


\

LIBRARY



STAT.











STAT.



AN INTRODUCTION TO
THE LIE THEORY OF
ONE-PARAMETER GROUPS

WITH APPLICATIONS TO

THE SOLUTION OF DIFFERENTIAL EQUATIONS

BY

ABRAHAM COHEN, PH.D.

ASSOCIATE IN MATHEMATICS, JOHNS HOPKINS UNIVERSITY

D. C. HEATH & CO., PUBLISHERS
BOSTON NEW YORK CHICAGO

II I



BY THE SAME AUTHOR

AN ELEMENTARY TREATISE ON
DIFFERENTIAL EQUATIONS

ix -f- 271 pages. Half Leather

D. C. HEATH & CO.. PUBLISHERS

COPYRIGHT, 1911,

BY ABRAHAM COHEN.

MATH.
STAT.

UBRARY



STAT
PREFACE

THE object of this book is to present in an elementary manner,

in English, an introduction to Lie s theory of one-parameter groups,

with special reference to its application to the solution of differen

tial equations invariant under such groups.

The treatment is sufficiently elementary to be appreciated, under

proper supervision, by undergraduates in their senior year as well

as by graduates during their first year of study.

While a knowledge of the elementary theory of differential equa

tions is not absolutely essential for understanding the subject

matter of this book, frequent references being made to places where

necessary information can be obtained, it would seem preferable to

approach for the first time the problem of classifying and solving

differential equations by direct, even if miscellaneous, methods to

doing so by the elegant general methods of Lie
;
and this book is

intended primarily for those who have some acquaintance with the

elementary theory. To such persons it should prove of great inter

est and undoubted practical value. An attempt has been made

throughout the work to emphasize the role played by the Lie theory

in unifying the elementary theory of differential equations, by

bringing under a relatively small number of heads the various

known classes of differential equations invariant under continuous

groups, and the methods for their solution. Special attention may
be called to the lists of invariant differential equations and applica

tions in 19, 28, 30; while the two tables in the appendix include

most of the ordinary differential equations likely to be met.

Only as many examples involving the solution of differential

equations as seem necessary to illustrate the text have been intro-
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duced. The large number usually given in the elementary text

books seems ample for practice.

The short chapter on contact transformations, while not essential

to the work, has been added for purposes of reference and to give

the student sufficiently clear ideas, so as to provide a working

knowledge, in case he has occasion to apply them. For the same

reasons, the rather sketchy note on /--parameter groups has been

added, where an attempt is made to bring out, as concisely as

seems consistent with clearness, the relations between r-parameter

groups and their infinitesimal transformations. An exposition of

the general theory would be beyond the scope of this work.

To a large extent Lie s proofs and general mode of presentation

have been retained, both because of their elementary, direct char

acter, and because the subject is so essentially Lie s own. An

attempt has been made, however, at a more systematic arrange

ment of the subject matter and at identifying more closely the

classes of differential equations invariant under known groups with

those considered in the elementary theory.

The author takes pleasure in expressing his appreciation of the

valuable suggestions made by Dr. J. R. Conner, who kindly con

sented to read the proofs.

ABRAHAM COHEN.

JOHNS HOPKINS UNIVERSITY,

BALTIMORE, MD., August, 1911.
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LIE S THEORY OF

DIFFERENTIAL EQUATIONS

CHAPTER I

LIE S THEORY OF ONE-PARAMETER GROUPS

1. Group of Transformations. The set of transformations

(i) xl
=

&amp;lt;l&amp;gt;(xl yt a), yi = \l/(x,y, a)*

each one being determined by some value of the parameter a, con

stitutes a group if the transformation resulting from the successive per

formance of any two of them is one of the transformations of the

aggregate. In other words, assigning a definite but arbitrarily selected

value to the parameter a, and then any second value b (where b may
or may not be equal to a), this second transformation being

(i 6)
,r2
=

4&amp;gt;(xlt ylt &), y, = *l/(xlf y} , 6),

the transformations of type (i) form a group if the results of eliminat

ing Xi and j t from (i) and (i 6 ), i.e.

,yt a), \l/(x,y, a\ ^] y-2

* Here and
\f/

are supposed to be generally analytic, real functions of the three

quantities x
t y, a; and, unless especially stated, it will be understood that .r and y are

real, and that a takes such values only as render
.rj and y^ real. Besides, and

\J/
are

independent functions with respect to .r anfi y, alone; i.e.

(90 (&amp;gt;/&amp;gt;

_r dy

so that equations (i) can be solved for .1 and y.
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reduce identically to

x2
=

&amp;lt;j&amp;gt;(x, y, c), y2
= $(x, y, c\

where c is a function of a and b only. If (i) be represented by Tn

and (i 6) by Tb,
the group property may be expressed symbolically

TaTb =Tc
.

We shall speak of TaTb as the product of Ta and Tb ;
and shall under

stand that it represents the transformation resulting from the succes

sive performance of Ta and Tb ,
in the order named. With this in

mind, the group property of a set of transformations may be expressed

in the words, the product of any two transformations of the group is

equal to some transformation of the aggregate.

As an example, consider the translations*

I x\ x, yi y-\r a.

After having fixed upon some value a of the parameter, a second transformation

of the set, corresponding to the value
l&amp;gt;,

is

*a = *\i ) -2 =-y\ + b-

The result of the successive performance of the two is

x2 = x, y* = y + a + l&amp;gt;,

which is again a translation of the set, with a -f /&amp;gt; as the value of the parameter.

Hence, all translations of the type I form a group.

As another example, consider the rotations^

II Xi = x cos a y sin a, y\ = x sin a + y cos a.

* It will frequently be found convenient to consider this subject from a geometrical

point of view. A transformation of the form (i) may be looked upon as transforming

the point (x,y) into the point (TJ,; ,). The effect of a transformation I is, obviously,

to carry any point the distance ,i in the direction of the axis of r. So that the effect on

all the points of the plane is that of a translation of the whole plane over a distance a

in the direetion of the axis of v.

f Obviously the effect of a transformation of this type on the various points of the

plane is that of a rotation of the whole plane, through the angle, a, about the origin.
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The result of first performing the transformation corresponding to some definite

value of a, and then a second one,

x-z = xi cos b yi sin b, y* = xi sin b -j- y\ cos b,

is x2 = x cos (a + /;) 7 sin (a + ), y = x sin (a + /;) +y cos
(&amp;lt;i
+

&amp;lt;$),

which is again a rotation of the set, with a + ^ as the value of the parameter.

Hence, all rotations of the type II form a group.

The ajfine* transformations,

III xi =x, yi= ay,

form a group, since the result of two transformations in which the values of the

parameter are a and
l&amp;gt;, respectively, is

*2 = * y* ah ,

where ab is the value of the parameter.

In the same way it is readily seen that the perspective or similitudinous f

transformations,

IV . xi = ax, yi = ay,

form a group.

In the groups considered in the Lie theory it is presupposed that

the transformations can be arranged in pairs, the members of which

are mutually inverse \ ;
that is, if (i) be solved for x and y, their

values in terms of x^ and y\ assume the forms

(i) x =
&amp;lt;K*i, y\, a), y = AOi&amp;gt; y\&amp;gt; )&amp;gt;

where a is some function of a.

Thus in the examples above we have the inverse transformations :

I. x = xi, y=yl a; here a = a.

II. x = xi cos a }- y\ sin a, y = x\ sin a + y\ cos a
;
a = a.

III. x = x\, y = ~y-l
-

i

a

iv. * = !jr lf y = *y\\ * = -

a a a

*
Following Lie, this name is used here in a restricted sms&amp;lt;&amp;gt; to npply to transforma

tions of the types III and III
, $ 19. The term goes back to Moebius (1790-1868), and

usually includes all entire linear transformations Xi =&amp;lt;Zj
x + b\y -\-Ci,yi~&amp;lt;i-2%~\~ b^y + ^3.

f So called because the effect of any one of them is to stretch the vector going from

the origin to the point (.r,_y) in the ratio
(I

, leaving its direction unaltered. Any figure
I

in the plane is, therefore, transformed into one similar to it by a transformation IV.

J Such groups will be referred to as Lie groups when this property is to be em
phasized.
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Since the successive performance of two mutually inverse trans

formations results in the identical* transformation, the latter must

always be a transformation in every group considered in this theory f ;

hence, there must always exist a value, a
() ,

of the parameter which

reduces the corresponding transformation to an identity

, )
a )=x,

It is readily seen that in the case of I, II, III, IV the values of are o, o, I, I

respectively.

Since &amp;lt; and
if/

are continuous functions of the parameter a, if we

start with the value aQ ,
and allow a to vary continuously, the effect

of the corresponding transformations on x and y will be to transform

them continuously ;
that is, for a sufficiently small change in a the

changes in x and y are as small as one pleases. Looked at geometri

cally, the effect will be to transform the point (x, y) to the various

points on some curve, which is known as a path-curve of the group.

Thus in the case of I, the point (x, y) is transformed into the various points

on the line through it, parallel to the axis of y\ in the case of II, the path-curves

are obviously circles having the origin for center ;
in III the path-curves are

again lines parallel to the axis of y, while in IV the path-curves are straight lines

through the origin.

It is evident that when x and y are considered as constants while

xl and yl are taken as variables, the equations (i) are the parametric

equations of the path-curve through the fixed point (x, y). Hence,

the path-cuwe corresponding to any point (x, y) may be obtained by

eliminating afrom the two equations of (\).

* Identical transformation is the name given to a transformation that leaves un

altered all the elements upon which it operates.

\ Groups exist in which the parameter enters in such a way that there is no iden

tical transformation. (S.-- Lie, I ran.&amp;lt;;f&amp;lt;&amp;gt;ni/ati(i\!;riif&amp;gt;pen,Vo\.\ &amp;lt; {4&amp;lt;\.)
Such groups

will not be included among those considered here.
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Remark i. It is readily seen that, in general, the path-curve

corresponding to any point corresponds equally well to every other

point on it.

There is a possible exception to this statement. A point may be left un

altered by every transformation of the group; as, for example, the origin in the

case of II. Such a point would naturally not have a path-curve. In the case of

III, every point on the axis of x is left unaltered; hence, a line parallel to the

axis of y is the path-curve of every point on it, except the point where it cuts the

axis of x. In IV a line through the origin is the path-curve of every point on it,

except the origin, which is left unaltered.

Remark 2. The parameter may appear in various forms in the

transformations that determine a given group.

Thus x\ x, y\ y + a 1 also determines the group of translations I. In this

case a must take imaginary values, as well as real ones, in order to give all the

transformations of I. As a matter of fact a = ia. On the other hand, a negative

value for a determines the same transformation as the corresponding positive

value.

The group of rotations II can also obviously be written

x\ xVi a 1
ya, y\ xa + yVi a1

.

It is always possible (and in an indefinite number of ways) to

choose as a new parameter such a function of the parameter appear

ing in any group that the value giving the identical transforma

tion is any desired number. For example, this number will be if

a is replaced by a^e
1

. In particular it will be zero if a is replaced

by ae&quot;.

Thus if III and IV, where a
t)

= I, are written

*&quot;!

= x, y\ eay and x\ ex, y\ = e*y,

respectively, a = o will determine the identical transformation. In this form,

complex values of a are necessary to determine transformations which cor

respond to negative values of the parameter in the original forms of the trans

formations of these groups.
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Show that the following transformations constitute a group. Find

the respective values of the parameter that give both the inverse and

the identical transformations. Also find the path-curves :

Ex. 1. xi
= ax, Vi

= -y. Ex. 2. x
{ a~x, }\ = ay.

Ex. 3. A\ = a2
x, )\ = a*y.

Ex. 4. x
l
= + .v&quot; + 2 a, }\ = -\- vV a.

Ex. 5. A*!
= x cosh a +y sinh a,yi = xs\nha -\~y cosh a.

Ex. 6. ^,=
i ax i ax

Ex. 7. .T!
= ax-\-(a i)j , ,i i=J.

Ex. 8. #! = ^
a
(.r cos d! y sin

), ji
= e\x S\T\a-\-y cos a).

2. Infinitesimal Transformation. Since
^&amp;gt;

and ^ are continuous

functions, the transformation

x\ = 4&amp;gt;(x, y, 0o + 8), y\ = ^(x, y, + &?),

where AO is the value of the parameter determining the identical trans

formation and &a is an infinitesimal, changes x and y by infinitesimal

amounts. Developing by Taylor s Theorem

Noting that
&amp;lt;#&amp;gt;(.r,&amp;gt; , )=^ ^(^^ ^o)

= J, the changes in x and

due to the transformation are
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where terms in higher powers of $a are indicated by dots. Since aQ

is a fixed value of the parameter, the only variables remaining in

and f^\ are x and y. Writing

&amp;gt;

the transformation takes the form

Higher powers of the infinitesimal 8a may be neglected, provided at

least one of and
77
does not vanish identically (i.e. for all values of

x and y), and neither of them is infinite. In this case the transforma

tion producing an infinitesimal change in the variables is

(2) 8* = (.*,jO&i, Sy = r,(x,y)?&amp;gt;a.

This is known as an infinitesimal transformation.

Remark i. Sinoe k$a, where k is any finite constant different

from zero, is an infinitesimal when z is, the latter may be replaced

by the former in (2). Hence, the infinitesimal transformation (2) is

the same as n, ,./

On -the other hand, if/(.r, v) is not a constant,

&r = /(*, y) ^, y)Sa, 8v =/(.v, v)
- ^

is distinct from (2).

Remark 2. In case
[ *] and

f ^] are both identically zero,

or if one of them is infinite, the method of this section for finding an

infinitesimal transformation of the group must be modified. In Note I

of the Appendix the existence of an infinitesimal transformation of

the group is established in every case, and a method for finding it is

also given. Moreover, in the same note it is proved t\\-\\ a one-param
eter group contains only one Distinct infinitesimal transformation.
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In general, the method of this section for finding and
77

will be

found applicable ;
when not, that of Note I may be employed.

In the case of I the infinitesimal transformation is

*i = x, y\ = y + 8a,

or dx = o, dy = 8a
;

f=o, ,=,. r3*=ftf*=,.iLda da J
For II, the infinitesimal transformation is

x\ = x cos (da) y sin (da), y\.x sin (da} + y cos (da}.

Since cos(5) = i - + ..., and sin (5) = $a + ..., and infini

tesimals of higher order than the first may be neglected, cos(Srf) may be re

placed by i, and sin (8a) by da. Hence,

dx = yda, dy = xda ;

* -*

Similarly, it is readily seen that for

III = o, i=y,
IV l = x, r)=y.

Ex. Find the infinitesimal transformations of the groups in the

exercises of i.

3. Symbol of Infinitesimal Transformation. In the infinitesimal

transformation

(2) &x = t(x,y)Ba, 8y = y(x, y)Ba,

8 is the symbol for differentiation with respect to the parameter a
;

but in a restricted sense, since it is used to designate the value

which the differential of the new variable x^ or \\ assumes when a =
a * Thus

* The exceptional cases noted in Remark 2, $ 2 are due to the way in which the

parameter enters and are not peculiar to any .qrmip. (See 4.) Hence.no modifica

tion of the statement made in the text need be insisted upon, provided it is understood

that the parameter is chosen in proper form.
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If/(jc, y) is a generally analytic function of x and y, the effect

of the infinitesimal transformation on it is to replace it by

/(# + &*, y+rj&a), which on expanding by Taylor s Theorem

becomes

x dy

Hence, y

Lie introduced the very convenient symbol 6^ for the coefficient

of Ba in this expansion ;
so that

where

(3) #S

It is readily seen that 6^= /

where A =-/(xlf yj .

In particular C^c = ^, CJ = &amp;gt;;.

Since Uf can be written when the infinitesimal transformation (2)

is known, and conversely, (2) is known when Uf is given, Uf is said

to represent (2). For convenience of language we shall usually

speak of &quot; the infinitesimal transformation Uf&quot; instead of &quot; the trans

formation represented by Uf&quot;
But it must be borne in mind that

Uf is nota. transformation; it is only the representative of one.

The infinitesimal transformations in the cases of I, II, III, IV are

respectively.

Remark. The differential operator 7= 1- -n has striking
av or

properties, many of which will be brought out in the course of this
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work. It is, to a large extent, because of these properties that Lie s

introduction of the idea of the infinitesimal transformation has

proven so prolific of results.

4. Group Generated by an Infinitesimal Transformation. In 2

was given a method for finding the infinitesimal transformation of a

one-parameter group when the finite transformations are given. Con

versely, the finite transformations can be obtained when the infini

tesimal transformation is known.

Attention was called in Remark 2, i, to the fact that the

parameter may be made to enter in such a way that the identical

transformation is given by any desired value of the parameter. It

is frequently convenient to have the parameter in such a form

that its vanishing gives the identical transformation. In future,

when this is specifically understood, / will be used for the param

eter. In the general case, when this form is not insisted upon, a

will be retained.

The infinitesimal transformation 7= + n
,
or

dx dy

(2 ) &r = ^,^)8/, 8j
= ^,j-)8/,

carries the point (.r, r) to the neighboring position (x -\- &t,

y + rj8/).
The repetition of this transformation an indefinite

number of times has the effect of carrying the point along a path
*

which is precisely that integral curve of the system of differential

equations

(4) 5 =
&amp;lt;(*,,J ,), f =

*&amp;lt;*.&amp;gt; )

which passes through the point (x, /). At any stage of the above

process x and y have been transformed into x
l
and jr,, and the

* This is obviously tin- path-curve (^ i) of the group, corresponding to the point

(*,&amp;gt;).
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formulae of transformation are given by those solutions of (4) or of

their equivalents

for which Xi reduces to x and y\ to j for /= o.

The first two members of (5) being free of / form a differential

equation whose solution may be written

since x\ = x, y\=y when /=o. This is the equation of the path-

curve corresponding to the point (xt y).

Solving ufa, }&amp;gt;i)

= c for one of the variables,* to fix the idea, say

jf
l
=

o&amp;gt;(v 1 , c\ and replacing xl in
77 by to, the resulting differential

equation ,

^- = dt

can be solved by a quadrature. Replacing c by its value in terms of

x
l
and )\ this solution takes the form

v(xlt }\)
- t= const. = v (x, y).

Hence it follows that

(6)

determine x^ and y\ as those solutions of (4) or (5) which reduce to

x and y respectively for /= o.

Looking upon (6) as a transformation, the following may be noted :

i The result of the successive performance of two transformations

U(xlt _v,)
=

//(.v, v) 1
|

//(.v,, v,&quot;)
:

;/(.v,. r, ),

\ v(X &amp;gt;, y-&amp;gt;)= yu-,. .r, &amp;gt; 4- /
,

* At limes it \\ill l&amp;gt;e more practical to uso somt&amp;gt; of tlie other methods given in

the author s Klrmrnt;,! v Treatise on I Mftcivntial I .(piations (in future referred to as

Kl. 1 &amp;gt;it. Eq.) 65 for finding a second solution of (5).
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is the same as that of the single transformation

2 The value / determines the transformation inverse to that

obtained by using /.

3 t=o gives the identical transformation.

Hence the aggregate of all the transformations (6) for all values

of / constitute a group of the kind considered in the Lie theory ( i).

This group (either in the form (6) or when solved for xl and j,) is

known as the group generated by the infinitesimal transformation (2 ).*

Moreover, the parameter enters in such a way that f

l

)

=
(x, y),

~ \ =
r^x, y). Since there was no restriction placed on the and

77
in (2 ),

other than that they are generally analytic, which is always

presupposed, we have shown that it is always possible to put the finite

transformations of a one-parameter group in such form that the ex

ceptional cases noted in Remark 2, 2 will not arise.

dx\ dv\ dt
In 1. equations ( O are = -^ - =.

o i I

v(*\&amp;gt;y\)=y\ -y +

In II,
dxL = &amp;lt;/y1 = d f

-
y\ *\ i

. . Oi, yi) = xi2 + }&amp;gt;i*

= x~
-f y2

.

Using method 3 (a) of 65, El. Dif. Eg.

v(x,y)=tan
} - = tan&quot;

1
&quot;

-\- t.

X
|

.V

* Since the finite transformations of a group can be calculated when its infinitesi

mal transformation is known, the latter may be looked upon ;is the representative of

the Ljroup. We shall often speak of
&quot;

the group ITf&quot; understanding by this
&quot; the group

whose infinitesimal transformation i^ lepresented by Uf.&quot;



4 TIIKORY OF ONE-PARAMETER GROUPS 13

To solve these two equations for *i and y\, so as to obtain the transformation

in the usual form, one may proceed as follows :

Taking the tangent of each side of the second relation,

i i y 4- .YT=
, where r = tan /.

xi x yr

Adding I to the square of each side and taking account of the first relation,

Whence x\ = = xcost y sin /,

Vl+T*
= cos / and =_

= sin /;

Vi + T2 Vi + T &amp;lt;

XT + V
and Vi = = = x sin / + y cos /.

Vi + T2

In III, it is readily seen that

*(JT1, /l) =Xi = X,

v(*i, vi) =\ogyi = log^ + /, oryi = *y.

Note. It is evident that the solutions of (5) need not always be found in the

form (6). Other forms may be easier to solve for x\ and y\. Thus in IV

log x\ log x + I and log^i = logy + /

are a pair of obvious solutions of the differential equations (5), and lead at once to

*\ = *x
t y\ = &amp;lt;*y.

Find the groups whose infinitesimal transformatiohs are the follow

ing :

Ex. 1. 4^-&quot;r- Rx - 5 - * + *
ox &quot;

oy ox oy

Ex.2. 2.1-f+jf. Ex.6, .v- f + .vrf.3.v dy dx .

-

dy

Ex.3. 2 .rg+ 3J
.|.

Ex.7.
(.v+.v)f-

Ex. 4. f-^f- Ex.8. (,-,.)f+ (.v +&amp;gt;4..\ (U- 2V dy
* & -

dy
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5. Another Method of Finding the Group from its Infinitesimal

Transformation. Startin with an infinitesimal transformation

dy

it was seen in 4 that the finite transformations of the group

(i ) *i = &amp;lt;l&amp;gt;(x,y, t),y\ = t(x,y, /)

generated by it can be found in such form that

The finite transformations can be obtained (expanded in powers
of /) without integration by means of the following considerations :

The effect of any transformation (V) being to replace x and y by

x
l and yly it will change any function /(x, y) into /(xlt }\). Assum

ing/^, j) to be generally analytic, since f(xlf ji) depends upon / it

can be developed by Maclaurin s Theorem.

where f=f(x, y),A =/(i, 2/i). Writing likewise

so that (^) = (^o = 77, ( C/j/Oo = Uf, it follows that

=UJ, whence W
Moreover = ^7, =^ (7^= U&.

Hence f^A = UUf=

Similarly = UUUf=k U*f; and so on. Hence the effect of
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any finite transformation (V) on /is given by

(7) /i

In particular the finite transformations of the group are given by
the formula (7) when /is simply x and y, thus

t*

(8)
*^\
t

2 I

where, it will be recalled ( 3), Ux =
, Uy = rj.

It is readily seen that for the group in the form (8) as in the form

In I Uf=&.

Ux = o, U^x - o, ; Uy = i, U~y o, U Ay = o, ....

Hence x\ = x, y\ = y -f- /.

In II Uf=-y&+x&
Qjc {jy

Ux = -y, U*x = U(-y} =- x, U*x= U (- x)= yt and so on.

_ .&amp;lt;! + 1 _...)_&amp;gt;(,_/! +
i

_...)2! 4! / V 3! 51 /

Hence

X COS /

Similarly y =

= x sin / -f y cos /.

In III Uf=y /- m

dy

Ux o, U*x - o, ...
; Uy -y, U*y = y, U*y

Hence x\. x, y\_
= y( i + / +

/-
-|-

r
f ...)

V 2! 3! /

*
Symbolically this may be written

/&quot;,

_ tf
(

f.
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In exactly the same v ay the finite transformations of IV are found to be

xi = xe l

,yi = }&amp;gt;(

.

Ex. Solve the problems of 4 by the method of this section.

6. Invariants. A function of the variables is said to be an inva

riant of a. group (or invariant under the group) if it is left unaltered

by every transformation of the group.

Thus, it is immediately obvious that any function of x alone is invariant under

the groups I and III, while any function of x1 +/ is such under II.

We saw (5) that

(7) A*i, *)-/(*, ; )
- W+ wy^ + ....

In order that f(xlf )i)=/(-v, y) for all values of x and v, and the

corresponding values of xl and y\ into which they are transformed by

each of the transformations of the group, i.e. for every value of /, it

is necessary and sufficient that each coefficient in the right-hand

member of (7) be zero for all values of x and y. in particular, it is

necessary that

Moreover, since U~f=UUf, U&quot;f=UU~f, ,
it follows at once

that (9) is also the sufficient condition that f(x\, y\)=f(xt y) for ail

values of x, y, and /. Hence, the

THKORKM. The necessary and sufficient condition 1hatf(xt y) be

invariant under flic group I / is Lf= o.

Remark. This theorem may also be expressed as follows: 77/r

necessary and sufficient condition that f-.\\ \} he invariant under a

one-parameter group is tJiat it he left unaltered h\ the infinitesimal

transformation of the group. On succeeding pages will be found

conditions for invariance of curves, families of curves, differential

equations of various types, and so on. In each case it will be found
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(although specific mention of the fact will not be made) that the con

dition for invariance under the group always reduces to that of in-

variance under the infinitesimal transformation of the group.

To determine invariant functions, it is necessary to solve the partial

differential equation )

/ ^ f

The corresponding system of ordinary differential equations is

(10)
^ =^ = tf.

t
1J

O

f= const, is one solution of the system.

If, besides, u(x, y)= const, is the solution of the equation involving

the first two members, the general solution- of (9) is, by Lagrange s

method,*

In I and III
o 77 o

. . H = JC\ and/= l&amp;lt;\x).

In II u~x^ -f/
2

; and/= F(.

In IV = ^; and/=

Ex. Find the invariants of the groups in the problems of 4.,

7. Path-curves. Invariant Points and Curves. As was seen in

$ 4, the differential equation of the path-curves of a group is readily

obtained from the infinitesimal transformation of the group. Thus,

u.iing .v and v as the variables, it is

dy _ rj

(ii) = .

t t]

* See El. Dif. Eq. \ 79.
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The general solution of this equation,

u (x, y)
= const.,

is the equation of the family of path-curves. As u (x,y) is an invariant

of the group ( 6), it follows that the equation of a path-curve is

obtained b\ equating an invariant to a constant. Moreover, it is clear

that this property is characteristic of an invariant ; that is, if equa

ting a function to any constant whatever gives the equation of a

path-curve, that function must be an invariant.

But this is not the only form in which the equation of a path-

curve may appear.* A path-curve is an invariant curve of the

group, hence its equation must be invariant. \if(x t y) = o is to be

an invariant equation, f(x^ ji j)
must vanish for all values of x and ft

into which the various values of a: and y which satisfy y&quot;(jc, jj

1

)
= o are

transformed by the transformations of the group. Now, we have seen

(?) /(-* JO =/(*, y) +

If the right-hand member is to vanish whenever/^, y) does, for every

value of /,
it is necessary and sufficient that each coefficient should do

so. *In particular, it is necessary that

(12) Uf= o, wheneverf(xt y) = o,

that is, ^must contain f(x t y) as a factor.|

But if Uf=&amp;lt;*(x,y)f(x,y),

then Wf= UUf= Uuf+ o) Uf= ( U&amp;lt; + or )/;

i.e. /yalso contains f(x,y] as a factor.

* Thus, while ^ = c is readily seen to he the equation of the family of path-curves

of the group Uf=x ~\~) , ycx o is another form for it. U(y cx)=. ex -\-y

docs not vanish for all values of .i and; 1

;
but it does vanish for those values satisfying

the i-quation ot the path-curves ;
sec; (i-j) bi-lo\v.

f It is presupposed that /(.v,y) contains no repeated (actors.
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In the same way it can be shown that every coefficient in (7) con

tains/^, y) as a factor, whenever 6fdoes ;
for if

u*f= e(x, y)f(x, y), u**f= vv*/= (m + 0o,)/.

Hence the vanishing of Uf whenever f(x, y) docs is both the nccessaiy

and sufficient condition thatf(x,y) = Q be an invariant equation.

In case Uf= o for all values for x and jy, the above condition is

fulfilled. But this we recognize as the condition (9) that f(xt y) be

an invariant. Hence, not only is f(x, y)
= o a path-curve, but

f(x, y) = any constant^ one in this case.

Remark. It should be noted that

may vanish because = o and
r;
= o * for certain values of the vari

ables. In general these two equations determine a finite number of

values of the variables. Remembering the significance of and
rj,

these values of the variables are left unaltered by all the transforma

tions of the group ;
so that the points having these values for coordi

nates are invariant points. If it happens that and
rj

contain a

common factor, &amp;lt;(x,y) t
it is obvious that

u&amp;gt;(x t y) = o is an invariant

curve, in that every point of it is invariant. Following Lie, and

desiring to preserve the significance of the name, we shall not include

this class of invariant curves among the path-curves.

Summing up the results of this and the preceding section we

have the

THEOREM. The necessary and sufficient condition that /Y.v, v)
= o

be invariant under the group Uf is that Uf= ofor ail values of x and

y for which f(x, y) = o, / / being presupposed that f(xt y) has no

repeatedfactors.

* Still another possibility is that J = o and
* = o \vhrnrvor f o. But this is

9* dy
excluded by the restriction

thut/&quot;(.i-,_y)
have no repeated factors.
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Points whose coordinates satisfy the hvo equations (x, y) = o,

77 (x, jv)
= o are invariant under the group. If g(x, y) = o and

rj(x, y) = o wheneverf(x, y] = o, ////&amp;gt; CV/^T^ /V composed of invariant

points. Curves of this type are not included among the path-curves

of tJie group.

In all other cases /(x, y) = o is a path-curve.

If Uf v for all values of x and v, f(x, v) is an invariant, and

f(x, y) = any constant (including zero) is a path-curve.

In I, EEO, rj= i.

. . n~x = i-onst. is the equation of the path-curves.

There are no invariant points.

In II,
=

y, f]
= x.

:. n x1
+jj

2 = const, is the equation of the path-curves.

There are no other invariant curves. The point x = o, y o is invariant.

In III, EEO, 77=^.

/. u~x = const, is the equation of the path-curves.

y = o is an invariant curve, each point of which is invariant.

Ex. Examine for invariant curves and points the groups appear

ing in the problems of 4.

8. Invariant Family of Curves. A family of curves is said to be

invariant under a group, if every transformation of the group trans

forms each curve into some curve of the family. We shall consider

at this time families containing a single infinity of curves only, that is,

those whose equations involve a single parameter or arbitrary constant.

Writing the equation of the family in the form

/(*, y) = t,

it will be invariant, if

/(*i, .&amp;gt; i) =/!&amp;gt;(*, y&amp;gt; *\ K*&amp;gt; y&amp;gt; 0] = &amp;lt;*&amp;gt;(*&amp;gt; y,
=

f&amp;gt;

is the equation of the same family of curves for every value of /, c

and c being arbitrary constants.

A single infinity of curves determined by an equation involving

an arbitrary constant is equally determined by a unique differential
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equation of the first order, of which the equation involving the arbi

trary constant is the general solution. lff(x, y)= c and
&amp;lt;o(jc,y, t)=c

are to be the same family of curves, these equations must be solutions

of the same differential equation of the first order. Hence the left-

hand member of the one must be a function of that of the ether,* i.e.

w = F(f).

Making use of the relation (7) 5, viz.

we see that/^, }\) will be a function of f(x, y) for all values of / if

and only if each coefficient in the expansion on the right is a function

of/(jc, _) ).
In particular we must have

(13) Uf=F(f).
If (13) is true,

Tfl-f TTfTf TTJ?( /\ ~~_\*K) TTf ~*_\Jl J?( f\Uj = UUJ = Ur(T )= Uj = S(j),
df df

which is again a function of/
In the same way each coefficient on the right is seen to be a func

tion of/; for if
/&quot;/=&amp;lt;&(/),

U&quot;

+lf= UUnf=
Hence (13) is both the necessary and sufficient condition that the

family of curves // \

be invariant.

* The differential equations arising from these equations are

In order that these be one and the same equation it is necessary and sufficient that

d/

By

dw

dy

But this is the condition that w be a function of/. See El. /&amp;gt;.&amp;gt;? .
/.&amp;lt;/.,

Note 1 of the

Appendix.



22 THEORY OF DIFFERENTIAL EQUATIONS 8

Rejnark. A special case should be noted. If Uf= o for all values

of x and yt /(x, _) )
c is a family of path-curves, each one of which

is invariant, hence the family is. This particular family is charac

terized by the fact that its differential equation is

The problem of finding all the families of curves invariant under

a given group Uf will be considered later in another form ( 18).

The general type of such families* may be found by noting that

f(x,y) must satisfy (13), where P(f) is some function of/, not de

termined. As a matter of fact, F(f) may be taken as any convenient

function of/, as may be seen from the following consideration :

The family of curves f(x, y)= c may equally well be written

&amp;lt;[/(.*:, j)]= const., where
&amp;lt;(/)

is any holomorphic function of/.

Applying (13)

*(/)*= cy-=*C/).

This will be any desired function of/ say O(/), if

Since the family of path-curves is excluded, F(f)^. o. Hence the

function 4&amp;gt; can be obtained by a quadrature, such that when the equa

tion of the invariant family of curves is written
4&amp;gt;[/(,r, y]\

= const.

the right-hand member of (13) will assume the desired form O(/).

In the case of I, equation (13) is Uf=& = F(f}.
dy

From the corresponding system of ordinary differential equations

&amp;lt;tx_d_ df01 /?(/)

* In this discussion the family of path-curves is excluded, since a method for find

ing these curves has already been given ($ 7).
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the general solution is seen to be of the form

where ^ is an arbitrary function, and &amp;lt;
= f Solving for /, this takes the
J *\fj

form f=$(y ^(x}}.

The most general family of curves invariant under the group Uf= =* is then
dy

*(y lK-*))= const., or simply y ^(x) = c.

Geometrically this is obvious at once. For such an equation represents a

family of curves all of which may be obtained by moving any one of them con

tinually, in either direction, parallel to the axis ofy.

In II, y^f- -\-x f-= F(f} leads to = ^- = ^
,
whence the general

d-x dy yx /(/)

solution is of the form tan 1 . 0(/) =

or / *
(tan-

1 -

The equation
~v = t, representing the family of straight lines through the origin
x

is a simple example under this head, as is immediately obvious geometrically.

As an exercise, the student may show that

is a general type for III, while x^\
~

]
c

is such for IV. Simple examples are

A-- + 2- = I, a family of central conies of fixed transverse axis for III,

&amp;lt;t.\-~ + |8v
2 = r, a. family of similar central conies for IV,

as is readily obvious geometrically, and as may be verified easily analytically.

9. Change of Variables. The form of the transformations of a

group depends upon the choice of variables that are operated upon

by them.

Thus it is obvious that while the group of rotations II affecting the rectangu

lar coordinates is

.TI =r x cos a y sin a, y\ = x sm a + y cos a,
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when operating upon polar coordinates, it is

/&amp;gt;i =p, Oi = + a,

which, in form, is identical with the group of translations I.

To find the effect of the change of variables *

(14) x=F(x,y), y=*(x,y) 9

which, of course, carries with it

on the form of the finite transformations of the group

(i) x
l
=

&amp;lt;j&amp;gt;(x, y, a), y L
=

\f/(x, y, a\

x, y, xl} \ i must be eliminated from the six relations, (14), (14 ), (i)

and the resulting two relations solved for x
l and y^ This elimination

is usually effected by solving (14) and (14 ) forx,y, x l} ylt and substitu

ting these in (i).

*The introduction of new variables in a transformation involves the following

processes :

Designating by S the transformation of variables (14), or (14 ). ad by 5&quot;&quot;

1 its inverse

x = F(x, y), y =

obtained by solving (14) for x and y, the new coordinates (x, y) of any point are ex

pressed by means of S~ l in terms of the old coordinates (x, y). These in turn are

transformed by (i) or Ta ($ i) into (x1 , y^) of the new point. Finally S transforms the

latter into (x\, y\), the new coordinates of this point. Designating by Ta the transfor

mation in the new variables corresponding to Ta in the old, the above may be expressed

symbolically

The transformation Ta is known as the transform of Ta by S.

