
decimals. To whatever length we carry it, it is 3.33333 and 1
of the last place or term divided by 8, or 10 of another place
more to the right, remaining to be expressed in terms of the
number 3, and so on—without end.

We shall have occasion afterwards to point out the circum-
stances which determine when a dividend can be expressed in
terms both of the divisor and the number 1, and when it can-
not ; and all that we require to know in the mean time is, that
this expression is sometimes possible and sometimes not.

With this understanding, that the dividend is sometimes equal
to the produet of the divisor by a number which is expressible
by common notation in terms of the number 1, and sometimes
not, we may consider division as exactly the converse or oppo-
site of multiplication ; and the general problem into which it is
resolvable to be, “given a product and one of the factors to find
the other factor.”

Simple as this problem appears to be, there is no way of
solving it directly, with the consideration that both divisor and
divident are wholes, but by trial ; and even in a very simple
case, the number of trials before the quotient, or even a near
approximation to it, could be obtained, would be very great—so
great, that success would be altogether hopeless.
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But, as this is the most difficult of all the simple or ele-
mentary operations in arithmetic, so the scale of numbers
comes more effectually to our aid than it does in any other.
By means of it we are enabled to resolve that which we seek
into two parts : first, the number of figures or places of which
the quotient or number sought shall consist; and secondly,
what these figures shall individually be. As no individual
figure can be greater than 9, there cannot be more than about half
that number of trials necessary, even for mere beginners; and a
very little practice enables us to choose the proper figure with-
out any trial. The rule for the number of figures in the
quotient may be understood with equal ease: as many figures
on the left of the dividend as will contain the divisor once and
not more than nine times, will give the first or left hand figure
of the quotient, and every additional figure which remains of
the dividend will give one figure more. If there is a remainder
after all the figures of the dividend have been used, the division
may be continued decimally by adding 0’s to the successive re-
mainders, till it either terminates or is carried as far as may be
thought necessary. If the dividend is less than the divisor, the
quotient must evidently be less than 1, or consist wholly of
decimals ; because a smaller number does not make 1, in terms
of a greater, as, for instance, 7 does not make 1 in terms of 8,
and therefore the quotient of 7 divided by 8 can be expressed
in the scale of numbers, or in terms of the number 1, only by a
decimal number, the whole of which, of how many figures
soever it may consist, is less than the number 1. When the
quotient is thus wholly decimals, the first or left hand figure of
it must evidently be as many places to the right of the decimal
point as there are decimal places used in obtaining that figure.

Beginners sometimes find a little difficulty in the division of
decimal numbers, not in obtaining the figures of the quotient,
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because these are found in exactly the same manner, whether
the dividend and divisor are both integers, both decimals, or
partly the one and partly the other, but in determining rightly
the situation of the decimal point. This difficulty may be
easily got rid of by attending to the following considerations :—
Every number, whatever it may be, expresses a number of its
right hand figure; thus 3500 expresses thirty-five hundreds,
because 5, the right hand figure, is in the place of hundreds;
850 expresses thirty-five tens, because 5, the right hand figure.
is in the place of tens ; 3.5 expresses thirty-five tenths, because
6, the right hand figure, is in the place of tenths ; .035 expresses
thirty-five thousandth parts, because 5, the right hand figure, is
in the place of thousandths; and the same of any other num-
ber, whatever number of figures it may consist of, and how far
soever its right hand figure may be, integrally to the left, or
decimally to the right, of the decimal point, always expresses
as many of the place of that figure, as it would express of units,
or of times the number 1, if its right hand figure were in the
unit’s place. '

From this, it evidently follows that the arithinetical expres-
sion of two numbers according to the scale does not express the
proportion of their real values unless their right hand figures
occupy exactly the same place in the scale, that is, be at exactly
the same distance from the decimal point, whether to the left
hand of it or to the right.

We are in the habit of expressing all integer numbers in
terms of the number 1, which is accomplished by simply sup-
plying as many 0’s as will bring the number down to the unit’s
place ; thus one 0, if the number is wholly tens, two Os if the
number is wholly hundreds, three 0’s if it is wholly thousands,
and so on; and it is evident that every 0 which we thus add
multiplies the numerical expression of the number by 10, that



DIVISORS AND DIVIDENDS. 63

is, makes it ten times greater in number, but not any greater
in its whole value; so that every O thus added makes each
individual figure of the number only one-tenth part of what it
was without the 0, or we have ten times as many as we had
before ; but each 1 of that number is ten times less than it was
before, and thus the entire value is not in the least altered.
Two 0s increase the number one hundred times, and make
every 1 of which it is composed only one-hundredth part of
what it was ; and generally whatever number of 0's we annex
to the right of a number, without altering the whole value of
that number, we divide each individual 1 which the number
contains as often by 10 as there are 0’s.

By the application of this principle any number whatever
may be expressed in terms of any lower place in the scale,
whether integral or decimal, by annexing as many ciphers to
the right of it as shall bring it down to the required place; and
therefore, when we have a divisor and dividend which contain
different numbers of decimal places, we have only to add to that
which has fewest as many 0’s as shall make its number eq;
to that in the other, and then divide the one by the other
exactly the same manner as if they were both wholly integers
and the right hand figures of them units. Of course, whatever
figures of the quotient are obtained from the divisor and divi-
dend so prepared, must be integers, but if more 0’s be annexed
either to the dividend or to the remainders, there must be a
decimal place in the quotient answering to each of them.

The principle which this involves is the most important one
in the whole science of arithmetic; because it enables us to
separate the absolute values even of numbers from the numerical
values of them, and thus to consider their relations generally ;
and, it is the application of those general relations which is our
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chief element in the finding of unknown quantities by means
of known ones; for, if we have a quantity of the same kind
with that which we seek, and know the relation which this
quantity bears to that which we seek, we are in a condition for
finding the value of the unknown quantity, in terms of the
known one. This part of the subject is called the doctrine of
PROPORTION, that is, the doctrine of the relation which the mag-
nitude, or value, of one quantity taken as a whole bears to that of
another quantity taken as a whole. In order to have this rela-
tion, the quantities must be such that we can at once say that
they are equal, or that one of them must be greater than
another; and if they are expressed in numbers, those numbers
must be expressed in terms of the same place in the scale of
numbers; for if the arithmetical expression were not of this
description, the numbers would express a different ratio from
the quantities. A very simple instance will serve to illustrate
this: there is a certain ratio or proportion between 7 sove-
reigns and 8 guineas; but it will be at once seen that this is
not the ratio of the numbers 7 and 8, because 1 in the one of
them is not equal to 1 in the other of them, for a sovereign is
equal to 20 shillings and a guinea to 21 shillings ; and there-
fore, before we can find two simple numbers which will express
the ratio, we must turn both into their values in shillings, which
is evidently done by multiplying the sovereigns by 20 and the
guineas by 21, which numbers are 140 and 168. But if we
look at the numbers which we multiply, we find there is 7 on
the one side, and 21, or three 7’s, on the other ; and again, that
there is 20 or five 4's on the one side, and 8 or two 4's on the
he 7 and the 4 out of both
swering to the 7 sovereigns,
sas ; and if we take the pro-
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ducts answering to each, we have 7 sovereigns to 8 guineas, in
the ratio of 5 to 6, which is really a more simple ratio than that
of the numbers.

Before proceeding to the explanation of this doctrine in such
a manner as to have clear notions of its usefulness, and due
expertness in the application of it, it becomes necessary to intro-
duce principles more general than can be introduced by means
of the common arithmetical figures ; because we have seen that
the numbers in which quantities are presented to us do not
necessarily express the ratios of those quantities of which they
are the arithmetical names; and also because, as we have
already partially seen, from the impossibility of dividing some
numbers exactly by some others—as we shall afterwards see
more at length—all ratios are not expressible in terms of 1
in any place whatever of the arithmetical scale. We shall
therefore only mention farther, that as the product in multi-
plication, when divided by any one of the two factors, must
necessarily give the other factor as quotient, it follows that the
quotient of a number accurately expressible by the scale,
divided by one not accurately expressible, may be a number
accurately expressible. We shall now proceed to the consi-
deration of quantities generally, and without any reference to
whether they. can or cannot be expressed arithmetically by
numbers.

SECTION V.
GENERAL OR ALGEBRAICAL EXPRESSION OF QUANTITIES.

It is a general rule in nature, in art, and in science, that
everything which is peculiarly well adapted for the accom-
plishment of some one particuldr purpose, is, for that very

F
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reason, the worse adapted for every other purpose. This is
remarkably the case with the scale and notation of numbers
in our Arithmetic. It is difficult to imagine any means by
which individual operations im numbers could be performed
with so much ease and certainty ; but the great facility and
precision with which we are able to manage each particular
case, become obstacles in our way when we attempt to investi-
gate general principles. The whole expression—all the charac-
ters which are before our eyes, apply to the particular case only,
and each number tells us nothing but its relation to the scale.
There is no trace of the operation in the result, and very often
there is not a vestige of the original or given numbers, by which
the result has been obtained. Thus, for instance, 49 is the
product of 7 by 7; and the product of no other two integer
- numbers, except of 49 and 1, which is not, properly speaking, a
product at all. But there is nothing in 49, as it appears arith-
metically, to let us know that it is the product of 7 by 7, or of
any two numbers whatever ; and any one who bad not learned
by rote the products of all numbers up to 9 times 9, or 81,
would be just as likely to suppose that 47 were the product of
two numbers; but we find by actual trial that 47 is not the
product of any two numbers, each greater than the number 1.
Even in the very simplest instances which we can take, we find
no trace whatever either of the given numbers, or of the opera-
tion, in the result. & is the sum of 2 and 3; but there is no
appearance in it, either of its being connected with 2 and 3, or
of its being a sum at all. It is one simple and original mark,
and leads us to think only of a number of times 1—of a short
expression for the same number of dots (. . . . .).

An arithmetical expression does not, thus, give any account of
itself, and an arithmetical operation has no story to tell. How-
ever long and complicated, however short and plain, however
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tedious from want of the knowledge of principles, or simple from
the possession of this knowledge, such an operation may be, it
offers no instruction to the ignorant ; for though some of the
numbers may appear as data, or as being originally given, and
others as results; yet all that is done in order to obtain the
results from the data is concealed ; and, in order to understand
the operation, the student must bring to it the very same degree
of knowledge which was required for the original performing of
it. A book might be filled with such operations, but it would
be a book containing no knowledge ; and as we cannot separate
the principles from the particular numbers contained in the
example, the only knowledge that we can obtain is a set of
empirical rules, the truth of which we have no means of
bringing to the test.

It is for these reasons, that the arithmetic which we usually
learn at school is not only wholly useless to us as an instrument
of knowledge, but acts as a barrier in our way when we attempt
to understand anything of the other branches of mathematics.
It is as if we were to sow flowers, and expect them to spring
up, and grow, and produce a crop of plants. The principles of
vegetable life are in the flowers, but they are not developed :
the development is in the seed, and that seed we cannot obtain,
if we separate the flower from the parent plant. Just so, when
we are conversant with numbers only in the way of the common
arithmetical operations, we are without the principles of know-
ledge in such a state as that one part may be fruitful of other
knowledge.

There is this farther disadvantage in the application of em-
pirical rules of which we do not comprehend the meaning and
in the performing of operations the reason of which is a mystery
to us, that we never enter heartily upon such subjects, and
never at all, if we can avoid them. Now, as this repulsive

F2
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matter meets us at the very threshold of reasoning, the mis-
chief which it does to our powers of reasoning, upon all subjects,
is'incalculable ; and as the investigation of mathematical truth
is the only means by which the mind can acquire the confidence
of truth in all matters of reasoning, it is not easy to calculate
how much of the intellect of the world is condemned to lie
useless by this cruelly absurd practice, which gives us the full
measure of the labour without any of the advantages. We at
once get rid of all these difficulties if we have recourse to
Algebra, and so make ourselves masters of the principles, before
we apply them arithmetically to particular cases. It is a very
general opinion that there is something mysterious and difficult
in Algebra, but no opinion can be more erroneous; it is as
natural to the buoyancy of the youthful mind as running is to
the vigour of young limbs, only the arithmetical notions (or
rather want of all notions) act as a trammel upon us—our feet
are tied before we are allowed to run.

AvrceBRra literally means “the consolidation”—that which
sets the whole matter before our eyes in the clearest manner,
and in the smallest possible compass. The name is very faith-
fully degeriptive of the science; and surely being complete,
being clear, and being brief, are not very like the usual causes
of difficulty and mystery! Every quantity, every relation, and
every operation, is fairly marked down; so that one line, or
often one single expression consisting of only a few letters and
marks, tells a longer story, gnd tells it more clearly, than if it
occupied a whole volume in the common words of language.
The end is thus seen from the beginning, and all the steps of
the most complicated operation are shown at a glance, with a
satisfaction to the mind which cannot be obtained by any other
means.

As this is accomplished without any reference to the nume-
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rical values or expressions of quantities, all results which are
arrived at become general, and are applicable to all quantities
of the same kind which have the same relations to each other.
Thus every algebraical operation is the investigation of a truth,
and every result of such an operation becomes a rule for the
solution of all arithmetical questions which depend on the
knowledge of that truth.

The means by which all this is accomplished are so exceed-
ingly simple, that perhaps nobody ever arrived at the knowledge
of the more elementary ones, unincumbered by arithmetical
considerations, without wondering why he should have required
any teaching. There is only an alphabet to learn, and it is a
very short one ; and when we have once mastered this, if we
understand any subject in itself, we can be at no loss in ex-
pressing and treating it algebraically, This alphabet forms
what we may call

ALGEBRAICAL NOTATION.

There are two ways of viewing the same quantity : we may
oonsider it simply as one whole, or we may consider it as in
some way made up of parts, or as the result of some operation ;
and though the quantity may be in both cases exactly the
same, yet, as in Algebra we must express all that we mean
and all that we do, we must have the means of pointing out
whether we view the quantity simply as a whole, or as a
compound or result.

When we consider a quantity simply as a whole, we express
it by the very shortest name or mark which we can possibly
use, namely, a single letter of the alphabet—one of the letters
near the beginning, as a, b, or ¢, if the quantity is a known
one; and one near the end, as #, y, or 2, if the quantity is
unknown. ’
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This use of the letters is purely arbitrary; but they are at
least as good as any other marks, being simple and familiar to
everybody. In English, the letter a is peculiarly happy as a
general expression for quantity, because, as a word, it is the
most general and indefinite in the language. @ man, or a book,
is the most general expression that we have for one man or
book ; and if we leave out the name, and use a alone, then it
means any one thing, or circumstance, or relation whatsoever,
which we can imagine to be a quantity.

The expressing of unknown quantities as well as known
ones in Algebra, is a very great advantage, because it enables us
to state completely those relations by means of which we arrive
at the value of the unknown quantity in terms of known ones.
* When Algebra was first introduced into Europe, it was named,

from this circumstance, Cossics, from the Italian word coss, a
thing—*¢ the thing sought,” being written among the data, as
-well as the things which are given.

Though the letters used in algebraical notation have no fixed
numeral values, yet the same letter is never used for two dif-
ferent values in the same operation, but is understood to be the
same at every step ; or if it acquires & new value, which cannot
be expressed by other quantities or relations, the new value
must be expressed by an accent, or some other mark : thus, a
for the first value, a’ for the second, a” for the third, and so on.

This mode of expression is not required in elementary cases.

When a quantity is considered as compound, there must be a
letter, or other expression, for each part of which it is com-
posed ; and, in addition to these, there must be some means of
pointing out the relations in which the parts of the compound

stand to each other.

The simplest form in which a compound quantity can exist,
is that in which it is formed of two simple quantities; and
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there are four leading relations in' which the very same two
parts of a compound quantity can stand to each other, all of
them giving different values to the compound quantity as.a
whole.

The two parts may, in all these cases, be represented by the
same two letters, as a and b.

The first general relation is that of the addition of the two
quantities, which is expressed by putting the sign + (plus)
between the two letters, thus, a + b, which is read, “a plus
b,” and means the sum of the two quantities which are expressed
by a and b.

The first quantity, a, which has no sign before it, is also
understood to have the sign + ; and therefore it is of no con-
sequence to the value of the whole expression whether we write
a+b, or b+ a; for it is evident that the sum of the same
quantities is the same in whatever order we take the individual
quantities. A pound, a crown, and a shilling make twenty-six
shillings, whichever of them we take first, or second, or last.

Here it may not be improper to notice the method of repre-
senting the very simplest relation which the whole of one quan-
tity can have to the whole of another, whether they be both
simple, both compound, or the one compound and the other
simple—namely, the relation of perfect equality. This is done
by writing the sign =, which is read ¢ equal,” or “equal to,”
between the equal quantities: thus, @ +b=1>5+ a, expresses
that the sum of a and b is equal to the sum of b and a. If
we were to consider this sum as one whole and simple quan-.
tity, and represent it by & new letter, as by the letter s, then
we might write a 4 b = s.

The second general relation of the two parts of a compound
quantity to each other, as affecting the value of that compound
quantity, is that in which the one of them is subtracted from the
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other. This is expressed by prefixing the sign — (minus) to
the quantity to be subtracted. If b is the subtractible quantity,
the expression is a—b; but if @ is the subtractible quantity,

" then it is b—a. But these two expressions are not equal to
each other, except in one particular case, that in which a =5,
and then, both a—b and b—a are equal to 0. In every other
case, the value of the one expression is greater than 0, and that
of the other less ; and the one is just as much greater than 0, as
the other is less. If the smaller of the two quantities has the
sign —, the value of the two will be greater than 0; and if the
greater has the sign —, the value of the two will be as much
less than 0 as it is greater in the other case.

Here it is necessary to mention the means of expressing
another. relation of the whole value of one quantity to the
whole value of another; namely, the relation of inequality.
But mere inequality is not a definite relation from which any
useful conclusion can be drawn : for, as either of the two quan-
tities may be the greater, we are left with two opposite mean-
ings, both equally applicable, if we do not know which of the
quantities is the greater; and so, if we have not the means of
determining this, the fact of their being unequal can be of no use
to us. But if we know which quantity is the greater, the rela-
tion of inequality becomes useful, whether we happen to know
by how much it is greater or not; for the simple fact of being
greater or less is all that we may have occasion for in some
cases. Now as the relation of equality is, as already men-
tioned, expressed by writing between the quantities, the sign =,
consisting of two lines, equally open or apart from each other
at both ends, inequality is very naturally expressed by 7,
which consists of two lines, open at the one end but meeting at
the other ; and the open end is turned to the greater quantity.
Thus, if a is greater than b, we may express the fact by a 7,
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which is read, “ a greater than b;” or we may turn it the other
way, b/ a, and read, “b less than @,” which is the very same
meaning differently expressed. If a7, then it follows that
a—b7b—a, or b—a/ a—b.

Though + is the sign of Addition, and — the sign of Sub-
traction, they have a much more extended meaning than those
operations have. The sum of two quantities may always be
expressed by a+ b, and the difference by a—b, if a 75, or by
b—a, if b7a; but we can use the expression a+b, or a—b,
in cases where arithinetic could not be applied. @ and b may
be any two quantities, whether of the same kind or of different
kinds, and whether it be or be not possible to express them
arithmetically.

We must be careful also not to confound this general or
algebraicat use of the signs + and —, with the particular use
of them as applied to exponents, of which we gave some account
when endeavouring to explain the scale of numbers. Thus, in
the two expressions a +b and a*?, the sign 4 has very different
meanings. We may remark, that in the expression a'?, it
is not necessary to write the sign - before the exponent *, any
more than before the quantity a, for the position of * shows
that it is an exponent not a simple quantity, and we never
write 4 before the first character of any expression, that being
always understood to leave -, unless — is prefixed to it.

Well, let us return to a+b and at?, retaining the sign in the
second quantity, which, though not necessary, does not alter
the value, as the exponent is really + in all cases where it has
not —. In order that we may get definite values, let us take
-a particular case, by using numbers for the letters ; and as a and
b are perfectly general, we may use any numbers for them. So
let us call a=>5, and b=4. Then a+b will become 5+ 4, and
a+® will be 5 ¢ or without the sign 5%
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Let us now find and compsre the values of these expres-
sions: 54 is the sum of 5 and 4, which, by counting, we find
to be 9; therefore, if a =5 and b=4, then a+b=4+5=9.

Now for the other quantity, 5+*or 5¢. The 4 here is an expo-
nent, and means the number of times that 1 is to be multiplied
by 5. One multiplication gives us 5 ; a second, five times 5, or
25 ; a third, five times 25, or125 ; and the fourth or last one, five
times 125, or 625. So that if a=5 and +*—=4; then a*t?=051*
or 54=625, which is a very different value from 9.

-Let us now examine the case of the same expressions, in
which the second quantity, b, has the sign —, a—b, and a—*.
In this case we cannot dispense with the sign — before b in
either expression : so let us use the same numbers as before,
and get the values. If a=5 b=4, then a—b=5—4=1. So
that the value of the first is 1.

Then for the second: 5—4, from what was said of expo-
.nents, means that 1is to be divided four times by 5. Once
dividing gives us two tenths, or .2; a second time, .04; a
third, .008; and a fourth, .0016; so that if =5, b=4, then
‘a~*=5—*=.0016 =sixteen ten thousandth parts of the number
1. If we express 1 and this number both in terms of 1 unit,
we have 1=10000 and .0016 =16 ; and if we divide the greater
by the less, we have 625; so that if a=5, b=4, then a—b,
‘though equal only to 1, is 625 times as much as a=3. There is
another meaning of exponents, in which the sign — indicates a
different result ; but this can be noticed with more advantage
afterwards.

When we say a—>b, the quantity expressed by b has exactly
the same numerical amount, if it be such as that we can
exhibit it in numbers, as when we say a-b; but it has a very
different effect upon the whole value of the expression. We
have seen that when =5 and b=4, a+b=9, and a—b=1,
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the difference of which values, or 9—1, is =8; and 8 is equal
to twice b. But a is the same in both expressions, and there-
fore it does not affect the difference, so we may leave it out in
both; and we have this general expression: the difference
which the same quantity with the sign 4 and the sign —
makes on the total value of any compound quantity of which it
forms part, is equal to twice that quantity : hence, if we change
the sign of any part of a quantity from — to -+, we add twice
that quantity to the whole ; and if we change the sign from +
to —, we take away twice that quantity from the whole.

<+ has, thus, always an increasing or augmenting effect, to
the full extent of the quantity of which it is the sign; and —
has always a diminishing effect, to the full amount of the quan-
tity of which it is the sign. They are thus the opposites of each
other; and whatever is done by the writing of a quantity with
the one sign is undone by writing the same or an equal quan-
tity with the other. Thus 4+ b—5=0; and a 4 b—b=a.
Generally, any quantity, relation, or anything else that can be
expressed with the one of these signs so as to have a meaning,
has the very opposite meaning with the other sign. When this
meaning is a real value which can be expressed by means of
numbers, the two signs applied to the same quantity may be
considered as lying on opposite sides of 0, and equally distant
fromit. O in this case, must not, however, be confounded with
0 considered as an exponent ; for the exponential 0 means the
quotient arising from the division of a quantity by itself, which
i8 of course always equal to the integer number 1, while 0 con-
sidered with regard to the general value of quantities, really
means nothing ; and upon this principle, the sum of two equal
quantities, one with the sign +, and the other with the sign
~ , is always equal to nothing.

Every part of a compound quantity which is separated from
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the other parts, either by the sign + or the sign —, is called
a term of the quantity ; and if they are different quantities,
used as such, expressed by different letters, each has, of course,
a different name ; and the words, binomial, trinomial, and so on,
may be used, according as the quantity is made up, of two, of
three, or of more terms: a+4b or a—b is a binomial ; and as
quantities are of considerable use, considered in this point of
view, it is necessary to bear in mind what is meant by a
binomial.

Though a quantity may be expressed in any number of
terms, with the signs + and —, or either of the two between
them, it is often necessary to consider it as one whole or simple
quantity. This is expressed either by drawing a line over the
‘whole of it, which line is called a vinculum or band, or by
enclosing it within parenthesis ;—thus a+b, or (a-+b) means
the sum of @ and b considered as a whole quantity, The pa-
-renthesis is the preferable mode of expression; because these
characters mark the beginning and end of the quantities which,
taken altogether, are to be considered as one whole. Thisis a
double method of expression, and points out at once the whole
quantity, and the parts of which it is composed. It is, conse-
quently, of considerable value in Algebraical notation.

It is necessary that every one who wishes to understand any
thing of Algebra, or indeed of the principles of any kind of cal-
culation, should have very clear notions of the nature and differ-

" ence of the signs 4 and — ; and it is for this reason that we
have examined them somewhat more in detail than we shall
be able to do many other parts of the science.

The third general relation of theparts of a compound quantity,
is that in which they are factors, and the expression is their
product. There are several ways of doing this: if the factors
are single letters, their product may be expressed by writing
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the one after the other, without any sign between them ; thus,
ab is the product of the quantities ¢ and b. In a product, one
of the factors, namely, the multiplier, is always a number ; for
the product means the multiplicand taken as many times as is
expressed by the multiplier, though this number of times may
or may not be expressible in terms of the number 1, or according
to the common scale of numbers. But every thing, whether
expressible by the common notation of arithmetic or not, is
expressible by Algebra; and therefore while 3 a or 4 a, is an
arithmetical expression for one known number of times the
quantity @, n a may be considered as a general expression for
any imaginable number of times the quantity a, whether that
number can or cannot be expressed arithmetically.

But a quantity which is compound may be a factor in mul-
tiplication, as well as a quantity which is simple and as such
expressed by one letter. Thus a+b, a—b, or a b, may be
multiplied by any quantity whatever ; and we require to have
a means of expressing the multiplication in this case, without
the performing of any operation. If we are to multiply a
simple product, as a b, by another factor, for instance, c, we
have only to join ¢ to the others, without any sign, thus a b ¢ is
the product of @ b, by the third quantity c¢. If the multiplier
were also & product, as for instance, ¢ d, we would have only
to joint them to the other letters; thus a b ¢ d expresses the
product of a b by ¢d. From this we can draw some inferences
which are not unimportant in the practice of calculation,—
namely, that, if we have to find the product of any number of
factors, we may take them in any order that we please ; and that
to multiply either factor before multiplying, produces exactly
the same result as multiplying the product after.

If one of the factors in a product consisting of only one
term is a number, that number is usually called the numeral
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coefficient of the letters; that is, of the factor or factors which
are expressed By letters ; and even though all the factors of a
simple product are letters, it is usual, when one of them ex-
presses an unknown quantity and the others known ones, to
consider the product of the known ones as the coefficient of the
unknown. Thus, in the expression 3 @, 3 is the numeral co-
efficient of @ ; and in a b 2, the product of a and b is the co-
efficient of #. We need hardly mention that a numeral
coefficient is always definite, and means as many times the
other part of the term as the number expresses ; but that a
coefficient consisting of letters is general, and does not mean
. any definite number of times, unless the letters stand for
quantities of which the numeral values are known. Thus
@ b x, without further explanation, means any number of
times whatever, the quantity represented by x; but if a =5,
and =4, then their product is 20, and a b #=20 x. The
doctrine of coefficients, as distinguished from the quantities of
which they are the coefficients, is one of considerable import-
ance ; for, although the name “coefficient” means merely a
“ worker together” with the other factor or factors of the
product, yet the coefficient always means a multiplier, or
“number of times;” and the other factor, or their product,
if there are more than one, means a multiplicand, or that
which is multiplied; and when the term means a real quantity,
that quantity is always of the same kind with the part which
is not the coefficient, and of the same number with that which is.

There are other two considerations in the case of terms which
are simple products, that is, which are affected only by one
sign + or —, to which it is necessary to pay attention. These
are, first, when the factors are all the same with each other, or
are or may be expressed by the same letter; and secondly, the
sign which the product shall have.
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When the same letter occurs more than once as a factor in a
term, the number of times that it occurs may be expressed by
an exponent: a numeral exponent, if the number of times
that the factor is repeated is known, and a literal exponent if
the number is not known. - Thus a a @, may be expressed by
a3; bbbbby b*; aabbb, by a® b3, and the same in all other
cases.

The sign of the product of two factors, whether those factors
are expressed by the same letter, or by different letters, depends
upon the signs which the factors have; but the algebraical
expression of the product by letters, or the arithmetical ex-
pression of it if it admits of being arithinetically expressed,
is the same for the same factors whatever their signs may be.
Thus, the product of a by b, is always ab; and if they both
have the sign 4 or, which is the same, are written without
any sign, the product will have the sign 4, or may, if it
stand alone, or first in a quantity consisting of more than term,
be written without any sign.

The reason of this is quite obvious; for the product of a
and b, that is of +a and b, means that the one considered as
a positive or real quantity is to be taken or repeated positively,
as many times as the other expresses.

If the one has the sign 4 expressed or understood, and the
other the sign —, the product must have the sign —; because,
if we are to consider the -, or positive quantity, as the multi-
plicand, and the —, or negative quantity, as the multiplier,
then the meaning of the product is, that the positive quantity
shall be taken away as often as is expressed by the multiplier ;
and, on the other hand, if we consider the —, or negative
quantity, as the multiplicand, and the -, or positive one, as
the multiplier, then the negative quantity is to be added as
often as is expressed by the positive multiplier ; and the ad-
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dition of a negative quantity is the same as the subtraction of
an equal positive quantity. Thus, the product of a and —b,
or of band —a is always —a b, whether the one or the other
be the multiplier.

But if they both have the sign —, the product will have the
sign +, and will be exactly the same as if they both had the
sign 4 ; that is, the product of —a and —b is exactly the
same as the product of 4a and +b, or of a and b, that is,
it must be 4a b, or ab.

This case appears a little strange, and even inconsistent, to
beginners ; because the factors —a and —b are not only dif-
ferent from +a and +b, or from ¢ and b without any signs;
but each of them with the sign — is twice itself less than it is
with the sign +; —a being equal to a—2a, and —b to b—2b.
Each of them with the sign — is just as much less than 0, or
nothing, as it is greater than 0, or nothing, when it has the
sign +.

At first sight it seems rather singular that two quantities,
each of which is all that it expresses less than nothing, should
have exactly the same real and positive product as if each of
them were all that it expresses greater than nothing ; and yet
a very little consideration will convince us that such must be
the case. If the multiplier is negative, or has the sign —, the
multiplicand must be taken away as often as is expressed by
the multiplier ; and it depends on the nature of the multipli-
cand what is to be taken away this number of times. If the
multiplier is positive, a positive quantity equal to the product
must be taken away, that is the value must be diminished to
the whole extent of the product; and if there is nothing besides
this product, all that can be done is to mark it with the sign —
as being its whole amount, or value, less than 0. But if the
multiplicand is negative as well as the multiplier, then the
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multiplicand has to be taken away as often as is expressed by the
negative multiplier ; but the taking away of a negative quantity
is just the same as the adding of a positive one ; and therefore if
there is nothing but the product of the two negative factors,
that product must be exactly what it expresses greater than 0,
that is, it must be the same as if both factors had the sign 4,
or were positive. Thus, the product of —a by — a, or of +a
by + a, is equally 4 a?, or without the sign, a®; — 4 by — 2,
is 8, in the same manner as 4 by 2; and the same in all cases.
This principle, which must be carefully attended to, is usu-
ally stated empirically in the books *like signs give <, unlike
signs — ;” but this, though true in the case of two factors, or of
any even number, as of four, six, eight, and so on, is not true
in the case of odd factors, one, three, five, seven, and so on.
We must admit one factor into the series of multiplications ;
for, asevery quantity is positively once itself, and not any other
quantity, every quantity must be considered as itself multiplied
by + 1, that is, by the integer number 1; and if we were to
multiply it by — 1 we should change the sign, and along with
that the value of the quantity by double of whatever it expressed
before being so multiplied. As this co-efficient or factor + 1,
or 1, is inseparable from the very nature of every quantity, itis
never written ; we do not write 1a for instance, because when
we see a standing alone, we see at once that there is one, and
no more. But if we consider it as multiplied by —1, it is quite
another matter ; for the difference between 1 and — 1 is not
only 2, but the one is 1 more than 0, and the other is 1 less
than 0; and therefore multiplying by — 1 changes the sign, or
turns & + quantity to —, and a — quantity to 4. By sepa-
rating a into the factors + 1 and a, or — 1 and —a, and b into
+ 1 and — b, or — 1 and + b, it would be easy to show the
truth of the rule for the signs in a manner different from the
G
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above; but we trust that which we have said will render it
abundantly plain.

When a factor consists of more than one term, the multipli-
cation of it cannot be expressed by annexing the other factor
without any sign. Thus, if the one factor were a 4- b and the
other ¢, then neither a + be, nor ac + b, would express the
product, for the multiplication applies only to b in the one case,
and only to g in the other. We must therefore mark the com-
pound factor as a whole, by the vinculum m, or rather by
the parenthetical characters (¢ + b); and then (a +b) ¢ ex-
presses the product. If two factors are compound we must
inclose each in parentheses, and then it is usual to indicate the
multiplication by a dot (. ), or rather by the sign x, the last
of which is preferable, as the dot is apt to be confounded with
the full stop in common language, or the decimal point in
arithmetic ; thus the product of ¢ + b as one factor by ¢ 4 d
as another factor, is expressed by (a + ) X (¢ + d).

As these parenthetical characters do not stand for quantities
or relations, but merely point out that which is expressed in
two or more parts separated by + or —, it may not be amiss
to point out, by an example in numbers, the necessity of attend-
ing to them. For this purposeleta =6,b=4, ¢ = 8,d =7,
and the above expression will be 6 + 4 X 8 + 7 without the
parentheses, and (8 4 4) x (8 + 7) with them. In the first,
the multiplication extends no farther than 4 and 8, which pro-
duce 32, and there is 6 and 7, or 13 to add, making in all 45, as the
whole value. In the second, the multiplication extends to
the two sums 10 and 15, and their product, which is 150, is the
value, which is very different from the former.

The fourth general relation of the parts of a compound quan-
tity is that in which the one part is a dividend and the other a
diviser, the value being a quotient, which we are in the mean
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time merely to express, not actually to find. Indeed, if the
expression bears the most simple form, that is, if the divisor and
dividend are each expressed by a single letter, if these letters
are different, and if nothing farther is stated than that the one
of them is to be divided by the other, there are not data suffi-
cient for finding the quotient as a separate quantity. Thus, if
the quotient of @ divided by b is sought; and if we merely
know that a stands for one quantity and b for another, but do
not know what kind of quantities they are, whether of the same
kind with each other or of different kinds, we cannot tell whe-
ther the quotient is or is not a quantity which we can or cannot
express in any other way than by indicating it ; and, even if we
know that both quantities are of the same kind, so that the
quotient must be & number, we are not in a condition for stating
whether the quotient shall be greater than the number 1, equal
to it, or less, unless we know that the quantities are equal or
unequal, and in the case of inequality, which is the greater and
which the less. Therefore, all that we can do in such cases is
to indicate that there is a division to be performed ; and this is
done generally by writing the dividend above a line, and the

divisor below the same. Thus Eb indicates the quotient of a

divided by b, though without pointing out what that quotient
may be.

The quotients of all quantities may be indicated in the same
manner: as, :—t-; indicates the quotient of the upper quantity

by the under, whatever may be the forms in which they are
expressed. Division may also be indicated by writing the

dividend, then the sign =--, and lastly the divisor. Thus‘—: and

@~ b have the same meaning, and are read * a divided by b.”
. 2
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We shall point out in another section how the division is to

. be. performed so as to obtain the quotient as a separate quantity

in all cases where that is possible ; but there are some general

principles which we can perhaps better explain in this simple
view of the matter.

We may, for instance, determine the sign of the quotient,
whether we can or cannot express its value by a separate quan-
tity. Here we must bear in mind that the dividend is always
equal to the product of the divisor and quotient, so that the
finding of a quotient resolves itself into the finding of a quantity
the product of which and the quotient shall be equal to the
dividend. From this it follows, that if the divisor and dividend
have the same sign, the sign of the quotient must be + ; and
if they have different signs it must be — ; but that in the case
of the same quantities as divisor and dividend, the expression
for the quotient will be the same quantities whatever may be

the signs.
Let us illustrate this by the simplest case that can occur, the

division of a quantity by itself, or -Z . The quotient of this, in
all cases of the signs, will be expressed by the number 1, be-

cause any quantity is, of course, just once itself, and nothing

- a —a
either over or wanting. Now, if it is —, or —, the quotient
a —a

will be 1, that is, 4 1; but if it is +—Z, or :_—a, the quotient
- a

will be — 1 ; for — a, the divisor in the first case, multiplied
by —1, the quotient, produces + a, the dividend in the first
case; and +-a, the divisor in the second case, multiplied by
—1, the quotient, produces — a, the dividend in that case.
Hence the quotient of quantities which have the same sign is
always a positive quantity, or as much greater than 0 as its
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whole value expresses; but the quotient of two quantities
with different signs is always as much less than 0 as its
whole value expresses. Hence, in a compound quantity, the
+a

quotient of -

gl or of :—:, may always be expressed by

+ :—; and the quotient of —i—:, or of _:_b’ by — ;—‘.

If the divisor were @, and the dividend 3, it is evident that
the quotient would be 3, + 3 if the signs were the same, and
— 3 if they were different ; and generally, if the divisor were
a, and the divident na, that is, any number of times a, whether
expressible in terms of the arithmetical scale or not, the quo-
tient would be 7, that is, the same number, 4 n if the signs
were the same, and — n if they were different. Now 3 is
1 x 3,and » is 1 X n, whatever number » may stand for;
therefore, multiplying the dividend by any quantity has the
same effect as multiplying the quotient by the same quantity.

If the dividend were a, and the divisor 3a, the quotient
would be one-third part of 1; and if the dividend were a, and
the divisor na, the quotient would be the nth part of 1, or

1 :
o therefore, multiplying the divisor produces the same effect

as dividing the quotient.

Now, if multiplying the dividend multiplies the quotient, and
multiplying the divisor divides the quotient, multiplying both
by the same quantity, whether that quantity be ome single
factor or any number of factors, will not alter the value of the

. an a
quotient ; or, Pyl whatever n may be, whether large or

small, simple or compound, provided it is the same in both
cases.
This principle, which is so simple that it is nearly self-
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evident, is & very important one in practice; and so is the
converse of it, namely, that if both divisor and dividend are
divided by the same quantity the quotient is not altered. This
last is, in fact, the principle upon which we proceed in the
common arithmetical division of one number by another; we
consider the divisor as divided by itself, and thus reduced -to
the number 1 ; and we divide the dividend also by the divisor,
in order to have it expressed in terms of the divisor, considered
as one.

We shall be better able to see the value of these principles
afterwards, and shall discover other means of perceiving their
truth ; so we shall now proceed to show how the elementary
operations are performed algebraically.

SECTION VI.

ELEMENTARY OPERATIONS IN ALGEBRA.

As arithmetic is merely the application of the general prin-
ciples of algebra to those particular cases of quantities which
can be expressed by numbers according to the scale and nota-~
tion of arithmetic, it follows that the elementary operations in
the one must be the same as they are in the other, namely,
addition, subtraction, multiplication, and division. But if the
notation of algebra, as we have attempted to explain it in the
preceding section, is properly understood, these operations are
far more easily performed by means of the algebraical symbols
than the arithmetical ones. If we write down the given quan-
tities with the proper signs, used in the form which indicates
the operation, we have an expression for the result of that opera-
tion at once; and all that we have to do farther is to find out
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whether the expression thus obtained can be reduced to fewer
or more simple terms. In this, every case must be considered
in itself; and thus every operation in algebra is the discovery
of something new, instead of the performing of the same sort of
drudgery over and over, as is the case in arithmetic.

The first and most general consideration is, whether the case
before us can or cannot be simplified ; and as it would be vain
to try the cases which cannot be simplified, the knowledge of
them is the first point to which we must direct our attention.
Now, the principle here is a very simple and self-evident one:
if the quantities are all of different kinds, that is, all expressed
by different letters, or by different letters combined with dif-
ferent numbers as co-efficients, we cannot shorten or simplify
the expression.

Thus, in apprTION, if the sum is that of a, b, and ¢, there is
no simpler expression for it than @ 4 b + ¢. Also, ifit is 5 a,
8b, and 4 c, there is no simpler expression than 5a + 3b + 4e¢.
But if it is 5a, 5b, and 5 ¢, we can make it § times the sum of
@, b, and ¢, that is (@ + b + ¢) x 5. If the letters are the
same, we can bring them into one expression; thus §a + 3a
+ 4a is = 124. Also, if the letters are the same, and some
of them 4 and others —, we can get one expression for the
whole by taking the 4 into one sum and the — into another;
subtracting the co-efficients and prefixing the sign of the greater
co-efficient to the difference. Thus 6a — 54 =0; §a —
4a = a; 5a — 10¢ = — 5a; and so in other cases,

Also, if we have a + quantity to add to any expression, and
there is a — quantity of the same kind, that is, expressed by
the same letter or letters in the expression, we get rid of as
much of the — quantity as is equal to the 4 one. Thus, if
we have to add ¢, that is + cb, to @ = c b, the sum becomes
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a ; if we have to add 45 to @ — 65, the sum becomes @ — 2 ;
and if we have to add 3b to @ — 2 b, the sum becomes a + b.

When we have mentioned that all the quantities of which the
sum is required, express that sum when they are written one
after another with their proper signs; that the only cases in
which that expression can be shortened are those in which the
same quantity occurs more than once; that quantities which
do occur more than once in the expression may be reduced to
one occurrence by taking their sum ; that this sum is the sum
of the co-efficients if the signs are the same, but the difference,
and having the same sign with the greater, if some have + and
others —.~

Any instructions more minute than these, and especially any
formal or empirical rules for the adding of quantities, are not
only superfluous but injurious to those who wish to under-
stand algebra. Algebra is the art of finding out how things are
to be done; and thus, if there are rules and formule to be
learned, as a child cons by rote a catechism without under-
standing one word of the reason or truth of the dogma (it is in
the manner not the matter that the dogma consists), that which
is worked at (we will not say learned) is not algebra, it is the
practice of arithmetic in an algebraical dress, more difficult, and
therefore less useful than simple arithmetic, just as the common
calculations of the schools are more difficult and less useful
than the ready-reckoner. :

In suBTRACTION, We have only to write the quantity to be sub-
tracted after the other quantity, connecting them by the sign
— ; and the expression thus obtained is- the difference, which
may or may not be shortened according to circumstances, as is
the case with the sum in addition.

We must attend, however, to what is meant by prefixing the
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gign — ; for, in order that we may fairly express the subtrac-
tion, this sign must affect every term which has to be sub-
tracted. An example will perhaps show this more clearly than
words.

Let it be required to subtract 5a¢ 4+ 36 — c¢d, from 7a + 3b;
and the expression will be

(7a+3b) — (5a + 8b — cd).
The sign — affects all the three terms of the last expression
within the parentheses; that is, it makes each of them — 1
times itself: — 1 must thus be considered as a factor or mul-
tiplier of all the terms; and we already know that the effect of
—~ 1 as a multiplier is to change the signs. Thus, one expres-
sion in the example becomes
7a+8b—5a—38b + cd;

and, as this expression is perfectly general, for a, b, ¢, and d
may stand for any or for all possible quantities, we have at the
same time found this gemeral principle: the subtraction of
quantities is expressed by writing them down with their signs
changed.

Let us now look back at the expression, and see whether we
can shorten it. There are + 7 a and — 5 a, which taken toge-
ther make + 2a, + 5 aand — 5 a being = 0. Again, there
are 4~ 3b and — 3 b, which together are equal to 0. Therefore
2a + cdis the difference between 7a + 35 and 83a + 3b — cd.

Let us try by addition if the quantity subtracted and the
difference make the other quantity, that is, if

5a 4+ 30 —~cd+2a+ cd = Ta+ 3b.

Looking at the quantity to the left of the sign = we find 35,
and there.is 35 in that to the right; thus one term in each
agrees. Again, we have 5a 4 2a on the left, and 74 on the
right, all with the sign +, therefore there is in effect 7 a on bath
sides, and these again agrec. Farther, we have — cd on the



90 GENERAL NATURE AND USE

left, and no ¢ d with any sign on the right, but when we look
farther at the left side of the sign we find +4 cd as well as
—cd; and 4 ¢d — ¢d = 0. Thus we have in effect 7a +
8b = 7a + 3b, which are not only equal but the same iden-
tical quantity.

We may mention that we can never use the sign = unless
the quantities to the left of it, taken altogether or as one whole,
are exactly equal to those on the right, taken as one whole;
and that when we can bring them to an identity of expression
without changing their values in respect of each other, we prove
this equality.

An expression of this kind is called an EQuaTIoN; and it is
the general mode of proceeding in algebra, whether the object
be the establishment of & truth, the investigation of a principle,
or the finding of an unknown quantity. Indeed, it is the uni-
versal formula in the acquiring eof all knowledge, of whatever
kind it may be ; for it is by a perception of the equality either
in things themselves or their relations, and by that alone, that
we can pass from the known to the unknown. We are on the
known bank of the river, and the unknown is the other bank,
relation, the foundation and standard of which is equality, is
the means by which we are to pass the river. We have the
boat in some cases and only  inflated bladders” in others; but
in algebra we have the bridge always open, and “no pontage”
after we know it.

Even in the most common case of arithmetic, that of the
addition of two or more simple numbers, there is an equation
involved; and if we wish to understand even that simple
case well, it would be better to state this equation at the begin-
ning. The stating of the equation is, as we shall be better able
to explain afterwards, nothing more than noting down what
we have to do before we begin the doing of it; and everybody
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knows that this is not only the best way to ensure success, but
the way of finding out whether what we intend to do be or be
not possible.

Let the arithmetical problem be to find the sum of 2, 3, and

"5 ; call the sum &, then we have this equation
& =2 4 3 + 5; and shortening, we have s = 10.

In an equation, the quantities which stand to the right and
left of the sign = are called the sides of the equation: if they
are identical, that is, if they are exactly the same expressions,
the equation is of no use ; for we need no algebra to tell us that
anything is equal to itself. But if the two sides are differently
expressed at first, and we can bring them to an identity of
expression, keeping the equality all the time, we thereby prove
the equality of the first statement.

Hence, an equation would be of no use to us if we could not
alter the expression of it without altering the equalityof the sides.
Now it is almost a truism to say that equal quantities are equal,
equal additions are equal, equal subtractions are equal,equal mul-
tiplications are equal, and equal divisions are equal ; and therefore
we may generalise them all into this one statement, the truth of
which nobody who understands the words can doubt: if two quan-
tities are originally equal, and if whatever is done to the one of
them be also done to the other, they must remain equal during
any succession of changes, however many, and be equal at the
end. Simple and self-evident as this seems, it is the general
principle of algebra, and it is quite sufficient for the purpose.
It also has the advantage of being understood the instant it is
stated, and remembered as soon as it is understood. We have
introduced it thus early, because it is'of importance that we
should take it with us from the beginning, as a means of satisfy-
ing ourselves of the truth of even the most elementary opera-
tions.
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To return to subtraction :—as subtracting is performed by
merely changing the signs of the quantities subtracted, from -+
to —, or from — to +, it follows that a—b is the remainder
after --b is taken from +-a, and that a+b is the remainder
after —b is subtracted from +-a, or, which is the same thing, it
is the remainder when —b is subtracted from a. In allcases, the
expression a+ b is a positive quantity, or greater than 0; but
a—) is greater than O only when a is greater than b, or by the
sign, when @ 7b; and when a / b, then a—b is negative, or less
than 0.

a and b may be any two quantities whatever, provided that
they are so far of the same kind as that they can be said to be
equal, or the one greater than the other. Hence a+b is the
sum, and a —b the difference of any two quantities whatever.
Let us add them together, and see if we can learn anything
from their sum. To add them we have only to connect them
by the sign +, which, as we have already seen, does not alter the
signs ; so we have, without any shortening, a+b+a—5. In
order to shorten this, we find that we have a twice over with
the sign +, which may be expressed by 24 ; and we have +5
and —b, which together are — 0. Therefore, the sum of a5
and a—b is = 2a ; but a+b is the sum of any two quantities,
and a—b is the difference of the same. Therefore, in words,
the sum and difference of any two quantities are together
equal to twice the greater quantity ; and consequently, half the
sum and half the difference are together equal to the greater
quantity. But if a were the less quantity, a—b would be a
minus quantity, and the sum of a4b and a—b would be that
minus quantity less than a+b5; but that quantity would be the
difference, the same as in the other case ; and thus we have the
difference between the sum and difference of any two quantities
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equal to the less quantity, or, the less quantity is equal to
half the sum — half the difference.

We may state the problem formally thus. Give the sum and
difference of two quantities to find the quantities themselves;
and the answer according to the above investigation is, to half
the sum add half the difference for the greater, and from half
the sum take half the difference for the less.

Simple as it must seem when thus investigated, this is both
a general and an important principle. Let us try it by am
example : a man has 40 shillings in both pockets, and 6 more
in the right than in the left, how many are in each? 40 is
the sum, 6 the difference, 20 the half sum, 3 the half differ-
ence ; therefore 2043, or 23 in the right pocket, and 20—3, or
17 in the left pocket, and 23417 =40, and 23 —17=6, which
answers the conditions.

There is another point connected with subtraction which is
worth knowing and keeping in mind, and that is, what opera-
tions, performed equally to each of two unequal quantities,
alter, or do not alter, the difference of those quantities. In
compound quantities, this often enables us to see the difference
at once, and without any labour.

In order to understand this, let us suppose a greater than &,
and that the difference is d, which will include all quantities
whatever, and consequently all differences ; the greater is equal
to the less and the difference, or a =b+d; consequently a 7,
orb+d 7b, and d is the difference; for, take away d, and we
have b=», which is self-evident. Now if we add to b, in both
cases, any quantity whatever, simple or compound, which for
shortness we may call ¢, we have b+¢+4 d7b4¢, and the dif-
ference d, as before ; 8o also, if we subtract any quantity, ¢, we
have b—q+d 7b—q, and the difference d, as before ; for, if we

take from the equal quantities on both sides of the sign 7 in each,
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b in the first instance, b + ¢ in the second, and b—g¢ in the third,
we have in each 04 d 70, which is saying, in other words, that
all that remains is d70, or simply d. Hence we may state
generally that, if we add equally to, or subtract equally from
each of two unequal quantities, we do not alter their difference ;
or, that the difference of two quantities must remain the same,
if we do not add or subtract a difference.

But, on the other hand, if we apply a difference to the two
quantities, either by adding more to the one of them than to the
other, or by subtracting more from the one of them than from
the other, the original difference must be altered to the full
amount of the difference so applied. Thus, if a=b+d, and
consequently b + d 7 b, and e = f + g, and consequently f4
97/

First, if we add the greater to the greater, and the less to the
less, we have b+d+f+g 7b+f; and, taking away the equals,
we have d+g 7 0, or the sum of the differences.

Again, if we subtract the greater from the greater, and the
less from the less, we have b+d—f—g7b—f; and taking
away the equals, b—f, we have d—g 70, that is, the difference
of the differences; and this will be greater than 0, equal to it,
or less, according as d is greater than g, equal to it, or less.

- Thirdly, if we add the less to the greater, and the greater to
the less, we have b+d+f and b+/f+g; and, leaving out the
equals, we have @ and f, the difference of which is d—f, and
may be greater than 0, equal to it, or less, as in the former case.
The expression for this uncertainty is, d 7=/ g. This is the
general expression for pointing out that two quantities are of
the same kind ; it comprehends every variety of value in the
quantities, and therefore the principle which it embodies is of
great use in the doctrine of proportion.

If we were to name the value of d—g, or, which is the same
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thing, of a—b, by another letter, the sign of that letter would
be ambiguous :. if @ were the greater, it would be 4 ; but if b
were the greater, it would be — ; but as they are perfectly
general, either of them may be the greater, and there are many
cases in which we are not able to say which. The general
expression for all cases in which it is not known which is the
greater, is, a—b=:d. If a is the greater, it is +d, ord; if
they are equal, it is 0d, or 0; and if a is the less, it is —d.
This double sign, =, which is read “plus or minus,” is the
most general expression for a difference, when that difference is
expressed by a quantity : thus, a-=d=b0 is an equation, whether
a be greater than b, equal to it, or less.

When the comparison is made by the triple sign, 7 =/,
which is read “greater, equal, or less,” it is the whole of the one
quantity which is compared with the whole of the other, and the
middle point is that of perfect equality between the two as
wholes. But when the comparison is made by the double sign,
=, which is read “plus or minus,” that is, “more or less,” it is
the difference to which the attention is directed, and the middle
point is 0, which happens when the quantities are equal. The
double sign +, therefore, properly belongs to addition and sub-
traction ; the triple sign, 7 =/, does not.

From what has been said, it will be seen that, generally, the
sum of all the differences of any number of quantities is equal
to the difference of their sums, although some of the particular
differences be +, and others —. An example will ‘illustrate
this :—

A man has two pockets on each side of his coat, one on each
side of his vest, and one on each side of his trowsers. His
pockets are loaded with penny-pieces; 47 right, 39 left, in tho
trowsers ; 31 right, 35 left, in the vest; 87 right, 95 left, in the
skirt-pockets of the coat ; and 63 right, and 45 left, in the breast--



98 MULTIPLICATION. ™

pockets : how many must he bring from the one side to the
other, to be equally loaded right and left ?

Take the right side ; then the trowsers give + 8, that is, 8,
the vest —4, the skirts —8, and the breast-pockets +4, or 4;
but 8 —8 4 4 —4 = 0; therefore he is already equally loaded
- right and left.

It only remains to be considered how the difference of two
quantities is affected by the multiplication and by the division
of the quantities themselves, and this can be better understood
after we have examined the general principles of multiplying

- and dividing a little more intimately than can be done by com-

mon arithmetic, where the disappearance of the original numbers
prevents us from seeing how they are combined, so as to pro-
duce the result. We shall, therefore, proceed to the third general
operation.
. MuvTreLicaTION of quantities. In the case of simple quanti-
ties, or those expressed each by one letter only, there is no
operation to be performed, and we have merely to express the
product by the sign X, or by writing the letters after each
other without any sign ; thus, a X, or a b, is the product of the
two factors, ¢ and b, and there are no means by which we can
express that product more simply. When the same factor accurs
twice or oftener, we may use an exponent to show the number
of times; thus, a aaa may be expressed a*, and aaabb may be
expressed a8 b%, it being always understood that every letter in
such an expression occurs as often, as a factor, as is expressed by
the exponent.

As two factors are required for the first multiplication, there
is always, in the case of a single letter, one actual multiplication
fewer than the exponent indicates ; thus, a* is a multiplied three
times by a. But when there are other factors, the product of
these is understood to be multiplied by the letter which has
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the exponent, as often as is expressed by that exponent ; thus,
a3 b% means a3 multiplied twice by b, or b* multiplied thrice
‘by a. '

* This impossibility of shortening the product of any number
of simple factors, all different from each other, though a very
simple matter, is not an unimportant one, for it shows us that we
must make actual observation the foundation of all our opera-
tions, and that all the facilities which science can give us are
only judicious methods of managing these results of observation,
‘which are equally open to everybody. The result of a multi-
plication is always & number of times a number, whatever value
we may attach to the unit, or individual 1, of one or of both of
the numbers ; and when we consider each number as one whole,
" a8 we do in the case of all numbers not greater than 9, we have
no way of finding the product but by actually counting. There
is, however, a way in which we can derive those products from
each other; and this is the way in which we express the
products of compound quantities generally or algebraically.

It will be borne in mind, that a compound quantity, accord-
ing to our notation, is a quantity consisting of two terms, or
‘more, separated from each other by + or —. a+b, or a—b,
is the simplest expression which we have for a quantity of this
kind, and it may be considered as perfectly general, for the
letters a and b may be considered as representing any quantities
whatever, whether simple or compound ; and therefore it will
Yollow, that whatever can be shown to be true of their multipli-
cation, will be true of the multiplication of all possible quanti-
ties. a + b, or a — b, taken as a whole quantity, is called a
dinomial, from the fact of there being two named or at least
‘hameable parts in it, of which it is the sum when the sign is
+, and the difference, with the sign 4 or —, according to
circumstances, when the sign is —. Hence, if we fully under-

H,
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stand the composition of the product of a+-b, and a —}, each
taken both as multiplier and multiplicand, we shall be in pos-
session of the general principle which applies to the multipli-
cation of all compound quantities ; and the products of these
quantities will involve the general principle of the multiplication
of all compound quantities whatsoever.

. Now a compound quantity may be considered as made up of,
and exactly equal to as many parts as there are terms in it ; and
we evidently express and mean the very same value, whether
we state the entire compound as one whole, or all the parts of
it. Thus, in the case of the number 7, it is the same in amount
whether we write 7, or 6 +1, or 5 +2, or 442 +1, or any
number of parts which, taken altogether, amount exactly to 7 ;
and generally, if c=a + b, either expression may be used instead
of the other; and if we multiply the parts e+ b by any factor
whatever, it must produce the very same result as if we multi-
plied the single quantity ¢, which is =a -+ b, by the same. Hence,
to multiply any compound quantity, we have only to multiply
all its terms.

Also, if we have to multiply by a compound quantity, we
may multiply by all its terms or parts; for a4 b times any
quantity whatever, is evidently the same as a times that quan-
tity <+ b times; and a — b times any quantity is evidently a
times that quantity — b times.

A multiplier with the sign 4 will, therefore, produce no
change on the signs of the quantity multiplied ; but a multi-
plier with the sign —, as it gives a product to be subtracted,
will change all the signs.

It has been already mentioned that the products of compound
quantities may be indicated by inclosing each quantity in paren-
theses, and connecting them by the sign X ; thus, (a45) X
(a + b), is the product of a + & by a + b, but as the whole
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multiplier (a 4 ), affects equally each of the terms of the
multiplicand, the terms of the above expression are not simple.

We might simplify them one step by connecting the multi-
plier with each term of the multiplicand ; and as, by the
general principle of algebraic notation, multiplication is always
understood when there is no sign between letters, we should
have the product a (¢ +5) + b (a +b), in which a is a multiplier
of both a and b in the first compound term, and b & multiplier
of both a and b in the second.

Next we might actually apply these multlphers, which is
done by simply placing the multiplying letter along with each of
the others, either before them or after them, without any sign
between ; and then we should have ea +ab+ab+ bb, for the
product of a+b by a+4-b.

But this product can be shortened, for aa is a" ab+abdis
2ab, and bb is 8. Thus the product of a+b by a+-b, is a%+4
2ab4be.

a + b is the sum of any two quantities whatever ; and the
product of any quantity, simple or compound, by itself is called
the sguare of that quantity ; therefore the square of a+b, or,
as we may express it, (a4-b)8, is a2+ 2ab+-d%

This, though a very simple result, is a very important one,
as we shall be better able to see afterwards; but it will be
useful in the meantime to look at the composition of tHis square
of a+b: it consists of thrée terms, a%+2ab+-b%, the first of
which, a% is the square of a; the last, b%, is the square of b ;
and the middle one, 2 ab, is twice the product of @ and . But
a and b are any quantities whatever, and therefore whatever is
true of the square of them, must be true of that of any quantity
or number whatever which we can imagine to be the sum of
two parts. Wherefore, we have this general conclusion from
the above simple operation :—the square of the sum of any two

H2
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quantities is equal to the sum of their squares, and twice their
product. This is a very important principle, and one to which
we shall have frequent occasion to revert, therefore the student
of mathematics must bear it carefully in mind.

Let us now consider the case in which the simple quantities
of which the multiplicand and multiplier are made up, are all
different from each other ; as, for instance, the product of a-b,
multiplied by ¢+d: we may arrange them in the common way
of arithmetical multiplication, as follows :—

a+bd
c+d
ac+cb
ad+bd
Product, ac‘+'cb+ad+bd.

- No two of the terms in this result are similar, and conse-
quently it cannot be shortened; therefore the only conclusion
that we can draw from it is, that the product of the sum of two
quantities by that of other two, both different, is equal to the
sum of the four products which arise from multiplying the first
by the first of each, the second by the second, and-the first of
each by the second of the other. But even this is something,
for, let it be.required to find the product of 17 and 15: we may
call 17, 10 + 7, and 15, 10 4 5 ; then we have the product,
10 x10410x74+10% 54+7x 5. Performing the multiplica~
tions, we have, 100470450435 ; and adding these we have
255. This is not shorter than the common method of multi-
plying, but it shows us how the product is composed, for we
may obtain the product of the sum of any two numbers by the
sum of any other two, by taking the products of the first of
each pair, the second of each pair, and the first of each pair by
the second of the other, and adding them together,
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" Let us now examine the product by itself, or, which is the
same thing, the square, of a binomial having the sign —
‘the second term ; that is, the product of (a—b) X (a—b), or
(a=b)2.

. Multiplying by a, we have a?—ab; and multiplying by —2,
and changing the signs, because b is —, we have ~ab+52; or
‘we might have arranged them thus :—

Multiplicand =ua—bd
Multiplier =a—b
Productbye = at—ab

Productby —b= —ab4b?

Product by ¢ — b=aqa* 2ab+b‘ or,a?+bt—2abd.

a—b is a general expression for the difference of any two
quantities ; it is a positive quantity, or greater than 0, when a
is the greater, equal to 0 when a and b are equal, and a ~
quantity, or less than 0, when b is the groater, It will be borne
in mind, that any difference may be considered either as a
++ or a = _quantity, for the greater is equal to the less,
+ the difference, and the less is equal to the greater, — the
difference. ]

The above expression for the square of the difference con-
tains a%+ 5%—2ab, that is, the sum of the squares wanting
twice the product. From this we see that, if there is any dif-
ference between two quantities, the sum of the squares of those
quantities must always be greater than twice their product;
and that this difference being = to the square of the difference
of the two quantities, does not depend on the value of the
quantities themselves, but applies to all which have the same
difference, whether they be great or small. - If a=b, or the
difference = 0, then the square of the difference = 0, and con-
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sequently a2+ b2 =2ab, which is only stating, in other words,
that the squares of equal quantities are equal, and that the pro-
duct of two equal quantities is equal to the square of any one of
them.

This shows us, that when the factors are equal, the product
is the greatest possible, and this is sometimes useful.

Let us now examine the product of the sum a<-b, and the
difference, a—b, or (a+b) X (a—b). We have,

a+b
a—b
aitab
—ab-—-b'
Ta%—bT

Here —b changes the signs in the second line of the product;
and +ab~—abis = 0, and may be left out in adding. Hence
we have this principle :—the product of the sum and difference
of two quantities is equal to the difference of their squares.

If we subtract the square of @ —b from that of a5, we
have, -
(a+b)® =a®+2ab+4b*
(a—b)% =a®—2ab+d?

4abd = difference.

Therefore, four times the product of any two numbers, toge-
ther with the square of their difference, is equal to the square
of their sum.

We may now shortly examine what changes are made upon
the product, by additions to, or subtractions from, either or
both of the factors. For this purpose, let ¢ and b be any two
factors whatever, of which the product is ab; add to the factor
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a, any quantity ¢, and the product becomes a b+b ¢, subtract
any quantity ¢, and it becomes ab—bc; let the change be
made on the other factor b, by any quantity d, while a remains
the same, and we have ab + ad when d is 4+, and ab—ad
when d is —. Let each have any quantity added, as (a4¢) x
(b+d), and we have ab+bec+ad+do; and let any quantity
be subtracted from each, and we have (a—¢) x (b —d), from
which we obtain ab—bc—ad+4-cd.
~ These expressions give us the following general principles :—

1st, If we add to either factor, we add to the product the
same number of times the other factor; or, the product of the
sum is equal to the sum of the products.

2nd. If we subtract from either factor, we subtract from the
product the same number of times the other factor; or, the
difference of the products is equal to the product of the dif-
ference. -

3rd. If we add to each factor, we add to the product the
product of each factor by the quantify added to the other, and
also the product of the two quantities added.

4th. If we subtract from each factor, we subtract from the
product the product of each factor by the quantity subtracted
from the other, and add the product of the two quantities
subtracted. :

5th. If we add to the one factor, and subtract from the other,
we have ad + bc—ad—cd; we must add the product of the
one factor by the quantity added to the other, and subtract the
product of the -— quantity by the other factor, and also the
product of the quantity added and the quantity subtracted.

These principles often enable us to get at products by means
of sums and differences. Thus, 100 X 100 is, by the scale of
numbers, 10000 ; then let us find the product of 109 and 107.
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This falls under the third case (a+¢) x (b+d), or (10049) x
(100+4-7) ; so we have to add the following lines :—
ab = 100 X100 = 10000
be =100 X 9 = 900
ad=100 x 7 = 700
ed= 9% 7 63

—_——

Therefore 109 x 107 = 10663

~Again, to find the product of 97 and 93. This falls under
the fourth case, ab—ad+bc—cd; and

ab = 100 x 100 = 10000
—be= =100 X 38 = —300
—ad=—100 X 7 = —700

cd = 83x 7= 21

——

Therefore 97 x 93 = 9021

Farther, let the product of 109 and 94 be required. This
comes under the fifth case, ab 4-bc —ad—cd; and

ab = 100 % 100 = 10000
be = 100 x 9 = 900
—ad =—100 X 6 = — 600
—_—cd == 99X 6 =— 54
Therefore 109 X 94 = 10246

These principles are often of great use to us in shortening
operations in common arithmetic ; thus, a table is 6 inches less
than 9 feet long, and four inches more than 6 feet wide, how
any square feet arein it? Here we havea — 6feet, b = 9 feet,
¢ = one-third of a foot (}), and d = one-half of a foot (1) ;
so that in numbers we have (64+4) x (9=1); and
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axXxb= 6x9 = 54 feet.
bxec= 9 x 4} oronethird of9 = 3
—a X d = —6 x4, or one-half of 6 = — 3
—¢ Xd = =3 X}, oronesixthofl = — %

Therefore (6+3) X (9 —4) = 53§ feet.

This example is rather an anticipation of principles whick
have not yet beén explained ; but it is simple, and may help to
show that these methods of considering the composition of a
product are very useful.

As the product of any three factors is the same as the pro«
duct of any two of them by the third one, a, b, ¢ being either
abxc,oracxb, or beXa, it follows that the multiplication of
any one factor, before multiplying them together, is the same
as multiplying their product after ; and if both factors are mul.
tiplied each by any quantity, the product will be the same as if
the product of the original factors were multiplied by the pro-
duct of the multipliers. Thus, if the factors are made n @ and
m b before multiplication, the product of na X mbd is the same
as that of ab Xmn. Hence we see generally that, if a product
is made up by the continual multiplication of the same factors,
it is of no consequence in what order they are taken.

Products which are the result of multiplications by the same,
or by equal multipliers, are called equi-multiples ; thus, 3a, 3,
and 3¢ are all equi-multiples of the quantities a, b, and ¢, by
the common multiplier 3 ; and m a, m b, and m ¢ are equi-multi~
ples of a, b, and ¢, by the common multiplier m, which may
stand for any number or quantity whatever. These principles,
though simple, are very important.

Some of the conclusions at which we have arrived, on mere
inspection of the results of algebraical operations, will be found
of great yse when we come to apply them, and in the meantime
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they will show the great clearness and simplicity of this science,
and that we have only to learn how to read and to write alge-
braical expressions, in order at once to see the truth of what
they contain. To know this is of far more importance than the
mere performing of multiplication, or any other process, by
technical rules; and though there are many results which it is
necessary to remember, and which, indeed, it is difficult to help
remembering, yet especial care should be taken that not one
algebraical fact is committed to memory without being previ-
ously traced from self-evident principles, and by that means
thoroughly understood.

We shall now point out how terms which are in themselves
8 little more complicated than those which we have hitherto
mentioned are treated in multiplication.. The rule of the signs
i8 necessarily the same in all cases ; that is, & + multiplier does
not change the signs of the multiplicand, but a — multiplier
always does.

Besides this, we have only to consider the parts of which a
term may be composed. These are: first, numbers, or numeral
co-efficients, which are always placed first, and are understood
to multiply the whole term ; that is, their influence extends as
far as the next 4 or — in a compound quantity. Secondly,
general quantities expressed by letters; and each of these is
also understood to multiply the whole term, or as far as the
next + or — in a compound quantity. Thirdly, exponents,
which apply only to the single letter or number over the right
of which they are written, unless more than one are inclosed in
parentheses, and the exponent placed immediately after.

Thus, in the expression 4abc%, the meaning is, that the
riumber 4, the quantity , the quantity , and the square of the
quantity ¢, are all multiplied together. If the axpression were
4a2 b2 c%, it would mean that the squares of all the quantities
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-expressed by letters were to be multiplied together, and also by
the number 4. If it were 4 a (b c)$, it would mean that 4, the
quantity-a, and the square of the product of b and ¢, were all to
be multiplied together. It is needless to repeat that, when
there is no numeral co-efficient, 1 is always understood, and
might be written, for every expression, whatever it may be, is
of course exactly once itself.

Numbers must be dealt with arithmetically, that is, they
must be actually multiplied, or else the multiplication of them
must be indicated by the sign X between them.

Letters must be dealt with ulgebraically, that is, they must
be written after each other, without any intervening sign; or,
if the same letter occur more than once, it may be put only
once, with an exponent expressing the number of times it

Exponents, when they are attached to the same quantities,
that is, the same letters, or combinations of letters, must be
dealt with as exponents, that is, they must be added, and their
sums will represent their products.

The following example, in which all these kinds of quantities
occur in one or other of the terms, will serve to illustrate the
application of the principles to every case of multiplication.

Let it be required to multiply 3a2b+3ab—30%, by 4ab%—
6ab+2b% Arrange the quantities as in arithmetic, multiply
by each term in its order, add, and shorten the sum, if possible.

3a2b 4+ 3a b — 302
4a b%— 6a b + 202
1248 52 +12a% b3—12a b*
—18a3 b2°—18a2 0% 4184 B3
6a2b3+ 6a 5% 4 60*
12a3 b3—1843 4341842 b° — 1842 b’+24ab’-l2ab‘-—66‘
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It is evident that the number of terms in the whole product
of two compound quantities, must be equal to the product of
the numbers in both ; that it never can exceed this, and that it
cannot be less, except two or more of the particular products
oconsist of the same letters, with the same exponents ; and then
such quantities can be united into single terms, by the same
principles which were explained in Addition.

Thus, in the above example there are nine terms, arising
from the multiplication of each of the three terms of the multi-
plicand by each of the three terms in the multiplier; but when
we examine them, we find 1242 53 as the second term of the
first line, and 6 a® 43 as the first term of the last line, and both
with the sign + ; so they together make 18a® 53. Also we
find 18a b3 as the last term of the second line, and 6 a 43 as
the second term of the last line, both with the sign + ; thus
they make 24 a b3 in the general product: by this means our
nine terms are shortened to seven.

It is of great consequence to be expert in the multlplymg of
quantities, and also in discovering when terms are or are not of
the same kind. But this, like all practical operations, can be
done readily only by actual practice ; and that practice is most
advantageously done after the student is able to perform Divi«
sion as well as Multiplication, because the one operation serves
not only to prove the correctness of the other, but also very often
throws considerable light upon the means by which that other
is performed; and, in practising every kind of mathematical
exercise, even for the mere purpose of acquiring facility in the
simple operations, the student should always.convince himself
of the truth of every result, by seeing the connection between
it and self-evident principles. We shall, therefore, proceed to
give some short account of the fourth general opemtnon in the
science of quantity—Division of quantities,
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It is of the utmost importance to have clear notions of what
is meant by the DIVIBION OF QUANTITIES, because, whether
generally in Algebra, or particularly in Arithmetic, the word
has a meaning somewhat more extended than in commeon lan-
guage. ‘The common notion of division is the separating of
anything into parts, without any restriction as to number, or
to the parts being equal to each other; but arithmetical di-
vision has always reference to the value of one of a proposed
number of equal parts in a quantity, or to the number of parts
of a given magnitude or value, into which a given quantity
can be divided.

. It is, in this sense, exactly the reverse of multiplication, and
the actual performing of it is a mere reversal of the operation
of multiplying. In real quantities, one of the two factors in
multiplication must always be considered as a number, and
then the product is of the same kind with the other one. Thus,
if the data for multiplication be the quantity and price per unit
of an article, and the product sought the price of the whole
quantity at the same rate, this produet, if we call the price of
the unit p, and the quantity, that is, the number of that unit
in the quantity ¢, then the whole price will be expressed by
pXxgq,orpq. Itis evident that, if we divide this product, p ¢,
by either of the two factors, the result will be the other one—~
p, if we divide by ¢, and g, if we divide by p.

. But it is also evident that the product, p g, that is, the whole
price of the quantity of goods, may be presented to us, not as
the result of a multiplication, but as one simple and original
whole, which may be represented generally by any letter, as a,
If nothing is giveh us but this simple quantity, it is evident
that we can make nothing of it; for, let a = 100/, and let it
be asked how much goods, or what priced goods we can buy for
it ; and no direct answer could be given. If, however, either p,
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the price per unit, or ¢+, the quantity, were given us, as well as
a, we should be in a condition for answering the question. Ifg
were given then p equal to a divided by ¢ ; and if p were given
then g equal to a divided by p, which are expressed algebraically

either by a<-¢=p and a--p=gq, or by ;:=p, and s=q, the

last of which is the preferable expression, because it is least
liable to be mistaken.

In this way we may indicate the division of any quantity by
any other quantity, whether those quantities be simple or com-
pound ; and if the quantities are both simple, and consist of
different letters, this is all the division which we can perform.
This simplest case may be considered as comprising the divi-
sion of all numbers which are less than ten times the arith-
metical figures by those figures: this brings us to the reversal
of the table of multiplication, and is the elementary operation be-
.yond which division cannot be simplified as a practical operation.

" We are, therefore, to bear in mind that 'bi is a general expres-

sion for the quotient or result of the division of any one quantity
by any other, a being in all cases the dividend, or number to be
divided, and b the divisor, or number by which we are to
divide. Also, if we were to suppose the division performed and
the quotient obtained in any number, g for instance, we would
have bq = a, that is, the product of the divisor and quotient
equal to the dividend ; and if we actually performed this mul-
tiplication in real numbers, we should from it discover whether
our division were right.

The dividend @ may be considered as the product of the
divisor b and the quotient ¢, whether the quotient be or be not
found ; and thus it becomes a very important consideration
in division what changes we can perform on the dividend a,
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and the divisor b s0 as not thereby to affect the value of .the
quotient.

Now it is evident that whatever may be the value of the
quotient g, whether greater than 1, equal to 1, or less; and
whether it be possible or not possible to express it as a separate
quantity, it will not be altered if we take any equi-multiples

whatever of the dividend and divisor ; but that ::—: expresses

exactly the same quotient as %, whatever may be the values of

e and b, and also of the multiplier m, provided this multiplier
is the same in the case of each of them ; for a is the product of
b the divisor by q the quotient ; and it was shown, when treat-
ing of multiplication, that multiplying one of the factors pro-
duces the same effect as multiplying the product by the same
multiplier. But ma is the product of the divisor and quotient
by any quantity m, and therefore the quotient of ma must be
exactly m times that of a not multiplied m. Hence we may
conclude generally that the multiplying of the dividend by any
multiplier whatever must always have the same effect as
multiplying the quotient by the same multiplier.

Let us next consider what will be the effect if we apply the
same multiplier to both divisor and dividend. We have already

seen that if the quotient expressed by % be the quantity g, the
éuotient of ’%f must be mq. Then let us consider what will be

the quotient of ’1:. Here m and b are both divisors, and they
m

are divisors in the relation of factors, therefore, whatever num-

ber of times any dividend is divided by and divisor b, it must

be as many times oftener divided by any multiplier m, which is
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applied to the divisor 5. Consequently the quotient of :—nn%
. .
b ;
ciples: that, multiplying the dividend multiplies the quotient ;
multiplying the divisor divides the quotient ; multiplying both
by the same factor, or the same numbe_f of factors, of which the
continual product is the same in both cases, taken in any order,
does not alter the quotient ; and that, if the divisor and dividend
are unequally multiplied the quotient will be multiplied by the
quotient of the two multipliers, taken as applied to the original
terms. In the last case the change of the quotient may be
either an increasc or a diminution, or it may become equal to
the number 1, according to circumstances, which of course de-
pend upon the nature of the particular case. )
. As multiplyihg the one term in division has the same effect
as dividing the other term by the same or an equal quantity, it
follows that both may be divided by the same quantity without
affecting the value of the quotient ; and from this again it fol-
lows, that if we divide both divisor and dividend by any quan-
tity, or any series of quantities of which the continual product
is the same in both cases, we leave the quotient unaltered; but
if we apply one divisor to the dividend, and a different one ta
the divisor, we change the expression to the value of the
quotient of the two quotients. '
Thus, we may be said to have an almost unlimited power
over the expression of a quotient when it is given us in terms
of a divisor and a dividend ; and this is especially worthy of
our consideration, as being the part of the science in which we
can most easily obtain cléar notions of the relations of quantities
to each other in respect of value or magnitude, and as these rela-
tionsare the only means which we have in finding out unknown

is exactly equal to that of - ; and we have these general prin-
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by the known, it is necessary that we should make ourselves
very intimately acquainted with their nature. We may add,
that our failure is more frequently owing to ignorance on the
subject of relations than to any other cause, and from ignorance
too which is-often occasioned by an inconsiderate supposition
that this part of the subject is too self-evident and simple for
" requiring any thought atall.

If we suppose a and b the dividend and divisor, and g the

quotient, we have the value of this quotient expressed by ‘%’;
and as dividing both terms by the same quantity does not alter
the value, if we divide both of these by b we have % for the

value of ¢, which is an expression in which the value of the
divisor is reduced to the number 1. But a, b, and g are any
divisor, dividend, and quotient whatever, because none of them
expresses any particular value ; therefore we have this general
principle, that every case of division, be it what it may, may be
reduced to another expression for exactly the same quotient or
value in which the divisor shall be the number 1.

The performing of division arithmetically is nothing more
than finding the value of the dividend which shall correspond
to divisor 1; and the performing of division algebraically is
the finding of the fewest and simplest terms in which this
dividend answering to divisor 1 can be expressed, this expres-
sion being the algebraical simplification of the quotient.

a

[

suppose a and b to be simple quantities, we must first consider

whether they are of such a nature as that they can have a

quotient ; and secondly, we must endeavour to find out the

value of this qnotielit in known terms. The first of these
1

If the expression is, given — to find ¢ the quotient, and if we
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questions must be determined from the nature of the quan-
tities : if they are real quantities of the same kind the quotient
is a number ; and if of different kinds we must be able to tell,
from their nature, whether they are sorelated as that we can call
the divisor a number, and so have for the quotient & quantity
of the same kind with the dividend. If the divisor and divi-
dend do not come within these conditions there can be no quotient
to which meaning can be attached, and consequently no prac-
tical usefulness in the particular case ; but when we speak of
quantity generally as expressible by numbers, we may without
impropriety consider all such general numbers as expressing
quantities of the same kind, because none of them expresses
imy specific kind of quantity.

After having determined that there can be a possible quotient
in the case, we are next to determine its amount ; and here we
are thrown upon the particular case, and can find it only by
trials, We have already shown, in the section on the opera-
tions of arithmetic, that the quotient of two numbers can in all
cases be obtained, either wholly or to as great a degree of accu-
racy as may be necessary for even the nicest purposes, by as
many separate multiplications and subtractions as there are
figures in the quotient ; but this is not a principle which will
apply generally to the finding of quotients algebraically, because
the properties of the scale of numbers are peculiar, and confined
to arithmetic. Hence it is impossible to lay down any general
rule for the actual division of quantities which are expressed al-
gebraically ; neither in the case even of simple quantities can we
tell before-hand of how many terms the quotient may consist ;
for we have seen that in multiplication terms often destroy each
other, and thus the product becomes apparently as simple as
either of the factors, or even simpler. When the terms are

_pingle letters the expression cannot be shortened ; neither can
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it be shortened when the terms are compound quantities of
which the single terms are all different; but if the same letter
occurs in each term it may be entirely left out, as in that case
the terms are equi-multiples by that letter as common factor, and
dividing by this common factor does not affect the quotient.

To take a few of the simplest cases : ; cannot be shortened ;
ablc . . e
- P evidently = ¢, because both terms are divisible by ab2,
and ¢ is the quotient which answers to 1 in the divisor.

‘When there are compound quantities and terms of quantities,
we are obliged to find the terms of the quotient by trial and
error; and for this purpose it is desirable to take as the first
term of the quotient some quantity which multiplied into the
first term of the divisor shall produce at least one term of the
dividend, because then the subtracting will make the remainder
that term shorter. It is to be understoed, however, that the
length or shortness of a compound quantity has no necessary
connection with its real value.

The multiplications are of course to be performed according
to the directions already given ; and the signs of all the terms
of the products are to be changed, because these are to be sub-
tracted. If only the same letters occur in both divisor and
dividend, the division can, generally speaking, be performed ;
and as this is a merely mechanical part of the business, the
best way in acquiring expertness in it is to practise multiply-
ing one compound quantity by another, and then dividing the
product by eitherfactor ; and if the quotient turns out to be the
other factor, both operations will of course be right. The fol-
lowing examples will show how this is to be done.

First, if the sum of the squares of two quantities, wanting

12



116 EXAMPLE.

the product, is multiplied by the sum of the quantities, what
will be the amount ? -
Let a be one of the quantities and b the other, then,
Sum of the squares — product =a2+ b*—ab
Multiply by sum =a+d
ad+ab?—a%
—ab®4a2b+b

. Product, = a4

So that we perceive that the sum of the squares wanting the
product, when multiplied by the sum, produces the sum of the
cubes. Let us now perform the division, first taking the bne
factor for a divisor, and then the other; and let us see whether in
each case the result of the division will give us the other factor.
First, dividing by the multiplier, we have this operation :—

a+b)a® +8 (a*—ad+b?
— a3 +a?%
+a%b+ab
+ats +b3
—ab?—b3
0.

The first line of the above operation consists of the divisor,
a+b, the dividend, a3+ b3, and a place for the quotient as it
is found. The divisor and dividend are placed with the letters
in the same order, which is a matter of convenience though not
one of necessity. Comparing g, the first term of the divisor,
with a3, the first of the dividend, we find that as a?Xa is = a3,
the first term of the quotient must be a® ; and because the term
of the divisor and that of the dividend have both the sign +,
ar, which is the same thing, are without any sign, ¢® in the
quotient must be +.
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‘We next multiply both terms of the divisor by a2, and change
the signs, which is the same as subtracting the products, and
thus we get the second line —a3—a%h. Comparing the terms
of this with those of the dividend we find a3 with the sign +,
and also with the sign —, which destroy each other, and we
have remaining —a% <+ 63, which is the third line of the opera-
tion ; and we again compare its first term with the first term of
the divisor, that is, we comparc ¢ with —a%). It is easy to
see that @ will be got ab times in this term, and that the sign
must be —, or that in order to convert the products into re-
mainders we must make their signs the same as that of the
divisor. Performing this multiplication we have +a%b+ab®,
in which the first terms destroy each other, and there remains
ab%+433 for the fifth line of our operation. Comparing the
first term of this with the first of the divisor we perceive that
+ 52 in the quotient will, if multiplied by @ in the divisor, and
the sign changed, produce —ab?, which extinguishes the first
term. Multiplying both terms of the divisor by 42, and chang-
ing the signs, we obtain —ab2—b53, which exterminates the
whole dividend. Therefore our whole quotient is a2—ab+ 5%,
which is exactly the same as our multiplicand, though the
terms are not arranged in exactly the same order.

It will be seen from this operation that the process of divid-
ing algebraically is so simple as to be merely mechanical ; for
at each step we have only to seleet such a term for the quotient
a8 shall with the first term of the divisor produce the same com-
bination of letters as that of the dividend, and shall have such -
a sign as when changed shall be opposite to that of the dividend.
1t is of no consequence whether any of the other terms are the
same or not, because the changing of the signs of those parts
obtained by multiplication converts them into remainders ; and
if the multiplication and change of the signs be rightly per-
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formed every step of the operation will lead to a true result,
whatever may be the difference of its appearance.

Neither need we conclude that we have committed errors,
though the product of a compound divisor and quotient do not
amount to the same identical expression as the dividend ; be-
cause we have already shown that equi-multiples and like parts
of any divisor and dividend will all lead to exactly the same
quotient.

Before we can thoroughly understand division, and those
general relations which are founded upon its prineiple, or rather
in which its principle consists, it is necessary to have recourse
to some farther explanations, which can be more conveniently
made in a new section; we shall therefore close this one by
subjoining the operation for the above example, as divided by
the other factor.

at—ab+5b2)ad+63(a+d
—a3+a2b—ab?
+a2b—ab2+53
—a2b+ab?—b3
0.

SECTION VII.

NATURE AND MANAGEMENT OF FRACTIONS.

A FRAcTION i8 8 quantity viewed in its relation to some other
quantity of the same kind which is considered as a whole ; and
as every case of division may be considered as reducible either
exactly or to any degree of nicety that may be required to an
expression in which the divisor is one, or, which is exactly the
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same in effect, every possible case of division may be conceived
as consisting of equi-multiples of 1 and the quotient by the
divisor, the simple expression of division by writing the divi-
dend over the divisor, and separating them by a line, is alse the
general expression of a fraction. Thus az is an expression for
any fraction, in which the quantity b is understood to mean a
whole, or the number 1, and a any quantity whatever, only it
must be one of the same kind with b. If a and b were ex-
pressed arithmetically it would be necessary to express them
both in the same unit, in order that the numbers might express
the same relation as the values; and when general expressions
are used it is necessary to understand them in this manner.
Perhaps the simplest notion we can have of the nature of a
fraetion is the arithmetical one, which supposes that the whole
is divided into as many equal parts as the under term of the
fraction expresses, while the value of the fraction consists in the
number of those parts which the upper term expresses. Thus,

19
in the expression % the under number 20 shows that some-

thing considered as a whole is understood to be divided into 20
equal parts ; and the upper number 19 shows that the value of
this particular fraction is 19 of those parts. From tbis it fol-
lows that the value of the fraction does not depend upon the
absolute numbers in which it is expressed, but upon the rela+
tion of those numbers to each other; and that each of the two
numbers has a distinct operation to perform.

One whole, by whatever number it nay be expressed, may be
considered as always meaning the very same quantity, unless the
contrary is expressly stated ; and thus, the larger number which
the under term of a fraction expresses, the smaller must be the
value of every individual 1 of that number ; but the larger the
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upper term, the value must always be the greater. A fraction
may thus be considered as having a sort of double value, or a
value which may at any rate be considered as the result of two
operations, a division by the under term to find the value of 1
in the upper number, and a multiplication of the value so found
i)y the upper number.

- In an arithmetical point ef view, the number of the under
term fixes the denomination of the fraction, in the very same
ﬁay as the deneminations of real quantities are fixed by the
standards in which they are counted ; and for this reason the
under number is called the denominator of the fraction. The
denominator is thus, as it were, “ small change” for the integer
number 1, just as shillings are small change for a pound, ox
yards are small change for a mile. The upper number shows
how much of this small change the fraction consists of, and for
this reason it is called the numerator, or “the teller of the
number” of the fraction. It may be any number, equal to the
denominator, or greater, or less; and it may be a number which
cannot be exactly expressed in terms of the denominator, at the
same time that there is between the two a relation which we
can perfectly understand.

Hence the doctrine of fractions is a very general one in ma-
thematical science, as it invelves all comparisons in which the
whole value of one quantity is compared with the whole value
of another. There is something neat in the signs which are
used to express the comparisons. a: b is relation generally,
and sayslittle more than that ¢ and b are quantities of the same

. a
kind ; 3
points out that a is the standard with which b is compared.
a <=~ b with the compound sign is more definite still, for it
points out the difference of the related quantities ; but the ling

is a more definite statement of the relation, for it
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in it is not the sign — pointing out the difference by which the
one quantity exceeds or falls short of the other, it relates to the
whole of both, which is not necessary in the case of the mere
difference as obtained by subtraction.

+ A fraction is still a quantity though the value of that quan-
tity is expressed by a relation; and thus we must have some
means of knowing when two fractiens are equal and when not.
We cannot tell this generally, or even in some common cases,
by-comparing the numerators ; for these have equal values with
equal expressions only when the denominators are also equal.
If both consist of the same expressions their equality is of no
use, as we can draw no conclusion from it.

Neither can we make the comparison generally if the terms
are sums or differences indicated by the signs 4+ or —. Thus
we cannot tell whether 2—1—.2 or :—%Z is the greater.

But if we have any means of showing that the two products
arising from the multiplication of the numerator of each by the
denominator of the other are equal, then we are in a condition
for proving the equality of the two fractions; and this is im-
portant, as being the foundation of the rule of proportion, or
“rule of three,” which is so valuable in reasoning and calcula-
tion, both in arithmetic and in mathematics generally.

Now, from the connection that there is between a fraction
and a case of division, it is evident that all equal fractions must
have their terms equi-multiples of that form of the fraction
a

which has 1 for its denominator. Thus, if A

= 5, then the

product ad is equal to the product be.
For, let the form of the fraction of which these terms are

equi-multiples be i{, and no matter whether g is less than 1,
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equal to 1, greater than 1, or whether it can or cannot be ex-

pressed in terms of 1, 2 must be some multiple of %, and so

must -5 But m and n stand for any multipliers whatsoever.

: ZIXT e I ana C =
Thereforezmnybecalled_lx,n, t is, ™ ,andd =

l{—:—:, that is, %‘ Multiply ¢m by n, and gn by m, and we
have gmn =gnm, which is an identical proportion, the product
of the same three factors ; and these factors are perfectly general,
and may be anything, provided that those which are expressed

by the same letters are equal to each other.

13
Take an example: a man is entitled to T of a pound, would
16
16 shillings pay him? 16 shillings is %° and the question is,

is it equal to g? Multiply the numerator of each by the de-

nominator of the other, and we obtain for the first 16 x 16 =256,
and for the second 13 x 20=260, which is more than the other,
so that 16 shillings is not quite enough.

Let us see how much it wants. The numerator of each frac-
tion has been multiplied by the denominator of the other; and
if we multiply the denominator by the same we shall have equi-
multiples, or fractions of the same value as the original ones, and
they will at the same time have equal denominations; that is,

13x 20 _ 260 an 16 x16 _ 256
16x 20~ 320 2016 320

) 260 256 . 4 .. .
The difference of these, or é?o— 3'?0, 13 = 370, wlnch, it
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1
is easy to see, is = §oofapound,oriofashilling,or3pence

more than 16 shillings the man would require.

Here we have discovered not only how fractions may be com-
pared so as to ascertain which is the greater, but also how they
may be prepared for addition and subtraction. We have only
to multiply the terms of each by the denominators of all the
others; and they will be all equi-multiples, with equal deno-
minaters.
© 2 and 9, we have % = 99

. . a
Thus, in the fractions P77 and » e i =ij_7;"
bd
‘= abﬂ e = 2odh and = M which are all equi-

d " bafw’ f - bfan’ h_ bdfh’
multiples, having a common denominator, and their sum is
_ adfh+cbfh+ebdh+ gbdf
bdfh

Baut, in order that we may be able to manage fractions with
ease and certainty, we must consider how a fraetion which pre-
sents itself in a complicated form may be made as simple as
possible without altering its value.

Now, we cannot have any general means of simplifying the
terms of fractions by addition or subtraction ; because both the
sum and the difference of the terms of two equal fractions are

atc a—c

still the same fraction. Ifz._ thenb+dandalsob_d

are equal to each other, and also to = or E; for, multiplying

b
the numerator of each by the denominator of the other, we have
(a+¢)x(b—d) = ab+bc—ad—cd, and (a—c)xb+d =
ab—bc+ad—cd, which are evidently equal to each other, for
all the four simple products in beth are equal, and two have

the sign + and the other two the sign — in each; and thus,
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though they express accurately the real ratio of a: b or c:d
multiplied by the terms of the other equal ratio reversed, they
are each equal to nothing.

As multiplying the one term and dividing the other by the
same quantity have exactly the same effect on the value of a
fraction, we can shift a multiplier or divisor from the one to the
other at pleasure, provided that it affects the whole of the term

in which it at first appears. Thus & P which is X Tocp ey by

changing the multiplier  of the denominator to a divisor of
a 7 7
the numerator, be changed to z, or 5 may be made E with-.
1 1
out altering the value. Generally speaking, this renders the
fraction more complicated, but there are cases in which it is
of use.
The converse is much more useful, for by means of it all
division of fractions may be changed into multiplication. Thus
a .

—f:—- is evidently an expression for the division of % by f—l; and

.a
making the divisor of each term a multiplier of the other, we

have - 5o wlnch is the terms of the dividend or numerator mul-

txphed by those of the divisor or denominator, inverted ;
from which we may derive this general rule for dividing
one fraction by another: turn the divisor upside down and
multiply.

. As the numerators of fractions are multipliers, and the deno-
minators divisors, it follows that fractions are multiplied by
multiplying their numerators for numera}or, and their denomi-
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: . a ¢ aXce ac
nators for denominator. Thus A X 7 hxd and 3 all have

the same meaning.
Any quantity may be changed into the form of a fraction by

3
writing 1 for its denominator. Thus 3 may be T and gene-

rally a may be ;;_and, from what has been already said, the

quantity, whether expressed by a number, or a letter, or com-
bination of letters, is a multiplier, but it may be changed into

a divisor by inverting its terms. Thus :11 is 3 as a multiplier,

i 1
% is 3 as a divisor, and generally; is a multiplier, and -8

divisor.
It is evident that g is any quantity divided by the number
1, which is just that quantity itself; and that (l; is the number

1 divided by any quantity a, and as the first of these is the
expression for the quantity as a multiplier, and the second the
expression for the same quantity as a divisor, they are the
opposites of each other; and for this reason 1 divided by any
quantity is called the reciprocal of that quantity, and that
division by any quantity is the same as multiplication by its
reciprocal. We need hardly repeat that the reciprocal of a
a

frdction is that fraction with its terms inverted. Thus, if B is

any fraction, é is the reciprocal of that fraction.
_ a
Here it may be proper to inquire into what is the difference
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between any quantity and its reciprocal, as, for instance, what

is the difference between % and g? or, which is the same

b
thing, what is the value of ;—;? According to the prin-
ciple formerly explained, we must multiply the numerator of
each by the denominator of the other for the respective nume-
rators, and the two denominators together for the common
s s
denominator, which gives us 2=2_ and % = % ; and con-

b ab’

L.

abd

the squares divided by the product. Thus, the difference
3 4%—3% 16—9 7

4
be —and - I8 = ——— = —— ; the difference
tweensan 413 yvE) 12 12 e Ten

sequently the difference = , that is, the difference of

16—1
between : and , that is, 4, and the reciprocal of 4, is <=

%

The product of any quantity by its reciprocal is always = 1,
for it is always a fraction of which the numerator and denomi-
nator are equal.

The quotient by the reciprocal is the square of the qua.ntlty
a.l,axa .. 8 b,axa a?
17a Tx1 87 a bxb o

When quantities are stated as the terms of ratios, and not
as fractions, the reciprocal is the terms transposed ; thus, b : a
is the reciprocal of a : &.

If two quantities are mutually the reciprocals of each other,
any equi-multiple of either of them must also be the reciprocal

of any equi-multiple of the other. Thus, 'ﬁf and nb are reci-
na
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procals, and a and b stand for any quantities whatever, and m
and n for any multipliers. Hence,

« If two quantities have the same proportion as other two, the
product of the first and fourth, when they are placed in the order
of proportion, must be equal to that of the second and third ;*
that is,

Ifa:b=c:dyora:b::c:d,then,ad =be;

for since a:b=c: dthat:s,g 5’ g-isthemciproealof

o™

xd
b d-b— =1; therefore ad = bec.

The principles which have been stated contain the foundation
of the management of common fractional quantities, whether
expressed by numbers or by letters, and we can better
explain the method of treating exponential fractions in another
section. It may not be amiss, however, to recapitulate the
leading points.

1. Fractions are not, arithmetically, quantities of the same
kind, unless they have the same denominators; but they c¢an
always be reduced to a common denominator by multiplying
both terms of each by all the denominators, except its own,
and then the sums or differences of the numerators may be
found in the same way as in quantities not fractional.—The
denominators are not subjects of addition or of subtraction.

As the numerator is always a multiplier, and the denomi-
nator a divisor, it follows that, to multiply any number of
fractions together, we have only to multiply all the numerators
for numerator, and all the denominators for denominator; and
if there be any quantities which are not fractions among the
factors, they may be put in a fractional form by writing 1 for
the denominator of each. To divide fractions, we have only to
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turn the divigors into their reciprocals, which is done by invert-
ing the terms, and then treat them as in multiplication.

‘When there is a number of multiplications and divisions to
be performed, it is often very convenient to throw them into a
general fraction, by placing all the multipliers above a line,
and all the divisors below the same, and connecting them by
the sign x repeated between every two. Thus, for instance,
if it were required to divide the product of 12, 16, 9, 28, and
7, by the product of 49, 27, 6, and 4, we might arrange them
thus,—

12x16x9x28X7 _ 2x4x4 _ 32 2

=—=10-

49x27Tx6x 4 ) 3

- Here we leave out all the factors which are common to the
two terms ; and divide the product of the remaining ones above
the line, by the product of those below. This is one of the
most useful operations in arithmetic.

It will be seen at once that this result is obtained by throw-
ing out those factors which are common to both terms of the
original fraction, and by this means the greater part of the
labour of multiplying and dividing is saved. This is more a
matter of convenience in practice, than of investigation of prin-
ciple ; but still it is so useful, that it is very desirable that every
one who wishes to be an expert calculator, even in common
matters, should be so well acquainted with what numbers con-
sist of equal factors, and what do not, as to see at once how the
~ expression may be shortened ; we shall, therefore, make this
the subject of the next section.
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SECTION VII

THE FACTORS, THE DIVISORS OR MEASURES, AND THE
MULTIPLES OF NUMBERS.

Frou what has been shown in former sections, it will easily
be understood that, regarding them merély as numbers, and
without reference to their standing either for one kind of quan-
tities or for another, there is a very great difference between
numbers considered simply as numbers or answers to the ques-
tion “ How many ?” and numbers considered as multipliers or
divisors.

In numbers simply considered, 1 is the standard of value ; it
always counts; and the symbol of no value is 0; but in a
multiplier or a divisor, 1 is the standard of no value, and 0 has
& very different signification. As a multiplier, O points out
not that there shall be no multiplication, but that there shall
be no multiplicand ; and 1 is really the sign of no multiplica-
tion. As a divisor, 1 is the sign that there shall be no division,
and 0 is a sign that, whether the dividend. be small or great,
the quotient shall be infinite—shall be all possible numbers ;
and if we are to write it down, we may write any number
whatever with equal propriety. = X o (meaning by n the
greatest possible number that any one can think of) is = 0,
but the product, divided by the multiplier, gives the multipli-

cand ; therefore ?) is infinitely great, and when it occurs, it is

usually expressed by a double 0 laid horizontally, c.

A number which cannot be divided without remainder by
any number except 1 and itself (which is no division), is called
& prime number ; it is an original number, or one which is not
the result of any operation. '

3
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A number which can be divided without remainder is called
a composite number, because it may be said to be composed of
either the quotient or the divisor, repeated as many times as
the other expresses. A composite number has, then, always
two divisors; and as it is composed of the product of these
divisions, they are called the factors of it. Thus the factors
and divisors of a number always mean the very same numbers.
Still it is necessary to distinguish between them, because, when
we have the factors given, whatever may be their number or
value, we can in all cases find their product ; but when we have
a product given, we have no general means of finding what its
factors may be, or whether it is a product at all.

In Algebra, where the operations are expressed as well as the

guantities, this difficulty is not felt ; there are particular cases
in which we can get the better of it in arithmetic, and no one
can be expert, even as a common accountant, without being
able to perceive those cases where they occur.
- The natural numbers taken in their order, 1, 2, 3, 4, &c.,
form a series or succession, beginning at 1, and increasing by
the addition of 1, as a common difference ; and the problem is
to determine what terms of this series are prime, and what are
composite.

1 is evidently a prime number, and so is 2; but we can see
that 2 must be a factor of every second number after this—of 4,
6, 8, 10, 12, &c., but not of any other number. 2 is thus the
smallest factor which any number can have, and the other factor
corresponding to it must be half the number. Hence we are
sure that half the series of the natural numbers are composite,
and that no factor of a number can be greater than one-half
of it.

. Thn is not much, but it is a beginning, and we may see what
more we can wnake of it before we proceed farther. The num-
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bers of which 2 is not a factor, always have an odd 1 when we
attempt to divide them by 2 ; hence we call them odd numbers,
and those of which 2 is a factor are even numbers.

If we divide ever so many even numbers by 2, there is not
an 0dd 1; therefore the sum of any number of even numbers
is an even number; so also is the sum of an even number of
odd numbers, for the odd 1s make an even number, and when
they are taken away the other numbers are all even; but if the
number of odd numbers is odd, there is an odd 1, which makes
the sum odd.

Here we find a principle of some importance. We have seen
that, if 2 divide the sum of the remainders, it will divide the
sum of the numbers ; and this is general, applying to any num-
bers and any divisor, for the single numbers are all divisible,
except the remainders; and if the sum of the remainders is
divisible, so must the sum of the numbers. Hence,

If a number is a factor of the remainders, it is a factor of the
sum ; and a factor of two numbers must be a factor of their
sum, their difference, their product, or any multiple of each or
all of them.

To return to the natural numbers;—3 is a prime number,
but 4 is not; it is the second after 2, and an even number.
8 is prime, because 4 is the only composite number below it,
and 5=4+1; and no factor of 4 can be a factor of 1. Hence
no number and the one immediately following it in the scale
can have a common factor.

It is evident that every second number is divisible by 2, every
third one by 3, every fourth one by 4, every fifth by 5, and so
on ; also that the factors of every composite number will both
fall in that place of the series which answers to their numbers -
multiplied, and that each will then have occurred in the series
as often as the other expresses. Thus 4 and § occur together

x2
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for the first time at 20, and it is the fifth occurrence of 4, and
the fourth of 5.

As 1 is the measure of all numbers, whether prime or com-
posite, it follows that all numbers whatever must fall together
at some place of the series, and that there can be prime num-
bers only at those places where no number falls. Upon this
principle we could, by mere mechanical labour, construct a
table of all prime numbers, and of all divisors of composite
ones, as far as we chose; and there are few better exercises for
a beginner in the study of numbers, than the construction of
such a table. Of course it is not necessary to go beyond half
the series, as no divisor of a number can be greater than the
half. The following is the arrangement as far as 20 :—

PRIME NUMBERS AND FACTORS.

1,2384,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
PPP.2P.2P.23 2 p. 2 p. 2 3 2 p. 2 ». 2
3 4 ] 3 7 56 4 3 4

‘4 8 6 5

6 9 10

From this example it will be seen that the factors always
occur in pairs, and that if there are more than one pair, two of
the divisors are composite numbers ; and that when there is a
2 among the factors, there is always another factor equal to half
the number. :

If the places of the prime numbers, which are marked by
the letter p, are examined, it will be found that they are either
immediately before or immediately after 2 or 3, or some number
divisible both by 2 and by 3, that is, by 6. Therefore we have
this general principle : —every prime number, either with 1
added to it, or 1 subtracted from it, must be divisible by 6; but
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we are unable to state the converse of this as true; for every
number which 41 or —1 is divisible by 6, is not prime:
and, farther than this, numbers which have not this property,
and are not divisible by 6, without addition or subtraction, are
always even numbers. Hence we are reduced to merely
making trial, when we get an odd number, unless in a few
yarticular cases, and in these our assistance is derived from
the scale of numbers, and, except in one or two of them, the
labour of investigating a rule is greater than that of ascertain-
ing the fact by trial, and just as much confined to the particular
case.

1. If we can show that any factor will dividle a number,
except a certain number. of figures on the right, whatever the
figures to the left of these may be; and if we perceive, from
the particular number before us, that this factor will divide
those right-hand figures, then it will follow, on the principle
that a factor of all the particular numbers is a factor of the
sum, that the factor in question is a factor of the number. Now
it was shown when treating of the scale of numbenrs, that any
integer number may be considered as consisting of as many
numbers as there are figures in it ; that it is all 10s except the
right-hand . figure, all 100s exeept two figures, all 1000s except
three, and 80 on ; therefore, if any factor of 10 divide the unit’s
figure, it must divide the number ; if any factor of 100 divide
the units and tens, it must divide the number; if any factor of
1000 divide the units, teng and hundreds, it must divide the
number, and #0 on.

- The factors of 10 are 5 and 2, and each of them occurs twice
a8 a factor in 100, three times in 1000 ; so that we may express
the places in a number by repeating 5 X 2 for every place; as,
for instance, 1000 might be written (5 x 2) x (5 x 2) X (5 X 2).
New these .may be compounded into any two factors which
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make 1000 when multiplied ; as (5 x5 X% 5)X(2 X 2 x 2), that
is, 125 X 8; and if the units, tens, and hundreds be divisible
either by 125 or by 8, they must also be divisible by all pro-
ducts of the factors of these numbers. But if 2 is a factor along
with any number of 5s as factors, it will produce 0 in the units;
if 4, it will produce 00 in the units and tens ; therefore we may
state that, if the units be divisible by 5, the units and tens by
25, or the units, tens, and hundreds by 125, each of these will
in that case be a factor, or divisor of the whole number, what-
ever may be the figures to the left; and generally that, if any
number of figures on the right hand be divisible by the con-
tinued product of as many 5s as there are figures, the whole
number will be divisible by the same.

There is a very convenient method of shortening numbers by
this means: if the unit figure is 5, multiplying by 2 will clear
it away ; if two figures are divisible by 25, multiplying by 4
will clear them away ; if three figures are divisible by 125,
multiplying by 8 will clear them away, and always, as another
figure is divisible by another 5 as a factor, another 2 as a factor
of the multiplier will clear it away. This method is often useful
in the management of decimal numbers.

2. If the sum of the figures in any number is divisible by 9
then 9 is a factor of the number; and if 9 is a factor, 3 is a
factor twice over; also 3 is a factor if the sum of the figures is
divisible by 3. The principle upon which this depends is a very
obvious one:—if from any number of 10s there is taken an equal
number of 9s, the same number of 1s must remain. Now every
figure in a number, except the units, is 8 number of 10s, and
therefore, if every figure is divided by 9 down to the ten’s place,
there will remain the same number of units as the figure ex«
presses ; thus we may consider all the figures as remainders,
after dividing by 9; and it has been shown that, if the divisor
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divides the sum of the remainders, it will divide the sum of the
numbers. )

If the sum of the figures, counting from the unit’s place

inclusive, in the odd places, be equal to that of all those in the
even places, 11 will divide the number. This also is easily
shown, for any number of 10s wants an equal number of 1s of
being an equal number of 11s; so that, whatever the figure is
which has 0 annexed to it, in order to be divided by 11, the
remainder added to the figure will always make 11, only where
two Os have to be added, these will count only as one figure,
and the quotient will be 09, Thus, 1243 is divisible by 11.
The first figure is 1000, which gives 90 for the quotient, and 10
over ; the second is 200, which gives 18, and 2 over; the third
is 40, and gives 3, and 7 over; and the fourth is 3 over. Thus
all the number is divisible by 11, except 10 + 2 4 7 + 3 =22,
which also is divisible by 11, and consequently the whole of the
number,
. From this peculiarity of numbers divisible by 11, we can
obtain the quotient in rather a curious way, by beginning at
the right, and writing twice over any figure that will make the
last of two =0, only if we add 10 to the upper figure, we must
add 1 to the next under one. Thus, 1825406 is divisible by 11,
and the quotient may be found thus :—

1825408
66
44
99
&6
7
11 = 175946, quotient.
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. Or we might do it by the first figure of each pair, thus :—

1825406
6
4
9
5
7
1 =175946.

These are the only cases in which finding the factors or divisors
of one number will repay the trouble of the investigation, unless
we continue 3 or 9 and 11. If the sum of the figures divides
by 3, and the even places equal the odd, the number divides by
33; and if the sum of the figures divides by 9, and the even
and odd are equal, the number divides by 99. Thus, the
number 126522 divides by 99.

The factors of a single number are of comparatively small
importance ; but the common factors or common divisors of two
or more nunbers are very useful, and, fortunately, there is a
very simple general method of finding the greatest common
factor, or, as it is called, the greatest common measure of two
mumbers. :

It has already been shown that a common factor divides the
sum, the difference, and any multiple ; and if that factor and a
third number again have a common factor, that factor will
divide all the three numbers. Thus, using the last-found
factor and another number, we may proceed to as many as we
please.

The clearest way of showing this will be by an example in
numbers. Let it, then, be required to find the greatest common
divisor, or measure of 8172 and 6354. .
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1. Divide the greater by the less.

6354 ) 8172 (1, quotient.
6354

1818 remains ;

therefore 6354 is not a divisor ; but 1818 is the difference of the
proposed numbers, and must be divisible by all their divisors,
and so must every multiple of it, and also the difference between
it, or any of its multiples, and 6354 ; therefore,
2. Divide the divisor by the remainder,
1818) 6354 ( 3, quotient.
5454

900 remains ;
therefore 1818 is not a divisor.
3. Divide again—
900 ) 1818 ( 2, quotient.
1800

18 remains ;
therefore 900 is not a divisor.
4. Divide yet again—
18) 900 ( 50, quotient.
900

0 remains ;
therefore 18 is a divisor, for it divides 900, which is 50 x 18,
and 1800, which is 900 x 2, and 1818, which is 1800 -+ 18, and
5454, which is 1818 x 3, and 6354, which is 5454 4 900, and
8172, which is 6354 + 1818; consequently 18 is a common
factor, or measure, or divisor of 8172 and 6354; and it is the
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greatest number that can be a measure of them both ; for any
number which is so must be a measure of 18, and it is evident
that 18 is the greatest number that can be so. Generalising
this operation, we have the common rule for finding the greatest
common measure of any two numbers :—divide the greater by
the less, and the divisor by the remainder continually till
nothing remains, and the last divisor is the greatest common
measure.

To reduce any fraction, or any ratio to its lowest terms, we
have only to find the greatest common measure and divide both
terms by it : thus, if our example were the ratio 6354 : 8172, or

the fraction g2 the lowest term would be 353:454, or

the fraction %Z; and if they are tried by the same opera-

tion it will be found that these numbers have no common
divisor. ‘

Numbers which have no common divisor are said to be prime
to each other ; and such numbers tsken smgly may be either
prime or composite.

Any number of which several other numbers are factors or
divisors is called a common multiple of them, and the least num-
ber of which they all are divisors is their least common multiple.
But, before we examine the multiples of numbers, it will be of
use to revert to the process by which we find the greatest com-
mon divisor, because that process is- useful in practice, even
though the result of it should be that the numbers have no
common divisor.

If we express the first step of the division in the former

example we have 8127 X 6364—1%_3% 5 3 if wesubstitute the
second division for the fraction in this denominator, we have



CONTINUED FRACTIONS. 130

1 S
- ; if we substitute the fraction for the division, in this
Saes , ™

) 1

we have TR and from this, by the last division, we have

%. But the simple fraction in each of these belongs to the

denominator of the fraction before it; therefore, the whole
assumes this form :— :

)-llt-l

I...

L
2 1
“50.
This is called a continued fraction, because every following
fraction is part of the dénominator of the one before it.
. We may take the whole of this fraction and reduce it, which

that is,

(V)

will give us the lowest terms of the fraction —

%34' The last two parts are

6354

8172

3 5!6, and multiplying both

terms of this by 50, to clear it of the fraction in the denonn-
1x 50

nator, we have 2_;5_Oﬁ’

which, performing the multiplica-

50
tions and the addition, gives — 1 Substitute this in the term

o1
above, and it becomes ——; reduce this and there is
31’H
1x101 . . 101
5m, and performing the omphong we have 5

- 1
Substituting this for its value, we have 1 m; and reducing

1x353 353 .
i§, ———————— = — btained by the
this, Tx 3637101 — 468 the s?me as we 0 Y
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direct division of the terms by their greatest common
measure.

But we might not have occasion to make use of all the nieety
of the lowest terms of the fraction, or the ratio (for it is the
same in either case), and then the continued fraction furnishes
us with a series of approximations by taking one, two, three, or
more terms, at pleasure, from the beginning.

In the above fraction, the first term gives us -11—, or that 353
= 454, which is by much too high; the first and second terms,

1x3 3

— _ hird te

i glveuslx3+l vy The first, second, and t TmS,
1 1 1 7 .

11 give us 11x2 = l2 =g and the. whole terms
3 Sx2+1 7

. 353 . 18 7
give us e as before. So that we have the scries T 7Y
353

oo each nearer the truth than the one hefore it, till we

come to the last, which takes in all the terms, and is, in con-
sequence, exactly true.

But if we examine the way in which these terms are ob-
tained, we find that the second is the first multiplied by the
second quotient, with 1 added to the product of the denomi-
nator ; and that each succeeding one is the one before it mul-
tiplied by the next quotient, and the one before that added to
the product, as in this operation :—

Quotients . 1 3, 2, 50.

1x3 3x2+1 7x50+3

1x3+1 4x2+1 9Ix50+44
3 7 353

iy 'y 454

-

Statements . ;-’

Fractions . 1,
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If we compare the statements we can see that the difference
of the values of every two adjoining ones is 1 divided by the
product of the denominators, thus -:— is; greater than g, g is
516— leqsthan :—, and gis 47186 greaterthang. Thus, if
we take the smaller of the given numbers as the numerator of
the fraction, or as the term compared with the standard in the
ratio, the first fraction gives the value too high, the second too
low, the third too high, and se on alternately, till we come to
the truth in those cases which terminate, or without limit in
those which do not. Each is thus nearer the truth than the
difference between it and the next.

Let us compare these by reducing them to a common deno-
minator, that is, by multiplying the terms of each by all the
denominators except its own, thus :—

16344 . 3536

:X4X9X454—16344 mtoomuch

§x9x454=i§23::, n-+£toohttle.

%x4x464=;‘25—£—34i,isﬁtoomuch.
i‘—;—ix9x4;62;:: is the truth.

7. . 1 o o
g 18 very near the truth, being only yro of 1 from it, which

is 8o little, that for any common purpose 7 and 9 would do just
aswell as 353 and 4564. We shall have occasion to take some
further notice of continued. fractions, on account of the assist-
ance they give us in matters much more difficult than the
present.
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. If it is borne in mind that the least common multiple of
sny number of numbers is the smallest number that can be
divided by each of them without remainder, and that when
they are all prime to each other this number is the product of
them all, the following practical directions will be understood
without any explanation :—write the numbers in a line after
each other, divide them by their common factors or measures
till no number can be found that will divide two of them ; then
multiply all the divisors and undivided numbers, and the pro-~
duct will be the least common multiple.

Let it be required to find the least common multiple of 18,
24, 16, 15, 14, and 9. Arrange them

18, 24, 16, 15, 14, 9;
2 divides them all but 15 and 9, and the results are,
9,12,8,15,7,9 X 2.
3 divides them all except 7 and 8, and the results are,
3,4,8,5,7,3x 2 X 3;
8 divides 3 and 3, and the results are,
1,4,85,7,1x 2 x 3 x 3.
4 divides 4 and 8, and the results, leaving out the 1s, which
make nothing as multipliers, are,
2,5,7T%x2Xx3x3x4,
which are not only prime to each other, but all prime numbers
except the divisors ; therefore,
2% 5 x7x2x3x4 = least common multiple.

JIn such cases we can often get the product with very little
trouble. In the above 2x5x2x4 = 80, 80 X7 = 560,
560 x9(3x 3) = 5040.

The continyal product is & much larger number, being
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- 18x 24y 16 x15 x 14 x 9 = 130603680,

which is 2592 times greater than the least common multiple,
and would greatly increase the labour and chance of error in
any calculation into which it enters.

One of the neatest applications of the least common multiple
is the reducing of fractiens to a common denominator, in order
to add them ; and the least common multiple is, of course, the
least common denominator.

Calling the numerator n, the denominator d, and the least

eommon multiple m, the formula is 7%” But in all cases

where we have a multiplication and a division to perform, and
know that we can divide one of the factors without remainder,
we abridge our labour very considerably by performing the
division first, and thus converting the quotient into a multiplier.
Now as the least common multiple is necessarily divisible by
all the denominators, we can divide it and obtain a multiplier

for each numerator. The formula will thus become n X ;

the division of m by d being performed, and the quotient used
as a multiplier. .

Let us illustrate this by an example :—

Uncle Nathan, who by great skill in calculating the arbitra-
tion of exchanges, and various little other arts which are well
known on the Stock Exchange in the city of London, at which
his mind had been so constantly, so silently, and so cautiously
at work for half a century, that he got the name of “the calcu-
lating clock with the dead beat ’scapement,” was in the fulness
of time, and the abundance of his accumulations, gathered to
his fathers. He left a goodly fortune ; but as part of it was in
the hands of half the kings of the world, he could not tell its
amount, and therefore could not bequeath it to his six nephews
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in specific sums; therefore he devised it fractionally as follows :—=
lstoG*ri itoG'd' utonstoG 7t
5o 1 Gripe, g5 to Grindem, g2 to Grub, 5 to Grudge, &, to

3
Grippy, and i to Gad, who, being something of a wandering

blade, stood lowest in the favour of Uncle Nathan. Further-
more, he willed that Goosewing, who had been his trusty and
well-beloved scout and scribe for many years, should arrange
the whole matter, transfer to each of the six nephews his
legacy, and take 2500/, for his trouble. It is required to find
the amount of Uncle Nathan's savings, and the portion which
came to each of the nephews.

It is clear that the fortune, whatever it is, is 1, and may be
represented by any fraction of which the numerator and deno-
minator are exactly equal ; and it is also clear that the fortune
may likewise be represented by all the fractions which the
nephews are to receive, together with Goosewing’s 2500L. ;
therefore, 4

13 6 m 5 7 3
o mtatmte Tt %=1

We shall, in the mean time, call the 2500/. ¢ ; and our first
business will be to colleet all the fractions into one sum, which
+a will give us the fortune, or at least the proportion which a
bears to the other shares, and then from that we can easily get
the shares themselves. In order to do this let us first find the
least common multiple of the denominators,

50, 25, 64, 32, 64, 50.

Here we see at once that 50 X 64 can be divided by all these
numbers ; therefore,

64 x 50 = 3200 =least common multiple,
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This least common multiple is the common denominator of the
fractions ; and to find the numerator of each in terms of this
denominator we have merely to divide it by each denominator,
and multiply the respective numerator by the quotient. For

this we have

1. Gripe

2. Grind'em

3. Grub
4. Grudge

5. Grippy

6. Gad

.

3200
50— 64, Gripe's multiplier

3200

T 128, Grind'em’s multiplier
3200

= 50, Grub’s multiplier

3200
3= 100, Grudge’s multiplier

3200
= 50, Grippy’s multiplier

3—%: 64, Gad’s multiplier.

We have next to multiply each one’s share by his multiplier,
and we get the proportional shares in terms of the denominator

3200,

1. Gripe . . 13x% 64=332, Gripe’s number

2. Grind’

6 % 128 =768, Grind’em’s number

3. Grub . . 11x 50=0550, Grub’s number

4. Grudge
5. Grippy
6. Gad .

5 X 100 =500, Grudge’s number
7x 50=2350, Grippy’s number
3x 64=192, Gad’s number

Sum of the numbers 3192 = numerator.

Thus the shares of the six nephews amount altogether to

L
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3192 )
3200° hence we have,

3192
3500 T ¢

The value of a is evidently the difference between the nume-
rator and denominator of this fraction. If the numerator were
the greater it would be —, and if the terms were equal it would
be 0; but the numerator is less than the denominator, therefore

8
Goosewing’s fee is 3200° " disregarding the denominator, as it

is the same in all, his share is 8, and the money value of it,
according to the will, is 25001.

If we divide 2500 by 8 we get 312/ 10¢. as the value of every
unit in the numbers ; and this, multiplied by the proportional
numbers, will give the shares, the sum of which, together with
the scribe’s fee, will be the whole fortune.

3121, 10s, is, changing the 10s. to a decimal, 3125; where-
fore,

1. Gripe . . . 832x 312:5=£260,000 to Gripe,

. Grindem . . 768x312:5= 240,000 to Grind'em,
Grub . . . 550x3125= 171,875 to Grub,
Grudge. . . 500x312:5= 156,250 to Grudge,
Grippy . . . 850x312:5= 109,375 to Grippy,
Gad. . . . 192x312:5= 60,000 to Gad,
Goosewing. . 8x3126= 9,500 Goosewing’s fee,

ook

Total fortune . £1,000,000

We have given this example chiefly on acoount of its sim-
plicity, and the consequent ease with which a reader not much
conversant with figures can understand it ; and having done so,
we shall proceed, in the next section, very shortly to examine
those principles in decimals which are most generally useful.
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SECTION VIII.

SOME PROPERTIES OF DECIMALS.

In a former part of this work we pointed out the general
nature of decimals: such as, that they are a continuation of the
scale of numbers below the last place of integers, or the place
of units, and that the several places in a decimal number bear
exactly the same relation to each other as the places in an
integer number—that is to say, that 1 in any place is equal to
10 in the place immediately to the right of it, to 100 two places
to the right, and so on ; that decimal numbers are added, sub-
tracted, multiplied, and divided, exactly in the same manner
as integer numbers; that the removing of the decimal point
any number of places to the right is equivalent to the multi-
plying of the number as often successively by 10 as the number
of places which the point is so removed ; and that the removing
of the decimal point in any number of places toward the left is
equivalent to the dividing of the number as often by 10 as the
number of places that the point is removed. It will also appear
evident, from what has been said respecting fractions, that the
denominator of a decimal number must consist of 1 with as
many 0s annexed as there are figures in the decimal; and as
the number of Os is always equal to the number of times that
10 is a factor, if the decimal consists of n figures, the expression
for the denominator will be 10°.

The ready use of the decimals enables us, however, so much
to simplify all the common applications of arithmetic to the
business of life, and is so indispensable whenever the relations
of magnitude enter into those calculations, that it is necessary
for every one to understand their nature more thoroughly than
it can be understood, without a knowledge not only of arith-

L2
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metical fractions, but of the general relations of fractional quan-
tities, as considered and expressed algebraically. We shall
therefore resume the subject, in a very short section, as pre-
paratory for understanding the nature and use of exponential
numbers, and of logarithms.

If a decimal number is given, in which state it is presumed
to express a complete value, its denominator is always known,
being, as we have already said, 10", n being the number of
figures, whether the significant ones begin at the decimal point
or are preceded by any number of 0s. But decimal numbers
do not present themselves to us naturally in the practice of
calculation, unless in cases of division where the divisor is a
power of 10, that is, 1 with Os attached; therefore the cases
where we are called upon to express numerical values in deci-
mals are those in which we have to divide a less number by a
greater, and this, of course, may occur either when the original
dividend is less than the divisor, or when, after we have found
the quotient in integers, as far as it can be obtained, there is
still some remainder left.

As this remainder and the divisor are integer numbers, or,
which amounts to the same thing, numbers expressed in the
same place of the scale, it is evident that the largest possible
remainder which can be left is 1 less than the divisor, and that
the smallest remainder is 1. Thus, as the divisor is the deno-
minator of the fraction, and the remainder the numerator, it is
evident that the denominator —1 is the limit of the number of
fractions having any denominator. Thus, if the denominator is

1
2, there can be but one fraction, 3 if the denominator is 3,
1 2
there can be but two fractions, 3 and 3 if it is 4, there can be

but three fractions ; and so on in all other cases.
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The fraction which we meet with, or that which arises in
any proposed case of division, may be any one of the numbers
within the limits, that is, whatever may be the denominator
the numerator may be 1, or denominator —1, or any number
intermediate between them. Hence, if we take the general
fraction —: , in which @ and b represent any numerator and deno-
minator whatever, the decimal corresponding to that fraction,

or expressing its value, will evidently be l_:)‘_ ; and the finding

of the decimal will consist in determining the value of n, which
represents not only as many places of decimals as there are
units in the exponent *, but also the particular values of the
figures in those places.

Now, from what was said of fractions in a former section, the
general formula for changing a fraction from any denominator
to an equal fraction having any other denominator, calling the

d
proposed denominator d, is lib— =n. Butin the case of a

10*
decimal, d = 10"; therefore the formula is '-I-b—. The multi-

0
plier 10* may be used in successive factors, as -170 will give

b
will give another figure ; and this operation may be continued
as long as is necessary, the multiplying by 10 being nothing
more than annexing 0 to the remainder; and for as many 0’s
as there are used there will be as many places of the decimal.

the first figure ; and, using the remainder » in place of a,

The original fraction, ‘;—, may be understood to be in its lowest
terms, that is, that a and b have no common divisor; for if they
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have they may be divided by that divisor, and the lowest terms
will thereby be obtained. Now when this is the case it is
evident that, as @ and b have no common divisor, b and 10" can
have no common divisor, unless it is a divisor of 10*. Nothing
will divide'a product without remainder except a factor of that
product ; and therefore no prime number will divide 10* unless
it is a factor of 10, because, how many multiplications soever
may be expressed by the exponent ", none of them introduces
any prime numbers, except the numbers 2 and 5, which are
the factors of 10. Therefore a fraction which is in its lowest
terms cannot be wholly reduced to a decimal if the denomi-
nator of it is any prime number, or contains as a factor any
prime number, except 2 or 5. Decimals arising from prime
denominators different from 2 and 5, or having factors different
from those numbers, are called interminate decimals ; and their
- denominators and 10* are said to be prime to each other, that
is, the one cannot be expressed in terms of the other by a
single number, though the expression may be brought as near
the truth as is necessary for any practical purpose; and we
can, in all cases, after we have carried on the operation to a
certain length, find the law of its continuance, and thus extend
1t to any length without more labour than that of writing down
the figures.

The reason of .this will readily appear from what has been
stated as to the number of numerators which there can be to
any one denominator. These, as we said, must always be 1
fewer than the number expressed by the denominator ; and as,
whatever the dividends may be, there cannot be more remain-
ders in division than this number, it follows that every decimal
obtained from a common fraction by adding 0s and dividing,
‘must repeat some series or circle of figures, and that this circle
of figures must_always be 1 less than the number expressed by
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the product of all the prime factors of the denominator which
are different from 2 and 5. Hence such decimals are, again,
called circulating decimals, X

There is some difference in the form of those decimals, accord-
ing as the denominators from which they arise do or do not
contain 2 or 5 as a factor, once or oftener, besides the prime
factors different from 2 and 5 ; and as those which do not con-
tain either 2 or 5 as a factor are the simplest in their form, we
shall consider them first.

It will be easily perceived that, in order to ascertain how
many figures any decimal will circulate, we have only ta
assume 1 as a numerator, and find how many 0s must be
annexed to this 1, so that the last remainder may also be 1;

‘and the number of Os necessary for this purpose will be the
number of circulating figures ; also, if the quotient, or decimal
with 1 for numerator, be ascertained for any denominator, we
shall have only to multiply that decimal by any other nume-
rator, in order to find the decimal answering to that numerator.

There is no general method hitherto discovered, or in all
probability discoverable, by which this can be done. It might
be extended to a certain length by a process similar to that by
which we showed in a former section how the prime numbers
may be discovered; but the method is more laborious, as the
terms of comparison are the powers of 10, instead of the series
of the natural numbers. We shall, however, mention one or
two cases in which the number of figures is easily determined,
not only because they are somewhat curious in themselves,
but because they throw light upon some of the properties of
numbers to which we may have occasion to advert after-
wards.

In the first place, all fractions whose denominators are 1 less
than any power of 10, circulate as many figures as the expo-
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nent of that power; and the figures which they do circulate
are simply those of the numerator, without any further trouble
than prefixing as many Os as shall make them equal to the

1
number of 98 in the denominator. Thus, 5 is =-111, &e. ;

1 1
% is = -0101, &c.; s is = +001001, &c.; and so in other

cases. That thisis true is apparent from mere inspection of the
numbers, but it may be illustrated by actually performing the
division. The value of any fraction is equal to the product of
a fraction with the same denominator and 1 for numerator,
multiplied by the numerator, as, for instance, % is = -:; X 7;
and so on in all other cases. Hence we have this general prin-
ciple :—if the denominator of a fraction consists of any number
of 9s, the circulating decimal answering to that fraction will be

13
the numerator, with 0s before it if necessary. Thus % is =

6
decimal 1313, &c. ; e is = decimal ‘006006, &c.

From this, it follows that the denominator of a circulating
decimal consists of as many 9s as the decimal circulates figures;
but any number of 9s is 1 less thun the power of 10, whose
exponent is equal to the number of 9s; and therefore, in esti-
mating the values of circulating decimals, which are the nume-
rators of fractions having denominators of this form, 9 in the
right hand place must count as 10, because it counts as 10 in
the denominator, in order to make it a power of 10. This
principle, which is also explainable upon other grounds, must
be attended to in calculations into which circulating decimals
enter.

- It is 1 in the last figure which the denominator of a circu-
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Iating decimal requires to turn it into an exact power of 10;
and as proportional parts must be added to both terms, in
order not to alter the value of the fraction, the same part of 1
in the numerator must be added to that term, as the numerator
is of the denominator. Thus the circulating decimal 19 is

changed to a common decimal by affixing gl)%’ in this form

19
'19?9, which last expression, with the denominator written

Y
dpwn, 18 -I.T'.

In the second place, every fraction whose denominator is 1
greater than any power of 10 circulates twice as many figures
as the exponent of that power; 11 circulates two figures, 101
circulates four figures, 1001 six figures, and so on. If the nu-
merator in these cases is 1, ah 0 more than the expenent of the
power of 10 must be annexed before the first figure of the
quotient can be obtained ; and that figure will be 9, so that the
circle of the decimal will consist first of as many 0s, and then

of as many s, as there are 1s in the exponent of that power

of 10 which is 1 less than the denominator. Thus ili = 09,

&e.; 1_(1ﬁ= -0099,' &e. ; lT)l_Oi = *000999, &c.; and so of all
other denominators of that form. If these decimals are mul-
tiplied by the denominators it will be found that the products
consist of as many 9s as there are figures in the circle ; and
hence again, in so far as they are concerned, we have a proof
that the denominator consists of as many 9s as the decimal
circulates figures. .

We may arrive at the same conclusion directly, and more
generally, thus :—
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Let *285714 be a circulating decimal, its denominator is as
many 9s as there are figures in the circle, that is, 999999, or
the fraction is = 21521

999999
. Shifting the decimal point six figures to the right multiplies.
the decimal by 1000000, Hence,

1000000 times is = 285714-285714, &c.
Subtract 1 time = 0-285714, &ec.
999999 times is = 285714

Therefore 1 time = 285714

; or the denominator is as many

98 as the decimal circulates figures.

If the circle contains the maximum number of figures, that
is, one less than the number of 1s in the denominator of the
fraction, it is evident that those figures must follow one another
in the same order of succession, whatever may be the nume-
rator of the fraction. Only the decimals answering to different
numerators will begin at different parts of the series. In such
cases, if we get the decimal answering to numerator 1, we have
all the others by examining what will arise from multiplying

1
the first and second figures of this by the numerator. Thus 7

is = *142857; and as this contains the maximum number, or
only one figure less than the 1s in 7, we have only to compare
the product of ‘14 by the numerator to see where we must
begin. Numerator 2 will begin 28, numerator 3 will begin
42, numerator 4 will begin 57, 5 will begin ‘71, and 6 will
begin ‘85; and in each case the other figures will follow in
their order.

- When we know that a decimal contains the maximum num-
ber of figures in a circle we can get the corresponding fraction
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with less labour thamPthat of reducing to the lowest terms, in
the manner formerly explained. Thus,

From 10 times -142857 = 1428571, &c.
Subtract 3 times ‘142857 = -428571, &c.

Remains 7 times *142857 = 1°
But if 7 times ‘142857 — 1, then 1 time = {.
We shall next consider the decimals arising from those frac-
tions, the denominators of which contain 2 or 5 once, or oftener,

as factors, as well as other factors which are not divisors of
10. These will be best illustrated by a particular case, and we

3
shall take %é’ the factors of the denominator of which are,

2x 2x2x7. If wedivide the numerator, 53, by these in
their order, we shall obtain the decimal in the same manner

265
a8 if we divided by 56 at once. 523 = 26°5, - = 13-25,
1325 - T
- = 6625 ; so that if the given fraction is in its lowest

terms, there are as many places of terminate decimals as the
number of times that 2 is a factor; and it would evidently
be the same in the case of 5, Let us now divide the last result

6625
by the remaining factor, 7, and we have, = ‘9484, or,

continuing the division, we have ‘9464285714, which consists,
first, of three figures of common or terminate decimals, answer-
ing to the three times that 2 is a factor of 56, and then of a
circulating decimal of 6 figures, answering to 7, the remaining
factor.

The first three figures are evidently = 1%4.%, because they
are common, or terminate decimals ; and the six figures of the
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circulating part are —42927—1, because tl’iey are a circle of six

figures, and begin at the fourth place from the decimal point.
The two parts of the decimal have not the same denominator,

or even denominators which can be considered as standing in

the same relation to the scale of numbers, for the denominator

of 1%#; is a power of 10, namely, the third power; and the

428571
denominator of ———7—- is 1000 x 999999, or by 1000000—1.
946
But if we multiply both terms of 1600 by 1000000—1, we shall

. 946
obtain a fraction equal in value with 1000’ and having the

946 x (1000000—1) -
1000 x (1000000 — 1) —

same denominator as the other; for

946000000 — 946 _ 945999054
1000000000 — 1000 — 999999000’
terminate figures, answering to the denominator of the circulat-
ing part; and adding them, we have the whole decimal =
945999054 428571 946427625
309999000 | 599999000 — $99999000°
is less than the mived decimal by the terminate figures, that is,
by 946.

Hence, in order to change a mixed decimal, or one containing
terminate figures and then a circulating part, to & fraction, we
have merely to subtract the terminate figures from the right of
the whole, and the remainder will be the numerator, while the
denominator will consist of as many 9s as there are circulating
figures, with as many Os after them as there are terminate
ones.

In the Arithmetic of Interminate Decimals, it is necessary to
attend to their denominators, in order to make the compensa-

which is the value of the

the numerator of which
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tions which are necessary from those denominators not being com-
plete powers of 10, or not being equal to each other ; and as the
making of these compensations is calculated to give a good deal
of insight into the nature of numbers, and to teach expertness in
the use of them, the time which may be devoted to it is usefully
spent.

The first thing to be attended to is, to understand how they
may be reduced to & common denominator, so that they may
be added or subtracted with perfect accuracy.

If the circulating figures begin at the decimal point, they
may be reduced to a common denominator by extending them"
to as many figures as there are in the least common multiple of
the number in each. Thus, 29, &c., ‘314, &ec., 4231, &c.,
and *142857, &c., will all have a common denominator, if
extended to twelve places of figures; thus:—

*292929292929 29, &ec.
*314314314314 31, &ec.
*423142314231 42, &ec.

The common denominator being twelve 9s, or 999999999999.

We also perceive that there will be 1 to carry from the next
repetition of the circle, as marked a little to the right; and if
what should be carried is attended to, the addition is the same
as that of any other numbers. The sum of the above (carrymg
or adding 1 to that of the right-hand figures) is,

1-030385921575 0303, &c.,

which circulates the whole twelve figures. The sum, in these
cases, never can circulate more than the number of figures in
the extended circles; and it may circulate less, or become a
terminate decimal, or an integer without any decimal ; but there
are no means of ascertaining this beforehand.

The subtraction is as simple as the addition, for we have only



158 ARITHMETIC OF

to see whether it is or is not necessary to add 1 to'the right-
hand figure of the number we subtract.

When the circulating parts do not begin at the decimal point,
we must extend all the circulating parts till they are as long as
the longest terminate one, and beyond that to a complete circle
or multiple of all their numbers of figures.

This extending does not alter the value, for we may consider
any number of figures on the left hand of a circulating decimal
as terminate, without in the least affecting the value. Thus, if
we mark the beginning and ending of the circulating part by
an inverted comma, we have,

412857, 412°857412,” and -41285'741285,

all equal to each other; for if we subtract the figures which
we mark as terminate from the right, we have the same num-
ber of 0s on the right both of the numerator and denominator ;

412857 412857000 and

thus, *'412857 = ) 12867412 = oo,

*41285°'742185’ = % ; and these are all exactly the
same fraction, if we leave out the 0s, which, being the same
both in the numerator and the denominator, do not alter the
value.

By combining the results of these investigations, we obtain
this formula for the general addition of decimals, whatever they
may be, terminate, circulating, or mixed :—extend the intermi-
nate ones till they contain as many figures as the longest termi-
nate, and after that extend them to as many figures as are the
least common multiple of the places in each circle; then see
what would have to be carried from the addition of another
circle, and, taking in that with the sum of the right-hand
figures, add them as if they were integers. -

In order to acquire readiness in the management of these
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decimals, it is best to take examples in fractions, to change
them to decimals, and adding both the decimals and the frac-
tions to see if the sums are the same, which is most easily done
by multiplying the terms of the decimal by those of the frac-
tion inverted ; and if the products are equal, all the operations
are right. We shall ta.ke an example —

Let the sum of — + + + 7berequm.-ui

First by fractlons .-—ﬁnd the least common multiple of the
denominators.

16, 14, 52, 117 '
: =~by 2, 8, 7,26 117 DRI
noo ~by 2, 4, 7,18 117 S
~by13, 4, 7, 1, 9

Then 4 x 7 X9 X 18 x 2 X 2 = 13104 = least common
multiple of the denominators, or common denominator of the
fractions.

To find the numerators answering to this denominator :—

.,

. 5% 13104
5 16
6 = “Ts106 = 1si04 Mumerator 4095
9 x 13104
9 14 8424
2= 13102 tor 8424
.14 13104 13104, numerator
49 x 13104
49 T 52 12348
B2 = tor 12348
52 13104 13104, numerator
101 x 13104
1 11312
;(1)—7 = 1113134 13::04, numerator 11312

Sum of the numerators = 36179
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36179

Sum of the fractions = 3108

; or, dividing the numerator

. 9971 .
by the denominator = 213%4; or, again, changing the frac-

tional part to a decimal by adding Os to the numerator, and
dividing by the denominator till we find the quotient to circu-
late by the return of the same remainder, we have the sum =
2:7609°126984," in which the inverted commas mark the circu-
lating part, which may be repeated as often as we please.

In this, and in all other examples in which multiplications
or divisions of numbers occur, we shall not, in general, set them
down at length, but merely indicate them by the sign and the
result. For this we have two very conclusive reasons: first, it
saves room; and, secondly, any one who may be inclined to
learn the subject from this work, has these as dissected exer-
cises, in which he has something to do, and yet cannot easily
do wrong.

We shall now treat the same fractions decimally ; that is,
we shall find the decimal corresponding to each fraction, and,
having found the whole, add them together, and if the sum
corresponds exactly with 2-7609°126984," the decimal of the
sum of the fractions, as found in the above operation, we may
conclude that the operation by decimals is correct. In this we
shall not write down the process of finding the decimals at
length ; but if the reader wishes to learn the subject from this
book, it will be advisable for him to perform the operations,
and, generally, to perform all operations in which he finds
merely the data and the results stated. The decimals of the
above fractions, simply stated as they arise from dividing the
numerator of each, with Os annexed, by the denominator, are
as follow :—
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5
6 = 3125

9

13 = 6428811
49

33 = 94200769’
i% = -g63247"

We have next to state these decimals so that they have a
common denominator ; that is, a denominator consisting of as
many 9s as there are figures in the least common multiple of
the number in all the circles, and as many Os as there are
figures in the longest terminate part. All the circles contain
six figures, therefore six is the number of 95 ; and 3125 is the
longest terminate decimal, and contains four figures ; so that
we have only to begin the circulating part of each with the
fifth figure, and extend each circle to six figures beyond that ;
and it is convenient to write a figure or two of each circle after
this, and at a little distance apart, in order to see what has to
be carried. The operation will stand thus :—

3125

6428571428’ 57
*9423¢076923’ 07
*8632°¢478632° 47

Sum, as before = 2:7609¢126984’

The multiplication of interminate or circulating decimals is
attended with a little more difficulty, and before we proceed to
explagn the principle upon which it depends, it may not be
improper to mention that all interminate decimals to which

M
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the principles of arithmetic can properly be applied, so as to
obtain results which are perfectly accurate, must be circulating
ones ; that is, decimals the values of which can be accurately
expressed by fractions. We have already shown that the
number of places which a decimal circulates can never be
greater than the denominator of the corresponding fraction
— 1; and therefore, though we cannot beforehand tell the
number of places which any decimal may circulate, without
an operation much more laborious than the actual finding of
the decimal itself, and which, therefore, it would not be
judicious to perform, we always know the limit which the
number of places in a circle cannot exceed. But there are
other numbers, or, properly speaking, other quantities or values
which cannot be expressed exactly by any fractions whatever ;
and as, when these values or quantities are less than 1, they
are fractions of which the denominators are indeterminate or
unlimited, the decimals corresponding to them never can circu-
late, and therefore all that we can obtain is an approximation.
Such are called irrational numbers ; and before the invention
of decimal arithmetic, the nmnagement of them was attended
with a great deal of labour.

The multiplication of interminate decimals is not a matter of
very great practical importance, because, in real calculations,
we can always obtain an approximation much nearer the truth
than we can come in any of the fractional divisions which are
made use of in business. It is necessary, however, to under-
stand the principle, and also to be able to perform the
operation.

Now the fundamental principle is this :—we are to consider
by how much the circulating part of the decimal is deficient of
what it would be if it were a terminate decimal ; and this is
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obviously as much added to the numerator as will enable 1 to
be added to the denominator, without altering the relative pro-
portion of the two, or the value of the fraction. Equal parts
of the two terms are what is necessary to add ; but the denomi-
nator is always as many 9s as there are places in the circle ;
and therefore the part added to the numerator will be the circle
of figures divided by as many 9s as their own number.

2
For example, **27’ is ?Z}, or, adding 1 to the denominator,
27%%
100 the
fraction in the numerator of which is not in its lowest terms,

and a proportional part to the numerator, it is =

3
being divisible by 9; and thus the entire fraction is = 21%7 -
30 3
1100 ~ 11°
From this example it will readily be seen, that when the

1
circle is a single figure, it is deficient by §th; when two figures,

1 1
by ?ch ; when three figures, by 9—ggth, and generally by one

part the denominator of which is as many 9s as there are
circulating figures. Hence again it follows that, if a circu-
lating decimal is multiplied by .any number, or used in multi-
plying any number, it will require the product to be increased
by its 9th part if there is one circulating figure, by its 99th if
there are two, and so on in the other cases.

Thus, if it were required to multiply **27° by any number,
say by 1875, that is, to find the product of 1875 x -*27°, the
true product would evidently be—

18756 x 27" + 1-876 x -*27.
)
M2
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Performing these multiplications and divisions we have,
1-875 x **27° = 50625
1-876 x 27’
99
True product = °511°36."

= -00511°36’

On examining this operation, it will be seen that the figures
in the second line are exactly the same as those in the produect,
only they are 100 times less in consequence of the two 0s
between them and the decimal point; so that the product ig
that of the factors considered as terminate, and then divided by
99, and multiplied by 100, that is, every 99 is changed to 100 ;
but 99 is changed to 100 by adding 1, and therefore we may
obtain the true product without the trouble of dividing, by
merely repeating the first-found line of the product, and setting
it back from the point two figures each time, thus :—

Terminate product = 50625
50625
50625

As before . . . *511°'36°

Therefore we have only to find the product as if both factors
were terminate decimals, and repeat it, setting it as many places
to the right, at each repetition, as there are places in the circle,
and continue the repetition till we find a circle in the product,
which, in the case of a single interminate factor, can never be
greater than the number in that factor.

This method of dividing by 99, and multiplying by 100, or of
changing 99s to 100s, may be used in cases where decimals are
not concerned ; and it may be extended to other cases, as, for
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example, to change 96s to 100s, or 24s to 255. The advantage
of this last case we shall see by and by.

When only one of the factors is interminate, it may, if the
larger number, (that is, containing the most places of figures,)
and especially if it has terminating figures before the circulating
ones, be made the multiplicand, and the compensation may be
effected by taking in with the multiplication of the right-hand
figure of the circle whatever may require to be carried from
another repetition of the circle, and then, when the lines come
to be added, the circulating parts may be extended till they
become similar, as in addition.

To illustrate this, let it be required to find the product of
4-23¢81’ by 2°5. :

Multiplicand = 4:23'81° 81
Multiplier = 25

X by 2. = 847'63° 63
X by.s = 21100 90
Product = 105854’

When this method is adopted, it is best to begin with the
left-hand figure of the multiplier, and set each line of the pro-
duct a place farther to the right than the line before it, and it
is easy to see what should be taken in in multiplying. Thus,
in multiplying by 2 in this example, there is 1 to carry from
the next repetition of the circle ; in multiplying by 5, there is
4 to carry; in adding, there is 1 to carry; and it so happens
that the circle begins at the third figure, as in the multipli-
cand.

We have next to consider the case in which both factors are
interminate decimals, and it will save time if we at once take
the most complicated part of this case, that in which each factor
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contain$ both terminate figures and circulating ones; and it is
obviously of no consequence whether the terminate figures are
wholly integers, wholly deciinals, or partly the one, and partly
the other. In order to see the general principle in this case
more clearly, it wonld be better to take it algebraically, before
we proceed to an example in numbers.

Let, then, a4b be one mixed factor, of which a represents
the terminate figures, and b the circulating ones; and let c+d
be another mixed factor, in which ¢is términate, and d a circle ;
the product is,

(a+0) x (c+a).
The multiplication, performed as already explained, stands
thus :— V

a4+ b
c+ d

ac+bc-f;ad+bd.

As all the four terms of this product consist of different com-
binations of letters, no two of them can be added together; and
when we examine them according to the conditions, they are
as follows :—

a ¢ = product of the two terminate parts.

b ¢ = product of the terminate part of the second by the
interminate part of the first. » ‘

ad = product of the terminate part of the first by the
interminate part of the second. '

bd = product of the two interminate parts.

The sum of these four products make up the entire product
of the two next decimals: the first of them is found as in com-
mon numbers ; the second and third are cases of one terminate
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and one interminate factor ; so that the fourth, or the two inter-
minate factors, is the only one which remains to be noticed.
In practice, as we said, this is seldom useful, as it is better to
find the corresponding fractions, or to multiply the factors by
any numbers that will clear away the interminate parts, and
divide the product, when found, by those numbers; but still,
as the case may occur, we shall very briefly state the formula
for its solution.

If a is the figures in one of the circles, and b the figures in
the other; also, if # is the number of those figures in the first,
or, which is the same thing, the number of 98 in the denomi-
nator, and m the number of figures and number of 9s in the
denominator of the second, the completed fractions will be, the

b
first = a + —'f, and the second = b + ot and the true product
n
b
will be that of a 4 ;, by b+ ) which, found as before ex-

a? b®
mn

ab ab
plmned,ns:ab-l-T-i-;-{-
sary to give an example.

When interminate decimals occur §p cases of division, the
quotient may be obtained by the application of those principles
in multiplication and subtraction which have been already
explained ; but, in general, every practical purpose is answered
by taking an approximation, that is, simply continuing the
division to some length when only the dividend is interminate,
and making allowance in the multiplication and subtraction
when the divisor is interminate. It is better, however, to try
for some number which will exterminate the circulating part,
in the case of an interminate divisor,

In those calculations in common matters of business where

; of which it is unneces-
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the general introduction of decimals would be of so much
advantage, circulating decimals do not very frequently occur,
neither are those which do occur of very formidable nature.
In the denominations of British money, all the factors by
which pounds are changed to farthings, are divisors of the sixth
power of 10, that is, of 1000000, with the exception of 3;
so that no decimal of a pound, expressible in farthings, can
circulate more than a single figure; and every such decimal
must terminate or circulate at the sixth figure from the point,
if it does not do so previously. This is extremely convenient,
and sufficient of itself to induce every one who has occasion to
calculate prices, to make use of decimal arithmetic; the more
so that, as we shall have occasion to show, the decimals of odd
parts of a pound are just as easily written down as the parts
themselves, and as there is not more difficulty in writing down
the odd money which answers to the decimals.

In Troy Weight, the only factors which produce circulating
decimals are two 3s; one in 24 grains, and the other in 12
ounces ; and these produce 9, which is a circle of not more than
one figure. In common Avoirdupois Weight, the only intermi-
nate factor which occurs is 7; and if all the statutory weights
and measures which are used in Britain are examined in a
similar manner, it will be found that the number of interminate
factors, in their several denominations, is fewer than could have
been expected, in a case where there was certainly no reference
to decimals when the numbers were originally fixed on. We
shall close this section by a short account of the method of
turning the subdivisions of a pound sterling to decimals, or in
finding the parts of a pound answering to any given decimal.

In the first place, as 20 shillings = 1 pound, 2 shillings
‘make 1 tenth, and half any even number of shillings make

\
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tenths ; so that we can always determine the first figure of a
decimal with no trouble. If there is a shilling over the even
number which make tenths, and also pence and farthings, these
cannot, in any case, amount to tenths, but must be disposed of
in the following places of the decimal.