That the aggregate of the transforms of all the transformations of the group (i) form

a group follows, of course, from the fact that the transformations imply certain opera
tions which are independent (except as to form, but not as to effect) of the kind of

variables operated upon by them. It is very easy to verify this, however, as follows:

TaTb = S-i /a.svf-i TbS = S-i 7a TbS = S--1 TeS = Tc

since 6A - 1 is the identical trunslormation, and 7
/i&amp;gt;

Te ( i).
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In the case of the above example the formulae for the change of variables will

be chosen in the inverse form
x p cos 6, } = p sin 0.

Eliminating x,y, x\,y\,

Pi cos 0i = p cos 6 cos a p sin 6 sin a = p cos (0 + #)

pi sin 0i = p cos 6 sin # + p sin cos a = p sin (0 -f- #).

Whence, solving for p\ and 0i,

pi = P, 0i = + .

(The other possible solution, pi = p, 0i = -f- IT +a, while exactly the same

geometrically is not to be used here, since the above transformation must reduce

to the identical one for a = o. In the above transformation of variables, it is

understood that p = +W2
-f-/

2
)-

M

In general, the actual work required to carry out this process is

long, to say the least ;
on the other hand, the problem of finding the

new form of the infinitesimal transformation is a very simple one.

For, remembering that

a*

Similarly r\(x, y)
= Uy.

Hence

, t

dx dy

where Ux and Uy are to be expressed in terms of x and y by means

of (14).
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In the above example, choose (14) in the form

p =

Since u=

10. Canonical Form and Variables. It is always possible theo

retically, and often practically, to find the change of variables that

reduces the group to a desired form. Thus, in order to have the

group take the form

any convenient pair of independent solutions of

=^ y),

may be taken as the new variables x and y. In particular, to reduce

the group to one of translations in the direction of the axis of y,

when it takes the form U/= -&amp;lt;-,
the equations to be integrated are

06
1

)

The first of these is (9), 6
;
so that for x may be taken any con-

vc nient invariant of the group, //(x,y).
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To solve the second equation, I/igrange s method leads to the sys

tem of ordinary differential equations

dx __ dy _ dy

7
=
7~T

which are equations (5), 4. Making use of the fact that u (x, y)
=

const, is the solution of = ^~, y may be obtained by a quadrature.*
*7

Following Lie we shall say that the group is in the canonicalform

when it has the form Uf= ,
and the variables which reduce it to

oy

this form will be called canonical variables. The above result may
then be stated :

Every group can be reduced to the canonicalform Uf^ * In

g dy
order to Jind the canonical variables, it is only necessary to solve the

differential equation of tlie first order

dx _ dy

*&quot;*

and to follow this witJi a quadrature. In case an invariant of the

group (or what is the same thing, the equation of its path-curves) is

known, a quadrature alone is necessary.

Remark. If the equations (16) cannot be solved readily, it may
be practicable to find the canonical variables for both the original

and the desired forms of the group. A proper combination of these

will then give the required transformation of variables.

In II,
=

y, TJEE.T. Here, as was seen ( 4), WEE.T- + J -. v tan&quot;&quot;
1*^-

x
These ate a possible set of canonical variables. I hit it is customary to choose

V// instead of u for X, thus giving the usual polar coordinates. In III, ^O,

*
Inspection of equations (6), ^ 4 slioxvs that the transformation X

&quot;(* , y),y =
v(x,y) reduce.-, tiic i;roup to lli-: torin

I xi - x, j/i
= y 4- 1.



ft

28 THEORY OF DIFFERENTIAL EQUATIONS 10, n

77= y. Here, as was also seen ( 4), u = x, v = \ogy. In IV, -^-
gives

x y
u=-*

,
which may be taken as x. By composition the system of equations

dx dy dy . dx -f dy du ,= -*-
gives

- = -3tj whence y = log (x +} ).
x y I x -j- y I

Another set of canonical variables for this group is of some interest. By com

position, after having multiplied numerator and denominator of the first member

by x and of the second member by y, we have
x x ^ ?

; whence y =
x-+* I

logVy2 + y1
. Choosing this form for y and tan&quot;

1 u = tan&quot;
1^ for jr, the canoni-
x

cal variables are very similar to the usual polar coordinates, in that the old

variables, in terms of them, are

x = eU cos x, y eV sin x.

From their nature, it is obvious that in passing to the usual polar coordinates

the transformations IV assume the form of the affine transformations^II, as may
also be verified readily analytically.

Ex. Find the canonical variables of the groups in the problems

of 4-

11. Groups Involving More than Two Variables. The previous

theory of one-parameter groups involving two variables can be gen

eralized in two directions : the number of variables can be enlarged,

and the number of parameters can be increased. In this section*

will be considered one-parameter groups involving more than two

variables
;
and as the argument is almost the same for n variables as for

three, the latter number will usually be employed. As a matter of fact,

the previous arguments for two variables hold, with only slight modi

fication, for a larger number
; hence, as a rule, only the facts will be

given here, it being left as a reviewing exercise for the student to

fill in the supplementary arguments.

* A brief extension of the above theory to groups involving more than one-pa
rameter will be given in Note VI of the Appendix.
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Starting with the transformations

(

#! = &amp;lt;(.*, y, z, a),

yi=*$(x,y,*&amp;gt; &amp;lt;*),

z
\
= \(x &amp;gt;} &amp;gt;

z
&amp;gt;

a\

where
&amp;lt;/&amp;gt;, ^, x are supposed to be generally analytic, independent,

real functions of x, y, z, a, they will constitute a Lie group provided

the set has the following properties :

i The result of carrying out in succession two transformations of

the aggregate, determined by any two values a and b of the parameter,

is the same as performing a single transformation of the set determined

by some value c of the parameter, where c is a function of a and b.

2 Solving [i] for x, y, z in terms of x
ly ylt

slt the resulting

formulae take exactly the same forms as [i], some function of a tak

ing the pfece of a. In other words, the transformations of the group

occur in pairs of mutually inverse ones.

As a consequence the group contains the identical transformation.

A group of this type contains one and only one infinitesimal trans

formation ( 2, and Remark, Note I of the Appendix), which may be

written *

[3] Uf= t(x, y, ) + , (,, y, *)+{(*, y, s)^,

where, in general,

da \da
\

ri
&quot;da

=
(daja:

da \da

* For variables we have likewise
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The finite transformations of the group may be obtained from the

infinitesimal transformation either in the form of a power series in the

parameter ( 5) /2

xl =*x+ Uxf+ U*x + ,

2 !

*! ^
2 [

or as solutions of the differential equations ( 4)

r
n dx^ d\\ &amp;lt;h, _dt
-&quot;

( i \ ~~7~~- ~&amp;gt; \ V(~~i) &quot;S

*

If ii\_(xi, y\, 2j)
= const, and /v^v,, rh z

{ )
= const, are the solutions of

the first two equations (not involving /),
and r(.\ lt }\ t -/) /= const.

is a third solution of the system independent of the other two, then

determine the finite transformations of the group.

In both these cases the parameter / enters in such a way that /= o

gives the identical transformation, and /= /determines the inverse

transformation.*

* In the case of n variables, the development form of the finite transformations is

exactly the same. To obtain the second form, the system of differential equations is

[Si

and their solutions are of the form

V

^(.iV, .v./, ..-, v,/) = Ul (.r lt jro, -, xn),

Primed letters are used here to designate the transformed variables, since the sub

script, previously employed, is no longer available.
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The effect of a finite transformation of the group on any function

/( x,y, z), is( 5)

[7] /(*Wi, sj =/(*,&amp;gt; , *)+ Uft+ U*f~ &quot;-

A function /(*, y, s) is invariant under the group Uf\i

for all values of .r, v, s ( 6).

This equation, involving three independent variables, has two inde

pendent solutions. Hence a one-parameter group in three variables

has two independent invariants. Since MI(X, y, z) and //o(.v, v, z) are

such a set, every invariant of the group is a function of //i and //2.*

Those points whose coordinates satisfy the three equations

(.v, y, z)
=

o, rj(x, y, z)
= o, (x, y, z)

= o

are invariant under the group ( 7). In general, that is, in case the

three functions are independent, there is only a finite number of

such points. But if only two of the functions are independent (which

will show itself by having their Jacobian vanish, without all of its first

minors doing so) the two independent equations will be the equations

of a curve, every point of which is invariant. If all the two-rowed

determinants in the Jacobian vanish, there is only one independent

equation, and it is the equation of a surface, every point of which is

invariant under the group.

The path-curves are obtained

i either by eliminating a from the finite transformations of the

group ( i),

2 or by solving the system of ordinary equations ( 7)

-i /v t/ dz

* In the cM &amp;lt;&amp;gt;f // variables, every invariant of the group is a function of the i

independent ones //,, //.&amp;gt;, ,
un j.



32 THEORY OF DIFFERENTIAL EQUATIONS u

From the latter we see that if //j and //.2 are two independent invari

ants of the group, //j
= const, and u2

= const, are the equations of the

path-curves.

Each of the surfaces u\ const, and /A, = const, is invariant, being

made up of an infinity of path-curves obtained in either case by keep

ing one of the constants in the equations of the path-curves fixed and

allowing the other to run through its full range of values.*

The equation f(xt y, z) = o, or the surface represented by it is

invariant ( 7) if

[12] Uf o whenever/= o,|

provided / contains no repeated factors. (If Uf vanishes because

= o, 11=0, =o whenever /=o, every point of the surface is

invariant.)

The curve/j (x, y, z)
= o,/ (x, y, z)

= o is invariant if

[12 ] Ufa = o and /2
= o whenever/ = o and/2 = o,

provided/ and/, contain no repeated factors and are independent

functions, not containing a common factor. This last condition

assures us that not all of the two-rowed determinants in the matrix

dx

df,

dx

By

df2

dy

dz

df,

dz

vanish for all values of x, y, z.

* In the case of variables, i holds without change ;
in 2 the differential equations

of the path-curves are

and their finite equations are
j const., //._,

&amp;lt;
( v/v/., ,

// _i const., where
//]//.,&amp;gt;, ,

n,, i. are any i indej&amp;gt;endent invariants. l-!acli &amp;lt;&amp;gt;i t!u; (// i) -way spreads in n

dinii-nsioMs
//!
= const., u^ consf., , -i = const, is invariant, as well as the various

spreads of lower dimensions obtained by taking these invariant relations two, three,

.
// -i together, the last case giving the path-curves.

t This condition holds when the equation involves any number of variables.
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The argument employed in establishing this theorem for a curve in

three dimensions is different from that available in the case of a

surface f(x, v, z)
= o (in the latter case the one employed for a

curve in two dimensions ( 7) applies).

The necessity of the condition is seen as before
; for, using

formula [7]

H f\(x\i )\i z\} and fi(x\,y\, Zi) are to vanish whenever /(jc, j, 2)

and /*(x,y, z) do, for all values of /, it is necessary that f/l/=o
and /2/= whenever/! = o and/, = o.

The sufficiency of the condition follows at once from the fact that

since *, , -,

all along the curve/1
= o,/ = o, , 77, ^* are proportional to the

direction cosines of the tangent of this curve at each point (x, y, z) ;

that is, this curve is the path-curve through the point (x, y, z).

Remark. If Vf\ = o whenever ^=o, and Uf = o whenever

/ = o, the surfaces / = o and / = o are separately invariant
; and

their intersection is also invariant. In the case under consideration

above, however, [12 ] is the condition for invariance of the curve

without regard to the nature of these surfaces.

The change of variables

[14] x= F(
&amp;gt;, y, 2), y = ^.v, v, z\ z =

vl/(.v, r, s)

* If | o, 17
= o, f = o whenever/! = c, /^

= o, every point on this curve is invari

ant, and hence, the curve itself is
;
so that the sufficiency is also established in this case.

But such a curve is not included among the path-curves of the group (Remark, 7).
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causes the infinitesimal transformation to take the form ( 9)

[IS] ^ff+^I^S-
So that the new variables satisfy the differential equations ( 10)

&=&+* +&= &,,,:),ox oy oz

In particular, when |
= o, i]

= o
&amp;gt;

=i
l
the group is said to be in

the canonicalform* If the equations of the path-curves are known,

the canonical variables can be found by means of a single quadrature.

To illustrate all that has gone before consider the group of screw motions

x\ x cos t y sin /,

y\ x sin / + y cos /,

21 = 2 + ;///,

where m is any constant.

The student will have no difficulty in proving that these transformations have

the group property, and that in this case ( i)

Ttjt t
= T

tl+ t
t

,

also l t, and / = o.

The infinitesimal transformation is readily seen to be

*Morc generally, the group will !&amp;lt; said to !x; in tin- canonicalform when any one of

&amp;gt;

77 4&quot;

&amp;lt;

&amp;lt;J

;ils ;i roustunt, and the other two are zero.
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Conversely, starting with the infinitesimal transformation the Unite transforma

tions are found to be, using [&amp;lt;SJ,

(
t&quot;

1 t* \ I / 3 /5 \^xil ---(- y\t---1

--- &quot; 1 = * cos t y si

\ 2! 4! J \ 3! 5! j

(t*
/.&quot;&amp;gt;

/ ---+ :

sin t.

/2 /4

_. .
, , - ,

2! 4!

z\ = z -\- nit = z -\- nit
;

r, using the other method,

= tan- 1 Pi- ^L = tan
-

1 -
,

,V| m x m

For practical purposes it will he simpler to replace z, in the second equation

hy its value in the third one. Then

tan- 1^ = tan&quot;
1 -

1 + t,

x\ x

Zi = Z + ////.

The third equation is already in proper form.

Ilr- lusi t\vo equations are free of c, and, as was found in 4, reduce to

XL = .v (-us / - -
) sin /,

jj ! x sin t -\- y ci &amp;gt;s /,

T\vo iiKh pendent invariants are n\ .\- i

:

, // . tan l!/ Hence th

, x in
pain-curves are

*2 +;(
2 = r2

f ^-l^^i.^,
X III

t,

introducing the parameter 9,

x rcos/ . r = rsin^, z = i(0 r\

lich is a family of helices, involving the arbitrary constants r mid r,

If m ^ o there are no invariant points.
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Two of the canonical variables, x and y, must satisfy the differential equation

_ ,df + x Qf.,n Of- o
d* dy dz

while the third, z, must satisfy

df
, df df

V -f- x 4- m = i.

d* dy dz

Knowing the invariants of the group, u\ and u, we may put

x VV2 + y2
, z/

= tan 1 %
x m

By inspection, z may take the simple form

Solving for the old variables, the formulae of transformation of variable *e

x = xcos (y + z), y = ysin (y + z), z = mz.

It is obvious that the change to cylindrical coordinates

x = p cos 6, y = p sin 0, z = z

reduces the group to the form

Pi Pi 6\ = -\- t, z\ = z + w/&quot;

which is a group of translations, but not in the canonical form.

Discuss as was done in the text the following groups :

&quot;C*Y O y* /7 Y* U il V ? --, i*

Ex. 3. x
l
=

rt.v, T!
= ay, z

l
= az.

Ex. 5. x
l
= ea (x cos a y sin ), yl

= e (x sin a +y cos
), ^ = eaz.



CHAPTER II

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

12. Integrating Factor. We have seen ( 8) that if
&amp;lt;j&amp;gt;(x,y)

const, is a family of curves invariant under the group

(13) U*

Moreover, it was also shown in 8 that if the curves of the family

are not path-curves of the group, the equation of the family can be

chosen in such form that the right-hand member of (13) shall be

come any desired function of
(f&amp;gt;.

In particular, there is no loss

in assuming the equation so chosen that this right-hand member is

i for if a given choice &amp;lt;

= const, leads to
F(&amp;lt;$&amp;gt;\

the selection

&amp;lt;$(&amp;lt;)

= const., where &amp;lt;$(&amp;lt;)

= I

l
***

,
will give /&amp;lt;&amp;gt;(&amp;lt;)

= i.
J

F(&amp;lt;f&amp;gt;)

Suppose now that

(17) Mdx -\-Ndy-Q

is a differential equation whose family of integral curves

( 1 8) $(x, y) = const.

is invariant under the group Uf, the integral curves not being path-

curves of the latter. Let &amp;lt; be so chosen that

(19) ^ = *+,|4 =I .

dx By

37
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Since (18) is the solution of (17),

,. d&amp;lt;f&amp;gt; , . dd&amp;gt; ,

d&amp;lt;\&amp;gt;

=
-^-dx + --?-dy = Q
ox ay

must be the same equation as (17) ;
hence

0&amp;lt;j&amp;gt; d$
dx dy

(20)
-

dx dy

From equations (19) and (20) the values of - and are found
ox dy

to be

Mdx

Hence the

THEOREM.* If thefamily ofintegralcurves ofthe differential equa

tion Mdx + Ndy = o is left unaltered /&amp;gt;v the youp Uf~^- + 4^i
Av dy

is an integrating factor of the differential equation.

Remark i. This theorem ceases to hold in case the curves (18)

are path-curves of the group Uf. In this case (19) becomes

+77 = o; whence, taking account of (20), Af+-nN=o.
dx dy

As a matter of fact, it is obvious that in this case the curves (18),

being the integral curves of (17), are the path-curves for every group

of the type

* This theorem of Lie was first published l&amp;gt;y
him in the Vcrhandlungen der Gi-sell-

scliaft dcr XN isscnhchaftun zu Christiania, November, 1874.
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where p(x, y) is any holomorphic function of x and y. Such groups

are said to be trivial for purposes of assisting in solving the differen

tial equation (17).

Remark 2. At times it is obvious from the nature of the problem

that the family of integral curves is invariant under a certain group.

This will be found to be the case in the following examples :

Ex. 1. Find the curves whose tangent at each point makes an

isosceles triangle with the axis of x and the radius vector to the point

of contact.

This family of curves is clearly invariant under the similitudinous group

//=.* -f yQ- Its differential equation is

dx
*
dy

dx x dy I dv \
2

, dy

! +ZL~~ &amp;lt;/x
\&amp;lt;tx) &amp;lt;t*~

x dx

Reducing to the form (17), which is characterized by being of the first degree

in dx and dy,
(x V** + jP) dx + y dy o.

The integrating factor

I I

+

Integrating, log (x V-r-^+y
2

)
= const, or x V-rM

This reduces at once to v2 = c- 2 r.r, a family of parabolas having the origin

as common focus and the axis of .r as common axis.

Ex. 2. Find the curves such that the radius vector to each point

makes an isosceles triangle with the tangent at the point and the

axis of x.
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Ex. 3. Find the curves such that the length of the radius vector

to each point equals the tangent of the angle between the radius

vector and the tangent to the curve at that point.

Ex. 4. Find the curves such that the radius vector to each point

makes a constant angle with the tangent to the curve at that point.

Ex. 5. Find the curves such that the perpendicular distance

from the origin to the tangent to a curve at any point is equal to

the abscissa of that point.

13. Differential Equation Invariant under Extended Group.

While at times it is possible to tell from the nature of the problem

whether the integral curves of a differential equation form an invariant

family under a certain group, it is desirable in order to extend the

usefulness of the theorem of the previous section, to be able to tell

when this is the case from the form of the differential equation itself.

A point transformation

carries with it the transformation

cty

d\, dx dv

dx dy

tt+tty
. dx rV .,

*&quot;-73&quot;
3^#-

dx dy

* This is called a point transformation because it transforms the point (x,y) into

( r,. r, ). It thus transforms the various points of a curve F(x,y) = o into the corre

sponding points of some other curve / \(-* i,&amp;gt; i)
= o, and may therefore be said to trans

form the curve F(x,y) = o into ^(x^y^ o.
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where v = and r/
= Since ^ is a function of x, y, v only, it

dx dx^

follows that the point transformation implies the transformation

fy
,
fy

~

, v t

&quot;T&quot;
i

a&quot;~

djc ay

affecting the three variables x, y, y . The latter transformation is

known as an extendedpoint transformation*

Starting with the one-parameter group of point transformations

(i) .T!
=

4&amp;gt;(x, y, a), )\ = $(x,y, a)

it is easily seen that the corresponding extended transformations

(21) xv
=

&amp;lt;j&amp;gt;(x,y, a),yi = t(x,y, *)iJfc
-=

^-3jit(#,j.7/)

also constitute a one-parameter group in the three variables x
t y, y .

For, since the equations of a point transformation are precisely the

first two of the corresponding extended transformation, and since the

third equation of the latter is determined uniquely by the first two,

the fact that the transformations (i) have the group property ( i)

predicates the existence of the group property in the case of (21).

Thus if a and /; are any two selected values of the parameter, the result of per

forming successively the two point transformations

*i = 0O, y, ), y\ &amp;lt;AO, ; , )

and x =
0(&amp;gt;i, _&amp;gt;

!, /;), y =
\f/(xi, yi, b)

is *2 = /&amp;gt;(-*-, y, Ot yt = $(*&amp;gt; y&amp;gt;

* An extended point transformation is a special kind of a contact transformation

($ 49) ;
for it transforms (.v, v, /) into (.],; ,, ;, ), where, if (.v,j) is some point on some

curve / (-ft y) = o, y is tin- .slopr of tlir t. indent to tin- curve at th.it point and 1^ is the

slope of curve /^(.Vj, y\) = o (into which the other is transformed by thr point trans

formation) at the corresponding point (-&quot;], /j). Since the value of
_V] depends upon

x,y,y only, any curve tangent to F(x, v) =oat (.v,y) will be transformed into a curve

tangent to
f&amp;gt;\ (- i,&amp;gt; i)

= o at the point (.Vj, _vj).
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where c is a function of a and b. This follows from the group property of (i).

In the case of the corresponding extended transformations

. , t

&quot;0 (x,y, a

and x.

the result of replacing .TI and j i
in the first two equations of the second trans

formation by the values given in the first transformation is therefore

Hence in the last equation of the second transformation,

In exactly the same way, the fact that a value of the parameter

exists giving the identical transformation for the group (i), and also

the fact that the transformations of (i) can be separated into pairs

of mutually inverse transformations, assure these same properties for

the transformations of (21). The latter therefore constitute a Lie

one-parameter group. This group is known as the once-extended

group corresponding to ( i ) .

With Lie, we shall write as the symbol of the infinitesimal trans

formation of the once-extended group

(22)

where, as before, t = ^, ^= -, while
r,
= ^ =

&,(

It was seen in 4 that, with a proper selection of the parameter,

, =
(

, ami, for any function/, =
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In a sense then 8 is a differential operator, so that 8 and d are

commutative operatois ; thus, for example,

,
8 dy\ 8&amp;lt;r

-

&*
v

VHence r? = ^
*

,

=
-, 7-7 -^ j , -:

badx tfa (ifcr dx dx dx

dx J dx

Remark, Attention should be called to the fact that, while / is

ual to -^, -n is usually diff
dx

hand member of (23), we have

equal to -^, -n is usually different from - Expanding the right
dx dx

where it is to be noted that rf is a quadratic polynomial in 7 when

Given a differential equation of the first order

(25) /(*,*/&amp;gt;*o,

the effect of any transformation (i) on the variables .v and v is to

transform the differential efjuation (considered as an equation in the

three variables .v, r, / ) by the corresponding extended transformation

(21). The family of integral curves of (25) is invariant under the

group if each integral curve? is transformed into some curve of the

family by every transformation (i). Hence every transformation (21)
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must leave the differential equation unaltered. The condition for

this is ([12], n)

(26) ir/~ + j + rj
= o whenever/(&amp;gt;, jr,y)= o.

Hence the

THEOREM. The family of integral cuives of the differential equa

tion f(x, y, y )
= o, and, therefore, the differential equation itself, is

invariant under the group Uf if Uf= o wheneverf= o.

In the case of II, = y, TJ
= X. Hence, from (23) r? = i +?

&quot;

The ex

tended group of rotations is then

U^.SfS^dfd* dy d/

The differential equation of the family of lines &amp;lt;- = c (which is invariant under

II) is xy y = o. Here

Vl(xyi-y)=-yy - * + (l +/*)* =/(^/-j).

This vanishes whenever xy y does.

14. Alternant. Let U\ and 60 be any two homogeneous linear

partial differential operators
*

^i = li(^, .) ) 4- 7i(.v, y) ,

C/2
=

&(#, &amp;gt; ) + ^(.v, 7)
.

Then

(27) i^J

* Yor the sake of simplicity \v&amp;lt;&amp;gt; shall suppose that two variables are involved. But

tiiis entire section hoids without any inodilication tor -v variables.
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Writing l\U,f- UMJ=(yjJ?)f*

the operator (U\U^), which is known as the alternant\ of i/\ and /,,

is seen to he one of the same type as U
{
and U&amp;gt;.

The following properties of alternants are immediate :

i, U, tf8)
=

] 5. Another Criterion for Invariance of a Differential Equation

under a Group. A second form for expressing the condition that a

group leave a differential equation unaltered plays a very important

role in the further development of the theory. It was seen (
1 2),

that if

(
1 8)

&amp;lt; (x, _y)
= const.

is the solution of

&amp;lt; is a solution of the partial differential equation (20)

, 7 dcf&amp;gt; jij-dtb
( 2 o ) A&amp;lt;p

= IV J.V1 - = O.

dx By

Moreover, if the family of curves (i 8) is invariant under the group Uf

(without being path-curves of the latter), &amp;lt; may be so chosen that

Consider now the alternant of f/and A ( 14)

Af Af

(37)

* Lie writes ( U U.,} or ( I \f, U.,J} instead of ( l\ ( .,) f.

f Also sometimes called the commutator of f \ and /
j.
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Because of (28) and (19) (UA)$ = U(o)A(i)=o.

(29) A (UN-A^-WM+A^*^.
Since

cf&amp;gt;

is a function of at least one of the variables x and r,

- and are not both identically zero. Hence the coefficients of
dx dy

(29) must be proportional to those of (28); i.e.

(3o)

or UN-A = *N, UM+A-n

Putting these in (27)

(31) (UA)f=\(x,y)Af..

Hence (31) is a necessary condition that the integral curves of (17)

be invariant under Uf.

Conversely, if (31) holds

because of (28). Hence
AU&amp;lt;f&amp;gt;

= o.

Since every solution of (28) is a function of &amp;lt;

This is the condition [ 8, (13)] that the family (18) be invariant

under the group Uf. Hence the

THEOREM. The necessary and sufficient condition that the differen

tial ( ({nation M dx + N dy = o be invariant under the group Uf is

(31) (UA)f=\(X,y)Af

Af=N^ -M-.dx dy

* The common ratio \(x,y) is, at most, a function of the variables. It may be a

constant or zero.
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The condition (31) was found independently of what has gone before. It

may be obtained at once by means of (26). It is suggested as an exercise, that

the student do this. Here f(x, y, /) E= Af+ Ny 1
. The expanded form of ij ,

given by (24), must be employed.

This theorem leads to another one, of some interest, which is, as

a matter of fact, the converse of the theorem of 12.

If
(JT, j) and

t] (x, y) are any two functions such that

i

is an integrating factor of

(17) M dx -}-N (fy
=

o,

d( N \ d( M \

or
dx dx dx dx dy dy dy

dy
Dividing by J/7Vand rearranging the terms,

dx dy dx dy __
dx dy dx dy

&quot;

N M
UN-Ai UM+Ai)

(30) -JT ~M~
from which follows (31) as before. Hence, if /JL(X, v) is an integrat

ing factor of tJic differential equation M dx + N dy = o, and (x,y)

and rj(x, y) are any holonwrphic functions of tlic variables satisfying

the relation

* See EL Dif. Eq. \ 7.
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the differential equation is invariant under the groupw + ,3.dx dy

Since and
77
are subject to the single condition (32), one of them may

be chosen at pleasure, and then the other is determined uniquely.

Hence, starting with an integrating factor of a differentia! equation

of the first order, an infinite number of groups can be found which

leave the differential equation unaltered.

It will be seen in 17 that the general expression for such groups involves

two arbitrary functions. As a matter of fact, this can also be seen from the form

of (32). For if
/j.

is an integrating factor giving f(Aft/jr + Ndy} = du, then for

/ (#) any function of it, /&quot;/ () is also an integrating factor. (See El. Dif. Eq.

5.) Using this as the right-hand member of (32), and selecting (&amp;gt;, jj/) arbi

trarily, 77
= ^ /^ . The general type of group leaving (17)

unaltered may, therefore, be put in the form

T7J- &amp;gt;- f .. ..\ Of , I I

where and / are arbitrary functions.

16. Two Integrating Factors. Since the knowledge of a group

which leaves a differential equation unaltered gives an integrating

factor, thus reducing the problem of solving the differential equation

to a mere quadrature, it should be expected that the knowledge of a

second group which leads to a distinct integrating factor still further

simplifies the problem of solving the equation. This is actually the

case.

Suppose /M!
and /xo to be two integrating factors of (17). Then

dy r).v

dy dx Ml ( dx
&quot;

dy) /xA&quot;
dx

&quot;

dy
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i dii d(log u) i 3u 3(log u)
Remembering that --C= -3

pLC/,
-g v fe ^

?
and

|u,
o.r ojc /x qj oy

log /xx log /x2
= log ^, the last equation becomes

/x,

AT 3 /, MI\ 1^-3 /, uA
3jcV )&quot;&quot; F V )

=

/&amp;gt;., log is an integral of

(28) A/ = -
dx dy

Hence ^ is also an integral of (28), and
^2

^ = const.

P-2

is a solution of (17). So that the knowledge of two integratingfactors

gives the solution of the differential equation without any analytic

work whatever.

Remark. It is interesting to note that in the proof usually given

for the theorem that when one integrating factor /a is known, an in

finite number of others can be found [viz. if p.(Mdx-\- Ndy)=:duy

then pF(u) is an integrating factor where F(u) is any function of //],*

all possible integrating factors are found.

17. General Expression for Group under which a Differential Equa
tion is Invariant. We have just seen that if U^f and /,/are any
two groups which leave the equation (17) unaltered,

P.,

* See El. Dif. Eq. \ 5.
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is a solution of (17) ; hence,

(33)

where
&amp;lt;(.Y, y) = const, is any selected form of solution of (17). Re

arranging the terms in (33),

&

where p(x, y) is the common value of the two fractions. Whence

(35)

Conversely, if U^f leaves the differential equation unaltered, U.,f

given by (35) will also do so, no matter how /p

(^&amp;gt;)

and p(x, y) may
be chosen (it being understood throughout that all functions involved

are to be generally analytic). For, by hypothesis, using (31)

then (U,A}f= (F($}U A)f+(pA, A)f

J+ P(AA)f-

Hence every gn&amp;gt;i/f&amp;gt;
which leaves the differential equation unaltered

is given by (35), U\f being one group of tins sort.

If F($] is a constant, the resulting group gives the same integrat

ing factor as U\f.

If
F(&amp;lt;f&amp;gt;)

is identically zero, the resulting group is trivial ( 12).

18. Differential Equations Invariant under a Given Group. In

order to make use of the theorem of 12, a group leaving the differ

ential equation unaltered must be known. While such groups always



iS DIKKKKKNTIAI. F.&amp;lt; H ATIOXS OK TIIK KIKST ORDKK 51

exist, and are sometimes suggested by the nature of the problem

giving rise to the differential equation, the number of equations for

which they are known is comparatively small. The converse prob

lem of finding the general type of the differential equations invariant

under a given group is much more direct. And while its complete

solution requires the knowledge of the path-curves of the group and

usually one or several quadratures, it is practicable to supply these

in a large number of cases of interest.

It is clear that the differential equation obtained by equating an

invariant of the extended group ( 13) to an arbitrary constant is

invariant. The general type of invariant of the extended group is

obtained by taking an arbitrary function of two independent solu

tions of ([9], n)

Passing to the corresponding system of ordinary differential

equations
dx d dl

t(x,y) !,(*,?) V(

the first equation is recognized as (n), 7. Its solution is

A second solution, independent of this one, must involve /. Writ

ing this in the form
U (x,y,/)** COnst*,

the general solution of (36) will be of the form/(//, // ). Equating
this to an arbitrary constant gives the general type of invariant dif

ferential equation. There is ho loss of generality in equating/(//, //
)

* Since u (x,y t y ) is an invariant of the extended group /
&quot;/

and involves; ,
it is

known as a ///-.*/ Jiffo cntial invariant of the yroup I Y.
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to zero, the arbitrary constant being incorporated in the arbitrary

function/. So that the general type bf invariant equation is

(38) /(*,i

Several methods for rinding a suggest themselves :

(a) Solving u(x, y} = c forj, and replacing it by its value in terms of x and

c wherever it occurs in the first and last members of (37), the Riccati equation

(39) = + _
d* td* t\dy fe By

results. In Note II of the Appendix it is shown that this equation can be solved

by quadratures.

(Z) The introduction of canonical variables (which can be found by a quad

rature when u is known, 10) reduces the invariant differential equation to the

simple form

dy __ d* dy _~~
( }

as will be shown, I, 19. Since the one canonical variable x is the invariant //

or a function of it ( 10), F(x} is a function of u. Because of the general type

of invariant differential equation (38),
--2, may be taken as u 1

.

dx+fc v
d* dy* %

(c} Frequently some special method (see El. Dif. Eq. 65) may be found

which is more direct.

19. Illustrations and Applications.

I. Uf= . .
=

o, y= i. .-.
rj
= o. Equations (37) are

dx _ dy __ dy
o

~~
i

&quot;&quot;

o

.-. // = x, ?/ =y. Hence the general type of differential equation

invariant muter Uj
r= v- tsf(x, y )

= o, or y* = F(x).
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This equation is characterized by the absence of y. The variables

are separated when the equation is solved for /.

I . 6^= -. It is readily seen* that the general type of differ

ential equation invariant under this group (of translations in the

direction of the axis of x) is y = F(y).

This equation is characterized by the absence of x. The variables

are separable, thus - dx.

II. ^=_ JK|?+*J.
=- X

, rj=X. /.V=l4-/
2
.

dx dy dy
Equations (37) are

-y x i+/2

/. u = jc+y
2

. To find //, multiply numerator and denominator of

the first member by y, and those of the second member by x ;
then

by composition (Et. Dif. Eg. 65, 3),

x dy y dx dy
1

r+72

.*.
=

tan&quot;
1 - tan~ T

y. It is simpler to take the tangent of this
&quot;v _ -

function as the second invariant; i.e. =-^----. Hence the gen-
x+tf

d
,

^

d
,

eral type of differentia! equation invariant under Uf= y -r ^ X
JT

* It is suggested as an exercise that the student actually carry out the work here

and in the cases below, where results alone are given.

Of course, the differential equation invariant under a group whose number is

primed may be obtained from that invariant under the corresponding unprimcd one

by interchanging x and r and v and . I .ut as an attempt is being made here to

make a collection of differential equations invariant under known groups, the foims

by which these differential equations are most readily recognized are given.
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Note. This form of the invariant differential equation is obvious

from geometrical considerations, since // is the square of the radius

vector to any point on an integral curve, and // is the tangent of the

angle between the radius vector and the tangent to the curve. Since

any function of// and //
, containing v

,
can be used as a first differ

ential invariant, \/
- or ^ is available. So also is

Vi +/2

These are respectively the distance of the

normal and that of the tangent from the origin, each of which is left

unaltered by the group of rotations about the origin. Hence the gen

eral type of differential equation invariant under this group may also

be written

III.
Uf=y-^-.

=
o, 77 =y. . .

T/ =y. Equations (37) are

&amp;lt;&

&amp;lt;ty_

o
~~

y

Hence the general type of differential equation

invariant under i
r

f~y^ W/f*i ~j,
or

}~ = F(x).

This equation is characterized by being homogeneous in y and y\

The variables are separated when the equation is solved for -^ .

*. f J

III . Uf=. Xjf-*
It is readily seen that the general type of differ

ential equation invariant under this group (of affine transformations)

is xy = F(y). .

^
The variables are separable, thus _

- = .

1
/M .r) x

IV. Ufi~ .x-! +)?{-. Here V = o, and =-r
,

// = v . Hence
av By A-
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the general type of differential equation invariant under

This equation is characterized by being homogeneous in x and y.

Note. An equation M dx + Ndy o is of this type whenM and

TV are homogeneous functions of x and y, and of the same degree.

In this case the integrating factor of 12 is (Compare

-. Herei/=E 2 /, and u = xyt
// = A~y.

Hence the general type of differential equation invariant under

t\f f) f *

Uf^ x : v ; is f(x\\ .vV ) =o, or AT = r/^ (AJ).

This equation is characterized by being homogeneous in A*, } , y\

when these elements are given the weights i, i, 2 respectively.

(Compare VI below.)

Note. An equation Mdx -f- Ndy = o is of this type when J/=

(AT), ^=A;/!,(AT). In this case the integrating factor of i 2 is

(Compare Rl. Dif. Eq. 17.)