Now here again the matter is very easy. There are 960
farthings in a pound, which wants 40 of being 1000; so that
thousandth parts, that is, decimals to three places, give us the
nearest farthing. But 40 is 1 twenty-fourth of 960; that is,
the farthings in a whole pound want 1 twenty-fourth of their
number of being 1000; and therefore, if 1 twenty-fourth of
their number be added to any number of farthings, they will
become 1000th parts of a pound, or, which is the same thing,
decimals to three places of figures. Adding 1 for every 24 is,
in round numbers, adding 1 twenty-fourth ; and therefore we
have only to turn the money which is over even shillings into
farthings, and add 1 for every 24, to get the second and third
figures of the decimal ; and all the operations are of so simple
a nature, that we can perform them as fast as the figures can
be written. Thus, to turn 15s. 111d. to decimals of a pound :
half the shillings is 7, and 1s. over; and 1s. 11}d. is 93 far-
things, and 93 contains three 24s, so that we must add 3, and a
whole decimal is £796. It must be recollected that the figures
thus found must make two places, and consequently, if they
amount only to one, the second place must have 0.

But it is not 1 for every 24 which we should add; it is 1
.twenty-fourth ; and here again we can have a modification of
the way in which the compensations are made in circulating
decimals. 4 times 24 make 96, and 4 times 25 make 100;
therefore, if we take our number of farthings without any addj-
tion, and repeat them, setting the first repetition under the
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thousandths, and every succeeding one two places farther back,
we shall get the exact decimal.

£0 15 114 = 793, as before.

93 x 4, and set back = 372
372 x 4, and set back = 1488
Again = 59
Yet again = 3
Exact decimal . . . 7968750

This operation shows the principle, but it is a little clumsy,
and may be simplified and performed mentally, by adding 1
for every 24, and rejecting the hundreds of the next step.
Thus, to revert to our example, half 15 is 7; 93 farthings and
3 added are *796 ; 4 times 96 = 384 ; blot out the hundreds, 3;
add 1 to the units and tens for every 24, which is 3; and we
have *79687 ; multiplying 87 by 4 is 348 ; blot out 3; add 1 to
48 for every 24, is 2, which makes 50, or, for the whole decimal,
7968750, as before. If the decimal terminates, it always does
8o in 25, 50, or 75, because these numbers multiplied by 4 leave
no more units and tens to be added ; and when it is interminate,
it of course circulates a single figure. _

The converse, or method of finding the shillings and pence to
the nearest farthing, is still easier. -05 is z'5th, and therefore
the decimal of a shilling ; wherefore, divide the first and second
figures from the point by 5 for shillings; take 1 from every
25 of the remainder of the second figure, with the third
after it, and the rest is farthings, which divide by 24 for
‘pence.

Thus, £796875 = 16s. 11}d.

These methods are exceedingly simple, and it is well worth
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the hour’s labour which it requires to learn dexterity and
accuracy in the practice of them ; but we can only recommend
that, and pass to another section and branch of the science.

SECTION IX.
PRELIMINARY NOTIONS OF GEOMETRY.

As there are some of those considerations in' the general
science of quantity, which come next to be examined in that
order which we conceive to be most conducive to clear and
simple views of the elements of the whole, which have as much
reference to geometry as either to arithmetic or to quantity
generally, it will be proper to take some notice of the simpler
portion of that branch, or rather application, of the general
science.

It has been already mentioned, that geometry is the science
of magnitude, or quantity considered as extended in some way
or other, so as to occupy space ; but that which occupies space
is not the only subject of geometrical investigation, for, before
we can arrive at a distinct notion of even the simplest body
which can be supposed to occupy space, there are many elements
to be considered, and many relations to be understood ; for,
though we do not, in our geometrical inquiries, trouble ourselves
about those physical qualities of real bodies which form the
distinctions between one kind of body and another, and which
give to each of them its peculiar practical value, yet that
which we call a body, or solid, is not an original perception
of our senses, but a compound result of various relations of
elements, all of which we must thoroughly understand before
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we can have a proper geometrical notion of the body or solid
itself ; and if any of those relations happen to be indeterminate,
our knowledge of the solid is vague and imperfect. Thus, for
instance, though we have a general notion that the earth which
we inhabit approaches pretty nearly in form to a round ball, or
globe, as we call it; that the diameter, or measure straight
through the centre of it, is nearly 8,000 miles ; that the diameter
measured at the equator, or that region where day and night
are about equal at all times of the year, is about 30 miles longer
than the cross diameter extending from pole to pole, or from
the one or the other of those places where we know, by well-
founded inference, though not by positive observation, that the
year consists of one day and one night, of nearly, but not
exactly, equal length ;—though we know all this, and though
some of the most able men of all ages, having the best claim
to be considered scientific, have devoted their best attention to
the determining of the earth’s figure, yet there are many par-
ticulars which prevent the results of their labours from being
perfectly accurate, and even deprive them of the means of ascer-
taining the degree of accuracy which they actually attain. Nor
is this the case with the globe itself merely, but with every
portion of it, and with every portion of matter to which we
practically apply, or can apply our geometry. If a field of
ground, or even the length of a road, or the breadth of a river,
or the distance of any one point of the earth’s surface from any
other point, is measured with the greatest care by two different
surveyors, or even twice over by the same surveyor, the chance,
nay, almost the certainty is, that the results will not corre-
spond, and one would be half inclined to suppose that things
alter their shapes and sizes for the very purpose of perplexing
us in our measurements. Even the standard of our mensura-
tion is liable to vary : if it is a piece of tape, or a twisted cord,
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it is shorter when the weather is damp than when it is dry;
and if it is a metal chain or rod, it is longer when the weather
is warm than when it is cold.

There are many other known causes of incorrectness than
these, and of what are not known, but may exist, we are of
course ignorant, Those circumstances are mentioned, not with
a view of decrying the merits of geometry, but merely to show
that, however any of our sciences may profess to be perfect in
theory, we must not rest satisfied with a single branch, when
we come to apply them to real practice, but must know the
properties of things themselves, and the variations to which they
are liable, as well as those abstract sciences of which we make
them the subjects.

It will be readily admitted, that, as we have so many causes
of error to contend with in the application of our geometry, it
behoves us to be very accurate in that geometry itself, and not
to allow ourselves to add the disadvantage of an imperfect and
badly understood tool, to that of ungainly or unmanageable
materials.

Many of the words which we use in a strict sense in
geometry, are used much more loosely in common language,
and therefore we require to make ourselves well acquainted
with the difference between the scientific and the popular
meaning. Indeed it is the want of attention to these differ~
ences, and the consequent looseness of our fundamental defini~
tions in science, that the greater number of the hardships which
we feel in the study of it, and the blunders which we make in
its application, are mainly to be attributed.

Even the word solid has popular meanings different from its
geometrical one ; and the geometrical solid is not necessarily a
solid body, or a body which has real existence at all; it is
a certain portion of space, the boundaries of which, in all their
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dimensions and relations to each other, are known and deter-
mined ; and if those dimensions and their relations to each
other are the same, it is of no consequence whether the space
which they bound is filled with any one kind ef matter, solid,
or liquid, or air, or whether it is empty space, or even has any
existence. Its existence, full or empty, must, however, be
possible upon geometrical principles; that is, there must be
nothing absurd in any of the relations which the dimensions or
other characters of the geometrical solid bear to each other ; as,
for instance, the solid must have length, and breadth, and thick-
ness, that is, three dimensions situated with regard to each
other, in directions afterwards to be explained; but whether
any of these are the same with each other, or whether any one
of them is the same at two points of the solid, must depend
upon circumstances. So also the solid, in order to be geome-
trical, must have boundaries which inclose it everywhere, but
do nothing more, and which, from their known figures, dimen-
sions, and situations with regard to each other, determine the
form of the solid.

We can determine nothing geometrically without measuring,
and measuring by the application of a standard, which, as must
be the case with all standards, must be of the same kind with
that which we can measure; and not only must we have a
standard and apply it, but we must begin at some beginning,
and this beginning is the primary and simplest of all geome-
trical considerations. In order that we may have a definite or
known measurement, we must have an end as well as a begin-
ning; and as any distance or extent in space is the same,
whether we measure it in one direction or in the opposite, the
end and the beginning stand precisely in the same relation to
the measure of which they are the terminations. Thus, for
example, it would take exactly the same number of revolutions
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of the same carriage-wheel to pass over the road between
London and York, whether the carriage began the journey at
London and ended at York, or began it at York and ended it at
London.

This simplest of geometrical elements is called 8 PoINT, and,
simple as it is, it is necessary to have very clear notions of it,
because even it has given rise to some idle use of words. A
point meansposition merely, and therefore it is not considered as
occupying any portion of that space in which it is situated ; and
when we consider nothing but a mere point and space, we may
regard any point, wherever we imagine it to be situated as the
centre of space, that is, as being in the very middle of space, or
having equal measures of extension in all directions around it.
Thus, in whatever part of its orbit the earth may be, oron whatever
part of its surface a spectator may be situated, the centre of his
eye, while: he surveys the heavens around him, is to him the
centre of space. But when a point has reference to any par-
ticular dimension or measure, it may be either of the extremi-
ties of that measure, or anywhere between them, to which
allusion may have occasion to be made; yet, having no dimen-
sions itself, it can form no part of any dimension ; it bears, in
fact, to extension nearly the same relation that 0 bears to num-
ber in arithmetic, for as no multiplication of 0 can produce even
the smallest possible number, so no repetition of a point
can produce even the smallest dimension; and so also, as no
division by O can in the slightest degree diminish'the smallest
number, no division by points can diminish the smallest possible
dimension.

A LiNE is the geometrical element next in simplicity. There
are various kinds of lines, straight lines and crooked or curved
lines, and the latter may have single or double curvatures:
thus, a road which makes a sweep upon perfectly level ground,



176 STRAIGHT LINES.

is a familiar instance of a curve of single curvature, and a road
which makes a sweep across a hill or a valley, is a familiar
instance of a curve of double curvature. A curve of single
curvature may either curve to one hand only, as is the. case
with the outline of the full moon, or it may curve first to the
one hand and then to the other, as a serpent does when it crawls
on level ground, or an eel when it swims in the water ; and
then it is a curve of contrary flexure, or it may be curved
round a central line, like the thread of a screw. In fact, there
is an endless variety of curved lines, or curves, as they are
usually called, but they do not properly belong to the mere
elements of geometry.

A sTRAIGHT LINE is the simple elementary line, and it is
this which we always mean when we use the word line in a
geometrical sense, without using some other word to express
the kind of line.

A straight line is the shortest distance between those points
which form its extremities, and therefore, as there cannot be
two shortest in the same case, there cannot be two straight
lines joining the same two points, neither can any portion of
space be inclosed by, or situated between, two straight lines
which meet each other at any two points.

As a straight line is extension in one direction only, it can
have no material existence as a separate quantity, but merely
means the shortest distance in some direction.

If the points which mark the extremities of a straight line
are known, the magnitude or length of that line is determinate ;
and if these points, or any other two points in the line have
fixed positions, the position of the whole line is also determi-
nate. But, because a straight line has no material existence,
we can imagine one to be drawn from any point, in any direc-~
tion, and to any distance ; or we may imagine a straight line ta
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be continued to- any additional length. We may also imagine
a straight line to be drawn through any point, in any direction,
and to any length both ways; or we may also imagine an end-
- less number of straight lines to be drawn through the same
point, all in different directions.
. A BURFACE, Or SUPERFICIES, is the next element in the order
of procedure from the more simple to the more complex, and of
this there are, as there are of lines, several kinds, independently
of the outline or figure of the boundary. A plane surface, or
simply a PLANE, is the elementary one, and it is that which, in
common language, we are accustomed to call *perfectly level,”
or “perfectly flat.” The usual definition is, that, if a straight
line touches a plane in two points, it must touch it in every
point, so far as both extend ; and if two straight lines are drawn
across each other, a plane will touch all the four crosses, or
branches formed by the crossing, as far as their arms and the
plane extend: also, if two planes touch each other in three
points, they will touch each other in every point, as far as they
extend.

A plane surface which has definite boundaries is called a figure,
and those boundaries must be either straight lines or curves
of single curvature. If the boundaries are straight lines, the
figure is called “right lined,” or rectilineal, the word “right”
being, in geometry, often used as synonymous with the word
straight.

A surface, whether plane or not, has no separate material
existence, any more than a point or a line: it is the boundary
of a solid, whether considered as mere space, or applied to a
portion of matter; but it is not a part of the solid in either
case ; for as no multiplication of a point could produce & line,
no multiplication of a line can produce a surface, and no
multiplication of a surface can produce a solid. But lines and

N
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surfaces are magnitudes, or geometrical quantities, as well as
solids, for they can extend a greater or a less distance in space,
only a line extends in one direction in space, a surface in two
directions, and a solid in three. )

Arithmetically, a line is represented by a simple number, a
surface by a product of two factors, and a solid by a product
of three factors. Length and breadth are the factors of a sur-
face ; length, breadth, and thickness the factors of a solid ; and
both breadth and thickness in a solid  stand in the same rela-
tion” to length that breadth does to length in a surface.

As straight lines have only one quality, namely, length, they
can bear only one kind of relation to each other, that of being
of the same length, or different lengths; and therefore it is
important to consider in what relation they can, in addition to
this, stand to each other. Now the only circumstance in which
& straight line can vary, or in which one straight line can be
different from another, except length, is direction; and the dis-
tinction here, as in the former case, is, that any two lines must
either stand in the same direction with each other, or they
must stand in different directions,

This relation of lines, in respect of the positions or directions
in which they stand to each other, is one of the most important
considerations in geometry ; but it is one in which beginners
usually feel some difficulty, and, indeed, there is at least one
point connected with it, which, though clear enough, cannot be
explained or proved in a rigidly geometrical way, and therefore
it is a portion of the subject to which the most careful attention
should be paid.

There is, indeed, another difficulty ; for when we speak of
the relation in which two lines stand to each other in regard to
position or direction, we speak of a quantity which has no con-
nection with the length of the lines as magnitudes, and there-
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fore that which we seek to know hardly admits of ordinary
description. Some general notion of the two leading divisions
of this relation, having the same direction, and having different
directions, may, however, prepare us for understanding .more
readily the particular cases.

What is meant by two straight.lines having the same direc-
tion # This is the part of the case in which technical geometry
has usually broken down, in the hands even of the ablest of its
professors, and therefore it is very trying for popular illustra-
tion ; but still we must attempt it, and if we fail, we shall fail
only where many have failed.

Let us analyse it, and inquire, first, what is meant by the
direction of a line, and then when tho directions of two lines
can be said to be the same. In the case of a line, the direction
is the stretch of the line, the way that it extends, or goes out
or away from any point ; and hence the Greek geometer defines
a straight line as that which goes, e twoov, (equaliter, ¢ goes
equally “—ex @quo, “equally from”) “ evenly out,” without
turning or deviation in one way or another; a line, in short,
which is all in one direction. This direction is ope and the
same through the whole of one straight line, through all parts
of it, and through every continuation of it which can be made
either way through space. But the direction is not fixed or
definite with regard to anything but the line itself, unless the
line passes through two fixed points, and then it is in the direc-
tion of those two points. Thus, if we suppose one point at
London, and another at York, a straight line passing, or which
would pass through both these points, has the direction of them,
whether we suppose it to extend all the way, from point to point,
and no farther, or imagine it continued through space from the
one point or from both, or whether we consider any small por-
tion of it, as, for example, a foot, or an inch. It is cvident that

N 2
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there can be only one straight line passing through any two
points ; and as the parts of this line, in what manner, or in
what lengths soever they may be divided, have all, from the
very definition, and even the possible notion of the line itself,
one direction, the parts of this one line (that is, of any one
straight line whatever,) do not form those lines which we say
have the same direction, because to say that any quantity,
whether line or anything else, is the same as itself is a truism,
or identical proposition, that is, the mere repetition of the same
truth in different words, which, of course, conveys no informa-
tion whatever. Hence we arrive at one negative part of the
notion of straight lines having the same direction ; that is, they
cannot both pass through the same two points; but as this is
a property common to all straight lines it gives us but little
information. '

Every straight line must lie wholly in one plane, from the
very nature of a straight line and a plane ; and it follows from
this, that two straight lines which have the same direction must
be in the same plane, and this brings us a little nearer to the
definition, and would bring us to it altogether if geometricians
would acknowledge their obligations to a principle which they
reject in words, but without which they cannot advance one
step in reality.

This principle is motion, or progress through space, as from one
point to another ; and it is from this motion, whether we admit it
or not, that we derive both our original conception and our geo-
metrical representation of a line. Our original conception of ex-
tension is progressive motion; when we look atany object we judge
of the measure along or across it by carrying the eye, or making
the axis of vision travel from the one extremity to the other;
when we measure any line in practice we pass over it with the
measuring instrument ; and we have no means of obtaining a
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knowledge of the length of any one line whatever, unless we
are enabled to connect it, by clear and well-understood rela-
tions, with some line the length of which we have discovered
by passing successively over the different parts of it, in some
way or other. When a ship traverses the ocean, a bird flies
through the air, or the earth or any other celestial body careers
on through the regions of space, though neither of these leaves
any trace of its progress behind it, we are in the constant habit
of saying that each describes a line” as its path, and we speak
of the course of the ship, and the orbit of the revolving planet,
as if .they were actually existing quantities, and trace them
upon our maps, or other tablets of instruction and reference, in
the same manner as though there were lines answering to them,
palpably and permanently drawn in nature, along which we
could proceed from the one extremity to the other, step by step,
as we do along a common highway upon the land ; in fact, if
we are to know any line originally, and not by conclusions de-
duced by reasoning from another line or lines, we must travel
along ; and if the original demand on us were the length of the
line from London to York, we have no original means of satis-
fying the demand without travelling from London to Yerk, or
from York to London, and taking heed of our progress as we
went. View the matter as we will, our notion of the distance,
extent, or line between one point and another, always resolves
itself into motion from the one end to the other; and there-
fore, instead of motion being an ungeometrical conception, it is
really the primary foundation of all geometry, and without it
we could have no knowledge beyond that of an unextended
point, if indeed we could possibly have so much.

And when we come to get a representation of a geometrical
line, by what means do we obtain it but by taking the pen, the
_ pencil, or the other drawing instrument, and moving it from
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the one extremity to the other? and until this motion has been
performed there can be no representation of the line. Even
they who reject motion as ungeometrical never can perform a
single problem in their science, or explain the performance of
it, without drawing lines, and there is no way of drawing a line
but by giving that which is drawn'a motion from the one ex-
tremity of the line to the other.. Upon no account, therefore,
ought the idea of motion to be excluded from the very first
elements of .geometry ; for it is really the tie which binds the
truths of geometry, both to the material world and to the
human understanding, and it were as hopeless to deprive man
of the use of all his senses in order that he might thereby better
study the productions of nature and the works of art, as to
exclude the doctrine of motion, in order that geometry might be
more successfully studied.

We have said that lines which are in the same direction must
be in the same plane, and that they cannot meet in two points,
however near or however far asunder these points may be,
without coinciding altogether, or being one and the same. Now
straight lines which are in the same plane must either, if con~
tinuéd far enough, meet each other in one point, or they must
not ; and therefore it may be said of any two straight lines in
the same plane, that they must both be directed or tend to the
same point, or they must not; and if they both tend to the
same point, or, which is the same thing, lie in the direction of
the same point, they must reach that point if continued far
enough ; and they must reach it as straight lines, that is, with-
out the slightest change in the direction of either ; and farther,
as there is no reason why we should suppose them to stop at
this point, they must cross one another at the point where they
meet, and change sides, so that the one which was formerly
toward the left hand shall now be toward the right. Ca
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- Let us take an illustration :—if we stand anywhere on the
road between London and Bath, and imagine one straight line
to proceed from London, and another from Bath, each in the
direction to York, the Bath line if we are looking toward York
will be on our left hand, and the London line on our right, and
the distance between the extremities whence they proceed will
be the distance between London and Bath.

Now let the extremities of the lines, or which is the same
thing, that which we imagine to describe, each (a carrier pigeon
if you will) speed onward, by motion, to the point to which
both are directed, namely, to York, is it not evident that they
will come nearer and nearer to each other as they approach
nearer to York ; and that, when they pass that city, the Bath
pigeon will carry onward his line to the right and the London
one to the left? Moreover, as they get farther and farther
beyond York they will get more and more apart from each
other, and never by any possibility again be both directed to-
ward the same point. In this instance it must be supposed
that the pigeons move in perfectly straight lines; and it is of
no difference with regard to the position or direction of the
lines, whether they both arrive at York at the same time or the
one before the other.

The lines which we have instanced as meeting at York, are
inclined toward each other in the direction toward that point,
whether we consider them on the London side of York or on
the opposite side; and if we consider them as viewed from
York, the point where they cross each other, they are inclined
Jrom each other. We are considering them both .as straight
lines, and therefore their inclination must be the same to what-
ever length we may suppose them to be continued either way.
Their positions with regard to each other are reversed on
opposite sides of the point where they meet and cross each
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other; but still, as straight lines always preserve the same
direction (which is in fact the very meaning of straightness),
their inclination must be everywhere the same in amount. If
we view them as from the point where they cross, they must
have the same inclination from each other on the one side of
this point and on the other; and if we view them toward the
crossing point, they must have the same inclination toward each
other when viewed either way, and whether their lengths be
greater or less, whether not the thousandth part of an inch o¥
greater than any distance to which we can give a name.

As this is exactly the fact of the case in which systematic
geometers find, or rather make the difficulty, we have taken an
illustration from two particular lines, in order to impress the
principle more strongly upon the reader; but it will be easily
understood, from what we have said of the two straight lines
beginning at London and Bath, meeting and crossing each other
at York, and then proceeding onward, at the very same incli-
Lation as before, but in reversed positions, that the fact must
be true of any two straight lines whatever which are situated
in the same plane. We may therefore assume it as a necessary
conclusion, from the very nature of straight lines, from the fact
that every straight line lies wholly in one unchangeable direc-
tion to whatever length it may be continued, that if any two
straight lines situated in the same plane have any inclination
whatever toward each other at the one extremity, they must
continue to have the same inclination towards each other, how
far soever we continue them in that direction ; and that, be the
inclination however so small, they must meet if we continue
them far enough. Also, if this be the fact, as it evidently is
in the case of their actual continuance, we may assume it as a
fact in the case of any two lines, however short, which have
any inclination towards each other. ‘



INCLINED TO EACH OTHER. 185

" And if they are inclined towards each other in the direction
of their extremities one way, they must be exactly as much
inclined from each other in the direction of their extremities in
the opposite way ; and, instead of meeting and crossing each
other in this opposite way, they must get farther and farther
apart from each other, the farther they are continued.

That the inclination must be constant, that is, the same at
every point of the lines, follows also from the very fact of their
being straight, because the inclination could vary only in con-
sequence of a change in the direction of one of the lines, or of
both, and if this change took place one or both would cease to
be straight. Therefore, we may repeat again as a truth as
legitimate and as clear as any in geometry, that *if two
straight lines situated in the same plane have towards each
othér any inclination whatever, they must, if continued far
enough, meet each other in the direction towards which they
are inclined.”

But it may be desirable to examine this a little farther : the
lines, whatever may be their length and inclination, must be at
some definite distance from each other at those extremities
which are farthest apart, and they must be at a less distance
than this at those extremities which are nearest to each other,
otherwise they could not be inclined to each other. Now,
whatever these distances may be individually, as the one is, in
virtue of the very fact of the lines being inclined greater than
the other, they must have a difference, and this difference must
be the same in equal lengths of the lines, otherwise there would
be a shifting in the direction of one or both of them, and con-
sequently they would cease to be straight.

Here, again, it may be desirable to refer to a particular in-~
stance of definite.lines, for the sake of illustrating the general
argument :—well, suppose the lines are a foot in length each,
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that they are 10 inches apart at the one extremity, and 9
inches at the other, the difference between their distance is 1
inch. Continue them another foot in the direction in which
they are inclined to each other, and their distance will diminish
another inch, or their extremities will be 8 inches apart, con-
tinue them a second foot and they will be 7 inches apart, a third
and they will be 6,a fourth and they will be 5, a fifth and they
will be 4, a sixth and they will be 3, a seventh and they will
be 2, an eighth and they will be 1, a ninth and they will be
0, that is, they will meet each other. Ceontinue them beyond
this, and they will open an inch from each other for every foot
they are continued, only the positions will be reversed in
respect of what they were before the point of meeting was
arrived at.

Now, though the definite measures which we have assumed
for the length of these lines, and for their distances at their
opposite extremities, determine the point at which these par-
ticular lines meet, which, by looking back to the analysis, will
be found to be 10 feet from the most distant, and 9 from the
nearest extremities of the lines; yet, if we take general expres-
sions for the lengths and distances, we shall obtain a general
expression in terms of these, for the point at which the lines
must meet.

Thus, let ¢ = the length of the lines, d the difference of
their distances at the two extremities, md the greater distance,
and md —d the less, which expressions are merely the former
ones generalised. Now, when the lines are extended to 2a
their distance will be md —2d, at 3a it will be md — 3d, and’
8o on, till at ma from the most distant extremities of the lines,
it will be md —md = 0, that is, the lines will meet.

Wherefore, it is not only universally true that two straight
lines which are in the same plane, and have an inclination to
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each other must meét if produced far enough ; but also, that if
the length of the lines and their distances from each other at
both extremities are given, we have data sufficient for calcu-
lating by a very simple operation the length to which they will
require to be continued in order to meet; and their length.
We have seen that if d be the difference of distances for any
length a, and md the greater distance, then md becomes = 0
when the length of the lines reckoned from their most distant
extremities becomes = ma, therefore the difference of the dis-
tances is the same part of the greater distance that the given
length of the lines is of the length to which, including the given
Tength, they must be extended in order to meet.

To whatever extent two straight lines in the same plane are
inclined toward each other at their extremities one way, and
from each other at their extremities the other way, their direc-
tions differ from each other by exactly this quantity of inclina-
tion, whatever it may be ; and consequently, on the other hand,
if two straight lines in the same plane have no inclination
toward each other one way, and from each other the other way,
these two lines have exactly the same direction, that is, what-
ever can be proved by the direction of one of them will neces-
sarily hold good as equally true of the direction of the other.
Nor is this confined to two lines, for we may state generally
that if any number of lines whatever in the same plane have
no inclination to and from each other, they are all in the same
direction, and whatever can be proved of the direction of any
one of them, will follow as necessarily true of that of each and
all of the others. ’

Thus we have two distinct classes of straight lines in the
same plane; first, lines which are inclined to and from each
other, which lie in directions differing from each other by the
exact measure of their inclination, and which, if produced far



188 ' PARALLEL LINES.

enough, must meet the length required for this purpose, also
varying with the inclination; secondly, lines which have n¢
inclination to each other, but are in the same direction, and
which, consequently, have not the property which depends
upon inclination, namely, that of meeting each other when pro<
duced. Lines which have no inclination are called PARALLEL
LINEs, which means that they are “ spoken of as away or apart
from each other,” which name comes very nearly to the defini-
tion, as it involves the notion that, produce them ever so far,
there is no point at which we can speak of them as being toge~
ther: and this differs but little from Euclid’s definition, which,
though it has not been adopted by all geometers, is at once the
simplest and the best :—* Straight lines which are in the same
plane, and being produced ever so far both ways do not meet,
are called parallel lines.”

It will be perceived that the words  being produced ever so
far both ways” in this definition take for granted that very
principle of motion which the more rigid geometers profess to
reject ; and not only motion, but motion *“both ways,” that is,
from both extremities of the lines, and continued indefinitely
both ways “ever so far.” Now if motion is assumed as a
postulate of action, the possibility of performing which is self-
evident; and farther, if the same notion is involved in the
three postulates of, joining two points, producing a straight line,’
and drawing a circle, it is not easy to see upon what principle
it can be excluded in the definition of straight lines in the same
plane which are inclined to each other; and that this should
be the case is the more wonderful, and the more to be regretted,
that its admission there removes much of the labour and more
of the difficulty of elementary geometry.

It may be said that the words ‘“inclined to and from each
other” stand in need of explanation ; but the word “inclined”
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is as generally understood as any word in language ; and if we
were to give an elaborate definition of every word we make use
of in our attempts to explain the principles of science, we
should never be able to let anybody see one of those prin-
ciples through such a misty multitude of words as would in
that case envelope them all. )

We may now alter the expression a little, and say, “all

_straight lines in the same plane which are not parallel to each
other, must, if produced far enough both ways, meet each
other either the one way or the other, but not both.”

They must meet when produced at those extremities where
they are inclined o each other; and they must become farther
apart the farther they are produced at the opposite extremities,
or at those at which they are inclined from each other; but
throughout the whole of their length, whatever it may be, and
whether they are produced till they meet or not, their inclina-
tion to and from each other is exactly the same, and cannot
vary unless one or both change in direction, and thus lose the
character of straight lines. We have used the words “ from”
and “to” together in the course of these explanations, because
they are inseparable by the very nature of the case; an incli-
nation fo the one way being as necessarily an inclination from
the other way, as a road which when taken at the one end leads
directly to London, leads as directly from London if we take it
at the other end.

The inclination of lines to each other furnishes us with
another set or kind of quantities in elementary geometry
besides lines, surfaces, and solids. The measure of this inclina-
tion is called an aNGLE, which means a corner ; and as we have
spoken of straight lines, which are also called right lines, in
the same plane, the simplest angle which occurs in elementary
geometry is—

A PLANE RECTILINEAL ANGLE, which may be defined as
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“ the corner, or opening made at the point where they meet by
two straight lines which are inclined to each other.”

As the inclination and the angle which measures it are quan-
tities, they must, like other quantities, admit of variation, that
is, there may be an endless variety of angles answering to and
measuring an endless variety of inclinations, just as there may
be an endless variety of lengths of lines, extent of surfaces, and
capacity or content of solids; but as the angle depends alto-
gether upon the inclination of the lines, and not upon the
length of any one of them or of them both, or even on the
direction in which any one of them extends, an angle is not a
quantity of the same kind with a line, neither is it a quantity
which can be accurately expressed by any product of straight
lines, as a surface is by the product of length and breadth, and
a solid by the product of length, breadth, and thickness. ’

The four different kinds of quantities, lines, angles, surfaces,
and solids (for that is the proper order in which to take them),
of which we have attempted to give as clear and simple an
explanation as possible, are the only quantities which are purely
geometrical ; and with the exception of one curved line (to be
afterwards described), and the curved surfaces and solids which
are founded on the line, the relations of straight lines, rectilineal
angles, plane surfaces, and plane solids, include all which belongs
to elementary geometry.

We have endeavoured to explain the nature of the quantities
at greater length than is usually done, and in different terms,
though not upon different principles; for we trust it has been
shown that- motion, which we have taken as an element, has
been tacitly assumed by every geometer ; and we feel convinced
that it has been this latent principle, which works powerfully,
but unconfessedly, which has made the science of geometry—a
science beautifully clear in itself—so perplexing to the majority
of students. - ) )



191

SECTION X.

GEOMETRICAL QUANTITIES, METHODS OF EXPRESSION, AND
DEFINITIONS.

I~ the general account of the elementary notions of geometry
and geometrical quantities given in the last section, we studi-
ously avoided all allusion to the methods of expressing quantities
geometrically, to the short elementary definitions, self-evident
principles (or awioms), and also to the objects of geometrical
operations or inquiries, as usually given in books on the elements.
‘When the general notion is explained by allusion to a particular
symbol, there is some danger that the symbol will lay hold of
the student’s conception, and particularise it; and this is espe-
cially the case when the quantity under explanation is a rela-
tion, and as such, not expressible by any separate symbol, but
merely by the position of those other quantities of which it is a
relation. Thus, for instance, a line, a surface, or a solid may be
represented by a picture, or diagram, as it is usually called ; but
no diagram can represent simply and singly that which we
mean by an angle. This magnitude (an angle) can be repre-
sented in a diagram only by the two lines of whose inclination
it is the measure ; and as these lines must, in any diagram
which can be drawn, have some visible length, and also include
between them, as far as they extend from the point of meeting,
some visible portion of surface, it is very difficult for a beginner-
to avoid mixing up the notion of the lengths of the lines, and
also that of the space between them, with the proper notion of
the angle. It will be found that, in consequence of this con-
fusion, those who have made but little progress in geometry,
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even though they have made some, have very vague and con-
fused notions of what is really meant by an angle, independently
of the lengths of the lines of whose inclination it is the measure,
and of the quantity of surface which may be contained within
or between those lines. If the explanation which we gave in
the last section has been read and studied with due attention,
the reader will not find much difficulty in forming a correct
notion of what an angle is, without mixing it up with any
notion of the length of particular lines, or the extent of par-
ticular surfaces; and if we have succeeded in doing this, the
reader will have gained more than he is aware of.

We may now, therefore, proceed to point out the modes by
which quantities are geometrically represented, and the names
which are given to a few of the simpler modifications of them ;
and in the mean time we shall confine ourselves to the elements
of PLANE GEOMETRY, that is, to lines, plane rectilineal angles,
and surfaces; only, because the knowledge of the only curve
which enters into the elements of plane geometry is necessary,
in order rightly to understand the distinctions of those leading
varieties of angles which we require to define at the outset, we
shall include that curve among lines, though it cannot appear
as a line without appearing at the same time as the boundary
of a surface or figure.

1. OF LinEs.

There are only two kinds of line in elementary geometry, the
straight line and the circle.

Straight lines have been already defined. They, when we
consider them as single lines, have length only,; but a straight
line may be of any length, known or unknown ; and no straight
line can be of a known length, unless we ecan measure it, and
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have measured it, or can deduce its length by correct reasoning
from that of some line which we have measured.’

A straight line is represented geometrically by a line drawn
a8 straight as possible ; and it is named by two letters, placed
either one at each end of the line, or at any point in it; and
the line is named by those two letters, it being of no consequence
which of them is mentioned first.

In geometry it is customary and advisable to use capital let-
ters, as a distinction from the letters used in algebra, just as in
algebra we use italic letters to distinguish them from the Roman
letters generally used in printing common language. But when
a geometrical magnitude is affected by a number stated gene-
rally by means of a letter, it is customary to use small or lower-
case letters, and generally to use Roman ones, to distinguish
them from the algebraical representations of quantities, just in
the same manner as it is desirable to use Roman letters for
exponents in algebra. We give an instance of the representa-
tion and naming of a straight line geometrically; thus, the
following line is the line a B, if viewed from left to right, or the
line B A, when viewed from right to left, but it is exactly the
same line both ways:—

A B

A circle is a plane figure, or portion of surface, bounded by
one line, which is called the circumference, and the property of
the circle by which it is defined, and from which all its other
properties are derived, is that the circumference is everywhere
equally distant from a point within the figure, which is called
the centre of the circle.

The circumference, which means the measure round, or,
literally, the “ carrying round,” aud sometimes the periphery,
which has the same meaning, is often called a circle, as well as
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the surface which it incloses. The circumference is named by
any number of letters more than two, marked either without it
or within ; the centre by a letter marked as near to it as poe-
sible ; and the surface of the circle either by the letters which
mark the circumference, or by any letter within the figure. In
the meantime we are considering the circumference only, and
the relation which it has to the centre, namely, that above
stated, that of being everywhere equally distant from it. Thus
the following is any circle, a B p, of which ¢ is the centre :—

A D

The property of a circle, upon which its definition is founded,
follows immediately from the way in which the circle is drawn
or described. Thus, suppose a bit of thread, a bit of stick, or
anything else of a constant length, as the line a ¢, has one end
made fast at the centre ¢, and being kept perfectly and equally
stretched so as to represent a straight line, and has its other
extremity a carried round, either by B and b, or by p and =,
till it comes back to the position a, the circle will be described ;
and if a pen, a pencil, or anything else that will leave a mark,
is carried round at the point or extremity a, and made to mark
4 plane surface, a circle will be drawn upon that surface.

The line o A, extending from the centre to the circumference,
is called the radius, or ray of the circle ; and it is evident, from
the manner in which the circle is described, that the magni-
tude or size of the circle depends upon the length of the
radius.
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It follows from this, that, as the radius is simply a straight
line, which has no property but length, and the length of
which is the same at every part of the circle, the circumferences
of different circles can vary only in the same proportion as the
lengths of the radii ; that is to say, if the radius is double, the
circumference must be double ; if the radius is three times, the
circumference must be three times, and so on in all other
proportions.

In practice, circles of small dimensions are usually drawn
with an instrument called a pair of compasses, the two points
of the compasses being set at exactly the same distance from
each other as the radius of the intended circle ; and this is an
instance in which the representation of a line by its extreme
points, answers the same purpose as the line itself; from which
we may conclude generally, that, if the two points which are
the extremities of a line are determined, the line itself is
determined. .

In describing a circle with compasses, it is necessary that the
distance between the points should remain exactly the same,
otherwise the fundamental property of the circle is departed
from, and there can, in fact, be no circle.

The postulate, or operation assumed as being self-evidently
possible in the case of circles, is, that *a circle may be drawn
from any point as a centre, and at any distance from that
centre.” The word “ any,” in both parts of this postulate,
includes all points and all distances which we can by possibility
imagine ; and it is not confined to circles which we can actually
draw or describe in practice, and show them after they are
drawn. Hence we have a distinction between geometrical possi-
bility and practical or mechanical possibility. Geometrically,
it is possible to take the sun as a centre, and imagine a circle
to be drawn passing through the most distant star which we

02 ’
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can fancy—the distance of the sun and star, immeasurable as it
is, being the radius of the imagined circle, and the circle itself
will be more correct than any which we could actually describe
by means of any instrument ; but, in practice, no power of man
could describe a circle of even a single mile in radius, simply
because no power of man could keep an instrument a mile long
on the stretch, and carry it round at the same time.

Geometrical possibility, or (for we may state it generally)
mathematical possibility, extends to everything which is pos-
sible in thought, however impossible it may be, practically or
mechanically, to the hand or the instrument. This is a simple
oconsideration, but it is both a necessary and an important one;
for there are many things in geometry, and in other parts of
mathematics, which we assume as being dome, though in the
cases before us we could not possibly do them; and when we
know that mathematics reach every thing which can be the
subject of thinking, and give the precision of mathematical
science to our reasoning upon all subjects, we are better able
to appreciate the value of this science, and to profit by the
appreciation.

2. Or Surraces orR FieurEs.

We have already given a general definition of a plane
surface, and therefore all that remains for us to do is briefly
to define a few of the kinds or varieties of plane surfaces, and
to point out the means by which they are represented geome-
trically.

In plane geometry, there are two general divisions of surfaces;
first, the circle, of which some mention has already been made ;
and, secondly, rectilineal figures, of which there may be an
endless variety, both as to the numbers of straight lines which
form their boundaries, and as to the lengths of those lines as
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compared with each other. To these, however, may be added
plane figures which are bounded partly by straight lines, and
partly by circles,

As the boundary of a circle, which is one uniform curve,
and is formed by one end of the radius being carried round,
while the other end remains at the centre of the circle, is called
the circumference or the carrying round the whole boundary ;
and the sum of the lengths of all the sides of any rectilineal
figure, is called the perimeter, or measure about the figure.

The circle has already been mentioned, and the way in which
the surface of it is named ; but there are one or two particulars
which are worthy of notice. Thus, if a line is drawn through
the ventre to meet the circumference both ways, it is called the
diameter, 6r measure through the circle; and ‘as this diameter
is evidently double the radius, and as the radius is the same in
all parts of the same circle, it follows that the diameter is
always of the same length in the same circle, in what direction
soever. Thus, in the following circle A p B, of whieh o is the
centre, the line A B, drawn through the centre ¢, and meeting
the circumference in A the one way, and in B the other, is the
diameter, and a line in any other direction, drawn through o,
and meeting the circumference at each extremity, would, in the
same circle, be equal to the line A n.

The diameter, A B, or any diameter which could be drawn in
any other direction, evidently divides the circle, both circum-



198 PARTS OF A CIRCLE.

ference and surface, into two equal parts, each of which is called
a semicircle, which is only another name for a half circle. That
a diameter divides both the circumference and the surface
equally, is evident without any proof, because there is nothing
affects the portion of either, on the one side of the diameter;
which does not equally affect the portion on the other.

If a line, not passing through the centre, is drawn till it meet
the circumference both ways, as, for instance, the line pE in
the above circle, it is called a chord, and the portion of the cir-
cumference which is cut or marked off by a chord, is called an
arch, or arc. Thus, the chord pE cuts the circumference of
the above circle into two arcs, a greater one surrounding the
portion of surface in which the centre is situated, and a smaller
one, in which the centre is not situated.

The portions into which the surface of a circle is divided by
a chord, are called segments ; and when a circle is divided into
two segments, one is always greater than a semicircle, and the
other less.

It may not be improper to mention here that the word area
is often used for surface, and that the two words have exactly
the same meaning.

A circle may be unequally cut by two radii, as well as by a
chord, and in this case the parts into which it is cut are called

D
sectors. 'Thus, in the circle ABD, either of the portions divided
off by the radii, o c and B¢, opposite to p, and towards p, is &
sector.
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The circular part of the boundary of a sector is called an arc,
as well as that of a segment ; but there is this difference between
them, that a segment has only one straight boundary, while a
sector has two ; that the straight boundary of a segment may
be any line less than the diameter, but that the two straight
boundaries of a sector, being each equal to the radius, are
always, both together, equal to the diameter: and that, while
a sector always extends to the centre of the circle of which it is
a sector, a segment never does. A segment, too, is never more
than a two-sided figure, the one side a chord, and the other an
arc; a scctor is always a three-sided figure, one of the sides
being an arc, and two being radii.

Rectilineal figures are named from the number of their sides
or angles, the number of sides and of angles in every rectilineal
figure being equal. It is easy to understand why this must be
the case : every side has two extremities, and every angle is
formed by the meeting of one extremity of each of two sides.
Of course no rectilineal figure has fewer than three sides and
three angles, because three is the smallest number of straight
lines that can inclose a space.or surface.

Figures with three sides are called ¢riangles ; those with four
sides, quadrilateral figures, or quadrilaterals; and those with
more than four sides, multilateral, or many-sided ; the last are
also sometimes called polygons, or many-angled figures; but
that name is, perhaps, better restricted to one particular form
of figure, whatever may be the number of sides.

There are thus three particulars in all rectilineal figures
having the same number of sides and angles, in which one
figure may agree with or differ from another. There ave, first,
the magnitude of the angles taken in the same order; and when
the figures have all their angles equally taken in this way, and
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all their sides taken in the same order, in the same proportion,
the first to the first, the second to the second, the third to the
third, and so on, the figures are said to be similar, which means
that they are all of the same shape. Thus, the following figures,
A and B, are similar; for all their angles, taken in the same
order, are equal, and the sides of the figure a are, to those of
tHe figure B, in the proportion of 1 to 2; that is, the sides of
B, taken in the same order as the sides of a, are each twice as:
long.

Sl

The other relations which similar figures bear to each other
can be better explained afterwards.

Rectilineal figures, which have all their sides and all their
angles equal, are called polygons, or regular polygons; and if
the name polygon is applied to & figure which has not -all its
sides and angles equal, the name polygon is qualified by the
epithet irregular.

A three-sided regular polygon is called a trigom, or, more
generally, an equilateral triangle ; one with four sides is called
a tetragon, or, more frequently, a square,; one with five sides is
a pentagon ; one with six sides, an hevagon ; one with seven
sides, a heptagon ; one with eight sides, an octagon ; and s0 on,
‘the name being compounded of the Greek term for the number
of sides or angles, and the Greek name for angles.

Plane triangles are also distinguished into three kinds;
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equilateral, having all the sides equal ; isosceles, having two
equal sides; and scalene, having all the sides unequal. Jsos-
celes means having “ equal legs,” the third, or unequal side
being called the base ; and scalene means having unequal
sides.

Four-sided figures are also distinguished into several species ;
but the nature of them can be better understood afterwards,

3. OF ANGLESs.

The general nature of a plane rectilineal angle has been
explained in the preceding section, and the comparison of angles
with each other, together with their measurement, and the
standard by which they are measured, will be explained after-
wards; so that all that requires to be done in this place is to
mention how an angle is represented and named geometrically.
Now an angle is represented by two lines which meet at a
point, the point where they meet being called the angular point,
or the apex, or the vertex of the angle.

If there is only one angle at a point, it may be named by a
single letter at the point, as, in the following figure, we would
say, “ the angle a,” or ¢ the angle at a.”

But if there are several lines which meet at a point, then
there are more angles than one, and it becomes necessary to
place a letter on each line, at some distance from the point;
and when we name any of the angles, we name, first, the letter
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on one of the lines, next the letter at the point, and thirdly the.
letter on the other line.

In the above figure there are five lines which meet at the
point 4, and thus there are four distinct and separate angles, all
angles at o. Not only this, but there are as many more as can
be formed of combining those in juxta-position, or taking those
which are beside each other. _

Taking the single ons from left to right, they are the angles
BAC, CAD, DAE, and EAF, four angles. '

Next, taking them two and two, there are BAD = BacC +
QAD, CAE == CAD + DAE, and DAF = DAE + EAF, three
angles.

Again, taking them three and three, there are, BAE=BAC+
CAD + DAE, and AP =CAD + DAE + EAF, two angles.

Lastly, there is the whole angle, BAF =BAc+cAD+DAE+
EAF, one angle.

8o that these five lines meeting at the point a, form ten dis-
tinct angles. Cases in which there are more than one angle at
the same point, require some attention from beginners, in order
that they may avoid confounding the one with the other; and
no small part of the difficulty which is felt in the case of com-
plicated diagrams, arises' from not having sufficiently studied
the simple parts of which they are made up. ¢ Take time, and
get on fast,” is no bad maxim in most matters, and there is none
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in which it is more applicable than in mathematics. Folks da
not understand books without first knowing letters and words,
and yet this method is not unfrequently attempted in Geometry,
in Algebra, and in Arithmetic.

It often happens, in complicated diagrams, that the same
angle belongs to more than one figure, and this is also a source
of annoyance to beginners. As an instance of this, we may
mention the fifth proposition of the first book of Euclid’s Ele-
ments, the far-famed pons asinorum, or asses’ bridge, the demon-
‘stration of which is very simple, as well as beautiful ; but there
is a perplexity in the angles, one of which belongs to three
triangles ; and of two other sets of angles, at two points, one
belongs to one triangle, a second part to a second triangle, the
third and second to a third triangle, and the second with the
third on to a fourth triangle. As the diagram is a good study
for those who wish to understand such representations, we sub-
join it, and append the several triangles, which the reader can
easily trace. The following is the diagram as it appears in the
book :— ’

The object here is to prove that, if the sides aB and ag, in
the triangle aBo, which comprises the upper part of the dia-
gram, are equal, the angles at B and ¢ must also be equal ; and
all that is admitted to be known about triangles is, that, if two
sides, and the angle included between them in one triangle,
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are equal to two sides and the included angle in another, the
two triangles are equal in every respect; that is, the third
side of the one is equal to the third side of the other, and the
remaining angles which are opposite the equal sides are also
equal.

It must be admitted that the truth whieh is to be proved in
this case, comes as nearly as possible to a legitimate deduction,
or corollary, as it is called, from the truth by means of which
we are to prove it ; for if, in ¢wo equal triangles, the angles oppo-
site to the equal sides are necessarily and in every case equal, it
seems to follow that, as one triangle is in every respect equal to
itself; the angles opposite to equal sides in it mrost be equal.

But though this would be a sound argument in ordinary
reasoning, -it does not come up to the rigour of geometrical
demeonstration, and so we must. have equal triangles to compare
with each other. For this purpose AB is extended to p,’and
ac to B; the parts Br-and ce are. taken equal to each other,
and Bo and or are_joined, which give four additional - tm.nglea,
which, taken two and two, are equal to each other. s

But this, though true, is not apparent to one unacquainted
with diagrams. Only three additional triangles are apparent
in the diagram, and we are mot in possession of the means of
proving that any two of them-are equal in any respect ; and
though we were, they could prove nothing respecting the tri-
angle aBo, for they are all external of it, and quite unconnected
with the angles aABc and AcoB, the equality of which is to be
vroved.

But let us analyse the diagram, and see what other triangles

~e can get out of it, thhout altering the mlatxve positions of
any of the lines. »

. The following figures contain the real and palpable analysis,
which the student is called upon to make virtually, at the same
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time that he is making his first infantine attempt to wrestle
with the giant of geometry :—

Y VAN

D,

The middle figure will be perceived to be exactly the same
as the diagram given above, the given triangle of which the
angles at B and o are to be proved equal to each other. We have
marked this triangle with the number 1, and strengthened the
sides of it in order to distinguish it from those other triangles
which are made for the purpose of the demonstration,—and as
it should be in cases of teaching the first elements of geometry,
where it is done by diagrams ready made, and not constructed
(as they always should be when it it is possible) in the presence
of the student. The two triangles marked 2, to the right and
* left, can be traced as answering to two equal ones which lie
across each other in the central diagram, and have at their
angles respectively the letters acr and aBe. So also the two
triangles farther to the left and right, marked 3, can be traced
as corresponding with the two triangles in the diagram which
lie partly across each other below the side Bo, or base of the
original triangle. The triangles 2 have each the angle at a
equal to the angle at a in the original triangle, and their sides,
oA and aF in that to the left, are equal to Ba and ae in that
to the right, and therefore they are equal in every respect, and
Fc and Be are equal to one another, and so are the angles at ¢
and B, and also those at ¥ and e.
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But the trianeles 3, 3, have Br and ce made equal, -and
ro and ¢B proved equal, and also the contained angle at r
equal to the contained angle at @ ; therefore they are equal in
every respect, and the angles opposite equal sides are of course
equal, that is, the angle ¢ in the left-hand one is equal to the
angle B in the right, and the angle B in the left-hand one is
equal to the angle ¢ in the right. But the angle o, of triangle
2 on the left, is equal to the whole angle acF in the diagram ;
and the angle r, in triangle 3 on the left, is equal to the part
BOF in the same. So also the angle B, in triangle 2 on the
right, is equal the whole angle aBe in the diagram ; and the
angle B, in triangle 3 on the right, is cqual the part oBe in the
diagram. Now,

From aBc= aBc+ cBG,and = ACF = ACB + Boe
Subtract cBe and BCG

There remains aBo = ACB;

and they are the angles opposite the equal sides, or at the base
of the given triangle.

Again, FBo, in triangle 3 on the left, has been shown equal
to eBc in triangle 3 on the right, and they are respectively
equal to FBc and ecm in the diagram ; and these last are the
angles on the other side of the base, formed by the base and the
equal sides produced. Therefore, if a triangle has two equal
sides, the two angles at the base, and the two angles on the
opposite side the base, are equal to each other.

In geometrical language, the words *each to each” are made
use of for shortness of expression, when any number of pairs of
quantities have each pair equal to each other.

In the analysis of this diagram we have rather anticipated, in
introducing the demonstration, but a very little attention will
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suffice for understanding it ; and the analysis of the mere dia-
gram would not be so well appreciated, unless the use of it
were shown at the same time.

The ready understanding of diagrams,.so as virtually and at
a glance to dissect or analyse them into all the parts of which
they are made up, is a most essential qualification in those who
wish to understand easily even the simplest elements of geo-
metry ; but it is almost, or altogether, omitted in the books,
and the omission is, in our opinion, chargeable with much of
the perplexity and failure which so many meet with in this
science. It would be too much to suppose that we have far-
nished, in this section, the means of wholly overcoming the
difficulty ; but if what we have stated is read with attention,
and some practice is taken with the analysis of diagrams, either
in Euclid’s Elements, or in any other elementary work, the
the student will be enabled to proceed to the work of investiga-
tion with much more ease and prospect of success, than if he
were not so prepared. We shall examine the principles and
processes of geometrical investigation in the next section.

SECTION XI.
PRINCIPLES OF GEOMETRICAL INVESTIGATION.

INvEsTIGATION, taken in a general sense, means systematic
and accurate inquiry, in order to determine whether something
which is alleged is true or not true, or whether something pro-
posed to be done is possible or not possible ; and of course, geo-
metrical investigation includes every instance of both of these,
of which the subject can be considered as geometrical, that is,



208 THEOREM—PROBLENM.

as being a magnitude, or capable of being exactly or nearly
estimated in some known measure of the same kind. .

A subject which is proposed for geometrical investigation is
in general styled a proposition. If the object is the establish-
ment of a truth, the proposition is called a theorem ; and if it is
the performance of some operation, or the obtaining or deter-
mining of some unknown quantity by means of known ones,
then the proposition is & problem. Either of these, however,
equally admits of proof ; for when the problem is solved, or the
unknown quantity arrived at, it is necessary to show, not only
that it is the quantity which is required, but that it has been
fairly arrived at, by legitimate reasoning, founded on the con-
ditions which are given ; and both in this case and in proving
the truth of a theorem, if the data or conditions given are not
sufficient, or if there are not sufficient means of connecting them
with the conclusion, then the problem will remain unsolved, or
the truth of the theorem will remain unestablished.

When a general truth is once established, one or more sub-
ordinate truths often arise from it by inference, and without
the necessity of that laborious investigation which the original
truth requires; and these subordinate truths are called corolla-
ries to the general proposition on which they depend.

Different branches of geometrical science are usually taken in
regular trains, so that the full investigation of one subject may
be clear and connected, and without intermixture with other
subjects ; but as all the branches of geometry, and indeed all
the branches of mathematics, whether geometrical or not, are
connected with each other, and one often assists greatly in
the investigation of the other, it is sometimes necessary to break
in upon the regular succession of propositions on one subject, or
to preface them by a proposition which in part belongs to an-
other subject. A premised or interpolated proposition of this
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kind is called a lemma ; and as the object of it is the introduc-
tion of a collateral truth, which shall assist in the general
investigation into which it is brought, it usually partakes of the
nature of a theorem, and as such stands in need of demonstra-
tion. - As the introduction of a lemma breaks the regular suc-
cession of the principal matter, it should not be introduced
unless when the advantage to be derived from it fully compen-
sates the departure from strict regularity; but this is more
worthy of attention in systematic mathematics, where elegance
is attended to as well as usefulness, than in the merely popular
knowledge of the science.

In addition to these different forms in which mathematical
truth (for they apply to numbers, and to quantity generally,
as well as to magnitude) may be introduced, there are often
explanations necessary, which do not amount either to proposi-
tions as distinct parts of the subject, or to lemmata as connecting
points introduced from other subjects; and these explanations
or iHlustrations are called schofiums.

Such are the technical names of the chief divisions of geome-
trical investigation ; and in the preceding section we have given
some account of the principal kinds of geometrical quantities,
namely, lines, angles, surfaces, and solids; and the definitions
of these, both generally and in their several species, should
always be founded upon their most obvious property, that
which can be expressed in the fewest words possible, and
which, while it is clearly and also sufficiently descriptive of
that which it purports to define, should at the same time
exclude every property which does not belong to the thing
defined. Thus, when we say “a line is length only,” we ex-
press every property which belongs to a line in the abstract,
and which, while it is descriptive of all lines, whether straight
or crooked, excludes everything which is not a line. So also,

P
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when we say “an angle is the inclination of two lines to each
other,” without adding, ‘“in the same plane,” or “ which meet
at a point,” we give a definition of angularity, or inclination, as
contrasted with parallelism, which is perfectly general, because
it includes every possible case of lines, of whatever form or
extent they may be, which are ncarer to each other at some
parts of their length than at other parts.

The most careful attention to definitions is indispensable to
every one who wishes to profit by the study of geometry; but
there is nothing more dangerous to a beginner in the science
than committing to memory the mere words of definitions, how-
ever accurate, or however well expressed. No one ever really
arrived at the knowledge of a subject by this means ; and it is
impossible to say how many, resting satisfied with the mere
¢ parroting ” of the words, have never made the slightest effort
to comprehend their meaning. The best plan is to take the
subject apart from other subjects, and form one’s own know-
ledge of it ; and whatever may be the words in which one may
be able afterwards to express the definition, the reality of it is
sure to be impressed on the mind; which is by far the most
' important part of the matter.

Besides the definitions of quantities, there are certain geneml
grounds of belief, and certain assumed performances of opera-
tions, which are necessary before we can come to the investiga-~
tion of even the simplest geometrical truth, or succeed in the
‘performance of even the simplest geometrical problem. Those
fundamental grounds of belief are called azioms, which means
that the truth of them is self-evident, such as must be admitted
by every one who understands the words in which they are ex-
pressed. The number of such axioms introduced by different
-writers on elementary geometry differs, but in substance they
are nearly the same.
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. The operations, the practicability of doing which is under-
stood to be obvious to everybody, are called postulates, and they
are usually restricted to the three to which allusion was made in
the last section—the drawing of a straight line from any point
to any other point, the producing of a términated straight line to
any greater length still in the same straight line with the former
part, and the describing of a circle from any centre with any
radius. In these postulates it is not to be understood that the
operation is to be mechanically or actually performed, because
that could not be done in any one of the three cases; but all
that is meant is, that there is no geometrical absurdity in sup-
posing any of these things done ; and that though the line were
joining the sun and the most distant planet, the extension this
line produced to the most distant star, and the circle described
with that produced line as a radius about the point where we
stand as a centre, we have just as clear a conception of those
mighty lines, and that mighty circle, as we could possibly have
of a line drawn on paper, from one dot to another an inch apart,
of the extension of this line another half-inch, or of the descrip-
tion of a circle round any dot on the same paper, with a radius
or extent of one inch between the points of an ordinary pair of
compasses. ‘

In the postulate that “a circle may be described from any
centre, and at any distance from that centre,” there is involved
a far more general postulate, and one which, when stated with
some explanation, tends greatly to simplify the investigations
of elementary geometry. In the first place, the describing of
the circle assumes, or takes for granted, that the line with
which the circle is described, that is the radius, can be placed in
every possible direction, if it has one end always at the point; for
this is the very property upon which the definition of the circle

P2
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is founded. Thus, in the circle ABD, of which ¢ is the centre,
and ac the radiue, that radius may also have the position 0B or
cp, or any other position, so that the one extremity of it is at
the centre, and the other at the circumference. Not only this,
for, in the second place, a circle may be described with the
same radius, ca, from any other point as a centre ; as, for in-
stance, from the point in the second of the annexed figures ; and
if oF, in the one of those circles, be exactly equal to ac in the
other, it is self-evident that the two circles must be every way
the same ; and that this will hold true not only of them, but of
all circles having equal radii, wherever the centres of those
circles may happen to be situated; and if the circles are in
every respect equal, it must follow conversely that all radii that
can be drawn in each or in all of them, in what direction soever
they may be situated, must also be equal to each other.

It is easy to perceive that this may be generalised so as to
include all lines, and consequently all figures, and all solids ;
for it is self-evident that, if any line whatever can be supposed
to be placed in any situation, and in any direction, everywhere
throughout absolute space, and be of exactly the same length
in every possible situation and position; then, whatsoever can
be applied to that line in any one situation or position can be

applied to it in every other situation and position; and if applied
to exactly the same extent, and in exactly the same manner,
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the result of the application must be the same in every possible
case, and also the same whether applied to the one side of the
line or to the other.

We may therefore assume as a postulate, that ¢ if any figure
is already applied, or can be supposed to be applied to any
straight line in any manner, a figure exactly equal in every
respect may be applied in the same manner to any other
straight line equal to the first, whithersoever that line may be
situsted.” i

- And from the same principle we may conclude with equal
certainty, that, “if a figure is applied to one side of a straight
line, a figure equal in every respect may be applied to the
opposite side of the same.”

If figures of this last description are not regular, that is, if all
their sides, and all the sides and angles of each, are not equal,
‘they are symmetrical magnitudes, that is, magnitudes of ‘equal
measures,” but reversed in their position with regard to each
other ; thus, if a diameter is drawn across a circle, the two semi-
circles, into which it divides the circle, are exactly equal, but
they are symmetrical, as their circular sides are turned in oppo-
site directions ; also, if one triangle is constructed upon the one
side of a line, and a triangle equal in all respects is constructed
on the opposite side of the same, or of another line, such triangles
are symmetrical : as, for instance, the triangles B and ¢ are sym-
metrical with the triangle A, B being constructed on the opposite

YV

side of the same line with A, and o on the opposite side of a
different line ; but all theag three triangles are in every respect
equal to each other.
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The body of a perfectly formed animal, if we imagine it to be
divided exactly on a mesial plane, that is, a plane extending the
whole length of the animal, and passing exactly through the
middle of the upper and under parts, affords a very good instance
of what is meant by symmetrical magnitudes, as applied to
solids. The two portions into which the animal is thus sup-
posed to be divided, are exactly equal to each other in every
respect ; and yet we cannot, even if we were actually to divide
the animal, place them so as to have them in the same position
at one view, and thus judge in detail of the perfect equality of
all their individual parts ; for if we placed one of them in the
natural position of the entire animal, we could not show the
external surface of the other one without turning it either end
for end, or upside down in respect of the first. Many cases of
symmetrical magnitudes occur in investigations which are purely
geometrical ; and therefore, if we are not aware of them before-
hand, we are apt to feel less certain in our reasonings respecting
them, than we are respecting magnitudes which present them-
selves to us in the same position with each other.

The admission of the postulate which we have mentloned, or
rather of that necessary inference from the third postulate
usually given in the elements, completely obviates this diffi-
culty ; and, when carefully considered, there is an axiom de-
ducible from it, or rather arising necessarily and obviously
out of it, which enables us to get the better of many difficulties.
The axiom to which we allude, when stated in its most general
terms, is as follows :—

If we know with certainty all the circumstances upon which
any two conclusions or results depend ; and if we farther know
that those in the one case are exactly the same as thoge in the
other, each to each, in the same order ; then the two results or
-conclusions, whether they be trutye which are established, or
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figures which are constructed, or quantities which are found,
or, in fact, any results whatsoever, must be exactly the same.

" It is true that this axiom has not the apparent simplicity of
the usual axioms in elementary geometry, but the fact is that.
it embodies them all, and a good deal more, some of which has
to be demonstrated, and some is taken for granted in the course
of the elements,

= All mathematical reasoning is by comparison of quantities of
the same kind ; and the conclusion arrived at in every single
step of such comparisons, is the equality or the inequality of the
quantities compared ; for if we seek to find the difference or
the ratio, the determination of this requires a second step,
and that step is arithmetical in any one particular case—an
instance of subtraction, if we seek the difference, and an instance
of division, if we seek the ratio. Therefore, it becomes neces-
sary that our original notion of equality should be such as to
embrace all possible cases.

Now, the fundamental axiom usually given in elementary
geometry, though the eighth in order, and not the first, is in
these words ;—“ Magnitudes which coincide with one another,
that is, which fill exactly the same space, are equal to one
another.”

This axiom, by the introduction of the word * magnitudes,”
not only limits the case to geometrical equality, but it actually
does not reach nearly to the whole of that. In strict language,
no magnitude but a solid can be said to ¢ fill space,” for a line
occupies no space, neither does a surface, unless when we regard
it with relation to a solid. A line may, no doubt, be called s
magnitude, but then it is a magnitude of one dimension only ;
and a surface is but of two dimensions, while it is just as impos-
gible to imagine the ¢xistence of space without three dimensions,
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as it is to take up in one’s hand a piece of board which has no
thickness,

Farther, an angle is not a magnitude which fills space, and
indeed it is not, strictly speaking, a magnitude of any kind ;
because, without the imagined existence of two lines which
have an inclination toward each other, there cannot be even an
imagined angle. In like manner, no ratio can be regarded as a
magnitude capable of filling space ; and therefore it is that the
doctrine of the equality of ratios, as.expressed, and clearly and
beautifully expressed, in the fifth definition of V., Euc. EL, is
so difficult to every student, and proves an insuperable barrier
to so many.

Now, the doctrines of lines, of angles, of surfaces, and of mtms,
are quite as essential in geometry, as the doctrines of those
magnitudes which can fill space, and of which the equality can
be established by its being shown that they fill the same space.
They are even more essential, because they are the elements
by the relations of which to each other the form and extent of
any magnitude which can fill space are determined ; and there-
fore, either the nature of those lines, angles, and surfaces which
are compared in the earlier parts of the elemeits, are not under-
stood, or the truth of the axiom we are considering is tacitly.
assumed, without being stated, which is certainly a very ungeo—
metrical method of proceeding.

But there is another advantage in taking the doctrine of
equality at once in its most general form, which is of much
more importance to us than anything in mere geometry, im-
portant as that branch of science is. This very axiom is our
general, we may say, universal rule in all our reasonings, and
all our actions; in every department of science, or subject of
knowledge, be it what it may, and in every action of our lives,
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if we act as rational beings, that is, if we have an object in
view, and seek to accomplish that object by the most simple
and miost certain means. We proceed upon what is usually
called the judgment of experience ; that is, we observe person-
ally, or we are informed upon testimony which we have no
reason to doubt, that formerly certain data, or things, or cirs
cumstances known to us, applied or acting in a particular man-
ner, to a particular extent, in the former cases, produced
or led to a certain definite result; and upon the faith of the
axiom (or maxim, as we call it in matters of real life), that,
# in like circumstances a like result must take place,” we
pursue our artificial plan with confidence of success, and there-
fore with pleasure; or, if the result be one which must be
brought about by natural causes, with or without our assistance;
we wait that result with the patience of wisdom, and do not spoil
by attempted hurrying, that which, in the nature of things, we
cannot hasten. ° :

. If, in our acting upon this maxim, we could obtain a perfect
knowledge of all the circumstances, that is, of all the data, and
all the means of dealing with this data, our expected results
would all be physical or moral certainties ; and though, even in
physical matters, we cannot exactly accomplish this, we can
always do it the more nearly, the more completely that all
the circumstances are known to us. Thus, for instance, because
the data are few, well understood, and, generally speaking,
reducible to mathematical laws, we can notwithstanding the
many variations ih the motion of the moon, tell what shall be
the apparent distance of that luminary from any fixed star, at
any time, long before that time arrives; or we can, in the case
of an eclipse of either of the great luminaries, predict the mo-
ment of its commencement and termination, and the portion of

the luminary which shall be eclipsed, for almost any number of
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years before the eclipse takes place. In the case of a comet,
our calculations are not quite so accurate, or so much to be
depended on, because there is one element in the case of those
more flimsy bodies with which we are not so well acquainted.
This element is the quantity of matter in the comet, by means
of which alone we can determine the reciprocal disturbance be-
tween it and any other body whose motions are more regular,
and whose mass is known to us. But even in this case, the
application of mathematical principles, and of this axiom among
the rest, has enabled us not only to remove that superstitious
dread of comets which so much alarmed the ancients, but also to
get rid of that alarm at the possible collision of our earth with
one of those wanderers, which was a source of some apprehen-
sion to speculative men during the middle ages, or in the more
early days of modern science. In matters of geometry espe-
cially, but generally in all branches of pure mathematics,
that is, where natural causes and human actions do not entey
into the case, we have the whole data, and also the whole
management of that data, completely under our controul ; it is
# our own” in a far more personal and intimate manner than
any possession, or any enjoyment of the body; and therefore
we may “do with it as we list,” provided we do not violate
those laws which are the very foundation of this description of
knowledge.

But, again, there is yet farther this advantage in the general
doctrine of equality over the partial one of “ magnitudes coin-
eiding, or filling the same space,” that it applies to and includes
equality of process or operation, as well as equality of ratio and
equality of magnitude ; and this is a very important matter,
bscause, from the definitions we have already given of lines;
‘surfaces, and solids, and also from the few hints which we have
thrown out respecting ratios (and which we shall .resume and
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treat more at length in a section expressly on the subject), we
may see that the result of a mathematical operation is often a
quantity of a kind totally different from any of the given quan-
tities by means of which the operation is performed, just as a
chemical compound may be, in all its appearances, and in all
its useful properties, totally different from one and from all of
the ingredients of which it is the componnd, so long as thess
remain unmixed with each other, or unmixed by the very
process which we employ.

Thus, if we seek to know the contents of a sohd, as, for ex-
ample, the number of feet in a log of timber, we do not go about
to apply a solid foot to it, and see how many repeated applica-
tions of this solid foot coincides, or fills the same space with the
log. 'This, in fact, would be impossible by any direct com-
‘Parison, because, although we had a standard which we knew °
to be exactly equal to a cubit foot, we could not get this cubic
foot and a cubic foot of the log into the same cubic foot of
space, without previously removing the foot of the log; and
though by this means we might show that the one was equal to
the other, that is, that the foot put in occupied exactly the
same space with the foot taken out, yet the information thencé
arising would simply be, that a cubic foot is equal to a cubic
foot, which is really nothing.

In order to compare the log with the cubic foot, that is, to
tell the number of feet in it, we must cease to consider it as a
real and tangible solid, and regard it as a mere relation of three
lines—the length in feet, the breadth in feet, and the thickness
in feet; and we must find the lengths of those lines, not as
having any connection with the solid, but as being the shortest
distances between their own extreme points. Thus, if the length
of the log is 12 feet, the breadth 3, and the thickness 2, we
have, from the relation in which these lines stand to each other
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in the solid, the log = 12 X 3 X 2 solid feet = 72 solid
feet.

From this we derive not an unimportant distinction of when
quantities, expressed in numbers, or by the more general sym-
bols of algebra, are or are not, geometrically speaking—indeed,
mathematically speaking — quantities of the same kind, and
thus whether they are or are not fit subjects of comparison, or
such as can have a ratio to each other, either of equality, or
of inequality. We have already alluded to this subject, but
there are some mathematical considerations which belong so
equally to different branches of the science, and which serve to
connect those branches with each other, and with the practical
business of life, so usefully, that it often becomes necessary to
bring & truth which has been already examined into juxta~
position with a new truth, in order to point out the connection
or relation between them ; and, as much of the clear and ready
‘nnderstanding of the whole mathematical sciences, especially in
their connections and their applications, depends on the clear
perception which we have of this doctrine of equality, of the
means by which it may be shown, and of the changes that may
be effected on quantities without destroying it, we have been
anxious to treat this subject very fully, even with the certainty
that it must appear tedious to those who are already acquain
with it. ‘

Mathematically, simple numbers, that is, numbers which are
not considered as the results of any multiplication, are always
regarded as represented, that is, as being capable of rcpresenting
lines only. Products of two factors aro considered as repre-
senting surfaces, and products of three factors are considered as
representing solids. Magnitudes cannot be more than solid,
and therefore there can be no more geometrical magnitudes
answering to the products of numbers than these three; but



NUMBER AND MAGNITUDE. 221

still, generally speaking, products which arise from multiplying
equal numbers of factors, that is, which are produced by equal
numbers of multiplications, are always considered as quantities
of the same degree, if not absolutely of the same kind, and
therefore they are comparable with each other.

After we once fully understand the general doctrine of equality
as applicable to all quantities of the same kind, and to all changes
or operations which are equally performed on them, it is of some
advantage to enumerate the particular cases, if only for the
purpose of ready quotation, in those instances to which these
cases are applicable ; and in this respect the coincidence of mag-
nitudes which can be superposed, or applied the one upon the
other, and shown to be co-extended when this is done, may be
admitted as quite satisfactory. Lines and plane figurcs are
almost the only ones which can be compared in this way ; and
straight lines are equal when it can be shown that the extremi-
ties of the one coincide with the extremities of the other; and
as they have no respect in which they can be equal as magni-
tudes, save length only, if the points which make the extremi-
ties of one can be shown at the same distance from each other,
as those which mark the extremities of another, the equality
will follow as a matter of course, without applying the one to
the other.

There is also an indirect method of showing the equality of
lines, and that is, by proving by reasoning that the one cannot
be either greater or less than the other. This applies to quan-
tities generally, and the method of proof generally turns upon
some absurdity which would be the result of any quality in the
two quantities, which are by this means proved to be equal.

In the case of surfaces, if, upon the application of the one
surface to the other, it can be shown that all the lines which
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aro the boundaries of the one coincide exactly with all those
which are boundaries of the other, then it will follow that these
surfaces, and also their respective boundaries, both sides and
angles, are every way equal.

Also, two quantities of the same kind are equal, if it can be
shown that each of them is equal to some third quantity, or
to any equi-multiples, or like parts of a third quantity—by
¢ equi-multiples” being understood all possible products by
the same multiplier, whether that multiplier can or cannot be
exactly expressed by arithinetical notation ; and by “ like parts”
are understood all possible quotients that would arise from
dividing by the same divisor, whether those quotients can bo
accurately expressed by single quantities or not.

. This is the test, or judgment of equality, to which we are in
the habit of appealing in practice, and according to which all
equitable exchange of commodities, all estimates of the quantity
of materials required for any specified purpose, and, generally
speaking, all measurement or knowledge of the values of quan-
tities, are determined ; and therefore it is the case of the general
question of equality, which everybody ought to understand
best. Thus, for instance, if we have in England a certain
standard of length, which we call a yard measure, and carry
this measure to any number of different parts of the world, and
by applying it to certain lines, or lengths, or breadths, which
are fixed and immoveable in those distant places, and which,
therefore, instead of being capable of being placed in juxta-
podﬁon, and judged of as filling the same space, or different
spaces, cannot be both seen till after months, or perhaps years,
have elapsed, and, generally speaking, which cannot be seen at
all by the same individual, as certain that each of these is the
same multiple, or the same part of a yard measure, we have no
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- more doubt of their equality than if we could actually apply
the one line to the other, and see their coincidence at both
extremities.

We have the same confidence in such measures, even when
‘they are not equal. Thus, if it is ascertained that one moun-
tain, situated at the Himalaya ridge on the north of India, is
8,000 yards above the level of the sea, and that the height
of another mountain, situated in the ridge of the Andes, in
South America, which is nearly half the measure round the
earth distant from the former, is also 8,000 yards, we have no
more doubt of the equality of the height of those mountains,
than if we could see them both side by side, and with our own
eyes, at the same instant. ’

Without our belief in the fact, ¢ that thmgs equal to the
same thing are equal to each other,” we could not, geometri-
cally speaking, have any map, any plan,or any pictured represen-
tation, whereby an absent thing could speak at once to the eye
in that language which is so much more powerful than writing ;
and without the same belief in all other matters, we could have
no knowledge, except that which we derive from our own
senses ; and even the parts of this knowledge would be uncon-
nected, and resemble that which may be presumed to be the
momentary perception of brutes, rather than the conclusions of
human reason. Whenever we see an object of the same kind
with one which we saw formerly, or one of which a clear
description struck us forcibly, so as to make us remember it,
whether we actually saw it or not, we certainly, and without
any perceived or felt process of thought or effort of the mind,
institute a comparison between the perceived object and the
recollected one, and with as little effort we instantly conclude
that they are or are not like or equal to each other. This is
‘our primary and general judgment of equality or inequality, for
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the notion of the one involves in it a_notion of the other.
Mathematical or geometrical equalityi8 merely the particular
branch of this general judgment, in which we have the evidence
most perfect in its kind, and most completely before us; and
therefore it is only the most accurate case of that exercise of
the mind which we must all practise every day.

Onguml and simple quantities may be equal by construction,
that is, they may be made equal ; and this is perhaps the best
illustration which we have of equality, in the most general sense
of the action, that is, where all the ciréumstances which deter-
mine the magnitude of the one, also determine the magnitude
of the other, and every one of them is known to us as being
our own act. Thus, if from any two centres, with the same
straight line as radius, we describe two circles, it is impossible
to have a more clear and simple notion of perfect equality than
is afforded by those circles; and when we have this perfect
perception of equality, it leads to perhaps the most general and
the most important conclusion in-the whole compass of mathe-
matical science; and if this conclusion is not a direct axiom, it
is as axiomatic, as self-evident an inference as can possibly be
drawn. It is worthy of being borne in mind, and it is as
follows :—

If two quantities, whether they be magnitudes, ratios, or
anything else, are every way equal, whatever can be shown
to be true of either of them, is necessarily true of the other,
in the very same manner, and to the very same extent.

If the quantities of which the equality is asserted are
results of any of the four arithmetical operations, we may
state generally that equal operations, performed upon equal
quantities, must produce equal results. Or, taking each opera~
tion—

In addition, if a is = b, and ¢ any third quantity, whether
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"a simple quantity, or one which is proved to be the same in two
cases, then A4+c=3B+c.
- In subtraction, the data being the same as for addition, A—c
=B—C. ‘ . ‘
In multiplication, if A =5, and m any multiplier whatever,
integral or fractional, expressible or not expressible in numbers,
then m A =mB.
In division, if A = B, and d any divisor whatever, then

>
/)W

These, which follow both from what has been now stated,
and what was formerly stated on the subject of multiples and
fractions, may be quoted in brief thus :—The sums, differences,
equi-multiples, and like parts of equal quantities, whether
magnitudes or any quantities whatsoever, are equal. It is
scarcely necessary to add, from what has been already said
with reference to addition and subtraction, that equal opera-
tions must leave unequal quantities unequal ; for if we add or
subtract equally, we do not add or subtract any difference ; if we
multiply the unequals equally, we multiply the difference ; and
if we divide them equally, we divide the difference: but in
none of these cases is the difference taken away.

As inequality is the opposite of equality, it follows that, in
all cases where the one can be clearly established from a know-
ledge of all the circumstances, the other is proved in every case
where it can be clearly shown that that one does not hold. But
there are so many ways of expressing quantities, that we are
not able, in all cases, to prove that equality exists, even where
such is the fact; and therefore, our not being able to prove
equality, is not, in every case, a sufficient ground for inferring
that quantities of which we are unable to show the equality, are
unequal. If we know all the conditions or circumstances upon

Q
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which the values of two quantities depend, and if these circum-
stances, taken jointly, do not admit of the inference that the
quantities are equal, we may safely infer that they are unequal;
but if we are not sure that we are fully in possession of all the
circumstances, we cannot conclude either way, in consequence
of our failure in the other. Thus 1444 1+4+ %, &e., con-

1 .
tinued till the last term is ) that is, till the denominator is

1
infinitely large, and the value of the fraction, = =0, is really

=2, and merely an expression of a particular form for that
number, as will be shown afterwards; but when we examine
this, even to any extent which can be written down, it does
not, upon mere inspection, appear to be = 2. We mention
this merely to show that an apparent inequality is not sufficient
ground for inferring that the inequality is real, unless we can
prove that we are in possession of all the circumstances upon
which both the quantities under comparison depend.

In the case of quantities which are represented by products,
the total value of the one may be equal to that of the other,
though both the factors, in the case of there being only two, or
all the factors, in the case of there being more than two, are
unequal to each other; but if one factor in each be equal, in
cases where there are only two, or if all the factors be equal
except two, that isone in each, where there are more than two,
the values of the products are unequal, and the difference
between them is the difference of the unequal ones multiplied
by the equal one, or the product of all the equal ones, in the
case of there being more than one in each product.

Thus the product of the factors 4 x 4, 8 X 2, 16 X 1, is =16;
and there are other cases in which, even in integer numbers,
the same product may be obtained from a greater number of
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pairs of factors; and even in this case, the product 16 may
also be considered as that of four factors, for 2x 2 x2 x 2=16,
as before

If we examine the different factors which produce the same
product in this case, we perceive a general principle, the nature
of which will be more completely explained in a future section,
when we return to the consideration of general quantities alge-
braically ; but it may not be amiss to bear it in mind, without
going -into a full explanation of it. In the above numbers it
will be seen that, when the factors are equal, their sum is less
than when they are unequal, and that the more unequal they
are, their sum is the greater. Thus, in the equal factors of 16,
4 and 4, the sum is 8; in the first unequal ones, 8 and 2, the
sum is 10; and in the last, where one of the factors is the pro-
duct itself, and the other the number 1, the sum is greater than
the product, for 16 +1=17.

We mention this merely to show that, as two factors may be
considered as representing length and breadth, and their pro-
duct surface, the surface is always the greater, in proportion to
the sum of the dimensions, that is, of the length and breadth,
the more nearly that these are equal to each other. The same
will also evidently hold true in the case of solids ; but the con-
sideration of these, as well as the investigation of the general
principle of which the above product and its different factors
are an instance, can be better explained in a future section,
when we have a few more of the principles before us, so as to
be able to consider generally the relations between factors and
products, as compared with surfaces and their boundaries.
What we have now said is sufficient to show that figures may
be equal in content or area, though their dimensions, and con-
sequently their boundaries, are altogether different ; and it is
necessary for us to bear this carefully in mind, in order to avoid

Q2
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supposing there is equality or inequality inferrible, in cases
where no inference can be drawn. The inefrence of the area
is always from the product of the length and breadth, and if
these are known, the product or area is known; but if the
product or area only is known, the factors of that product—
the length and breadth—are quite indeterminate, only we
may gather from the case of equal factors of 16, that the
factors of any product cannot together be less than the two
equal factors which can form that product, and that these twa
equal factors must be the same for the same product.

The doctrines of equality and its opposite, which we have
endeavoured to explain in this section, in a manner the most
general, and the most simple as well as comprehensive in its
application, not only to mathematical subjects but to all sub-
jects where a question of equality can occur, is one which
requires to be studied with the greatest care, because it is the
foundation of very much of our accurate judgment, upon almost
every question that can be named as determinate in its evidence,
and also our best security against error in cases which involve
uncertainty. The reader who wishes to profit by this book
will therefore find his advantage in giving this particular sec-
tion a second perusal.

SECTION XII.

INTERSECTION OF LINES, ANGLES, AND SIDES AND ANGLES OF
TRIANGLES.

ArTER having obtained some general notion of the subjects
of Geometry, as mentioned in section X., and the leading prin-
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ciples of Geometrical investigation, as in section XI., we have
to consider the order of the subjects, and to take them in that
which appears to be at once the most simple and the most
natural. For popular purposes the following is perhaps as
convenient as any.

First, LINEs, including strgjght lines and also the circle, with

the intersections of straight lines, the angles which these form,
and the connection between plane rectilineal angles and the
circle, This is the proper foundation of the science, and
contains the elements of the boundaries of the mére simple
elementary figures. ’
. Secondly, suRFACES, that is, plane surfaces, or areas, consi-
dered in their extent, and with reference to their boundaries.
But as an area is determinable only by an arithmetical multi-
plication, in any particular case, and as, consequently, the
general investigation is a matter of quantity and operation
jointly, it will be necessary, before we proceed to this, to con-
sider the doctrine of proportion, the powers of quantities, and
the arithmetic of exponents, each of which will form the chief
subject of a section ; but, as they are all intimately connected,
much reference from the one to the other will be required.

Thirdly, the INTERSEcTIONS OoF PLANES, by means of which
the forms of plane solids are determined ; and this will include
the doctrine of soLID ANGLEs, or of more planes than two meet~
ing in the same point.

Fourthly, the cONTENT OR CAPACITY OF SOLIDS, taken in con-
junction with the planes which form their boundaries, and the
lines and angles made by the intersections of those planes.

These will put us in possession of the principles of ele-
mentary geometry, as far as they are necessary in the ordinary
business of life ; and then we can return to the general science -
of quantity, and if our limits permit, to the applications. We
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shall devote the remainder of this section to the consideration
of lines and angles, the simplest case of which is that of a point.
Now any point, as, for instance, the point at a,

A

may be regarded as the centre of a plane, extending equally
and immeasurably on all sides, so as to bisect or divide into two
parts exactly equal to each other the whole of space. It is
perfectly indifferent where we consider this point to be situated,
because, as we can no more conceive or imagine a boundary to
space in one direction than in another, we may suppose any
point whatever, be it situated where it may, as being the centre
of space, this point being & mark of position only, and having
no extent in any direction, may be considered as equally the
centre of the plane which bisects the whole of space, in what-
ever direction that plane is situated. According to our common
notions, in which we regard a straight line directed to the centre
of the earth as being the perpendicular, the plane may be in
the direction of this perpendicular ; it may be in the cross direc-
tion to this, or in what we call the horizontal position or the
level ; or it may be at any slope whatever, and may slope in
any direction ; but in all the endless variety of positions which
we can with equal propriety suppose it to have, and in all the
* endless changes of position in the plane, we may still conceive
the place of the point as remaining exactly the same in absolute
space, and the plane extending indefinitely every way, but
every way equally, and in all possible positions dividing the
whole of space into two parts exactly equal to each other.

This notion of the perfect immovability of a point, and the
possibility of turning a plane on this point in every imaginable
position throughout absolute space, has not hitherto, we believe,
been alluded to in books on elementary geometry ; but it is, in
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truth, the grand primary conception, by means of which the
geometer is enabled at once to lay his grasp upon the whole
universe ; and, seizing element after element as they arise, in
due order and according to proper laws, to map down upon the
tablet of his mind all that creation which God has made, as far
as the line and the angle, magnified by the utmost perfection of
the instruments of observation, can carry him.

As the space marked out by a plane round any point extends
equally in all directions, the best representation which we can
have for it is a circle, as, for instance, the circle of which the
centre is the point a.

It will be recollected that the very definition of a circle is,
that the circumference, or line bounding it, is in all directions
equally distant from the centre; and therefore, if we imagine
the radius, or distance from the circumference to the centre to
be indefinitely long, the circle becomes the best representation
which we can have for a plane extending through all space ;
and because the circle which we have described round the point
A is any circle, we may regard its circumference as rcpresent-
ing all space round the point a; and farther, as the point a
is the only thing which is supposed to have position, that is, to
be fixed or determined in space, we may rcgard this circle as the
representative of all space in every possible direction, or that
within it, in one or other of its possible positions, it can contain
every line, every figure, and every solid which can by possi-
bility exist in nature, or which the most fertile imagination can
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picture to itself. When, however, we refer to the circle in one*
position as a plane we can consider it as including plane sur-
faces only, and as including those only which are situated in
the same plane with the circle.

Let us next suppose that there are two points, that they are
both fixed in position, and that a line is drawn through them
both, as, for instance, the line c¢p, which passes through the
two points A and B, and is continued, or might be continued, to
an indeterminate length, in the left hand direction toward c, and
in the right hand direction toward p.

c A B -

It is evident that, because the two points A and B are sup-
posed to have position, that is, to have fived places in direction
and in, distance from each other, the whole line cp as it appears,
or as it could exist, though drawn countless millions of miles
both toward ¢ and toward b, is also fixed or definite in the
direction of A and B, or of any other points that can be ima-
gined to be taken in it. If now, then, we suppose a circle to

be described round any point in the line cp, as, for instance,
round the point a,

) 4
c rmc D
T

it follows that the plane of this circle must be confined to the
line ¢p in the direction of whatever points it may cut this line,
as, for instance, the points B and ¢ in the above example ; but it
would be the same in the case of any other two points in the line
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¢, or in the continuation of that line, how distant soever they
might be from the point . Hence it is evident that, supposing
the line o fixed to the plane of the paper on which it is drawn,
we could not imagine the circle round a, to preserve that line,
and be at the same time turned either to the right hand or to
the left. But it is equally evident that we could turn it upon
the line cp, either upwards in the direction of the top of the
page, or downwards in the direction of the bottom; and that
we could turn it round again and again in either of those direc-
tions as often as we chose, without in the least disturbing the
position of the line ¢p.

It is further evident that the line cp bisects or divides into
two .parts exactly equal, the whole of that indefinite space
through which it is supposed to be indefinitely drawn ; and that
if we take any circle, as, for instance, the circle BEGF in the
above figure, of which the centre a is any point in the line ¢p,
and consider this circle as the representative of all space round
that point, it follows that the line cp, that is, the part of it Ba
which passes through the centre and meets the eircumference
both ways, in B toward the one hand, and in ¢ toward the
other, divides the circle into two parts which are exactly equal,
so that whatever can be proved as being true of the one of them
must be equally true of the other, considered as a magnitude.
They are, no doubt, of that description which we have named
symmetrical magnitudes, that is, magnitudes of the same mea-
sure, but differing from each other in position ; but then, from
the very facts of the centre of the circle being in the straight
line separating them and the circumference being everywhere
at the same distance from this centre, we have every reason to
conclude . that they are perfectly equal in every respect, and
no reason whatever to cntertain even a suspicion that they are
not equal.
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Simple as it seems when analysed, this is a most important
relation between the division of a circle by a straight line
passing through its centre, and the division of all space in the
plane of that circle ; for, it follows almost immediately from
this, that in what proportion or ratio soever two lines which
meet at any point divide the circumference of a circle, they
divide all space round that point, and in the plane of that
circle, in exactly the same proportion or ratio. If they con-
tain half the circle, in which case they are in the same straight
line passing through the centre, they divide space into two
equal parts. If they contain a fourth of the circle between
their extremities which meet the circumference, they will also
contain a fourth part of space round the point which is the
centre of this circle; and as there is no reason from which we
can even suspect that the ratio or proportion can be different in
any other case, we may receive it as a general, and as nearly as
possible a self-evident truth, that, as the entire circumference
of any circle described round a point, is the measure or repre-
sentative of all space round that point in the plane of the
circle, so any portion whatever of the circumference of a circle,
and any portion whatever of the space round the centre of a
circle considered as a point, and contained between the two
lines which divide off, or mark off that portion of the circum-
ference, are mutually the measures of each other, and that,
therefore, either of them may be used as the representative or
expression for the other.

From this it follows, that we have only to apply our arith-
metic to the circumference of a circle, in order to be in posses-
sion of a standard, or scale, for the measurement of any portion
of the space round a point ; and as any circle may be taken for
this purpose, the scale may be expressed in terms of a cir-
cumference, and not in terms of any straight line as a standard,
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as we require to do in the measuring of lines. There is much
advantage even in this, for, as no part of a circle is a straight
line, it is easy to see (though, in the mean time, we are not
called upon to prove it) that no definite portion whatever of the
circumference of any circle can be exactly equal in arithmetical
proportion—that is, in a proportion fully and perfectly expres-
sible by any numbers however large, to any straight line
whatever.

When, therefore, we speak of circular measures, we speak
of them generally, not in terms of a foot, a yard, a mile, or
any other measure, but in terms of the whole circumference
of which they are parts, and without any regard whatever as
to whether this circumference, if we were to try to express
it as nearly as possible in terms of straight lines, were equal
to the thousandth part of an inch, to ten thousand millions of
miles, or to the longest line which imagination could fancy to
exist in space.

There is nothing either puzzling or new in this expression of
portions of the space round a point by numbers which do not,
represent the lengths of any straight lines, for we. meet with
the very same thing in the most common use of arithmetic. If
we use the name of any one thing which has existence or mean-
ing, along with the name of a number, we tie the number down,
as it were, to that particular kind of thing, so.that we cannot,
without contradiction and absurdity, regard it as being, in that
case, the representative of anything else. Thus, when we say
or write 5 MEN, 5 HOURS, or 5 anything else that we can name,
we fix the number 5 to the men, the hours, or whatever else
is named ; and the number, in no one of these cases, expresses
any part of the quantity which it expresses in the other. We
number men in terms of a man ; we number hours in terms of
an hour ; we number every thing in terms of one of that thing ;
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and therefore we are faithful to our arithmetic when we num-
ber, or count, or express (for these words have nearly the same
meaning in arithmetic) circular measures in terms of onE
CIRCUMFERENCE.

For this purpose, it is of little consequence what scale we
take for the division of the circumference ; but it is convenient
to have larger and smaller denominations, just as we have in
the case of money, of weight, of measure, and of all other
things which admit of indefinite division into parts. The entire
circumference is considered as divided into 360 equal parts,
which are called degrees, and the short mark which is used in
writing degrees is a small © on the right hand of the figures,
which may of course be any number pot greater than 360° ;
but more than 360° would have no meaning in a single expres-
sion, because it would apply to more than one circumference,
which could not, of course, be described round one centre.

Each degree is supposed to be divided into 60 equal parts,
which are called minutes, and are marked in writing by a
emall dash over the right; thus, 24’ is read *twenty-four
minutes.”

For more minute division, the minute is again subdivided
into 60 equal parts, which are called seconds, and are marked
in writing by two dashes over the right; thus, 25” is read
“ twenty-five seconds.” .

From these definitions it follows that, as the whole circum-
ference of a circle, or the whole measure of space round a point,
is 3609, so half the circumference of a circle, or half the space
round a8 point,—which last means the space on one side of a
straight line passing through that point,—is equal to 180°; that
one-fourth, or quadrant (which just means a fourth), of the
circumference of a circle, or one-half of the space round a point,
upon either side of any straight line passing through that point,.
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is equal to 90°; and that, generally, any fraction whatever of
the circumference of a circle, or of a space round & point, may
be arithmetically expressed by the same fraction of 360°: a
sixth will be 60°, a twelfth 30°, and so on for every other
fraction ; for if the fraction or part which the portion of the
circumference, or of the space round the point, is of that circum-
ference, or of that space, and the last is a constant quantity,
not in any way affected by the lengths of lines, and the first is
equally constant as to the number of degrces, is expressible
arithinetically in terms of that circumference, or that space,
considered as 1 whole, it is only the multiplying the value of
this fraction by 360, to express it in degrees; by 60 again to
express it in minutes ; and a second time by 60, to express it in
seconds,

It may not be amiss to bear in mind the extent of the cir-
cumference, or of the space round a point, in each of the three
measures, the minutes being found by multiplying 360 by 60,
and the seconds by multiplying this product by 60; and from
these simple multiplications we have the following results :—

One circumference, or all the space round a point is = 360°,
or 21600’, or 1296000".

In some cases it is convenient to use a greater degree of accu-
racy than seconds, and the modern way of doing this is by
expressing whatever is less than seconds in decimals of a
second.

The minutes and seconds which are here alluded to as express-
ing portions of the circumference of any circle, or of the mea-
sure or space round any point, must not be confounded with
the minutes and seconds of time which we use as subdivisions
of the hours of a day, There is the same number of minutes
in the degree as in the hour, and the same number of seconds
in the minute in both cases; but the meaning is not cxactly
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the same. There is, however, a sort of shadowy relation be-
tween them ; for the hours, minutes, and seconds, in our common
estimate of time, are subdivisions of the apparent daily motion
of the sun round the earth, or of its cause or counterpart—the
real rotation of the earth in the opposite direction, it being con-
sidered that the motion round is performed uniformly, or always
at the same rate, and in the plane of the same circle. There-
fore, if we divide 360° by 24, which gives us 15° we have the
number of degrees in the apparent motion of the sun, or of the
real motion of the earth during one hour; and thus we are in &
condition with comparing the one with the other.

From the definition which has already been given of an angle,
it determines the portion of space included between two lines
which meet at a point ; and therefore all the angles which can
be formed by straight lines meeting at any one point, in any
one plane whatever, are equal to, and may be expressed by the
circumference of a circle, or 360° ; and from what has been
already said, it follows that all the angles made at one point, on
the one side of any straight line, and in the same plane, are
together equal to the half of a circumference, or to 180°. It
follows also, that if two lines, meeting at the same point in the
same plane, make angles exactly equal to 180°, these lines
stand in exactly the same relation to space both ways, that is,
they are in the same straight line. But if two lines meeting at
a point make either more or less than two right angles, they
must stand in different relations to space on the different sides
of them ; yet the sum of the two relations will always be equal
to 3609, that is, to twice 180°, and the one relation will be
exactly as much less than 1800 as the other is greater than the
same. Every angle which can be formed by the meeting of
two lines, can have the arc, or portion of a circle, which is its
measure, or representative, described upon it by a circle of any
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size, that is, with any radius, or at any distance from the point
where the lines meet, as a centre ; and, as this portion, or arc
of the circumference, is the same part of a circle, that is, ot
the whole circumference, whether the radius is lenger or
shorter, it follows that any circle whatever will equally be-
come the measure of the angle, or inclination, formed by two
lines; and that an angle does not in any way depend upon the
length of the lines which mark it off as part of the space round
a point.

If the angle is less than 1809, it is called a salient angle, that
is, an angle, or corner, with its point projecting outwards; but
if it is greater than 1809, it is called a retroflected or re-entering
angle, that is, an angle the point of which is directed inwards,
or toward the figure to which it belongs. Thus the angle
formed at the point B by the two lines 4B and cB in the follow-
ing figure, is a salient angle, considered with reference to the
space on the upper side, or the side p; but it is a re-entering
angle considered with regard to the space on the opposite side,
that is, on the under side, or the side =.

A~ ¢
D
B

This will be more apparent if we describe the circle on
ST
L C

the point B, with any distance for radius, as in the preceding
diagrams,
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Thus the arc, or portion of the circle from a to c, measured
on the upper part of these two figures, is the measure of the
salient angle Anc of the upper surface or area contained by the
upper portion of the circle, and the two lines A B, ¢B, while the
lower part of the circle from A to ¢ is the measure of the
re-entering angle at B, in the lower surface which is contained
within this last-mentioned part of the circle and the lines A B,
cB. For the better understanding of this, we have repeated
the same figure in the second diagram, only the two surfaces
are in this repetition placed at a distance from each other, so
that the salient angle of the upper one at b, and the re-entering
angle of the lower one at B, may be both seen; but the
lines Ap and cp in the one diagram, and the lines AB and ¢ B
in the other, are all equal, and those toward the same side
stand in exactly the same relation to each other in these two
separate spaces, as they do in the entire circle. From this it is
evident that any salient angle, together with the re-entering
angle which it becomes when viewed on the other side of the
lines, or any re-entering angle, together with its correspondent
salient angle, makes an entire circumference of a circle, or an
arithmetical sum of 360°.

If either of the lines which form an angle, let that angle
be what it may, is produced beyond the point at which they
meet, the portion which this produced line, together with the
salient angle, makes, must always be equal to the space at a
point on one side of a straight line, that is, to 1809, or answer-
ing to the half of a circle; and as the original salient angle
is not in the least altered by the producing of one or both
of the lines, it necessarily follows that, if both are produced,
the portions of angular space which they cut off from the
re-entering angle, must in all cases be equal to each other;
and also that the remainder of the re-entering angle, after
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both are cut off, must be exactly equal to the original salient
angle.
Thus, in the following figures the salient angle formed by the

A B A

E D

thick lines ac and B¢, where they meet at the point ¢, is any
salient angle whatever, and it is measured by the upper arc of
the circle extending from the point a to the point B; so also
the angle on the other side of these lines, from the point a
downwards by ®, and through » again to B, is the measure of
the re-entering angle, which, together with the salient angle
AcB, includes the whole angular space in any plane around the
point ¢, and of course includes the whole of all possible angles
which can be formed at the point ¢ in any one plane. Now if we
produce the line ac till it meet the circle in p, it is evident that
the two arcs, ABD and AE»® on the opposite side of it, are
exactly equal to each other, and that each of them is a semi-
circle, or 180°. In like manner, if the line B¢ is produced till
it meets the circumference in E, it is as evident that the two
arcs, EA B and ED B, are each of them equal to a semicircle, or
180°. Therefore the angle Bcp, which is cut off from the
re-entering angle by the producing of ac, is exactly equal to
the angle AcE, cut off from the re-entering angle by producing
the line Bc; and as either of those equal angles, together with
the given salient angle ac B, and also together with the remain-
ing part oD of the re-entering angle, after the two angles ace
and BcD are cut off, is = a semicircle, or 180°, it follows
that the angle Ecp must also be equal to the given salient
angle AcB.
R
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But ac and B¢, meeting each other in the point ¢, and pro-
duced in the same straight lines to » and E, on the other side of
the point o, are any two straight lines whatever, situated in
the same plane, and crossing each other in any point c. Also,
though the circle is the measure of the inclination of the lines,
it does not affect the magnitude of the angles, inasmuch as
the circumference of the circle does not meet either of the lines
at the point c, and therefore can have no possible influence on
the angular affection which the lines have in respect to each
other at this point. This angular affection, whatever may be
its amount, and in the present case we are putting it generally,
or supposing the angle AcB to be any salient angle whatever,
must depend wholly upon the inclination of the lines them-
selves, and in no respect upon the circle. Therefore we may
dispense with the circle, and view the lines as in the second of
the above figures, which gives us the case of any two straight
lines whatever, A p and BE, crossing each other at any inclina-
tion or angle whatever, in the point ¢ ; and we have from it the
following conclusions :—

First, if two straight lines cross each other in any point, the
angles which are vertically opposite, that is, the angles which
have their salient points, or vertices, turned towards each other,
must always be exactly equal; as, in the above figures, the
angle ac B must be = the angle Ecp, and the angle Ace =
the angle B ¢ p, whatever may be the magnitude of one of each
of these pairs taken singly.

Secondly, that the two angles formed on either side of any
straight line, by any other straight line which meets it or crosses
it at any point, must always be together equal to 180°. The two
angles which are thus formed on one side of a straight line by
another straight line meeting it, are called the supplements o
each other; and as their sum is a constant quantity, being
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always equal to 1809, it follows that, by how much soever
either of them is greater than 909 or the half of this sum;
the other must be exactly as much less than the half of
this sum,

Thirdly, as there is nothing concerned in the magnitudes of
the angles in this case, except the fact of one straight line meet-
ing another at any point; and also, as the two angles on the
same side of the line which is met by the other, are always
equal to 1809, it follows conversely, that, if we can show that
the two angles which two straight lines meeting another straight
line at the same point fromn opposite sides, are equal to 180°, that
is, to half the angular space round a point, then it follows that
these two straight lines are a continuation of one and the same
straight line.

Fourthly, as lines have no breadth, it follows that the sum
of all the angles made at a point on one side of a straight line,
whatever may be their number, is, together with those made
by the nearest ones and the straight line which they meet,
equal to 1809, that is, to half the angular space round a point ;
and also that all the angles which can possibly be made at one
point in the same plane, are together equal to 360°, or the entire
angular space round that point, as measured by the circum-
ference of a circle.

The vertically opposite angles which are made by two straight
lines intersecting or crossing each other in any point, are sym-
metrical magnitudes, or rather symmetrical relations, that is,
equal indications of the lines, but lying in opposite directions to
each other; so that the proof of their equality rests upon the
doctrine of the sufficient reason, which is perfectly satisfactory
proof in their case, as the lines have no quality but length
and- direction,-and it is the direction only which determines
the magnitude of the angle; so that the inclination, or differ-

R 2
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ence of direction in the lines, is not merely a quantity equal to
the angle, but the angle itself, whether the lines be or be not
continued till they meet, so as that the angle formed by their
meeting is apparent to the eye.

This is a very important consideration in elementary geo-
metry, and one that requires to be thoroughly understood by
every body who wishes to be well grounded in mathematical
science ; and therefore we shall view it in another light, namely,
that in which the position of a plane is supposed to be fixed ;
that is, when three points, not in the same straight line, are
supposed to be given in the plane. For this purpose, let AB be
any straight whatever, passing through the two points a and B,
and continued indefinitely both ways through space, and let
¢ be any point in the same plane with the line a B, but so
situated in that plane, as that the line a B, let it be continued
ever so far either way, cannot possibly pass through the
point c.

A B

Then, it isevident that any line, or number of lines whatever,
might be drawn to the point c, in the same plane with the
line AB; and that of these lines only one could be parallel to
the line aB, or lie in exactly the same direction with it, so as
not to meet it, though produced ever so far both ways; and
that every other line which could be drawn through the point
c, would meet and cut the line a B, either in the direction of a,
.or in the direction of B, if both the line A B and the line passing
through ¢ were continued far enough. How far this might
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require to be done, would depend on the distance of the point ¢

from A B, and on the inclination of the lines which were drawn

through c, taken jointly. We are not, in the mean time, called

upon to state numerically the amount of the angular inclination

of any line drawn in this manner, in terms of a circular arc.

But it is evident that if we suppose the parallel line o E, in

the figure on next page, to be drawn through the point c, then,:
as that line is not in any way different in direction from the

line B, that is, has no inclination to it or from it either way,

any other line drawn through the point ¢ so as to meet the line

AB, and cross it, (and every line except the parallel & would

do this,) then, as the two parallel lines have exactly the same

direction, this third line would make, with both of them, the’
vertically opposite angles exactly equal to each other. Also, if
a line were drawn from the point ¢ in the one of the parallels,

directly toward the other parallel, that is, exactly bisecting the

angular space at c, on the side of p E, nearest to a B, and meet-

ing AB in some point F, then this straight line would also

divide into two equal parts the angular space round ¥, on the

side of A B nearest to ¢p.

Thus, in the following figure B is any straight line, ¢ any
point in the same plane with a s, but apart from it, how far
soever it may be continued, and pe is the parallel to A B, drawn
through the point c. Then, if we suppose oF drawn from the
point ¢ in D E, so as to make the angles poF, and EcF equal
to each other, the angles o »c and Brc must also be equal to
each other; and each of the four must also be exactly one-
fourth of the angular space round a point, or measurable by
90°, the quarter or quadrant of the circumference of a circle.
This being the case, it is farther evident that the two angles on
each side of the line which meets the parallels, that is, the
angles Arc and pcF, on the one hand, and the angles Brc and
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ECF, on the other hand, are together exactly equal ; and that
the sum of the two, on either hand, is half the angular space
round a point, or 180°.

As the very definition or notion which we have of parallel
lines, is that of their having exactly the same direction, it
necessarily follows that there cannot be drawn through the
same point more than one line parallel to the same line; that,
for mstanoe, there cannot be drawn through the point ¢ any
line pa.mllel to the line A B, except the line b e, for if we were
to attempt to draw another parallel, it would have exactly the
same direction as DE, and coincide with it, and be, in fact,
identically the same ; for though lines do not occupy space, yet
two distinct lines can no more be supposed to exist in the very
same situation, than two solids can occupy at the same time the
same identical portion of space.

But as there cannot possibly be two parallels to aAs drawn
through the point ¢, so also there cannot be two lines drawn
from c towards A B, so as equally to divide the angular space at
¢, on the side of p B, which is toward aB; and therefore, as one
line cannot pass through two points which are not both in its
direction, there is only one point r, in the line o, in which a
line drawn from ¢ in the parallel, and dividing the angular
space at ¢ into two equal parts, can meet the line aB. This
point F is & definite point, if the point ¢ is so0 ; and the line cF,
which goes, or is drawn, right or directly from c to ¥, has thus
a property different from any other line which could be drawn
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from the point ¢, in D E, to any other point than F, in the line
AB. It makes the angles o ¢ and BF ¢, which are called the
adjacent angles, as the one lies at the side of the other, exactly
equal. The line cF is called a perpendicular to the line aB;
it is the only perpendicular which can be drawn joining that
line and the point o ; the angles on the opposite side of it, or
the adjacent angles, as already explained, o rc and BcF, are
called right angles, because the line c ¥ is inclined right, or
directly toward the line a B, and not more to the one side than
to the other side.

A right angle thus means the fourth part of the angular
space round a point, or the half of that on one side of a straight
line passing through the point ; and consequently, the circular
measure of a right angle is always the fourth part of a circum-
ference, or 90°; and all right angles, considered merely as
expressing angular position, and without any reference to the
particular lengths of the lines which form them, are equal.

The two angles which the parallels make with the perpen-
dicular on each side, are both right angles, and therefore the
two on each side are together equal to two right angles, or the
four are equal together to four right angles, that is, to the
whole angular space round a point, or, estimated in circular
measure, to 360° or an entire circumference. If we are to
suppose any other line or lines besides the perpendicular ¢, to
be drawn from the point ¢, so as to meet the parallel a B, each
of such lines would be inclined either to the right hand or to
the left. Thus, for instance, the dotted line ¢, which meets
AB in o, is inclined to your left of the perpendicular o ¥, and the
dotted line ¢ m is inclined to your right of the same; and if we
could suppose the line AB to be continued far enough, there
might be an indefinite number of lines drawn from c to meet
it in all imagjnable points, both to the right and left of the
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point ¥, in which the perpendicular meets it. It is also evident
that each of these lines would be inclined more to the one hand
than to the other; that is, that of the two angles which it
formed with the line pe at the point ¢, the one would be greater
than a right angle, and the other less: and that, as the sum of
these two angles, how much soever they may differ from each
other, is still the same measure, that is 180°, or half the angular
space round a point, the one of them would be just as much
greater than a right angle as the other was less.

Thus, in the case of ceq, the angles pee and c6 a are still
equal to two right angles; but pce is less than a right angle
by the angle ccr contained between @ ¢ and the perpendicular
cr; and aec is greater than a right angle by the same angle
@ c P, formed by e ¢ and the perpendicular.

Now if pog is less than a right angle by the angle ¢ c ¥, and
if Aac is greater than a right angle by the same angle acw,
it follows that the angle e c r is half the difference of the angles
nce and acc; for (90°+6or)—(90°—ccF)=2aoF.

In like manner, if we examine the angles made on the other
hand by the dotted line c B, we find that the angle ecH is less
than a right angle by the angle mcF, formed by the line cu
and the perpendicular or, and that the angle caB is greater
than a right angle by the same angle mor.

Therefore it is apparent that, as the interior angle at the one
end of a line which falls upon or crosses two parallel lines,
becomes, in all cases, just as much greater than a right angle as
the interior angle on the other side is less, the sum of those two
angles must, in every possible position of the line which falls upon
or crosses the parallels, remain equal to two right angles, be-
cause it needs no argument to prove that, if the one of two
things always increases at exactly the same rate at which the
other diminishes, then the sum of them must be perfectly
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invariable. This must be true of the sum of the angles on the
one side of the line, as well as on the other side ; and this puts
us in possession of all the facts with regard to every straight
line which can fall upon or meet two parallel straight lines,
and which, indeed, might be inferred without any reasoning,
from the fact of the parallel lines being in exactly the same
direction, that is, as having no inclination toward each other, or
the least tendency to meet, if produced ever so far.

‘These facts may be briefly stated thus:—if a straight line
falls upon two parallel straight lines, the angles which it makes
with them toward the same parts are exactly equal to each
other, those which are formed with the same line of the pa-
rallels being reversed or symmetrical on the opposite sides of
each line, and equal only when vertically opposite, except in
the single case in which the line falls at right angles on the
parallels, and then all the eight angles which are formed at the
two intersections are equal, and each of them is a right angle.
In all other cases there are four equal ones, and other four-all
cqual to each other also, but each differing as much from a
right angle 4 or — as the other differs from a right angle —
or +. The following figure will show how this part of the
subject is usually stated, and which of the angles are equal to
cach other in every possible position of the line which falls
upon the parallels :—

aBand cp are any two parallels upon which any line whatever
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eF falls, crossing A B, in the point ¢ and cp, in the point u;
and it follows, from what has been said, that all the angles
which are vertically opposite at the crossings are equal to each
other, namely, AGE, BeH, eHC, and FHD are all equal to each
other;also EeB, A6H, cEHD, and cHF are all equal to each other;
and any one of these together with any one of the former four
makes two right angles, so that they are respectively the sup-
plements of each other.

Angles at opposite sides and ends within the parallels are
called alternate angles ; and in our example, they are o ¢ mand
6HD, and BeH and ¢rc. These alternate angles are always
equal to each other.

Of the angles on the same sides of the parallels, and also on
the same side of the line falling on them, the one is called the
exterior, as, for example, AGE, and the other the interior, and
opposite, as, for instance, cue. The exterior angle and the
interior one opposite are also equal to each other in every pos-
sible case.

We need hardly add that the four exterior, and also the four
interior angles, are always together equal to four right angles,
and that the two interior oneson the one side of the line which
meets the parallels are always equal, not only in their sum but
in the individual angles, only that the equal ones are turned
opposite ways, or placed symmetrically at opposite ends of the
crossing line, just in the same manner as the vertically opposite
and equal angles made by one line crossing another are placed ;
only in the case of the parallels the points of the equal interior
angles are placed opposite to each other, being vertically oppo-
site to the equal exterior ones.

If there are three or more parallels in the same plane it is
easy to see that if two of them are each parallel to a third one
they must be parallel to each other ; and that whatever can be
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said of an intersection of a straight line with any one of them
can be equally said of the same straight line with regard to the
intersection of all the rest. -

In the case of parallel lines, and lines falling on them, what-
ever holds true directly must also hold true ronversely ; so
that if a line falling upon or crossing other two lines makes the -
alternate angles equal, the exterior angle equal to the interior
and opposite on the same side, or the interior angles on the
same side together equal to two right angles, we may always
conclude that the two straight lines, which answer any of these
conditions with the third line, are parallel.

Let us now consider the case of two lines in the same plane
which are not parallel to each other; and here, upon looking
back to the diagram on page 246, and imagining all possible
lines to be drawn through the point ¢ at every possible slope or
inclination from the perpendicular cr to the parallel cp the
one way, and ce the other, we include every possible case ; for
the perpendicular c¥ is equally inclined to the parallels, or
makes exactly right angles with them both ways; and we have
already shown that any line except the perpendicular must
make as much more than a right angle the one way as it makes
less than a right angle the other way.

Thus the perpendicular is one limit; and though we do not
require the establishment of that fact, in the mean time it is
evident that the perpendicular is the shortest line which can
possibly be drawn from the one of two parallels to meet the
other, produced if necessary, and that all perpendiculars which
can possibly be drawn from one of the same parallel lines to the
other must be exactly equal. In the mean time, however, we
have to deal with the angles only, and not with the lengths of
the lines; and, as the space round a point on one side of a line
is always two right angles, which is the same quantity whether

. Pl
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we divide it into two equal parts or two unequal ones, it is
plain that the perpendicular divides it equally, that is, into 90°
on the one side, and 90° on the other.

The 90° in the case of the perpendicular, may be considered
a8 wholly an inclination of that line toward the line which it
meets; but in every other case the same 90° may be considered
as divided into an inclination toward the line, that is, toward
the perpendicular and an inclination from it, till we come to
the parallel, in which the whole 90° is an inclination from the
perpendicular. From this we may get another definition of
parallel lines, which would answer our purpose nearly as well
as that which we have chosen, namely, that they are lines
in the same plane, to one of which, if a third line also in
the same plane is perpendicular, it must be perpendicular to
the other.

Let us now consider lines in the same plane which are not
parallel, but which have some inclination to each other, so that
they would meet if produced far enough ; and it is not neces-
sary to our present purpose that they should actually meet, but
only that they should have an inclination. From what has
been already said, it will be apparent, that how much soever
they are inclined toward each other in the one direction, they
must be inclined exactly as much from each other in the
opposite direction. Let o B and ¢p be two such lines,
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inclined toward each other in the direction of B and b, and
from each other in the direction of a and c, let any line, as k¥,
fall upon them in the points ¢ and m, and let us consider how
their relations to this line will differ from the rclations of two
parallels. It is evident that in this case, as well as in every
other case in which two lines in the same plane intersect or
cross each other, the vertically opposite angles must be equal
to each other at each crossing, and also that at each crossing
the two adjacent angles on the same side of the line ¥ must
be equal to two right angles, whether we take them at the
point @ or at the point m, and whether we take them in the
direction toward » and B, or in that toward Aand c. But when
we take the two interior angles on the opposite sides of E r,
that is to say, the angles ¢aD and HeB on the side toward Band
p, and the angles aeH, crC on the side toward a and ¢, we
perceive that in no case, unless where A B is parallel to cp, can
these two interior angles on each side be together equal to two
right angles, nor can the two on the one side be together equal
to the two on the other, though the sum of all the four must
still be equal to four right angles. Therefore, the two interior
angles on the one side must be greater than two right angles,
or 180°, and the two angles on the other side must be just as
much less than 180° as the other two are greater. Now, as
the sum of each of those pairs of angles would have been
exactly equal to two right angles if aB had been parallel to
cp ; it follows that the difference between the sums of the setwo
angles respectively and two right angles is the measure of the
inclination of the lines AB and cbp, that is, it is the measure of
the angle which they would form if produced till they met.
But we have data for finding this angle, without any regard
whatever to the distance to which the lines would require to be
produced in order to meet; for the angles on one side of EF,
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interior of A B and cp, are together exactly the measure of this
angle more than two right angles, or 1809, and the sum of those
on the other side is exactly the same measure less than two
right angles, or 180°.

The smaller interior angles evidently lie on the side toward
B and p, and the larger angles on that toward a and c, because
AB and cp are inclined Zo each other in the first of these direc-
tions and from each other in the second. Therefore, if we take
away the two interior angles, Bar and ¢HD, from two right
angles, that is, from 180°, or half the angular measure round a
point, the remainder is the angle formed by the two lines at the
point where they would meet. But the angles ¢ap + pEF
are exactly two right angles ; and e Ep+Ban are less than two
right angles. Take away the angle ¢a'p, which is the same in
both, and it follows, calling the angle in which the lines would
meet z, that DHF, the exterior angle, — Ber the interior and
opposite angle, must be = 2, and that the exterior angle must
be = BGeH + 2.

Also, calling Beu simply ¢, eaD simply n, and bearing in
mind that z is the angle at which the lines ¢ and HD meet,
and that ¢ # 1 would be a triangle, we have the sum of the
angles of any triangle, without any reference to the lengths of the
sides, namely, the sum of those angles, that is, the sum of the
angles of any plane triangle whatever, is a constant quantity equal
to two right angles, or 180°, and that ¢ # & would be a triangle.

Therefore, if we know two angles of a triangle, we can at
once find the third by substracting the sum of the known ones
from 180°, and if we know one angle we can find the sum of
the other two by substracting the known one from 180°.

In the course of the remarks by which we have been led to
this conclusion, that the three angles of a triangle are equal to
two right angles, or to 180°, or half a circumference in circular
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measure, and which is a truth of so much importance that it
leads to the determination of the shapes of all straight-lined
plane figures with very little investigation, we have necessarily
supposed some things to be done, of the way of doing which we
are still ignorant ; but they all belong to that class of opera-
tions which are geometrically possible; and we must first
assume the possibility before we perform the operation.

This truth admits of so many applications, and deserves to
be so well understood, that we shall show how it may be more
simply, or at all events more briefly arrived at, by a method
different from what we have stated, though founded upon
exactly the same principles. We shall first give a short ac-
count of the means employed, and then of the proof, as appa-
rent on the application of those means. Motion, of two kinds,
first circular or angular motion, exactly the same as that by
which every circle must be described ; and secondly, rectilineal
or straightforward motion, such as must be used whenever a
straight line is drawn : consequently, both are in the legitimate
province of geometry, and in fact included to the full extent
in the postulates to Euclid’s Elements. For illustration, let us
introduce the following diagrams, the left hand one for the cir-
cular motion, and the right hand one for the rectilineal.

Al
1 2
— —_—
A < Az g ™ ® m »
- »

A3

In the left hand figure, or the circle, we shall suppose the
point ¢ to be any point in a plane, and the thick line ac toward
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the left to be any radius given for the purpose of describing a
circle round the point A. From what we formerly said (and
indeed it hardly requires any pointing out) the only way in
which the circle can possibly be described is by turning the
radius round upon the point ¢, and the radius will mark with
its extremity the circumference, sweep over the whole surface
within the circumference, and in the course of the revolution
point in every possibly angular direction from the centre and
on the plane.

When it has swept over the first quadrant and first right
angle, so as to have the position ¢ a1, it is perpendicular to its
first position, or stands to it at an angle of 90°; and it has come
gradually to this angle, from 0, or no inclination, at its first posi-
tion ac. Let us next suppose it carried round another quadrant,
or to the position 0642, and it wilt evidently have described an-
other 90°, or 180° in all from the beginning. Its position is now
reversed as to what it was at starting, the end which was seen
to the left hand being now to the right, and it is now in a
straight line with the first position. In passing the two remain-
ing quadrants there is merely a reversal of what has been already
passed over; and we have as clear a demonstration as can be
obtained, that when it has arrived at exactly the first position
Ac, it will have passed over four right angles, or the entire
circumference or space round a point.

In the case of a single circle, that is, a circle described from
one centre, this would never be disputed ; but we wish to prove
that a radius can be proved to have passed over angular space
exactly equal to a circumference when it is turned round upon
several points ; and this requires a little more showing.

On examining the second of the above figures it will not be
doubted that if there is a longer line Bg, and a shorter one mn,
that the shorter one can be applied to the longer in the position
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" toward the extremity B, and marked off by the dots at m and
n numbered 1. This is in fact the first step in all measuring ;
and we may, if we please, call B¢ a board, and mn a car-
penter’s rule to measure it with. Now, the measuring would
be of no use if the carpenter could not carry his rule straight
forward along the board, and also stop with it whenever he
chose ; for instance, at the position marked m n toward theenda -
of the line, and numbered 2. It is plain, that as long as the
line mn is carried straight forward along the line Be there
cannot be the smallest change in its angular direction ; and that,
so far as the carrying is concerned, there would be no more
change in the angular direction whatever number of times it
were carried along. By putting those operations together we
are enabled very clearly to prove the truth of the following

Theorem.—All the exterior angles of any rectilineal figure
having all its angles salient angles, are together equal to four
right angles. Let us take a particular case and show this.

We shall first take the case of a triangle as the simplest
figure.

Let aBc be any triangle of which the interior angles are
respectively at a, at B,and at ¢; and let this triangle, which is
marked in thicker lines than the rest, be regarded as the datum



258 SUM OF THE EXTERIOR ANGLES

or thing given. Produce the sides in the same straight lines in
the directions m 1, m 2, and m 3 ; and the angles 1, 2, and 3 are
the exterior angles, each making together with its adjacent inte-
rior angle two right angles, or 180°. It is evident that it is of
~ mo consequenceat which extremities the sides of the triangle are
produced, so that each of them is produced at one extremity ;
for the angle formed by B 4, produced to o, is vertically oppo-
site to the angle 1, and consequently must be equal to it, and
it would be the same at the other angles. Let there now
be taken the straight line m n, and let it be applied to the pro-
duced part ca, that is, let it have the position mn. Turn it
round on the angle-a as a centre, and it will describe the arc ¢
and the angular space 1, and coincide with the part of aB
extending from » to m. Move it straight forward along aB
and its continuation, till it has arrived at the position » 2 m 2.
Turn it round on the angle B as a centre till it coincides with
the part of c marked #» 2 m3, and it will describe the arc band
the angular space 2. Move it straight forward along Bc and
its continuation, till it has the position 23m3. Turn it round
on the angle ¢ till it coincide with the part 3 m 4 of ac,and it
will have described the arc ¢ and the angular space 3. Move
it along ac and its continuation till m 4 arrives at the point m,
and 73 at the point », and it will have exactly its original
position, or have been turned over angular spaces amounting
altogether to four right angles, and will have described arcs of
circles amounting altogether to an entire circumference. But
it has been moved round the exterior angles of the triangle
only, and thereforeall the exterior angles of any triangle are
together equal to four right angles. The exterior and interior
altogether amount to six right angles; take away four for the
exterior; and the sum of the three interior angles is equal to
two right angles, as before.
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The measure of the three interior angles might be shown
directly to be equal to two right angles, by applying the line
to one of the sides, turning it round on one angle, moving along
again and turning on the next, moving along again and turning
on the third angle, after which the line would be found upon
the opposite end of the side to which it was first applied, with
its extremities reversed, which is the position of a radius after
having described a semicircle.

The general fact of every possible straight-lined figure which
has all its angles salient, having the sum of the supplements of
those angles always equal to four right angles, might be proved
by the very same means which we have used in the case of
the triangle ; for, if a radius line is carried along all the sides
and turned round on all the exterior angles the same way, it
. mugt in every case come to its first position when it has been

carried round the whole figure.

This may be scen by mere inspection of the first of the fol-
lowing figures, or by any other figure which could be drawn, if
bounded by straight lines, and having only salient angles.

Then it follows that, as the exterior angles are always equal
to four right angles, all the interior angles of every rectilineal
figure are equal to twice as many right angles wanting four, as
the figure has sides.

It is only the sum of the angles that is known, except when
they are all equal, and then each angle is the sum divided
by the number.

s2
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Using the expression 72. / les, for “right angles,” we shall
state the angles of a few of the regular or equal-sided plane
figures, with the names :—

BACH

B NAME. WHOLE ANGLES. ANGLE.
8 Triangle Ort.£les—4rt.Zles= 540°—360°= 180° 60°
- 4 Square 8rt.Zles—4rt./les= 720°—360°= 860 90°
5 Pentagon 10rt./les—4rt.Zles= 900°—360°= 540 108°
6 Hexagon 12rt./les—4rt./les =1080°—360°= 720°120°

7 Heptagon 14rt./les—4rt./1les =1260°—360°= 900°1284°
8 Octagon  16rt./les—4rt./les=1440"—360°=1080" 135°
9 Enneagon 18rt./les—4rt./les= 1620°—360° = 1260° 140°
10 Decagon  201t./ les—4rt./ les =1800° —360° = 1440° 144°

Comparing the numbers in this last column, we find the fol-
lowing series of differences, taken in the order of the table :—
30°, 18°, 12°, 84, 64", 5°, 4°; and we may have occasion to
revert to these differences afterwards.

It may not, however, be amiss to glance back at the figures
Band ¢ in the cut on the preceding page, because, from the
simple inspection of them we may see how the sum of all the
angles of any plane rectilineal figure can be found by means of
the triangle, and also that any straight-lined figure whatever
may be reduced to triangles, and expressed by them. There
are two ways of doing this, one of which may be illustrated by
each figure.

Take, as in figure B, any point within the figure, and draw
straight lines from this point to all the angles and the figure is
divided into as many triangles as there are sides; each triangle
has one angle at the centre, and all the angles thus are equal to
four right angles, for, whatever may be their number, they are
all the angles round a point, and they are no more. But the
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sum of the angles of the triangles, exclusive of those round this
point, is equal to the sum of all the angles of the figure ; there~
fore the sum of the angles of this figure is equal to twice as
many right angles, wanting four, as the figure has sides.

Again, as in figure c, draw as many lines, from any one angle
to the other angles, as will divide the figure into triangles, and
as in this case two sides of the figure are required for each of
two of the triangles, there are two triangles fewer than the
figure has sides; but the angles of all the triangles are equal
to all the angles of the figure ; therefore, again, all the angles
of the figure are equal to twice as many right angles wanting
four as the figure has sides.

We are now in possession of all the more important ele-
mentary cases in which angles can be shown to be equal from
the consideration of the direction of lines only, and without any
reference to the lenigths of lines or the measures of surfaces ;
and as these truths, afler the way of arriving at them is known,
are worth remembering, we shall repeat them in brief, it being
understood that, in them, all the lines are in the same plane :—

1. When lines cross each other, the vertically opposite angles
are equal.

2. When one line meets another on one side, the two angles,
if equal to each other, are both right angles; and they are
together equal to two right angles whether they are equal to
each other or not. When they are unequal each is as much
greater than a right angle as the other is less, and they are the
supplements of each other.

3. Lines which meet another straight line on opposite sides
at the same point, and which make the two adjacent angles
equal to two right angles, lie in the same direction, or are in
the same straight line.

4. Lines which cross or fall upon parallel lines, make the
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exterior angle equal to the interior and opposite, the alternate
angles equal, and the two interior angles on the same side of
the line which falls on the parallels, equal to two right angles.

5. If each of any number of lines in the same plane can be
shown to be parallel to the same line, they are all respectively
parallel to each other, and any line crossing them makes equal
angles with them.

6. If, when a straight line falls upon or crosses two other
straight lines, in the same plane, it makes the two interior
angles on the one side less than two right angles, it must make
the two on the other side just as much greater than two right
angles, and the two lines on which the third line falls must
meet on that side of the third line upon which the two interior
angles are together less than two right angles, that is to say,
if the two lines are produced far enough.

The angle which two such lines would make with each other,
if produced till they met, is the measure of their inclination
to each other in that direction in which they would meet, and
JSrom each other in the opposite direction; and as the incli-
nation of the lines is the same, whether they are produced
till they meet or not, the angle which expresses this inclina-
tion is always a known quantity ; that is, & quantity which
we have sufficient data for finding: namely, the difference
between the sum of the two interior angles and two right
angles, or 180",

7. The exterior and the interior and adjacent angles are
always, together, equal to two right angles, and the three angles
of a triangle, taken altogether, are also always equal to two right
angles ; therefore, the exterior angle of a triangle, made by
producing one of the sides, is always equal to the sum of the
two interior and opposite angles of the triangle ; consequently
if this exterior angle and one of the interior and opposite ones
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are known in circular measure, the other can be found at once
by substracting the known one from the exterior angle.

8. All the exterior angles of any straight-lined figure, having
all its angles salient or pointing outwards, are together equal to
four right angles, and all the interior angles are equal to twice
as many right angles wanting four, as the figure has sides.
Hence the four angles of every four-sided figure, whatever
are the lengths of its sides, will always exactly coincide with
or cover the space round a point, if all their vertices are
brought into contact at that point.

All the principles stated in this section are complete and
simple ; that is, they depend upon only one condition ; therefore
the truth of the converse or opposite of each of them follows
as a matter of course. Thisisa very important general maxim,
though it is one which, probably on account of its great sim-
plicity, is rarely stated ; but when it is admitted as general, it
saves a great deal of unnecessary labour, and gets rid of a good
deal of that perplexity which beginners feel in studying the
elements of geometry. Before we apply it, however, we must
be sure that we are in possession of all the conditions, each as
single and simple ; because if any one of them is compound,
and we do not know its composition, the general maxim will
notapply. A very simple case will show this :—that the sum
of 2 and 1 is 3, is an absolute truth ; but the converse—namely,
8 is the sum of 2 and 1, is not generally or absolutely true ;
for 3 is the sum of 1, 1, and 1, and also of an indefinite variety
of other numbers.

That lines which are parallel, or have no inclination to or
from each other, never can meet or cross one another in any
point, is also a simple and general truth; and though the con-
verse is not so palpable to our common understanding, yet it
is equally true that every two lines which are not parallel must
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meet and cross each other if produced far enough,—it being
understood that the lines which are not parallel are in the
same plane, or that neither of them is affected by a line cross-
ing it at right angles, and thus as it were tying it down to a dif-
ferent plane from that of the other line. It is this possibility
of the two lines which are not parallel to each other being
situated in parallel planes, and thus in this particular case not
meeting, which renders the converse lines which are not
perallel must meet each other” not -absolutely true. When,
however, the single condition of being in the same plane is
added, the truth becomes as absolute as in the other case;
and this is the only consideration of the position of lines which
occurs in plane geometry. Parallel lines may always be con-
sidered as in the same plane, because it is easy to imagine a
plane to be made to pass through any two parallels whatever.

SECTION XIII.

DOCTRINE OF PROPORTION.

TaE doctrine of proportion, taken in its most extensive
sense, is one of the most important, not only in the mathe-
matical sciences, but in every science and every department of
human knowledge. 1t is the general doctrine of the relations
or ratios of all quantities and all subjects, whether existences,
qualities, actions, or thoughts, whereof the comparison can be a
source of knowledge. In the general sense of the term, it is
closely allied to, and indeed nearly identical with, that prin-
ciple which decides for us in all our judgments, and regulates
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us in all our actions,—namely, that “in circumstances which-
are exactly alike, like results may be predicted” with all the
certainty which we can possess in any prediction.

When, however, we take only the mathematical view of this
doctrine of proportion, it of course extends no further than
mathematical subjects extend ; but still when we thoroughly
understand it in this simple and elementary point of view, we
are masters of it as a general instrument of knowledge, inasmuch
as the method of its application is the same in the most compli-
cated cases as in those which are of the most simple and ele-
mentary nature.

The doctrine of proportion may be considered as in principle
wholly a matter of arithmetic, though there are many cases in
which even a relation that we understand perfectly in its na-
ture, cannot be at all expressed in numbers; and there are
others which cannot be expressed accurately in numbers,
though we may approximate their truth to any degree that
may be required in any one practical case. Thus, for in-
stance, there is a relation between the state of the season
«-the Spring. for instance, and the degree of development
in the vegetable tribes ; but there are no means by which we
can state in two numbers the cause as operating in the sea-
son, and the effect as produced in the growing world. In
like manner, the number 10, and the number 3, are both
expressible, and in fact expressed in terms of the number 1 ;
but if we were to attempt to get rid of this medium of ex-
pression, and try to express 3 in terms 10, there are no means
by which this simple expression can be accomplished with per-
fect accuracy. The decimal -3 is the first step of the expres-
sion, but the relation cannot be accurately expressed unless this
*3 is repeated without end.

These are simple instances, but they show us upon what
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" principle we must deal with more complicated ones, so as to
get a relation between each and some third subject, when
there is no relation expressible between the two subjects
which we wish more immediately to compare. Thus, for in-
stance, Farmer Gubbins has a load of excellent meadow hay
over and above what is required for the supply of the horses
employed on his farm ; and Dame Gubbins and her daughters
are in want of a certain web of printed cotton which lies in
the shop of Mr. Tape the draper, in order that they may ap-
pear at church in seemly guise. Mr. Tape does not want the
hay, and therefore there can be no possibility of instituting
a ratio, 80 a8 to obtain an exchange, until recourse is had to a
third element; and Gubbins first turns his hay into cash at
the market-price, and then measures that cash against the web
of printed cotton, according to the price set upon the latter,
In this manner, though the commodity which we call cash,
directly serves the necessities of nobody, yet it brings all the
people into an exchanging condition with each other, so that
each sells what he has to dispose of, and procures what he
wants, and the whole are far better served than if time were
wasted in vain attempts at finding relations among quantities
which have no quality in common. This is the grand practical
illustration ; and it is this which renders the mathematical or
general doctrines of proportion so very valuable.

The word proportion literally means for or as a part,” that
is, that inquiry shall be made as to what part, expressible by
& number or by a fraction, the one of two quantities is of the
other ; and ratio means “the reason,” that is, the inference
or conclusion drawn from two quantities, which we can make
available in acquiring a knowledge of other quantities.

There are two distinctions of relation, according to the ob-
ject of the inquiry which we make respecting the two quanti-
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ties compared. The one alludes only to the difference, without
any regard to the total magnitude or value of the quantities ;
and this is called arithmetical ratio or relation: the other, to
the whole value of the one as compared with the whole value
of the other; and this is called geometrical ratio or relation.
These names are not correct, because both the one and the
other may apply to quantities which are strictly arithmetical,
strictly geometrical, or neither the one nor the other ; and there-
fore the less that such names are used the better.

In those cases we do not, generally speaking, include quan-
tities which are equal to each other, because from the comparison
of such quantities no useful inferences can be drawn: con-
sequently, the useful cases are those in which there is a less
quantity and a greater one, and the difference between the
arithmetical proportion and the geometrical one may be said to
consist chiefly in this, that, in the arithmetical proportion, the
ratio is a difference which, added to the less quantity, makes
the greater ; whereas the geometrical proportion has the ratio
a multiplier, which, applied to the smaller quantity, in the
common way of multiplication, produces the greater. Thus, if
we take any quantity as a beginning, and add to it any equal
quantity of the same kind by successive additions, the results
which we obtain will be a series of quantities, of which any
two following each other in order, how far soever the series
may be extended, will have the same arithmetical proportion
to each other. 8o also, if we take’ any quantity and multiply
it any number of times by the same multiplier, the series of
products will be quantities of which any two immediately fol-
lowing each other will have the same geometrical proportion.
The common difference which is added in the case of the arith-
metical proportion is called the arithmetical ratio ; and the
common multiplier which is used in the case of the geometrical
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proportion, is called the geometrical ratio. It is obvious that
the arithmetical ratio is the quantity which, in the case of two
terms of the series, the one of which immediately follows the
other, would, by being added to the less, make & sum equal to
the greater, or by being substracted from the greater, would
leave a remainder equal to the less. It is equally obvious that
the geometrical ratio is 8 number which, applied as & multi-
plier to the less of the two quantities immediately following
each other, would produce & product equal to the greater, or
which, applied to the greater, would yield a quotient equal to
the less.

* When quantities proceed by an equal ratio in either of these
ways, the series of terms is said to form an arithmetical progres-
#ion, by the successive addition of equal differences ; and a geo-
metrical progression, in the case of successive multiplication by
equal multipliers.

But it is perfectly evident that, in the case of any number of
quantities of either of those kinds, we may begin either with
the greater or the less of the series. If in an arithmetical pro-
gression we begin with the greater of the series, the additions
will be changed into substractions ; and if we begin with the
greater in a geometrical progression, the multipliers will be
changed to divisors, The changing of a difference-to be added
to a difference to be substracted is, in expression, nothing more
than changing the sign + to the sign — : and the changing of
a multiplier to a divisor is nothing more than turning the
multiplier into the denominator of a fraction, which has 1 for
its numerator, and multiplying by this fraction, is exactly the
same thing as dividing by its denominator.

When the differenct in an arithmetical progression has the
sign 4, the progression is an ascending one ; and when the
difference has the sign —, the progression is a descending one.
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Also in geometrical progressions, if the ratio is any number
greater than 1, the progression is ascending ; but if it is any
fractional number less than 1, the progression is descending.

As has been shown in a former section, the substraction of
a real or positive quantity is exactly the same as the addition
of the same quantity with the negative sign; and as division
by any quantity is the same as multiplication by the reciprocal
of that quantity— that is, by the number 1 divided by the
quantity—we get this general definition which is equally appli-
cable to all progressions, whether ascending or descending.

. An arithmetical progression is a series produced by successive
additions to a first term ; a geometrical progression is a series
produced by successive multiplications of a first term.

It is not necessary that all the additions in the case of the
arithmetical progression, or all the multipliers in the case of
the geometrical ones, should be equal to each other. They may
vary according to any law, and hence there is no assignable limit
to the number of such series, and the doctrine of series be-
comes a very extensive, and in many instances a very intricate
one. :

The general principle is very simple, however, and as nearly
self-evident as possible. It is this:—

In any arithmetical series the difference between the first
and the last term is the sum of all the partial differences taken
as the terms follow each other. If the additions are all posi-
tive, then the last term will excced the first term by their
sum ; if they are all negative, the last term will be less than
the first term by their sum ; and if some of the additions are
~+, and others —, the difference of these will be the differ-
ence between the first and last terms ; it will be 4 if the value
of the + additions is the greater, and —, if the value of the —
additions is the greater.
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In a geometrical series, the difference between the first and
last terms, as compared with each other, is, that the last term
consists of the first one successively multiplied by all the mul-
tipliers or ratios of the terms taken in their order ; and that if
some of those multipliers are reciprocals, the value of the
continual product of the whole is the quotient arising from
dividing the product of all the multipliers, by the product of
the denominators of all the reciprocals.

These general principles apply to every kind of differences,
whether they arise from addition or substraction, or from mul-
tiplication or division ; and also whether they have the sign +
or the sign —, only the introduction of a ratio with the sign
~— into a series must, from what was mentioned respecting the
signs in multiplication, change the signs of all the terms which
follow it, from + to —~, or from — to <+, until another nega-
tive ratio come in, and that one will change the signs of the
terms back to what they were before being affected by the
former —.

The shortest geometrical series that we can possibly have is
one consisting of two terms, a first or antecedent, and a last ar
. consequent ; and as this is the very simplest case, it is the best one
in which to acquire an accurate knowledge of the fundamental
doctrine of ratio. The two terms may be numbers of any
amount, or quantities of any kind, or they may be qualities
or relations which have no separate existence ; and thus the
doctrine can be applied to every possible subject of thought.
But there is one condition indispensable to the simplicity of a
ratio in every imaginable case ; and this condition is, that the
two terms of the ratio shall be quantities of the same kind,
and in exactly the same circumstances. They must be such
in fact, that whatever we can say or declare of the one of them,
we can also say or declare of the other, excepting the single
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circumstance which depends upon the ratio ; and if we can do
this and at the same time know the ratio, it is perfectly evident
that our knowledge of the one term is as complete as it is of
the other. _

This is the elementary consideration, the neglect of which
very generally renders the doctrine of ratios inost perplexing,
and not unfrequently altogether incomprehensible to beginners ;
because, if we do not take care to limit the knowledge which
we seek from the ratio to that which the ratio can afford us,
we evidently seek the remaining knowledge where it is not to
be found, and thus even the portion which is attainable is
inadequate to its purpose, and therefore useless.

Here it may be very desirable for the reader, who reads
these pages as a student, to turn back and re-peruse Section VI.,
and the two parts of Section VII., because many of the points
explained in them bear immediately upon the doctrine of
ratios.

The general expression for a ratio is a : b, in which a and b
stand for any two quantities whatsoever that admit of compari-
son; that is, which are of the same kind and in the same cir-
cumstances. The sign (:), as will be seen by looking back
to page 83, is one part of the sign used for division,~namely,
the sign (=) ; but as the sign is simpler in the case of the ex-
pression of a ratio, so the signification is also more ample
a <~ b is read “a divided by b,” which expresses the quotient ,
and a : b is read ¢ a to b,” which means merely the relation, or
the difference in that single respect in which they are not per-
fectly alike to our understanding. It is true that when we
come to apply ratios in practice, we must have our quantities
expressed in numbers, and find the measure of the ratio by
division ; but is it only in particular cases—namely, those in
which we can actually determine the quantities—that we can
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proceed to this arithmetically ; and there is a countless num-
ber of cases, by far the majority of those which enter into our
reasonings and judgments, to which arithmetic cannot be accu-
rately or even at all applied ; and we must frame our general
conception of ratio so as to include these.

When we come to the arithmetical application, the second
term b is the divisor, and therefore the standard in terms of
which the dividend @ is measured so as to find the quotient or
measure of the ratio as a single expression. This of course
applies only to ratios which can be stated arithmetically ; but
still it is evident that the imperfection does not consist in any
puzzle about the nature of the ratio itself, but only in our not
being able to measure the two quantities, so as to express their
values in terms of the same standard. Hence, in every case where
a comparison of quantities of the same kind can be made, we
have the same understanding of the general nature of the ratio
whether we are able to state it in numbers or not ; and this con-
sciousness of the existence of a ratio is so immediate a percep-
tion of the human mind, that it is the best as well as the shortest
definition which we can have of quantities of the same kind.

‘When our general quantities a : b are such that we cannot
express them by numbers, we have the most simple case of
ratio; and there can be only three varieties :—first, a may be
equal to b, ora = b; secondly, a may be greater than b; or
a 7 b; thirdly, a may be less than b, ora/ b. The first of
these is a ratio of equality, and it of course admits of no varia-
tion, and requires the use of no arithmetic.

The second is a ratio of majority, and the third a ratio of
minority ; and in each of those cases the question of difference
or of quotient may be put. If it is a question of mere differ-
ence, “how much greater or how much less,” it is evident
that the value of the smaller quantity, and of as much of the
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larger as is equal to the smaller, does not enter into the esti-
mate of the difference.~ This is the simple matter of the ratio
of two terms in an arithmetical progression. ‘
But if the question be the comparison of the whole value of
the one quantity with the whole value of the other, we must
apply our common means of measurement, by dividing the
quantity to be measured by the standard of measure ; so that
when we have got the values of @ and b arithmetically ex-
pressed in the same denomination, we have only to apply our
common arithmetical division ; and the quotient is the ratio in
terms of the divisor considered as one whole. Thus, ina ; b,

. 1 is the expression of the ratio.

- It will at once be perceived that the obtaining of this expres-
sion is nothing more than dividing the two quantities a and b,
separately, by the same quantity b, and that the expression of
the ratio as a quotient in those cases in which it can be ex-
pressed is nothing more than reducing the two terms of the
ratio in such & manner as that the second term b shall be 1.

- If we suppose the case to be one which admits of arithme-
tical expression and complete division, so that we have the

quotient of —: = ¢; then, according to what was stated when

treating of division,a = be.

EQUALITY OF RATIOS.

This is one of the most important points in the whole doc-
trine of proportion ; and, as is mentioned at page 2186, it is one,
with Euclid’s definition, of which beginners always feel a great
deal of difficulty ; and as that definition is generally the first and
frequently the only one which they get, the doctrine is rendered

T
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little better than useless to all except these who, by giving
themselves up, for a long time at least, to the study of mathe-
matics, get at it, as they do at most other matters, the best
way they can. -

The definition is in these words :—* If there be four magni~
tudes, and if any equi-multiples whatsoever be taken of the first
and second, and any equi-multiples whatsoever of the third and
fourth ; and if, according as the multiple of the first is greater
than the multiple of the second, equal to it, or less, the multiple
of the third is also greater than the multiple of the fourth, equal
to it, or less; then.the first of the magnitudes is said to have
to the second the same ratio that the third has to the fourth.”

The meaning of this is perhaps rendered a little clearer when
it is stated algebraically in precisely the same terms. Thus:—

Let a, B, ¢, D, be any four magnitudes; that is, any quanti<
ties, numbers, measures, or considerations whatsoever; and
let m and n be any two numbers whatsoever, that is, let
each of them represent in every possible case every possible
number, whether it be or be not expressible arithmetically,
only ‘each letter must in any one case express the same mum-
ber, as applied to each of the two magnitudes which it is under-
stood to multiply ; and if :

7 7
mA=mB,MC="nD;
L L
then

A:B=2¢C!D
_This definition is perfectly correct and general, including all
ratios, whether they admit of being expressed by numbers or
not ; and when once understood, it is not only satisfactory,
but very simple, There is, however, considerable difficulty
in understanding it, and this difficulty lies in the ambiguous
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meaning' of the words “any equi-multiples whatsoever.” In-
deed the great ambiguity lies in the word *any,”. which in the
definition means both -“‘any one, and every one ;"—that. is to
say, that the numbers m and n, which are nsed as multipliers,
shall be any two numbers whatever, in_any particular case ;
and that they shall be apphed in all imaginable cases. . Now
this double meaning, though a beautiful one when understood,
is difficult to understand, and instances of it, on far simpler sub-
jects, have sometimes perplexed those: who were past the com-
mon years of pupilage. Thus in the following line of Gray s
matchless Eleg—

Full mmy a flower is born to blush unseen ;

though the poet at once conjures up the whole wild flowers of
the desert, and makes each tell in its md1v1dunl beauty upon
the mind of the reader, yet the small. dealers in grammar have
set this line down as a positive fracture of Priscian’ s head.
* We have mentioned the cucumstance of the dxfﬁculty which
Euclid’s definition eontams, and pomted out the particular ex-
pression in which it conmts, chiefly with the view of calling
the reader's attention to this definition ; because, when it is
fully understood, the doctrine of proportion, as expounded in
the Fifth Book of the Elements, is a very beautiful specimen
of geometrical reasoning ; and we may perhaps venture to hope
that the slight explanation which we have given may assist in
getting the better of the difficulty. For our own purpose, and
taking, as we have taken, all the elementary branches of ma-
thematics along with us, the defining of the eéquality of ratios
is a very simple matter, and at the same time not less general
than that of Euclid. : .

The ambiguity which, in his deﬁmtlon, is thrown upon the
making of a case individual and universal at the same time, is,

T2
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according to the plan which we shall follow, reduced to incom-
mensurable numbers, or those which cannot be exactly ex-
pressed in terms of the arithmetical scale, and to incommen-
surable quantity, the one of which cannot be exactly expressed
in terms of the other. But as in any practical instance their
values can be approximated to any degree of accaracy that may
be required to a far greater degree indeed than our instruments
and our eyes will carry us in actual measurement, it answers
every purpose. The principle in this case—and it is self-evi-
dent—is, that quantities which have equal measures are them-
selves equal. This, as we remarked in a former section, is
one of our simple and original perceptions of equality, which
cannot be rendered more evident by any explanation. From
this it immediately follows that, if

a ¢ '
3 = thena : b =c¢:.d;

that is, if the quotient of the first divided by the second is
equal to the quotient of the third divided by the fourth, then
the first is to the second as the third is to the fourth, or the
ratio of the first and second is equal to the ratio of the third
and fourth; because these quotients are the measures of-the
ratios; and, as they are equal to the ratios, these ratios them-
selves must be equal.

Stated in this way, the principle applies to all commensura~
ble quantities of which the quotients can be expressed in num-
bers of any kind; but as it does not apply so well to cases
where the quotients cannot be expressed in numbers, it is
advisable to make a little alteration in the form. Now, as the

ratios are equal, and the fractions —Z—- and _.'.:_arealsoequal,

the quotient arising from the division of either of these frac-
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tions by the other must be = 1; it follows that the quanti-
ties which are divisor and dividend in the finding of this quo-
tient must be equal to each other. To divide one fraction by
another, as shown in a former section, is to invert the divisor,

and multiply. Hence, if = =4 °then ° 5 X -i—: % is the
quotient of 'y 2+ —:—- ; also, the numerator and denominator
of this quotient are equal ; that is,

. ad=be

This last expression is perfectly general ; because it includes
incommensurables ; ‘and, which is of perhaps greater import-
ance, it makes the most useful property of equal ratios, the

one upon which their definition is founded. In words it may
be expressed as follows :—

If four quantities are pmportlonals, the pmduct of the first
and fourth is always equal to that of the second and third, The
first and fourth are usually called the extremes ; and the second
and third the means ; and the definition may be also expressed,
Four quantities are proportional when the product of the ex-~
tremes is equal to that of the means. As this is a perfectly
simple definition, it holds true conversely, so that we can either
infer the equality of the ratios'from that of the products, or
the equality of the products from that of the ratios. This is
the property of proportional quantities, which connects the
general principles of proportion with the arithmetical opera-
tion of finding a fourth proportional to three given quantities ;
and this is the most useful operation in the whole practice of
arithmetic. The common name for it is—

THE RULE OF THBFE_Q )
. It gets this name becanse three quantities or terms are given
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as the data by means of which a fourth quantity may be found,
which shall bear to one of those three the same proportion
which a second of them bears to the third one. Thus, if
a, b, ¢, are the three given quantities, and it is required to find
a quantity z, in the meantime unknown, which shallbearthg
same proportion to ¢ that b bears to a, we have the subject
stated in its most general form ; and from what has been almady
stated, the four will be proportionals if
az=bc;
and as these are equal, the quotient of b ¢, dxvxded by a, must

beequaltow;thatmm:%,ora'b—-c' ?; wluch glm

us the fourth term or quantity sought, in terms of the three
which are given as data, expressed in words as follows :— :

Problem.—To find a fourth proportwml to three given quan-
tities.

Rule.—Multiply the second and third, divide the product by
the first, and the quotient is the quantity sought.

As the letters a, b, and ¢, which we have used in this slmplo
investigation, are perfectly general, or may represent any quan-
tity whatsoever, the rule itself is. perfectly general, in all
cases to which it can be applied. The next subject of inquiry
therefore is, What are those cases? and when we have anéwered
this question, we are enabled to turn the principle to every
practical advantage. The conditions of the three given quan-
tities, in order that there may be a praportion, are these :—
First, that two of them shall be of the same kind with each
other ; secondly, that the one of these two shall stand in the
same relation to the other, as the third given quantity stands
to the quantity which is sought; and thirdly, that the third
quantity shall be of the same kind with the quantity sought.
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These are the general conditions which are absolutely necessary
to bring the particular case within the problem ; and in order
to prepare them for arithmetical operation when so breught, it
is necessary that the two given quantities, which are of the
same kind, should also be in the same-denomination ; that is,
that 1, numerically considered in each of them, should be ex-
actly equal to 1 in the other; and also that the quantity of
the same kind with that which is'sought should be in theé same
denomination in which the latter is to be obtained. This last
position will always hold without any preparation of the third
quantity, because the denomination of it necesannly determines
the denomination of the result.