VI. Uf^x + nv -* f = A-, w= ;/r. . . =(//
- Or , and

cAv
&quot;

fJr

// = -, w s-^j- Hence //(/ general type of differential equation
x x

* n may be any number. In particular // i gives IV, while &amp;gt;t i ^ivcs V, and

n o gives III .

If the group be written in the more symmetrical form I r/~a.v Q-
-\- Iry t} 1R

c).-
(&amp;gt;

invariant differential quation takes the fonn.vr r /
( )

a- / gives IV, a= - b
\ \-h/

gives \
r

,
,/ o gives 1 1 I, /&amp;gt; o gives 1 II .
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invariant under Uf=x---\-nv-- /V/( , ]

= o.
da*

&quot;

dv vv&quot; A-&quot; V

This equation is characterized by being homogeneous in x, y, y
1

when these elements are given the weights i, ,
n i respectively.

Thus the differential equation

xy-y
12 yy + x = o

comes under this head; for giving x, y, y the weights I, n, n I respectively,

the separate terms have the weights i + 2 n + 2 n 2 or 4 ;/ i, 3 n + n i

or 4 n i, i respectively. These are equal to i if n = %. Hence the differen

tial equation is invariant under the group

d* by

VII. Uf= 4&amp;gt;(x)

=
o, rj

=
4&amp;gt;(x).

. . T/
=

&amp;lt;f&amp;gt; (x), and // = .v,

// =
&amp;lt;j&amp;gt;(x)y &amp;lt;j&amp;gt; (x)y. Hence the general type of differential equation

invariant under

Uf= +(X) is f[x, &amp;lt;}&amp;gt;(x)y

- #(X)y\ = o, or y
~

This equation is characterized by being linear in y and y .

Note. Using the usual notation for the linear equation

y + P(x)y=Q(x\

the group which leaves it unaltered is Uf=e~l
rdt

-^-
The integrat

ing factor of 12 is e!
ru

. (Compare I , I. /)//. Eq. 13.)

VII . Uf=\l&amp;gt;(y)^-- It is readily seen that the general type of
ox
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differential equation invariant under this group is

i i//(y) \ dx i//(v)
v, , *-)** x\ = Q

t
or - x = F(y\

y *w y * oo

This equation is linear in x and
dy

VIII. f.y=\f/(} )
The general type of differential equation

invariant under this group (which includes III as a special case) is

In this equation the variables are separated.

VIII .
Uf=&amp;lt;l&amp;gt;(x)

- The general type of differential equation
ox

invariant under this group (which includes III as a special case) is

y^(x) = F(y\
The variables are separable.

IX. Uf= 4&amp;gt;

dy

.-. V = 4&amp;gt; (x)t(J) 4- ^W^ O )/- Equations (37) are

dx_ dy dy
o f(*]

/. u = x. u may be obtained by solving the linear equation

in which x is treated as a constant. An integrating factor is -
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Hence the general type of differential equation invariant under

The transformation v = (
-^ reduces this to the linear equationJ

dx

Note . In particular, if ty(y) is y, Uf= &amp;lt;^&amp;gt;(jc)y

*
leaves unaltered

the equation /+; -ry=fF(x). Hence the Bernoulli

equation ^-+Py= Qy is invariant under the group Cy=fel(s- })1 ^-
dx dy

J(l-^)/&amp;gt;&amp;lt;/x

The integrating factor of 12 for this equation is - (Com
pare EL Dif. Eg. 14.)

IX . Uf= *t&amp;gt;Mt(y) The general t\pc of differential cqua-
dx

.. . , ., . i dx \lf (y] C dx 7V Ntwn invariant under this group is - =
/&quot;( v).

Considering y as the independent variable in this equation, the

latter is reduced to the linear form by the transformation /= I
A

J &amp;gt;

X. U=
u is easily found by method

(li)
of 18. The canonical variables

are dx dx .rv -//i

Hence the general type of differentia! equation invariant under



i 9 DIH KRENTIAL KnUATlo.NS OF THE FIRST ORDER 59

Note, Several particular cases are of special interest :

i If
&amp;lt;b(x} x\ the general type of differential equation invari

ant under

y
I lence xy

1

ny = _r*/M
-^

-
j

is invariant under

uf~ x*-k x -
-f

dx

The Riccati equation

dv
x

conies under this head when n = 2 a
;

for in this case

(Compare Boole, Differential Equations, p. 92 ; Forsyth, Differential

Equations, 109.)

2 If
&amp;lt;j&amp;gt;(x)

= xr

t
n= i, the invariant differential equation reduces

to .vr v = .r
1~ r/M ~

]

The right-hand member is simply a homo

geneous function of A- and y of degree i r. Hence a differential

equation of the form v - .vr = .v
A / f

-
],

where the right-hand incni-

\*/
her is a Jiomogeneous function of x and y of degree k, is invariant

dx dy

The integrating factor of 12 is - - (Compare El. Dif. Eq.
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3 If
4&amp;gt;(x)

= xr

,
n = i, the invariant differential equation reduces

to xy + jr
= x~ l~ r

F(xy), or xy +y =yl+r
l?(xy). Hence a differential

equation of theform xy
1

-\- y =yk
F(x}) is invariant under the group

The integrating factor of 1 2 is - -
,
a well-known fact.

X . 7= i/r )
f x ~- + ;y; y; J

77/&amp;lt;f ^&amp;lt;?r/ /v/te &amp;lt;?/ differentia

equation invariant under this eroup is xv nv = r-rF[ ]

AC;
1

) \**y

i If \l/(y) =} *, this differential equation reduces to

2 If i//0 ) =} *, n= i, the differential equation takes the form

r
N

Hence a differential equation of theform

y xy =y [a homogeneousfunction of x andy of degree k~\

is invariant under the group Uf=\*~
k

( x -
Vyjry

3 If ;; = i, ^(y}=y*, the differential equation reduces t

xy +y = y x
g+ l

F(xy). Hence a differential equation of theform

dv
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The student should show that the following groups leave the corre

sponding differential equations unaltered :

XI.

\ XII. Uf= a ~ + b-, y = F(bx - ay).ox oy

using method (r), 1 8,

,,

-Ax vv

using method (), 1 8.

fdi
XIV. 67=&amp;lt;(

XIV. Uf=ti(

xv. iy^ r r.dx 7
dy

xvi. uf= ^

,WO*y 4-A+ v )
=

where M =^ ^ v= C^(x)itx.

* This group is characterised
l&amp;gt;y liaving ^ a function of \ only, and

77
a linear func

tion of y. It is mentioned by 1 rotes.sor Dickson, /&amp;gt; ////&amp;lt;//// of&quot; the An:. Math, .Si
&amp;lt; .,

Vol. V. p. 453.



62 TIIKORY OF DIFFFKFXTIAL EQUATIONS 19

XVI . Uf= &amp;lt;M

where S***1 Xv
,

o-

EEj

Remark. When a differential equation is recognized as coming
under several of the above heads, and the corresponding integrating

fastors are distinct, the solution of the differential equation is obtained

at once by equating the quotient of two distinct integrating factors

to an arbitrary constant ( 16).

Thus the differential equation

is linear. Hence, from VII, the group Uf=x-J~ leaves it unaltered,

i
dy

and gives the obvious integrating factor

But it is also readily seen that each term of the equation is of the

weight ;- when x, y, y have the weights i, r, r i respectively ; hence,

from VI, the group Uf=x-+ry {- leaves the equation unaltered,
dx dy

and gives the second integrating factor - The solti-

(r i&amp;gt;v&amp;gt;

x
tion of the equation is therefore&quot;

/ N y ,.
,=(r iV- x = const.

x

It may be noted that the equation also comes under X, 2, and is

erefore invariant under Uf==^
iL

previously found integrating factor -

therefore invariant under Uf=x- +x l~ r
y This leads to the

(Av dy
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As another illustration of a class of equations obviously invariant

under several distinct groups, the equation

*// /+1 = xr or xy -y = -

may be mentioned. Under the head of VI it is readily seen to be

invariant under Uf= (r-f \}x-+--\- ry- : as a Bernoulli equation, IX,
dx dy

Tr+l fif
it is invariant under Uf=* From these its solution is found

y ty
at once to be

? =

This equation also comes under X, 2.

20. Second General Method for Solving a Differential Equation.

Separation of Variables.* The simple form of the differential equa

tions invariant under the group of translations 6^= (I, 19) sug

gests as a practical method for solving a differential equation invari

ant under a known group the introduction of canonical variables

( 10). The reduction of the group to the canonical form reduces

the differential equation to the form

in which the variables are separated. The solution is then obtained

by the quadrature ,-

y =J F(X)JX + c.

Finally it is necessary to pass back from the canonical variables to

the original ones.

* This method was discovered by Lie in 1869, thus antedating the method of J 12 by
live years. 1 listorically it is ot interest because, it is the first known method of integra

tion which makes use of the invariance ot&quot; a differential equation under a group.
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Since the differential equation invariant under Uf=. *( I
, 19)

WP

is of the form ^ = dx, the reduction of the group, under which a

differential equation is invariant, to this form also enables one to

separate the variables in the differential equation.

While either of the above transformations brings the differential

equation into a very simple form, the actual introduction of canonical

variables into the differential equation and the final passing back to

the original variables may not prove as simple as in the case of other

variables that could be used to equal advantage. Thus, for example,

if, in the group 7= ^ +
17-^-

which leaves the differential equation
uoc ^y

unaltered, is a function of x only, the introduction of the new vari

ables ( 9)
x = x, y = u(x,y)

reduces the group to the form

whence the differential equation must take the form (VIII , 19)

(40) t(x)y = F(y\

in which the variables are separable at once.

This set of variables works especially well in the case of two perfectly well-

known classes of differential equations, and leads to the usual methods for solv

ing them :

i The homogeneous equation

Mdx + Ndy = o,

* Owing to the complete symmetry of the two groups f T
f--- and Uf~- ,

we-

dx fly

shall sny that the group in either case is in the canonical form, and the variables that

reduce a group to either form will be said to be the canonical variables of the group.
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where M and TV are homogeneous and of the same degree, is left unaltered by

the group (IV, Note, 19)

Uf=lXg.+yV.d* dy

V
The new variables x = x, y - reduce the group to the form

whence the differential equation assumes the form (40), an-d the variables are

separable. (Compare EL Dif. Eq. 10.)

2 The equation - o

is left unaltered by the group (V, Note, 19)

Hence, the new variables x x, y xy reduce the equation to the form (40)

in which the variables are separable. (Compare EL Dif. Eq. 12.)

In an analogous manner, if
rj

is a function of y only, the introduc

tion of the new variables

x = u(x,y), y=y

reduces the group to the form

whence the differential equation must take the form (VIII, 19)

in which the variables are separated.

More generally, if
&amp;lt;f&amp;gt;(x)

and \l/(y), any functions of the respective

canonical variables, are taken as new variables, it is readily seen that

the resulting differential equation will have its variables separated.

In certain cases such forms can be chosen for these functions as to

simplify the actual work required in introducing new variables.
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Remark. It is interesting to note that the knowledge of a group,

under which a given differential equation of the first order is invari

ant, enables one to find both an integrating factor
( 12) and a set

of variables which are separable in the transformed equation. (Com

pare El. Dif. Eq. 17.)

The integrating factor can be written down at once when the dif

ferential equation has been solved for ^-, or what is the same thing,
dx

when it has the form Mdx -\- Ndy = o.

To find the new variables that are to be separable, the solution of

another (frequently simple) differential equation of the first order

(giving the path-curves of the group) and usually one or several quad

ratures are necessary.

In actual practice, neither method should be insisted upon to the

exclusion of the other. In Table I of the Appendix will be found a

list of the more commonly occurring and easily recognizable classes

of equations of the first order, and methods for solving them.

21. Singular Solution.* Let

(25) /(*,.?, y&amp;gt;=o

be an invariant differential equation under the non-trivial group

Its* family of integral curves being left unaltered, as a whole, if this

family has an envelope, the latter must be an invariant curve of the

group ; moreover, it is a path-curve, since the group is supposed to be

non-trivial, thus interchanging the integral curves among themselves.

The equation of the envelope being a singular solution of the dif

ferential equation (EL Dif. Eq. 30) the value of its slope/ -at each

* Tli is section is based on an article by |. M. Page, entitled
&quot; Note on Singular

Solutions&quot; in tin; American Journal of Mathematics, Vol. XVI II, p. 95.
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point (xf y) must satisfy (25). Since the slope of a path-curve at the

point (x, y) is ^ *-
/, the equation of the envelope must be con

tained in

*

&quot;f?

;&amp;gt;

(41)

Remark. In the above process (41) was found as the equation

of a path-curve which satisfies the differential equation. If a par

ticular integral curve happens to be a path-curve of the group, its

equation is also included in (41). But all extraneous loci, ^uch as

nodal, cuspidal, and tac-loci (/?/. Dif. Eq. y 33) which may be path-

curves but are not solutions of (25) will not be included in (41).

Ex. 1. xy-y
s

jrV + x = o.

This equation is invariant under Uf=2x-~ \~)
&quot;^ ,
0% 9)-

Its general solution is s-x2 cf + i = o.

Replacing v
,
wherever it occurs in the differential equation, by

-
gives lT(4 x

*

y
4

)
= o.

x = o is a particular solution for c = oo .

4 x
2

j
4 = o is the singular solution.

Ex. 2. (i+A:V 2 =i-

This equation is invariant under Uf=:~. (I, 19.)

y = - = oo. In this case, writing the differential equation in the form

= o gives the singular solution i -f- lr2 = o.

Kx. 3. .xy- -.vr -v-o. (VI, 19. = - 2 .)

I-:x. 4. r/;rr
- - 2 .vr +.v = o. (IV, 19.)
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Ex. 5. /3
4 ATI- + Sy

2 = o. (VI, 19. n = 3.)

Ex. 6. v = 2 AT +/y3
. (VI, 19. w =

.)

Ex. 7. xy- +^ +1 = 0. (VI, 19. n = ~
J.)

It is suggested as an interesting exercise that the student examine,

in the light of the Lie theory as presented in this chapter, the vari

ous examples involving differential equations of the first order to be

found, for example, in Chapters II, IV, V of the author s Elementary
Treatise on Differential Equations.



CHAPTER III

MISCELLANEOUS THEOREMS AND GEOMETRICAL APPLI
CATIONS

22. New Form for Integrating Factor. In 12 it was seen that

i

V -n

R

is an integrating factor for

Mdx + Ndy = o

if the latter is invariant

under

FIG. i

Lie, by purely geometrical considerations, gave a new form * to this

factor, which is not only interesting but also useful in certain classes

of problems. In Fig. i, let

be some one of the integral curves of the differential equation. The

infinitesimal transformation of the group transforms this into an

infinitely near curve of the family

by transforming any point (x, y) of it into (.v -f- &a, y -\-

/ /
,

the distance between these points is V&quot; +
17&quot;

&*.

First published in the Gesellschaft der Wissenschaften zu Christiania, 1874.

69
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M
The slope of the tangent at P is -- . If T is the point (x N

t

y + M), the length of/ 7 is -\/M-+~N*t
and the area of the paral

lelogram PTRPi is (M+rjlV)8a, or .

P
Let 8;z = PN, the length of the normal to the first curve at P,

intercepted by the second curve
;

this is, to within infinitesimals of

higher order than the first, equal to PQ, the altitude of the above

parallelogram. Hence

or

(2} =-=

This form of the integrating factor is serviceable in the case of an

interesting class of differential equations :

If the integral curves of a differential equation are known to be
^

a family of parallel curves* for which is constant all along each
6a

one of the curves, it follows at once from (42) that

U0

is an integrating factor. The involutes of a curve, which are the

orthogonal trajectories of the tangents to the curve, are known to

form a family of parallel curves. Hence an integrating factor of the

form (42 ) is known at once for their differential equation.

Ex. Find the involutes of the circltj x- -f- y~ = I.

The differential equation of the tangents to the curve is f writing/ for

* Two curves are said to be parallel, if the distance between them measured along

the normal to one of them is constant all along the curve. (In this case, it is well known

that the normal to either curve is normal to the other.)
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Hence the differential equation of the family of involutes is

71

(xy -f -V

The integrating factor given by (42) is

l d - o.

To integrate the exact equation

(.vr -f V** -f^ -

one may proceed in the usual way (see El. Dif. Eq. 8) to integrate

where ^ is considered a constant. Multiplying numerator and denominator by

x y\fx* -f- y
fi

I, this becomes

r .

&quot; -
J ,\--

r _r
J

Letting .r
2

-f r- = /,

= i gin
_ 1 _

=r x/.r- + r- I + sin 1- .

Hence, the equation of the family of involutes is

I -f sin~ ! - tan&quot;
1
* = const.

^ .,- + ^2
JT



72 THEORY OF DIFFERENTIAL EQUATIONS 23, 24

Remark. From the nature of the problem, it is evident that the family of

involutes is invariant under the group of rotations &/= y -.
- + x -*- Hence,

the methods of 12 and 20 are also applicable. It is readily seen that the inte

grating factor given by the method of 12 is the same as that found in the text.

The method of 20 should be carried out as an exercise.

23. Two Differential Equations with Common Integrating Factor.

If
//,

is an integrating factor for two distinct differential equations,

=
o&amp;gt; and M2 dx +N2 dy o,

_ = o and
dy dx dy dx

^
1S&amp;gt; _M d]o f = **M
dx dv dy

(A&amp;lt;&amp;gt;\
.

a lo
.

I O.T dy dy djf

Here N^M^ N.M^^Q, since the differential equations are sup

posed to be distinct. Hence (43) can be solved for - sL and
dx

2!L.
log/x can then be determined by a quadrature, and /x may

dy

be obtained at once from this. Hence the

THEOREM. If hvo differential equations of the first order are

known to have a common integrating factor, the latter can be found
*

by means of a quadrature.

24. Isothermal Curves. A family of curves which, together with

the family of orthogonal trajectories, divides the plane into infini

tesimal squares, is called a family of isothermal curves. In general,

* This is also obvious from tin- form of the differential equation, when cleared of

fractions, viz. : x + yp Vi -f /-. (Sec II, Note, $ 19.)
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FIG. 2

a family of curves and their

orthogonal trajectories divide

the plane into infinitesimal

rectangles. For, selecting

any pair of neighboring

curves, /and //(Fig. 2), of

the one family it is always

possible to find a pair, A
and B, of the second family

to form an infinitesimal

square
* with them

; besides,

selecting any third curve ///

of the first family, a fourth

curve IV can be found such

that A, /?, ///, IV form a square also
; again, selecting any third

curve C of the second family, a fourth curve D can be found such

that C, Z&amp;gt;, /, // form a

square. But with these se

lections made, the curves

C, D, III, IV do not, in

general, form a square.

Concentric circles are read

ily seen to be isothermal curves.

Their orthogonal trajectories

are the straight lines through

the common center (Fig. 3).

Any pair of circles of radii

r and r + \r respectively

(r&amp;gt;o) form an infinitesimal

FIG. 3 square with any two of the

* This curvilinear quadrilateral is a square when infinitesimals of higher order than

the first arc neglected, the length of arc of one of the sides being taken as an infinitesi

mal of the first order.
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straight lines which intercept the length Ar on the inner circle. Moreover these

same two lines form
squares^with any other pair of circles of radii kr and

^(r-fAr), respectively, k being any constant different from zero.

From the definition of isothermal curves, 8(of 22) can be made

the same, at any point, for this family of curves and for that of their

orthogonal trajectories. Moreover, if the differential equation of the

one family is

(17)

that of the other is

(17 )

Hence the two equations have a common integrating factor, as is

evident from the form (42). To determine this integrating factor,

the method of 23 applies. The equations (43) take the form

_-- -

dy dy ax

log /x N d log ^
dx dy

dN
~dj&quot;

dM
dx

whence

(44)

dJogjA
dx

dM
-^.

dy
-=
o

., , TM -- N-~
dx ôx

M* + N*

dx dx Or dy

dy

dx

Equations (44) are interesting, not only because they enable one

to find /A by a quadrature, but also because they lead to the condition
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that the integral curves of the differential equation (17) be isothermal.

For, differentiating the first of (44) with rpect to_y and the second

with respect to x, and equating

(45)

The general solution of this is
*

(46) = tan [$(# -f iy) -f ty(x iy)~],

where &amp;lt; and ^ are arbitrary functions.

The condition (45) is not only necessary that (17) be the differen

tial equation of a family of isothermal curves, but it is also sufficient.

For, whenM and ^ satisfy (45), equations (44) are consistent, hence

a common integrating factor for (17) and (17 ) can be found. But

the sum of the squares of the coefficients of dx and dy is the same

for these two differential equations. Hence, remembering the form

(42), S// must be the same (to within a constant factor, which may
be made unity by a proper choice of neighboring curves) in the two

cases at any point. Hence the integral curves of (17) are iso

thermal curves.

Remark. The condition for isothermal curves in terms of their

finite equation and that of their orthogonal trajectories is obtained

in Note III of the Appendix.

i In the case of the family of concentric circles, x1 + y*- const., the differen

tial equation is x dx -\- y dy = o. Hence (45) is satisfied, since y 2
tan&quot;

1 -^ = o.

While the solution of this differential equation,,as well as that of the differen

tial equation of the orthogonal trajectories, y dx x Jy = o, is very simple, it is

interesting to note that (44) give very readily

/I 2 x dx -f- 2 v dy ,, / o . ox
&amp;lt;/log/*

= -- y / ^ =
-&amp;lt;/log(&amp;gt;

2
+y*). .-. n =

This is the common integrating factor for the two equations.

* See El. Dif. Eq. \ go.
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2 The family of circles tangent to the axis of y at the origin x2 + y- ex = o

has for differential equation ^c
2 y2

)dx -f zxydy = o. It is readily seen that

2 JCV
V 2

tan&quot;
1-* = o; hence these circles form an isothermal system. The dif-

x--f
ferential equation of the orthogonal trajectories is 2 xy dx (x

2
y~}&amp;lt;ty

o.

While this is easy to integrate, it is worth noting that (44) give /*

(x
i +y2

)
2

Moreover, since the differential equation is
&quot;

homogeneous,&quot; it is invariant under

the group Uf=x^-+y^L (IV, 19). Hence, a second integrating factor is

dx dy

( 12) /io= -
. The solution of the equation is therefore ( 16)

= const, or .r
2

-f y- cy = o,
/&quot;2 y

the equation of the family of circles tangent to the axis of x at the origin.

2

Show that the following curves are isothermal, and find their

orthogonal trajectories :

Ex. 1. The equilateral hyperbolas xy const.

Ex. 2. The similar conies ax1
4- by* = const., when and only when

b = a.

Ex. 3. The coaxial circles through the points (i, o) and ( i, o),

y

25. Further Application of the Theorem of 23. An obvious

corollary of the theorem of 23 enables one to find an integrating

factor, by means of a quadrature, for an interesting set of differential

equations. This corollary is : If the ratio of the integrating factors

of two differential equations is a known function, the integrating

factors can befound by a single quadrature. For, suppose that

(47) &=4&amp;gt;(X,y)
to

is a known function, where ^ and /x2 are the integrating factors of

J/! dx -f TVi dy = o and M.2 dx 4- N* dy = o
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respectively. If the second equation be written in the form

&amp;lt; M., dx + $N dy o,

its integrating factor is also
fi\-

Hence it and the first equation have

a common integrating factor and, by the theorem of 23, this can

be found by a quadrature.

Suppose, now, that it is known that the solutions of three differen

tial equations of the first order

J/! dx -\- JlVl {fy = o, M* dx +N dy = o, M3 dx +Nz dy = o

can be made to assume such forms, fa = const., fa = const.,

fa = const., that

(48) fa
=

fa + fa.

If Hi, ft*, /*3 are their respective integrating factors,

dfa = n}(Mi dx + NI dy), dfa
= ^(M^ dx + N.2 &amp;lt;fy),

Because of the identity (48)

dfa = dfa 4- dfa,

or

(49)

whence ^ = M^i +^= MI^ +^ and

, By the corollary above, H\ can be found by a quadrature ;
and /u ;

,

is then known from (47 ).
After finding &amp;lt;,

and fa by a single quad
rature each, fa is given immediately by (48). Hence the
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THEOREM. If it is known that the solutions of three differential

equations of tJie first order can be put in sitcJi forms &amp;lt;[ const.,

&amp;lt;b.,
= const. , d&amp;gt;.j

= const. tJiat , =

these solutions can befound by means of three quadratures.

This theorem has some interesting applications in the theory of

surfaces *
:

A. If the rectangular coordinates of any point (xt y, s,) on a sur

face are expressed in terms of the parameters u and ?
,
the expression

for the element of length of arc is, using the usual Gauss notation,

ds&amp;gt; = E dir + 2 Fdu dv + G dv\
where

WY+(Y+(Y, F=^* 8v8) 8z dz

\vuj du dvdit du \du d/ dv du d

The differential equation of the lines of zero length, usually called

minimal lines, is then

(50) E du* + 2 Fdu dv -f G dir o.

This differential equation, being of the second degree, is equivalent

to the two _
E du + F+ ^F2-EG dv = o

(51)
E du + (F- V/^ 2 - EG) dv = o,

which are essentially distinct, since it is always presupposed that

EG //2 is different from zero. Let
(//, v)

= const, and (3(u, v)

= const, be the solutions of (51). These are the equations of the

minimal lines. Choosing them for parametric curves, equation (50)

* These applications will be of interest to those only who have, at least, a slight

nrqiiiiintance with the elements of Differential Geometry. They have been taken from

Lie s I orlesungen uber Differentialgleichungen, Chap. 9.
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takes the form da tip
= o, i.e. E(a, /3)

= G(a, ft) o, and the expres

sion for the element of length of arc is

&amp;lt;/s-=2F(u, P) tin tip.

Introducing the new parameters i^ and ?\ defined by

where
&amp;lt;/&amp;gt;

and
//

are any desired functions of their respective

arguments, tf = *(,.,)(,/? + W),

since tiatiB =
(ih&amp;lt;\ + &amp;lt;h \~)- This form of the expres-

V(*W(py *

sion for the element of length is characteristic of isothermal para

metric curves. (Compare Note III of the Appendix). Hence,

2 //!
= U=

&amp;lt;/&amp;gt;()
4-

\I&amp;gt;(P)
= const.

and 2 ivi
= V=

&amp;lt;() \j/(fi)
= const.

are the equations of the isothermal curves and their orthogonal tra

jectories, respectively. Since
&amp;lt;()

= const, and ty(J3)
= const, are

equally well the equations of the minimal lines, it is evident that the

identity (48) is satisfied by the equation of any isothermal system

and those of the minimal lines. It follows then from the theorem

above that the differential equation of a family of isothermal cinves

on any known f surface can be integrated l&amp;gt;\ means of quadratures.

Besides, the knowledge of a family of isothermal lines on a known

* In the case of a real surface, a and
/3 may be selected as conjugate complex

functions of u ;,nd v, when the original parametric curves are real. Real isothermal

curves are then obtained by choosing and
\f/ conjugate functions of it. and /j

respectively.

t A surface is said to be known if the values of .r,^, z in terms of the parameters

,
-v are known, or if the forms of E, F, (7, and of

/&amp;gt;,
D

,
D&quot; (to be introduced below)

are given in terms of//, v. In this particular case /:, F, G only need be known, mini

mal anil isothermal lines not depending upon D, /&amp;gt;
,

D&quot; .
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surface enables one to integrate the differential equations of the mini

mal lines (51) by means of tu&amp;gt;o quadratures.

Remark i. For surfaces of the second order, surfaces of revolu

tion, and minimal surfaces, the lines of curvature (see B below) are

known to be isothermal lines. Hence, in the case of these surfaces

the differential equation of the lines of curvature can be integrated

by means of quadratures.

Remark 2. In the case of a minimal surface the asymptotic

lines are also isothermals. Hence, on such a surface the differen

tial equation of these lines can also be integrated by means of

quadratures.

B. The tangent plane to a surface at a given point cuts the sur

face in a curve which has a double point at that point. In general,

the directions of the tangents to the two branches of the curve at

that point are distinct. In this way two directions (in general) are

determined at every point on the surface. A curve on the surface

whose direction at every point coincides with one of these directions

is called an asymptotic line. So that, in general, through each point

on the surface there pass two asymptotic lines. The differential

equation of the asymptotic lines is

(5*)

when
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Another system of curves playing an important role in the theory

of surfaces is that of lines of curvature, which have the property, that

along them consecutive normals to the surface intersect. Their dif

ferential equation is given most conveniently in the determinant

form

(53)

drf du dv dir

E F G
D D &amp;gt;&quot;

= o.

This differential equation is again of the second degree, so that

through each point pass two lines of curvature. These are mutually

orthogonal, and besides their directions are harmonic conjugates

with respect to those of the asymptotic lines through the same point,

as may be seen readily from the forms of equations (50), (52), and

(53)-

Suppose that on a certain surface the asymptotic lines are known

to cut out rhombuses.* This can be expressed analytically in the

following way :

The selection of the asymptotic lines as parametric curves does

not affect the appearance of the expression for the element of length

of arc. But since u = const, and v = const, must then be the solutions

of (52), it follows that Z&amp;gt;
=

Z&amp;gt;&quot;
= o. Hence the differential equa

tion of the lines of curvature (53) reduces to

(53 )
Edir- G&amp;lt;h&amp;gt;-

= o.

The elements of length along the parametric curves are ^/E du and

^JG dv. These will be equal at every point on the surface, and the

surface will therefore be divided into rhombuses, if VE = A(//, i
)4&amp;gt;(N)

and ^/G = X(//, 7 )^(7 ). (See corresponding argument in the

case of isothermal lines in Note III of the Appendix.) Letting

* This is known to be the case for surfaces of constant Gauss curvature, for

example.
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j &amp;lt;(//)
du = U, I

\l/(i&amp;gt;)
dv = F, the expression for the element of

length takes the form

The differential equation of the lines of curvature takes the form

dU~-dV- = Q
;

whence the equations of the lines of curvature are

U+ V= const, and U V const.

Since the identity (48) holds, it follows that if the asymptotic lines

divide a surface into rhombuses, the asymptotic lines and lines of

curvature can be obtained by means of quadratures.



CHAPTER IV

DIFFERENTIAL EQUATIONS OF THE SECOND AND HIGHER
ORDERS

26. Twice-extended, n-times-extended Group. A transformation

of the variables .v andjy carries with it a transformation of the various

derivatives of y with respect to x. Thus, just as the point trans

formation
*i = $(*o f

)&amp;gt; ***1fftJ)
carries with it ( 13)

dx By

so it also implies d*^

dx dy
The transformation

*! = &amp;lt;i&amp;gt;(x, y), } i
= ^(^,y), y\ = x(x &amp;gt; y&amp;gt; y)&amp;gt; } i&quot; &amp;lt;*(

x
&amp;gt; y&amp;gt; y &amp;gt; y&quot;)

affecting the four variables x, y, y ,y&quot;
which is implied by the point

transformation is known as a twice-extendedpoint transformation*

Starting with the one-parameter group of point transformations

(
i ) #! =

&amp;lt;f&amp;gt;(x, y, a), )\ = if/ (x, y, a},

* In precisely the same way we arc led to the n-times-extended tranaformation

= e(x,y,y t y&quot;, ,/&quot;
)

).
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by employing the method of reasoning in 13, the corresponding

twice-extended transformations

(54) x\ =
&amp;lt;K*&amp;gt; y&amp;gt;

a
)&amp;gt; }\ = $(x &amp;gt; y&amp;gt;

a\ yi = V = x(-v } &amp;gt; /&amp;gt; &amp;lt;0&amp;gt;

are seen to constitute a one-parameter group in the four variables

x, y, y , y&quot;.
This group is known as the twice-extended group corre

sponding to (i).

Writing as the symbol of the infinitesimal transformation of the

twice-extended group

(55)

where as before

77&quot;,
which is --, may be found in exactly the same way as ?/ was;

a
thus

77 SffSp ^v ^v- ^r dx dx

Reasoning as before we have the n-times-exUndedgroup

=
4&amp;gt;(x, y, a), y l

= $(x, y, a,), yl = j
= \(x, y, } , a),

&quot;x
\
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the symbol of whose infinitesimal transformation may be written

where

Remark. While
&amp;gt;/

is a quadratic polynomial inj ([24], 13), it

is seen, on expanding (56),

(58) ,&quot;

=^vdjc 5)

that
?;&quot;

is linear in
y&quot;.

In the same way ry

( * ) is seen to be linear in

y
(k) for k

&amp;gt; i, since

__
By dy

In I, Uf, f
=

o, r;-i. /. 17
=

o, T;&quot;E:

r

Hence, U^f=^--
dy

In II, Uf=-y-f + x
d/ t $==-}&amp;gt;, -n= x

O-^ Cy

v&quot;=3/
2 + 4yy&quot;, ii

iv
=s(2yy&quot;

Hence,

in in, u/mf- t ^
=

, 77=^. .-. r = v , 17&quot; =/ , i?
(w)

=y&quot;
v
.

^^ +y: + ,&quot; + ... + y&quot;.
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In IV, Uf=x&+y&t
= x, i,=y. .-. , = o, i&quot;=-/ , r/&quot;EE-2/&quot;,

Extend the following groups :

Ex. 1. f Ex. 2. x f. Ex. 3. ^-jd,r .
ox dx &quot;

d

Ex. 4. a* +^ Ex. 5. 0(. Ex. 6.
5jf J

dy
Jdx

Ex. 7. ^.
dy

27. Differential Equation of Second Order Invariant under a Given

Group. The effect of any transformation (i) on the variables x and

y is to transform the differential equation

(60) /(*,;,/,/ )=&amp;lt;&amp;gt;,

by the corresponding extended transformation (54). In order that

the equation (60) be invariant under the group (54), it is necessary

and sufficient that ([12], n)

(61) /&quot;/=
o whenever/(*, y, y , y&quot;)=o.

Using the same argument as was employed in 18, it is seen that

all the differential equations of the second order invariant under the

group are obtained by equating to zero an arbitrary function of three

independent solutions of ([9], n, footnote)
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Passing to the corresponding system of ordinary differential equa

tions

dx dy dy
1 _ dy

1

the first three members are seen to be the same as those of (37),

18. Hence, two of the solutions, u(x, y)= const, and u (x, } ,}&amp;gt; )

= const., may be found by the methods of that section.

To find a third solution, u&quot;(x, y, /, y&quot;)= const., which must neces

sarily involve
y&quot;,

use may be made of the two already found to

eliminate
j&amp;gt;

and y from -^- =^-, or x and/ from
-]

=
,
or x

dx dy TJ

and y from -^- = 2_
(whichever turns out to be the simplest). Each

dy 77

of these differential equations is linear since
rj&quot;

is of the first degree

in/ ( 26, Remark). This linear equation can be solved by means

of two quadratures. (See El. Dif. Eq. 1 3).

Lie has given a most ingenious method for finding a form for

// i.v, yf y,
1

y&quot;),
without any integration whatever when u and u are

known :

Consider the differential equation

(64) // (*, _&amp;gt;,/)- (*,.) )
= &

where a and ft are constants. Since u and // are invariants of the

once-extended group U f, (64) is invariant under the group Uf\ that

is, its integral curves are interchanged among themselves by the

transformations of this group. Keeping a fixed, an invariant family

of a single infinity of integral curves corresponds to each value of ft.

Still keeping a fixed and allowing ft to take successively all possible

values, an infinity of such families, constituting a double infinity of

integral curves, is determined by (64). This larger aggregate is in

variant under the group Uf, since each of the constituent families

corresponding to the same value of ft is. It is evidently the set of
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integral curves of the differential equation of the second order ob

tained by differentiating (64), thereby eliminating ft ;
viz.

du du&amp;lt; Bx,,.
(65)

--- -
o, or - =

dx dx du a

Since its integral curves are interchanged among themselves by

every transformation (i), it is invariant under the group Uf. Hence,

by(6l) fM \ duUn
(

- a
}
= o whenever = a.

\;/// ) du

But a being a constant, C7&quot;l a ]= U&quot;( ] ;
i.e. it is indepen-

V du J \dn
/ J l\

\ /

dent of .
/&quot;[

-
)

is therefore identically zero
;
which is sufficient

,
\d*/

to make an invariant of (54), ([9], n).
du

Since // contains y ( 18), ^ o, and - must contain
y&quot;*

ay du

Hence, - = const, may be used as the third solution of (63). The
du

general solution of (62) may then be written in the form

(66) f(u, , ^) = o, or ^ = F(u, ).