- Any quantities whatever which can be expressed by corre-
sponding symbols, can be so managed as that the fourth pro-
portional may be expressed in terms of those symbols; and
any quantities which can be expressed arithmetically, may be
80 managed as that the fourth proportional may be obtained in
the same denomination as the given one which is of the same
kind with it ; and if a different denomination of it is necessary,
this can be procured by the common ‘arithmetical methods of
changing the denominations of qmmtmeg without clm.ngmg
their values. :

There is still, however, another consideration necessary for
the expert use of this operation ; and that is the proper arrange-
ment of the three given quantities. One principle in this
arrangement consists in having the first and second quantities
of the same kind with each other, and the third of the same
kind with that which is sought. '

This arrangement is easily made, beeause the kinds of the
quantities is a matter which can hardly be misunderstood,
But there is still some difficulty in knowing which of the two
quantities that are of the same kind should occupy the first
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place in the arrangement. This however may be obviated in
all cases by attending to the following

Rule.—Write down as the third term that quantity which
is of the same kind and in the same circumstances as the quan-
tity sought. Next consider whether, from the nature of the
case, the quantity sought ought to be greater or less than this
third quantity. This is the part of the subject on which a
little judgment is required ; but unless we are able to decide
the point, we are neither in a condition for arriving at the
quantity which we seek, nor for knowing whether it is the right
one after we have obtained it. We shall suppose, therefore,
that the case has been duly considered, and that the conclusion
is, that the quantity sought must be greater than the third
quantity. In this case the greater of the two given quantities,
which are of the same kind with each other, must occupy the
second place in the arrangement, and the less the first place.
On the other hand, if the quantity sought ought to be less than
the given quantity of the same kind, the less of the two given
quantities which are of the same kind with each other, must
occupy the second place in the arrangement, and the greater of
them the first place.

If these simple directions are attended, to there never can be
the smallest difficulty or mistake in the arranging, or, as it is
called, the stating of three quantities, which are given for the
purpose of finding a fourth proposition: nor is it difficult to
say that such must be the case; for if the first term of the
one pair of quantities is less than the second, the first of the
second pair must also be less than the second of that pair;
and also if the first of the one pair is the greater, so must the
first of the other pair be the greater, otherwise in neither case
the one pair would express a ratio of majority, and the other
a ratio of minority, while the expressed condition of -all- such
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operations is, that the ratio of the first to the second shall be
exactly the same as the ratio of the third to the fotrth, otherwise
the product of the second and third divided by the first,
would not express the value of the fourth, or quantity sought.

A very simple case of a practical nature will serve to illus-
trate this :— Forty-eight men performed a piece of work in
nine days ; and it is desired to have another piece every way
equal performed in twelve days, how many men must be em-
ployed for the purpose?

Here the quantity sought is a number of men, and therefore
the given number of men 48, must be the third term. Next,
will the required number of men be greater or less than 48?2
On looking at the numbers of days, we find that 12 days are to
be allowed, whereas only 9 days were allowed in the former
case ; and therefore the number of men required must be less
than 48, it being pmsumed that each man performs equal
labour every day in the one case as in the other; for without
this consideration being understood, the two numbers of men
would not be in the same circumstances, and therefore not
proportionable quantities. The statement, or arrangement of
the given quantities, will therefore stand thus :— :

Men. Men. Days. 'Dnys
12 .0 9= 48 ; o,
 being merely a sign for the number of days which is sought

After the terms are stated in this manner, it is desirable to
examine and see whether the first term, and either the second
or the third have any common divisors, because if they have,
they may be divided by those divisors and the quotients used
in their stead, upon the principle already explained, that like
parts of quantities have exactly the same quotients as the
quantities themselves. Looking in this way at the above
quantities we find 12 the first term and 48 the third, both
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divisible by 12, and the quotients are 1 and 4, Herice we
have—

1:9=4:
therefores = 9 X 4 = 36 the number of dnys songht

It very often happens that it is as useful to multiply the
terms of a proportion as to divide them ; because by this means
they may be cleared of fractional parts ; and the principle is, that
the first term must be maultiplied by any number which mul-
tiplies either the second or the third term ; and if both the
second and the third are multiplied either by the same number
or by different numbers, the first must be multiplied by the
same number for e‘very time that either of the others is multi-
plied. When this is done, the fourth number, when obtained,
will always be in the same denomination in which the third
was originally stated.

- There is one particular case of simple proporhon—-thnt is, of
the comparison of two equal ratios with each other—which
deserves a separate notice ; namely, that case in which the
second and third terms are equal -to each other ; or when this
common valuer of the two may be considered as a mean pro-
portional between the other two. This may be stated,

cb=5b:
and the equal products in thns case are,
= }%

In this case if any two are given, the third can be fonnd
e b?
Thus, a=—j 0= — and b= a . The last expression

may also be written 5 = 4/ @ ¢. The sign used in this last
expression is only another form of }, and it will be more par-
ticularly explained in the section on the powers of quantities.
The rules expressed in words are as follow :—To find the
mean proportional, take the square root of the product of the
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extremes ; and to find’ either extreme, divide the square of the
mean by the other extreme,

COMPOUND RAT!OS OR PROPORTIONS

The ratios, and the. proportlons or eompansons of ratios
which we have been hitherto considering, have been viewed
only as perfectly simple ; but there are other ratios which are
compound, or made up .of simple elementary ratios ; and a8
the measure or simple expression of & ratio is the quotient of
the first term when divided by the second, and consequently
(which is in fact the very same thing, only differently ex-
pressed) the multiplierwhichapplied to the second term produces
the first, it follows that all ratios whatéver are multipliers ;
and consequently that all compound ratios must be compounds
of multipliers; that is, products arising from the multiplication
of those numbers which express the ratios or multipliers. -

In this case, however, there is a distinction to be made be-
tween a ratio which is a common number, and one which is an
exponent, or expressive of the number of times that a quantlty
is to be used as a factor,—the difference between which will be
found explained on looking back to page 39, and more fully
in a future section on the management of exponents. In the
meantime we have nothing to do with exponents, and therefore
we may regard the measures of the ratios simply as numbers;

This being undei-stood, ‘we may state that a compeund ratio
is one which is produced by the multiplication of. two or more
ratios; and that this multiplication may be either performed
by multiplying all the antecedents into one product, and all the
consequents into another, which two products will then express
the compound ratio in one antecedent and one consequent ; or
the measures of all the separate ratios may be found and mul-
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tiplied together, and their product will be the measure of the
compound ratio.

To illustrate this we may take a case in numbers, and we
shall take one in which the ratios considered as multipliers
are all integer numbers. Let the series be,—

3, 6, 30, 150.

In this series the ratio of 6 to 3, taken as a multiplier of 3,
i8 2 ; the ratio of 30 to 6, taken as a multiplier of 6, is 5 ; and
the ratio of 150 to 30, is also 5 ; therefore the compound ratio of
'150 to 3 is the product of 2 x5x 5 = 50. Inversely the ratio
of 3 to 150 is the product of the reciprocals of the measures
of those three ratios, or of 1 divided by each of the three num-

1 1 1

bers ; that mTX-b—X =156 ,whxchlastmthereclpm-

cal of the compound ratio viewed in the other way.

This is a very simple case, but it explains the principle just
as well as the longest series and the most complicated ratios that
could be introduced ; therefore we have this general principle :
If there is any series of quantities of the same kind (in which
case they all necessarily have some ratio to each other), the
first has to the last a ratio compounded of the ratios of the first
to the second, the second to the third, and so on through the
whole of the series; and inversely, that the last has to the
first a ratio compounded of the ratios of the second to the first,
the third to the second, and so on to the end of the series; and
farther, that the compound ratio is expressed by the continued
product of all the simple ratios in the one case, and of all their
reciprocals in' the other.

If in a series of this kind the ratios of the terms taken two
and two in their order be equal to each other, the ratio of the
first to the third is the square of that of the first to the second,
which is technically called duplicate ratio; and the ratio of
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the first to the fourth is the cube of that of the first to
the second, and is called a triplicate ratio. Also, the inverse
of a duplicate ratio is the ratio of the square-root, and is
ratio is asub-duplicate ratio; and the inverse of a triplicate
called a ratio of the cube-root, which is called a sub-triplicate
ratio.

The compound ratios which we have now explained are un-
derstood to be among a series of quantities of the same kind
only ; and thus they are continuous between one term and
another throughout the whole series, however long ; but there
are other cases in which the continuity is broken between
every pair of terms ; and a series of this kind does not express
a perfect compound ratio, unless the number of terms in it is
even, or consists of 8 number of pairs of terms; but it is of
no consequence what the number of those pairs may be.

The reason of the interruption in & series of this nature is
the quantities being of different kinds ; and there is no correct
compound ratio unless each pair which stand nearest to each
other in the series are of the same kind with each other. If
they have this last property, they can be compounded into one
single ratio, that is into two terms, having a ratio equal in
value to the product of all the antecedent terms for a general

antecedent, and all the consequent terms; and from a series
of ratios of this kind we get the principles for performing that
arithmetical operation which is called

THE COMPOUND RULE OF THREE.

This is also sometimes called compound proportion ; but that
term is too general, inasmuch as it includes also those series
which have the ratios continued from term to term. . In these
last there is no comparison of ratios, and consequently no
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means of judging of the equality of ratios or of finding any
term; and consequently no operation in the least analogous
to the rule of three can be performed by means of these.

‘With those disjointed proportions, which when complete con-
gist of as many separate ratios as there are pairs of terms, and
have each pair of the same kind with each other, and are
arranged as antecedents and consequents in the same order, the
case is very different; for if the consequent of the last pair
is wanting, it can be found by the very same operation, and
on the very same principles as in the common rule of three,
only there is a little preparation necessary in order to bring it
to three terms, so that the common rule can be applied.

“But the preparation necessary is exceedingly simple, and
‘congists of nothing further than multiplying all the antecedents
of the complete ratios for 8 common or compound antecedent,
and all the consequents of the same for a compound consequent ;
after which. these two, together with the antecedent of the in-
complete ratio, become three terms, by means of which the
fourth term can be just as easily found as if the first and
second terms had been simple at the first, or only one oomplete
ratio had been given.

In arranging or stating the terms of those simple ratios,
whose continued products are to be the terms of the compound
one, exactly the same principle must be observed, as in stating
the first and second terms of a simple proportion ; and as the
particular problems or questions which fall under this branch
of the practice of proportion are of a more complicated nature
than those in which only one complete ratio is given, they require
to be examined with more attention. It may not, therefore,
be amiss briefly to mention the precautions which are necessary.

First, it must be ascertained whether there is a number of
pairs of terms, in which those of each pair are of the same
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kind ard in the same circumstances with each other ; that in
addition to these there is a single term of the same kind and in
the same circumstances with that which is sought and that
bésides these there is no other term given; for unless the ques-
tion has these conditions, it does not involve a proportxon capa-
ble of being reduced to a compound first and compound second
term, of the same nature and composmon with each other,
and a single third term of the same kind and in the same cir-
cumstances with that which is sought. '

Secondly—The " two terms of each of the complete simple
ratios' must be expressed in the sanie denomination, so that
their numerical values may have the same ratio as their real
ones; for if this is not done, then, though the whole arrange-
ment and . process may- be rationally. correct, the compound
terms, and conséqueiitly the result, will be arithimetically wrong ;
and as the quantity sought is an arithmetical va.lue, it will be
as errorieous as though there had been’ snmlnr errors in the
rationale of the process.
. These two points require 4 good deal of consideration ; but this
consideration is not only absolutely necessary, forit is also exceed-
ingly well bestowed ; because when the compound rule of three
is once thoroughly understood, it becomes a most efficient
instrument in the simplification and abridgment of difficult cal-
culations, not only in the arithinetic of common business, but
in every case where caléulation can be applied, or indeed
where one general conclusion has to be drawn from a number
of relations, even if those relations are the points of an argu-
ment, or the stepping-stones by which one finds one’s way to
the accomplishment of a difficult project of any kind.

It is of no consequence of what kind the terms of any or of
all the simple ratios may be,. provided they are of the same
kind ; and it is of no consequence in what denominations or
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terms they are expressed, so that both are expressed in the
same. For we may take the following as a general definition
of compound terms :—

The terms of a compound ratio are of the same kind and in
the same circumstances with each other, if all the simple ones
of which they are composed, taken one in each product, have
this property.

This is nearly self-evident ; because all the conditions are
given in the terms of the simple ratios; and as each of the
compound terms is the result of an equal number of factors
and multiplications, there is nothing in the operation which
can change the relations of the terms. Further, in the arith-
metical part of the process, the terms which have to be multi-
plied with each other may be taken in any order, because chang-
ing the mere order of the terms does not affect the value of the
general product. In almost every case, too, the operation may:
be greatly shortened, by dividing the antecedents and conse-
quents by their common measures ; and in doing this it is of
no consequence whether the terms that are divided by the com-
mon measure be those of the same simple ratio or not ; because
the general result will not be affected by this ; and that result
is the only thing which is wanted.

Every operation of this kind could be performed by as many
successive operations in the simple rule of three as there are
complete ratios given, by making the result of each operation’
the third term of the succeeding one ; but in the solution of a
complicated question this method is intolerably tedious; and
in no case can those abridgments be made which are so advan-
tageous in the compound operation.

The method of stating the terms is just a repetition of that
formerly given ; but still it may not be amiss to mention the
rule very briefly.



COMPOUND RULE OF THREE. 289

Write down as the third term, that quantity which is of the
same kind and in the same circumstances with the one that is
~ sought. Take other two terms of the same kind and in the
same circumstances with each other; consider whether on
account of them the quantity sought should be greater or less
than the third term ; and having decided this, place the greater
or the less of them for the second term accordingly. State all
the remaining pairs in the same manner, ranging the antece-
dents under each other in a first column, and the consequents
in a second, until all the pairs are exhausted. If there is no
other number or quantity given, the conditions are properly
stated ; and, when they are reduced to the same denomination
in each pair, the whole is rightly prepared.

There is another mode of arrangement, which though ex-
actly the same as this, is perhaps better, because it brings all
the data into smaller compass. It is this :—draw a horizon-
tal line, and write the term corresponding to that sought imme-
diately above it towards your left hand. Then write all the
second terms of the different ratios after this, with the sign x
between every two: write all the first terms after each other
under the same line, with the same sign between every two;
and the whole expression is a general fraction equal in value to
the quantity sought, while nothing remains to be done but to
reduce this fraction to its simplest form, or to its value as an

integer when it has such a value.

We shall illustrate this method of operation by a very sim-
ple instance :—A log of wood imported from a certain part of
the world cost 100/ ; and the following are the particulars of
it—the length 24 feet the breadth 5 feet, the thickness 3 feet
9 inches, the duty 5 per cent., and the freight and charges 25
per cent. : another log of wood has been imported from a diffe-
rent part of the world, of which the following are the parti-

v
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culars,—the length 30 feet, the breadth 4 feet, the thickness 8
feet, the duty 10 per cent, and the freight and charges 12 per
cent. Also a solid foot of the second log is worth, in the
country where purchased, 3 times as much as a solid foot of
the first log : it is required to find the price of the second log.

The fractional statement of this is as follows :—

100 x 30 x 4 X 3 XIOXI%X"":theprioeofthe

24 x5 X3 x 5§x2 X1
second log.

Draw another line, and see what can be shortened. The
one 100 is a manageable number, and therefore it may be left
alone, 30 x 4 above is equal to 24 X 5 below, so that these
four numbers may be left out. Again, 10 x 12} = & X 25,
therefore they may be left out; and 3 above and 3} below,
when both divided by 3, make 1 in the upper line, and 1}
below: so that the remaining numbers are—

100 x 3 1200

The particulars of the two logs, in this example, were taken
much at random, and not with any very particular view to
the shortening of the operation. In strict propriety, there
should have been three operations in the calculation of this
problem. The freight and charges are understood to be at so
much per cent. ad valorem on the other costs of the two logs;
and the duty at so much per cent. ad valorem on the total cost,
freight, and charges included. Consequently, the other costs
should have been first estimated, and then the freight and
‘charges made the first and second terms, with 100 in each in
addition to the rate per cent. The result of this should have
again been made the third term, and 100 + the duty, in the
two cases, the first and second terms ; or these might have been
compensated in the one operation, by making the terms each

2401. price of the second log.
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100 4 the per centage, which would have made the original
fraction.

100 x 30 X 4 X 3 x 110 x 112} x 3

24 x5 x 33 x 105 x 125 X 1
This, shortened by throwing out all the equal products which
are obvious, and dividing by all the common divisors which
are equally so, becomes—
100 x 22 x 9
1} x7 x10
Shortening this again, by dividing 200 by1} x 10, which is 124,
reduces the 100 to 8 in the upper numbers, and obliterates 1}
and 10 in the under, we have—
8 x22x9
. 7
which cannot be shortened ; but, performing the multiplications
in the upper term, we obtain
1584
7 b
and performing the division, we have
22641, = 226l. b5s. 8}d. nearly —
the true value of the second log.

We took the first of these methods, in order to show the
modes of proceeding in cases where the data need no correc-
tion ; and we have added the second in order to show how the
correction of the data can be made ; for if the three operations
are performed in succession, the final result will be found to
be exactly the same as the last arrived at by the general ope-
ration, namely 2263/

We shall give another example, in order to show the use of
the compound rule of three as an instrument of investigation.
Let it be required to find a formula for computing the interest

v2

the price.

= price of the second log.
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i of anysum of money p, for any number of daysd, at any rate
7 of interest per cent, per annum, that is 100J. for 365 days.

From the case, it is evident that 100 and 365 must be the
antecedents of the two ratios, p and d the consequents of the
same, and » the last term ; for r is interest, and therefore the
only quantity in the same circumstances with that which is
sought, though 100 and p are of the same kind with it. The
arrangement of the terms will therefore be

100 : p =7 . i the interest
and 365 : d
If 365 is multiplied by 2 it becomes 730, which is a more
simple number. Therefore multiply it by 2; and af» is
always a small number, and will be simplified if it contains 4
per cent., multiply it by 2, to compensate the other. Then
the fractional expression for the operation will be
pd2r
73,000

In words :—Multiply the principal sum by the days, and by
double the rate per cent.; divide the product by 73,000; and
the quotient is the interest. As it is best to perform all com-
plicated operations in which money is the chief subject, by
decimal arithmetic, from the ease with which the subdivisions
of a pound sterling can be converted into decimals of a pound, or
the reverse (as explained at page 69), the divisor, in this cal-
culation, may be simplified by cutting off three additional
places of decimals from the product, and dividing by 73.

Let us take an example. Required the interest of 468/, 17s. 6d.
for 219 days at 3} per cent.—

Here, p = 468-875
d = 219

2 r = 7, therefore
468875 x 219 x 7

73,000

= i, the interest.

= 9l. 16s. 11d., the interest.
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RECIPROCAL PROPORTION.

Ir the product of any two quantities taken as factors be
equal to the product of any other two different quantities also
taken as factors, then from the definition of equal ratios, it
follows that those factors are reciprocally proportional ; which
means that the first of the first pair has the same proportion
to the first of the second pair, which the second of the second
pair has to the second of the first pair. Thuslet a b be the
product of a and b, of which a is the first factor and b the
second ; and let ¢ d be the product of other two factors, of
which ¢ is the first, and a the second : then

aec=a’6b

For by hypothesis, that is, by the conditions assumed, the
product of the extremes a b, is equal to the product of the
means ¢ d, and thig is the essential property of proportionals.
These proportionals are reciprocal, because the term of the
first product stands first in the first ratio, and the term of the
second stands first in the second ratio, or the terms of the one
ratio are in reverse order to those of the other.

This is a simple principle, as depending entirely on a simple
definition ; and therefore it is convertible, or may be stated as
a truth the other way ; that is, if two factors and other two are
reciprocally proportional, the product of the first pair is equal
to the product of the second. .

Simple as this principle appears, it ia by no means an unimpor-
tant one, as will appear from a plain example. A man has a
table 12 feet long and & feet broad, and he wishes to have
another table 9 feet long which shall contain just as much sur-
face as the first; what must be the breadth of the second
table?
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We have explained, in a former section that a surface is
represented by the product of its length and breadth ; and as
the surfaces of those tables are to be equal, the products of
their lengths and breadths must also be equal, consequently
they are reciprocally proportional, that is, calling the unknown
breadth z, ’

12:9=2:5 i
12 :5 60 :
Hence, z = ~g =g = 6%, feet, the breadth required.

This case often occurs in questions solved by the common
rule of three ; but the common rule applies to it as well as to
all others. It is useful, however, in many instances, and among

others in

PROPORTIONS INVOLVING A CONSTANT QUANTITY.

WE shall be best able to explain what is to be understood
by this by taking an instance :—A mine constantly produces
the same quantity of water in the same time. Upon one occa-
sion it was neglected and allowed to get full, and it took 12
horse power 60 hours to empty it. On a second occasion it
‘was again allowed to fill, and 10 horse power required 80 hours
to empty it. Now it is full a third time ; and it is desired to
know what power will empty it in 48 hours, and also what
power of an engine must be erected to keep it dry after it is
emptied? It is to be understood that the horse power and the
flow of water into the mine, are quite constant, that is, exactly
the same in all the cases.

It is evident that the product of the number of horse power,
and that of hours taken in each case, will give us the work
done in each case, expressed in the same denomination in both,
namely the work of 1 horse power in 1 hour. In the first
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instance, 12 X 60 = 720 hours’ work; and in the second
instance 10 X 80 = 800 hours’ work. Comparing this with
the former, we find that the smaller power working for the
longer time, had 80 hours more work to perform and this is
our clue to the whole matter.

During 60 of the 80 hours there wo_uld come in just as much
‘water as there did in the other 60, and the pitful is the same
in both cases. It is clear, therefore, that the 80 hours’ work,
that is the water requiring 80 hours’ work, is the quantity that
came in during the additional 20 hours in the second instance ;
and if we divide it by 20 we shall obtain the quantity which
_comes in in one hour, in terms of the number of horse power
necessary for removing it during the same: 80 <~ 20 = 4.
Therefore, 4 horse power will remove in one hour the water
which flows into the mine in one hour, consequently an engine
of 4 horse power will be necessary for keeping the mine dry
after it is once emptied, which is one of the answers to our
questions.

Let us next inquire what power would be necessary for
emptying it in 48 hours,

It is plain that whatever numbers of horse power is em-
ployed, and whatever length of time is required, there is always
4 horse power which does nothing towards emptying the mine,
because it merely removes the water which flows in. This 4
is therefore the constant quantity which must be separated
from the power in each of the two cases; and then the remain-
ing powers must be reciprocally proportional to each other,
because the product of each by the number of hours it requires
is an expression for the same thing, namely the emptying of
the mine, and so these products must be equal to each other,
Taking 4 from 12, 8 remains ; and taking 4 from 10, 6 remains ;
so that the mine was emptied by 8 horse power in 60 hours,
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and by 6 horse power in 80 hours; and the produet in each of
these eases is the same, namely 480.
Stating the terms, when thus cleared of the constant quan-
tity as a reciprocal proportion, we have—
Power. Power. Hours. Hours.
8 : 6 = 80: 60

Any one of these ratios will do for finding the power necessary
for emptying the mine in 48 hours; and as it will take more
power in 48 hours than in 60, the proportion will be ‘
48 ; 60 = 8 ; z, the number required ; and,
60 x 8
s = 10

the power necessary to empty the mine in 48 hours; and if
to this we add the constant quantity 4, we have 14 as the
other answer to the question ; namely, the power which in 48
hours will discharge the water already accumulated, and also
that which comes in during the same time. The general
answer thenis: 14 horse power will be required to empty the
mine, and a 4 horse power to keep it dry.

CHANGES OF PROPUORTIONAL QUANTITIES.

I~ the changes of which we are about to speak, all the four
proportionals are generally understood to be of the same kind ;
and the changes, if the definition of equal proportionals is pro-
perly understood, and the perfect correspondence of the two
terms of a ratio to the divisor and dividend in division borne in
mind, require little more than merely to be stated.

1.—Equi-multiples and like parts of the two terms of a ratio,
produced by applying to them both the same multiplier or
the same divisor, which may be any number whatever, have
still the same ratio as the original terms. This follows imme-
diately from the quotient not being altered by equal multi-
plication or equal division of the divisor and dividend. -
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Also, and for exaotly the same reason, if like parts are added
to the two terms, or subtracted from them, the sums in the
one case and the remainders in the other will have the same

" ratio as the original terms.

This is the principle by the application of which we are
enabled, for any practical purpose, to reduce the terms of ratios
to their very simplest form ; and it is, generally speaking, ad-
visahle to perform this simple operation on its terms, before the
ratio is applied in any calculation in which those terms shall
be blended with other quantities.
. 2.~Proportionals are proportionals, if taken inversely, that
is, if the first and second and third and fourth are made to
change places. This is evident, for the measure of the inverse
ratio is the reciprocal of the direct one; and if quantities are -
equal themselves, their reciprocals are necessarily equal.

8.—Proportionals are proportionals if taken alternately, that
is, the first has to the third the same ratio which the second
has to the fourth. This is also evident, for the second ig the
first multiplied by the measure of. the ratio, estimated as a
multiplier, and the fourth is the third multiplied by the same ;
therefore, the second and fourth are equi-multiples of the first
and third, and being so they necessarily have the same ratio.
Inversely, the third has to the first the same ratio which the
fourth has to the second ; for the former are respectively like
parts of the latter.

It does not follow in this case that though the second and
fourth are considered as equi-multiples of the first and third,
they should be greater than these ; for the multiplier may be
any number whatever, indefinitely greater than the number 1,
or indefinitely less ; when it is greater than 1, the multiple is
greater than the multiplicand, and when less than 1 it is less.
This follows from the very pringiple of multiplication.
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4.~Proportionals are proportionals by composition ; that is
the first or second has the same proportion to the sum of the
first and second, that the third or fourth has to the sum of the
third and fourth. This also follows from the principle of
equi-multiples. The two terms are an equi-multiple of either
term by the ratio of that term to the other x 1; and, therefore,
the sums of the two terms are equi-multiples of the corre-
sponding terms ; that is, the first and third, or the second and
fourth, and so they must be proportional.

8.—Proportionals are proportionals by separation ; that is
the differences of the two terms of two equal ratios, taken in
the same order, have the same ratio to the corresponding terms.
This is still a matter of equi-multiples, for the difference of
the two terms of a ratio is a multiple of either of them by the
ratio of that term to the other — 1.

6.—Proportionals are proportional ex @quali; that is, when
those which are equally distant from each other in one series
of proportional quantities are proportional to those which are
equally distinct from one another. This is still a matter de-
pending upon the principle of equi-multiples; but it may
perhaps require a little more explanation than the former ones.

Of this equality of ratios at equal distances in two series of
quantitios, there are two cases which very much resemble the
direot and the inverse statements of common ratios; and these
aro usually cited in mathematical books by the words ex
aquo, from equality, and ex @guo inversely, from equality of
oross distance,

Ew cquo. If thero are any number of quantities in one
serios, and as many in another series; and if these taken in the
same order have the same proportion to each other two and
two, it is assumed for proof that, when an equal number in
each series is taken, the fitst of the last series will have the
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same ratio to the last of that series, as the first of the second
series has to the last of the second series. Thus let
A, B, 0, D, E, &c.
a, b, c, d, e, &c.
be two series of quantities inwhicha :B=a: b, B:c=
bico:p=c.dp.:E=d.e;thena E=a
The quantities in each series are continued proportlomls,
and their ratios taken two and two in order are the same ; but
we have already seen that in a continued proportion the ratio
of the first term to the last is compounded of all the single
ratios of the terms taken two and two ; the terms in those two
series are the same in number, and the ratios of every two
terms nearest to each other are the same throughout. These
individual ratios are the factors whose product forms.the ratio
of the first to the last ; and those ratios are not only the same
in value, but follow each other in the same order in both series ;
wherefore their products must be equal ; that is,
AE=a’e
Exz ®quo inversely. If there are any number of quantities
in one series, and as many in another; and if these taken two
and two in a cross order have the same ratios in the one series
as in the other, it is assumed for proof that when an equal
number in each series is taken, the first of the first series will
have the same proportion to the last as the first of the second
series has to the last. Thus, as before, let .
A, B, 0, D, &e.
a, b, ¢, d, &ec.
be two series of quantities in which A :B=b:¢, B.Cc =
a.bB.c=c.dandc ;D =b;c;thena  p=ad
This is a case of continued proportion as well as the former ;
and though the equal ratios in the two series do not follow in
the same order, yet they alternate with each other, so that the
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whole in the one are still equal, each to each, to the whole in
the other. But the ratio of the first quantity of each series
to the last, is composed of the product of all the single ratios;
and these being equal to each other, it follows that the products
must be equal; because the order in which the factors are
taken does not alter the value of the product. Consequently
the product of those equal ratios arranged in cross order, are
exactly the same as if they had been arranged in the same
.order in the one series as in the other.

The principles which we have now stated contain the whole
-elements of the doctrine of proportion; and any one who stu-
dies them with so much attention, as fully to understand them,
can find no difficulty in managing any peculiarities which may
arise in particular cases. Indeed, if the changes which can be
made on the terms of a ratio without altering the ratio itself,
and the condition which determines the equality of ratios, are
once clearly understood, the whole doctrine of proportion may
be said to be mastered. We shall therefore very briefly reca-
pitulate these, because they are the points which it is essential
for the student to bear in mind, in order to profit to the full
extent by this most simple, most beautiful, and most useful
portion of mathematical science.

1.—A ratio remains the same if both its terms are multi-
plied, or both divided by equal numbers, whatever may be the
value and chararter of those numbers. It also remains the
same if equal parts of the terms be added or taken away. In
short, if whatever is done to the one term be also done to the
other, and be done to both in the proportion of their original
values, the relation of the terms, and consequently the ratio,
‘remains unaltered amid all the changes, be they ever so many.

2. Ratios are equal, if the product of the first term of the
first, and second term of the second, is equal to the product of

-
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the second term of the first and first term of the second. And
this equality holds whether the ratios are considered as original
and simple, or as being compounded of any number of equal
ratios. Compounding, in the arithmetical sense of the term,
means multiplying the one by the other ; and in all such cases,
it is of no consequence in what order the factors are taken,—
which last consideration is evident from the fact, that the 3 -
times 4 is exactly the same as 4 times 3.

If these two articles, and they are short and simple, are
correctly borne in mind, the student will feel little difficulty in
the management of proportion; and may and should turn to
the Fifth Book of Euclid’s Elements, as a most valuable subject
of study, not for mathematical purposes only, but for laying a
sure foundation for clearness and accuracy in general reasoning.’

SECTION XIII.

POWERS AND ROOTS OF QUANTITIES.

A powER of a quantity is the product which arises from the
multiplication of that quantity by itself, the same quantity
being both multiplier and multiplicand in the case of one mul-
tiplication, and multiplier in every successive multiplication,
the product in the previous operation being multiplicand. A
power is thus a compound quantity produced by twoe or any
greater number of identical or equal factors; and different
powers are distinguished by the number of times that the
quantity of which they are the powers occurs as a factor in the
composition of them. We have already partially explained
some of the simpler properties of powers when treating of the
scale of numbers, in the third section, and also in some other
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parts of the more elementary portion of this volume. We
there mention that the arithmetic of powers gives occasion for
8 peculiar kind of numbers in arithmetic, and for s peculiar
species of notation in algebra ; and we shall here revert more
particularly to the same subject.

We mentioned also that lines are arithmetically represemted
by simple or original numbers expressing their lengths in known
measures ; that surfaces are expressed in numbers by products
of two factors, the one expressing the length and the other
the breadth, expremed in the same manner, the number
expreming the value in squares of the measure; and that
solids, or those portions of space in which solids could be
oontained, are expressed in products of three factors, all in
ths same measure, the one being length, another breadth,
snd the third thickness. The number expressing the value of
solidity in the last case consists of cubes, that is of solids
hounded by six equal square surfaces, every side in all of which
is the same meusure as the denomination of lineal measure,
in which the length, breadth, and thickness are expressed.

From these circumstances, a power arising from the mul-
tiplication of any quantity used twice as a factor, or once
multiplied by itself, is called the square of the quantity.
There is no objection to the use of this name square,
whatever may be the kind of the quantity; because when the
quantity is expressed by a number, the number might express
the length of a line, and that line might be the side of a
square ; but it is only when the number actually means the
length of a line that the product of it by itself is & square in
reality. It is necessary to bear this in mind, in order that
when we speak of the square of 3 or any other number, or of
the square of a, or any other general quantity, we may not
attach tho same positive notion of squaring to it which we
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attach to the product of equal length and breadth, expressed
in the same measure and multiplied together. Still there is a
certain notion of squareness about the product of every num-
ber when multiplied by itself; for if we make as many dots
in a straight line, as there are ones in the number, and repeat
this line of dots at equal distances directly under the first one,
the dots so made, if accurately placed, will form an exact
square. Indeed, it is this very circumstance which makes the
product of the length and breadth an accurate expression for
the area or surface.

So also, when a quantity expressed by a number is multi-
plied twice by itself, or used three times as a factor, though
the last product expresses a real cube only when the number
represents a line, and when that line represents length in one
instance, breadth in another, and thickness or depth in a third,
yet there is some notion of cubism about the product of the
same number used three times as a factor. For, just as the
product of the two numbers when represented by dots makes
a square, having the number of dots the same both up and
down and crossways, and equal to the number of ones in the
number in both, so the product of these numbers consists of
as many of those squares of dots, as there are in each row of
the square ; and if we imagine these squares to be placed ex-
actly over each other, and all at the same distance as the dots
are both ways in the square, we shall have a cube of dots,
containing as many dots as there are ones in the product of the
number twice by itself. This cube is as comprehensible to the
mind as if it were made of solid matter ; and indeed it is this
kind of cube which is referred to in our general reasoning on
that solid,—not a cube of tangible matter, but the space which
such a cube would fill if it really existed. In like manner the
square which we speak of in our general reasonings concerning



204 MEANING OF “moor.”

that form of surface, is not a real square portion of the surface
of any substance which we could touch with our finger, or see
with our eyes, but merely the extent and space to which such
a surface could be applied.

Thus far geometry goes hand and hand with the general
notion of quantity in algebra, and the particular adaptation to
number in arithmetic. But when we get beyond the cube,
geometry leaves us, inasmuch as extension, which is the proper
subject of geometry, cannot be more than solid.

On the other hand, no geometrical quantity can be more
simple than a line ; because a point, which is the only conside-
ration more simple, has no magnitude, and cannot be measured,
or in itwolf made an element in any compound quantity pro-
duced by multiplication,

Algebra and arithmetic are not trammelled by the properties
of oxtonsion; and therefore beyond the line, the surface, and
the wolid which belong to geometry in common with the rest,
powors of quantitios may be carried upward to any number of
fuctors and multiplications, or downward by any number of
ropoated divisions by the factor, or multiplications by its reci-
procal, which as already mentioned is only another name for
division by the factor itself.

This factor—how often soever it may be repeated, it must
bo tho same in overy case, otherwise the product would not
ho a power—is called the roor of the other powers, because
it Is tho valuo of this root which determines the value of all
theso powors ; and it need hardly be stated that like powers of
oqual roots must be equal to one another, for they are the
rosults of equal operations performed with equal quantities.

Any quantity or number may be regarded as a root, and the
powers of it may be found upwards or downwards to any
oxtent. Every number or quantity when not described as a
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power, is always in the same condition as a root; and in this -
sense of the term, a number is not necessarily considered as
any other product than that of its own value by the number
1. Even in this sense, however, a number may be considered
as'a power ; and thus considered, it is necessarily a first power,
and its exponent, the general nature of which is explained at
page 35, is!. The meaning of this is, that the number or root
is considered as one factor only, and that there is no multipli-
cation alluded to. Thus, if a is put for all quantities whatever,
it is expressed as a power by a! ; but this differs in no respect
from a without the exponent, further than by giving us a be-
ginning for the powers of a.  The other powers upward pro-
ceed in the natural order of the numbers, those numbers being
written as exponents, and pointing out the number of times
that the root is used as a factor, which is always 1 greater than
the number of multiplications, the first multiplication requir-
ing two factors, and the next lower power being always a factor
in the one immediately above it.

From what has been already said, it is evident that the
second and third powers are the only ones which can have
names expressive of geometrical extensions; the second
power being the square, and a2 isread “ a square,” and the third
power the cube, and a3 isread ““a cube.” The fourth power is also,
sometimes called the biquadrate, because it is the square of
the square, and perfecily intelligible in the management of
quantities and numbers, though there is of course no geome-
trical magnitude which can answer to it. The other higher
powers are named after the numbers of their exponents, and
therefore require no further explanation. The following are
some of the ascending powers of @, beginning with the first ;
and in as far asthey are powers, and expressed by the exponents,

x
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they would be exactly the same whatever quantity or number
was used instead of the letter a—
al, &%, a3, a%, @, % a’, a®, &, a', a'l.

This series might be continued indefinitely and without limit ;
and when an indefinite exponent is introduced, the character for
it is usually the letter ® ; thus a» is the ® th power of a, that is,
any power indefinitely great, indefinitely small, or intermediate
between these points.

Mere inspection of the above series of powers will show that
every additional multiplication adds one to the exponent ; and
of course the addition of any number of times 1 to the expo-
nent would express the same number of multiplications by the
root. If we divide the product by the multiplier we always
get hack the multiplicand ; and therefore any number of times
1 subtracted from the exp onent, expressesthat the power is to
be as often in succession divided by the root, the quotient of
each division being made the dividend in that immediately
following. Thus a? —4, means that the seventh power of a is
to be divided four times in succession by a; but to divide by
any number of divisors in succession produces exactly the
same quotient as multiplying all the divisors and dividing by
their product at once. Therefore @7 ~ 4, is the same as divid-
ing the seventh power of a by the fourth power of the same,

which may he expressed by_a;, or by ot
a

If, instead of a7, the first part of this expression had been
simply @, then the remaining part of the expression would
have been a}. From this we can see that a negative exponent,
and an exponent expressed as a denominator or divisor, have
the same meaning, and are exactly equal to each other, when
numerically alike ; and thus a number of multiplications by the
root, and & number of divisions by the root, or rather the root
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used & number of times as a multiplier, or & number of times
as a divisor, are alike expressible by exponents; only there
is this difference between them, that the exponent denoting
multipliers has the sign 4 expressed or understood, and that
expressing divisors has the sign — always expressed.

But from the perfect equality of the expressions a%' and
a?™ 4, it follows that the negative exponent, or that which has
— prefixed, is really the reciprocal of the same exponent
when positive, or having the sign + ; or that a—* is exactly

the same as _1__.
at

This at once shows us that -+ and —, as applied to exponents,
have quite different meanings than when applied to quantities ;
and that there can in reality be no such operation as either the
adding or the subtracting of exponents, in the sense in which
those words are used with regard to common numbers and
quantities. This leads to some very important conclusions,
which we shall have to notice afterwards : in the meantime we
may examine a series of those negative exponents.

Looking back at the positive exponents of a, we find that the
left hand is 1, and that the others increase regularly toward
the right, by the addition of 1 for every next succeeding term.
If we look at them in the other order, we find that they
diminish in order toward the left by the subtraction of one.
Now we may readily continue the series towards the left hand ;
because a!, where the former series stops in this direction, is any
number or quantity whatever. If we divide that quantity by
itself, thequotient must beexactly 1, whatever may bethe value of
a, because every quantity is contained just 1 time in itself, with-
out anything deficient or over. If we divide another time by
a, we have.l_; if we divide still another time by a, we obtain

a
x2
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1
s
carry our series of divisions. These results, arranging them
from right to left, are as follows—

1 1 1 1 1 1 1 1 1 1 1
I I M R MPTRP SR L R
Upon examining these from right to left, the first in the series
is the number 1, whatever may be the value of a; and its
exponent is %, that is, it has no exponent. This is exactly
what might be expected ; for the number 1 can neither be
a multiplier nor a divisor. The next term in order is 1 divided
by the square; that is, it is the reciprocal of the square, the
third is the reciprocal of the cube, and the restin order are the
reciprocals of the corresponding powers in the former series.

But we have already seen that expressions in the form of
the above are the same in import as if the exponent were made
a fraction with 1 for its numerator, or written with the sign
—. Hence we have,

a'llr, aTl", alg, al“, a”, a“, a%, a&, al*, a§, a®; and also
a1, 47194779, 378 g7 a6 a0 a4 a3, ,;—‘e,a o,

But though these answer to the same places in the general
series, they do not express the same meanings. The first of
the two series—namely, that with the fractional exponents—
expresses roots of a considered as a number of which a root

"answering to the exponent is to be found ; for the number 1
which occurs as the numerator of each shows that a4 is still to
be taken as one factor, or rather as the power arising from the
multiplication of the factor, which must be in all cases diffe-

; and after that ;ls—, %,andsoonasfnruwe choose to

rent from a. As for instance, a* means that some root or
number # is to be found, which when used four times as a fac-
tor, or multiplied three times by itself, shall produce a result
either exactly equal to a, or as nearly equal to it as possible.
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In the other series the expressions are simply the descending
powens of a, having that quantity for their root, and being in
fact the reciprocals of the corresponding positive powers.

To take an example in numbers: let a =5 ; and let us
write the powers of a expressed by their exponents in one
line ; the powers of 5 expressed by their factors in a second
line ; and the same powers expressed by the products of their
factors in a third line.

1st,—a, a8, as, é‘ a®
2d.—5, X5, 5XEX S5, B5XEXEX5, b5X5x5X5xS.
3d.—5, 25, 125, 625, 3125.

The first of these three lines contains the general expressions
for the first five positive powers of any simple quantity
whatever, because the letter a may mean anything. The
second line contains the first five powers of the particular num-
ber 5, expressed in terms of 5, the root connected by signs of
‘multiplication which point out the operations to be performed.
‘In each power the number of times that the factor or root 5 is
repeated, corresponds exactly with the exponent of 4 in the
first line ; and the number of times that the sign of multipli-
cation X occurs in each points out the number of multiplica-
tions. The third line has exactly the same value in numbers
as the second, only the multiplications are performed, and
each power appears as a separate number.

Let us next take the same illustration with negative expo-
‘nents; and we shall begin them ‘at the left in order that they
‘may be the more easily compared with the fornier.

Ist—a®, a7, a8, a3, a4

LI S U S S
5, 5 b5x8, 5x5x85, 5Xx5x6x85.

34— 1. -2, 04, -008 -0016.

The first of these lines contains the general expression of
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powers immediately following each other below the first power ;
and as the first of these is an expression for the number 1, it
has the exponent °; the others are continual divisions of 1 as
many times successively by a as there are ones in their respective
exponents. The second line contains a particular instance of
the same, in terms of the numerical root 5 ; and the third line
contains the values of the expressions in the second stated in
decimals,—that is, in terms of 10, the root of the common
arithmetical scale. ’

Upon carefully examining this third line, it will be feund
that there is some information to be obtained from it, further
than the mere illustration of powers with negative exponents.
The root 5 made use of in the second line, is a factor of the
number 10, and the number 2 is the other factor. Now if
we examine the decimal numbers in the third line, we shall
find that they are the powers of 2, divided by the cor-
responding powers of 10. We may leave out the first of
the series because it is 1, and of no use as a power. The

2x2

second '2is-r-"6;thethird‘04 iﬂ m,

4
for it is —; ¢
or i mlOO_’ he

2x2x2 8
— _ for itis — : £ i
10X 10X 10’ or I 151 ; and the fourth is

2X2x2%x2 for it is 16
10x 10 x 10 x 10’ 10,000

From this it follows, that if any power of a number is
divided by the same power of one of its factors or component
parts, the quotient is always the same power of the other com-
ponent part, and conversely. If like powers of any num-
bers of factors are multiplied together, their product will be
the same power of the product of all the factors. Thus, if @
and b are the factors of any quantity ¢, a® 52=c?, when the
power of the composite number or quantity is found by multi-
plying the same powers of its factors, it is of no consequence

third 008 is
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in what order they are taken. Thus, 52 X 22, and 22 x 52 are
both — 102 ; and it is the same in every other case however
complicated.

The general explanation which we have here endeavoured
to give of the elementary doctrine of powers, is sufficient to
prepare an ordinary reader for more elaborate works, and sp
we shall now proceed to the practical matters of expressing
the powers of numbers and quantities, and finding them by
calculation in any case where that may be required ; for this
purpose we make a sub-section.

INvoLuTION.

Involution literally means ¢ rolling up,” in the same manner
as multiplication. means *manyfolding ;” and the distinction
of the names is worth attending to: because in multiplication
there may be many factors all different from each other, the
one of which is, as it were, folded down upon itself as often as it
is expressed by the other ; whereas in involution, or the finding
of powers, the same quantity is, as it were, folded its own
number of times upon itself at every multiplication.

The first point to be attended to on this subject, is the
correct expressions of powers; and this is a matter of no
inconsiderable - importance ; because, in complicated opera-
tions especially, it is desirable to get our expression for the
whole operation to the end before we begin any of the parts
of the operation, and thereby lose sight of some of the given
quantities. Indeed, this is a matter of so very great import-
ance, that it ought to be enforced upon every occasion where
the enforcement of it can be introduced, even though it may
appear not only inelegant, but apparently tedious. If we do
not hammer it till it becomes hot, the spring becomes the
more elastic the more that we hammer it ; and it is even so
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with the human mind : if we wish to impart to it that vigo-
rous elasticity which, once acquired, will send it bounding
along the paths of knowledge in the strength of its own energy,
so that we keep it cool, it is our duty to hammer away, in order
that error or prejudice may not afterwards bend it from the
line of the truth.

It is not in mathematical investigations alone that this prac-
tice of finding, the expression before proceeding to the opera«
tions, is one of the most useful rules that can be observed ; for
it applies equally to every project that can be accomplished,
and every object which can be obtained ; and we may add, that
it is owing to the want of this preliminary seeing of the way
and the means, more than to any thing else, that the failures
and mishaps of mankind, in every department of life, are
owing. .

If the quantity of which any power is to be expressed is
simple, or consists of a single number in arithmetic, or a
single letter in algebra, the power is expressed at once by writ
ing the proper exponent over the right hand of the number or
quantity ; and in this case, in numbers, the power itself can be
found by common multiplication, the extent of which is
pointed out by the exponent

In the case of compound quantities, a little more attention
is necessary in expressing their powers. If, indeed, the whole
of the compound quantity is to be considered as the root of
which the power is sought, we have only to inclose it within
parentheses, or draw a vinculum over it, and write the expo-
nent as if it were a simple quantity. In algebra, an exponent
occurring in a compound quantity is not understood to extend
any further than the single letter over which it is placed.
Thus a+ b2 is not the square of a+b, it is a4 the square of
b. Aslittle is a? 452 the square of a+-b, for it is the sum
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: 2
of their squares. The square of a+b is (a4b)3, or m
If the compound quantity of which the power is to be ex-
pressed is a product, then the whole may be either enclosed in
parentheses, or the exponent may be attached to each letter,
or other factor. Thus, the square of a product of a and b is
either (a b)%, or a®®. So also, if the compound quantity is a
quotient expressed in terms of a dividend and divisor, the expo-
nent may be either aﬂixed to the whole, or to each term sepa-

rately. Thus (—), or = 7 is the square of the quotient of a

divided by b. If the terms of a compound quantity are con-
nected by the sign +, or the sign —, they must always be
enclosed in parentheses ; because no multiplication or division
extends to both sides of either of those signs, unless it is so
expressed.

We have made these explanations as simple as possible ; but
they contain all the elements, and will apply to the most com-
plicated quantity that can arise,

The next point for our considerationis the value of the power
in terms of the root and the exponent. We do not, in the
mean time, allude to the numerical value in any particular case,
but merely to the general value, as to whether the power is to
be greater or less than nothing, greater or less than 1, .or
greater or less than the root.

First, no power can be less than nothmg, though any quan-
tity not considered as a power may. -—a? has meaning as
part of many compound quantities ; but standing alone it hag
no meaning, as it cannot be the. product of any quantity by
itself. The product of +a by -+a, and that of —a by —a,
are both exactly the same quantity—namely +a?, as is ex-
plained at length at page 80 ; and —a%, though it has meaning
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as the product of +a by —a, thereby indicating that as many
times a should be taken away as is expressed by the said a;
yet a square can be obtained only by multiplying a quantity
by itself; and instead of 4+ and —=a being the same quantity,
the difference of their values is 2a. If, however, the expo-
nent of a simple quantity is an 6dd number, and the sign of
the root —, the sign of the power will also be — ; so that the
powers of negative roots, taken as single quantities, have the
sign — in all the even ones, and the sign — in all the odd
ones. )

Secondly, If the root is greater than 1, the power must
be also greater than 1 and greater than the root, and the
power must increase as the exponent increases ; but if the root
is less than 1, the power must be less than 1 and also less
than the root, and the power must diminish as the exponent
increases. This, of course, applies only to positive exponents;
for if the exponent is negative, the power must in all cases be
less than one; for © is the exponent of the number 1 in the
case of all roots whatever ; and the negative powers are all less
than this, and less exactly in proportion as the positive powers
are greater, for they are the reciprocals of those powers.

That every power of a number greater than 1 must be
greater than both 1 and the root, is very easily seen, because
even in one multiplication it is taken or repeated as many times
more than its original value as that value exceeds the number 1 ;
and it signifies not how small this increase may be in any parti-
tular case, but it must be something. If we carry the matter
onward another step, we have the increased number increased
again by the same number of times itself as the increase ; and
if we pursue the powers in their order to any length, we shall
still find that the argument applies, and that each succeeding
power becomes greater. than the one jmmediately before it
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Nor is this all, for let a root be ever so little more than 1, we
could imagine with perfect correctness a power of it with so
high an exponent to be taken, as that the value of this power
would be greater than the value of any number that we could
name. For instance, let ! represent the smallest imaginable
mumber, and * the greatest possible exponent that we ecan
imagine, but not name ; then (1+-1)* is really greater than any
number that could be arithmetically expressed, even though
the line of figures extended both ways through space to the
most distant stars.

It is equally apparent that no power of a quantity less than
1 can ever be so great as 1, or indeed so great as the root
itself. For, if we take the square which is the result of multi-
plying the quantity or root by itself, we have a quantity less
than 1 reckoned up, repeated, or taken less than one time itself,
which is saying expressly, though in other words, that the
square of a quantity less than 1 must be less than that quantity.
If again we consider the second multiplication, which produces
the cube or third power, we have this diminished quantity the
square taken less than once itself ; and if we continue to ex-
amine the successive multiplications which produce the powers
in their order, we have the multiplicand less in each case than
in the case before it, and the multiplier the same in them all,
so that as the exponent increases, the value of the power
diminishes.

When, however, we turn our attention to the descending
exponents, or those which are less than 1, the index of the
root, we find the state of things reversed. Whatever the
fraction is, the value of its power which has © for its exponent,
is 1, the same as in the case of all other roots; and as the
next term is 1 divided by the fraction, which by hypothesis
is less than 1,-it follows that .the quotient of 1 divided by it
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must be greater than 1; and as the divisors of 1 continue to
decrease after this, the quotients must increase, for those quo-
tients which are the values of the powers, are the reciprocals of
the positive powers which have the same exponents.

A very simple case will serve to illustrate this ; and the very
simplest fraction we can employ for the purpose is the fraction
}  The first five positive powers of this are—

Hodxd Exdxd Ixixixd xixixixd

Performing the multiplications we have, 1

b b b 5 2 2
Or, expressing them in decimals, they are
5, 25, 125 0625, +03125.

Thus the positive powers of 4 go on diminishing as the
exponent increases, and each power is the same fraction of the
one preoeding it, namely 4 of it; and in the case of any other
fraction overy positive power must be the same part of the one
immodiately preceding it, that the root or original fraction is
of the number 1.

Let us next examine the powers which have negative expo-
nents. The first six of them are as follows,—

bbb
If wo suppose each of these to be multiplied by the denomi-

nator of the fraction in the under term, we shall thereby reduce
all the lower terms to 1, while the upper ones will be the same
as thoso denominators. Therefore in the case of the fraction 4,
the first nogative term, that is the term after the one with the
oxponent °, is 2, the next is 4, the next tothat 8; and so on,
doubling the value for every 1 that the exponent is increased
numerieally, though diminished in value because of the negative
sign. Those negative powers increase in a ratio corresponding
o the reciprocal of the root; and it is evident the reciprocal of
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any other fraction must be the rate of increase in those terms
which have negative exponents, for the same reason that the
fraction itself is the ratio of degrease in those powers which
have positive exponents.

Let us next consider the case of a fractional number, the
value of which is greater than 1. Such a number may be
regarded as made up of two parts—the one an integer, either the
number 1, or any number greater than 1; and the other the
fraction, which in all cases must be less than 1, or, if it is not so
originally, the integral part of its value can be separated from
the fractional part, and taken in with the other integers. Hence
such a number, which may be called 8 mixed number, consists
of two distinct parts, which, without reducing the integer to
the terms of the fraction, cannot be added together so as to have
their value expressed by one simple number. It may therefore
be represented by a+ b, in which a is the integral part, and b
the fractional.

The expression of any power of it will be (a+b)™; and that
of its square, (a+b)2. The composition of this square has been
already alluded to at page 99; but we shall again repeat the
operation :

(a+b)*=(a+b) x (a+d).
a + b
a + b
@ +ab
+ ab + b2
a® +2 +2ab + b9=(a+b)’

- Though this composition of the square of a+ b is very plam,
it may not be amiss to dwell a little longer upon it, for the pur-
pose of fixing it in the minds of such readers as may not have
previously studied the subject. Whatever may be the value of
a, it is plain that the a multiplied by a must be a$, so also the
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product of ¢ and b must be both @ times b, and b times a ; and
whatever is the value of b, the product of » multiplied by b must
be b2 ; then, as the product of @ and b occurs twice, 2 can be
made a co-efficient, which saves writing a b twice over with the
sign 4 between. The expression translated into words, and
stated generally, is—

The square of the sum of two numbers is made up of, and
consequently equal to, the sum of their squares and twice their
product.

We shall now consider @ as an integer, b as a fraction, and
the two taken together as a mixed number. We can do this
with perfect propriety ; because a and b, being perfectly general
expressions, represent all numbers *whatsoever. Then accord-
ing to the composition, as above explained, the square of the
mixed number must consist of the square of the integral part,
twice the product of the integral part by the fractional part,
and the square of the fractional part. The square of the first
is of course always ari integer ; twice the product of the two may
sometimes be an integer, though generally speaking it will bea
mixed number ; but the square of the fraction, having its deno-
moinator the square of the denominator of the given fractional
part, must not only be in every case less than the given fraction,
but must be such that no fractional part, which may arise in
twice the product of the integer and fraction, can be so applied
to it as to make it an integer; wherefore, the square of no
mixed number whatever can, under any circumstances, be-
come a Whole number. If this be true, as it evidently is, in the
case of the square, much more must it be true in the case of any
higher power, because in such a power the denominator of the
power of the fraction is still more compounded. This is a iery
important conclusion, and so is the converse which follows
immediately from it ; namely, if any root of a whole number
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cannot be exactly expressed by a whole number, it cannot be
exactly expressed by any mixed number whatever. We shall
have, however, to consider this a little further, when we come
to examine a few points in the doctrine and management of
roots. In passing, we may remark, however, that the very
simplest whole number which can have a root different from
itself, namely, the number 2, belongs to this class. The
number 1 is not the root of 2, for the square of 1 is only 1, and
the square of 2 is twice 2, so that 2 cannot be its own root.
Consequently 2 has no square root which can be expressed,
either in a whole number or in a mixed number, with perfect
accuracy ; though there is no doubt that the square root of 2
is a real quantity, because the product of it by itself is the
number 2. .

The existence of roots not expressible, gives rise to a dif-
ferent kind of numbers from any that we have hitherto men-
tioned. They are called surds, or irrational numbers, that is,
numbers of which the ratios cannot be exactly stated. At one
time the management of these numbers was exceedingly trouble-
some ; but since the introduction of Decimal Arithmetic, and
various other improvements of modern times, they occasion
very little trouble in practice, because their values-can be ap-
proximated to any degree of accuracy that may be required.

The powers of all numbers and quantities, simple and com=
pound, being merely the results of multiplications, performed
in exactly the same way as other multiplications, it is not ne-
cessary to go into any explanations of the process. It may not
be amiss, however, to show the composition of the cube of
the sum of two numbers or quantities; because there are some
elementary proceedings in which it is useful.

Let us then examine the cube of a -+ b, where we have,

(a+b)*=(a+d)x(a+d)x (a+d)
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We have already obtained the square, and if we multiply this
square by a -+ b, the product will give us the cube,

(a+bd)r=a*+2ab+ b

Multiply by a+b
ad+2a%b+abdt
atb 4 2ab2 + b2
a3 4+3a%b x 3ab2+b3=(a+bd)3

Upon examining this we find that it consists of four terms,
the cube of the first quantity, three times the square of the first
quantity multiplied by the second, three times the first quantity
multiplied by the square of the second, and the cube of the
second quantity.

This formula rarely occurs in ordinary business, compared
with that of the composition of the square ; but still it is de-
sirable to bear in mind the composition of the cube, and indis-
pensable to commit that of the square to memory.

It would be very easy to investigate any number of these
formule, because for every higher one we have only to multiply
another time by a + b, and translate the product into words.
There-is, however, a general method, by which any power of
@ + b may be obtained without the trouble of performing the
multiplications ; and we shall very briefly state the leading prin-
ciples of that method.

From the examples which we have had, it will be perceived
that the square consists of three terms, separated by the sign +,
and the cube consists of four terms, separated from each other
by the same sign. If the operations were continued, it would
be found that the number of terms in each power is 1 greater
than the exponent of the power; and that the first term of the
root only appears in the first term of the power with the same
exponent as that of the power, while only the second term of the
root appears in the last term of the power, also with the expo-
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nent of the power. Further, neither of those two terms has
any numeral co-efficient, or number before it, and they are the
only terms without such co-efficient. If we take the other
terms from the beginning, the exponent of the first term of the
root diminishes by one from term to term, or is 1 lessin every
term than in the term immediately to the left. On the other
hand, the second term of the root does not appear at all in the
first term of the power, but it appears in the second term with-
out any exponent, and therefore with the exponent 1 understood ;
from this toward the right the exponent of ‘the second term in-
creases by 1 in every term toward the right, until in the last
term, in which the first term of the root does not appear, it is
the same as the exponent of the first term of the root in the first
term of the power.

The exponents of the two terms of the root are thus, as it
were, applied reversed upon each other, only the first extends
& term further than the second at the beginning, and the second
a term further than the first at the end. It will perhaps ren-
der this arrangement of the exponents more clear if we
introduce them for a moderately high power, disencumbered
of the letters, co-efficients, and signs, and merely separated
from each other by commas ; and it may be as well that we do
this for a power which has the exponent an odd number, and
consequently an even number of terms ; and then for a power
which has the exponent an even number, and consequently an
odd number of terms. It is to be understood that in both,
the first line expresses the exponents of the first term of the
root a; and the second line the exponents of the second term
of the root b.

First.—Exponents of a and b in the ninth power of a + b,
or (a +0).

4
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9, 8 7, 6 5 4 3 2 1,
1, 2, 3 4 5 6, 7, 8 9.

Here it will be seen that the sum of the two exponents in
every term is the same ; and that it is the same as the expo-
nents of the first and last terms, which are the same as that of
the power.

Secondly.—Exponents of the tenth power of a4 b, or
(a + d)'e.

10, 9,8 7 6 5 4 3, 2 1,
1, 2, 8 4 5 6, 7, 8 9, 10.

In this case the sum of the exponents is equal in all the
terms as it was in the former; but there is one peculiarity
here, and that is that the exponents of both terms of thé root
are equal in the middle term of the power. This could not be
in the former case, because there is no middle term there, the
number of terms being even ; but if we look back to it, and
examine the two terms on each side of the middle, we shall
find that the exponents of both are the same numbers, differing
from each other only by the number 1 ; the first term of the
root having the larger exponent in the first of them, and the
second term of the root having the larger exponent in the
second. From this illustration it would be an easy matter to
write down the exponents of all the terms of any power of
u + b; and as no more letters than a and b can possibly appear
in any term, and as their product, each affected by its own
exponent, is the form in which they always appear when both
are in the same term, the only thing which is wanting to com-
plete the expression of the power is the co-efficients; for as
both terms of the root have the sign -, all the terms of the
power must also be separated from each other by the sign--.

To determine the co-efficients is also a matter of no great
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difficulty ; and we have a general means of getting at the sum
of these for any power; for, as the value of the co-efficients is
independent of the particular value of the letters in any
case, the sum of the co-efficients of the same power, including
those of the first and last terms, each counted as 1, is always
the same, Well, let us take the case in which both a and b
are each equal to the number 1. In this case (¢ + b) " must
be equal to (14 1)° that is, to 2%, This is obvious, because
from both terms being 1, neither of them can in any way count
in multiplication. The whole value must thus be found in
the co-efficients; and as the powers are just the powers of 2,
it follows that in any one power the sum of the co-efficients
must be the same power of 2. In the first power or root it
must be equal to 2, and it is so, for it is once each of the terms.
In the second power or square, it must be 4, and it is so, 1 in
the first term, 2 in the middle term, and 1 in the last term.
In the cube it is 1 in the first term, 3 in the second, 3 in the
third, and 1 in the fourth, which make 8. If in like manner
we were to examine any of the others we should find the sum
always the same power of 2.

The next point is to determine what the several individual
co-efficients are ; and as the investigation, which depends on
the transposition of the letters, is rather long for our purpose,
if fully worked out, and not satisfactory unless it is so, we
shall state in brief the result of it. The co-efficient of the
second term is always the same as the exponent of the power
or of the first term ; and the other co-efficients are found thus :
multiply the co-efficient of a in the second term by its expo-
nent in the same, divide by the number of terms which is 2,
the quotient is the sufficient of the third term ; for every suc-
ceeding one, multiply the co-efficient and exponent of a in the
preceding term, divide by the number of terms from the be-

Y 2 )
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ginning including that ; and the quotient is the co-efficient of
the term next in order. Continue this operation throughout all
the terms; and if that of the last but one come out the same as
that of the second, and the increase toward the middle is the
same as the decrease after it, the whole of the co-efficients
must be correct. It follows that they must be so ; because, as
with the exception of that of the second term they are all
derived from each other, if an error is committed at any step .
of the calculation it must be continued to the end, and the
last co-efficient but one will not come out the same as the
second.

The doctrine of combinations, upon which the finding of
these co-efficients in a great measure depends, is a very beauti~
tiful subject, and when entered upon in the proper manner, it
is by no means difficult. It is not, however, a purely elemen-
tary doctrine ; and besides its beauty, could not be felt without
a greater breadth of explanation than we can devote to the
whole subject of powers. Our omitting it is the less to be
regretted as we require only one particular case; and, even
if we had room to investigate that case, it would lose much of
its beauty if taken out of its connexion.

From what we have stated, it is easy to find any power of a
binomial, that is, of any root consisting of two terms, repre-
sented generally by ¢ and b; and the number of terms, the
order of the letters, the exponents, and the co-efficients will
be the same whether the sign of the last letter bis 4 or —.
The only difference is in the signs, which are all + in the case
of @ + b, and alternately + and — in the case of a — 5. It
is worthy of remark, as showing the perfect agreement of the
most complicated algebraical operations, that if the powers are
found by successive multiplying, all the odd powers of the ne-
gative quantity — b have the sign —, and all the even powers
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have the sign 4-. This follows of necessity from what was
explained when treating of multiplication, in Section V.; and
it supplies the only other element necessary for obtaining the
power of a binomial, with the second term of the root negative,
without the trouble of going over all the multiplications.

In illustration of the whole - matter, we shall combine the
different steps of the finding of the sixth power of @ — b:

First—there must be seven terms.

Secondly—the exponents are for 4 and b, as in the follow-
ing lines—
: a. .6, 5 4, 3, 2, 1,

5.. 1, 2 3 4 5 6.
Thirdly—inserting the letters we have,

a8, a® b, a* 8%, a3 b3, a? b, a b® 00,
Next—to find the co-efficients : that of the second term is 6 ;

6 x5
that of the third term, ———— = 15; that of the fourth,

15 % 4 20 x 3
=20; that of the fifth,

= 15; the sixth,

3 4
15 x 2 .
5 = 6 ; and if we try the co-efficient of the last term,
1
we have =1; so that the calculation is right. The

co-efficients therefore stand as follows, including those of the
first and last terms—
: 1, 6, 15 20, 15, 6, 1.

Then for the signs: the exponent of b is an odd number in
the second, fourth, and sixth terms, and an even number in all
the others, so that we begin with the sign +, and the signs of
the other terms are — ‘and - alternately. The complete
sixth power of a — b, therefore, is —

a®—6a°b 4 15a* b2 — 20 a3 13 + 15 a2 b* — 6 a b* + 0.
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Any power of & binomial may be féund in the same man~
ner without the trouble of performing the multiplications ;
and formul® might be investigated for finding powers of roots
consisting of greater numbers of terms. These are, however,
of comparatively little use for practical purposes; so that we
shall now proceed to the more elementary principles of

EVOLUTION.

As a root is said to be involved in a power, so when the power
is given, and we find the root of it, that root is said to be evolved,
or “ unrolled,” and the process is called Evolution. It is also
called Extraction, which means ¢ drawing out.”

As any number, or quantity expressed generally by Algebra,
may be given as a root, of which any power is required, so any
number or any algebraical quantity may be given as a power,
of which any root is required ; but here the parallel between
the two cases ends.  If the root and the exponent of the power
are given, the power itself can always be found exactly by the
common process of multiplication, and sometimes without that
process, as we have seen in the case of the powers of a binomial.
But a root can in no case be found by the simple application of
any of the elementary operations of Arithmetic or of Algebra;
and there are many cases in which it cannot be found exnctly by
any method.

A very little reflection will show the reason of this. The
data for finding a root are nominally very nearly the same as
those for finding a power, namely, the power and the exponent ;
but in reality there is a very wide difference between them. In
finding the power, the only instrument with which we have to
work is the root, which is & common number or quantity, and
as such has a value ; while the exponent points out the extent
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of the working—the number of times that the root is to be used
as a factor—which also has numerical value.

But when a root is sought, there is only one real number or
quantity given—the power ; and the other datum, the exponent,
merely points out the relation which the quantity sought must
have to the quantity given. But we cannot work with a rela-
tion, either in Arithmetic or in Algebra, unless we have that re-
lation expressed in terms of two quantities or numbers ; and here
there is only one, therefore we have no means of obtaining a
general solution of the problem of finding a root which will
apply to all cases.

This will perhaps appear more evident, if we put the problem
in its most general and simple form. Any root of any simple
quantity, is the most simple and the most general form in which
we can put it ; and the simplest mode of expression is—Required
the nth root of a. '

We can indicate this root, either by a fractional exponent, or
by the radical sign; in the first way, the indication or expres-

sion of the root is a:— ; and in the second it is 2/a. But there
is no operation of Arithmetic or of Algebra pointed out by any
sign in either of those expressions;,—no addition, no subtraction,
no multiplication, no division, and no proportion ; therefore, the
expression points out nothing that we can do, though it indicates
in brief terms what ought to be done.

Yet we cannot doubt that the quantity which we seek is a
possible quantity, or that, in the case of every particular value
of the given quantity a, any root of ¢ must have one constant
and definite value ; for if it had not this, its square, for instance,
namely, the given quantity a, would not have a definite value ;
for the square is the product of the root itself, and its value de-
pends upon, and is determined by, the value of the root. There
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is, indeed, one case in which we can at once tell the value of all

possible roots of a, and that is when a = 1; for then _a:T, or
% a, isalso=1. But then this tells us nothing further than
that 1is a number by which we can neither multiply nor
divide.

What, then, are we to do in this case? We know that there
is a quantity of a fixed and definite value to be determined, and
a standard by which to measure its value after it is determined ;
and yet we have no direct clue to the quantity itself. We shall
best answer this question, in a general way, by putting another :
What are mankind obliged to do in all cases where they know
what they want, but do not know the way to getit? They
try, and if one trial does not succeed, théy try again and again ;
and it is this perseverance in trying which is the parent of all
discovery.

Therefore, let us try; and as every trial must be made on a
particular case, let us take a particular number, and endeavour to
find a particular root of it. We shall take a small number and
a small exponent for our first trial ; and it would be useless to
try a number of which we already know the root, because that
would teach us nothing. We need not try the number 1, be-
cause all its roots are the same as itself; and we need not try
the square root of 4, because we can see at once that it is 2.
Let us therefore take the number 2, and endeavour to find the
square root of it—that is, to resolve into one number unaffected
by any sign, the expression 2*, ory/ 2, [When a root is in-
dicated by the radical sign, it is not necessary to write the ex-
ponent of the square root, though it is necessary to write
that of every other ; and the exponent over the radical sign is
written simply as a number, and not as a fraction, as the fact of
its meaning a root and not a power, is indicated by the sign.
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Wlhien the sign is applied to a compound quantity, the vinculum
part of the sign must extend over all the terms, or the terms
must be included in parentheses, and the sign placed before.]

The square root of 2 must be greater than 1 and less than
2; 80 let us first try 1}, and take the square of that. 1} is§,
and § x § — 4 = 2%, which is too much, so that the root is less
than1}. Try 14 = 1§, and I} x ¥ = 6P, = 2.1.; which
is still too much. Try 1# =4},and }4 X 44 = 18§, =
155 ; which is too small, but not a great deal, as the square is
only 145, or s of 1 from the truth. We have found, there-
fore, that the square root of 2 is between 14 and 14%; that is,
that it is less than the former and greater than the latter.
This shows the method of proceeding; and as we do not in
the meantime require the square root for any particular pur-
pose, we shall not pursue the investigation further; but pro-
ceed at once to the method of finding

THE SQUARE ROOTS OF NUMBERS.

In this, as in all other matters connected with numbers, we
must attend to the proportions of the scale of numbers, as ex-
plained in Section III.; and as it is too long to be repeated,
perhaps the reader may find advantage by a reperusal of that
section at this stage of the inquiry. We must mention, how-
ever, that the places of the number, whether integers-or deci-
mals, all represent powers of 10, the unit’s place being the
centre of the series, or the term which has the exponent °;
and the other places have their exponents, the numbers of their
distances from this place, + in the integers, and — in the
decimals. The figures which, in any particular number, occupy
those places are multipliers of the corresponding powers of 10.
Thus, in the integer number 365+, the unit figure 5 is a mul-
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tiple of 10° by 5; that is, of 1 by 5; the tens figure G is a
multiple of 10' by 6, that is, of 10 by 6 ; and the hundreds
figure 3 is a multiple of 102 by 3, that is of 100 by 3.

In like manner in the mixed number 38,75, 5 being in the
hundredths place of decimals is & multiple of 10— 2 by 5, that
i8, of 1} by 5, oritis 5 hundredth parts ; 7 in the tenths place of
decimals is a multiple of 107! by 5, that is of 4}; by 5; and
the integers follow the same law as in the former instance.

Thus, in every number, the radical values of the several
places—that is, their values when occupied by the number 1—
remain the same for the same place from the units, whether
that place be upwards in the integer numbers, or downwards in
the decimals ; and as the extent of the scale is perfectly un-
limited both ways, it becomes at once the most easy and the
most efficient instrument of calculation that can well be
imagined. The series of powers which forms the basis of it
adapts it remarkably well for all matters connected with the
arithmetic of powers and roots, only this portion of it does not
apply to any prime numbers except the two factors of 10, 2
and 5. The multiplications which are necessary when the
figures in the different places are greater than 1, are easily
understood and managed, because none of them is greater than
9. The power of 10 too, however high, or however low, is
the simplest of all possible factors, being always 1 with as
many Os after it as brings the estimate down or up to the unit’s
place. .

In order to apply this scale to the finding of roots, and
of course to the square root among others, it is necessary
to commit to memory the powers of some of the smaller
numbers ; and for the square root every one acquires a
knowledge of them in learning a common multiplication
table ; and the square of 9, or 9 times 9, is the highest that is
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absolutely necessary. This being borne in mind, we may pro-
ceed at once to the application.

For this purpose let us take a particular number ; for instance,
the number 54756.

As the scale of numbers to which we must look for assist-
ance in this matter consists of two parts—the geometrical series
or powers of 10, which determine the number of figures;
and the multiplications of the different powers which determine
the individual figures—we must divide our inquiry into twe
parts :—First, how many figures shall be in the square root of
our number? Secondly, what shall those figures be indivi-
dually? When we have obtained satisfactory answers to
these two questions, we shall be in possession of the square
root of the number. Let us set the number apart in order that
we may consider it.

54756,

First—How many figures shall be in the square root of this
number? The largest square which we can have of any
single figure, is the square of 9, or 81; and it consists of two
figures. The smallest square that we can have of a number
consisting of two figures, is the square of 10, or 100; and it
consists of three figures. Therefore we must have the units
and tens of the power to answer to the unit figure of the root.
But every two figures of a number which are immediately
beside each other, stand in the same relation to each other as
if the right hand one were units and the left hand one tens;
and therefore we must have the hundreds and thousands of the
power for the tens of the root. In like manner for every
other figure of the root we must have two figures of the power;
excepting in the case of the left hand one, and there we can
have only one, if the number of figures in the power is odd.
We might have arrived at the same conclusion in another way,
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The figures in a number vary from each other in their places
by a ratio of 10, the square of 10 is 100, and the exponent of
100 is ¢, while that of 10 is !. Therefore, for every figure in
the root, with the exception of the left hand one, there must
be two figures in the square. It is easy to see why this should
not necessarily apply to the left hand figure ; for it depends
upon the individual value of that figure itself, whether its square
shall consist of one figure or of two. 1,2, and 3, have their
squares consisting of only one figure, but every integer number
greater than 3 has its square consisting of at least two figures.

It will be readily seen that this application of the exponent
of the root to the scale of numbers in the power, is not con-
fined to the square root, but applies equally to all roots what-
ever; and therefore we may state generally,—

To find how many figures shall be in any root of any mteger
number, begin at the right hand of it and divide it into periods
consisting of as many figures each as the exponent of the root,
and there will be as many figures in the root as there are
periods. If there is a portion of a period on the left hand of
the entire ones, that must be considered as & period as well as
the rest, and counted accordingly.

There is rather a curious inference to be drawn from this;
namely, that we cannot, by any single and direct arithmetical
operation, find a root answering to a fractional exponent which
has both its terms greater than the number 1; because we
cannot divide the figures of a number into fractional periods.
Let us return to our number and divide it into periods. It is
as follows :—

5'47'66.
Therefore, the square root of 54756 must consist of three
figures ; and had it been any other number or any other power,
the number of figures in the root would have been determined
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in a similar manner. Thus, there would be two figures in the
cube root of the same number, because when divided in threes
from the right it makes but two periods; and there would be
but one figure in the fifth root of it; for it contains only five
figures, which answer to but one figure of a fifth root.

Our next inquiry is, the particular values of the figures; and
as we determined the number of figures by beginning at the
right of the number, we must determine the figures themselves
by beginning at the left.

The first period of the power, or number, consists of the figure
5 only ; and this 5 must contain the square of the first figure
of the root. & is not a square, but the largest square that we
can subtract from it is 4, the root of which is 2, so that we have
2 as the first figure of the root, and 1 of the first period, and
also the two other periods remaining; that is, we have the
number—

1'47'56.

There are still three periods in this remainder, so that if it
had been the number originally given, it would have had three
figures in its square root. But we must bear in mind that
though the places of the figures in the root are powers of 10,
answering to powers of 100 in the square, yet that 1 of each
power of 10 is multiplied by one of the nine figures, and the
three products are added to make up the entire root. We may
leave out.the last period, and consider the second one only;
and as the root of the first two periodsis the sum of two figures,
which, independently of their individual values, stand to each
other in the relation of units and tens, we ‘may consider them
as a binomial, @ 4 b, of which the square,

a® + 2ab 4 b, is in the present example = 547.
Of this we have already obtained ‘the value of a, which is 2 as
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a single figure, but 20 when another is put after it ; and it will.
be found that we have subtracted 203, or 400, from the two
periods as they stood in the original number.

From a®42ab 4 b® =547

Subtract 4 =400

Remains  2a b 4 b2 =147,

If we examine this algebraical remainder, we find that both
terms of it can be divided by b, and that the quotient is 2a+4-b;
and conversely, if we had divided it by 2 a + b, the quotient
would have been b, which is the representative of the second
letter of our root.

Let us next see in what relation to the scale of numbers
the two terms of 2 a + b stand. a is one figure, b is another
to the right of it, and in the meantime our consideration does
not need to reach any further. Therefore, a is tens and &
units; or if we substitute our numerical value for 2 a, we obtain
40 + b for our divisor ; but b must occupy the same place which
0 occupies in the 20, so we may understand this and leave the
units’ place of our divisor blank. We shall then have—

4 )17 ( .
As the divisor 4 is tens, we must get it out of the dividend,
leaving out the last figure ; that is, we must find how often it
can be got in 14,and we soon discover that it is three times ;
so that the numerical value of b is 3; and if we write this 3
a8 units, after the 4 tens in our divisor, it will be complete ;
and the rest of this step of the process will be like common
division.
43) 147 (8 = b, the second figure,
129
16 remainder.
. We have now got the first and second figures; a + 5 ; and
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we have subtracted the square of their sum = 400 + 129 =
529, from the figures of our number without reference to the
last period ; that is,
From 547
There are taken 529
Or remains of the whole number,
: 16/56.
Here again it might appear that the root of this remaining
part would consist of two figures, and that the first of these
two figures would be 4 ; but it is the sum of 23 with another
third figure as units which is the entire root of which we are
in quest ; and the 24 which we have already obtained, and
which, as there is to be another figure after it, is 230, must
enter into the divisor, and be multiplied by 2 as well as by the
third figure which we have still to determine. This 230 may
be considered as 24 tens, and this will stand in the same rela-
tion to the figure which we have to determine a8 tens stand to
units in any other number. Therefore, 24 may now be called
a, and the figure of which we are in quest b, and with this un-
derstanding we may again refer to the algebraical operation.
The whole will now be—
From a®+42ab 4 b= 54756
Subtract a® = 529
2ab 45 = 1856
Hence the divisor, in order to find b, is 2 @ + b,0r 2 x 23=
46 4+ b, and a place to be left blank until b is determined : so
that the divisor and dividend will stand thus :—
46 ) 1856 ( .
The 48 must be got out of the dividend exclusivé of the
units, because there is another figure to add to the divisor, and
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we at once see that the quotient cannot be more than 4. Hence
the complete divisor and the dividend stand thus :—
464 ) 1856 (4 = b, 3d figure.
1856

0 remains.

Therefore, the three figures of the root are respectively 2,3,
and 4; and the root itself of course is 234. If we take this
and multiply it by itself, we shall find that the product coin-
cides exactly with 54756 ; and in the same manner the square
root of any integer number consisting of more than two figures
might be found ; but if the power consisted of two figures, or
of one figure, we should have no means of finding the root but
by trials, as in that case it would be only a single figure. But
as 9 is the limit of roots of this kind, and as 1 requires no con-
sideration, the squares of numbers from 2 to 8 are all that we
require to try for by a single operation.

The principle which is here applied was alluded to in the
early part of the volume, and we reverted to it again in the
preceding section, when treating of squares. We may now
mention it again with regard to any two parts of a number
which stand to each other in the relation of units and tens,
bearing in mind at the same time that if any one figure, what-
ever its place in the scale may be, is considered as units, all the
figures to the left of it, taken as a whole expression, may be
considered as tens. With this understanding, the arithmetical
application of the square of a binomial may be stated as
follows :—

The square of the sum of the units and tens is composed of
the square of the tens, twice the product of the tens and units,
and the square of the units. Of course, after the square of
the tens is taken away, the first part of the divisor for finding
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the units is double the tens, and in comparing this with the divi-
dend in order to find the quotient, which is the units of the
root, the unit’s figure of the dividend must be left out; and
when the unit’s figure has been determined, it must be placed on
the right of the divisor as well as in the quotient. When the
divisor thus completed is multiplied by the quotient figure,
and the product subtracted from the dividend, this step of the
operation is performed.

Collecting all these elements together, we have this general
formula for the extraction of the square root of any integer
number consisting of more than two figures :—

First,—To find the number of figures in the root: Begin at
the right hand of the given number, and divide it into periods
of two figures each ; and the number of those periods, counting
the single figure on the left, if there should happen to be one,
shows the number of figures that must be in the root.

Secondly,—To find the figures. For the first figure, ascer-
tain, by trial, the greatest square which can be subtracted from
the left hand period of the root ; the root of this square is the
first figure of the root, and the square itself must be subtracted
from the period; and the second period placed after the remain-
der, which thus increased will become the dividend from which
the second figure of the root is to be obtained.

For the divisor : double the figure already found, and, leaving
the unit’s place blank, ascertain how often it can be had in the
dividend exclusive of the units. This being done, place the
number of times as the second figure of the root, and also as
the unit’s figure of the divisor.

Multiply the divisor thus completed by the figure of the
root, and subtract the product from the dividend, annexing the
third period to the remainder for a third dividend. Repeat
this operation till all the periods are exhausted, always making -



338 . ROOTS OF DECIMALS

the divisor double the root already found, and with the unit’s
place blank for the additional figure. ’ ‘

If, at any step of that operation, itis found that the first part
of the dividend—namely, double the part of the root which has
been found—cannot be got once in the dividend exclusive of the
unit’s figure ; then 0 must be written in the root, and also in the
divisor, and another period annexed to the dividend. T

Should there be a remainder after a figure of the root has
been obtained for each period, it shows (if the number of which
the root is taken is wholly an integer number) that the root
cannot be expressed exactly in terms of the common ‘scale of
numbers. But it may be approximated in decimals to any
degree of accuracy ; and the method of doing this is to annex to
each successive remainder two 0s, as an additional period of
figures. When the operation has been carried to a great length
there is a large portion of the divisor which is not affected by the
figures subsequently found ; and then, a few additional figures
1nay be obtained in the manner of common division, by leaving
out an additional figure on the right of the divisor in the
obtaining of each. i
* Decimal numbers are arranged according to the same scale as
integer numbers, and consequently their roots are found in the
same manner. But when the numbers contain no integers, the
exponents of all the places in it are reciprocal or negative ; and
therefore the square roots are one degree higher than the
powers ; and in consequence of this we must count our periods
from the decimal point to the right, or the opposite way to
which we count them in integers. Also, if any number of
periods at the commencement of the decimal, or next the point,
consists of 0s, we must place one 0 in the beginning of the root
for every such period. The roots of such decimals are always,
of course, of greater value than the decimals themselves.
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- We have entered fully into the analysis of this operation,
because it is one with which an intimate acquaintance is highly
necessary ; but having done so, we shall not need to adduce any
further example.

When it is necessary to find the roots of fractions—which is,
however, seldom done in ordinary practice—the method is to
extract the root of each term ; and this follows as a matter of
course from the principle of the multiplication of fractions. If
numbers, of which we require to find the roots, are ex-
pressed in factors, the root of each factor may be taken sepa;
rately ; and the product of those individual roots will be the
root of the whole, just as the product of the factors is the whole
power. It is not, however, desirable to do this, unless the factors
are complete powers of which the roots can be exactly taken ;
because by these separate operations we should get an irrational
number for every factor not a power, whereas by previously
multiplying the factors altogether we should have only one irra-
tional root, and thus could carry on our approximation with
less labour and greater accuracy.

There is one case, however, in which it is often desirable to
separate the factors of a number, in order to find the root of the
rational one, and indicate that of the irrational by means of the
radical signs. This is desirable only in the case of two factors;
and the finding of the square root of 18 will serve as an illus-
tration : 18 has several sets of factors ; but two out of the num-
ber are 9 and 2, and 9 is a square : therefore we simplify 4/18,
by expressing it 3 /2 ; which expression means 3 multiplied by
the square root of 2.

There are various methods of expressing the approximations
of the roots of numbers which are not complete powers, by
continued fractions, and other infinite series; but they are

not strictly of an elementary nature, and our limits will not
z 2
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admit of those explanations which would be necessary for ren-
dering them pleasant or useful, or indeed intelligible ; we shall,
therefore, proceed to point out the means of finding

THE CUBE ROOTS OF NUMBERS.

1t would be very easy, from mere inspection of the corre-
sponding” power of a 4 b, and the comparison of it with two
numbers standing to each other in the relation of tens and units,
to investigate a separate formula for finding every possible root.
But this, though a good exercise for those who wish to discipline
themselves in the practice of calculation, is not necessary in any
case where the exponent is & composite number ; because, if
roots answering to the component parts of that number are
taken in succession, the root of the one power being considered
as the power in the next, the same object may be accomplished
with more ease. Thus the 4th root is got by extracting the
square root twice ; the 6th root by extracting the square and
cube roots in succession ; the 8th root by extracting the square
root three times; the 9th root by extracting the cube root
twice ; and so on in the case of all composite exponents. Where
the exponents are prime numbers, there is no mcans of extract-
ing the root by common arithmetic, except by a formula for
the particular case. These large exponents rarely occur in prac-
tice, however ; and when they do occur, there is a far simpler
method of dealing with them, which we can better explain
in the next section ; so that we shall confine the few additional
observations which we have to make upon this branch of the
subject to the extraction of the cube root only.

In this, as in the extraction of the square root, there are two
distinct considerations: first, what shall be the number of
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figures in the cube root of any given number; and secondly,
what these figures shall be.

We have already mentioned how the number of figures in
any root of any integer number is to be found, namely, by be-
ginning at the right hand, or unit’s place, and dividing into
periods, each consisting of as many figures as the number ex-
pressed by the exponent of the root, with the exception of the
period on the left, which must of course consist of whatever
number of figures is left, after the other periods are marked off ;
and as the exponent of the cube root is 3, the periods of it must
consist of three figures. If the number is wholly a decimal,
the only difference is, that we must begin the periods from the
left hand, and not from the right, as in integers; and if the
number consists both of integers and of decimals, both must be
divided into periods from the decimal point, the integers toward
the left hand and the decimals toward the right.. Also, in this
and in every other root, if the right hand period of the decimal
does not contain the right number of figures, the deficiency
must be supplied by 0s when that period is annexed to the
remainder. ’

In the second part of the operation, the finding of the figures
of the root, the root of the left hand period, with which we
begin, whetherin integers or in decimals, must be found by trial,
a8 in the case of the square root, because there is no device or
contrivance which can assist us in finding any root when it con-
sists of a single figure only. There are only eight cubes to be
committed to memory for this purpose, namely, the cubes front
2 to 9 inclusive. The cube of 2 is 8, so that if the first period is
less than 8, its cube root must be 1. The cube of 9 is 729,
which of course is the largest which we have occasion to apply
to a first period, and the others intermediate between these are
casily learned, or easily found if not learned.
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When the greatest possible cube that can be subtracted from
the first period is determined, the root of that cube is to be
taken as the first figure of the root, the cube itself subtracted
from the period, and the second period annexed to the remainder;
‘the remainder thus enlarged being the dividend from which the
second figure of the root is to be found.

The next step of the operation is to find the divisor whxch we
are to apply to the dividend for the purpose of ascertaining the
second figure of the root; and here, as in the case of the square
root, we must have recourse to the composition of the power of
a binomial, @ 4 b, though this is a little more complicated than
in the case of the square root.

The complete cube of a + b, as formerly found, is,—

a3+ 3a%b + 3 abd? + b>,

But we are already understood to have found and subtracted the
numerical value of a3; and therefore the quantity which we
have still to subtract, in order to get from the number the en-
tire cube of a 4 b, is, :

3a2b+3a b®4 0%
This expression is the product of the divisor by b, the second
figure of the root, whose value we are seeking ; and therefore, if
we divide this product by b—that is, if we lower the exponent of
b by 1 in each term—the remainder, or rather the quotient, will
hecome our divisor for finding . 'There are three terms in this
product, with the first power of b in the first term, the second
power in the second term, and the third power in the third term ;
so that if we diminish the exponent of b by 1 in each, therewﬂl
remain the divisor, which is,

3a2+3ab+ b2

a is tens, and b units, in relative place with regard to each
other. Let us see, therefore, what are the places of the three
terms. The first has a2 in it, and the square of tens is hundreds;
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therefore, the co-efficient 3 of the first term is 300, and the
whole term means 300 times the square of a, that is, of the
figure already found. The second term contains the first power
of a, which is tens, affecting both the co-efficient 3 and the other
factor b ; therefore the second term is 30 times the product of
the figure already found, and the figure which we are finding.
At this stage of the operation, therefore, the value of b must be
determined by trial ; and it may take two or three trials of a
beginner before the right one is discovered, because we are not
yet in possession of the whole divisor. When the value of b is
found, it must be multiplied by @ and then by 30, and made
the second line of the divisor, properly arranged under 300
times the square of a, the first figure, which is the first line of
the divisor. The third term of the divisor is the square of b;
and in respect of the other lines of the divisor, the right hand
figure of it is units, because b is units, considered in relation to
a as tens, and therefore the right hand figure of any power of it
must be units, because the powers of quantities must be of the
same kind with the quantities themselves.

Thus the complete divisor for finding the second figure of a
cube root consists of three iines. First, 300 times the square of
the figure already found ; secondly, 30 times the product of the
figure already found and the figure which we are finding ; and
thirdly, the square of the figure which we are finding. These
threg lines are to be added together, and their product by the
figure which we are finding, subtracted from the dividend ; and
the figure is the second one of the root; while the remainder
with thé next period annexed makes a new dividend, out of
which to find the third figure.

At the third and every subsequent step of the operation, all
the part of the root found, which always stands in the relation
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When the greatest possible cube that can be subtracted from
the first period is determined, the root of that cube is to be
taken as the first figure of the root, the cube itself subtracted
from the period, and the second period annexed to the remainder;
‘the remainder thus enlarged being the dividend from which the
second figure of the root is to be found.

The next step of the operation is to find the divisor whlch we
are to apply to the dividend for the purpose of ascertaining the
second figure of the root; and here, as in the case of the square
root, we must have recourse to the composition of the power of
a binomial, a + b, though this is a little more complicated than
in the case of the square root.

The complete cube of a + b, as formerly found, is,—

a3 + 3a%b + 3 ad? + b3,
But we are already understood to have found and subtracted the
numerical value of a3; and therefore the quantity which we
have still to subtract, in order to get from the number the en-
tire cube of @ + b, is,
3a® b+ 3 a l®+ b3
This expression is the product of the divisor by b, the second
figure of the root, whose value we are seeking ; and therefore, if
we divide this product by b—that is, if we lower the exponent of
b by 1 in each term—the remainder, or rather the quotient, will
become our divisor for finding b. There are three terms in this
product, with the first power of b in the first term, the second
power in the second term, and the third power in the third term ;
so that if we diminish the exponent of b by 1 in each, there will
remain the divisor, which is,
3a2 +3 a b+ b2

a is tens, and b units, in relative place with regard to each
other. Let us see, therefore, what are the places of the three
terms. The first has a2 in it, and the square of tens is hundreds;
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therefore, the co-efficient 3 of the first term is 300, and the
whole term means 300 times the square of a, that is, of the
figure already found. The second term contains the first power
of a, which is tens, affecting both the co-efficient 3 and the other
factor b; therefore the second term is 30 times the product of
the figure already found,and the figure which we are finding.
At this stage of the operation, therefore, the value of b must be
determined by trial ; and it may take two or three trials of a
beginner before the right one is discovered, because we are not
yet in possession of the whole divisor. When the value of b is
found, it must be multiplied by ¢ and then by 30, and made
the second line of the divisor, properly arranged under 300
times the square of a, the first figure, which is the first line of
the divisor. The third term of the divisor is the square of b;
and in respect of the other lines of the divisor, the right hand
figure of it is units, because b is units, considered in relation to
a as tens, and theréfore the right hand figure of any power of it
must be units, because the powers of quantities must be of the
same kind with the quantities themselves.

Thus the complete divisor for finding the second figure of a
cube root consists of three iines. First, 300 times the square of
the figure already found ; secondly, 30 times the product of the
figure already found and the figure which we are finding ; and
thirdly, the square of the figure which weare finding. These
threg lines are to be added together, and their product by the
figure which we are finding, subtracted from the dividend ; and
the figure is the second one of the root; while the remainder
with the next period annexed makes a new dividend, out of
which to find the third figure.

At the third and every subsequent step of the operation, all
the part of the root found, which always stands in the relation
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of tens to the next figure as units, is to be used as a, and the
figure we are finding as b; and with this understanding every
step of the operation, however long it may be, is an application
of the same formula.

If the root does not terminate in integers, so as to leave no
remainder, it will not terminate in decimals ; but it may be
carried to any approximate degree of accuracy that may be re-
quired, by annexing three 0s to every remainder, and continuing
the operation as before.

If the number is wholly decimal, we must begin with three
figures immediately after the decimal point ; and as often as
three 0s occur between the decimal point and the significant
figures, one 0 must be placed after the decimal point and before
the other figures in the root.

The cube roots of fractions may be obtained by taking those of
the numerator and denominator ; and those of numbers expressed
by factors, may be taken in the cube roots of the factors, and mul-
tiplied together for the general root. But as cubes occur much
less frequently in the natural order of the numbers than squares,
it is seldom that any advantage can be gained by this method.
1t is sometimes, however, of advantage to take the eube root of
one factor of a number, and express that of the other by the
radical sign. Thus, the cube root of 54, that is 354, may be
expressed by 3/ 2; for 54 is the product of 27 and 2, the first
of which is the cube of 3.

" We shall now give one short example, as illustrative of the
application to numbers :—

Let it be required to find the cube root of 12812904 ?

Beginning at the right, and dividing into periods of three
figures, because the exponent is 3, we have

12°812°'904.
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The nearest cube to 12, the first period, is 8, the root of which
is 2; therefore 2 is the first figure of the root, and its cube sub-
tracted from the given number leaves
4'812'904.
We have now subtracted the cube of @, and there remains
4'812, out of which to find the second figure. & and b stand to
each other in the relation of a tens and b units, therefore the
divisor, as found by the general operation, is
300 a®+30a b+b2;
and we must apply this to our number, and determine b by
trials. 300 a? is the largest part of our divisor, so that we may
compare it with the dividend,
a=2 and 300 a2 =1200 | 4'812.
We would get 1200 four times in 4800 ; but the remainder 12
would not be equal to the cube of 4, and we want another term
which is 30 a, or 60 times the number we are seeking, there-
fore we must try 3 for the value of b, our second figure ; and
as it is probable that 3 may answer, we may complete our
operation. . )
300 o = 1200 | 4812

30ad = 180
Sum = 300a%430ab+0 = 1389
Multiplyby . . . . . .b = 3
Product = 300 a%b+4+30ab°+d3= . . . 4167
Remains . . . . . . . . . . . 645

We have now found 2 and 3 for the first and second figures of
the root, 2 considered as tens, and 3 as units; we have sub-
tracted the cube of their sum, which is 23, from the first and
second periods of our number, and there remains 645. If we
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next annex the next period of our number to this, we shall
have the following number for a new dividend, -
645'904.
a i8s now = 23, but with this exception our divisor is exactly
the same as before ; therefore, using the numbers in place of
the letters, we have 300 x 23* = 158700 = the trial divisor.
Comparing this with the dividend, we have
158700 | 645004,
Comparing 15 with 64, which are the corresponding figures of
the divisor and dividend, there being an equal number of figures
to the right hand of them in each, we find it can be got 4 times,
so that we may try 4 as our next figure ; and the complete
operation, using these numeral valuesin place of letters, will be
300 x23° = 158700 | ‘645904
30x23x4= 2760
4= 16
161476
Multiply by . . . . 4
— = 645904

Remains . . . 0
Consequently, 234 is the cube root of the given number
12812904 ; and the cube root of any number might be found
in a similar manner ; only when there are decimals in the
number, this must be pointed from the left, while the integers
are pointed from the right.

Any one who first examines the investigation of the formula
with sufficient care, then goes over the steps of this operation,
and bears in mind that the divisor is

300a*+30a b+ 5%
and also that ¢ means the figure or figures of the root already
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found, and b the figure which one is finding, can have no difficulty
in extracting the cube root of any number whatever. - Formule
for all other roots may be found- by taking the corresponding
power of a+b, omitting the first term, diminishing the expo-
nent of b by unity, or 1, in each remaining term, and bearing in
mind that there are always as many Os on the right of the nu-
meral co-efficient in each term as there are terms to the right of
that one in the formula. :

SECTION XV,

ARITHMETIC OF EXPONENTS— LOGARITHMS.

. In the case of every root or power, that is, of every quan-
tity considered either as a root or as a power—and any quantity
whatever, when spoken of and expressed generally, may be
considered in this manner—there are three distinct subjects, any
one of which may be the object of our iriquiry.  First, there is
the root ; and if the root is given, the power is found by mul-
tiplication, as already explained. Secondly, if the power is
given, the root may be found by the methods explained in the
latter part of last section. But thirdly, there is the exponent,
and it also may become that which is sought ; or, a and b being
any quantities or positive numbers whatsoever, and * any
‘exponent whatsoever, an answer may be demanded to the
(uestion, what power a is of b, or, in other words, to find such
a value of " as that
*=a.
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The exponent * may be any number whatever, integral or
fractional. If it is a fraction, with 1 for a numerator, the power
required will be a descending one, or a root ; and if it be a
fraction with both its terms greater than 1, a power must first
be found answering to the numerator, and then there must be
taken a root of that power answering to the denominator.

But when we begin to consider how we shall find such a
value of * as will make 6" = @, we find that * is not an expres-
sion to which common arithmetic will apply, even though it
should be expressed by a number. It is not a quantity, neither
can it be made the representative of a quantity ; because it
means a number of factors, or rather a number of times that
the same factor is to be used in multiplication; and this is a
kind of expression upon which we cannot perform any of the
common operations of arithmetic. If we add to it, we merely
say that there shall be as many more multiplications as the
number which we add ; if we subtract from it, we merely say
that there shall be as many multiplications fewer than there
were before, as is expressed by the number which we subtract ;
in other words, that we are to unmultiply the number, that is,
to undo a certain number of multiplications which enter into
the composition of the number; and there is no means of
undoing a multiplication but dividing the product by the
multiplicr.

Thus, in **™=qa, we are to multiply b* as often by b as the
letter ™ expresses, which of course may be any number of times,
integral or fractional. Also, in b"—™=a, we are to divide
b by b as often as the exponent ™ expresses, which also may
be any number, integral or fractional. Hence, though we
cannot either multiply or divide exponents themselves, yet
we can, by means of them, deal in a very summary manner
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with those numbers of which they are the exponents. For it
follows immediately from what has just been stated, that,—

The addition of exponents is exactly the same as the multi-
plication of those numbers of which they are the exponents ; and
the subtraction of exponents is exactly the same as the division
of those numbers of which they are the exponents. In other
words, the sum of any number of exponents answers to the
continued product of those numbers of which they are the
exponents, and the difference of two exponents is the quotient.
arising from dividing the number answering to the exponeut
which we subtract from it.

Consequently, if we can get all numbers expressed by expo-
nents, we shall get rid of the laborious operations of multiplying
and dividing in our arithmetic, by substituting instead of them
the comparatively simple ones of adding and subtracting.

Nor is this the only, nor even the greatest, simplification of
our proceedings that we should obtain, if we could express all
numbers by means of exponents ; for it is evident that doubling
an exponent is an expression for squaring the number of which
it is the exponent ; that multiplying an exponent by 3 answers
to the cube of the corresponding quantity, and that multiplying
an exponent by any number ™ is the same as raising the quan-
tity to that power. But the multiplier ™ of it may be any num-
ber whatever, integral or fractional ; and if it is a fraction with
1 for numerator, it is evident that the result is the same as
dividing by the denominator of that fraction; and that if an
exponent is multiplied by such a fraction, the product will
indicate a root answering to the denominator. Thus a * ™ is the

mth power of a"} and a™ is the mth rootof a”. These ex-
pressions are perfectly simple and general, and being such, they
apply equally to all numbers, and all exponents whatsoever ;
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and hence again we have the following results from the use of
exponents. .

- 'To find any power of an exponent, multiply the given expo-
nent by that of the power required ; and to find any root of any
exponent, divide the given exponent by that of the root which
is required.

- It is for these reasons that, as has been hinted at in Sectmn
III., while endeavouring to explain the arithmetical notation
and scale of numbers, exponents are called LogaRiTHMS, or
¢ the voices of numbers;” and there is something in the word
logos, of which the first part of this name is composed, which
is always worthy of our attention when we meet with the word
alone or in a compound. J.ogos is not the mere sound—the
noise in the ear made by an uttered word ; for the Greek ex-
pression for that is phone, which means “ a nioise,” and is equally
applicable to all noises, whether there is any sense in them or
not. Logos, on the other hand, is the information which the
thing alluded to is capable of giving in answer to our inquiry
or our observation; and therefore, as there may be a sound or
phone where there is no logos, so there may be a logos without
any phone, in which the information may be communicated to
the eye or any other of the senses, or to the mind, without any
instrumentality of the senses, which is in fact the case in our
general perception of the meaning of ratios. Logos is nearly
synonymous with ratio, and with relation ; for as it is impossible
for the mind to judge of anything without a standard of judg-
ment, mentioned or implied, there is reference to such a standard
in every case where truth or correct information of any kind is
acquired. .

Hence, in the plainest language of mathematics, Logarithms
are the ratios of numbers; the expressions for Logarithms,
whether given in the common figures of arithmetic, or in any ‘
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other way, are the exponents of those ratios ; and the operations
which we are enabled to shorten, or perform in cases where
common arithmetic is.unequal to them, constltute the Arithme-
tic of Exponents.

- In erder to make this arithmetic available to the case of Eﬂ
numbers, and therefore available in any practical instanee that
may occur, we must first obtain the ratios of all numbers
expressed in the common characters of our arithmetic. But in
every ratio there must be two quaritities of the same kind ; and
consequently we must have some one number; and our loga-
rithms must he the expressions of the ratios of all other numbers
to this one. The number 1 will not do for this purpose, be-
cause every number in its common arithmetical sense expresses
the only ratio that it can have to the number 1; and as 1 can
neither be a multiplier nor a divisor, those relations of the
common numbers in arithmetic to the number 1, are simple
arithmetical relations. But the relations of ratios which we
require for logarithms, are geometrical ones; and when we
seek for the logarithms, we seek for an answer to this question.
How many times must a given number m be multiplied by
itself, in order that the last product may be equal to any one
number of common arithmetic? Separate answers to this ques-
tion, in the case of every number, would furnish us with a
series of logarithms, extending both ways without end, in like
manner as the scale of numbers extends. But as the continua-
tion of the arithmetical scale is obtained by the simplest of all
possible operations—namely, by adding 1 to get the next higher
number, and subtracting 1 to get the next lower; and as the
logarithms, except those of very particular numbers, cannot be
obtained without very laborious operations, we are obliged to
rest satisfied with a limited number of logarithms,—in the
common tables, with the logarithms of all numbers not excced-
ing 10,000.
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The number m, which is one term in every ratio expressed by
a logarithm, and which is of course the same in them all, other- =
wise we could not compare the ratios, is usually termed the
modulus. This modulus is quite independent, both of the
number compared with it, and of the logarithm which expresses
the result of this comparison; and therefore it may be any
number whatever. The numiber 10, being the foundation of
the geometrical series, or order of the different places in our
scale of numbers, is the best one to use as the modulus of our
logarithms, and it is adopted accordingly. Logarithms formed
by any modulus, employed as one term in all ratios, are called
a system of logarithms ; and the logarithms in common use are
a system, having 10 for the modulus.

The modulus, or radical number, being once fixed upon, all
the exact powers of it can have their logarithms expressed
without any calculation, for they are whole numbers; always
equal to the number of times that the modulus, or radical
number occurs as a factor, or 1 greater than the number of
multiplications. Thus, for instance, 10 being the modulus, we
at once have, beginning at the left hand,—

Numbers 1, 10, 100, 1000, 10,000, and so on,
Logarithms 0, 1, 2, 3, 4, and so on;
and these give us the only simple integer numbers which can
occur as logarithms, between the number 1 and the number
10,000 inclusive.

We can, however, carry the same series downwards below 1
in the powers which have negative exponents; and, also be-
ginning at the left, they will stand as follows,— -

Numbers 1, 01, 001, 0001, and soon,
Logarithms —1, — 2, 3, 4, andsoon.

The powers, marked numbers, in the last of these expres-
sions, are the reciprocals of the same in the first, that is, they

are quotients arising from dividing 1 by the corresponding
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~ powers of 10; and as the subtraction of logarithms is the same
‘as the division of numbers, the logarithms in the second expres-
sion are also the reciprocals of those in the first. The loga-
rithms have, therefore, the very same relation to each other in
the two expressions as the numbers have ; consequently, if the
nnmbers, which are found by common multiplication, and can
easily be verified, are correct, the logarithms must also be
correct.

This fundamental part of the system of logarithms, as com-
pared with the powers of 10, both ascending and descending, of
which they are the exponents, is worthy of some consideration,
as seen in its simple form, and without the other logarithms and
numbers which have to be interpolated in order to complete
the system of logarithms and the series of the natural numbers.
In the first place, the number of figures in each of the integer
numbers or ascending powers, is in every case 1 more than the
_ units in the exponent ; and each of the numbers is the smallest
possible that can be expressed by the same number of figures;
hence we have this general conclusion : the integral part of the
logarithm of any number consisting of integers, or integers and
decimals, is always 1 less than the number of integer places.
Also, on looking at the decimal numbers or descending powers,
we find that the integral parts of their logarithms always ex-
press the distance of the first significant figure from the decimal
point, or that there are as many 0s before the significant figures
of the decimal as the number of 1s in the integral part of the
logarithm wanting 1.

Secondly, there must be as many logarithms between each
of the two numbers in the line marked logarithms, as there are
natural numbers between the natural numbers which answer to
these. Thus, between 0 and 1, in the logarithms of integers,
there must be eight logarithms, answering to the natural num-

AA
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bers from 2 to 9 inclusive ; and these must be wholly fractions,
and are best expressed by decimals. Between 1 and 2 in the
logarithms, there must be eighty-nine logarithms, answering to
the natural numbers from 11 to 99 inclusive. Between 2 and
3 there must be eight hundred and ninety-nine logarithms,
answering to the natural numbers from 101 to 999 inclusive.
Between 3 and 4 there must be eight thousand nine hundred
and ninety-nine logarithms, answering to the natural numbers
from 1001 to 9999 inclusive. If we take the expression for the
descending powers, the number of logarithms between every
two must be the same as between the corresponding two of
these 1s. :

Thirdly, the whole of those logarithms which require to be
interpolated between the integral ones, whether those integers
have the sign 4 expressed or understood, or the sign — always
expressed, are necessarily fractional numbers ; but none of them
can be accurately expressed by any fraction, whether that con-
sists of a numerator and denominator both expressed, or of a
decimal, in which the denominator is understood to be 1 with
as many Os annexed to it as there are figures in the decimal, in-
cluding in this number any 0s which may be between the signi-
ficant figures and the decimal point.

This will appear evident when it is considered that, as already
explained, no fraction and no mixed number consisting of an
integer with a fraction annexed, can have any assignable power
of it in a whole number. But in the case of a system of loga-
rithms, of which the modulus or root is 10, and the natural
numbers a series of powers, all the powers which are not inte-
gral, or consist of 1 with Os after it, must be fractions ; and as
both root and power are whole numbers, and the exponent a
fractional value, it is necessarily a fractional value which cannot
be accurately expressed by any fraction whatever, just as it is
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impossible to express by any fraction whatever an integral
power of an integer number which is not a complete power,
Therefore, every logarithm which we can have, from 2 to 10,000
inclusive—and there are of course 9999 of them—must be irra-
tional numbers, with the exception of 1, 2, 3, and 4, which
answer to the first four powers of 10.

We can, therefore, express those irrational exponents or loga-
rithms, only by approximation ; and the simplest way in which
this can be done is by using decimals, which in tables of even
moderate accuracy are extended to six places, which express
the value of the logarithm to the nearest millionth part of the
number 1 in the integral portion of a logarithm ; and as the
differences of these logarithms form a series, though a diminish-
ing one, a little more aceuracy can be obtained by means of the
differences.

Upon looking back at the succession of integer logarithms, it
will at once be seen that the differences must diminish as the
logarithms themselves inerease ; and that, as the numbers
answering to the logarithms increase by multiplications by 10,
while the logarithms increase only by additions of 1, the dif-
ferences of the logarithms of high numbers, equally distant from
each other in the scale, must be very much smaller than those
of low numbers at the same distance in the scale. Between 0
and 1 there are only eight logarithms, and the natural number
answering to logarithm 0is 1, and that answering to logarithm 1
i8 10 ; so that between logarithm 0 and logarithm 1 there are
only nine differences. But between logarithm 1 and logarithm
2, there are eighty-nine differences, and yet their sum isonly 1, as
in the former case ; so also between 2 and 3 there are eight hun-
dred and ninety-nine differences, the sum of which isalsoonly 1 ;
and between 3 and 4 there are eight thousand nine hundred and
ninety-nine differences, the sum of which is still no more than 1..

AA2
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Now it requires no reasoning to show, that if the same ge-
neral difference 1 has to be divided into 8 parts in one case, into
89 parts in a second, into 899 in a third, into 8999 in a fourth,
and so on, the individual part must be very much less in each
of those cases than in the case before it, even supposing that
the parts in each case were all equal among themselves.

But there is nothing peculiar about those numbers in the
arithmetical scale of which the logarithms are integers, further
than that they happen to be integral powers of 10, the modulus
or radical number of the system. For, the series of natural
numbers goes on regularly by the addition of 1 to every lower
number, in order to make up every one next following it ; and
the logarithms, though they express the exponents of those
numbers or their ratios to 10, must still be true to the numbers,
otherwise they could not be used as the representatives of those
numbers ; therefore, the difference between one logarithm and
the one coming after it, goes on gradually diminishing, or be-
coming less and less, as we get to the logarithms of numbers
higher in the scale.

This, though apparently a simple matter, is one which is very
important to a clear understauding of the nature of logarithms,
and a due appreciation of the advantages resulting from the use
of them ; and therefore we shall very briefly consider it in
another light. Logarithms, and consequently the differences of
logarithms, bear a very close resemblance to the quotients of
numbers when divided by each other, and the differences of
those quotients ; and a very little consideration will suffice to
show, that if the arithmetical difference between two num-
bers remains the same, the quotient arising from the division of
the one of those numbers by the other must always be the less,
the greater the numbers are, it being understood that the
smaller number is the divisor. Thus, if the numbers are 1 and
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2, of which the difference is 1, the quotient upon dividing 2 by
1 is the number 2 ; but if the numbers are 100 and 101, the
difference of which is also 1, the quotient upon dividing the
greater by the less is only 1°01, which is 99 hundreth parts of
1 less than the former, So, if the numbers are 1000 and 1001,
the quotient arising from dividing the greater by the less is
1°001, which is only 1 and one thousandth part. If we went on
increasing the equal parts of the two numbers by multiplication
by 10 for a great number of times, and still had the difference
only 1, we should at last arrive at a quotient differing from 1
by a fraction less than any fraction which we could name ; and
this gives us some idea of the rate at which the differences of
logarithms diminish, as the natural numbers to which they
answer increase.

But this difference between one logarithm and another, is
not a quantity which can be added or subtracted upon the
principles of common arithmetic, inasmuch as addition and sub-
traction are not operations which can be performed with loga-
rithms, so as to have any meaning with reference to the natural
numbers answering to the logarithms ; for, as we have already
shown, theaddition of logarithms answers to the multiplication of
the natural numbers for which they stand, and the subtraction
of logarithms answers to the division of the natural numbers.

Logarithms do pot represent quantities of any kind, except in
that secondary way in which they are the representatives of
common numbers ; and therefore, when we are performing any
operation by means of logarithms as the representatives of
numbers, we must always find the represented number which
answers to the representing logarithm, before we can perform
either addition or subtraction. So also we cannot, by the
addition of any difference which we can find by the principles
of arithmetic to the logarithm of any number, get the logarithm
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of the next number above it in the common arithmetical series ;
neither can we, by the subtraction of any difference from the
logarithm of any number, get the logarithm of the number next
below it in the scale. If the numbers are composite, or the
products of factors, we can get their logarithms by adding the
logarithms of the factors ; but if they are prime numbers, not the
products of factors, we cannot get their logarithms in any other
way than by a separate operation for each, and this operation is
a very laborious one.

Thus, if the thing demanded of us were to find the logarithm
of 2, we could get no assistance whatever from the integer loga-
rithms 0 and 1, between which it lies, farther than that it must be
greater than the one of them and less than the other ; but how
much greater or how much less, we have no direct means of
finding out. What we want to know is, how often the number
10 must be multiplied by itself in order to make the number
2 ; and as 2 is a smaller number than 10, the exponent or loga-
rithm of 2, of which we are in quest, must be fractional.

If we call the logarithm of 2 by the letter *, then our ex-
pression will be

10" =2;

and that which is required, is to find a fractional value of *,
which will satisfy the conditions that are demanded of us. If
we assume any fraction, and raise 10 to the power of the nume-
rator, and 2 to the power of the denominator, we shall make a
trial ; and according as the power of 10 is greater than the power
of 2, orless than it, we shall know whether the fraction we
have assumed for the exponent is greater or less than the truth ;
for we have already stated that the truth is an irrational frac-
tion, and cannot be expressed by any numerator and denomi-
nator whatsoever.

Let us first try n = 4 ; then 10! = 10, and 22 = 4, which.is
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6 less than 10; so that the fraction 4 is too great. Next try
* = %, and we shall have 102 = 100, and 27 = 128, which is
28 more than 100; so that the exponent * is less than %, but
greater than §. % is a fraction intermediate in value between
4 and §, let us again try it. 103 = 1000, and 210 = 1024,
which is still greater than 1000 ; and consequently the fraction
+% i8 still too small ; but as the denominator of that fraction is
10, if we are to express the exponent or logarithm decimally,
the first figure of it will be three, and this is one approximation,
though a rude one, to the logarithm of 2.

The next step of your operation would be to find the second
figure, and here it might be as well to begin with 0 in the enu-
merator ; and the figure which brought the power of 2 nearest
to the power of 10, would be the second figure. Not more than
nine trials would be required for this purpose ; but the finding
of the power of 2 would ‘be a very laborious matter. Let us

take * = 44, and we have,
103t = 1000000000000000000000000000000 ;

2100 336077764624128673834978317376
which is less than the power of 10 ; so that 35 is too large a
fraction, and the second figure of the logarithm expressed deci-
mally must be 0, or the first and second figures ‘30, which is
another and nearer approximation.

We might try n =404, in order to find the third figure;
and if the power of 2 were greater than the power of 10, the
fraction would be too small ; and we might try again with
n = {02, and if the power of 2 were in this case less than the
power of 10, then 2 would be too large for our third figure, and
the first three figures would be -301, which would be another
step in the approximation, still nearer the truth than the former
one. Multiplying 2 by 2 repeatedly, till it occurred a thousand
times as a factor, would however be intolerably tedious; and



360 INTEGRAL AND DECIMAL

if we were to try a step beyond this, it would be ten times more
so. There are shorter methods than this of getting the loga-
rithm of a prime number, but this is the only one whieh pro-
ceeds upon the common principles of arithmetic. The others
are not quite elementary, or, at all events, they depend upon
principles which we have not hitherto investigated ; and there-
fore the introduction of them here would be foreign to our
purpose, which is, to state nothing but what we can trace from
first principles, '

In an elementary point of view, this is a matter of but little
consequence, because nobody requires actually to find a Ioga-
rithm by an original investigation ; for they are already found,
and inserted in the common tables ; and it is quite enough for
every practical purpose, that we understand well the nature of a
logarithm, can know how to find it,if that were necessary, by even
the most tedious process, and are also acquainted with the struc-
ture of the tables, so as to be able to find in them either the
logarithm answering to a number, or the number answering to
a logarithm,

The decimal part of the logarithm of any figure, being de-
rived wholly from that figure itself, and depending altogether
upon its individual value, without any regard to the place which
it occupies in the scale of numbers, is of course the very same
whatever is the place of the figure, and whether it is integers
or decimals. Thus, *301030 is always the decimal part of the
logarithm of 2, whether that 2 mean units, thousands, hundreth
parts, or any other number whatever which is the result of
multiplying or dividing 2 successively by 10; and it is the same
with the decimal part of the logarithms of all the other figures,
That such must be the case is quite evident; for multiplying
by 10is only adding 1 to the integral part of the logarithm, and
dividing by 10 is only subtracting 1 from the integral part ; and
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how often soever 1 is added to the integral part or subtracted
from it, neither operation affects in the least the value of the
decimal part.

Hence, when the mtegral part has the sign —, that sign does
not affect the decimal part, which is always to be considered as
a positive number ; and the —, when thus placed before the
integral part of a logarithm, expresses not an arithmetical but
a logarithmic subtraction, which, as has already been shown, is
the same thing as an arithmetical division; and as the subtrac-
tion 1 is the expression for a division by 10, — before the inte-
gral part of a logarithm merely points out that the figure
answering to the Jogarithm, and considered as units, is to be
divided as often in succession by 10 as there are 1s in that part
of the logarithm which is affected by—.

Thus, the integral and the decimal parts of a logarithm
relate, in different ways, to the number answering for the
logarithm ; and as, on this account, it is convenient to give a par~
ticular name to the integral part, it is called the index, or
characteristic of the logarithm ; and the decimal part only is
called the logarithm, by way of distinction. When there is no
sign, or 4, before the index, it is said to be positive, and when
there is — before it, it is said to be negative; but 4 and ~
here do not mean addition and subtraction ; for we have already
shown that these are operations which cannot be performed on
logarithms. - means as many multiplications, and — as many
divisions, by 10, of the corresponding number, as there are 1§
in the index which it affects.

The index and the logarithm answer, therefore, to the two
parts of which a number expressed arithmetically is made up,
The index points out the distance of the left hand figure of the
number from the units figure, and when it is + that figure is
higher than the units, and when it is— it islower. Thus, + 3
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is always the index of thousands, and — 3- is always the index
of thousandth parts; and it is the same with every other expo-
nent. It is always 1 less than the number of figures in an
integer number, and 1 more than the number of 0s at the
beginning of a decimal one.

But though the index thus determines the place of the left
hand figare of the number, and consequently also the places of
all the other figures in their order, it gives us no information
whatever with regard to the individual values of the figures;
for whether the figure is 1, or 9, or any of the intermediate
ones, the index of its logarithm is the same ; so that the indi-
vidual values of the figures answering to a logarithm depend
wholly upon the decimal part, without any regard whatever to
the index.

One who had not reflected on the subject, might be apt to
suppose, that, as the logarithm of a single figure, disregarding
the index, is the same whatever place in the scale that figure
occupies, the logarithm of a number consisting of several figures
could be found in some way from the logarithm of those figures
taken individually. That, for instance, the logarithm of 365
might be found by some combination of the logarithms of
300, 60, and 5; and that the logarithms of all numbers whatever
might be obtained by combinations of the logarithms of the nine
figures ; because, arithmetically speaking, all numbers are com-
posed of those figures, each one, in & number consisting of
several, being multiplied by a different power of 10, the
modulus or root of the arithmetical scale.

If this could be done, it would reduce the construction of
logarithms to a very simple process. But a very little con-
sideration will show that this is impossible.  For this purpose,
let us take any number, 365 for instance, and analyze it accord-
ing to its arithmetical composition, and see whether logarithms
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will apply to every process in that composition. 365 is =300
+6045; 300 is =3x 10%, 60is =6 x 10', and 5 is=5 x 10",
So far as the composition of each of these three parts goes,
the process is multiplication only, and therefore it could be
performed by means of the logarithms; but when we look at
the other part of the composition, and take the whole analysis,
3x10246 x 10'+5 X 10°,

we find that there are additions to be performed, and these are
operations to which logarithms will not apply ; consequently the
scale of numbers gives us no assistance in the finding of loga-
rithms, further than the place of the left-hand figure of the
number determines the index. Consequently a distinct and
separate operation is required for finding the logarithm of
every prime pumber; but the logarithms of all composite
numbers may be found by teking for each the sum of the
logarithms of all its prime factors.

The explanations which we have given will, we trust, be
found sufficient to convey an elementary notion at least-of the
nature of logarithms, and of the relation in which they stand
to common numbers ; and we shall close this section by adding
a short explanation of the tables, and the notation of loga-
rithms ; and a brief recapitulation of the more useful logarith-
mic operations, the principles of most of which have been
explained already.

TABLES.

In tables of common logarithms, there are usually two parts:
the first containing the logarithms of all the integer numbers
up to 100 ; and in this part of the table the numbers are placed
in one column, and the whole of the logarithms, index and all,
immediately against them in another column. The columns
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of numbers are marked N at top and bottom, and the columns
of logarithms, Log. So that this table, as far as it goes, is
perfectly simple. The next part of the tables contains all the
numbers from 100 to 9,999, ranged in a column down the left
of as many pages as are necessary ; the number of pages de-
pending, of course, on the size of the page and the type, The
page contains eleven other columns ; ten of which are occupied
by the arithmetical figures, from 0 to 9 inclusive ; and the last
one, at the right hand, contains the differences of the logarithms,
and is marked D at the top of the page. The column under
0 contains, against each number in the column of numbers, the
decimal part only of its logarithm; and the other columns
contain the logarithms of the same numbers, with the figure
at the top of the column of logarithms included as a wunit’s
figure after the three figures which are in the left-hand
column of numbers at the.beginning. Thus, if we were to
look at the tables for the logarithm of any three figures, we
would have only to find those figures in the column of num-
bers, and the decimal part of the logarithm would be against it
in the first column of logarithms, under 0 at the top. If
there were four figures, we could find them all, except the
units in the left-hand column, as before ; and then, if we fol-
lowed the line of logarithms till we came to the column which
had the units figure at the top, we would find the logarithm
of the four figures there. If there were more than four figures,
we could not find directly in the tables the logarithm of any
more than the four nearest the left hand; but we could get
an approximate value of the other ones by means of the differ-
ences which were marked in the last column of the page.
These differences are those of the logarithms of the numbers
consisting of four figures, and the next higher number of four
figures ; that is, a number which has the last of the four 1
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greater. Now, any number of figures which can stand to the
right of any one figure in a number, are always of less value
than if that figure were 1 greater, and the places of the others
supplied by Os; and therefore if we take the difference, and
multiply it by the figures which are in our number to the right
of four, reckoning from the left, and cut off as many figures
from the right of the product, as there are in the number by
which we multiply the difference, the rest, or left-hand part of
the product, will be a correction, which, added to the logarithm
of the first four figures, will approximate the logarithm of the
entire number. The approximation will be a very rude one,
however, if there are more than one, or at any rate than two,
figures ; for every figure which is annexed to the right hand
of the number, not only adds its own value as units, but mul-
tiplies the value of all the rest by 10. We mentioned already
that as the numbers increased, the difference of the logarithms
decrease much more rapidly ; and therefore the connection
very soon ceases to be accurate. '

For convenience in reading, the table is divided by a black
line across the page, at the end of every ten lines of figures ;
and the whole logarithm is written in each of the columns, in
the first line of figures after thisline of division ; but in the other
lines, if two or three figures at the beginning are the same in
all the other nine lines, they are left out, it being understood
that those which answer to the blank in the first line, are to
fill it in the others. The use of the black lines is to guide
one’s eye more easily along in seeking the logarithm of four
figures ; and the blanks are merely contrivances of the printer
to save a few types. If these directions are attended to, any
one may find the common logarithm of numbers from the tables,
without the slightest difficulty ; and as for the indices, they are
determined by the number of integer places, or of Os at the
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beginning of a number wholly decimal, without any reference
whatever to what the figures are, or what the decimal part of
the logarithm, as found in the tables, is to be. The following
numbers, which are expressed by the same figures, but of
which, in consequence of the shifting of the decimal point, every
one is but a tenth part of the one above it, will illustrate
this:

Numbers. Indices.

365000° . . . . . 5
36500° . . . . . 4
3650 . . . . 3
365° . . . . 2
365 . . . 1

365 . . . . 0

*365 . . . . =1
<0365 . . . . o—2
‘00365 . . . . =3

‘000385 . . . . —t

This requires no explanation ; for by merely inspecting the
column of numbers, and that of indices, and comparing them
with each other, every thing about the index of the logarithm
of any number may be readily understood, and we have only
to bear in mind that — is the sign of division as applied to the
numbers. In taking the logarithms of numbers from the
tables, there is considerable advantage in the very simple ope-
rations of reading them in twos. Thus, if the logarithm is
*054291, it is much more easily remembered, if read ¢ ninety-
five, forty-two, ninety-one,” than if we were to try to name
all the figures singly, or the entire number as a whole.

The converse of this operation—that is, finding the natural
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number answering to any given logarithm—is just the opposite
of finding the logarithm. Disregarding the index, we seek the
tables for the logarithm ; and, if we find it exactly, the number
answering to it is the number, and the placing of the decimal
point in it, or adding Os to the right of it to make up the
requisite number of integer places is determined by the
index.

If the logarithm is not found exactly in the tables, we can,
by reversing the correction, get a figure or two more to place
to the right of those which answer to the logarithm. For this
purpose, we take the logarithm in the tables which is next less
than the given one, and get the difference between it and
the given one for a dividend. Then, we place two 0s on
the right of this dividend, and divide the whole by the dif-
ference of the logarithms, as marked in the right-hand column.,
It must be remembered, however, that the quotient of this
division must make two figures, and if there is only one, an 0
must be placed before it in the number. The division mighs -
be continued to an interminable number of figures; but the
labour would be useless, for none of them would be accurate
except the first and second, and even the second would not be
altogether correct in every case.

NOTATION.

The logarithm of any number, in a system having any
modulus, may, if b is the modulus, and @ the number, be
simply indicated algebraically by the expression

b*=a,
in which * denotes the logarithm, but does not express it in
terms of the known numbers ¢ and b. In order so to express
it, it must be formed into a series, which will be interminable
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in all cases except those in which » is a whole number ; and
this series is the general formula, by substituting numbers for
the letters in which, and performing the operations pointed out
by the signs, the logarithm of any number may be found ; but,
as we already mentioned, the investigation of this is not purely
elementary, and we are not yet prepared for entering upon it.

When a logarithm is expressed by a letter, a number, or
any other single expression, simple or compound, it is pointed
out to be a logarithm, by Log. or simply L. before it ; and
when it enters into a formula, or combination of quantities) we
must attend to its nature, in order to know how it is to be
affected by the signs. Now a logarithm is not only not of the
same kind, but has actually no property in common with any
quantity the value of which is immediately expressible by a
common number ; and therefore a logarithm and a quantity can
neither have a sum nor a difference ; so that the sign 4 or —
between a logarithm and a quantity would have no meaning,
or rather it would have a double meaning ; for it would imply
addition or subtraction as regarded the quantity, and multipli-
cation or division as regarded the logarithm ; and as no single
operation can be both addition and multiplication, or subtrac-
tion and division, that which was indicated by such a sign
would be impracticable in any other way than by finding the
number answering to the logarithm, and dealing with it as a
number—that is, adding it if the sign were -+, and subtracting
it if the sign were — .

A sign of multiplication between a logarithm and a quantity,
means that the logarithm is to be raised to the power expressed
by the quantity. But a sign of multiplication between two
logarithms has not any real meaning ; because there cannot be
a product without a multiplicand ; and the two logarithms are
not only not multiplicands, but neither of them is even a mul-
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tiplier, expressing the number of times that a certain number
must be multiplied by itself, in order that the last product
may be equal to another givenmumber.

The sign of division between a number and a quantity points
out that root of the logarithm, or the number for which it
stands, which the quantity cxpresses ; but if we were to consider
the quantity as a dividend, the logarithm could not be a divisor ;
because a divisor must always be equal to some part of
the dividend, and a logarithm is not equal to any part of a
number.

But a sign of division between two logarithms has meaning,
and implies that the logarithm which precedes it must be
divided by the logarithm which comes after it ; and, as is the
case in every division of a quantity by another quantity of the
same kind, the quotient is a number. Literally, it is the num-
ber of times which the one logarithm is contained in, or can be
arithmetically subtracted from, the other. It is also, however,
the converse of finding the power of a logarithm, because the
power is found by multiplying the logarithm by the exponent ;
and as this power is the product of a logarithm and a number,
either the one or the other of these may be found by dividing it
by the remaining one. If we divide it by the number,; we get
the logarithm of the root ; and if we divide it by the other factor,
which is the logarithm of the root, we of course get the expo-
nent of the power as a common number. Hence we obtain a
means of applying logarithms to another problem, which could
not be solved by the arithmetic of mer e numbers :—

Given two numbers to find what power either of them is of
the other one :—

The solution here evidently is : Divide the logarithm of the
number which is considered as a power, by the logarithm of

BB
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that which is considered as a root, and the quotient is the
exponent in a common number.

If the question were, what power is a of b ; then the expres-
sion, calling the unknown exponent *, would be b* =a, =
%:, or Log.a =~ Log. b. If the question were a numerical
one, and it were demanded what power 8 is of 7 ; the only way
to perform it would be to divide the logarithm of 8 by the loga-
rithm of 7. From the tables these are,

Log. 7 = 0845098 ; and Log. 8 = 0°903090.
The last of which may be divided by the first, as follows :

0°845098) 0903090 (1044956
0845098
379920 0
338039 2

41890 80
33803 92

8086 £80
7605 882

480 9980
422 5490

58 44900
50 70588

7 74312

Thus we find that 8 is a power of 7, whose exponent is
1-044956, that is a very little greater than the numbet 1, which
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is evidently true; for 8 is a very little more than 1 time 7,
which is the first power of 7, or 7!,

In the operation for finding it, half the figures, namely ‘those
which stand under the 0s annexed to the remainders, might have
been dispensed with ; and we have marked them off by leaving
spaces between them and the others. The reason that these
figures could be dispensed with is, that they are uncertain;
because neither the divisor nor the dividend is terminate, or
could terminate if we extend it ever so far ; and therefore both
of them should have been continued in the figures of the loga-
rithm, in order to be perfectly accurate. We do not, however,
know those figures beyond the six which are in the tables ; and
thus all that we can obtain is an approximation; and if, at
every step of the division, we had, instead of annexing 0s to
the remainder, omitted the same number of figures on the
right of the divisor, in succession, as there are 0s used at
every step, and only taken in with the product the number
that had to be carried, our operation would have consisted only
of the figures to the left of the blank space, and, excepting per-
haps a single 1 in the last figure, our quotient would have been.
the same. This, by the way, is a very convenient mode of
abridging the division of decimal numbers in all cases where 0s
have to be added to the successive remainders ; but it is so
simple that it requires no further explanation.

This number 1:044956, which we have obtained, is not quite
true in the last figure, and probably not in the last except one ;
but we can depend upon it to four decimal places, which gives us
our exponent to the nearest ten thousandth part of exponent1;
and simple as the operation appears, were it not for the help
of the logarithms, we should have had very serious labour in
finding it out. This will readily appear when we consider that

BB2
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we cannot multiply any number a fraction of a time, in any
other way than by raising it to the power of the numerator,
and extracting the root of the denominator, and as this expo-
nent, expressed fractionally to the fourth figure of the decimal,
is 19443 ; we should have had to work by powers and roots
having these high exponents, and our lines of figures would
have been several feet or yards in length.

And even this would not have been the tedious part of the
matter ; for these very high exponents are not data given us,
they are the results which we are to find, and we must find
them both at the same time ; so that the finding of them may
be said to be wholly beyond the power of common arithmetic,
whereas, by the help of logarithms, the operation is reduced to
the performing of one simple division.

The number which we have thus obtained, is not & common
number, but an exponent; and therefore we could not use it
arithmetically, unless we were to find the natural number which
answers to it. We could, however, use it as a logarithm, only
it does not belong to our common tables, as it is the logarithm
of 8 taken in terms of the number 7 as the root of a system, the
same as 10 is the root of our common system.

We believe there is only one other little matter necessary to
be mentioned in logarithmic notation, and it is a mere matter of
form. Negative indices are sometimes expressed by writing —
over the figures instead of before them. Thus 3 instead of — 3.
They are also sometimes expressed by means of their comple-
mentsto 10. Thus — 3- is expressed by 7. No advantage is,
however, gained by this means ; for, in adding, we must subtract
as many 10s from the sum as there are complements ; and in
subtracting we must add as many times.



OPERATIONS. 373

LOGARITHMIC OPERATIONS,

For the reasons already explained, no addition or subtraction
of numbers can be expressed by logarithms; and the sum or
difference of a number and a logarithm does not express any
thing which has a meaning or could exist. In stating this, we
are to understand that the word number is used as a short
expression for all common numbers, and for all quantities
that are capable of being, in whole or in part, expressed by
common numbers, without in any way altering their nature.

Multiplication is performed by adding the logarithm of the
factors ; and Division by subtracting the logarithm of the
divisor from that of the dividend. If a number of successive
multiplications and divisions, without any intervening addi-
tions or subtractions, have to be performed, all the logarithms
of the factors may be collected into one sum, and the logarithms
of all the divisors into another ; and when the last of these is
subtracted from the first, the remainder is the logarithm of the -
ultimate quotient, or of the value of the expression in a single
number.

In performing the subtractions, it must not be lost sight of
that they are really divisions; and that though the loga-
rithm which we have to subtract be really greater, both in the
index and in the decimal part, than the logarithm from which
we have to subtract it, there will still be a real and positive
remainder ; whereas if, in common arithmetical subtraction, we
try to take a greater number from a less, we should find our-
selves minus the difference ; that is to say, the numerical dif-
ference would be wholly affected by the sign —, and really be
a quantity less than nothing. But in division we never can
have a negative quotient, if the divisor and dividend have the
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same sign; and as the decimal part of every logarithm is <
or positive, there is always something positive to divide, as well
as something positive to divide it by, whatsoever may be the
signs of the indices in the case of logarithms. ’

Involution is performed logarithmically, by multiplying the
logarithm of the root by the exponent .of the power ;. and the
natural number answering to the product is the power required,
as a natural number : and Evolution is performed by dividing
the logarithm of the power by the exponent of the root ; and
the natural number answering to the quotient is the root
itself. ‘ ' :
- In multiplying a logarithm with a negative index, the pro-
duct which arises from multiplying the left-hand figure: of the
decimal part, if it contains any thing which has to be carried
to the product of the negative index, must, though positive
itself, send the quantity carried to the index as negative. . This
may at first sight seem a little singular ; but it is nevertheless
strictly true. The index affects the whole value of the num-
ber for which the logarithm stands, in as far as it determines
its place in the scale of numbers; and thus, though it makes
no alteration in the figures of which the logarithm is composed,
it affects the whole value of that logarithm ; for if it did not,
the logarithm would not be a faithful representative of the
number. Therefore, when the decimal or positive part of the
logarithm, having a negative index, is so multiplied as that
there is something to carry from the left-hand figure to the
index, the number which is thus carried becomes of itself an
index by the transfer, and acquires the negative sign by passing
the decimal point, just as a number which is passed the deci-
mal point into the décimals requires — before its exponent.

On the other hand, in dividing logarithms with negative
indices, the quotient, if it amount to 1 or more, must have the
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sign — ; but whatever remainder may be over on dividing the
negative index, will go over to the first figure of the decimals
as a positive quantity, every 1 in it countmg 2810, as in every
other case in division.

- Such are the leading principles in the arithmetic of exponents
and the nature and use of common logarithms ; and as there is
no contrivance in the ‘whole compass of the mathematical
sciences so well calculated for abridging labour, or enabling us
to perform operations which we could not perform by common
arithmetic, this is a portion of the subject which ought to be
fully understood by every one who wishes to be even'a tolerable
accountant ; while those who aim at any of the practical con-
nexions between arithmetic and geometry, will find most un-
toward work of it if they do not learn the ready use of this
powerful instrument. It ‘is true that the tables are easily
understood, and that the operations are very simple ; and that
these may be committed to memory, and put in practice without
any. understanding, just as & parrot learns to repeat a sentence,
or whistle a tune ; but those who are thus unfortunate, never
know when they are right ; and therefore when the slightest
trifle arises which- is not found in the formula, they are com-
pletely at a loss, and sure to be wrong.

 SECTION XV.

INTERSECTIONS OF LINES AND CIRCLES.

Tue circle is the foundation of all our purely geometrical
notions of the equality of lines and ‘angles ; and ‘these are the
elements of which all our other and more complex notions of
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geometrical equality are formed ; therefore, after we have once
fully understood the nature of lines and angles, and the general
doctrine of relations, of which an outline has been attempted
in the former sections of this volume, our next object should
be to make ourselves well acquainted with the uses of the
circle, in enabling us to compare the lengths of lines, and the
magnitudes of angles. This we shall attempt in the present
section.

It will be borne in mind that all radii of the same circle, or
of equal circles, are necessarily equal ; which follows from the
way in which a circle is described, and is our primary notion of
it, or that upon which the definition is founded. This, there-
fore, is a simple cause of the equality of lines, which does not
need or admit of any proof.

It will also be borne in mind, that the circumference of a
circle is the measure of all the angular space round a point;
that is, it is equal to four right angles ; and that any portion of
the circumference of any circle, and the same portion of four
right angles, are naturally and reciprocally the measures of
each other ; consequently the larger the portion of the circum-
ference, the larger is the angle; and conversely, the smaller
the portion of the circle, the smaller is the angle. It must
be understood, however, that it is not the absolute length of
the arc in any known measure, but its length as compared with
that of the whole circumference of which it is a part, which
determines the value of the angle.

When it is not otherwise mentioned, the centre of the circle
is the point to which the angle is referred, because it is the
only point within the circle which stands in the same relation
to every point of the circumference. In the language of
geometry, the arc is said to subtend the angle, that is, to
“hold under it ;" so as to tie it to one definite value; and
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the angle is said to stand upon the arc. Thus if ABDE is any
circle whatsoever,

D
B

of which c is the centre ; and the portions of the circumference
from a to B, and from B to c, any two arcs. Draw the radii
Ac, Bc, and p ¢, from the extremities of the arcs, to c the
centre, and the angle a cB, and arc a B are reciprocally the
the measures of each other, and so are the angle B ¢ » and the
arc BD. Also the angle a ¢ p, which is the sum of the two
angles a ¢ B and B ¢ p, and the arc A b, which is the sum of the
two arcs A B and B p, are reciprocally the measures of each
other. If the arc a Bis greater than thearc B p, theangle s ¢ B
is greater than the angle B ¢ p ; if equal, equal ; and if less, less.
Further, if the one arc is any multiple or part of the other are,
the angle standing on or subtended by the first arc, is the same
multiple or part of the angle standing on or subtended by the
second arc. Arcs, and the angles which stand on them, are
therefore proportional quantities.
But if we, as in the following figure,
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draw the straight lines o B and B p, joining the extremities of
the two arcs aBand Bp, and also the line A p joining the
extremities of the arc A p, which is the sum of the other two,
these lines subtend their respective angles at c, or tie them
down to the same definite values as they are tied to by
the arcs.

These lines are called the chords of the arcs, and they sub-
tend both the arcs and the angles ; so that by means of them we
are enabled to get angles expressed, or compared with each
other, in terms of straight lines; and this is one important step
towards bringing geometry within the reach of common arith-
metic.

From a mere inspection of this figure, it will be seen, that
each of the chords, A B, B D, a b, is the chord of two arcs, the
one less than a semicircle and the other greater; so that, in
these cases, and in every possible case, the two together are
equal to, or make up a complete circumference. Every chord,
too, subtends two angles, or fixes the positions of two radii of the
circle, which divide the angular spaceround a point into two parts,
which parts, taken together, make exactly four right angles.

If the chord is a diameter, or passes through the centre, each
arc is a semicircle, and there is no angle at the centre, as happens
in the case of the diameter z y in the above figure. In every
other case, there is a salient angle which is less than two right
angles, and a re-entering angle, which is just as much greater.
The greater the chord the greater the salient angle, and also the
arc which subtends that angle ; but no arc subtending a salient
angle can be so great as a semicircle ; and therefore the chord
subtending no salient angle can be so great as the diameter.

But though it is thus evident from the simplest property of
the circle, that the chord of an arc increases as the arc increases,
yet this holds only till the greatest possible chord, the diameter,



. ARCS AND THEIR CHORDS. 379

is arrived at ; for, beyond this, the arc is greater than a semi-
circle, the angle is a re-entering angle, and the chord becomes
that of a salient angle directed the other way, and subtended by
an arc as much less than a semicircle, as the arc subtending the
re-entering angle is greater.

Whatever the diameter of the circle is, therefore, the value
of the chord begins at 0, increases to a maximum at the semi-
circle, where it is equal to the diameter; and diminishes from
that maximum till it is again 0. Hence the rate of its increase
must diminish from 0 to the maximum, and the rate of its
diminution must increase from the maximum to 0,—the one
being merely the reverse of the other.

In consequence of this, the chords of arcs cannot have the
same ratios to each other in the measure of lines, that the arcs
themselves have in degrees of the circumference. We do not
in the meantime, however, require to investigate the law of their
variation ; for it is evident, that, up to a semicircle, the greater
arc has the greater chord ; and as every salient angle:is less
than the measure of a semicircle, or 180°, we have this general
conclusion : The greater salient angle is subtended by.the
greater line, and conversely. But in a triangle every angle is
subtended by the opposite side. - Therefore, in every triangle,
the greater angle is opposite the greater side, and conversely.
We shall presently see that this is a very important principle.

1. The shortest distance between a point and a straight line,
is the perpendicular drawn from that point to the line.

Let A be any point, and B ¢ any straight line ; the shortest
distance from a to B ¢ is the perpendicular o p, which makes
the angles A p B and a p ¢ equal, and each a right angle. If

_not, take any point E, in B ¢, upon either side of » ; join A E,
and let A E, if possible, be less than A b,
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A
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/
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A D E is a triangle, of which the three angles together —= two
right angles ; and the angle at p is a right angle, aud equal to
both the angles at A and E. Consequently, the angle o is
greater than the angle e, and the side o E opposite the greater
angle, is greater than the side A », opposite the less. But E is
any point, and wherever it were taken, in B p or o ¢, o » would
still be less than o E. Wherefore, the perpendicular is the
shortest distance.

2. If two angles of a triangle are equal, the sides opposite
those angles are equal ; and conversely, if two sides are equal,
the angles opposite them are equal. This follows, from the
greater side and greater angle being opposite; for though the equal
sides, as lines, have not the same ratio as the opposite angles in
circuiar measure, yet equal ratios are of course equal. Hence
also, if the three sides of a triangle are equal, the three angles
must also be equal, and conversely.

8. If a straight line touches a circle, but does not cut it, that
is, does not pass within the circumference, then the radius, or
line drawn through the centre of the circle to the point of con-
tact, is perpendicular, or at right angles, to the touching line, or
tangent, as it is usually called. For, the point of contact is in
the circamference, and every other point in the touching line is
without the circumference, and therefore more distant from the
centre than the point of contact. But the perpendicular is
the shortest distance ; and therefore the line drawn through
the centre to the point of contact, is the perpendicular to the
tangent, or touching line, at that point.
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4. If two circles touch each other externally, the line joining
their centres passes through the point of contact ; the portions
of it between their centres, is equal to the sum of their radii ;
and a line crossing this at right angles in the point of contact,
touches both circles, but cuts neither.

If the circles A B p, of which ¢ is the centre, and » E F, of
which ¢ is the centre, touch each other externally in the point
p, the line ¢ @, passing through ¢ and @, the centres, passes
through the point of contact ; ¢ @ is the sum of the radii of the
circles; and m 1, crossing ¢ ¢ in the point », touches both
circles, but cuts neither.

cpand ¢ p are the shortest distances from cand e top; ce
is the sum of ¢ p and e » ; and every other point in & 1is further
from both ¢ and ¢ than the point b is,

5. Upon the very same principle it follows, that if one circle
touch another internally, the straight line at right angles to the
tangent, at the point of contact, passes through the centres of
them both.

6. Also, if the distance of the centres is greater than the sum
of both radii, the circles will not touch each other ; and if the
distance of the centres is less than the sum of the radii, they
must cut each other.

In this case, as the line joining the centres, if continued far
enough both ways, divides both circles exactly in the middle,
or into two semicircles, which are every way equal and equally
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related to each other, though they are symmetrical magnitudes,
or the one turned the one way and the other the opposite way,

it follows, that whatever can be said of the segment or arc of
each, between the line joining the centres and the point of sec-
tion, can be said of the corresponding or symmetrical segment
on the other circle. A diagram will illustrate this more clearly
than words. ’

- Let o B be a line passing through ¢ and ¢, the centres of any
two circles, whose distance from each other is less than the
sum of the radii of the circles.

1
Then the circles must cut each other in some two points, » on

the one side of the line, and £ on the other, and all the seg-
ment or arc of each circle which lies between these points of
section, must be within the circumference of the other circle.
But the parts of each of the two circles which are above the
line a B, are equal to, and symmetrical with, those which are
below the same ; therefore the point of section at p stands in
exactly the same relation to the centres ¢ and ¢ and the line
which passes through them, as the point of section E does.
Through the points p and g, draw the cross line m 1, and 1 1
must cut A B at right angles in the point ¥ ; for whatever can
be affirmed of the angle A F m on the one side of A B, can be
affirmed of the angle A 1 on the other side ; and in like man-
ner, whatever can be affirmed of the angle B ¥ u, can be equally
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affirmed of the angle A »r 5. Wherefore m 1 is at right angles
to a B; and the part b E, between the intersection of the circles
on the side toward m, is equal to the equally and symmetrically
intercepted part r E, on the under circle of A =.

From this we can immediately obtain the means of perform-
ing two practical operations or problems: first, to divide a given
straight line into two equal parts, by another line crossing it at
right angles ; and secondly, to construct a triangle with three
given straight lines,—but any two of these must be together
longer than the third one.

To divide a given straight line into two equa.l parts, or as it is
usually termed, to ‘“bisect” a straight line. Let a B, in the
following diagram, be the line which it is proposed to divide
into two equal parts.

Upon the extremity a as a centre, and with any radius
greater than half of a B, describe an arc of a circle on each side
the line ; and upon the point B, and with the same radius, de-
scribe arcs of an equal circle, cutting the former in the points ¢
and p; draw a line through c¢ and p, cutting A B in the point
E; then A B is bisected, or divided into equal parts in E, and
¢ n.is at right angles to 4 B.

In performing this problem, it is not necessary to draw the
whole of the two equal circles, but merely a part of each, so
that the one may cut, or cross the other in the two points ¢ and
D, on the opposite sides of the line, as the places of these two
points are all that is required, in order that ¢ b may be drawn
in the position required. Nor have we thought it necessary to
prove the equality of A B as it stands singly and as divided, by
showing that they are both radii of the same circle. There are
few practical cases in which this can be done; and therefore
the equal measure of the two is the most useful standard of
equality. The length of a B, where it appears as a single line,
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is taken between the points of a pair of compasses, or by any
other means that will take and preserve it exactly ; and the ex-

S

W

treme points of this being marked at A and B in the second
figure, the line joining them is of the same length as the original
A B. So also, in describing the arcs of equal circles from a and
B as centres, the compasses, with the distance between their
points unaltered, are carried from the one to the other, which
is all the equality of radii which we can obtain in practice, and,
consequently, any theoretical nicety beyond this is mere
pretension. .

The bisection of 4 B by ¢ p in the point e, and also the fact
of the one line being at right angles to the other, follow neces-
sarily from what was said in article 6. It was there shown,
that when two circles cut each other, the line joining the points
of section must be at right angles to the line passing through, or
joining the centres of the two circles; and because the radii of
the two circles are equal in the present case, it follows, that the
point of intersection of the lines, , has the same relation to
each of the two centres, o and B ; and as the only relation that
it has, or can have, to those centres, is its distance from them
(for a point in a straight line can have no other relation to
another point in the same, than the distance they are from each
other,) its distance from each must be the same, that is, the
line A B is bisected on the point E.

The second problem resulting from this is, the construction
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-of a triangle, the sides of which shall be respectively equal to
three given straight lines ; but any two'of thefe lines must be
together - greater than the -third, otherwise there can-be no
triangle. The principle in this is not very different from.that
in the former ; but the practical application of the principle is
.different. One of the given lines, no matter which, must be
made the distance of the centres of two circles, whose radii-are
the other two lines. These centres will be the points of two
angles of the triangle, and the point of the third angle will be the
intersection of the circles. ‘But as there are always two points of
intersection, when two complete circles cut each other, two equal
and symmetrical triangles, that is, triangles turned opposite ways,
may, in every case, be’ constructed of the same three straight
lines. We shall takean example, as in the following figure.

Let 1, 2, 3, be three straight lines, it is required to construct a

triangle whose sides shall be respectively equal to 1, 2, and 3.
Make A B equal to any of the given lines, for instance, to 3.