\ du J an

This is the general form of the differential equation of the second

order invariant under the group Uf. We have therefore the follow

ing most important

THEOREM. If f(x, r, y , _r&quot;)
= o is a differential equation of the

second order invariant under the group if^ and if u (x, y) is any

* An invariant of the extended group U&quot;f
which involves

j&quot;
is known as a second

differential invariant of the group Uf.

t Attention should be called to the fact that while every differential equation of the

first order is invariant uivk-r an indefinite number of groups (see \\ 15, 17) a differen-
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invariant and // (x, v, v ) is any first differential invariant of Uf, the

introduction of the ncu&amp;gt; rariablcs

(67) x= it (x, r), y= u (x, y, y )

reduces the differential equation to the form

(66 ) ^ = F(X,y),

which is of the first order.

In actual practice the introduction of the new variables is usually

most readily effected by noting that

Qy
4-^ v 4-^ v&quot;

&amp;lt;ty_dx d)&amp;gt; dy
J

dx dx dx ,

dx dy
&quot;

is some function of u = x, u = y, and //&quot;. When this function is

obvious upon inspection, //&quot; can be determined in terms of x, y,

In other cases it may be necessary to solve

dy dx dy dy
&quot;

dx dv

fory,y ,y&quot;
in terms of JT, y, ^, x. Substituting these in the differ-

dx
ential equation, A* must disappear, and the resulting equation must

take the form (66 ).

After having solved (66 ),
its solution

(68) 4&amp;gt;(u,t/ ,f) = o

a differential equation of the first order. Rut owing to the inva-

riance of u and u (68) is invariant under Uft
so that it may be

)lved by the method of 12 or that of 20.

il equation of the second (or higher) order is in general not invariant under any

group. (See Note IV of the Appendix.) On the other hand, a large number of them,

including most of the known forms, are, and these will be considered in this chapter.
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28. Illustrations and Applications.

I.
6^&quot;

= -&quot;

(

.
=

o, yj
= i. . .

r)
=

o, -r}&quot;

= o ( 26). P^quations

(6i\ nrp 7 r 7 ri

\V6J ^lc ^v _ //v _ &amp;lt;ty _ ay

o i o o

w&quot;
= y. Hence, the general type of differential

equation of the second order invariant under Uf= is f(x, j
1

, JI

P

&quot;)

= o

0ry&quot;
= F(xt y ).

This equation is characterized by the absence of r.

Note. The transformation of variables x=x
t y =

}&amp;gt; ( 27) re

duces the differential equation to

(66 )
& = f(x,y).
ax

This is precisely the usual method for solving an equation of thus

type. (See El. Dif. Etj. $ 57). Solving the solution of (66 )
for y,

it takes the form

in which the variables are separated, as must be the case (I, 19),

since this equation is invariant under the same group ( 27).

I . Uf= |P;
It is readily seen that the general type of differen

tial equation of the second order invariant under this group is

/(y, _y , y&quot;) o, ffry&quot;
= F(y, y ).

This equation is characterized by

the absence of .Y.

Note. The transformation x=y, y=y ( 27) reduces the dif

ferential equation to one of the first order (66 ).
Its solution

ffy

y=/(x, &amp;lt;),
or ^ =f(y, c]

is a differential equation with A* absent again, as must be the case

(I
f

, 19 and 27). This is also the usual method for solving an

(([nation of this type. (See El. Dif. Eq., 58.)
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Remark. Owing to the simple form of an equation invariant

under either of the groups Uf= ~
- or

^&quot;= ---, it is frequently

desirable to introduce canonical variables in case a given differential

equation of the second order is known to be invariant under some

group. When the introduction of canonical variables is not prac

ticable, other changes of variables reducing the group and equation

to known forms may prove desirable. (Compare 20.)

( 26). Equations (63) are

(6.3 )
*-

v .vr
.-. u = .\-+r, = T

; ;/
( 19)- Using the last two members of

equations (63 ),
//&quot;
= -- Hence the general type of differential

^
t\f *i f

1 of tlie second order invariant under Uf= V-= + .v ; is

v
,,, ,

- fo fy

Note. The form of this differential equation is obvious from

geometrical considerations, since // is the square of the radius vector

to any point on an integral curve, // is the tangent of the angle be-

twivn the radius vector and the tangent to the curve, while u&quot; is the

square of the curvature, all of which are left unaltered by the group of

rotations about the origin. (Compare 29.) In order to integrate

such an equation the method of I
, Remark, requiring the introduc

tion of canonical variables (polar coordinates in this case) will usually

be found desirable.

Making use of the fart that and are also first

VI +.v
&quot; Vi -r\

2

differential invariants of the group of rotations (II, Note, 19) other
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possible forms of the invariant differential equation of the second

order are

I \ ** / \

~,
-

j
and -- ^ = F\ *-+y

2
,

ViH-v v ( I +J &quot;)

&amp;lt;

V Vi + y v

III. Uf~y^- = o,r)=y. ..r
i =y )

r
i &quot;=y&quot;(^26). Equa-

_ _

o y / /
dx dy

o y

y v&quot;

. .// = jc,
=

-, u&quot; = - * Hence ///&amp;lt;? general type of differen-

r\f

tial equation of the second order invariant under Uf= y~- is

This equation is characterized by being homogeneous in y,y ,y&quot;.

It is evident, at once, that an equation of this type is left unaltered

by the affine group Uf= y-^, since the finite transformations of the

extended group are x^ x, y\ = ay, y^ = ay
1

, y&quot;
=

ay&quot;.

Note. An interesting equation of this type is the homogeneous

(or abridged) linear differential equation

The transformation x = x, y=~ ( 27) reduces the equation to

ax

a Riccati equation. (Compare EL Dif. Eq. 73, 6).

* The Lie method of v
v

27 tjivcs u&quot;

1

,

-

f-J ,
and the dif-

&amp;lt;/// r- v ^y

tcrrntial c(|uation ( \ + / M , ), \vliich is, of course, the same in form as

that lound in the body of the text.
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VI. U/=x + ny-. t = x,i,
=

ny. /. V = (
-

i)/,
dx By

rj&quot;

= (n 2)} &quot;. Equations (63) are

x ny (n i)/ (n 2)/

Hence the general type of differential equation of the second order

invariant under Uf= x -f- nv ~ isf ( , ,
-

)

= o.
ox dy \x

n xn~ l xn

~-J

This equation is characterized by being homogeneous in x, y, y , y&quot;

when these elements are given the weights i, n, n i, n 2 respec

tively.

Note. Boole called an equation of this type homogeneous, and

gave as a method for solving it the transformation x = log x, y = ^-.

(See Boole, Treatise on Differential Equations, p. 215 ; Forsyth,

Treatise on Differential Equations, 55). The new variables in this

transformation are a set of canonical variables. (Compare I
, Remark.)

III . Uf=.\ is a special case of VI. Here ;/ = o, and the
ox

invariant differential equation is of theform f(y, xy ,
x 1

) &quot;)

= o.

This equation is homogeneous in x. y , y&quot;
when these elements

have the weights i, i, 2 respectively ;
the weight of y being zero,

the manner in which this variable enters plays no role.

III. Uf=L\^- may also be looked upon as a special case of VI,

corresponding to the value ;/ = oo. Boole deduced a special method

for this case (see Boole, p. 220; Forsyth, 55) which is exactly that

of 27 for this case.

IV. Uf=x -\- v--- is the special case of VI for n i. The
d\

-

dy
(

invariant differential equation is of the form f(^ ,
r

, .vv&quot;)
= o.

\ oc
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V. Uf=x &amp;lt;* y is the special case of VI for n i. The
dx dy

invariant differential equation is of theform f(xy, x-y , .ry&quot;)
= o.

vii. u/= *(*) t = o, -n
=

It is readily seen that

Hence ///&amp;lt;? general type of differential equation of the second order

-^-invariant under Uf=$(x}-^- is f(x, &amp;lt;j&amp;gt;y $ } , &amp;lt;f&amp;gt;y&quot; &amp;lt;j&amp;gt;&quot;y}

=
o, or

Note. An interesting equation of this type is the complete linear

equation

(70) / -f /&amp;gt;(*)/ + Q^)y = X(x),

which is obtained from the general form by letting F be linear in

7/EE
&amp;lt;/

&amp;lt; v. Bearing this fact in mind, it is clear that y = &amp;lt;(.v)

satisfies the abridged equation (69), obtained from (70) by replacing

X(x) by o. Conversely it is readily seen (and will be left as an exercise

to prove) that \fy=y is a solution of (69), (70) is invariant under the

group Uf=\\) -. The transformation x = x, y=y{ty yjy ( 27)

reduces the equation to the linear equation of the first order

(71)

This property of the complete linear differential equation of the

second order of reducing to one of the first order by a transforma

tion that is known when a particular integral of the corresponding

abridged linear equation is known is not new. (See 7v7. Dif. Rq.

53, i.) The transformation employed above yields an equation
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bearing a more striking resemblance to the original equation than

the transformation,

usually employed. The new variables in this transformation are a set

of canonical variables (I , Remark).

Other groups whose invariant differential equations are readily

found are the following :

VIII. tf/EEitfy)/-. f(x/-S-r -&amp;gt;-?- =0.

VIII . Uf= *(*) f(y, &amp;lt;/&amp;gt;y, 4r&amp;gt;&quot; + Wy )
= o.

X. Uf=

XII. Uf=a + l&amp;gt;.

In Table II of the Appendix will be found a list of the more com

monly occurring and readily recognizable classes of equations of

higher order than the first invariant under known groups.

Ex. i . xyy
11

4- -*y
2

yy o.

This equation is invariant under the group IV:
^&quot;= x~-\- y-fr*

Introducing the new variables

*=
[,&amp;gt; y=y
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the equation takes the simple form

^+? = o.
dx X

vv
Integrating xy = a, or * = a.

oc

Integrating again ax1 f = b.

Note. Inspection shows that this equation is also invariant under

III: Uf=y^t
and III : Uf = x-t&amp;gt;

dy ox

Ex. 2.
(.r- +f-)y&quot; + 2 (y

-
*/)(i +/ 2

)
= o.

This equation is invariant under \he group II :

Introducing the canonical variables (in this case, polar coordinates)

the equation takes the form =
-f- y = o.

tbr

Here the independent variable is absent, but, instead of using the

method indicated by the general method of 27, it will be simpler

to solve this linear equation with constant coefficients by the usual

method for such an equation. (See EL Dif. Eq. 45.)

y = a cos x -f b sin x,

To pass back to the original variables, multiply by y, whence
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Note. This differential equation is also invariant under IV.

Ex.3, x2

}}
&quot;

(xy } )-
= o. (Invariant under III, IV, . . .

.)

Ex. 4. ji
y&quot;
+ to -

J )
2 = o. Ex. 5. x2

y&quot;

= xy
-

y.

Other equations invariant under known groups appear in 39

and 40.

29. Further Applications. Besides being able to recognize a

-roup under which a given differential equation is invariant from the

characteristic properties given in 28

and enumerated in Table II of the

Appendix, it is possible at times, to

find such a group from the nature of

the problem giving rise

to the differential equa

tion. As examples, the

following may be noted :

i The group of rota

tions about the origin
zs r\s

leaves unaltered
dx dy

R = the radius of curvature of a curve at any point,

p = the radius vector to any point on the curve,

r = the radius vector to the centre of curvature,

the distance from the origin to any line (such as the tangent

or normal) connected with the curve, thus OM and ON,

/W=the polar subtangent, = ON,
PN= the polar subnormal, = OM,

i/
= the angle between the radius vector and the tangent,

the remaining angles of the triangle OCP.

Hence a family of curves defined by a relation between any or all

of these is unaltered by this group ;
the differential equation of the
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family is therefore invariant under it. Passing to polar coordinates

(the canonical variables) will usually be found desirable in this case.

2 The similitudinous group Uf^x -f- y leaves unaltered
civ dy

= the angle between the initial line and the radius vector,

T = the angle between the initial line and the tangent to the curve,

&amp;lt;= the angle between the initial line and the radius vector to the

centre of curvature,

&amp;lt;//

= the angle between the radius vector and the tangent to the

curve,

the ratio of certain lines connected with the curve, such as

radius vector, radius of curvature, radius vector to the centre of curva

ture, intercepts of the tangent, normal, or of the curve itself, sub-

tangent, subnormal, length of tangent or normal from a point on the

curve to one of the axes, and the like.

Hence this group leaves unaltered the differential equation of a

family of curves defined by a relation between any of the above in

variant configurations. Passing to canonical variables, or to polar

coordinates (thereby reducing the group to III ) may simplify the

problem of solving the differential equation.

3 Certain configurations could be enumerated as invariant under

the groups of translations Uf =~ and Ufm4~* But as in either

case one of the variables is absent in the resulting differential equa

tion, the latter will suggest the group without considering the defini

tion of the integral curves.

Ex. Kind the family of curves for which the radius vector to any

point of a curve is perpendicular to the radius vector drawn to the

centre of curvature of the curve at that point.

The differential equation of this family must be invariant under

the group of rotations 11 and also the similitudinous group IV.
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Noting in Fig. 4 that the triangle POC is right-angled at O,

= cos, or = s

Hete P = Vxf+ f, R =
,

tan
//
= : - Hence the

/ * +yy
differential equation is

(.v
2 +/)/ -

(i +y*)(y-xf) = -

30. Differential Equation of Order Higher than the Second Invari

ant under a Given Group. The method of 27 can be extended

without change to differential equations of higher order :

A differential equation of the ;/th order

(72) /(*,; ,/,/ , &amp;gt;j

(
&quot; ))=

is invariant under the group Uft
if and only if

(73) U(n)f=o whenever/^ o.

All the differential equations of the th order invariant under the

group are obtained by equating to zero an arbitrary function of ;/ -f- i

independent solutions of

These independent solutions may be obtained from the corre

sponding system of ordinary equations

dx f/v_,/r &amp;lt;/v&quot;_ &amp;lt;&*&amp;gt;

\15) T , TT
&quot; = -

~rrr*

It was seen in 27 that if //(.v, v) is an invariant of (Y, and

i/ (.\\ v, v ) is a first differential invariant, then is a second differ-
(/!/

ential invariant. Hence,

(76) *-&amp;lt;&* ft
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is an invariant differential equation of the second order for all values

of the constants a and ft. Its integral curves constitute an invariant

family of oo
2
curves. The &amp;lt;x&amp;gt;

1
differential equations of the second

order obtained by keeping a fixed and giving to ft all possible values

have for integral curves oo
1 such invariant families of oo- curves.

Grouping all these curves into one aggregate of &amp;lt;x&amp;gt;

3
curves, this aggre

gate is invariant under the group since each of the families is. The

differential equation of this family is, therefore, invariant. It is ob

tained by differentiating (76), thus eliminating ft,

( \ (^\ ^_ d~11 _
{77)

dx\du)
a
dx~ ~dtf

In order that (77) be invariant, we must have from (73)

TJ .,.(d&quot;u

{

\ , (/-//U a = o, whenever = a.

\ dir J dir

&quot;Rnf- /&quot;/

&quot;u
i

, ./
lv

I
^ ~T~9

dir J dir

i.e. it is independent of a. Hence, if (77) is to be invariant, /&quot;

72 I
****

must vanish identically. So that - - is a solution of (74). Since it

atr

containsy (as may be seen readily), it is independent of //, //
,

dlt

In the same way it can be shown, step by step, that a set of inde

pendent solutions of (74) is

u
du- &amp;lt;w &amp;lt;/

n
-v.

du dir

Hence the general type of differential equation of order ft invariant

under the group Uf is
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We have then as an extension of the theorem of 27 the following

THEOREM. If f(x&amp;gt; } , _v , y&quot;, -, y
(H)

)
= o ls invariant under the

gn&amp;gt;itf&amp;gt;
L f, ami ////(.v, r) /v an\ invariant, and // (.v, v, r )

is any first

differential invariant of Uf, t/ie introduction of the new variables

(79) * = M
(-
V

&amp;gt; y\ y = &quot;

(
x

&amp;gt; y&amp;gt; y )

reduces the differentia] equation to

u&amp;gt;)iich is of order n i.

After having integrated (78 ),
its solution

is a differential equation, also invariant under Uf, since u and // are.

Hence it may be solved by the method of 1 2 or of 20.

Many of the arguments of 28 can be used here, almost without a

single change. Consequently, the results only will be given, it being

left as an exercise for the student to fill in the steps.

I. The general type of differential equation of the nth order

invariant under Uf=~~ is/(x, y , y&quot;, ,/&quot;

)

)=o, which is charac

terized by the absence ofy.

The transformation y=y t reducing the differential equation to one

of order n i constitutes the usual method for solving an equation

of this type. (El. Dif. Eq. 57.)

I . The general type of differential equation of the nth order

invariant under Uf=^ is /(y, v , v&quot;, , v
(n)
)=o, which is charac

terized by the absence of jt\

The transformation x =_v, y = y , reducing the differential equation
to one of order ;/ i constitutes the usual method ior solving an

equation of this type. (El. Dif. Eq. 58.)
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The remark of I
,

28 with reference to the introduction of

canonical or other variables when a group is known under which

a given differential equation is invariant applies equally well here.

I. The general tvpc of differential equation of tJie ntJi order

invariant under Uf= y is f( x, --,&quot;, ,

- - -

]
= o, which is

y y

characterized by being homogeneous in y, v
, v&quot;, ~-,y

(n)
.

VI. The genera! type of differential equation of tJie ntJi order

&amp;lt;V , V f(y i&quot; r&quot; v
(H}

\
invariant under C/ES.V/ -f- r\ - isJ\

~

, ,,
;,&amp;gt;

?&quot;

= o,
c).v

&quot;

By \.v .v .v
r xr

)

which is characterized by being homogeneous in x, y, y ,y&quot;,
- ,y

(

&quot;\

when these elements are given the weights i, r, ri, r2, ,

r n respectively.

As special cases of this group may be mentioned

IV: r=i,

V: r=-i, /(AT, .vV, W, -., .v&quot;*
V&quot;0= o,

III : r=o, /( y, xy\ ^;r&quot;, -, .v&quot;_v

&quot; )

)=o,

III : r=&2. The invariant equation in this case is more readily

recognized by the other characterization given under 111 above.

VII. The general type of differential equation of the ntli order

invariant uihler

or ^,
-

&amp;lt;&quot;;&amp;gt;

=
.v, ^ -

&amp;lt;, ^,r
-

&amp;lt;^&amp;gt;, -,

n ~ - -?.

Note. An interesting equation of this type is the complete linear

equation

(80) y&amp;gt; + I\y
( &quot;

- 1 + 7 8y
- 2

&amp;gt;

-f ... -h /^O &quot; + /^,-ui 4- / .v
- A^.
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If T=
]&amp;lt;o

is a particular solution of the abridged equation obtained

by replacing X by zero, (80) is invariant under Uf=yn =-

The transformation (79) y=y y } y (or y=yH y, resulting from

the introduction of canonical variables) reduces (80) to a linear equa
tion of order // i (fi/. Dif. Eq. 59), but the resemblance of the

resulting equation to the original one is not as striking as in the case

of the linear equation of the second order (VII, Note, 28).

XII. 77ir gene i\iI type of differential equation of the nlJi order

invariant under rf=a^+l& is f(bx - ay, v
, r&quot;, , v

ril)

)=o.
d.\- dy



CHAPTER V

LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF THE
FIRST ORDER

31. Complete System.*

THEOREM I. If &amp;lt;(.v, v, z) is a solution of the two independent f

linear homogeneous equations

=Pi(x, y, z)

B/U*,* z) +&(*,* z) +*,{*&amp;gt;* z} =
,

it is a/so a solution of

4- (A, Q,
-

where (A^A^) is the alternant of the operators A^ and A., ( 14).

For (AiA2
)&amp;lt;f&amp;gt;

= A^A^) A.2 (A l
(f&amp;gt;)

= o, since A^ =o and . / L,&amp;lt;^
= o.

* Only so much of the theory of complete systems and only such methods for their

solution as seem necessary lor our immediate purpose are given here, tor an excel

lent detailed treatment of this subject the student is referred to Goursat-Bourlet, Inte

gration i/t s equations au\ derivees partielles du premier ordre.

t r equations of this type in n variables are said to be independent if it is impossible
to find r functions a\, ff^&amp;gt;, , &amp;lt;r r of the variables such that

In the case of r = 2, this amounts to saving that the equations are independent if

one of them is not a multiple of the other.

104
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If three linear equations in three variables A
}f= o, A.j,f= o,

Af=o have a common solution
&amp;lt;f&amp;gt;(x, y, z] other than a constant,

dd&amp;gt; dd&amp;gt; dd&amp;gt;_r satisfy the three homogeneous linear relations
dx dy dz

Since
&amp;lt;f&amp;gt;(x, y, z) is not a constant, -,

-

,
cannot all be

identically zero. Hence
i a *i

a ^i

It follows that three functions
&amp;lt;ri(x,y, z), &amp;lt;r.2(x, y, z\ (rs(x, y, z) can

be found * such that

(8 1
) o-i^i/4- &amp;lt;r2^2/ -f- vsAJ= o

;

i.e. the three equations are not independent. Hence follows

THEOREM II. If the three equations in three variables A\f= o,

A.&amp;gt;f= o, ^/
;i/= o have a common solution, other tlian a constant,

they are not independent; or stated otherwise, three independent

linear homogeneous partial differential equations in tJiree variables

cannot liave a common solution, other tJian a constant.

From Theorems I and II, it follows at once that if A^f= o and

A.,f= o have a common solution,

(82) (^M,)/EE Pl(x, yt ZJAJ+ p,(.v, r, ,.
/._

/;

* Thus, for example, one may take for
&amp;lt;r\. o-._&amp;gt;, &amp;lt;T; } any tliree functions proportional

to the col.u-tors of the i-oricsMoudini; dements ot any column m A.
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Clebsch gave the name of complete system to a pair of independent

equations A^f o and A.2f= o, which are connected by the rela

tion (82). The last statement may therefore be put into the form

THEOREM III. If A lf=o and A f =. o have a common solution,

theyform a complete system.

Conversely, we shall prove the very important

THEOREM IV. If ^/= o and A.1f= o form a complete system,

they have a common solution.

In order to do this it is necessary to prove two lemmas.

LEMMA I. If A^f o and A.,f = o form a complete system, any

pair of equations formed of independent linear combinations of these,

alsoform a complete system.

The equations

(8 ) =
2 , y, z) + x, y, z).&amp;gt;=

o

are independent if \ 2̂ ^i ^ - Then y^/and A.J can be found

as linear functions of A^f and &amp;gt;l&amp;gt;/from (83).

Since A-^J = o and A&amp;lt;2f o are supposed to form a complete system,

is seen to be a linear function of A^f and A*f, and therefore of

&amp;gt;f,/and A-if, which proves the lemma.

Moreover, any common solution of sl
} f= o and A.tf= o must be

such for
&amp;gt;0j/==o

and yf^/^o, and vice versa. Hence the two systems

are said to be equivalent, or each is said to be equivalent to the other.

A system equivalent to the original system is obtained if the equa

tions of the latter are solved for two of the three partial derivatives

-^-, / , ; This can always be done, since all three of the deter-
-

minants in the matrix
y&amp;gt;

Q,
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do not vanish identically, AJ= o and A.,f= o being independent

equations. If, in particular J\Q, - 1&amp;gt;,Q,
= D =

o, the equations

may be solved for
-j-

and ^ ,
thus giving

where Rl= . *, ==:. Here *,=-,

/xj
= - ^

,
X, = -^

, n=-\ and X^o - X,/^ =
-^

=

o, since all

functions involved are supposed to be generally analytic. Hence

equations (83 )
are independent. This fact is also obvious upon

inspection, since the first equation is free of v~, while the second

/)/

does not contain ~ Moreover
dx

(84) (A^f^o.

For, since AI/= o and
A&amp;gt;if

o form a complete system

(82) . (Aj.yEEp

In the case of equations (83 )

which is free of both /- and - - . Hence pi and p., in (82) must both
dx dy

be zero, and the form (84) follows.

A complete system for which p l
= p2 = o is called a Jacobian* com

plete system. We have thus established

*
Originally this term was applied only to a complete system in the special form

(83 ). Lie and other mathematicians, however, used it, as above, to apply to the more

general class of complete systems; (SIT Lie, DifertntialgUifktaig* t p. 202; Goursat-

BourU-t, /&amp;lt;&amp;gt;6-. cit., p. 347; also Encykkptidie dcr M^t/icinatisi/icn U lssi-HSi/iaftctt, Hanil

HI. P- 315).
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LEMMA II. A Jacobian Complete svstein can always be found

equivalent /&amp;lt;; a gircu complete s\stein.

Remark. It should be noted that this equivalent Jacobian sys

tem is not unique, since starting with such a one, the system obtained

by taking any pair of independent linear combinations of these equa

tions with constant multipliers is another system of the same sort.

It is easy to show that a Jacobian complete system has a solution.

Suppose that A-^f = o and A/= o form such a system. Then

(84) (*A)/= Ai(A./)-A*(Ai/)= o.

If u(x, y, z) and v(x, r, 2) are two independent solutions of one of

the equations, say A lf=o, any function of // and v will equally well

satisfy this equation. \\. remains to find such a function of them,

F(tt, v), that it shall also be a solution of the other equation &amp;gt;f 2/ o
;

that is,

(85) . A*F(u, v)s f A,u + ~A,v = o.
()// VV

Replacing / in (84) by u and v successively,

= o and A^A.v AJiA^= o.

Since A^u = o and A\v = o, it follows that

A l (A.&amp;gt;!t)=o
and Ai(A%v)=Q.

Hence A zu and Av are functions of // and v, say $(//, v) and ^(//, i&amp;gt;)

respectively, and the equation (85) to determine F(u, v) is

(8 5 ) &amp;lt;K&quot;,
7.)^+ t(,V)

d
=0.

The solution of this equation (which is known to exist by the gen

eral existence theorem) is ;i solution of the Jacobian system A
}/=o,

A-J= o, and consequently of the equivalent complete system A t/= o

and A^f= o. Theorem IV is thus proved.
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All that has gone before can be extended at once to homogeneous linear equa

tions in // variables.

Without changing a word in the proof of Theorem I we have: If

(* !&amp;gt; -*&quot;2&amp;gt; *) -is a solution of the two equations

+ / &amp;gt;

(&amp;gt;i, .*&amp;gt;, ,
.vw ) ,

f
- = o,

&amp;lt;/

zY is also a solution of (A\A&amp;gt;&amp;gt;}f
= o.

As before, ?/&quot;
w equations hare a common solution, other than a constant, the

equations cannot t&amp;gt;e independent. For the determinant of the coefficients

must vanish. Hence a relation of the form

0V/ 1/+ r.j//2/+
must exist.

Starting with / independent eqtUttioiU

.-/i/=o, A.2/=o, Arf=o(2&amp;lt;r&amp;lt;n)

with a common solution, all the equations

(/MJ/zrO, (*V= I, 2, 3, ...,r),

will also have this solution. Some or oil of th.-se equations may be independent

of the original equations. Adjoining these to the latter, the proems may In-

repeated as long as independent equation! can be lound. This process must

come to an t nd before the total number of equations reaches //. For it ha-; ju-t

been seen that there cannot be // independent linear equations in ;/ variables
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having a common solution, other than a constant. We have thus obtained a

system of s equations

Aif=o, A-2/=o, --, A.f o (r &amp;lt;
s

&amp;lt; ;/)

such that (A tA lty=piAi/+ p-j.-/,&amp;gt;/+
... + p,A,f,

(/, K=l,2, 3, .-.,.*),

Such a system constitutes a complete system. We have thus shown that if r

equations hare a common solution, everv member of the complete system determined

by them has that solution.

It will be left as an exercise for the student to show that starting with any

complete system an equivalent Jacobian system* can be found. The method is

identical with that given above for three variables.

That a Jacobian complete system (and, therefore, any complete system) of s

equations in ;/ variables has n s independent solutions may be proved in a

manner entirely analogous to that used above for s = 2, n = 3. To illustrate, the

case for s 3, n = 5 will be given without detail :

The equation

has four independent solutions m, #_&amp;gt;, ;, t (F&amp;lt;t- Dif. Rq. 79). The problem
is now to show that some function J \u\, //-j, w ;5 ,

//4 ) of these will satisfy both

Arf o and A%f= o.

Since u t for i I, 2, 3, 4 satisfies A\f o, it follows on replacing / by ;/, in

the identity

that Aiii is also a solution of A\f o. Hence AUi must be some function of

i &quot;2, 3f 4, say 0&amp;lt;(i, //_, //; //.,), for / = i, 2, 3, 4. If /Ms any solution of the

equation involving the four variables MJ, //._., n-\ t u*,

it will be a solution of A\f o and
./_&amp;gt;/=

o.

* A Jacobian complete system of J equations is one for which

(,/,./J/ :0(*,*-I,a,3,...,x).
See prt^vious footnote.
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This equation has three independent solutions v\, v^ v-^. Any funetion of these

will be a solution of A\f o and A*/ o ;
and conversely, every solution com

mon to A\fQ and A-^fQ must be a funetion of 7 j, z*&amp;gt;, v^. It remains to

show that some function, 4&amp;gt;(z&amp;gt;i, z&amp;gt;2, ^3), of them will satisfy A^f o.

As before, it follows on replacing/ by ?
,-
in the identities

that ^
;;^j is a solution of both A\f o and A-if o. Hence ./;{7 t

- must be some

function of z/[, ZA-, ? ,;, say ^,(^1, ?/.-, ?
;;), for * = I, 2, 3. The function 4&amp;gt; may then

be any solution of the equation

This is known to have two independent solutions. Each of these is the-.efore a

solution of the complete system, and there can be no others.

32. Method of Solution of Complete System. To actually find

the solution common to the members of a complete system A^f= o

and ^-2/ ^ ^ not necessary to pass to an equivalent Jacobian

system. If it and v are two independent solutions of one of the

equations, A^f o, it is known that some function F(u, v) is a solu

tion of the other
;

i.e.

dF A/?
(85) A2F(u, v)

=
A.u-g + A&

~ = o.

or

(86) f

Knowing that some form of *F(tt, v) must satisfy this equation,

whence - and - - are also functions of u and v,
^ must be a

OK dv Au
function of // and v.* Hence (86) may be written as an equation in

these two variables only, and the usual method of solution for such

an cc juation may then be followed.

* It should be noted that in this ease, unlike in the case of a Jacobian complete sys

tem, A.M and A.v need not be Junctions ot u and v, although they may be.
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Since (_AiAJ)f=Aif, these form a complete system.

Here //=jr, v = z are solutions of A^f= o. Then At(=v it
t

Av = z = v, and equation (85) may be used to determine F\ thus

rV
,

QF
v-- +v---=o.

O// 027

The general solution of this is any function of - . Hence the com-
u

mon solution of the complete system is any function of -.

x v
y

Or starting with u = -, v = &quot;

,
the solutions of^.,/=o,and noting

y z

that A& = -
, Af) = -

,
whence -^ =-^ = -, equation (86) is

&amp;gt;

2 A& z u

dF
,

7- 5^--
1

--- = o.
au 11 dv

Its solution is -=-v
, giving the common solution of the system 01

equations.

Ex.2.

,~(x- + r +.v- + + r- f-hjw -= o.

These form a complete system, since (A lA.?)/= A^f.

}
. 2u = ^- Z-

* 2

- xz - x

= -,#s- are solutions of A
}/=o.

*

= -- = _ and equation (86) is

r 7^

Its solution is //- -4- ir. Hence the common solution of the com

plete system is any function of - ~*-
.
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Ex. 3. AJ-r -*= o, A,f= = o.

Ex.4. JJ-x + z

Ex.5. W*V + t + tf-i A^ X
!i

{ +,f+ sf=o.ojc a dz ox d dz

Ex. 6. AJ= (A- -.v + 8)
-

2j -f- (,v
- y +f)= o,.

Ex. 7. ^/^ (
-
j) 4- (yz

- A-)+ (i
- ^)= o,

- o.

33: Second Method of Solution. If
4&amp;gt;(jc, _y, 2) is a solution of the

complete system A vf= o and ^./ o, the equations

give : : =

Since the total differential equation which has
c/&amp;gt;(.\,

r

for solution is .
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or differs from it by a factor involving ,r, y, z only, this equation

may take the form

(87) ?A- Q^dx+(R&-Rfddy+(P^-PiQdti=**
The problem of solving a complete system is thus reduced to that

of solving a total differential equation (87). At times the actual

work involved in solving (87) turns out to be simpler than that re

quired by the method of the previous section.

Besides the usual methods for integrating total differential equations (see

F.L Dif. Eq. Chapter VI) the following method due to Dubois-Reymond may be

mentioned.

Instead of letting one of the variables, say c, be a constant temporarily, as is

usually done, let it be a linear function of the other two, thus

z x-^ay

where a is an arbitrary constant. This relation carries with it

dz dx -\- ady.

Eliminating z and dz from these two and the total differential equation, there re

sults an ordinary differential equation

Jlf(x t &amp;gt;
, a)itx + A\x, y, a}dy = o f

whose solution
\}/(x, y, a} = const.

*
Equation (87) may be put in the convenient determinant form

dx dy dz

(?i A
j

Q-i RI

which expresses the condition that the above three homogeneous linear equations in

^, 2*. ^ are consistent.

dx dy dz

t If it happens th.it this differential equation does not contain a, some other linear

relation among the three variables containing an arbitrary constant should be tried

leading to a differential equation in two of the variables only and containing the arbi

trary constant.
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gives, on replacing a by its value in terms of x, y, z,

= const.,

which is the solution of the total differential equation.

This method requires the solution of only one ordinary differential equation

instead of two, as in the usual method, when an integrating factor is not known.

But in actual practice, this theoretically simpler method may not prove as de

sirable as the other.

Ex. The examples of 32 should be solved by the methods of

this section.

Thus for Kx. I the total differential equation to be solved is

dx d dz

o o

x y
Its solution is -^ = const.

= z dy - ydz = o.

For Ex. 2 dx dy dz

x y z

x- + y 1 + yz x 2
-f y2 xz z(.r + y

=

becomes, on multiplying the second row by x + y and subtracting from the third

row,
dx dy dz

x y c =0
. y x o

xz dx + yz dy (x~ -fy2
)dz = O.

An obvious integrating factor is

*(**
, and the solution is -- ^ = const.

34. Linear Partial Differential Equation Invariant under a Group.

The homogeneous linear partial differential equation of the first order,

(88)
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has two independent solutions
&amp;lt;l&amp;gt;i(x, y, z) and

&amp;lt;f&amp;gt;o(x, y, z). Every

other solution is some function of these.

The result of transforming (88) by the transformation

( 89) xj_ &amp;lt;f&amp;gt; (x, y, z), }\ = \j/(x, y, z),
z

v
= ^(x, y, z)

is ([15], n) the new equation

(90) ^+^+^1=0;
wliere

A&amp;lt;j&amp;gt;, A\l/, A% are to be expressed in terms of xlt y lf %. If (90)

is the same equation in the new variables as (88) is in the old ones,

or differs from it by a factor, the transformation (89) is said to leave

the differential equation (88) unaltered. In this case it must trans

form both
&amp;lt;#&amp;gt;!

and &amp;lt; 2 into solutions again ;
that is, they are either left

unaltered by (89) or they are transformed into some functions of

themselves by it.

Let us find under what condition (88) is left unaltered by every

transformation of the group

We have seen ([7], n),

kC*i, v,, *,)
=

*,.(.v, y, z)+ U^ - + LT^ -f .-

In order that this be a function of ^Lv, v. : ) and
&amp;lt;^ L,( .v, r, z) for all

transformations of the group, i.e. for all values of /, it is necessary that

tf&amp;lt;fc=/X&amp;lt;h, fe) f (1=1, 2).

It is readil seen that this is also a sufficient condition. For

67W,, ^ = Ufr -h u^ =W F} +
. p^
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which is again a function of fa and fa. In the same way it can be

shown that if (Jk
cf&amp;gt; i

is a function of fa and fa, (7k+l
&amp;lt;f&amp;gt; i

is. Hence,

(91) is the necessary and sufficient condition that the equation*

whose solutions are fa and fa shall be invariant under the group.

It is desirable to have a condition expressed in terms of the differ

ential equation itself. The linear equation

(92)

has fa and fa for solutions when A/= o is invariant under Uf. For

(UA)fa
=

L/Afa
-

AC/fa = U(o)
- AF^fa, fa)

= o

(1=1,2).