Then, about A as a centre, and with a radius equal to another

of the given lines, 1 for instance, describe a circle, ¢ b ; and

about B as a centre, with a radius equal to the remaining line

2, describe a circle ¢ F p; and, because the lines 1 and 2 are,

cc
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by hypothesis (or that which was assumed) together greater
than 3, they must cut each other in some two points ¢ and »,
one on the one side of o B, and the other on the opposite side.
Join s o, Bo,and A p,BD; and A B¢, A BD, are two equal
and symmetrical triangles, each having its three sides respec-
tively equal to the given lines 1, 2 and 3,—namely A c in the
one, or A D in the other, equal to 1; B ¢ in the one, or B p in
the other, equal to 2; and o B, which is common to both
triangles, equal to 3.

Both triangles would have been the same in size and shape,
although either of the other two given lines had been taken as
the one, the extremities of which were to be the centres from
which circles were to be described, with the remaining lines as
radii ; but the side on which the two triangles applied to each
other would have been different, and so would have been the
positions of the other parts.

This fact of the symmetrical triangles being constructed by
the same operation, is a very important one; for it enables us
to assume that symmetrical surfaces, or those that have all their
sides and angles equal, but placed in a contrary order, are equal ;
and this once admitted, saves much of that indirect demon-
stration, which, though perhaps strictly geometrical, is far more
tedious, not more satisfactory to the mind, and certainly far
less useful.

This seems to be one reason why geometry is so completely a
sealed book to the greater part of mankind, not only to the igno-
rant and the unthinking, to whom, of course, all the sciences and
all subjects of reasoning are sealed books, but to the great majo-
rity of those who are educated, and who, in the years of their pu-
pilage, have conned over the Elements of Geometry,among other
subjects, which were worked at only to be forgotten, or rather,
which could not be forgotten—never having been understood.
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The particular way in which anything stands, lies, or is
situated, does not affect the value of that thing. A man is in
no way a different being when he stands with his face to the
north, than when he stands with it to the south; a sovereign
is the very same coin, whether it is in the right hand pocket or
the left ; and when it is put down upon a counter in payment;
the shopkeeper makes no dispute about the side that happens
to be uppermost, so that the coin is of sterling metal and the
proper weight, which are the true elements of its value. In
common life, we do not make position an element of value, ex-
cept of that particular value which arises from the fact of the
thing valued being in a particular situation ; and this has nothing
to do with the abstract or intrinsic value of the thing. A
sovereign in the pocket is a very different thing to a hungry
man in a city, where there is food ready dressed within a few
yards of him, with a vender seeking customers, to what it is
on a barren hill twenty miles from any human habitation, or
on a barren rock in the middle of a wide ocean ; but in all these
situations the intrinsic value of the sovereign is exactly the
same, and the difference of its value to the man depends upon:
circumstances wholly external and independent of the value of
the coin itself.

1t is the abstract values of things—their values in themselves
and without any regard to external circumstances— which are
the subjects of all the mathematical sciences ; and as geometry
is the branch which applies to magnitude, magnitude in the
abstract, and without any regard to circumstances external of
the magnitude under consideration in the particular case, is the
proper subject of geometry.

In the above figure, the triangle o p Bisas equal in the whole,
and in all its parts, to the triangle a ¢ B, as if they were both
turned the same way., The sides o p and a ¢ are radii of the

cc2
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same circle, and 8o are Bp and Bc; while A B, being the same
identical line in both triangles, cannot admit of dispute. Baut,
if in the same triangle, equal sides have equal angles opposite
to them, the same must hold in the case of triangles which are
every way equal. In the case under consideration, the two
angles at A must be equal to each other, and so must the two
angles at B, and the angle at ¢ in the one triangle must be
equal to the angle at p in the other ; for the equal ones are not
only opposite to, but contained by, equal sides in the two
triangles.

It is true that the equality of these two triangles, o ¢ B and
_A D B, are equal by construction and not by measurement ; but
still the equality is not on that account the less true, or the less
evident. If we suppose the line A B to be continued, as it is in
the dotted line to E in the one circle, and to ¥ in the other,
then both circles are equally though symmetrically divided by
this line, as it passes through both their centres ; and therefore
whatever is true of them on their intersection on the .one
side of this line, must be equally true of them.on the other
side, the difference being merely in position and not in form or
value. : '

We have treated this principle of what may be.called  sym-
metrical equality,” at some length ; because, though like the
principle of motion, it isnot formally admitted into the elements
of geometry, yet, like that principle, it must be afterwards
assumed. Thus the equality of the two parts into which a
circle is divided by a diameter or line passing through the
centre, is neither taken as a definition, nor demonstrated as a
theorem, it is barely assumed. The two semi-circles are.sym-
metrical ; and thus the modes of proof generally admitted in
the elements, do not apply to them. But surely it is better at
once to explain the general principle, than tacitly to assume
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the particular case. It is not in geometry only that this unwise
mode of dealing with a subject is a stumbling-block in the way
both of knowing and of doing. We shall now show " how this
principle may be applied in one or two cases.

7. To divide an angle into two equal parts, or, as it is usually
expressed, “to bisect a given rectilineal angle.”

On the angular point A as a centre,; and with any radius not
longer than the lines which contain the angle, describe an:arc
cutting those lines in the points B'and ¢. Then from B and c,
as centres, and with any radius, only it must be the same in
both, describe two arcs to the other hand from the angular
point, crossing each other.in the point n. Draw a line through
» and the angular point, and thisline A p bisects the angle.

—

Draw B p and ¢ p. Then o8B p and A 0 » are symmetrical
triangles, having AB=40,BDp = 0, and A p common to
both. Therefore they are every way equal, namely, the two
angles at A are equal, or A p bisects the given angle at a ; also
the angle at B = the angle at ¢; and the two angles at » are
equal to each other; for all the angles of which equality is
alleged are opposite to equal ‘sides of the equal symmetrical
triangles.

8. If we examine the last part of this figure a little miore.
closely, we shall find that it has further information to give us.
Draw B q, and it is the chord of the arc which cuts the sides of
the angle in the points B and c. A D bisects the arc, because
it bisects the angle which that arc subtends at the centre a ;
and if it bisects the arc, it must bisect the chord of that arc:
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Hence B £ is equal to = ¢ ; and the angle 4 E B is equal to the
angle a E c; for they are opposite equal sides in the equal and
symmetrical triangles. A E B and A E ¢ are on opposite sides of
A E. But they are the angles made on one side of a line by
another crossing it, and therefore they are together equal to
two right angles; and they are equal to each other; therefore
each of them is a right angle. Consequently A p bisects the
line B c at right angles in the point .

But a p is 8 line passing through a, the centre of the circle
of which the arc B p is part ; B c is a line meeting the arc in
the two points B and ¢ ; therefore,

9. If aline passing through the centre of a circle bisects
another line which does not pass through the centre, but meets
the circumference both ways, it cuts it at right angles; and if
it cuts it at right angles, it bisects it. Consequently, if one
line bisects another at right angles in a circle, the line which
bisects the other passes through the centre of the circle, or
would pass through it if continued far enough.

Also, if two lines bisect other lines at right angles in a circle,
both the lines which bisect the others must pass through
the centre of the circle, that is, the centre must be in the
point where they cross each other, for that is the only point
common to both lines.

This principle enables us to perform two problems:

First. To find the centre of a circle. Draw any two chords
and bisect them at right angles by two lines, and the intersec-
tion of these lines is the centre of the circle. These two chords
may have one extremity at each and the same point,—hence,
we have this truth :

. If three points are given, the circle passing through those
points is also given ; and the construction of this circle from the
data is our other problem.
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. Secondly. To describe a circle through "thrée given points;
or, which is evidently the same, to describe & circle which shall
touch all the three angles of a given triangle. Bisect two sides
of the triangle at right angles, and the intersection of the bisect-
ing lines is the centre of the circle. We shall illustrate this hy
a diagram, as it is often useful in practice.

A B ¢ is any triangle, it is required to describe a circle which
shall touch all its angles.

\4

Bisect A B and B ¢, by describing arcs on the angles as
centres, with radii larger than half the side, and the same for
both ends of each ; draw the bisecting lines through both cross-
ings of the arcs on each, and produce them till they cross
each other in p ; and b is the centre of the circle. The radius
is the distance of » from any of the angles.

There is something to be learned from this figure, and so we
shall repeat it, leaving out the arcs and lines which were
necessary for finding the centre b, drawing lines from that
centre to the angles, and strengthening the sides of the triangle.

An angle is said to be at the circumference of a circle when
its vertex or point is in that circumference. Thus, the angles
A, B, and ¢ of the triangle in the following figure are all at the
circumference. : S
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An angle at the circumference is said to stand upon the arc
which is intercepted between the opposite ends of the lines that
form the angle, and to be contained in the remainder of the

circumference. Thus the angle A stands on the arc a (extending
from B to c), the angle B stands on the arc b (extending from
ctoa), and the angle c stands on the arc ¢ (extending from
A to B).

Also, the angle A is contained in the sum of the two arcs 3
and ¢; the angle B in the sum of the two arcs @ and ¢ ; and the
angle ¢ is contained in the sum of the two arcs a and b ; there-
fore

The three angles a B and c, taken altogether, stand on the
whole circumference of the circle. But A B and c are the three
angles of a triangle, and as such they are equal to two right
angles. Wherefore,

The sum of all the angles at the circumference of a circle,
which stand on the whole of that circumference, is equal to two
right angles.

But all the angles at the centre of a circle standing on the
whole circle, are together equal to four right angles, for they
" are all the angles round a point. Therefore,

All the angles at the centre standing on the whole circum-
ference, are together double all the angles at the circumference
standing on the same. "
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But the angles at the centre are in proportion to the arcs on
which they stand, for the arcs are their measures, and measures
are the foundations of all proportion. Therefore, again,

Any angle at the centre is double the angle at the circum-
ference, which stands on the same arc.

Refer again to the diagram. The lines 4 b, B D, aud ¢ D, arc
drawn from the angles A B and ¢, to p the centre of the circle ;
and they stand on the same arcs as the angles of the triangle.
A Bcand apc both stand on the arc b; A 0 8 and A » B on the
arcc; and Ba cand Boc on the arca. Therefore o p¢ is
double A Bc; A p Bisdouble A ¢ B; and Bp ¢ is double Ba ¢

The fact of the angle at the centre being double the angle at
the circumference, might have been arrived at by applying the
principle of symmetrical triangles to a particular case ; but the
general investigation is much more satisfactory.

10. It will be seen that the magnitude of the angle at the
circumference increases with the arc or segment upon which it
stands, and not with that in which it is contained. It is always
half the angle at the centre ; and as the angle at the centre is
in proportion to the arc on which it stands, the angle at the
circumference, which is the half of it, must always be in pro-
portion to half that arc.

The angle in a segment is, therefore, always inversely as the
segment which contains it, and directly as the segment upon
which it stands. The words ‘segment” and * arc” being
synonymous in this use of them.

These two segments, namely, the one that contains  the
angle, and the one upon which the angle stands, and which
determines the magnitude of the angle, always between them
make up the whole circumference. But the angles standing
on the whole circumference, and having their vertices at the
circumference, are always equal to two right angles, There-
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fore, if the circumference of a circle is divided into any two
segments, the angles in those segments are always together
equal to two right angles, as they are the supplements of each
other.

Thus, if any circle, A Bc D, is divided into two segments by

any chord, as for instance the chord a ¢, the angles ABc in the
one segment, and A pc in the other, are always equal to two
right angles in which way soever the chord may divide the
the circle. Also, if another chord is drawn, joining the vertices
of the angles, as the dotted line » B, the angles p A B, D G B, are
together equal to two right angles. Hence, we have this
general conclusion :

If a four-sided figure can be inscribed in a circle, that is, if a
circle can be drawn so as to touch all its angles, the opposite
angles of that figure are together equal to two right angles.

Baut this is not a property of all four-sided figures, for there is
a condition in it, and we must have the means of knowing
whether any given figure has or has not this condition ; and
this takes the form of the following problem :

To determine whether a given four-sided figure canor cannot
be inscribed in a circle. As all the four sides are here placed
in a circle, the line which bisects each of them at right angles
must pass through the centre, and unless these lines all meet in
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one point, the figure cannot be inscribed in a circle.” We shall
take a figure at random:

The first of these is the figure made at random ; the second is
the trial, by bisecting the sides at right angles, as formerly
explained ; and as there are four crossings as marked by the
dots, the figure cannot be exactly inscribed in a circle ; but it
can be so very nearly, as the dots are close together ; and a circle
drawn from the fifth dot in the centre touches the angles B and
¢, but it is a little within at a, and a little without at .

Another truth which follows from the same principles is the
following :

All angles in the same segment of a circle are equal to each
other, in what places soever their vertices may be situated, and
whether the segment be part of a larger circle or a smaller.

Thus if ABD and a b d be equal segments, that is, each
containing the same part of a circumference, but the one part
of alarger circle than the other ; then the angles which have
their vertices at 1 2 and 3 in the first, and at 4 and § in the

~~.
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second, and also all possible angles that could be made in either
segment or in any other equal segment whatever, are exactly
the same portions of a circumference. For,

Find ¢ and ¢, the centres of the segments, and draw the dotted
lines A ¢, ¢ pin the one, and a ¢,c d in the other; and as the seg-
ments are the same parts of the circumference, the angles A cp,
and a ¢ d are equal, and so are the re-entering angles on the
opposite sides of the dotted lines, which are their supplements
to four right angles. But these supplements are double of any
of the angles in the segments, for they are the angles at the
centres answering to the arcs on which the supplements stand.
Therefore, all the angles are halves of equal quantities ; conse-
quently the angles themselves are all equal.

Any angle in a semicircle is a right angle, because it is equal
to the angle in the opposite semi-circle, and the angles in the
two segments which make up an entire circumference are
always together equal to two right angles.

For the same reason, an angle in a segment less than a semi-
circle is always greater than a right angle ; and an angle in a
segment greater than a semicircle is always less than a right
angle. The difference of the angle from a right angle is always
half the difference of the arc from a semicircle ; but it is less in
the case of greater, and greater in the case of less.

11. We are now prepared to solve the following pro-
blem :

Upon a given straight line, to describe a segment of a circle,
which shall contain an angle equal to a given angle.

This problem is often of much service, to those who are handy
with a pair of compasses, in the construction of plans; but
before we proceed to it, we must premise another :

To make, at a point in a given line, an angle equal to a given
angle.
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This is nearly self-evident : let A be the angle, and B-the
point in the line. On a describe an arc ¢ b, and with the same
radius describe an arc from B as a centre and on the side of the
line, and toward that hand where the opening of the angle is to
be. Then with a radius equal to the chord of ¢ », and from
the point where the second arc meets the line, describe another
arc cutting that one ; draw a line through the point B and the
intersection of the arcs, and the angle is made.

[) : VAR
:
D B »
Draw the chords ¢ p and £ F, and they are equal, being

chords of equal arcs ; and the other sides of the triangles are all

made equal. Therefore, the angle at B is equal to the angle
at A.

Let usnow return to our main problem : given any line

A B

it is required to construct upon it a segment of a circle that
shall contain an angle equal to a sixth part of a circumference,
or 60°. This is the angle of an equilateral triangle, for it is the
third part of two right angles, The segment which we want
must be greater than a semicircle, because the angle in it is less
than a right angle. The given line A B is the chord of the arc
on.which the segment has to stand; and therefore it' must
subtend at the centre 120°, which is double the angle in the
segment.

The problem is thus reduced to this: To apply to the given
line a B a triangle which shall have its other two sides equal
to each other, and the angle between them equal to 120°, or
one third of a circumference ; and the point of this angle will
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be the centre of the circle. The segment required will thus be
two-thirds of a circumference.

We have not yet mentioned the method of constructing a
triangle from any data except the three sides: but the present
is a simple one, and we have data enough. The lengths of the
equal sides we cannot know; but we know the sum of the
angles opposite them ; for it is 180°—120°, that is 60° ; and they
are equal, so that each of them is 30°, or half the angle of an
equilateral triangle.

D,
Zo?- ; )J,
i @
b A B

Draw any line @ b, and from the ends as centres with a
radius = a b, describe arcs, crossing in ¢; join ¢ to a and to b,
and the triangle is equilateral by construction. Om b and ¢,
with the same radius, describe arcs crossing in d,and da b
is half the angle of an equilateral triangle. Apply this
angle at each extremity of A B, and produce the line till they
meet in ¢, and c is the centre of the segment. On ¢, with ¢ a
or ¢ B for radius, describe the segment o p B, and the angle
formed by the lines p A and p B, or any other formed by lines
from A and B meeting at any point in the segment, is an angle
of 60°.

12. If a straight line touch a circle, and if from the point of
contact another straight line is drawn cutting the circle, the
ahgles which this makes with the touching line or tangent, are
equal to those in the alternate segments, that is, the segments
on the opposite sides of the line which cuts.
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Let p & touch the circle a B ¢, and let ¢ A, drawn from the
point of contact, cut the circle in the point ¢; then the angle

c

D un

A c E on the right of A ¢ is equal to the angle A F ¢ on the left
hand segment; and the angle A ¢ p on the left of the line is
equal to the angle A B ¢ in the right-hand segment.

This still depends on the same principle. The angles on the
opposite side of the line which cuts, are the supplements of each
other to two right angles; and the angles in the opposite seg-
ments are the supplements of each other also ; only the angles in
the segments are inversely as the segments, while the segments
themselves are directly as the angles made by the cutting
line and the tangent.

If the line which cuts passes through the centre, it must
make right angles with the tangent, and divide the circle into
two semicircles, the angles in which will also be both right
angles. The angles of the lines and the angles in the segment
are thus both equal in the same position of the line which cuts,
namely, when it is perpendicular. But when the line slopes,
the angle and the segment from which it slopes both increase,
and the angle in the segment diminishes at the same rate ; and
just as much as the angle and the segment increase on the side
from which the line slopes, they diminish on that toward which
it slopes, and as the segment diminishes the angle in it increases
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at exactly the same rate. Therefore, in every position of the
cutting line, the angle made with the tangent is equal to that
in the alternate segment.

13. At the extremity of a gi-vm line, to draw another line
which shall be perpendicular to the given one. This may be
done upon the principle that the angle in a semicircle is a right
angle.

Let a B be the line, and the perpendicular to be drawn
upwards from the extremity . Take any point ¢, near but not
at the end of the line, and at some distance from it on the same
side to which the perpendicular is to be drawn. Fromc asa
centre, and with a radius extending to B, but not beyond it,
describe an arc, cutting the line in p, and touching the extre-
mity B, and continue this are till it is more than a semicircle.
Then from b, through c, draw a line cutting the arc in & ; and
a line from B passing through £ is perpendicular to the line a ».
For, since p E passes through the centre c, thearc pBE isa
semicircle ; and consequently the angle b B E is a right angle.

Y n 3

A perpendicular to a line at any other point of its length
could evidently be drawn in the same manner, the point being
made to answer to B in the above figure. When, however, the
point is not near the end of the line, the usual way is to take
equal distances on each side of the point, and proceed as for-
merly directed for bisecting a line at right angles; so that we
need not introduce a figure.
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The first of these operations does not admit of being put
in the inverse method ; for, from & point without a line to let
fall a perpendicular on the extremity of the line, is not a prob-
lem, if the position of the line is fixed and determinate. There
is only one situation of the point in the direction parallel to the
line that will answer in this case; and, so if the operation is
possible, the solution is involved in the data, and there remains
nothing to do but to draw the line through the two given points,
which determine its direction.

1f, however, the position of the line to which the other is
to be perpendicular is not fixed, a problem does arise, and one
which very often occurs in practice. The case most imme-
diately connected with the general subject of this section is,

14. From a given point without a circle, to draw a line which
shall touch the circle, but not cut it ;—in other words, to draw
& tangent to a circle from a point without the figure.

This is an application to the circle of a more general problem,
namely, from one given point to draw a line which shall pass
within a certain given perpendicular distance of another given
point ;—as, for instance, to lay down a straight line of road
from one house that shall pass by another house at the dis-
tance of exactly four hundred yards. As the perpendicular
is the shortest distance between a point and a line, the per-
pendicular from the house upon the line of road is the line
which is to be four hundred yards long ; but there is only
one point in this line given, namely, the house, whose dis-
tance from the road the line is to represent. In the line of
the road, also, there is only one point given, namely, the po-
sition of the house at which the line of road commences.
Two points are necessary for determining the direction of a
line; and therefore the positions of both of these are inde-
terminate ; and all that the data inform wus of respecting

DD
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them is, that each must pass through a given point, and
that the two must meet each other at right angles.

Bat the length of one of the lines is given, and one end of it
is fixed at the house; therefore, if we imagine a circle to be
drawn round the house at the distance of four hundred yards;
and because the diameter, or, which is the same in direction,
the radius, is at right angles to the tangent; the road must
be laid down so as to touch this circle, but not cut it. This is
therefore, nothing but a particular case of the general problem
of drawing a tangent ¢ a circle.

Even this cannot be done directly ; but we can draw a tan-
gent from a circle, that is, from any point in the circumference ;
and when this is once done, we can accomplish the other.

In the first of the three figures following, ¢ isany circle, and a
any point from which a line is to be drawn to touch the circle.

Repeat the circle as in the second figure. Join 4 ¢, cutting the
circle in B ; take Ba=B4a; from A and a as centres, describe
arcs cutting each other in b ; join B b ; and B b is perpendicular
to the radius at B, therefore it is a tangent to the circle at that
point.

Again ; repeat the circle as in the third figure, and draw the
tangent at B as before. Then, from c as a centre, and at the
distance ¢ A, describe the arc A p, and continue it till it cut
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the tangent drawn from » in the point.p. Join ¢ b, cutting the
circumference in the point £ ; draw A E; and A E is the tangent
required,—that is, it is drawn from the point a, and touches the
circle in E, but does not cut it.

The triangles ¢cBp and cEA are equal in every respect,
though they are symmetrical, and the one in great part over-
lays and conceals the other; and as ¢ » and ¢ Ao are equal,
being radii of the same circle, and the angle at B opposite the
one of them is a right angle, the angle at £ opposite the other
must be a right angle also. Therefore o E touches the circle
at right angles to the radius, and thus it is the tangent which
wasrequired. There are other methods of performing this
problem ; but they require the application of principles which
we have not yet investigated.

"15. The problem of constructing upon a given line a seg-
ment which shall contain a given angle, and the converse,
the cutting off of a segment from a given circle which shall
contain a given angle, are both readily performed by means of
the agreement of the angles made by the chord with the tan-
gent, and those in the alternate segments into which the chord
divides the circle, as mentioned in article 12 of this section.

In the case of constructing the segment which shall contain
the angle, we have only to draw an indefinite line as a tangent ;
to make at any point in it an angle equal to that which the
segment is to contain; and to produce the line forming that
angle to exactly the length of the given chord. This being
done, we have next to draw a perpendicular from the point
where the chord meets the tangent, and the centre must be in
this line. 'Lastly, we have to bisect the chord at right angles,
and produce it till it meets the perpendicular to the tangent,
and the point in which they meet will be the centre, from

pD2
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which the segment may be described on the alternate side of
the chord.

B‘)I\L ¥ K

Upon ¢ b, to construct a segment that shall contain an angle
equal to that of a.

Draw B E as the tangent, and at the point p in it make the
angle B p ¢ equal the angle at 4, and p ¢ equal the given chord
c¢p. Frompdraw p r perpendicular to B E ; bisect ¢ p at right
angles, and produce the bisecting line till it meets p ¥ in o,ando
is the centre. From o with radius o p, describe p A ¢; and
and p A c is the segment required ; for it is the alternate seg-
ment to the angle B p ¢, which is equal to the given angle, and
it is constructed on b ¢, which is equal to the given line ¢ p.

The points which we have mentioned in this section com-
prise almost all the elementary principles of the simple inter-
section of lines and circles, which are absolutely necessary.
There are, however, a few more that are very nearly self-
evident in their nature,which it may be proper to bear in mind.

1. All circles which have the same radius, or equal radii,
are equal in diameter, in circumference, in area or surface, and
in every respect ; and if two circles can be shown to be equal
to each other in any one of these respects, it may be inferred,
without any farther proof, that they are equal in each and in
all of the others.

.
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2. In equal circles, corresponding parts are also equal to
each other, whether they be parts of the area, the circum-
ference, the diameter, or of any two lines placed similarly in
the circles. We must bear in mind, that any portion cut off
from a circle by a straight line or chord which meets the cir-
cumference both ways, is a segment of the circle; and that
any part cut off by two radii which meet at the centre of the
circle, is a sector, which means “cut into,” in like manner as
segment means “ cut off.” This being borne in mind, it will
follow, from what has been stated above, that

3. In equal circles, equal straight lines cut off equal seg-
ments, both in respect to the true segments which contain
the centres, and of those which do not ; and that whether the
equal segments be cut from corresponding parts of the circles
or not.

4. In equal circles, equal sections are formed by radii making
equal angles at the centres, or, which is the same thing, stand
upon equal arcs of the circumference ; for, as the angle and the
arc are mutually and reciprocally the measures of each other, it
follows, by necessary consequence, that whatever is in the pro-
portion of the arc, and regulated by it, must also be propor-
tional to, and regulated by, the other. Hence,

5. If two lines cross or intersect each other in the centre of
a circle, and are both produced till they meet the circumference
both ways, the vertically opposite sections which they form
must be equal in every respect. They are equal in their angles,
because the vertically opposite angles which are formed by
two lines which cross each other are always equal ; they are
equal in the arcs of the circle, because the angles which are the
measures of those arcs are equal ; and they are equal in their
straight sides, because those sides are all radii of the same circle,
and therefore equal by the fundamental property of that figure.
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The argument for equality, in all these cases, is the * suffi-
cient reason,” namely, that there is sufficient reason for assert-
ing the equality of the quantities in each case in which they
are said to he equal, and no reason whatever of denying, or
even for doubting, their equality. In every part of each of
these five cases which have been enumerated, the argument
founded on the sufficient reason is complete. We are in
possession of all the circumstances which determine the value
of each of the quantities ; and those circumstances are exactly
the same, in number, in order, and in extent, in every two
quantities which are alleged to be equal. Now, this is per-
haps not quite so simple a proof of equality as that which
we obtain when we apply one magnitude to another, and find
them to coincide exactly. It is, however, a far more general,
and therefore a far more useful ground of equality than the
other; for though the notion of equality which we obtain by
supra-position, or the placing of one magnitude upon another,
and seeing the perfect coincidence of all their boundaries,
answers very well in the mere elements of geometry, yet it does
not carry us very far even there ; and we are quite unable to
apply it to almost any one practical case. Thus its apparent
simplicity is of that simple kind of which little or nothing can
be made.

It does not apply to any description of magnitudes, except
straight lines, angles, and surfaces ; neither does it apply to equal

- surfaces, bounded by equal lines, and having equal angles ; un-
less these are turned the samne way. Besides, the idea of motion
is always involved in this proof of equality; for there is no
other way in which we can imagine one line, one angle, or one
surface to be applied to another, but by lifting the one of them,
and actually making the application in a mechanical manner,
very much in the same way as the length of a board, or any
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other substance, is ascertained, by applying to it a foot rule, or
any other instrament for the measuring of length.

Even in geometry, it is only a very little way that this doc-
trine of equality will carry us; for when we come to the
equality of lines, at the extremities of which there are
unequal angles, we cannot suppose the one figure to be placed
on the other so as that we can derive, from the placing of it,
any useful conclusion whatever. This holds in the case of
triangles, which are the most simple and the most determinate
of all straight-lined figures. It is true, that if the three sides
of one triangle are equal to the three sides of another, the two
triangles must always be equal to each other in every respect ;
except that of lying in different directions, which has nothing
to do with the question of magnitude, or with that of shape.
But the converse of this does not hold ; for though triangles
which have the sides different from each other, are necessarily
different in shape, and in their angles, and thus cannot be
applied to each other by supra-position ; yet still they may be
exactly equal in area, or in the surface which they contain
within their bounding sides. This is of itself sufficient to show
us that the principle of coinciding, or occupying the same space,
in the ordinary signification of the words, cannot be made the
general ground of equality, even in surfaces; but that it is
strictly confined to straight lines, rectilineal angles, or like
parts of the same circle, or of equal circles.

Nor is it difficult to see why this must be the case ; because
our notion of a surface, considered as a magnitude, is a eom-
pound one, involving the idea of two factors as elements, and
the multiplication of those factors, in order to obtain a product,
which product is the proper expression for the value or mag-
nitude of the surface. Now we have seen already that the
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same product may be obtained from an endless mumber of
factors, provided that the one is increased, and the other di-
minished, in due proportion. Thus, if any surface or area
whatever is expressed by the product of two definite factors, a
and b, that is, by a b ; and if we state the proportion ;
m.a=b:n,

then, to every possible value of m, however great or how-
ever small, there will be a corresponding value of n, which
will make the product m n=the product a b; and if we have
the value of m given, the corresponding value of n can always
be found by a simple application of the rule of three ; for in all

abd
cases n = —
m

If supra-position asa test of equality will not apply to surfaces,
of which our notion as definite magnitudes is always the result of
a single multiplication only, much less will it apply to solids, of
which our notion is that of the product of two multiplications
of three factors, standing to each other in the relations of length,
breadth, and thickness.

In the case of ratios it is still less applicable ; because the
ratios are not in themselves quantities at all: they are merely
the results of the comparison of quantities, and therefore they
do not occupy space in any sense of the word. Geoinetry
would, however, be very imperfect and very useless, if it did
not embrace the doctrine of ratios; and it really does appear
that the tying down of the primary notion of equality in the
student to this very limited fact of coincidence, is the chief
reason why so much difficulty is alwaysfelt with the fifth book
of Euclid’s Elements, though that book is in reality the simplest
of the whole.

When we come to the general expression of quantities alge-
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braically, which is by far the most valuable portion of the ma-
thematical sciences ; or to the arithmetical expression of them,
which is the only means whereby the principles can he reduced
to practice ; the notion of occupying the same space can have no
application or meaning whatever; because neither the algebrai-
cal expressions, nor the figures of arithmetic, have the slightest
reference to the occupation of any space, large or small ; and
therefore we have to judge of their equality or inequality
upon very different principles. The one guiding principle in
these is, that equal data equally dealt with invariably lead
to the same results ; and this ground of equality is perfectly
satisfactory, and possesses the advantage of being applicable to
all cases, whether they be of a mathematical nature or not.
Thus, it brings geometry, as well as every other branch of
mathematics, to the very same standard upon which we found
our judgments in all the conduct of life ; and consequently, in-
stead of making geometry stand apart, as if it were unconnected
with our ordinary modes of thinking and acting, it brings it
home to the mind as part of that general education which we
derive from observation and experience, without in the least
affecting that rigid accuracy which is the valuable part of ma-
thematical study. It is impossible to extend this primary geo-
metrical test of equality beyond the subjects of lines and angles,
or to bring it in any way to bear upon our common modes of
judgment ; and surely, therefore, the wise plan is, to endeavour
to bring these modes of judgment to bear upon geometry as
well as other matters, in order that our modes of thinking may
be the same upon every subject. By this means we are left
perfectly untrammelled, to direct our attention to the peculiari-
ties of the subject itself ; and if thcre were nothing more than
this to be gained, it would be well worthy of all the labour that
it costs.
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We have alluded to this subject more than once in the pre-
vious part of this volume ; but as we are now to proceed more
directly to subjects which are geometrical, we have felt it neces-
sary to dwell upon it at some length, in order that the reader
may have it fresh in his memory, and thus be prepared for
availing himself of any and every advantage which it may afford.
We purpoeely treated of the doctrines of ratios, and of powers,
and roots, at least in their most elementary forms, at an earlier
stage than is usually done in books of geometry. We did so, in
order that we might carry our doctrine of proportion along with
us as an element ; and we feel convinced, that any one who
chooses to look into the fifth book of Euclid’s Elements, where
he will find that, with the exception of one of the axioms, and
a single proposition, which is very nearly self-evident, the four
preceding books of the elements are not even once alluded to in
the fifth one, which, in fact, stands alone, and has really nothing
to do with the properties of figures ; as the ideasin the axiom,
and the proposition to which allusion is made, are both strictly
arithmetical in the particular case, and algebraical as taken
generally. :

Having given these explanations—which, however, are in-
tended more for the guidance of the reader, than as an apology
for departing from the established order of succession in the
elements of geometry—we shall proceed to another section.



411

SECTION XVI.

COMPARISONS AND RELATIONS OF PLANE FIGURES, THEIR BOUND-
ING LINES, THE ANGLES MADE BY THOSE LINES, LINES IN-
TERSECTING THEM, AND THEIR SURFACES OR AREAS.

IN order that we may proceed with the requisite ease and
expedition, in dealing with the subjects enumerated in the title
of this section, it will be necessary that we carry along with us
some preliminary notions, in addition to what have been treated
of in the former sections. This is the more necessary, on
account of the general view which we wish to take of the doc-
trine of equality, which doctrine also involves in it the opposite
doctrine of inequality, in as much as where the one ends, the
other begins as a matter of course.

With regard to straight lines, to circles, and to angles as
determined by circular measures, we believe that we can hardly
make the matter plainer than we have already attempted to-do ;
or indeed than it must appear to every one who understands the
definition of aline, a circle, or an angle, when either of them is
presented singly to the mind.

When, however, we come to compare figures, or the sides or
angles of figures, the quantities which we have to compare are
results, and not simple data given singly ; and consequently, in
them the comparison of the results may involve, and very often
does involve, the comparison of the means by which these
results are arrived at. Indeed, it is this compound view of
the matter in those cases, which gives them the greater part
of their value; and therefore, if we do not familiarize our-
selves with the result, so as to be able to analyze all the
steps, and compare them, each with each, in the two parts
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of our general comparison, we never can be certain or satis-
fied that we are right; and thus, while we have the sem-
blance of mathematical demonstration, we have nothing in
reality but simple belief. This is another formidable obsta-
cle in the way of the student of elementary mathematics ;
and it is one, the removal of which is of far more importance
than any apparent progress in detached theorems and problems,
which could possibly be made by one before whom this ob-
stacle were always presenting itself.

GENERAL MAXIM,

The same data which are sufficient for enabling us to con-
struct any figure, are also sufficient for establishing the perfect
equality in every respect of two figures of the same species ; that
is to say, if the data are all exactly the same in the case of the
one figure as in that of the other.

This is a simple and general principle, not affected by any
contingency ; and, therefore, like all such principles, the con-
verse of it is true ; that is to say, the same data which suffice
for establishing the perfect equality in every respect of two
figures, are quite sufficient for enabling us to construct those
figures.

The truth of this maxim, viewed both directly and con-
versely, is so clear and simple, that it cannot be made more so
by any attempted demonstration ; and yet it is one which, though
seldom stated and generally overlooked, is very useful in short-
ening and simplifying many reasonings in mathematical science.
‘When we consider it, we can readily see that it is of very
general application, not to mathematical subjects only, but to
all subjects in which any thing has to be done. If for instance,
one states a proposition in writing, makes a drawing, or per-
forms any other operation, in which a result is arrived at by the
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use of means; then this result is nothing' more than a copy of
the mental perception which was previously had of the use of
the means, and the result that, as a matter of certainty, followed
the use of them ; and if this is done with sufficient knowledge
and judgment, the person doing it can repeat it again and again
with a feeling of perfect certainty that the result must be
perfectly equal in all cases.

Though this maxim is perfectly general, yet we muet under-
stand it within the proper limits before we can depend upon it
for that absolute certainty which belongs to the mathematical
sciences, and to them only; though the nearer that we can
approximate this certainty in other matters which are of a mixed
nature, the better. This, by the way, is the grand practical
use of mathematics, and of incalculably more value to mankind
than all the technical applications, which are absolutely neces-
sary upon comparatively few occasions in the common business
of life. ‘

Let us apply this general maxim to the simplest of all cases,
namely, the ascertaining of what data are necessary for con-
structing, and for ascertaining the perfect equality, in every
respect, of

TRIANGLES.

1. If the three sides are given, we have already shown how
the triangle may be constructed, with the limitation of this
single condition—that any two of the three sides must be greater
than the third one. We have to place one of the sides ona
straight line, and on the extremities of this side, as centres,
describe circles, having the radii equal to the other two sides,
one at the one extremity and the other at the other; and if the
intersection of those circles is joined by two lines drawn to the
extremities which were made the centres of the circles, a trian-
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gle is constructed, the three sides of which are equal to the
sides which were given.

It is of no consequence in what order the three given sides
are taken, because the triangle must have exactly the same size
and shape, in all cases of the same threesides ; but it may have
several positions, which do not, however, in the least affect its
form or its value.

If the same side is placed on the line, in order that its extre-
mities may be the centres of the circles, there are four positions
of the triangle in the case of its being scalene ; that is, of having
all its sides unequal. That is to say, the triangle may be-con-
structed upon either side of the line, and the longer ar the
shorter of the two remaining sides may be placed at one
extremity, that is, made the radius of the circle there. Thus the
triangle may be turned side for side, and also end for end, in
both cases, which gives four positions ; but as the sides are all
the same in each case, and subtend arcs of equal circles, it
follows that the angles opposite the equal sides' are equal in
each of the four positions. ‘

But any of the three sides may be placed on the line, in
order to give the centres of the circles whose radii are made
respectively equal to the other two sides; and this again gives
three varieties of position in each of the former four, or twelve
in all, though there is nothing in either which can produce the
slightest difference in the size and shape of the whole triangle,
or of any of the six parts—the three sides and three angles of
which it is made up.

In all these twelve positions of the triangle, we have assumed
that the position of the original line to which the side first used
is applied to remain the same; but this line may have any
direction whatever, without in the least affecting the value of
the triangle, or of any part of it; and, therefore, the same

——— —
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triangle may have an indefinite number of positions. This,
without any reference to the fact that position is not a datum
in the construction of the triangle, would suffice to show that
position has nothing whatever to do with form or the value;
but that the triangle, of which the three sides are known, must
be the same, in what part of the world soever it is con-
structed, and whether it is ever constructed or not, provided
that the lengths of the sides are expressed in the same measure
and properly understood. Thus, if the three sides of a triangle
are respectively, 5 inches, 4 inches, and 3 inches, which have
the condition necessary for forming a triangle—as any two of
them are together greater than the third, then this triangle has
a definite shape and size from which it cannot deviate; and
any one who remembers the numbers, and is possessed of a
rule or scale divided into inches, and a pair of compasses for
describing circles, can construct this triangle whenever he
pleases ; and if he should describe one in London, and another at
any distant place—say Calcutta in the East Indies—he would
have no more doubt of the equality of those triangles in every
respect, than if they were cut out in two pieces of flat paper,
so that the one ‘could be applied to the other, and be seen to
coincide with it, or fill the same space in the whole and in
every part.

These numbers, 5, 4, and 3, expressing the three sides of a
triangle in the same measure, are worthy of being remembered:;
for, as we shall see afterwards, the angle opposite to the side &
must be a right angle ; and therefore we can always get a right
angle by constructing a triangle whose sides are 5, 4, and 3;
and as they are the simplest lengths of sides which have this
property, they are worth bearing in mind.

2. If two sides, and the angle included between them, are
given, there are sufficient data for constructing the triangle ;
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and if two triangles have two sides and the included angle of
the one equal to two sides and the included angle of the other
—it being understood that it is not the sum of the sides which is
equal, but that each of the two sides of the one triangle, taken
singly, is equal to one side of the other—then the triangles are
every way equal.

This does not require a formal demonstration, or the appli-
cation of the one triangle to the other, any more than the former
case ; for, if the lengths of the sides and the measure of the
angle between them are known, the triangle can be constructed
at any time or in any place; and if two triangles, with equal
including sides, and an eqnal included angle, are constructed—
or even imagined to be constructed—how far soever they may
be asunder, we can no more doubt their equality than we can
doubt that an inch is an inch, or any angle itself and not
another.

The given sides determine their own lengths, and the given
angle determines their position with regard to each other. By
this means the position of those extremities of them which are
most distant from the angle are also determined, and these
determine the length of the third side which joins them. They
do this not only in respect of the length of this third side, but
in respect of its position with regard to each of the two given
ones, at the points where it meets them; and this, of course,
determines the remaining angles of the triangles; and if there
are. two such triangles, it necessarily follows that the third
sides of both are equal, and also that the angles opposite the
equal sides are equal.

3. If one side and two angles of a triangle are given, there
are data sufficient for constructing the triangle ; and if two tri-
angles have a side and two angles of the one equal to a side and
two angles of the other, they are equal in every respect.
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-" If two angles are given, then the third is also given, or, which
is the same thing, there are data sufficient for finding it ; for
the three angles are equal to two right angles, or the angnlar
space on one side of a straight line at a point is the same.
Therefore, to find the third angle, we have only to draw a
straight line, and take any point of it ; then, at this point we
make an angle equal to one of the given angles ; and afterwards
apply to this angle, at the same point, another angle.equal to
the second given angle ; and the angular space between this last
angle and the opposite end of the straight line, which is the
supplement of the sum of the two given angles, must be the
third angle of the triangle. When this is done, the given side
and the three angles are quite sufficient for enabling us to con-
struct the triangle, whether the two given angles are the ones
adjacent to the given side—that is, the one at the one extremity
of it, and the other at the other—or whether one of the given
angles is opposite to the given side. '

In order to construct the triangle, it must be stated in what
order the given angles are to be arranged with regard to the _
given side. If they are both adjacent to it, the form and mag-
nitude of the triangle are determined, but not the position,
because that would be reversed, if the given angles were unequal
and made to change places. Also, if only one of the given
angles is to be adjacent to the given side, we must know to
which extremity of it that angle is to be adjacent, otherwise we
may reverse the position of the triangle. In every case, how-
ver, the magnitude of the triangle is determinate ; and in com-"
paring two triangles, which have the three angles and a side in
the one equal, each to each, to the three angles and a side of the
other, the sides opposite equal angles, and also the angles oppo-
site equal sides, are equal to each other, and consequently the
triangles are equal in every respect.

EE
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We shall illustrate this by a diagram, as it is a little, though
only a very little, more complicated than the preceding ones.
The only limitation required in this problem is, that the two
given angles shall be together less than two right angles ; for, if
they are not, then they cannot be two angles of a triangle, as
all the three are just equal to two right angles.

This being understood, let the line o B be the given side;
and the angles at A and B, the given angles; it is required to
construct the triangle.

First, let the two given angles be adjacent to the given side,
A at the extremity a, and B at the extremity B ; and in this case
it isnot necessary to find the third angle, as it will be deter-
mined by the construction.

Make a B equal the givenside ; with any radius describe arcs
on A and B, the given angles; and with the same radius
describe arcs on the points A and B of the repeated line ; cut off
portions of these arcs, equal respectivély to the arcs intercepted
by the given angles o and B; and through a and B, the extre-
mities of Ao B, and the points of section, draw lines till they meet
in ¢ ; and c is the third angle, A c and B ¢ the remaining sides,
and the triangle is constructed. '

c

PataN

The angles at A and B in this triangle are equal to the given
angles at A and B, for by construction they stand upon equal
ares of equal circles. Also, the lines A ¢ and B ¢ must meet,
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because the interior angles which they make with A B, toward
the side c, are together less than two right angles, They must
meet in some one point ¢, because two straight lines can meet
in one point only ; and as their positions are both determined
by the given angles at A and B, and the point ¢ must be in them
both, they determine the place of the point ¢, and that point
determines the length both of A ¢ and B ¢; consequently the
whole triangle is determined.

Secondly, Let one of the given angles—as, for instance, the
angle c—be opposite the given side A B, and the other adjacent
toit, as the angle a, at the extremity a of the givenside; o B is
the given side, and a and ¢ the given angles.

AL

The first thing to be done here, is to find the remaihing angle
at B; and after it is found, the triangle is constructed exactly
as in the former case. To find the angle B,

ch
D-

F

draw any line p £, and in it take any point r,but not at either
extremity. With any radius, describe arcs A or ¢ on the
given angles o and ¢ ; and with the same radius describe a semi-
circle on the line p e from r as a centre, Make the arc A of the
semicircle equal to the arc of the given angle A, and the arc ¢ of
the same semicircle equal to that of the given angle c. Draw
lines from r to mark the terminations of those arcs; and the
remaining arc B represents the angle B of the triangle ; for it is
EE2
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the supplement of the given angles A and ¢ to two right angles
Apply the arc A on the same radius to the extremity a of th(
given side, and the arc B to the extremity B of the same ; througt
a and B, and the extremities of the respective arcs, draw lines,
and those lines will meet in ¢, and form the triangle required.

[

As the only difference between this case and the former is the
finding of the angle B previous to the construction of the tri-
angle, it requires no further explanation.

4. 1f two sides and an angle opposite one of them are given,
the triangle may, in some cases, be constructed with the same
certainty as by means of the data in any of the three preceding
articles ; but there are other cases in which the triangle ob-
tained from these data is ambiguous, or admits of two different
forms and magnitudes; and there are also cases in which the
construction is impossible, so that there can be no triangle.
The same ambiguity and the same impossibility will, of course,
occur when we attempt to prove the equality of two triangles
from two sides, and an angle opposite one of them; and there-
fore this mode of proof can be applied only in certain cases;
and it is necessary to know what those cases are; for in them
the proof is as clear and as complete as it is by any other
data. We shall best explain this by taking data, and construct-
ing the figures as we proceed.

i A

c
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- Let a and ¢ be the twa given sides, and a the given angle.
And first, let the angle a be adjacent to the less side a, and
consequently ‘opposite to the greater side c; and this is the
determinate case in which the triangle can always be construct-
ed, and has only one form and magnitude.

Draw any line A B, and produce it to such a length as may
be judged convenient.

Then, at the point a in the line a b, draw a ¢, making with a »
an angle equal to the given angle at 4 ; and make a c equal in
length to the given side A.. From ¢ as a centre, and with a
radius ¢ B equal to the given side ¢, describe an arc cutting A »
in the point B; join ¢ B, and A B ¢ is the triangle.

This may require some further explanation. The arc de-
scribed with the greater of the given sides ¢ as a radius, must
cut the line A p if produced far enough ; but it can do so only in
one point between A and p; so that the point B cannot have
two situations, and consequently the side o B, or the triangle
A B ¢, cannot have two values.

To prove this: from ¢ draw the dotted line ¢ E perpendicular
orat right angles to A B. oE is less than ¢ B; because the angle
¢ B B opposite ¢ B is a right angle ; and consequently the angle
¢ B E must be less than a right angle, and the less side is oppo-
site the less angle ; consequently ¢ E is less than ¢ B; and the
point £ must fall within the circle of which ¢ is the centre, and
cBtheradius. But the point E is in the line A p, and therefore
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the circle must cut or cross that line, before it can be on the
opposite side of E from ¢,

Again : the point A must fall within the circle, because a ¢ is
by hypothesis, that is as the data were taken, less than ¢ B
the radius. Therefore the circle cannot cut A » a second time
between A and . .

The same figure will show us the state of the data which
leads to the impossible case. If the given side ¢ had been
the less of the two, and less than the perpendicular ¢  let fall
from ¢ upon a b, a circle with this radius could not have cut
the line A p; and consequently there could have been no point
B, and no triangle.

Secondly, Let us examine the case in which the given angle
is adjacent to the greater of the given sides, and opposite to
the less. This is the ambiguous case in all states in which
the opposite side is less than the adjacent one, but not less
than the perpendicular; for when it is less than that, it be~
comes the impossible case.

' A
T c
Let o and ¢ be the two given sides, and a the angle ad-
jacent to the side a, but let A be greater than c.

NN
N
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Draw A p as before, make the angle at a equal to the given
angle, and A c equal to o the greater of the given sides;
and ¢ is one point of the triangle. From ¢ let fall the dot-
ted perpendicular ¢ e; and if ¢, the less of the given sides, is
less than ¢ E, there can be no triangle. Let it be greater than
cE, but less than ¢ a ; then, from ¢ as a centre, with a radius
equal to c, describe an arc; and this arc must cut o o, and
will cut it in two points, B and B, on opposite sides of the
point E, and equally distant from it. 8o that the triangle is
either A B ¢, of which the side situated on A p is the smaller
portion A B; or it is o B' ¢, of which the side situated in the
line a p is the greater portion, A B', made up of the three parts,
AB,BE and £ B ; and the difference of those two triangles is
the triangle ¢ B B/, of which the sides ¢ 8 and ¢ B’ are equal to
each other, being radii of the same circle.

It is also evident that the arc described on ¢ as a centre must
cut the line A p between a and ; for if an arc is drawn about
¢, with the radius ¢ a, the point B must be within the circle of
which that arc is a part, because ¢ B is less than ¢ A the radius.

These four articles embrace all the data, furnished simply
by the parts of a triangle, and without reference to any other
figure, which apply generally to the construction of all
triangles, whatever may be their form; and by which the
perfect equality of any two triangles which possess them may
be established. ,We have seen that all of them require some
conditions or limitations, which are necessary before there can
be a triangle : namely, that no one side shall be greater than
the other two, and no two angles equal to or greater than two
right angles. We have farther seen, that in the last of the
four, it is required that the given angle shall be opposite to the
greater of the two given sides; otherwise the triangle is either
ambiguous, having two forms and values, or the data are in-
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correct, and it is impossible. There is, indeed, one single case
of the less side opposite the given angle in which the triangle
is possible and not ambiguous ; and that is, when the side oppo-
site the given angle is exactly equal to the perpendicular c E,
and the arc touches the line o b, but does not cut it. In this
case, the angle opposite the greater given side is a right angle ;
and therefore the three angles of the triangle are virtually, if
not expressly, given; and therefore this is a peculiar case, and
properly belongs to that class of data in which the three angles
are given.

There are some particular triangles, however, which, from
their simplicity or regularity, can be constructed with fewer data;
and it may not be amiss to mention at least one or two of them.
The first and simplest is an equilateral triangle, the.only
datum necessary for the construction of which is the length of
one of the sides. For, if one side is given, all the sides are
given ; and all the angles are also given, for they are necessarily
equal to each other, in consequence of the equality of the
sides ; and each of them is the third part of two right angles, or
the sixth part of four. There are some not unimportant con-
clusions to be drawn from this, to which we shall very briefly
advert, after constructing the triangle.

Let A B be any straight line, it is required to construct an
equilateral triangle, having each of its sides equal to A B.

A—8B

Take another line equal to o B, and from A and B as centres,
with a radius equal to o B, describe arcs cutting each other in
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the point ¢ ; and join A ¢ and B ¢; and A B ¢ is the equilateral
triangle required.

If each of the three angular points is made the centre, and an
arc described upon each as a centre, meeting the other tweo,
each of those arcs is the measure of the third part of two
right angles ; that is, of 60° of an .equal circle, of which the
side of the triangle is the radius; but as viewed from each
angle, the side opposite that angle is also. the ‘chord of 60°.
Therefore, the chord of 60° is equal to the radius of & circle;
and if the radius of a circle is applied six times to the circam-
ference, it will subtend the whole circumference in six equal
parts of 60° degrees each ; and if we join the adjacent points of
division all round, we shall have inscribed a regular hexagon,
or figure of six equal sides, within the circle.

The circumference of a circle can always be divided into two
equal parts by drawing & diameter till it meets that circum-
ference both ways; and the radius, applied as above stated,
divides the circumference into six equal parts. Thus we have
an easy means of dividing a citcle into any number of parts,
which mamber is either a8 multiple of .six by two, or a quotient
arising from the division of six by two. These matters are so
simple, however, that any one may readily understand how
they are to be done, wnhout further explanation than hns been
now given.

This property of the chord of 60° bemg equal to the radms,
affords us a very convenient method of erecting a perpendicular
at any.point of a given line, whether that point is or is not the
extremity of the line. Thus, let A B be any line, and let it be
required to erect at the extremity a of the line, another line
perpendicular to A B. .
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On A as a centre, with any radius not greater than o B—but
the greater that it is the operation will be the more accurate,—
describe an arc, equal to at least a third of a circumference,
from A B toward that side where the perpendicular is required.
Apply this radius on the arc from the line o B to the point 1,
and again from the point 1 to the point 2. Then from 1 and 2
a8 centres, and still with the same radius describe arcs cutting
each other in the point ¢ ; join 4 ¢, and a ¢ is perpendicular
to A B at the point . For the arc from theline A3 to1lis
60°, and so is the arc from 1 to 2. But the line ¢ B bisects
the arc 1, 2 ; and therefore the portion of the arc intercepted
between A B and A ¢ is 60° and the half of 60° or 900,
which is the measure of a right angle ; therefore B A cisa
right angle, and a cis perpendicular to o 8. Thisis one of the
most convenient methods of obtaining a right angle in practice.
In the case of an isosceles triangle, or triangle having two

equal sides, the only data required for the construction or for
establishing the equality of two triangles, in the case of the data
being the same, are the unequal side and one of the equal ones ;
for if one of the equal sides is given, the other is given; and
thus the problem resolves itself into the constructing of a trian-
gle of which the three sides are given, and thus we have only to
apply the equal side as a radius at each end of the unequal one,
and describe arcs intersecting each other, in that direction in
which we wish the triangle to be situated ; and when both



PARALLELOGRAMS, 427

extremities are joined to the intersection of the arcs, the triangle
is constructed, The only condition or limitation required in
this case, is that the equal side shall be greater than half the
unequal one ; because if it were not, the arcs would not inter-
sect each other.

The next consideration with regard to triangles, is the equa-
lity of their surfaces when the sides and angles are different ; but
before we proceed to this, it will be desirable to consider some
of the more elementary properties of

PARALLELOGRAMS, RECTANGLES, AND SQUARES,

and the relations which they have to triangles,

A PaRALLELOGRAM is a four-sided figure, of which the oppo-
site sides are parallel; and a line joining the opposite angles
either way, is called the diameter of the parallelogram. This
figure is usually named by repeating four letters placed at the
angles, and taken in regular order round it; or more briefly by
two letters situated at opposite angles. In a parallelogram, every
side is adjacent to two other sides, and opposite tothe remaining
one, that is, the one to which it is parallel ; and every angle is
adjacent to two angles, and opposite to the remaining one ; also,
there are two sides opposite to every angle.  Therefore, though
the sides of a parallelogram are given, the figure is not given—
that is, there is not data enough for the construction of it,
unless at least one of the angles, or one of the diameters, is
given. It will, therefore, be necessary to attend to some of the
properties of the figure, before we proceed to the comparison of
one parallelogram with another, or of parallelograms with tri-
angles.

1. The opposite sides and angles of any parallelogram are
equal to each other, and the diameter joining the opposite angles
either way divides it into two equal parts.
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Let A B ¢ p be any parallelogram ; the sides o B and b ¢ are
equal to each other, and so are the sides A p and B . Also,

D, o

A
Al

the opposite angles at A and ¢, and those at B and p, are equal
to each other. And if a diameter is drawn from a to ¢, or from
B to D, that diameter will divide the surface of the parallelogram
into two equal parts ; namely, into two triangles, having all
their sides and angles equnl, only placed in reversed positions
upon the diameter,

Because » ¢ and Anmpamllel, the angles.at p and 4 are
together equal to two right angles, and because o p and B c are
parallel, the angles at 4 and B are also together equal to two
right angles. Leave out the angle a, which is commeon to those
equals, and the remaining angle » is equal to the remaining
angle B. But, because of the parallels, the angles B and ¢ are
together equal to two right angles, or to the two angles at p
and a. From these equals, take away p and B which are also
equal, and the remainders, which are a and ¢, must be equal.

But again : the alternate angles » ¢-a and.¢ A B on the paral-
lels ¢, A B, are equal, and so are the alternate angles » i c,
A C B, on the parallels » a, ¢ B. Therefore, the two triangles
a B oand c A p, have the side A c common, and all their angles
equal ; therefore, the sides opposite the equal angles are equal,
that is, o B in the one is equal to ¢ » in the other, and =B c in
the one equal to » A in the other. Consequently these trian-
gles are equal to each other in every respect; and as the two

together make up the whole parallelogram, each one singly
must be equal to the half of it. Therefore, the opposite sides
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and angles are equal, and the diameter bisects the parallelo-
gram. . ’

The converse of this, that straight lines which join the extre-
mities of equal and parallel straight lines towards the same
parts, are themselves equal and parallel, follows, as a matter of
course, from this equality of the opposite sides of a parallelo-
gram.

2. If a parallelogram has one right angle, all its angles are
right angles. ‘ }

This follows immediately from what was shown in article 1.
The opposite angles are equal, so that if one is a right angle the
one opposite to it must also be a right angle ; but the four angles
are altogether equal to four right angles,and these two opposite
ones are equal to two, so that there remain other two right
angles for the remaining two opposite angles of the figure ; but
they, too, must be equal to each other, or each of them must be
a right angle. Consequently, if one angle of a parallelogram is
a right angle, each of the four must be a right angle.

3. A parallelogram, which has its angles right angles, is called
a rectangular parallelogram, or simply a REcTANGLE; and a
figure of this kind is said to be contained by the two sides
which are about or include any of its angles. This last expres-
sion has reference to the area or surface of the rectangle ; and
the one of the containing sides is called the base, and the other
the altitude or height, and the one may always be considered as
representing length, and the other as representing breadth.
Thus, when we speak of the rectangle A B¢ D as a surface, we
call it the rectangle a B, B ¢, which means that the expression for
the surface is the product of A B multiplied by B ¢, thatis, A B
X B ¢, both being understood to express the same kind of mea~
sure as lines, and the surface as many squares of the lineal
measure, as the product of the numbers. This is the original
connexion between Geometry and Arithmetic ; and the princj,
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ples of it have been explained in a former part of this volume,
so that we need not dwell upon it at present, nor adduce any
example in illustration, farther than the following simple figure :
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A B ¢ D is any rectangle whatever, of which B ¢ is the length
or base, and A B the breadth or altitude. The value, that is,
the area of the rectangle, must remain the same, while the
length and breadth remain the same, or, which is the same
thing, equal ; for the area is the product of those dimensions or
factors, unaffected by any thing except their individual lengths
and the fact of their standing to each other in the relation of
length and of breadth ; and while they remain equal and pre-
serve this relation, there is no circumstance which can in any
way alter the area or value. Thus, for instance, if A » is pro-
duced towards E, still parallel to B ¢, but to any distance what-
ever, and ¢ E joined as by the dotted line, and B ¥ drawn
through B parallel to c E, then the oblique parallelogram r B c &
must also have the same area or surface as the rectangle A Bcp.
Also, if A B is produced indefinitely, and two parallels drawn
from o and ¢, in any direction, but both in the same, till they
meet A B produced in the points m and ¢, the parallelogram’
H D c e thus formed must be equal in surface to the rect-
angle a B ¢ p, in what place or in what position soever it hap-
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pens to be situated ; for we have already shown that place and
position, are not elements which can affect the value of any
magnitude or quantity.

This, which is a very useful property, is usually cited in the
words, ¢ Parallelograms upon the same or equal bases, and be-
tween the same parallels, are equal to each other.” But there
is some objection to the words *between the same parallels,”
inasmuch as, to a beginner, they tie down the equal parallelo-
grams to one locality ; and, therefore, the words *equal bases
and altitudes,” or *“ equal lengths and breadths,” are preferable,
inasmuch as they are not tied down to any particular locality,
but can be understood and applied whether the parallelograms
are between the same parallels or not.

From mere inspection of the equal parallelograms in the above
figure, it will be seen that while the area or surface remains of
the same value, the lengths of the sides may undergo changes.
Thus, for instance, in the oblique parallelogram B ¢ E ¥, the
parallel sides which are dotted, namely B  and ¢ E, are each
greater than B A or ¢ b ; for they are opposite right angles at o
and p, while B 4 and ¢ p are opposite angles at ¥ and £ in the
same triangles, each of which is less than a right angle. But
A B might have been produced any length to @, so that the con-
tinuation is still parallel to ¢ p. ¢ ¢ might be joined and » u
drawn from »p parallel to ¢ ¢, and meeting A ¢ in m; and the
parallelogram ¢ ¢ p & must still be equal in area to the right
angle A B ¢ p ; for the two dimensions, of which its area or sur-
face is the product, remain unchanged, both in their lengths and
in their relation of base and altitude, or length ‘and breadth ;
while the sides which bound the oblique parallelogram, and
make angles less than right angles with the parallels, are always
the greater the less the angles that they make. Hence we have
this general conclusion, that if in any figure whatever we can
get two dimensions which stand to each other in the relation of
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length and breadth, and correctly represent the length and
breadth of that figure as a rectangle, then the product of those
two dimensions will always be a correct expression for the ares
or surface of the figure, whatever may be the shape of that
figure, provided only that it is bounded by straight lines,

It follows from this, that any straight lined figure whatever
may be reduced to a rectangle of exactly the same value, and
its surface as a whole expressed in square measures, that is,
measures which are the squares of some known measures of
length. This is the principle which applies to the measuring of
land, and of all other surfaces whatever, whatever may be the
form and dimensions, if the surface is a plane, or regarded
such. :

4. Upon looking back at the diagram in article 1, page 428,
it will be understood that while a B is the length or base of the
parallelogram, a perpendicular let fall from p upon a B, or from
c upon A B produced, must express the altitude or breadth of
the parallogram A B ¢ p; and if we call this perpendicular p,
then the area or surface of the parallelogram will be expressed
by the product A B X p.

Now the triangle a ¢ B, which is on the same base with the
parallelogram and has the same altitude, was shown to be equal
in surface to half the parallelogram ; and if the base and altitude
had been equal, the surface would have been the same, as the
mere situation, by not affecting either the value or the relation
of either of the factors, cannot possibly affect the value of the
product of those factors. Hence we have the general conclu-
sion: if a triangle and parallelogram have equal bases and alti-
tudes, the area of the triangle is half that of the parallelogram.

From this we can immediately derive a method of finding the
area either of a parallelogram or triangle, when the base and alti-
tude are known. It is: for the parallelogram, multiply the base
and altitude ; and for the triangle, multiply the same, and take half

e ——— ————_—
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the product—or, as it is the same to divide either factor before
multiplying as to divide the product after, we may multiply the
base by half the altitude, or the altitude by half the base, and
the product in either case will be the area of the triangle.

4. But, in the case of a product, we multiply the product if
we multiply either factor, and divide the product if we divide
either factor. Therefore, triangles or parallelograms which:
have equal bases, are to each other in the ratio of their alti-
tudes ; and triangles or parallelograms which have equal alti-
tudes, are to each other in the ratio of their bases. Therefore,
again— .
_ i Triangles or parallelograms which have different bases, are-
to cach other in a ratio compounded of the ratios of their bases
and altitudes. Thus, for instance, if the base of the triangle or
parallelogram 4 is 12, and its altitude 6; and the base of the
triangular parallelogram = is 9, and. its altitude 4—the numbers
* meaning equal measures in all those cases; then—

A:B=12X6:9%x4=1"72:36;

that is, the area of the triangle or parallelogram 4 is double that
of the triangle or parallelogram B ; and any others whose dimen-
sions are known and expressed in the same measure, can be.
ecompared in the same manner ; and those products which are
compared are, after all, nothing more than the simple expressions
for the areas of the figures as already explained.

- 8. If two triangles or two parallelograms are equal in area,
but have their bases and altitudes different, then the bases and
altitudes are inversely or reciprocally proportioned. Let a be
the base and b the altitude of the one ; and ¢ the base and d the
altitude of the other; then, if the areas are equal, that is, if

ab = cd, then
alc=4d:b

F F
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for multiplying the extremes and means, we have a b = ¢ d,:
before. Co T

6. A rectangle which has two sides. containing one of i
angles equal, has all its four sides equal, and is called a sQuage
and the expression for the area of a square is the product of th
side multiplied by itself; or if the sile be called @, then th
area of the square is expressed by a®.

If a square and rectangle have equal areas, the side of th
square is a mean proportional between the base and altitude, ¢
which is the same, between the length and breadth of the rect
angle. Forsince they are both rectangles, and equal in area, th
sides or factors whose products express their areas, are recipro-
cally proportional ; that is, if b is the length and ¢ the breadth
of the rectangle, and a the side of the square, then

bia=a c;
and, multiplying the extremes and means, we have & ¢ = a$,
or the areas are equal, which was the proposition..

Before proceeding further with the general principles, we
shall endeavour to show how the last mentioned figures may be
constructed. To construct a square on a given line. At one
extremity of the line draw a perpendicular toward that side of
the line upon which the square is to be situated, and make this
perpendicular equal to the given line. Then from the two
extremities of those lines as centres, and with a radius equal to
either of them (for they are the same), describe arcs intersect-
ing each other; the point of section of those arcs will be the
fourth angle of the square ; and if lines are drawn from this to
the second and third angles, the square will be constructed.

To construct & rectangle under two given straight lines.
Take in any straight line a portion equal to one of them, and
at either extremity erect a perpendicular equal to the other;
then, on the opposite extremity of each with the other one as a
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radius, describe archés intersecting each other, and the point of
section will be the fourth angle of the rectangle, to which the
two remaining sides may be drawn from the extremities of the
others. - An oblique parallelogram may be drawn exactly in
the same manner, only an angle of it must be given as well as the
sides ; and the two sides must be placed so &s to make an angle
equal to this angle, and then the remainder of the construction
is exactly the same as that of a rectangle.

It need hardly be mentioned, because it is apparent without
any description, that the same data which suffice for constructing
one square, rectangle, or parallelogram, must suffice also for
constructing another in any other place or at any other time ;
and that, if the data, that is to say, the one side in the case of
the square, the two sides in the case of the rectangle, and the
two sides and the included angle in the case of the parallelo-
gram, are exactly equal in any two instances, then the proof
of the equality in every respect of the figures themselves, is as
clearly established as it can possibly be, even though the one of
them were applied to the other and observed to coincide with
it. And we may repeat, that this is the useful proof in prac-
tice ; and that the coincidence, how pleasant soever it may be
for closet mathematicians, is of little avail in real life. It is
desirable, for instance, that an acre of land should be the same
quantity or extent of surface in Cumberland as in Cornwall ;
and that a mile of the road between London and Bath should
be exactly the same length asa mile of that between Edinburgh
and Glasgow ; but it would puzzle all the geometers that ever
lived to bring the two acres of land in the different counties, or
the two miles in length of the different roads, to any comparison
except through the medium of some measure, or other means of
connexion, which had nothing to do with the applying of the

FF2
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one of them to the other, and obeerving whether they coincided

or not.
The next step of our progress, in examining the relations of

figures, and of the boundaries and other parts of figures, is nata-
rally that which involves some medium of comparison ; and for
this purpose we must have recourse to the doctrine of ratics, 2
explained in a former section ; because equality of ratios is very
often the only equality of which we can avail ourselves, in such
comparisons. But before we can enter upon this with the proper
advantage, it is necessary that we should understand a little
more about the relations of the different parts of the same
figure, both to each other and to the whole.

All the figures with which we are concerned in plane geo-
metry, may be reduced to these four classes:— First, circles;
secondly, squares; thirdly, triangles; and fourthly, rectilineal
figures having more than three sides, of which last squares are
a particular division ; but they are so simple as compared with
the others, that they require to be separated.

The general condition which figures must have, in order
that we may apply the doctrine of ratios to them, and reason
from the one to the other, or from parts of one to other parts of
the whole of the same, is the property of their being .

M SIMILAR FIGURES. T

1. Figures are said to be similar, when they are exactly
of the same shape, but different from each other in size.
Equal sized figures of the same shape are of course similar, as
well as unequal sized ones ; but they are equal as well as simi-
lar; and any ratios which they, or corresponding parts of them,
may have to each other, are ratios of equality, not merely in
the relation itself upon which the ratio is founded, but in the
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terms of the ratio ; and it is evident, that from the comparison
of two ratios of this kind, no useful conclusion can be drawn.
Thus, if a ratio were stated

. 12:6=12:,

and the fourth term sought by an operation in the common rule
of three, the fourth term would be the same as the second, or
6 again, and we should learn nothing by the operation. This
is what is called an identical proposition: and it very often
happens that those who have not disciplined their minds in the
practice of reasoning in & close and logical manner, make use
of such propositions in succession, or “reason in a circle,” as it
is called, that is, go round like a mill horse, and end just where
they began,—or rather their saying, for it is not argument,
like the circumference of a circle, has neither beginning nor
end ; is founded on nothing and leads to nothing.

Thus, the species of similarity which is useful to wus, is
similarity without sameness. And there are three conditions
requisite, in order to establish the similarity of any two plane
figures. First, they must have the same number of sides in
each, and, by necessary consequence, the same number of
angles. Secondly, all the angles of the one must be each to
each equal to all the angles of the other, when taken in the
same order of succession ; and thirdly, the sides about the equal
angles, and which are situated in the same order with regard to
the angles, must be proportionals, This third condition is, in’
some figures, so closely connected with the second one, that the
one of them cannot exist without the other ; and therefore it
might, perhaps, be possible to deduce the one from the other, at.
least in, the case of one or two figures ; but still it is much bet~:
ter to take both parts into the definition, as then it is rendered
perfectly general.

2. Circles have only one side each, and they have no angles ;.

»
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therefore there is nothing connected with one circle, which can
affect its similarity to every other circle ; and consequently ll
circles are similar figures, and may be reasoned upon as such.
A square has four sides and four angles, and they are all
equal to each other in every square, so that one square cannot
be dissimilar to another, without ‘ceasing to be a square, and s

falling into another class of figures.
s
F ™
Al > D
4
8 K

Let there be any two circles, of which ¢ and-e¢ are respes-
tively the centres, and A B and p B the diameters ; also Jot
1,2,3 4,and 5,6,7,8 be two squares, of which the sides
are respectively equal to the diameters of the circles ; the cirelos
are perfectly similar, and so are the squares; and the diameters
of the circles are respectively equal to the sides-of the squares.
Therefore,

Circle ¢ ¢ circle e =square 1, 23,4 squm5,6,7, s
That this must be the ease, is perfectly evident ; for whatever
may be the ratio of the circle to the square in either case (and
that is not our present business), the two circles must ‘stand to
their own diameters in the same ratio ; and therefore th¢y muet
stand to each other in some ratio of those diameters. ' The
diameters themselves have no property but their lengths ; and
we cannot obtain the ratios of surfaces without products of
length and breadth. But the circles have exactly the same
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ratios to the cross diameters ¥ m and 1 k that they have to s B
and p B; because in the same circle all diameters are, by
the very construction of the circle, equal to each other,
Therefore the circle ¢ is to the circle @, as o B to » &, and &lso
a8 FHt0 1 K. -But AB=r 5 and p E=1K; therefors com-
pounding the ratios, we have,

Circle o ; circlee=aBX ¥R DEXIEK.

But A B=F g, and p E=1 x;
Therefore,

Circle ¢ ; circle =4 B?  p £ *; that is,—
- Circles are to each other in the ratio of the squares of their
diameters ; that is to say, if the diameter of one circle is double
that of another, the area of the. circle will be four times ; if
triple, nine times ; and so0 on in the case of every other multi-
plier, whether greater or less than the number 1.

But the cireumferences of the two circles have endently,
in each circle, the same relation to the diameter; and though
eurves, and not straight lines, the circumferences still are lines,
not surfaces ; and therefore their ratio must always be a simple
ratio ; but each circumference stands in the very same relation.
to its diameter .as the other does. Wherefore, the circum-
ferences of circles have the same ratio as their diameters ; and
the surfaces of two different circles are to each other in the
ratio of the squares of their circumferences, as well as of their
diameters.

It would be easy, in hke manner, to show, that any two lines
similarly placed in two circles, have the same ratio as the
diameters or circumferences of those circles, but it is not neces-
sary, and indeed we might have come at once to all the con-
clusions which have been stated, from the simple fact, that no.
element of dissimilarity can affect circles, or corresponding por-
tions of circles.
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There is one practical application of the equal ratios of the
diameters and circumferences of all circles which it is useful to
bear in mind, If we know the diameter, the circumference,
and the content of any one circle ; and the diameter, the circum-
ference, and the content of another, we are enabled, from the
ratio, to find the other two particulars for the other one. The
approximate dimensions and area of one circle are as follows:

Diameter =1
Circumference = 3°1416,
" Arez T o= -7864;
and from these it is easy to find the particulars of other
circles.

If we turn back and examine the squares in which the circles
are inscribed, we find that their relation is & very simple one;
for, from the very meaning of square, it is obvious that the
areas of all squares are to each other in the ratios of the squares
of their sides. It is worth while, however, to look at the boun-
daries of the squares,—or, as they are sometimes termed, their
perimeters. In each square the perimeter is four times the
side; and therefore the perimeter has always the same ratio to
the perimeter of another square, as the side has to the side.

8. Triangles form our next subjects of comparison ; and the
first comparison to be made is that of triangles which are equi-
angular, or have all their angles respectively equal each to each ;
and the object is to show that the sides about the equal angles
are directly proportional. -

For this purpose, let o B ¢ and p E F be two triangles which
are equiangular, that is, which have the angle a of the one equal
to the angle p of the other ; the angle B of the one equal to the
angle E of the other ; and the angle ¢ of the one equal to the angle
F of the other ; then the sides about the equal angles are du'ectly
proportional.
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[When comparing the sides and angles of triangles, it is very
convenient to mark each side with the same letter as the angle
to which it is opposite, only to mark it in a different character,
italics for instance, while the angles are marked with capitals:
thus a, b, and c, are respectively the sides opposite the angles
A, B, and c, in the one of the above triangles; and d, e, and £,
are, respectively, the sides opposite the angles p, E, and F, in
the other. This is not a matter of necessity ; but it is one of
considerable advantage.]

Describe, as already explained, a circle about each triangle, so
as to pass through the three angular points, and the angles of
each triangle, will be angles at the circumference, standing
upon arcs of their respective circles ; namely, in the triangle
A B the angle a stands on the arc 1, the angle B on the arc 2,
and the angle ¢ on the arc 3 ; and in the triangle » £ F the angle
p stands on the arc 4, the angle E on the arc 5, and the angle »
on the arc 6. So that in each circle the three angles of the tri-
angle, taken altogether, stand on the whole circumference. But
as the angle A of the one is equal to » of the other, the arc 1 of
the one must be equal to the arc 4 in the other ; and as the side
a of the one, and the side d of the other, are the chords of equal
arcs, they stand in the same relation or ratio to their respective
circles. For similar reasons, the side b and the side ¢ stand in the
same relation to their respective circles ; and so do the side ¢ of
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the one, and the side fof the other. But if their relations to the
circles are equal, then the lines themselves must stand to each
other in the ratios of their own lengths ; that is, a tobasdtoe,a
tocasdtof,btoc as eto f; and so on in every other casein
which the corresponding sides about an equal angle in the two
triangles, can be compared with each other. Therefore, if tri-
angles are equiangular, the sides which contain equal angles
are directly proportional, the sides opposite the other equal
sngles being the ‘corresponding terms, that is, both the antece-
dents or both the consequents of the ratics. Thus, the sides
abontthe equal angles a and p, are either
biec=e.fioreb=f.e;

and as these are direct proportionals, they will remmnpmpor-
tionals under all the changea of which pmporhomlnue
capable.

It follows immediately from this, that if two- sides of @ tri-
angle are intersected by a line parallel to the third side, the part
cut off is similar to the whole triangle ; and the segments of the
two sides, on both sides of the dividing line, are proportionals,
and have the same ratio as the sides which are divided.

A

D E

B, C

- Let o B c be any triangle ; and let the line p E be drawn
parallel to B ¢, meeting the sides o B and o ¢ in the points
and g. The triangle o » & is similar to the whole triangle
ABo;ADistoarandalsopBtorc,asaBisto Ao For
the angle a is common to the whole triangle and the part ; and
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the angle p, exterior on the parallels, is equal to the angle »
interior and opposite, and the angle & is; for the same reason,
equal to the angle c; therefore the whole triangle a B ¢ and the
part A p E are equiangular, and the sides about the equal angles
directly proportional; that is, s D iAB=aAB.Ac;but BH
and ¢ E are the differences of those-proportions,.and therefore;
by .separation, they have the same ratio,orp B Bo=AB  Aci
These also being directly proportional, admit of all the changes
of which such proportionals are.capable.

By means of this last principle we &ro énabled to- divide any
given line in any proposed- ratio ; and also to find a fourth pro-
portional to three given lines, or perform an opemtlon in the
mleofthreebymea.nsofllnesalom.- o X

Thus to divide a given line-in any ratm, we have only to
draw a line at one extremity of it, making any anglé, and di
vided into the two terms of the ratio ; 4&nd then, by joining the
extremities of the lines, and drawing a -parallel through the
point which separates the known terms, we-have the:given liné
divided in the same ratio. This is not confined to division into
two parts ; but if one line is given, which is divided into any
number of parts in a ratio, and it is required to divide a line of a
different length into the same number of parts, having the same
ratios, the principle will apply ; and in practice it often saves a
great deal of trouble.

In the finding of a fourth proportional, we have nothing more
to do, than to draw two lines, making an angle, to set off the
first and second terms, one upon each of them, and join by &
line, then set off the third on the same line with the first, draw

el, and that parallel would cut off the fourth propor-
tional from the same line on which the second was set off.
These are so simple, that it is unnecessary to illustrate them by
any diagrams or examples;. we shall therefore - proceed to
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another problem, in which we require the assistance of similai
triangles. This problem will require allusion to a principle
somewhat different.

4. In a right-angled triangle, if a perpendicular is drawn
from the right angle to the opposite side, the triangle is divided
into two triangles, which are similar to the whole, and to each
other; that perpendicular is a mean proportional between the
segments into which it divides the base,—the greater segment
being on the same side of the perpendicular with the greater of
the two remaining sides of the triangle.

Let a B ¢ be a right-angled triangle, having the right angle
at B, and let a perpendicular B p, be drawn from the right
angle B to the opposite side a ¢; the two triangles a p B, and
B D ¢, into which the triangle A B ¢ is divided by this line, are
equiangular, and therefore similar ; and the perpendicular B p
is a mean proportional between the two segments 4 » and » ¢,
the greater segment 4 » being on the same side with, or adjacent
to the greater side A B of the original triangle, and the less seg-
ment D ¢, on the same side with, or adjacent to the less side
B ¢ of the original triangle.

B

\

—C

A
A-

. Because B p is perpendicular to A c, the angles B p 4, and
¢ D Batpare equal to each other, and each of them a right
angle. But the angle at B is a right angle, and therefore the
two parts of it p B o and p B 4 are together equal to a right
angle. Butin the triangle Bp ¢ the anglesp B o, B 0 » are
together equal to a right angle. Consequently, A B p is equat
toB ¢ p,and » ¢ B equal to B A p, therefore the three triangles
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A'BC, A Do, and B D ¢, have the angles opposite A ¢, A B, and
B c all right angles; the angles opposite A Bin A B¢, A D inl
A D B, and B p in BD ¢, all equal to the angle at a, and there-
fore equal to each other ; consequently the remaining angle in’
all the three triangles is also equal, and the triangles are similar,
and the sides about the equal angles directly proportional ; and
among others the greater side about the right angle, is to the
less in the one as the greater side about the right angle is to
the less in the other. But a b is the greater, and » B the less’
in the triangle A p B; and p B is the greater, and p ¢ the less
about the right angle in the triangle at B o c. Therefore
AD DB=DB ' DC;

wherefore » B the perpendicular is a mean proportional between
the two segments A » and b c.

We are now in a condition for obtaining a solution of the
problem to which we alluded : To find a mean proportional
between two given straight lines. Let o and B be any two
straight lines, it is required to find another straight line which
shall be a mean proportional between them ; take any straight
line, and from it cut off ¢ » equal to the given line A, and im-
mediately conterminous with it, or beginning where it ends,
take the part » E equal to the given line B. Bisect the whole
cEin F; on Fas a centre, with radius ¢ E or F E, describe g
semicircle. At the point p draw a perpendicular to ¢ E, and
produce it till it meet the circumference of the semicircle in ¢ ;
and p ¢ is a mean proportional between ¢ p and » E, or between
their equals, the given lines A and B.

A ]

n
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Join c e and 2 ¢ ; and becanse ¢ ¢ x is an angle in a semi.
circle, therefore it is a right angle, and c @ = is a right-angled
triangle, and ¢ p the perpendicular from the right angle upon
the opposite side ; therefore ¢ » is a mean proportional between
¢ b and p &, the segments of the side opposite the right angle,
which segments are respectively equal to the given lines a and
B, between which the mean proportional was required.

The given lines A and B might have been the comtaining sides
of a rectangle ; and if it had been required to find a square equal
in area to the rectangle, the proceeding would have been exactly
the same as that just mentioned ; namely, if the two containing
sides had been placed conterminously on the straight line, a
semicircle described on the sum of their lengths as diameter, and
a perpendicular drawn from the point where they met to the
circumference of the semicircle, this perpendicular would have
been the side of the square, equal in area to the rectangle ; and
the side is the only datum requisite for constructing the square
itself. ’

There are some applications of this and the preceding prin-
ciples, to figures containing more than three sides, and not
regular, which might have been introduced here ; but there is
one general truth, together with some collateral or resulting
ones, with which it is desirable to be acquainted, before we pro-
ceed to these ; and as this truth is a very important one, as one
of the main links by which geometry and the arts of calculation
by quantities generally, or by numbers practically, are con-
nected together, we shall consider it a liftle in detail. For this
purpose we introduce the following diagram : and as it is consi-
derably more complicated than most of those which we have
previously introduced, we have endeavoured to throw a little
graphic effect into it, in ordegthat the reader may the better
understand it; and we shall go over the different parts of
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the diagram, before we point out. the use to which it is to be
applied. : R A -

-

Upon examining it, the reader will perceive that there are
in it lines of four different degrees of strength.

First, in the reader’s left-hand corner, at the bottom, a right
angled triangle, a B ¢, of which the lines are more boldly
drawn than any of the rest. Then the left hand portion is
occupied by two squares, not so boldly drawn as the triangle,
but bolder than the rest of the diagram. The undermost of
these squares is the largest, and it will at once be perceived,
that it is the square upon B o, the greater of the two sides
which contain the right angle in the right-angled triangle a B c.
Above this, there is a smaller square, having b, 6, m and 1 at the
four corners ; and though this square does not stand upon A B,
the less of the two sides which contain the right angle B in the
triangle o B c, yet the sides of it are made equal to A B, and
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therefore it is the square of 4 B with the ssme truth as though
4 B itself had formed one of the sides.

Secondly, a larger square, with one angle at theleﬁ.,oneat
the top, one at the right, and one at the bottom, where the
letters a, H, x, and c, are situated, may be traced, having a ¢
for one of its sides, and the remaining sides, A B, B x, and x ¢,
marked in much fainter lines; and it will be seen that this is
the square upon a c the side of the right-angled triangle, which
subtends or is opposite to the right angle at B, which side is
called the hypotenuse, because it “holds under” or is opposite
to a right angle; and in consequence of this has a property
which no side of a triangle, not having a right angle, can pos-
gibly possess.

Thirdly, it will be observed, that a faint line is drawn from
the right angle B through w, 1, and L, parallel to both sides of
the square upon a ¢, and therefore crosing a c, and meeting
H K at right angles. Of coursc the part m L divides the square
of A ¢ into two rectangles, each having A c or its equal for one
of its containing sides, and one of the segments into which ac is
divided for the other.

Fourthly, there will be observed dotted lines at the top from
H to i, on the right from ¢ through x to m, and at the bottom,
from m to c, which complete the whole diagram as a square.
Also, from a through o to n there is a dotted line, equal and
parallel to B ¢ ; and from 1 to o there is a line, equal and parallel
topa,or tor n; and r and x are joined by a faint line, which
is a continuance of p r. .

It will be seen that by means of these dotted lines, the entire
square ¢ / m B is divided into four equal rectangles, o Bcn,
caoB,B1K/,and cFEm; and that these four rectangles are
each equal to the rectangle A B X B ¢, or double the area of the
triangle A B c. Besides this, there is the small square, 1 ¥ 2 o.

L~
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in the centre of the diagram ; and because p Bis equal tos o, D A
is the difference of o B and B 0, and as 1 o the side of this small
square is equal to D A, this small square is the square of the
difference between Ao B and B c. But as B p or a ¢ is equal to
BC, B ¢ is the sum of A Band B¢, and B is the side of the
whole square of the diagram ; and the diagram is the square of
the sum of A Band Bo. Therefore, from mere inspection of
the diagram, we have this general conclusion :

The square of the sum of two lines, is equal to four times the
rectangle under those two lines, together with the square of
their difference.

Upon carefully examining the figure, it will be found that,
whatever is the position of A o, the four triangles external of
the square of A ¢, but contained in the square of the sum of A B
and B ¢, must be each equal to the given triangle, and therefore
altogether four times that triangle, or twice the rectangle
ABXBc. So alsothe square upon a ¢ must, in all cases, be
cqual to four times the triangle, together with the square of the
difference of the sides.

If one were to imagine the square upon 4 o fo be turned
toward the right, the angle a of that square would gradually
approach the point p, and as it did so, o B would approach in
length to B c.  If they became equal, A p would vanish, be-
cause the lines would have no difference, and the small square
107n F, would also vanish, apd the square upon a ¢ would
‘become equal to four times the triangle, or twice the rectangle
of the equal sides about the right angle, that is, half the square
of their sum.

On the other hand, if the square upon a ¢ were supposed to
be turned round toward the left, so that o B shortened by the
point A approaching the point B, then the small square10n ¥
would increase, and the square upon a ¢ would also increase in

(X!
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respect to the area of the triangle ; and if we considered A B to be
shortened till it vanished by the point a coinciding with the
point =, then the square of A ¢. the square of B c, and the
square 1 o » ¥ would all be equal and coincident with each
other, and the triangle would, at the same time, have vanished.

Hence, we can see the limits between which a right-angled
triangle can exist. The one limit is the equality of the sides
about the right angle, and in this case the square on the hypote-
nuse is equal to four times the area of the triangle. The other
limit is that at which the triangle vanishes, by one side becom-
ing equal to the hypotenuse, and there being, of course, no third
side. Between those limits, there may be any degree of ine-
quality between the sides o Band B c, and whatever their
lengths are, the square of the hypotenuse is always equal to
four times the area of the triangle, together with the square of
the difference of the two sides which contain the right angle.

These, however, are not exactly the principles which we are
seeking to establish ; and we have merely mentioned them inci-
dentally, in order that our examination of the diagram might
not be altogether without a result. The principle isas follows :

In any right-angled triangle, the square of the hypotenuse
or side subtending the right angle, is equal to the sum of the
squares on the sides which contain the right angle.

We repeat the diagram, in order that the reader may not
have to refer to it over several pages.

A B c is any triangle, right angled at B; a c is the hypote-
.nuse or side opposite the right angle ; and it has to be shown
that the square upon a ¢ is equal to the two squares upon 4 B
and B c, that is, that

Acd = a8 4 BCS
Produce o B in the direction of a : take Bp = B ¢, complete
the square o ¥ ¢ B, and it is the square upon Bo. In B D con-
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mecceinssnadbnnane

tinued beyond b, take p ¢ equal to A B, and in » F take D 1 also
equal to p @, and D @, D 1, are sides of a square. For, as the
angle B D F, being the angle of a square, is a right angle, the
adjacent angle 6 p 1 is also a right angle. Complete the square
with ¢ = and 1 1 both equal to » 6, and ¢ b 1 = is equal to the
square upon A B; for » ¢ was made equal to o B, and all the
other sides equal to p ¢, and the angle ¢ 1 is a right angle.
Thus we have obtained the squares upon a B and B c.

Join o B, and A 1 is equal to A ¢, and at right angles to it.
For, comparing the two triangles 1 6 4 and A B o, Wwe have,
HG = A B, and ¢ A = B¢, and -the contained angle in each
case a right angle ; therefore A u is equal to A o. Butthe angle
e amisequal to Bc A, for they are opposite equal sides in
equal triangles; and the two angles ¢ A m and B A ¢, at the
point a, are together equal to one right angle, for they are equal
to the two smaller angles of a right-angled-triangle. But A is a
point in the straight line B 6, and all the angles at that point on
one side of the line are equal to two right angles. Two of them

t4
Ga 2 :
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mamely, B A cand ¢ A B, are together equal to one right angl
and, therefore, c a n, the supplement, must be a right angl
Consequently, c 4 and 4 B are two sides of a square. Comple
this square by cx and B x, each equalto A cora m; and a
K ¢ is a square, and it is the square upom a ¢, the hypotenw
of the triangle.

Our next business is to show that this square is equal to th
two former squares, namely, those upon Ao Band Bc. Join Fx
and becanse B 1 F is a right angle, 1 x equal to A ¢, = 1 equa
to A B, and the contained angle at B equal to the containe
angle at a, F x is in the same straight line with 1 r, and th
triangle m 1 K is equal to the triangle A Bc. But m 1 x is con
tained in the square of the hypotenuse, and not in the square:
of the sides; and 4 B ¢ its equal is contained in the squares of
the sides, and not in the square of the hypotenuse. Thevefore,
those two equal triangles increase equally the one square in the
one case, and the two squares in the other; and, therefore,
whether they are supposed to be taken away or supposed to
remain, they do not make any difference between the compared
quantities.

The triangle B ¢ A, toward the left hand at the top, has
been already shown to be equal to o B ¢, and it is whally
contained in the two squares of the sides, and not in the square
of the hypotenuse. Baut the triangle x ¥ c hasxcequal to a ¢,
r c equal to ¢ B, and P K equal to A B; therefore it is also equal
to A BC, and consequently to m ¢ 4 ; and the triangle x r cis
contained wholly within the square of A c, and its equal m e A
wholly within the squares of A Band Bc. Therefore, if we take
away or leave those equals, one of which belongs to each of the
quantities compared, we shall not make any difference. Take
away the two triangles which are contained in the squares of
a B and B c, and the two equal triangles which are contained
in the square of A c; and by takirg equals no difference is
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taken away. Bt the two squares in the one case, and the one
square in the other, are reduced to the same identical space,
mmely; the irregular space contained by the lines m 4, A c;
cF, F1,and 1 B ; and we need not add, that this identicul space
must be equal to itself. Therefore, the square of A ¢ isequal to
the sum of the squarcs of AB and B ¢. A B cis any right-angled .
triangle whatever; whereforé the square of the hypotenuse of
every right-angled triangle is equal to the sum of the squares of
the sides containing the right angle.

Another demonstration of this truth might be derived from
the same figure. For, upon examination, it will be perceived,
that the square upon the side opposite the right angle is di-
vided into two rectangles, o m L M, and M L K ¢, by the line
B ML drawn from the right angle of the given triangle parallel
to the sides of the said square on the side opposite that angle ;
and if each of these rectangles is compared with the square of
theside adjacent to it, and about or containing the right angle, it
will be seen that there are in the diagram two oblique paral-
lelograms, A m 18 and B 1 K ¢, one of which is upon the same
base and between the same parallels, both with the rectangular
portion of the larger square, and with the square of the adjacent
side. Therefore, the rectangle, and the square on the adjacent
side, are each equal to the oblique parallelogram, which is on
the same base, and between the same parallels with each of
them, though it is between the same parallels with them in its
different dimensions ; consequently, the two parallelograms into
which the square on the side opposite to the right angle, and
the two squares upon the sides containing the right angle, are
equal to each other on the adjacent sides, that is to say, the
greater rectangle is equal to the square on the greater side, and
the less rectangle is equal to the square on the less side. But
the two rectangles taken together make up the square upon the
side opposite the right angle ; and therefore their sum is equal
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to the sum of their equals, namely, that of the squares upon
the two sides containing the right angle. In other words, the
square on the side opposite the right angle, is equal to the sum
of the squares on the sides containing that angle as before.

If the angles of a right-angled triangle are expressed by the

.letters a, B, c,—and it is not necessary to draw the triangle, s
we are speaking of a right-angled triangle generally, without
any reference to the particular lengths of its sides, but merely
of the relation of their squares to each other, which applies to
every possible right-angled triangle,—we may form a perfect
notion of the triangle and its properties, without any reference
to a particular triangle actually drawn, by merely referring to
the angles by the letters a, B, and ¢, B being the expression of
the right angle.

So, also, if we call the sides by the small letters eorresponding
to the capitals which express the angles opposite to them, we
shall have a, b, and ¢, as a general expression for the sides of
any right-angled triangle, b being the side opposite to the right
angle, and @ and ¢ the two sides about or containing the right
angle.

Taken in terms of the sides, as expressed by letters, the alge-
braical notation of the above truth is,

b2 =al+c?,

in which expression it is of no consequence whether a or & indi-
cates the greater of the sides about or containing the right
angle.

. It will be easily perceived from this, that if any twe of these
three quantities, that is, the sides b, @, and ¢ are given, the
remaining one can be found by an arithmetical operation. If
the sides about the right angle are given, then the expression
for the hypotenuse in terms of the sides, is v/ (a%+c%)=b;
and the expression for any side in the case of the hypotenuse
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being given, is the square root of the difference between the

square of the hypotenuse and that of the given side. Thus if a

is the given side, the expression for the required side ¢ is
v (b*—a%)=c.

One of the cases of the application of this principle, which
occurs most readily in practice, is that in which one side of the
right-angled triangle is a distance measured on the level ground,
and another the height of an upright object ; as, for instance, &
wall, a tree, or a steeple ; and then the hypotenuse, or longest
or slanting side of their angle, is the line extending from the
farther extremity of the distance measured upon the ground, to
the top of the upright object. For the sake of distinction, the
line measured on the ground is called the base, and the height
of the object the perpendicular, while the remaining side re-
tains the name of hypotenuse. Thus, for instance, if the width
of a street were 80 feet, and the height of a house rising per-
pendicularly from it 60 feet, and if it were required to find the
length of a line which would extend from the opposite side of
the street to the top of the house, the expression for the length
of this line would be,

A (802 4 602) =4/ (6400 4 3600) = ,/ 10000=100,
80 that the line reaching from the opposite side of the street to
the top of the house would be 100 feet,

5. From the complete establishment of the relation between
products and rectangles (the product or the rectangle being a
square in the case of two equal factors) which results from the
principles that we have now stated ; and from the constant
ratio of equality between the square-of the hypotenuse of a
right-angled triangle, and the sum of the squares of the two
sides containing the right angle ; we are enabled to substitute
either quantities generally as expressed by algebraical notation,
or numbers as measures in particular cases, in place of lines,
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00 that the products of those general quantities express rect-
sngles generally, the products of equal factors express squares,
snd the numerical products of the lines expressed in known
measures, give us the areas of rectangles or squares, in squares
of the same measure. It is, however, to be understood, that
though, in the particular cases, the product, whether square o
rectangle, is a number, as well as the sides, it is not a mamber
of the same kind with them; for in all cases it means sar.
faces, the unit meaning a square, the side of which is the unit
in the line. Thus, for instance, if a piece of board is 5 feet
long and 3 feet broad, the area of the board, comsidered as »
rectangle is 5 x 3 feet, that is 15 feet ; but these 15 are not of
the same kind, either with the 5 or the 3 ; they are square
measures or surfaces, having length and breadth, situated at
right angles to each other, and of equal measure, whereas the$
and the 3 are merely lengths, or of one dimension only, and
express the sides of the squares in which the area is represented.
In considering this relation between surfaces and products of
two factors which stand to each other in the relation of length
and breadth, it is not absolutely necessary that the two factors
should be in the same denomination, in measure of length, pro-
vided that we know exactly the proportion which the length of
one of them bears to that of the other. Thus, for instance, if
one dimension is expressed in yards, and another in feet, of
which there are three in a yard ; then the product will neither
be square yards nor square feet, but every unit in it will be a
rectangle, the length of which is a yard, and the breadth a foot ;
and it will take three such rectangles to make up a square yard,
or each of them will evidently make three square feet. In all
cases of the multiplication of two factors of different denomi-
nations, the relation between which is known, it is very easy
‘o reduce or change the product to squares of either factor ; for
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we have only to multiply it by the number of times that the
greater factor is contained in the less, in order to get squares of
the less factor, or to divide it by the number of times that the
greater contains the less, in order to get squares of the greater
factor. Thus, for instance, if one factor were feet, and the
other inches, we could reduce the product to square inches by
multiplying it by 12, the number of inches in a foot; or we
could reduce it to square feet by dividing by 12, the number of
inches in a foot. There is, of course, nothing peculiar in the
mere fact of the dimensions in this case being feet and inches ;
for if they were any other measures whatever, exactly the same
principles would apply, and we should have nothing more to do
than to multiply by the number of the less which the greater
contained, in order to get squares of the less, or to divide by
the same, in order to get squares of the greater.

Asin the case of the product of two quantities or numbers, it
is of no consequence, that is, produces no effect upon the value,
though the factors are made to change places by the multiplier
being made multiplicand, and the multiplicand multiplier;
as, for instance, a and b being any quantities whatever, and
consequently the representatives of all quantities, the product
a b is exactly equal to the product b a4, and the one might in
any-case be substituted for the other; so, when a rectangle is
expressed by the product of its length and breadth as factors, it
makes no alteration in the value, or even the form of the
rectangle, whether the one factor or the other is considered as
length, provided that the other one, which is understood to
stand at right angles to that one in the figure, is considered as
breadth. Thus, if the length and breadth of any rectangle, are
represented by two lines o B,and B ¢, which of course mean any
lines whatsoever, because neither of them is restricted to any
measure in length expressed or expressible by a number, the
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srea of the rectangle 8 either A BX B ¢, or B ¢ X A B, which
with the most perfect accuracy substituted for the other; s
aleo if the base and perpendicular of a triangle, which are the
length and breadth of the rectangle, which is exactly double
the triangle, are represented gemerally by the algebraical ex-
peessions & and b, or geometrically by two lines Ao 3 and B¢,
A

then the . a_zb,b?c’anzxnc’nczx .,alleqmlly
represent the area of the triangle ; and to apply them to any
case, it is only necessary to state the value of a and b in num-
bers, or those of A Band B ¢ in lines, to obtain the practical
expression which correctly represents the value of that particu-
ticular triangle a8 expressed in numbers, or by measures, it
being generally understood that the measures of the two lines
are of the same denomination, so that the product without any
reduction represents squares of the lineal measure, which, how-
ever, is not absolutely necessary as affecting the general prin-
ciple ; becanse the product of unequal denominations can be
reduced to squares of either of the two, by multiplying or
dividing by the ratio of the greater to the less, as was explained
in the preceding part of this article.

6. By means of this perfect correspondence between rect-
angles and the products of numbers expressing the lengths and
breadths, that is, the containing sides of those rectangles, we
are enabled to compare surfaces, and determine their equality or
inequality in a far more simple manner than can be done by
geometry alone ; and though this mode of comparison through
the medium of numbers is not so direct, or immediately appa-~
rent to the eye as the geometrical comparison of the rectangles
themselves, actually drawn in a diagram, and palpable to the
eye, yet it possesses other advantages over the geometrical
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method, in addition to the fact of its being more general, and
more simple. It enables us to the carry the geometrical truth
“with equal force and clearness into those subjects which do not
admit of geometrical representation. For instance, it enables
us to examine compound ratios, or those which result from the
multiplication of the corresponding terms of given ratios ; and
to do this, not only in the case of two ratios, which is as far ag
the elements of plane geometry can carry us, in as much as
those elements involve no higher power than a surface, but
farther even than the elements of solid geometry can carry us;
for these do not extend beyond a solid, which is the product of
three factors standing to each other in the relation of length,
breadth, and thickness. If we make use of a fourth factor, or
a third multiplication, the result which we obtain is taken out
of the class of geometrical quantities altogether ; and can have
no meaning, unless we consider three of the factors as length,
breadth, and thickness, and the fourth factor as a number mul-
tiplying the solid of which they are the dimensions; or two of
the factors as length and breadth, and the product of the other
two as multiplying the surface of which these two are the
dimensions ; or one of the factors as a line, and the product of
the other three as multiplying the length of that line.

But when we are released from the restraint which the geo-
metrical consideration imposes upon us, by tying us ‘down to
the single factor as a line, the two factors as a surface, and the
three factors as a solid, we are enabled to institute comparisons
by means of any number of factors or of multiplications that
we please ; and the relations of the products of those factors are
perfectly understood, and equally true, whether the factors
themselves are or are not quantities which ‘it is possible to
express by lines. This generalisation of the property of a rect.
angle, of being always expressible by the product of the length
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and breadth, in the extending of it to all quantities whatsoever,
of which the values can be expressed either by single expres-
sions, or by the relations of other expressions, which is the
only means of aecurately expressing in commensurable quan-
tities—this generalisation is one of the most usefal in the whole
range of the mathematical sciences ; and it is the one which
enables us to bring the force of geometrical truth, and the
clearness of geometrical conviction into the business of common

life, and into every speculation in knowledge, and every plan

in any occupation whatsoever, to which reasoning can be made

to apply. It has also this additional advantage, that how far

soever we may carry our reasoning by analogy, our analogies,

in order to be sound in their progress, and true in their ulti-

mate conclusions, must be geometrical in every individual step,

how much soever the results may be complicated, beyond the

three dimensions, which, as we have said, and as every one

must perceive, form the ultimate limit beyond which no purely

geometrical magnitudes, as a real and separate existence, which

can be set apart and contemplated, as a subject of thought, in

itself and without necessary allusion or analogy to other sub-

jects, can extend. '

Thus, for instance, every change which we can by possibility
produce upon any quantity or existence whatsoever, can always
be referred to an increase or a decrease of it ; and in the case
of known quantities, both the increase and the decrcase may,
in every case, be considered as the results of multiplications ;
for, if there is something added, this addition must be of known
value in terms of that to which it is added, before we can express
the sum ; and therefore the sum will always be the original
quantity multiplied by 1 + the ratio of the addition to the
said original quantity. In like manner, if the difference is a
subtraction, the remainder can always be expressed by the
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product of the original quantity multiplied by 1 the ratio of
the subtracted part to the original quantity.

By viewing the matter in this light, we get a clear and dis-
tinct notion of ‘the two parts of which every result must be
made up ; namely, the quantity, and the operation, or as we
express it in matters of common business, the materials, and
the work done. The last, the work done, or the operation
performed, whatever it may be in the result, is never in itself a
geometrical quantity, because action, of whatever kind it may
be, cannot be in itself a line, a surface, an angle, or a solid ; and
as, even in the most rigid geometry, it is impossible to imagine
the very simplest problem to be performed, or the most obvious
result to be arrived at, without the performance of some degree
of some kind of action, the geometer is forced tacitly to assume
the fact of this performance ; and this assumption of a necessary
element, which from its very nature does not admit of geo-
metrical definition, is the line by which geometrical reasoning,
and common reasoning in the business of life are cut asunder,
and rendered in a great measure inapplicable and useless to each
other ; instead of being, as they are in truth, the two pillars
which support the mind in every judgment which it can form,
and the two hands, as it were, by means of which it grasps,
conducts, and accomplishes every object of which it has pre-
viously taken the proper view, and seen that the accomplish-
ment is possible, and the data sufficient for arriving at it. °

In cases of direct multiplication and division, we are brought
immediately to the geometrical correspondence of the two
factors to the length and breadth of a rectangle, and the product
as the area or surface of that rectangle ; and as each multipli-
cation, in the case of any number of factors, however numerous
or however unlike each other they may be, is still nothing but
the multiplication of two factors, each step is reduced to the
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-simplicity of the geometrical truth. It is the same in cases of
division, how often soever we divide; for a division by any
number or quantity produces exactly the same result as multi-
plying by the reciprocal of that quantity, that is, by 1 divided
by the divisor ; or, if we call the divisor a, which may repre-
sent every possible number and every imaginable quantity,
whether expressible by numbers or not, and call the dividend
which is to be divided by it b, then the quotient will be

1
=d ) which is nothing more than once  divided by a, or

'
b
simply b divided by a, that is, o the fractional expression for s

quotient as it has been ‘previously explained.

7. The general relation which we have endeavoured to ex-
plain in the preceding article, and which ought to be duly
‘studied and worked out by every one who wishes to have a
knowledge of mathematics, whether general, geometrical, or
arithmetical, enables us to simplify greatly all our reasonings
concerning figures which are similar but not equal, and those
which are equal but not similar; and the first and simplest
application is that to figures described on the whole and the
several parts of a line, or on a line equal to the sum of two or
more lines, and also on those lines taken singly or together in
any order.

Upon looking back to the diagram in article 4, which enabled
us to show that the square upon the hypotenuse of a right-
angled triangle, is, in all cases, exactly equal to the sum of the
squares on the two sides containing the right angle, it will be
be seen that the square of the sum of the sides containing the
right angle is equal to four times the rectangle or product of
those sides, together with the square of the difference. But the

tiangle in that diagram is any right-angled triangle whatsoever,
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consequently the two sides containing the right angle are any
two lines whatsoever, and may be represented by twe letters, a
and b for the general expression, or by numbers for any given par-
ticular case. Therefore, we may state generally, that the square
of thesum of two quantities is equal to four times the product
of the quantities, together with the square of their difference.

Thus if @ is the greater quantity, b the less, and d the dif-
ferenee, the expression is, .

(a+c)*=dac+d?;
for as d is the difference, then a=c+-d, or a+c¢=2¢+4d ; con-
sequently (a+c¢) 2=(2c+d)*.

If we express the sum of the two quantities in terms of ¢ and
a, it is evidently 2 ¢ 4a ; for the sum is equal to twice the less
together with the difference. By squaring this, we obtain,

4cS+4acd4d? v
the first and second terms of which express four times the rect-
angle, or product of the given quantities a and ¢ ; for

. a=c+d

Multiply by . . . . . ¢

and. . . . . . ac=c’+ cd; consequently, four

timesacis . . . . =4c®*+4cd, to which add d?;

and the sumis, . . 4c244cd+d? as before.

If we had taken the expression for ¢, in terms of d, by mak-
ing it @ —d, then the sum of the two quantities would have
been expressed by 2a — d ; and the square of it by

4a%—4dgdtd?;
the first and second terms of which are of exactly the same
value as those of the former expression, in which the whole
value was taken in terms of ¢ ; and if we leave out of both the
common term d 2, the leaving out of which cannot produce any
difference, then we have,
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4c%4+4cd=4a%—4ad.

Hence, four times the square of the less quantity, together
with four times the product between the less quantity and the
difference, is equal to four times the rectangle or product of the
quantities ; and four times the square of the greater, wanting
four times the rcctangle or product of the greater and the
difference, is also equal to four times the rectangle, or product
of the two quantities.

8. Upon again looking back at the same diagram, it will be
manifest from mere inspection that, whatever the lengths of the
two sides o B and B c including the right angle may be, the
four angles of the square upon the hypotenuse must always be
upon the sides of the larger square, which is constructed upon
the sum of the other two sides of the triangle, and must divide
each of the sides of that square into two parts exactly equal to
the sides about the right angle. Also it will be seen that the
parts of the larger square situated external of the square of the
hypotenuse, must in every case be equal to four times the area
of the right-angled triangle, or to twice the product or rectangle
of the sides A B and B ¢, which contain the right angle. The
square of the hypotenuse is equal to the same, namely, four
times the area of the triangle, or twice the product of o B and
B ¢ together with the square of A B, the difference between 4 B
and B c. While the sum of the sides remains the same, the
square of that sum must also remain the same, whatever may
be the difference between the two sides themselves, and of
their squares as depending upon their respective lengths. If
the sides are equal to each other, then the square of the hypote-
nuse will fall exactly upon the middle of each side of the larger
square, that is, its angles will bisect the sum of the sides; and
in this state of things the square of the difference will vanish,
because the difference itself vanishes. Consequently, the
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square of the sum of the sides will be exactly double'the square
of the hypotenuse, and the square of the hypotenuse exactly
double the square of either of the sides, or four times the area
of the triangle. There are some conclusions resulting from
this which are worthy of attention. .

In the first place, we get a general expression for the diame-
ter or diagonal of a square in terms of the side of that square.
The diagonal of a square has the same relation to the surface of
the square as any diameter of a parallelogram has to the sur-
face of that parallelogram, that is, it divides the surface into
two equal parts ; but it has another property which does not
belong to the diameter of any parallelogram but a square, and
therefore it gets a different name, namely the diagonal, which
means that which divides into two equal parts each of the angles
which it joins. Diameter literally means “through the mea-
sure,” or dividing the space or surface into two equal parts, while
diagonal means ¢ through the angles,” or dividing them into
equal portions at each extremity. It will be readily understood
that, as the sides of the square are equal, the sum of their
squares, which is also the square of the diagonal, must be equal
to twice the square of one of them. If, therefore, we call the
side of the square a, the square of the diagonal will be expressed
by 2a%, and the diagonal itself by / (2a2.) Now,2a®isa
product of two factors, the one of which, a® is a complete
square, and the other, 2,is not. Thus, the product can be
resolved into two factors, only one of which, namely the factor
2, is affected by the radical sign ; that is, the expression may
be reduced to

a2
or in words, to find the diagonal of any square of which the
side is given, multiply the side by the square root of the num-
ber 2 ; and to find the side of any square of which the diagonal
HH



466 S8QUARE ROOT OF 2.

is given, divide the diagonal by the square root of 2. The
square root of 2 is an irrational number, incapable of being ac-
curately expressed by any fraction, because 2 is a whole num-
ber, not an exact square, and therefore its root cannot be any
fractional number whatever.. If, however, we find, by the rule
formerly given for the extraction of the square root, and extend
the operation to five places of decimals, we have the square root
of 2 =
. 1°41421 &e.,
which is near enough for all common purposes, either for find-
ing the diagonal from the side, or the side from the diagonal.

The very same prineiple which leads us to this conclusion,
enables us to compare the rectangles of the two segments of a
line when it is divided into two equal parts, and also into two
unequal ones ; or, which is the same thing, it enables us to
compare the product of two numbers or quantities with the
square of half their sum; and from the mere composition of
the figure it will be perceived, .that the square of the half sum
exceeds the rectangle or product by the square of the half dif-
ference ; because four times the rectangle or product of the two
sides, together with the square of the whole difference, is always
equal to the square of the sum, or four times the square of the
half sum. If we divide these equals each by four, we obtain
quotients having the same ratios to each other as the quantities
divided ; and as these quantities are equal, the quotients must
also be equal ; and those quotients are the rectangle or product
of the two quantities, together with the square of half their
difference in the one case, and the square of half their sum in
theother. This principle is very simple ; but as it enters into
some others which are rather more complicated, it may not be
improper to give an illustration of it in general terms.

For this purpose, let 2 a represent the length of any line
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whatever, and half the length of that line is of course 1 a, or
simply a, and its square is a®. Let this line be divided into
two unequal parts, of which the difference is 2 d, and it is equally
evident that the larger segment will be expressed by a-+d and
the less segment by a —d. Multiplying a+d by a —d, we
obtain a® — d %, that is, the square of the half sum exceeds the
rectangle or product of the two unequal parts by the square of
the half difference.

9. If, in a right-angled triangle, one of the sides containing
the right angle is double the other, the hypotenuse is equal to
the side which is half the other multiplied by the square root
of the number 5.

This also follows from the comparison of the squares of the
two sides with that of the hypotenuse, and the perfect equality
which, in all cases, subsists between them. If the one side is
double the other, its square is four times that of the other, and
consequently the sum of their squares, which is equal to the
square of the hypotenuse, is five times the square of that other,
and the hypotenuse itself is the root of this square. Thus, let
a be one of the sides, ¢ the other, and b the hypotenuse, and let
¢=2 u; theny—

b2=a24c?; but

c2=4a?; therefore,

b2=5a9%; and consequently,

b =./(6a%.)
Now this last expression for b is resolvable into two factors, one
of which, a%, is a complete square, and the other & number not
a square, therefore they may be separated, and we may write

b=an/ 5,
the meaning of which in words is, that b the hypotenuse, is equal
to a, the side which is half the other, multiplied by the square
root of the number 5. b5 is a whole number, not a complete
HH2
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square, and therefore its square root'can be found only to an
approximate value ; and this value extended to the fifth place
in decimals, is,

2:23606.

9. If to the square of the sum of any two quantities the
square of either quantity is added, the sum of these two squares
is double that of other two squares, namely, the square of half
the quantity where square is not added, and the square of the
sum of that half and the quantity which is added.

Thus if a and b are any two quantities whatsoever, then,

(a+)*=2(b2+(Fa+0)%);
and as @ or b may indifferently be the greater quantity, for
each of the letters stands for any or all quantities whatsoever,
they might be made to change places in their éxpressions with-
out in the least affecting the truths which the expressions
involve.

This proposition might be enunciated in a different manner
as follows:

If the one of twe quantities is divided into two equal parts,
the square of the sum of the quantities, and the square of the
undivided quantity are together equal to twice the square of the
undivided quantity, and twice the square of the sum of the
undivided one and half the divided. This may be shown
either generally in respect of all quantities whatsoever, or par-
ticularly in respect to geometrical quantities; and as it is a
principle of some importance, we shall endeavour to show the
truth of it in both ways.

First, generally or algebraically :—Let a and b be the two
quantities ; and as it is perfectly indifferent which of them we
consider as the divided one, let a be divided into two equal parts,
and let ¢ represent the half of a ; that is, let @ equal 2 ¢. Then

the truth to be shown is, that
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(2c+d)*+bd4=2(c2+(b+c)2);
and if we can show, by the performance of the requisite multi-
plications, that those quantities which have the sign of equality
between them are equal, that is, reducible to the same expres-
sions, then the truth of the proposition will follow, as a matter of
course. Now if we multiply 2 ¢4-b, by 2 ¢+ b, the product is
the square, and it is,
dc244bc+be,

addbs® . . . . b2; and

thesumis. . 4c*+4bc+2b% the half of which

is . . . 2c¢*'+2bc+ 0%
and if we can show that twice c? together with twice the
square of b+c amounts to the same expression, the truth of
our proposition will be established. Now the square of b+c,
or transposing the letters, which does not alter the value as it
is still the same sum, c+-b is,

c242bc,+0%;
add c? . . c? _and
the sum is . . 2e%4+2bc+dY

which is exactly the same as the former expression ; and there-
fore, the square of the sum, together with that of one of the
quantities, is double the square of the other quantity—and the
square of the sum of that quantity and half the first one.

Secondly, we shall endeavour to point ont the truth of this
geometrically, or as it applies to lines ; and for this purpose it is
usually enunciated in these terms: “If a straight line be
bisected, and produced to any point ; the square of the whole
line thus produced, and the square of the part of it produced,
are together double the square of half the line hisected, and of
the square of the line made up of the half and the part pro-
duced.” '
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In order to show this, we introduce the following diagram :

fs N b

A ¢ o € 3 c

1 4
et c? 173

9 8
c* e 173
12 7

[ 1] be 11 s
e 10 ¢ ] 2

e (———11 3 5

a

Let A B and B ¢ be any two straight lines whatsoever, which
are placed in the same straight line merely for the sake of con-
venience ; and let the line A B be bisected or divided into two
equal parts in the point o, so that ¢ and c are equal to each
other and halves of A B, which is marked off by the bracket
and named a above the same ; and B ¢ is named & in like man-
ner, in order that the nomenclature may correspond exactly
with that previously used in the general reasoning. Thisbeing
understood, draw any other line, as 2, 5 ; make ¢ and ¢, on each
side of 10 equal to halves of A B orof @ ; and make b and b, one
extending to 3, and the other from 3 to 5. 2, 3, is the sum of
a and b, that is, of A B and B o; and 3, 5, is equal to B, that is,
to B ¢. Upon 2, 3, describe the square 1, 2, 3, 4, and it is the
square of the sum, that is of a+b, and upon 3, 5, beginning
where 2, 3, ends, describe the square 3, 5, 6, 7, and it is the
square of b. Bisect 7, 4, in 8, and through 8 draw 8, 9, parallel
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to 1, 4, and continue it till it meets 1, 2; also through 10, the
bisection of a, and 11 the point where a and b terminate, draw
parallels to 1, 2, or to 3, 4, and continue them till they meet
1, 4. The sides of the square 1, 2, 3, 4, are similarly divided
into three parts, one part of each being respectively equal to b,
and each of the remaining two to ¢, that is, to the half of a.
The lines which cross the square in both directions are parallel
to each other, and to the sides of the square ; and if the nine
parts into which the surface of the square is divided, four and
also other four are equal to each other, and they are squares
or rectangles accordingly as the sides about any one of them
are equal or not equal.

It is not necessary formally to prove the parallelism of the
lines, or the equality of the corresponding figures into which
they divide the square ; for the opposite sides of the square are
parallel; and as the lines which intersect the square were made
parallel to one of those sides, they must also be parallel to the
other, Also, as the angles of the square are right angles, all the
angles which the intersecting lines make with each other, or
with the sides of the square, must also be right angles; so that
the equal-sided portions are necessarily squares, and the une-
qual sided ones parallelograms.

Let us now examine and see what is the value or surface of
both squares, in terms of the lines ¢ and 5. Weneed not prove
that the square 3, 5, 6, 7, is the square of b, because it was
made the square of 5. The adjoining square, in which 52 is
marked, is also the square of &, for its side 11, 3, was made
equal to b. Abutting on the dotted sides of this square, there
are four rectangles, two upon each side, and they are respec-
tively the rectangles of bX c; for one of the containing sides of
each of them was made equal to b, and the other equal to c.
There remain only the four small squares on the reader’s left
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hand, toward the top of the diagram ; and as all the sidesof
each of these is by the construction equal to ¢, each of them is
the square of c.

If we collect the several parts of which the two squares are
made up, we have,

First, four times the square of ¢;
Secondly, four times the rectangle b ¢ ; and
Thirdly, twice the square of &.

If we now examine the square upon 10, 3, which is the sum
of ¢ and ), thatis, the square 10,9, 8, 3, we find that it contains,
what we formerly showed to be the content of the square of
the sum of any or of every two quantities, the sum of their
squares, and twice their rectangle or prodact—in the present
case the square of ¢, the square of 3, and twice b X ¢c. Ifto
these we add the square of ¢, we have the whole equal to

2c 4 2be + b9,
which is exactly half the content of the two squares which
make up the diagram ; and as ¢ is in every instance an expres-
sion for half the given line a B, b the expression for the given
line B ¢, and & + ¢ the expression for the line which is made
up of the half of a B and the whole of B ¢, the truth is geome-
trically apparent.

There are several other traths of a somewhat simple nature,
which are apparent from simple inspection of the same diagram ;
first, (but thai was sufficiently explained in a former section,)
we have the square of the sum of cand b = ¢® + 2bc + b2

Secondly, we have the square of b and the half of a, that is,
the square of b + ¢ = the rectangle under ¢ + b and b, toge-
ther with tke square of c. For 2, 3, 7, 12, is the rectangle
under ¢ + b and b ; and it consists of 2 b ¢ + % ; and if to this
we add ¢% we have the square of b 4 ¢, or (which is the same
thing) ¢ + b, as above stated.
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Geometrically, this last truth is usually enunciated : “ If a
straight line be bisected, and produced to any point ; the rect-
angle contained by the whole line thus produced, and the part
of it produced, together with the square of half the line bisected
i8 equal to the square of the straight line, which is made up of
the half of the part produced.”

10. Some very useful problems may be performed by means
of the principles which have been explained in the preceding
articles; and indeed as squares are the original foundations of
our judgment respecting the areas of figures, they are the best
means by which figures can be compared in respect of their
areas ; and as every figure bounded by straight lines is capable
of being reduced to a square, this medium of comparison is per-
fectly general. But we shall procced to the more useful
of the problems.

First, to find a rectangle whose half, fourth, eighth, six-
teenth, and so on, proceeding by continual bisection or divi-
gion by two, shall all be similar to each other, and also to the
rectangle itself.

It is obvious, that in order to solve the problem, we must
have some datum, and that this datum must be either the
length or the breadth of the rectangle; because in every rect-
angle these two dimensions are quite sufficient for constructing
the figure or finding its surface.

Let the length be that which is given, and the problem will
be reduced to finding the breadth, in order that half the rect-
angle may be similar to the whole. Figures are similar when
the sides about their equal angles are directly proportional.
But the breadth of half the rectangle is evidently half the
length ; and this half of the length must have the same ratio
to the breadth of the rectangle, as that breadth has to the
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Jenzth. Calling the length ¢, and the breadth x, we have the
fullowing proportion :

Asa::=.r::-
2.

Or multiplying extremes and means, and expressing their pro-
ducts as equals, we have

2
at =:;,andeonsquﬂnl.v,
X = ‘/;_
In words: to find the breadth of the rectangle, divide the
square of the length by 2, and the square root of the quotient
is the breadth. .
Bat if we examine the expression,

::J_‘f

we can see that the quantity a which is given is quite general,
or may be expressed by any number whatsoever, and by the
number 1 as correctly as any other; and if we consider a as 1,
we shall be enabled to change our expression into a multiplier ;
forifa = 1, then

r= g/az;beoomes:= v

for 1 is the square of 1, and therefore the sign of the root may be
taken away. Every other quantity when expressed by a num-
ber, is expressed by the product of 1 multiplied by the ratio
of that number to 1; and therefore we have in the square root
of 1, the ratio of the breadth of the rectangle toits length ; and
if the length is given, we can find the breadth by multiplying
the length by the square root of 1. In 1, the numerator 1 is a
square number ; but the denominator 2 is not, and, therefore,
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its square root cannot be expressed by any fraction: but it may
be approximated decimally with sufficient accuracy for prac-
tical purposes.” The decimal of }is 5°; and if we find the
square root of this in the manner explained in the section on
roots, we shall find it to be * 7071 06 &c. ; and if we multiply
the given length by this number, we shall obtain the breadth.
The second figure of the decimal number is 0 ; and therefore the
first figure, namely 7, is as accurate as the first and second 7 0 ;
consequently, if we take 7; as our multiplier, we shall be
correct to the nearest 100th part, which is sufficient in many
practical cases. Hence we have the popular formula,—

To find the breadth of a rectangle, whose half, fourth, and so
on, dividing continually by 2, shall be similar to the whole,—
multiply the length by 7, divide by 10, and the quotient is the
breadth to the nearest 100th part.

If the breadth is given to find the length, it is merely rever-
sing the operation ; that is, multiplying the breadth by 10 and
dividing it by 7, and the quotient is the length.

This problem is nothing more than a particular case of the
finding of a mean proportional between any quantity, and the
half of that quantity ; and therefore it may be performed geo-
metrically in the same manner as the general problem which
is mentioned at page 445.

\ ¢ B c

Let A B be any straight line ; produce it to ¢, until B c is
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equal the half of a B; it is required to find a mean propor-
tional between o B and B c.

Bisect A ¢ in 6, and from A as a centre, at the distance ¢ a
or @ ¢, describe the semicircle A p 6. At B draw the perpendi-
cular B p, meeting the circumference in o, and B p is the mean
proportional required. Join A » and cp,and theangleap cisa
right angle, being in a semicircle ; and the triangles ABD, DB C
are similar, and have their sides opposite the equal angles pro-
portional. A B and B p in the one,and B p and B ¢ in the
other, are opposite equal angles. Thercfore

AB:BD =BD, BC;
and multiplying extremes and means,
AB X BC = BD% thatis,
B D is 8 mean proportional between A B and B ¢; and B c was
made equal the half of A B, therefore it is a mean proportional
between & line and the half of that line.

Complete the parallelogram, by drawing the dotted linep E
parallel to A B, and A 1 parallel to B b, und the figure ABD E
is a parallelogram, the continual bisection of which will form
parallelograms similar to the whole and to each other.

It is not a little remarkable, that this rectangle, which pro-
duces similar rectangles upon being bisected, is the most agree-
able to the eye of all rectangular figures, not even excepting
the square, the perfect regularity of which gives it a tameness,
and impresses one with the idea that there is neither up nor
down nor right and left about it. But when a rectangle of the
proportion above stated is placed with its longer sides perpen-
dicular, as for example when it is a window, a door, or any
other rectangular aperture, there is something very satisfactory
in its appearance ; and if it is contracted with another rectangle
which is either longer in proportion to its breadth, or broader
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in proportion to its length, these are sure to offend the eye even
of one who is little accustomed to the study of forms, if they
are presented along with one of these proportions. Those that
are longer in proportion seem lank and wire-drawn ; while those
which are shorter in proportion, seem cramped and com-
pressed by their own weight.

1t is perhaps not less remarkable, that this propomon of form
has been in a great measure, if not-altogether, neglected in the
arts, especially in modern building, where the rectangle is of
such constant occurrence. This single fact shows how ill the
technical systems of Mathematics, and more especially of Geo-
metry, are adapted, for useful purposes; because if practical
men were in the habit of going beyond the merely mechanical
use of the problems which they have conned by rote, and
availing themselves of the general principles, it is difficult to
see how they could by possibility have overlooked one the
advantages of which are so great and at the same time so
obvious.

There is one particular branch of the arts in which the
introduction of this principle would be attended with very
pleasing advantages, and that is the manufacture of paper. At
present a sheet of paper has of course some sort of shape; and
though the shapes of differently named papers vary a good deal,
we believe no one can explain why any one of them should
have the relative length and breadth which are invariably given
toit. The consequence is, that books, printed on different
papers, and folded into different numbers of leaves per sheet,
are of many different forms, and the greater part of them are
offensive to the eye, of which the common demy 12mo is a very
convincing instance. Now, if the sheet of paper, of whatever
size, were made in the proportion of the rectangle under con-
sideration, ornearly in that of 10 long and 7 broad, then all the
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foldings of such a sheet into numbers expressing the powers of
2, that is 2 for folio, 4 for quarto, 8 for octavo, and so on till
the smallest size necessary for any useful purpose were reached,
would be similar forms; and each of them, however large or
however small, would be of that form which is most agreeable
to the eye. To those who have not reflected upon such sub-
jects, this may seem to be a matter of very minor importance ;
but in truth it is not ; for there is no one object that can come
under our notice, in which any thing repulsive to the feelings
has more injurious influence than in a book ; and any one who
thinks as he reads, must remember many instances in which
he has felt the matter of the book rendered uninviting and even
repulsive by the ungainliness of its shape. It is of course not
meant to be alleged that mere shape will convert a dull book
into an interesting one ; because the pleasure we derive from
the contemplation of form is simply a matter of feeling ; but
there is no doubt that the value of a good book may be greatly
deteriorated by an ugly form, just as the most important truth
may be made repulsive, if expressed in language which is un-
grammatical and vulgar.

There are many other practical applications of the principle
involved in this problem ; but we shall content ourselves with
only one more, which is very useful in the perspective repre-
sentation of a circle on a plane, oblique, or not every way at
right angles to the axis of the eye. In order to draw the per-
spective representation of the circle with moderate accuracy, it
is necessary to determine eight points in the circumference.
Four of those points can always be determined by bisecting the
square of the diameter by two lines crossing each other ; but
the four points intermediate between these, namely those in
which the circle cuts the diagonals of the inscribed square, or
square of the diameter, cannot immediately be determined
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by the mere application of lines. We shall perhaps make this
a little more clear by introducing some diagrams.

A 3 D
o

5 s
07

834 7 7 7 &3c

Let o B ¢ D be a square, and 1, 5, or 3, 7, the diameter of
the larger circlé, of which the centre is @, the two diameters
1,5and 37, and the two diagonals A ¢ and B D, obviously
divide the circumference of the circle into eight equal parts in
the points 1, 2, 3, 4, 5, 6, 7, 8. If the square 4 B ¢ D is given,
the points 1, 3, 5, 7, are also given, because they are at the
middle or bisection of the sides of the square. If the diagonals

"acand B D, which are also given if the side of the square is
given, are drawn, the other four points, 2, 4, 6, and 8, must be
somewhere in those diagonals ; but the square itself furnishes
no data for pointing out in what place of the diagonals they are
situated. '

In the case of an actual square, the inscribed circle can
readily be drawn, and it will cut the diagonals in the points 2,
4, 6,and 8; but when we wish to make a perspective repre-
sentation of a circle in an oblique plane, the circle itself is the
thirfy sought, and therefore, instead of using the circle to find
the points, we must use the points to find the circle.

Join 2, 4, 6, and 8, by four lines ; and the figure which they
form, as its sides stand upon four equal arcs, each a quadrant
or quarter of the circle, the figure 2, 4, 6, 8, is a square, having
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its sides parallel to those of the square without the circle. The
diameters 1, 5, and 3, 7, divide both the circumscribing and the
inscribed square, that is, the square touching the circle within
into four equal squares ; and the diagonals of the squares divide
each of those four squares into two equal triangles ; so that the
eight parts which have each an angle at the centre @, are all
equal as belonging to the one square or to the other ; that is

to say, the triangle a1 ¢ is one eighth of the larger or circum-

scribing square, and the triangle 2 9 @ is one eighth of the

smaller or inscribed square.

We may therefore compare the two squares, both in their
areas and in the lengths of their sides, in terms of these two
triangles, because like parts are proportionals.

Now the triangles a 1 6, and 2, 9 @, are similar, having their
angles at 1 and 9 right angles, and the sides in each containing
the right angle are equal; and therefore the square of the
hypotenuse in each is equal to twice the square of a side about
the right angle, that is,

A6?=2x1¢%and262=2x96°%; or

le*=%ac’ and962=4206%;
but 16 and 2 ¢ are equal, being radii of the same circle, and
therefore 1 ¢ 2 =2 ¢ 2, consequently9e¢2=141¢?% and as
le=%ofac? 9 isto1le, as the square root of 4 to the
square root of 1. But we have shown that the approximate
value of the square root of } is * 7, that is, 4, 9 @ contains 7
of those parts of which 1 e contains 10, and consequently 1,9
contains the remaining 3 of the 10 parts.

Therefore on any side of the larger square, which is theronly
square given in the case where this problem applies in perspec-
tive ; as, for example, in the side B ¢, divide each half, that is,
7 B, and 7 ¢, into 10 equal parts. Set off 7 of those parts from
the point 7, to the two points a and b, and there will remain 3
parts from a to B, and other 3 from bto . Through a and b
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draw parallels to A B or c »; and those parallels will cut the
diagonals, and determine by their intersection the points 2, 4,
6, and 8, which are all that are required for the perspective
delineation of a circle on an oblique plane.

From the mere inspection of the above figure, and by only
drawing in it a circle touching the smaller square in the points
9, 10, 11, 12, we can perceive some of the general relations of
figures without formal investigation.

The first which occurs is one which we have already men-
tioned, namely, that circles are to each other in the ratio of the
squares of their diameters; and it immediately follows from
this, that a circle described on the hypotenuse of a right-angled
triangle as diameter, is equal to the sum of the two circles de:
scribed on the sides. Again, this correspondence between circles
and the squares of their diameters, is not confined to squares ;
but applies to all similar figures described in, or inscribed about
circles ; namely, the corresponding sides of those similar figures
are to each other in the ratio of the squares of the diameters of
the circles about which they are described, or in which they are
inscribed, it being understood that the two which are compared
must either be both inscribed, or both described.

It follows from this still farther, that if similar figures, of any
form whatsoever, are described on the three sides of a right-
angled triangle, the figure upon the hypotenuse is, in all cases;
exactly equal to the sum of the figures upon the sides about or
containing the right angle.

Hence, still farther, it is easy to see that, if any similar figures
whatever which are described upon three lines, the square of
one of which is equal to the squares of both the other two, the
figure, of whatever form, upon the first, is equal to the two
similar figures upon the other two ; those figures must be to
each other in the ratio of the squares of their . corresponding

11
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sides ; and thus if we once get possession of the whole particu_-
lars of one rectilineal figure, we can get the particulars of every
similar figure, by a simple application of the rule of three, if
we merely know the ratio between one part of the figure which
we are secking to know, and the corresponding part of the
similar figure of which we alrcady know the particulars.

This comparison of all rectilineal figures through the medium
of the squape, is one of the best and most extensive principles
in mathematics; inasmuch as it is the one which more espe-
cially brings the practical applications of geometrical truth
within the range of common arithmetic ; and further than this,
we have only to show how all recfilineal figures may be reduced
to similarity, or to rectangles or squares, so that they may be
compared with the same ease and the same accuracy as lines
and angles, and figures, which are similar according to the con-
ditions of those which are given. It is this possibility of com-
paring all straight-lined figures with each other, through the
medium of the square, which renders the whole of them—how
different soevor they may be in shape—quantities of the same
kind, and therefore always proportionals, whether we happen to
know the proportions of them or not. We must, however, in
the mean time, advert to our other problem :—Second, to di-
vide any quantity orline into two such parts, as that the square
one part shall be equal to the product or rectangle of the whole
and the other part.

We shall consider this problem as we did the other, both
generally and algebraically, and particularly as it applies to
lines in geometry. In the latter branch of the science, the
operation here to be performed is sometimes called dividing a
straight line in extreme and mean ratio, which means, that if
a proportion is instituted, the whole line shall be either the first
or fourth term, it is of no consequence which, and one of the

S
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parts the other extreme, that is, either the fourth or the first
term, and that the other part of the line shall be both.second
term and third term, and if they have this property as propor-
tionals, it is evident that the square of the part which stands
for the second term, and the third must, upon the common
property of proportionals, be equal to the rectangle or product
of the whole and the other part.

The truth of this is very plain, as well as very obvious ; but
when we come to attempt the practical solution of the problem,
we find it beyond the reach of the principles of common arith-
metic. Only one quantity is given us, and we are required to
find two quantities whose sum shall be equal to the given one,
and which shall be such, that the product of the whole by one
of them shall be equal to the square of the other.

But we are not furnished with either the factors of the pro-
duct, or the side of the square which is equal to it; nor have
we the value of the product, or square itself; so that we are
obliged to have recourse wholly to ratios; these ratios are,
however, quite sufficient for our purpose.

Let a be any quantity whatever, and let it be required to
divide @ into two such parts, as that the product of a by one of
them shall be equal to the square of other one.

We must at first content ourselves with expressions for those
two parts of a, so that from these we may get at their relations
to a, and to each other; so let one of the parts be called 2, and
the other, which is the remainder of a after # is taken away,
is of course explained by a — 2. =z, and a~a are our substi-
tutions for the two parts ; and as we do not at the present know
the relation of either part to a as a measure, it is impossible for
us to tell whether  is greater or less than a— 2. That doeg
not affect the truth of the result, however ; because there can
be only one value of # answering to every value of a.

The conditions are,

112
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w?=ax (a—z);and
performing the multiplication,
r%=a%—aua.
From this we can discover that the square of # isequal to what
remains after the product of a and z is taken away from the
square of a ; and this is something, because it shows us that the
square of a is, by a parallel drawn throngh the point of division
which we are seeking, divided into two rectangles or products,
one of whichis az, and the other equal #2. This, however,
does not give us # itself, or any means of arriving at it ; but it
enables us to state our expression differently ; so as to have
only a* on the one side of the sign = ; for since a 2 is the sum
of 22 and a x, we have
r%+axr=a’
In this case we could readily obtain the square root of a £ ; but
we cannot directly find that of #2 + a #, because it is not a
complete square. It contains two quantities, # and @, and in
order to be the square of those two quantities, it should consist
of three terms ; for according to the composition of the square
of a binomial, or quantity consisting of two terms, as explained
in a former section, such a square is always
a4 2ab4-b°%.
We use the double sign +, in order that the expression may
be perfectly general, and represent the square of a— b, as well
as that of a+ b ; and with this understanding let us compare the
general formula with our data in this particular case :

General formula . . . . .a%42ab4b%
Particularcase . . . . . . a%4ax+*
Here we find 22 corresponding to a2, which will do, as they
are both complete squares. Then, in the second term we find
a x corresponding to 2 a b, which may also do, if we consider a
as representing 3 b, and x as representing the other factor, a.
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In this case, we shall get an equivalent expression to b in the
general formula if we divide a by 2, and our second term will

thenbecome2-az£. The third term is, however, altogether

wanting in our expression, but we can see what it ought to be
from the general formula. In that it is 2, and our equivalent

for b is g, consequently, our equivalent for 2 is the square of

s
g, that is,a—4-. Therefore the terms preceding the sign = are
reduced to
a?
x% + ax + Z’

which is a complete square ; but it is greater than the original
2

expression #2 +a2 by the third term a?. To preserve the

equality, we must add this to the other side of the sign = in

our expression, and we shall ha.ve

a?
z’+am+— = a’+—

But the two terms after the sign—= maybe added together ;
2 e
for a? is %, and if to this we add— the sum 1ssTa
Therefore,
e 2
Q+a@+g_ éi.
4
The three terms preceding the sign = are a complete square,

namely, the square of w+g., for they were made such ; and as

the squares of equal quantities are equal, and the square roots
of equal squares also equal, we may take the square roots of
those quantities as far as possible. That of the terms before
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the sign =, isz-!-%; but the quantities after the sign do not

make a complete square, and therefore we must, in the mean
time, merely indicate the root by the sign 4/, thus,
a 5a%,

T=-= _—

2 4
If wetakeg&omenchofthoseeqnals,wegetequal remain-

ders, and we leave nothing but # before the sign =, so our
expression becomes, _
5a% a
= —_
4 2
which gives us the value of  in terms of a, or rather of the half
of a. Let us now see how we can simplify this value of ,

namely,

52¢ a*
1 2

The denominator of 4 is a square ; and so is the factor a ¢ of the
numerator ; so that, as formerly explained, we can take their
roots, and remove them from under the radical sign, which will

reduce our expression to,
a a

r=/5x2 2
that is to say, in words, the greater segment of the line, and
that whose square is equal to the product of the whole line by
the other one, is obtained by multiplying half the line by the
square root of 5, and subtracting half the line from the pro-
duct, or, more simply, by multiplying half the line by the square
root of 5, after 1 is subtracted from it, that is by 4/ 5 —1; and
as this is an operation easily performed, we can at once find the
parts of the quantity, or the segments of the line, if expressed
in numbers,
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- The simplest numerical expression which we can have for

any quantity is 1; and if we use this in place of g, our expres-
sion becomes ’

Vv 5—1.
We are now in a condition for showing how the same result
may be artived at geometrically.
[ D

(]

Let A B be any line, it is required to divide it into two parts;
so that the square of one part shall be equal to the rectangle
of the whole and the other part. At the point B, the ex-
tremity of a B, draw B ¢ at right angles, make B ¢ equal to the
half bf a B, and produce it indefinitely toward » on the other
side of B; also join A B, and 4 B ¢ is a right-angled triangle,
having the sides B c and A B in the ratio of 1 and 2, there-
fore ¢ A is in the ratio of the square root of 5. Onc asa
centre, with the distance ¢ a, describe an arc meeting ¢ b in
p; and B p is equal to that part of the given line A B whose
square is equal to the rectangle of the whole and the other
part. On B as a centre, and with the radius B » describe an
arc cutting o B in B; and A B is divided in E, so that the
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square of B xis equal to the rectangle under the whole line A B,
and the other part a k.

Because c is the centre of the arc, ¢ b is equal to ¢ a, and
B c is equal to the half of A B; therefore c a is to B ¢, as the
square root of 5 to 1; but B p is the remainder of ¢ » after B¢
is taken away, therefore B » is equal to the square root of 5
minus 1, which is the part required; and again, because B is
the centre of the arc » E, B E is equal to Bp ; and consequently
A Bis divided in the ratio which was required.

LINES AND CIRCLES.

Ix order to bring the circle properly within the province of
elementary geometry, it is necessary to have the means of
. determining the length of the circumference and diameter in
terms of each other, or in other words to find their ratio. We
oformerly stated the approximate value of this ratio; and we
are not now to enter farther into the investigation of the circle,
than merely to state one or two properties of some lines in and
about a circle, which have their relations determined by that
figure.

1. If two straight lines cross or cut each other in a circle,
the rectangle or product of the two segments of the one is equal
to that of the two segments of the other, without any regard
whatever to the lengths of the lines, or their situation in the
circle, provided that they cross each other, and the extremities
of both are on the circumference.

If both lines pass through the centre, the truth asserted is
self-evident ; because each of the segments of both is a radius
of the same circle, and consequently they and their products
or rectangles two and two, are equal.

There are other three cases, one line passing through the

L J
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centre, crossing the other -at right angles, and consequently
bisecting it ; and the proof of this is also nearly self-evident.

Let a B, passing through the centre, cut ¢ b, which does not
pass through the centre, at right angles, in the point E, then the
rectangle A B X E B is equal to the rectangle c® X E p, that
is, as ¢ p is bisected the square of ¢ & or BD.

Join A ¢, 0B, B D, D A ; and the triangles A ¢B, A D B, are
equal to each other, and right-angled at ¢ and b, because each
of them is a semicircle. ¢ & and p E, the segments of ¢ , are
the perpendiculars drawn from the right angles of those trian-
gles to the opposite side ; therefore cach of them is a mean
proportionable between a & and E B, the segments of A B their
common base ; consequently,

AE.EC=ED  EB;
and, multiplying extremes and means,

AEX EB =0E X ED, that is, i
the rectangle of the segments of a B is equal to that of those
of ¢ .

Next,let o B, which passes through the centre, cut ¢ b, not
at right angles, and consequently not bisect it, the rectangle of
the segments of the one is still equal that of the segments of
the other.

Let a B pass through the centre, and cut ¢ p in the point ,
but not at right angles, and consequently not into equal parts.



"

Find the centre » by bisecting 4 =, and from v draw a ¢ at
right angles to ¢ p. and # p. ¢ p is equally divided in ¢, and
mequally in u, and 4 8 is equally divided in ¥ and unequall
in x ; therefore,

pe’*=DE X Hc+ e N

Adid the square of ¥ e to both, and
pel+ref—pE X ECt+ e+ el

But because v is the centre of the circle, p ¥isequal A vorr
»; and beesuse of the right angle st ¢, b ¥* = D 6* + e¥%;
and becanse p ¥ is equal to a v, and A ¥ to » B, the square of
Det+er=aAxXuBR+ ru’ but v = re® 4 ¢ x?;
therefore ax X xs +re® + e =pe* + re

But it has been already shown, that

pe: +re*=DxE X RCc+ e + ¢ F:

Therefore—

AExX EB 4+ re? + e =D XECct+ Pt

Take away the parts r e? + x 6% which are common t
both ; and the remaining rectangles are equal, that is,

AEXEBR=DHE X EG,

and they are the segments of the lines.

If neither of the lines passes through the centre of the circle,
a line can be drawn through the point of section and the centre,
meeting the circumference both ways ; and as it can be shown
(as in the last case) that the rectangle of the two segments of
each of the lines, is equal to the rectangle of the segments of
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this one which passes through their point of section and the
centre, it follows that their rectangles must be equal to each
other. .

2. As the rectangles of the segments of any two lines which
intersect each other in a circle are equal, it follows conversely
that lines which intersect each other so as to make the rectan-
gles of the segments of each line equal, are so situated that a
circle can always be described so as to touch all their four
extremities ; and the centre of this circle can in every case be
found by bisecting each of the lines at right angles ; for, as both
the bisecting lines must pass through the centre, that centre
must be the point where the perpendiculars intersect each other.

But it also follows, that when the rectangle formed by two
lines is equal to that formed by other two, and the contained
angle is equal in both, the sides about the equal angles must be
reciprocally proportional, that is, in looking back to either of
the last figures, '

AE:DE = EC.EB.

Hence we have a general method of transforming any rect-
angle or parallelogram whatsoever into another of the same
surface, but differing in the lengths of the sides and their ratios
to each other; for we have only to place the sides of the given
rectangle in a straight line, to draw from the point where they
meet a line the length of one of the proposed-sides of the equal
but not similar figure ; and by describing a circle through the
three points, and producing the line which was made equal to
one of the sides of the proposed figure until it meets the circum-
ference, in order to get the remaining side of the rectangle
sought. It may be worth while to illustrate this by a diagram.

Let a4 and B represent two sides of a parallelogram, and ¢ one
of the angles which it contains,and let p be one side of another
parallelogram which is to have the same area and the same



LINES INTERSECTING

498
angles, it is required to find the remaining side of this parallelo-
gram.

Make the line & » equal to 4, and continue it to ¢ till ¥ g is
equal to . At the point r draw the line » 1, equal to », and
making the angle = » u equal to . Through the points 2 m
and ¢ describe a circle, and produce = r till it meet the circum-
ference of this circle in the point 1, and » 1 is the side required.

To complete the parallelograms, transfer ¥ ¢ to F 1 by the
arc ¢ x. and transfer ¥ 1 to ¥ x in » ¢ produced, and the sides
17, P x,and B 7, P u, are the sides of the equal parallelograms,
ouly they contain the supplements of the proposed angle c;
complete the parallelograms, by drawing parallels meeting in L
and in », and 1 r x L apd B P x P are the equal parallelograms,
having 1 ¥ ; m? = p u  » K, which were required ; continue
the parallels till they meet in o N as marked by the dotted
lines, and the whole figure o L x pis a parallelogram ; and if
o X are joined, o x is a diameter of that parallelogram, and it
pases through ¥, the point in the circle where 2 ¢ and w1
intersect each other.

The sides of the parallelograms e ¢ x L and m ¥ x P, which
are about their equal angles at », are reciprocally proportional,
and for this reason they are directly proportional in the reversed
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parallelograms 1 F 5 0 and M Fx N, of which they are also
sides, and contain the supplements of the former angles, namely
E F H and M F K. that is,
IF.FH=MPF.FK;

wherefore, those two parallelograms are similar to each other ;
but they are also similar to the whole parallelogram oL N p;
for its sides o 1. and o P are respectively the sums of x ¥ + rk,
and E F 4 F u, and these sums are proportional to  » and r n,
or M r and F K taken singly, proportionals being proportional
by addition of their corresponding terms. Therefore, the line
o N bisects the whole parallelogram o L N p, and the two parts
ofit,oermand M F K N.

The parallelograms which have the sum of their diameters-
equal to the diameter of a parallelogram containing them, and
their sides parallel to its sides, are called parallelograms about
the diameter of a parallelogram ; and the remaining parts are
called complements to these. Inthe case of two parallelograms
about the diameter, as in the present figure, there are two
complements ; but whatever number there are, the correspond-
ing complements are always equal to each other, and the paral-
lelograms about the diameter are similar to the whole and to
each other.

By means of these correspondencies, it is easy to change a
parallelogram to another having its sides in any proportion, by
making it a complement to the given proportional ; and it is
equally easy to make any change in the angles without changing
the area ; for we have only to put the figures upon equal bases
and between parallels equally distant from each other. The
same facility of change applies to triangles; for a triangle is
always half the parallelogram on an equal base, and between
parallels equally distant from each other; and thus we can
apply triangle after triangle to any given line, 8o as to form the
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whole into one parallelogram, having that line for one of its
sides, and one of its angles equal to any angle that may be pro-
posed. After we have obtained the parallelogram, we have
only to change its angles or its sides by the methods already
explained, in order to reduce it to a parallelogram having its
sides in any proportion, or into a square.

As we can perform all these operations directly we can also
perform them inversely, and resolve a square into any rectangle,
parallelogram, triangle, or number of triangles, that we please,
or into any other straight line figure whatever; but these
transformations are so seldom needed in practice, that it is
unnecessary to go into any details of them ; for any one who
studies with attention what has been stated, can find no diffi-
culty in performing for himself any or all of these transforma-
tions ; and they involve the whole principles necessary for the
comparison of every form of rectilineal figure, which is the
utmost extent to which we purpose to carry the elements of
Geometry, in the present volume. There is still however one
determination of the relations of lines by means of the circle to
which it may not be improper to advert ; and that we shall now
briefly consider.

3. If from any point, without the circumference of a cu-cle,
two straight lines be drawn, one of which cuts the circle and
the other touches it, the rectangle contained by the whole line
which cuts, and the part of that line without the circle, is equal
to the square of the line which touches.

The line which touches the circle is always of the same
length, if the point from which it is drawn is fixed, that is, if
the position of it is given; for it can touch the circle only in
one point, which is fixed also because the position of the circle
is given; and therefore the only variation which can be is in
the position of the line which cuts the circle, It may pass
through the centre of the circle, or it may not; but in what
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manner soever it cuts the circle, while it is drawn from the
same point without the rectangle under the whole of it, and the
part without the circle remains constantly the same, or equal
to the square of the line which it touches ; and this line itself
remains unchanged, while the point in the circle remains the
same, There is, therefore, the same relation between the whole
of a line which cuts acircle from a point without, and the part
of it which is without, that there is between the segments of a
line which cuts another line in the same point within a circle,
that is, the rectangle between them is of the same value how-
ever their lengths may vary, and constantly the one increases
in proportion as the other diminishes ; and if we take two lines
drawn from the same point without, and both cutting a circle,
the whole and the part without of the one must be reciprocally
proportional to the whole and the part without of the other.
If we show the truth of this in the case of one line which
passes through the centre, and of another line which does not,
we shall have proved all that is necessary.

Let there be any circle of which ¢ is the centre, and any
point p without the circle. Let there be drawn from »p, a line
P T touching the circle in the point T, and two lines p r, P N,
both cutting the circle, but p 1 passing through the centre and
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P » not, the rectangle under the whole » 1, and the part with-
out the circle » p, and the rectangle under the whole » ~, and
the parts without p s, are each equal to the square of » T, and,
conseyuently, they are equal to each other.

First, let us consider p. Join T ¢, and because » T touches
atT, and T ¢ from the point of contact passes through the
centre, P T ¢ is a right angle, and

Pt =rT + T
Baut 1 » is bisected in ¢ and produced to », therefore
PIX PD+ Dct=rpcl
But p ¢ = T & for both Iines are radii, therefore
PIX PD+Tci=PrPr2 4+ 2
Take away T c%, which is common to both, and
PI X PD =PTS

Second, P X P s isalso equal to » 2. Jain ¢ s, and from ¢
draw c o at right angles to p x, and the part s ¥ is bisected in
o, therefore,

PN X PSS + 850 =pod
To each of these add o ¢? and
PY x P8+ 30>+ 0c =ro° + oc

But pc2 =P0% + 0c? and c¢s® = 82 4 o0c?; therefore.
p¥x X Ps+oct="rc;and Pt =T1c%+ 19 and o
to s c2 + P 1% take away the equals and ¥ X Ps = F 1%,
that is, the rectangle under the whole line and the part without
the circle, is equal to the square of the touching line, whether
the line which cuts does or does not pass through the centre.
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