Since (88) and (92) have the same solutions, they must be the

same equation, to within a possible factor, by the previous footnote.

* A unique linear differential equation of the form (88) (to within a possible factor

involving the variables only) is determined by two independent solutions. For if

0! and
&amp;lt;J&amp;gt;.
2 are the solutions of

4fte/+.0if+*-*
dx dy -dz

then

whence

. p _
d.y

So that the differential equation having
convenient form

= -=--r .--= =
,

dx By 62

- 0^0-2 i ^ ^0-2
i

r&amp;gt;

dfa=P-= H Q -^
- + R -7;

= o,
dx dy dz

f̂ 2 ^1 dfa __ 501 d&amp;lt;t&amp;gt;-i
.
50i 50-_&amp;gt; _ (901 502

s dy d* dx dx dz 3--
(&amp;gt; 3r ^-^

and
&amp;lt;.&amp;gt;

for solutions ma be written in the

dx dy d*

50i 301 a^
3^ 3;-

502 50-2 30-

dx
t dy d=
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Hence when Af o is invariant under Uf

[31] (UA)f=\(X,y,z)Af.

Conversely, when [31] holds, (88) and (92)* have the same solu-

tions; then = -o, (1
=

1, 2).

Since
A&amp;lt;^ i

= o
)
it follows that A(Ufa) o

; hence C/fa is a solution of

(88), and must be a function of fa and fa.

Therefore [31] is both the necessary and sufficient condition that

Uf leave Af= o unaltered.^

Thus, the group Uf=x& +y |f
+ z& leaves J/&&+&+ |/=

o unal

tered, since (U^)f~- (1 + |/+ |A = _^Vd*
6&amp;gt;&amp;gt; 6s /

Similarly the same group leaves Af=y J- x~ + z^=o unaltered, since

It also follows from this that the group Uf=y |C - * ?/ + 2 Cleaves the

5/&quot; 5/ 3/ ^ ^^

equation ^4/= x
-^- + y~ -\-

zjt
= o unaltered.

Remark. From the form of the condition [31] it is obvious that

if an equation Af= o is invariant under each of a number of groups

/,/, /&amp;gt;/, ,
U

rft
it is invariant under Uf=a l

U
lf+a,U,f+

-f a
rUrf, where alt a.,, ,

a r are any constants.

* If \(x, y, z) is identically zero, in other words if (L?A)/=o for all functions f,

[31] is still a sufficient condition that Uf leave Afo unaltered. In this case one

cannot speak of the equation (92); but writing the identity ((J.-f)/~~o in the form

UAf^AUf, it follows that AU^ = Q since UAQi:

= U(o) = o. Hence U^ is a

function 0i and
&amp;lt;t&amp;gt;-&amp;gt;

as above.

t Using the method of the previous footnote, it can be shown that a homogeneous
limMr equation in n variables is determined, to within a factor by its n i independent

solutions. The argument of this section therefore applies without change to such an

equation. Hence [31] is the condition that Af o, involving n i\viat&amp;lt;les, shall be

invariant under the group Uf i / I & + &quot;

^. ^ In ? X5 essentially the

Qx\ (j/.vo ( !,,

same method for the case of two variables was carried out.
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Ex. Determine which of the equations below are left unaltered

by each of the following groups :

dx

2 . iy=-*
ox dy

3. V/=*
dx

4.

&amp;lt;1f
., df . dfd. Af=vfx-rfy +(*+flj=&amp;lt;&amp;gt;.

35. Method of Solution of Linear Partial Differential Equation In

variant under a Group. If the equation Af= o is invariant under

Vf
[31] (UA\f=\Af,

i. (\ IJ o and Af=o form a complete system. Hence the methods

of 32 and 33 are available for finding one of the solutions of Af o.

* While l r/=P(* t y, c). //&quot;leaves ///&quot; o unaltered for all forms of p(r,y, c), such

a group is said to lie ///:/,// because it is t no service in solving Af o. We shall

presuppose that tin- group //under consideration here is not trivial.
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Having thus found $(x, y, z),
a common solution of 6^=0 and

Af=o, a second solution of A/=o may be found in the following way :

Since
&amp;lt;(&amp;gt;(x, y, z) is not a constant, it must involve at least one of

the variables, say z. Replacing z by the new variable

z=&amp;lt;l&amp;gt;(x,} , z),

the equation and the group take the forms ([15], n),

Af= P(x } y, z}^ + Q(x, y, *)|^= o,
ox dy

Uf= |(&amp;gt;, yt z)

since A$ = o and U$ = o.

Here P, Q, |, T\
are what P, Q, , -q respectively become when in

them z is replaced by its value in terms of x, y, z obtained from

z =
&amp;lt;j&amp;gt;(x,y, z).

Here z plays the role of a constant since the coeffi

cients of in A /and Uf are both zero. To solve Af=o we pro-
dz

ceed to the corresponding ordinary differential equation

Qdx Pdy = o.

This is invariant under Uf. Hence the methods of 12 and 20

may be employed.

Remark. When the usual Lagrange method (see RL Dif. Eq.

79) is practicable, it will, as a rule, prove simpler than the method

of this section. As an exercise it may be desirable to solve the

examples below by both methods. But the Lie method is of inter

est theoretically and may prove valuable when the other method can

not be carried out.

Ex. 1. Af~ 2 xv- - 2 *y+(/- x*)z= o.

dx (&amp;gt;v dz

The coefficients are homogeneous and of the same degree. Hence

this equation is left unaltered by the group Uf = x -;
- -f v -- + *-

,

i).\-

~

dy dz
as a matter of fact, (L7A)f= 2 Af.
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xv
By the method of 32 or that of 33, -^ is readily found to be

z~

the common solution of Af= o and Uf= o.

The transformation z = -+- reduces A/=o and Uf to

Af= 2 xy-
-J- 2 x2

y ^~ = o and Uf= x-^-+y-^-
dx dy dx dy

respectively. The corresponding ordinary differential equation is

2 x2
y dx H- 2 xy

z

dy = o.

Lie s integrating factor -?-
(or the obvious integrating

2xy(x*+y*) \

factor --
]
leads at once to the solution x2

-f-j^
= const. Hence two

independent solutions of Af= o are 5| and
z~

dx /

dy dz

Ex.3. ^=^ + v

oy

Invariant under Uf= (x +} )-- +(^ + v) -f 2 z^-, as well as

dy dz

*y\

Ex.4. Af = (xz-ti& .

dy

[Invariant

under Uf=x+- + v
dx

dy_\

36. Jacobi s Identity. For further development of the theory it

will be necessary to have available a certain identity first noted by

Jacobi and known by his name :

If Aif, A^fj A^f arc three homogeneous linear partial differential

expressions in any number oj

(93)
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This may be verified directly in the case of three special forms,

and also in the general case for two variables. This is suggested as

an exercise to the student.

Probably the simplest way to prove the theorem is the following,

due to Engel :

Since (A^A^f == A^f- A,AJ,

((A,A,)A,}f~ A,A 2A,f- A.A.A.f- A.A^f+ A^A.f,

A.A.A,/,

The sum of these is obviously identically zero. Hence the identity

(93) is established.

37. Linear Partial Differential Equation Invariant under Two

Groups. If the equation Af= o is invariant under two distinct*

groups UYf and

[31 ]

Jacobi s identity (93) for UJ, U^f, A/ is

Using [31 ]
and obvious properties of alternants ( 14), this

bec mes

where /x
= U

v\^ U&amp;lt;X\.
Hence the

THEOREM. If Af= o is invariant under U\f and /,/, // is also

invariant under (/, 6o)/.f

* Two groups /!/ and U^f are said to be distinct with respect to the equation

/(/ o, provided no relation of the form

(94)

exists, where a
l
and a.2 an- constants and p is any function of the variables. For it is

obvious that if ( \ f leaves . // o unaltered, U.,fi-icU\f-\- pAf will also do so for all

choices of the constant c and of the function p(x,y, z).

f This theorem holds, and is proved in exactly the same way, for n variables.
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If (/;/,)/ is not of the form

(95) *iUJ + aMf + P (x, y, z)Af,

where a and a2 are any constants and p is any function of the vari

ables, it is said to be distinct from U\f and U^f with respect to the

equation Af = o. In this case the theorem gives a new group under

which the equation is invariant. The theorem may then be applied

to this new group and one of the original ones. And so on.

Remark. - It is important to note that there always exists a linear

relation between four homogeneous linear partial differential expres

sions of the first order in three variables.* For eliminating -. *-

dx dy
-- from the four identities

*= ft
-7-
ox

- -
: ,

dy dz

dz

the linear relation

U,f ^ r,,

ft 17,

is obtained. In general the coefficients are functions of the variables.

*
Similarly, there is always ;i linear n^laticn between n -\- 1 sueli expressions in n

variables.
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As a consequence we always have

If it turns out that
j
and 2 are constants, this is of the form (95), in

which case (/i&Q/is not distinct from ^/and

Thus the equation Af&& +& + &= o is left unaltered by
d* dy dz

dy dx dy

since (/i/l)/=o, (U*A}f=- 2 x Af.

Moreover (U^U^f=-(x - y~] ^ 2(y
- z)(x -

dy z

also leaves Af= o unaltered, since ((U\U*)A)f=o. It is readily seen that

Again

4- 2(7 -)(*- 2

xy \x-y

also leaves Af o unaltered, as is readily verified. And so on.

38. Methods of Solution of Linear Partial Differential Equation

Invariant under Two Distinct Groups. Two important cases are to

be distinguished :

A*. If a relation of the form

(9 7) UJ= u(x, y, z) UJ-+ p(x, y, z)Af
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exists,* where a is not a constant, 6^/is still considered distinct from

Uif. In this case a(x, y, z) is a solution of Af= o. For, since

Af= o is invariant under U^f, (72^)/ must be a multiple of Af. But

- AP Af

= (a\l -AP)A/-Aa UJ.

Since U\f is supposed to be not trivial, i.e. not a multiple of Af
( 35 )&amp;gt;

the onty waY in wn icri (4&amp;lt;4)./can
be a multiple of Af is by

having Aa = o. Hence is one of the two independent solutions

of Af= o to be found, f

To find a second solution of Af= o, several possibilities may arise

which will be mentioned in the order of desirability :

i Since A/=o is invariant under U^f, 67

i is also a solution of

Af=o [(91), 34]. If
U\&amp;lt;t

turns out to be distinct from a, it may
be taken as the second solution necessary to give the general solu

tion of Af o.

2 If U\u,\ is a function of a or a constant other than zero, two

methods are possible :

* A linear relation between Af, Uf, C/2/will show itself by the vanishing of the

determinant of their coefficients, thus

A =
P Q R

~io.

?2

Here

t Conversely, if a is a solution of A/=o and f/i/is a group that leaves the equation

unaltered,

[35] U

will also leave it unaltered no matter what be the form of p(x, y, z). For

( U2A)/= (a f/i + pA, A)/= (a\i
-

Ap)Af.

since Aa=o. [Compare (35) 17.]

I Since (S.2 a= aU a -f- pAa. = a U\. a, it is sufficient to consider U
{a only.
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(a) The solution common to^//=:o and /i/~=o (or 72./= o)

may be found by either the method of 32 or that of 33. Since

/, ^= o, this common solution will be independent of a.

(fr)
Since a must contain at least one of the variables, say z, the

introduction of the new variable z = a (x, y, z) in place of z reduces

A/= o to one in two variables,

z appearing as a constant since the coefficient of -*- is zero. (Com-
dz

pare 35.) But since L\u=f= o, the above equation must be inte

grated, without any further assistance from the groups U\f and U.2f.

3. If /i
= o, the method of 35 is available

;
thus the intro

duction of the new variable z gives the same differential equation as

above, but now the transformed group

under which it is invariant also leaves z unaltered. Hence the

methods of 12 and 20 are available for solving the corresponding

ordinary differential equation

B. If no relation of the type (97) exists between Aft Uft U&amp;gt;&amp;gt;f,

the relation

(96) (UiU*)f= a,(x,y, z)l\f+ ,(*,;, *) *V+ P (*,;, z}Af,

which always exists (Remark 37), will prove of service if
t
and a.2

are not both constants
;

for a^ and a., are solutions of Af o, as may
be seen from the following consideration :

*

* By exactly the same kind of reasoning as that employed here, the following gen
eral theorem can be established. (It is suggested that the student carry out the proof.)

Jfthe equation in n -variables
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By the Theorem of 37, ( /i /,)/ leaves Af= o unaltered. Hence

But

a,(U,A)f-

u,\., Ap)A/ Au
v L\f

Since no linear relation is supposed to exist between Af, U\f, U&amp;gt;&amp;gt;f,

the only way in which ((C/tCfyA)/ can be a multiple of Af is by

having Aa^ = o and Aa.2 o. Hence rq and a.2 are solutions of

Af= o.*

i If
,
and a., are two independent functions of the variables, the

general solution of A/=o is known witliout any further work.

2 If one of them, say a
,

is a function of the variables, while the

other, a.,, is either a function of a
v
or a constant, use may be made of

the fact that /ii and 6j are also solutions of A/=o [(91), 34].

If either of these turns out to be a function distinct from alt
it iay

be used as the second solution.

/j invariant under r -f- I distinct groups U^f, U.f, ,
Ur+\f, and if no linear relation

exists between .Ifand r of the l r/ s
t
but

Ur+l/=

then MI, Ct-i, , ctr are solutions ofAf= o.

* The student should have no difficulty in showing that, conversely, if
,
and o

are solutions of Af= o, and 6^/&quot;and /&amp;gt;/&quot;are two groups that leave the equation unal

tered, the group

[35 ]

will also leave it unaltered no matter what be the form of p(v,y, z). (Compare [35]

above.)
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3 If both /!! and
/&amp;gt;i*

are either functions of n
v or con

stants, either of the methods (a) and
(If)

of A, 2 may be employed.

Or,

(a) if one of U&\ and 72 i is zero, the method of A, 3 is

available,

(b) if neither is zero, the group Vf= U^U^f U^U^f leaves

Af= o unaltered, and Va.^ = o
;
hence case (a) exists.

4 If both t
and 2 are constants, say a^ and a2,

the solution com

mon to Af= o and U\f=- o, and that common to Af o and

[/2f=o may be found by either of the methods of 32 and 33.

Moreover, these solutions will be independent since there is no

linear relation connecting Af, L/\ft /&amp;gt;/. (Theorem II, 31.) We
shall show, by a method due to Lie, that an integrating factor for at

least one, and sometimes for tfoth, of the total differential equations

arising in the method of 33 can be found in this case. (But it is

possible, at times, to find by inspection, an integrating factor that is

simpler than the one given by the following method) :

In ( Ui U.2)/=&i U\f+a2Uzf+ pA/ either a
l and a2 are both zero

or they are not.

(a) If *! = a, = o, ( U,Uz}f= PAf.

Since Af= o is invariant under [/.2f,

If
&amp;lt;(je, j, z) is the common solution of Af= o and 6r

1/= o,

=
o, since ( U\ (72

)&amp;lt;f&amp;gt;

= U\ U&amp;lt;& U^U^ = pA&amp;lt;}&amp;gt;

= o
;

=
o, since ( UA)$ = UA&amp;lt;$&amp;gt;

A
U&amp;lt;&

= \2 A&amp;lt;f&amp;gt;

= o.

These identities can hold only provided /
2 &amp;lt; is a solution of both

Q and Af=o; i.e. U.& must be a function of
&amp;lt;f&amp;gt;, say

* In this case ( U^U^d.^ will also be a function of U^ or a constant, including zero,

because of (96).
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Moreover
jF(&amp;lt;) ^ o, for, as noted above, Af= o, Uvf= o, Uf=- o

cannot have a common solution, since they are independent. As

was done in an analogous case in 12, &amp;lt;/&amp;gt;,

the common solution of

Af~ o and L\/= o, may be chosen in such a form that /&amp;gt;&amp;lt;
= i . It

must then satisfy the three equations

dx dy

dy

a-r r)2-
dx dy

-*

dz

These equations determine -S -, -
}
whence

&amp;lt;^&amp;gt;

is obtained from
dx dy dz

&amp;lt;l&amp;lt;l&amp;gt;=*d
X + *+&amp;lt;ly+

d-+
t

dx dy dz

by the quadrature
\dx dy dz

P Q R
6 171 Ci

,
where A =

&amp;gt;

!/&amp;gt; 2

In exactly the same way, ^, that form of the common solution of

Af o and L7.if=o for which C^ = i, may be obtained by the

quadrature

The determinant A is thus seen to be an integrating factor for each

of the total differential equations arising in the method of 33 for

finding the two independent solutions of Af= o.
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(&amp;lt;)

If only one of a^ and a., is zero, let a2
= o. Then

In precisely the same way as before, tt is seen that, if &amp;lt; is the

common solution of Af= o and U-^f= o, U&amp;lt;$&amp;gt;

= -/yX0) ^ - Hence

that form of &amp;lt; for which U$ ~ i is given by the (quadrature

dx dy dz

r Q R
& rj } &

To find a second solution of A/ = o, independent of
&amp;lt;j&amp;gt;,

either the

method of A, 3 may be employed, or the common solution of

Af = o and /2/= o may be found by one of the methods of 32

and 33.

(f) If both (7i and a2 are different from zero, consider the two

groups

These are obviously distinct and leave Af = o unaltered. More-

We are thus under case (/;) and the method for that case may be

employed.

Note. For practical purposes it may be worth noting, that the

choice of the groups U^f and Vf = a^ U^f + ti.2 U^f also leads to

case (f).

Remark i. A hasty survey of the processes involved in the

methods to be employed in the various cases considered in this sec

tion, brings out the fact that when two distinct groups are known

under which the equation Af = o is invariant, the solution of the

latter can be obtained by means of quadratures only, except in the case

of A, 2, where one ordinary differential equation of the first order
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must be solved. In certain cases, such as A, i and B, i and 2, no

integration whatever is required. In the above scheme, certain alter

native methods involving the solution of differential equations have

also been suggested, for in certain cases these processes may prove

simpler of execution than those involved in carrying out quadratures.

Remark 2. It is easy to prove the existence of a pair of groups

U^f and U^f under which A/=o is invariant, and for which no

linear relation of the form (97) holds. For Af = o has two indepen

dent solutions
(j) l

and &amp;lt; 2 . These are independent with respect to

at least two of the variables, say x and y. Introducing the new

variables . /x = $!(#, yy ), y = (, j, 2),
z = z,

Af= o takes the form

= 0.
dz

By inspection C/i/= -*- and U.,f
=

-^- are seen to leave the differ
ed dy

ential equation unaltered. Moreover there is obviously no linear

relation between -J-, SL, Passing back to the original varia-
dx dy dz

bles, Af=o will be invariant under the groups (/if and Uf into which

U
}/ and Z7,/ are transformed, and no linear relation can exist now.

Ex. 1. ^/ = (.v +v., v&quot;-.r 2S /=

This equation is invariant under

U,f= ,(.v + ,,f +,(* + j0
2 + [(.vv + 2 ^)(.v + v) + 4 .vvs]

as may be verified easily.
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Here A = o, and U*f= (yz + zx + xy)UJ- xyAf, (A).

.\yz-\- zx -f xy is a solution of Af= o.

Moreover U^yz + zx + xy)
=

$(yz + zx + xy) + (x y)
2

is also a

solution (A, i).

Taking account of the first solution, the second one may be

replaced by x y. Hence the general solution of Af= o is

&amp;lt;&(yz + zx -h xy t
x y) = o.

Ex. 2. Af^xz-y^ +^z-x^ +^-z^-^v.ox oy oz

This equation is invariant under

9f df
=x--+yJ- and

dx dy

A = o, and
/&amp;gt;/
=

(,

.*. ^ -f-yz is a solution of Af= o.

Moreover ^(jc +yz) x +yz ^ o (A, 2).

To find the solution common to Af=o and [\/=o the method

of 33 requires the solution of the total differential equation

y(i z~)dx x(i v)dy +(y
i

x*)dz = o.

An obvious integrating factor is---
, leading to the

(f
*

solution

-

\x-yi ~z

x -\-yz- (y-\-xz)

The left-hand member of this is, therefore, a second solution
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Taking account of the first solution, the second one may be

replaced by y + zx. Hence the general solution of Af=o is

$&amp;gt;(x +yz, y + zx) = o.

Ex 3. A=x
ox oy

OZ

Ex. 4. A=

dx dy dz

E, 5 . Af=f +
!f
+ = .

ox o oz

EX. 6. Af= (xz
-

y) + (yz
-

X) + ( I - Z*)
= O.

dx dy dz



CHAPTER VI

ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER

39. Differential Equation of the Second Order Invariant under a

Group. The differential equation of the second order

(98) &amp;gt; &quot;=f(x,y,y )

is equivalent to the system of equations of the first order *

(99 )

*k = &amp;lt;/v = __*__
i / S(*,y,y )

If the solutions of the latter are

( i o) // (.v, r, r )
=

, ?&amp;gt;O, j-, ] )
=

/*,

the solution of (98) may be obtained by eliminating y from the two

equations (loo).f

Instead of solving (99), one may find // and v as two independent

solutions of the corresponding linear partial differential equation J

The problem of solving (98) is thus reduced to that of finding two

independent solutions of (101).

If (98) is invariant under a group Uf, the equivalent system (99),

involving the three variables x,yt )\ is invariant under the extended

* El.
/)&amp;gt;/, /-.-/. $ 68.

f Tin- c(iuations (too) ;in: two independent first integrals of (98). (Sec f 52,

Theorem IV.) t M- !&amp;gt;/ l- l- k 79-

134



39 ORDINARY, OK THE SECOND ORDER 135

group Uf. The effect of Uf on ?/ and r is, therefore, to trans

form them into some functions of themselves
;

i.e. / //
&amp;lt;(//, v\

f/ v = {f/(u, v). Hence the linear partial differential equation (101)

having u and v for solutions is also invariant under Uf( 34).

Consequently the method of 35 may be employed to find u and v.

Remark. Since the invariance of (98) under Uf implies the

invariance of (101) under the extended group, and conversely, it

follows from the remark of 34 that if (98) is invariant under each

of a number of groups U^f, U&amp;lt;&amp;gt;f, ,
Urft

it is invariant, under the

group Uf= a lUlf+ a.1 U~.1f+ -\- arUrf, where ,, a.,, ,
a

r are

any constants.

This remark applies without modification to a differential equation

of any order, because the form of the condition [31], 34 is inde

pendent of the number of variables appearing in the linear partial

differential equation Af= o.

EX. i. x

This equation is invariant under Uf= x -J- + ny
-*- for any value

dx dy

of// (VI, 28). In particular it is left unaltered by Uf^x^-^y^-.
d.v dy

Here Af^% +y&amp;gt;gf+^- V) If= .

dx dy xy dy

dx *
dy

For the method of 32* use may be made of the fact that

u = ^, v = v are solutions of Uf= o.
.v

* The method of $ 33 requires the solution of

i/r &amp;lt;/Y rtV

X r

o, or (_y .n )(

l 4* r

+&amp;lt;/v j
= o.

^ .v y I

y o

The evirlent integrating factor leads to the solution -
vv

avfj/.

/(&amp;gt;&quot;*/) x
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Au xy y .^..-/P */) . Av _ XV
9

V
All ---

,
AV . . .

-- - = ---
x- xy An y u

Equation (86), 32 is ^_^^ =0&amp;gt; ... p= uv = JZ .

du u dv x

Introducing the new variable
4

j/ = ]

-, whence y = ^,
x y

x^y- or xyy y
2

is readily found to be the solution.

rv
f

Eliminating y from ^&amp;lt;- = a and xyy y- = b gives
i^

^jr2

}r = ^

as the solution of the original equation.

Compare this method with that of 27 or of 28, I
,
Remark.

Ex. 2.
n&amp;lt;&quot;+/

2 =i.

Since x is absent, this equation is invariant under Uf=
(I , 28). Here

By either of the methods of 32 and 33, the solution common to

Af o and (//= o is easily found to be/Vi }

Introducing the new variable

y*, whence y =
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The corresponding ordinary differential equation

has for solution x Vy2
y

12 = const. Passing back to the originnl

variables this becomes x yy = const. Eliminating y from

y
2 = a and x yy = l&amp;gt;,

gives as the solution of the original equation

Ex. 3.
y&quot; =/2 + i. Ex. 4.

x?yy&quot; + (xy
1 - yf = o.

Solve examples of 28 by the method of this section.

40. Differential Equation of the Second Order Invariant under

Two Groups. Since, if the two groups 6^/and U&amp;lt;J
leave

(98) / = ^(*,J,/)

unaltered,* the corresponding partial differential equation

is invariant under the extended groups 67

iyand &&amp;gt;/,
the methods of

38 may be employed to solve (98).

Ex. 1.
xyy&quot; + xy

*
-yy = o (Ex. i, 39).

This equation is invariant under U^f= x~ +7^ an&amp;lt;^ ^/= y
-]

&quot;

,.

*Then (98) is also invariant under Uf^a l
U

lf-{-a.1 l
r
.

1 f (Remark, 39). It is

possible that Uf may assume simpler forms than U^f or /2/ for certain choices of

the constants a and a.j.
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A =

i y
x y
o y

xy
o = 2 /-

Hence the method of B, 4, (a), 38 applies. The solution com-

mon to Af o and U-^f o is

I

dx dy dy^

1 y

x y o
= r_+*+*_ ,00*1J ^

+
V
^

V
~ 8 ^y y

1 A

The solution common to Af= o and 72/= o is

fo ^ dy

v , tfj-qh

J

= log

y (y
- x/ y (y

- *

The general solution of the original differential equation of the

yy
second order is found by eliminating y from = a and

- = b to be ax* y
2 = c t where c = ab.

V

* The method of $ 32 is also available for finding these common solutions.
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Ex. 2. / = F(x)y + Q(x)y + X(x).

If y=\\ and_y=_) a are particular solutions of the abridged linear

equation / = iy + Qyt
the general linear equation is invariant

under VJmy and VJ^y-d 28, VII, Note). Here
oy oy

4+
4+

ay

ay
where yj and j2 stand for -2-1 and -^2 respectively.

A =} i} 2 y&amp;lt;&amp;gt;y\ 3=- o, since the two particular solutions are sup

posed to be independent.

( C/i (/.&amp;gt; )/ = o. Hence method of B, 4, (a), 38 applies.

Since y = y\ and y =y2 are solutions of the abridged linear equa-

^ n
&amp;gt;

,&quot;_/5, _|_/9; A ,H_p,l ft

whence P

Introducing these values in the expression for the solution com
mon to Af= o and Ul /= o,

dx dy

i y jy-
o v,

we have

*
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Noting that -j ij 2&amp;gt;i&quot; -JiW) = -} i&quot;}
&

+Ji&amp;gt;A ,
the first quad

rature is readily effected, thus giving

^ = ^y-j i&amp;gt; _ c _M___
,/JC

y*y*-y*yi J y\y*-y*yi

Similarly, the solution common to Af= o and Uf= o is

^ = ^y-^v .. c v* _^- J -

The general solution of the original equation is found by eliminat

ing y from
&amp;lt;/&amp;gt;

=
&amp;lt;r2 and \l/

=
c\ to be

j = ij* +^ 2 -^i P r^ ,

^ +J2 f- -r^-7^^ jU s
-

} 2} i J )\yj -} ,} ,

Note. It is an interesting fact that this form of the solution is

exactly that obtained by the method of variation of parameters

(El. Dif. Eq. 49) from the complementary functionjy= c
lyl + c2y2,

as may be easily verified.

Ex. 3. y=7y +
&amp;lt;2;&amp;lt;

This equation being homogeneous in y, y , y&quot;,
it is invariant under

6i/&quot;=7~-(IIIj 28). Moreover, ify=yl(x) is a particular solution,

df
the equation is also invariant under (72f=yl

^~
( 28, VIII, Note).

By

He,&amp;lt; ^.+

f/_ ., , .,
&amp;gt;

=y\ ,~ -\-y\ -r-,-
d\- dy

A =}} , -y)\ & o, ( 6V &amp;lt;72 )/

Hence the method of B, 4, (), 38 applies.
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The solution common to Af=o and Uf=o is given by that

method in the form

AvV - PyJ - Q wWx-y, &amp;lt;ty +yjy
J ** -&amp;gt;&

Replacing ^ Vj by its value y^ P\y\, this quadrature is readily

effected, giving

A more convenient form for the solution is

To find a second solution of Af = o, introduce the new variable

r , i \I dJC

j = *-*&quot;&quot;(}&amp;gt;%-M ), whence/=^ +y6
-,

and / = o takes the form

dx y\ dy

The corresponding ordinary differential equation

(iy _ yj_ _ jfr^
dx r,

&quot;

y\

is linear with the obvious integrating factor Its solution is

y\

v , c^
1 1 &quot;

*
y \ - ax = const.

} i
J y\

* Here y appears as a constant, ($ 35).
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The general solution of the original differential equation is found

by eliminatingy from

v Cf
&amp;lt;I&amp;gt;
= a and *-

&amp;lt;$ I &amp;lt;L\
= b

Cf
&amp;lt;$ I &amp;lt;L\

=
J

to be y = ayi I dx -+-
=

&quot;. .

/%&amp;lt;*

?. This is the same form of the solution as is given by the

usual method (EL Dif. Eg. 53, i).

Ex. 4 y+y 2 =i (Ex. 2, 39).

This equation is also invariant under Uf = x ~ 4- y ;

o.v o_y

Ex.5. y=y2 +i.

Since jc and _y are both absent, two available groups are

Ex. 6.
x?yy&quot; (xy* y)~ = o (Invariant under VI for all values

of ni hence under III, III
, IV, etc.).

EX. 7. (**+/)y + 2O -*) )(! +y2

) =0 (EX. 2, 28).

Ex. 8. :rv&quot; -f A:
2

j
/2

2 xy + 2 = o.

This equation is invariant under I and III .

41. Other Methods of Solution. By making use of the properties

of what Lie calls r-parameter groups of infinitesimal transformations

( 43) the method of solving a differential equation of the second

order invariant under two groups can be modified so as to be con

siderably simpler both as to the number of cases to be distinguished

and as to the actual processes involved in obtaining the solution.

A brief study of these groups will be made in this chapter, leading

to the methods of solution in 46 and 47.
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42. Number of Linearly Independent Infinitesimal Transforma

tions, that Leave a Differential Equation of the Second Order Unaltered,

Limited. Since a differential equation of the first order always has

an integrating factor, in general, (El. Dif. Eq. 5) it is left unaltered

by an indefinite number of infinitesimal transformations, the general

expression for whose symbols involves two arbitrary functions ( 15).

On the other hand, a differential equation of the second (or higher)

order is, in general, not left unaltered by any infinitesimal transforma

tion (see Note IV of the Appendix), although some of them are.

We shall prove the

THEOREM. A differential equation of the second order cannot be

left unaltered
/&amp;gt;y

more than eight linearly independent* infinitesimal

transformations*

Suppose that the equation

(98) ? = F(x,y,f)

is invariant under the nine linearly independent infinitesimal trans

formations {/if, U,f, , Uf, it is also invariant under

(102) Uf=

for all possible choices of the constants a
if a2, ,

ay (Remark, 39).

It is a well-known theorem in the Theory of Functions that, in

general, a unique integral curve of a differential equation of the sec

ond order and first degree (98) passes through two points, lying

within a definite region determined by (98). Suppose that /*,, /?_,,

/?!, /4 in Fig. 5 are four points such that each of the six pairs that

can be formed of them determines a distinct integral curve of (98).

The nine constants ah a*, ,
a9 can be so chosen that (102) leaves

* A set of infinitesimal transformations f/j f, l r%f, , Urfis said to be linearly in

dependent if there is no linear relation, with constant coefficients, connecting their

symbols; i.e. if it is impossible to find a set of constants
&amp;lt;,. &amp;lt;._,,

, cr such that
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each of these four points unaltered. For, if their coordinates are

respectively (xlt }\), (x2,y2), (x3, ys), (x4 , y4), the requirement for this

is the simultaneous satisfaction of the eight equations

(/= i, 2
? 3&amp;gt; 4-)

These equations determine finite values of the ratios of eight of the

s to the ninth one (excepting possibly for peculiar choices of the

four points, which can be avoided)

because of the linear independence of

the nine transformations.

With the tf s thus chosen, the trans

formation (102) leaves the four points

Plt P2, Ps , ^4 unaltered and, therefore,

also the integral curves determined by

any two of the points, since integral

curves are transformed into integral

curves by a transformation which leaves
FIG. 5

a differential equation unaltered, and the four points were so chosen

that through any two of them passes a unique integral curve. Thus

through each one of the points, e.g. through /* pass three of these

invariant integral curves. The point Pl on these being left unaltered

by (102), their slopes at this point, which may be designated by j12 ,

.i i:; Jut respectively, are also left unaltered by it. Hence if rf is the

coefficient of -- in the extended transformation corresponding to

d/

(102), it follows that

for x = xlt y=yi, y =y\*,yv!, yu&amp;gt; Letting a, b, c be the values
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of
n~&amp;gt; T*-^&amp;gt; ~^ respectively when x = xl9 y=y\, (103) gives
ox oy ox oy

the three relations
a + ^, + ^,2 = O}

a + tVu + OW 2 = o.

Since the determinant of the coefficients

I
&amp;gt; 13 J lS

i ; V2

is different from zero, a = b = c = o. Hence if
= o for every integral

curve through /\, whence every integral curve through Pl
is invariant*

under (102).

In exactly the same way it can be shown that every integral curve

through each of the other points PZt P3 , P+ is left unaltered by

(102).

If P is any fifth point in the region containing Plt P2 ,
P3 ,
P4 ,

it

will lie upon at least two f integral curves each of which passes

through one of those points. These integral curves being invariant,

the point P is left unaltered by (102). In this way every point

of the plane (with, perhaps, exception of certain points determined

by the differential equation) is found to be left unaltered by (102).

The latter must therefore be identically zero
;

i.e.

&amp;lt;*i UJ+ a, (72f+ + a9UJ= o.

* This follows from the fact that a unique integral curve of a differential equation
of the second order is, in general, determinol by tin- conditions th.it it pass through
a given point (x,y) and have a given slope y at that point.

f If P does not lie upon any of the six integral curves determined by the four points

(which is the general case), this number is four ; it is three if P is on one of these

curves, and two if it is at the intersection of two of them.
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Hence any nine infinitesimal transformations which leave a differen

tial equation of the second order unaltered cannot be linearly inde

pendent. This proves the theorem.

The differential equation^
1

&quot; = o is a simple example of an equation

that is left unaltered by the maximum number of infinitesimal trans

formations. For, since its integral curves are the straight lines of

the plane, y = ax + b, it is left unaltered by every projective trans

formation a4x + a
:&amp;gt;

a*y + 9
a

7
x -f- a^y

In Note VI of the Appendix it will be seen that there are eight

linearly independent infinitesimal projective transformations.

Remark. In the case of a differential equation of higher order

than the second, the following theorem holds : A differential equation

of the nth order (n &amp;gt; 2) cannot be invariant under more than n -f 4

linearly independent infinitesimal transformations. A proof of this

theorem maybe found in Lie, ContinuUrliche Gruppcn, pp. 296-298.

As in the case where ;/ = 2, a differential equation of order //
&amp;gt;

2

is in general not left unaltered by any infinitesimal transformation.

On the other hand the differential equation y(n) = o, &amp;gt;
2 is

invariant under each of the n -f- 4 transformations (Examples, 26)

df df df df df odf ,df ,d/ ,
/ N df

/ , ,;, *-&amp;gt;yt-&amp;gt; *1L&amp;gt;

*~ :
{-&amp;gt;

&quot;&amp;gt;*
T&quot; ^/ + ^- 1)^^--dx dy dx dy dy dy dy dx dy

43. r-parameter Group of Infinitesimal Transformations. Start

ing with a set of infinitesimal transformations U^, U*f, ,
U

rft
the

infinitesimal transformations, whose symbols are obtained from these

by applying the alternating process to them in pairs, may or may not

be linearly independent of them.

Thus, if

the transformations (f/i^/,.)/=, ( Ui

arc all indcjicndcnt uf them.
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On the other hand, if

U\ f= x -~
, /&amp;gt;/=

x
, U?tf^.(x + y} -~-

,

u* uy o*

the transformation

( [/&amp;gt; U-)f=. x - f~
(jr 4- y ) jr~

is independent,

while (tfitfa)/= tfs/, (/itfi)/=E 6V-

Finally, if

none of the new transformations are independent of them; for

The case where none of the new transformations are linearly inde

pendent of the old ones is of special interest. If r linearly inde

pendent infinitesimal transformations U\ft U^f, ,
Urf have the

property

(104) (W)/= ^,-1^7+ ^
l/2^/+ - + ^-, P 6;/, (/,/= i, 2,

...
r),

where the s are constants, the aggregate of these and all the trans

formations Uf^L &amp;lt;*\U\f+ &tU*f *?
&quot;

-\- a TUTf where these fl s are

any constants constitute an r-parametcr group of infinitesimal trans

formations.*

Remark i. An r~parameter group of infinitesimal transformations

is determined by any r of its transformations which are linearly inde

pendent, since the symbols of all its transformations can be expressed

linearly with constant coefficients in terms of any r independent ones.

Moreover it is readily seen that any set of r linearly independent

transformations of the group have the property (104).

* In Note VI of the Appendix an r-parumeter continuous group containing both

finite and infinitesimal transformations is denned. The intimate relation between these

two classes of groups is brought out in Lie s Principal Theorem at the end of the Note.
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Turning our attention now to the transformations which leave a

differential equation of the second order unaltered, we shall first prove

THEOREM I. If a differential equation of the second order is in

variant under U\f and U^f, it is invariant under (U\U)f.

For, if 6^/and U^f leave

( 98) ? = F(*,y,f)

unaltered, the extended transformations 7^ and Ujf leave

x
,,

unaltered. By the theorem of 37, (///:/)/ or its equal

(see Note V of the Appendix) leaves Af = o unaltered. Hence

Theorem I follows.*

In 42 it was established that the number of linearly independent

infinitesimal transformations that leave any differential equation of

the second order unaltered is limited. If in the case of a given

differential equation this number is r, all the infinitesimal transforma

tions leaving the differential equation unaltered are linear functions,

with constant coefficients, of any set of r linearly independent ones

UJ, #&amp;gt;/, ,
Urf. By Theorem I (//)/, for /,/= i, 2, , r,

must also leave the differential equation unaltered. Hence they, too,

are linear functions with constant coefficients of the set U\ft U^f, ,

Urf. The latter therefore have the property (104), and we have thus

established

THEOREM II. The aggregate of all the infinitesimal transforma

tions leaving a given differential equation of the second order unaltered

constitute an r-parameter group. Here o
&amp;lt;&amp;gt;&amp;lt; 8.f

* This theorem is true for a differential equation of any order, and is proved in the

same way.

f The same theorem is true for a differential equation of the -th order, where n
&amp;gt; 2.

In this case o
&amp;lt;

r
&amp;lt;

n + 4.
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It is possible that a smaller number than r, say s, of linearly inde

pendent infinitesimal transformations in an r-parameter group deter

mine a group ;
the latter is known as an ^-parameter subgroup of the

larger group.

The four transformations

determine a four-parameter group ;
for they are linearly independent, and besides

(UzU*)f=Utf- L\f, (U*Udf=-U*

Of the subgroups of the four-parameter group the following are immediately

obvious :

The two-parameter subgroups i
7

\f, Uf\ U\f, U,\f; U\f, U\f\ U^f^ U\f\

Uzft U*f.

The three-parameter subgroups L \/, Uf, U\f\ U\f, L
:{/, L\f.

Uf^x^-y^L=U\f U\f, also a transformation of the four-parameter

group, determines with U^f and U$f a three-parameter subgroup, since

= 2 U-,f, ( U. 6s)/= - Uf.

Remark 2. Starting with two or more linearly independent infini

tesimal transformations which leave a given differential equation of

the second (or higher) order unaltered, a group of infinitesimal trans

formations is determined which is either the r-parameter group of

Theorem II or a suogroup of it.

For, let /i/,
/
2/, , UJ, (2&amp;lt;k&amp;lt;r)

be a set of linearly inde

pendent transformations which leave the differential equation of the

second order unaltered. By Theorem I, (/|/)/, (/,/= i, 2, ,
X
)

also leave the differential equation unaltered. Some or all of thq^e

may be linearly independent of the original ones. Let /: of tin in

be such. We know that k + k
&amp;lt;

8. Adding these to the original set,

combine the larger set in pairs by the alternating process as before.



150 THEORY OF DIFFERENTIAL EQUATIONS 43

The resulting transformations also leave the differential equation un

altered. If any of these are independent of the members of the

larger set, add them to the latter, thus forming a still larger set of

linearly independent transformations leaving the differential equation

unaltered. Proceed with this set as before. Obviously this process

must be a finite one, since the maximum number of members of a

set is eight. So that the above process stops when no new trans

formations independent of the previous ones arise as a result of the

alternating process. If the number of independent transformations

finally appearing is r, the r-parameter group determined by them is

precisely that of Theorem II
;

if the number is s &amp;lt; r, the ^--parameter

group determined by them is a subgroup of the other.

We shall prove

THEOREM III. Every r-parametcr group (r &amp;gt; 2) contains tivo-

paramcter subgroups.*

As a matter of fact we shall show that, fixing upon any one of the

transformations, say UJ~, a set of r i constants c.,, c3) -, cr can be

found such that

constitute a two-parameter subgroup ;
it being understood that the

r-parameter group is determined by 6^/, U,f, Urf, which are,

therefore, subject to the conditions

r t

(104) (Utf)f= ^a,Jk
Ukf, (ij= i, 2, .-., r).

k i

In order that this be the case

(fsV/+ c,UJ

-f -. +

* This theorem and its proof hold, without modification-, for groups involving n

variables.
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Since (U M\fmcUJWmc^aj^ and since

U\f, UJ, &quot;,
Urf are linearly independent, (105) can hold only in

case

(106)
= a =

2, 3, ~;
j=2

Conversely, if c^ &amp;lt;r3 , ,
cr can be found to satisfy r equations of the

type (106), where a and b are any constants, and not all of the &amp;lt;: s

zero, the group Uf= jVj&^/will determine with UJ a two-param-
13

eter subgroup ;
for in this case

That such a set of c s can always be found may be seen as follows :

The last r i equations of (106) are the linear homogeneous equa

tions

(107)

These can be solved provided b satisfies the equation

(108) = 0.

This equation necessarily contains b, since the coefficient of br~^
is

( i)
1 &quot;&quot; 1

. Using any value of /&amp;gt; satisfying it, the c\ are determined

to within a common factor (which is not essential), by solving (107).

The value of a is then determined by the first equation of (106).

Thus Theorem III is not only proved, but a method for finding the

two-parameter subgroup is also given.
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The transformations

w=f, *v=f^ u*f=y&+*y:
dx dy dx dy

determine a three-parameter group, since

Inspection shows that /]/and Uf determine a two-parameter subgroup. To

find another two-parameter subgroup of which Us/is one of the determining ele

ments, the method of this section may be employed. The constants c\ and c%

must be so determined that

c, /)/= a U-,/+ 6( fl Ui/+ c2 6V) &amp;gt;

i.e. -
fi6V- c Uif= a U*f+ bc^6V+ be* Uzf.

.. a = o, bc\ + c = o, bc + c\ = o.

In order that the last two equations be consistent, b must satisfy the equation

ft* 1=0,

whence b =. I and = T I. Hence
c-i

* =,& + ,%, Uf=& +% and U^,& +JC &, Ufs&-&
d* dy dx dy dx dy dx dy

are two two-parameter subgroups of the original group.

44. Classification of Two-parameter Groups. If a two-parameter

group is determined by /L/and U*f,

Either both al and a2 are zero or they are not. In the latter case it

is always possible to find a pair of transformations to determine the

two-parameter group for which one of these constants is unity and

the other zero. For, if #, ^= o
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are linearly independent and

Moreover, if for any pair of linearly independent transformations

and U-J of a two-parameter group

this is true for every pair, since

= o

for all choices of constants clt c2 , b^ b^. Hence every two-parameter

group can be represented by a pair of transformations U^f and

such that either = o or
( UtUftfm UJ.

These two possibilities are mutually exclusive ; any grotip can come

under one head only.

A second mode of classification is suggested by the following :

If a two-parameter group is determined by U^f and U&amp;lt;J
which are

connected by a relation of the form

where p(x, y) is not a constant, J every pair of distinct transforma

tions of the group are connected by a relation of the form (109) ;

* If
!
= o, rt.j ^fc o, so that ( Ul &y/= a^U^f, the groups

satisfy the condition ( V\ K2)/= Vf.

t It is interesting to note that (/i /;&amp;gt;)/=
o is the necessary and sufficient condition

that each transformation of the group generated by U^ f be commutative with every
transformation of the group generated by /2/ For an elementary proof of this fact,

see Lie, DiffcrfntuilglciclniHgen, p. 305.

t While in this case f j/and ( .,/ are distinct transformations, the one-parameter
continuous groups generated by them have the same path-curves.
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for if

Hence all two-parameter groups may be divided into two classes

according as their distinct transformations are connected by a relation

of theform (109) or not.

These two modes of classification are independent of each other.

Hencefour classes of two-parameter groups may be distinguished ac

cording as thc\ are representable by a pair of transformations U^f and

U,f=p(x,y}L\ft

P (x, r)

Classify the following two-parameter groups :

+ (;- x)Z xf +y
dx dy dx d

Ex. 3. x(x +y) + y(X +y), X (X -y) .+;(* - v) .

OUT OV
. 5.-

,

x. 6. .v + v,
f).v ay

.v+;
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45. Canonical Forms of Two-parameter Groups. By a proper

choice of variables the various classes of two-parameter groups can

be reduced to certain simple forms which Lie called their canonical

forms. These will now be determined in turn.

By the method of 9 a set of variables can be determined so that

Uif takes the form

dx

If the resulting form of U^f is

^EEO and ^ =
o, since (U,U*)f= ^ Bf- +^ =

. Hence
ox ox dx ox ox oy

and
77 are, at most, functions ofy ;

/ .&amp;lt;?.

where rj(y)
=

o, since U,f^ p(x, y) UJ.

The transformation ^/,/= -^ remains unaltered by a change of

variables of the type

where
&amp;lt;f&amp;gt;(y)

and ^(j) are at our disposal. This change of variables

causes
/&amp;gt;/to

take the form [(15) 9]

assumes the form .
If

&amp;lt;#&amp;gt;

= f^ dy and ^( v)
= f ^

, UJJ
iy(&amp;gt; ) / T;(J)
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Hence, by a proper choice of variables, a pair of transformations

satisfying conditions a can be made to assume the canonicalforms

ox dy

Having established the existence of the canonical forms in this

case, the actual finding of the canonical variables (which reduce the

transformations to these forms) can be accomplished by two quadra

tures. For, starting with a pair of groups

+ and
ox oy ox oy

satisfying conditions a, the new variables x and y will reduce these

to the forms ^ /
)
/

UJ=%- and IV*?dx dy

respectively, provided x satisfies

f.
dx

,
dx f. dx

,
dx

and y satisfies fi |
+ ^ = o, (, f- +

? = ,.

dx dy dx dy

Since such new variables must exist, the equations of each pair

must be consistent. Because Utf^pU\ft they can be solved for

t
JL and

, respectively, whence x and y are determined
dx dy dx dy

by the two quadratures

x ay

The transformations
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form a pair satisfying conditions (t. From

- + ,:=, and + *=o

whence x

Similarly, from
_&amp;gt;!

&+ * |* = o and * ft +, f*~ I,
d* 07 d-r dj

5= ^ and ^^^

whence y - = } V
J + y2

These canonical variables are obvious from geometrical considerations.

As before, /J/&quot;can be reduced to the form

by the choice of canonical variables ( 10). Then t/,/ assumes the

form .,

where O-(AT, y) is what p becomes when the old variables are replaced

by the new. Since

dy dy

cr is a function of x only. Taking this as the new A*, which change

of variables leaves U\f unaltered, 7&amp;gt;/assumes the form .v - Hence,
ov

by a proper choice of rtiriiifi/t s (7 pair c/ transformations satisfying
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conditions fi can be made to assume the canonicalforms

TTf-ty .
T ,_ d/

v\J = T- ,
c o/ = A - -

3; dy

The actual finding of the canonical variables in this case requires

a single quadrature. For, starting with a pair of transformations

V=* + , and ^/Wf^ + JA
ax dy \~ ox vyj

where ( L\ U^f= UlPUJ= o, i.e. UiP
=

o,

the new variables x and y will reduce these to the forms

respectively, if x = p (.Y, v)

and y satisfies the equation ( 10),

4+^=i.fl.v
3&amp;gt;

Moreover, since U
}p
=

o, p is a solution of

Hence, y = F(x, } ) is some solution of

dx _ dy _ dy

7~7~T
distinct from p = const., which is also a solution of this system of

equations. Among the various ways that will suggest themselves

when and
r)

are given in any specific case, a possible method is to

solve p(.\-, jr)
= c for one of the variables, say x = &amp;lt;}&amp;gt;()&amp;gt;, c), whence

y = f &amp;lt;*y

J
r,(&amp;lt;t&amp;gt;,)&amp;gt;)
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The transformations

Uif=xy &. + 2y* V- and
U-&amp;gt;f=x*

^L + 2*2
y ^L

fa dy dz dy

form a pair satisfying conditions p.

y must satisfy xy^&amp;gt; + 2y---
y
- = i.

d* dy

To solve the corresponding system of ordinary equations

&amp;lt;Xr dy- _ dy

xy 2y* I

use may be made of the solution = c or y = Then
y c

2x 2y

y. (UMV= (/i/, U.J=p(x t

As before, 6^/can be put in the form

by introducing canonical variables. Taking 6^/in the form

,we must have ^r an&amp;lt;l ^ = J
&amp;gt;

since

Hence, i^/must liave the form
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where (x) ^ o, because U.^f^pU^f. The introduction of the new

variables

x=t(x) tV = il,(x)+y

leaves U^f= unchanged in form, but changes cZ/into
d

dx dy

This takes the form Uo/= x-~ +y^-dx By

tdjc

when (x)$(x) = &amp;lt;j&amp;gt;(x),
or

&amp;lt;j&amp;gt;(x)

= e
]*W

r _
and (*}$ (x) +X(x) =t(x), or if/(x)

= -e^Mj ^ e~^(^ ax.

Hence, by a proper choice of variables a pair of transformations

satisfying conditions y can be made to assume the canonicalforms

The actual finding of the canonical variables in this case requires

two quadratures. For, starting with a pair of groups

satisfying the conditions y, the new variables x and y will reduce

these to the forms

respectively, provided x satisfies

t dx . dx t dx . dx
15- + *?!^ =&amp;gt; ^T- + ^--
ox dy dx dy
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and y satisfies

dy dy_ f dy dy _
ClT--r /lT-= I? C2-T- -I-

&amp;gt;?2T- U-
dx dy dx dy

Since such new variables must exist, the equations of each pair must

be consistent. Because U-2/^pU\f they can be solved for
,

- a dx dy
, dy dyand -^, -^, giving
dx dy

__ft

djt ^772 ^r/! ^172 ^i ^J ^1^2 2171 Utyi tL-^i

3 log x j d log JT

Dividing (no) by JT,
- - and - are given, whence log JT is

ox dy

obtained by a quadrature and the form for x follows.

Equations (in) maybe solved in various ways. The most gen

eral form for y satisfying them is not needed. As a matter of fact,

the simpler the form obtainable, the better. One way of proceeding*

is to assume that x and y are no longer independent, but that y = ex

where c is a constant. Then

(112) ^=^+^ = (X + ^) i/ + ,+ ^
ax ox oy

where X, /x, v, IT are what the corresponding coefficients in (in)
become when y is replaced by ex. Since (112) is a linear ordinary

differential equation of the first order, it may be solved by the usual

method, involving two quadratures (EJ. Dif. //. $j 13). A process,

however, by which a single quadrature alone is involved in solving

(112) is given by the following :

*
Special methods will frequently be found simpler, however.
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Inspection of equations (no) and (in) shows that y=x(x, ex),

which is obtained from x(x, y) by replacing y by cx
9

satisfies the

equation

Hence the transformation y = vx(x, ex) reduces (112) to

dv _ v -f- CTT

dx x(x, ex)

whence v is obtained by a quadrature. Then y follows at once, after

replacing c by -L.

x

The transformations

and Uf=xi + (y + xy)
dy dx dy

form a pair satisfying the conditions 7. From

=0 and x*-\-
dy dx dy

.

** dy
= i

From x&=i and ^^ + (y + xy) m y,

dy dx dy

fa - y. -.y^rj^L ^-i.*
dx x* * J

dy x

Putting^ = cx -7~^i~~idx x1 x1

* These equations can be solved directly. From the second one y=-
where 0(.r) is to be determined. Putting this value of y in the first equation gives

_\

4&_, whence* * *.
dx x*

k = Q gives the form for y obtained in the text.
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1

Using the method given above, put y ve x
. The linear equation then reduces

i i

to = e x
;
whence v cex.

(/JC X

8.

As before, by the introduction of canonical variables /,/ can be

made to assume the form

These variables will cause 72/ to assume the form

Since ( /, ,)/
= UJ, = i and

r,
= A (.v) +y. So that

The change of variables y = X(x) + v leaves ^/unaltered and

changes U*f to the form U.,/
= y~- Hence, f&amp;gt;y

a proper choice of

variables a pair of transformations satisfying conditions 8 can /&amp;gt;&amp;lt;-

made to assume tJie canonical forms

The actual finding of the canonical variables in this case requires

the solving of the differential equation of the first order determining

the path-curves of the group generated by either of the transforma-
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tions. For, starting with the pair of transformations,

where (U^U^f = L\f, the new variables x and y will reduce these to

the forms .,, . ,

respectively, if y
/&amp;gt;

(JP, j)
*

and x satisfies the equation
.dx dx^ +7^ = -

The solution of this equation is usually obtained by first solving

dx dy

T&quot;T

the differential equation of the path-curves of /,/.

The transformations

,T/^_4/anW-|_,|
form a pair satisfying conditions 5.

y

The solution of ^ + f
/ = oisi + - = const.

Ex. Determine the canonical variables for the groups at the end

of 44.

* The other requirement of y, viz. Uy= i, follows from the given conditions on U^f
and i/a/ since (U^
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46. Differential Equation of the Second Order Invariant under Two

Groups. Starting with two non-trivial infinitesimal transformations *

which leave a differential equation of the second order

unaltered, an .r-parameter group of infinitesimal transformations,

leaving (98) unaltered, can be found (Remark 2, 43), which con

tains a two-parameter subgroup (Theorem III, 43) determined by a

pair of transformations ^/and U2f which satisfy one and only one

of the conditions ( 44),

(l/M)/=o and (UM)/= UJ.

Moreover, these two transformations can be found by direct and

practicable processes from the original two transformations, and they

also leave the differential equation (98) unaltered.

We shall now suppose that we have found such a pair of infini

tesimal transformations U\f and U^f. Passing, as was done in 39,

to the corresponding linear partial differential equation

the latter is invariant under the extended transformations U\J and

UJf, which are subject to one of the conditions

(///, )/ EEO and (^ 6/a )/

since (f//c7/)/=(^c72)7 (see Note V of the Appendix). Two im

portant cases are to be distinguished :

A. A relation of the form

(97 UJf^aWf+ pAf

* As use is to be made of the properties of groups of infinitesimal transformations,

the one-parameter groups under which (98) is invariant will be replaced by their repre
sentative infinitesimal transformations in what follows. (Compare Remark, 6.)



1 66 THEORY OF DIFFERENTIAL EQUATIONS 46

exists. In this case UJ and cZ/ determine distinct path-curves,
that is, no relation of the form

(109)

can connect them. For, if such a relation did exist, and if

Uzf would have the form

f do- . do- f &amp;gt; d&amp;lt;r , .do- ,,\3/
+*-;+**;,&amp;gt;

-
feV^ -^

A relation of the form (97 ) implies the vanishing of the determinant

,

dx \ By

do-

dy

This reduces at once to

c)cr ,. do-\ ,

^ r*~ ^ T~ /^ 5^/

,. d(T
,.,&quot;1

* ^-/
qy

Since neither
171 ^7 nor both ^ and ^ can be zero identically,

A can vanish identically only in case ~ = o and - = o simultane-
O.T dy

ously, that is, &amp;lt;r must be a constant. This would make U\f and

one and the same transformation. Hence the relation (109) cannot

hold when (97 ) does. Assuming that (97 ) holds, two cases must still

be considered :
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By means of two quadratures ( 45, ) canonical variables can be

found so as to reduce the two transformations to the forms

dx
-

By

respectively. Since the differential equation expressed in terms of

these variables must be left unaltered by these two transformations, it

must be free of both x and y (I and I
, 28). Hence it has the form

and the corresponding partial differential equation has the form

loreover,. _ _^ _ _^
The relation (97 ) implies that

i y
I O

O I

= F(y ) = o.

Hence when conditions (97 ) and i hold, the introduction of canoni

cal variables for the two-parameter group reduces the differential

y&quot;
= o,

y = ax -f /;.

equation to tJiefonn

and the solution is

By means of two quadratures ( 45, y) canonical variables can be

found in this case, reducing the transformations to the forms

dx
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The introduction of these variables reduces the differential equa

tion to the form (I and IV, 28)

, xy&quot;)=o, or y&quot;=

The corresponding linear partial differential equation has the form

Moreover,

The relation (97 ) implies that

, y

O I

x y

EE - F(y )
= o.

Hence, also, in the case where conditions (97 ) and 2 hold, the

introduction of canonical variables for the two-parameter group

reduces the differential equation to the form.

y&quot;
= o

and the solution is y = ax -+- b.

B. No relation of the type (97 ) exists. That is,

Here the two subcases in A are also to be considered.

Since this carries with it



46, 47 ORDINARY, OF THE SECOND ORDER I69

the conditions of 38, B, 4,(#) exist, and the two solutions of the

corresponding linear partial differential equation are given by the

two quadratures

dx dy

i y
1

&amp;gt;?i

where AEE

= # and

/

I
y

Eliminating 7 from these gives the solution of the original differen

tial equation.

Since this carries with it

the conditions of 38, B, 4, (&amp;lt;)
exist. Two solutions of the cor

responding linear partial differential equation are obtained by two

quadratures, by the method given there. Eliminating y from these,

the solution of the original differential equation follows.

Remark. -- It may be noted that in every instance where an

ordinary differential equation of the second order is known to be

invariant under two distinct groups, of which neither is trivial, its

integration can be effected by means of two quadratures.

47. Second Method of Solution for B. The method in cases A,

i and 2 of the previous section leaves nothing to be desired. For

the remaining cases, however, while, theoretically, the reduction of

the problem to two quadratures seems sufficiently simple, a method

analogous to that employed for A, even if involving a larger number
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of quadratures, or possibly the solution of a differential equation of

the first order, may prove simpler in actual practice. Still under the

supposition B, viz.

the four possible forms ( 44) of the two-parameter groups of infini

tesimal transformations leaving the differential equation unaltered

will be considered :

By a process involving two quadratures ( 45, a) canonical varia

bles x and y can be found, reducing the infinitesimal transformations

to the forms

The differential equation invariant under these has the form

(I and I
, 28)

An additional quadrature gives

/rfyF(y )

or, when solved for y , y = &amp;lt;j&amp;gt;(x
-f #),

and a final quadrature gives the solution

y = I
(f) (x -f- (7 ) tix -f /^.

In this case four quadratures are required.

/,)/EEo, U,/= P (.r,y)tyj.
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By a process involving one quadrature ( 45, /j) canonical varia

bles x and y can be found, reducing the infinitesimal transformations

to the forms

The differential equation invariant under these has the form

and VII, J ,8)
yll = F(^

Two additional quadratures give the solution

y=f CF(X) dx- + ax + b.

In this case three quadratures are required.

By a process involving two quadratures ( 45, y) canonical varia

bles x and y can be found, reducing the infinitesimal transformations

to the forms

The differential equation invariant under these has the form (I and

IV, 28)

As in the case a, two additional quadratures give the solution.

In this case four quadratures are required.

8. (UMV^Ui/, 6i/= PCv,v)^i/

By a process ( 45, 8) involving the finding of the path-curves de

termined by either infinitesimal transformation, i.e. the solution of

the differential equation .
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canonical variables x and y can be found, reducing the transforma

tions to the forms

The differential equation invariant under these has the form (I and

HI, 28)

Two quadratures give the solution

Remark. The above classification holds equally well for A, for

which it is exceedingly simple, cases ft and 8 never arising ( 46).

Hence the method of introducing canonical variables applies to all

cases where a differential equation of the second order is invariant

under two groups. The interest in 46 lies in the fact that it is there

shown that it is always possible, if desirable, to solve the differential

equation by two quadratures only.

While the classification of 40 is more complicated, it must be

borne in mind that the two groups employed there need not deter

mine a two-parameter group. Some of the methods of 40 are ex

ceedingly simple ;
so that they are not to be ignored. On the other

hand, it is suggested that the method of this section be applied to the

examples of 40.

Ex. 1.
xyy&quot; + xy

n
-yy = o. (Ex. i, 40).

This equation is invariant under U\f= x-J- -f- y and Z/= v -

dx oy dv

These determine a two-parameter group of the type . The canoni

cal variables are readily found to be x = log*, y = log^. Introduc-
X

ing these, the differential equation takes the form



47 ORDINARY, OF THE SECOND ORDER 1 73

Integrating this, one obtains

log -~^ + *= r if = T^F :
=~^

Integrating again,

2 y + c = log (^ - e
&amp;gt;2X

) or^ = ^ - T2jr
.

Passing back to the original variables^

^2 -^/ = i.

Ex. 2. / = /y + Qy + X. (Ex. 2, 40) .

This equation is invariant under 7i/= V\ and K/syf-^, if

5y
&quot;

dy

j/ = / v/ + &amp;lt;27i
and

&amp;gt;-,/

= Pyi -f fe- The transformations UJ
and ^/determine a two-parameter group of type /3. The canonical

variables are x = ^, y = 2-. To introduce these use should be made*

of the fact that = = - where A = \\ y./
- y2yl

f

j
and that

^r &amp;lt;/or dx y\
2

y\y*
-

-y*yi = /^. Then

Substituting these values in the differential equation gives

where the right-hand member must be expressed as a function of x.

Integrating twice,
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Passing back to the original variables,

t&amp;gt;

)
f

iA
,

(AX* -jyi )

. It is an interesting fact that this form of the solution

includes as a special case the form obtained by a well-known method

in case the coefficients in the linear equation are constants. (See

EL Dif. Eq. 47-)

Ex. 3. / = // + Qy. (Ex. 3, 40.)

This equation is invariant under U^f=)\-- if y1 is a particular

solution of the equation, and also under R/Byu. The trans-

dy
formations C^/and U*f determine a two-parameter group of type 8.

The canonical variables are x = x, y = 2-. This change of variables

y\

is the one usually employed. (See EL Dif. Eq. 53, i.)



CHAPTER VII

CONTACT TRANSFORMATIONS

48. Union of Elements. The configuration consisting of a

point and a line *
through it is known as a lineal clement. It is

obviously self-dualistic. Since a lineal element in the plane is deter

mined by three coordinates,! there are oo
;&amp;gt;&amp;gt; such elements.

Any curve in the plane determines co
J
lineal elements, each one

consisting of a point of the curve and the tangent line at that point.

[In particular a straight line determines oo
J
lineal elements, all hav

ing the same /-coordinate ;
while a single point (looked upon as a

line curve of the first class) determines co
1 elements all having the

same x- and jv-coordinates]. Such a single infinity of lineal elements

is said to form a union of clements,\ and successive elements in this

case are said to be united. In general co
*

lineal elements do not

form a union
;

it is easy, however, to find the condition that they do :

Two relations among the three coordinates

(113) 0(,r, y, /) = o and
i//(.v, y, /) = o

* At times it is convenient to replace the line by its direction in the above definition.

t We shall use the nonself-dualistic set (x, y, /) where x and y are the rectangular

coordinates of the point and / is the slope of the line.

It is almost needless to add that the theory here developed is no more restricted to

this choice of coordinates than the general theory of Analytic Geometry is confined to

the use of Cartesian coordinates.

J In this case the locus of the points of the elements coincides with the envelope
of the lines of the elements

;
and besides, the point of tangency of each line with the

envelope is the point of the element to which the line belongs. This locus will be re

ferred to as the curve ofthe union.

175
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determine oo
1 elements.* The locus of the points of the latter

(114) o&amp;gt;O,/)=o

is obtained by eliminating/ between the two relations (113). A
union exists provided the value of/, in terms of x and y, obtained

from either of the two relations is the same as that of the slope of

the tangent to the curve (114), i.e.

*&quot;*~~~5

where partial differentiation is indicated by a suffix. The condition

that the lineal elements determined by (113) form a union is therefore

that

( JI 5) dy

Ex. 1. Starting with the relations

the point locus is the circle x1 + jy
2 = I. Here

=-*=/.
dx y

FIG. 6 Hence the elements form a union. (See Fig. 6.)

* A single relation
(j&amp;gt;(x, y)=o free of/ defines ool unions, each consisting of

the oo l elements having a point of the curve (x, y) = o in common, p being un

determined.

Hence, if neither of the relations
&amp;lt;f&amp;gt;(x, y) =o and \f/(x,y)

= o involves p, they to

gether determine a finite number of unions, each consisting of the oo elements hav

ing in common a point of intersection of the curves
(f&amp;gt;(x,y)

= o and \f/(x,y)
= o. (See

Ex. 4, below.)

f The same condition obviously holds when the lineal elements are determined

parametically

(&quot;6) * = *(/), y= Y(f),p = p(t).
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Ex. 2. In the case of

y + xp = o, x + yp =o

the point locus is the pair of lines x2 y1 = o.

Here -2- = -
;
while / = - Hence there is no

dx y y
union. (See Fig. 7.)

Ex. 3. In the case of

y = xp -\- i, p a = const.

the point locus is the line y ax -|-

a p. Hence the elements form a union. (See Fig. 8.)

FIG. 8

Here

dx

Ex. 4. In the case of

the point locus is the point x = o, y = i, while / is undetermined. The

elements form a union. (See Fig. 9.) FIG. 9

Ex. 5. The elements determined by

x = cos /, y = sin /, / = tan /

do not form a union, since the point locus is the

circle x2
+y*=i, where

dx y

(See Fig. 10.)

FIG. 10

Ex. 6. In the case of

y-

the point locus is the line y I. Along this p = O.

Hence the elements form a union. (See Fig. n.)

FIG. ii
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Ex. 7. In the case of

y = xp+l, 7 = 3

the point locus is the line y = 3. Along this p = o.

But the elements along this line determined by the

first relation have p = *- ^ o. Hence there is

I2 no union. (See Fig. 12.)

49. Contact Transformation. Of the possible transformations

on the coordinates of a lineal element

(117) Xl = X(x, y, /), y, = Y(x, y, /), pl
= P(x, 7, /) ,

those which transform every union of elements into a union play an

important role and are known as contact transformations. The

condition that (117) be a contact transformation is readily seen

to be

(
1 1 8) dy\

-
/! dxi = p (x, y, p) (dy p dx) ,

where p
= o.

For, from the condition (115) it follows that if a union is to be

transformed into a union dy\ p\ dxv must vanish whenever dy p dx

does
;
that is, the former must contain the latter as a factor.

Indicating partial differentiation by a subscript, (118) may be

written

This is equivalent to

(119) Yf -PXt =-pp, y,-JPX,

whence

(,20) J =
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and

(121) X
lt(Y,+pY,)- Y,(Xf +pX,) = o*

The two relations (120) and (121) may be put in the compact

V V i j, VXp X* +P Xy

These relations, which are necessary conditions that (117) be a

contact transformation, are also sufficient, as may be seen as follows :

They lead at once to

Y PX Y PX
or ** A * = L 21i =

p.-j-

-/ i

Equations (119) follow at once, and, therefore, condition (118)

is fulfilled.

Conditions (120) and (121), or their equivalents (122), may thus

be used instead of (118), when desired.}:

*
Introducing the Poissonian symbol

r
,n _ ** x,+px,\=

yr y.+tr,\-

the relation (121) takes the simple form

(121)

When two functions .Y and Y satisfy the condition (121), they are said to be in

involution.

f This value of the common ratio p cannot be identically zero, for using (122) it

may be written

p = XpYy XyYp = XxYy XyYX = Xx Y,,
- A r Y.r .

XP \ r pX, pXp

all three of thr numerators cannot vanish simultaneously since .Y and Y are supposed
to be independent rum-lions.

J An dement transformation, which is not a contort transformation, transforms pre

cisely oo- unions into unions. (See K;IMI&amp;lt;M, American Journal of idathematics,

Vol. XXXII, p. 393). Thus, A&quot;
=

.v, Y=
/&amp;gt;,/ v, which is obviously not a contact

transformation, transforms the union defined by y + p c^e*, yp c.^-
1 for any

pair of values of c and c. into a union.
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Remark i. Of the three functions X, Y, P in the contact trans-

formation (i 1 7), either one of X and Y may be selected at pleasure ;

the other one is then determined as a solution of the linear partial

differential equation (121). With X and Fselected, P is determined

uniquely by (122).

The extended point transformation ( 13) is evidently a special

case of a contact transformation. For if X and Fare any functions

free of/, (121) holds; while the form for the accompanying trans

formation ofjv or/, given by (21), is exactly (122).

In what follows we shall exclude extended point transformations

from consideration, unless specific mention is made to the contrary.

As an example of a contact transformation may be mentioned the transforma

tion by reciprocal polars with respect to a conic. The transformation, in case the

conic is the circle x~ + y1 = i, takes the form

Here _
y(y - xp}

The transformation by reciprocal polars with respect to the parabola x2 = zy
is given by

(-#) *\ p-, y\ = xp /, p\ = x.

Here dyip\dx\=(dy pdx}.

In the above illustrations a union whose curve is a point is trans

formed into one whose curve is a straight line. That in the case of

every contact transformation (not an extended point transformation)

a union whose curve is a point \ must be transformed into one whose

* These equations may be obtained as follows : The point (x, y} of an element

(x, y, p) is transformed into the polar line xx -\-yy\
= i whose slope is p = The

line of the element,
?

Y-y=p(X-x) or ^2*-\ = i,

y-xp y-xp
is transformed into the pole

~
y xp

yi
y xp

\ Excepting possible special points ; e.g. the origin in Ex. 3, p. 185.
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curve is an actual curve may be seen by eliminating / and p\ from

equations (117). There results from this elimination a single relation,*

(123) F(x,y,x\,yl) = ,

which determines a locus for the points (# y^ corresponding to a

fixed point (x, y).&quot;\

Moreover, a contact transformation is determined by a relation of

the type (123), provided the three equations

(124) F=o,

can be solved for x, y, p, and also for xlf y\, JV For, solving for

#i y\i P\ there results the transformation of the three variables

(117) x, = X(x, y t p), y\ = Y(x, y, /), p, = - ^.F*
That this is a contact transformation may be seen readily. For

from F F
*!?*&amp;gt; %

* If there were two independent relations,

Fl(*,y, *i.^i)= o, F*(x t y, JT,,^) = o,

they could be solved for x\ and y\ in terms of x and^y, which would imply that (117)

was an extended point transformation.

f We may say (fixing our attention on the curve of a union) that the effect of the

contact transformation is to transform any point (a, l&amp;gt;)

into the curve F(a, b, x^,y^) = o;

while a point transformation transforms a point into a point.

Moreover, it is not difficult to show that a contact transformation, in general, trans

forms a union determined by a curve C into one whose curve O is the envelope of the

curves into which it transforms the various points of C, or, using the same form of ex

pression as above, we shall say that it transforms the curve C into O. (Thus sec Lie,

Berllhrungstransformationen, p. 49) . If it should happen that the curve C is one of the

curves F (x, y, (t, ft)
= o, where Ot and /3 are any constants, its transform C is the

point (, /3).
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Differentiating (123) gives

F
Xi
dx + F

Vi d)\
= (Fx t/x -f- Fy ffy) .

p
Hence dy\ p\dx = -JL (ay paxyt

f*i

which proves that (117) is a contact transformation.

The condition that (124) be solvable for x, y, /and for A-,, y^ ft

can be expressed very simply analytically :

In order to be able to solve for/ it is necessary arid sufficient that

F
y
-=o when F o. Similarly, F = o when F = o is the condition

that one be able to s%lve for ft.

The condition that the first two equations of (124) can be solved

for ^ and }\ is the non-vanishing of the functional determinant

or

In the latter the factor ------ is omitted since it is not zero whenever

F= o, because F is supposed to be generally analytic, and besides

it is not infinite since F
v
=o when F= o, by hypothesis. This de

terminant can be put in the more symmetrical form

A =
Fx F

y

F F F
!/i xy. * y

Since A contains Fas a. factor whenever either F
y
or Fv does, the

non-vanishing of A when F o assures the non-vanishing of F
u
and

F . Hence the only condition that (124} be solvablefor x^ ylt ft is

(125) o when F=o.

Because of the symmetry of A as to x, y and x\,y\, (125) is also

the condition that (124) be solvable for x,y,p.
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Remark 2. It is interesting to note that A = o is the condition

that F(x, } , .TJ. _) ,) involve x and y as two essential parameters, and

also that it involve xl and )\ in the same way ;
when such is the

case F(a, b, xlt }\)
= o defines oo

2 curves for all choices of a and ^,

and F(xt y, a, ft)
= o defines oo

2 curves for all choices of a and /?.

For if x and y are not essential parameters in F(xt y, x\, y^, two

functions of x and y, say xi(x &amp;gt; } ) an&amp;lt;^ Xz(x &amp;gt;y)&amp;gt;

can be found such

that (see Note VII of the Appendix)

This carries with it

.. A =
o F, F

v

\ F
XVi

F
UVi

Conversely, if A = o

f

^
~\~ \-&amp;gt;F F

o.

where p is a constant as far as xl and j^ are concerned, but may be a

function of x and y.

Hence A = o carries with it a relation of the type

Fz p (x, y)Fu
= o,

which is the condition that .v and y are not essential parameters in

F(x, y, *; !).

In exactly the same way it can be shown that if A = o x
l and Vi are

not essential parameters in F.
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The equations of transformation
(&amp;lt;-/)

and (B) in the cases of transformation

by reciprocal polars given above are readily obtained by the method here given

when jcx\ + yy\ = 1 and xx\_ y ji = o, respectively, are selected as the

relation (123).

For the transformation by reciprocal polars with respect to the general conic

ax* + 2 hxy + by
1 + 2 gx + 2fy + c o

the relation (123) is the equation of the straight line

fi(xyi + yxfi +% i + g(x + *i) +/(} + yd + c = O,

(ax + hy + g)xi +(hx + by + f)y\ + gx + fy -\-c-O.

Here

AfEE

o ax\ + Ay i

ax -\- hy -f- g &

hx + by +f h

by\. + f

Subtracting ^ri-times the second row -f
&amp;gt;
i-times the third row from the first,

and taking account of (123 )

gx +fy + c g f
ax + hy + g a h

hx + by +/ h b

&amp;lt; S f

g a h

f h b

a h g
h b f
S f

i.e. A equals the discriminant of the conic, and is different from zero in case the

conic is an actual one and not a pair of straight lines. In this case the method

given above applies. Solving

(ax + hy

(a

+(hx + by+f}y v + gx + fy + c = o,

+ (h + bp}yi + g + fp = Q,

ax + hy +g+(hx + by +/)/i = o,

for x\, i, the formulae of transformation are

_G(xp-y)+ff-Ap _/-(xp-~ ~ _
p&amp;gt;

* kx+ty+f

where A, B, C, F, (,\ //are the respective cofactorsin the discriminant of the conic.

The transformations (.4) and (/?) are obviously special cases of (C).
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Another interesting contact transformation is obtained by selecting for (123)

the equation of the circle,

(123&quot;) O - xtf + (y-ytf = r* ^ o.

In this case A = 8 r2
, and the equations of transformation are readily found

to be

(Z?) *i = x &
. yi =y T

Vi-f/- vi +/1

The effect of (D) is to transform any curve into a pair of parallel curves, one

on each side of the original one, and at a distance r from it, as is apparent from

the nature of
(123&quot;). A transformation of this type is referred to as a dilatation.

Find the contact transformations determined by the following

relations :

Ex. 1. (x-x iy- 2 a(v-yl)=o. E^ 4 ^i + ^i
=I&amp;gt;

Ex. 2. ^^iT + IZ^i)! =I .

Ex. 5. *+*!.
*! Jl

Ex. 3. av + Vf-Ov^ + riO^o.

50. Group of Contact Transformations. Infinitesimal Contact

Transformation. If in the one-parameter group

(126) x
l
= X(x t y t pt a), y,= Y(x,y,p, a), p, = P (.v, .v, /, a)

the condition

(i 1 8) &amp;lt;iY-PtiX= P (x, y, p) (//r -/./jf),

or its equivalent (122), holds, (126) defines a ant-parametergroup of
c en tact transformations*

Like any one-parameter group in three variabK-s ($11) the group

(126) contains an infinitesimal transformation

(127) .V!
= A + ^(A-,.V,/) oa, v,

= v+ iy (.v,.v,/) Sr/,/, =/-f-7r(.v,
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whose symbol may be written

&amp;lt; *&amp;gt; ^+ f^f-
Thus the dilatations

form a group, with the infinitesimal transformation

y- p df _ I

^T+J1 d* Vi

Similarly the transformations (Ex. I, 49)

*i = * /, ; !=/- ^ ,

form a group, with the infinitesimal transformation

Since (127) is also a contact transformation,

(i 18 ) d\\pi dx^dyp dx+ (dy p &amp;lt;%
TT

&amp;lt;tx)$a*s=p(dyp&amp;lt;&).

.-. p = i + a- (x, y, /) &z,
where

(
I 29) &amp;lt;r(x, ;-,/) (ityp&amp;lt;tx) =&amp;lt;h)p&amp;lt;%irt/x

= ff(iip) -f^ t/p ir t/\.

Writing with Lie
&quot;

(130) r)-/&amp;gt;=
-

/r(-v . ,/),

where /Fis known as the characteristic function of the infinitesimal

contact transformation, the identity (129) may be replaced by

// , + TT = o/,
- ^F

v
=

IT,
- /F

p + ^ = o
;

whence, making use of ( 1^0) and eliminating &amp;lt;r,

* Here, as alw.ivs it) tin- case of infinitesimal transformations, higher [.ou.-rs of Sa

are nrtjlcctcrl.



5o CONTACT TRANSFORMATIONS 187

Moreover, for all choices of the function IV, , rj,
TT are so de

termined by (131) that the corresponding infinitesimal transforma-

satisfies the condition (118 )
and is therefore a contact transforma

tion
;
hence the

THEOREM. Connected with every infinitesimal contact transforma

tion t)ii re is a cJiaracteristic function IV=
77 + /, in terms of

which the transformation is given by means of (131). Conversely,

starting with any function IV, the relations (131) define an infinitesi

mal contact transformation.

In terms of the characteristic function the infinitesimal transforma

tion takes the form

(132) /i/= \v
t ^+ (Pwr

- w)V-( w,

or using the Poissonian symbol ( 49)

(13*) Bf

Choosing for IV the form

gives the infinitesimal transformation

Bj- P df

Vi +/5 ~d* v

which belongs to the group of dilatations (/?).

The selection

gives the infinitesimal transformation

**f 7- -\

which belongs to the group

*&quot;=.,=,- ..,,/,
= /. CK*..H9)

/&amp;gt;-
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When W is linear in /, the corresponding transformation is an

extendedpoint transformation. For, if

[(24), 13]

Another fact worthy of mention in connection with the character

istic function is the effect upon it of a change of variables when the

latter is effected by means of a contact transformation. As was

noted in n, the introduction of the new variables

[14 ] x = F(x t y,p), V = *(x t y,p), P = *(x,y,p)

causes the infinitesimal transformation (128) to take the form

By the definition o_f the charactertisic function (130) its form

after transformation is

- yp).

If [14 ] is a contact transformation,

dy pdx=. p(dy p dx) ,

or yx -pxx
=- Pp, yu -pxy

=
p, yp -pxp

= o;

whence

(133) W(x, y, p) = p(tf-ri) = P (.v, v, /) lV(x, .v, p).

Of course, in the right-hand member, x. v, p must be replaced by

their values in terms of the new variables given by [14 ].
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The characteristic function for the group of dilatations in the case of rectangu

lar coordinates was seen to be
w

Introducing the new variables,

for which dy p dx= (dy p dx~),

it is easy to verify that

W = - VTT/ = - Vi + x*.

On the other hand the new variables

y - xp y xp y

for which dypdx= (ify p dx)
y(xp - .i )

cause the characteristic function to assume the form

W = -fi = (xp - y) Vor* + j

51. Ordinary Differential Equations. A differential equation of

the first order

(i34) f(x,y,p) =o

may be looked upon as a relation among the three coordinates of the

lineal elements of the plane, with the understanding, however, that

(35) P =
d
i-dx

So that the differential equation defines oo
2

lineal elements which

[because of (135), which is identical with (i 15), &amp;gt;$ 48] are arranged

in oo
1
unions. The solutions of the differential equation are the

equations of the curves of the unions.

Since all the lines through a point constitute a union, in which

case the common point is the curve of the union, such unions must

be taken into account when looking for the solutions of a differential
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equation. Thus if the relation (134) is free of/, say

this may still be looked upon as a differential equation in which / is

arbitrary. Such a differential equation defines, besides the union

whose curve is
/&quot;(.*, y) = o, those unions

determined by each of the various points

^V--\ of the curve. See Fig. 13. Each of

these points will be considered as an

p integral curve of the differential equa

tion.

Since every lineal element of the envelope of a family of &amp;lt;x&amp;gt;

l curves

is an element of some curve of the family (compare EL Dif. Kq.

$$ 29, 30), the equation of the envelope must also be a solution

(i.e. the singular solution) of the differential equation of the family of

curves. In the special case of a differential equation of the type

(134 ) the curve f(x, y) = o maybe looked upon as the envelope,

and its equation is therefore the singular solution.

The Clairaut equation (El. Dif. Rq. 27)

when transformed by

(/?) jf! p, y\ = xp y, f&amp;gt;i

= x,

takes the form y\ +/(* &quot;0

=

which is of the type (134 ). It has for integral curves the various points of the

curve vi -f /(*&quot;!)
= o, while the equation of this curve itself is a singular solution.

Passing hack to the original variahles, this curve is transformed into some curve

&amp;lt;()(jc,y}
= o, and its points are transformed into the tangents of 0f.r, y)=O.

Their respective equations are the singular and particular (in the aggregate,

general) solutions of the original differential equation.

The special Clairaut equation

y xp rVi + p1 = O,

when transformed hy the dilatation

takes the form y\ x\p\ o.
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This simple differential equation has the obvious general solution y\ = cx\,

which is the equation of the family of straight lines through the origin. The

envelope of this family is the origin, which determines a union that is obviously

consistent with the relation defined by the differential equation. Passing back

to the original variables, the origin goes into the circle x- +/- = r2
, which equa

tion is therefore the singular solution of the original differential equation, while

the lines through the origin go into the tangents to this circle. The equation

of their family,^ = ex rVi -f c* = o, is the general solution.

52. First or Intermediary Integrals. The differential equation

(136) 4&amp;gt;(x,y,p)
= a,

for each value of the arbitrary constant #, has oo
1

integral curves.

Allowing a to take successively all possible values, (136) determines

oo
&quot;

curves which are the integral curves of the differential equation

of the second order

(37) g= *. +^+
*,J=&amp;lt;&amp;gt;.

The differential equation of the first order (136) is known as a first

or intermediary integral of (137). From the above it is seen that a

first integral of a differential equation of the second order classifies the

oo
-

integral CI/ITCS of the latter into ^families of oo
1 curves each.

This classification is different, of course, for different first integrals,

of which there is an indefinite number. For

(138) *(x,y,p)=t

will also be a first integral of (137), if, and only if,

is the same as (137), i.e. provided

or

(121)
p *X+lJW

.
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Hence

THEOREM I. The necessary and sufficient condition tJiat

be first integrals of the same differential equation of the second order

is that
&amp;lt;f&amp;gt;

and
\j/

be in involution
( 49).

Starting with the function
&amp;lt;(.v, _v,/), a second function \j/(x, y, p)

will be in involution with it provided it satisfies the linear partial dif

ferential equation

(139)

This linear equation in three independent variables has two inde

pendent solutions, one of which is
&amp;lt;t&amp;gt;(x t y y p). All of its solutions are

functions of these two. Hence

THEOREM II. Knowing &amp;lt;(~r, v, /) = a, a first integral of a differ

ential equation of the second order, all of its first integrals may be

obtained by solving the linear equation (139). Havingfound a solu

tion of (139), independent of &amp;lt;j&amp;gt;,

all the first integrals are given by

where &amp;lt;J&amp;gt; is an arbitrarily chosen function of $ and
ty.

Since two independent first integrals

&amp;lt;(.v, y, p)=a and
i//(.v, v, /) = b

of a differential equation of the second order define the same set of

co
2

integral curves but classified in distinct manners, for a particular

but arbitrary choice of a and
/&amp;gt;, say an and /v the differential equations

(140) &amp;lt;(., y, /) = tf
( ,
and

i/&amp;gt;(.v, v, /) = t&amp;gt;Q

will, in general, have an integral curve in common. At each point of

this curve both equations (140) determine the same value of/;
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hence the equation of the curve

&amp;lt;o (x, y, ,
/;

() )
= o

may be obtained by eliminating/ from (140).

Still keeping tf fixed but allowing b to be an arbitrary constant,

the result of eliminating/ from
&amp;lt;f&amp;gt;

= # and
\\i
= b gives

CD (x, y, a
, b) = o,

a solution of
&amp;lt;(jc, y, /) = # containing an arbitrary constant which

is, therefore, its general solution. Hence,

THEOREM III. If a second differential equation

*&amp;lt;*JVJP&amp;gt;.-.&amp;lt;*

involving an arbitrary constant can be found sucli tJiat
ff&amp;gt;

and
\\i

are

in involution, the general solution of

4&amp;gt;(x,y,P)
= a*

can befound by eliminating /&amp;gt; from the ftvo differential equations.

This process is frequently of service. (See El. Dif. Eq. 25, 26).

Eliminating/ from (136) and (138) gives

w (x, y, a, b} = o,

a solution of (137) involving two arbitrary constants. It is there

fore the general solution. Hence,

THEOREM IV. If two independent first integrals of a differential

equation of t)ie second order can l&amp;gt;c found, its general solution is ob

tained I&amp;gt;\ eliminating p from tJic ecjnations of the first integrals.

Remark, If &amp;lt; and
\j/

are in involution, it follows at once from

the above that the two relations

determine an element union ( 48) for all choices of the constants

a and b.
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It should be noted, however, that

(113) 0(^ , v,/) = o, *t,(x,y,p)
= o

may determine a union without the identical vanishing of
[^&amp;gt;, \j/~\

thus see Ex. 6, 48. But in every case when the relations (113) de

termine a union, [^, &amp;lt;]

must equal zero, either identically or because

of these relations. This follows readily from the fact that whenever

(113) determine a union, the equation of the curve of the latter is an

integral curve common to the two differential equations &amp;lt;

= o, ^ o;

and conversely.

53. Differential Equation of the First Order Invariant under a

Group of Contact Transformations. The general type of differential

equation of the first order invariant under the group whose infinitesi

mal transformation is

is obtained (compare 18) by equating to zero the general solution*

of the linear partial differential equation

On the other hand, the condition that the differential equation

/( v
&amp;gt;

r
5 /) = De invariant under the group whose infinitesimal

transformation is Bfis obviously ([12], n)

Bf= o whenever f= o.

As was noted in 51, a differential equation of the first order

(142) /=&amp;lt;o(.v,y)

arranges the oc
2

lineal elements determined by it in oc
1

unions, the

curves of which are its integral curves. If (142) is left unaltered by

*This solution is obviously the general expression for \\\e first differential invariants

of the group, the name given by Lie to invariant functions of x, y, p.
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a contact transformation

(117) #, = X(x, r, /), y l
= Y(x, v, /&amp;gt;), /, = 7&amp;gt;(.v, r, /),

the latter interchanges the integral curves of (142) among them

selves, since it transforms unions into unions.

As far as the differential equation (142) is concerned, the only

lineal elements operated upon by (117) are those whose coordi

nates are (.v, r, / = o&amp;gt;(.v, r)). These elements are transformed into

(.v,, Vi, /, o)(.v,, v,)) by (117), since the latter leaves the differ

ential equation unaltered. Hence the effect of the contact trans

formation (117) on the differential equation is the same as that of

the point transformation

(143) #! = X(x, y, w(x, y}), y\ = Y(x, y, (#, y)\

Whence the

THEORKM. If the differential equation

(142) f&amp;gt;=o&amp;gt;(x,y)

is invariant under tlie contact transformation

(117) a-,
= A (*, y, /), yi = y (x, y, /), pl

= P(x, y, /),

it is also invariant under the point transformation

(143) x
}
= X(x, y, o&amp;gt;(.r, v)), y\ = Y(x, y, o&amp;gt;(.v, y)).

Both transformations interchange the integral curves &amp;lt;&amp;gt;/&quot;( 142).

It follows at once that if the differential equation

p = w(#, y)

is invariant under a group ofcontact transformations whose infinitesi

mal transformation is

Bf= .v, r. / 1

V
|

,,,
.v. y, fy

%+ ,(.,; y, /)%
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// is also invariant under the group ofpoint transformations whose

infinitesimal transformation is

Uf= t(x, y, &amp;lt;r, v)) f
+ ?(*, y, (*,

y))*j-y
-

Either of the methods of 12 and 20, Chapter II, may then be em

ployed for solving the differential equation.

Remark. Since BW= W
y W, it follows that the differential

equation

(144) W(xt y,f) = &amp;lt;&amp;gt;

is invariant under the group of contact transformations whose infini

tesimal transformation has W^for characteristic function.

But the invariance is of a special kind. The effect of this infinitesi

mal transformation is to carry the point (x, ) )
of an element (x, y, p)

into (x + 8a-j y + 77 &z) where $ = IVP , TJ =plVp W. The slope

of the line joining these points is

f-/--=/ when UK- &amp;lt;k

I wp

Hence any element whose coordinates satisfy (144) has its point

carried in the direction of the line of the element, that is, the ele

ment and the one into which it is transformed are united ( 48).

The infinitesimal transformation, therefore, leaves unaltered each of

the unions ( 51) determined by the differential equation (144), and

the group has this effect on each of the integral curves of (144).

Such a group is said to be trivial with respect to the differential

equation (144), ( 12), an^i is of no service in solving it.
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NOTE I

THE INFINITESIMAL TRANSFORMATION

In case both
(j&amp;gt;(x, y, a) and $(x, } , a) vanish identically

da da

for the special value of a = a
,
or if either of them becomes infinite

for that value of a, irrespective of the values of x and y that may

enter, a modification of the process for finding the infinitesimal trans

formation employed in 2 must be made. It should be noted that

they cannot both vanish identically for all values. of a, for in that

case neither of the functions &amp;lt; and
if/
could involve a at all

;
nor can

either one of them become infinite for all values of x, y, ami a, since

&amp;lt;f&amp;gt;

and
i//

are supposed to be generally analytic, which implies the

existence of finite derivatives, except perhaps for special values of

the arguments.

Let a be a value of the parameter for which and -* are finite
da da

and at least one of them different from zero. The transformation

Ta determined by it has for inverse a definite transformation, 7^, of

the group, corresponding to the value of the parameter, where a is

a function of a only. Since TzTa = Tn is the identical transforma

tion, TaTa+da is an infinitesimal transformation. If T* is

*\ = 4&amp;gt;(x,y, )i J i
= $(*, y, ),

the infinitesimal transformation 7i7*a+sa may be written, when ex-

197



198 THEORY OF DIFFERENTIAL EQUATIONS

panded by Taylor s Theorem

x, =
&amp;lt;f&amp;gt;(xlt ylt a + Sa) = x +

&amp;lt;j&amp;gt;(xlt }\, u)8a* -\
----

j, = &amp;gt;/ (&amp;gt; }\, a -f 8tf)
=

&amp;gt;
+ ^(xlf }\, a)8a -f ,

since
&amp;lt;(.TI, ji, )

= ^, ^(xlt y lt a)y. Owing to the way in which

a was chosen, neither of the coefficients of Ba is infinite for all values

of x and y, and one of them, at least, is not identically zero.

Writing

, a) , ] = ^(.r, ; , a) ,

,J ? ), ]^&amp;gt;;Gv,j, a),

(I45)

it follows that ^// infinitesimal transformation of the group (1} of the

type (2), 2,

(2) v = 8rt, 8&amp;gt;

=
17
80

r^ always be found.

The forms for ^ and
77

found in 2 are exactly what the above

become fcfr the special choice a = a = 0,,.

From the above it is seen that and
rj

in (2) depend upon the

choice of . It remains to show how they depend upon* the choice

of the parameter. Let

8* = HO, j)&7, 8r = H(

or xl
= x+ s,(x, .v)80, ji ,

= y 4- H (.v, j)8&amp;lt;7

be some known infinitesimal transformation of the group (i), where

E and II are not both identically zero, and neither of them is infinite,

in general. The result of performing successively any transformation

Ta of the group (i) and the above infinitesimal transformation is

Hcru J (Vj.^ j,
(/.) stands for

da
, a)
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some transformation of the group whose effect on the variables x

and y differs from that of Ta by an infinitesimal amount. In other

words, it is a transformation Ta+ a ,
where Art is an infinitesimal which

is a function of a and Srt only, because of the group property of (i).

From the first definition of this transformation

#2 = xi + (!, }\)&a = &amp;lt;O, ) , 4- H( &amp;lt;

while from*the second definition

x.z =&amp;lt;j&amp;gt;(x,yt
rt + Art) =

da

Hence

da

A,t,

Art

(&amp;lt;/&amp;gt;, i/OStf A*

(146)

for all values of :r, i
1

,
rt and Srt, Art being a definite function of a and

Srt, and an infinitesimal along with Srt. By hypothesis H and H do

not both vanish identically; suppose, to fix the ideas, that E = o.

It follows that A* is not left unaltered by all the transformations of

the group ( r ) ;
hence

&amp;lt;f&amp;gt;

must involve rt, and -* ^ o. With a proper
aa

choice of .v, v, rt the coefficient of 8a and that of Art in at least the

first of the two relations ( i.j(&amp;gt;)
are different from xero. ]\y a theo

rem in the Theory of l- unctions, concerning the inversion of power

series, Art is developable in powers of Srt, the development beginning

with the first power. Hence

r, A,/ is ri (unction of ,1 ;intl 8a only, the rorfticirnts in

,v iind an- tree ot r .ind v.
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where w(a)^o. A&amp;lt;z is thus of the same order of infinitesimals as

8a. Putting this value in (146), dividing by 8a, and passing to the

limit &a = o,

(147) E(*,*)=7*()

or remembering that x =
&amp;lt;b(x^ jr1} a), y = if/(xlt )\, a),

these may be written

Using (145), and replacing ^ and j ,
in these identities by x and y,

we have

(148) (*,^,0)
= _iE(*,j ), ^ ,,

fl
)
= _l_ H (^^).

The effect, then, of using different values of the parameter in deter

mining an infinitesimal transformation by the method of the first

part of this note is to obtain pairs of coefficients of 8a in the two

formulae which are proportional, the factors of proportionality being

constants. Hence, by Remark i, 2, all the infinitesimal transfor

mations so obtained are one and the same. We have thus arrived

at the

THEOREM. Every one-parameter group of transformations
i

x\ = 4&amp;gt;(x, y, a), Vi
= ^O, } , a)

has one and only one independent infinitesimal transformation

&x = (
x

t y )
8tf

, By = rj( -v, v ) Sa,

where

.v v
da
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and &amp;lt;t is any value of the parameter such that at least one of f ^ \ and

[-JL] is not identically zero, and neither of them is infinite for all

\daja

values of x and y.

In general # is a possible value. In 4 is shown that the trans

formations of the group can always be put in such form that this is

true. When for a given group this value cannot be used, this is due

to the way in which the parameter enters, and is not a peculiarity of

the group.

Remark. This theorem and its proof hold for n variables without

any but obvious modifications to take account of the number of

variables.

NOTE II

SOLUTION OF THE RICCATI EQUATION

z^
air

In 1 8 the general method for finding the differential equations

invariant under a given group led to the solution of the Riccati

equation

(39)
dx tdx t\df dx id

in which y, wherever it occurs, is supposed to have been replaced by

its value in terms of x and c [say y = &amp;lt;(.v, &quot;)]
obtained from

u(x, y) = c, the solution of the differential equation

It is very easily seen that

(149) y
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in which v is replaced, as above, by &amp;lt;(.v, r), is a particular solution

ot (39). For differentiating (149)

dx \dx dy dx) ^ \dx dy dx)

Remembering that ^- = 3, this becomes
dx k

Whence follows at once that (149) satisfies (39).

It is a well-known fact that the knowledge of a particular solution

of a Riccati equation enables one to fiml a transformation of variables

which reduces the equation to a linear differential equation of the

first order, whose solution requires two quadratures (see EL Dif. Eq.

73, i). For the sake of simplicity, writing (39) in the form

and its particular solution y =y t

the transformation / = - +yd

changes the differential equation into

+ (Xl -f 2 yJXJz + X, = o,

which is linear. If z w(.r, k) is the solution of this equation,

(150) / = __1_+&amp;gt;?1^(^)J
*(x,k)

^
t[.x, +(x, c)]

is the solution of (39). Solving (150) for k, and replacing &amp;lt;(.r, c)

b
y-&amp;gt; (x,y,S)=*

is the required second solution of (37), 18.
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^=x*= 5
y x I +y*

t f.,i j _|_ v
-

The Kiccati equation (39) is -

.

- = -

ax _ vV

The transformation
s _v

dz . -zx I

reduces this to - 2 = -

^r c x~ Vf x-

&quot;

. 7 /

Integrating,
- + k{c

I lence / =
. ^T^T^T

~ ~

and k =
(TT^TT^ -u ^ ^ W ^ 7 ^ ^

Compare this with II, 19.

NOTE III

ISOTHERMAL CURVES

The condition that two distinct families of curves

&amp;lt;(.v, j) = const, and i^(,v, y) = rrv/y/.

divide the plane into infinitesimal squares may be obtained from the

following considerations :
*

Passing to the new system of coordinates

the two families of curves have the simple equations

x= cons/, and y = const,

*AH this holds, practically without change, for isothermal curves on surfaces.
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From dx = ^ dx +
3*

dy and dy - * dx +
d*

dy,
dx dy

&quot;

ox dy

dy dy dx dx

A+&amp;gt;

-here

the Jacobian of &amp;lt; and ^, which is not identically zero, since the two

families of curves are distinct. (See El^ Dif. Eq. Note I of the

Appendix.)

The expression for the element of length of arc of any curve in the

plane, in terms of the new coordinates, is

d? = do? + &amp;lt;if=
Edx*-2Fdx dy + G dft

where the coefficients

dy dxdxdydy G = \dxj \dy

U ($&amp;gt;

are to be expressed in terms of x and y by aid of (151).

A first requirement, that the two families of curves form isothermal

systems, is that they cut each other orthogonally. The condition for

this is 1,1,
d&amp;lt;

d\l/

dx dy

-T4&amp;gt;

=
ty

orF= -

dy dx

Hence a necessary condition is that the expression for the element

of length of arc assume the form

(/s- = E dx1 +
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For a curve of the family x = const, (which will be referred to as an

jr-curve)
dsx= ^J G dy,

while for a y-curve ds =
&quot;y

dx.

If -\/~E = V at every point in the plane, the curves divide the

plane into infinitesimal squares, for choosing dx the same as dy,

Moreover, if VE and V G contain a common factor, and each of

the remaining factors is a function of the corresponding variable

only, thus
AOr, )/?(,),

the introduction of the new variables

X=Ca(x)itx and Y= Cft(y)tfy

gives &amp;lt;/jT=A(A
r

, Y)JXandJs T = A(X, Y)dY9

where A(X, Y) is what \(x, y) becomes when x and y are replaced

by their values in terms of X and K The families

X= const, and Y= const.

(which are obviously the same as x= const. and y const) have the

desired property. Hence the

THEOREM. The necessary and sufficient condition that tlie entires

&amp;lt;f&amp;gt;(x, _) )
= const, and thrir orthogonal trajectories i//(.v, \} const.

divide the plane into infinitesi inal squares is tJiat tJie choice of variables

reduces the expression for the element of length of arc to theform

,K- = X2

(jr, y} ] [(jr)//r]
2 + [0(y^] 2

f ,

where, in particular, &amp;lt;c(x)
and J3(y} tnav eacli he unity.
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Thus in the case of a family of concentric circles and their orthogonal trajec

tories,
x = x2

+y*, y--,

2x

Putting X = log Vjr, Y tan 1
!/,

For other examples of isothermal systems, see 24.

NOTE IV

DIFFERENTIAL EQUATION OF THE SECOND ORDER NOT
INVARIANT UNDER ANY GROUP

If the differential equation be written in the form

the condition that it be left unaltered by the group

( 6 1
) rj

-
T/

- +
17&quot;

= o, whenever / = F (x, y, / ) ,

t(5S),ia63 ,

~-
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Replacing y&quot; t
wherever it occurs in

y&quot;, by F(x,y, y ) the condi

tion (61 ) becomes

fr?_ _ _ -.

dy
2

**

-
dx By ty W

-v
dy

for all values of x, y, y .

Since (152) is an identity with respect to x, y, and y ,
it is equiva

lent to a number of differential and finite equations in and
ry,

the

exact numl^er depending on the form of F. Fixing one s attention

ony alone, (152) is equivalent to at least four equations, and per

haps more. In general it is impossible to find functions (x, y) and

ij(
x

&amp;gt; } )
to satisfy all these conditions.

As an example, consider the differential equation

The identity (152) leads to

tan/.

dy
= 0,

the dots standing for terms free of tan y and sec y and involving

second derivatives of and
tj. (See below.) This identity implies

the following relations :
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!=&amp;lt;&amp;gt;

From (#) and (/)
-~ =

3-
- = o.

These together with (V) and
(&amp;lt;/)

make it necessary that

= const, and
7;
= &amp;lt;r0j/.

Hence, the omission of terms involving higher derivatives of and

rj
above.

Since (6) must hold for all values of x and y

=
r)
= o;

i.e. there is no infinitesimal transformation and, therefore, no group

that leaves the differential equation unaltered.

Remark. The case of a differential equation of the first order is

entirely different. The condition that

be invariant under 6/= ,. + 77
J-

ox oy

may be put into the form

Here one of the functions, say , may be chosen at random, leav

ing a partial differential equation in
T;,

which always has a solution ; as

a matter of fact it has an indefinite number of them. This is in

entire accord with the result arrived at in 15.
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NOTE V

The symbol of the infinitesimal transformation of the extended

group corresponding to 6^=
7)

~^~ ^
;}

^s C( 2
4)&amp;gt;

T 3]

dx By\dx dy

Introducing the symbol

//&quot;may be written in the form

and (BU )f = J}(Jl/+ P (
X

, y, /) ,

where p(x,y,y )= B(By yfJB) is some function of x,y, y ,
whose

actual form is of no importance in this discussion. Introducing the

additional symbol

be written in the form

Also (CU)f=&amp;lt;r(x t y t ]f)Cf9

where cr(.v, v, r )
=

C(fty y B) is also a function of .v, r, r
,
whose

form is of no importance here. The fact to be emphasized is that

{Blf)fand ( Ct?}/ arc linearfunctions of Bf and Cf, the coefficients

being functions of x, y, y .
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Moreover, if U^f and U.&amp;gt;f
are any two groups, (/?(///, ))/ and

(C(C/i &&amp;gt;))/
are also linear in Bf and Cf. For from Jacobi s

identity ( 36)

(B( U{ U{) )/+ ( U{ ( MB) )/+ ( Ui (BUI) )/
=

o,

and in an analogous manner,

( C( U{ W) )/
=

( U^, - U^ Cf.

Since (U^U.^f is of the same type as Uf ( 14), it may be written

and

Noting that (U{ U*)f coincides with (U^)/ in the first two

terms, at least, we may put

It remains to show that o&amp;gt;

=
Brj

The alternant of /?/and ((SiC7)/is

This being linear in /y/and Cf, as was proved above,

. . Bt = A, /&amp;gt;

ry

-
&amp;lt;u

=
A/.
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Whence co = ^-/^.

This, as was noted above, establishes the identity

Remark. It can also be proved that for the ;-times extended

groups ^&quot;&quot;

NOTE VI

CONTINUOUS GROUPS INVOLVING MORE THAN ONE
PARAMETER

r-parameter Group of Transformations. The aggregate of all the

transformations *

x1
=

4&amp;gt;(x,y, 0i, tfjj, ,
a

r ),

(153) h l
= t( X &amp;gt;} &amp;gt;

a
l&amp;gt;

a* &quot;, &amp;lt;*r)&amp;gt;

obtained by assigning to the parameters a lt a.2 , ,
a

T
all possible

values constitutes a group, if the transformation resulting from the

successive performance of any two of them is one of the transforma

tions of the aggregate.

As in the case of one-parameter groups (Chapter I), the groups

here considered arc supposed to have their transformations pair off

into mutually inrrrse ones. That is, corresponding to -any set of

values of alt a.&amp;gt;, ,
&amp;lt;r

r
there must always be another set &amp;lt;r

} , &amp;lt;7.,, -,
a

r ,

* As before, and
&amp;lt;//

;ir- supposed (o he &amp;lt;M ner;illv analytic real functions of x,y, a
lt

a-2, , &amp;lt;i r : and, unless specially stated, it \\ill be understood that .r and r are real

and tliat the parameters take sueh values only as render .r, and v, real. Groups of

transt oi inations involving two variables aie considered here. For the theory of those

involving ;/ variables the student is referred to Lie s works, especially his rraiisforma-

tio*jgrttppettt Vol. I., and liis Coiiti/iuit-rUc/ic (ifu
/&amp;gt;/&amp;gt;&amp;lt;

a ; also to Campbell s Introduc

tory I &amp;gt; &amp;lt;\itis&amp;lt;- on /./V.v Theory.
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(functions of the former ones) such that

Another way of putting this is: If the equations (153) are solved

for x and 7, the latter must appear as the same functions, &amp;lt; and
\f/ }

respectively of x andj^ and a set of r functions of alt a2, -, a
r) as

indicated by (153).

Thus, consider the translations

XVII xi = x + ai, yi - y + a2 .

If one of them be followed by a second one,

x-2 = *i + b\ y y-i =y\ + bz t

the result is x% = x -f- c\, y ---- y + c%,

where ^i = #1 -f b\, c-i
=

Solving the equations XVII for x and y,

x = x\ i, y y\

Hence a\ = a\, a-i = &amp;lt;*%

Again, consider the displacements

XVIII x\ .rcos a\ jsinai + a* y\

A second transformation of this type

x.2 = x\ cos bi y\ sin
l&amp;gt;\ + b^ y-i x\ sin b\ + yi cos b\ + ^3,

results in

x-2 x cos ri y sin o + ro, jo = jr sin c\ + ^ cos
&amp;lt;TI + ^3?

where

f! = rfi + ^ if r2 = a-2 cos ^i a ;5 sin 61 + b^ CA = a sin b\ -f a?, cos ^ -f

Solving the equations XVIII for x and y,

x = ^icos( tfi) /isin(

j/
= jfi sin ( tfi) + Ji cos(

Hence

i + rt
;j sin &amp;lt;/i), ;$

=
(J-i sin

&amp;lt;?i a-\ cos i.
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In the case of the general projective transformations

4 a y 4 a* a *x 4 &amp;lt;*& v 4
, y\

&1* 4- a%y + #9

there is no difficulty in seeing that these constitute a group. For if one of the

above transformations be followed by

-f

there results

where

= * + C^ + &amp;lt;*

, y, = &amp;lt;** +
&amp;lt;*?

+
^7-^ + ^8&amp;gt;

+ ^9 ^7-^ + C*y +

c\ a\b\ 4- &amp;lt;?7^3,

= a-2 t&amp;gt; 4- rt6 *5 4 8^6,

a36f 4 o^s 4 &amp;lt;?9^8,

^&quot;9 r,^7 + #6^8 4 ^9^9.

Moreover, the result of solving the equations XIX for x and y is

4-

where /^i, /4o,

determinant

4 ^e^i 4- ^9 ^3^1 4- ^c^i 4 -

are the cofactors of the corresponding elements of the

a\ 0o

a^ 6

Since the successive performance of two mutually inverse trans

formations results in the identical transformation, the latter must

always be a member of the Lie group ;
hence there must always
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i

exist a set of values of the parameters, a&quot;, a.?, -,
&amp;lt;z

r ,
such that

( I53o )

It is readily seen that for

XVII, ai0 = aj = o;

XVIII,
-

tfl
o = 2

o = fl.,0 = o
;

XIX, i
=

5&amp;lt;&amp;gt;

= 9 = tfwy number (differentfrom zero},

aj = tf3
&amp;gt; = 4 = rt6 =

&amp;lt;Z 7 = tf8 = O.

We shall further presuppose that all of the / parameters in (153)

are essential, that is, that the formuke of transformation cannot be

replaced by another set involving a smaller number of parameters

without reducing the number of transformations represented by

them.

Thus xi x -f ai + a3 , yi y + a-&amp;gt;

contains no transformation that is not included in XVII. It involves only two

essential parameters ; a\_ -\- a?&amp;gt;
is no more general than a\.

In XIX, as is well known, there are only eight essential parameters ;
since

the expressions are homogeneous and of degree /ero in the parameters, it is only

the ratios of the latter to any one of them that count.

A group involving r essential parameters is known as an

r-paramcter group.

It is frequently possible to tell by inspection whether the parameters

appearing are essential or not. An analytic criterion is given by the

theorem of Note VII.

Show that the following sets of transformations constitute groups.

Find the respective values of the parameters that give the inverse

and those that give the identical transformations :

Kx. i. a-j
= a^x + a.2t )\ = a

ly + a*

Ex. 2. ,rj
= a& + azy + a3t y\ = a^c + &amp;lt;75y + a6.

Ex. 3. ji\
= x + air + tfj, y\ =y + 3 .
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Ex. 4. x
l
= x + rt,jr + a.&amp;gt;, yi = &amp;lt;r

.. v.

Ex. 5. ^ =
(#! -|- i ),v + O,

Infinitesimal Transformation. The transformation

y, = f(x, y, &amp;lt; + 8a lt of + & 2, -n tf
r + &*,),

where ^^ f72 , -, r

n determine the identical transformation and

fail, &*2, &quot;&amp;gt;
S^r are infinitesimals, changes jc and y by infinitesimal

amounts, since &amp;lt; and ^ are supposed to be continuous functions.

Developing by Taylor s Theorem,

and stand for what
da?

respectively become when a
l
= af, a.2 = a&quot;, ,

a
r
= a, and the

unexpressed terms are of higher degree than the first in 80 lf Sa.2 , ,

Bar. The changes in x and ^ are then
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We shall suppose that at least one member of the pair

,

for each value of / from i to r, does not vanish identically, and that

all of them are finite. Calling them &(#,.} )* anc^
ft (*.) ) respec

tively, the transformation may be written

In exactly the same way as is done for one-parameter groups in

Note I, it can be shown that infinitesimal transformations of the form

(155) always exist, even when the parameters enter in such a way that

for the particular values a, a.2 , .,
a r both members of some pair

3K*, y, *) dt(x,y, a )

da? da?

vanish identically, or if some one of them becomes infinite.f

Here &/ b &a2 , ,8&amp;lt;z r are any infinitesimal increments of the first

order. Taking &a as a standard infinitesimal of the first order, we

may put

* Here ^ and
77,-

are written as functions of x and y only, since Oj ,
a.f1

, ,
a r

appear as numerical constants.

f The general expressions for the coefficients in (155) are, in thenotaiion of Note I,

Here
lf ._,, , r are any set of values of the parameters for which both t. and

77*

are finite, and at least one of them is not identically zero. The forms (155) for
,, 77,-

are what the general forms (155 )
become for the special choice ak

= (ik
= at

(*= i, 2, ...,r).
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where tlt e2 , -,
e
r are any finite constants. The general type of an

infinitesimal transformation may then be written

^ 6
x

v = (/IT?! 4- ^r?,

For the sake of brevity we shall write

(157) &x = Sti+ ,
8v = i/80 + ,

where =
*&amp;lt;^

an( ^ ^ = ^*&quot;
Intr ducing the symbol

and similarly

we have

(1 5 8)

It can be proved
* that when the r parameters of the group are

essential Uif, U^f,-- Urf} (in which
., ?;

are given by (155 ) for

any properly selected set of values of the parameters, in particular

they may have the special forms (155)), are linearly independent ;

that is, that it is impossible to find a set of constants cly c.,, ,
cr such

that
c&f+ cMf+ -+ crUrf= o,

which is equivalent to saying that for no set of constants r,, r,, ,
cr

can both the relations ,.

* Thus, for example, see Lie, ContinuierlicheGruppen, Chapter 6, or his Transform a-

tioHsgruppen, Chapter 4. Also Campbell, loc. cit., 42.

The object of this Note is to present as compactly as possible, consistent with a

clear understanding of the chain of reasoning, the relations luturrn /--parameter

groups and their infinitesimal transformations. Consequently when long and tedious,

the proofs of certain facts are omitted here. These may, however, be obtained from

the references given.
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hold simultaneously. Moreover,* it can also be proved that if

&v = E8rt+--., 8_v
= H80 + ..,

is any infinitesimal transformation of the group, H is a linear function

of lf 2 , &quot;, r with constant coefficients, and H is the same function

Of
r,,, T?.,, -, ,,, thllS,

where the set UJ= L + r
li (/= i, 2, , r)

dv c^

is any linearly independent one.

The coefficients of &z in (156) can therefore never both vanish

identically. Hence at least one of the terms of first order must

appear. Infinitesimals of higher order than the first may conse

quently be neglected, and the infinitesimal transformation may be

written in the form

(159) &* = (f& + t& + + f&) Stf, 8v = (^,17, + e,^, + ... -f e
rri,)&a.

The change in any function f(^,v} produced by (159) is then

S/EEE Vf*a,
where

(158) 0^4%/+. .l%/+ - + ^
r r̂/

as in 3, is the symbol of the transformation (159) and will be usrd

to represent it.

The above may now be expressed as follows :

THKORKM !. AVvvv continuous Lie
^r&amp;lt;&amp;gt;///&amp;gt; intNthring r essential

parameters contains r linearly ini/epeiittenf infinitesimal transforma

tions (\/\ t\,f, ,
f

r

r f, in terms of which every infinitesimal trans^

f(&amp;gt;rmalion of tJie i^nn/p can be e.\pressed linearly until eonstaut

coefficients, tints

(158) uf^c,i\f+c.2 r,f + - +crurf.

J/&quot;/ /vv 7 r/-, fi frv transformation of flie type (i^.for all&quot; choices of

///e &amp;lt; onslants e
Vi &amp;lt;&quot;._,, &amp;lt;&quot;,., l&amp;gt;elt&amp;gt;ugs

/&amp;lt;&amp;gt; (lie group.
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Remark i. It follows that in any set of infinitesimal transforma

tions of the group, only / at most can be linearly independent.

Moreover, starting with any r linearly independent transformations

UJ, UJ, -, UJ, every set

VJ= *u 11/+ &amp;lt;*UJ+ - - - + ^UJ
(k= I, 2, ,

/ )

will be linearly independent provided

=0.

Any set of r linearly independent infinitesimal transformations,

V\fi V-2/&amp;gt;

&quot; Vr/&amp;gt;

may ^)e taken as the r transformations (referred to

in Theorem I) in terms of which all the infinitesimal transformations

can be expressed linearly with constant coefficients
; for, since A ^fc o,

each of /,/, UJ, , UJ is a linear function of / ,/, VJ, &amp;gt;,

Vrf
with constant coefficients.

In the case of XVII

A set of linearly independent transformations is

U\ f f
(. /~~

dx*
In the case of XVIII,

A set of linearly independent transformations is

-f Sa-.\ =



220 THEORY OF DIFFERENTIAL EQUATIONS

In the case of XIX there are only eight essential parameters. Putting ag = I,

r _
i

* r _ (i + 8&amp;lt;*i)x + y 3*2 + da3
X\ X -f- OX -

x da 7 + y 5 8 -+- I

But - = I x $a-, y da$ + ,

where the dots stand for terms of higher degree than the first.

... x\ = x 4- 8x = x -\- x?&amp;gt;a\ + y

Whence, 5x = (ex + ey + &amp;gt;, e-jx
2

e%xy}ba.

Similarly, 8y (ex -\- e^y^- e$ e-^xy e8
}&amp;gt;

2
)8a.

A set of linearly independent transformations is

Ex. 7. Find the infinitesimal transformations of the groups in

Ex. i, 2, 3, 4, 5, 6 above.

Group Generated by Infinitesimal Transformations. Starting with

the infinitesimal transformation

(158) 67 =^7+^7+ ... +eruj

in which the constants elt e^ ,
er are fixed, the finite transforma

tions of the group generated by it may be obtained either by finding

those solutions of

(i 60)
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for which xl
= x and yl

= y when / = o
( 4), or in the form

( 5),

(161)

In both cases / is the parameter, and / = o gives the identical

transformation.

If elt e2 , ,
er are arbitrary constants and c^/, /,/, , U/ are

linearly independent, the infinitesimal transformation contains r i

parameters (viz. the ratios of any r i of the &amp;lt;? s to the remaining

one), and the general expression (161) for the finite transformations

generated by it contains r parameters. That these parameters are

essential follows from the linear independence of /,/, c7,/, , //.

A proof of this fact may be found in Lie s Continuierliche Gruppcn,

pp. 186-190. Hence there are ocr

transformations in the set (161).

If
/i/&quot;, U%f, -&quot;, 6//are r linearly independent infinitesimal trans

formations of an r-parameter group, every transformation of the set

(158) belongs to the group (Theorem I). All the transformations

of the one-parameter group generated by any transformation (158)

belong to the r-parameter group (Lie, Continuierliche Gruppcn,

p. 183). The oc
r transformations (161) therefore belong to the

group. Moreover, every transformation of the r-parameter group

(at least all such for which the values of the parameters are suffici

ently small so that when developed by Taylor s Theorem in powers

of the parameters, as (161) are, the series are convergent) is in

cluded in (161) (Lie, Transformati0nsgruppitt
Vol. I, Ch. 4, 18).

Hence

THEOREM II. If
&quot;

U\f, Uf, , UJare r linearly independent trans

formations of an r-para meter group, the latter* is precisely the OggTV-

* At least all its transformations corresponding to values of the parameters which

differ by limited amounts perhaps (see above) from those which give the identical

transformation.
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gaff &amp;lt;&amp;gt;/

all the one-parameter groups generated by the cc 7 1

infinitesimal

transformations

Remark 2. Since / and the &amp;lt;^ s appear in (161) in the combina

tions
/&amp;lt;?!,

/if2 , ,
te

r ,
there will be no loss in suppressing the / and

writing the finite transformations of the group in the form

(161 )

I

2~!

where the &amp;lt;r s are now r distinct parameters. The identical trans

formation is given by e
l
= e.2

= =e
r
= o, and the inverse trans

formation by e
i;

= c
i (/=i, 2, , r).

In the case of XVII the general type of infinitesimal transformation is

The finite transformations (161 ) are seen at once to be

Xi = X + ?!, jj i =^ -f t.

In the case of XVIII

. . #i = x o^ 4- ^ - -1 - e {
-x + -

1
- epy + --*!

4
jr

= x cos
&amp;lt;TI y sin &amp;lt;? i -f *_&amp;gt;.

Similarly ^ !
= JT sin e\ -f- ; cos

&amp;lt;TI + ^3.

Remark j. The expressions for jr, and r, in (161 ) may at times

become extremely complicated, as for example in the case of the

group XIX. Also the actual problem of integrating equations (160)

with the r s arbitrary constants is usually a difficult one. To over

come this practical difficulty T,ie suggested the following method,

which was also given independently by Maurer (
Matli. ./////., Vol. 39) :
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Having found

(162) *}.
=

4&amp;gt;i(x, y, &amp;lt;O yi
=

&amp;lt;l&amp;gt;i(

x
&amp;gt;y&amp;gt;

a
i)&amp;gt;

(/
=

i, 2,..-, r),

the finite transformations of the one-parameter groups generated by

each of the r linearly independent infinitesimal transformations

U\ft U.&amp;gt;f, --, 7
r/of an /--parameter group, the result of performing

successively one transformation (with arbitrarily selected parameter)

out of each of the ; groups (162) is a transformation belonging to

the r-parameter group and involving the r parameters a
lt a.,, ,

a
r
.

That these are essential follows also from the linear independence of

t
Urf. (See Lie, Continuicrlichc Grnppcn, p. 194.)

In the case of XVII

=&
flbr

U*f=
(f : u-g = x lt

By

The successive performance of these gives

*z = x 4- rti, y = y
In XVIII

rr f &amp;lt;V
, 3/

t/i/= y
-^

4- : -*i =

=- =

The successive performance of these gives

jc-.\ A cos
&amp;lt;zi _j

sin
&amp;lt;/i + &amp;lt;/;., _j ;!

= x sin ^/i + 7 cos ^i 4- r/ :; .

In XIX

U\f=
(

. : xi=x + rt|, Vi = j-, ,
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~dy

df
Usf=y : x* = xb , y& = ^5,

dx dy i - 8j r

The successive performance of these gives

x _

_

where &amp;lt;4=

Find the finite transformations generated by the following

Ex. 8. U=
oy

Ex. 9. * + **+*i^+ + t

Ex.10. &&(&amp;lt;&+ * + .

ox oy

Ex. 11. Uf= (etf + ^2)
I&quot;-

+ V f .

3jc 61)

Ex. 12. /EE (^ 4- ex H- &amp;lt;, v) ;
X + ( ,

(U

Ex. 13. ^- (^ + ^2^ 4- W) 4
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Lie s Principal Theorem. It was shown above (Theorem II)

that if /!/, /,/, ..., UTf are r linearly independent infinitesimal

transformations of an r-parameter group, the aggregate of the co r

transformations of the cc r~ l

one-parameter groups, each generated

by an infinitesimal transformation of the set

(158) Uf = f\Uif-\- e^U-J -\-
&quot; + e

TUrf,

forms an r-parameter group. On the other hand, starting with any

r linearly independent infinitesimal transformations L\f, U.J. ,

Urf (without knowing whether they form a complete set for some

group), there is no reason to suppose that the oo r transformations

generated by the various transformations (158) form a group.

Thus, starting with /I/=^T, EV=*f
CM vy

the transformations generated by
_-.- of of
LJf =: e\ \- f-~&amp;gt;x -7

dx dy

are xi = x -f a\, y\ = ax + y +
et-^-

While these transformations involve two essential parameters, it is very easily

seen that they do not form a group.

A definite answer as to when the oor transformations generated by

the various transformations of the set (158) form a group is given by

LIE S PRINCIPAL THEORKM :

* The necessary and sufficient conditions

that the oo r

transformations generated by the oc r~ 1

infinitesimal trans

formations TJ f +- TJ / -U -4- T r f

* Lie calls this theorem &quot; Der Hauptsati der Gruppentheoric,&quot; and gives a proof
of it for groups involving two variables in his (\wtinuifrlichf Grtippen, Ch. 12. In

his treatment of the general theory of continuous groups, this theorem is the second of

his &quot;three fundamental theorems.&quot; See his (\&amp;gt;ntinuierliche
C,ruf&amp;gt;f&amp;gt;en,(Z\\. 15, or his

Transformationwupp. n. Vol. I, Ch. 9 ; also Campbell, /,r. cif., Ch. IV.

A detailed proof of this theorem would be beyond ihe scope of this Note. A state

ment of it with illustrative examples will suffice.

Lie first deduced this theorem in 1874.

Q
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where U^f, U-,f, &quot;, UJ are linearly independent and &amp;lt;?lf e.2 , ,
er are

any constants, constitute, a Lie r-parametcr group arc t/iat

(/,=i, 2, ..-, r),

where the c s are constants.

Remark 4. This theorem is equivalent to the following two :

i. TJie infinitesimal transformations of an r-parametergroupform
tin r-parameter group of infinitesimal transformations. ( 43.)

2. 27u transfoi-mations if tlic groups generated b\ tJie transforma

tions of an r-parametergroup of injinitcsimal transformationsform an

r-parameter group.

In the case of XVIII,

Here (l\U*)f=Uzf, (U,U^f~-U^ft (U,U*)f=o.

In XIX

( ^, /7y= 2

and so on.

Ex. 14. Show that the infinitesimal transformations in Ex. 8 to

13 satisfy the conditions (163).

NOTE VII

CONDITION FOR ESSENTIAL PARAMETERS

The r parameters in

( J 53) -v
l
=

&amp;lt;#&amp;gt;(.v,.v,
a

} , a.,, -, a r ), ) 1
=

t//(.v, r, a
lt a,, --, a

r)

are //^/essential if (153) &amp;lt;~an be n-nlared by

(164) j;1 = *(jr,^, !, ,, ..-, r_ TO ), .Vi
= ^Cv,.v, i, ,., , r_m)
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In this case the identities

(165) &amp;lt;

=
&amp;lt;!&amp;gt;, ^ = *

for all values of x and y, determine alt a2, ,
ar_m as functions of

a\&amp;gt;
a

-2, -~, (i
T ;

f r by saying that (164) replaces (153) is meant that

as soon as the # s are given a set of the a s is determined (not neces

sarily uniquely) which will give rise to the same transformation.

A homogeneous linear partial differential equation of the first order

in r variables

(166) 4/~ Xl (alf a,, ,
a

r)---f--\
-----

hXrOi&amp;gt; z, j &amp;lt;*r)~-
= o

oa 1 dar

is determined uniquely by r i independent solutions.* An equa

tion of this type can therefore be constructed which shall have for

solutions

!, ,, , r_m , /?r_m+1 , , (3r

where /3f_m+l , , /?r_], any convenient functions of the # s inde

pendent of the s, are added to the latter to make up the number

r i in case ;//
&amp;gt;

i. This equation will have for solution also any

functions of the s, in particular $ and
&amp;gt;P,

x and y appearing as

parameters ;
or owing to the identities (165), by which the s are

defined,
&amp;lt;f&amp;gt;

and ^ will also be solutions.

Conversely, if &amp;lt; and
\j/ satisfy an equation of the type (166), they

are functions of some or all of its r i solutions.

i.e. the # s enter
&amp;lt;#&amp;gt;

and
\f/

in such a \vnv that for all values of A* and y

&amp;lt;(.v, v, &amp;lt;7.,
t7...

, ^7,) =.1 ^(.v, r, y,, y,. , yr_0,

^(.v, i
, ^,. &amp;lt;A_,,

, ^7,)
= M ( v. r, y,, y,,, , y,^).

* A proof of this for the rasr of r 3 is i^ivcn in tlu in -t footnote of
ij 34. The

proof for r any number is exactly the same.
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Hence the

THEOREM. The necessarv and sufficient condition that the rpara
meters in (153) be essential is the impossibility of Jinding r functions

of them xu Xt&amp;gt;
&quot;&amp;gt; Xr Sltc h that the resulting linear equation (166)

shall have &amp;lt; and
\\i for solutions.

Remark. There is nothing in the above to show whether the

r i parameters y1? y2 , , y r_ : are essential or not. The same test

must be applied to them also, unless, as is frequently the case, the

exact state of affairs is obvious on inspection.

To illustrate, consider the transformation

xi = xa ] s b
-f #&amp;lt;* -1- c =

&amp;lt;}&amp;gt;(x, y, a, b, c),

yi =jj/
log6 = \f/(x, y, a, b, c}.

If a, l&amp;gt;,

c are not essential it must be possible to find three functions of them,

Xi(fl, b, f), X2(X b, c), X$(a, b, &amp;lt;r),

such tliat the equation

(i 66) Af= XM + x&amp;gt;M+x,V=o
da db Qc

is satisfied identically (for all values of x and jy) by and ^; that is

,=1^(^108* +
a

\ a b

for all values of x and y. These two identities are equivalent to

= o,

= o.
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By inspection, a set of forms for xi X2 %3 are found to be

Hence the three parameters are not essential.

To express the formulae of transformation in terms of a smaller number, one

proceeds to solve the equation

(166 ) a\oga&- b\ogt&amp;gt;i=o.
*

da fib

Passing to the corresponding system of ordinary differential equations

da db _ dc^

a log a b log b o

it is obvious that log a log b and c

are a set of solutions of (166 ). Putting

log a log b
,
whence

the formulae of transformation take the form

or, more simply still, ^i = a^ -f





TABLE I

IN this table is given a list of the more readily recognizable forms*

of differential equations of the first order which are known to be in

variant under certain groups. The same type of equation is some

times given in various forms, and special cases are also noted when

this seems desirable.

In the second column appear the groups under which the equations

are invariant. The numbers are those employed in 19. For the

sake of simplicity / and q are used instead of - and J. respectively.dx oy

The corresponding integrating factors of 12 are given in the

third column.

In the fourth column appear the canonical variables.f

When variables which are separable in the transformed equation

( 20) can be obtained easily, they are given in the fifth column;

the form of the group resulting from the introduction of these vari

ables is given in the last column.

* Other forms will be found in $ 19.

t Then- is :i certain dearer of freedom in the choice of cnnonie;il variables, since

they are particular solutions of the differential equations (i^ l. ^ 10, or of the eorrcspond-

d/
Ing ones in case the group is to be reduced to the form , Moreover, the right-hand

member, i, in one of these equations may be replaced by any convenient constant (see
Remark i, $ 2) ;

use of this fact is made when it will simplify the form of the resulting

variable.
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TABLE II

General types of differential equations of higher order than the

first, invariant under given groups, are usually complicated and not

easy to recognize. In this table are given a few which a little ex

perience will enable one to recognize.* Such characterizations as

are simple are added.

DIFFERENTIAL EQUATION
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DIFFERENTIAL EQUATION





ANSWERS
Section 1

1. a = -
; ao = I

;
the equilateral hyperbolas x\y\ xy = const.

a

2. a =
; dQ = i

,
the parabolas

? = ^ const.

3. a = _
;

fl = i
j

the semicubical parabolas *-*- = = const.
(i x\^ x^

4. tf =
; rto = o

;
the ellipses x\* -\- 2y\* = x* + 2^v

2 =: const.

5. # =
; ao = o

;
the equilateral hyperbolas xfi y\* = x^ y* = const.

) i v
6. a = a ^ = o

;
the straight lines ~ = const.

7- a =
y ao = I ; the straight lines ^i = jy

= const.

8. fl = a ; ao = o
;

the spirals log \/.rr + J i&quot;
tan-1 ^1

= log vV2 + y2 tan- 1 = ^j/,

Section 2

*
2&amp;gt;/ 7- f =

5. |=; , &amp;gt;n

= x.

Section 4

4. x? - .v- + 2 /, ^!
2 =; 2 -

/. .-.*!=+ Va-^ + 2 /, j/i
= + Vy2

/.

5- -VL +jJ i
= ^

or .n = JT cosh t + y sinh /, ; t
= x sinh / + v cosh /.

6.
, -=_,. ... ^ = _^L_, ^ l

= ^L_.
.^i x &amp;gt;

i
Jf I .v/ I - .r/

7- .
i =J, .r, +^i =

**(jr + V). . . xi-f*x-\r(et l).r, v, =jj/.

8. .vrl.rr &amp;lt;

-

(.\- i-
-

, tun -

1
1 = tan&quot;

1 ^
-f- /. . . :ri = f

(.vct&amp;gt;s/ j-sin /),
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Section 5

2. xi = e*x, y\ (fy. 3. X Y

-
e- x, y\ =

* 2 ! x5 3 ! x {

4 !

l il i&amp;gt;.!ii

4/2! 8^3! 16/4!

-f
_&amp;gt;

sinh /.

/ /3 /5 \ / /- / l \= .*/ + --1

---
1-

... \+ y( i -|
---

1

---
\- }

= jc sinh/ + v cosh/.
V 3 ! 5 ! /A 2 ! 4 ! /

6. *!=*
I tX \tX

7. jT! = tx + (^ - i&amp;gt;, yi = y.

8. While the coefficients in the developments can be obtained readily, it is not

easy to recognize the functions represented by the infinite series.

6. **
7. y.X

Section 7

1. xy = f, p. c.,* x = y = o, i. p. 6. y =. ex, p. c., x= o, l.i.p.

2. j2 = ex, p. c., ^r = y = o, i. p. 7. r= c, p. c., x + y = o, 1. i. p.

3. y2 = fx-\ p. c., x = y = o, i. p. 8- jog v^a^jTyj
_ tan-i ? - ^ p&amp;gt; Ct&amp;gt;

4 . y2
-f 2y2 = c, p. c. ^ = y = o, i. p .

5. x2 -y2 = r, p. c., x = y = o, i. p.

Section 10 f

3. *= r=kg*
&quot;

4. *==*+ 2;&quot;-, i/=/.

* The abbreviations here used are: p. c. for path-curve, i.p. for invariant point,

1. i. p for locus of invariant points.

t The answers ^ivni lor the exercises of this section are not unique, since they are

particular solutions of tin- differential equations (16 ). Besides, the right-hand member
of the second of these equations may be replaced by any convenient constant (see Re

mark i, $ 2) ;
use of tins fact has been made in the case of Ex. 3, 4, 6.
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Section 11

I. Uf=*=\ x = a, y = t&amp;gt;, p.c.;* 2 = 0, l.i. p.; x = x, y = y, z = logz,

&amp;gt; y ax, z = b, p. c.; x y = o, l.i. p.; x = ten~ l --
,

dy x

+ r , z = 2, c. v. . . x e^ cos x, y = $ sin x, z = z.

3. Uf= x &. -\-yty- -f Z^L
;

z ax= o, z by=o, p. c.; x = y = z = o, i. p.;
d-* dy dz

x = tan&quot;
1 = tan -1

, y = tan 1 -
r

,
z = logV^r

2 +y2 + 2^, c. v.

.-. x = e
z
cos AT cos y, y=e

z cos JT sin y, 2 = e
z
sin jr.

The introduction of polar coordinates reduces the group to the form of the

group appearing in Ex. I.

4. Uf=x- +y=- + xy--\ y ax = o, xy 2 z= b, p. c.; x = y o, 1. i. p.
d* dy dz

x = tan -1 2
, y = xy 2 z, z = logvV2 +y2

, c. v.

dy dz x
bz^ = o, p. c.

;
x = y = z = o, i. p. ;

x u\ y y = u, z log z, c. v.

Section 12

2. x2
-f y- cy = o. 3. tan&quot;

1 -^ = Vx* +y2 + c, spirals [p = 6 +
&amp;lt;:].

-f
^

4. tan&quot;
1 -^ = /^ logWJ

-f y2- + c, logarithmic spirals [p = ce~*~\.

5. x2 + j- r^r = o.

Section 21

3. xy = c*x + c, g. s.,t 4 jr
2
_y + I = o, s. s., y = o, p. s. for c O ; 25, 5. J

* The abbreviations used in the answers of \ 7 are also employed here, with the

additional one c. v. for canonical variables.

f The abbreviations used IKTC arc g. s. for general solution, s. s. for singular solu

tion, p. s. for particular solution.

J While the methods of $$ 12 and 20, especially the latter, may frequently be employed
in finding the general solution, serious practical difficulties may arise. The references

he*re given are to the places in El. Dif. Eq., where these differential equations appear
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4. ii ty- + 2 cx + c - = o, g. s., x 1
a-y- = o, s. s., y =. o, p. s. for c = o, 27, 8.

5. y c (x - c-y
2
, g. s., y(2~i y - 4-r

J )= o, s. s., also j = o, p. s. for c = o;

26, 4
6. y2 = 2 ex + r, g. s., (32 JT* + 27^) = o, s. s., ^ = o, p. s. for c - O; 27, 7.

7. JT 4- ^/ + ^ = o, g. s., jry-
- 4 = o, s. s.; 28, 3.

Section 24

1. The equilateral hyperbolas x* y- = c.

2.
y&quot;

= cxb
. .-. y = ex, when b = a

; xy = c, when b =. a.

3. The circles .*- +^2 + I = &amp;lt;r^r.

Section 26

.
,

d* dy dy&quot;

3 . vw/=x&-y&-2y &

4. /(&amp;gt;/=
^ 4- by-+ (l&amp;gt;

_
a)y

i + (t
- 2 a)y&quot;---

3-f dy dy dy&quot;

as exercises. Practicable methods may be found tin-re. But when the methods of

the text can be carried on), tlu-y should be employed, to obtnin practice in them.

However, the method of ^ 21 for finding the singular solution leaves nothing to be

desired. (Compare El. Dif. /:,/. Chapter V.)
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Section 23

/o N
3. y=axe*. 4. y = x log + c

} 5. y = x(c^ log* + &amp;lt;%,).

Section 29

Section 32

3. Ar
2
+jj/

2
. 4. 5.

- 6. jr2 +/2 + 82 - 2yz-2zx-2xy.
z cxaz

7-
^_

Section 34

The group I leaves a and &amp;lt;/ unaltered.

The group 2 leaves a unaltered.

The group 3 leaves c unaltered.

The group 4 leaves a, b and c unaltered.

Section 35

3. u=y x, v=(x +y)(x +y + 42), or xy + yz + zx.

4 . u = y + * +y~+-xz
,
v =y x - yz + xz, or it =y + xz, v= .

y- X -yZ + XZ

Section 38

3. Method A, 3 applies. 4. Method B, 4, O) applies.

5. Method B, i applies. u= x y, v=y z.

+ xz

+ yz
6. Method B, 3 applies. u= ? + *Z

,
v=(x- -/-)(! c3 ).

Section 39

3- y = log sec (x -f a) + b. 4; y2 = ax* + bx.

Section 40

5. y log sec (j: + tf)-f //. 6.
X

~c\&amp;lt;

r
. 8. &amp;lt;*

= ax* +
J
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Section 44

i. . 2. 5. 3. /3. 4. /3. 5. 7. 6. 7.

Section 45*

i. JT=tan~ 1
-^, y = tan&quot;

1 &amp;lt;^ + log \/
X

2. Since (UiU)f= (/if- Uf, consider Ft/= 67

i/&quot;-
Uzf=y&- and F2

5tf,/3E*|.
For these* =j, y=*.

4. JT = ^ -f y8

, y = tan= -1

+y x+y x

6. Since (UiU^f=l\f, consider Vvf= Uf, F2/= -
U\f. For these

Section 49

i. x\ = x ap, ji = y \ ap
2

, p\. p.

Vfl*/
2 + IP \/a^~+lfl

3- -*
1

!
= 7*

. , -&amp;gt; ^i = ^T-T~T /i - 7. -m rrs*

NOTE VI

2. 1= ,,= -, 3=
A A A A A A

A = aids - acn ;
a

{
= a^ = i, a =

&amp;lt;z3 = a 4 =
&amp;lt;z6

= o.

3. ai = a i, o = 0o + ^i:5, ;}
= #u J i

= 02 =
tf:*

= -

* Since multiplying its symbol by a constant does not affect the infinitesimal trans

formation of a group (Remark i, $ 2), the answers in this section are not unique. Use

is made of this fact in Ex. i, 3, 4, 6. %*
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- - I _ a&amp;gt;i

- _ a% .

o-* oy

U,f= (, + e,y + )
. + (, + ,, + ,)

^.

i/6/= Ol

The groups generated l&amp;gt;y
the infinitesimal transformations of Ex. 8 to 13 are

precisely the respective groups of Ex. I to 6.





INDEX
The numbers refer to pages.

The following abbreviations are used : dif. eq. EE differential equation ; gr. group
infl. EE; infinitesimal ; i. u. EE invariant under ; ord. EE order ; tr. EE transformation.

Affine tr., 3, 54

Alternant, 44
of symbols of extended trs., 209

Asymptotic lines, 80

Bernoulli equation, 58

Canonical form, 26, 34, 64, 155
Canonical variables, 26, 34, 64, 156

Change of variables, 23, 33, 188

Characteristic function of infl. contact tr.,

186

Classification of two-parameter grs., 152

Commutator, 45

Complete system, 104, 106, no
equivalent, 106

Jacobian, 107, no
Contact tr., 178, 181; infl., 185

Curvature, lines of, 81

Curve of union of elements, 175, 189

Differential equation of I. ord., 189
i. u. gr., 40, 44, 45, 46, 48, 50, 52, 194, 231

Dif. eq. of 2. ord. i. u. gr., 86, 90, 134, 137,

148, 165, 236
not i. u. any gr., 206

Dif. eq. of n. order i. u. gr., 99, 101, 236
Differential invariant, 51, 88, 194
Dilatations, 185, 186

Displacements, 212

Distinct grs., 122, 123, 125
Distinct infl. trs., 7

Elements, lineal, 175
union of, 175, 194

Equivalent complete systems, 106
Kssential parameters, 214
condition for, 226

Extended gr., 42, 84
Extended point tr., 41, 83, 180

First differential invariant, 51, 194
First integral, 191

General expression for gr. leaving dif. eq.
of i. ord. unaltered, 49

Group, i, 28, 2ii

distinct, 122, 123, 125

extended, 42, 84

generated by infl. tr,, 10, 12, 14, 30, 220

involving one parameter, i, 28

involving / parameters, 211

of contact trs., 185 .

of infl. trs., 146

property, 2

trivial, 39, 119, 196

Homogeneous dif. eq. (Boole), 93

Identical tr., 4

Independent linear partial dif. eqs., 104
Infinitesimal contact tr., 185

characteristic function of, 186

symbol of, 186

Infinitesimal tr., 6, 29, 197, 215, 218

distinct, 7

gr. generated by, TO, 12, 14, 30, 220

linearly independent, 143, 217

r-parameter gr. of, 1^6

symbol of, 8, 42, 84, 85, 218

Integrating factor, 37, 47, 69, 76
common to two dif. eqs., 72
two, for the same dif. eq., 48

Int&amp;gt; rmediary integral, 191

Invariant, 16, 31

curve, 17, 18, 31, 32

247
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Invariant

differential, 51, 88, 194
dif. eq., see Dif. eq.

equation, 18, 32

family of curves, 20, 22

linear partial dif. eq., 115, 118, 119, 122,

124

point, 17, 19, 31

surface, 31, 32
Inverse tr., 3, 29, 211

Involute, 70
of a circle, 70

Involution, functions in, 179
Isothermal curves, 72, 79, 203

Jacobian complete system, 107, no
Jacobi s identity, 121

Lie gr., 3
Lie s principal theorem, 225
Lineal element, 175
Linear ordinary dif. eq. of i. ord., 56, 57

of 2. ord., 92, 94, 139, 140, 173, 174
of n. ord., 102

Linear partial dif. eq. i. u. a gr., 115, 118,

119
i. u. two grs., 122, 124

Linearly independent infl. trs., 143, 217
number of, leaving dif. eq. of ord. u ~/ 2

unaltered limited, 143, 146
Lines of curvature, 81

Method of solution of

complete system, in, 113
dif. eq. of i. ord., 38, 49, 63, 66, 193

of 2. ord., 88, 134, 137, 165, 169, 193
of n. ord., 101

linear partial dif. eq., 119, 124
Minimal lines, 78

tt-times-extended gr., 84 ; tr., 83

Once-extended gr., 42 ; tr., 41

Parallel curves, 70

Path-curve, 4, ic, n, 17, 18, 19, 31, 67

Perspective tr., 3
Point tr., 40

extended, 41, 83, 180

Poissonian symbol, 179
Product of trs., 2

Projective tr., general, 213

Reciprocal polars, tr. by, 180, 184
Riccati equation, 52, 59, 201

Rotations, 2

r-parameter gr. of infl. trs., 146
of trs., 211, 214

Second differential invariant, 88

Separation of variables, 63
Similitudinous tr., 3

Singular solution, 66

Subgroup, 149

Symbol of extended infl. tr., 42, 84, 85
of infl. contact tr., 186

of infl. tr., 8, 218

System, complete, see Complete system

Transform of a tr., 24
Transformation

affine, 3, 54

by reciprocal polars, 180, 184

contact, 178, 181

extended, 41, 83

general projective, 213

gr. of, i, 28, 2ii

identical, 4

infl., 6, 29, 185, 197, 215, 218

inverse, 3, 29, 211

perspective, 3

point, 40

product of, 2

similitudinous, 3

Translation, 2, 53, 212

Trivial gr., 39, 119, 196
Twice-extended gr., 84; tr., 83

Two-parameter grs., classification of, 152

Two-parameter subgroups always exist,

150

Types of dif. eqs. of i. ord. i. u. given grs.,

52, 231
of 2. ord. i. u. given grs., 90, 236
of w. ord. i. u. given grs., 101, 236

Union of elements, 175, 176, 194
curve of, 175, 189

United elements, 175

Variables

canonical. 26, 34, 64, 156

change of, 23, 33, 188

separation of, 63
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